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Abstract

Secure multi-party protocols are cryptographic protocols which multiple players engage in. Many ap-
plication specific multi-party protocols have been proposed, which include electronic voting, electronic
cash, electronic auction, broadcast encryption, traitor tracing, anonymous authentication, group signa-
ture, secret sharing, conference (group) key distribution, group key generation, etc. These multi-party
protocols are designed mainly so as to carry out social activities in the network. The technique of general
multi-party computation that enables multi-party to securely compute any efficient function is known.
However, its results are mostly far from practical efficiency in the sense of computational, communi-
cation, and round complexity. This is the major reason why a large number of specific constructions
of multi-party protocols has been proposed. Since a multiple number of players engage in multi-party
protocols, they often have complex security requirements. Such circumstance, besides the fact that the
number of players itself is large, makes it hard to construct efficient multi-party protocols. Thus, effi-
ciency enhancement is the major and crucial interest in these designing of multi-party protocols. Among
these examples of multi-party protocols presented above, electronic voting, broadcast encryption, and
group signature can be listed as most useful multi-party protocols. This dissertation presents several
efficiency enhanced variants of these protocols. They are an efficient publicly verifiable shuffle scheme,
an efficient publicly verifiable shuffle and decryption scheme, an efficient publicly verifiable hybrid mix-
net scheme, an aggregate shuffle argument scheme, an efficient compiler from Σ-protocol to deniable
zero-knowledge argument, a black-box traitor revocable broadcast encryption scheme, a group signa-
ture scheme for separate and distributed authorities, and an efficient group signature based on bilinear
mappings. These protocols are efficient enough for practical purposes.

Thesis Supervisor: Kanta Matsuura
Title: Associate Professor, Institute of Industrial Science

2



Contents

1 Preliminaries 9

1.1 Mix-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Black-Box Traitor Revocable Broadcast Encryption . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Group Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Publicly Verifiable Shuffle, Shuffle and Decryption 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Permutation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Perfect Zero-knowledge Argument for Shuffling . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 ElGamal Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Protocol Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Proposed Zero-Knowledge Argument . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.5 Properties of the Proposed Argument for Shuffling . . . . . . . . . . . . . . . . . . 23

2.4 An Efficient Argument for Shuffle-Decryption . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 ElGamal Shuffle-Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Protocol Structure and Tricks for Efficiency . . . . . . . . . . . . . . . . . . . . . . 29

2.4.4 Proposed Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5 Properties of the Proposed Argument for Shuffle-Decryption . . . . . . . . . . . . . 32

2.5 Complete Permutation Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Intuitive Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.2 Adaptive Chosen Cipher-Text Attack . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.3 Complete Permutation Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



2.7 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Hybrid mix-net 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 IND-ME-CCA Secure Multiple Encryption in Hybrid Setting . . . . . . . . . . . . . . . . 55

3.2.1 The Idea of the Proposed Multiple Encryption Scheme . . . . . . . . . . . . . . . . 56

3.2.2 Proposed Multiple Encryption with Verifiable Decryption . . . . . . . . . . . . . . 57

3.3 Publicly Verifiable Mix-net under Hybrid Construction . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Proposed Mix-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Efficiency of the Proposed Verifiable Mix-net . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 3-move Perfect Zero-Knowledge Argument for Shuffle-and-decrypt . . . . . . . . . . . . . 77

3.5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.2 ElGamal Shuffle-and-Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.3 Idea of the Proposed Zero-Knowledge Argument . . . . . . . . . . . . . . . . . . . 79

3.5.4 Proposed Zero-Knowledge Argument for Shuffle-and-Decryption . . . . . . . . . . 79

4 Aggregate Shuffle Argument Scheme 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Aggregate Shuffle Argument Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 ElGamal Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.2 Model of Aggregate Shuffle Argument Schemes . . . . . . . . . . . . . . . . . . . . 90

4.2.3 Security Requirements of Aggregate Shuffle Argument Scheme . . . . . . . . . . . 91

4.3 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Permutation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Aggregate Permutation Argument Scheme . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Basic Aggregate Shuffle Argument Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Overview of the Strategy for the basic scheme . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.3 The Proposed Scheme with Honest Players . . . . . . . . . . . . . . . . . . . . . . 96

4.4.4 Security of the Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Full Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 A New Computational Zero-knowledge Argument for Shuffling . . . . . . . . . . . . . . . 103

4.7.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4



4.7.2 Zero-Knowledge Argument for Shuffling . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7.3 Properties of the Proposed Argument for Shuffling . . . . . . . . . . . . . . . . . . 105

4.8 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Compiler from Σ-Protocol to Deniable Zero-Knowledge 109

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Basic Concepts and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Deniable ZK in the Random Oracle Model . . . . . . . . . . . . . . . . . . . . . . 112

5.2.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.3 Notation and Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.4 Σ-Protocols and Σ-Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Proposed Σ-Compiler in the Random Oracle Model . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Σ-Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2 RSAK of the Compiled Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.3 Deniable Zero-knowledge of the Compiled Protocol . . . . . . . . . . . . . . . . . . 121

5.3.4 Addition of Resettable Zero-knowledge Property . . . . . . . . . . . . . . . . . . . 127

5.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Example Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.1 Undeniable Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.2 Deniable Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Black-Box Traitor Revocable Broadcast Encryption with Short Private Keys 135

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 The Model and Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.2 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Black-Box Traitor Revocation and Strong Index Hiding . . . . . . . . . . . . . . . . . . . 142

6.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 Basic Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.6 Efficiency and Security against CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.7 Security of the Basic Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5



7 Group Signature for Separate and Distributed Authorities 157

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2.1 Model of Group Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.2 Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4 A New Group Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4.3 Distributed Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4.4 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.5 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.6 Nyberg-Rueppel signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8 Group Signature from Bilinear Mappings 177

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.2.1 Notation and Complexity Assumption . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.3 Proposed Group Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.5 Comparison with Previous Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.6 Generation of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.7 A Variant of Scheme in [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9 Conclusion 201

6



Acknowledgments

I had been a member of Imai Laboratory in the first two and half year during the doctorial course in

the University of Tokyo. I want to express my gratitude to Professor Hideki Imai for encouraging me

to join his laboratory and giving me many practical advises during my stay in his laboratory. After

professor Hideki Imai left the university, I have joined Matsuura Laboratory to complete my Ph.D.,

where I could get the advice necessary to finish this dissertation from Professor Kanta Matsuura. I

express my gratitude to him. Study in Imai Laboratory was very exciting. I could enjoy stimulating

discussions with Goichiro Hanaoka, Rui Zhang, Nuttapong Attrapadung, and other members. I have

been candidate for the Ph.D. and worked for NEC Corporation simultaneously for three years. I am

grateful for Kazue Sako, giving me nice themes to study in NEC Corporation. I am also grateful for

Hiroshi Miyauchi, my former supervisor in NEC Corporation. Without his support and arrangement, I

could not go to study in Imai Laboratory.

7





Chapter 1

Preliminaries

Cryptography had originally arisen as measures of private communication between two parties through

wire-tapped channel. It has been then developed to include measures to guarantee authenticity. In cryp-

tography, these are two party protocols now known as public key encryption, symmetric key encryption,

signature, message authentication, etc.

While these primitives for two parties remain to be central interest of cryptography, modern cryp-

tography has expanded to encompass protocols for multiple of parties. Such a multi-party protocols

include general multi-party computation, electronic voting, electronic cash, electronic auction, broad-

cast encryption, traitor tracing, anonymous authentication, group signature, secret sharing, conference

(group) key distribution, group key generation, etc. These multi-party protocols are designed mainly so

as to carry out social activities within the network.

Some of multi-party protocols can be constructed by combining simple two-party protocols. Such

a simple primitive based construction, however, often ends up with inefficiency, especially when the

number of participants are huge. The technique of general multi-party computation enables multi-party

to securely compute any efficient function but its results are often far from practical efficiency in the sense

of computational, communication, and round complexity. This is the major reason that a large number

of specific constructions of multi-party protocols has been proposed. Thus, efficiency enhancement is

the major and crucial interest in these designing of multi-party protocols.

Among these examples of multi-party protocols presented above, electronic voting, broadcast encryp-

tion, and group signature can be listed as most useful multi-party protocols. This dissertation presents

several efficiency enhanced variants of these protocols. These protocols are efficient enough for practical

purposes.
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1.1 Mix-net

Electronic voting system has a potential to enable us to engage in a voting from our homes, from office,

during a travel, or during a hospital stay. Although the notion of electronic voting is promising, it

has severe and conflicting requirements which tends to make the system terribly inefficient. Since the

number of voters who engage a voting can be huge, only deliberately constructed scheme can serve for

practical purpose. The most promising cryptographic protocols that can realize electronic voting systems

are publicly verifiable mix-nets. Hence, proposing efficient electronic voting system can be achieved by

proposing efficient publicly verifiable mix-nets.

Mix-Nets are composed of a sequence of shuffles and decryptions by multiple and independent mixers.

Shuffles are core parts of mix-nets. First they are given multiple of ciphertexts as an input. Next they

permute them and then reencrypt the results of the permutation. Finally, they outputs the resulting

ciphertexts. Because of reencryption and permutation, input ciphertexts and output ciphertexts of a

shuffle are unlinkable to every one except the mixer itself. Hence, the relation between inputs and

outputs of a mix-net is disclosed to no one unless all the mixer collude. If shuffles and decryptions in

a mix-net is publicly verifiable, that is, the correctness of permutation and reencryption and that of

decryption can be verified by any player, the mix-net will be also publicly verifiable.

When such a publicly verifiable mix-net is applied to electronic voting, the anonymity of voters is

guaranteed by unlinkability of the input and the output ciphertexts of the mix-net and the correctness

of tallying is guaranteed by its public verifiability. Hence the publicly verifiable mix-nets are protocols

that can securely realize electronic voting system.

The correctness of shuffles need to be proved without sacrificing their unlinkability, which is often

done by a zero-knowledge argument system. It is true that any language in NP can be proven in zero-

knowledge, however, the result of such a general approach does not have enough efficient for practical

purposes. Indeed, it is crucial to make the shuffle argument part efficient to make the total mix-net

efficient. In Chapter 2, we propose an efficient protocol for proving the correctness of shuffling and an

efficient protocol for simultaneously proving the correctness of both shuffling and decryption. The former

protocol is, as of our proposal, the most efficient in computational and communication complexity among

3-move honest verifier perfect zero-knowledge protocols for proving a shuffling of ElGamal cipher-texts.

The protocol still has very close efficiency to the most efficient one. The latter protocol is also the most

efficient in computational, as of our proposal, in communication, and round complexity, as a whole, in

proving the correctness of both shuffling and decryption of ElGamal cipher-texts.

In Chapter 3, we propose an efficient publicly verifiable hybrid mix-net. The publicly verifiable mix-

net we consider in Chapter 2 was only efficient for short ciphertexts and was not suitable for mixing

long messages. Hybrid-mix nets are mix-nets that are suitable for handling long ciphertexts of hybrid

10



type. Previous hybrid mix-net can mix long messages but did not have public verifiability. The proposed

scheme is efficient enough to treat large scale electronic questionnaires of long messages as well as voting

with write-ins, and offers public verifiability of the correctness of the tally. A cost we pay for public

verifiability is that the length of the input ciphertext grows in linear in the number of mixers. The

scheme is provably secure if we assume random oracles, semantic security of a one-time symmetric-key

cryptosystem, and intractability of decision Diffie-Hellman problem.

Verifiers in publicly verifiable mix-net in Chapter 2 are required to verify the correctness of each

mixer. Hence, if the number of mixers is large, the cost for verifying mix-nets will be large. Since the

anonymity of mix-nets are guaranteed only when at least one mixer is honest, the number of mixers

need to be large to achieve high anonymity. But increasing the number of mixers increase the cost for

verification.

In Chapter 4, we propose a novel scheme to prove the correctness of mix-net that is composed of

multiple shufflings, in such a way that the computational complexity of its verifier does not depend on the

number of its composite shufflings. We call this scheme an aggregate shuffle argument scheme. Although

a similar scheme proposed by Abe in Eurocrypt ’98 exists, our scheme is much more efficient. In fact,

the computational cost required for the verifier in our scheme is less than 1/60 of that in Abe’s scheme.

We achieved such an efficiency since we constructed our protocol based on our efficient shuffle arguments

in Chapter 2, while Abe’s scheme exploits the shuffle proof proposed in Sako et al. in Eurocrypt ’95.

We also proposed a formal model and security requirements of aggregate shuffle argument schemes.

Mix-nets are good candidate cryptographic protocols for electronic voting. However, it is not a

perfect substitution for non electronic voting system. One major problem is receipt freeness of voting

systems. That is, each voter should not be able to prove whom he have voted to third parties. Without

this such a property, vote-buying will be easy. One solution is to make the receipts of voting center

to be non transferable to third parties. We also give an efficient and general technique to make non

transferable proof system. That is a technique to make deniable zero-knowledge argument.

Pass showed a 2-move deniable zero-knowledge argument scheme for any NP language in the random

oracle model at CRYPTO 2003. However, this scheme is very inefficient because it relies on the cut and

choose paradigm (via straight-line witness extractable technique). In Chapter 5, we propose a very

efficient compiler that transforms any Σ-protocol to a 2-move deniable zero-knowledge argument scheme

in the random oracle model, which is also a resettable zero-knowledge and resettably-sound argument of

knowledge. Since there is no essential loss of efficiency in our transform, we can obtain a very efficient

undeniable signature scheme and a very efficient deniable authentication scheme. We achieved to balance

all properties such as efficiency, deniability, resettable zero-knowledge, and resettably-sound argument

of knowledge in the random oracle model, which is impossible by black-box reduction in the standard
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model.

1.2 Black-Box Traitor Revocable Broadcast Encryption

Broadcast encryption schemes enable senders to distribute ciphertexts of some contents to registered

receivers. The schemes have applications in pay-TV, DVD system etc. Its primary purpose can be

achieve by simple encryption scheme if one distributes the secret key of the encryption scheme to all

the registered users. However, modern broadcast encryption schemes require more functionalities. The

schemes require their ciphertexts to be decryptable only by non-revoked users and require a manager that

can trace the receiver, who has leaked its key from a pirate decoder, to be provided. These requirements

can be satisfied if the broadcasted ciphertexts are simple combinations of all the ciphertexts, each

encrypted for each receiver. But this is unrealistically inefficient.

Black-box traitor revocable broadcast encryption schemes are encryption schemes that enable senders

to efficiently broadcast ciphertexts to a large set of receivers in a way that only non-revoked receivers can

decrypt them and that, given a pirate decoder, enable a tracer to identify traitors by black-box accessing

the pirated decoder and to revoke traitors so identified. Since the number of receivers in broadcast

encryption schemes is potentially large, pirate decoders are always a serious threat, and that is why

traitor revocable schemes are useful for them. Such schemes are useful for distributing contents with

copyright since one can effectively disable pirate decoders.

Broadcast encryption schemes enable senders to efficiently broadcast ciphertexts to a large set of

receivers in a way that only non-revoked receivers can decrypt them.

In Chapter 6 we propose a black-box traitor revocable broadcast encryption scheme in which the

size of each of its private keys is constant, the size of the public key is proportional to the number of

receivers, and the sizes of its ciphertexts are sub-linear with respect to the number of receivers. The

encryption procedure in our scheme requires only a public key. The tracing procedure in it requires a

secret key and black-box access to a resettable pirate decoder. The security of our scheme is proved in

the generic bilinear group model.

1.3 Group Signature

Group signatures schemes enable a member of a group to sign on behalf of its group without revealing

his own identity. The scheme also realizes a special authority that can identify actual signers in case

of dispute. Group signatures have many applications in which user anonymity is required such as in

anonymous credential systems, identity escrow, voting and bidding, and electronic cash systems.
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In group signature schemes, their authorities have rather strong privilege. They can add new member

and trace members at any time. Such a strong privilege is often hard to manage in practical operation.

In Chapter 7, we propose a new group signature scheme that simultaneously provides the following two

properties : (1) the membership authority is able to add a user but not to identify an actual signer,

while the tracing authority is able to identify the actual signer but not to add a user, (2) for further

decentralization, these two authorities are respectively distributed among multiple entities in a manner

efficient enough for practical applications. Previous group signature schemes, as of our proposal, have

only offered one or the other of these two properties. Further, we formalize the security properties in

a group signature scheme that has the former property and in which either of the two authorities is

potentially dishonest.

Although earlier group signature schemes required large computational cost and long signatures,

many of recently proposed schemes are very efficient. These successes of efficient constructions open

the way for using them in practical applications. In Chapter 8, we propose a new group signature

scheme which is secure if we assume the Decision Diffie-Hellman assumption, the q-Strong Diffie-Hellman

assumption, and the existence of random oracles. Within these assumption, the proposed scheme is the

most efficient among the all previous group signature schemes in signature length and in computational

complexity.
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Chapter 2

Publicly Verifiable Shuffle, Shuffle

and Decryption

2.1 Introduction

A mix-net [42] protocol is useful in applications which require anonymity, such as voting. Crucial to a

mix-net protocol is the execution of multiple rounds of shuffling and decryption by multiple, independent

mixers, so that none of the output decryptions can be linked to any of the input encryptions.

To ensure the correctness of output, it is desirable to achieve the property of public verifiability.

Early studies, such as those by Sako and Kilian [137] and Abe [2], required vast amounts of computation

to prove and verify the correctness of a shuffling in a mix-net without sacrificing unlinkability. However,

recently proposed protocols [69, 70, 85, 120] were sufficiently efficient and practical. The protocols

of [69, 70] use the property of permutation matrixes, and the protocols of [85, 120] use the fact that

polynomials remain invariant under the permutations of their roots. The protocols of [70], [85] , and

[120] require the respective computation of 18k, 12k, and 42k modular exponentiations to prove and

verify the correctness of a shuffling of k data. The protocol of [69] requires 19k modular exponentiations

to prove and verify both shuffling and decryption. Groth’s protocol [85] is the most efficient.

A result of these recent works is that proving the correctness of decryption now costs as much as

proving the correctness of shuffling. Hence, decreasing the cost of proving decryption has also become

important for mix-net. It is now also important in these protocols to decrease round complexity. The

round complexity of the interactive protocols is one of their most important complexity measures. Indeed,

substantial research efforts have been invested into reducing round complexity in many cryptographic

protocols. In particular, no efficient 3-round zero-knowledge argument for shuffling is known. Indeed,

15



the 3-round protocol proposed in [70] is not zero-knowledge.

In this chapter, we present two protocols. The first protocol is a 3-round special honest-verifier

perfect zero-knowledge argument for shuffling, which is the most efficient among less-than-7-rounds zero-

knowledge arguments for shuffling. The second protocol is a 5-round protocol that proves the correctness

of both shuffling and decryption, which is the most efficient in computational, communication, and round

complexity, as a whole, in proving the correctness of both shuffling and decryption of ElGamal cipher-

texts.

The first protocol is a refinement of the non zero-knowledge protocol in [70] which is not zero-

knowledge. We introduced more random elements into the original protocol to make it turn into a zero-

knowledge protocol. We also reduced its computational and communication complexity. The second

protocol is based on the first protocol. Here, we reduce the cost for decryption by choosing a strategy of

simultaneously proving the correctness of shuffling and decryption. The protocol of shuffle-decryption

was first presented in [128]. The technique we used here is the same as that introduced in [69]. However,

as is mentioned in [69], the protocol of [69] is not zero-knowledge, and this simultaneously proving

technique never yields a zero-knowledge protocol.

Although the second protocol is not zero-knowledge, we propose a formal definition for the core

requirement of unlinkability in arguments for ElGamal shuffle-decryption and proved that the proposed

argument is secure in the sense of this definition. We call this property “complete permutation hiding

(CPH).” If an argument for shuffle-decryption is CPH, polynomially-bounded honest verifiers, who may

have some partial information about its permutation, will learn nothing new about its permutation from

an interaction with a prover in an overwhelming number of cases of input even if the arguments with

the same private key are repeatedly executed, whereas if the argument is zero-knowledge, verifiers will

learn nothing new in every case of input.

The definition of security for argument for shuffle-decryption stated in [69] is “No polynomially

bounded adversary can compute any partial information of the permutation from the protocol”. Unlike

our new definition, this definition does not mention the case where the verifier has already obtained

partial information before the protocol begins and where the shuffle-decryptions with the same private

key are repeatedly executed. These cases seem to occur quite often.

A simple combination of two zero-knowledge protocols of an argument for shuffling and of an argument

for decryption also does not yield a zero-knowledge protocol since the intermediate state cannot be

simulated. And our second protocol is not weaker than this simply combined protocol.

We also analyzed efficiency of proposed protocols. Our first protocol requires roughly 15k exponenti-

ations, 1344k bits of communication, and three rounds to prove in perfect zero-knowledge the correctness

of a shuffling of k-data. The most efficient previously known 3-round perfect zero-knowledge proof or
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argument for shuffling is the protocol of [137], which requires vast amounts of computation, i.e., 640k

modular exponentiations. Our second protocol requires roughly 14k exponentiations, 1344k bits of com-

munication, and five rounds to prove and verify the correctness of both shuffling and decryption of

k-data. To prove and verify the correctness of both shuffling and decryption of k-data with Groth’s

protocol [85] by using the standard technique1 for proving the correctness of decryption, we require 15k

exponentiations, 2528k bits of communication, and seven rounds.

This chapter is organized as follows. Section 2.2 introduces the properties of permutation matrixes.

Section 2.3 proposes a 3-round honest verifier perfect zero-knowledge argument for shuffling. Section 2.4

proposes a protocol by which we are able to simultaneously prove the correctness of a shuffle-decryption

in an efficient way. Section 2.5 proposes a definition for the requirement of unlinkability in arguments

for shuffle-decryption. Section 2.6 compares the efficiency of our protocols to prior work.

2.2 Permutation Matrix

We define a permutation matrix (Aij)i,j=1,···,k as follows:

Definition 1 Let q be a prime. A matrix (Aij)i,j=1,···,k is a permutation matrix over Z/qZ if it satisfies

Aij =

 1 mod q if φ(i) = j

0 mod q otherwise

for a permutation function φ : {1, . . . , k} → {1, . . . , k}.

The following theorems are the key observations used to construct the proposed protocols.

Theorem 1 ( [70] Theorem 1) Let q be a prime. A matrix (Aij)i,j=1,...,k is a permutation matrix over

Z/qZ ⇔

k∑
h=1

AhiAhjAhg = δijg (2.1)

k∑
h=1

AhiAhj = δij (2.2)

for all i, j, and g.

1This technique is explained in Section 2.6.
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Here

δij ,

 1 (mod q), if i = j

0 (mod q), if i 6= j

δijg , δijδjg

Proof. (⇒) is trivial. (⇐); Let us first show that there is exactly one non-zero element in each row vector

of (Aij) and then show the same for each column vector. Let Ci be an i-th column vector of matrix

(Aij)i,j=1,...,k. From Eq. (2.2),
∑k

h=1(AhiAhi)(Ahg) = δig. Thus, rank(Aij) = k, i.e., there is at least

one non-zero element in each row and each column. Next, let us consider a vector Ci¯Cj(i 6= j) for which

the operator ¯ is defined as (a1 . . . ak)¯ (b1 . . . bk) = (a1b1 . . . akbk). Define a vector Ĉ =
∑k

l=0 κlCl for

an arbitrary κl. From the facts that (Ĉ, Ci¯Cj) =
∑

l=1 κlδlij = 0 and that linear combinations of {Cl}

generate the space (Z/qZ)k, we obtain Ci ¯Cj = ~0. This means that for any h, i and j such that i 6= j,

either Ahi = 0 or Ahj = 0. Therefore, the number of non-zero elements in each row vector of (Aij) is at

most 1, and thus exactly 1.

From the above observations, matrix (Aij) contains exactly k non-zero elements. Since Ci 6= ~0 for all

i, the number of non-zero elements in each column vector is also 1. Thus, there is exactly one non-zero

element in each row vector and each column vector of matrix (Aij) if Eqs. (2.2) and (2.1) hold.

From Eq. (2.2), the unique non-zero element ei in the i− th row must satisfy e2
i = 1 mod q, and from

Eq. (2.1), it must satisfy e3
i = 1 mod q. This leads to ei = 1 and to the fact that matrix (Aij)i,j=1,...,k

is a permutation matrix over Z/qZ. ¤

Theorem 2 For q mod 3 = 2, a matrix (Aij)i,j=1,...,n is a permutation matrix over Z/qZ ⇔ Eq. (2.1)

holds.

Proof. (⇒) is trivial. (⇐); From the proof of Theorem 1 1, if Eq.(2.1) holds, then there is only one

non-zero element ei in each i-th row and it must satisfy e3
i = 1 mod q. Because q mod 3 = 2 implies that

1 is the only cubic root of 1 in Z/qZ, ei must be 1. Therefore, matrix (Aij)i,j=1,...,n is a permutation

matrix over Z/qZ.

¤

The soundness of our first protocol depends directly on Theorem 1. The soundness of our second

protocol depends directly on Theorem 2.
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2.3 Perfect Zero-knowledge Argument for Shuffling

In this section, we propose a 3-round honest verifier perfect zero-knowledge argument for shuffling which

is the most efficient among all previous less-than-7-round zero-knowledge arguments for shuffling.

2.3.1 Notation

Let p, q be two primes s.t. q|p− 1, Gq be an order q subgroup of (Z/pZ)∗, g0( 6= 1) be an element of Gq,

x ∈ Z/qZ be a private key, m0 = g0
x mod p be a public key used for re-encryption in shuffling, and k be

the number of ElGamal cipher-texts to be shuffled. Let {(gi,mi) ∈ G2
q}i=1,...,k be ElGamal cipher-texts

to be shuffled by the public-key m0. The resulting cipher-texts is denoted as {(g′i,m′
i) ∈ G2

q}i=1,...,k.

Treating the public key g0,m0 as if it were an element in a cipher-text vector may be awkward, but it

gives a more compact and unified representation to variables. Let P be a prover who shuffles and proves

the correctness of shuffling to a verifier V .

Let Fk , {fν ∈R Gq}ν=−4,...,k be k + 5 elements of Gq that are uniformly and randomly generated

so that neither P nor V can generate non-trivial integers a, {aν}ν=−4,...,k satisfying ga
0

∏k
ν=−4 fν

aν ≡ 1

(mod p) with non-negligible probability. The public key is a set, {p, q, g0, m0, Fk}.

2.3.2 ElGamal Shuffling

ElGamal shuffling is a procedure that, given g0, m0 and k ElGamal cipher-texts {(gi,mi)}i=1,...,k, outputs

ElGamal ciphertexts

(g′i,m
′
i) = (g0

sigφ−1(i), m0
simφ−1(i)) mod p (2.3)

for i = 1, . . . , k where {si ∈R Z/qZ}i=1,···,k and a permutation of indices φ : {1, . . . , k} → {i = 1, . . . , k}

are chosen uniformly and randomly.

Shuffling of ElGamal cipher-texts results in the following two important properties:

1. There exists a permutation φ such that equations Dx((g′i, m
′
i)) = Dx((gφ−1(i),mφ−1(i))) hold for

all i. Here, Dx(·) is a decryption algorithm that uses the private key x that corresponds to m0.

2. As long as the decision Diffie-Hellman problem is difficult to solve, no polynomially bounded

algorithm, given only p, q, g0,m0, {(gi,mi)}i=1,···,k, {(g′i,m′
i)}i=1,···,k, has an advantage over the

random-guessing algorithm in guessing any part of permutation φ for uniformly and randomly

chosen g0,m0, si, φ.
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Using a permutation matrix (Aji), which corresponds to a permutation φ, we find that Eq. (2.3) can

be expressed as

(g′i, m
′
i) = (g0

si

k∏
j=1

g
Aji

j ,m0
si

k∏
j=1

m
Aji

j ) mod p. (2.4)

Therefore, proving the correctness of the shuffle is equivalent to proving the existence of an si ∈ Z/qZ

for i = 1, . . . , k and a permutation matrix (Aji)i,j=1,...,k which satisfies Eq. (2.4).

2.3.3 Protocol Structure

The zero-knowledge argument for shuffling we will propose in this section is almost the same as the

protocol proposed in [70]. The proposed protocol and the protocol of [70] are roughly composed of three

components. Those in [70] are, (i) generation of {f ′
i}i=1,···,k and an argument of knowledge of si and a

general matrix (Aji) that satisfy

f ′
i = fsi

0

k∏
j=1

f
Aji

j mod p i = 1, · · · , k, (2.5)

for uniformly and randomly chosen {fµ ∈R Gq}µ=0,...,k, (ii) proof that (Aji) whose knowledge proved

in (i) is a permutation matrix using Theorem 1, and (iii) proof that si and (Aji) whose knowledge is

proved in (i) also satisfies Eq. (2.4). In Proof (ii), there are commitment, challenge, and response phase.

The main difference between our protocol and the protocol of [70] is that we have introduced the values

f−4, f−3, f−2, f−1 in the proposed protocol. Because of these values f ′
is in the commitment are modified

from f ′
i = fA0i

0 fφ−1(i) to f ′
i = f

A−4i

−4 f
A−3i

−3 f
A−2i

−2 f
A−1i

−1 fA0i
0 fφ−1(i). As a result, we have more redundancy

(A−4i, A−3i, A−2i, A−1i) to generate the value {f ′
i}i=1,...,k. Then we adjusted A−4i, A−3i, A−2i so that

some values in the commitment become zero, which decreased the number of terms in checking equations

in the response phase2. And because of the redundancy gained by A−1i, the proposed protocol enjoys

zero-knowledgeness unlike the protocol in [70].

The other difference between them is with respect to the verification of Eq. (2.9). A verification that

Eq. (2.9) holds is equivalent to verifying that equations

k∏
ν=−4

fν
rν = f ′

0

k∏
i=1

f ′
i
ci (mod p)

k∏
ν=−4

fν
r′

ν = f̃ ′
0

k∏
i=1

f ′
i
ci

2
(mod p)

2The equations in [70] that correspond to Equations (2.12) and (2.13) are Equations (15) and (16) in [70]. We can see
that terms quadratic and linear to elements of the challenge disappear in the proposed protocol.
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hold. The verifier is able to additionally check that the second equation holds with negligible overhead.

Since, r′−2 in this second equation plays the role of λ′ in [70], we can omit Equation (14) in [70].

2.3.4 Proposed Zero-Knowledge Argument

Let us next introduce our argument for shuffling.

ElGamal Shuffling

P uniformly and randomly chooses {A0i ∈R Z/qZ}i=1,···,k and a permutation matrix (Aji)i,j=1,···,k. P

shuffles k ElGamal ciphertexts {(gi,mi)}i=1,···,k to {(g′i,m′
i)}i=1,···,k as

(g′i,m
′
i) = (

k∏
ν=0

gν
Aνi ,

k∏
ν=0

mν
Aνi) mod p (2.6)

= (g0
A0igφ−1(i),m0

A0imφ−1(i)) mod p.

Here, the matrix (Aνi)ν=0,...,k;i=1,...,k in Eq. (2.6) is a (k+1)×k matrix that contains a permutation

matrix whose size is k×k as a sub-matrix. It should be remembered here that, in the rest of the chapter,

just as the size of matrices may often change, so will the range over which the indices of the matrix A

run.

Proving a Shuffle

Commitment: P uniformly and randomly chooses {Aν0, A
′
ν}ν=−4,...,k and {A−1i}i=1,···,k from Z/qZ,

and then computes:

A−2i =
k∑

j=1

3Aj0
2Aji mod q i = 1, · · · , k

A−3i =
k∑

j=1

3Aj0Aji mod q i = 1, · · · , k

A−4i =
k∑

j=1

2Aj0Aji mod q i = 1, · · · , k

f ′
µ =

k∏
ν=−4

fν
Aνµ mod p µ = 0, · · · , k (2.7)

f̃ ′
0 =

k∏
ν=−4

f
A′

ν
ν mod p (2.8)

g′0 =
k∏

ν=0

gν
Aν0 mod p
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m′
0 =

k∏
ν=0

mν
Aν0 mod p

w =
k∑

j=1

Aj0
3 − A−20 − A′

−3 mod q

ẇ =
k∑

j=1

Aj0
2 − A−40 mod q.

Then, P sends g′0,m
′
0, f̃

′
0, {f ′

µ}µ=0,···,k, w, ẇ to V as a commitment.

Challenge: V uniformly and randomly chooses {ci ∈ Z/qZ}i=1,···,k and sends it to P .

Response: P sends V the following response:

rν =
k∑

µ=0

Aνµcµ mod q ν = −4, · · · , k

r′ν =
k∑

i=1

Aνici
2 + A′

ν ν = −4, · · · , k

where c0 = 1 mod q.

Verification:

V accepts the shuffle if the following equations hold for a uniformly and randomly chosen α ∈R Z/qZ:

k∏
ν=−4

fν
rν+αr′

ν ≡ f ′
0f̃

′
0
α

k∏
i=1

f ′
i
ci+αci

2
(mod p) (2.9)

k∏
ν=0

gν
rν ≡

k∏
µ=0

g′µ
cµ (mod p) (2.10)

k∏
ν=0

mν
rν ≡

k∏
µ=0

m′
µ

cµ (mod p) (2.11)

k∑
j=1

(r3
j − c3

j ) ≡ r−2 + r′−3 + w (mod q) (2.12)

k∑
j=1

(r2
j − c2

j ) ≡ r−4 + ẇ (mod q). (2.13)

View: The view of this protocol is

p, q, g0,m0, {(gi,mi)}i=1,...,k, {(g′i,m′
i)}i=1,...,k,
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{fν}ν=−4,...,k, {f ′
µ}µ=0,...,k, f̃ ′

0, g
′
0,m

′
0,

w, ẇ, {ci}i=1,...,k, {rν}ν=−4,...,k, {r′ν}ν=−4,...,k

2.3.5 Properties of the Proposed Argument for Shuffling

Theorem 3 The protocol is complete.

Proof. It is clear. ¤

Theorem 4 The protocol is sound as long as the discrete logarithm problem is difficult to solve.

Proof.

Lemma 1 If V accepts the protocol with a probability p, which implies, Eq. (2.9) holds, then

k∏
ν=−4

fν
rν =

k∏
µ=0

f ′
µ

cµ (mod p) (2.14)

k∏
ν=−4

fν
r′

ν = f̃ ′
0

k∏
i=1

f ′
i
ci

2
(mod p) (2.15)

will hold with the probability at least p − 1/2|q|.

Proof. From

k∏
ν=−4

fν
rν+αr′

ν = f ′
0f̃

′
0
α

k∏
µ=−1

f ′
i
ci+αci

2
(mod p)

⇔
∏k

ν=−4 fν
rν∏k

µ=0 f ′
µ

cµ

=

(
f̃ ′
0

∏k
i=1 f ′

i
ci

2∏k
ν=−4 fν

r′
ν

)α

(mod p),

it is clear that the probability that V will choose α such that Eq. (2.9) holds is negligible if Eqs. (2.14)

and (2.15) do not hold. ¤

Lemma 2 If V accepts the protocol with a probability p, then there is a polynomially bounded knowl-

edge extractor K that can, within an expected number of steps bounded by O(n/p), extract from P an

{Aνµ}ν=−4,...,k;µ=0,...,k which satisfies Eq. (2.7) and an {A′
ν}ν=−4,...,k which satisfies Eq. (2.8).

Proof. Let us call every challenge {(cµ)µ=0,···,k} to which P can compute responses {(rν)ν=−4,...,k} such

that Eq. (2.9) holds for overwhelming probability as acceptable challenge. From Lemma 1, Eq. (2.14)

also holds for these challenges. Suppose that K has chosen n linearly independent acceptable challenges.
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Then, K extracts, from P , n responses that corresponds to these challenges, from which K is able to

extract an {Aνµ}ν=−4,...,k;µ=0,...,k that satisfies the relation:

rν ≡
k∑

µ=0

Aνµcµ (mod q) ν = −3, · · · , k

for every n + 1 challenge and response. Such an {Aνµ}ν=−4,...,k;µ=0,...,k satisfies Eq. (2.7).

Now, we estimate the expected number of steps K is required to obtain these acceptable challenges.

Suppose that K has obtained ` linearly independent acceptable challenges. If K tries to find other

accepting challenges by randomly choosing challenges, the expected number of times K chooses challenges

until it succeeds in finding an acceptable challenge is 1/p. The probability that the obtained acceptable

challenge is linearly independent to already obtained ` acceptable challenges is at least 1 − (|q|`/p|q|n),

which is overwhelming. Therefore, with the expected number of steps K is required to obtains n linearly

independent acceptable challenges is O(n/p).

With respect to {A′
ν}ν=−4,...,k, the proof is similar. ¤

Lemma 3 Assume that there is a knowledge extractor K that can extract an {Aνµ}ν=−4,...,k;µ=0,...,k and

an {A′
ν}ν=−4,...,k from P that satisfies Eq. (2.7) and (2.8). If there is also a knowledge extractor K ′

that can extract an {rν , r′ν}ν=−4,...,k from P that satisfies Eq. (2.14) and (2.15) such that either

rν 6≡
k∑

µ=0

Aνµcµ (mod q)

or r′ν 6≡
k∑

i=1

Aνici
2 + A′

ν (mod q)

for some ν = −4, . . . , k, then K ′ can generate non-trivial integers {aν}ν=−4,...,k satisfying
∏k

ν=−4 fν
aν ≡

1 (mod p) with overwhelming probability.

Proof. The following {fν}-based expression will be a non-trivial representation of 1:

k∏
ν=−4

fν

Pk
µ=0 Aνµcµ−rν ≡ 1 (mod p)

k∏
ν=−4

fν

Pk
i=1 Aνici

2+A′
ν−rν ≡ 1 (mod p)

¤

Lemma 4 Assume that {Aνµ}ν=−4,...,k;µ=0,...,k, {Aν}ν=−4,...,k and w are givens. Also assume that
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{ri}i=1,...,k, r−2 and r′−3 will be generated, for a given {ci}i=1,···,k, as

rν =
k∑

µ=0

Aνµcµ mod q ν = −3, 1, 2, . . . , k

r′−3 =
k∑

i=1

A−3ici
2 + A′

−3 mod q

If the given {Aij}i=1,...,k;j=1,...,k does not satisfy Eq. (2.1), then Eq. (2.12) will not hold with over-

whelming probability for a uniformly and randomly chosen {ci}i=1,···,k.

Proof. Eq. (2.12) is equivalent to

k∑
i=1

(
k∑

h=1

AhiAhiAhi − δiii)ci
3

+3
∑
i 6=j

(
k∑

h=1

AhiAhiAhj − δiij)ci
2cj

+6
∑

i>j>k

(
k∑

h=1

AhiAhjAhk − δijk)cicjck

≡
k∑

i=1

k∑
j=1

{
(

k∑
h=1

3Ah0AhiAhj − A′
−3iδij)

}
cicj

+
k∑

i=1

{
(

k∑
h=1

3A2
h0Ahi − A−2i)

}
ci

+

{
(

k∑
h=1

A3
h0 − A−20 − A′

−30) − w

}
(mod q).

The first three terms of the expression above and the fact that 2, 3 6 |q indicates that if Eq. (2.1) does not

hold for some set {i, j, k}, then the probability will be negligible that Eq. (2.12) will hold for a uniformly

and randomly chosen {ci}i=1,···,k. ¤

Lemma 5 Assume that {Aνµ}ν=−4,...,k;µ=0,...,k and ẇ are givens. Also assume that {ri}i=1,...,k and r−4

will be generated for a given {ci}i=1,···,k as

rν =
k∑

µ=0

Aνµcµ mod q ν = −4, . . . , k.

If the given {Aνµ}i=1,...,k;j=1,...,k does not satisfy Eq. (2.2), then Eq. (2.13) will not hold with over-

whelming probability for a uniformly and randomly chosen {ci}i=1,···,k.
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Proof. Because Eq. (2.13) is equivalent to

k∑
i=1

(
k∑

h=1

AhiAhi − δii)ci
2

2
∑
i>j

(
k∑

h=1

AhiAhj − δij)cicj

+
k∑

i=1

(
k∑

h=1

2Ah0Ahi − A−4i)ci

+
k∑

h=1

A2
h0 − A−30 − ẇ ≡ 0 (mod q).

¤

Lemma 6 Assume that {gν ,mν}(ν=0,...,k) and {Aνµ}(ν=0,...,k;µ=0,...,k) are givens. Also assume that

{rν}ν=0,...,k will be generated for a given {ci}i=1,···,k as

rν =
k∑

µ=0

Aνµcµ mod q ν = 0, . . . , k.

If the equations

g′µ ≡
k∏

ν=0

gν
Aνµ (mod p) µ = 0, · · · , k (2.16)

m′
µ ≡

k∏
ν=0

mν
Aνµ (mod p) µ = 0, · · · , k (2.17)

do not hold, then Eqs. (2.10) and (2.11) will not hold with overwhelming probability for a uniformly and

randomly chosen {ci}i=1,···,k.

Proof. Eq. (2.10) is equivalent to

k∏
µ=0

(∏k
ν=0 gν

Aνµ

g′µ

)cµ

≡ 1 (mod p).

If Eq. (2.16) does not hold, then Eq. (2.10) will not hold with overwhelming probability for a uniformly

and randomly chosen {ci}i=1,···,k.

By the same logic, if Eq. (2.17) does not hold, then (2.11) will not hold with overwhelming probability

for a uniformly and randomly chosen {ci}i=1,···,k. ¤

From Lemmata 1, 2, and 3, there is a knowledge extractor K that can extract an {Aνµ}ν=−4,...,k;µ=0,...,k
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and a {A′
ν}ν=−4,...,k from P that respectively satisfy Eqs. (2.7) and (2.8) within an expected number

of steps bounded by O(n/p). Further, K can either, from values extracted from P , (1) only generate a

response that satisfies equations

rν ≡
k∑

µ=0

Aνµcµ (mod q) ν = −4, . . . , k

r′ν ≡
k∑

i=1

Aνici + A′
ν (mod q) ν = −4, . . . , k

for a given challenge, or (2) generate non-trivial integers {aν}ν=−4,...,k satisfying
∏k

ν=−4 fν
aν ≡ 1

(mod p) with overwhelming probability, with overwhelming probability. Note that (2) will happen

with negligible probability as long as solving the discrete logarithm problem is difficult.

From Lemmata 4 and 5, the {Aνµ}(ν=1,...,k;µ=1,...,k) that can be extracted by K from P satisfies Eqs.

(2.1) and (2.2). From Theorem 1, sub-matrix (Aij)i,j=1,···,k is a permutation matrix. From Lemma 6,

the equations

g′µ ≡
k∏

ν=0

gν
Aνµ (mod p) µ = 0, · · · , k

m′
µ ≡

k∏
ν=0

mν
Aνµ (mod p) µ = 0, · · · , k

hold for the {Aνµ}(ν=0,...,k;µ=0,...,k) above.

Therefore, as long as solving the discrete logarithm problem is difficult, there is a knowledge extractor

K that can extract an {Aνi}(ν=0,...,k;i=1,...,k) from P satisfying Eq. (2.6) within an expected number of

steps bounded by O(n/p), and its sub-matrix (Aij)i,j=1,···,k will be a permutation matrix if V accepts

the protocol. ¤

Theorem 5 The protocol is honest-verifier perfect zero-knowledge.

Proof. The following simulator proves the theorem. Given p, q, g0,m0, {gi,mi}i=1,···,k, {g′i,m′
i}i=1,···,k,

{fν}(ν=−4,...,k), the simulator uniformly and randomly chooses rν , r′ν , ci, f
′
i for µ = 0, . . . , k; ν = −4, . . . , k

and i = 1, . . . , k. It then generates f̃ ′
0, f

′
0, g

′
0,m

′
0, w and ẇ so as to satisfy Eqs. (2.14), (2.15), (2.10),

(2.11), (2.12), and (2.13). ¤

2.4 An Efficient Argument for Shuffle-Decryption

In this section, we propose an argument for shuffle-decryption that is the most efficient of all previous

protocols, as a whole, to prove the correctness of both shuffling and decryption of ElGamal cipher-texts.
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The protocol requires five rounds. Although the protocol is not zero-knowledge, we can prove that the

verifier learn nothing new about its permutation.

2.4.1 Notation

Let p, q be two primes such that q|p − 1 and q mod 3 = 2. Note that we have imposed an additional

condition to q. Let Gq be an order q subgroup of (Z/pZ)∗, g0(6= 1) be an element of Gq, k be the number of

ElGamal cipher-texts to be shuffled, and ` be the number of shuffler-decrypters. Let x′(λ) ∈R Z/qZ be a

private key of the λ-th shuffle-decrypter which is used for the partial decryption and y(λ) = g0
x′(λ)

mod p

be the corresponding public key. Let m0
(λ) =

∏λ
κ=1 y(κ) mod p be a public key used for the shuffling of

the λ-th shuffle-decrypter.

Let {(g(`)
i , m

(`)
i )} = {(g0

r̄i , (m(`)
0 )r̄iMi)}i=1,...,k mod p be ElGamal cipher-texts to be input to the `-

th shuffle-decrypter where {Mi ∈ Gq}i=1,...,k is a set of encrypted plain texts, and {r̄i ∈R Z/qZ}i=1,...,k

be elements of Z/qZ, which are uniformly and randomly chosen. Let {(g(λ)
i ,m

(λ)
i )}i=1,...,k be cipher-

texts to be input to the λ-th shuffle-decrypter, who shuffles them with the public key (g0,m
(λ)
0 ) and then

partially decrypts them with the private key x′(λ). The resulting cipher-texts are {(g′i(λ),m′
i
(λ))}i=1,...,k =

{(g(λ−1)
i ,m

(λ−1)
i )}i=1,...,k which are passed to the (λ−1)-th shuffle-decrypter. In the rest of the chapter,

we only consider the λ-th shuffle-decrypter and omit the index (λ).

We assume another public key Fk , {fν ∈R Gq}ν=−2,...,k which are k+3 elements of Gq that are uni-

formly and randomly generated so that neither P nor V can generate non-trivial integers a, {aν}ν=−2,...,k

satisfying ga
0

∏k
ν=−2 fν

aν ≡ 1 (mod p) with non-negligible probability. The public key is a set

{p, q, g0,m0, y, Fk}.

2.4.2 ElGamal Shuffle-Decryption

ElGamal shuffle-decryption is a combination procedure of ElGamal shuffling and partial decryption that,

given g0, m0, y and k ElGamal cipher-texts {(gi,mi)}i=1,···,k, outputs ElGamal cipher-texts

(g′i,m
′
i) = (g0

sigφ−1(i), g
′
i
−x′

m0
simφ−1(i)) mod p

for i = 1, . . . , k where {si ∈R Z/qZ}i=1,···,k and φ are chosen uniformly and randomly. Here, the

multiplication by g′i
−x′

in the second term has the effect of partial decryption3.

3Note that this multiplier is not gi
−x′

which is part of input cipher-texts. The first element of the left side of the
equation is used in the second element of the right side of the equation to define the second element of the left side of the
equation.
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2.4.3 Protocol Structure and Tricks for Efficiency

In [69], a technique to simultaneously prove the correctness of shuffling and decryption is proposed. The

verifiable shuffle-decryption protocol proposed in [69] is the result of application of this technique to

the protocol proposed in [70]. The argument for shuffle-decryption we will propose in this section is

the result of application of this simultaneously proving technique to the zero-knowledge argument for

shuffling proposed in the previous section with little modification. We briefly sketch this technique.

We first consider the following 4-round zero-knowledge proof for decryptions of cipher-texts. The

prover wants to prove that {(g′i,m′
i)}i=1,...,k is the valid partial decryptions of {(g′i, m̄i)}i=1,...,k with a

private key x′ such that y = g0
x′

mod p, that is, the relation m′
i/m̄i = g′i

x mod p holds for all i = 1, . . . , k.

1. The verifier sends to the prover uniformly and randomly chosen {cj ∈R Z/qZ}j=1,...,k.

2. The prover chooses z′ ∈R Z/qZ uniformly and randomly and then computes

ζ =
k∏

j=1

g′j
cj mod p

y′ = gz′
, η′ = ζz′

mod p

and sends y′, η′ to the verifier.

3. The verifier sends to the prover uniformly and randomly chosen c′ ∈R Z/qZ.

4. The prover sends to the verifier

r′ = c′x′ + z′ mod q

5. The verifier computes

ζ =
k∏

j=1

g′j
cj , η =

k∏
j=1

(m′
j/m̄j)cj mod p

and accepts if

gr′
= yc′y′ , ζr′

= ηc′η′ mod p

hold.

We have noticed that some of the computations done in the proposed argument for shuffling in

the previous section and in this proof for decryption are similar. For example, ζ =
∏k

j=1 g′j
cj mod
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p with respect to the verifier’s challenge {cj}, is also computed in the argument for shuffling, η =∏n
j=1(m

′
j/m̄j)cj =

∏k
j=1 m′

j
cj /

∏k
j=1 m̄j

cj mod p in the proof for decryption and
∏k

j=1 m̄j
cj mod p in

the argument for shuffling have the same factor.

We merged the two protocols in the following way: Two proofs share the same challenge {ci}i=1,...,k

so that both prover and verifier need to compute the above mentioned values only once. Since η, which

is a combination of {g′j}i=1,...,k and the challenge {ci}i−1,...,k, does not appear in the protocol proposed

in [85], we cannot apply this technique directly to that protocol.

Although, as is mentioned in [69], the protocol resulting from this simultaneously proving technique

cannot be zero-knowledge, we can prove its security. Moreover, since we do not require the protocol to

be zero-knowledge any more, we can modify the protocol, so long as the protocol remains secure at the

same security level, so as to be more efficient. In particular, the protocol requires less random numbers to

remain at the same security level, thus we reduce the set of extra public parameters {f−4, f−3, f−2, f−1}

to {f−3, f−2, f−1}.

We have made one more modification to the original protocol. Since the proposed protocol adopts

the prime q such that q mod 3 = 2, verifiers do not need to confirm that Equation (2.2) holds 4 any more.

Hence we do not need r−4 and reduce the set of extra public parameters {f−3, f−2, f−1} to {f−2, f−1}.

2.4.4 Proposed Argument

We now describe our proposed argument for ElGamal shuffle-decryption.

ElGamal Shuffle-Decryption

P uniformly and randomly chooses {A0i ∈R Z/qZ}i=1,···,k and a permutation matrix (Aji)i,j=1,···,k and

then shuffles and decrypts k ElGamal cipher-texts {(gi, mi)}i=1,···,k to {(g′i,m′
i)}i=1,···,k as

(g′i,m
′
i) = (g0

A0igφ−1(i), g
′
i
−x′

m0
A0imφ−1(i)) mod p

= (
k∏

ν=0

gν
Aνi , g′i

−x′
k∏

ν=0

mν
Aνi) mod p. (2.18)

In this protocol, the witness Wn is a set {x′, (Aji)i,j=1,...,k, {A0i}i=1,...,k}, and the common input Xn

is a set {p, q, y, g0,m0, Fk, (gi,mi)i=1,...,k, (g′i,m
′
i)i=1,...,k}. P is given Xn and Wn, and V is given Xn.

4We can omit a verification of the equation that corresponds to Equation (2.13).
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Proving a Shuffle-Decryption

Commitment-1: P uniformly and randomly chooses {Aν0, A
′
ν ∈R Z/qZ}ν=−2,...,k and then computes:

A−1i =
k∑

j=1

3Aj0Aji mod q i = 1, · · · , k

A−2i =
k∑

j=1

3Aj0
2Aji mod q i = 1, · · · , k

f ′
µ =

k∏
ν=−2

fν
Aνµ mod p µ = 0, · · · , k

f̃ ′
0 =

k∏
ν=−2

fν
A′

ν mod p

g′0 =
k∏

ν=0

gν
Aν0 mod p

m′
0 =

k∏
ν=0

mν
Aν0 mod p

w =
k∑

j=1

Aj0
3 − A−20 − A′

−1 mod q

Then, P sends g′0,m
′
0, w, f̃ ′

0, {f ′
µ}µ=0,···,kto V as a commitment.

Challenge-1: V uniformly and randomly chooses {ci}i=1,···,k from Z/qZ and sends it to P .

Response-1: P sends V the following response:

rν =
k∑

µ=0

Aνµcµ mod q ν = −2, · · · , k

r′ν =
k∑

i=1

Aνici
2 + A′

ν mod q ν = −2, · · · , k

where c0 = 1 mod p.

Commitment-2: P then computes

ζ =
k∏

i=1

g′i
ci mod p.

P uniformly and randomly chooses β ∈R Z/qZ, computes the following commitment, and sends it to V :

η = ζx′
mod p , η′ = ζβ mod p
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y′ = g0
β mod p. (2.19)

Challenge-2: V uniformly and randomly chooses c′ from Z/qZ and sends it to P .

Response-2: P sends V the following response: r′ = c′x′ + β mod q

Verification: V computes

ζ =
k∏

i=1

g′i
ci mod p.

V accepts the shuffle-decryption if the following equations hold for a uniformly and randomly generated

α ∈R Z/qZ:

k∏
ν=−2

fν
rν+αr′

ν ≡ f ′
0f̃

′
0
α

k∏
i=1

f ′
i
ci+αci

2
(mod p) (2.20)

k∏
ν=0

gν
rν ≡ ζg′0 (mod p) (2.21)

k∏
ν=0

mν
rν ≡ η

k∏
µ=0

m′
µ

cµ (mod p) (2.22)

k∑
j=1

(r3
j − c3

j ) ≡ r−2 + r′−1 + w (mod q) (2.23)

g0
r′

≡ yc′y′ (mod p) (2.24)

ζr′
≡ ηc′η′ (mod p) (2.25)

The view V iewP
V (Xn,Wn) of this protocol is

p, q, y, g0,m0, {(gi,mi)}i=1,...,k, {(g′i,m′
i)}i=1,...,k,

{fν}ν=−2,...,k, f ′
0, {f ′

i}i=1,...,k,

f̃ ′
0, g

′
0,m

′
0, w, {ci}i=1,...,k,

{rν}ν=−2,...,k, {r′ν}ν=−2,...,k, η, η′, y′, c′, r′.

2.4.5 Properties of the Proposed Argument for Shuffle-Decryption

Theorem 6 The protocol is complete.

Proof. It is clear. ¤
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Theorem 7 The protocol is sound as long as the discrete logarithm problem is difficult to solve.

Proof.

Lemma 7 If V accepts the protocol with a probability p, i.e., Eq. (2.20) holds, then

k∏
ν=−2

fν
rν =

k∏
µ=0

f ′
µ

cµ (mod p) (2.26)

k∏
ν=−2

fν
r′

ν = f̃ ′
0

k∏
i=1

f ′
i
ci

2
(mod p) (2.27)

will hold with the probability p.

Proof. From

k∏
ν=−2

fν
rν+αr′

ν = f ′
0f̃

′
0
α

k∏
µ=−1

f ′
i
ci+αci

2
(mod p)

⇔
∏k

ν=−2 fν
rν∏k

µ=0 f ′
µ

cµ

=

(
f̃ ′
0

∏k
i=1 f ′

i
ci

2∏k
ν=−2 fν

r′
ν

)α

(mod p),

it is clear that the probability that V will choose α such that Eq. (2.20) holds is negligible if Eqs. (2.26)

and (2.27) do not hold. ¤

Lemma 8 If V accepts the protocol with a probability p, then there is a knowledge extractor K that

can, within an expected number of steps bounded by O(n/p), extract an {Aνµ}ν=−2,...,k;µ=0,...,k and

{A′
ν}ν=−2,...,k from P satisfying

f ′
µ =

k∏
ν=−2

fν
Aνµ (mod p) µ = 0, · · · , k (2.28)

f̃ ′
0 =

k∏
ν=−2

fν
A′

ν (mod p) (2.29)

Proof. Eqs. (2.26) and (2.27) hold with a probability p. Hence, the lemma can be proved in the same

way as Lemma 2. ¤

Lemma 9 Assume there is a knowledge extractor k that can extract {Aνµ}ν=−2,...,k;µ=0,...,k and

{A′
ν}ν=−2,...,k from P satisfying Eqs. (2.28) and (2.29). If there is also a knowledge extractor K ′ that

can extract an {rν , r′ν}ν=−2,···,k that satisfies Eqs. (2.26) and (2.27) such that either

rν 6≡
k∑

µ=0

Aνµcµ (mod q)

33



or r′ν 6≡
k∑

i=1

Aνici
2 + A′

ν (mod q)

for some ν = −2, . . . , k, then K ′ can generate non-trivial integers {aν}ν=−2,···,k satisfying
∏k

ν=−2 fν
aν =

1 (mod p) with overwhelming probability.

Proof. The following {fν}-based expression will be a non-trivial representation of 1:

k∏
ν=−2

fν

Pk
µ=0 Aνµcµ−rν = 1 (mod p)

k∏
ν=−2

fν

Pk
i=1 Aνici

2+A′
ν−r′

ν = 1 (mod p)

¤

Lemma 10 Assume {Aνµ}ν=−2,...,k;µ=0,...,k, {A′
ν}ν=−2,···,k and w are givens. Also assume

{rν , r′ν}ν=−2,···,k will be generated for a given {ci}i=1,···,k as

rν =
k∑

µ=0

Aνµcµ mod q ν = −2, · · · , k

r′ν =
k∑

i=1

Aνici
2 + A′

ν mod q ν = −2, · · · , k.

If the given {Aνµ}ν=−3,...,k;µ=0,···,k does not satisfy Eq. (2.1), then Eq. (2.23) will not hold with over-

whelming probability for a uniformly and randomly chosen {ci}i=1,···,k.

Proof. It can be shown in a way similar to that used for Lemma 4. ¤

Lemma 11 Assume {gν}ν=0,...,k and {Aνµ}ν=0,...,k;µ=0,...,k are givens. Also assume {rν}ν=0,...,k will be

generated for a given {ci}i=1,···,k as

rν =
k∑

µ=0

Aνµcµ mod q ν = 0, . . . , k

If equation

g′µ =
k∏

ν=0

gν
Aνµ (mod p) µ = 0, · · · , k (2.30)

does not hold, then Eq. (2.21) will not hold with overwhelming probability for a uniformly and randomly

chosen {ci}i=1,···,k.
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Proof. Eq. (2.21) is equivalent to

k∏
µ=0

(∏k
ν=0 gν

Aνµ

g′µ

)cµ

= 1 (mod p).

If Eq. (2.30) does not hold, then Eq. (2.21) will not hold with overwhelming probability for a uniformly

and randomly chosen {ci}i=1,···,k. ¤

Lemma 12 The following three items hold:

1. If Eq. (2.24) holds with non-negligible probability, then there is a knowledge extractor K that can

extract x′ and β satisfying equation

y = gx′

0 mod p, (2.31)

and Eq. (2.19).

2. Assume that β and x′ satisfy Eqs. (2.31) and (2.19). If Eq. (2.24) holds, then

r′ = c′x′ + β mod q (2.32)

will hold.

3. Assume β, x′ and ζ are givens. Also assume r′ will be generated for a given c′ as

r′ = c′x′ + β mod q

If equations

η = ζx′

(
= (

k∏
i=1

g′i
ci)x′

)
(mod p)

η′ = ζβ (mod p)

do not hold, then Eq. (2.25) will not hold with overwhelming probability for a uniformly and

randomly chosen c′.

Proof. The proof is straight-forward and, hence, has been omitted here. ¤

Lemma 13 Assume {gν ,mν}ν=0,...,k, (Aνµ)ν=0,...,k;µ=0,...,k, {g′j}j=1,···,k and x′ are givens. Also assume

35



that {rν}ν=0,...,k and η will be generated, for a given {ci}i=1,···,k, as

rν =
k∑

µ=0

Aνµcµ mod q ν = 0, . . . , k

η = (
k∏

j=1

g′j
cj )x′

mod p. (2.33)

If equation

m′
i = g′i

−x′
k∏

ν=0

mν
Aνi (mod p) µ = 0, · · · , k

(2.34)

does not hold, then Eq. (2.22) will not hold with overwhelming probability for a uniformly and randomly

chosen {ci}i=1,···,k.

Proof. After substituting Eq. (2.33), Eq. (2.22) will be equivalent to

k∏
ν=0

mν
rν = (

k∏
i=1

g′i
ci)x′

k∏
µ=0

m′
µ

cµ mod p

k∏
ν=0

mν
rν = m′

0

k∏
i=1

(g′i
x′

m′
i)

ci mod p.

Thus, by the same logic as Lemma 11, if equation

g′i
x′

m′
i =

k∏
ν=0

mν
Aνi mod p ,

which is equivalent to Eq. (2.34), does not hold, then Eq. (2.22) will not hold with overwhelming

probability for a uniformly and randomly chosen {ci}i=1,···,k. ¤

From Lemmata 7, 8, and 9, there is a knowledge extractor K that can extract an {Aνµ}ν=−2,...,k;µ=0,...,k

and an {A′
ν}ν=−2,...,k from P that will respectively satisfy Eqs. (2.26) and (2.27) within an expected

number of steps bounded by O(n/p). Further, K can either, from values extracted from P , (1) generate

only a response which satisfies equations

rν =
k∑

µ=0

Aνµcµ mod q ν = −2, . . . , k
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r′ν =
k∑

i=1

Aνici
2 + A′

ν mod q ν = −2, . . . , k

for a given challenge or (2) generate non-trivial integers {aν}ν=−2,...,k satisfying
∏k

ν=−2 fν
aν = 1

(mod p) with overwhelming probability. Note that (2) will happen with negligible probability as long as

solving the discrete logarithm problem is difficult.

From Lemma 10, the sub-matrix (Aij)i,j=1,···,k that can be extracted by K from P satisfies Eq. (2.1).

From the corollary of Theorem 1 and the fact q mod 3 = 2, sub-matrix (Aij)i,j=1,···,k is a permutation

matrix. From Lemma 11, the equation

g′i =
k∏

ν=0

gν
Aνi mod p i = 1, · · · , k

holds for the above {Aνi}ν=0,...,k;i=1,...,k.

From Lemmas 12 and 13, the equation

m′
i = g′i

−x
k∏

ν=0

mν
Aνi mod p i = 1, · · · , k

also holds for the above {Aνi}ν=0,...,k;i=1,...,k.

Therefore, as long as solving the discrete logarithm problem is difficult, if an honest verifier V accepts

the protocol with non-negligible probability, there exists a polynomially bounded knowledge extractor K

that can extract an {Aνi}ν=0,...,k;i=1,...,k and x′ from P that satisfies Eqs. (2.18) and y = g0
x′

(mod p)

within an expected number of steps bounded by O(n/p), and its submatrix (Aij)i,j=1,···,k will be a

permutation matrix.

Therefore, the protocol is sound as long as solving the discrete logarithm problem is difficult. ¤

2.5 Complete Permutation Hiding

The proposed argeument for shuffle-decryption has a property that, if the decision Diffie-Hellman problem

is difficult to solve, honest verifiers learn nothing new about its permutation from an interaction with

a prover in an overwhelming number of cases of input, even if the protocols with the same private key

are repeatedly executed. We formalize such a security notion and prove that the protocol satisfies this

notion in this section.
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2.5.1 Intuitive Security

The fact that the proposed argument is not less secure than the simple combination of shuffling and

decryption is intuitively understood as in the following. Consider the proof system in which a common

input to a prover is p, q, y, g0,m0, f0, {(gi,mi, fi)}i=1,...,k, {(g′i, m̄i, f̄
′
i)}i=1,...,k and {m′

i}i=1,...,k. Where

(g′i, m̄i, f̄
′
i) = (g0

rigπ(i),m0
rimπ(i), f0

rifπ(i)) mod p

m′
i = g′i

−xm̄i mod p.

Here, the first equation can be taken as a shuffle of generalized ElGamal cipher-texts composed of three

elements instead of two elements. This shuffling as well as the ordinary shuffling, leaks no knowledge

about its permutation as long as the decision Diffie-Hellman problem is difficult to solve. The second

equation is a partial decryption of shuffled input cipher-texts. The only obstacle that prevents simulating

the whole proposed argument for shuffle-decryption is the intermediate state {(m̄i, f̄
′
i)}i=1,...,k

5. This is

unsimulatable without the knowledge of {ri} and φ. Since the simple combined protocol also needs to

reveal such an unsimulatable intermediate state, we can intuitively conclude that the proposed protocol

is no less secure than the simple combination of two perfect zero-knowledge protocol. Since the above

shuffled-cipher-texts-like intermediate states are part of the argument, we are required to consider the

security of the argument in the same manner in which we consider the security of plain shuffle-decryption.

2.5.2 Adaptive Chosen Cipher-Text Attack

As discussed in the previous subsection, the proposed argument for ElGamal shuffle-decryption is as

secure as the simple combination of shuffling and decryption. However, the security of ElGamal shuffle-

decryption itself is not so trivial. This is because, in the mix-net protocol composed of a sequence

of shuffle-decryptions, the last shuffle-decrypter outputs a permuted list of ”plain-texts”. This means

mix-net behaves as a kind of decryption oracle. Thus, adaptive chosen cipher-text attack is effective for

adversaries.

An example of such an attack can be seen as in the following. Consider the case where a user U1

sends a plain ElGamal cipher-text to a mix-net composed of ElGamal shuffle-decryptions, and suppose

that the mix-net accepts this cipher-text. Then, an adversary may obtain this cipher-text, re-encrypt

it, and send the resulting cipher-text to the mix-net. At the end, mix-net outputs a list of plain-texts.

If the adversary finds two same plain-texts, then the possibility that this cipher-text is the one that U1

generated is meaningfully high.

5Since there is a subtle difference between f̄ ′
i and f ′

i , rigorous logic is more complicated.
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The above observation implies that the security of arguments for shuffle-decryption depends on the

security of input cipher-texts. Hence, we assume that cipher-texts input to the mix-net are ElGamal

cipher-texts that are secure under adaptive chosen cipher-text attack (IND-CCA2 secure) instead of

plain ElGamal cipher-texts. And validity of cipher-text needs to be publicly checkable. An example of

such a cryptosystem can be found in the literature [142]. This cryptosystem can be proved to be IND-

CCA2 secure assuming the random oracle model. One can, in this cryptosystem, extract the random

number used for generating a ElGamal cipher-text by rewinding the user at least with the number of

the step quadratic to that of real protocol. We assume input to the mix-net is cipher-texts of such a

cryptosystem.

2.5.3 Complete Permutation Hiding

We propose here the notion of complete permutation hiding (CPH) as a core requirement of unlinkability

in arguments for ElGamal shuffle-decryption. If an argument for shuffle-decryption is CPH, polynomially-

bounded honest verifiers, who may have some partial information about its permutation, will learn

nothing new about its permutation from an interaction with a prover in an overwhelming number of

cases of input even if the protocols with the same private key are repeatedly executed, whereas if the

protocol is zero-knowledge, verifiers will learn nothing new in every case of input.

A verifier in CPH may obtain knowledge about permutation as long as it happens only in a negligible

number of cases of common input Xn and witness Wn that the generator GR (defined below) outputs.

This is because we take the success probability of adversaries over the distribution of outputs of GR.

Let In be a set of domain parameters 1n, p, q, where p and q are primes and are the lengths of the

polynomial of n, private key x̄, plain texts {Mi ∈ Gq}i=1,...,k, and random tapes of U and GR. Let

enc(U) be an encoding of a probabilistic polynomial time (PPT) Turing machine U which generates

cipher-texts {(gi,mi)}i=1,...,k input to the shuffle-decryption procedure. We assume the existence of a

knowledge extractor that can extract {r̄i}i=1,...,k such that g0
r̄i = gi from U .

Existence of such a knowledge extractor can be justified as in the following. Suppose that input

cipher-texts {(gi,mi)}i=1,...,k to shuffle-decrypter are {(g(λ)
i ,m

(λ)
i )}i=1,...,k, and suppose that the input

cipher-texts to the mix-net are {(g(`)
i ,m

(`)
i )}i=1,...,k. Then {(g(λ)

i ,m
(λ)
i )}i=1,...,k are already shuffled and

decrypted by ` − λ + 1 shuffle-decrypters. If proofs for these shuffles and decryptions are accepted,

shuffle-decrypters are able to collaborately generate {s̄i}i=1,...,k and φ such that g
(λ)
i = g

(`)
φ−1(i)g0

s̄i . And

one can extract s̃i such that g
(`)
i = g0

s̃i by rewinding the user who generated gi. Hence, there exists an

extractor that can extract r̄i such that g
(λ)
i = g0

r̄i .

Definition 2 Given In(= {1n, p, q, x̄ ∈ Z/qZ, {Mi ∈ Gq}i=1,···,k, Zn}) and enc(U), instance generator

GR chooses g0 ∈R Gq, x
′ ∈R Z/qZ, {si ∈R Z/qZ}i=1,...,k, and a permutation φ uniformly and randomly
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and computes:

m0 = g0
x′+x̄, y = g0

x′
mod p

(gi, mi) = U(In, g0, y) ∈ Gq × Gq

(g′i, m
′
i) = (g0

sigφ−1(i), gi
−x′

m0
simφ−1(i)) mod p.

GR then outputs common input Xn and witness Wn:

Xn = {p, q, y, x̄, g0,m0,

{(gi,mi)}i=1,···,k, {(g′i,m′
i)}i=1,···,k},

Wn = {φ, {si}i=1,···,k, x′}.

Where, U is a PPT Turing machine such that there exists a knowledge extractor that can extract r̄i that

satisfies gi = g0
r̄i by rewinding U and choosing the random oracle. And x̄ is the sum of other prover’s

private keys in the mix-net.

In the above definition, U is a PPT Turing machine that plays the role of (malicious and colluding)

players who generate cipher-texts {(gi,mi)}. Although U is determined before the public parameter is

generated, it does not lose generality because it has this public parameter as an input. In a case where

U plays the role of honest players, it outputs

(gi,mi) = (g0
r̄i ,Mim0

r̄i) mod p i = 1, · · · , k

using random numbers {r̄i}i=1,...,k.

We say Xn and Wn satisfy relation R if the following equations are satisfied:

m0 ≡ g0
x′+x̄, y ≡ g0

x′
(mod p)

(g′i,m
′
i) ≡ (g0

sigφ−1(i), gi
−x′

m0
simφ−1(i)) (mod p).

We denote this fact as (Xn,Wn) ∈ R. If there exists a witness Wn for a common input Xn that satisfies

(Xn,Wn) ∈ R, common input Xn is a correct shuffle-decryption. Generator GR outputs such an Xn.

Definition 3 Let V iewP
V (Xn,Wn) be V ’s view of an interaction with P , which is composed of the

common input Xn, messages V receives from P , random tape input to V , and messages V sends to

P during joint computation employing Xn, where P has auxiliary input Wn such that (Xn,Wn) ∈ R.

V iewP
V is an abbreviation of V iewP

V (Xn,Wn).
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We consider the case when a semi-honest verifier may collude with malicious players who encrypt the

cipher-texts and other provers who shuffle and decrypt in the same mix-net. Such a verifier and players

may obtain partial information regarding the plain texts {Mi}, private key x̄, random tapes of players,

and even a part of the permutation φ in addition to V iewP
V . Moreover, they may obtain the results of

other shuffle-decryptions executed by the same prover.

Then it is reasonable to describe this extra information that the verifier may have as H(In, enc(U), Xn, φ)

and input cipher-texts generated by the malicious player as U(In, g0, y) using PPT Turing machines H(·)

and U(·). Note that {si}i=1,···,k are not included in the arguments of H, because we consider only the

case where the prover never reveals these values to anyone and never uses the same {si}i=1,···,k for other

shuffle-decryptions.

Even though the verifier and the players may obtain the results of other shuffle-decryptions executed

by the same prover who uses x′, we do not include x′ but include y into the input of U and H. Moreover,

we assume that there exists a PPT Turing machine K such that the distribution of V iewP
V for such H and

U and that of K(In, g0, y, enc(U), φ) are the same. We denote this as V iewP
V ≈ K(In, g0, y, enc(U), φ).

The exclusion of x′ is crucial because it enables us to consider the security of arguments for shuffle-

decryption over the distribution of Xn, which includes that of x′. This is exactly the same way that we

consider the security of plain shuffle-decryption. We describe information about the permutation φ that

verifiers try to learn as f(φ) using PPT Turing machine f . This description can be justified because the

expression f(φ) is sufficient to express any bit of φ and any kind of check sum for φ.

Now we can say that an argument for shuffle-decryption hides its permutation completely with respect

to GR - i.e., CPH occurs - if there exists a probabilistic polynomial time algorithm E′E (which has black

box access to E ) with inputs Xn and H(In, enc(U), Xn, φ) that suffers no disadvantage with respect

to learning anything about the permutations compared to any probabilistic polynomial time verifier

E having input V iewP
V and H(In, enc(U), Xn, φ) even if the protocols with the same private key are

repeatedly executed. This leads to:

Definition 4 (complete permutation hiding) Let enc(U) be an encoding of a probabilistic polyno-

mial time (PPT) Turing machine U which generates cipher-texts {(gi, mi)}i=1,...,k input to the shuffle-

decryption procedure. Suppose that there exists a knowledge extractor that can extract {r̄i}i=1,...,k such

that g0
r̄i = gi from U .

Then, an argument for shuffle-decryption (P, V,GR) achieves complete permutation hiding if

∃E′E ∀E ∀H ∀f ∀U ∀c > 0 ∃N ∀n > N ∀In

Pr[E(V iewP
V ,H(In, enc(U), Xn, φ)) = f(φ)]

< Pr[E′E(Xn,H(In, enc(U), Xn, φ)) = f(φ)]
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+
1
nc

, (2.35)

and

∃K V iewP
V ≈ K(In, g0, y, enc(U), φ)

where E′, E,H, f, U,K are PPT Turing machines. The left probability in Eq.(2.35) is taken over the

distribution of the random tapes input to GR, 6 P, V,H, and E. The right probability in Eq.(2.35) is

taken over the distribution of the random tapes input to GR, H,E′, and E. E′ may use E as a black box.

Here, the definition includes the case where {(g′i,m′
i)}i=1,...,k is totally decrypted cipher-texts, that is,

the case where {m′
i}i=1,...,k are plain-texts.

If an argument for shuffle-decryption is CPH, we can say that for an input cipher-texts set {(gi,mi)}

and its corresponding output cipher-texts set {(g′i,m′
i)}, whatever an honest verifier who has partial

information (H(In, enc(U), Xn, φ)) about the common input (Xn) and previously executed protocols (K)

can learn (f(φ)) about the permutation (φ) after interacting with a prover, can also - in an overwhelming

number of cases of common input (Xn)- be efficiently computed from that common input (Xn) and that

partial information (H(In, enc(U), Xn, φ)) alone using a PPT Turing machine E′ without interaction

with the prover as long as the prover has chosen the private key x′, permutation φ, and random numbers

{si}i=1,···,k uniformly and randomly.

Note that we are considering the case even where malicious and colluding players, who have the

results of other shuffle-decryptions with the same x′, are engaged in generating {(gi,mi)} of common

input. Hence, CPH guarantees security when shuffle-decryptions with the same private key are repeatedly

executed.

Theorem 8 If the decision Diffie-Hellman problem is difficult to solve, the proposed argument for

shuffle-decryption (P, V,GR) is complete-permutation-hiding.

Proof. Let us define an extended version of the decision Diffie-Hellman problem, DDHm
k . For primes

p, q such that q|p − 1, let Θ(pq)
mk be a set consisting of (k + 1) × m elements of Gq as

Θ(pq)
mk = (Θiν)i=1,...,m;ν=0,...,k ,

and let Rm
k be a set consisting of all different Θ(pq)

mk , where the number of whose elements is qm(k+1).

Let Dm
k be the subset of Rm

k consisting of all the elements Θ(pq)
mk of Rm

k that satisfy

logΘ10
Θj0 = logΘ1ν

Θjν (mod q)

6Since the probability is taken over a distribution containing x′, we have excluded any adversary who knows x′.
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for ν = 1, . . . , k; j = 2, . . . ,m, and the number of whose elements is q(k+m).

Definition 5 Given a Θ(pq)
mk chosen uniformly and randomly from either a set Rm

k or a set Dm
k , the

DDHm
k problem is that of deciding whether the given Θ(pq)

mk has been chosen from Dm
k or Rm

k .

The DDH2
2 problem is a decision Diffie-Hellman problem.

Lemma 14 Solving the DDHm
k problem is as difficult as solving a decision Diffie-Hellman problem.

That is,

∀D ∀c > 0 ∃N ∀n > N

|Pr(D[Θ(pq)
mk ∈R Dm

k ] = 1)

−Pr(D[Θ(pq)
mk ∈R Rm

k ] = 1)|

≤ 1
nc

holds if and only if the decision Diffie-Hellman problem is difficult to solve, where D is a polynomially

bounded algorithm.

Proof. The lemma can be proved by a hybrid argument. (ref. Lemmas 1 and 2 in [70].) ¤
Let us next define a simulator S of the proposed protocol (P, V ) 7. We will show that if the protocol

is not CPH, there will be a distinguisher that can distinguish the distribution of any simulated view

from that of a real protocol view, where probability is taken over “the random tape of GR” as well as

other random tapes. And we then show that distinguishing them is equivalent to solving the decision

Diffie-Hellman problem.

Definition 6 Given Xn, simulator S uniformly and randomly generates {rν , r′ν}ν=−2,···,k, {ci}i=1,···,k,

r′, c′ ∈R Z/qZ, {f ′
i ∈R Gq}i=1,···,k, and η ∈R Gq. It then generates:

f ′
0 =

k∏
ν=−2

fν
rν

k∏
i=1

f ′
i
−ci mod p

f̃ ′
0 =

k∏
ν=−2

fν
r′

ν

k∏
i=1

f ′
i
−ci

2
mod p

g′0 =
k∏

ν=0

gν
rν

k∏
i=1

g′i
−ci mod p

7If we want to prove that the protocol is computational zero-knowledge, we must show the existence of a simulator
whose output is, even to a distinguisher who knows x′, indistinguishable from the actual interaction. This is impossible
here; i.e., the above protocol is not zero-knowledge. Though a distinguisher who knows x′ is able to distinguish a real
protocol-transcript from the output of this simulator (defined below), we are able to prove, by using this simulator, that
the protocol hides permutations completely.
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m′
0 = η−1

k∏
ν=0

mν
rν

k∏
i=1

m′
i
−ci mod p

w =
k∑

j=1

(rj
3 − cj

3) − r−2 − r′−1 mod q

y′ = g0
r′

y−c′ mod p

η′ = ζr′
η−c′ mod p.

S outputs:

p, q, y, g0,m0, {(gi,mi)}i=1,...,k, {(g′i,m′
i)}i=1,...,k,

{fν}ν=−2,...,k, f ′
0, {f ′

i}i=1,...,k, f̃ ′
0,

g′0,m
′
0, w, {ci}i=1,...,k,

{rν}ν=−2,...,k, {r′ν}ν=−2,...,k, η, η′, y′, c′, r′.

Let us next define an algorithm M which generates distribution of view from Θ(pq)
2k .

Definition 7 (Algorithm M .) Given In = {1n, p, q, x̄, {Mi}i=1,···,k, Zn}, enc(U), and Θ(pq)
3k , M uni-

formly and randomly chooses f−2, f−1, {fν}i=1,···,k and generates

f0 = Θ30

(gi, mi) = U(In, g0, y, Fk) ∈ (Gq × Gq)

where Fk = {fν}ν=−2,...,k. M then extracts {r̄i}i=1,···,k such that gi = g0
r̄i mod p using U as a black box.

M uniformly and randomly chooses {ci}i=1,···,k, {rν , r′ν}ν=−3,···,k, r′, c′ ∈R Z/qZ , and a k×k permutation

matrix (Aji)i,j=1,···,k. Then, for i = 1, . . . , k, it generates:

g0 = Θ10 , y = Θ20 , m0 = yg0
x̄ mod p ,

g′i = Θ1i

k∏
j=1

gj
Aji mod p

m′
i = (y−

Pk
j=1 r̄jAji)Θ1i

x̄
k∏

j=1

mj
Aji mod p ,

Ai0 = ri −
k∑

j=1

Aijcj mod q

A−1i =
k∑

j=1

3Aj0Aji mod q
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A−2i =
k∑

j=1

3Aj0
2Aij mod q ,

ζ =
k∏

i=1

g′i
ci mod p ,

η = y
Pk

i,j=1 r̄jAjici

k∏
i=1

Θ2i
ci mod p

η′ = ζr′
η−c′ mod p

g′0 = ζ−1
k∏

ν=0

gν
rν mod p

m′
0 = η−1

k∏
ν=0

mν
rν

k∏
j=1

m′
j
−cj mod p

y′ = g0
r′

y−c′ mod p ,

f ′
i = f

A−2i

−2 f
A−1i

−1 Θ3i

k∏
j=1

fj
Aji mod p

f ′
0 =

k∏
ν=−2

fν
rν

k∏
j=1

f ′
j
−cj mod p

f̃ ′
0 =

k∏
ν=−2

fν
r′

ν

k∏
j=1

f ′
j
−cj

2
mod p

w =
k∑

j=1

(r3
j − c3

j ) − r−2 − r′−1 (mod q)

M outputs:

p, q, y, g0,m0, {(gi,mi)}i=1,...,k, {(g′i,m′
i)}i=1,...,k,

{fν}ν=−2,...,k, f ′
0, {f ′

i}i=1,...,k,

f̃ ′
0, g

′
0,m

′
0, w, {ci}i=1,...,k,

{rν}ν=−2,...,k, {r′ν}ν=−2,...,k, η, η′, y′, c′, r′.

as V iew†(In, U, Θ(pq)
3k ). V iew† is an abbreviation of V iew†(In, U, Θ(pq)

3k ). M also outputs (Aji) as

(Aji)
†
i,j=1,···,k.

Lemma 15 Assume Xn is the output of GR, whose input is a set In = {1n, p, q, x̄, {Mi}i=1,···,k, Zn}

and an enc(U) Also assume V iewP
V is a view of (P, V ) with respect to Fk, the above enc(U), In and

uniformly and randomly chosen g0, y. If Θ(pq)
3k ∈R D3

k, then the distribution of V iew† for the above In

and enc(U) is equivalent to that of the above V iewP
V for the above In and enc(U), where the distribution
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of V iew† is considered with respect to f−2, f−1, {fi, ci}i=1,···,k, {rν , r′ν}ν=−2,...,k, r′, c′, (Aji)i,j=1,···,k and

Θ(pq)
3k and the distribution of V iewP

V is considered with respect to the random tapes input to GR, P , and

V and with respect to Fk.

Proof. The proof is clear from the following correspondences (for i = 1, . . . , k):

Θ10 ⇔ g0, Θ1i ⇔ gA0i
0 ,

Θ20 ⇔ y, Θ2i ⇔ yA0i ,

Θ30 ⇔ f0, Θ3i ⇔ fA0i
0

¤

Lemma 16 Assume Xn is the output of GR, whose input is a set In = {1n, p, q, x̄, {Mi}i=1,···,k} and

enc(U). Also assume V iew∗ is an output of Simulator S whose input is Xn. If Θ(pq)
3k ∈R R3

k, then the

distribution of V iew† for the above In and enc(U) is equivalent to that of the above V iew∗ for the above

In, where the distribution of V iew† is considered with respect to f−2, f−1, {fi, ci}i=1,···,k, {rν , r′ν}ν=−2,...,k,

r′, c′, (Aji)i,j=1,···,k and Θ(pq)
3k and the distribution of V iew∗ is considered with respect to the random tapes

input to GR, S, and M and with respect to Fk.

Proof. In V iew†, there is sufficient randomness, originating from the elements in Θ(pq)
3k , to match the

randomness of a shuffle and that of f ′
i , η ∈R Gq uniformly and randomly chosen by the simulator. ¤

Lemma 17 There exists a PPT Turing machine K such that its output distribution on input of In, g0, y,

enc(U), Fk, φ i.e.,K(In, g0, y, enc(U), φ) is the same as that of V iewP
V .

Proof. Since r̄i such that gi = g0
r̄i mod p is extractable by the PPT Turing machine, K is able to

generate m′
i and η as

m′
i = g′i

−x′
k∏

ν=0

mν
Aνi

= yA0iy
Pk

j=1 r̄jAji

k∏
ν=0

mν
Aνi mod p

η =
k∏

i=1

(
y−A0iy−

Pk
j=1 r̄jAji

)ci

mod p

without the knowledge of x′. Other variables in V iewP
V are perfectly simulatable from the above values.

¤
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We are able to prove that the contraposition of the first statement of the theorem holds. That is, we

are able to prove that, if the negation of Formula (2.35) holds, then there exists a polynomially bounded

algorithm that can solve the DDH3
k problem.

Assume that the negation of Formula (2.35), that is,

∀E′E ∃E ∃H ∃f ∃U ∃c > 0 ∀N ∃n > N ∃In

Pr[E(V iewP
V ,H(In, enc(U), Xn, (Aji))) = f((Aji))]

≥ Pr[E′E(Xn,H(In, enc(U), Xn, (Aji))) = f((Aji))]

+
1
nc

,

holds. If we let E′ be an algorithm that first generates a simulated view V iew′P
V from Xn using the

simulator defined in Definition 6, and then guess the permutation using E as a black box, then the

formula

∃E ∃U ∃c > 0 ∀N ∃n > N ∃In∣∣Pr[E(V iewP
V ,H(In, enc(U), Xn, (Aji))) = f((Aji))]

− Pr[E(V iew′P
V ,H(In, enc(U), Xn, (Aji))) = f((Aji))]

∣∣
≥ 1

nc
,

holds. If we include the definitions of H, f and E into E′, then the formula

∃E′ ∃U ∃c > 0 ∀N ∃n > N ∃In∣∣Pr[E′(V iewP
V , In, enc(U), (Aji)) = 1]

−Pr[E′(V iew′P
V , In, enc(U), (Aji)) = 1]

∣∣ ≥ 1
nc

holds. From Lemma 15 the distribution of {V iewP
V , In, enc(U), (Aji)} is equivalent to that of

{V iew†, In, enc(U), (Aji)†} when Θ(pq)
3k ∈R D3

k. From Lemma 16 the distribution of

{V iew′P
V , In, enc(U), (Aji)} is equivalent to that of {V iew†, In, enc(U), (Aji)†} when Θ(pq)

3k ∈R R3
k.

Therefore, we can construct a distinguisher D by using algorithms M and E as black boxes such that

the formula

∃D ∃c > 0 ∀N ∃n > N

|Pr(D[Θ(pq)
3k ∈R D3

k] = 1)
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−Pr(D[Θ(pq)
3k ∈R R3

k] = 1)| ≥ 1
nc

holds. This means that the DDH3
k problem can be solved by using E. Therefore, the contraposition of

the lemma has been proved.

The second statement is satisfied from Lemma 17 ¤
A complete description of distinguisher D is as follows:

Definition 8 Given Θ(pq)
3k of size n, D first chooses Fk uniformly and randomly, and chooses arbitrary

{Mi}i=1,···,k, and Z/qZ elements x̄, Z, and enc(U). It gives these values (In, enc(U)) and Θ(pq)
3k to M ,

and then obtains V iew†, and permutation matrix (Aji)† from M .

Next, D gives V iew†, enc(U), In, and (Aji)† to the adversary E′ and obtains response 1 or 0. Finally,

D outputs the response of E′.

¤

2.6 Efficiency

In this section, we compare the efficiency of the proposed protocol described in Section 2.3 (Pro-I) and

the proposed protocol described in Section 2.4 (Pro-II) to (FS), the protocol proposed in [70], (Fmmos),

the protocol proposed in [69], and (Groth), the protocol proposed in [85]. We have assumed the lengths

of p and q to be 1024 and 160.

FS Fmmos Groth Pro-I Pro-II
S-P 8k 6k 9k
S-V 10k 6k 6k
SD-P (9k) 9k (7k) (10k) 8k
SD-V (12k) 10k (8k) (8k)) 6k

Table 2.1: Numbers of exponentiations required in each protocol

Let us first compare them, in Table 2.18, by the number of exponentiations used in each protocol

when the number of cipher-texts is k. “S-P” and “S-V” denote the number of exponentiations required

for P and V to prove and verify a shuffle. ‘SD-P” and “SD-V” denote the number of exponentiations

required for P and V to prove and verify a shuffle-decryption. The numbers for (FS), (Fmmos), (Groth),

and (Pro-I) are the sum of those required to prove a shuffle and those required to prove a decryption.

The 3-round protocol for proving decryption is as follows.

8The computational cost required for provers of protocol “Pro-I” can be reduced by 1k if q mod 3 = 2
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1. Given shuffled cipher-texts {(g′i, m̄i)}i,...,k and shuffle-decrypted cipher-texts {(g′i,m′
i)}i,...,k, a

prover first chooses {βi ∈R Z/qZ}i=1,...,k uniformly and randomly and then generates and sends

to a verifier:

ḡi = g′i
βi mod p.

2. Next, the verifier chooses {ci ∈R Z/qZ}i...,k and sends it back to the prover.

3. Next, the prover returns

r′i = x′ci + βi mod q.

4. Finally, the verifier checks that

g′i
r′

i = (m̄i/m′
i)

ci ḡi mod p

holds.

As is mentioned in Subsection 2.4.3, the technique of proving the correctness of both shuffling and

decryption simultaneously is not directly available to the protocol proposed in [85] since η, which is a

combination of {g′j}i=1,···,k and the challenge {ci}i=1,···,k, does not appear in that protocol. And since a

more efficient proof for decryption is not known, one of the most efficient ways for proving the correctness

of both shuffling and decryption using [85] is to use the above presented proof for decryption.

If we adopt the computation tools described in [107], such as the simultaneous multiple exponentiation

algorithm and the fixed-base comb method, the cost for computing exponentiations can be heuristically

reduced. We estimated that multiple exponentiations cost a 1/3 and exponentiations by the fixed-base

comb method cost a 1/12 (when the number of cipher-texts is large) of that of single exponentiation.

Estimations done in this way are given in Table 2.2. Even if two protocols require the same number

of exponentiations, one that can benefit from fixed-base comb method more than the other is able to

reduce its computational cost more than the other.

Table 2.3 lists the number of communication bits and number of rounds required for protocols. “S”

denotes the number of communication bits used when proving a shuffle, “SD” denotes the number of

communication bits used when proving a shuffle-decryption, and “rounds” denotes the number of rounds

required for protocols. The numbers for (FS), (Fmmos), (Groth), and (Pro-I) include intermediate state

bits, i.e., those of shuffled cipher-texts.

Table 2.4 lists the level of security achieved by protocols. Here “DL” denotes that the corresponding
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FS Fmmos Groth Pro-I Pro-II
S-P 1.4k 1.75k 1.75k
S-V 3.3k 1.75k 2k
SD-P (2.4k) 1.75k (2.75k) (2.75k) 1.9k
SD-V (4.5k) 3.3k (3k) (3.2k)) 2k

Table 2.2: Cost of computation required in each protocol

FS Fmmos Groth Pro-I Pro-II
S 5044k 1184k 1344k
SD (6388k) 5044k (2528k) (2688k) 1344k
rounds 3 5 7 3 5

Table 2.3: Communication bits required in each protocols

protocol is sound as long as the discrete logarithm problem is difficult to solve. For Groth’s protocol, we

consider the case when it shuffles ElGamal cipher-texts. “CPH” denotes complete permutation hiding.

“PZK” denotes perfect zero-knowledge. The protocol proposed in [69] can also be proved to be CPH.

The protocol proposed in [70] can also be proved to be CPH assuming y = 1. The security of this

protocol is proved also in [122]

Our protocols and the protocols of [69, 70] require a rather long public parameter Fk. Although the

protocol of [85] also requires such a parameter, it can be reduced greatly at the cost of increasing the

amount of both computation and communication.

From Tables 2.2, 2.3, and 2.4, we can conclude that our zero-knowledge argument for shuffling is

the most efficient among the less-than-7-round perfect zero-knowledge arguments for shuffling. The only

comparable protocol is that of [137], which requires 640k exponentiations.

From Tables 2.2 and 2.3, we can conclude that computational complexity with our argument for

shuffle-decryption protocol represents a 32% improvement in efficiency over that of (Groth)[85], while

communication complexity improves by 47%. Our protocol requires two rounds less than that of Groth’s

[85].

FS Fmmos Groth Pro-I Pro-II
soundness DL DL DL DL DL
anonymity CPH CPH PZK PZK CPH

Table 2.4: Security levels of each protocol

50



2.7 Robustness

For the proposed argument for shuffle-decryption to be robust, we may consider that it is desirable to

provide a method to make threshold shuffle-decryption. Since a shuffle and decryption are executed

in succession by a single prover, it is not easy to make threshold shuffle-decryption. However, if each

prover distributes his secret key to other provers in a desired threshold, robustness can be provided

easily. In case any prover quits shuffle-decryption after some provers had shuffle-decrypted the cipher-

texts, honest provers are able to collaborately recover the secret key of the malicious prover and make

explicit decryption with that secret key. With this strategy, unless the number of honest provers is less

than an appropriately configured threshold, honest provers are able to shuffle-decrypt all the cipher-texts.

Since the cost for distributing secret keys depends on the number of provers but not on the number of

cipher-texts, its cost is negligible when the number of cipher-texts is huge.

2.8 Conclusion

In this chapter, we have proposed an efficient argument for shuffling and an efficient argument for

shuffle-decryption. The former is most efficient in computational and in communication complexity

among 3-move honest verifier perfect zero-knowledge arguments for shuffling of ElGamal cipher-texts.

The latter protocol is the most efficient in computational, communication, and round complexity, as

a whole, in proving the correctness of both shuffling and decryption of ElGamal cipher-texts. We also

proposed a formal definition for the core requirement of unlinkability in arguments for shuffle-decryption,

and then proved the latter protocol enjoys this property.
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Chapter 3

Hybrid mix-net

3.1 Introduction

Mix-net[42] schemes are useful for applications which require anonymity, such as voting and anonymous

questionnaires. To ensure the correctness of output, it is desirable to have the property of public

verifiability. A typical realization of a publicly verifiable mix-net scheme is, as we have considered in

Chapter 2, that based on a zero-knowledge proof system for shuffling of ElGamal ciphertexts[2, 65, 66,

69, 70, 85, 120, 137].

However, these schemes only achieve their best efficiency when sets of ciphertexts are of a short

length, one fixed to the length determined by the employed encryption algorithm. A typical length is,

say 160 bits long. In order to verifiably shuffle texts of a fixed but a longer length, a straightforward

approach, for example, is to divide each text into blocks of the predetermined short bits, re-encrypt each

block, and concatenate them to form a string. Then, this block-wisely re-encrypted string is permuted.

This approach requires public key operations and shuffle-proving operations for each block, thus the

computational cost is linear in the length of the input. Another kind of mix-net scheme, referred to as

“hybrid mixing,”[83, 91, 92, 126], is able to shuffle long ciphertexts efficiently, but the correctness of its

shuffling is not publicly verifiable. It is only mutually verifiable among its component mixers.

Neither of these approaches would be applicable, when long messages, such as those which might

form the replies to questionnaires or write-in votes, are to be tallied, and when the correctness of the

tallying needs to be publicly verifiable. A scheme that is publicly verifiable and is capable of shuffling

ciphertexts of long but common length efficiently is yet to be proposed.
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Our Contributions

We propose here the first efficient hybrid-mixing scheme that provides public verifiability. In our scheme,

the number of zero-knowledge arguments for proving a shuffle does not depend on the length of the

input ciphertext. Although the resulting mix-net does not provide full public verifiability of the hybrid

decryption in the case when a user and a mixer collude, the best adversary can do is to switch the input

between a valid and an invalid one. Moreover, all the users whose input failed decrypted correctly are

traced. We prove the security properties of the proposed scheme assuming the random oracle model,

semantically secure one-time symmetric-key cryptosystem, and intractability of decision Diffie-Hellman

problem.

In the course of constructing the verifiable hybrid-mix, we have developed (1) a new IND-ME-CCA

secure [152] encryption scheme that multiply uses IND-CCA2 secure hybrid encryption and (2) a 3-move

efficient perfect zero-knowledge argument for shuffle-and-decryption of ElGamal ciphertexts.

Construction of Our Mix-Net Scheme

A commonly adopted construction of publicly verifiable mix-net is a combination of IND-CCA2 secure

encryption scheme that is suitable for shuffling, a secure group decryption scheme to be performed by

mixers, and zero-knowledge arguments for shuffle and decryption. For example, a typical construction

[2, 69] is a combination of IND-CCA2 secure ElGamal type cryptosystem, a threshold decryption scheme

of ElGamal ciphertexts, and zero-knowledge arguments for shuffling and decrypting ElGamal ciphertexts.

Such construction provides secure verifiable mix-net but suffers from the restriction that the input

message should be within the domain of ElGamal encryption scheme.

Our construction follows the above approach, but we use a hybrid encryption instead of a plain

ElGamal encryption so that we can handle long messages. In order to achieve the group decryption

property, we designed a new multiple encryption scheme where hybrid encryptions are repeatedly applied

each public key of the mixers. In order to achieve the secure threshold decryption property and IND-

CCA2 secure property we devised our multiple encryption scheme to achieve the IND-ME-CCA secure

[152] property with repetitive IND-CCA2 secure hybrid encryptions. For public verifiability, we add

encryption of a hash of the plaintext in the ciphertext in each repetition to achieve the publicly verifiable

hybrid decryption.

We also provide a zero-knowledge argument for shuffle of the proposed multiple encryption scheme.

For this purpose, we use a perfect zero-knowledge argument for shuffle-and-decryption of ElGamal ci-

phertexts. We can also use the scheme in [86]. We note that a cost we pay for public verifiability is that

the length of the input ciphertext grows in linear in the number of mixers unlike the scheme in [126].
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The rest of the chapter is organized as follows. Section 3.2 proposes IND-ME-CCA secure multiple

encryption scheme using IND-CCA2 secure hybrid encryption scheme with efficient verifiable decryption

property. Section 3.5 proposes an efficient perfect zero-knowledge argument for shuffle-and-decryption of

ElGamal ciphertexts. Section 3.3 illustrates our publicly verifiable mix-net scheme, Section 3.4 discusses

with analysis on the efficiency of our mix-net scheme.

3.2 IND-ME-CCA Secure Multiple Encryption in Hybrid Set-

ting

We present here our multiple encryption scheme that is suitable to be used in a verifiable mix net. We

adopted the model from [152] with modifications to add auxiliary output of Dec algorithm to suit for

use in mix-net. A multiple encryption scheme ME is a public key encryption scheme, which consists of

a set of a key generation algorithm (MKey-Gen), an encryption algorithm (MEnc), and a decryption

algorithm (MDec). Each of these algorithms invokes respective algorithms of a public key encryption

scheme (Key-Gen, Enc, Dec) for multiple times. We also adopt the security notion of multiple encryption

called IND-ME-CCA which is introduced in [152]. This notion differs from IND-CCA2 security in the

sense that the adversaries are allowed to access key exposure oracle. We note that our multiple encryption

scheme additionally offers public verifiability of decryption, which is a property not considered in [152].

We provide a formal model and the definitions in the following:

Definition 9 (Multiple Encryption) Multiple encryption scheme ME is a set of following algorithms

(Key-Gen, Enc, Dec, MKey-Gen, MEnc, MDec):

Key-Gen: A probabilistic key generation algorithm that, given a security parameter 1n, outputs a pair

of a public key and a secret key (pk, sk).

Enc: A probabilistic encryption algorithm that, given the public key pk and a message M , outputs a

ciphertext C.

Dec: An probabilistic algorithm that, given a ciphertext C and the secret key sk, outputs a message M(

or ⊥) and auxiliary data.

MKey-Gen: An algorithm that, given a security parameter 1n, invokes Key-Gen m times to output a

public key {pk(j)}j=1,...,m and a secret key {sk(j)}j=1,...,m. We assume that the message space is

M and the ciphertext space is C.

MEnc: An algorithm that, given M ∈ M and a public key {pk(j)}j=1,...,m, repeatedly invokes Enc m

times, where in the first invocation Enc takes pk(m) and M as input, in the second invocation
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Enc takes pk(m−1) and the output of the previous invocation as input, and so on. The output is a

ciphertext C ∈ C, which is thus multiply encrypted M .

MDec: A probabilistic algorithm that, given C ∈ C and a secret key {sk(j)}j=1,...,m, repeatedly invokes

Dec m times to output M ∈ M and auxiliary data generated by Dec’s. In j-th invocation, MDec

gives sk(j) to Dec.

Definition 10 (IND-ME-CCA [152]) Assume any polynomially bounded adversary A plays the fol-

lowing game with ME. First, key generation algorithm MKey-Gen is run. The public key PK =

{pk(j)}j=1,...,m is given to A and an challenging oracle CO. The secret key SK = {sk(j)}j=1,...,m is

given to a decryption oracle DO and a key exposure oracle KE. If two messages M0,M1 ∈ M and

b ∈ {0, 1} are given to CO, it outputs C∗ = MEnc(Mb) ∈ C. If index j ∈ {1, . . . ,m} is given to KE, it

returns sk(j). A is allowed to invoke KE only (m − 1) times. When C ∈ C such that C 6= C∗ is given,

DO executes MDec to obtain decryption of C and auxiliary data. εneg(n) is a negligible function of n

and state is an intermediate state of A. We call this ME IND-ME-CCA secure. if

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(PK,SK) ← MKey-Gen(1n),

(M0,M1, state) ← A(PK)DO,KE

b ←R {0, 1},

C∗ ← CO(M0,M1, b),

b′ ← A(PK, state)DO,KE


<

1
2

+ εneg(n).

3.2.1 The Idea of the Proposed Multiple Encryption Scheme

In the proposed encryption scheme, the following three operations are repeated m times using m inde-

pendent symmetric keys {K(j)}j=1,...,m and m public keys {X(j)}j=1,...,m. (1) Symmetric-key encryption

of the input ciphertext µ(j) using a symmetric key K(j), and ElGamal encryption of this symmetric key

{K(j)}. (2) Hashing the input ciphertext µ(j), and ElGamal encryption of this hashed value, and (3)

generating a proof that the user himself was engaged in this repetition.

The first procedure is the main function of hybrid encryption scheme. The second procedure generates

hashed value that will be used to verify decryptions. If we compare this value to the hash of a decrypted

text using symmetric-key cryptosystem, we can efficiently verify that that the symmetric-key decryption

has been operated correctly. The case of colluding user and one of the decrypter is discussed in Remark

1.

The third procedure comprises the core technique to make the total encryption scheme IND-ME-
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CCA secure. The main purpose of the procedure is to make sure that the user himself performed

the encryption, and not an adversary who has eavesdropped some intermediate data. A simplified

description for the third procedure is as follows: Let G be a generator of an elliptic curve E 1 and [r]G

denote scalar multiplication of G by r ∈ Z/qZ. In (m− j + 1)-th repetition of the third procedure, user

generates (E(j), J (j)) = ([r(j)]X(j), [r(j)]G + J (j+1)), which is an encryption of J (j+1) = [r(m) + · · · +

r(j+1)]G and provides the knowledge of the random number r(j). After m-th repetition, the output is

([r(1)]X(1), [r(m) + · · · + r(1)]G). The user also provides the proof on the knowledge of r(m) + · · · + r(1).

The scheme is so designed to achieve non-malleability, that is, that even if a malicious adversary

copied a j-th partially decrypted ciphertext and submitted a modified version of this copy to the mix-

net, he will be detected. This is because the adversary will fail to prove the knowledge of at least

one random number used for generating ciphertexts unless he can solve the discrete logarithm problem.

Therefore, by adding these operations, we can restrict the accepted ciphertexts to be those which the

submitter himself engaged in very repetition himself.

3.2.2 Proposed Multiple Encryption with Verifiable Decryption

We define n, n′, q, E,G,O,HE ,Hq, and Hσ as follows: n is a security parameter, q is a prime such that

|q| = n and q mod 3 = 2, E is a set of points on an elliptic curve of an order q, G is a generator of E, O is

the zero of E, HE ,Hq, and Hσ are cryptographic hash functions that map, respectively, arbitrary strings

to points in E, arbitrary strings to elements of Z/qZ, and arbitrary points in E to n′ bit strings. Let

(encκ, decκ) be an encryption algorithm and a decryption algorithm of a symmetric-key cryptosystem

which is semantically secure under chosen plaintext attack, where κ is a symmetric-key of length n′. The

message space M is {0, 1}` and the corresponding ciphertext space of MEnc is denoted by C.

We first describe the key generation phase.

MKey-Gen: Given a security parameter 1n, first chooses an arbitrary set of parameters (q, E,G, `,HE ,Hq,

Hσ, (encκ, decκ),M, C), which we call D, then MKey-Gen invokes Key-Gen m times with D to

obtain public keys {X(j)}j=1,...,m and secret keys {x(j)}j=1,...,m. Finally, MKey-Gen outputs

D, {X(j)}j=1,...,m, and {x(j)}j=1,...,m.

Key-Gen: Given D in j-th invocation, outputs a randomly chosen secret key x(j) ∈R Z/qZ and an

ElGamal public key

X(j) := [x(j)]G. (3.1)

1Any DDH hard cyclic group suits for our purpose. But, we use the notation of scalar multiplication in elliptic curves
since we need many superscripts and subscripts
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We will now show how to multiply encrypt a message M ∈ M. The first invocation of Enc is

performed on the message M using a public key X(m). Then, its output, µ(m−1), will be the input to

the next invocation of Enc. The output µ(0) of the last invocation together with the additional proof of

knowledge will be the final output of our multiple encryption algorithm Enc. Let a message space and a

ciphertext space of (m− j + 1)-th invocation of Enc be denoted as M(j) and C(j), where C(j) = M(j−1).

As we will see below in Eq.(3.2), each element in µ(j−1) ∈ C(j) can be represented as a structure of

multiple data µ(m) = (M,O).

Enc: The ElGamal public key X(j) and a message µ(j) ∈ M(j) are given. Enc randomly chooses

K(j) ∈R E, a tuple (r(j)
K , r

(j)
H , r

(j)
J ) ∈R (Z/qZ)3, and a tuple (s(j)

K , s
(j)
H , s

(j)
J ) ∈R (Z/qZ)3. The

message µ(j) is encrypted in hybrid manner, that is, data K(j) is encrypted with ElGamal public

key X(j), while K(j) transformed to a symmetric key κ(j) and used to encrypt µ(j) with symmetric

encryption encκ(j)

(E(j)
K , D

(j)
K ) :=

(
[r(j)

K ]X(j), [r(j)
K ]G + K(j)

)
,

κ(j) := Hσ(K(j)) , χ(j) := encκ(j)(µ(j)).

The input message µ(j) is hashed and then encrypted with ElGamal public key X(j) to be used in

verification of the decryption.

H(j) := HE(µ(j))

(E(j)
H , D

(j)
H ) :=

(
[r(j)

H ]X(j), [r(j)
H ]G + H(j)

)
.

The element J (j+1) in µ(j) is encrypted to be used to prove that the user himself was engaged in

the computation, which operation makes total multiple encryption IND-ME-CCA secure.

(E(j)
J , J (j)) :=

(
[r(j)

J ]X(j), [r(j)
J ]G + J (j+1)

)
The rest of the data are introduced to make the procedure Enc IND-CCA2 secure [119] by using

the technique presented in [142]. The data P
(j)
K , P

(j)
H , and P

(j)
J are twin encryption parts of the

above public-key encryptions and the data (c(j), t
(j)
K , t

(j)
H , t

(j)
J ) is a non-interactive proof of these

twin encryptions.

(F (j)
K , F

(j)
H , F

(j)
J )

:= ([s(j)
K ]X(j), [s(j)

H ]X(j), [s(j)
J ]X(j))
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Y
(j)
K := HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H ,

D
(j)
H , E

(j)
J , J (j), F

(j)
K , F

(j)
H , F

(j)
J , key)

Y
(j)
H := HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H ,

D
(j)
H , E

(j)
J , J (j), F

(j)
K , F

(j)
H , F

(j)
J , hsh)

Y
(j)
J := HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H ,

D
(j)
H , E

(j)
J , J (j), F

(j)
K , F

(j)
H , F

(j)
J , jnt)

(P (j)
K , P

(j)
H , P

(j)
J )

:= ([r(j)
K ]Y (j)

K , [r(j)
H ]Y (j)

H , [r(j)
J ]Y (j)

J )

(Q(j)
K , Q

(j)
H , Q

(j)
J )

:= ([s(j)
K ]Y (j)

K , [s(j)
H ]Y (j)

H , [s(j)
J ]Y (j)

J )

c(j) := Hq(D, χ(j), X(j), E
(j)
K , D

(j)
K ,

E
(j)
H , D

(j)
H , E

(j)
J , J (j), Y

(j)
K ,

Y
(j)
H , Y

(j)
J , P

(j)
K , P

(j)
H , P

(j)
J ,

F
(j)
K , Q

(j)
K , F

(j)
H , Q

(j)
H , F

(j)
J , Q

(j)
J )

(t(j)K , t
(j)
H , t

(j)
J )

:= (s(j)
K − c(j)r

(j)
K , s

(j)
H − c(j)r

(j)
H ,

s
(j)
J − c(j)r

(j)
J ) mod q

Here, key, hsh, and jnt are strings. Then Enc outputs a ciphertext

µ(j−1) := {χ(j), c(j), E
(j)
K , D

(j)
K , E

(j)
H ,

D
(j)
H , E

(j)
J , J (j), P

(j)
K , P

(j)
H ,

P
(j)
J , t

(j)
K , t

(j)
H , t

(j)
J ) ∈ C(j). (3.2)

MEnc: A message M ∈ M and a public key {X(j)}j=1,...,m are given. MEnc first sets J (m+1) = O and

µ(m) = (M,J (m+1)). Next, MEnc repeatedly invokes Enc m times to generate

µ(0) := Enc(X(1), Enc(· · ·

Enc(X(m−1),Enc(X(m), µ(m))) · · ·))

Next, MEnc proves the knowledge of sum of the randomness
∑m

j=1 r
(j)
J used in the all invocations.
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For that purpose, it randomly chooses s
(0)
J ∈R Z/qZ and generates

R
(0)
J := [s(0)

J ]G , GJ := HE(D, µ(0), R
(0)
J ),

RJ := [s(0)
J ]GJ , J := [

m∑
j=1

r
(j)
J ]GJ ,

c(0) := Hq(D, µ(0), GJ , J, R
(0)
J , RJ ,U),

t
(0)
J := s

(0)
J − c(0)

m∑
j=1

r
(j)
J mod q

where U is an identity of user. Finally, MEnc outputs a ciphertext

C := (µ(0), J, c(0), t
(0)
J ) ∈ C (3.3)

Dec: The secret key x(j) and ciphertext µ(j−1) ∈ C(j) are given. We assume here µ(j−1) are parsed as

Eq.(3.2). Dec first computes

(F (j)
K , F

(j)
H , F

(j)
J )

= ([t(j)K ]X(j)+[c(j)]E(j)
K ,

[t(j)H ]X(j)+[c(j)]E(j)
H ,

[t(j)J ]X(j)+[c(j)]E(j)
J )

Y
(j)
K = HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H ,

D
(j)
H , E

(j)
J , J (j), F

(j)
K , F

(j)
H , F

(j)
J , key)

Y
(j)
H = HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H ,

D
(j)
H , E

(j)
J , J (j), F

(j)
K , F

(j)
H , F

(j)
J , hsh)

Y
(j)
J := HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H ,

D
(j)
H , E

(j)
J , J (j), F

(j)
K , F

(j)
H , F

(j)
J , jnt)

Next, Dec verifies if

c(j) = Hq(D, χ(j), X(j), E
(j)
K , D

(j)
K ,

E
(j)
H , D

(j)
H , E

(j)
J , J (j), Y

(j)
K ,

Y
(j)
H , Y

(j)
J , P

(j)
K , P

(j)
H , P

(j)
J ,

F
(j)
K , [t(j)K ]Y (j)

K + [c(j)]P (j)
K ,
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F
(j)
H , [t(j)H ]Y (j)

H + [c(j)]P (j)
H ,

F
(j)
J , [t(j)J ]Y (j)

J + [c(j)]P (j)
J ) (3.4)

hold. If not, Dec outputs ⊥(j)
1 and stops. Next, Dec computes

K(j)† := D
(j)
K − [1/x(j)]E(j)

K (3.5)

H(j)† := D
(j)
H − [1/x(j)]E(j)

H (3.6)

J (j+1)† := J (j) − [1/x(j)]E(j)
J (3.7)

κ(j) := Hσ(K(j)†) (3.8)

µ(j) := decκ(j)(χ(j)) (3.9)

and outputs H(j)† and J (j+1)†. Next, if either of the following equations does not hold,

H(j)† = HE(µ(j)) , J (j+1)† = J (j+1) ∈ µ(j) (3.10)

Dec outputs K(j)† and ⊥(j)
2 and stops. Finally, Dec outputs µ(j) ∈ M(j).

MDec: A ciphertext C ∈ C and the secret key {x(j)}j=1,...,m are given. MDec first computes

R
(0)
J = [t(0)J ]G + [c(0)]J (1),

GJ = HE(D, µ(0), R
(0)
J )

and verifies if

c(0) = Hq(D, µ(0), GJ , J,

R
(0)
J , [t(0)J ]GJ + [c(0)]J,U) (3.11)

holds. If not MDec outputs ⊥ and stops. Next, MDec recursively invokes Dec m-times to generate

µ(m) = (M,O)

= Dec(Dec(· · ·Dec(Dec(µ(0))) · · ·)).

If any of invocations of Dec stops, MDec also stops. MDec outputs the output of each invoked

Dec. Finally, MDec outputs first elements M of µ(m) and stops.

Theorem 9 The proposed multiple encryption scheme is IND-ME-CCA secure and Encryption scheme
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(Key-Gen, Enc, Dec) is IND-CCA2 secure assuming random oracles, intractability of decision Diffie-

Hellman problem, and semantic security of the one-time symmetric-key cryptosystem.

Proof.

The following Lemma 18 is repeatedly used.

Lemma 18 [48] Let S1, S2 and F be events defined on some probability space. Suppose that the event

S1 ∨ F̄ occurs if and only if S2 ∨ F̄ occurs. Then

|Pr[S1] − Pr[S2]| ≤ Pr[F ]

We define Game 0−6 in the following. Each Game is an interactive computation between an adversary

A and a simulator S.

Definition 11 (Game 0) Game 0 is simply the usual game used to define IND-ME-CCA security.

Initially, S runs MKey-Gen, obtaining a domain parameter E,G, `,Hq,HE ,Hσ, (encκ, decκ), a secret

key {x(k)}j=1,...,m, and a public key {X(k)}j=1,...,m. The simulator gives the domain parameter and the

public key to A.

During the execution of the game, A makes a number of decryption queries. For each query, S runs

MDec to execute decryption. A may also makes at most m − 1 key exposure queries. For each query in

which A sends index j, S sends x(j) to A. A may also send a pair of plaintext M0,M1 ∈ {0, 1}` to the

challenging oracle once. In such a case, S randomly chooses b ∈R {0, 1} and generates target ciphertext

C∗ by running MEnc. S gives C∗ to A. A may not make a decryption query with respect to this target

ciphertext. A may also send a query to random oracle HE ,Hq, or Hσ. If the query was not the same

to any of previous queries, S randomly chooses an element respectively from E, Z/qZ, or {0, 1}n′
and

sends it to A. At the end of the game, A outputs b̂ ∈ {0, 1}. Let X0 be the event that b̂ = b.

We also consider Game 1, Game 2, etc. These games will be quite similar to Game 0 in their overall

structure, and will only differ from Game 0 in terms of how the simulator works. However, in each game,

there will be well defined bits b̂ and b, so that in Game i, we always define Xi to the event that b̂ = b in

that game. The all elements in C∗ and its partial decryptions are indexed by ∗. Other elements in Ci

and its partial decryptions are indexed by i. Our goal is to prove that |Pr[X0] − 1/2| is negligible.

Definition 12 (Game 1) Game 1 is the same as Game 0, except that S randomly chooses j∗ ∈

{1, . . . ,m} at the beginning of the game and rejects key exposure queries with respect j∗-th key.

Then, we have
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Lemma 19

|Pr[X0] − 1/2| = m|Pr[X1] − 1/2|

¤

Definition 13 (Game 2) Game 2 is the same as Game 1 except the followings:

1. At the beginning of the game, S randomly chooses GJ∗ ∈R E. S uses this value in C∗.

2. At the beginning of the game, S randomly chooses y
(j∗)
J∗ ∈R Z/qZ and computes

Y
(j∗)
J∗ = [y(j∗)

J∗ ]G.

S uses this value in C∗.

3. If A sends

(D, χ
(j)
i , E

(j)
Ki , D

(j)
Ki, E

(j)
Hi , D

(j)
Hi ,

E
(j)
Ji , J

(j)
i , F

(j)
Ki , F

(j)
Hi , F

(j)
Ji , jnt)

to HE for j > j∗, S randomly chooses y
(j)
Ji ∈R Z/qZ and generates

Y
(j)
Ji = [y(j)

Ji ]GJ∗.

4. If A sends

(D, µ
(0)
i , R

(0)
Ji )

to HE, S randomly chooses y
(0)
Ji ∈R Z/qZ and generates

GJi = [y(0)
Ji ]GJ∗. (3.12)

These are only conceptual modification. Hence

Lemma 20

Pr[X1] = Pr[X2].
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¤

Definition 14 (Game 3) Game 3 is the same as Game 2, except that S randomly chooses G
(j)
J∗ ∈R E

and generates

(E(j∗)
J∗ , P

(j∗)
J∗ )

:= ([x(j∗)](G(j∗)
J∗ − G

(j∗+1)
J∗ ), [y(j∗)

J∗ ](G(j∗)
J∗ − G

(j∗+1)
J∗ )).

Then S generates the rest of µ
(j∗−1)
∗ so as to be valid by appropriately choosing random oracles.

Since, the distribution of C∗ is not modified, we have

Lemma 21

Pr[X2] = Pr[X3].

¤

Definition 15 (Game 4) Game 4 is the same as Game 3, except that if A ever submits decryption

query with respect to Ci such that

µ
(j−1)
i = µ

(j−1)
∗ , (3.13)

S rejects the given ciphertext.

Let F4 be the event that S applies this rejection rule to Ci.

Then, we have

Lemma 22

|Pr[X3] − Pr[X4]| ≤ Pr[F4].

Moreover

Pr[F4] ≤ εcdh(n) + εneg(n)

where εcdh(n) is the success probability that one can solve Diffie-Hellman problem using resources similar

to those of A and εneg(n) is a negligible function of n.
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Proof. We can easily build a game that takes (G,G1, G2) ∈ E3 as an input and solve Diffie-Hellman

problem using A if S assigns

(G,GJ∗, J
(j∗)
∗ ) = (G, G1, G2)

The fact that a tuple (A, B,C,D) is a Diffie-Hellman instance is denoted as (A,B,C,D) ∈ DH. If

Ci will not be rejected by from the first to j∗ − 1-th invocations of Dec, then the following tuples found

in Ci satisfy

(G, GJi, J
(1)
i , Ji) ∈ DH (3.14)

(G,Y
(j)
Ji , J

(j)
i − J

(j+1)
i , P

(j)
Ji ) ∈ DH j = 1, . . . , j∗ − 1

(3.15)

where J
(j∗)
i = J

(j∗)
∗ . It is clear that if Eq. (3.14) does not hold, the probability that c(0) be the value

such that there exists t
(0)
J that satisfies Eq. (3.11) is negligible. It is also clear that if

(X(j), Y
(j)
Ji , E(j), P

(j)
Ji ) ∈ DH

does not hold for any j = 1, . . . , j∗ − 1, the probability that c(j) be the value such that there exists t
(j)
J

that satisfies Eq. (3.4) is negligible. From Eqs. (3.1), (3.7), and (3.10),

(G,Y
(j)
Ji , J

(j)
i − J

(j+1)
i , P

(j)
Ji ) ∈ DH.

From Eq.(3.12),

(G,GJ∗, J
(j)
i − J

(j+1)
i , [1/y

(j)
Ji ]P (j)

Ji ) ∈ DH.

Taking the sum of these tuples,

(G,GJ∗, J
(1)
i − J

(j∗)
∗ ,

j∗−1∑
j=1

[1/y
(j)
Ji ]P (j)

Ji ) ∈ DH. (3.16)

From Eqs. (3.14) and (3.12),

(G,GJ∗, J
(1)
i , [1/y

(0)
Ji ]Ji) ∈ DH (3.17)
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From Eqs. (3.16) and (3.17),

(G, GJ∗, J
(j∗)
∗ , [1/y

(0)
Ji ]Ji −

j∗−1∑
j=1

[1/y
(j)
Ji ]P (j)

Ji ) ∈ DH.

Therefore, we have solved Diffie-Hellman problem. ¤

Since A is not allowed to sends to the decryption oracle Ci such that Eq. (3.13) holds, IND-CCA2

security of encryption scheme of (Key-Gen, Enc,Dec) implies IND-ME-CCA security of the proposed

scheme. The following lemmas 23-25 proves IND-CCA2 security of encryption scheme (Key-Gen, Enc, Dec).

Definition 16 (Game 5) Let DH3 be all set of

 A B C

D E F

 ∈ E6

such that

logA D = logB E = logC F.

Game 5 is the same as Game 4 except the followings:

1. S randomly chooses

G,X(j∗),

Y
(j∗)
K∗ , D

(j∗)
K∗ , E

(j∗)
K∗ , P

(j∗)
K∗

Y
(j∗)
H∗ , D

(j∗)
H∗ , E

(j∗)
H∗ , P

(j∗)
H∗

Y
(j∗)
J∗ , J

(j∗)
∗ , E

(j∗)
J∗ , P

(j∗)
J∗

under the condition that  G X(j∗) Y
(j∗)
K∗

D
(j∗)
K∗ − K

(j∗)
∗ E

(j∗)
K∗ P

(j∗)
K∗

 ∈ DH3 G X(j∗) Y
(j∗)
H∗

D
(j∗)
H∗ − H

(j∗)
∗ E

(j∗)
H∗ P

(j∗)
H∗

 ∈ DH3 G X(j∗) Y
(j∗)
J∗

J
(j∗)
∗ − J

(j∗+1)
∗ E

(j∗)
J∗ P

(j∗)
J∗

 ∈ DH3
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2. If A sends

(D, χ
(j∗)
i , E

(j∗)
Ki , D

(j∗)
Ki , E

(j∗)
Hi , D

(j∗)
Hi , E

(j∗)
Ji , J

(j∗)
i , key)

to HE, S randomly chooses y
(j∗)
Ki ∈R Z/qZ and generates

Y
(j∗)
Ki = [y(j∗)

Ki ]G.

Let us define

y
(j∗)
Hi , y

(j∗)
Ji , Y

(j∗)
Hi , Y

(j∗)
Ji

in the same way.

3. S randomly chooses

(E(j∗)
K∗ , E

(j∗)
H∗ , E

(j∗)
J∗ , P

(j∗)
K∗ , P

(j∗)
H∗ , P

(j∗)
J∗ ) ∈R E6,

(c(j∗)
∗ , t

(j∗)
K∗ , t

(j∗)
H∗ , t

(j∗)
J∗ ) ∈R (Z/qZ)4

and generates

(F (j)
K∗, Q

(j)
K∗, F

(j)
H∗, Q

(j)
H∗, F

(j)
J∗ , Q

(j)
J∗ )

so that Eq. (3.4) is satisfied by choosing random oracles.

4. S rejects decryption of Ci if any of the following equations holds:

Y
(j∗)
Ki = Y

(j∗)
K∗ , y

(j∗)
Hi = Y

(j∗)
H∗ , Y

(j∗)
Ji = Y

(j∗)
J∗ (3.18)

Let F5 be the event that S applies this rejection rule to Ci.

5. For computing K
(j)†
i ,H

(j)†
i , and J

(j+1)†
i , S computes as

K
(j∗)†
i = D

(j∗)
K − [1/y

(j∗)
Ji ]P (j∗)

K

H
(j∗)†
i = D

(j∗)
H − [1/y

(j∗)
Ji ]P (j∗)

H

J
(j∗+1)†
i = J

(j∗)
i − [1/y

(j∗)
Ji ]P (j∗)

Ji

The distribution of elements in C∗ in this game are exactly the same to those in Game 4. It should
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be noted that the above construction is always possible for any given µ(j∗), which allows adversary of

IND-CCA2 game to choose any target ciphertext. Hence, we have

Lemma 23

|Pr[X4] − Pr[X5]| ≤ Pr[F5] ≤ εneg(n).

Proof. If equation

(χ(j∗)
i , E

(j∗)
Ki , D

(j∗)
Ki , E

(j∗)
Hi , D

(j∗)
Hi ,

E
(j∗)
Ji , J

(j∗)
i , F

(j∗)
Ki , F

(j∗)
Hi , F

(j∗)
Ji )

= (χ(j∗)
∗ , E

(j∗)
K∗ , D

(j∗)
K∗ , E

(j∗)
H∗ , D

(j∗)
H∗ ,

E
(j∗)
J∗ , J

(j∗)
∗ , F

(j∗)
K∗ , F

(j∗)
H∗ , F

(j∗)
J∗ ), (3.19)

does not hold, the probability that any of Eqs.(3.18) holds is negligible.

Suppose that Eq. (3.19) holds, then, if

(P (j∗)
Ki , P

(j∗)
Hi , P

(j∗)
Ji , Q

(j∗)
Ki , Q

(j∗)
Hi , Q

(j∗)
Ji )

= (P (j∗)
K∗ , P

(j∗)
H∗ , P

(j∗)
J∗ , Q

(j∗)
K∗ , Q

(j∗)
H∗ , Q

(j∗)
J∗ )

does not hold, i.e., Ci 6= C∗, the probability that randomly chosen c
(j∗)
i be such that there exists

(t(j
∗)

Ki , t
(j∗)
Hi , t

(j∗)
Ji ) satisfying Eq. (3.4) is negligible. Therefore

Pr[F5] ≤ εneg(n).

¤

Definition 17 (Game 6) Game 6 is the same as Game 5 except S randomly chooses

G,X(j∗),

Y
(j∗)
K∗ , D

(j∗)
K∗ , E

(j∗)
K∗ ), P (j∗)

K∗

Y
(j∗)
H∗ , D

(j∗)
H∗ , E

(j∗)
H∗ ), P (j∗)

H∗

Y
(j∗)
J∗ , J

(j∗)
∗ , E

(j∗)
J∗ ), P (j∗)

J∗

without any condition.

Then, we have
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Lemma 24

|Pr[X5] − Pr[X6]| < εddh(n)

where εddh(n) is the success probability that one can solve decision Diffie-Hellman problem using resources

similar to those of A.

Proof. We can easily build a game that takes (G1, G2, G3, G4) ∈ E4 as an input and decide whether

input is in DH or not using A, which is solving decision Diffie-Hellman problem. Let us randomly choose

u11, u12, u21, u22, u23, u24, u31, u32, u33, u34 from Z/qZ and assign

 G X(j∗) Y
(j∗)
K∗

D
(j∗)
K∗ − K

(j∗)
∗ E

(j∗)
K∗ ) P

(j∗)
K∗


=

 G1 G2 [u11]G1 + [u12]G2

G3 G4 [u11]G3 + [u12]G4


 G X(j∗) Y

(j∗)
H∗

D
(j∗)
H∗ − H

(j∗)
∗ E

(j∗)
H∗ ) P

(j∗)
H∗


=

 G1 G2

[u23]G1 + [u24]G3 [u23]G2 + [u24]G4

[u21]G1 + [u22]G2

[u21u23]G1 + [u21u24]G3 + [u22u23]G2 + [u22u24]G4


 G X(j∗) Y

(j∗)
J∗

J
(j∗)
∗ − J

(j∗+1)
∗ E

(j∗)
J∗ ) P

(j∗)
J∗


=

 G1 G2

[u33]G1 + [u34]G3 [u33]G2 + [u34]G4

[u31]G1 + [u32]G2

[u31u33]G1 + [u31u34]G3 + [u32u33]G2 + [u32u34]G4


in Game 6. Then, distribution of output of this game is exactly the same to that of Game 5 if

(G1, G2, G3, G4) ∈ DH and is exactly the same to that of Game 6 if (G1, G2, G3, G4) is randomly

chosen from E4.

¤

Now, we have
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Lemma 25

|Pr[X6] − 1/2| < εenc(n′)

where εenc(n′) is the success probability that one can break semantic security of one-time encryption

scheme (encκ, decκ) using resources similar to those of A. ¤

From Lemmas 23-25,

|Pr[X4] − 1/2| ≤ εneg(n) + εddh(n) + εenc(n′)

which implies IND-CCA2 security of hybrid encryption scheme used in the proposed multiple encryption

scheme.

From Lemmas 19-25,

|Pr[X0] − 1/2| ≤ m(εcdh(n) + 2εneg(n) + εddh(n) + εenc(n′))

which implies IND-ME-CCA security of the proposed multiple encryption scheme. ¤
The possible output of Dec and MDec are either results of decryption or one of the set of symbols

{⊥,⊥(j)
1 ,⊥(j)

2 }. Each symbol represents that the input ciphertext was improperly generated. In order to

prove the validity of the decryption result or these symbols, we introduce interactive protocols Ver and

MVer. Ver is performed between a prover P and a verifier V to prove the validity of the output of Dec,

and MVer is performed between a prover MP and a verifier MV to prove the validity of the output of

MDec.

Ver: P and V are given µ(j−1) ∈ C(j) and the output Out of Dec. P is also given x(j). Suppose Out = ⊥1.

Then, V evaluates Eq.(3.4). If this holds, V rejects P and stops. Otherwise V accepts P and stops.

Suppose that Out 6= ⊥1. V first checks if Eq.(3.4) holds or not. If it does not hold, V rejects P and

stops. Next, P proves to V in zero-knowledge the knowledge of x(j) satisfying Eqs, (3.1), (3.6),

and (3.7). V rejects P and stops if this proof in unacceptable. Next, if the output of Dec was ⊥2,

P additionally proves to V in zero-knowledge the knowledge of x(j) satisfying Eqs, (3.1) and (3.5).

V rejects P and stops if this proof in unacceptable. Finally, V accepts P and stops if neither of

the above proofs are unacceptable.

MVer MP and MV are given a ciphertext C ∈ C and the output Out of MDec. MP is given secret

keys {x(j)}j=1,...,m. Suppose Out = ⊥. Then, MV evaluates Eq. (3.11). If this holds, MV rejects

MP and stops. Otherwise MV accepts MP and stops.
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Suppose Out 6= ⊥. MV first checks if Eq. (3.11) holds or not. If it does not, MV rejects MP and

stops. Next, MP plays the role of P in all Ver with respect to all Dec invoked by MDec. If any

of V rejects P in Ver, MV rejects MP. Otherwise, MV accepts MP.

From the construction, one can easily observe that the following theorems hold.

Theorem 10 Suppose that C ∈ C is an encryption of M ∈ M generated by honestly following Algorithm

MEnc. MP will be accepted by MV in MVer when M is input to MP and MV as the output of MDec.

Here, we assume random oracles. ¤

Theorem 11 No polynomial time adversary is able to output (C,M ′,M) ∈ C×(M)2 such that M ′ 6= M

and the adversary will be accepted by MV as MP in MVer with non negligible probability both when

they are given M and when they are given M ′. Here, we assume random oracles. ¤

Remark 1 As Theorem 3 assures, no ciphertext can be decrypted in two valid messages, no matter how

the ciphertext is generated. But our scheme can not prevent an adversary to generate a ciphertext that

can be treated in two ways by a malicious decryptor: either it is decrypted to a ’correct’ message, or

claimed invalid(i.e. malicious decryptor outputs ⊥2)

The strategy for the adversary and the corrupted j-th decrypter to generate such ciphertext is as

follows. The adversary executes multiple encryption up to m−j+1-th iteration and obtain χ(j) ∈ µ(j−1).

But then he starts the next iteration starting with a different data, say χ(j)∗, and process correctly then.

Thus generated ciphertext will be processed without any problem until the j-th iteration of decryption. If j-

th decryptor is honest, he will output ⊥2 and K(j) and show that the decryption of HE(decHσ(K(j))(χ(j∗)))

does not coincide with H(j)† = HE(decHσ(K(j))(χ(j))). A malicious j-th decryptor has a choice, whether

to honestly claim the ciphertext is malicious, or to secretly replace χ(j)∗ with χ(j) obtained from the

adversary and continue the procedure assuming nothing has happened. The semantic advantage of this

attack is the adversary can decide his input to be either valid message or invalid, not at the submission

of the encrypted input but in the midst of decryption, when the colluding decryptor proceeds.

3.3 Publicly Verifiable Mix-net under Hybrid Construction

Now we will present our publicly verifiable mix-net that can mix long messages. The idea of the con-

struction is as follows: The input to the mix-net will be a list of ciphertext, where each ciphertext is

generated by a user following the multiple encryption scheme proposed in Section 3.2. Within a mix-net,

each mixer performs Dec to each ciphertext in the input list. He then permute the list of the decrypted

data which will be the input list to the next mixer. Thus the mixers comprise MDec of the proposed
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multiple encryption scheme but the correspondence between the input ciphertext and the output message

is hidden due to the permutation.

In Section 3.2, we have shown that the decryption can be done verifiably. In this section, we present

how to do so without revealing the permutation. The way we achieved the verifiability of decryption is

by adding an encryption of the hash value of resulting decryption in the input ciphertext. If we compare

the set of encryptions of the hashed values in the input list and the set of values where hash function is

applied to the decrypted messages, the latter should be a set of decryptions of the former set. Therefore,

by performing the zero-knowledge argument of shuffle-and-decrypt on these sets, we can prove that the

output list is a correct decryption of the input list.

We note that [86] provides 7-move zero-knowledge argument of shuffle-and-decrypt. We provide

in Section 3.5 an alternative scheme which provide 3-move zero-knowledge argument but the detail is

omitted for space limitations.

Our mix-net satisfies anonymity property defined in [3], whose definition is presented in the following:

Definition 18 (Anonymity)[3]. Let A be an adversary that plays the following game. At any moment

of the game, A is allowed to corrupt up to tu users and tm servers. Once corrupted, the user or the

server is thoroughly controlled by A.

1. (y, x) ← Gmix(1n). Public-key y and each shared decryption key xi of x is given to j-th mixer S(j).

2. A is given y and allowed to invoke any mixer S(j) an arbitrary number of times for arbitrary

chosen input ciphertexts (i.e., A can use any of {S(j)}j as a decryption oracle).

3. A outputs LC = (µ1, . . . , µk) that is a list of messages chosen from message space M (depends on

y).

4. Choose a permutation π of {1, . . . , k}. Each Ui is given µπ(i) privately and outputs ciphertext Ci.

If Ui is corrupted and outputs nothing, let Ci be an empty string. Let C = {C1, . . . , Ck}.

5. The set of {S(j)}j performs mix processing on C.

6. A is again allowed to invoke any of {S(j)}j an arbitrary number of times for arbitrarily chosen

input ciphertexts except for the ones included in C.

7. A outputs (i∗, j∗) ∈ {1, . . . , k}. The restriction is that Ui∗ 6∈ UA (i.e., Ui∗ has never been cor-

rupted).

A wins the game if π(i∗) = j∗. Mix-net is anonymous against (tu, tm)-limited adaptive and active

adversary A if the probability that any polynomial-time (tu, tm)-limited adaptive and active adversary A
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wins the above game is at most 1
k−tu

+ ε(n) where ε(n) is negligible in n. Probability is taken over the

coin flips of Gmix, {Ui}i=1,...,k, {S(j)}j=1,...,m,A and the choice of π.

3.3.1 Proposed Mix-net

Players of our mix-net are m mixers {S(j)}j=1,...,m, n users {Ui}i=1,...,k, and a verifier V. The scheme

is composed of the following steps: (1) Setup, (2) Public-Key Generation, (3) Message Encryption, and

(4) Shuffle and Prove. We assume that the input to a mixer S(j) , which is an output of the previous

mixer, has been publicly verified of its correctness. If this assumption is not appropriate, S(j) needs to

verify previous Mixers {S(h)}h<j .

Setup: In Setup, domain parameters of the scheme are determined. They are a security parameter n,

an elliptic curve E of prime order q, a randomly chosen generator G of the curve E, the length ` of the

messages, a semantically secure one-time symmetric-key cryptosystem (encκ, decκ), and cryptographic

hash functions HE ,Hq, and Hσ.

Public-key Generation: Given the domain parameters, each server S(j) generates its own secret key

x(j) and the corresponding public-key X(j) as described in Section 3.2.

Message Encryption: Each user Ui encrypts the message Mi of length ` following the encryption

scheme proposed in Section 3.2, and sends the ciphertext Ci to S(1) with a signature of Ui.

Shuffle and Prove: Suppose S(1) is given {Ci}i=1,...,k. Mixers {S(j)} collaboratively decrypts all

multiply encrypted ciphertexts {Ci}i=1,...,k as in the following. We assume every ciphertext in {Ci} and

{µ(j)
i } are parsed as Eqs. (3.3) and (3.2).

1. S(1) verifies the validity of each signature attached to {Ci}i=1,...,k. S(1) also verifies that each

c
(0)
i ∈ Ci include correct Ui. From the all elements µ

(0)
i in Ci that are accepted in the above

verification, S(1) generates the the set {µ(0)
i }i=1,...,k(1) . Here and in the following k(j) is the number

of ciphertexts given to S(j).

2. From j = 1 to j = m do the following:

(i) Each S(j) receives a set {µ(j)
i }i=1,...,k(j) .

(ii) S(j) deletes µi which does not satisfy Eq.(3.4) from the set.

(iii) S(j) continue decryption of each ciphertext in the set as Eqs. (3.5), (3.6), (3.7), (3.8), and

(3.9).
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(iv) For each ciphertext µi that does not satisfy Eqs. (3.10), S(j) reveals H(j)†, J (j+1)†, and K(j)†

as Dec does. Then S(j) proves to V in zero-knowledge the knowledge of x(j) satisfying (3.1),

(3.5), (3.6), and (3.7) as in Ver does.

(v) From ciphertexts µi’s that satisfy Eqs. (3.10), S(j) generates a set {µi}i=1,...,k(j+1) . Here

indices are reallocated. S(j) randomly permutes the order of the corresponding

{µ(j+1)
i ,H

(j)†
i , J

(j+1)†
i }i=1,...,k(j+1) and reallocates their indices. S(j) proves to V in zero-

knowledge, using the argument proposed in Section 3.5 or in [86], the knowledge of x(j) and

a permutation of {1, . . . , k(j+1)} that prove the validity of generating a set

{H(j)†
i , J

(j+1)†
i }i=1,...,k(j+1) from {µi}i=1,...,k(j+1) .

3. {Mi}i=1,...,k(m) output by S(m) is the output of the mix-net.

Theorem 12 The proposed mix-net is anonymous assuming random oracles, intractability of decision

Diffie-Hellman problem, and semantic security of the one-time symmetric-key cryptosystem.

Proof. First of all, A is unable to obtain any knowledge from interaction in which S(j) proves the

correctness of decryption of public-key encryption parts. This is because all of these interactions are

zero-knowledge. Note that in the proposed mix-net, we only consider the case when the public key M0

used for shuffle and the public key Y corresponding to the secret key used for decryption are the same.

In such a case, we assume that {G′
i}i=1,...,k is no longer included in the result of shuffle-and-decryption.

However, we include them in the first message of our argument. This inclusion does not prevent the

argument from being zero-knowledge. This is because, since {G′
i ∈ E}i=1,...,k is randomly distributed,

the simulator of the argument is able to perfectly simulate it by randomly choosing it from Ek.

The following correspondences between abilities of an adversary A against anonymity of mix-net and

those of an adversary A′ against IND-ME-CCA security exists.

1. Since each ciphertext Ci includes identities of user who have generated it, A is unable to submit

a copy of Ci with the signature of other users. This restriction corresponds to the restriction that

A′ is not allowed to send target ciphertext to decryption oracle.

2. An ability of A to corrupt up to m− 1 mixers corresponds to the ability of A′ to invoking the key

exposure oracle for m − 1 times.

3. An ability of A to choose LC corresponds to the ability of A′ to choose target ciphertexts.

4. An ability of A to invoke mix-net for the arbitrary number of times corresponds to the ability of

A′ to invoke decryption oracle for an arbitrary number of times.
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Hence, A is unable to send a copy of µ
(j∗+1)
i , which is a partial decryption of Ci ∈ C. Therefore,

IND-CCA2 security of (Key-Gen, Enc, Dec) implies anonymity of the proposed mix-net.

¤

From the property of our hybrid encryption scheme described in Remark 1, our mix-net does not

provide full public verifiability unlike the one proposed in [137, 2, 70, 120, 85, 66]. However, it satisfies

a stronger notion of robustness than that proposed in [92] as follows: (1) Our scheme allows any verifier

to verify the validity of the output to a certain extent whereas that in [92] only allows mixers to verify

it. (2) The scheme in [92] allows colluding mixer and user to find two translations (renderings) for a

ciphertext. Thus, such colluders are able to arbitrary switch messages during their mixing procedure

without being detected. However, our scheme only allows them to switch messages between a valid

message and an invalid message as described in Remark 1.

Definition 19 We say a ciphertext C ∈ C is correct if MDec, given C, outputs a message in m ∈ M.

We call m as the correct decryption of C.

Definition 20 Let MDecf be the same as MDec except that it uses the pair (f, f−1) of a permutation

f of strings and its inverse instead of the pair (encκ, decκ). We say a message m ∈ M is the correct

translation of a ciphertext C ∈ C if there exists some f such that MDecf , given C, outputs m.

Definition 21 (Correctness) Let I be a set of all ciphertexts input to the mix-net and O be the set of

all the output messages of mix-met. We say a O is correct with respect to I if the following hold:

1. Let I ′ ⊂ I be the full set of correct ciphertexts. Then, there exists O′ ⊂ O that contains a unique

correct decryption of every element in I ′.

2. There exists Î ⊂ I \ I ′ such that Ô := O \ O′ contains the full set of the correct translation of Î.

Definition 22 (Robustness) We say a mix-net is robust if the following hold:

1. V accepts the protocol if all the mixers are honest.

2. The output O of the mix-net is correct with respect to its input I with overwhelming probability if

V accepts the protocol.

3. It is computationally difficult to find two correct translations for any ciphertext C ∈ C.

4. For ciphertexts that are not decrypted into a message in M but into ⊥,⊥1, or ⊥2, the mixers are

able to find their corresponding users in publicly verifiable manner.
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# of SM Com. bits
user 15m + 3 2080m + ` + 480

j-th mixer 32n (2080j + ` + 960)k
verifying j-th mixer 32n (2080j + ` + 960)k

Table 3.1: Complexity

In our mix-net, as noted in Remark 1, a malicious user colluding with a mixer can generate a

ciphertext C which the mixer can decide to provide the unique correct translation of C or it claims it

invalid. Any ciphertexts that is claimed invalid will be traced back in a publicly verifiable manner to

the original user who submitted the ciphertext. It is indeed a weakness in our mix-net, that a collusion

has advantage of delaying the decision of the input ciphertext, although the choice is between a valid

message and an invalid message. It may be a problem if it is the last mixer who enjoys this advantage

since he can decide his choice after seeing the other inputs. To make this advantage insignificant, one can

make the output of the mix-net to be a ciphertext that additionally need to be decrypted in a threshold

manner. The same strategy is also used in the hybrid mix-net of [92].

Theorem 13 The protocol is robust assuming random oracles.

Proof. The theorem follows from Theorems 10 and 11 and the construction of the scheme. Here, random

oracles are used only within the IND-ME-CCA encryption scheme. ¤

3.4 Efficiency of the Proposed Verifiable Mix-net

Most costly computation in our scheme is scalar multiplications over the elliptic curve. But the amount

of these computations does not depend on the length of input ciphertext `. The only computations

that depends on the length ` are hash function and symmetric-key operations, which is negligibly small

compared to scalar multiplications. Therefore, we estimate the computational cost by the number of

scalar multiplications required in our scheme. We also estimate the amount of data that each player

need to communicate. These results of estimation are given in Table 3.1, where “# of SM” means the

number of scalar multiplications, “Com. bits” means the length of communication, |q| is 160, m is the

number of mixers, and k is the number of users. Here, the cost for mixers does not include the cost for

verifying other mixers.

We now give estimates in how fast our scheme can be implemented. Suppose that k = 100, 000,

m = 3, and that available computers are Pentium III (700MHz) machines. Suppose that it takes

100µ sec to compute a single scalar multiplication in E by one computer. Such an implementation
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and experiment are reported in [100]. Suppose that each mixer has two machines, one machine for

verifications of the previous mixers, and the other for shuffling and proving the correctness of its shuffle.

We assume mixers generate Fiat-Shamir transformations of proofs so that any mixer is able to verify the

proofs independently and in parallel without assuming trusted verifier. Such operations make the total

time required for the proposed verifiable mix-net linear in the number of the mixers. Using variants of

fixed-based comb method and simultaneous modular exponentiations in [107], we can estimate the total

time required for mix-net, which tallies 100, 000 long ciphertexts and proves and verifies its correctness

by 3 mixers, to be less than 10 minutes.

3.5 3-move Perfect Zero-Knowledge Argument for Shuffle-and-

decrypt

In this section, we discuss here an alternative way to efficiently prove shuffle-and-decryption in zero-

knowledge. Since using the 7-move scheme presented in [86] suffices to build our publicly verifiable

hybrid mix-net, a novel property of our scheme is only that it is 3-move.

Our 3-move scheme is based on the perfect zero knowledge argument for shuffle proposed in [66]

combined with a decryption proof. [66] is perfect zero-knowledge version of [70]. As discussed in [69], a

sequential composition of zero-knowledge arguments on shuffle and that on decryption does not provide

zero-knowledge argument on shuffle-and-decrypt since the intermediate state is not simulatable. So

the combination is not straight forward. Using the compilers proposed in [110], we can easily derive

black-box or concurrent zero-knowledge variants of the proposed arguments.

3.5.1 Notation

Let n, q, E,O be as defined in Section 3.2. Let G0 be a generator of E, (Gi, Mi) ∈ (E ⊗ E)i=1,...,k be

ElGamal ciphertexts to be shuffled and decrypted, where n is the number of ciphertexts. The resulting

output ciphertexts are denoted as {(G′
i,M

′
i) ∈ E2}i=1,...,k. Let M0 = [x]G0 be the public key used for

the shuffle, where x ∈ Z/qZ is the corresponding private key. Let x′ ∈R Z/qZ be the private key used

for partial decryption, and Y = [x′]G0 be the corresponding public key. Here, the public key is the

set, {q, E,G0,M0, (Y )}. P is a prover who shuffles-and-decrypts and proves the validity of shuffle-and-

decryption to a verifier V. Let π be a permutation π : {1, . . . , k} → {1, . . . , k}, matrix (πij)i,j=1,···,k

be a permutation matrix over Z/qZ. We say (πij)i,j=1,···,k is a permutation matrix if there exists a
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permutation π that satisfies

πij =

 1 mod q if π(i) = j

0 mod q otherwise
.

In the proposed mix-net, we only consider the case M0 = Y and x = x′. Although the decryptions

in Eqs. (3.5), (3.6), and (3.7) are not decryption of conventional ElGamal ciphertexts, the proposed

argument can be applied.

3.5.2 ElGamal Shuffle-and-Decryption

ElGamal shuffling is a procedure that, given G0,M0 and n ElGamal ciphertexts {(Gi,Mi)}i=1,...,k,

outputs ElGamal ciphertexts

(G′
i,M

′
i) = ([si]G0 + Gπ−1(i), [si]M0 + Mπ−1(i))

for i = 1, . . . , k where {si ∈R Z/qZ}i=1,...,k and a permutation of indices π : {1, . . . , k} → {i = 1, . . . , k}

are randomly chosen.

Input ciphertexts and resulting ciphertexts of ElGamal shuffling are the same as sets. And at the same

time, no polynomially bounded machine, given an input and its result of shuffling, has an advantage over

the random-guessing algorithm in guessing any part of permutation π for randomly chosen G0,M0, si, π.

ElGamal shuffle-and-decryption is a combination procedure of ElGamal shuffling and decryption

that, given n ElGamal ciphertexts {(Gi,Mi)}i=1....,k, outputs ElGamal ciphertexts

(G′
i, M

′
i) = (3.20)

([si]G0 + Gπ−1(i), [−x′]G′
i + [si]M0 + Mπ−1(i)) (3.21)

for i = 1, . . . , k where {si ∈R Z/qZ}i=1,...,k and π are chosen uniformly and randomly. Here, the addition

of [−x′]G′
i in the second term has the effect of partial decryption.

Using a permutation matrix (πji) which corresponds to a permutation π and replacing {si}i=1,...,k

with {π0i ∈ Z/qZ}i=1,...,k, we find that Eq. (3.21) can be expressed as

(G′
i,M

′
i) = (

k∑
ν=0

[πνi]Gν , [−x′]G′
i +

k∑
ν=0

[πνi]Mν) (3.22)

for i = 1, . . . , k. Therefore, proving the correctness of the shuffle is equivalent to proving the existence

of an π0i ∈ Z/qZ for i = 1, . . . , k, x′, and a permutation matrix (πji)i,j=1,...,k which satisfies Eqs. (3.22)
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and Y = [x′]G0.

Here, the matrix (πνi)ν=0,...,k;i=1,...,k in Eq. (3.22) is a (k+1)×k matrix that contains a permutation

matrix whose size is k×k as a sub-matrix. It should be remembered here that, in the rest of the chapter,

just as the size of matrices may often change, so will the range over which the indices of the matrix π

run.

3.5.3 Idea of the Proposed Zero-Knowledge Argument

In [66], a prover is given an input ciphertexts set {(Gi,Mi)}i=1,...,k and its shuffled ciphertexts set

{(G′
i,M

′
i)}i=1,...,k such that

(G′
i,M

′
i) = ([si]G0 + Gπ−1(i), [si]M0 + Mπ−1(i))

for i = 1, . . . , k holds for witness set {si ∈ Z/qZ}i=1,...,k and a permutation π. Then the prover proves

to the verifier the knowledge of the witness by exploiting the property of permutation matrices.

Now we consider constructing a zero-knowledge argument for shuffle-and-decryption by composing

the above zero-knowledge argument for shuffle and a zero-knowledge proof for decryption. As previously

stated, the intermediate state, that is, (M ′
i)i=1,...,k, is unsimulatable. The rest of the message that prover

generates is simulatable.

We avoid this problem by using

M̄i = [s′′i ]M−1 + [si]M0 + Mπ−1(i) i = 1, . . . , k

instead of the above (M ′
i)i=1,...,k, where {s′′i ∈R Z/qZ}i=1,...,k is randomly chosen elements in (Z/pZ)∗

and M−1 is a public parameter. Since M̄i can be considered as a perfect hiding commitment of M ′
i , a

simulation of M̄i will be possible.

We need some new methods to prove the knowledge of committed {si}i=1,...,k instead of knowledge of

simple exponents, which can be obtained using similar tricks that appears in [66]. Applying these meth-

ods we are able to construct a perfect zero-knowledge argument for shuffle-and-decryption of Elements

ciphertexts.

3.5.4 Proposed Zero-Knowledge Argument for Shuffle-and-Decryption

Let us next introduce a 3-round honest-verifier perfect zero-knowledge argument for shuffle-and-decryption.

We assume M−1 and {Fν ∈R E}ν=−4,...,k are n + 6 points in E that are randomly generated so that

neither P nor V can generate non-trivial elements c, b, {aν}ν=−4,...,k in Z/qZ satisfying [c]G0 +[b]M−1 +
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∑k
ν=−4[aν ]Fν = O with non-negligible probability. We assume c0 = 1 mod q.

Proving a Shuffle Decryption

Commitment: P uniformly and randomly chooses {πν0, π
′
ν}ν=−4,...,k, {π−1i}i=1,...,k, {π−2i}i=1,...,k,

and {ti}i=1,...,k from Z/qZ, and then computes:

π−3i =
k∑

j=1

3πj0
2πji mod q i = 1, · · · , k

π−4i =
k∑

j=1

3πj0πji mod q i = 1, · · · , k

Y ′
i = [ti]G0 i = 1, · · · , k

F ′
µ =

k∑
ν=−4

[πνµ]Fν µ = 0, · · · , k (3.23)

M̄µ =
k∑

ν=−1

[πνi]Mν µ = 0, · · · , k (3.24)

F̃ ′
0 =

k∑
ν=−4

[π′
ν ]Fν (3.25)

G′
0 =

k∑
ν=0

[πν0]Gν

w =
k∑

j=1

πj0
3 − π−30 − π′

−4 mod q

M̄ ′ = [π−10]M−1 +
k∑

i=1

[ti]G′
i

Then, P sends {F ′
µ}µ=0,...,k, {M̄µ}µ=0,...,k, F̃ ′

0, G
′
0, w, M̄ ′, {Y ′

i }i=1,...,k to V as a commitment.

Challenge: V uniformly and randomly chooses {ci ∈ Z/qZ}i=1,...,k and sends it to P.

Response: P sends V the following response:

rν =
k∑

µ=0

πνµcµ mod q ν = −4, · · · , k

r′ν =
k∑

i=1

πνici
2 + π′

ν ν = −4, · · · , k

r̄i = x′ci + ti mod q i = 1, · · · , k

Verification:
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V accepts the shuffle if the following equations hold for a randomly chosen d ∈R Z/qZ:

k∑
ν=−4

[rν + dr′ν ]Fν = F ′
0 + [d]F̃ ′

0 +
k∑

i=1

[ci + dci
2]F ′

i (3.26)

k∑
ν=0

[rν ]Gν =
k∑

µ=0

[cµ]G′
µ (3.27)

k∑
ν=−1

[rν ]Mν =
k∑

µ=0

[cµ]M̄µ (3.28)

k∑
j=1

(r3
j − c3

j ) = r−3 + r′−4 + w (mod q) (3.29)

M̄ ′ +
k∑

i=1

[ci](M̄i − M ′
i) = [r−1]M−1 +

k∑
i=1

[r̄i]G′
i (3.30)

[r̄i]G0 = [ci]Y + Y ′
i i = 1, · · · , k (3.31)

Theorem 14 The proposed protocol is argument for shuffle-and-decryption.

Proof. The theorem can be proved in the same way that Theorem 4 is proved. Here, proofs for lemmas

are omitted.

Lemma 26 If V accepts the protocol with a probability p, which implies, Eq. (3.26) holds, then

k∑
ν=−4

[rν ]Fν =
k∑

µ=0

[cµ]F ′
µ (3.32)

k∑
ν=−4

[r′ν ]Fν = F̃ ′
0 +

k∑
i=1

[ci
2]F ′

i (3.33)

will hold with the probability at least p − 1/2n.

Lemma 27 If V accepts the protocol with a probability p, then there is a polynomially bounded knowl-

edge extractor K that can, within an expected number of steps bounded by O(k/p), extract from P an

{πνµ}ν=−4,...,k;µ=0,...,k which satisfies Eq. (3.23) and an {π′
ν}ν=−4,...,k which satisfies Eq. (3.25).

Lemma 28 Assume that there is a knowledge extractor K that can extract an {πνµ}ν=−4,...,k;µ=0,...,k

and an {π′
ν}ν=−4,...,k from P that satisfies Eq. (3.23) and (3.25). If there is also a knowledge extractor

K ′ that can extract an {rν , r′ν}ν=−4,...,k from P that satisfies Eqs. (3.32) and (3.33) such that either

rν =
k∑

µ=0

πνµcµ mod q
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or

r′ν =
k∑

i=1

πνici
2 + π′

ν mod q

for some ν = −4, . . . , k, then K ′ can generate non-trivial integers {aν}ν=−4,...,k satisfying
∑k

ν=−4[aν ]Fν =

1 mod p with overwhelming probability.

Lemma 29 Assume that {πνµ}ν=−4,...,k;µ=0,...,k, {πν}ν=−4,...,k and w are givens. Also assume that

{ri}i=1,...,k, r−3 and r′−4 will be generated, for a given {ci}i=1,...,k, as

rν =
k∑

µ=0

πνµcµ mod q ν = −3, 1, 2, . . . , k

r′−4 =
k∑

i=1

π−4ici
2 + π′

−4 mod q

If the given {πij}i=1,...,k;j=1,...,k is not a permutation matrix, then Eq. (3.29) will not hold with over-

whelming probability for a uniformly and randomly chosen {ci}i=1,...,k [70].

Lemma 30 Assume that {Gν ,Mν}ν=0,...,k and {πνµ}ν=0,...,k;µ=0,...,k are givens. Also assume that

{rν}ν=0,...,k will be generated for a given {ci}i=1,...,k as

rν =
k∑

µ=0

πνµcµ mod q ν = 0, . . . , k.

If the equations

G′
µ =

k∑
ν=0

[πνµ]Gν µ = 0, · · · , k,

M̄µ =
k∑

ν=−1

[πνµ]Mν µ = 0, · · · , k

do not hold, then Eqs. (3.27) and (3.28) will not hold with overwhelming probability for a uniformly and

randomly chosen {ci}i=1,...,k.

Lemma 31 If V accepts the protocol with a probability p, then there is a polynomially bounded knowl-

edge extractor K that can, within an expected number of steps bounded by O(1/p), extract from P an

{ti}i=1,...,k and x′ which satisfies

Y ′
i = [ti]G0 i = 1, · · · , k
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Y = [x′]G0.

Moreover

r̄i = x′ci + ti mod q

Lemma 32 Assume that {Gν ,Mν}ν=0,...,k and {πνµ}ν=0,...,k;µ=0,...,k, {ti}i=1,...,k, and x′ are givens.

Also assume that {rν}ν=0,...,k and {r̄i}i=1,...,k will be generated for a given {ci}i=1,...,k as

r−1 =
k∑

µ=0

π−1µcµ mod q

r̄i = x′ci + ti mod q i = 1, . . . , k.

If the equations

(
M̄i − M ′

i

)
= [x′]G′

i + [π−1i]M−1 i = 1, · · · , k

Y = [x′]G

do not hold, then Eqs. (3.30) and (3.30) will not hold with overwhelming probability for a uniformly and

randomly chosen {ci}i=1,...,k.

From Lemmas 26, 27, and 28, there is a knowledge extractor K that can extract an {πνµ}ν=−4,...,k;µ=0,...,k

and a {π′
ν}ν=−4,...,k from P that respectively satisfy Eqs. (3.23) and (3.25) within an expected number

of steps bounded by O(n/p). Further, K can either, from values extracted from P, (1) only generate a

response that satisfies equations

rν =
k∑

µ=0

πνµcµ mod q ν = −4, . . . , k

r′ν =
k∑

i=1

πνici + π′
ν mod q ν = −4, . . . , k

for a given challenge, or (2) generate non-trivial integers {aν}ν=−4,...,k satisfying
∑k

ν=−4[aν ]Fν = 1 with

overwhelming probability. Note that (2) will happen with negligible probability as long as solving the

discrete logarithm problem is difficult.

From Lemma 29, the {πνµ}ν=1,...,k;µ=1,...,k that can be extracted by K from P is a permutation
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matrix. From Lemma 30, the equations

G′
µ =

k∑
ν=0

[πνµ]Gν = [π0i]G0 + Gπ−1(i) µ = 0, · · · , k

M̄µ =
k∑

ν=−1

[πνµ]Mν µ = 0, · · · , k

hold for the {πνµ}ν=0,...,k;µ=0,...,k above.

From Lemmas 31,28, and 32,

M ′
i = M̄i − [x′]M ′

i + [π−1i]M−1 i = 1, · · · , k

and from Lemma 30,

M ′
i = [−x′]G′

i +
k∑

ν=0

[πνi]Mν

= [−x′]G′
i + [A0i]M0 + Mπ−1(i) µ = 0, · · · , k

Therefore, as long as solving the discrete logarithm problem is difficult, there is a knowledge extractor

K that can extract an {πνi}ν=0,...,k;i=1,...,k and x′ from P satisfying Eq. (3.22) within an expected

number of steps bounded by O(n/p), and its sub-matrix (πij)i=1,...,kj will be a permutation matrix if V

accepts the protocol. ¤

Theorem 15 The proposed protocol is perfect zero-knowledge.

Proof.

View: The view of this protocol is

q, E,G0,M0, Y,

{(Gi, Mi)}i=1,...,k, {(G′
i,M

′
i)}i=1,...,k,M−1,

{Fν}ν=−4,...,k, {F ′
µ}µ=0,...,k, {M̄µ}µ=0,...,k,

F̃ ′
0, G

′
0, w, M̄ ′, {Y ′

i }i=1,...,k, {ci}i=1,...,k,

{rν}ν=−4,...,k, {r′ν}ν=−4,...,k, {r̄i}i=1,...,k

The following simulator proves the theorem:
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Given

q, E,G0,M0, Y, {Gi,Mi}i=1,...,k, {G′
i,M

′
i}i=1,...,k,

M−1, {Fν}(ν=−4,...,k),

a simulator uniformly and randomly chooses

{rν}ν=−4,...,k, {r′ν}ν=−4,...,k, {r̄i}i=1,...,k,

{ci}i=1,...,k, {F ′
i}i=1,...,k, {M̄i}i=1,...,k.

It then generates {Y ′
i }i=1,...,k, M̄ ′, w, M̄0, F̃

′
0, F

′
0, G

′
0, so as to satisfy Eqs.(3.27), (3.28), (3.29), (3.30),

(3.31), and

k∑
ν=−4

[rν ]Fν =
k∑

µ=0

[cµ]F ′
µ,

k∑
ν=−4

[r′ν ]Fν = F̃ ′
0 +

k∑
i=1

[ci
2]F ′

i .

The correspondences between the randomness of the argument view and that of the simulated view

are as in the following.

{rν}ν=−4,...,k ⇔ {πν0}ν=−4,...,k,

{r′ν}ν=−4,...,k ⇔ {π′
ν}ν=−4,...,k

{r̄i}i=1,...,k ⇔ {ti}i=1,...,k,

{ci}i=1,...,k ⇔ {ci}i=1,...,k

{F ′
i}i=1,...,k ⇔ {π−2i}i=1,...,k,

{M̄i}i=1,...,k ⇔ {π−1i}i=1,...,k

¤

Conclusion

We proposed here the first efficient publicly verifiable hybrid mix-net. The scheme is composed of newly

developed IND-ME-CCA secure multiple encryption scheme whose component encryption is IND-CCA

secure hybrid encryption scheme. The decryption in this multiple encryption scheme is publicly and
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efficiently verifiable. The proposed scheme is efficient enough to treat large scale electronic questionnaires

of long messages as well as voting with write-ins, and offers public verifiability of the correctness of the

tally. Indeed, the heaviest operation for proving or verifying the correctness of each mixer is computation

of scalar multiplication/modular exponentiation for 32 times the number of input ciphertexts. The

scheme is provably secure if we assume random oracles, semantic security of a one-time symmetric-key

cryptosystem, and intractability of decision Diffie-Hellman problem.
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Chapter 4

Aggregate Shuffle Argument Scheme

4.1 Introduction

The notion of mix-net, whose core ingredient is the execution of multiple rounds of shuffling and decryp-

tion by multiple and independent mixers so that none of the output decryptions can be linked to any

of the input encryptions, is useful in applications which require anonymity, such as voting. Although it

is desirable to achieve the property of public verifiability to ensure the correctness of output, it requirs

a rather large amount of computation. Reducing this computational cost has been one of the major

problems in the study of mix-net.

There are roughly two types of previous works that reduce the amount of computation for verification

of mix-net. The straight forward way is to increase the efficiency of each component. In [65, 66, 69, 70,

85, 120, 86, 150], efficient and practical schemes for proving the correctness of each component shuffling

or a pair of shuffling and decryption are proposed. On the other hand, in [1], Abe proposed a scheme

to prove the correctness of total mix-net shufflings in such a way that the amount of computation of its

verifier does not depend on the number of shufflings executed in the mix-net. We call such a scheme an

aggregate shuffle argument scheme. The essence of the latter scheme is to consider the whole mix-net as

a single shuffle and let all mixers collaborately play the role of its single prover. Then, the verification

cost for the mix-net will be reduced to that for a single shuffle. Here, the proof of shuffle collaborately

generated is the one proposed by Sako et al. in [137].

Since the computational cost for the verifier in the Sako’s scheme in [137] is huge, so is that for the

verifier in Abe’s scheme. Hence, Abe’s scheme is advantageous over the former type of schemes only

when a large number of shufflings is executed in a single mix-net. However, in such a situation, neither

the former nor the latter types of schemes are efficient enough to be applied to very large-scale voting.

87



In this chapter, we propose a novel aggregate shuffle argument scheme that is much more efficient

than the one proposed in [1] by exploiting schemes proposed in [66, 70] instead of the scheme proposed

in [137]. We also propose a model and security requirements of aggregate shuffle argument schemes.

The basic idea of our scheme is to consider the whole mix-net as a single shuffle and let all mixers

collaborately play the role of a prover of the zero-knowledge argument for shuffling proposed in [66].

This is certainly possible by the technique of general multi-party computation. However, such a general

solution requires of each mixer an unrealistic amount of computation, an amount on the order of the

square of the number of mixers. Hence, we have developed a specifically designed new zero-knowledge

argument for shuffling in which multiple mixers can efficiently collaborate to play the role of its single

prover. As a result, our scheme requires of each mixer an amount of computation that is linear to the

number of all the mixers.

Suppose that the number of ciphertexts to be mixed is k and that of mixers is λ. Then, the verifier

in our scheme is required to compute 10k exponentiations to verify the correctness of total mixing, and

each mixer in our scheme is required to compute 28k and 13k(λ − 1) exponentiations, respectively, to

prove the correctness of its shuffling and to verify the correctness of shuffling of all other mixers. On the

other hand, each mixer and verifier in the scheme proposed in [1] are required to compute, respectively,

640k and 320k + 640kλ exponentiations. If we use the scheme proposed in [85] for multiple times, each

mixer and verifier are required to compute, respectively, 6kλ and 6k + 6kλ exponentiations.

It should be mentioned here that, although it is theoretically possible for the verifiers to collaborately

and interactively play the role of the single verifier in our mix-net, we do not consider it as a realistic

solution for very large-scale voting such as one for a national election. Rather, as is the case considered

in [69], we consider the case that all mixers collaborately generate a Fiat-Shamir transformation of their

proof instead of interactively proving their correctness. Then, each of the verifiers is able to independently

verify their correctness.

Note that, although Abe’s scheme can be fixed trivially, it does not satisfy our security requirements.

Each mixer needs to additionally verify the correctness of the output of the previous mixer to be a secure

aggregate shuffle argument scheme in our sense.

An Example Application: We show an example case in which our proposed scheme is effective.

Suppose that a mix-net is applied to very large-scale voting such as a national election in which voter

anonymity is strongly required. In such a case, since the coalition of all the mixers is able to link

input encryptions to output decryptions, an increase of the number of mixers in the mix-net is strongly

required.

However, in such a large-scale voting, even if one of the previous efficient schemes [65, 66, 69, 70, 85,

120, 86, 150] is used for proving each shuffling, the amount of computation for provers and verifiers will
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unavoidably be large. Therefore, increasing the number of mixers, i.e., achieving high level of anonymity,

puts a heavy computation load on mixers and verifiers. Such a situation is especially undesirable for

verifiers, since some of them, such as voters in general, may have only small computational resources.

Since the amount of computation for verifiers in our scheme does not depend on the number of

mixers, it is easy to increase the number of mixers in our scheme, i.e., it is easy to achieve a high level

of anonymity. Moreover, since our scheme exploits a variant of the very efficient arguments for shuffling

proposed in [70, 66], it can handle large-scale voting unlike the scheme proposed in [1].

Organization: This chapter is organized as follows. Section 4.2 describes the model and security

requirements for aggregate shuffle argument schemes. Section 4.3 describes the basic idea of our proposed

scheme by introducing an example aggregate permutation argument scheme. Section 4.4 proposes an

aggregate shuffle argument scheme which is secure only when some of the players are assumed to be

honest and discusses its security requirements. Section 4.5 presents a method to transform the scheme

proposed in Section 4.4 into a full scheme which is secure even if all players are malicious. Section 4.6

estimates the efficiency of our scheme and compares it with prior works.

4.2 Aggregate Shuffle Argument Schemes

4.2.1 ElGamal Shuffling

We introduce here shufflings of ElGamal encryptions, on which our aggregate shuffle argument scheme is

based. Let E be an additive/multiplicative cyclic group of prime order q in which the discrete logarithm

problem is difficult to solve, G be a generator of E, and {(G(1)
i , M

(1)
i ) ∈ E2}i=1,...,k be k ElGamal

ciphertexts to be shuffled by using the public-key M ∈ E. Let O denote the zero of E. Let [x]G denote

multiplication/modular-exponentiation of G ∈ E by x ∈ Z/qZ.

ElGamal shuffling is a procedure that, given G,M and k ElGamal ciphertexts {(Gi, Mi) ∈ E2}i=1,...,k,

uniformly and randomly choose permutation of indices φ : {1, . . . , k} → {i = 1, . . . , k}, randomly choose

random numbers {ϕi ∈R Z/qZ}i=1,···,k for reencryptions, and then outputs ElGamal ciphertexts

{(G′
i,M

′
i)}i=1,...,k = {([ϕi]G + Gφ(i), [ϕi]M + Mφ(i))}i=1,...,k.

Shuffling of ElGamal ciphertexts results in the following two important properties (as a shuffling):

1. There exists a permutation φ such that equation Dx((G′
i,M

′
i)) = Dx((Gφ(i),Mφ(i))) holds for all

i. Here, Dx(·) is a decryption algorithm that uses the private key x that corresponds to M .
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2. As long as the decision Diffie-Hellman problem is difficult to solve, no polynomially bounded

algorithm, given only q,G,M, {(Gi,Mi)}i=1,···,k, {(G′
i, M

′
i)}i=1,···,k, has an advantage over the

random-guessing algorithm in guessing any part of permutation φ for uniformly and randomly

chosen G,M,ϕi, φ.

4.2.2 Model of Aggregate Shuffle Argument Schemes

Let y ← A(x) denote an algorithm A that outputs y when x is input. Let 〈y1, y2〉 ← IPA1,A2〈x1, x2〉

denote an interactive protocol IP between A1 and A2. Here, inputs to A1 and A2 are, respectively, x1

and x2, and outputs of A1 and A2 at the end of the protocol are, respectively, y1 and y2.

Let k be the number of ciphertexts input to the mix-net, and λ be the number of mixers. Players

in aggregate shuffle argument scheme are a set of λ mixers ({M(γ)}γ=1,...,λ), an aggregator A, and a

verifier V. Let pkey denote a public key for shufflings, wit(γ) denote the witness of M(γ) for its shuffling,

icset(γ) denote input ciphertexts of M(γ), and ocset(γ) denote output ciphertexts of M(γ). Each wit(γ)

consists of a permutation of k elements and k random number to be used for reencryptions. We assume

that output ciphertexts ocset(γ) of M(γ) are input ciphertexts icset(γ+1) of M(γ+1) for γ = 1, . . . , λ − 1

and that icset(1) are ciphertexts input to the mix-net and ocset(λ) are ciphertexts output by the mix-net.

We also let icset(λ+1) denote ocset(λ).

Definition 23 (Aggregate Shuffle Argument Scheme) An aggregate shuffle argument scheme consists of

two algorithms (Setup, Shuff) and two interactive protocols (Ind-Arg, Agg-Arg).

Setup: A probabilistic setup algorithm that, given a security parameter k, outputs pkey of size k.

pkey ← Setup(1k)

Shuff: A probabilistic shuffling algorithm for each M(γ) that, given pkey, wit(γ) and icset(γ), outputs

ocset(γ).

ocset(γ) ← Shuff(pkey, wit(γ), icset(γ))

Ind-Arg: An interactive protocol between each M(γ) and A in which M(γ) proves to A the validity of its

shuffle. During this protocol, A is allowed to interact with {M(ι)}ι=1,...,γ−1,γ+1,...,λ through other

instances of Ind-Arg protocols and with V through Agg-Arg. M(γ) is given pkey, wit(γ), icset(γ),

and ocset(γ). A is given pkey, and {icset(ζ)}ζ=1,...,λ+1. At the end of the protocol, A outputs acc
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or rej.

〈∅, acc/rej〉 ←

Ind-ArgM(γ),A〈(pkey, wit(γ), icset(γ), ocset(γ)), (pkey, {icset(ζ)}ζ=1,...,λ+1)〉

Agg-Arg: An interactive aggregation protocol between A and V in which A proves to V the validity of

the output of a mix-net. During this protocol, A is allowed to interact with {M(γ)}γ=1,...,λ through

Ind-Arg protocols. A is given pkey and {icset(ζ)}ζ=1,...,λ+1. V is given pkey, icset(1), and ocset(λ).

At the end of the protocol V outputs acc or rej.

〈∅, acc/rej〉 ← Agg-ArgA,V〈(pkey, {icset(ζ)}ζ=1,...,λ+1), (pkey, icset(1), ocset(λ))〉

4.2.3 Security Requirements of Aggregate Shuffle Argument Scheme

We say an aggregate shuffle argument scheme is secure and efficient if it has the following completeness,

soundness, zero-knowledge, and aggregation properties. Our goal is to propose a secure and efficient

aggregate shuffle argument scheme.

Completeness is defined in the ordinary way as:

Definition 24 (completeness) If all players are honest, ocset(γ) is the shuffling of icset(γ), A outputs

acc after the end of each Ind-Arg, and V outputs acc after the end of each Agg-Arg.

The soundness is defined as:

Definition 25 (Soundness) The scheme is sound if the following three statements hold.

1. Interactive protocol Agg-ArgA,V is an argument of shuffling from icset(1) to ocset(λ).

2. Each interactive protocol Ind-ArgM(γ),A is an argument of shuffling from icset(γ) to ocset(γ).

3. If A accepts all {M(γ)}γ=1,...,λ and A is honest, V accepts A.

Although, what the verifier wants to verify is only the correctness of total mix-met, it is often convenient

if the aggregator is able to detect which mixer has cheated. Hence, we included the second and the third

properties in the soundness as well as the first one.

A permutation that each mixer has chosen must not be leaked through Ind-ArgM(γ),A.

Definition 26 (Zero-knowledge) The scheme is zero-knowledge if each interactive protocol Ind-ArgM(γ),A

is zero-knowledge.
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All of the above properties can be achieved by simply using any zero-knowledge argument for shuffling

for multiple times. Hence, efficiency is the one of the most important factors for defining aggregate shuffle

argument schemes.

Definition 27 (Aggregation) We say an aggregate shuffle argument schemes for a mix-net has aggrega-

tion property if the computational and communication cost for its verifier does not depend on the number

of mixers that compose the mix-net.

4.3 Basic Idea

Let q, E, and O be as defined in the previous section. In this section, we consider an example of an

aggregate argument scheme for simple permutation of {Gj ∈ E}j=1,...,k. Note that unlike shufflings, this

protocol does not hide its permutation. Hence, the example scheme is not secure. Aggregate permutation

argument schemes are an analogy of aggregate shuffle argument schemes in which the shuffle protocol

Shuff is replaced by the simple permutation protocol Perm. This example scheme is simple but is rich

enough to illustrates the essence of our aggregate shuffle argument scheme.

In the next section, we propose a basic aggregate shuffle argument scheme which is secure if players

are forced to be honest in a particular circumstance. The difference between simple permutation and

ElGamal shuffling is existence of masks in the latter scheme. These masks are transformed as shufflings

are applied to ciphertexts. This basic scheme is constructed so that provers can collaborately cancel

these transformation of additional masks. With this cancellation, the provers are able to exploit the

simple property that the aggregate permutation scheme has. The data for cancellation required for γ-th

mixer, are collaborately generated by all other mixers and the aggregator. This basic scheme guarantees

zero-knowledge property of Ind-ArgM(γ),A only when these collaboration is done honestly.

Finally, the restriction in the basic scheme can be eliminated by requiring each mixer to verify other

mixers, which results in the full scheme.

4.3.1 Permutation Matrix

Let δij := 1 mod q if i = j and δij = 0 otherwise. Let δijg := δijδjg. We define permutation matrices

over Z/qZ as follows:

Definition 28 Let q be a prime and φ(·) be any permutation function φ : {1, . . . , k} → {1, . . . , k}.

A matrix (φij)i,j=1,···,k is a permutation matrix over Z/qZ if and only if it satisfies

φij =

 1 mod q if φ(i) = j

0 mod q otherwise
.
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The following Theorem 1 and Theorem 2 hold with respect to permutation matrices. Proofs for them

are found in [70] and [65].

Theorem 16 ( Theorem 1 in [70]) Let q be a prime. A matrix (φij)i,j=1,...,k is a permutation matrix

over Z/qZ if and only if both the equations
∑k

h=1 φhiφhjφhg = δijg mod q and
∑k

h=1 φhiφhj = δij mod q

hold for all i, j, and g.

Theorem 17 ( Theorem 2 in [65]) For prime q mod 3 = 2, a matrix (φij)i,j=1,...,n is a permutation

matrix over Z/qZ if and only if the equation
∑k

h=1 φhiφhjφhg = δijg mod q holds for all i, j, and g.

4.3.2 Aggregate Permutation Argument Scheme

The following example scheme is an aggregate permutation argument scheme.

Setup: pkey is G and q such that q mod 3 = 2.

Perm: pkey and icset(γ) = {G(γ)
i ∈ E}i=1,...,k, wit(γ) = {(φ(γ)

ij )i,j=1,...,k, ∅} is given to M(γ). We assume

that each element of icset(γ) is randomly generated so that it is difficult for M(γ) to compute

{ai ∈ Z/qZ}i=1,...,k such that
∑k

i=1[ai]G
(γ)
i = 0. Then, M(γ) outputs

ocset(γ) = {G(γ+1)
i =

k∑
j=1

[φ(γ)
ij ]G(γ)

j }i=1,...,k.

Note that ocset(γ) is a simple permutation of icset(γ).

Ind-Arg: A sends {c(γ+1)
i ∈ Z/qZ}i=1,...,k to M(γ) and then M(γ) returns

{c(γ)
j }j=1,...,k = {

k∑
i=1

c
(γ+1)
i φ

(γ)
ij }j=1,...,k.

Here, A chooses {c(λ)
j ∈R Z/qZ}j=1,...,k as the one given by V through Agg-Arg. A accepts M(γ)

if the following equations hold:

k∑
j=1

[c(γ)
j ]G(γ)

j =
k∑

i=1

[c(γ+1)
i ]G(γ+1)

i ,

k∑
j=1

(c(γ)
j )3 =

k∑
i=1

(c(γ+1)
i )3

Agg-Arg: V sends randomly chosen {c(λ+1)
j ∈R Z/qZ}j=1,...,k to A. Then A sends {c(1)

j }j=1,...,k to V. V

accepts if the following equations hold:

k∑
j=1

[c(1)
j ]G(1)

j =
k∑

i=1

[c(λ+1)
i ]G(λ+1)

i ,
k∑

j=1

(c(1)
j )3 =

k∑
i=1

(c(λ+1)
i )3
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As is in the case of the example scheme that appears in the very beginning of Section 4.1 in [70],

Ind-Arg is also an argument of permutation: {G(γ)
j }j=1,...,k 7→ {G(γ+1)

i }i=1,...,k.

From the fact that equations

k∑
j=1

[c(1)
j ]G(1)

j =
k∑

i=1

[c(2)
i ]G(2)

i = · · · =
k∑

i=1

[c(λ+1)
i ]G(λ+1)

i (4.1)

k∑
j=1

(c(1)
j )3 =

k∑
i=1

(c(2)
i )3 = · · · =

k∑
i=1

(c(λ+1)
i )3 (4.2)

hold, Agg-Arg is also an argument of permutation. Computational cost for V is equal to that for

verification of a single permutation.

Note that even from {c(γ+1)
j ∈R Z/qZ}j=1,...,k and {c(γ)

j ∈R Z/qZ}j=1,...,k which is an output of

Ind-Arg protocol, permutation φ(γ) is extractable.

4.4 Basic Aggregate Shuffle Argument Scheme

In this section, we propose a basic aggregate shuffle argument scheme that partially satisfies the proposed

security requirements. That is, Ind-Arg protocol between M(γ) and A is a zero-knowledge argument only

if {M(τ)}τ=1,...,γ−1,γ+1,...,λ and A are honest.

4.4.1 Overview of the Strategy for the basic scheme

There are mainly three steps in our strategy for converting the example scheme to the basic aggregate

shuffle argument scheme. They are (1) replacing each of its arguments of permutation with one of

shuffling, (2) modifying each of its arguments to a zero-knowledge protocol, and (3) modifying each of

its arguments so that its input for shufflings no longer needs to be randomly chosen.

The schemes in [70, 66] are constructed by adopting a similar strategy and we follow this strategy

for construction of the basic scheme. Once we replace permutation by shuffling, we can have no simple

relations between values {c(γ)
i }i=1,...,k, {c(γ+1)

i }i=1,...,k, {G(γ)
i }i=1,...,k, and {G(γ+1)

i }i=1,...,k unlike those

in the example scheme. This is because of the masking values in shuffling are transformed by the shuffling

and hide the simple relations.

Therefore, the main problem that we must solve in constructing an aggregate shuffle argument scheme

from the schemes in [70, 66] is how to compensate for the difference between the values in the example

scheme and those in the full scheme so that we can still exploit the simple relations, i.e., Equations (4.1)

and (4.2). This compensation is done by the value H that appears in our proposed scheme. Although

such a compensation is provided for only single shuffling in [66, 70], in our scheme, the compensation
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must be provided for all of the shufflings in a mix-net. Our scheme offers such a compensation by passing

the compensatory values from mixer to mixer and modifying them.

Finally, we eliminate the condition that the inputs are required to be chosen randomly. This can

be done by preparing randomly chosen elements independent to input ciphertext and simultaneously

executing the same shuffling to both of them.

The resulting zero-knowledge argument in which all the collaborated mixers play the role of single

prover is not exactly the same as the scheme proposed in [66] but its slightly modified version. This

argument is presented in Section 4.7. Hence, the security of our scheme can be reduced to that of this

protocol. It is easy to see, from the theorems in [66], that this protocol is a zero-knowledge argument,

as is that proposed in [66].

In our scheme, mixers and an aggregator exchange ElGamal ciphertexts many times (From Step 2

to Step 8), which makes it appear to be a very complicated scheme. However, this is only a multi-party

computation of an encryption of the value H, which is an element of the commitment in a zero-knowledge

argument for shuffling. Except for this multi-party computation, it is easy to see that each Ind-Arg and

Agg-Arg are essentially equivalent to the simple zero-knowledge argument for shuffling given in Section

4.7.

A shuffling can be represented by a combination of multiplication by a matrix and addition of a

vector to input ciphertexts. Hence, for compensation of masks transfered by these operation, we are

required to transform these masks in opposite way. Hence, the most of complicated computations are

composed of multiplication by a matrices and addition of vectors.

The full scheme in which mixers and aggregator may be malicious will be proposed in the next

section.

4.4.2 Notation

Let q, E,O, G,M, λ, {M(γ)}γ=1,...,λ be as defined before. Suppose that λ mixers {M(γ)}γ=1,...,λ collab-

orately mix k ElGamal ciphertexts icset(1) = {(G(1)
i ,M

(1)
i ) ∈ E2}i=1,...,k by the public-key M . Here,

each γ-th mixer M(γ) shuffles ElGamal ciphertexts {(G(γ)
i ,M

(γ)
i ) ∈ E2}i=1,...,k to {(G(γ+1)

i ,M
(γ+1)
i ) ∈

E2}i=1,...,k using the public-key M . The resulting ciphertexts are {(G(λ+1)
i ,M

(λ+1)
i ) ∈ E2}i=1,...,k. The

public key is a set, {q, E,G,M}.

We generalize matrix operations as in the following:

1. Let Mk,m(X) denote a set of all k times m matrices whose components are in X, where we consider

the case X = Z/qZ, X = E, and X is ciphertext space of ElGamal ciphertexts EC.

2. Suppose that A ∈ Mk,m(X), then we let Aij denote (i, j) component of A.

95



3. Suppose that A ∈ Mk,m(X) and B ∈ Mm,n(Y ), then we let AB denote a matrix in Mk,n(Z) such

that its (i, j) component is
∑m

g=1 Aig ·Bgj . If X = Y = Z = Z/qZ, “·” is multiplication in Z/qZ. If

X = Z/qZ, Y = Z = E, “·” is multiplication/modular-exponentiation, and is denoted by [Aig]Bgj

instead. If Y = Z/qZ, X = Z = E, “·” is multiplication/modular-exponentiation, and is denoted

by Bgj [Aig] instead.

4. Suppose C ∈ Mk,m(EC) and Y is the public key of an ElGamal encryption scheme, then we let

Y ∗ C ∈ Mk,m(EC) be such that (Y ∗ C)ij is reencryption of Cij by Y .

Suppose that ϕ ∈ Mk,m(Z/qZ), then Y ∗ϕ ∈ Mk,m(EC) such that (Y ∗ϕ)ij is encryption of [ϕij ]G

by Y .

5. Suppose that {φ(γ)}γ=1,...,λ is a set of matrices. Then a product
∏λ

γ=1 φ(γ) denotes φ(λ)φ(λ−1) · · ·φ(1).

Note the order of matrices in the product.

6. Suppose that A ∈ Mk,m(X) and B ∈ Mk,m(Y ), then A ◦ B ∈ Mk,m(Z) is such that (A ◦ B)ij =

Aij · Bij where · is a product of elements between X and Y which results in Z.

7. [0] and [1] are the element of M1,k(Z/qZ) whose components are all, respectively, 0 ∈ Z/qZ and

1 ∈ Z/qZ.

4.4.3 The Proposed Scheme with Honest Players

Setup:

Given a security parameter, Setup outputs pkey = q, E,G,M where q mod 3 = 2 and the size of q is

the given security parameter.

Shuff:

Let icset(γ) = {(G(γ)
i ,M

(γ)
i ) ∈ E2 = EC}i=1,...,k be such that (G(γ),M (γ)) ∈ Mk,1(E)2.

1. M(γ) randomly chooses a permutation matrix φ(γ) ∈ Mk,k(Z/qZ) and ϕ(γ) ∈ k, 1(Z/qZ).

2. M(γ) generates

(G(γ+1),M (γ+1)) = ([φ(γ)]G(γ) + [ϕ(γ)]G, [φ(γ)]M (γ) + [ϕ(γ)]M).

3. ocset(γ) is {(G(γ+1)
i ,M

(γ+1)
i )}i=1,...,k.

Ind-Arg and Agg-Arg:
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Since Ind-Arg and Agg-Arg are executed in an interleaving way, we will describe both of them together.

In the following procedures, interactions between M(γ) and A belong to Ind-Arg and interactions between

A and V belong to Agg-Arg.

Suppose that F (1) ∈ Mk,1(E) and F ∈ E are generated from a common reference string or an output

of a random oracle so that no one is able to generate non trivial a ∈ M1,k(Z/qZ) and b, c ∈ Z/qZ such

that [a]F (1) + [b]F + [c]G = O. We assume F̄ (1) = Ḡ(1) = M̄ (1) = O.

1. From γ = 1 to γ = λ, the following steps are executed:

(i) M(γ) is given F (γ), F̄ (γ), Ḡ(γ), and M̄ (γ).

(ii) M(γ) randomly chooses ψ(γ) ∈ M1,k(Z/qZ) and ρ(γ) ∈R Z/qZ.

(iii) M(γ) generates

F (γ+1) = [φ(γ)]F (γ) + [ϕ(γ)]F

F̄ (γ+1) = [ψ(γ)]F (γ) + [ρ(γ)]F + F̄ (γ)

Ḡ(γ+1) = [ψ(γ)]G(γ) + [ρ(γ)]G + Ḡ(γ)

M̄ (γ+1) = [ψ(γ)]M (γ) + [ρ(γ)]M + M̄ (γ)

(iv) M(γ) sends F (γ+1), F̄ (γ+1), Ḡ(γ+1), and M̄ (γ+1) to A, which forwards them to M(γ+1). In

the case γ = λ, A forwards them to V.

2. Each of {M(γ)}γ=1,...,λ generates a secret key/public key pair

(y(γ) ∈ Z/qZ, Y (γ) = [y(γ)]G)

of ElGamal encryption and prove the knowledge of y(γ) to A. Let Y be
∑λ

γ=1 Y (γ). All Y (γ) are

sent to A.

3. Let C
(1)
1 be Y ∗ [0].

From γ = 1 to γ = λ, the following steps are executed:

(i) M(γ) is given C
(γ)
1 .

(ii) M(γ) generates

C
(γ+1)
1 = (ψ(γ)φ(γ)∗) ∗ Y + (C(γ)

1 [φ(γ)∗]) ∗ Y

where φ(γ)∗ is the inverse matrix of φ(γ).
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(iii) M(γ) sends C
(γ+1)
1 to A, which forwards it to M(γ+1). In the case γ = λ, A forwards it to V

4. Let C
(λ+1)
2 = C

(λ+1)
1 From γ = λ to γ = 1, the following steps are executed:

(i) M(γ) is given C
(γ+1)
2 .

(ii) M(γ) generates

C
(γ)
2 = (C(γ+1)

2 [φ(γ)]) ∗ Y

(iii) M(γ) sends C
(γ)
2 to A, which forwards it to M(γ−1). In the case γ = 1, A forwards it to no

one.

Each M(γ) obtains

C
(γ)
2 =

 1∑
γ′=λ

ψ(γ′)

γ′∏
ζ′=λ

φ(ζ′)∗

 λ∏
ζ=γ

φ(ζ)

 ∗ Y

5. Let C
(1)
3 = C

(1)
2 From γ = 1 to γ = λ, the following steps are executed:

(i) M(γ) is given C
(γ)
3 .

(ii) M(γ) generates

C
(γ+1)
3 = (C(γ)

2 ◦ [ψ(γ)]) ∗ Y + (C(γ)
3 [φ(γ)]) ∗ Y.

(iii) M(γ) sends C
(γ+1)
3 to A, which forwards it to M(γ+1). In the case γ = λ, A forwards it to V

6. Let C
(λ+1)
4 = C

(λ+1)
3 From γ = λ to γ = 1, the following steps are executed:

(i) M(γ) is given C
(γ+1)
4 .

(ii) M(γ) generates

C
(γ)
4 = (C(γ+1)

4 [φ(γ)]) ∗ Y

(iii) M(γ) sends C
(γ)
4 to A, which forwards it to M(γ−1). In the case γ = 1, A forwards it to no

one.

Each M(γ) obtains

C
(γ)
4 =


(

1∑
γ=λ

ψ(γ)

γ∏
ζ=λ

φ(ζ)∗) ◦ (
1∑

γ′=λ

ψ(γ′)

γ′∏
ζ′=λ

φ(ζ′)∗)

 λ∏
ζ=γ

φ(ζ)

 ∗ Y
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7. Let C
(1)
5 = C

(1)
4 From γ = 1 to γ = λ, the following steps are executed:

(i) M(γ) is given C
(γ)
5 .

(ii) M(γ) generates

C
(γ+1)
5 = (C(γ)

4 ◦ [ψ(γ)]) ∗ Y + (C(γ)
5 [φ(γ)]) ∗ Y.

(iii) M(γ) sends C
(γ+1)
5 to A, which forwards it to M(γ+1). In the case γ = λ, A forwards it to V.

8. Each of {M(γ)}i=1,...,λ sends to A the following ElGamal encryptions:

C
(γ)
7 = ([[1](ψ(γ) ◦ ψ(γ) ◦ ψ(γ))]G + [θ(γ)]Y, [θ(γ)]G)

C
(γ)
8 = ([3(ψ(γ) ◦ ψ(γ))φ(γ)]G + [t(γ)]Y, [t(γ)]G)

C
(γ)
9 = ([3ψ(γ)φ(γ)]G + [s(γ)]Y, [s(γ)]G)

9. V randomly chooses c(λ+1) ∈R M1,k(Z/qZ) and sends it to A, which forwards it to M(λ) (Agg-Arg).

10. Let r(λ+1) = c(λ+1) and r̄(λ+1) = 0 ∈ Z/qZ.

From γ = λ to γ = 1, the following steps are executed:

(i) M(γ) is given r(γ+1) and r̄(γ+1).

(ii) M(γ) generates

r(γ) = r(γ+1)φ(γ) + ψ(γ)

r̄(γ) = r(γ+1)ϕ(γ) + ρ(γ) + r̄(γ+1)

(iii) M(γ) sends r(γ) and r̄(γ) to A, which forwards it to M(γ−1). In the case γ = 1, A forwards

it to V.

11. A computes

C6 = [c(λ+1)]C(λ+1)
1 + [c(λ+1) ◦ c(λ+1)]C(λ+1)

3 + [1]C(λ+1)
5

and sends it to all {M(γ)}γ=1,...,λ.

12. A and each M(γ) compute a ciphertext:

C
(γ)
10 = [c(γ+1)]C(γ)

7 + [c(γ+1) ◦ c(γ+1)]C(γ)
8 + [1]C(γ)

9 .
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Then each M(γ) sends A the decryption H(γ) of C
(γ)
10 and proves the validity of its decryption.

A accepts M(γ) if the following equations hold:

[r̄(γ) − r̄(γ+1)]F + [r(γ)]F (γ) = F̄ (γ+1) − F̄ (γ) + [r(γ+1)]F (γ+1) (4.3)

[r̄(γ) − r̄(γ+1)]G + [r(γ)]G(γ) = Ḡ(γ+1) − Ḡ(γ) + [r(γ+1)]G(γ+1) (4.4)

[r̄(γ) − r̄(γ+1)]M + [r(γ)]M (γ) = M̄ (γ+1) − M̄ (γ) + [r(γ+1)]M (γ+1) (4.5)

[
k∑

j=1

((r(γ)
j )3 − (r(γ+1)

j )3)]G = H(γ). (4.6)

13. Each {M(γ)}γ=1,...,λ sends A a partial decryption of C6 with respect to their {y(γ)}. Then, A

generates H which is the decryption of C6 and sends it to V.

14. {M(γ)}γ=1,...,λ jointly prove the validity of C6 to V through A. The detail is omitted but is basic.

15. V accepts the shuffle if the following equations hold:

[r̄(1)]F + [r(1)]F (1) = F̄ (λ+1) + [c(λ+1)]F (λ+1)

[r̄(1)]G + [r(1)]G(1) = Ḡ(λ+1) + [c(λ+1)]G(λ+1)

[r̄(1)]M + [r(1)]M (1) = M̄ (λ+1) + [c(λ+1)]M (λ+1)

[
k∑

j=1

((r(1)
j )3 − (c(λ+1)

j )3)]G = H.

4.4.4 Security of the Proposed Scheme

Lemma 33 The proposed scheme is complete.

Proof. The completeness follows from trivial but patient computations. ¤

Lemma 34 Each Ind-Arg protocol between M(γ) and A is a computational zero-knowledge argument for

shuffling if {M(τ)}τ=1,...,γ−1,γ+1,...,λ and A are honest.

Proof. Suppose that F (γ), F̄ (γ), r(γ+1), and r̄(γ+1) are randomly generated so that no one is able to

generate a ∈ M1,k(Z/qZ), b, c ∈ Z/qZ, such that [a]F (γ) + [b]F + [c]G = O. But these are cases when

{M(τ)}τ=1,...,γ−1,γ+1,...,λ and A are honest. Then, it is easy to see that each protocol is essentially the

same as the zero-knowledge argument presented in Section 4.7.2. ¤

Lemma 35 Agg-Arg protocol between A and V is a computational zero-knowledge argument for shuffling

if V is honest.
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V M(γ) A
# of multiplications/exponentiations in E 10k 28k 13kλ

communication bits 1, 500k 5, 500k 5, 500kλ

Table 4.1: Complexity of our scheme

Proof. It is easy to see that the protocol is essentially the same as the zero-knowledge argument presented

in Section 4.7.2. ¤

4.5 Full Scheme

In the scheme proposed in the previous section, each Ind-Arg between M(γ) and A is a zero-knowledge

argument only if {M(τ)}τ=1,...,γ−1,γ+1,...,λ and A are honest. This honesty can be guaranteed if the

scheme additionally includes the following procedures:

1. Each of M(γ) proves to {M(ζ)}ζ=1,...,γ−1,γ+1,...,λ in zero-knowledge that it correctly generated

F (γ+1) from F (γ). This can be done by using the scheme proposed in [66], [70], or the scheme

proposed in Section 4.7.2.

2. Each of M(γ) verifies that Equations (4.3)-(4.6) hold for all γ = 1, . . . , λ.

This completes the description of the full scheme. Note that the above additional procedures are executed

by only {M(γ)}γ=1,...,λ and A. Hence, the cost of V does not increase.

In the former procedure, each M(γ) is able to verify that F (γ) and F̄ (γ) are generated correctly

by {M(ζ)}ζ=1,...,γ−1. Each M(γ) is able to verify that {F (ζ)}ζ=γ+1,...,λ {F̄ (ζ)}ζ=γ+1,...,λ is generated

correctly by {M(ζ)}ζ=1,...,λ from the former procedure. Hence, if M(ζ) verifies that if Equations (4.3)-

(4.6) hold for all γ = ζ + 1, . . . , λ in the latter procedure, M(ζ) is able to confirm that c(ζ+1) and c̄(ζ+1)

are generated correctly by {M(γ)}γ=ζ+1,...,λ. This can be easily understood from Lemma 3 in [66].

Therefore, the condition for Lemmas 34 and 35 are guaranteed to be satisfied in the case when all the

players cannot be trusted in the full scheme.

Moreover, since all the {M(γ)}γ=1,...,λ are required to be honest for A to accept all Ind-Arg, the

following Lemma clearly holds.

Lemma 36 If A accepts all Ind-Arg, V accepts Agg-Arg. ¤

Therefore, the following theorem holds.

Theorem 18 The full scheme satisfies completeness, soundness, and zero-knowledge properties. ¤
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V M(γ) A
# of multiplications/exponentiations in E 640k 320k 640kλ

communication bits 750, 000k 1, 500, 000k 1, 500, 000kλ

Table 4.2: Complexity of the scheme in [1]

V M(γ) A
# of multiplications/exponentiations in E 10kλ 6k 10kλ

communication bits 1, 500kλ 1, 500k 1, 500kλ

Table 4.3: Complexity of a scheme that uses [66]

4.6 Efficiency

In this section, we estimate the computational cost for each player in our proposed scheme and show

that the scheme has an aggregation property. Then we compare the efficiency of our scheme with that

of previous schemes.

The most costly computation in our scheme is multiplications/modular-exponentiations in E. In

comparison, the cost of other computations is negligibly small. Therefore, we estimate the computational

cost according to the number of multiplications/modular-exponentiations required in our scheme. We

also estimate the amount of data that each player needs to communicate.

We first consider the case when A can be trusted but {M(γ)}γ=1,...,λ may be malicious. In this case,

{M(γ)}γ=1,...,λ do not verify each other, but A verifies them. The results of estimation are given in

Table 4.1, where we assumed that |q| is 160 and elements of E can be represented by a 161-bit string.

For a comparison, an estimated computational and communication complexity of the aggregate shuffle

argument scheme of Abe [1] are given in Table 4.2, and those of a scheme in which the ordinary shuffle

argument proposed in [66] is repeatedly used multiple times are given in Table 4.3 (This scheme allows

the case when q mod 3 = 1).

In the general case when A cannot be trusted, every M(γ) is required to prove the correctness of F (γ)

to all {M(ζ)}ζ=1,...,γ−1,γ+1,...,λ. Here, to avoid the execution of these protocols independently to every

other mixer, we assume that all {M(ζ)}ζ=1,...,γ−1,γ+1,...,λ collaborately play the role of a single verifier to

M(γ). This is possible by using a multi-party coin-tossing protocol. Therefore, in the general case when

A cannot be trusted, the computational cost that each M(γ) additionally requires is that of A. The

operation of this scheme would be more practical if each mixer published Fiat-Shamir transformation of

their proofs instead of interactively proving their correctness to the single verifier that is formed by the

collaboration of all other mixers. This would enable all mixers to independently verify the correctness
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of the prover. Now we have proved the last theorem:

Theorem 19 The proposed scheme has an aggregation property. ¤

4.7 A New Computational Zero-knowledge Argument for Shuf-

fling

We introduce a computational zero-knowledge argument for shuffling, the security of which the security

of our scheme is reduced to.

4.7.1 Notation

Let q, E,G,M, k be as defined before. Let {(G(2)
i ,M

(2)
i )}i=1,...,k be a shuffled result of {(G(1)

i ,M
(1)
i )}i=1,...,k

by using the public-key M , such that (G(1),M (1)) ∈ Mk,1(E)2 and (G(2),M (2)) ∈ Mk,1(E)2. The

public key is a set, {q, E,G,M}. A permutation matrix φ(1) ∈ Mk,k(Z/qZ) and a column vector

ϕ(1) ∈ Mk,1(Z/qZ) is the witness of the above shuffle, i.e.,

(G(2),M (2)) = ([ϕ(1)]G + [φ(1)]G(1), [ϕ(1)]M + [φ(1)]M (1)) (4.7)

Therefore, Proving the correctness of the shuffle is equivalent to proving the existence of an ϕ(1) ∈

Mk,1(Z/qZ) and a permutation matrix φ(1) ∈ Mk,k(Z/qZ) which satisfies Eq. (4.7). P is a prover and

V is a verifier.

4.7.2 Zero-Knowledge Argument for Shuffling

Let us next introduce an argument for shuffling.

1. Both P and V are given q, E,G,M , (G(1),M (1)) and (G(2),M (2)). P is additionally given ϕ(1) and

φ(1).

2. P and V engage in a coin-tossing protocol to generate a random F ∈R E,F (1) ∈ Mk,1(E).

3. P uniformly and randomly chooses ψ ∈R Z/qZ, ψ(1) ∈R M1,k(Z/qZ), t ∈R Z/qZ, t(1) ∈R M1,k(Z/qZ),

s(1) ∈R M1,k(Z/qZ), and y ∈R Z/qZ, and then computes:

Y = [y]G

F (2) = [ϕ(1)]F + [φ(1)]F (1) (4.8)

F ′ = [ψ]F + [ψ(1)]F (1)

103



G′ = [ψ]G + [ψ(1)]G(1)

M ′ = [ψ]M + [ψ(1)]M (1)

(C,D) = ([[1](ψ(1) ◦ ψ(1) ◦ ψ(1))]G + [t]Y, [t]G)

(C ′, D′) = ([3(ψ(1) ◦ ψ(1))φ(1)]G + [t(1)]Y, [t(1)]G)

(C ′′, D′′) = ([3ψ(1)φ(1)]G + [s(1)]Y, [s(1)]G)

Then, P sends Y, F (2), F ′, G′,M ′, (C,D), (C ′, D′), (C ′′, D′′) to V as a commitment.

4. V randomly chooses c(1) ∈R M1,k(Z/qZ) and sends it to P .

5. P generates y′ ∈ Z/qZ and generates

r(1) = ψ(1) + c(1)φ(1)

r = ψ + c(1)ϕ(1)

H = (C + [c(1) ◦ c(1)]C ′ + [c(1)]C ′′) − [y](D + [c(1) ◦ c(1)]D′ + [c(1)]D′′)

H ′ = [y′](D + [c(1) ◦ c(1)]D′ + [c(1)]D′′).

Then P sends r, r(1), H, and H ′ to V.

6. V randomly chooses c′ ∈ Z/qZ and sends it to P.

7. P generates

r′ = c′y + y′

and sends it to V.

8. V accepts the shuffle if the following equations hold:

[r′](D + [c(1) ◦ c(1)]D′ + [c(1)]D′′) = [c′](C + [c(1) ◦ c(1)]C ′ +
k∑

i=1

[c(1)]C ′ − H) + H ′

[r]F + [r(1)]F (1) = F ′ + [c(1)]F (2) (4.9)

[r]G + [r(1)]G(1) = G′ + [c(1)]G(2) (4.10)

[r]M + [r(1)]M (1) = M ′ + [c(1)]M (2) (4.11)

[
k∑

j=1

(r(1)
j

3 − c
(1)
j

3)]G = H (4.12)

Otherwise, V rejects the shuffle.
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4.7.3 Properties of the Proposed Argument for Shuffling

Theorem 20 The protocol is complete, sound as long as the discrete logarithm problem is difficult to

solve, and honest-verifier computational zero-knowledge.

The theorem can be proven in the same way that Theorem 3, 4, and 5 in [66] are proven.

4.8 Completeness

The following relations aid in understanding the completeness of the protocol.

1. Since ocset(λ) is

(G(λ+1),M (λ+1))

= ([
λ∏

γ=1

φ(γ)]G(1) + [
λ∑

γ=1

(
λ∏

θ=γ+1

φ(θ))ϕ(γ)]G, [
λ∏

γ=1

φ(γ)]M (1) + [
λ∑

γ=1

(
λ∏

θ=γ+1

φ(θ))ϕ(γ)]M),

it is clearly a shuffle of icset(1).

2. The following relations hold with respect F (λ+1), F̄ (λ+1), Ḡ(λ+1), M̄ (λ+1):

F (λ+1) = [
λ∏

γ=1

φ(γ)]F (1) + [
λ∑

γ=1

(
λ∏

θ=γ+1

φ(θ))ϕ(γ)]F

F̄ (λ+1) =
λ∑

γ=1

[ψ(γ)]F (γ) +
λ∑

γ=1

[ρ(γ)]F

=
λ∑

γ=1

[ψ(γ)

γ−1∏
η=1

φ(η)]F (1) +

 λ∑
γ=1

ψ(γ)

γ−1∑
η=1

(
γ−1∏

θ=η+1

φ(θ))ϕ(η) +
λ∑

γ=1

ρ(γ)

 F

=
λ∑

γ=1

[ψ(γ)

γ−1∏
η=1

φ(η)]F (1)

+

 ∑
{γ,η|γ>η,(γ,η)∈(1,...,k)2}

ψ(γ) (
γ−1∏

θ=η+1

φ(θ))ϕ(η) +
λ∑

γ=1

ρ(γ)

F

Ḡ(λ+1) =
λ∑

γ=1

[ψ(γ)

γ−1∏
η=1

φ(η)]G(1)

+

 ∑
{γ,η|γ>η,(γ,η)∈(1,...,k)2}

ψ(γ) (
γ−1∏

θ=η+1

φ(θ))ϕ(η) +
λ∑

γ=1

ρ(γ)

G

M̄ (λ+1) =
λ∑

γ=1

[ψ(γ)

γ−1∏
η=1

φ(η)]M (1)
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+

 ∑
{γ,η|γ>η,(γ,η)∈(1,...,k)2}

ψ(γ) (
γ−1∏

θ=η+1

φ(θ))ϕ(η) +
λ∑

γ=1

ρ(γ)

M.

3. The following relation holds with respect to C
(λ+1)
1 :

C
(λ+1)
1 =

 1∑
γ=λ

ψ(γ)

γ∏
ζ=λ

φ(ζ)∗

 ∗ Y

4. The following relation holds with respect to C
(λ+1)
3 :

C
(λ+1)
3 =

 1∑
γ=λ

ψ(γ)

γ∏
ζ=λ

φ(ζ)∗

 ◦

 1∑
γ′=λ

ψ(γ′)

γ′∏
ζ′=λ

φ(ζ′)∗

 ∗ Y.

5. The following relation holds with respect to C
(λ+1)
5 :

C
(λ+1)
5

=


 1∑

γ=λ

ψ(γ)

γ∏
ζ=λ

φ(ζ)∗

 ◦

 1∑
γ′=λ

ψ(γ′)

γ′∏
ζ′=λ

φ(ζ′)∗

 ◦

 1∑
γ′=λ

ψ(γ′)

γ′∏
ζ′=λ

φ(ζ′)∗

 ∗ Y.

6. The following relation holds with respect to r(1), r̄(1):

r(1) = c(λ+1)

(
λ∏

γ=1

φ(γ)]

)
+

λ∑
γ=1

ψ(γ)

γ−1∏
η=1

φ(η)

r̄(1) =
λ∑

γ=1

(r(γ+1)ϕ(γ) + ρ(γ))

=
λ∑

γ=1

((
c(λ+1)

(
λ∏

τ=γ+1

φ(τ)]

)
+

λ∑
τ=γ+1

ψ(τ)
τ−1∏

η=γ+1

φ(η)

)
ϕ(γ) + ρ(γ)

)

= c(λ+1)
λ∑

γ=1

(
λ∏

τ=γ+1

φ(τ)]

)
ϕ(γ)

+
∑

{τ,γ|τ>γ,(τ,γ)∈(1,...,k)2}

ψ(τ)(
τ−1∏

η=γ+1

φ(η))ϕ(γ) +
λ∑

γ=1

ρ(γ).

4.9 Conclusion

We proposed a new aggregate shuffle argument scheme which is much more efficient that that proposed

by Abe in [1]. The computational cost required for the verifier in our scheme is less than 1/60 of that
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in Abe’s scheme. This is mainly because our scheme is based on the scheme in [66] while Abe’s scheme

is based on the scheme in [137]. Our scheme is particularly effective for large-scale voting such as in a

national election.
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Chapter 5

Compiler from Σ-Protocol to

Deniable Zero-Knowledge

5.1 Introduction

Zero-knowledge interactive proof systems, first proposed by Goldwasser, Micali and Rackoff [82], have

the significant property that they leak no knowledge other than the validity of the proven assertion. It

has been shown in [79] that every NP-statement can be proved in zero-knowledge if one-way functions

exist. Because of these properties, these proof systems have been found to be very important tools in

many cryptographic applications.

The original definition of zero-knowledge considered the setting in which a single prover and a verifier

execute only one instance of a protocol. However, in more realistic settings, where many computers are

connected through the Internet and protocols may be concurrently executed, many verifiers may interact

with the same (or many) prover(s) simultaneously. Proof systems that are zero-knowledge even in such

a setting are called concurrent zero-knowledge (cZK).

The term “concurrent zero-knowledge” was coined by Dwork, Naor, and Sahai in [54], and they

observed that the zero-knowledge property does not necessarily carry over to the concurrent setting. In-

deed, Goldreich and Krawczyk showed in [78] the existence of protocols that are ordinary zero-knowledge

and yet fail dramatically to be zero-knowledge in the concurrent scenario. Moreover, Kilian, Petrank,

and Rackoff showed a negative result in [97] such that any language that has a 4-move black-box cZK

proof argument is in BPP. Canetti, Kilian, Petrank, and Rosen proved in [39] that black-box cZK proof

systems for any non-trivial language require a non-constant number (Ω̃(log k)) of rounds.

Despite these negative results, many protocols that achieve round efficiency and adequate security in
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concurrent settings have been presented under some additional assumptions. These include cZK under

the timing assumption [54], resettable zero-knowledges (rZK) in the public-key model [37] and the weak

public-key model [108], cZK in the auxiliary string model [50], universally composable zero-knowledge

in the common reference string (CRS) model [36], etc.

Now even though the notions of cZK in the CRS model and the auxiliary string model achieve a

kind of zero-knowledgeness, they lose some of the spirit of the original definition. In particular, as is

mentioned in [54], these models are not sufficient to yield the property of deniability. An interactive

protocol is called deniable zero-knowledge if the transcript of its interaction does not leak any evidence

of interaction. For example the simulators in the CRS model and the auxiliary string model are powerful

enough to control their strings, while the verifiers in these models are never able to control them. As a

result, a verifier interacting with a prover in these models are able to output a transcript that cannot

be generated by the verifier alone. Hence, the verifier’s possession of such a transcript is an evidence of

its interaction with the prover.

The question of whether or not there exists a constant-round deniable cZK argument under additional

assumptions was studied by Pass [129]. He showed that no black-box constant-round deniable cZK

argument for non-trivial language exists in the CRS model. It is also shown there that a 2-move

constant-round straight-line witness extractable deniable cZK argument exists for any NP-language

in the random oracle (RO) model. However, this argument system is inefficient since it relies on the

cut and choose technique. Fischlin also proposed in [62] a communication efficient straight-line witness

extractable zero-knowledge proof that can be applied to deniable cZK argument. However, this argument

still requires rather large computational complexity.

Besides proving the existence of a certain kind of zero-knowledge protocol for every language in

NP, it is also important for practical applications to construct a compiler which transforms Σ-protocols

to certain kind of zero-knowledge proof systems or arguments. Σ-protocols are 3-move special honest

verifier zero-knowledge protocols with special soundness property. We call such a compiler, a Σ-compiler.

Σ-compilers are useful in practical point of view since many efficient Σ-protocols for many relations are

proposed until now. Σ-compilers for cZK argument and that for rZK and concurrently sound protocol

with small overhead are proposed by [50] and [153], respectively. The results of Pass [129] and Fischlin

[62] mentioned above are indeed proposal of Σ-compiler for 2-move straight-line witness extractable

deniable zero-knowledge argument in the random oracle model. However, their Σ-compiler have large

overheads.

Our Contribution:

In this chapter, we propose a more efficient Σ-compiler for deniable zero-knowledge argument with

very small overhead in the random oracle model. We also proved that our Σ-compiler simultaneously
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provides the following properties:

• The resulting protocol is deniable resettable zero-knowledge (rZK).

• The resulting protocol is 2-move (constant-round).

• The computational and communication overhead of compilation is very small.

• The resulting protocol is resettably-sound argument of knowledge (RSAK).

We note that the result of Pass also provides resettable soundness and can, with slight modification,

provide rZK property. (These facts have not been shown before.) In this sense, the essential improvement

in our scheme is with respect to efficiency.

The overhead of our compiler is computation, verification, and transmission of Fiat-Shamir transfor-

mations of any Σ-protocol, i.e., NIZK-argument. This Σ-protocol is chosen independently to the proven

statement and we choose the most efficient one within an allowed assumptions. On the other hand, the

compiler in [129] requires the verifier to generate the corresponding NIZK argument by Cut & Choose

method instead of Fiat-Shamir transformation. Thus, its overhead will be larger than that of ours in

the proportion of the security parameter to one. Fischlin [62] improved efficiency of communication

complexity but its computational overhead is till large.

Although our protocol itself is efficient, it does not provide a straight-line simulator. It only provides

a rather complicated but still polynomially bounded simulator. This can be compared to cZK protocols

under the timing assumption [54] and rZK protocols in the public-key models [37, 108]. All types of

protocols achieve deniability with efficient non straight-line simulator in different models. Our protocol

is the first that provides efficient non straight-line simulator in the random oracle model.

Here, rZK and RSAK [11] are, respectively, stronger notions of cZK and argument of knowledge. The

requirement for rZK is more restricting than that of cZK in the sense that proof systems or arguments

must be cZK even if verifiers in these protocols are able to reset provers. Meanwhile, protocols which

are still argument of knowledge against provers who can reset verifiers are called RSAK.

The notion of RSAK was proposed by Barak et al. in [11]. As is pointed out in [37], rZK arguments

of knowledge are impossible to achieve for non-trivial languages as long as the ability of knowledge

extractor is limited to black-box oracle access to the prover. By exchanging the roles of provers and

verifiers, and those of simulators and knowledge extractors, this impossibility holds for zero-knowledge

RSAK. However, the negative result are only with respect to the standard definition and may not

hold in the random oracle model where simulators and knowledge extractors are more powerful than,

respectively, the provers and verifiers in the sense that they are able to control random oracles.

Applications:
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The security of Chaum’s undeniable signature scheme was recently formally proved in the random

oracle model [124], where the confirmation protocol and the disavowal protocol are both 4-move. Now

by applying our Σ-compiler, we can obtain a very efficient 2-move undeniable signature scheme.

Further, our protocols are concurrent zero-knowledge and resettably-sound argument of knowledge

while Chaum’s protocols are not. Hence, our protocols remain secure in a setting where parties in pro-

tocols are implemented by devices, which cannot reliably keep state (e.g., smart card), being maliciously

reset to prior state. And, the resulting protocols are available in the setting when it is impossible or too

costly to generate fresh randomness on the fly.

Another application is deniable identification. In Schnorr’s identification scheme, a cheating verifier

(Bob) will compute his challenge as a hashed value of the first message of the prover (Alice). Then the

transcript of the protocol is an evidence of the fact that Alice executed the protocol with Bob. So the

privacy of Alice is not protected. In this sense, Schnorr’s identification scheme is not deniable. Now by

applying our Σ-compiler, we can obtain a very efficient 2-move deniable identification scheme. These

applications are shown in Section 5.5.

Organization:

This chapter is organized as follows. Section 5.2 describes the basic concepts involved in constructing

the proposed compiler in the random oracle model. Section 5.3 proposes our Σ-compiler for 2-move deni-

able rZK and RSAK with no essential loss of efficiency in the random oracle model. Section 5.4 discusses

the efficiency of our compiler. Section 5.5 demonstrates the example of compilation and discusses its

advantage over the previous scheme.

5.2 Basic Concepts and Approach

5.2.1 Deniable ZK in the Random Oracle Model

We consider the random oracle model, where a prover P and a (malicious) verifier V ∗ have access to a

random oracle O. In the definition of zero-knowledge, however, a distinguisher D does not have access

to O. Hence S has only to generate a view of V ∗ by providing V ∗ with a fake random oracle O′ which

S can manipulate arbitrarily.

Therefore, V ∗ cannot necessarily generate his view by himself in the real world, where D has access

to O. This means that V ∗ can use the view as an evidence of the fact that P executed the protocol, and

P cannot deny it. Indeed, V ∗ can show the view as an evidence to the third party who has access to O.

On the other hand, in the definition of deniable zero-knowledge, D has access to the random oracle

O. So S must be able to generate a view of V ∗ which cannot be distinguished from the real one by D
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who has access to O. Therefore, in a deniable zero-knowledge protocol, there is no evidence of the fact

that P executed the protocol because V ∗ can generate his view. Hence P can deny that fact.

5.2.2 Our Approach

In the model of deniable zero-knowledge protocols, a prover P , a (malicious) verifier V ∗, and a distin-

guisher D have access to the same random oracle O as shown below.

(O ↔ P ) ↔ (V ∗ ↔ O) and D ↔ O. (5.1)

In this model, P cannot see the queries of V ∗ to O nor control the answers of O.

In the simulation of S, however, the simulator S can provide V ∗ with a fake random oracle O′ as

follows.

O ↔ S ↔ (V ∗ ↔ O′) and D ↔ O. (5.2)

In the simulated world, S can see the queries of V ∗ to O′ and control the answers of O′.

In the methods of Pass and Fischlin, S sees the queries of V ∗ to O′, but does not control the answers

of O′. On the other hand, we construct S which both sees the queries of V ∗ and controls the answers of

O′. This is a critical part of our approach. We use a similar technique for knowledge extractor as well.

5.2.3 Notation and Security Definitions

Definition 29 A function f(n) is negligible if ∀c > 0 ∃N ∀n > N, f(n) < 1
nc

Definition 30 Let R ⊂ {0, 1}∗ × {0, 1}∗ be a relation. We say that (x,w) satisfies R if (x,w) ∈ R,

where x is called an common input and w is called a witness. Define LR = {x| ∃w s.t., (x,w) ∈ R}.

Also let Rn = R ∩ ({0, 1}n × {0, 1}n).

Definition 31 A deterministic Turing machine GR is called a generator for relation R if there exists a

polynomial Q(·) such that on input of a random tape rG ∈ {0, 1}Q(n), it produces (x,w) ∈ Rn.

We say a generator GR is an invulnerable generator for relation R if for any polynomial time nonuni-

form algorithm A, Pr[(x,A(x)) ∈ R] is negligible in n. Here, (x,w) ← GR and the probability is taken

over the distribution of random tapes of GR and C.

The following generator GR is an example of invulnerable generator when the discrete logarithm

problem is difficult to solve: GR takes a random tape in {0, 1}n as an input, chooses a prime p of size n

and g ∈ (Z/pZ)∗ such that the order q of 〈g〉 is a prime and close to n, randomly choose α ∈ Z/qZ, and

outputs (x,w) = ((g, y = gα), α).
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Notation 1 Let RO denote a random oracle and RO(t) denote the output of the random oracle RO

when it is given t.

Canetti et al. defined the notion of rZK in [37]. Here, we introduce its deniable variant in the random

oracle model.

Convention 1 Without loss of generality, we assume that each message of the verifier contains the

entire communication history in the session that the message relates to. Furthermore, we assume that

the prover is memoryless: it responds to each message based solely on the received message and on its

input and random input.

Definition 32 An interactive protocol (P, V ) for a relation R is said to be (black-box) deniable rZK in

the random oracle model if, there exists a probabilistic polynomial time simulator S such that, for every

probabilistic polynomial time adversary V ∗, the following two distribution ensembles are computational

indistinguishable by every probabilistic polynomial time distinguisher who can access a random oracle

RO: Let each distribution be indexed by a sequence of common inputs x̄ = (xi)i=1,...,poly(n) and the

corresponding sequence of prover’s auxiliary-inputs w̄ = (wi)i=1,...,poly(n) such that (xi, wi) ∈ Rn for all

i.

Distribution 1: This is defined by the following random process which depends on P and V ∗.

1. Randomly select and fix RO and t = poly(n) random-tapes, {ri}i=1,...,t, for P , resulting

in deterministic strategies P (i,j) = Pxi,wi,rj defined by Pxi,wi,rj (α) = P (xi, wi, rj , α), for

i, j ∈ {1, . . . , t}. Each P (i,j) is called an incarnation of P . P is allowed to access the random

oracle RO.

2. Machine V ∗ is allowed to arbitrarily interact with all the incarnations of P (i.e., V ∗ sends

arbitrary messages to each of the P (i,j) and obtains the responses of P (i,j) to such messages)

and the random oracle RO. Once V ∗ decides it is done interacting with the P (i,j)’s, it (i.e.,

V ∗) produces an output based on its view of these interactions.

Distribution 2: The output of S(x̄). RO is randomly selected and fixed at first. S has black-box access

to the random oracle RO and V ∗∗ and is able to control a random oracle RO∗. V ∗∗ is the same

as V ∗ except that the random oracle that V ∗∗ accesses is RO∗ rather than RO.

It is important to notice that the simulator is able to control the random oracle, i.e., choose the

outputs of the random oracle, that the verifier accesses but is unable to control the one that the distin-

guisher accesses. The latter property is the key feature of deniability. The former property comes from

the fact that the simulator can black-box access the verifier and is not essential for deniability. Our
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simulator leverages this property for simulation while the simulator of Pass only uses the property that

it can catch random oracle queries of the verifier but does not fully leverage the former property. To

leverage this property, our simulator rewinds the verifier for polynomial times.

Barak et al. defined the notion of RSAK in [11]. Here , we introduce its random oracle variant in the

following.

Definition 33 A resetting attack of a cheating prover P ∗ on a resettable verifier V is defined by the

following two-step random process, indexed by a security parameter n.

1. Uniformly select and fix t = poly(n) random tapes, denoted {ri}i=1,...,t, for V , resulting in de-

terministic strategies V (j)(x) = Vx,rj defined by Vx,rj (α) = V (x, rj , α), where x ∈ {0, 1}n and

j ∈ {1, . . . , t}. Each V (j)(x) is called an incarnation of V .

2. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions with the V (j)(x)’s. The

activity of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}n and j ∈ {1, . . . , t}, thus

defining V (j)(x), and conducts a complex session with it.

Definition 34 We say that a protocol (P, V ) is a resettably-sound argument for a relation R if the

following two conditions hold:

Resettable-Completeness: Consider an arbitrary polynomial-size resetting attack, and suppose that

in some session, after selecting an incarnation V (j)(x), the attacker follows the strategy P . Then,

if x ∈ LR then V (j)(x) rejects with negligible probability.

Resettable-soundness: For every polynomial-size resetting attack, the probability that in some session

the corresponding V (j)(x) has accepted and x 6∈ LR is negligible.

Definition 35 We then say that a protocol (P, V ) is RSAK for R in the random oracle model if,

1. (P, V ) is a resettably-sound argument for LR, and

2. There exists a probabilistic expected polynomial oracle machine E such that for every polynomial-

time resetting attack P ∗, the probability that EP∗
(1n) outputs a witness for the input selected in

the last session is at most negligibly smaller than the probability that P ∗ convinces V in the last

session.

Here, E has black-box access to the random oracle RO and P ∗∗ and is able to control a random

oracle RO∗. P ∗∗ is the same as P ∗ except that the random oracle that P ∗∗ accesses is RO∗ rather

than RO.

The focus on the last session of the resetting attack is done for simplicity and is valid without loss

of generality.
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5.2.4 Σ-Protocols and Σ-Compilers

Σ-protocols are first introduced by Cramer, Damg̊ard and Schoenmakers in [46]. Informally, a Σ-protocol

is itself a 3-round public-coin special honest verifier zero-knowledge protocol with special soundness in

the knowledge-extraction sense. Since its introduction, Σ-protocols have been proved a very powerful

cryptographic tool and are widely used in numerous important cryptographic applications including

digital signatures by using the famous Fiat-Shamir methodology [60].

Definition 36 3-round public-coin protocol for a pair of prover and verifier (P, V ) denoted by

(AR, CR, ZR, VR, SR) is said to be a Σ-protocol for relation R if the following hold:

Let a, e, z denote for the first, the second and the third message respectively of the protocol (P, V ). Let

(x, w) be such that (x,w) ∈ Rn and a random tape rP ∈ {0, 1}n. AR, for P , is a function that generates

the first message a from (x,w) ∈ Rn and rP ∈ {0, 1}n. CR denotes the space from which e is randomly

chosen by V . CR is implicitly indexed by n. ZR, for P , is a function that generates z from x,w, e and

rP . VR, for V , is a function such that qVR(a, e, z) = 1/0 denote the acceptance/rejection of V . SR, for

the simulator, is a function that generates a simulated view (x, a, e, z) from x, e, and the random tape

rS ∈ {0, 1}n.

• Completeness. If P and V follow the protocol, V always accepts.

• Special soundness. From any common input x and any pair of accepting conversations on input x,

(a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently compute w such that (x,w) ∈ R.

• Special honest verifier zero-knowledge (SHVZK). There exists a polynomial-time simulator SR,

which on input x and a random challenge string e, outputs an accepting conversation of the form

(a, e, z), with the same probability distribution as conversations between the honest P, V on input

x.

Σ-compilers are compilers from Σ-protocols for a relation R to a certain kind of zero-knowledge proof

system or argument for the relation R.

Definition 37 A compiler is said to be Σ-compiler for zero-knowledge protocol with a property C if

the compiler, given a description of Σ-protocol for relation R, gives a description of a zero-knowledge

proof/argument of knowledge of witness of relation R with the property C.
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5.3 Proposed Σ-Compiler in the Random Oracle Model

5.3.1 Σ-Compiler

Now we present our Σ-compilers which output 2-move deniable rZK and RSAK protocols in the random

oracle model. respectively. Suppose that there exists a Σ-protocol for a relation R. Let P and V be a

prover and a verifier, respectively, and let x be a common input and w be the private input to P , where

(x, w) ∈ R. Then our 2-move protocol proceeds as follows.

1. V chooses a random (x̄, w̄) ∈ R and sends x̄ to P . V then proves that he knows w̄ non-interactively.

2. P proves that she knows w or w̄ non-interactively.

We use Fiat-Shamir transformation [60] to construct non-interactive arguments, and use the technique

of [46] to construct the P’s message (OR protocol).

Although our protocol is very simple, it has not been known that it is deniable zero-knowledge.

This is probably because many people believed that the straight-line extractability of the witness of the

verifier is necessary. Our main contribution is then to prove that the above simple construction is indeed

deniable zero-knowledge.

We first present Construction 1 which is deniable zero-knowledge only, but not rZK. We next show

Construction 3 which is rZK, where Construction 3 is obtained by applying a known technique to

Construction 1.

Let n be a security parameter, and suppose that there exists a Σ-protocol denoted by (AR, CR, ZR, SR)

for a relation Rn. Let x be a common input and w be the private input to P , where (x,w) ∈ Rn. Also

suppose that there exists a Σ-protocol denoted by (AR̄, CR̄, ZR̄, SR̄) for a relation R̄n which has an in-

vulnerable generator GR̄, where R̄n can be Rn. We assume that CR = CR̄ and 1
|CR| = 1

|CR̄| is negligible

in n.

P has random tapes rE , rS , rP ∈ {0, 1}n, and V has tapes rV , rG ∈ {0, 1}n. They are allowed to

have access to a random oracle RO whose output is uniformly distributed over CR = CR̄.

Construction 1 1. V generates (x̄, ā, z̄) as follows, and sends them to P .

(i) V generates (x̄, w̄) ∈ R̄n by giving rG to GR̄.

(ii) V generates ā by giving (x̄, w̄, rV ) to AR̄ and sends (x̄, ā) to RO.

(iii) V receives the output of the random oracle as ē.

(iv) V generates z̄ by giving (x̄, w̄, ē, rV ) to ZR̄.

2. P generates ((a, e, z), (ā′, ē′, z̄′)) as follows, and sends them to V .
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(i) P computes ē = RO(x̄, ā), and verifies that VR(x̄, ā, ē, z̄) = 1.

(ii) P generates ē′ ∈ CR̄ by using the random tape rE, and P generates a simulated view

(x̄, ā′, ē′, z̄′) for the relation R̄ by giving (x̄, ē′, rS) to SR̄.

(iii) P generates a by giving (x,w, rP ) to AR, and P sends (x, a, x̄, ā′) to RO.

(iv) Let d be the output of the random oracle. Then P let e = d ⊕ ē′

(v) P generates z by giving (x,w, e, rP ) to ZR.

3. V accepts iff RO(x, a, x̄, ā′) = e ⊕ ē′, VR̄(x̄, ā′, ē′, z̄′) = 1, and VR(x, a, e, z) = 1

An example that enjoys this construction is shown in Section 5.5.2.

5.3.2 RSAK of the Compiled Protocol

Theorem 21 The above protocol is RSAK for relation R in the random oracle model.

We first give the idea of the proof.

The message sent from the verifier to the prover is a Fiat-Shamir transformation of a Σ-protocol for

the relation R̄. Hence, even resetting provers, who are not allowed to choose random oracles, are unable

to extract the witness for the relation R̄.

The message sent from the prover to the verifier is a Fiat-Shamir transformation of a proof of

knowledge of either the witness for the relation R or the witness for the relation R̄. Hence, if the

knowledge extractor runs the prover for multiple of times by choosing different random oracles for each

time, the knowledge extractor is able to extract either of witnesses. However, the prover is unable to

extract the witness for the relation R̄ as we know, the witness that the knowledge extractor is able

to extract is the one for the relation R. After all, the above strategy is a standard style for proof of

argument of knowledge.

The heart of the proof is to show that the expected running time of the knowledge extractor is

bounded by a polynomial of n.

We are now going to present the knowledge extractor E for the compiled protocol, which proves the

theorem

Proof. Let RD be the set of all random oracles that maps {0, 1}∗ to a domain D. Let V̄ be a set

of honest verifiers {V (j)}j=1,...,t=poly(n) and and (r̄V , r̄G) be a set {(r(j)
V , r

(j)
G ) ∈ ({0, 1}n)2}j=1,...,t. We

assume each (r(j)
V , r

(j)
G ) is given to V (j).

Suppose that q(n)-time P ∗ with a random tape rP∗ ∈ {0, 1}poly(n), after accessing random oracles

RO and V̄ with a random tape (r̄V , r̄G), successes or fails to convinces V̄ with respect to the common

input selected in the last session.
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Let S be the set of all (rP∗ , r̄V , r̄G, RO) ∈ {0, 1}poly(n) × ({0, 1}n)t × ({0, 1}n)t × RD and C be the

set of all (rP∗ , r̄V , r̄G, RO) such that P ∗ convinces V̄ in the last session. We say “a random oracle RO

is given to E” if E is able to access RO.

Definition 38 An knowledge extractor E is given black-box access to q(n)-time P ∗. E is able to control

the random oracle that P ∗ accesses. Suppose that T := (rP∗ , r̄V , r̄G, RO) ∈ S is given to E. In a case

T ∈ C, let (x, (x̄, ā, ē, z̄), (a, e, z), (ā′, ē′, z̄′)) be the view of the last session, where e+ ē′ = RO(x, a, x̄, ā′).

E works as follows:

1. If given T is in S \ C, E outputs ⊥. Clearly, E is able to decide whether T is in C or not.

2. If given T is in C, E repeatedly invokes the following extraction step until it obtains such an

accepting view (x1, (x̄1, ā1, ē1, z̄1), (a1, e1, z1), (ā′
1, ē

′
1, z̄

′
1)) that

x̄1 = x , (x̄1, ā1, ē1, z̄1) = (x̄, ā, ē, z̄) , (a1, ā
′
1) = (a, ā′) (5.3)

hold. Note that the case when the relation (e1, z1, ē
′
1, z̄

′
1) = (e, z, ē′, z̄′) also holds is included.

If e1 + ē′1 = e + ē′, E outputs ⊥. Otherwise, E outputs either w such that (x,w) ∈ Rn or w̄ such

that (x̄, w̄) ∈ R̄n, which is possible from property of Σ-protocols.

Extraction Step: E interacts with P ∗ by obeying the strategy of the honest V̄ with random tape

(r̄V , r̄G). Whenever P ∗ resets V (j), E uses the same (r(j)
V , r

(j)
G ) again to execute V (j). E

simulates the random oracle that P ∗ accesses. Without loss of generality, we are able to

consider only the case when P ∗ never sends same queries to the random oracle. The responses

of the random oracle is chosen as in the following.

(i) Until P sends the query (x, a, x̄, ā′) to the random oracle, E interacts with P ∗ by using

the same T . We call this random oracle query determining query.

(ii) Once P ∗ sends this determining query, E replaces the unused part of T with random

elements. E interacts with P ∗ using this this modified random tapes and random oracle

hereafter.

Lemma 37 The probability that P ∗ fails to convince V̄ and the probability that E outputs ⊥ at Step 1

are the same. ¤

Lemma 38 The probability that E outputs ⊥ in Step 2 is 1
|CR| .

Proof. Since the value of RO(x1, a1, x̄1, ā
′
1) is chosen in Step 2 independently to that of RO(x, a, x̄, ā′)

for given T . The probability that both of them coincide each other is 1
|CR| . ¤
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Lemma 39 E runs in time expected polynomial of n.

Proof. Let ST ⊂ S be the set of all possible elements in S that can be chosen by E when it is given

T ∈ C. Let CT ⊂ ST be the set of all elements in ST that leads the pair of P ∗ and V̄ to obtain an

accepting view (x, (x̄, ā, ē, z̄), (a, e, z), (ā′, ē′, z̄′)) that satisfies Equations (5.3). Let ε(T ) denotes |CT |
|ST | .

1

The expected running time TE of E is

TE =

 1
|S|

∑
T∈S\C

1 +
1
|S|

∑
T∈C

ε(T )
∞∑

m=1

m(1 − ε(T ))m−1

 q(n)

=

(
|S \ C|
|S|

+
1
|S|

∑
T∈C

1
ε(T )

)
q(n) =

(
|S \ C|
|S|

+
1
|S|

∑
T∈C

|ST |
|CT |

)
q(n).

We note that E is also required to complete interaction with P ∗ in order to decides whether or not

T ∈ C.

Let I be 1
|S|

∑
T∈C

|ST |
|CT | . Let T ∈ C and T ′ ∈ C. We define equivalence relation T ∼ T ′ by T ′ ∈ CT .

Let [T ] be the equivalent class of T . Since ST = ST ′
and CT = CT ′

if T ∼ T ′,

I =
1
|S|

∑
T∈C/∼

|CT | · |S
T |

|CT |
=

1
|S|

∑
T∈C/∼

|ST |.

Suppose that T ∈ S is also in ST ′
. Then, there exists a unique determining query sent by P ∗ in the

interactions yield by T . Conversely, if we choose one random oracle query of the form (x, a, x̄, ā′) sent

by P ∗ in the interactions yield by T , there exists at most one equivalence class [T ′] and corresponding

ST ′
such that the corresponding determining query is this chosen random oracle query.

Since P ∗ can send random oracle queries at most q(n) times, each T ∈ S may be in CT ′
for at most

q(n) different equivalence class [T ′]. Hence,

I ≤ 1
|S|

· q(n)|S| = q(n).

Therefore, the expected running time (step) TE of E is

TE ≤
(
|S| − |C|

|S|
+ q(n)

)
q(n) ≤ (1 + q(n))q(n),

which is upper bounded by polynomial of n.

¤

1This value can be considered as the probability that V̄ accepts P ∗ when the determining query corresponding to T is
sent.
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Lemma 40 The probability that E outputs w̄ such that (x̄, w̄) ∈ R̄n is negligible in n.

Proof. Suppose that the lemma does not hold. Then we are able to show that there exists a polynomially

bounded Turing machine C, which is given the output x̄ of GR̄ with randomly chosen rG ∈ {0, 1}n, is

able to extracts w̄ such that (x̄, w̄) ∈ R̄n with non-negligible probability. This is against the assumption

that GR̄ is invulnerable.

The extraction can be done by running E and P ∗. However, in this execution, rather than using x̄

generated by feeding a random tape rG ∈ {0, 1}n to GR̄ by itself, E uses a common input x̄ generated

by GR̄ which is given randomly chosen unknown rG as a problem. Although E does not have the

corresponding w̄, E is able to simulate ā, ē, z̄ by choosing an appropriate random oracle RO.

E fails to choose an appropriate RO oracle only with negligible probability in n, otherwise, the

simulated view and the original view are indistinguishable to P ∗. ¤
The resettable completeness is clear. Hence, the theorem follows from Lemmas 37-40. ¤

5.3.3 Deniable Zero-knowledge of the Compiled Protocol

Theorem 22 The above protocol is deniable cZK in the random oracle model.

We first present the idea of the simulation. We first consider an oversimplified case where V ∗ never

aborts the protocol but always outputs z̄ such that VR̄(x̄, ā, ē, z̄) = 1 whenever it sends ā to RO as long

as P does not abort. The idea of the simulation is based on the following two abilities of S:

1. S is able to perfectly simulate the view without choosing random oracles if it is able to extract the

corresponding w̄ when V ∗ outputs the first message (x̄, ā) to P . In this case, the required number

of steps of S is the same order to that of real P .

2. S is able to perfectly simulate the view if it is able to choose random oracles. In this case, the

required number of steps of S is the same order to that of real P .

By the second ability, S is able to extracts the corresponding w̄. By the first ability, S, by using this

w̄, is able to simulate the entire view that includes no chosen output values of random oracles.

Roughly, S works as in the following:

1. First, S begins simulation by interacting with V without the knowledge of any w̄. During the

this interaction V ∗ sends (x̄, ā) to the random oracle such that S does not have the corresponding

w̄. Then, S completes to simulate the entire view twice by, each time, randomly choosing random

oracles to obtain two z̄. This is possible since V ∗ always output a corresponding z̄ within polynomial

time. Then, from these z̄, S is able to generate the corresponding w̄. The required number of
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steps for these simulations is less than the twice the number of steps P is required to complete the

protocol.

2. Next, S rewinds V ∗ to the phase where V ∗ sent (x̄, ā) to the random oracle and continues simula-

tion. If S is required to prove the knowledge of either w or w̄, S does so using w̄. This is possible

for S without choosing random oracles. Then, continues simulating the view. If V ∗ again sends

another (x̄, ā) to random oracle such that S does not have the corresponding w̄, S extracts the

corresponding w̄ by the same method described above. Repeating these procedures, S succeeds

in simulating the view that includes no chosen output values of random oracles. Therefore, the

protocol is deniable.

Since, V ∗ sends such a (x̄, ā) less than the number of steps of real P , the total number of steps

required for the simulation to extracts all w̄ is less than two times the square of the number of the steps

required for the real protocol.

In the general case where V ∗ may abort without outputting z̄, the simulation gets to be much

complicated. In this case, S repeats simulation with chosen output values of random oracles for many

times to obtains two z̄ for each (x̄, ā) but gives up if its number of repetitions exceeds a certain number

of times (2n2Q(n)). Such a multiple trial is required since there may be (with some probability) a case

when V ∗ aborts without outputting z̄ when S is simulating with chosen output values of random oracles

but outputs z̄ when S is simulating with the output values of real random oracle. The number of times

the S tries to obtain z̄ is 2n2Q(n), which is indexed by ctr-III in the description of the simulator in

Definition 39. Here, Q(n) is the running time of P ∗, which is indexed by ctr-II in the description of the

simulator.

It turns out that such a simulation can be successful with the probability larger than 1/2. Hence,

repeating it for polynomial times enable the successful simulation with overwhelming probability. The

number of time S repeats this simulation is n, which is indexed by ctr-I. in the description of the

simulator. The total running time of the simulator is n3Q(n)2.

The above simulator is not black-box simulator since it needs to know the running time of verifier.

However, it is easy to construct a black-box simulator from the proposed simulator. The black-box

simulator executes the proposed simulator repeatedly until it complete simulation, by, in each execution,

it increase the order of time that it assumes as the running time of verifier.

We now prove the theorem by presenting the simulator.

Proof. The following definition 39 describes the simulator S which simulate an interaction between P and

Q(n)-time verifier V ∗ of Construction 1, where Q(·) is a polynomial. Although the following description

is very complicated, its structure is very simple as described in the above idea of the simulation.
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S works in two phases. One is simulation in phase 1 in which S uses the true random oracles and the

other is simulation phase 2 in which S uses fake random oracles. S begins its simulation in the former

phase and call the latter phase routine from it. These phases are indicated by an index phase.

In phase 1, S generates a view by accessing true random oracle and using the witnesses w̄. However,

S initially possess no w̄. Hence, whenever S is sent the corresponding x̄ for the first time, S enters

(3(i)iii) to the phase 2 in which it try to extract w̄. If S has already extracted the corresponding w̄, then

it uses w̄ as a trapdoor for generating the view (3ii). Suppose S has all necessary witnesses w̄, then S

stops within Q(n) steps (3(i)i and etc.). ctr-II counts the number of this repetitions.

However, S initially has no w̄. Hence, the remaining problem is that how much step is required for

S to extract each w̄ in phase 2 and that whether S succeeds to extract all the necessary w̄.

The strategy of S in phase 2 for extraction of each w̄ is as follows: Complete interaction with V ∗ for

2n2Q(n) times. ctr-III counts the number of this repetitions. This can be done in straight-line manner

by using fake random oracles (the third “-” in 4(v)ii). In some of these executions, S may obtain the

corresponding (x̄, ā, z̄). If S succeeded for more than twice, it succeeds to extract w̄ (the second “-” in

4(v)ii ) and everything is all right.

However, in some cases, S fails for extraction, that is, S receives the corresponding z̄ at most once.

In such a case, S assumes it will not receive that z̄ in phase 1 also and thus the corresponding w̄ is

unnecessary. Then, S forgets that w̄ and enters phase 1 again (4iii).

S gets into the problem if w̄ is not extracted by S in phase 2 but is required in phase 1 (3(ii)iv).

Although this happens with the probability smaller than 1/2, it happens with non-negligible probabil-

ity. Hence, S repeats entire simulation for n times (2) for the total simulation to be successful with

overwhelming probability. ctr-I counts the number of this repetitions.

Step 3i is only for managing the information for rewinding schedule. The list Lext keeps data for

on-going extraction in phase 2. The list Lwit keeps extracted witnesses. The list LRO keeps input/output

pairs of simulated random oracles.

Definition 39 (Simulator S) S is given a common input x and V ∗’s random tape. S uses V ∗, as a

black-box. S first invokes V ∗ by feeding it x and the random tape.

1. S sets phase = 1, ctr-I = ctr-II = ctr-III = 0, and Lext = Lwit = LRO = ∅.

2. If ctr-I < n, S increments ctr-I and continues. Otherwise; aborts simulation.

3. S works as in the followings (phase = 1).

(i) In the case S caught random oracle query of the form (x̄, ā) from V ∗, S works as in the

following.
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i. S sets phase = 2. If ctr-II ≥ Q(n) goto the step 2.

ii. S save every necessary information to rewind V ∗, LRO, and ctr-II to this current states.

iii. If phase = 2, S sets ctr-III = 0 and goes to the step 4i in the phase = 2.

iv. S obtains ē = RO(x̄, ā) from the random oracle, sends it to V ∗, and adds an entry

((x̄, ā), ē) to list LRO if there is no entry of the form ((x̄, ā), ·) in LRO. Then, S increments

ctr-II by 1.

(ii) In the case S received a message of the form (x̄, ā, ē, z̄) from V ∗, S works as in the following:

i. S increments ctr-II by 1.

ii. S obtains ē = RO(x̄, ā) from the random oracle, and S adds an entry ((x̄, ā), ē) to list

LRO if there is no entry of the form ((x̄, ā), ·) in LRO.

iii. If V (x̄, ā, ē, z̄) = 1 does not hold, S goes to the step 3.

iv. S search the list Lwit and finds an entry (x̄, w̄). If S could not find it, S goes to the step

2.

v. S generates ((a, e, z), (ā′, ē′, z̄′)), which is a Fiat-Shamir transformation of the proof of

knowledge of either w̄ of w, as in the following:

A. S generates a simulated view (x, a, e, z) for the relation Rρ
n by giving x, randomly

chosen e ∈ CR, and a fresh random tape.

B. S generates ā′ by giving x̄, w̄, and a fresh random tape to AR̄. Then obtains d =

RO(x, a, x̄, ā′) by giving (x, a, x̄, ā′) to the true random oracle RO.

C. S adds an entry ((x, a, x̄, ā′), d) to list LRO.

D. S let ē′ = d ⊕ e and S generates z̄′ by giving x̄, w̄, ē′, and the random tape used to

generate ā′ to ZR̄.

Then, S sends ((a, e, z), (ā′, ē′, z̄′)) to V ∗.

(iii) If V ∗ stops, S terminates its simulation.

(iv) Otherwise; S increments ctr-II by 1 and goes to the step 3.

4. S works as in the followings (phase = 2).

(i) S adds a entry (x̄, ā) to list Lext.

(ii) S save every necessary information to rewind V ∗, LRO, and ctr-II to this current states.

(iii) If ctr-III ≥ 2n2Q(n), S sets phase = 1 and rewinds to the step 3(i)ii in the phase = 1.

(iv) S randomly choose ē ∈ CR̄, sends it to V ∗ as the corresponding output of the random oracle,

adds a entry ((x̄, ā), ē) to list LRO, and increments ctr-II by 1.
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(v) Then, S works as in the following:

i. In the case S caught random oracle query of the form (x̄, ā) from V ∗, S increments ctr-II

by 1 and works as in the following:

• In the case when there is an entry ((x̄, ā), ē) in LRO, S sends ē to V ∗.

• In the case when there is no entry ((x̄, ā), ē) in LRO, S chooses random ē ∈ CR̄, adds

an entry ((x̄, ā), ē) in LRO, and sends ē to V ∗.

ii. In the case S received a message of the form (x̄, ā, ē, z̄) such that VR̄(x̄, ā, ē, z̄) = 1 and

((x̄, ā), ē) in LRO from V ∗, S increments ctr-II by 1 and works as in the following:

• Suppose that there is an entry (x̄, ā) in Lext. Then, S first modifies the entry to

(x̄, ā, ē, z̄). Next, S rewinds the V ∗, LRO, and ctr-II to Step 4ii.

• Suppose that there is an entry (x̄, ā, ē′, z̄′) in Lext such that ē 6= ē′. Then, S first

generates w̄ such that (x̄, w̄) ∈ R̄n from (x̄, ā, ē′, z̄′) and (x̄, ā, ē, z̄). Next, S adds an

entry (x̄, w̄) to Lwit. Next, S deletes the entry from Lext. Finally, S sets phase = 1

and rewinds V ∗, LRO, and ctr-II to Step 3(i)ii in the phase = 1.

• Otherwise; S generates ((a, e, z), (ā′, ē′, z̄′)), which is a Fiat-Shamir transformation

of the proof of knowledge of either w̄ of w, as in the following:

A. S generates a simulated view (x̄, ā′, ē′, z̄′) for the relation R̄n by giving x̄, randomly

chosen ē′ ∈ CR̄, and a fresh random tape to SR̄.

B. S generates a simulated view (x, a, e, z) for the relation Rn by giving x, randomly

chosen e ∈ CR, and a fresh random tape to SR.

C. S writes an entry ((x, a, x̄, ā′), d) in the list LRO, where d = e ⊕ ē′. If an entry

((x, a, x̄, ā′), d′) such that d 6= d′ already exists, S fails and stops.

Then, S sends ((a, e, z), (ā′, ē′, z̄′)) to V ∗.

iii. In either case when V ∗ stopped or case when ctr-II ≥ Q(n), S sets phase = 1, increase

ctr-III by 1, and rewinds V ∗, LRO, and ctr-II to Step 3(i)ii in the phase = 1.

Lemma 41 Simulator S stops within n3Q(n)2 steps. Hence, it is polynomial-time simulator. ¤

Lemma 42 Simulator S succeeds in simulating the view of protocols with overwhelming probability as

long as | 1
CR̄

| is negligible in n.

Proof. Suppose that εn is the probability that V ∗ sends (x̄, ā, ē, z̄) such that ē = RO(x̄, ā) and

VR̄(x̄, ā, ē, z̄) = 1 when V ∗ sends (x̄, ā) to RO (for a single value of ctr-III). Then, the probability ηn that

at least one such (x̄, ā, ē, z̄) is sent by V ∗ in the first half of phase 2 (for ctr-III = 0 to ctr-III = n2Q(n)−1
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for a single value of ctr-II) is

ηn = 1 − (1 − εn)n2Q(n)

The same for the latter half of phase 2 (for ctr-III = n2Q(n) to ctr-III = 2n2Q(n) − 1 for a single value

of ctr-II).

From Reset Lemma in [16], the probability τn that at least two different (x̄, ā, ē, z̄) can be obtained

during the phase 2 (for ctr-III = 0 to ctr-III = 2n2Q(n) − 1 for a single value of ctr-II) satisfies

ηn ≤ 1
|CR̄|

+ τn
1/2.

Then, the probability γn that one fails to obtains two different (x̄, ā, ē, z̄) during the phase 2 (for

ctr-III = 0 to ctr-III = 2n2Q(n) − 1 for a single value of ctr-II) satisfies

γn = 1 − τn

≤ 1 −
(

ηn − 1
|CR̄|

)2

= 2
(

(1 − εn)n2Q(n) +
1

|CR̄|

)
−

(
(1 − εn)n2Q(n) +

1
|CR̄|

)2

Then the probability δn that S fails to obtain two different (x̄, ā, ē, z̄) in the phase 2 (simulation with

fake random oracles) but S is sent (x̄, ā, ē, z̄) in the phase 1 for a single value of ctr-I (simulation with

true random oracles) satisfies

δn = γnεn

≤ εn2
(

(1 − εn)n2Q(n) +
1

|CR̄|

)

Now, we estimate an asymptotic behavior of δn. For all n such that εn < 1/nQ(n), the following

relation clearly holds:

δn ≤ 1
nQ(n)

. (5.4)

On the other hand, for all n such that εn ≥ 1/nQ(n), the following relation holds:

δn ≤ 2
(

(1 − εn)n2Q(n) +
1

|CR̄|

)
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≤ 2

{(
1 − 1

nQ(n)

)nQ(n)
}n

+
2

|CR̄|
.

Hence, the following relation holds.

∀c > 0 ∃N ∀n ∈
{

n′|n′ > N, εn′ ≥ 1
n′Q(n′)

}
δn ≤

(
2
en

+
1
nc

)
+

2
|CR̄|

. (5.5)

From Eqs. (5.4) and (5.5) and that 1
|CR̄| is negligible in n,

∃N ∀n > N δn ≤ 1
nQ(n)

Let θn be the probability that the simulation succeeds with out outputting abort in single value of

ctr-I. Since the above equations (5.4) and (5.5) hold for any (x̄, ā),

∃N ∀n > N

θn ≥ (1 − δn)Q(n) ≥
(

1 − 1
nQ(n)

)nQ(n)· 1
n

≥ 1
e

1
n

≥ 1
2

Therefore, by repeating this simulation for n times (for ctr-I = 0 to n − 1), S succeeds in simulation in

overwhelming probability (1 − 1/2n) in n. ¤

Lemma 43 The view simulated by S is indistinguishable from that of real view, where distinguisher is

able to directly access the random oracle.

Proof. From the construction, it is clear that the simulated view uses no chosen values of random oracles

and its distribution is exactly the same to that of real one. ¤

The theorem follows from Definition 39 and Lemma 41 - 43. ¤

5.3.4 Addition of Resettable Zero-knowledge Property

We now introduce another variant of the proposed Σ-compiler such that additionally has resettable

zero-knowledge property.

We first list the definition of “admissible”, and “hybrid cheating verifier” which are given in [11] and

[37]. Then, we introduce a construction of deniable rZK protocol from admissible and hybrid deniable

zero-knowledge protocol.

Canetti et al. defined a class of admissible protocols and hybrid zero-knowledge in [37]. Then,

proposed a generic construction for rZK protocol from an admissible and hybrid zero-knowledge protocol.
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Definition 40 A protocol (P, V ) between a prover P and a verifier V is called admissible if the following

requirements hold:

1. The prover P consists of two modules, P1, P2. Similarly, the random input r is partitioned into

two disjoint parts, r(1), r(2), where r(i) is given to Pi. The prover initialization message is sent by

P1.

2. Each verifier message (other than the first one) is first received by P1 and is interpreted as consisting

of two parts, called main and authenticator. P1 decides whether to accept the message or to abort.

If P1 accepts, it forwards the main part of the message to P2, who generates the next prover

message.

3. Let V ∗ be an arbitrary (deterministic) polynomial-size circuit representing a possible strategy for

the verifier in the interactive protocol (P, V ). Then, except with negligible probability, V ∗ is unable

to generate two different messages for some round ` that specify the same session determining

message in their corresponding prefixes, and such that P1 accepts both. The determining message

is the first message that verifier sends to the prover after the verifier specified that prover as a

counterpart.

Here, an incarnation of the prover is identified via three indices: P (i,j,k) = Pxi,wi,rj,k
where rj,k =

(r(1)
j , r

(2)
k ). That is, i specifies the input, j specifies the random input to P1 and k specifies the random

input to P2.

We define a deniable and random oracle model variant of hybrid zero-knowledge defined in [37].

Definition 41 hybrid cheating verifier V ∗ works against admissible protocols as described in the follow-

ing. That is, V ∗ proceeds as in Distribution 1 of Definition 32 with the exception that no two sessions

started by V ∗ may interact with incarnations P (i,j,k) and P (i′,j′,k′) such that k = k′.

An admissible protocol is hybrid deniable zero-knowledge in the random oracle model if it satisfies

Definition 32 with respect to hybrid cheating verifiers.

Here, we present a deniable and random oracle model variant of the construction proposed in [37].

Construction 2 Given an admissible protocol (P, V ), where P = (P1, P2), and a collection {f} of

pseudorandom functions, we define a new protocol (P,V) as follows.

1. The new verifier is identical to V .
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2. The new prover: The new prover’s randomness is viewed as a pair (r(1), f), where r(1) ∈ {0, 1}poly(n)

is of length adequate for the random-tape of P1, and f : {0, 1}≤poly(n) → {0, 1}poly(n) is a descrip-

tion of a function taken from an ensemble of pseudorandom functions. For convenience we describe

the new prover, P, as a pair P = (P1,P2). P1 is identical to P1 with random-tape r(1); P2 emulates

the actions of P2 with random tape that is determined by applying f to the determining message

and the common input.

Theorem 23 If an admissible protocol (P, V ) is hybrid deniable zero-knowledge, then (P,V) is deniable

rZK.

Proof. The proof is similar to that of Theorem 6 in [37]. ¤

Now we propose another variant of our Σ-compiler.

Construction 3 A new construction is the same as Construction 1 except the followings:

1. P is given a randomly chosen pseudorandom function f . Here, {f} is a collection of pseudorandom

functions such that f : ({0, 1}n)4 → ({0, 1}n)3.

2. P fixes its randomness as follows: Generates its random tapes as (rE , rS , rP ) = f(x, x̄, ā, z̄).

Theorem 24 The above protocol has rZK property in addition to all other properties that the protocol

in Construction 1 has.

Proof.

Lemma 44 The protocol of Construction 1 is admissible.

Proof. It is clear since the protocol is 2-move in which the first message is sent by verifier. ¤

Lemma 45 The protocol of Consider 1 is hybrid deniable zero-knowledge.

Proof. In this protocol, P1 that appeared in Definition 41 can be considered as procedure in Step

2i. Hence P1 is deterministic. Therefore, we are only required to consider the simple case when all

incarnations of P are different. Then, Hybrid deniable zero-knowledge property follows from Theorem

22. ¤

Since the proposed protocol in Construction 3 can be constructed from the protocol in Construction

1 according to Construction 4 in [37], the Theorem follows. ¤
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5.4 Efficiency

Our protocol (which is illustrated at the beginning of Sec.5.3) is almost as efficient as the underlying

Σ-protocol because Fiat-Shamir transformation and OR-protocol have very small overhead. Moreover,

efficient Σ-protocols are known for many useful relations. Hence our construction will find a lot of

applications.

On the other hand, the compiler of Pass [129] requires a Cut & Choose method which is very

inefficient. Indeed, its overhead is proportion to the security parameter n while ours is only a small

constant. Fischlin [62] proposed a straight-line witness extractable proof that has smaller communication

complexity than the method of Pass. However, its overhead still depends on the security parameter n.

Hence, its communication/computation complexity is still larger than that of ours.

As an example, let’s look the deniable identification protocol shown in Section 5.5.2. The commu-

nication cost and computational cost are roughly 1/50 and 1/32, respectively, of those of Pass’ scheme

and are roughly 1/3 and 1/36 2, respectively, of those of Fischlin’s scheme.

5.5 Example Applications

5.5.1 Undeniable Signature

We can obtain a very efficient 2-move undeniable signature scheme as an application of our compiler. Un-

deniable signature scheme is a variant of signature scheme in which the validity/invalidity of an undeni-

able signature can be verified only with the signer’s consent by engaging interactively or non-interactively

in a confirmation/disavowal protocol, as opposed to a digital signature in which its validity/invalidity

is universally verifiable. Moreover the result of this confirmation/disavowal have to be non-transferable,

i.e., once a verifier is convinced that the signer did or did not sign a message, he should be unable to

transmit this conviction to a third party. Because of this property, confirmation/disavowal protocols in

these scheme are required have to be deniable. This can be achieved by using our compiler.

Let p, q be primes such that q|p − 1 and Gq be the order q subgroup of (Z/pZ)∗. The secret key for

the signer is a randomly chosen w ∈ Z/qZ and the public key is y = gw. The signature to the message

m is a h = RO(m)w where RO is a random oracle that maps any string to Gq. r is a valid signature to

m if and only if, (g, y,RO(m), h) is a Diffie-Hellman tuple.

It is well known that there exists an efficient Σ-protocol for a relation R such that aw = b ∧ cw = d,

and an efficient Σ-protocol for a relation such that aw = b∧ cw 6= d, respectively [34]. Hence by applying

our compiler, we can obtain a very efficient 2-move confirmation and a very efficient 2-move disavowal

2Operations required in our scheme and those in Fischlin’s are very different. Hence this comparison is really rough.
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protocol which are both deniable zero-knowledge, where the discrete logarithm relation can be used as

R̄ in our compiler.

Further, both protocols are deniable concurrent zero-knowledge and resettably-sound argument of

knowledge.

On the contrary, very inefficient confirmation/disavowal protocols are obtained if we apply the method

of Pass [129]. In the case of confirmation protocol, the communication cost and computational cost of

our scheme can be roughly estimated as, respectively, 1/50 and 1/32 of those of Pass’ scheme.

(Remark) Recently, Kurosawa et al. showed a 3-move undeniable signature scheme [104]. However, their

confirmation/disavowal protocols are not deniable. This fact is also pointed out by Vergnaud Damien

[51].

5.5.2 Deniable Identification

Schnorr’s identification protocol is illustrated in Table 1. Let p, q be primes such that q|p− 1 and Gq be

the order q subgroup of (Z/pZ)∗. The secret key for the prover P is a randomly chosen w ∈ Z/qZ and

the public key is x = gw mod p. Let V denote the verifier.

1. P chooses r ∈ Z/qZ randomly and sends a = gr mod p to V .

2. V sends a random c ∈ Z/qZ to P .

3. P sends z = r + cw mod q to V .

4. V accepts iff gz = axc mod p.

Table 1. Schnorr’s identification protocol

Suppose that a malicious verifier V ∗ sends c = H(a) at step 2, where H is a hash function. Then

the transcript (a, c, z) works as an evidence of the fact that P executed the protocol with V ∗. Hence the

privacy of P is violated. This happens because the protocol is not zero-knowledge.

Now by applying our compiler, we can obtain a very efficient 2-move deniable identification protocol

as shown in Table 2.
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P has a public-key x(= gw mod p) and the secret-key w.

1. V computes (x̄, ā, z̄) as follows, and sends them to P .

(i) V chooses w̄ ∈ Z/qZ randomly and computes x̄ = gw̄ mod p.

(ii) V chooses r̄ ∈ Z/qZ randomly and computes ā = gr̄ mod p.

(iii) Let ē = RO(x̄, ā).

(iv) V computes z̄ = r̄ + ēw̄ mod q.

2. P computes (a, e, z), (ā′, ē′, z̄′) as follows, and sends them to V .

(i) P computes ē = RO(x̄, ā) and verifies that

gz̄ = āxē mod p.

(ii) P chooses ē′, z̄′, r ∈ Z/qZ randomly and computes

ā′ = gz̄′
/xē′

mod p.

(iii) P chooses r ∈ Z/qZ randomly and computes a = gr mod p.

(iv) Let d = RO(x, a, x̄, ā′) and e = d ⊕ ē′.

(v) P computes z = r + ew mod q.

3. V accepts iff RO(x, a, x̄, ā′) = e ⊕ ē′ and

gz̄ = āxē mod p

gz = axc mod p

Table 2. Proposed identification protocol

The above protocol is deniable concurrent zero-knowledge and resettably-sound argument of knowl-

edge. If P computes (ē′, z̄′, r) as (ē′, z̄′, r) = f(x, x̄, ā, z̄), then it is made resettable zero-knowledge,

where f is a pseudorandom function.
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5.6 Conclusion

We proposed a very efficient compiler that transforms any Σ-protocol to a 2-move deniable zero-

knowledge argument scheme in the random oracle model, which is also a resettable zero-knowledge

and resettably-sound argument of knowledge. There is no essential loss of efficiency in our transform.

We achieved to balance all properties such as efficiency, deniability, resettable zero-knowledge, and

resettably-sound argument of knowledge in the random oracle model, which is impossible by black-box

reduction in the standard model. Using our compiler, we can obtain a very efficient undeniable signature

scheme and a very efficient deniable authentication scheme. We also gave examples of these protocols.
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Chapter 6

Black-Box Traitor Revocable

Broadcast Encryption with Short

Private Keys

Broadcast encryption schemes enable senders to efficiently broadcast ciphertexts to a large set of receivers

in a way that only non-revoked receivers can decrypt them. Black-box traitor revocable broadcast

encryption schemes are a broadcast encryption schemes that, given a pirate decoder, enable a tracer

to identify traitors by black-box accessing the pirated decoder and to revoke traitors so identified. In

this chapter, we propose a black-box traitor revocable broadcast encryption scheme in which the size of

each of its private keys is constant, the size of the public key is proportional to the number of receivers,

and the sizes of its ciphertexts are sub-linear with respect to the number of receivers. The encryption

procedure in our scheme requires only a public key. The tracing procedure in it requires a secret key

and black-box access to a resettable pirate decoder. The security of our scheme is proved in the generic

bilinear group model.

6.1 Introduction

Broadcast encryption schemes are cryptosystems that enable senders to efficiently broadcast ciphertexts

to a large set of receivers such that only non-revoked receivers can decrypt them. Their notion was first

introduced by Berkovits in [18] and was given formal analysis by Fiat and Naor in [59]. Many schemes,

such as [59, 5, 118, 115, 87, 52, 10, 84, 9, 24], have been proposed since then, and their main purpose is

to decrease private key size, ciphertext length, public key size, and computational costs for encryption
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and decryption.

One notable scheme is the one proposed by Boneh et al. in [24]. This is a public key broadcast

encryption scheme that features many desirable properties. Particularly notable is the fact that both

the receiver’s private key size and ciphertexts size are a small constant when broadcasting to any subset

of receivers. There is a trade off between the length of the public key and that of the ciphertexts. That

is, their product is proportional to the number of receivers.

Black-box traitor revocable broadcast encryption schemes are broadcast encryption schemes that,

given a pirate decoder, enable a tracer to identify traitors by black-box accessing the pirated decoder

and to revoke traitors so identified. The first such scheme was introduced by D. Naor et al. in [115]

as a broadcast encryption scheme with a trace and revoke system. Since the number of receivers in

broadcast encryption schemes is potentially large, pirate decoders are always a serious threat, and that

is why trace and revoke systems are useful for them.

There also exist schemes that are closely related to black-box traitor revocable broadcast encryption

schemes. These are, black-box traitor tracing schemes. Black-box traitor tracing schemes are cryptosys-

tems that enable senders to efficiently send ciphertexts to a large number of receivers such that, given a

pirate decoder, at least one receiver who has leaked its key can be traced by black-box accessing the pirate

decoder. Here, it is highly desired that the revocation be performed in a black-box manner, so that the

tracer will be free from the laborious analysis of obfuscated codes. After the notion of such a scheme was

first introduced by Chor et al. in [45], many schemes, [102, 117, 144, 145, 61, 23, 118, 133, 115, 112, 52, 40],

including non black-box schemes, have been proposed. One notable scheme is that proposed by Boneh

et al. in [25], which is a fully collusion resistant system with constant size private keys and sub-linear

size ciphertexts.

It might seem that a simple combination of a black-box traitor tracing scheme and a broadcast

encryption scheme might result in a black-box traitor revocable broadcast encryption scheme. Unfor-

tunately, however, this is not true. Consider a simple combination system in which a secret key is

distributed as the sum of a secret key distributed using broadcast encryption and one distributed using

traitor tracing scheme. In this case, given a pirate decoder, a tracer will be able to identify at least one

traitor, but this identification will be limited to the basing traitor tracing scheme. The traitor in the

basing broadcast encryption scheme will not necessarily coincide with the traitor identified in the tracing

scheme. This means, that the tracer may fail to revoke the traitor in the basing broadcast encryption

scheme. Here, the tracer will be able to punish the traitor it has identified, but it will not be able to

prevent copies of the same pirate decoders, which could be distributed in the network, from decrypting

its ciphertexts. Hence, when we construct a black-box traitor revocable broadcast encryption scheme

from a black-box traitor tracing scheme and a broadcast encryption scheme, we are required to exercise
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some ingenuity in doing so.

In this chapter, we propose a black-box traitor revocable broadcast encryption scheme. Its revocation

procedure requires a secret-key, but its encryption procedure requires only a public key. We call such

a scheme black-box secret key traitor revocable public key broadcast encryption scheme. We have

also formalized security requirements for such a scheme and proved that our scheme satisfies these

requirements in the generic bilinear group model.

Our black-box traitor revocable broadcast encryption scheme is a careful combination of a modified

version of the broadcast encryption scheme in [24] and the traitor tracing scheme in [25]. The modified

broadcast encryption scheme is designed to prevent revoked receivers from being able to check whether

ciphertexts have been generated correctly or not. Because of this property, revoked traitors are unable

to hinder the tracer from tracing other traitors. This modified scheme was merged with the scheme in

[25] to form the proposed scheme.

Here we assume the total number of receivers to be N and the total number of traitor to be t ≤ N .

The traitor tracing scheme in [25] requires its private keys size, ciphertext size, and public key size to

be, respectively, O(1), O(
√

N), and O(
√

N). With the original scheme [24], if we were to set the size

of ciphertexts to be O(
√

N), the other size would also have to be the same. On the other hand, with

our modified broadcast encryption scheme, private key size, ciphertext size, and public key size can be,

respectively, O(1), O(
√

N), and O(N), and with our proposed combination scheme, private key size,

ciphertext size, and public key size can be the same, O(1), O(
√

N), and O(N). The cost for revocation

in black-box manner is O(tN2).

In the standard model, we have only so far been able to prove the security of our modified broadcast

encryption scheme only for the situation in which its adversaries are restricted to statically colluding

adversaries, which means that our proposed combination scheme would also suffer the same limitation in

the standard model. While it is easy to construct a broadcast encryption scheme that is secure against

statically colluding adversaries but is totally vulnerable against adaptively colluding adversaries, as a

practical matter, adaptively colluding adversaries are of much greater concern. That is,why it would be

preferable to be able to prove security with respect to adaptively colluding adversaries even if the proof

were done in a model weaker than the standard model. That is why we have chosen to prove its security

in the generic bilinear group model. We should also note that the scheme in [24] is already secure against

adaptively colluding adversaries in the generic bilinear group model.

Related Work

Boneh and Waters have independently proposed a black-box trace and revoke system in [26]. Although

the goal of their work is essentially the same as ours, their results differ from ours in various respects.
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The size of private keys in their scheme is O(
√

N), larger than our O(1). By way of contrast, the

size of public key in their scheme is O(
√

N), shorter than our O(N). These differences come from a

difference in the respective broadcast encryption portions of the two combination schemes. Boneh’s new

scheme requires longer private keys but requires only shorter public key. The adaptive security of Boneh’s

scheme can be proven in the standard model, but ours can only be proven in the generic bilinear model.

However, while they say that their proposed scheme supports a public tracing mechanism, it is not secure

if does so. Indeed, the adversary will be able to identifies i from EncryptABE(S, PK, (i, j),M). This

can be done by checking whether

e(Rx, Ṽ ) = e(R̃x, V )

holds or not. If it does, then x > i. Otherwise, x ≤ i. Hence, the tracing key (V, Ṽ ) must be kept secret.

A flaw in their proof appears as d in the 3rd line from the end of the chapter. Although d = logB A

must be unknown to the simulator, the simulator in their proof uses this value.

They say that the secret key traceability of their scheme can be proven in the same way as the security

of the scheme in [25] is proven. This, however, is not precisely correct. Adversaries in a secret-key traitor

revocable encryption scheme may obtain data related to this secret key from the output of the revocation

procedure, i.e., from the set of revoked receivers. It is necessary, then, to consider adversaries that can

access a revocation oracle. In this respect, our formalization of secret-key traitor revocability is novel.

Organization

The chapter is organized as follows: Section 6.2 specifies the model used and defines the security re-

quirements for a black-box traitor revocable encryption scheme. Section 6.3 discusses the revocation

mechanism. Section 6.4 reviews a number of basic facts and complexity assumptions that our scheme

relies on. Section 6.5 presents our basic scheme. Section 6.6 analyses the efficiency of our basic scheme

and describes how we can obtain from the basic scheme a scheme what is fully secure.

6.2 The Model and Security Requirements

6.2.1 The Model

Four types of players participate in a black-box traitor revocable encryption scheme: a membership

authority M, a revocation authority R, encrypters E , and receivers. We let the total number of receivers

be N and i-th receiver be Ri.
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A black-box traitor revocable encryption scheme consists of five algorithms: Gen, Ext, Enc, Dec, and

Revoke.

Gen: A probabilistic setup algorithm that, given a security parameter 1k and the number of receivers

N , outputs a public key pkey, a registration key mkey, and a tracing key tkey.

(pkey, mkey, tkey) ← Gen(1k, N).

mkey and tkey are given, respectively, to M and T . We assume that pkey includes N .

Ext: A probabilistic algorithm for M that, given mkey, pkey, and an index i of receiver, outputs a

private key skeyi for i-th receiver:

skeyi ← Ext(pkey,mkey, i).

Enc: A probabilistic algorithm for encrypters that, given a subset S ⊆ {1, . . . , N} and a public key pkey,

outputs a shared key key and a header hdr.

(key,hdr) ← Enc(S, pkey).

Dec: A probabilistic algorithm for receivers that, given a hdr for a subset S, i ∈ S, skeyi, and the public

key pkey, outputs key.

key ← Dec(S, i, skeyi,hdr,pkey).

Revoke: A probabilistic algorithm for R that, given a subset S†, pkey, tkey, a black-box access to a

pirate decoder D, and a parameter ε, outputs an honest receiver subset S‡ ⊂ S†.

S‡ ← RevokeD(S†, pkey, tkey, ε).

We say the scheme is a black-box secret-key traitor revocable public-key encryption scheme if tkey

is disclosed only to the revocation authority, and our proposed scheme is of this type.

6.2.2 Security Requirements

Let us now consider formal definitions of security requirements for black-box secret key traitor revocable

public key encryption schemes.
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Definition 42 (Correctness) The scheme is correct if, for all N,S,⊂ {1, . . . , N}, i ∈ S, and random

tapes input to Gen, Ext, Enc, and Dec, the following equation,

key = key′,

holds where

(pkey, mkey, tkey) ← Gen(1k, N)

skeyi ← Ext(pkey, mkey, i)

(key, hdr) ← Enc(S, pkey)

key′ ← Dec(S, i, skeyi, hdr, pkey)

In this section and the next section, we consider several games with respect to which we formalize

the rest of the security requirements. As a template for these games, let us introduce Template Game

between a challenger C and an adversary A.

Definition 43 (Template Game) Suppose that the number of receivers N , the security parameter κ,

and ε (where ε = 1/f(κ) for some polynomial f) are given to C and A.

1. Key Generation Phase: C runs

(pkey,mkey, tkey) ← Gen(1k, N)

and provides pkey to A. C keeps pkey, mkey, and tkey. A keeps a set T which is initially set to be

∅.

2. Query Phase: A adaptively sends the following queries:

• Extraction: A sends C an index i ∈ {1, . . . , N}. Then, C runs

skeyi ← Ext(pkey, mkey, i)

and provides skeyi to A.

• Decryption: A sends C a tuple (S ⊂ {1, . . . , N}, i ∈ S, hdr). Then, C runs

(key, hdr) ← Dec(S, i, skeyi, hdr, pkey)

and provides key to A. A replace T with T ∪ i
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• Revocation: A sends C a pirate decoder D and S†. Then, C runs

(S‡) ← RevokeD(S†, tkey, pkey, ε)

and provides S‡ to A.

While sending the above three types of queries, A sends C challenge query once and is provided

a challenge by C in turn.

3. Answer Phase: A sends C an answer for the challenge. C evaluates its answer and outputs 1 or

0 terminating the game.

The revocation query is no longer required if the traitor revocable encryption is public-key traitor revocable

since its responses are simulatable.

We define chosen ciphertext/plaintext attacks by adaptively colluding adversary (ACA) games. In

the rest of the chapter, strings atk are either “Chosen Ciphertext Attacks (CCA)” or “Chosen Plaintext

Attacks (CPA)”.

Definition 44 “Chosen ciphertext attacks (CCA) by ACA game” is the same as Template Game.

Definition 45 “Chosen plaintext attacks (CPA) by ACA” game is the same as Chosen ciphertext

attacks by ACA game except that A can send no Decryption Query.

We defines key distinguishing/pirating game against atk by ACA.

Definition 46 “Key Distinguishing against atk by ACA” game is the same as atk by ACA game except

in the following points:

• Challenge Query: A sends C a set S∗ ⊂ {1, . . . , N}. Then, C runs (key∗,hdr∗) ← Enc(S∗, pkey),

randomly chooses b ∈R {0, 1} and key∗
1−b ∈R K, and assigns key∗

b = key∗. C finally sends to A

(hdr∗, key∗
0, key∗

1).

Here, C only allows S∗ such that S∗ = {1, . . . , N} \ T ∗, where T ∗ be the set T at the end of the

game.

• Answer: A sends b′ ∈ {0, 1}. Then C outputs 1 if b′ = b, otherwise outputs 0.

Definition 47 “Pirating against atk by ACA” game is the same as atk by ACA game except in the

following points:
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• Challenge Query: A sends C a pirate decoder D and S† ∈ {1, . . . , N}, where D is a probabilistic

circuit that takes as input a header S, hdr, and pkey and outputs some key key. Then C runs

S‡ ← RevokeD(S†, pkey, tkey, ε). C accepts no Extraction and Decryption queries hereafter.

• Answer: A sends nothing. C outputs 1 if either of the following two conditions hold:

– Pr[D(S†, hdr†,pkey) = key†|(key†, hdr†) ← Enc(S†, pkey))] ≥ ε.

– (S† \ S‡) 6⊂ T ;

Otherwise outputs 0.

Definition 48 (Key Indistinguishable) We say a traitor revocable encryption scheme is key indis-

tinguishable against atk by ACA if, for all N , polynomials f , and A, the difference between 1/2 and

the probability of C outputting 1 in the key distinguishing against atk by ACA game is negligible in κ.

Definition 49 (Black-Box Traitor Revocable) We say a traitor revocable encryption scheme is

black-box traitor revocable against atk by ACA if, for all N , polynomials f , and A, the probability of

C outputting 1 in the pirating against atk by ACA game is negligible in κ.

6.3 Black-Box Traitor Revocation and Strong Index Hiding

We define a strong index hiding property of traitor revocable encryption schemes. Later, we will prove

that schemes with this property are black-box traitor revocable. In terms of the traitor tracing scheme

of [25], this property corresponds to the existence of corresponding linear broadcast encryption. But the

property we present here is stronger than the previous one so that we can characterize the revocability.

Suppose that Probe is an algorithm that, given tkey,pkey, S†, and an index u ∈ {1, . . . , N}, outputs

a header (key†, hdr†).

(key†, hdr†) ← Probe(tkey, pkey, S†, u).

We consider several games by which we formalize strong index hiding property.

Definition 50 “strong-index distinguishing against atk by ACA” game is the same as atk by ACA

game except in the following points:

• Challenge: A sends C a set S† ⊂ {1, . . . , N}. Then C chooses arbitrary u such that u 6∈ T ∩ S†,

randomly chooses b ∈R {0, 1}, and runs

(key†, hdr†) ← Probe(tkey, pkey, S†, u + b)
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Then, C provides (u, hdr†) to A. C accepts no Extraction and Decryption queries hereafter.

• Answer: A sends b′ ∈ {0, 1}. Then C outputs 1 if b′ = b, otherwise outputs 0.

Definition 51 “boundary condition checking against atk by ACA” game is the same as strong-index

distinguishing against atk by ACA game except that u is fixed to N + 1.

Definition 52 We say Probe of a traitor revocable encryption scheme satisfies boundary condition

against atk by ACA if, (1) for all N , polynomials f , and A, the difference between 1/2 and the probability

of C outputting 1 in the boundary condition checking against atk by ACA game is negligible in κ and

(2) if the distribution of Probe(tkey,pkey, S†, 1) and that of Enc(pkey, S†) are identical.

Definition 53 (Strong Index Hiding) We say a traitor revocable encryption scheme is strong index

hiding against atk by ACA if, there exists Probe, which satisfies boundary condition against atk by

ACA, such that, for all N , polynomials f , and A, the difference between 1/2 and the probability of C

outputting 1 in the strong-index distinguishing game against atk by ACA game is negligible in κ.

The above boundary condition checking game is almost the same to the message hiding game in [25].

The strong-index distinguishing game is almost the same to index hiding game in [25] except that our

S† is not necessarily {1, . . . , N}. Therefore, the truly new property is defined in the case where u 6∈ S†.

In the revocation procedure, we are always able to find malicious users in S†. This is because, infor-

mally, according to the new property, only users in S† are relevant for distinguishing Probe(tkey,pkey, S†, 1)

from Probe(tkey,pkey, S†, N + 1). Once we found a malicious user in S†, we are able to exclude this

detected user from S†. Repeating this procedure, we can successfully revoke all and only malicious user

relevant to pirating.

Theorem 25 If the traitor revocable encryption is strong index hiding against atk by ACA and D is

resettable, then it is black-box traitor revocable against atk by ACA.

Proof. We first construct Revoke that uses Probe. In this algorithm, the following procedure Estimate()

is repeatedly invoked.

Procedure pi ← Estimate(i, S†, tkey, pkey, ε, k) is as in the following:

1. Do the following 8nk/ε times:

(i) Generate (key†, hdr†) = Probe(tkey, pkey, S‡, i).

(ii) Reset D.

(iii) Run key‡ ← D(S‡,hdr†,pkey) and compare with key†.
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2. Based on the above comparison, calculate pi as the probability that key‡ = key† holds.

Now, Revoke is as in the following:

1. Revoke is given tkey, pkey, S†, and black-box access to a pirate decoder D. It sets S‡ = S†.

2. Until Revoke stops, do the following:

(i) Run p1 ← Estimate(1, S‡, tkey, pkey, ε, k).

(ii) For i = 2 to N + 1 do the following:

i. If i 6∈ S‡, pi = pi−1.

ii. If i ∈ S‡, Revoke runs pi ← Estimate(i, S‡, tkey, pkey, ε, k)

(iii) For all i such that |pi − pi+1| ≥ ε/4n, S‡ ← S‡ \ i. If there is no such i, output S‡ and stop,

otherwise, go to Step 2i.

Lemma 46 If a traitor revocable encryption is strong index hiding against atk by ACA, then by using

the above introduced Revoke, one can successfully revoke traitors in black-box manner, i.e., it is black-box

traitor revocable against atk by ACA. The running time is O(ts3) where t is the number of colluders

and s is the size of subset of user who can decrypt ciphertext.

A proof sketch: Using hybrid argument, the lemma can be proved in the same manner as to prove the re-

duction from traitor tracing to linear broadcast encryption in [25]. The only difference is that once i is ex-

cluded from S†, Ri is irrelevant to distinguishing Probe(tkey,pkey, S†, 1) from Probe(tkey, pkey, S†, N +

1). Hence, the proof is omitted. ¤
The theorem follows from Lemma 46 ¤
The running time can be reduced to O(ts2) by using binary search.

6.4 Preliminaries

We describe basic facts and complexity assumptions that our scheme depends on.

Definition 54 Bilinear Maps of composite order

1. G and GT are two cyclic groups of prime order n = pq where p and q are distinct primes.

2. Ĝ and ĜT are, respectively, order q subgroups of G and GT .

3. Ǧ and ǦT are, respectively, order p subgroups of G and GT .

4. G,GT , Ĝ, ĜT , Ǧ, and ǦT are, respectively, generators of G,GT , Ĝ, ĜT , Ǧ, and ǦT .
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5. e : G × G → G1 is a map such that:

(i) Bilinear: For all U, V ∈ G and α, β ∈ Z/nZ, we have e([α]U, [β]V ) = e(U, V )αβ.

(ii) Non-degenerate: e(G,G) is GT a generator of GT .

We define a “General Bilinear Decision Problem” in the generic bilinear group of composite order,

which is a generalization of “General Diffie-Hellman Exponent problem” of [21] in the generic bilinear

group model [19].

Definition 55 General Bilinear Decision Problem of Composite Order: Let n be a composite

of two primes and s,m be two positive integer constants. Let G and GT be as defined above. Let P =

(p1, . . . , ps), Q = (q1, . . . , qs), P ′ = (p′1, . . . , p
′
s), Q

′ = (q′1, . . . , q
′
s) ∈ (Z/nZ)[X1, . . . , Xm]s and where p1 =

q1 = p′1 = q′1 = 1. Let P (x1, . . . , xn) denote (p1(x1, . . . , xm), . . . , ps(x1, . . . , xm)) and [P (x1, . . . , xm)]G =

[p1(x1, . . . , xm)]G, . . . , [ps(x1, . . . , xm)]G. We use similar notation for Q,P ′, Q′.

We say a algorithm B solves general bilinear decision problem of composite order with respect to

(P,Q) and (P ′, Q′) if

|Pr[B([P (x1, . . . , xn)]G, [Q(x1, . . . , xn)]GT ) = 1]

−Pr[B([P ′(x1, . . . , xn)]G, [Q′(x1, . . . , xn)]GT ) = 1]|

is not negligible, where x0, . . . , xn ∈R Z/nZ are randomly chosen.

We say (P,Q) and (P ′, Q′) are dependent if there exists tuple of s2 + s constants

{aij}i=1,...,s,j=1,...,s, {bi}i=1,...,s such that either

0 ≡
s∑

i,j=1

aijpipj +
s∑

i=1

biqi , 0 6≡
s∑

i,j=1

aijp
′
ip

′
j +

s∑
i=1

biq
′
i

or

0 6≡
s∑

i,j=1

aijpipj +
s∑

i=1

biqi , 0 ≡
s∑

i,j=1

aijp
′
ip

′
j +

s∑
i=1

biq
′
i

holds. Here, each non zero coefficient of
∏n

i=1 xi
ti must be in (Z/nZ)∗. This is because we assume the

factoring of n is hard.

We say that a general bilinear decision problem composite order with respect to (P,Q) and (P ′, Q′)

is independent if (P,Q) and (P ′, Q′) are not dependent.

The above definition is straight forward generalization of the general Diffie-Hellman Exponent prob-

lem, where the difference between (P,Q) and (P ′, Q′) is only one element in Q and Q. That element is
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denoted as f in [21]. Note that, if we allow coefficients to be a non zero divisor of Z/nZ, then, with the

corresponding {aij} and {bi}, it is easy to distinguish randomly chosen elements of Ĝ and G.

Theorem 26 In the generic bilinear group model of composite order, no polynomial time algorithm

solves, in non-negligible probability, any of general bilinear decision problem of composite order with

respect to (P,Q) and (P ′, Q′) which are independent.

A proof sketch: In the generic bilinear group model, except group operations, the only comparison

between two elements that adversaries can do is equality checking. And coincidence of two polynomials,

when their variables are fixed to randomly chosen values, occurs only with negligible probability unless

these polynomials are equivalent. Hence the theorem holds. Moreover, the lower bound on the advantage

of solving the problem can be estimated in the same manner as in the [21]. Hence, the proof detail is

omitted. ¤
The generic bilinear group model of prime order and its general decision problem is defined in the

similar way.

6.5 Basic Scheme

We now propose a secret key traitor revocable public-key encryption scheme that is key indistinguishable

and black-box traitor revocable against chosen plaintext attacks by adaptively colluding adversaries in

the generic bilinear group model.

The key point of our scheme lies in the new broadcast encryption portion. We can say that, in the

broadcast encryption scheme proposed in [24], the result of decryption by all non-revoked users is the

data of the form e(G,G)α`+1
, but that of all the revoked users is 10. Hence, non-revoked users can check

that the ciphertext is correctly generated. In our scheme, the result of decryption by all non-revoked

users is the data of the form M · 10, but that of (i, j)-th user who is revoked will be M · e(G, G)σjθiα
`+1

.

The fact values e(G,G)σjθiα
`+1

differ each other prevents revoked users check the ciphertexts.

Let Λ be the product set {1, . . . , `}2 such that each element corresponds to each receiver, Λj ⊂ Λ be

a subset {(1, . . . , `}, j), and let p, q be sufficiently large primes, n = pq, G and GT be order n (elliptic

curve) cyclic groups such that bilinear map e : G ×G → GT exists, Ĝ and Ǧ be subgroups of G such that

their orders are q and p respectively. Let S̄ be the complement of S in {1, . . . , `}2. Similar notation is

used for other sets such as S∗, S†, S‡.

Gen: Given 1k and `, Gen chooses composite order n cyclic groups G and GT with e of size k. Gen

symmetrically and randomly chooses

Ĝ ∈R Ĝ , Ǧ ∈R Ǧ
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η̂ ∈R Z/qZ , η̌ ∈R (Z/pZ)∗

ξ̂ ∈R Z/qZ , ξ̌ ∈R (Z/pZ)∗

ζ̂ ∈R Z/qZ , ζ̌ ∈R (Z/pZ)∗

α̂ ∈R Z/qZ , α̌ ∈R (Z/pZ)∗

(β̂j)j=1,...,` ∈R (Z/qZ)` , (β̌j)j=1,...,` ∈R ((Z/pZ)∗)`

(δ̂j)j=1,...,` ∈R (Z/qZ)` , (δ̌j)j=1,...,` ∈R ((Z/pZ)∗)`

(γ̂i)i=1,...,` ∈R (Z/qZ)` , (γ̌i)i=1,...,` ∈R ((Z/pZ)∗)`

(θ̂(k))k=1,...,` ∈R (Z/qZ)` , (θ̌(k))k=1,...,` ∈R ((Z/pZ)∗)`

Next, Gen symmetrically generates

Ĥ = [ξ̂]Ĝ , Ȟ = [ξ̌]Ǧ

Ĝ′ = [η̂]Ĝ , Ǧ′ = [η̌]Ǧ

Ĥ ′ = [η̂]Ĥ

M̂ = [ζ̂]Ĝ , M̌ = [ζ̌]Ǧ

(B̂j)j=1,...,` = ([β̂j ]Ĝ)j=1,...,` , (B̌j)j=1,...,` = ([β̌j ]Ǧ)j=1,...,`

(B̂′
j)j=1,...,` = ([β̂j ]Ĝ′)j=1,...,`

(Ĥj)j=1,...,` = ([β̂j ]Ĥ)j=1,...,` , (Ȟj)j=1,...,` = ([β̌j ]Ȟ)j=1,...,`

(Ĥ ′
j)j=1,...,` = ([β̂j ]Ĥ ′)j=1,...,`

(Ĝi)i=1,...,2` = ([α̂i]Ĝ)i=1,...,2` , (Ǧi)i=1,...,2` = ([α̌i]Ǧ)i=1,...,2`

(Ĝ′
i)i=1,...,2` = ([α̂i]Ĝ′)i=1,...,2`

(D̂j)j=1,...,` = ([δ̂j ]Ĝ)j=1,...,` , (Ďj)j=1,...,` = ([δ̌j ]Ǧ)j=1,...,`

(D̂′
j)j=1,...,` = ([δ̂j ]Ĝ′)j=1,...,`

(Ĵi)i=1,...,` = ([γ̂i]Ĝ)i=1,...,` , (J̌i)i=1,...,` = ([γ̌i]Ǧ)i=1,...,`

(X̂(k)
i )k=1,...,`;i=1,...,2` = ([θ̂(k)]Ĝi)k=1,...,`;i=1,...,2` ,

(X̌(k)
i )k=1,...,`;i=1,...,2` = ([θ̌(k)]Ǧi)k=1,...,`;i=1,...,2` ,

m̂ = e(Ĝ, M̂) , m̌ = e(Ǧ, M̌)

m̂′ = e(Ĝ′, M̂)
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Next, by combining them, Gen generates

G = Ĝ + Ǧ

H = Ĥ + Ȟ

(Gi)i=1,...,2` = (Ĝi + Ǧi)i=1,...,2`

(Dj)j=1,...,` = (D̂j + Ďj)j=1,...,`

(Bj)j=1,...,` = (B̂j + B̌j)j=1,...,`

(Hj)j=1,...,` = (Ĥj + Ȟj)j=1,...,`

(Ji)i=1,...,` = (Ĵi + J̌i)i=1,...,`

(X(k)
i )k=1,...,`;i=1,...,2` = (X̂(k)

i + X̌
(k)
i )k=1,...,`;i=1,...,2`

m = m̂ + m̌

Finally, Gen outputs

pkey = {m, (G,H), (Bj , Hj)j=1,...,`, (Gi)i=1,...,`,`+2,...,2`, (Dj)j=1,...,`,

m̂′, (Ĝ′ ), (B̂′
j , Ĥ

′
j)j=1,...,`, (Ĝ′

i)i=1,...,`,`+2,...,2`, (D̂′
j)j=1,...,`,

(Ji)i=1,...,`, (X
(k)
i )k=1,...,`;i=1,...,`,`+2,...,2`}

mkey = {ζ̂, ζ̌, α̂, α̌, (δ̂j , δ̌j , β̂j , β̌j)j=1,...,`, (γ̂i, γ̌i)i=1,...,`}

tkey = Ǧ

Ext: Given a receiver identity (i, j) ∈ {1, . . . , `}2, mkey, and pkey, Ext generates

K̂ij = [δ̂jα̂
iθ̂i + ζ̂ + β̂j γ̂i]Ĝ , Ǩij = [δ̌jα̌

iθ̌i + ζ̌ + β̌j γ̌i]Ǧ , Kij = K̂ij + Ǩij .

Then, Ext outputs skeyij = Kij .

Enc: Given S ⊆ Λ, Enc randomly chooses k ∈ GT , (σj)j=1,...,` ∈R (Z/nZ)`, (εi)i=1,...,` ∈R (Z/nZ)`, τ ∈R

Z/nZ and generates

(cj , Êj , F̂j , R̂j , T̂j) =

k · m̂′σjτ , [σjτ ]Ĝ′, [σjτ ](D̂′
j +

∑
k∈S̄∩Λj

Ĝ′
`+1−k), [σj ]B̂′

j , [σj ]Ĥ ′
j


(Si, Ui) = ([τ ]Ji + [εi]H, [εi]G)
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for i, j = 1, . . . , `. Then, Enc outputs, a tuple

hdrS = ((cj , Êj , F̂j , R̂j , T̂j)j=1,...,`, (Si, Ui)i=1,...,`)

Dec: Suppose that hdrS , pkey, and skeyij such that (i, j) ∈ S are given. Dec generates

k̂ij =
e(X(i)

i , F̂j)

e(Êj ,Kij +
∑

k∈S̄∩Λj
X

(i)
`+1−k+i)

· e(R̂j , Si)
e(T̂j , Ui)

Then, Dec outputs key = k = cj · k̂ij .

Revoke: We give the description of Probe. Revoke works by using this algorithm.

Probe: Suppose that S ⊆ Λ and (̄i, j̄) ∈ S are given. Probe randomly chooses k ∈R GT , (σj)j=1,...,` ∈R

(Z/nZ)`, τ ∈R Z/nZ, (k′
j)1,...,j=j̄−1 ∈R (GT )j̄−1, (σ′

j)1,...,j=j̄−1 ∈R (Z/nZ)j̄−1 and generates

(cj , Êj , F̂j , R̂j , T̂j)j=1,...,` as in the following:

For j > j̄,

k · e(Ĝ′,M)σjτ , [σjτ ]Ĝ′, [σjτ ](D̂′
j +

∑
k∈S∩Λj

Ĝ′
`+1−k), [σj ]B̂′

j , [σj ]Ĥ ′
j

 .

For j = j̄,

k · e(G,M)σj̄τ , [σj̄τ ]G, [σj̄τ ](Dj̄ +
∑

k∈S∩Λj̄

G`+1−k), [σj̄ ]Bj̄ , [σj̄ ]Hj̄

 .

For j < j̄,

k′
j · e(G,M)σjτ , [σjτ ]G, [σjτ ](Dj +

∑
k∈S∩Λj

G`+1−k), [σ′
j ]Bj , [σ′

j ]Hj

 .

Next, Probe randomly chooses (εi)i=1,...,` ∈R (Z/nZ)`, (ε′i)i=1,...,̄i ∈R (Z/nZ)` and generates

(Si, Ui)i=1,...,` as in the following:

For i ≥ ī, ([τ ]Ji + [εi]H, [εi]G).

For i < ī, ([τ ]Ji + [εi]H + [ε′i]Ǧ, [εi]G).

Then, Enc outputs, a tuple hdrS = ((cj , Êj , F̂j , R̂j , T̂j)j=1,...,`, (Si, Ui)i=1,...,`).

Theorem 27 The scheme is complete.

Theorem 28 The basic scheme is key indistinguishable against CPA by ACA in the generic bilinear

group model.
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Our scheme [26] [25] [24]

private key length O(1) O(
√

N) O(1) O(1)
ciphertext length O(

√
N) O(

√
N) O(

√
N) O(1)

public key length O(N) O(
√

N) O(
√

N) O(N)
black-box revoking secret-key secret-key N/A N/A

Table 6.1: Complexity of schemes

Theorem 29 The basic scheme is black-box traitor revocable against CPA by ACA in the generic bilinear

group model.

The proof or proof sketch of the above three theorems are given in Section 6.7.

6.6 Efficiency and Security against CCA

Suppose the total number of user is N and the total number of traitor is t ≤ N . The basic scheme

requires the size of private keys to be O(1), that of ciphertexts to be O(
√

N), and that of public key

to be O(N). The cost for revocation in black-box manner is O(ts2). The proposed scheme is compared

with other schemes in Table 6.1 Although the size of public key in our scheme is O(N). the size of public

key that each receiver accesses is O(
√

N). Receivers are not required to access to the public key as long

as the ciphertexts are distributed to the same set of receivers.

The basic scheme is secure only against chosen plaintext attacks. One is able to construct the black-

box traitor revocable broadcast encryption scheme that is secure against “adaptive chosen ciphertexts”

by adaptively colluding adversaries in the generic bilinear group if one uses the technique of [38]. Since

this is the trivial extension of the basic scheme, we omit the detail of its construction here.

6.7 Security of the Basic Scheme

Theorem 3 The scheme is complete.

Proof.

k̂ij =
e(X(i)

i , F̂j)

e(Êj ,Kij +
∑

k∈S̄∩Λj
X

(i)
`+1−k+i)

· e(R̂j , Si)
e(T̂j , Ui)

=
e([θi]Gi, [σjτ ](D̂′

j +
∑

k∈S̄∩Λj
Ĝ′

`+1−k))

e([σjτ ]Ĝ′, [δjαiθi]G + M + [βjγi]G +
∑

k∈S̄∩Λj
[θi]G`+1−k+i)
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·
e([σj ]B̂′

j , [τ ]Ji + [εi]H)

e([σj ]Ĥ ′
j , [εi]G)

=
e([θiα

i]G, [σjτ ]([ηδj ]Ĝ +
∑

k∈S̄∩Λj
[η]Ĝ`+1−k))

e([σjτ ][η]Ĝ, [δjαiθi]G + M + [βjγi]G +
∑

k∈S̄∩Λj
[θi]G`+1−k+i)

·e([σj ][ηβj ]Ĝ, [τ ][γi]G + [εi]H)
e([σj ][ηβj ]Ĥ, [εi]G)

=
e([θiα

i]G, [σjτη]([δj ]Ĝ +
∑

k∈S̄∩Λj
Ĝ`+1−k))

e([σjτη]Ĝ, [δjαiθi]G + M + [βjγi]G +
∑

k∈S̄∩Λj
[θi]G`+1−k+i)

·e([βjσjη]Ĝ, [τγi]G + [εi]H)
e([βjσjη]Ĥ, [εi]G)

=
e([θiα

i]G, [σjτη]([δj ]Ĝ +
∑

k∈S̄∩Λj
Ĝ`+1−k))

e([σjτη]Ĝ, [δjαiθi]G + M +
∑

k∈S̄∩Λj
[θi]G`+1−k+i)

·e([βjσjη]Ĝ, [τγi]G)
e([σjτη]Ĝ, [βjγi]G)

· e([βjσjη]Ĝ, [εi]H)
e([βjσjη]Ĥ, [εi]G)

= e(Ĝ,M)−σjτη

= e(Ĝ′,M)−σjτ

Then,

k = cj k̂ij

= k · e(Ĝ′,M)σjτe(Ĝ′,M)−σjτ

= k

¤

Theorem 4 We assume the generic bilinear group model, the subgroup decision assumption, and the

bilinear subgroup decision assumption. Then, the basic scheme is traitor revocable against CPA by ACA.

A proof sketch:

Lemma 47 In the generic bilinear group model, no polynomially bounded adversary wins strong-index

indistinguishable against CPA by ACA game when u = (̄i, j̄) 6= (`, j) for all j.

Proof.

We consider C that knows all the secrets and runs Gen, Ext, and Probe in the generic bilinear group

model. Operations in the generic bilinear group of order pq are executed by running two generic bilinear

groups of order p and q in parallel. That is, each element in groups of order pq are represented as a pair

of elements in groups of order p and order q.
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We focus on the elements of Ǧ and ǦT . Hence, we assume C gives the adversary Ǧ and ǦT components

of each element in G and GT . Moreover, we assume the adversary has Ǧ. Hence, we no longer need to

consider revocation queries. In the following we removed all “ ˇ ” for simplicity.

From pkey and (skeyij)(i,j)∈T . The adversary obtains the [P1]Ǧ and [Q1]ǦT for the following P1 and

Q1.

P1 = (ξ,

(βj)j=1,...,`,

(βjξ)j=1,...,`,

(αi)i=1,...,`,`+2,...,2`,

(δj)j=1,...,`,

(γi)i=1,...,`,

(θ(k)αi)k=1,...,`;i=1,...,`,`+2,...,2`

(δjα
iθ(i) + ζ + γiβj)(i,j)∈T ,

Q1 = (ζ)

We assume k are known to the adversary. If we consider the freedom of k′
j , σ̌j , σ̌

′
j for j < j̄, the

unsimulatable data that the adversary obtains from Probe is [f ]Ǧ, [P2]Ǧ and [Q2]ǦT for the following

P2 and Q2.

f = τγī + εīξ,

P2 = {f, σj̄τ, σj̄τ(δj̄ +
∑

k∈S̄†∩Λj̄

α`+1−k), σj̄βj̄ , σj̄βj̄ξ,

(τγi + ε′iξ, εi)i=1,...,̄i−1, εī, (τγi + εiξ, εi)i=ī+1,...,`, εī}

Q2 = σj̄τζ.

The distribution of above P = (P1, P2), Q = (Q1, Q2) is identical to the output of Probe is

Probe(tkey, pkey, S†, u = (̄i, j̄)). Let P ′ be identical to P except f is independent variable and Q′ be

identical to Q. Then the distribution of (P ′, Q′) is identical to that of Probe(tkey, pkey, S†, u = (̄i+1, j̄)).

Therefore, deciding whether u = (̄i, j̄) or u = (̄i + 1, j̄) in the generic bilinear group model is equivalent

to solving the general bilinear decision problem with respect to the (P,Q) and (P ′, Q′).

With tiresome exhaustive chasing of terms, we can see they are independent unless ((̄i, j̄) ∈ T ) ∩

((̄i, j̄) ∈ S†). Its rough view is given in the following.
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Suppose the problem is dependent, there should be term that contains f in the equivalent equation

since this is the only difference between the two distributions. Then quadratic terms that can include

εīξ in f must exists and it is only ξ · εī and εī · σj̄βj̄ξ. Then, the quadratic terms that can include the

remaining τγī in f are

γī · σj̄τ , γī · σj̄τ(δj̄ +
∑

k∈S̄†∩Λj̄

α`+1−k)

(δjα
īθ(̄i) + ζ + γīβj) · σj̄τ , (δjα

īθ(̄i) + ζ + γīβj) · σj̄τ(δj̄ +
∑

k∈S̄†∩Λj̄

α`+1−k)

The first two and 4-th terms can provide f no its counter term. The only possibility is the term

(δj̄α
īθ(̄i) + ζ + γīβj̄) · σj̄τ when (̄i, j̄) ∈ T , where the counter term of f is the term σj̄βj̄ . Hence, at least

(̄i, j̄) ∈ T should hold for f to be dependent of P ad Q.

Continuing term chasing, we see that there should be a term that cancels (δj̄α
īθ(̄i) +ζ)σj̄τ . The only

term that can cancel δj̄α
īθ(̄i)σj̄τ is the term

θ(̄i)αī · σj̄τ(δj̄ +
∑

k∈S̄†∩Λj̄

α`+1−k)

Then, the resulting term that we must cancel are

θ(̄i)σj̄τ
∑

k∈S̄†∩Λj̄

α`+1−k+ī

If ī 6∈ S̄† ∩Λj̄ , all terms can be canceled by quadratic terms σj̄τ · θ(̄i)α`+1−k+ī. However, if ī ∈ S̄† ∩Λj̄ ,

i.e., ī 6∈ S†, we see no term that can cancel the term

σj̄θ
(̄i)α`+1τ.

Hence, at least (̄i, j̄) ∈ S should hold for f to be dependent of P ad Q. Note that the factor σj̄θ
(̄i)

depends on both ī and j̄. If it depends on only either of indices, such a term can be generated from

the data related to other indices such as (i, j̄) or (̄i, j). This is why we modified the basing broadcast

encryption scheme in [24].

(The term ζσj̄τ can be canceled by chasing the term (δj̄α
iθ(i) + ζ)σj̄τ for (i, j̄) ∈ S†. This term

chasing is almost reverse of the above term chasing with respect to (i, j̄). ) Therefore, the lemma is

proved. ¤

Lemma 48 In the generic bilinear group model of composite order, no polynomially bounded adversary
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wins strong-index indistinguishable against CPA by ACA game when u = (̄i, j̄) = (`, j) for some j.

Proof. We consider the following 5 distributions. Idea to consider these distributions are introduced in

[25].

D1 The output distribution of Probe(tkey, key, S†, u = (`, j)).

D2 The output distribution of Probe(tkey, key, S†, u = (` + 1, j)).

D3 Same as the output distribution of Probe(tkey, key, S†, u = (`+1, j)) except that [σj̄ ]Bj̄ , and [σj̄ ]Hj̄

in j̄-th row are replaced with [σ′
j̄
]Bj̄ , and [σ′

j̄
]Hj̄ where k′

j ∈ GT , σ′
j̄
∈R G are randomly chosen.

D3’ Same as the output distribution of Probe(tkey, key, S†, u = (` + 1, j)) except that k, [σj̄ ]Bj̄ , and

[σj̄ ]Hj̄ in j̄-th row are replaced with k′
j̄
, [σ′

j̄
]Bj̄ , and [σ′

j̄
]Hj̄ where k′

j ∈ GT , σ′
j̄
∈R G are randomly

chosen.

D4 Same as the output distribution of Probe(tkey, key, S†, u = (1, j + 1)) except that Ĝ′, Ĝ′
i, D̂

′
j̄+1

,

[σ̂j̄+1]B̂′
j̄+1

, and [σ̂j̄+1]Ĥ ′
j̄+1

in (j̄ + 1)-th row are replaced with G,Gi, Dj̄+1, [σj̄+1]Bj̄+1, and

[σj̄+1]Hj̄+1.

D5 Probe(tkey, key, S†, u = (1, j + 1)).

Here, Probe(tkey, key, S†, u = (` + 1, j)) is defined in natural way as in [25]. Then, we will prove that

distributions D1 and D5 are indistinguishable.

Distinguishability between D1 and D2 can be analyzed exactly in the same way as in Lemma 47.

Indistinguishability between D2 and D3 in the generic bilinear group model can be proved by ex-

haustive term chasing as we did in Lemma 47. But this term chasing ends much earlier. Here we may

assume f = σj̄βj̄ and ξ is revealed to the adversary.

Indistinguishability between D3 and D3′ in the generic bilinear group model can be proved by

exhaustive term chasing as we did in Lemma 47. But this term chasing ends much earlier. Here we

assume f = σj̄τζ and prove independence in the sense of the general Diffie-Hellman exponent problem.

Indistinguishability between D3 and D4 in the generic bilinear group model can be proved by ex-

haustive term chasing. Here, we use hybrid argument. Indistinguishability of its each step is proved by

exhaustive term chasing which is similar to that we do for proving the indistinguishability between D2

and D3.

Indistinguishability between D4 and D5 can be proved easily if the adversary asks no revocation

queries. This is because it can be reduced to a subgroup decision assumption. But such simplified case

is not the case we are considering. Because of the symmetry between elements of order q and elements

of order n in pkey, mkey, and skey, the two distributions are independent unless outputs of Probe are
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considered. Hence, non equivalent terms arises from factor [ε′i]Ĝ. However, as we saw in the proof of

Lemma 47, the only term that can couple is the corresponding σj̄βj̄ . Then, since ε′i · σj̄βj̄ is already

quadratic term, we are unable to generate dependent relations. Thus, the exhaustive term chasing

terminates. Therefore, the lemma is proved. ¤

Lemma 49 The Probe in the basic scheme satisfies boundary condition against CPA by ACA.

A proof sketch: The only difference between our basic scheme and the scheme in [25] is that our scheme

uses e(X(i)
i , F̂j) and

∑
k∈S̄∩Λj

X
(i)
`+1−k+i instead of Gx

sxt and Esxt in [25]. If we switch these values,

the proof that the scheme in [25] is message hiding can be well translated to the proof that our scheme

satisfies boundary condition against CPA by ACA. Hence, we omit to present the detail of this proof

here. ¤
From the above lemmas, the theorem follows. ¤

Theorem 5 The basic scheme is key indistinguishable against chosen plaintext attacks against CPA by

ACA in generic bilinear group model.

A proof sketch: The theorem is almost proven in Lemma 47. If we consider Q2 as f in the general

Diffie-Hellman exponent problem presented in [21]. We can easily reconstruct the proof of this lemma

from the proof of Lemma 47. ¤
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Chapter 7

Group Signature for Separate and

Distributed Authorities

7.1 Introduction

A group signature scheme, first proposed by Chaum and van Heyst [44] and followed by [6, 7, 19, 30,

32, 33, 35, 121], allows a group member who has registered with the group to sign messages on behalf

of a group without revealing his own identity. One notable feature of the group signature scheme is the

existence of an authority that can identify this actual signer. In recent group signature schemes, this

authority, known as a group manager, also had the ability to add a user to a group. Such centralization

of power in a single entity, however, was considered undesirable.

To solve this problem, Kilian and Petrank proposed in [95] to separate these roles into a membership

manager, who would add new members to a group, and a tracing manager, who would identify actual

signers. Many similar separate-role group signature schemes [33, 6] followed. We believe that it is even

more preferable if the capabilities of the membership manager and the tracing manager can be efficiently

distributed, respectively. In this sense, the schemes in [33, 6] do not meet our goal, as the secret keys

used by the membership manager in these schemes are based on RSA. Namely, in case the RSA-based

scheme is used, authorities should collaboratively generate an RSA modulus in a setup process with its

prime factors kept secret to all the authorities, which would not be efficiently computable. Moreover, in a

process of member addition, it would take large computation for distributed membership managers every

time a new user is added. By way of contrast, in the scheme proposed in [7, 114], the secret key for adding

a new member is a discrete logarithm of a public key. Therefore the approach of [7, 114] seems promising

because distribution could be efficiently executed by using the method proposed in [130]. Unfortunately,
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the group signature scheme as is presented in [7] does not achieve separation of the membership manager

and the tracing manager since, in the scheme in [7], a resulting group signature contains the value which

is the output of a deterministic function. Then, those who knows all membership certificates can identify

the actual signer of the group signature from the value even if they do not know secret information for

tracing. Thus, the scheme in [7] does not achieve separation of authorities. As to [114], the proposed

scheme turns out to be insecure 1. Therefore, none of the scheme suites for separation and distribution

of the authorities, and the scheme that achieves separation of the above two authorities and distribution

of both capabilities is desired.

In this chapter, we give a first group signature scheme that achieves both separation and efficient

distribution of the membership manager and the tracing manager. In our scheme, the membership

manager uses the Nyberg-Rueppel signature scheme [123] to provide a group member with the ability to

create a group signature, and the tracing manager uses the ElGamal cryptosystem to trace the actual

signer. Both of these primitives are well-suited to distributed computations, and authority-distribution

on our scheme carried out efficiently. Moreover, in our proposed scheme, a signer creates a perfectly

hiding commitment of a membership certificate instead of a deterministic function in [7]. This prevents

the membership manager from identifying the signer from the signature, thus separation is achieved.

The price we pay for simultaneously achieving separation and distribution is the increase in signature

length and in computational costs, which is about 4.5 times larger than that of [7].

In this chapter, we also formalize the conditions required for security in the group signature scheme

in which authorities are both initially separated. The security definitions proposed in Bellare et al. [15]

only apply to the case in which all duties of group management are performed by a single manager, and

that manager is assumed to be honest. In contrast to this, we formalize our security definition in such

a way that (1) neither the tracing manager nor any other entity can add a new member, (2) neither

the membership manager nor any other entity can trace an actual signer, and (3) these two managers

cannot, even in collusion, create a group signature that would appear to be traceable to an individual

group manager. Later, similar security notions are independently proposed in [14, 93]. The security of

our proposed scheme can be proved in the random oracle and generic model.

7.2 The Model

In this section, we present a model of our group signature scheme and its security definitions. Note that

no previous work has specified security definitions for the case in which a membership manager and a

1In [114], finding (r, x, y) ∈ ZP × Z2
q satisfying ryrhxfy = 1 mod P is claimed to be difficult, where P = pq and

hq = yq = fq = 1 mod P . However, rq := r mod q = 1 holds since y = h = f = 1 mod q and finding rp ∈ Z∗
p such that

rpyrq hxfy = 1 mod p is clearly easy. Hence, from r mod p = rp and r mod q = 1, we have desired (r, x, y).
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tracing manager act independently of one another.

7.2.1 Model of Group Signature Scheme

Let b ← AL(a) denote an algorithm AL, where its input is a and its output is b. Let 〈c, d〉 ← IPA,B〈a, b〉

denote an interactive protocol IP between A and B, where private inputs to A and B are, respectively,

a and b, and outputs of A and B are, respectively, c and d.

Our model contains three main entity types: a membership manager (MM), a tracing manager

(TM), group members U , and a verifier V . The MM is able to add a new member to his group by

using a secret key which he generates. More specifically, when a user applies for membership, the MM

will conduct a joining procedure together with that user. In completing this procedure, the user will

obtain the information which will be required to create a group signature. Such information can only be

provided by the MM since the secret key of MM is required to generate it. The MM will subsequently

publish these information issued to users. These information would be required for the TM to identify

the actual signer of a group signature. The TM is able to identify the actual signer of a given group

signature by using a secret generated by himself.

The model of the group signature scheme is defined as follows. In this model, we do not consider

revocation for the sake of simplicity.

Definition 56 Players in the group signature scheme are a membership manager MM , a tracing man-

ager TM , a group member U and a verifier V . k ∈ N is a security parameter.

A group signature scheme GS consists of the following five algorithms and one interactive protocol.

(M-KeyGen, T-KeyGen, Join, Sign, Verify, Open),

• A probabilistic key generation algorithm for MM that, given a security parameter 1k, outputs a

membership public key mpk and a membership secret key msk.

(msk, mpk) ← M-KeyGen(1k)

• A probabilistic key generation algorithm for TM that, given mpk, outputs a tracing public key tpk

and a tracing secret key tsk.

(tsk, tpk) ← T-KeyGen(mpk)

• An interactive member registration protocol for the MM and a user U . MM is given mpk, msk,
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the user’s identity U2, and a list of all group members L. U is given mpk. If the interaction was

successful, U outputs a membership certificate certU , a membership secret skU , and an identifier

iderU and MM adds a pair (U, iderU ) to L and outputs this revised L.

〈(L), (certU , skU , iderU )〉

← JoinMM,U 〈(L, U,mpk, msk), (mpk)〉

• A probabilistic signature generation algorithm for a U that, given mpk, tpk, certU , skU , and a

message m, outputs a group signature gs on the message m.

gs ← Sign(mpk, tpk, certU , skU ,m)

• A deterministic signature verification algorithm for any V that, given mpk, tpk, m, and gs, returns

either acc or rej. Here, acc and rej represent, respectively, an acceptance and a rejection of the

signature.

acc/rej ← Verify(mpk, tpk,m, gs)

We say that a group signature gs on m is valid if acc ← Verify(mpk, tpk,m, gs).

• A deterministic signer tracing algorithm for the TM that, given mpk, tpk, tsk, m, and gs, outputs

⊥ if gs on m is not valid. Otherwise, it outputs (U, proof ), where proof assures the validity of the

result U . If the algorithm cannot find the actual signer in L, the algorithm outputs ⊥′ instead of

U .

⊥/(U/⊥′, proof ) ← Open(mpk, tpk, tsk,m, gs,L)

7.2.2 Security Definitions

In this section, we describe the security definitions of a group signature scheme that includes separation

of authorities. We define one security notion for each type of entities in the model. With respect to the

MM , we require that no one except the MM is able to successfully add a new member to the group.

With respect to the TM , we require that no one except the TM is able to successfully identify the actual

signer of a signature. With respect to the members, we require that no one except each member is able

2We use the same notation U for a user and the identity of this user U .
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to successfully create a signature which will be linked to his identity when opened by the TM . These

requirements, which is later defined specifically, clarifies the separation of the MM and the TM . We

call security properties corresponding the above requirements MM -invulnerability, TM -invulnerability,

member-invulnerability, respectively.

MM-invulnerability MM -invulnerability is the property that no colluding subset of the group mem-

bers, even colluding with the TM , can create a new signature such that the TM can, in any way, prove

that the signer of a signature is not in the member list L. Since a creation of a signature whose signer

does not belong to L implies adding a new member, MM -invulnerability implies that only the MM can

play the role of the MM . To define MM -invulnerability, we introduce an adversary A who attempts to

break the group signature scheme in terms of MM -invulnerability. Adversary A is allowed to collude

the TM and all group members. Formally, MM -invulnerability is defined as follows.

Definition 57 (MM-invulnerability) Let GS be a group signature scheme, and let A be an algorithm.

We consider the following experiment that returns 0/1. Here, we assume that Join protocols are executed

only sequentially.

Experiment ExpMI
GS,A(k)

(mpk, msk) ← M-KeyGen(1k)

(tpk,State) ← A(mpk)

Cont ← true

While Cont = true do

〈(L), (State, Cont)〉

← JoinMM,A〈(L, U, mpk, msk), (mpk, State)〉

EndWhile

(m, gs) ← A(State)

If rej ← Verify(mpk, tpk,m, gs) then return 0

If (⊥′, proof) ← Open(mpk, tpk, tsk, m, gs,L),

then return 1

Return 0

A group signature scheme GS has MM-invulnerability property if for all probabilistic,

polynomial-time machines A,

Pr[ExpMI
GS,A(k) = 1]
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is negligible in k.

TM-invulnerability TM -invulnerability is the property that, given a message and a group signature,

no colluding subset of the group members, even colluding with the MM , can identify the signer of the

signature unless the TM opens that very signature. TM -invulnerability implies that only the TM can

play the role of the TM . To define TM -invulnerability, we introduce an adversary A who attempts to

break a group signature scheme in terms of TM -invulnerability. Adversary A is allowed to collude the

MM and the all group members. A can also add a new member to the group using the colluding MM .

Formally, TM -invulnerability is defined as follows.

Definition 58 (TM-invulnerability) Let GS be a group signature scheme, let b ∈ {0, 1}, and let A

be an algorithm. We consider the following experiment that returns 0/1.

Experiment ExpTI
GS,A(k, b)

(mpk, State) ← A(1k)

(tpk, tsk) ← T-KeyGen(mpk)

(State, (cert0, sk0), (cert1, sk1),m)

← AOpen(mpk,tpk,tsk,·,·,·)(State, tpk)

gs ← Sign(mpk, tpk, certb, skb,m)

(b′ ∈ {0, 1} ← AOpen(mpk,tpk,tsk,·,·,·)(State, gs)

If A did not query Open oracle with (m, gs) after

gs is given, then return b′

Return 0

A group signature scheme GS has TM-invulnerability property if for all probabilistic polynomial-time

machines A,

Pr[ExpTI
GS,A(k, 0) = 1] − Pr[ExpTI

GS,A(k, 1) = 1]

is negligible in k.

Member-invulnerability Member-invulnerability is the property that no colluding subset of the

group members, even colluding both the MM and the TM , can create a group signature which is

traceable to any non-colluding member. Since to create a group signature of which the member’s

identity is identified is only allowed for this member, member-invulnerability implies that only each

member can play the role of this member. To define member-invulnerability, We introduce an adversary
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A who attempts to break the group signature scheme in terms of member-invulnerability. Adversary

A is allowed to collude with the MM , the TM , and any subset of the group members. Formally,

member-invulnerability is defined as follows.

Definition 59 (Member-invulnerability) Let GS be a group signature scheme, and let A be an al-

gorithm. We consider the following experiment that returns 0/1.

Experiment ExpUI
GS,A(k)

(mpk, tpk, State) ← A(1k)

〈State, (certU , skU , iderU )〉 ← JoinA,U 〈State,mpk〉

If the tuple (certU , skU , iderU ) is not valid

then return 0

(m, gs,L) ← ASign(mpk,tpk,certU ,skU ,·)(State)

L ← L ∪ {(U, iderU )}

If rej ← Verify(mpk, tpk,m, gs) then return 0

If (U, proof) ← Open(mpk, tpk, tsk,m, gs,L)

and m was not queried by A to the signing oracle

Sign, then return 1

Else return 0

A group signature scheme GS has member-invulnerability property if for all probabilistic polynomial-

time machines A,

Pr[ExpUI
GS,A(k) = 1]

is negligible in k.

Separation of the roles of the managers. From MM -invulnerability and TM -invulnerability, we

can see that the TM cannot have the ability to add a new member and that the MM cannot have

the ability to identify the signer of a signature. Hence, these definitions imply the complete separation

of roles of the TM and the MM . With member-invulnerability, other required notions of security for

group signatures are satisfied also. Note that the schemes proposed in [7] do not satisfy the notion of

TM -invulnerability.

Relation to the previous definitions. Our definition of TM -invulnerability roughly corresponds

to the full-anonymity [15]. If the TM and the MM are unified, the sum of MM -invulnerability and

163



member-invulnerability roughly corresponds to full-traceability [15]. As in the case of [7, 94], we are

considering the case where the group manager(s) are dishonest and new members are allowed to join the

group.

7.3 Building Blocks

The proposed scheme uses signatures of knowledge [35], a verifiable encryption [143], and the Nyberg-

Rueppel signatures [123].

Signature of knowledge. A signature of knowledge is a transformation of corresponding special

honest-verifier zero-knowledge interactive proof by using Fiat-Shamir heuristics [60]. A signature of

knowledge is denoted by SPK[α1, . . . , αm : f(α1, . . . , αm) = 0], where α1, . . . , αm is secret information

for a prover, and f(α1, . . . , αm) = 0 is an equation that α1, . . . , αm satisfy. A prover can show a verifier

that he knows variables α1, . . . , αm such that f(α1, . . . , αm) = 0 holds.

The proposed scheme uses two types of signatures of knowledge as building blocks. One is a signature

of knowledge of representations denoted by

SPK

[
α1, . . . , αu :

(
y1 =

∏
j∈J1

g
αe1j

j

)
∧ · · · ∧

(
yn =

∏
j∈Jn

g
αenj

j

)]
(m),

where the indices eij ∈ {1, . . . , u} correspond to the secrets α1, . . . , αu and the elements of Ji are indices

corresponding to the base elements g1, . . . , gl. The other is a signature of knowledge for a range denoted

by

SPK[α, β : E = gαhβ ∧ α ∈ [0, b]].

The underlying protocol of this signature of knowledge relies on the interactive proof that a committed

value is in an interval [127]. The scheme proposed in [127] can be constructed only based on the

discrete logarithm (DL) problem. In this scheme, a verifier of the signature of knowledge convinces that

α ∈ [−b, 2b], and only when α ∈ [0, b], the verifier gains no knowledge about α.

There are some more efficient scheme such as [27] in which an RSA modulus is used to make a

signature size smaller. It is sufficient to use the scheme in [27] as a proof of the range if authorities

are distributed only in the member addition. If distributing authorities require an efficient setup, the

DL-based scheme such as [127] is suitable. In this chapter, we adopt the scheme for an efficient setup

by the distributing authorities.
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Verifiable Encryption. A verifiable encryption scheme is an encryption scheme in which a verifier

can confirm that a ciphertext C is an encryption of a value such that c = gx. In our scheme, we use a

variant of verifiable encryption that uses perfectly hiding commitment c′ = gxhy instead of c = gx.

Nyberg-Rueppel Signatures. Originally, the Nyberg-Rueppel signature was proposed as a variant

of the ElGamal signature scheme with message recovery. In our scheme, we use a variant of the Nyberg-

Rueppel signature called a modified Nyberg-Rueppel signature in [8] which removes the property of

message recovery. The modified Nyberg-Rueppel signature is existentially unforgeable under the chosen

message attack (EUF-CMA) in the random oracle and generic model [8].

7.4 A New Group Signature Scheme

In this section, we give a new group signature scheme that achieves complete separation of the member-

ship manager and the tracing manager. Moreover, the authority of each manager is easily distributed

by applying the distributed computation. Our scheme satisfies MM -invulnerability, TM -invulnerability

and member-invulnerability defined in Section 7.2.2 in the random oracle and generic model.

7.4.1 Basic Idea

At first, the MM generates domain parameters (p, q, P, g, h, f,G,H,H). Then, the MM and the TM

generate their public-key/secret-key pairs by executing M-KeyGen and T-KeyGen respectively. Their

secret keys are discrete logarithm of their public keys. A membership certificate 〈rU , ξU 〉 that the MM

issues to a member U is the Nyberg-Rueppel signature on the message IU given by U during the JOIN

protocol. The group signing key σU for a member U is a discrete logarithm of IU with respect to g.

In SIGN procedure, a member U first generates an ElGamal ciphertext of a part of its membership

certificate rU with the tracing public key of the TM . Next, the member U generates a signature of

knowledge [35], which proves that (1) the knowledge of a membership certificate 〈rU , ξU 〉 and a group

signing key σU , (2) the knowledge of plaintext r′U of the ElGamal ciphertext (g′, e′), and (3) the fact

that the rU and r′U are the same. The TM identifies the signer of a group signature by decrypting the

membership certificate of the signer rU from the ElGamal ciphertext (g′, e′) in the signature.

Roughly, to make the correct signature, a member U needs to prove the knowledge of σU , which is

possible only by the valid member. This implies member-invulnerability. For an adversary to generate

a signature that is not linked to any existing member, the adversary needs to knows a new membership

certificate, which means forging of the Nyberg-Rueppel signature. This implies MM -invulnerability.

In the SIGN procedure, a user creates an ElGamal ciphertext of rU and the proof that he correctly
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computes the ciphertext, which is IND-CCA2 secure assuming random oracle and generic model [140].

Hence, breaking TM-invulnerability which is equivalent to guessing rU will break IND-CCA2 security

of the encryption.

7.4.2 Construction

We now present the complete construction of the proposed group signature scheme as in the following.

Let SPK[α1, . . . , αm : f(α1, . . . , αm) = 0] denote a signature of knowledge that proves the knowledge of

α1, . . . , αm satisfying f(α1, . . . , αm) = 0.

M-KeyGen

The membership manager MM first randomly chooses sufficiently large primes p, q, P such that q|p− 1

and p|P − 1. Let Gq be an order q subgroup of Z∗
p , and let Gp be an order p subgroup of Z∗

P . The MM

chooses g, h, f ∈ Gq and G,H ∈ Gp such that neither non-trivial (α1, α2, α3) satisfying gα1hα2fα3 = 1

(mod p) nor non-trivial (β1, β2) satisfying Gβ1Hβ2 = 1 (mod P ) are not known. The MM initializes

a member list L to ∅. Let k be a security parameter. Let H : {0, 1}∗ → {0, 1}k be a collision-resistant

hash function. Next, the MM randomly selects υ ∈U Zq and computes y = hυ mod p.

Finally, M-KeyGen outputs

(msk, mpk)

:= (υ, (p, q, P, g, h, f,G,H,H, y))

T-KeyGen

The tracing manager TM randomly selects ε ∈U Zq and computes e = gε mod p.

T-KeyGen outputs

(tsk, tpk) := ((ε), (e)) .

JoinMM,U

A user U runs the following protocol with the membership manager MM to join the group.

1. User U randomly chooses σU ∈U Zq and computes

IU = gσU mod p.
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U generates the signature of knowledge

spkU = SPK[σ̃U : IU = gσ̃U mod p]

which assures that U knows a discrete logarithm of IU to the base g. U also computes the digital

signature SU on the message IU‖spkU . U sends

(IU , spkU , SU )

to the membership manager MM .

2. The MM checks the validity of spkU and SU . If both are valid, the MM randomly selects ρ ∈U Zq

and computes

rU := IUhρ mod p

ξU := ρ − rUυ mod q.

The MM sends

(rU , ξU )

as a membership certificate to U .

3. U checks whether (rU , ξU ) sent by the MM satisfies

rU = yrU gσU hξU

rU ∈ [0, p − 1].

If it holds, U stores 〈rU , ξU 〉 as his membership certificate, and securely stores σU as a group

signing key.

4. MM adds 〈IU , spkU , rU , ξU , SU 〉 to the member list L.

5. • MM outputs the revised L.

• U outputs

(certU , skU , iderU ) = ((rU , ξU ), σU , IU ).
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Sign

A member U creates a group signature on a message m as follows.

First, a member U chooses a random number τ ∈U Zq and computes

(g′, e′) := (gτ , rU
−1eτ ) mod p,

which is an ElGamal encryption of rU with respect to the tracing public key of the TM . Next, U

computes the signature of knowledge:

SPK[r̃U , ξ̃U , σ̃U , τ̃ : g′ = gτ̃ mod p ∧ e′ = r̃−1
U eτ̃ mod p ∧

r̃U = yr̃U gσ̃U hξ̃U mod p ∧ r̃U ∈ [0, p − 1]](m).

This signature of knowledge can be constructed from two components, a perfectly hiding commitments

of rU and a signature of knowledge: The commitments are computed as

h′ := yrU fω mod p , J := GrU Ha mod P

where ω ∈U Zq and a ∈U Zp are chosen uniformly and randomly, and the signature of knowledge is

SPK[r̃U , ξ̃U , σ̃U , τ̃ , ω̃, ã : g′ = gτ̃ mod p ∧ e′ = r̃−1
U eτ̃ mod p ∧

h′ = yr̃U f ω̃ mod p ∧ J = Gr̃U H ã mod P ∧ (7.1)

e′h′ = f ω̃g−σ̃U h−ξ̃U eτ̃ mod p ∧ r̃U ∈ [0, p − 1]](m).

This signature of knowledge can be computed as in the following:

1. For 1 ≤ j ≤ k, generate random numbers φ2j−1 ∈U [0, p − 1], and sets φ2j := φ2j−1 − p. If

rU +φ2j−1 6∈ [0, p−1] and rU +φ2j ∈ [0, p−1], replace φ2j−1 with φ2j to be rU +φ2j−1 ∈ [0, p−1].

Also, choose ψ2j−1, ψ2j ∈U Zq, η2j−1, η2j ∈U Zp randomly. For 1 ≤ j ≤ k, compute

Vj := yφ2j−1fψ2j−1‖yφ2j fψ2j‖Gφ2j−1Hη2j−1‖Gφ2j Hη2j .

2. Choose t1, t2, t3, t4, t5 ∈ Zq randomly, and compute

T1 := yt1f t2 mod p

T2 := f t2g−t3h−t4et5 mod p
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T3 := gt5 mod p.

3. For 1 ≤ j ≤ k, select γj ∈U Zq and Jj ∈U Zp. Set ej := eγj mod p. Then, compute

gj := gγj mod p

Jj := Gej Huj mod P

for 1 ≤ j ≤ k.

4. Generate

c := H(g‖h‖f‖G‖H‖y‖e‖V1‖ · · · ‖Vk‖T1‖T2‖T3‖g1‖ · · · ‖gk‖J1‖ · · · ‖Jk‖m).

5. For 1 ≤ j ≤ k,

• If c[j] = 0, set

v6j−5 := φ2j−1 , v6j−4 := φ2j ,

v6j−3 := ψ2j−1 , v6j−2 := ψ2j ,

v6j−1 := η2j−1 , v6j := η2j ,

s1 := t1 mod q , s2 := t2 mod q,

s3 := t3 mod q , s4 := t4 mod q,

s5 := t5 mod q , wj := γj mod q,

zj := uj mod p .

• If c[j] = 1, set

v6j−5 := rU + φ2j−1 , v6j−4 := yφ2j fψ2j ,

v6j−3 := ω + ψ2j−1 , v6j−2 := ψ0 ∈U Zq,

v6j−1 := a + η2j−1 , v6j := Gφ2j Hη2j ,

s1 := t1 − rU mod q , s2 := t2 − ω mod q,

s3 := t3 − σU mod q , s4 := t4 − ξU mod q,

s5 := t5 − τ mod q ,

wj := γj − τ mod q , zj := uj − aejrU
−1 mod p
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6. The resulting signature of knowledge is

SPKgs = (c, v1, v2, v3, v4, v5, v6, . . . , v6k−5, v6k−4, v6k−3, v6k−2, v6k−1, v6k,

s1, s2, s3, s4, s5, w1, . . . , wk, z1, . . . , zk).

Finally, Sign outputs

gs := (g′, e′, h′, J, SPKgs)

as a signature on message m.

Verify

A verifier V verifies a group signature gs on a message m by checking the validity of the signature of

knowledge involved in gs.

For gs = (g′, e′, h′, J, c, SPKgs), V first checks if v6j−5 ∈ [0, p − 1] holds at j ∈ [1, k] such that

c[j] = 1. If it holds, V checks

c = H(g‖h‖f‖G‖H‖y‖e‖V ′
1‖ · · · ‖V ′

k‖T ′
1‖T ′

2‖T ′
3‖g′1‖ · · · ‖g′k‖J ′

1‖ · · · ‖J ′
k‖m),

where

V ′
j =

 yv6j−5fv6j−3‖yv6j−4fv6j−2‖Gv6j−5Hv6j−1‖Gv6j−4Hv6j c[j] = 0

yv6j−5fv6j−3/h′‖v6j−4‖Gv6j−5Hv6j−1/J‖v6j c[j] = 1

T ′
1 = h′cys1fs2 , T ′

2 = (e′h′)cfs2g−s3h−s4es5 , T ′
3 = g′cgs5

g′j = g′c[j]gwj mod p

J ′
j =

 Gē′
j Hzj mod P c[j] = 0

J ē′
j Hzj mod P c[j] = 1 (where ē′j := e′c[j]ewj mod p)

V accepts gs if and only if the all above equations are satisfied.

Open

For an accused group signature gs on m, the tracing manager TM decrypts (g′, e′) with his tracing secret

key by r̄ := g′ε/e′ mod p. In addition, the TM computes a signature of knowledge SPK[ε̃ : g′ε̃ = r̄−1e′]

to prove that he surely used his secret key for decryption.
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The TM finds the tuple 〈IU , spkU , rU , ξU , SU 〉 from the member list L such that rU = r̄ holds. The

TM concludes that the member U corresponding to rU = r̄ is the actual signer of gs.

7.4.3 Distributed Construction

In the group signature scheme shown in the previous subsection, both the membership secret key and

the tracing secret key are discrete logarithms of corresponding public keys. Such secret keys can be

easily distributed among multiple entities by using the technique proposed by Pedersen in [130].

More specifically, the membership secret key υ can be distributed into n elements υ1, . . . , υn satisfying

υ = υ1 + · · ·+υn for the distributed membership managers MM1, · · · ,MMn. In the JOIN protocol, each

membership manager MMi computes rU = IUht and ξi = ki − rUυi, where t and ki is a distributedly

generated random number satisfying t = hΣki . The user U obtains a membership certificate (rU , ξU ) by

computing ξU = ξ1 + · · · + ξn.

Similarly, the tracing secret key ε can be distributed into ε1, . . . , εn satisfying ε = ε1 + · · · + εn for

the distributed tracing managers TM1, · · · , TMn. In the TRACE algorithm, each tracing manager TMi

computes g′i = g′εi mod p, and an entire decryption can be executed by computing r̄ = (
∏

g′i)/e′ mod p.

7.4.4 Efficiency Analysis

We analyze the efficiency of the proposed scheme. For simplicity, we estimate a basic construction shown

in Section 7.4.2. The signature length is estimated by |P | + (5k + 3)|p| + (3k + 5)|q| bit. If we take

|P | = |p| = 1024 and |q| = 160, the signature length is about 110 KB, which is 4.5 times larger than that

of [7]. The computational cost of our scheme is also 4.5 times larger than that of [7]. As mentioned in

Section 7.3, we use an DL-based proof of a range due to the efficient setup by the distributing authorities.

If we adopt the proof of a range in [27], the signature size becomes 26.2 KB, which is almost as large as

that of [7].

7.5 Security Considerations

First of all, we prove that the group signature which a signer creates really serves as a signature of

knowledge of Equation (7.1) in the random oracle model. We do prove it by showing that the underlying

interactive protocol is honest-verifier zero-knowledge proof of knowledge.

Theorem 6 The underlying interactive protocol of the proposed group signature scheme is an honest-

verifier zero-knowledge proof of knowledge of a membership certificate, corresponding signing key and the
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random number used for encryption of ElGamal ciphertext, where the common input is a set of domain

parameter PK, a membership public key, a tracing public key, and ElGamal ciphertext (g′, e′).

Proof. Since the proof of this theorem is straight-forward, we omit the proof. ¤

Next, we prove the entire security of the proposed group signature scheme. We can obtain the

following theorem.

Theorem 7 The proposed group signature scheme GS is MM -invulnerable in the random oracle and

generic model.

Proof. We show that if there exists an attacker A that breaks MM - invulnerability of the group signature

scheme, then there exists an attacker A′ that breaks the EUF-CMA of the modified Nyberg-Rueppel

signature in the random oracle and generic model. The following is the description of A′:

1. Key generation of the target modified Nyberg-Rueppel signature scheme is the same as M-KeyGen

procedure of the proposed group signature scheme.

2. When A asks a joining oracle to join the group by giving gσU , A′ asks its signing oracle to sign on

gσU . Then A′ sends the answer of the oracle to A, which is the membership certificate.

3. Suppose A generated a group signature, that is linked, by TRACE procedure, to membership

certificate that A′ has never sent to A. Then, A plays a role of a knowledge extractor, namely,

rewinds A and chooses another random oracle to extract the membership certificate (r̄U , ξ̄U ) and

the signing key σ̄U . This is possible from Theorem 6. (r̄U , ξ̄U ) is a modified Nyberg-Rueppel

signature on a message σ̄U .

It is shown in [8] that the modified Nyberg-Rueppel signature is EUF-CMA in the random oracle and

generic model. Thus, the proposed scheme is TM -invulnerable in the random oracle and generic model.

¤ ¤

Theorem 8 The proposed group signature scheme GS is TM -invulnerable in the random oracle and

generic model.

Proof. By construction the group signature generated by SIGN includes an ElGamal encryption of rU

with a random number τ , and the signature of knowledge of τ . This encryption-and-signature pair is

regarded as a signed ElGamal encryption [140]. Now we can show that if there exists an attacker A that

breaks TM -invulnerability of the group signature scheme, then there exists an attacker A′ that breaks

IND-CCA2 of the above signed ElGamal encryption. The following is the description of A′
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1. Key generation of the target cryptosystem is the same as T-KeyGen procedure of the proposed

group signature scheme.

2. When A asks a tracing oracle to open a signature gs, A′ picks up the signed ElGamal encryption

part and throws it to its decryption oracle. Then A′ sends the result to A.

3. When A chooses a pair of a membership certificate and a signing key, (r0, ξ0, σ0) and (r1, ξ1, σ1),

A′ chooses r0 and r1 as target plaintexts.

4. When A′ was given a ciphertext as a challenge, A′ generates a group signature that includes this

challenge ciphertext by choosing appropriate random oracle. Then A′ gives it to A as a challenge.

5. When A gives the answer b ∈ {0, 1}, A′ answers b.

It is shown in [140] that the signed ElGamal encryption is IND-CCA2 secure in the random oracle and

generic model. Therefore, GS is TM -invulnerable in the random oracle and generic model. ¤
¤

Theorem 9 The proposed group signature scheme GS is member-invulnerable if the discrete logarithm

problem is hard in the random oracle model.

Proof. It is easy to see from Theorem 6 that each of group signatures includes a signature of knowledge

of σU .

Now we can show that if there exists an attacker A that breaks member-invulnerability of the group

signature scheme, then there exists an attacker A′ that solves discrete logarithm problem. The following

is the description of A′

1. When A′ is given the instance (g, I) as a problem, A′ chooses h = ga for randomly chosen a.

2. When A asks a joining oracle to join the group, A′ first generates a simulated signature of knowledge

of discrete logarithm of g, I by choosing a random oracle. Next, sends I and this signature of

knowledge. Finally, A′ obtains the membership certificate (rU , ξU ).

3. When A asks a signing oracle to sign a message m, A′ generates an ElGamal encryption of rU

and generates a simulated signature of knowledge of a membership certificate, a group signing key,

and a random number used for the encryption by choosing a random oracle. Then A′ sends these

generated data to A.

4. Suppose A generated a group signature, that is linked, by TRACE procedure, to a membership

certificate rU . Then, A′ rewinds A and chooses another random oracle to extract a membership
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certificate and a signing key. This is possible from Theorem 6. We denote the extracted data

(rU , ξ̄U , σ̄U ).

5. If ξ̄U = ξU , then gσ̄U = I, which means a success of the attack.

If ξ̄U 6= ξU , then ga(ξU−ξ̄U )+σ̄U = I, which also means a successful attack. ¤

¤

7.6 Nyberg-Rueppel signatures

Originally, the Nyberg-Rueppel signature was proposed as a variant of the ElGamal signature scheme

with message recovery. In this signature scheme, a message is converted by using a function called

redundancy function. We can easily recover an original message of a signature by using this redundancy

function. In our scheme, we use a variant of the Nyberg-Rueppel signature that abandons the property

of message recovery so that we can weaken the requirement for the redundancy function. Since the

Nyberg-Rueppel signature scheme is based on a discrete logarithm problem, distributing the secret key

of the Nyberg-Rueppel signature is easy and its generation of a signature can be done efficiently by

distributed signers. These facts make our scheme efficient even if authorities are distributed.

We now describe the construction of the Nyberg-Rueppel signature scheme. The Nyberg-Rueppel

signature consists of three algorithms: (NR-KEYGEN, NR-SIGN, NR-VERIFY):

NR-KEYGEN Choose two large primes p, q such that q|p − 1. Let Gq be the order q subgroup of Z∗
p .

Choose generators g, h ∈U Gq. Choose a random x ∈U Zq and compute y = hx mod p. The public

key of a signer is (p, q, g, h, y) and the secret key is x.

NR-SIGN To sign a message m, first, generate H(m) = gm mod p. Next, choose t ∈U Zq randomly, and

compute r := H(m)ht mod p and s := t − rx mod q. (r, s) is a signature on m.

NR-VERIFY For a message-signature pair (m, (r, s)), check if r
?= H(m)yrhs.

We assume that the above Nyberg-Rueppel signature is existentially unforgeable under adaptively

chosen message attack (EUF-CMA).

7.7 Conclusions

We have proposed a new practical group signature scheme with separate and distributed authorities.

Our scheme can separate the membership manager and the tracing manager without invading each

capability. Moreover, since our scheme is constructed from primitives based on the discrete logarithm
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problem, our scheme is well suited for distributed authorities. We have also formalized security definitions

that describe the complete separation of the capabilities of the two managers and members. We have

given the proofs that our scheme is secure under these security definitions.
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Chapter 8

Group Signature from Bilinear

Mappings

8.1 Introduction

A group signature scheme, first proposed by Chaum and van Heyst [44] and followed by [6, 7, 19, 30, 32,

33, 35, 121], allows each member of a group to sign messages on behalf of the group without revealing

his own identity. The scheme also realizes a special authority that can identify actual signers in case

of dispute. Group signatures have many applications in which user anonymity is required such as in

anonymous credential systems [7], identity escrow [99, 95], voting and bidding [6], and electronic cash

systems.

Although earlier group signature schemes required large computational cost and long signatures, re-

cently proposed schemes, such as the one proposed by Ateniese et al. in [6], are very efficient. In partic-

ular, Boneh, Boyen, and Shacham [22], Nguyen and Safavi-Naini [121], and Camenisch and Lysyanskaya

[32] proposed very efficient group signature schemes based on bilinear maps. Currently, the most efficient

construction is the one proposed in [22]. The signature length of the scheme in [22] is 42% and 38% of

those of [121] and [32] respectively. The computational cost for the scheme in [22] is also smaller than

those of [121] and [32]1.

This chapter proposes a novel group signature scheme based on bilinear maps. Our scheme is more

efficient than any of the previous schemes. Moreover, our scheme requires fewer assumptions than the

scheme in [22], which is the most efficient among the previous schemes.

1The heaviest computation in these schemes is computation of a bilinear map such as Tate pairing. As shown in Table
10 in [90], its computational cost is smaller than that of computation of full-exponent RSA.
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Our approach to the construction of a group signature scheme is similar to that adopted by Boneh et

al. in [22]. They used a set of three groups G1,G2, and GT of the same prime order p such that there exists

a bilinear map from G1 ×G2 to GT . Each group member has a pair comprising a membership certificate

and a membership secret with which he signs on behalf of the group. The membership certificate and

membership secret are elements of G1 and (Z/pZ)∗. For a special authority to identify actual signers

from group signatures in their scheme, signers are required to attach an encryption of a part of the

membership certificate which is an element of G1. Because of the existence of the bilinear map, their

scheme is not able to simply use ElGamal encryption scheme for this purpose. Hence, they introduced a

new encryption scheme called “linear encryption scheme” based on a new assumption called the Decision

Linear Diffie-Hellman (DLDH) assumption. This encryption scheme is more complex than the ordinary

ElGamal type encryption scheme.

The main difference between our approach and that in [22] is that we use a group G of the same order

p in addition to the three groups G1,G2, and GT such that the Decision Diffie-Hellman (DDH) problem

on G is difficult to solve. For a special authority to identify actual signers from group signatures in our

scheme, signers are required to attach an encryption of the exponentiation of the membership secret in

G. Because this exponentiation to be encrypted is in G, we can apply a simple ElGamal type encryption

scheme. This makes our scheme more efficient and requires fewer assumptions than the scheme in [22].

For the groups G1,G2, and GT and their associated bilinear map, we can use, for example, the elliptic

curve proposed by [113] (MNT curve) and Tate pairing. The choice of such a curve makes it possible

to express elements in G1 by a short string. Although the number of such curves are found in [113] is

small, more MNT curves are found in [138]. Therefore, since we can easily find an elliptic curve of the

same given order p as G with practically high probability by exploiting a complex multiplication method

[29, 4], finding a desired set of (G1,G2,G) is practical. Indeed, we have found several of such curves [101].

As a result, our signature lengths are, respectively, 83%, 36%, and 32% of those of signatures in [22],

[121], and [32] if we choose groups so that elements of G1, GT , and G can be expressed in 171, 1020,

and 171 bit strings respectively. Although we cannot present a precise estimation of the computational

cost since it depends on the choice of groups, our scheme requires less computational cost than any of

the schemes in [22, 121, 32]. The security of our scheme depends on the DDH assumption, the Strong

Diffie-Hellman (SDH) assumption, and the existence of random oracles. We do not present how to

revoke group members. However, the revocation mechanisms described in [22] can be also applied to

our system. In our scheme, group members are able to determine their secret key when they join the

group, which enables them to join many groups using the same secret key. This property may reduce

operational cost when there are many groups. The scheme in [121] does not have such a property. (The

scheme in [32] does.)
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This chapter is organized as follows. Section 8.2 describes the model and security requirements of

the group signature scheme and notation and complexity assumptions. Section 8.3 proposes our group

signature scheme, and Section 8.4 discusses its security. Section 8.5 compares our scheme with the

previous schemes.

8.2 Background

The model and security requirements are the same as presented in Chapter 7

8.2.1 Notation and Complexity Assumption

Let G1k,G2k,GTk, and Gk be a cyclic group of length k prime order p. We omit index k if not confusing.

Let G1, G2, and G be, respectively, generators of G1, G2, and G. Let ψ be an isomorphism from G2 to G1,

with ψ(G2) = G1. Let e be a non-degenerate bilinear map e : G1 × G2 → GT . Let H be a hash function

that maps string to (Z/pZ)∗.

Definition 60 (Decision Diffie-Hellman assumption) Let the Decision Diffie-Hellman problem in

Gk be defined as follows: given 4-tuple (G, [a]G, [b]G, [c]G) ∈ (Gk)4 as input, output 1 if c = ab and 0

otherwise. An algorithm A has advantage ε(k) in solving the Decision Diffie-Hellman problem in Gk if

|Pr[A(G, [a]G, [b]G, [ab]G) = 1]

− Pr[A(G, [a]G, [b]G, [c]G) = 1]| ≥ ε(k)

where the probability is taken over the random choice of generator G in Gk, of (a, b, c) ∈ ((Z/pZ)∗)3, and

of the random tape of A.

We say that the Decision Diffie-Hellman assumption holds in {Gk}k∈N if no polynomial-time algo-

rithm has advantage ε(k) non-negligible in k in solving the Decision Diffie-Hellman problem in Gk.

Definition 61 (Strong Diffie-Hellman Assumption) Let the q-Strong Diffie-Hellman Problem (q-

SDH) in (G1k,G2k) be defined as follows:

Given a (q+2)-tuple (G1, G2, [γ]G2, [γ2]G2, . . . , [γq]G2) ∈ G1k×(G2k)q+1 as input, output a pair ([1/(x+

γ)]G1, x) where x ∈ (Z/pZ)∗. An algorithm A has advantage ε(k) in solving the q-SDH problem in

(G1k,G2k) if

Pr[A(G1, G2, [γ]G2, . . . , [γq]G2)

= ([1/(x + γ)]G1, x)] ≥ ε(k),
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where the probability is taken over the random choice of generator G2 in G2k (with G1 = ψ(G2)), of

γ ∈ (Z/pZ)∗, and of the random tape of A.

We say that the Strong Diffie-Hellman (SDH) assumption holds in {(G1k,G2k)}k∈N if no polynomial-

time algorithm has advantage ε(k) non-negligible in k in solving the q-SDH problem in (G1k,G2k) for q

polynomial of k.

The SDH assumption is proposed and proved to hold in generic bilinear groups in [19]. This assump-

tion is a variant of an assumption proposed by Mitsunari et al. in [112].

8.3 Proposed Group Signature Scheme

Now we will present our efficient group signature scheme.

M-KeyGen

Given 1k, M-KeyGen chooses G1,G2,GT such that its order p is of length k and then randomly chooses

w ∈R Z/pZ and (H,K) ∈R (G1)2 and generates Y = [w]G2. Then, M-KeyGen outputs

(msk, mpk)

:= (w, (p,G1,G2,GT , e,G, G1, G2, G, ψ,H, Y,H,K))

Here, some of the symbols are interpreted as binary strings that describe those symbols. For example,

G expresses the string of the document that specifies group G.

T-KeyGen

Given mpk, T-KeyGen first randomly chooses (s, t) ∈R (Z/pZ)2. Next, T-KeyGen generates (S, T ) =

([s]G, [t]G). Finally, T-KeyGen outputs

(tsk, tpk) := ((s, t), (S, T )) .

JoinMM,U

1. • MM is given group member list L, an identity of a user U , mpk, and msk.

• A user U is given mpk.
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2. U randomly chooses skU := xU ∈R Z/pZ and z′U ∈R Z/pZ and generates

iderU := QU = [xU ]G , HU = [xU ]H + [z′U ]K

and sends (QU ,HU )to MM2.

Then, U proves in zero-knowledge to MM the knowledge of xU and z′U as follows. Although the

protocol given here is only honest verifier zero-knowledge, from this we can construct a black-box

zero-knowledge protocol using the technique presented in [110]. We still assume that Join protocols

are executed in a sequential manner (or concurrently but with an appropriate timing-constraint

[54]).

(i) U randomly chooses (x′
U , z′) ∈R ((Z/pZ)∗)2 and generates

Q′
U = [x′

U ]G , H ′
U = [x′

U ]H + [z′]K

and sends them to MM .

(ii) MM sends U randomly chosen cU ∈R (Z/pZ)∗.

(iii) U generates

rU = cUxU + x′
U , sU = cUz′U + z′

and sends (rU , sU ) to MM .

(iv) MM checks that the following equations hold:

[rU ]G = [cU ]QU + Q′
U

[rU ]H + [sU ]K = [cU ]HU + H ′
U

3. The MM randomly chooses (yU , z′′U ) ∈R (Z/pZ)2 and generates

AU = [1/(w + yU )](G1 − HU − [z′′U ]K)

and sends (AU , yU , z′′U ) to U . The MM adds an entry (U, iderU ) = (U,QU ) to its group member

list L.

2U needs to sign on QU to prove that U agreed to be a group member; we omit this process for the sake of simplicity.
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4. U generates its membership certificate as

certU := (AU , yU , zU ) = (AU , yU , z′U + z′′U ).

U checks that the following equation holds:

e(AU , Y + [yU ]G2) · e([xU ]H,G2) · e([zU ]K,G2)

= e(G1, G2).

5. • MM outputs the revised L.

• U outputs

(certU , skU , iderU ) = ((AU , yU , zU ), xU , QU ).

Remark 2 Publishing (certU , iderU ) which MM is able to obtain does not compromise the security of

the system.

Sign

1. Sign is given mpk, tpk, certU , skU , and m.

2. Sign randomly chooses (r, q) ∈R ((Z/pZ)∗)2 and generates

B = AU + [q]K, R = [xU + r]G, V = [r]S, W = [r]T (8.1)

Here, the following equation holds.

e(G1, G2) = e(B, Y ) · e(H,G2)xU

·e(B,G2)yU · e(K,G2)zU−q yU · e(K,Y )−q (8.2)

The data generated hereafter is a Fiat-Shamir transformation of a zero-knowledge proof of knowl-

edge of xU , yU , zU , and q, r that satisfies Eqs. (8.1) and (8.2). Since B is a perfect hiding commit-

ment of AU , the only knowledge that the receiver of the signature can obtain is (R, V,W ) which

is an ElGamal type double encryption of [xU ]G

(i) Sign randomly chooses (t, u, v, f, o) ∈R ((Z/pZ)∗)5 and generates

X ′ = e(H, G2)
te(B, G2)

ue(K, G2)
ve(K, Y )f

R′ = [t + o]G , V ′ = [o]S , W ′ = [o]T
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(ii) Sign generates

c = H(p,G1, G2, GT , G, ψ, Y, S, T,H,K,

B,R, V,W,X ′, V ′, W ′, R′, m)

(iii) Sign generates

x′ = cxU + t, y′ = cyU + u,

z′ = c(zU − qyU ) + v, q′ = −cq + f,

r′ = cr + o

3. Sign outputs

gs := (B,R, V,W, c, x′, y′, z′, q′, r′)

as a signature on message m.

Verify

1. Verify is given mpk, tpk, m, and gs.

2. Verify generates

X ′ = e(H,G2)x′
e(B, [y′]G2 + [c]Y )

·e(K,G2)z′
e(K,Y )q′

e(G1, G2)−c

R′ = [x′ + r′]G − [c]R, V ′ = [r′]S − [c]V,

W ′ = [r′]T − [c]W.

3. Verify outputs acc if equation

c = H(p, G1, G2, GT , G, ψ, Y, S, T,H,K,

B,R, V,W,X ′, V ′,W ′, R′,m)

holds. Otherwise, it outputs rej.
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Open

1. Open is given mpk, tpk, tsk,m, gs, and L.

2. If Verify(mpk, tpk,m, gs) = rej, it outputs ⊥ and stops.

3. Open generates and outputs

Q = R − [1/s]V (= R − [1/t]W )

Then, Open generates and outputs a non-interactive proof of knowledge of either s or t that satisfies

either of the above equations and Q as a proof .

4. Open searches QU that coincides with the Q in L. If there is such a QU , it outputs the corresponding

U . Otherwise, it outputs ⊥′.

8.4 Security

Theorem 10 The proposed scheme has MM-invulnerability if the SDH assumption holds.

Proof.

Lemma 50 Given two sets of a signature and a random oracle for a message m

{(B,R, V,W,X ′, V ′,W ′, R′, x′
1, y

′
1, z

′
1, q

′
1, r

′
1),H1}

{(B,R, V,W,X ′, V ′,W ′, R′, x′
2, y

′
2, z

′
2, q

′
2, r

′
2),H2}

such that

(x′
1, y

′
1, z

′
1, q

′
1, r

′
1) 6= (x′

2, y
′
2, z

′
2, q

′
2, r

′
2)

c1 := H1(p,G1, G2, GT , G, ψ, Y, S, T,H,K,

B,R, V,W,X ′, V ′,W ′, R′,m)

6= c2 := H2(p,G1, G2, GT , G, ψ, Y, S, T,H,K,

B,R, V,W,X ′, V ′,W ′, R′,m),

X ′ = e(H,G2)x′
1e(B,G2)y′

1e(K,G2)z′
1

e(K,Y )q′
1

(
e(G1, G2)
e(B1, Y )

)−c1

X ′ = e(H,G2)x′
2e(B,G2)y′

2e(K,G2)z′
2
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e(K,Y )q′
2

(
e(G1, G2)
e(B1, Y )

)−c2

R′ = [x′
1 + r′1]G − [c1]R

R′ = [x′
2 + r′2]G − [c2]R

V ′ = [r′1]S − [c1]V

V ′ = [r′2]S − [c2]V

W ′ = [r′1]T − [c1]W

W ′ = [r′2]T − [c2]W

then one can compute (AU , xU , yU , zU , q, r) ∈ G1 × ((Z/pZ)∗)5 that satisfies Eqs. (8.1) and (8.2).

Proof. The following (AU , xU , yU , zU , q, r) proves the lemma.

AU = B −
[
q′1 − q′2
c1 − c2

]
K

xU =
x′

1 − x′
2

c1 − c2

yU =
y′
1 − y′

2

c1 − c2

zU =
(z′1 − z′2)(c1 − c2) − (y′

1 − y′
2)(q

′
1 − q′2)

(c1 − c2)2

q =
−q′1 + q′2
c1 − c2

r =
r′1 − r′2
c1 − c2

¤

Lemma 51 If there exists an attacker A that obeys in Join protocol less than q − 1 times and breaks

MM-invulnerability, then there exists an attacker A′ that breaks the q-SDH problem or solves the discrete

logarithm problem using A as a black-box.

Proof. Suppose that A′ is given a tuple (q + 2)-tuple (Q1, Q, [γ]Q, [γ2]Q, . . . , [γq]Q) where Q ∈ G2 and

Q1 = ψ(Q).

1. A′ randomly chooses

α ∈R (Z/pZ)∗, {(ai, bi) ∈R ((Z/pZ)∗)2}i∈[q−1],m ∈R [q − 1].
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2. Suppose w = γ − am. A′ randomly chooses θ ∈R (Z/pZ)∗ and generates, from the given tuple,

G2 = [bm

q−1∏
i=1,i 6=m

(γ + ai − am)]Q

+[α
q−1∏
i=1

(γ + ai − am)]Q

G1 = ψ(G2)

H = [
q−1∏

i=1,i6=m

(γ + ai − am)]ψ(Q)

K = [θ]H

Y = [w]G2 = [(γ − am)bm

q−1∏
i=1,i 6=m

(γ + ai − am)]Q

+[(γ − am)α
q−1∏
i=1

(γ + ai − am)]Q

3. A′ outputs

mpk = (p,G1,G2,GT , e,G, G1, G2, G, ψ,H, Y,H,K).

and invokes A by giving it.

4. A′ receives tpk = (S, T ) from A.

5. Whenever A runs and successfully completes the first two steps of i-th Join protocol as a user U

with A′, do the following:

(i) A′ obtains xU and z′U by rewinding A and choosing other random oracles.

(ii) A′ generates AU , yU , z′′U as

z′′
U =

bi − xU

θ
− z′

U

yU = ai

AU = [1/(yU + w)](G1 − [xU ]H − [z′
U + z′′

U ]K)

= [1/(ai + w)](G1 − [bi]H)

= [α

q−1
Y

j=1,j 6=i

(γ + aj − am)]ψ(Q)

+[(bm − bi)

q−1
Y

j=1,j 6=m,i

(γ + aj − am)]ψ(Q)

using the (q +2)-tuple. Note that bi − bm = 0 when i = m. Then A′ sends (AU , yU , z′′U ) to A.
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(iii) A adds (R,QU = [xU ]G) to L.

6. A outputs a pair (m, gs) and wins the game with non-negligible ε1. That is,

acc ← Verify(mpk, tpk,m, gs) and (⊥′, proof) ← Open(mpk, tpk, tsk,m, gs,L).

Then, from the Forking Lemma [131] and Lemma 50, A′ is able to obtain (AU , xU , yU , zU , q, r) ∈

G1 × ((Z/pZ)∗)5 that satisfies Eqs. (8.1) and (8.2) and [xU ]G 6∈ L.

Here,

AU = [1/(yU + w)](G1 − [xU ]H − [z′
U + z′′

U ]K)

= [1/(yU + w)](G1 − [xU + θ zU ]H)

=

2

4

αγ − (xU + θ zU ) + bm

γ + yU − am

q−1
Y

j=1,j 6=m

(γ + aj − am)

3

5ψ(Q)

7. We will see later that

(γ + yU − am)|(αγ − (xU + θ zU ) + bm) (8.3)

happens only with negligible probability as long as the discrete logarithm problem is difficult to

solve.

Since the probability that yU 6∈ {ai}i=1,...,q−1 holds is smaller than ε1, the probability that yU 6∈

{ai}i=1,...,q−1 \ am is greater than ε1/(q − 1), which is non-negligible. Hence, at least with this

non-negligible probability, we have γ +yU −am as the denominator of AU . Thus, in this case, with

the formal division of

(αγ − (xU + θ zU ) + bm)
q−1∏

j=1,j 6=m

(γ + aj − am)

by (γ + yU − am), we are able to compute {ci ∈ (Z/pZ)∗}i=0,...,q such that

AU =
q−1∑
i=0

[ciγ
i]ψ(Q) + [cq/(γ + yU − am)]ψ(Q).

From AU , {ci ∈ (Z/pZ)∗}i=0,...,q, θ, xu, yU , zU , {ai}i=1,...,q−1, and bm, the solution for the given

q-SDH follows. That is,

(
[1/cq](AU −

q−1∑
i=0

[ciγ
i]ψ(Q)), yU − am

)
.
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Now we consider the case where Eq. (8.3) and am 6= yU hold with non-negligible probability. From

Eq. (8.3),

α(yU − am) + xU + θ zU − bm = 0

holds.

We consider another attacker A′′ that is given a pair (D,L) ∈ (G2)2. A′′ randomly chooses (bm, γ, am, θ) ∈

((Z/pZ)∗)4 and generates

G2 = [bm]D + [γ]L

G1 = ψ(G2)

H = ψ(L)

K = [θ]H

Y = [w]G2 = [γ − am]G2.

Since A′′ knows w = γ − am, it is able to perfectly play the role of membership manager. Considering

relations

D ⇔ [
q−1∏

i=1,i 6=m

(γ + ai − am)]Q

L ⇔ [α
q−1∏

i=1,i 6=m

(γ + ai − am)]Q,

we can see that A′′ is able to generate α = logD L from Eq. (8.3).

Now we consider the case where Eq. (8.3) and am = yU hold with non-negligible probability. From

Eq. (8.3),

θ zU − bm = 0

holds.

We consider another attacker A′′′ that is given a pair (D,K) ∈ (G2)2. A′′ is the same to A′′ except

in the following:

1. A′′′ generates α ∈ (Z/pZ)∗ but does not generate θ ∈ (Z/pZ)∗.

2. A′′′ generates L = [α]D and uses the given K in the K in mpk.

we can see that A′′ is able to generate θ = logD K = bm/zU .
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The theorem follows from Lemma 51. ¤

Theorem 11 The proposed scheme has TM-invulnerability property if the DDH assumption holds.

Proof.

Lemma 52 The underlying proof of knowledge of xU , yU , zU , q, r in Sign protocol is zero-knowledge.

Proof. The following simulator S proves the lemma:

1. S randomly chooses x′, y′, z′, q′, r′, c from (Z/pZ)∗.

2. S generates

X ′ = e(H,G2)x′
e(B, [y′]G2 + [c]Y )e(K,G2)z′

e(K,Y )q′
e(G1, G2)−c

R′ = [x′ + r′]G − [c]R

V ′ = [r′]S − [c]V

W ′ = [r′]T − [c]W.

S outputs X ′, R′, V ′,W ′, c, x′, y′, z′, q′, r′ as the view of the protocol. ¤

Lemma 53 If there exists an attacker A that breaks TM-invulnerability, then there exists an attacker

A′ that breaks the Decision Diffie-Hellman problem by using A as a black-box.

Proof. The data (R, V,W ) in a group signature is a double encryption of QU = [xU ]G, which is

semantically secure if we assume the Decision Diffie-Hellman assumption. And, from Lemma 50 and 50,

the rest of the data in the group signature is a simulation sound [134] and non-interactive zero-knowledge

proof of knowledge of r = logS V = logT W in the random oracle model if msk is public. Therefore, from

[119, 134], the group signature can be considered as an IND-CCA2 encryption of QU if msk is public.

Now it is enough to show that one can break the above IND-CCA2 secure cryptosystem (target

cryptosystem) by using an attacker A that breaks TM-invulnerability of the group signature scheme.

This can be shown if we consider the following correspondence.

1. Key generation of the target cryptosystem corresponds to T-KEYGEN.

2. The decryption oracle of the target cryptosystem corresponds to Open.
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3. The choice of challenge plaintexts by A′ in IND-CCA2 game of the target cryptosystem corresponds

to the choice of a pair comprising a membership certificate and a signing key by A.

4. The response of A′ at the end of the IND-CCA2 game of the target cryptosystem corresponds to

the response of A at the end of the experiment ExpAn
GS,A(k).

¤

The theorem follows from Lemma 53. ¤

Theorem 12 The proposed scheme has Member-Invulnerability property if we assume the discrete log-

arithm problem is difficult to solve.

Proof. We can show that if there exists an attacker A that breaks Member-Invulnerability of the group

signature scheme, then there exists an attacker A′ that solves the discrete logarithm problem by using

A as a black-box.

The following is the description of A′

1. Suppose A′ is given the instance (Q,G) and asked to compute logG Q, Then, A′ engages in the Join

protocol with A as U . In this protocol, A′ randomly choose z′U ∈R (Z/pZ)∗, generates QU = Q

and HU = Q+[z′U ]K, and sends QU and HU to A. Although A′ does not know logG QU , it is able

to complete the rest of the protocol by rewinding A. This is possible since the rest of the protocol

is zero-knowledge.

2. Suppose A asks A′ to generate a group signature gs on message m such that Open outputs Q

if this (gs,m) is given. Then, A′ randomly chooses r ∈R (Z/pZ)∗ and generates (R, V,W ) =

(Q + [r]G, [r]S, [r]T ). Although A′ does not know logG QU , A′ is able to generate the rest of the

data for the signature by choosing random oracles. This is possible since the rest of the protocol

is zero-knowledge (Lemma 52).

3. Since A breaks Member-Invulnerability of the proposed group signature scheme, A outputs a group

signature gs′ on message m′ such that Open outputs Q if this (gs′,m′) is given with non-negligible

probability.

Then, from the Forking Lemma [131] and Lemma 50, A′ is able to extract, by rewinding A and

choosing other random oracles, xU such that Q = [xU ]G. This solves the discrete logarithm

problem.

¤
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A variant of [22] Scheme in [121]
Sign/Verify Sign/Verify

# of SMul in G - -
# of SMul in G1 11/12 20/13
# of SMul in G2 0/2 -
# of MExp in GT 3/3 6/2

# of pairings 0/1 0/3
Sig. Len. (bits) 2057 4782
Assumptions SDH,DLDH SDH,DBDH

Scheme in [32] Our Scheme
Sign/Verify Sign/Verify

# of SMul in G - 6/6
# of SMul in G1 3/0 1/0
# of SMul in G2 - 0/2
# of MExp in GT 13/13 4/4

# of pairings 0/5 0/1
Sig. Len. (bits) 5296 1711
Assumptions LRSW,DDH SDH,DDH

Table 8.1: Complexity & Assumptions

8.5 Comparison with Previous Schemes

We compare the signature length and computational complexity of the proposed scheme to those of the

previous schemes [121, 32] and those of a variant of the scheme in [22]. This variant protocol is given in

Section 8.7.

The variant scheme of [22] differs from the original one in two points. The first point is that it

provides a joining protocol, whose construction is already presented in Section 7 of [19]. The second

point is that it uses a double encryption scheme [119] variant of the linear encryption scheme instead

of the simple linear encryption scheme used in the original scheme. Since the Open oracle in group

signature plays a role similar to that of the role of the decryption oracle in the IND-CCA2 game of

public key cryptosystems, the encryption scheme used in group signature needs to be IND-CCA2 secure.

However, the signed ElGamal encryption is IND-CCA2 secure only in the generic model [140], in the

same way that the linear encryption scheme adopted in [22] is. Hence, the use of a double encryption

variant is a legitimate solution to avoid dependence on the generic group model. 3

Although the above variant scheme is less efficient than the original scheme, comparing our scheme

with this variant scheme is appropriate. This is because our scheme and the schemes in [121] and [32]

3In [22], a scheme that is more efficient is proposed under the assumption that the discrete logarithm problem in G1 is
difficult to solve. However, we believe this is still non-standard assumption.
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all provide a Join protocol and their security is proved in a non-generic group model.

We compare the group signature lengths of our scheme and those of the previous schemes. We assume

that G1 6= G2 such that the representation of G1 can be a 172 bit string when |p| = 171 by using the

elliptic curve defined by [113]. The choice of such a curve makes it possible to express B by a short

string. When such a curve is not available, the signature length of our scheme is much shorter than

those of the other previous schemes. We also assume that the representations of GT and G are 1020 bits

and 172 bits. A group signature of the variant of the scheme in [22] is composed of seven (Z/pZ)∗ and

five G1 elements. That of the scheme in [121] is composed of ten (Z/pZ)∗, six G1, and two GT elements,

and that of the scheme in [32] is composed of four (Z/pZ)∗, three G1, and four GT elements. In contrast,

that of the proposed scheme is composed of six (Z/pZ)∗, one G1, and three G elements, and thus its

signature length is the shortest among the other previous schemes.

We also estimate the computational cost of our scheme and that of the previous schemes by the

number of scalar multiplications/modular exponentiations in G,G1,G2, and GT and the number of pairing

operations e required for Sign and Verify, since these are the most costly computations. Here, we assume

that the signer has precomputed values e(H,G2), e(K,G2), e(K,Y ), and e(AU , G2). Although we cannot

present a precise estimation of the computational cost of each operation since it depends on the choice of

the groups G,G1,G2, and GT , these computations can be done quite efficiently if we choose Tate pairing

for e and adopt the computation tools described in [107].

We also list the assumptions required in our scheme and the previous schemes [121, 32], and the

variant of the scheme in [22]. From Theorems 10, 11, and 12, our scheme requires the SDH assumption,

the Decision Diffie-Hellman assumption, and the existence of random oracles. The scheme in [22] requires

the SDH assumption, the DLDH assumption, and the existence of random oracles. That in [121] requires

the SDH assumption, the Decision Bilinear Diffie-Hellman (DBDH) assumption, and the existence of

random oracles. That in [32] requires the Lysyanskaya-Rivest-Sahai-Wolf (LRSW) assumption, the

Decision Diffie-Hellman assumption, and the existence of random oracles. The DLDH assumption is

proposed in [22] which is proved to hold in generic bilinear groups. The LRSW assumption is proposed

in [105] and is proved to hold in generic groups. The LRSW assumption is also proved to hold in generic

bilinear groups in [32]. The SDH assumption and the LRSW assumption cannot be compares to each

other.

These results of estimation and required assumptions are given in Table 8.1 4, where “# of SMul” , “#

of MExp”, “# of pairings”, and “Sig. Len.” are abbreviations of “the number of scalar multiplications”

, “the number of modular exponentiations”, “the number of pairings”, and “signature length”.

Revocation: Installing the revocation mechanism proposed in [22] has no effect on this estima-

4The table is given by [88], which is better than the original one in [67].
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tion. This can be seen as in the following: Given (G1, G2, AU , yU , xU , zU , yŪ , H̄, K̄, Y ) such that

Y = [w]G2, [w + yU ]AU + [xU ]H + [zU ]K = G1, [w + yŪ ]Ḡ1 = G1, [w + yŪ ]H̄ = H, [w + yŪ ]K̄ = K

for some w ∈ (Z/pZ)∗, ĀU that satisfies [w + yU ]ĀU + [xU ]H̄ + [zU ]K̄ = Ḡ1 can be computed as

ĀU = [1/(yŪ − yU )](AU − Ḡ1 − [xU ]H̄ − [zU ]K̄). .

8.6 Generation of Curves

The proposed scheme is most efficient among previously known group signature schemes in signature

length and in computational complexity under q-strong Diffie-Hellman assumption in the random oracle

model. This group signature scheme requires a pair of elliptic curves of the same order such that one

provides efficient bilinear maps but the other has no efficient bilinear map. However, a generation of

such a pair has not been reported. In this section, we report such a generation of pair of elliptic curves,

which demonstrates the feasibility of our group signature scheme.

Roughly, we have constructed the pair of curves as in the following:

1. Choose a prime order elliptic curve with bilinear maps.

2. Generate an elliptic curve such that its order is the same to the above curve and that it has no

efficiently computable bilinear maps.

The first step is easy if we use known algorithms proposed in [113, 138]. Although the second step cannot

be completed in a time polynomial of the length of curve order, several method such as one in [4] are

proposed. The question is that whether we can successfully generate a curve pair of required security

parameter in realistic time.

The curves with bilinear maps that we choose is

y2 = x3 + ax + b

with

a = −3

b = 345630277172740421841095258617873363855538472122976053007521156770

defined over Fp of 224 bit prime

p = 15028799613985034465755506450771565229282832217860390155996483840017.
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Its order N is prime and

N = 15028799613985034465755506450771561352583254744125520639296541195021.

Its embedding degree is 6. The curve was found in [138] using the algorithm proposed in that paper.

Here, discriminant −D of complex quadratic field for this curve is 496659.

We first briefly introduce the complex multiplication method on which our curve generation depend.

1. Choose complex quadratic field K = Q(
√
−D) such that its corresponding class number hD is

small.

2. Find integers x and y that satisfy

4p = x2 + Dy2 (8.4)

for some prime p.

3. Find roots of Hilbert class polynomial HD with respect to K = Q(
√
−D).

4. Obtain an elliptic curve defined over Fp whose j-invariant is a root of HD.

5. The order of resulting curve is p + 1 ± x.

We need to modifies Eq. (8.4) since the given parameter is the order of the elliptic curve but is not

the field over which the curve is defined. Hence, we find a prime p and integers x, y that satisfy

4N = (x ± 2)2 + Dy2

p = N − 1 ± x

for D with small class number hD. 5 hours of search using Magma [106] on Pentium 4 3.4GHz machine

successfully ends in several tuples of (D,x, y, p). From these tuple, with several minutes, we are able to

construct an elliptic curve of order N .

The following is one example if the curve.

y2 = x3 + ax + b

with

a = 4807863678177631534209903490596038497378606311932775891579012483613

b = 5413072257629771397335699469579480283163369916360461536284359662565
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defined over Fp of 224 bit prime

p = 15028799613985034465755506450771557277920582540226013319442384629791

Here, discriminant −D of complex quadratic field for this curve is 33307, whose class number is 28.

8.7 A Variant of Scheme in [22]

The following is a variant of the short signature scheme in [22].

M-KeyGen

Given 1k, M-KeyGen chooses prime p of size k, bilinear groups (G1,G2) of order p with a bilinear map e

such that e : G1 × G2 → GT , generators G1 and G2 of G1 and G2, an isomorphism ψ from G2 to G1 with

ψ(G2) = G1, and a hash function H that maps strings to (Z/pZ)∗.

Next, M-KeyGen randomly chooses w ∈R Z/pZ and H ∈R G1 and generates W = [w]G2. Finally,

M-KeyGen outputs

msk = w

mpk = (p,G1,G2,GT , e,G1, G2, ψ,H,W,H)

T-KeyGen

Given mpk, T-KeyGen first randomly chooses ξ1, ξ2, ξ̄1, ξ̄2 ∈R Z/pZ. Next, T-KeyGen generates R, V, R̄,

and V̄ such that H = [ξ1]R = [ξ2]V = [ξ̄1]R̄ = [ξ̄2]V̄ . Finally, T-KeyGen outputs

tsk = (ξ1, ξ2, ξ̄1, ξ̄2)

tpk = (R, V, R̄, V̄ )

JoinMM,U

1. • MM is given group member list L, an identity of a user U , mpk, and msk.

• A user U is given mpk.

2. U randomly chooses (x′
U , z) ∈R (Z/pZ)2, generates H ′ = [xU ]H + [z]G1 and sends HU to MM .

3. MM randomly chooses (x′′
U , z′) ∈R ((Z/pZ)∗)2 and send them to U .
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4. U generates

xU = x′′
Ux′

U + z′

HU = [xU ]H

and sends HU to MM . Then, U proves in zero-knowledge to MM the knowledge of xU and

r′(= x′′
Uz) satisfying

HU = [xU ]H

[x′′
U ]H ′ + [z′]H − HU = [r′]H.

5. The MM randomly chooses yU ∈R Z/pZ, generates

AU = [1/(w + yU )](G1 − HU )

and sends (AU , yU ) to U as a membership certificate. The MM adds an entry (U, iderU := AU )

to its group member list L.

6. • MM outputs the revised L.

• U outputs

certU = (AU , yU )

skU = xU

iderU = AU

Sign

1. Sign is given mpk, tpk, certU , skU , m

2. Sign randomly chooses (α, β) ∈R ((Z/pZ)∗)2 and generates

T1 = [α]R (8.5)

T2 = [β]V (8.6)

T̄1 = [α]R̄ (8.7)

T̄2 = [β]V̄ (8.8)

T3 = [α + β]H + AU (8.9)
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3. Sign randomly chooses (α′, β′, x′, δ′1, δ
′
2, y

′) ∈R ((Z/pZ)∗)6 and generates

R1 = [α′]R

R2 = [β′]V

R̄1 = [α′]R̄

R̄2 = [β′]V̄

R3 = e(T3, G2)y′
e(H,W )−(α′+β′)

e(H,G2)−(δ′
1+δ′

2)+x′

R4 = [y′]T1 − [δ′1]R

R5 = [y′]T2 − [δ′2]V

4. Sign generates

c = H(p,G1, G2, GT , ψ,W,H,R, V, R̄, V̄ , T1, T2,

T̄1, T̄2, T3, R1, R2, R̄1, R̄2, R3, R4, R5,m)

5. Sign generates

sα = α′ + cα

sβ = β′ + cβ

sx = x′ + cxU

sδ1 = δ′1 + cyUα

sδ2 = δ′2 + cyUβ

sy = y′ + cyU

6. Sign outputs

gs = (T1, T2, T̄1, T̄2, T3, c, sα, sβ , sx, sδ1 , sδ2 , sy)

as a signature on message m.
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Verify

1. Verify is given mpk, tpk, m, and gs.

2. Verify generates

R1 = [sα]R − [c]T1

R2 = [sβ ]V − [c]T2

R̄1 = [sα]R̄ − [c]T̄1

R̄2 = [sβ ]V̄ − [c]T̄2

R3 = e(T3, [sy]G2 + [c]W )e(H,W )−(sα+sβ)

e(H,G2)−(sδ1+sδ2 )+sxe(G1, G2)−c

R4 = [sy]T1 − [sδ1 ]R

R5 = [sy]T2 − [sδ2 ]R

3. Verify outputs acc if equation

c = H(p, G1, G2, GT , ψ, W, H, R, V, R̄, V̄ , T1, T2,

T̄1, T̄2, T3, R1, R2, R̄1, R̄2, R3, R4, R5, m)

holds. Otherwise, it outputs rej.

Open

1. Open is given mpk, tpk, tsk,m, gs,L.

2. If Verify(mpk, tpk,m, gs) = rej, it outputs ⊥ and stops.

3. Open generates and outputs

Q = T3 − [ξ1]T1 − [ξ2]T2

= T3 − [ξ̄1]T̄1 − [ξ̄2]T̄2

Then, Open generates and outputs a non-interactive proof of knowledge of either (ξ1, ξ2) or (ξ̄1, ξ̄2)

that satisfies either of the above equations and Q as a proof .
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4. Open searches AU that coincides with the Q in L. If there is such a AU , it outputs the corresponding

U . Otherwise, it outputs ⊥′.

8.8 Conclusion

We proposed a new group signature scheme which is secure if we assume the Decision Diffie-Hellman

assumption, the q-Strong Diffie-Hellman assumption, and the existence of random oracles. The proposed

scheme is the most efficient among the all previous group signature schemes in signature length and in

computational complexity. We also generated a pair of curves that our scheme requires.
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Chapter 9

Conclusion

In this dissertation, we have proposed several efficiency enhanced multi-party protocols. They are:

1. six protocols that are useful for electronic voting systems:

(i) An efficient publicly verifiable shuffle that is perfect zero-knowledge argument.

(ii) An efficient publicly verifiable shuffle and decryption that is complete permutation hiding

argument.

(iii) An efficient publicly verifiable anonymous hybrid mix-net.

(iv) An efficient publicly verifiable shuffle and decryption that is perfect zero-knowledge argument.

(v) An aggregate shuffle argument scheme.

(vi) An efficient compiler from Σ to deniable zero-knowledge argument.

2. A black-box traitor revocable broadcast encryption scheme.

3. Two group signature schemes:

(i) A group signature scheme for separate and distributed authorities.

(ii) An efficient group signature based on bilinear mappings.

Since a multiple number of players engage in these protocols, they have complex security requirements.

Such circumstance, besides the fact that the number of players itself is large, makes it hard to make the

protocols efficient. We have succeeded to enhance efficient of these protocols, which has been a major

and crucial interest in designing of these protocols.
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