
Unified Frameworks for Practical Broadcast Encryption and

Public Key Encryption with High Functionalities

by

Nuttapong Attrapadung

Thesis submitted to
Department of Information and Communication Engineering

Graduate School of Information Science and Technology
for the degree of

Doctor of Philosophy

at the

UNIVERSITY of TOKYO

February 2007

c©Nuttapong Attrapadung, 2007.

Certified by. .
Hideki Imai

Professor
Thesis Supervisor

Certified by. .
Kanta Matsuura

Associate Professor
Thesis Supervisor

2

Unified Frameworks for Practical Broadcast Encryption and Public Key
Encryption with High Functionalities

by
Nuttapong Attrapadung

Thesis submitted to Department of Information and Communication Engineering,
Graduate School of Information Science and Technology for the degree of

Doctor of Philosophy

Abstract

In this thesis, we study encryption schemes with various “high functionalities” including one
specific focus on broadcast encryption. As for the main contributions, we propose practical
constructions for broadcast encryption schemes and a unified framework for public-key
encryption with various functionalities.

The first focus of the thesis is on a special but important kind of encryption schemes,
namely broadcast encryption. Such a scheme has many useful applications; the most im-
portant one to be mentioned is in the area of the digital right management, where broadcast
encryption enables the protection of digital contents such as copyrighted DVD. Such a tech-
nology is “inevitable” nowadays as modern advancements in communication infrastructure
and digital storage technologies have, on one hand, enabled pervasive digital media distri-
bution, but on the other hand, also allowed the spread of “pirate” contents to be done easier
than ever before.

There are some broadcast encryption schemes available in the literature; however, as
the number of all users in the system tends to be increased, these existing solutions tend to
be quite inefficient, and eventually cannot be used in the real-world application. Our focus
is then to construct practical broadcast encryption schemes, which can be “scalable”, in the
sense that the efficiency of scheme will not be affected by the increasing number of users.
As a result of the research, we achieve this goal by constructing the first schemes whose the
main two parameters, namely the ciphertext size and the private key size, are independent
of the number of all users, while the computational cost is semi-scalable (namely, the cost
is increasing but slowly as logarithmically). Behind this scheme, we proposed a theoretical
framework that can be used to construct efficient schemes in a systematical way.

The second topic shifts the research focus from the practical point of views to more the-
oretical ones and looked beyond to more general kinds of what we call public key encryption
with “high functionalities”. The motivation came from the fact that in recent years, there
have been many proposals of cryptographic primitives which extend the normal public-key
encryption to achieve useful functionalities such as ID-based encryption, key-insulated en-
cryption, forward-secure encryption, certificate-based encryption, and many more. Each
functionality is proved to be useful in different scenarios and applications thereof. Al-
though being seemingly related primitives, there was no unified framework for defining or
constructing them.

In this work, we proposed a unified framework called Directed Acyclic Graph Encryption
(DAGE) that unifies these highly-functional encryption primitives into a unified syntax, a
unified security notion, and unified generic/specific constructions. More precisely, we reduce
a specification of such a primitive to its necessary and sufficient information, which is turned
out to be its “underlying graph”: by specifying a graph, the definition and constructions will

3

be automatically induced by the framework. We also give a primitive implication theorem
which gives a simple criterion whether a primitive implies another.

In the theoretical point of view, the merits of the proposed framework are direct. It
helps understanding the theoretical essences of public-key encryption schemes with high-
functionalities from our unified characterization. This result simplifies the previous compli-
cated researches into one piece. The result on the primitive implication theorem gives an
automated verification of relations among primitives. This reduces the proof of relations
which has to be performed based on complexity-theoretic approaches in the previous in-
dividual researches, which is quite complicated and can be verified only by human, to the
logical-based approach, which is much simpler and can be verified automatedly by computer.

The proposed generic construction implies the possibility result for arbitrary graphs.
This has merits not only in the theoretical point of view but also in the practical point
of view where the protocol designer can just specify a “tailor-made” graph for the on-
purposed application and the implementation of the scheme will be prompted to use. Fur-
thermore, any esoteric scheme featured with many combined functionalities can be directly
implemented; for example, a forward-secure certificate-based public-key encryption with
keyword-searchability. This is also something that previous works cannot achieve, particu-
larly since there was no unified framework to cope with.

For the third main topic, we focus on the combination of the above-mentioned two
previous results: public-key broadcast encryption schemes that are simultaneously practical
and featuring high functionalities. To be able to attain such practical broadcast schemes,
it is unavoidable to focus on more specific functionalities (not generic as in the second
topic above). We focus on some most useful functionalities, namely forward-security and
keyword-searchability. Forward-security enables the private-key updating and guarantees
the security of the previously-encrypted ciphertexts even when the present-time private key
is exposed. We presents the most practical and scalable forward-secure broadcast encryption
so far in the literature. Keyword-searchability enables the search over encrypted data. It
has a killer application of encrypted file sharing systems over public database. We presented
the first such scheme in the literature.

Thesis Supervisor: Hideki Imai
Title: Professor

Thesis Supervisor: Kanta Matsuura
Title: Associate Professor

4

Acknowledgments

It has been a pleasure and an honor to work with Prof. Hideki Imai for all these years. To
Associate Prof. Kanta Matsuura, I am really grateful when he took over the supervision for
me after Imai sensei has retired from Todai. Both have provided insight and has suggested
challenging and fruitful research directions to pursue. I will be forever in their debt.

I thank the members and ex-members of Imai lab and Matsuura lab for making my stay
at Todai as enjoyable and fulfilling as it has been from my Master period. Also I thank to
the members at security group of AIST, or “the new Imai lab” for making every time of my
visit enjoyable at most.

I especially thank to Goichiro Hanaoka, the leader of our advance reading group at
AIST, who always comes with new challenging ideas. His enthusiasm is positively infec-
tious. Talking to him always restore back my research motivation when I lost it somehow
sometimes. I thank to Yang Cui – Sai-kun, the only same-graduate-year friend for all these
years ranged from Imai lab to Matsuura lab period. It is always fun to have discussions
with him. I thank to Rui Zhang – Cho-san. Debating with him always stimulates new ideas
for researches. I also thank him for being the guide when we were in China for Asiacrypt
2006. I thank to Kazukuni Kobara, Miodrag Mihaljevic, Ryo Nojima for fruitful discussions
on broadcast encryption as always been from the master period. I am grateful to Hajime
Watanabe for supporting me when I applied for the post-doctoral position. Without him,
I would be much more worried about jobs and could never concentrate to write the thesis.
I am grateful to Kentarou Imafuku, Takayuki Miyadera for many kind advices for research
life. I thank to Peng Yang – Yo-kun for helping me in various ways when I was writing
this thesis. I thank to Manabu Hagiwara for fun discussions about life and researches as
always been. I thank to Takeshi Gomi, Masanori Yoshida, Abdelilah Tabet, Makoto Eguchi,
Haruhiro Yoshimoto, and all the graduated master students for making Imai lab lively and
be such a warm place to stay. I thank to Takahiro Matsuda, Wataru Kitada, Phan Thi Lan
Anh, Vadim Zendejas for making our small basic reading group active and full with energy.
I thank to Takashi Kitagawa, Seong Han Shin, Rie Shigetomi, Jin Tamura, Akira Otsuka,
and all the people at AIST for making every time of my visit enjoyable at most.

I thank Tomoyuki Asano of Sony for many useful discussions on broadcast encryption
and real-world situation on digital content protection industry, especially on Blu-Ray Disc.
I thank to Toshihisa Nakano for allowing me to proceed the patents with Matsushita Electric
co,ltd.

I also give many thanks to secretaries of the lab from past to present: Miki Watanabe,
Yukiko Ito, Naomi Ogasawara, Makiko Nishimura, Kaori Ookubo, Akiko Dobson, Hitomi
Hasegawa. Without them, Imai lab would be not really enjoyable as it should be. I especially
thank to Yoko Nagahama for moving to Matsuura lab together with us. Without her, I
might not do the research smoothly.

This thesis would not have been possible without the financial support from Monbu-
kagaku-sho Scholarship of the Japanese Government. I am grateful for that.

I thank to all my friends who support me through all these years. I thank to Burin
Anuchitkittikul who always be a good friend. I thank to Juta Pansang, Gabriel Pablo Nava,
Weerapong Sattapon, Chiaki Mitsuhashi, Dolrudee Angkapichit, Chakrit Suwannachoke,
Hanane Fathi for making my life in Japan enjoyable at most.

I deeply thank to Aiko for her generosity and kind supports to me in all situations.
Most of all, I would like to thank my parents and my brother back in Thailand for

continual loves and supports in all stages of my life.

5

Contents

1 Introduction 11
1.1 Background . 11
1.2 Motivations and Results Overview . 14

1.2.1 A Study on Broadcast Encryption 14
1.2.2 A Study on Public-Key Encryption with High Functionalities 15
1.2.3 Combining Best of Both Studies . 16

2 Preliminaries 19
2.1 Basic Notations and Terminology . 19
2.2 Integer Factoring Related Assumptions . 20
2.3 Bilinear Maps and Related Assumptions . 20
2.4 Cryptographic Tools . 22

2.4.1 One-way Function and Pseudo-random Sequence Generator. 22
2.4.2 Public-key and Symmetric-key Encryption Schemes. 22
2.4.3 Signature Schemes . 24
2.4.4 Notions of Access Structures and Secret Sharing Schemes 25

2.5 Graphs and Posets . 26

3 Practical Symmetric-key Broadcast Encryption 29
3.1 Introduction . 29

3.1.1 Our Contributions . 30
3.1.2 Recent Related Works . 33
3.1.3 Organization of the Chapter . 33
3.1.4 Survey on Earlier Works . 34

3.2 Framework and Some Preliminaries . 36
3.2.1 Definitions and Security Notions of Broadcast Encryption 36
3.2.2 Framework . 37
3.2.3 Some Terminology . 41

3.3 New Set Systems . 42
3.3.1 Subset Incremental Chain (SIC) Set System 42
3.3.2 Layered SIC (LSIC) Set Systems . 43

3.4 Key Derivation based on PRSG . 45
3.4.1 PRSG based Framework . 45
3.4.2 PRSG based Instantiation for SIC, LSIC 46

3.5 Key Derivation based on Non-Trapdoor RSA 50
3.5.1 Non-Trapdoor RSA based Framework 50
3.5.2 Non-Trapdoor RSA based Instantiation for SIC, LSIC 54

8 CONTENTS

3.6 Key Derivation based on Trapdoor RSA Accumulator 55
3.6.1 Trapdoor RSA based Framework . 55
3.6.2 Trapdoor RSA based Instantiation for LSIC 60

3.7 Concluding Remarks . 60

4 Unifying Public Key Encryption with “High Functionalities” 61
4.1 Introduction . 61

4.1.1 Background . 61
4.1.2 Our Approaches and Contributions 63

4.2 Definitions of DAGE . 65
4.2.1 Syntax of DAGE . 66
4.2.2 Security Notions for DAGE . 68
4.2.3 Multiple Encryption on DAGE . 69
4.2.4 Definition for Class of ID-based Graphs 72

4.3 Graph Syntactic Consequence . 72
4.4 Generic Constructions . 77

4.4.1 Fully-secure Arbitrary Graph DAGE from HIBE 77
4.4.2 Weak DAGE from PKE and Cover-Admissable Families 78

4.5 Efficient OR Graph DAGE Construction . 79
4.6 Efficient OR Bounded-Complete Graph DAGE Construction 83
4.7 Efficient AND Graph DAGE Construction 86
4.8 Prototype Functionalities . 89

4.8.1 Forward-secure Functionality . 90
4.8.2 Key-insulated, Intrusion-resilient Functionality 91
4.8.3 Broadcast Functionality . 97
4.8.4 Certificate-based Functionality . 97

4.9 Concluding Remarks . 98

5 Practical Forward-Secure and Searchable Broadcast Encryption 99
5.1 Introduction . 99

5.1.1 Our Contributions. 100
5.1.2 Organization of the Chapter. 101

5.2 Hierarchical Identity-Coupling Broadcast Encryption 101
5.2.1 Syntax of HICBE . 101
5.2.2 Security Notions for HICBE . 102
5.2.3 Conversion for Chosen-Ciphertext Security 104

5.3 HICBE Constructions . 104
5.3.1 Our First HICBE Construction Based on BGW and BB 106
5.3.2 Our Second HICBE Construction Based on BGW and BBG 109
5.3.3 Extensions . 113

5.4 Forward-Secure Public-key Broadcast Encryption 117
5.4.1 Syntax for FS-BE . 117
5.4.2 Security Notions for FS-BE . 117
5.4.3 Conversion C . 119
5.4.4 Direct Construction . 121
5.4.5 Performance Comparisons and Some Terminologies 123

5.5 Public-key Broadcast Encryption with Keyword Search 124
5.5.1 Definitions and Relation to Anonymous ICBE 124

CONTENTS 9

5.5.2 Consistency Properties . 125
5.5.3 Security Notion for BEKS . 125
5.5.4 Conversion K . 126

5.6 Difficulty on Constructing Anonymous HICBE 126
5.7 Anonymous HICBE Construction . 131

5.7.1 Double-HIBE . 131
5.7.2 From Double-HIBE to HICBE . 132
5.7.3 A Construction of Anonymous Double-HIBE 133

5.8 Some Extended Primitives . 137
5.9 Conclusions and Open Problems . 137

6 Conclusions 139

Bibliography 141

A List of Publications 153

Chapter 1

Introduction

Encryption is the procedure of rendering a message into a concealed form so that it can
be decrypt exclusively by one particular recipient or a group of recipients. From classical
to modern cryptography, the aim of encryption has been to enable two parties to exchange
messages confidentially, even in the presence of an eavesdropper capable of intercepting the
communication. The use of encryption has been confined mostly to diplomatic and military
uses in the past, but its scope in nowadays life has broadened enormously in recent years.
Thanks to the rise of the Internet for its commercial use in 1990’s, nearly every computer
sold today is equipped with strong encryption capabilities. Encryption plays an important
role in most important industrial communication systems, such as networks used for bank
transactions, electronics commerce. It is also used as a tool for larger systems, such as
digital right management, electronic cash, electronic voting, electronic auctions, and many
more.

In this thesis, we consider encryption schemes with various “high functionalities”. Each
functionality is proved to be useful in different scenarios and applications thereof. To-
wards the study, our two general extreme goals are to formalize a unified framework and
to construct practical schemes. In this chapter, we describe some background, research
motivations and our contributions in brief.

1.1 Background

We first describe some background on cryptography in general and encryption in particular.
We organize the outline of survey in the historical aspect as done in many textbooks in
cryptography such as [Gol99], as it appears to be a natural way to give broad overview.

Classical Cryptography. Classical cryptography was confined to the art of designing
and breaking encryption schemes or “codes”. Shannon [Sha49] answered the fundamen-
tal question of classical cryptography that it is “impossible” to design a code that cannot
be broken. Instead, the challenge was then to construct codes which is “infeasible” or
hard to break. Until the late 1970’s, following the challenge, some symmetric-key encryp-
tion schemes, such as the Data Encryption Standard (DES), has been designed. Such a
symmetric-key scheme allows anyone who has enough encryption to encrypt also to be able
to decrypt messages. Therefore, any two users who wants to communicate securely must
have exchanged keys beforehand in a secure way.

12 1.1 Background

The Beginning of Modern Cryptography (1970’s). Motivated by the problem of
secret key distribution problem for symmetric-key encryption, Diffie and Hellman, in their
revolutionary paper [DH76], invented an entirely new type of cryptography called public
key, together with new concepts such as digital signatures and one-way functions. Speaking
informally, an injective function f : A → B is “one-way” if it is easy to compute f(x) for
any x ∈ X but hard to compute f−1(y) for most randomly selected y in the range of x.
Public-key encryption (PKE) can be informally viewed as a kind of one-way function: it
is a function which maps plaintext message to ciphertext that can be computed by anyone
possessing the public key but whose inverse function cannot be computed in a reasonable
amount of time without some additional information called the private key. Therefore,
anyone can send a message by using only the public key of the intended recipient, who
disseminate her public key as she likes.

The first implementations of public key encryption are due to Merkle and Hellman [MH78],
Rivest, Shamir, and Adleman [RSA78], and Rabin [Rab79]. The most popular scheme is
that of [RSA78], known as RSA encryption, has since then been used in practical for many
systems and still.

Rigorous Treatments (1980’s). It is subtle issue to evaluate the security of encryp-
tion schemes. It is typically insufficient to ensure only that the adversary is unlikely to
be able to compute the inverse of encryption function. Goldwasser and Micali, in their
seminal paper [GM84], introduced the first rigorous treatments of stronger notions for se-
cure encryption. The notion, called semantic security, captures the inability of adversary
to determine any information whatsoever about the message from the ciphertexts. Their
work did not only supply the robust notions for encryption, but also introduced paradigms,
such as simulation paradigms and computational indistinguishability, which played a major
part for subsequent researches, including zero-knowledge proof [GMR85], secure multi-party
computation [GMW87], and many more.

Naor and Yung [NY90], Rackoff and Simon [RS91], further considered stronger no-
tions for public key encryption, called semantic security against non-adaptive and adaptive
chosen-ciphertext attack (CCA1 and CCA2). The intuition for such notions is that even if
an adversary is able to obtain the decryption of any ciphertexts of his choice, he still gets no
information whatsoever about other encrypted messages. Dolev, Dwork, and Naor [DDN91]
considered the notion called non-malleability. It was later proved [BDPR98] that both se-
mantic security and non-malleability are equivalent when adaptive chosen-ciphertext attack
is considered. In [NY90, DDN91], CCA1-secure and CCA2-secure generic constructions
based on non-interactive zero knowledge proofs were presented.

Practical Constructions (1990’s). Generic constructions of [NY90, DDN91] are not so
efficient; they only showed the plausibility result of constructing schemes in the strongest
notion in generic ways. The first practical CCA-secure scheme was proposed by Bellare and
Rogaway [BR94], called Optimal Asymmetric Encryption Padding (OAEP). (Note that
the correct revised CCA2-security proof for the case when applying to RSA was done
by [FOPS01]). The security proof was done in the random oracle model [BR93], of which
hash functions are idealized in the proof, but are replaced by some real-world hash func-
tions when the scheme is used in practice. Conversions from weak PKE to CCA-secure
one were proposed in [FO99], also with the security proof in the random oracle model.
However, [CGH98] showed a negative result regarding random oracle model which states

Chapter 1: Introduction 13

that there is an encryption scheme which is secure in the random oracle model but admits
no secure real-world instantiations. The question was then left to construct CCA-secure in
the standard model, i.e., without random oracle. Cramer and Shoup [CS98] proposed the
first such scheme, based on ElGamal encryption [ElG85]. Their results were also generalized
in [CS02]. The framework of hybrid encryption called key-encapsulation/data-encapsulation
mechanisms (KEM/DEM), which is useful particularly for constructing secure PKE with
long messages, was proposed in [Sho01, CS03].

In this period, rigorous definitions for security of encryptions also have been further re-
fined. The work by [BDPR98] proved some relationships among various notions for the case
of public key encryption, while [BDJR97] concerned the case of symmetric key encryption.

Encryption Schemes with Advance Features (2000’s). In the present decade, we
still have seen some refinement on the definitional works for security notions of encryption
(and beyond): one of the most sophisticated notion is the universal composability [Can01].
Other examples are relaxed chosen ciphertext security [CKN03], chosen ciphertext security
for multiple encryption [DK05], adaptively-secure non-interactive encryption [CHK05]. On
the other hand, new public key encryption schemes with efficiency improvements were
also proposed, such as [KD04]. A framework called Tag-KEM/DEM [AGKS05] extends
the previous hybrid encryption framework and can unify and/or improve many existing
PKE constructions. Regarding symmetric key encryption, Rijndael was chosen as the new
Advance Encryption Standard (AES) in 2001, and is expected to be used worldwide and
analyzed extensively, as was the case with its predecessor, DES.

Although many important researches as described above have been conducted, one of
the most distinguished streamline of research in this 2000’s period turned out to be the
area of encryption schemes that feature useful functionalities. Although some of them can
be already noticed from earlier time, their crucial revolutions are in the present era.

We mention firstly to broadcast encryption, which is an encryption scheme that allows
a broadcaster to deliver an encrypted data so that only a dynamically changing designated
group of parties can decrypt it. Broadcast encryption plays an important role for digital
right management, as we will describe later. Although broadcast encryption was first in-
troduced by Fiat and Naor earlier [FN93], the first efficient collusion-resistant construction
was presented only recently by Naor, Naor, and Lotspiech [NNL01], of which their paradigm
has then been the key-stone to many subsequent works in this area.

The most breakthrough in this present era was the invention by Boneh and Franklin [BF01]
of the first fully-functional identity-based encryption (IBE), which is the concept intro-
duced by Shamir [Sha84] a decade ago. IBE provides a public key encryption mecha-
nism where an arbitrary string, such as recipient’s identity, can be served as a public key.
Such a property is useful, e.g., for simplifying public key infrastructure. Following the
invention of IBE, many new kinds of public key encryption were proposed, for instance,
key-insulated encryption [DK02], forward-secure encryption [CHK03], certificate-based en-
cryption [Gen03], intrusion-resilient encryption [DFK+03], public-key encryption with key-
word search [BDOP04], hierarchical IBE [HL02, GS02], time-capsuled encryption [MHS03],
attribute-based encryption [SW05, GPSW06] and many more including some of their gen-
eralizations themselves. Security notions of each encryption primitives were defined based
on the basic paradigm of [GM84] with adaptations to each scenario. In this thesis, we coin
the term public key encryption with high functionalities to call these schemes.

14 1.2 Motivations and Results Overview

We also note that IBE is not only already interesting for its own right, but its weak
version called selective-ID IBE can also be converted to CCA-secure PKE efficiently in the
standard model [CHK04, BK05, BMW05].

1.2 Motivations and Results Overview

In this thesis, we study the class of those encryption schemes with advance functionalities,
which is one of the main streams of recent researches in cryptography. We concern mostly
the following goals in general.

• The first goal is “practicality”: we aim at constructing efficient schemes for broadcast
encryption, which is one of few encryption primitives featuring advance functionalities
that is already used in practice, such as in digital right management.

• The second goal is “unified formalization”: we aim at introducing a new unified frame-
work for the class of public key encryption with high functionalities to capture their
theoretical essence and to have a convenient way to derive the security definition and
some secure constructions for each existing or newly constructed encryption primitive
from now automatically from the unified ones.

We now describe our motivations and results in more detail separated by each chapter
in the thesis. In Chapter 2 we will give some basic notations and some preliminary tools to
be used throughout the thesis. Main contributions of thesis are in Chapter 3,4,5.

1.2.1 A Study on Broadcast Encryption

In Chapter 3, we focus on symmetric key broadcast encryption. Such a scheme allows one
party, called a broadcaster, to deliver an encrypted data so that only a dynamically changing
designated group of parties can decrypt it.

Broadcast encryption [FN93] is motivated largely by many applications that have the
nature of “conditional access”. Among others, it can be best understood in the scenario
of pay-TV systems where broadcast encryption can be applied to restrict access to a TV
cable system’s premium channels to viewers who have paid a subscription fee. Ironically,
this flagship application for broadcast encryption has proven less important than another
application - media content protection. This application has the same nature of conditional
access to an encrypted broadcast as can be described in the following scenario. At first, a
movie company makes an encrypted recording, such as an encrypted movie on DVD. Years
later, on one hand, a new legitimate player that might not even have existed when the
recording was made needs to play it back. On the other hand, we consider a player that
was legitimate but by now its private key inside has been compromised and is abused in a
piracy business (such as cloning a pirate decoder from the compromised one); therefore, it
is important that the ability of the compromised key to decrypt must be revoked so that
combatting the piracy is done in the sense that we render the pirate decoder cloned from
them useless. In both cases, broadcast encryption can be utilized by defining a proper group
of legitimate users at the present time, thanks to the way that it can work even if the group
is dynamically changing.

Broadcast encryption is thus one of the central tools to the digital right management
issues in the sense that it efficiently “establishes the right” of newly joined legitimate enti-

Chapter 1: Introduction 15

ties and “revokes the right” of identified malicious or compromised entities to decrypt the
encrypted data. Media content protection essentially requires these properties.

Motivations and Our Contributions. There are some broadcast encryption schemes
available in the literature (cf. Section 3.1); however, as the number of all users in the system
tends to be increased, these existing solutions tend to be quite inefficient, and eventually
cannot be used in the real-world application. Our focus is then to construct practical
broadcast encryption schemes, which can be “scalable”, in the sense that the efficiency of
scheme will not be affected by the increasing number of users. As a result of the research, we
achieve this goal by constructing the first schemes whose the main two parameters, namely
the ciphertext size and the private key size, are independent of the number of all users,
while the computational cost is semi-scalable (namely, the cost is increasing but slowly as
logarithmically). Behind this scheme, we proposed a theoretical framework that can be
used to construct secure and efficient schemes in a systematical way.

In particular, our proposed constructions are more efficient than the so-called Subset-
Difference broadcast encryption method (proposed by Naor, Naor, and Lotspeich in 2001),
which is the scheme that was recently chosen as a new standard called Advance Access
Content System (AACS) and will be used in the next-generation DVD materials such as
Blu-ray Disc (BD) and HD-DVD.

1.2.2 A Study on Public-Key Encryption with High Functionalities

In Chapter 4, we focus on public key encryption with high functionalities. Such schemes are
extensions of normal public key encryption so as to strengthen the security or to achieve
some useful functionalities which are specific to applications thereof. Indeed they solve
some problems which basic public-key encryption cannot. Many kinds of existing schemes
were proposed. For instance, encryption primitives which enable significant simplification
of public key infrastructure are identity-based Encryption (IBE) [BF01], certificate-based
encryption [Gen03], and certificateless PKE [AP03]. Examples of encryption primitives
that cope with the vulnerability against secret key exposure are forward-secure encryp-
tion [CHK03], key-insulated encryption [DK02], intrusion-resilient encryption [DFK+03].
Other primitives are those that achieves new additional functionalities, such as public-key
encryption with keyword search [BDOP04], time-capsuled PKE [MHS03]. Moreover, hier-
archical versions such as hierarchical IBE (HIBE) [HL02, GS02] or some combinations such
as forward-secure HIBE [YFDL04] were also reported in the literature.

Motivations and Our Contributions. The algorithm syntax and security definitions
for each of existing schemes for public key encryption with high functionalities were for-
malized separately in each contributing paper anew every time when such a primitive was
introduced. Such definitions were formalized by extending the standard notions for nor-
mal PKE, such as semantic security and security against chosen-ciphertext attack, with
appropriate adaptations to the corresponding scenario. Doing such formalization each time
anew is an inconvenient approach. Much worse, careless in doing so may yield only weak,
incorrect, or unsubstantiated notions of security. To this end, we raise a question whether
a “unified” approach for such formalizations exists. One support evidence for its existence
is that all the security notions defined in those existing primitives can be traced back to
the paradigm of [GM84, NY90, RS91, DDN91] with only some adaptations. Our primary
motivation is thus to obtain such a unified approach.

16 1.2 Motivations and Results Overview

In this thesis, we answer the motivated question in affirmative. We propose a unified
framework called Directed Acyclic Graph Encryption (DAGE) that unifies these highly-
functional encryption primitives into a unified syntax and a unified security notion with
many levels of security. More precisely, we reduce a specification of such a primitive to
its necessary and sufficient information, which is turned out to be its underlying graph:
by specifying a graph, the definition of syntax and security notion will be automatically
induced by the framework.

In the theoretical point of view, the merits of the proposed framework are direct. It helps
understanding the theoretical essences of the encryption schemes with high-functionalities
from our unified characterization. This result simplifies the previous complicated researches
into one piece.

Our second contribution is the primitive implication theorem, which is central to our
paradigm. It states a simple logical criterion where if a pair of encryption primitives casted
as DAGE satisfies, then the existence of secure construction from one primitive implies that
of the other. As a result, this reduces the proof of relations which has to be performed
based on complexity-theoretic approaches in the previous individual researches, which is
quite complicated and can be verified only by human, to the logical-based approach, which
is simpler and can be verified automatedly by computer.

Our third contributions are generic constructions for any primitives that can be casted
as DAGE. This implies the possibility result for arbitrary graphs. This has merits not only
in the theoretical point of view but also in the practical point of view where the protocol
designer can just specify a “tailor-made” graph for the on-purposed application and the
implementation of the scheme will be prompted to use. Furthermore, any esoteric scheme
featured with many combined functionalities can be directly implemented; for example, a
forward-secure certificate-based public-key encryption with keyword-searchability. This is
also something that previous works cannot achieve, particularly since there was no unified
framework to cope with.

1.2.3 Combining Best of Both Studies

In Chapter 5, we focus on the combination of the above-mentioned two previous results:
public key broadcast encryption schemes that are simultaneously practical and featuring
high functionalities. Although, broadcast encryption is already useful in the symmetric key
setting as was focused in Chapter 3, we search for schemes in the public key setting in
this chapter since they give more flexibility. To be able to attain such practical broadcast
schemes, it is unavoidable to focus on more specific functionalities (not generic as in the
second topic above). We focused on some most useful functionalities, namely forward
security and keyword-based searchability.

The first contribution is related to forward security. This functionality enables the
private-key updating and guarantees the security of the previously-encrypted ciphertexts
even when the present-time private key is exposed. We presents the most practical and
scalable forward-secure broadcast encryption so far in the literature.

Another contribution is on keyword-based searchability. This functionality enables the
search over encrypted data. It has a killer application of encrypted file sharing systems
over public database. In such an application, users share encrypted files among arbitrarily
specified privileged users. Due to a possible large amount of databases, a user Alice might
want to retrieve only those files that contain a particular keyword of interest (among all

Chapter 1: Introduction 17

the files in which Alice is specified as a privileged user), but without giving the server the
ability to decrypt the databases. Our keyword-searchable broadcast encryption allows to
do exactly this. We presented the first such scheme in the literature.

Chapter 2

Preliminaries

2.1 Basic Notations and Terminology

We adopt some of the now-standard notations and definitions of Goldwasser, Micali, and
Rackoff [GMR89] and add some new ones to be used throughout the thesis.

The set of λ-bit strings is denoted by {0, 1}λ. The λ-bit string consisted of only a is
denoted by aλ or a(λ). Concatenation of two string x1, x2 is denoted by x1‖x2 or x1 ◦ x2.

For a finite set S we use y ← S or S → y to define a random variable y that picks an
element of S uniformly at random. Let A(·) be an algorithm. By y ← A(x) or A(x) → y
we denote that y was obtained by running A on input x. If A is deterministic, then y is
unique; if A is randomized, then y is a random variable.

Let b be a boolean function. By (y ← A(x) : b(y)) we denote the event that b(y) is true
after y was generated by running A on input x. We let

Pr[y1 ← A(x1); ... ; yt ← A(xt) : b(y1, ..., yt)]

denote the probability of the event that b(y1, ..., yt) is true after the value y1, ..., yt was
obtained by (orderly) running algorithm A1, ..., At on inputs x1, ..., xt. See, for example,
Definition 2.8. We often denote by state an auxiliary output of an algorithm which describes
the state information of that algorithm. When such conditional events are quite long to
capture in one line, for visual ease we define and write it as an individual experimental
event (see, for example, Definition 2.5); if such conditional events are even in more detail,
we write it in text form (see, for example, Section 4.2.2).

We let AO, where O = {O1(·), O2(·), ..., Ow(·)}, denote the algorithm A that has access
to oracle machines O1, ..., Ow which will answer queries to it. We let “Left-or-Right oracle”
LR(x0, x1, b) = xb, and “Real-or-Random oracle” RR(x, b) output x if b = 0 or output a
random string with the same length as x if b = 1. These last two functions will be used in
the formulation of encryption schemes. [BDJR97]

A probabilistic, polynomial-time interactive Turing machine (PPT ITM) M is one for
which there exists a polynomial p(·) such that for all inputs x1, ..., xt, all randomness r,
and arbitrary behavior of other machines with which M is interacting, M(x1, ..., xt) with
randomness r runs in time bounded by p(|x1 ◦ · · · ◦xt|). For the detail about ITM and PPT
algorithm, see [Gol01].

We say that a function µ : Z+ → R+ is negligible if for all d > 0 and sufficiently large k
we have 0 < µ(k) < 1/kd.

20 2.2 Integer Factoring Related Assumptions

We denote the set {1, 2, ..., a} by [a]. For any set A, we denote by 2A the set {S ⊆ A};
and by

(
A
t

)
the set {S ⊆ A : |S| = t}.

More notations related to graphs or sequences are postponed to Section 2.5.

2.2 Integer Factoring Related Assumptions

We review some well-known intractability assumptions related to integer factoring as follows.

Hardness of Factoring. This assumption states that it is infeasible for any algorithm to
find the factors of a random product of two large primes. More formally, let 2-FACTORλ :=
{pq : p, q ∈ primes; |p| = |q| = λ}. Then, the factoring assumption states that for every
probabilistic polynomial-time algorithm A, the following probability is negligible (in λ):

Pr[p · q = n : n ← 2-FACTORλ; (p, q) ← A(n)]

The RSA Assumption. Informally, for a modulus n = pq which is the product of
two primes, a fixed e which is relatively prime to φ(n), and a random z ∈ Z∗n, the RSA
assumption [RSA78] states that it is infeasible to compute z1/e mod n. More formally,
the RSA assumption states that for all probabilistic polynomial-time algorithms A, the
following probability is negligible (in λ):

Pr[xe = z mod n : n ← 2-FACTORλ; z ← Z∗n;x ← A(n, e, z)],

where e is any number relatively prime to φ(n). If the factorization of n is known, then for
all e relatively prime to φ(n) and for all z ∈ Z∗n, the value z1/e can be computed efficiently.
Thus the RSA assumption is at least as strong as the assumption that factoring is hard.

The Strong RSA Assumption. Informally, the strong RSA assumption [BP97] is sim-
ilar to the RSA assumption except that the problem does not fix the exponent e, i.e., it
states that for a random z ∈ Z∗n, it is infeasible to find a pair (x, e) where x ∈ Z∗n and
e ∈ Z>1 such that xe = z mod n. More formally the strong RSA assumption states that for
all probabilistic polynomial-time algorithms A, the following probability is negligible (in
λ):

Pr[xe = z mod n : n ← 2-FACTORλ; z ← Z∗n; (x, e) ← A(n, z)].

The strong RSA assumption is at least as strong as the RSA assumption.

Also note that if n is a safe RSA modulus (i.e.,n = pq with p = 2p′ + 1, q = 2q′ + 1,
and p, q, p′, q′ are all primes), it is a good habit to restrict operation to the subgroup of
quadratic residues modulo n, i.e., the cyclic group QRn generated by an element of order
p′q′. This is because the order p′q′ of QRn has no small factors.

2.3 Bilinear Maps and Related Assumptions

Bilinear Maps. We use the standard terminology from [Jou00, BF01]. Let G,G1 be two
groups of prime order p, written multiplicatively. Let g be a generator of G. A bilinear
map is a map e : G×G→ G1 for which the following hold:

Chapter 2: Preliminaries 21

1. The map e is bilinear, that is, for all u, v ∈ G and a, b ∈ Z, we have

e(ua, vb) = e(u, v)ab.

2. The map e is non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently and
there exists G1 for which the bilinear map e : G×G→ G1 is efficiently computable.

For typical implementations, G is a subgroup of the group of points on an elliptic curve
over a finite field and G1 is a subgroup of the multiplicative group of a related finite field.
We simply use bilinear maps in a black-box manner throughout the thesis. See, for example,
[BSS05] for detailed implementations of bilinear maps and selection of curves with suitable
properties.

We now state intractability assumptions related to bilinear maps that we will use in this
thesis.

Decision BDH Assumption. Let G be a bilinear group of prime order p. The decision
n-BDH (Bilinear Diffie-Hellman) problem [BF01] in G is stated as follows: given a vector

(
g, ga, gb, gc, Z

)
∈ G4 ×G1

as input, determine whether Z = e(g, g)abc. An algorithm A that outputs β ∈ {0, 1} has
advantage ε in solving decision n-BDH in G if

|Pr
[A(

g, ga, gb, gc, e(g, g)abc)
)

= 0
]− Pr

[A(
g, ga, gb, gc, Z

)
= 0

]| ≥ ε,

where the probability is over the random choice of generators g ∈ G, the random choice
of a, b, c ∈ Zp, the random choice of Z ∈ G1, and the randomness of A. We refer to the
distribution on the left as PBDH and the distribution on the right as RBDH . We say that
the decision (t, ε, n)-BDH assumption holds in G if no t-time algorithm has advantage at
least ε in solving the decision n-BDH problem in G. We sometimes drop the t and ε and
refer it as the decision n-BDH assumption in G.

Decision BDHE Assumption. Let G be a bilinear group of prime order p. The decision
n-BDHE (Bilinear Diffie-Hellman Exponent) problem [BGW05, BBG05] in G is stated as
follows: given a vector

(
g, h, gα, g(α2), . . . , g(αn), g(αn+2), . . . , g(α2n), Z

)
∈ G2n+1 ×G1

as input, determine whether Z = e(g, h)(α
n+1). We denote gi = g(αi) ∈ G for shorthand. Let

~yg,α,n = (g1, . . . , gn, gn+2, . . . , g2n). An algorithm A that outputs b ∈ {0, 1} has advantage
ε in solving decision n-BDHE in G if

|Pr
[A(

g, h, ~yg,α,n, e(gn+1, h)
)

= 0
]− Pr

[A(
g, h, ~yg,α,n, Z

)
= 0

]| ≥ ε,

where the probability is over the random choice of generators g, h ∈ G, the random choice
of α ∈ Zp, the random choice of Z ∈ G1, and the randomness of A. We refer to the

22 2.4 Cryptographic Tools

distribution on the left as PBDHE and the distribution on the right as RBDHE . We say
that the decision (t, ε, n)-BDHE assumption holds in G if no t-time algorithm has advantage
at least ε in solving the decision n-BDHE problem in G. We sometimes drop the t and ε
and refer it as the decision n-BDHE assumption in G.

It is shown in [BBG05] that this assumption holds in the generic bilinear group model [Sho97]
with the computational lower bound of Ω(

√
p/n) on the difficulty of breaking (cf.[BBG05]).

Cheon [Che06] recently showed a concrete attack with roughly the same complexity. It is
recommended to either increase p to compensate the security loss appropriately or use p of
a special form where p− 1 and p + 1 have no small divisor greater than log2 p to avoid the
attack.

Decision Linear Assumption. Let G be a bilinear group of prime order p. The decision
Linear problem [BBS04] in G is stated as follows: given a vector

(g, gz1 , gz2 , gz1z3 , gz2z4 , Z) ∈ G6

as input, determine whether Z = gz3+z4 . The decision (t, ε)-Linear assumption posits the
hardness of this problem and can be formally defined in an analogous way as above.

2.4 Cryptographic Tools

2.4.1 One-way Function and Pseudo-random Sequence Generator.

Definition 2.1 (OWF). A polynomial time computable function f : {0, 1}∗ → {0, 1}∗ is
called a one-way function if for any PPT adversary A, the following probability is negligible
(in λ):

Pr[f(z) = y : x ← {0, 1}∗; y ← f(x); z ← A(1λ, y)].

In other words, f is easy to compute but hard to invert on a random input x.

Definition 2.2 (PRSG). A deterministic polynomial time computable function G : {0, 1}k →
{0, 1}l(k) is called a pseudo random sequence generator (PRSG) stretching from k to l(k)
bits where l(k) > k if for any PPT adversary A, the following is negligible (in l(k)):

|Pr[A(t) = 1 : x ← {0, 1}k; t ← G(x)]− Pr[A(t) = 1 : t ← {0, 1}l(k)]|.

In other words, G(r) for a random r ∈ {0, 1}k (this r is called a seed of G) is indis-
tinguishable to any PPT algorithm from a truly random R ∈ {0, 1}l(k). The following
important result was proved by [ILL89].

Theorem 2.3. OWF’s exist ⇐⇒ PRSG’s stretching to k + 1 bits exist ⇐⇒ PRSG’s
stretching to l(k) bits exist for any polynomial l(k) > k.

One of the consequences is that we can talk about PRSG’s in general without worrying
about the particular stretching factor.

2.4.2 Public-key and Symmetric-key Encryption Schemes.

Encryption is the main theme of this thesis, where we consider encryption with various
functionalities. Formalizations of basic public-key and symmetric-key encryption schemes
are thus crucial foundations to our theme. We elaborate such formalizations in this section.

Chapter 2: Preliminaries 23

The widely accepted notion of security for encryption is semantic security, introduced
by Goldwasser and Micali [GM84]; this definition states (informally) that anything which
can be efficiently computed about a plaintext message when given access to the encryp-
tion of that message can be efficiently computed without access to the encryption of the
message (in particular, this implies that the message itself cannot be determined without
the decryption key). A second definition of security is that of indistinguishability [GM84];
here, an adversary outputs two messages x0, x1 and is then given an encryption of one
of them (chosen at random). The adversary succeeds if he can determine which message
was encrypted. An encryption scheme is indistinguishable if the success probability of any
PPT adversary is negligibly close to 1/2 (the adversary can always succeed half the time by
guessing randomly). The basic definition of indistinguishability given above is equivalent
to that of semantic security [GM84]. Under the basic definition, however, the adversary is
given only the ciphertext. Subsequent work has considered stronger attacks in the public-
key [NY90, RS91, BDPR98] and symmetric-key [BDJR97] settings. The strongest attack is
the so-called chosen-ciphertext attack. It is relaxed to a weaker but considered useful notion
in [ADR02, CKN03]. The syntax of both public-key and private-key encryption scheme can
be unified as follows.

Definition 2.4 (Encryption Scheme). An encryption scheme E is a 3-tuple of polynomial-
time algorithms (Setup,Encrypt, Decrypt):

Setup(1λ): Takes as input a security parameter 1λ. It outputs keys sk and pk.

Enc(pk,M): Takes as input the key pk, and a message M . It outputs a ciphertext C.

Dec(sk, C): Takes as input the key sk, and a ciphertext C. It returns M or ⊥ by the
following consistency: Decrypt(sk, Encrypt(pk,M)) = M

A private-key (or symmetric-key) encryption scheme SE is defined as one which for all
(pk, sk) output by Setup, we have pk = sk. A public-key encryption scheme PE will have
pk 6= sk; note that this is not implied by the definition above, yet will be implied by the
definition of security below.

Definition 2.5 (IND-ATK Security of Symmetric-key Encryption). A symmetric-
key encryption scheme SE is secure in the sense of IND-ATK where ATK ∈ {COA,CPA, CCA1, CCA2}
(Indistinguishability against Ciphertext-Only, Chosen-Plaintext and Non-adaptive/ Adap-
tive Chosen-Ciphertext Attack resp.) if for all polynomial time adversaries S = (Sfind,Sguess),
its advantage |Pr[ExpIND−ATK(SE, S) = 1]− 1

2 | is a negligible function in λ where we define

Experiment ExpIND−ATK(SE, S)
Setup(1λ) → sk;

(M∗, state) ← SO1
find(1

λ)
{0, 1} → b;

RR(M∗, b) → M †;
Enc(sk,M †) → C∗;

b′ ← SO1
guess(C

∗, state)
return 1 iff b = b′

where

• If ATK = COA, then O1 = O2 = ∅,

24 2.4 Cryptographic Tools

• If ATK = CPA, then O1 = O2 = {Enc(sk, ·)},
• If ATK = CCA1, then O1 = {Enc(sk, ·),Dec(sk, ·)}, O2 = {Enc(sk, ·)},
• If ATK = CCA2, then O1 = O2 = {Enc(sk, ·), Dec(sk, ·)} with the restriction that

Sguess cannot ask the decryption of C∗.

It is known [DDN00] that PRSG is necessary and sufficient to construct symmetric-key
encryption in the strongest notion (IND-CCA2). From the previous section, we thus have
that one-way function is also necessary and sufficient.

Definition 2.6 (IND-ATK Security of Public-key Encryption). A public-key encryp-
tion scheme PE is secure in the sense of IND-ATK where ATK ∈ {CPA, CCA1,RCCA2, gCCA2,CCA2}
(Indistinguishability against Non-adaptive / Relaxed Adaptive / Generalized Adaptive /
Adaptive Chosen-Ciphertext Attack resp.) if for all polynomial time adversaries P =
(P find, P guess), its advantage |Pr[ExpIND−ATK(PE,P) = 1]− 1

2 | is a negligible function in λ
where we define

Experiment ExpIND−ATK(PE, P)
Setup(1λ) → (pk, sk);

(M0,M1, state) ← PO1
find(1

λ, pk)
{0, 1} → b;

LR(M0,M1, b) → M †;
Enc(sk, M †) → C∗;

b′ ← PO1
guess(C

∗, state)
return 1 iff b = b′

where if ATK = CPA, then O1 = O2 = ∅; if ATK = CCA1, then O1 = Dec(sk, ·), O2 = ∅;
otherwise O2 is also Dec(sk, ·) with some restrictions imposed:

• if ATK = RCCA2, P guess does not allow to ask C such that Dec(sk, C) ∈ {M0,M1},
• if ATK = gCCA2, P guess does not allow to ask C such that R(C,C∗) = 1 for some

efficiently computable relation R,

• if ATK = CCA2, P guess does not allow to ask C∗.

2.4.3 Signature Schemes

In a digital signature scheme, a signer publishes a public verification key and keeps secret
a signing key; a signer then uses a signing algorithm to associate a signature to a message;
this signature can be validated by anyone who knows the verification key.

Definition 2.7 (Digital Signature Scheme). A signature scheme SIG is a triple of
algorithms (Gen, Sign, Vrfy) such that for some polynomial p(·):

Gen(1λ) Takes as input a security parameter 1λ. It outputs verification key VSIG and signing
key KSIG.

Sign(KSIG,M) Takes as input a signing key KSIG, and a message M ∈ {0, 1}≤p(λ). It outputs
a signature M .

Vrfy(VSIG,M, σ) Takes as input a verification key VSIG, a message M , and a signature σ. It
outputs a single bit b.

Chapter 2: Preliminaries 25

We require that for all λ, all (VSIG,KSIG) output by Gen(1λ), all M ∈ {0, 1}≤p(λ) and all σ
output by Sign(KSIG,M), we have that Vrfy(VSIG,M, σ) = 1.

A signature scheme is secure if any adversary is unable to forge a valid message/signature
pair. Security definitions for signature schemes are formalized by Goldwasser, Micali, and
Rivest [GMR88]. As is true for encryption schemes, notions for signature can be classified
by the combination of security goals and attack types. We consider the strongest type:
(strong) existentially unforgeable against chosen message attack.

Definition 2.8 (EUF-CMA Security of Signature Scheme). A signature scheme is
secure in the sense of EUF-CMA or sEUF-CMA (weakly /strongly existentially unforgeable
against chosen message attack) if for all polynomial time adversaries A, the following prob-
ability is a negligible function in λ:

Pr[(VSIG,KSIG) ← Gen(1λ); (M∗, σ∗) ← ASign(KSIG,·)(1λ, VSIG) : Vrfy(VSIG,M∗, σ∗) = 1],

where the restriction for each notion is as follows.

• For notion EUF-CMA: M∗ 6∈ {M1, . . . , Mq}.
• For notion sEUF-CMA: (M∗, σ∗) 6∈ {(M1, σ1), . . . , (Mq, σq)}.

where (Mi, σi) is the i-th queried message and answer pair.

It is known that the existence strongly unforgeable signature scheme is equivalent to
one-way function [NY89, Rom90].

A weaker notion is that of a one-time signature scheme [Lam79, Mer89], in which the
adversary is allowed to request only one signature from the Sign oracle before attempting
a forgery. Although secure signature schemes and one-time signature schemes may both
be constructed from one-way functions, known constructions of one-time signature schemes
are more efficient.

2.4.4 Notions of Access Structures and Secret Sharing Schemes

In order to formalize “accessability” to some target information in full generality, the notions
of access structures are useful and will appear as a recurring theme throughout the thesis.
We thus capture it in this preliminary chapter.

Access Structures over Sets. We now describe some terminology on access structures
over sets. Consider a (possibly infinite) set N . We call the subsets in N which are allowed
to derive some sort of secret qualified, and the subsets in N who should not be able to obtain
any information about the secret forbidden. We call Θ ∈ 2N a qualified access structure if
Θ is monotone non-decreasing, i.e., for each v ∈ Θ we have that if v ⊆ w then w ∈ Θ. We
denote by Θ(min) the collection of minimal sets in Θ. We call Ψ ∈ 2N a forbidden access
structure if Ψ is monotone non-increasing, i.e., for each v ∈ Θ we have that if w ⊆ v then
w ∈ Θ. We denote by Ψ(max) the collection of maximal sets in Ψ. The tuple (Θ, Ψ) is called
an access structure pair on N if Θ ∩ Ψ = ∅. If Θ ∪ Ψ = 2N , then we say that (Θ,Ψ) is
complete.

Since we often refer to the qualified one throughout the chapter, when we refer to access
structure we mean a qualified access structure, unless otherwise is specified. For an access
structure Θ, we call

⋃
w∈Θ w the support of Θ and denote it by Sup(Θ).

26 2.5 Graphs and Posets

Secret Sharing Schemes. A secret sharing scheme permits a secret to be shared among
participants of a base group N in such a way that only qualified subsets of participants can
recover the secret. Such qualified subsets are captured by a qualified access structure.

Definition 2.9 (Secret Sharing Scheme). A secret sharing scheme for access structure Θ
over N = {1, . . . , n} consists of two algorithms Sharen,Θ,Reconn,Θ:

Sharen,Θ(M) A probabilistic algorithm for sharing that takes as input a secret M . It outputs
the set of shares (s1, . . . , sn) and a public information pub.

Reconn,Θ(X, (sj)j∈X, pub) A deterministic algorithm for reconstructing that takes as input
a set X ∈ Θ, the set of shares (sj)j∈X, and the public information pub. It outputs the
secret M .

The correctness property states that for all M , for all (s1, . . . , sn, pub) output from Sharen,Θ(M)
it holds that Reconn,Θ(X, (sj)j∈X, pub) = M .

Definition 2.10 (Computational Security of Secret Sharing Scheme). A secret sharing
scheme for access structure Θ over set N is computationally secure against a forbidden
structure Ψ ⊆ 2N \ Θ if for all polynomial-time adversary A = (A1,A2) the following is
negligible:

Pr[(M0,M1,Y) ← A1(1λ, Θ, Ψ); b ← {0, 1}; (s1, . . . , sn, pub) ← Sharen,Θ(Mb) :
A2((sj)j∈Y, pub) = b ∧ Y ∈ Ψ].

2.5 Graphs and Posets

Graph. A graph is a pair G = (V, E) of sets satisfying E ⊆ (
V
2

)
; thus, the elements of E

are 2-element subsets of V . The elements of V are the vertices (or nodes) of the graph G,
the elements of E are its edges. When G = (V, E) we sometimes refer V = VG, E = EG

for clarity. We will consider only a simple graph, where E is threaten as a set without
repetition, i.e., not multi-set. If V ′ ⊆ V and E′ ⊆ E then G′ = (V ′, E′) is a subgraph of
G = (V,E), written as G′ ⊆ G. Less formally, we say that G′ is in G. We say that two
graphs are disjointed if their sets of nodes are disjointed.

A path is a graph P = (V, E) of the form V = {x0, ..., xl}, and E = {{x0, x1}, ...,
{xl−1, xl}} where the xi are all distinct. We often refer to a path by the sequence of its
nodes, writing, say, P = (x0, x1, ..., xl). A graph G is called connected if any two of its
nodes are linked by a path in G. A sequence (x0, x1, ..., xl, x0) where ((x0, x1, ..., xl) is a
path is called a cycle. An acyclic graph, one not containing any cycles, is called a forest.
A connected forest is called a tree. A tree with one node fixed as a special node is called a
rooted tree, and the special node is called the root of tree. A node of degree 1 in the tree is
called a leaf. A forest in which all maximal connected trees are rooted trees is called rooted
forest.

A directed graph is a graph G = (V, E) together with two maps init : E → V and
ter : E → V assigning to every edge e ∈ E an initial vertex init(e) and a terminal vertex
ter(e). The edge is said to be directed from init(e) to ter(e), written as e = (init(e), ter(e)).
A directed path or chain is a path of sequence (x0, ..., xl) with the edge {xj−1, xj} being
directed from xj−1 to xj for all j = 1, ..., l. A directed cycle is defined analogously. A
directed acyclic graph is a directed graph with no directed cycle in it.

Chapter 2: Preliminaries 27

A directed rooted tree such that for each edge e ∈ E, init(e) is nearer to the root than
ter(e) is called root-ordered tree. A root-ordered forest is defined analogously for a directed
rooted forest.

Decomposition of Graph. A node-partitioned decomposition of a graph G is a family
of subgraphs G1, ..., Gk whose sets of nodes partition VG.

• When G is a directed acyclic graph and each Gj is a chain, we have a chain-decomposition.

• When G is an undirected graph and each Gj is a tree, we have a tree-decomposition
(for undirected graph).

• When G is a directed acyclic graph and each Gj is a root-ordered tree, we have a
tree-decomposition (for directed acyclic graph).

Partially Ordered Set. A partially ordered set is a set with partial order relation. It is
defined as follows.

Definition 2.11 (Partially Ordered Set, Poset). A poset Γ = (S, 4) is a set S on
which an order relation 4 is defined, satisfying

1. x 4 x for all x ∈ S,

2. if x 4 y and y 4 x then x = y,

3. if x 4 y and y 4 z then x 4 z.

We say that x and y are comparable if x 4 y or y 4 x. If x 4 y and x 6= y we write
x ≺ y. If x ≺ y and there is no z such that x ≺ z ≺ y we say that y covers x, written as
x ≺c y. Any x with no y such that y ≺ x is called a minimal element. An example of poset
is inclusion poset, where S ⊆ 2N with relation ⊆.

One can represent a poset Γ = (SΓ,≺) as a directed acyclic graph G by setting

VG = SΓ, EG = {(x, y) : x ≺ y}. (2.1)

This is the maximal representation since it shows all the order relations in the poset. On
the other hand, the minimal representation is the one with EG = {(x, y) : x ≺c y}. A
chain (tree, resp.) decomposition of poset is a chain (tree) decomposition of its maximal
representation graph. For clarity, we call each edge in the maximal representation graph a
ordering-edge; and each edge in the minimal one a covering-edge.

Chapter 3

Practical Symmetric-key Broadcast
Encryption

3.1 Introduction

Broadcast encryption (BE) involves 1 broadcaster and n receivers. Each receiver is given
a unique private key. The broadcaster is given a private broadcaster key. The broadcaster
wishes to broadcast messages to a designated set P ⊆ N = {1, ..., n} of receivers. Any
receivers in P should be able to decrypt the broadcast message using only its private key
while a coalition F ⊆ N r P (revoked users) should not be able to do so. As mentioned
in Chapter 1, such a scheme is motivated largely by pay-TV systems, the distribution of
copyrighted materials such as CD/DVD.

Broadcast encryption schemes were first formalized by Fiat and Naor [FN93]. Since
then, many variants of the basic problem were proposed. The arguably most challenging
variant is the case where it satisfies the following properties.

Arbitrary Broadcast The designated subset P can be an arbitrary subset of N .

Fully Collusion-Resistant Security of the scheme is guaranteed even all the users outside
P are colluded, i.e., the revoked user set equals to F = N r P .

Stateless Receiver The private key stored by each user is fixed from the initialization.

The main goal for the research in this area is to construct efficient schemes that satisfy
the above variant and require only small size of both the header of broadcast (communication
cost) and the private key at each user (storage cost) as a function of the number of users n
(and/or the number of revoked users, r := n− |P |). Here, the header is the encapsulation
of session key that is used to encrypt data.

A scheme which solves above mentioned variant problem and satisfies good efficiency in
only one side is trivial. The two trivial schemes are as follows.

• On one side, consider the broadcast encryption in which each user has one unique
user key of constant bit length. To broadcast an encrypted data, a center encrypts
the session key with each key of privileged users and then transmits them all as the
header. This construction yields only one key at each user but a large number of
ciphertexts in the header as linear to |P |.

30 3.1 Introduction

• On the opposite side, each user has all keys of subsets in which he is one of the
members. To broadcast an encrypted data, a center just let the session key be the
key corresponding to a privileged subset, hence yields no header. However each user
is required to store a large amount of keys, which equals to 2n−1.

Depending on applications, we may categorize to two following cases.

Large Broadcast, Small Revocation This is the case where r << n. One of the most
important example of applications in this case is copy protection for DVD, where
typically the number of illegal keys to be revoked should be small.

Small Broadcast, Large Revocation This is the case where r ≈ n. An example of
applications maybe irregular broadcast of TV programs where only small number of
users are interested in.

For the case of large revocation, it turns out that the first trivial scheme described
above is the only efficient solution (except for one recent scheme by Boneh, Gentry, Wa-
ters [BGW05], see below). On the other hand, there are many proposed schemes which are
useful in the small revocation case. As being attractive by important applications, we also
focus on this case.

An efficient solution for the case of small revocation which is considered a ground work to
many consequences is the Complete (binary) Subtree scheme (CS) by Naor et al. [NNL01].
Schemes which were considered the current state of the art (before two very recent works, see
below) are: (i) Pseudo-random sequences generator (PRSG) based schemes such as the Sub-
set Difference scheme (SD) [NNL01], its refinement–the Layered SD scheme (LSD) [HS02],
and their somewhat generalizations in [AKI03a]. (ii) RSA accumulator based schemes such
as Asano’s scheme [Asa02], and its optimal generalizations in [AKI03b, GR04]. See Table 1
for the efficiency comparison. No scheme above could achieve simultaneously small header
size independent of n, small key size of O(log n), while keeping computational cost and all
other costs grow only sub-linear in n.

More recently, Goodrich et al. [GST04] and Wang et al. [WNR04] independently propose
more efficient schemes that break the above barrier. In particular, they achieve simultane-
ously header size of O(r) and key size of O(log n), and computational cost of O(n1/k) for
arbitrary constant k. (In fact, in [WNR04] only the case when k = 1, 2 is considered).

In this chapter, we propose generic frameworks for constructing broadcast encryption
and give some efficient instantiations. One of our instantiations (Instantiation 2 in Table 1)
achieves not only small header size of O(r) but also small key size of O(1) with no extra non-
secret storage, while keeping computational cost O(n1/k log2 n), which grows only sub-linear
in n. Thus this is the first scheme that achieves header and private key size independent of
n while keeping computational cost sub-linear in n, with no extra non-secret storage. The
contributions in more detail are described below.

3.1.1 Our Contributions

In the general subset-cover paradigm of [NNL01], which includes almost all of the above
schemes, it has been implicitly understood that one can separate the design of such a scheme
into two seemingly orthogonal problems namely: designing combinatorial set system which
enables subset covering (this step determines the header size), and defining computational
key derivation (this step determines the private key size and computational cost). This is

Chapter 3: Practical Symmetric-key Broadcast Encryption 31

Table 3.1: Comparison among symmetric-key broadcast encryption schemes. (k, a, c are
arbitrary constant parameters. negl is for negligible.)

Header size Priv. key size Comp. cost (bit complexity) Non-secret
Complexity ≤ Prime-gen Others Storage

CS [NNL01] O(r log(n
r
)) log n + 1 - O(log log n) negl

PRSG or OWF -based ↓
SD [NNL01] O(r) 2r−1 O(log2 n) - O(log n) negl

LSD [HS02] O(r) 2kr−k O(log1+1/k n) - O(log n) negl

GST [GST04] O(r) 4kr 2 log n - O(n1/k) negl

WNR [WNR04] O(r) 4r 2 log n - O(n1/2) negl

HLL1 [HLL05] O(r) 2kr log n + k - O(n1/k) negl

Instantiation 1 O(r) 2kr ≤ log n + 1 - O(n1/k) negl

Instantiation 4 O(r) 2r ≤ k(log n + 1) - O(kn1/k) negl

HL [HL06] O(r) 2r k(log n + 1) - O(kn1/k) negl

JHC+2 [JHC+05] O(r) r/c O(nc) - O(n− r) negl

RSA Accumulator -based ↓
Asano [Asa02] O(r loga(n

r
)+r) 1 O(2a log5

a n) O(2a log2
a n) negl

GR [GR04] O(r loga(n
r
)+r) 1 O(a log5

a n) O(a log2
a n) negl

Instantiation 3 O(r loga(n
r
)+r) 1 O(1) O(a log n) negl

Instantiation 2 O(r) 2kr 1 O((log5 n)/k5) O((n1/k log2 n)/k) negl

Bilinear Map -based ↓
BGW [BGW05] O(1) 1 1 - O(n− r) O(n)

first explicitly characterized in [GR04] for the case of Akl-Taylor’s RSA based key deriva-
tion [AT83].

Framework. In this paper, we characterize the two orthogonal components in general.
We then explicitly present three generic sub-frameworks for computational key derivation
component (generic as arbitrary set systems are applicable): (1) PRSG based technique
(re-formalizing from [AKI03a] so as to be consistent with presentations here), (2) non-
trapdoor-RSA accumulator based, and (3) trapdoor-RSA accumulator based techniques.
The non-trapdoor RSA based one is a generalization and also an optimization of Akl-
Taylor’s technique. The trapdoor RSA based framework is an extension of the non-trapdoor
RSA based one and can achieve better efficiency performance, albeit its description is some-
what more complicated.

The main issue is that we characterize three sub-frameworks in such a way that such
instantiations in these frameworks and their resulting efficiencies will depend solely on prop-
erties related to graph decompositions of the set systems being instantiated; while in the
same time the security will be guaranteed automatically from the general frameworks. The
PRSG based framework will be based on tree decomposition, and the two RSA based frame-
works will be based on chain decomposition; both are purely combinatorial. Therefore the
whole paradigm abstracts away the computational security issues and reduces the problem
to only pure combinatorics. Moreover it allows modularity in designing a scheme: it is a
matter of finding a set system which yields a good header size in the first step, and then
finding a graph decomposition of that set system that yields a good private key size and
computational cost.

As for the generic efficiency characterization, both RSA based frameworks achieve key
size of O(1) for all instances. One generic property of the trapdoor based framework that
makes it superior to the non-trapdoor based one is that when restricting to the same asymp-

32 3.1 Introduction

totic resources and instantiating the same set system1, if the non-trapdoor based one allows
n users in the scheme, then the trapdoor based one will allow nk users for any (arbitrary
large) constant k. Indeed, the costs due to prime generation are exactly the same (not only
asymptotically).

Efficient Instantiations. For the combinatorial set system component, all of our schemes
are based on new set systems we call Subset Incremental chain (SIC) and Layered-SIC
(LSIC) which are designed so to achieve small header size as being O(r) while intrinsically
have graph decompositions with good properties. For the computational key derivation
component, we instantiate the LSIC set system by presenting their graph decompositions,
resulting in various concrete schemes upon each sub-framework as follows. We use the
notation (X)y to denote an instantiation of the set system X using the y-based framework.
Denote LSIC[k] as LSIC with parameter k. Note that LSIC[1] = SIC.

Instantiation 1 : (LSIC[k])prsg. This scheme directly improves the scheme of [GST04, WNR04]
(and it is fair to compare with since the same assumption, PRSG, or equivalently one-way
function, was used). In particular it can reduce some overheads, albeit only within constant
terms in the worst case: the worst-case key sizes are half of those in [GST04, WNR04].
Indeed the key size in our scheme is non-uniform among users; some users are even required
to store only constant-size keys (cf. Theorem 3.12, 3.15, and Eq.(3.4)). Our scheme also
reduces the computational cost from [GST04], but only in the average case (the worst-case
costs are asymptotically the same).

Instantiation 2 : (LSIC[k])acc, (LSIC[k])tacc. Note that (t)acc is for (trapdoor) accumulator.
The performance of this scheme is as mentioned previously. It is the first scheme that
achieves header and private key size independent of n while keeping computational cost sub-
linear in n, with no extra non-secret storage. The number of primes used per user is optimal
as being O(log n) for (LSIC[k])acc and further reduced to O((log n)/k) for (LSIC[k])tacc (so
that the on-the-fly prime generation cost is O((log5 n)/k5)). Had one used the non-optimal
Akl-Taylor’s framework as put forth to the context of BE by [Asa02, AKI03b, GR04], it
would be O(n1/k log n) which is super-logarithmic (and the prime generation cost would be
O(n1/k log5 n)).

Instantiation 3 : (LSIC[loga n])tacc. This scheme improves Gentry and Ramzan’s scheme [GR04],
which itself is more efficient than the above schemes in the aspect of asymptotic computa-
tional cost. Our scheme reduces poly-logarithmic cost due to prime generation, which was
the dominant cost, to only a constant one without affecting the other parameters. Among
the constant-key-size schemes with header size O(r loga(n/r) + r) and no extra non-secret
storage, this is the first one in the literature that achieves O(log n) overall computational
cost. (And in fact, ours uses only a constant number of primes). The previous improvement
for this class of schemes was done by [GR04] to improve [Asa02] but only in the constant
term involving a. (cf. Table 1).

1To be more precise, we indeed do not instantiate the same set system in this comparison; instead, we
instantiate a set system, say A, in the non-trapdoor based framework and a hierarchical version of A in the
trapdoor based framework. See for more details in Section 3.6.1.

Chapter 3: Practical Symmetric-key Broadcast Encryption 33

Instantiation 4 : (SIC)prsg,new. By using a new tree decomposition different from the one
used in the first instantiation, we achieve a new scheme that trades the private key size for
smaller header size. Analogously to the instantiation 1, the private key size is non-uniform:
it varies from 1 to k(log n + 1).

As a nutshell guide for selecting schemes, if overall good performances are required,
the instantiation 2 is recommended; if the computational cost is more restricted, use the
instantiation 3; if the underlying cryptographic primitive is restricted to only weak one
(namely PRSG, and not RSA or bilinear map), use the instantiation 1 for smaller key size
or use the instantiation 4 for smaller header size.

3.1.2 Recent Related Works

At the same time as when we publicly announced our first preliminary version [AI05b] (in
January 2005), Boneh et.al. [BGW05] presented a public-key broadcast encryption scheme
which achieves size O(1) for both header and private key. However, the computational cost
is O(n − r) (which, in particular, is not sub-linear in n) and the size of the public key to
be used by an encrypter, which is also the non-secret storage needed for the decrypter, is
O(n). The second scheme in [BGW05] reduces these computational cost and non-secret
storage size to O(

√
n) but with the price of the increased header size as O(

√
n), which is

not independent of n anymore.
Also at almost the same time, Jho et.al. [JHC+05] proposed some efficient schemes with

small header size when r is not too small. However, their schemes do not enjoy practical
asymptotic performances as either the header size is c1r + c2n = O(n) (for some constant
c1, c2) or the key size is

(
n−1

c

)
= O(nc) (for some c ≥ 2) for their best two schemes.

More recently, in August 2005, Hwang et al. (scheme B1 in [HLL05]) independently
proposed a similar scheme as our instantiation 1, but the private key size is log n+k, which
is larger than ours.

We presented our fourth instantiation [AI05c] first in November 2005. Independently,
Hwang and Lee [HL06] (in March 2006) presented a scheme with a similar performance,
albeit with the user key size being uniformly k(log n + 1), larger than ours on average.

Finally, it is worth noting that Boneh and Silverberg [BS03] showed that n-linear maps
can be used to construct an optimal public-key scheme with constant private key, public
key, and header size. However, there are currently no known constructions for such a map
for n > 2.

3.1.3 Organization of the Chapter

In Section 3.1.4, we exhaustively survey earlier works in the area related to broadcast en-
cryption; this subsection can be skipped without loss of understanding of the main context.
We then start the main context by first formalizing the subset-cover framework separately
into two components, combinatorial set system and computational key derivation as men-
tioned above, in Section 3.2.2. Some terminology is then described in Section 3.2.3. New
set systems, SIC and LSIC, are presented in Section 3.3. The three frameworks for key
derivation which are PRSG-based, Non-trapdoor RSA accumulators-based, and Trapdoor
RSA accumulators-based, are described in Section 3.4.1, 3.5.1, and 3.6.1 resp. We then give
the instantiations of the proposed set systems in Section 3.4.2, 3.5.2, and 3.6.2 from the
three frameworks, respectively. We then conclude in Section 3.7.

34 3.1 Introduction

3.1.4 Survey on Earlier Works

For completeness, we also survey earlier related works. The research area of broadcast
encryption is extensive and our survey turns to be lengthy than first planning. Since this
is not directly related to our proposal, the reader may just skip this part without loss of
understanding.

Schemes surveyed in this section are those that were presented before 2001. All the
schemes do not satisfy the above mentioned variant: they are either having limitation on
privileged user sets, not fully collusion-resistant, or not stateless.

To characterize such schemes and compare previous results we should fix our notation.
Two important characterizations that diverge different schemes are the first two aspects
in the list concerning variants mentioned before, i.e., fixed, bounded or unbounded size of
privileged and/or forbidden subsets. Here we naturally generalize it to the access structure
of privileged subsets and forbidden subsets (e.g.,threshold structure is a special case). Let
2N denote the collection of all subsets of N . We denote by P ⊆ 2N a collection of all possible
privileged subsets to which the broadcaster sends a broadcast; and F ⊆ 2N a collection of
all possible coalitions (called forbidden subsets) against which each broadcast is to remain
secure. Informally, such a scheme satisfying these structures is called F-secure P-broadcast
encryption scheme or (P,F)-BE. Denote [≤ a] = {P ∈ 2N : |P | ≤ a} (and similarly for
[≥ a], [= a]). We often omit [] when it does not cause ambiguity.

In high-level, we categorize previous works in the literature by the lines of researches
which are usually diverged by their different approaches.

Information-theoretically Secure Stateless Schemes.

The early works in the area of broadcast encryption are done in the information-theoretically
secure setting. Informally, such schemes are secure against any adversaries with unbounded
resource. Consequently, such schemes require no computational intractability assumption.
Also, the private keys needs to be perfectly unrelated. Such a scheme can be used only
single or bounded number of time(s), since every use will leak some secret information. All
information-theoretically secure schemes are naturally stateless. We exhaustively survey
results as follows.

One interesting special class of these contains the schemes which have header-size = 0,
which is called zero-header broadcast encryption. This class of schemes is equivalent to
another cryptographic tool called Key Predistribution Scheme (KPS). KPS allows a desig-
nated group of users to establish a common key non-interactively. Intuitively, using such
a common key as a session key encrypting the data in broadcast encryption, header is not
needed anymore, hence its name: zero-header.

Blom obtained a (2,≤ k)-KPS for any k ≤ n in [B84] by using MDS codes. The
formalization of Blom’s work is done by Matsumoto and Imai in [MI87]. Blundo et al.
obtained a (t,≤ k)-KPS in [BSH+92] by using symmetric polynomials. Fiat and Naor
presented a (≤ n,≤ k)-KPS in [FN93]. Blundo et al. found tight lower bounds on private
key size for (t,≤ k)-KPS’s [BSH+92] and for (≤ n,≤ k)-KPS’s [BC94]. Stinson shows that
general (P,F)-KPS can be constructed from a simple combinatorial set system called (P,F)-
Key Distribution Pattern [Sti96]. Desmedt and Viswanathan presented a bound and an
optimal construction for (≤ n,≤ n)-KPS [DV98]; this can be considered as a compliment of
the Fiat and Naor (≤ n,≤ n)-KPS, this is indeed the second trivial construction mentioned
before.

Chapter 3: Practical Symmetric-key Broadcast Encryption 35

We now turn to general broadcast encryption schemes (not only zero-header). After
Fiat-Naor’s zero-header scheme is published, there are several subsequent works [BMS96,
Sti96, SW98, KYDB98, LS98]. Blundo et al. gave a non-tight concrete lower bound regard-
ing tradeoff between private key size and header size and a construction for (t,≤ k)-BE’s
from KPS as sub-schemes of smaller access structure [BMS96]. Stinson also gave a construc-
tion for (≤ n,≤ k)-BE’s based on KPS [Sti96]. The implication from BE to KPS is proved
by Kurosawa et al. [KYDB98], hence by using lower bounds of KPS in [BSH+92, BC94]
they obtain directly a lower bound for (t,≤ k)-BE’s. Luby and Staddon found some more-
tight asymptotic bounds and constructions for (= n − k,≤ k)-BE’s [LS98]. Kumar et
al. [KRS99] proposed (≥ n − k,≤ k)-BE based on cover-free families and error correct-
ing codes; their scheme which underlying cover-free families based on polynomials require
private-key-size = O(k log n), header-size = O(k log n); while the one on algebraic-geometric
codes require private-key-size = O(k log n), header-size = O(k2). Anzai et al. [AMM99] and
Naor-Pinkas [NP00] independently proposed a (≥ n− k,≤ k)-BE based on Shamir’s secret
sharing scheme [Sha79]. Their schemes performs permanent type of revocation; while n
does not have to be determined in advance! (we can add new users by not affecting present
users). The resulting scheme has private-key-size = O(1), header-size = O(k). This scheme
can be turned to computationally secure one by using secret sharing in the exponent of an
generator in the group of prime order instead.

Note that in general, one can turn an information-theoretically secure broadcast encryp-
tion which the revocation is not permanent to a computationally secure one. This makes
us possible to use the resulting scheme polynomially-many times, instead of single (or few
bounded) time(s). This is done by changing the underlying encryption scheme used for
encrypting a session key from an information-theoretically secure one (one-time pad) to
a computationally secure one. Intuitively, this is since the private keys are still perfectly
unrelated.

Computationally Secure Stateless Schemes.

Informally, this setting models the adversaries as ones with bounded resources, in particular
as polynomial-time algorithms. Such schemes require computational intractability assump-
tion in order to base the security on. Basically, computational security trades the security
with a better efficiency. One of the main idea is to generate keys that are computationally
unrelated to the view of forbidden users, instead of perfectly unrelated as in the previous
setting.

Fiat-Naor in their seminal paper [FN93] presents several constructions of stateless
(≤ n,≤ k)-BE; their best result requires private-key-size = O(k(log k)(log n)), header-size =
O(k2(log2 k)(log n)). The multiple-times-use version of those perfectly-unrelated-key schemes
such as Luby-Staddon [LS98], Kumar et al. [KRS99], Naor-Pinkas [NP00] described above
improves this scheme. However, there were no scheme that achieves the access structure
(≤ n,≤ n) as desired. This was not until the scheme of Naor-Naor-Lotspiech [NNL01] is
published, which is indeed inspired from efficient stateful schemes which utilize the simple
binary tree structure.

Stateful Schemes and Multicast Security.

The first efficient stateful scheme appeared in the context of multicast security. It is not clear
how to distinguish the meaning of multicast security and broadcast encryption exactly. Very

36 3.2 Framework and Some Preliminaries

roughly speaking, multicast security considers the scenario of re-keying a group key, which
is known by all the members at the present time, say m members, when some users outside
those members joins the group or some users in the present time leaves (or, is revoked from)
the group. The efficiency is considered as a function of m, rather than the number of all
users, n, as in broadcast encryption, since such n is not determined in advance for multicast.
Put in another word, while the goal is the same, they differ as multicast security deals with
the set of present-time users while broadcast encryption deals with the privileged subset
of the set of all users. Due to the fact that the group key seamlessly relies on the status
relative to the present-time, such approaches to multicast security are usually inevitably
stateful.

The first efficient construction was proposed independently by Wallner et al. [WHA97]
and Wong et al. [WGL98]. Their methods define a logical tree and a node key for each node
of the tree. Each receiver is assigned to a leaf of the tree and given a set of node keys defined
for the nodes on the path from the leaf to the root. Therefore, private-key-size = log m+1,
assuming that the system uses a binary tree. All of these keys except one are shared by
other receivers. This method revokes one receiver at a time, and updates all keys stored by
non-revoked receivers, which have also been owned by the revoked receiver. This requires
header-size = 2 log m for one-user revocation. If the system needs to revoke r users by
repeating the single revocation, it requires header-size = 2r log m.

Since then, many modifications of these have been proposed in [MS98, CMN99]. Some
of them reduce header-size to log m for single revocation. McGrew et al. [MS98] used a one-
way function, Canetti et al. [CMN99] used a pseudo-random generator. The private-key-size
remains the same, while their methods increase the computational overhead at a receiver,
namely, each receiver needs to perform the computation of such a technique at most log m
times.

3.2 Framework and Some Preliminaries

3.2.1 Definitions and Security Notions of Broadcast Encryption

We formulate broadcast encryption as a key encapsulation mechanism (KEM)as follows.

Definition 3.1. (Private-key Broadcast Encryption) A private-key broadcast en-
cryption scheme consists of three polynomial-time algorithms (Setup, Enc, Dec):

Setup(1λ, n) Takes as input a security parameter 1λ; and the number of users n. It outputs
private keys sk1, ..., skn, a broadcaster secret key bk, and some public parameter pub.

Enc(bk, S) Takes as input the broadcaster secret key bk and a privileged subset S. It
outputs a message encryption key K and a header hdr.

Dec(〈u, sku〉, S, hdr, pub) Takes as input a receiver key 〈u, sku〉, the full header (S, hdr), and
pub. If u ∈ S then it outputs K or a special symbol ⊥ otherwise.

In usage, the ciphertext is hdr||EK(M) where E is a symmetric encryption scheme and
M is a plaintext.

Definition 3.2. (IND-CCA Security of BE). A private-key broadcast encryption BE =
(Setup, Enc, Dec) is secure in the sense of IND-ATK where ATK ∈ {CCA1, CCA2} if for

Chapter 3: Practical Symmetric-key Broadcast Encryption 37

all polynomial time adversaries K, its advantage |Pr[ExpIND−ATK(BE, K) = 1] − 1
2 | is a

negligible function in λ where we define

Experiment ExpIND−ATK(BE, K)
Setup(1λ) → (sk1, ..., skn, bk, pub);
(S∗, state) ← KO1

find(1
λ, pub)

Enc(bk, S∗) → (K∗, hdr∗);
{0, 1} → b;

RR(K∗, b) → K†;
b′ ← KO2

guess(K
†, hdr∗, state)

return 1 iff b = b′

where O1 denotes the oracles Corrupt(·) , Enc(bk, ·), Dec(〈·, sk(·)〉, ·, ·, pub) while O2 is the
same if ATK = CCA2 or nothing otherwise. Corrupt(S) takes as input S ⊂ N and returns
all the secret keys for users in S. It is required that F ∩S∗ = ∅, where F denotes the set of
all corrupted identities of users. Also it is restricted that Kguess does not ask the decryption
of the challenge ciphertext hdr∗.

3.2.2 Framework

Now we formalize the subset-cover framework [NNL01] separately into two independent
components as follows.

Combinatorial Set System Component

We first redefine a set system which is useful for such a scheme in this framework called
complement-cover set system. Such a set system is a family of subsets of a universe with the
property that every subset of the universe can be efficiently partitioned to a union of some
collection of subsets in the family.

Definition 3.3. (Complement-Cover Set System) For a map c : Z2
>0 → Z>0, a set

system S = {S1, ..., Sm} over a base set N = {1, ..., n} is c-complement-cover if there is
a polynomial-time algorithm Cover(·) such that upon input any subset R ⊂ N , outputs
{Si1 , ..., Sit} for some 1 ≤ i1, . . . , it ≤ m such that N rR =

⋃t
j=1 Sij and that t ≤ c(n, |R|).

¤

As usual n, r is the number of all users and revoked users respectively. Such a c(n, r)-
complement-cover set system yields a broadcast encryption scheme in the subset-cover
framework with the header size c(n, r). The scheme is described formally in 3.2.2 and
sketched here as follows. The broadcaster defines a subset key for each subset in the family.
Each user stores a set of keys in such a way that he can derive all the keys of subsets (in the
family) that he is a member. (Thus, the easiest way to do is to store them all. However to
reduce the storage of keys, it would be better to store only some and derive the others from
those stored keys on the fly. Such derivation patterns are predefined by the broadcaster.)
To revoke the set R of users, the broadcaster just let a header to be a session key encrypted
with each key of subsets in the partition of N rR. Thus the header size is c(n, r). We often
denote cX(n, r) for c(n, r) of the set system SX, where X is the name of that set system.

38 3.2 Framework and Some Preliminaries

Computational Key Derivation Component

We formalize the specification on key derivations in the context of access control scheme as
the following. Denote by k(S) the subset key for S ∈ S and p(u) the private key of u ∈ N .
Informally, the security of such a scheme requires that with p(u), one can derive k(S) if and
only if u ∈ S; moreover, the collusion N r S cannot derive it.

Definition 3.4 (Access Control Scheme, AC). An Access Control Scheme AC for a
set system S over a base set N is a 2-tuple of polynomial-time algorithms (Keygen, Derive),
where:

Keygen(1λ): Takes as input a security parameter 1λ. It returns all k(Si)’s, all p(u)’s, and
public parameter pub.

Derive(〈u, p(u)〉, Si, pub): Takes as input u ∈ N , the key p(u), Si ∈ S, and pub. It returns
k(Si) if u ∈ Si, or special symbol ⊥ otherwise. ¤

The security notions are formalized as Key-Indistinguishability (following [NNL01]) and
Key-Intract-ability. In what follows, we denote by RR(x, b) the real-or-random oracle, which
outputs x if b = 1, otherwise a random string with the same length as x.

Definition 3.5 (Key-Indistinguishability of AC). An access control scheme AC for a
set system S is secure in the sense of Key-Indistinguishability (KIND-1 or KIND-2) if for all
polynomial-time randomized adversary A, its advantage |Pr[ExpKIND-l(AC,A) = 1]− 1

2 | is
a negligible function in λ where we define

Experiment ExpKIND-l(AC, A)
Keygen(1λ) → ({k(S)}s∈S , {p(u)}u∈N , pub);
(S∗, state) ← A

Corrupt(·)
find (1λ, pub,S);

{0, 1} → b;
b′ ← Aguess(RR(k(S∗), b), state);

return 1 iff b = b′ and Sask ∩ S∗ = ∅

Where Corrupt(S) (can be asked once) returns {〈u, p(u)〉 : u ∈ S} and Sask is the query
made to Corrupt(·). If l = 1, it is restricted that S∗ = N r Sask.

Definition 3.6 (Key-Intractability of AC). An access control scheme AC for a set
system S is secure in the sense of Key-Intractability (KINT-1 or KINT-2) if for all polynomial-
time randomized adversary A, its advantage Pr[ExpKINT-l(AC, A) = 1] is a negligible func-
tion in λ where we define

Experiment ExpKINT-l(AC, A)
Keygen(1λ) → ({k(S)}s∈S , {p(u)}u∈N , pub);

(S∗,K) ← ACorrupt(·)(1λ, pub,S);
return 1 iff K = k(S∗) and Sask ∩ S∗ = ∅

Where Corrupt(S) (can be asked once) returns {〈u, p(u)〉 : u ∈ S} and Sask is the query
made to Corrupt(·). If l = 1, it is restricted that S∗ = N r Sask.

In 3.2.2, we present a simple conversion that converts any KINT-secure scheme to a
KIND-secure scheme in the random oracle model. Note that although KIND-2 is seemingly

Chapter 3: Practical Symmetric-key Broadcast Encryption 39

stronger than KIND-1 (since in the former the adversary has a freedom to choose the target
subset S∗ after the corrupt query while the latter does not allow to do so), both notions are
indeed obviously equivalent up to polynomial reduction, of factor O(|S|). The same result
holds for KINT.

Subset-Cover Broadcast Encryption

In this section, we state the formal description of the generic subset-cover broadcast en-
cryption from [NNL01]. From a compliment-cover set system (N,S) where N = {1, . . . , n},
an access control scheme (Keygen, Derive) for this set system, and a symmetric encryption
scheme (E, D) whose key space is the key space of the access control scheme, we construct
a broadcast encryption (to be more precise, a private-key broadcast KEM) as follows.

Construction 3-1. Subset-Cover Broadcast Encryption

Setup(1λ, n) Run Keygen(1λ) to obtain {〈S, k(S)〉 : S ∈ S}, {〈u, p(u)〉:u ∈ N}, and pub.
Let bk consist of all these elements. Let sku = p(u).

Enc(bk, S) Run Cover(N \S) to obtain the cover of S say {Si1 , . . . , Sit}. It randomly chooses
K from the message space of the symmetric encryption. It then lets

hdr =
(
〈i1, Ek(Si1

)(K)〉, . . . , 〈it, Ek(Sit)
(K)〉

)

It outputs a message encryption key K and a header hdr.

Dec(〈u, sku〉, S, hdr, pub) Parse hdr = (〈i1, C1〉, . . . , 〈it, Ct〉). If u 6∈ S then outputs ⊥. Oth-
erwise there must be k such that u ∈ Sik . Run Derive(〈u, sku〉, Sik , pub) to obtain
k(Sik). It then outputs Dk(Sik

)(Ck).

Naor et al. [NNL01] proved that broadcast encryption in the subset-cover paradigm,
whose the access control component is secure in the sense of KIND1 is secure in the standard
notion, namely IND-CCA1.

Theorem 3.7. ([NNL01]) Let w be the maximum cover size for the complement-cover
set system. Suppose that (Keygen, Derive) is KINT-1-secure with the maximum adversarial
advantage εAC and the symmetric encryption scheme is IND-CCA1-secure with the maximum
adversarial advantage εSE. Then the private-key broadcast KEM above is IND-CCA1-secure
with the maximum adversarial advantage 2w · |S| · (εSE + 2|S|εAC).

Without going into detail, we note that either starting with KIND1 or KIND2, the
reduction cost to IND-CCA1 of BE is the same (cf. Theorem 3.7 in 3.2.2). Intuitively, this
is since the IND-CCA game of BE allows the corrupt query to be asked polynomially many
times but both KIND1 and KIND2 allow only once. Therefore, proving KIND2 security
is not so interesting in this context. We defined the two adaptivity levels merely for an
independent interest.

It is also worth noting that Dodis and Katz [DK05] use the technique involving multiple
encryption to obtain a generic scheme which is IND-CCA2-secure.

Denote (X)y to be the access control scheme for set system SX that is constructed via AC
framework y. Denote KeySize(X)y(u) to be the number of keys of u (i.e., |p(u)|, when p(u)

40 3.2 Framework and Some Preliminaries

is treated as a set) and CompCost(X)y to be the worst-case computational cost for Derive.
Also denote PubSize(X)y to be the public storage required exactly in the number of bits.
We also refer (X)y as a BE scheme via the complement-cover set system SX. For any y,
HeaderSize(X)y(n, r) = cX(n, r).

Conversion KINT ⇒ KIND

In this section, we state the conversion that compiles a KINT-secure access control scheme
to a new KIND-secure one and prove its security.

From an access control scheme (Keygen, Derive), we construct a new access control
scheme (Keygen¦, Derive¦) as follows. Let H : S × {0, 1}∗ → {0, 1}poly(λ) for some poly-
nomial poly be a hash function.

Construction 3-2. Generic Conversion KINT ⇒ KIND

Keygen¦(1λ): Run Keygen(1λ) to obtain {〈S, k(S)〉 : S ∈ S}, {〈u, p(u)〉 : u ∈ N}, and pub.
Define k¦(S) = H(S, k(S)) for all S ∈ S and p¦(u) = p(u) for all u ∈ N . It then
outputs {〈S, k¦(S)〉 : S ∈ S}, {〈u, p¦(u)〉 : u ∈ N}, and pub¦ = (pub,H).

Derive¦(〈u, p¦(u)〉, S, pub¦): It first runs the algorithm Derive(〈u, p¦(u)〉, S, pub). If ⊥ is
returned, it also outputs ⊥, else k(S) is returned. In the latter case, it then outputs
k¦(S) = H(S, k(S)).

Theorem 3.8. Suppose that (Keygen, Derive) is KINT-`-secure for some ` ∈ {1, 2}. Then
(Keygen¦, Derive¦) is KIND-`-secure if H is modeled as a random oracle.

Proof. It is sufficient to prove the case when ` = 2 since the other case follows as a special
case. Let qH be the number of hash queries.

Let A be an adversary which breaks KIND-2-security of (Keygen¦,Derive¦) with advan-
tage ε. We construct an algorithm B which breaks KINT-2-security of (Keygen,Derive).
The construction is as follows.

The adversary A first asks the corrupt query, B just forwards this to its corrupt oracle
and then forwards back the result to A. This simulation is perfect since p(u)¦ = p(u) for all
u ∈ N . At anytime, A may ask a H-query for (S, R) ∈ S×{0, 1}∗. It just returns a random
value in the range {0, 1}poly(λ) for each new query and records the input-output pairs in a
H-list which was empty at first. If the query was asked before, it returns the corresponding
output that had been recorded in the H-list.

A then eventually outputs S∗. B then collects all the tuples of the form 〈(S∗, ?), ?〉
appeared in the H-list to a new H∗-list. (Here ? is for indeterminant). Let q∗ be the size of
the H∗-list at this point and let q′ be the number of hash queries so far. Let q̃ = q∗+qH−q′.
B randomly chooses i ∈ {1, . . . , q̃}. If i ≤ q∗ then let W ∗ = Wi where 〈(S∗, Ri),Wi〉 is the
i-th tuple in the H∗-list. Otherwise (i > q∗) randomly choose W ∗ ∈ {0, 1}poly(λ). In both
cases, B then randomly chooses b ∈ {0, 1} and returns RR(W ∗, b) to A.

A may continue to ask H-queries. For the case i ≤ q∗, B responds exactly as before.
Otherwise (i > q∗) B responds as before except the i-th query of the form (S∗, ?), in which
case B returns W ∗. In both cases, B appends the H∗-list appropriately. At the end, A
will output b′.

Chapter 3: Practical Symmetric-key Broadcast Encryption 41

Finally A outputs (S∗, Ri) to its challenger in the KINT game, i.e., Ri is the guess of
k(S∗).

It is not difficult to see that A’s view is identical to its view in the real attack. Let H
be the event that A asks a query for H(S∗, k(S∗)) at some point (this implies that at the
end of simulation (〈S∗, k(S∗)〉, ?) appears in the final H∗-list). We claim that Pr[H] ≥ 2ε.
This will prove that B guesses k(S∗) correctly with probability at least 2ε/q̃ ≥ 2ε/qH .

It remains to prove the claim. If A does not issue a query for H(S∗, k(S∗)) then k¦(S∗)
is independent of A’s view. Hence, Pr[b = b′|H] = 1/2. From definition of B we have
|Pr[b = b′]− 1/2| = ε. Using these two facts we have the following.

Pr[b = b′] = Pr[b = b′|H] Pr[H] + Pr[b = b′|H] Pr[H]

≤ Pr[b = b′|H](1− Pr[H]) + Pr[H]

=
1
2

+
1
2

Pr[H],

Pr[b = b′] ≥ Pr[b = b′|H] Pr[H] =
1
2
− 1

2
Pr[H].

Hence ε = |Pr[b = b′]− 1/2| ≤ 1
2 Pr[H] as claimed.

3.2.3 Some Terminology

Viewing Set system as Poset. A set system is partially ordered by the inclusion relation
(⊂). Interpreting a set system as a partially ordered set (poset) is useful when defining key
derivations in AC. Intuitively, Derive algorithm implies that whenever Si ⊂ Sj , anyone who
can access k(Si) is allowed to access k(Sj).

Terminology for Posets, Graphs. The terminology for posets and graphs used in this
paper is quite standard one (cf.[D00]) (with some exceptions, see below). Here we review
some. A graph is a pair G = (V, E) of sets satisfying E ⊆ (

V
2

)
. V is the set of vertices (or

nodes), usually denoted V (G), E is the set of edges, usually denoted E(G). Often, we abuse
notation v ∈ G to mean v ∈ V (G). A tree is a connected acyclic graph. Let x = parentT (y)
if x is the parent of a non-root node y in tree T . A directed graph is a pair G = (V, E) of
sets satisfying E ⊆ V ×V , i.e., an edge is an ordered pair. A directed acyclic graph (DAG)
is a directed graph with no directed cycle in it. A notation of chain x → y → z means a
directed graph which V = {x, y, z}, E = {(x, y), (y, z)} and is generalized naturally.

An inclusion poset S can be represented by a DAG G by setting V = S, E = {(S, S′) :
S ⊂ S′; S, S′ ∈ S}. This is called the maximal representation, denoted DAGmax(S). The
minimal representation, denoted DAGmin(S), is the one with E = {(S, S′) : S ⊂c S′; S, S′ ∈
S} where we say S ⊂c S′ iff there is no S′′ ∈ S such that S ⊂ S′′ ⊂ S′.

In our context1, a graph decomposition (often denoted G) of a poset S is a family of
connected subgraphs whose sets of nodes partition the set of all nodes in the DAGmax(S).
(Thus we sometimes say G is a graph decomposition of DAGmax(S)). When each subgraph
is a tree whose edges are directed away from the root, we call it a tree decomposition
(often denoted T). When each graph is a directed chain whose edges are directed in the
same direction, we call it a chain decomposition (often denoted C). An induced graph
decomposition is one in which each subgraph is an induced subgraph.

1Our notions for tree and chain decompositions are not standard ones (cf.[D00]). Instead the notions
introduced here could have been named as tree cover and path cover, resp.

42 3.3 New Set Systems

12 23

1 2 3

123

3424

4

DAG (S)max toy1

12 23

1 2 3

123

3424

4

A tree decomposition

12 23

1 2 3

123

3424

4

A chain decomposition

Figure 3-1: Toy example 1 and its graph decompositions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BTR

BTL

∈

∈

2↽2 3⇀3 6↽6 7⇀7 10↽10 11⇀11 14↽14 15⇀15

2↽4 10↽125⇀7 13⇀15

2↽8 9⇀15

1⇀162↽16

Figure 3-2: Set system SIC defined by the union of all the collections written at each node

Fig.3-1 shows graph decompositions of the set system for toy example 1, Stoy1 =
{{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}}. From now we abuse some nota-
tions, often in figures, e.g., writing 12 or 1, 2 instead of {1, 2} if it causes no confusion. Note
that every chain decomposition is a tree decomposition.

We will fix BT to be the complete binary tree of n leaves labeled 1, ..., n from left to
right. The level of node in BT is the distance from root to it. For a fixed node, its left (resp.,
right) nodes are those nodes with the same level and appear on the left (resp., right). BT
will be used only to help defining set systems and should not be confused with the graph
representations of posets of set systems.

3.3 New Set Systems

3.3.1 Subset Incremental Chain (SIC) Set System

The SIC Set System. For i, j ∈ N = {1, ..., n} and i < j, denote

i⇀j := {{i}, {i, i + 1}, . . . , {i, . . . , j}},
i↽j := {{j}, {j, j − 1}, . . . , {j, . . . , i}},

and (i ⇀ i) = (i ↽ i) := {{i}}. Consider the binary tree BT. For a node v in BT, let lv
(resp., rv) be the leftmost (resp., rightmost) leaf under v. We define the set system SIC (of
n users) by letting

SSIC =
⋃

v∈BTL

(lv +1↽rv) ∪
⋃

v∈BTR

(lv ⇀rv−1) ∪ (1⇀n) ∪ (2↽n), (3.1)

where BTL (resp., BTR) are the set of internal nodes which are left (resp., right) children.
An informal visual view of SSIC is shown in Fig.1, where the union of all the collections
written there is the only important information.

Theorem 3.9. SSIC is (2r)-complement-cover set system.

Chapter 3: Practical Symmetric-key Broadcast Encryption 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2↽2 3⇀3 6↽6 7⇀7 10↽10 11⇀11 14↽14 15⇀15

2↽4 10↽125⇀7 13⇀15

b↽b c⇀c

a⇀db↽d

1⇀3 6↽8 9⇀11 14↽16a b c d

A∈

Figure 3-3: Set system LSIC[k], k = 2, as the union of all collections written at each node

Proof. We call a set of the form {i, i + 1, . . . , j} for some i ≤ j a consecutive set. We first
claim that any consecutive set, say A = {i, . . . , j}, can be partitioned to no more than 2
sets in SSIC; then prove it as follows. Let a be the least common ancestor node of the leaves
i and j in BT, denoted lca(i, j) = a. Let s be the least ancestor of a which is in BTL if
a ∈ BTR and which is in BTR if a ∈ BTL. Let x, y be the left and right children of a. First
if i = 1 then A ∈ (1 ⇀n) ⊆ SSIC; else if j = n then A ∈ (2 ↽ n) ⊆ SSIC (since 2 ≤ i). Now
assume i 6= 1, j 6= n. We list all possible cases of (i, j) as follows. Let ∗ be an unspecified
value.

1. If (i = la; j = ∗; a ∈ BTL) then A ∈ (ls ⇀rs−1) ⊆ SSIC (since i = ls; j < rs−1; and s ∈
BTR),

2. If (i = ∗; j = ra; a ∈ BTR) then A ∈ (ls+1↽rs) ⊆ SSIC (since j = rs; ls+1 < i; and s ∈
BTL),

3. If (i = la; j 6= ra; a ∈ BTR) then A ∈ (la ⇀ra − 1) ⊆ SSIC (since j ≤ ra − 1),

4. If (i 6= la; j = ra; a ∈ BTL) then A ∈ (la + 1↽ra) ⊆ SSIC (since la + 1 ≤ i),

5. If (i 6= la; j 6= ra; a ∈ ∗) then A = P ∪Q; P = {i, . . . , rx}, Q = {ly, . . . , j}, and we have
P, Q ∈ SSIC (since

• lca(i, rx) = x, thus (i, rx) will fall to the case 4 and P ∈ SSIC;

• lca(ly, j) = y, thus (ly, j) will fall to the case 3 thus Q ∈ SSIC).

These proved the claim. Now we are back to the proof, it is obvious that N r R can be
partitioned to no more than r consecutive sets if 1 or n ∈ R; or to no more than r + 1 such
sets otherwise. In the former case, the partition size to sets in SSIC is ≤ 2r; while in the
latter case (where {1, ..., s} and {t, ..., n} for some s, t are included in the partition), it is
≤ 1(1) + 2(r − 1) + 1(1) = 2r.

Intuitively, SIC has graph decompositions with good properties since each collection in
the union of Eq.(3.1) forms a chain of subset. This will become clearer in the next section.
The set system LSIC below generalizes SIC.

3.3.2 Layered SIC (LSIC) Set Systems

The LSIC[k] Set System. We view BT consisting of subtrees (also binary and complete)
of n1/k leaves so that there are exactly k layers of such subtrees, where k| log n. We will
call such subtree an “atomic” subtree (to distinguish from other kinds of subtrees in BT).
Informally, each atomic subtree contributes sets to SLSIC as in the SIC set system for that

44 3.3 New Set Systems

subtree, albeit each leaf in the subtree represents all the leaves under it in BT. More
formally, for node z in BT, let Az := {lz, lz + 1, ..., rz} (i.e., all the leaves under z). In
particular, if z is a leaf then Az = {z} = {lz} = {rz}. Let us consider the leaves u, v in
an atomic subtree where v is some node on the right of u. We denote u(+1), u(+2) (and
so on) be the next one, two (and so on) right leaves to u in that atomic subtree. Denote
u(−1), u(−2) analogously. Denote

u⇀v := {Au, Au ∪Au(+1) , . . . , Au ∪ · · · ∪Av},
u↽v := {Av, Av ∪Av(−1) , . . . , Av ∪ · · · ∪Au}.

Let l′w, r′w be the leftmost and rightmost leaves under w in the atomic subtree and not w
itself; for example, l′root = a, r′root = d and l′a = 1, r′a = 4 in Fig.3. Let A be the set of
all nodes which are the roots of atomic subtrees but excluding the root of BT. We define
LSIC[k] analogously to Eq.(3.1) by letting

SLSIC[k] =
⋃

v∈BTL∪A

(l′v
(+1)

↽r′v) ∪
⋃

v∈BTR∪A

(l′v ⇀r′v
(−1))

∪ (l′root ⇀r′root) ∪ (l′(+1)
root ↽r′root). (3.2)

Observe that each v ∈ A has two collections (l′v
(+1) ↽ r′v), (l′v ⇀ r′v

(−1)) attached since
intuitively it is a kind of “root” (i.e., of an atomic subtree) and at a root, the structure
of SIC introduces two collections, one for left and one for right direction (cf. Eq.(3.1) and
Fig.1).

Theorem 3.10. SLSIC[k] is (2kr)-complement-cover set system for a constant k ; and
SLSIC[loga n] is O(r loga(n/r) + r)-complement-cover set system for a constant a.

Note that when k = loga n, from the former claim we already have that SLSIC[loga n] is
(2r loga n)-complement-cover, but the claim above gives a sharper bound.

Proof. First we will prove that SLSIC[k] is (2kr)-complement-cover. Let STR denote the
Steiner tree of a set of leaves R ⊆ N , i.e., the subtree of BT that consists of all paths from
the root to each leaf in R. We call a node v special if v ∈ A or v is a leaf in BT. We
“color” a node if it is special but is not in STR and all of its special ancestors are in STR.
Denote C the set of all color nodes. Hence N rR =

⋃
v∈C Av =

⋃k
j=1

⋃
v∈Lj∩C Av where we

denote Lj to be the set of all special nodes in the j-th special layer away from root (i.e.,
at distance j(log n)/k from the root). It suffices to prove that for each special layer j, the
set Yj :=

⋃
v∈Lj∩C Av can be partitioned to at most 2r sets in the family SLSIC. Denote xi

to be the number of uncolored special nodes in the i-th atomic subtrees from left to right
in this j-th layer. From Theorem 3.9, it is easy to deduce that Yj can be partitioned to at
most 2(x1 + x2 + · · ·+ xp) sets in SLSIC, where p is the last atomic subtree in this layer (in
fact, p = n(j−1)/k). But we have x1 + · · ·+ xp ≤ r since the Steiner tree of r leaves passes
through all these uncolored special nodes. This proves the claim.

Next we will prove that SLSIC[loga n] is O(r loga(n/r) + r)-complement-cover. We first
give the definition of Stratified Subset-Difference set system with each atomic subtree of
a leaves (SSDa): SSSDa = {Au r Av : u is an ancestor of v in the same atomic subtree}.
(Note that the name SSD is given in [GST04], but is independently presented in [GR04]).
It is known [GR04] that SSSDa is (O(r loga(n/r) + r))-complement-cover. Next, we claim

Chapter 3: Practical Symmetric-key Broadcast Encryption 45

that each Au rAv can be partitioned to at most 2 sets in SLSIC[loga n]. Before proving this,
we conclude that LSIC[loga n] has cLSIC[loga n](n, r) = 2cSSDa(n, r) = O(r loga(n/r) + r).

It is left to prove the claim. Let u be an ancestor of v in the same atomic subtree. Thus
lu ≤ lv ≤ rv ≤ ru (where the first and the third equalities will not occur simultaneously).
If lu < lv ≤ rv < lv, then Au r Av = {lu, lu + 1, . . . , lv − 1} ∪ {rv + 1, rv + 2, . . . , ru}. If
lu = lv ≤ rv < lv, then only the last term in union appears. If lu < lv ≤ rv = lv, then
only the first term in union appears. From the fact that the two terms in the union are in
(lu ⇀ru) and (lu ↽ru) respectively, we thus completes the proof of the claim.

3.4 Key Derivation based on PRSG

3.4.1 PRSG based Framework

Framework Idea. In this framework, we use pseudo-random sequence generators to de-
rive keys from one subset to another. The correctness of access control schemes allows
this to be done only if the first set is included in the latter (e.g.,{1} ⊂ {1, 2}). Thus such
derivations can be defined in correspondence with directed edges in a graph decomposition
of DAGmax(S), in which all the inclusion relations in S are included. One exception is that
there should be no node with indegree > 1 in any graph in the decomposition since it would
imply a collision of PRSG, which should be computable by neither broadcasters nor adver-
saries. Therefore, all the valid decompositions are tree decompositions, of which the class
includes all graph decompositions of the poset that allow indegree ≤ 1 for all nodes. Each
user then stores keys for subsets which he is in and are closest to the root of that tree.
For the toy example 1 in Fig.3-1, our paradigm with the tree decomposition in the figure
namely Ttoy1 allows the user 2 to store only the keys at 2, 24.

Note that in order to be provably secure in the KIND sense, it is mandatory to make an
adaptation so that keys are not derived from another key directly. Instead, one should use
intermediate keys denoted t(S) for S ∈ S; how to use this is explained in the construction.
This was neglected in many recent schemes that use similar one-way derivation approaches.

We now give the formal description. Such a scheme is based solely on a tree decompo-
sition, say T , of the poset SX. The scheme applies to an arbitrary complement-cover set
system X.

Construction 3-3. PRSG-based Access Control Scheme: (X)prsg

Keygen : (Subset keys) At the root S of a tree in T , let t(S) ← {0, 1}λ. For each node S
(either root or non-root of a tree in T) whose all children are Si1 , ..., Sid where d is
the outdegree of S, we define the following recurrence relation:

t(Si1)‖ · · · ‖t(Sid)‖k(S) ← PRSGd+1(t(S)), (3.3)

where |t(Si1)| = · · · = |t(Sid)| = |k(S)| = λ bits; PRSGj : {0, 1}λ → {0, 1}jλ.

(User keys) For a tree G ∈ T , let parentG(S) be the parent of S in G if S is not the root
of G or be ∅ otherwise.

For u ∈ N , we define its key as

p(u) = {t(S)|u ∈ S; u 6∈ parentG(S), G ∈ T }.

46 3.4 Key Derivation based on PRSG

G(1⇀3)

G(a⇀d)

G(a⇀d)

1
1,2

1,2,3

2 3 4

2,3,4
1 4
1 8

1 12
1 16

..

..
..
..

3,4
5

5,6
5,6,7

6 7 8

6,7,8
5 8..

7,8
9

9,10
9 11

10 11 12

10 12
9 12..

11,12
13

13,14
13 15

14 15 16
15,16

.. 14 16..
13 16..
9 16
5 16..

..

Figure 3-4: The tree decomposition TLSIC[k] of the set system LSIC[k] (see Fig.3). A simpler
decomposition T ′LSIC[k] is the one without the thick red edges.

Derive : Find the tree where S is in and then use Eq.(3.3) to derive k(S).

Characterizing Efficiency. Let RST (u) = {S | u ∈ S; u 6∈ parentG(S), G ∈ T } and
RNT (u) = |RST (u)| and call them the reachability set and reachability number of u in T
(since it is the minimal set of sufficient nodes such that when traversing from these nodes
in the edge direction we meet all S ∈ S such that u ∈ S). Let DDT = the depth of the
deepest trees. We have

KeySize(X)prsg(u) = RNT (u), CompCost(X)prsg = DDT . (3.4)

Theorem 3.11. ([AKI03a]) (X)prsg is secure in the sense of KIND assuming secure PRSG.

3.4.2 PRSG based Instantiation for SIC, LSIC

First PRSG-based Instantiation for SIC. It suffices to define a tree decomposition
of SSIC and the concrete scheme will follow automatically from the general construction
of the framework. We choose the following natural one and prove that it is the optimal
decomposition for SIC. For i ≤ j ∈ N , define graphs

G(i⇀j) = {i} → {i, i + 1} → · · · → {i, ..., j};
G(i↽j) = {j} → {j, j − 1} → · · · → {j, ..., i}.

We will use the following tree decomposition.

TSIC = {G(lv + 1↽rv)|v ∈ BTL} ∪ {G(lv ⇀rv − 1)|v ∈ BTR} ∪ {G(1⇀n), G(2↽n)} (3.5)

Let 〈x〉 denotes the binary representation of x. We have the following theorem.

Theorem 3.12. The tree decomposition TSIC yields minimal maxu∈N RNT (u), indeed we
have

RNTSIC
(u) =

{
log n + 2− f(〈u− 1〉) ; 2 ≤ u ≤ n
1 ;u = 1,

where f(y) := the number of the same consecutive least significant bits of y. In particular,
maxu∈N RNTSIC

(u) = log n + 1. We also have DDTSIC
= n− 1.

Proof. We define Fv = lv + 1 ↽ rv if v ∈ BTL and lv ⇀ rv − 1 if v ∈ BTR. TSIC is really
a tree decomposition since {Fv : v ∈ BTL ∪ BTR} ∪ {(1 ⇀ n), (2 ↽ n)} can be proved to
be a pairwise non-intersecting family (somewhat straightforwardly). Next we prove the

Chapter 3: Practical Symmetric-key Broadcast Encryption 47

[1,1] [1,2] [1,3] [1,4] [1,5]
Start End

∈ cut(5,H(1⇀n))

[1,6] [1,7] [1,8] [1,9] [1,10] [1,11][1,12][1,13][1,14][1,15] [1,16]

Figure 3-5: Showing H(1⇀n) when n = 16, k = 4 and also showing cut(5, H(1⇀16)).

formula for RNTSIC
(u). For u ∈ N r {1}, only possible trees in TSIC that u appears are

those graphs G(Fv) for internal nodes v on the path from the leaf u to the root in BT,
and G(1 ⇀ n),G(2 ↽ n). Each graph G(·) that u appears contribute one key for u. Thus
RNTSIC

(u) is at most (log n − 1) + 2. Let u,w1, ..., wlog n, root be the nodes on that path.
Due to symmetry, we assume w.l.o.g. that w1, ..., wz−1 ∈ BTL and wz ∈ BTR. Now it is
easy to see that

1. For 1 ≤ j ≤ z− 1, we have G(Fwj) = G(lwj +1↽rwj) thus u does not appear in these
graphs.

2. For j = z, we have G(Fwj) = G(lwz ⇀rwz − 1) thus u appears in these graph.

3. For z < j ≤ log n, we have that u appears in G(Fwj) since lwj < u < rwj .

We also have that z = f(〈u − 1〉). Thus RNTSIC
(u) = (log n − 1) + 2 − (f(〈u − 1〉) − 1) as

desired. Now we prove that TSIC is optimal (obtaining minimal (maxu∈N RNT (u)) among
all T of SIC). Observe that for all T of SIC,

∑
u∈N RNT (u) =

∑
S∈SSIC

|{u : u ∈ S, u 6∈
parentG(S), G ∈ T }| ≥ |SSIC| = n log n+1. Hence maxu∈N RNT (u) ≥ dn log n+1

n e = log n+1.
Our decomposition matches this bound.

The number of keys at each user is not uniform as recorded in the corollary below.
While sharing some similarities with our scheme, the basic schemes in [GST04, WNR04]
assign one-way chains in both left and right directions at each node in BT while we use
only one direction and exploit some symmetries. This can be an intuition as to why we can
reduce key size at least 2 times (and up to log n in the best case, user 1). Those schemes
can be considered as instantiations in our framework, but with storage-redundancies in the
sense that the set systems extracted from their schemes are sets with repetition. Moreover,
the scheme of [GST04] can also be shown to be derivation-redundant when exposed in our
framework.

Corollary 3.13. In the scheme (SIC)prsg, there are exactly 2x users who store exactly x+2
keys for 0 ≤ x ≤ (log n)− 1 and exactly 1 user who stores 1 key.

Second PRSG-based Instantiation for SIC. We now give an instantiation of the set
system SIC in the PRSG-based framework but this time is done via a new tree decomposition
TSIC,new which is defined exactly the same as in Eq.(3.5) except changing G to H, where we
define H as follows. TSIC,new will depend on k which we assume that k| log n for simplicity.

We first define H(lv ⇀rv−1) for v ∈ BTR∪{root}. Let the node set V (H(lv ⇀rv−1)) =
(lv ⇀rv − 1) and define the edge set E(H(lv ⇀rv − 1)) as follows.

48 3.4 Key Derivation based on PRSG

1. Write the elements of (lv ⇀ rv − 1) from left to right on a horizontal line in the
increasing order of inclusion. In addition, put two dummy nodes Start at the leftmost
and End at the rightmost. The length of the whole line will be Lv := rv − lv + 1. Let
x be the integer such that n(x−1)/k < Lv ≤ nx/k. Note that 1 ≤ x ≤ k.

2. For 0 ≤ i ≤ x − 1 do the following. Start with Start, jump consecutively to its next
node that is at distance ni/k away from it until either it meets End or the next jump
would exceed End. For every jump, write the corresponding directed edge.

3. Remove all the edges of the form (Start, ∗) and (∗,End).

4. Remove all the edges (S, T) if there is (S′, T) where the distance between nodes S
and T is shorter than nodes S′ and T .

Define H(lv + 1↽rv) for v ∈ BTL ∪ {root} analogously. Finally, define H(1⇀n) by letting
E(H(1⇀n)) = E(H(1⇀n− 1)) ∪ {([1, n− 1], [1, n])}, where we let [i, j] := {i, ..., j}.

Fig. 3-5 shows H(1⇀n) for n = 16, k = 4. The non-dotted lines comprise the tree. The
dotted lines are those edges which have been removed in the step 3 and 4 of the construction.
The gray line is edge ([1, n− 1], [1, n]).

Theorem 3.14. The tree decomposition TSIC,new yields

maxu∈N RNTSIC,new
(u) ≤ k(log n + 1) = O(k log n)

DDTSIC,new
= (2k − 1)(n1/k − 1) = O(kn1/k).

Proof. For lv < u < rv let cut(u,H(lv ⇀rv − 1)) be the set of all edges crossing the vertical
line between [lv, u− 1] and [lv, u] in H(lv ⇀rv − 1) and let cut(u,H(lv + 1↽rv)) be the set
of all edges crossing the vertical line between [u, rv] and [u− 1, rv] in H(lv + 1↽rv). Define
Fv = lv + 1↽rv if v ∈ BTL and lv ⇀rv − 1 if v ∈ BTR.

It is not hard to see that RSTSIC,new
(u) is the set of all the terminated nodes of edges in⋃

v∈pathu
cut(u,H(Fv)) ∪ cut(u,H(1 ⇀ n)) ∪ cut(u,H(2 ↽ n)); where pathu is the set of all

internal nodes on the path from u to root in BT. Also observe that |cut(u,H(Fv))| ≤ x
where n(x−1)/k < Lv ≤ nx/k since there are x iterations in the step 2 of the construction.
Also |cut(u,H(1⇀n))|, |cut(u,H(2↽n))| ≤ k. Hence we have

RNTSIC,new
(u) ≤

k∑

x=1

∑

v:

{
v∈pathu

n(x−1)/k<Lv≤nx/k

}x

 + 2k

Simplifying this we have RNTSIC,new
(u) ≤ ∑k−1

x=1 x(log n
k) + k(log n

k − 1) + 2k = (k+1)
2 log n + k

and the result follows.
Now we prove DDTSIC,new

. By inspection, the longest path is in the tree H(1 ⇀ n). Fix
t = (n1/k−1). Denoted by J(a, b) the action of taking a times of b-length jumps. This path
starts from {1} and takes the following sequence of jumps:

J(t, 1), J(t, n1/k), ..., J(t, n(k−2)/k), J(t− 1, n(k−1)/k),

, J(t, n(k−2)/k), ..., J(t, n1/k), J(t + 1, 1).

Chapter 3: Practical Symmetric-key Broadcast Encryption 49

This is shown by the thick lines in Fig. 3-5. Hence it takes 2(k−1)(n1/k−1)+n1/k−2+1 =
(2k − 1)(n1/k − 1) jumps, this completes the proof.

PRSG-based Instantiation for LSIC. Before describing our default tree decomposition
of SLSIC, denoted TLSIC[k], we first describe a more straightforward one, denoted T ′LSIC[k],
which is constructed, informally, as the union of all TSIC applied to each atomic subtree
in BT. More formally, we can define G(u ⇀ v) for u, v which are leaves in the same
atomic subtree, analogously as before, by letting G(u ⇀ v) = Au → Au ∪ Au(+1) → · · · →
(Au ∪ · · · ∪ Av), and analogously for G(u ↽ v). Without going into details, we can define
T ′LSIC[k] from Eq.(3.2) in an analogous way when we defined TSIC in Eq.(3.5) from Eq.(3.1).

Now TLSIC[k] is constructed by an observation that G(l′v ⇀ r
′(−1)
v) and G(v ⇀ ∗) can

be combined into one chain (and in particular, one tree) since the maximum element in
the former, Al′v ∪ · · · ∪ A

r
′(−1)
v

, is included in Av, the minimum element of the latter. For
v ∈ BTR ∪ {root}, let w1, ..., wm be the sequence of nodes in BTL ∩A such that w1 = l′v; for
1 ≤ i ≤ m− 1, wi+1 = l′wi

; and lv = l′wm
, then define Ḡ(l′v ⇀x) := G(l′wm

⇀r
′(−1)
wm) → · · · →

G(l′w1
⇀r

′(−1)
w1) → G(l′v ⇀x) where x is some right node of l′v. (Here, ‘→’ means to connect

the chains). The definition for Ḡ(x ↽ r′v) for v ∈ BTL ∪ {root} can be done analogously.
Now we define

TLSIC[k] = {Ḡ(l′(+1)
v ↽r′v)|v ∈ BTL}

∪ {Ḡ(l′v ⇀r′(−1)
v)|v ∈ BTR}

∪ {Ḡ(l′root ⇀r′root), Ḡ(l′(+1)
root ⇀r′root)}. (3.6)

The abstraction of this decomposition may disguise the simplicity of the scheme; in Fig.3-4
we thus give an explicit example when n = 16 and k = 2 (cf. Fig.3).

The following theorem and corollary can be proved by an elementary counting argument
based on Theorem 3.12.

Theorem 3.15. The tree decomposition TLSIC[k] yields

RNTLSIC[k]
(u) = log n + 1 + k − gk(〈u− 1〉)

where gk(〈x〉) := f(0||〈x1〉)+f(b1||〈x2〉) · · ·+f(bk−1||〈xk〉) where we parse 〈x〉, with padding
of 0s on the left so to have length log n bits, as 〈x1〉|| · · · ||〈xk〉 so that each 〈xi〉 has length
(log n)/k bits; bj is the least significant bit of 〈xj〉. In particular, maxu∈N RNTLSIC[k]

(u) =
log n + 1. We also have DDTLSIC[k]

= kn1/k.

As an example, user 4 will store 2 keys: k(1234), k(4) (see Fig.3-4). This can be calcu-
lated as |p(4)| = 4 + 1 + 2− (f(0||00) + f(0||11)) = 2 (Note 〈4− 1〉 = 0011).

Corollary 3.16. In (LSIC[k])prsg, exactly
∑x−1

j=0

(
k
j

)
C(x− 1, j, (log n)/k)2x−1−j users store

exactly x keys for 2 ≤ x ≤ (log n) + 1 and exactly 1 user stores 1 key where C(a, b, c) is the
number of integer compositions (ordered partitions) of a into b positive integers, each ≤ c.2

2For example C(5, 3, 2) = 3 since 5 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1. The exact formula of C(a, b, c) is
quite complicated and is shown in [S76].

50 3.5 Key Derivation based on Non-Trapdoor RSA

3.5 Key Derivation based on Non-Trapdoor RSA

3.5.1 Non-Trapdoor RSA based Framework

Framework Idea. We first briefly review the access control scheme of Akl-Taylor [AT83].
There, each S ∈ S is assigned a publicly known prime. The key of S is defined as k(S) =
s
Q

T :S 6→T pT modulo an RSA modulus, where s is a secret; and S 6→ T means (S, T) is
not an edge in DAGmax(S). Each user u just stores k({u}). The terms in the exponents
are arranged so that even any collusion cannot compute keys that are not supposed to be
computable by them. However, the number of primes used in the above schemes are too
large as |S|. Such primes will be stored as non-secret storage or derived on-the-fly.2 We
propose a new paradigm which makes uses of prime powers so that the number of primes
used becomes optimal. We will see shortly that assigning prime powers depends essentially
on a chain decomposition of DAGmax(S). Indeed, the number of primes used will be exactly
the number of chains; and each node in the same chain will correspond to the same prime
but with a distinct power. For the toy example 1 in Fig.3-1, our new paradigm with the
chain decomposition Ctoy1 will result in only 5 primes used while the Akl-Taylor’s needs 9
primes. We will describe how to assign those powers over primes by an incidence matrix. We
formalize the notion of incidence matrices that admit a secure scheme as maximin matrix :

Maximin Matrix. An n×m matrix {aij} where aij ∈ Z≥0 is called a maximin matrix for
set system X if for all S ∈ SX, there exists j: 1 ≤ j ≤ m such that maxi∈S aij < mini∈NrS aij .

We give a formal treatment of RSA functions as accumulators and our construction first,
then explain later.

RSA Accumulators. We fix a function f : Uf×Ef → Uf to be an RSA function: f(x, e) :=
xe mod n where n = pq, p = 2p′ + 1, q = 2q′ + 1 and p, q, p′, q′ are distinct odd primes. We
restrict that Uf is the set of quadratic residues and Ef is the set of primes not equal to
p′, q′. We say f is generated from an RSA function generator GRSA(1λ). The function f is
an instance of RSA accumulators, first proposed in [BD94], which has a quasi-commutative
property: for all x ∈ Uf , and e1, e2 ∈ Ef , f(f(x, e1), e2) = f(f(x, e2), e1). If E = {e1, ..., eh}
where each ei ∈ Ef , then we denote f(x,E) := f(f(...f(x, e1), ...), eh). Note that a set E is
threaten as a multi-set, where the repetition of members is important. We thus denote a
repetition of a member e which occurs te times as te Ce. For example, f(x, {sCe1, tCe2}) =
x(es

1·et
2).

Construction 3-4. Non-Trapdoor-RSA-based Access Control Scheme: (X)acc

Keygen : Run a GRSA to obtain a description of f : Uf × Ef → Uf . Pick a random secret
s ∈ Uf . For 1 ≤ j ≤ m, pick an element pj ∈ Ef . Let pub consist of all pj ’s and
{aij}; indeed we let user derive prime pj only when necessary by predetermining the
intervals of those primes (see below). Let

p(u) = f(s, {auj C pj : 1 ≤ j ≤ m}),
k(S) = f(s, {(maxi∈S aij) C pj : 1 ≤ j ≤ m}). (3.7)

2In the latter, a sequence of integers {xj} is pre-specified by the broadcaster and pi is defined to be the
first prime in [xi, xi+1); the program to recognize {xj} has negligible size (cf. [Asa02]). More primes imply
more computational cost on-the-fly.

Chapter 3: Practical Symmetric-key Broadcast Encryption 51

for user u ∈ N and set S ∈ SX.

Derive : Compute k(S) = f(p(u), {(maxi∈S aij − auj) C pj : 1 ≤ j ≤ m}).

First it is easy to see that the correctness holds: Derive is computable. Next we will give
an intuition as to why for each S ∈ S, the collusion of all users from N rS cannot compute
the key of S. Informally, the best they can do is to obtain the value with the same base s
and the exponent term being GCD of all the exponent terms of the keys for users in N rS,
which is

∏m
j=1 p

mini∈NrS aij

j (by the well-known trick involving using the extended Euclid’s
algorithm). To be able to compute the key of S, it must divide

∏m
j=1 p

maxi∈S aij

j . But this
will not happen due to the property of the maximin matrix.

Theorem 3.17. (X)acc is KINT-2-secure assuming the strong RSA assumption.

Before proving the theorem we note that the essential property of RSA accumulator
to enable the access control mechanism has been already captured into a useful primitive
called decomposably-one-way accumulators which is introduced in [AKI03b]. We restate
its definition and a lemma as the following. We will then return to prove the security of
(X)acc based on the notion of accumulators instead of directly proving from the strong RSA
assumption.

Definition 3.18 (dOW Security of Accumulators). ([AKI03b]) Let G be an accumu-
lator generator. We say that G is secure in the sense decomposably one-wayness (dOW) if for
all polynomial-time randomized adversary F its success probability Pr[ExpdOW(G, F) = 1]
is a negligible function in λ where we define

Experiment ExpdOW(G,F)
G(1λ) → f;

Uf → x;
(E1, ..., Et, state) ← F find(descriptionf);

(E∗, w) ← F guess(f(x,E1), ..., f(x,Et)
, state)

return 1 iff w = f(x, E∗) and
⋂t

i=1 Et 6⊆ E∗

Lemma 3.19. ([AKI03b]) The RSA function generator GRSA is secure in the sense of dOW
assuming the strong RSA assumption.

Now we return to the proof of the theorem.

Proof. (of Theorem 3.17) Let A be an adversary which breaks KINT-2 security of Xacc with
probability ε. We present an algorithm F which breaks the dOW security of accumulators
with equal probability (thus tight reduction). The construction is as follows:

Find Stage. First F find upon input the description descf of accumulators from the chal-
lenger randomly chooses m elements from Ef namely p1, ..., pm. (m is the number of columns
of maximin matrix for the set system X.) It then runs A which consequently output a set
of corrupt users C = {i1, ..., iz} ⊂ N at once. To provide the answer, F find just outputs to
its challenger Ek = {aikj C pj : 1 ≤ j ≤ m} for 1 ≤ k ≤ z, and waits for the result while
goes to the next stage.

52 3.5 Key Derivation based on Non-Trapdoor RSA

Guess Stage. The adversary F guess, upon a response f(x,E1), ..., f(x,Ez) from the chal-
lenger, can now answer to A by just forwarding these values. These perfectly simulate
keys for i1, ..., iz. A then outputs (S∗, k(S∗)) where S∗ ∩ C = ∅. Now F guess just outputs
(E∗, w) = ({(maxi∈S∗ aij) C pj : 1 ≤ j ≤ m}, k(S∗)).

If A wins its game then it must be that w = f(x,E∗). To see that F wins the game, we
only have to show that

⋂z
k=1 Ek 6⊆ E∗, that is:

⋂

i∈C

{aij C pj : 1 ≤ j ≤ m} 6⊆ {(max
i∈S∗

aij) C pj : 1 ≤ j ≤ m}.

This follows from the fact that there is j′ such that maxi∈S∗ aij′ < mini∈NrS∗ aij′ ≤
mini∈C aij′ . (Due to the property of the maximin matrix and that C ⊆ NrS∗ respectively).
Consider the element pj′ , there are mini∈C aij′ such elements in the left-hand-side while only
maxi∈S∗ aij′ such elements in the right-hand-side. Therefore the uninclusion holds.

Constructing a Maximin Matrix. Consider a chain decomposition C = {G1, ..., Gm}
of SX. For each chain Gj : S1 → · · · → Sl, construct j-th column by letting

aij :=

0 if i ∈ S1

w if i ∈ Sw+1 r Sw

l otherwise
(3.8)

Proposition 3.20. The above construction is a maximin matrix. Moreover, C with the
minimum number of chains will imply the maximin matrix with the minimum m, the number
of all primes used.

Proof. We will prove that the construction by Eq.(3.8) is a maximin matrix for X. Consider
arbitrary S ∈ S, observe that there is a chain Gj : S1 → · · · → Sl and some w, 0 ≤ w ≤ l−1,
such that S = Sw+1 (since C is a chain decomposition). For all i ∈ S we have 0 ≤ aij ≤ w
by the construction. For all i′ ∈ N r S we have w < ai′j also by the construction. This
implies maxi∈S aij ≤ w < mini′∈NrS ai′j which is what we wanted to prove.

To prove the second claim, it is sufficient to prove the converse of the first claim: from
any maximin matrix for X one can construct a a chain decomposition in which the number
of chains is less than or equal to the number of columns of the matrix. To do this we fix a
maximin matrix. We delete some columns so that the existence of a column j for inequality
of maximin matrix is unique for each S ∈ S. We then minus all the entries of the matrix by
the minimum entry(entries) so that the minimum entry(entries) becomes 0. Note that the
modified matrix is still a maximin matrix. Let m be the number of columns. For the j-th
column we construct a chain Gj : S1 → · · · → Sl by letting Sw+1 := {i : aij ≤ w}. Here Gj

is indeed a chain since Sw ⊂ Sw+1 for w ≥ 0. By the definition, for each S ∈ S there is a
unique column j′ such that maxi∈S aij′ < mini∈NrS aij′ , thus S = Smaxi∈S aij′ due to our
chain construction. Therefore {Gj}1≤j≤m is indeed a chain decomposition.

Characterizing Efficiency. We will generate primes on the fly using the technique
in [Asa02] (cf. Footnote 2 in Section 3.5.1). Without going into detail, this technique
requires computational cost O(log4 P) to generate one prime, and produces each prime of
size O(P log P), where P is the number of all primes needed in such a scheme. In our
scheme, P = m. Note that only when P = O(1), it is worthless to use this technique; we

Chapter 3: Practical Symmetric-key Broadcast Encryption 53

just store the least P primes (which requires only negligible storage) so the cost for prime
generation in this case is O(1).

Using the notation defined earlier, we have that RNC(u) represents the number of chains
in C that u appears; and DDC represents the length of the longest chain in C. The number
of all chains in C is |C| (and= m). We obtain:

KeySize(X)acc(u) = 1,

CompCost(X)acc = O(MCacc
C + PCacc

C),

PubSize(X)acc = |C| · n log n bits3,

where MCacc
C (u), PCacc

C (u) are the cost due to Modular exponentiation and on-the-fly Prime
generation for user u respectively and MCacc

C := maxu∈N MCacc
C (u), PCacc

C := maxu∈N PCacc
C (u).

Such costs depend solely on C and can be characterized as:

MCacc
C (u) = O(DDC · (log |C|) · RNC(u)),

PCacc
C (u) =

{
O(1) if |C| = O(1),
O((log4 |C|) · RNC(u)) otherwise.

The analysis are as follows. The cost of modular exponentiation for computing Derive is
logarithm in the exponent term which is

∏m
j=1 p

(maxi∈S aij−auj)
j . To determine its complexity,

observe that maxi∈S aij = auj for all but only RNC(u) terms of j due to Eq.(3.8) and the
fact that u appears only RNC(u) chains. Also, observe that maxi∈S aij − auj ≤ DDC due
to Eq.(3.8). Each pj is O(m log m), hence has bit length O(log m). Combining these, we
get MCacc

C (u) as above. The cost for prime-generation above follows from the fact that the
number of primes to be generated when deriving keys are RNC(u).

Remark 3.21. The MC of our scheme is asymptotically optimal among all non-trapdoor
RSA-accumulator based paradigms (if there are any others) since it matches the lower
bound in [GR04], which states that the optimal MC is of the same order as the number of
subsets (in the set system) that one user is in, albeit here we calculate in bit complexity
which includes the size of primes.

Remark 3.22. The Akl-Taylor’s scheme [AT83] is a special case of our framework where
the trivial chain decomposition (the collection of all one-node chains) is used.

Remark 3.23. Instead of storing the matrix {aij} directly, one can just store the de-
scription of the chain decomposition, which can be embedded in the description of S by
describing S as an ordered set with some special symbol to indicate the end of each chain,
instead of an unordered set as usual. Since S is already the necessary information for any
scheme (as the whole BE scheme), the public storage overhead due to this matrix can be
thus considered negligible.

Even better, if the chain decomposition admits a simple formula, we just store the
description of that formula and let the index of the chain be ordered lexicographically. This
is the case for our instantiations of SIC,LSIC (cf. Eq.(3.5),(3.6)).

3We discuss how to reduce this to negligible in Remark 3.23.

54 3.5 Key Derivation based on Non-Trapdoor RSA

1

1,2

2 3 4

1 4

1 5
..

..

3,4

1 6

1 7
..

..

1 3.. 2 4..

1 8..

1

2

3

4

5

6

7

0

0

1

1

1

1

1

1

1

2

1

0

3

3

3

3

3

1

0

1

1

1

1

1

1

3

3

3

0

1

2

3

3

1

1

1

1

0

1

1

1

1

1

1

1

1

0

1

1

6

5

4

3

2

1

0

7

5

5,6

6 7 8

5 8..

7,8

5 7.. 6 8..

4 8..
3 8

2 8
..

..

..
.

TSIC

Maximin matrix User keys

1

0
p

2

1
p

3

1
p

4

3
p

5

3
p

6

1
p

7

1
p

8

7
p

s

()

1

7
p

2

1
p

3

1
p

4

3
p

5

3
p

6

1
p

7

1
p

8

0
p

s

()

p(1)=

p(8)=

⇒

Figure 3-6: Instantiating SIC (n = 8) by the non-trapdoor RSA accumulator based frame-
work

3.5.2 Non-Trapdoor RSA based Instantiation for SIC, LSIC

Non-Trapdoor-RSA-based Instantiation for SIC, LSIC. We will state the result for
LSIC so that the result for SIC can be obtained by setting k = 1. It suffices to define a chain
decomposition of SLSIC[k] and the concrete scheme will follow automatically. We choose
a chain decomposition CLSIC[k] = TLSIC[k] defined in Eq.(3.6). (Note that it is obvious that
TLSIC[k] was also a chain decomposition). A concrete example for (SIC)acc is shown in Fig.3-6
for n = 8. As an example, the subset key k(567) = s(p6

1p1
2p1

3p3
4p2

5p1
6p1

7p3
8).

The following result follows directly from Theorem 3.12, 3.15 and the generic efficiency
characterization of the framework with the fact that |CLSIC[k]| = n.

Corollary 3.24. We have that

MCacc
CLSIC[k]

= O(kn1/k log2 n),
PCacc

CLSIC[k]
= O(log5 n).

Scheme (LSIC[k])acc has computational cost O(max{kn1/k log2 n, log5 n}). For trillion
users (n = 1012), choose k as low as 4 we have 4n1/4 log2 n < log5 n so that the computational
cost is dominant by the latter, which is roughly as in Asano’s scheme (but ours enjoy
exceptionally lower header size).

Remark 3.25. If we instantiate with Akl-Taylor’s, its chain decomposition has maxu∈N hu =
O(n1/k log n), and m = O(2k · n1/k(log n)/k). Thus PC = O(n1/k log5(n)), which is much
worse than ours, O(log5 n). Moreover, this cost always dominates over the optimal MC for
LSIC, O(n1/k log2 n).

Chapter 3: Practical Symmetric-key Broadcast Encryption 55

...

...

⇒

perm perm-1

D
G

k()

M
G

k()

Gy

Gx

Gz

Gw

Gu Gv

x

y

u

wz

v

(a) Tree-stratifiability

(b) Key derivation between subposets

tree HDAG of a posetmin

y

y
Gy

max
min element in sub-poset()

...

...

Figure 3-7: The underlying idea for the trapdoor RSA based framework

3.6 Key Derivation based on Trapdoor RSA Accumulator

3.6.1 Trapdoor RSA based Framework

Framework Idea. The framework in this section is applicable to a class of posets that we
call tree-stratifiable posets. Informally, such a poset of this type is defined as one which can
be considered as formed by a tree hierarchy of atomic posets (not necessarily homogeneous),
as shown in Fig.3-7. There, the graph decomposition G = {Gx, Gy, Gz, ...} is said to form
a hierarchy represented by tree H where V (H) = {x, y, z, ...}. Intuitively, such a graph
decomposition is said to form a hierarchy if all the inclusion relations from every node in a
lower subgraph (one with a lower index in the hierarchy), say Gy in the figure, to the next
upper one in the hierarchy, Gx, are via a unique minimal node in that upper subgraph.
Denote this minimal node as MGy . We will put a “dummy node” in each subgraph so that
it will be the “representative” of that poset to reach that unique minimal node in the upper
poset. (In the figure, the dummy node is DGy for subgraph Gy to reach MGy).

The idea for key derivations are as follows. First we define the key for each node
in the highest sub-poset in the hierarchy by using the RSA-based framework in the last
section. Recursively in a top-down fashion, we will define the set of keys corresponding
to each lower sub-poset in the hierarchy. At some point, the set of keys for the nodes in
Gx are defined. Then we define the “dummy key” for the dummy node in a next lower
level sub-poset by applying a random permutation perm (w.l.o.g we will use the reverse
direction) to the key of the minimal element in that upper sub-poset that it connects, that
is, k(DGy) = perm−1(k(MGy)). To define keys for the other nodes in this lower sub-poset
(at Gy), we will again use the RSA-based framework for that sub-poset. However, this time
the key for the dummy node has been already determined, while all the keys must agree
with the relations of (G′

y)
acc, where G′

y is the modified subgraph that includes the dummy
node, i.e., the relation of keys as defined in Eq.(3.7) instantiated to a poset that has G′

y

as its representation. To solve this, it suffices to use the trapdoor of RSA. In this way, we
can define keys recursively until reaching the lowest sub-posets. Users, on the other hand,
do not have to use trapdoor since they only compute keys in the bottom-up fashion. Note
that (perm, perm−1) is a public permutation, such as any block cipher with a fixed known

56 3.6 Key Derivation based on Trapdoor RSA Accumulator

key. We will model perm as an ideal random permutation in the security proof (the random
permuation model).

The idea of reducing the whole poset by instantiating RSA-based framework in each
sub-poset results in the use of only small number of primes for the overall scheme since the
same set of primes can be used across different instantiations for different sub-posets.

To formalize this, we first define some more notations. For a directed graph G, denote
Vmin(G) the set of all minimal elements of poset S such that DAGmin(S) = G. Vmax(G) is
defined analogously. The definition below captures what we have explained in the framework
idea. Essentially, the bijection π below maps Gx 7→ x.

Definition 3.26. (Tree-Stratifiable Poset) An inclusion poset S is called tree-stratifiable
poset iff there exist an induced graph decomposition G of S and a tree H with a bi-
jection π : G → V (H) such that for each G ∈ G if we define G′ by letting V (G′) =
V (G) ∪ {DG} and E(G′) = E(G) ∪ {(S,DG) : S ∈ Vmax(G)} where DG is a dummy
node; define MG :=

⋃
S∈Vmax(G) S; and define a graph W by letting V (W) =

⋃
G∈G V (G′)

and E(W) =
⋃

G∈G
(
E(G′) ∪ {(DG,MG)}), then we have that (1) for all G ∈ G, MG ∈

Vmin(π−1(parentH(π(G)))) and (2) E(DAGmin(S)) ⊆ E(DAGmax(W)). ¤

Trapdoor RSA Accumulators. A trapdoor RSA function generator GtRSA is the one
that works exactly the same as GRSA but in addition also outputs the trapdoor td which is
φ(n) where φ is the Euler’s phi function. With td, given the description of f, any y ∈ Uf ,
and a (multi-)set of accumulated values E, one can efficiently compute x ∈ Uf such that
f(x,E) = y. Denote such x by ftd(y,E−1).

Towards formalizing the construction, we “normalize” each sub-poset G ∈ G so that its
base set will be BG = {1, ..., |Vmin(G′)|} as follows. Construct γ : V (G′) → 2BG by first
picking an injective map γ̃ : Vmin(G) → BG then define for S ∈ V (G′), γ : S 7→ {γ̃(U) :
U ∈ Vmin(G), U ⊆ S}. Let SG = γ(V (G′)) (the set of all images by γ from V (G′)) be the
set system with the base set BG.

We now give the formal description for the construction. For simplicity we will consider
homogeneously stratifiable poset, i.e., each SG is isomorphic to each other (in the sense
that its corresponding DAG is isomorphic), say the set system Y. Let {aij}1≤i≤d,1≤j≤m be
a maximin matrix for set system Y, where d is the cardinality of its base set.

Construction 3-5. Trapdoor-RSA-based Access Control Scheme: (X)tacc

Keygen : Run a GtRSA to obtain a description of f : Uf × Ef → Uf and trapdoor td. For
1 ≤ j ≤ m, pick an element pj ∈ Ef . Let perm and perm−1 be a publicly available
permutation mapping Uf → Uf . Let pub consist of all pj ’s and {aij}. Pick a random
t ∈ Uf . Define keys recursively in a top-down fashion in the tree H:

[Top]. At the subgraph Groot ∈ G, where root is the root of H, by definition we have
N = MGroot . We let k(N) = k(MGroot) = t.

[Intermediate]. At each atomic subgraph G ∈ G, the key k(MG) is previously
determined. Define the key for the dummy node: k(DG) = perm−1(k(MG)). By using
the trapdoor td and k(DG), we solve Eq.(3.11) by setting S = DG (thus γ(S) = BG)
to determine the secret sG, i.e.,

sG = ftd(k(DG), {(max
i∈BG

aij) C pj : 1 ≤ j ≤ m}−1). (3.9)

Chapter 3: Practical Symmetric-key Broadcast Encryption 57

Then we define the key at each element in this subgraph, S ∈ V (G), as follows.

For S ∈ Vmin(G)),
k(S) = f(sG, {aγ̃(S),j C pj : 1 ≤ j ≤ m}), (3.10)

and for S ∈ V (G)),

k(S) = f(sG, {(max
i∈γ(S)

aij) C pj : 1 ≤ j ≤ m}). (3.11)

[Bottom]. For each u ∈ N , we let p(u) = k({u}).

Derive : Compute from the relations given in Eq.(3.9), (3.10), (3.11) but in the bottom-up
fashion by using applications of f(·, ·), perm(·) starting from f(p(u), ·). Note that td is
not required to do this.

Theorem 3.27. (X)tacc is KINT-1-secure in the random permutation model (perm as an
ideal random permutation), assuming the strong RSA assumption.

Proof. Let A be an adversary which breaks KINT-1 security of Xtacc with probability ε.
We present an algorithm F which breaks the dOW security of accumulators with equal
probability (thus tight reduction). The construction is as follows:

Find Stage. First F find upon input the description descf of accumulators from the chal-
lenger randomly chooses m elements from Ef namely p1, ..., pm. (m is the number of
columns of maximin matrix of the atomic set system composing X.) It then runs A
which consequently output a challenge subset S∗ ∈ SX. F find has to provide the keys
for users in N r S∗. Let B r γ(S∗) = {i1, ..., iz}. It then just outputs to its challenger
Ek = {aikj C pj : 1 ≤ j ≤ m} for 1 ≤ k ≤ z, and waits for the result while goes to the next
stage.

Guess Stage. The adversary F guess, upon a response f(x,E1), ..., f(x,Ez) from the chal-
lenger, simulates the keys and also the random permutation oracle Perm/Perm−1 as follows.
Denote the sub-poset which S∗ is in by G∗. Beside user keys for the corrupted users in
N r S∗, F guess will simulate also keys which are derivable from them so as to ensure the
overall consistency in derivation. Such keys are those of S such that S r S∗ 6= ∅. We
categorize to two kinds: (1) those in G∗; (2) those outside G∗, which can be confined to
those in sub-posets in the collection denoted G′ which includes all except sub-posets below
U ∈ Vmin(G∗) such that U ⊆ S∗.

Simulate Keys in (1): For each S ∈ Vmin(G∗) such that SrS∗ 6= ∅ (this implies S 6⊆ S∗)
we let k(S) = f(x,Ek) where γ̃(S) = ik. These keys are perfectly simulated since they
are in the form of Equation (3.10) where sG∗ = x (which is unknown). For S ∈ V (G∗)
such that S r S∗ 6= ∅, we have that there exists U ∈ Vmin(G∗) such that U 6⊆ S∗

and U ⊆ S, thus k(S) can be derived from k(U) (which is previously defined only if
U 6⊆ S∗) by using the relation from Eq. (3.10),(3.11).

Simulate Keys in (2): For each subgraph G ∈ G′, F guess picks randomly sG ∈ Uf and let
the keys in this sub-poset be defined as in Equation (3.10),(3.11). Give the user keys
p(u) for all u ∈ N r S∗, which are simulated at the lowest sub-posets in the tree H,
to A.

58 3.6 Key Derivation based on Trapdoor RSA Accumulator

Simulate Perm/Perm−1: For each G ∈ G′ ∪ {G∗}, we define

Perm : k(MG) 7→ f(sG, {(max
i∈B

aij) C pj : 1 ≤ j ≤ m})

and collect it to the list of input-output pairs of Perm. Note that sG∗ is unknown
but the above right-hand-side value when G = G∗ can be computed from k(S) for
any S ∈ V (G∗) (which some are known). Queries to the random permutation oracle
Perm/Perm−1 will be answered according to this list in both direction. When a query
is not in the list, we just output a random string in Uf (and make sure that it does not
collide with some previous used strings) and record this to the list. The consistency
of keys across sub-posets required from Equation (3.9) is ensured by this simulation
which is perfect.

Consequently, A then outputs k(S∗). Now F guess just outputs (E∗, w) = ({(maxi∈γ(S∗) aij)C
pj : 1 ≤ j ≤ m}, k(S∗)).

If A wins its game then it must be that w = f(x,E∗). To see that F wins the game, we
only have to show that

⋂z
k=1 Ek 6⊆ E∗, that is:

⋂

i∈Brγ(S∗)

{aij C pj : 1 ≤ j ≤ m} 6⊆ {(max
i∈γ(S∗)

aij) C pj : 1 ≤ j ≤ m}.

This follows from the property of the maximin matrix that there is j′ such that maxi∈γ(S∗) aij′ <
mini∈Brγ(S∗) aij′ . Consider the element pj′ , there are mini∈Brγ(S∗) aij′ such elements in the
left-hand-side while only maxi∈γ(S∗) aij′ such elements in the right-hand-side. Therefore the
uninclusion holds.

Remark 3.28. Instead of KINT-2 security as in the (X)acc scheme, we have proved the
KINT-1 security for this the (X)tacc scheme since, intuitively, the difficulty arose if it were
the KINT-2 game as the simulator cannot change the sub-poset where the problem instance
is embedded, after the corruption. (Such an ability to change is required since we want S∗

to be in the sub-poset where the problem instance is embedded, but we do not know S∗ at
the corruption phase).

Nevertheless, if we indeed use the random self-reducibility of the accumulators (where
the RSA ones have this property), the simulator can embed the problem instance at every
sub-poset, and thus the KINT-2 security with tight reduction can be achieved, though. We
omit the details here.

Characterizing Efficiency. If the set system X of n users is tree-stratifiable homoge-
neously into a set system Y of d users with the tree H then

KeySize(X)tacc(u) = 1,

CompCost(X)tacc = O(MCtacc
X + PCtacc

X),

PubSize(X)tacc = PubSize(Y)acc bits3,

Chapter 3: Practical Symmetric-key Broadcast Encryption 59

1

12

123

5

56

567

2 3 4

234

6 7 8

678

1 4

1 8

1 12

5 8 9 12 13 16

9 16

5 16

1 16

..

..

..

..

..

..

..

34 78

⇒

1

2

3

0

0

1

1

1

2

1

0

3

1

0

1

1

⇔
1 4

1 8

1 12

..

..

..

1

12

123

perm()

1

3
p

2

1
p

3

1
p

4

0
p(

()
)

1

2
p

2

0
p

3

0
p

4

0
p(

()
)

⇔

(b) Derivation by user 1

same matrix

(a) LSIC[k] is tree-stratifiable

Figure 3-8: Instantiating LSIC[k] (n = 16, k = 2, see Fig.3) by trapdoor RSA based frame-
work

where the cost from modular exponentiation and prime generation are depended solely on
both H, Y and only Y respectively, and can be characterized as:

MCtacc
X = hH ·MCacc

CY
, PCtacc

X = PCacc
CY

, (3.12)

where hH is the deepest depth of H. The first claim follows from the fact that a user has to
compute Eq.(3.11) for at most hH times. The second claim is from the fact that we reuse
the same set of primes across sub-posets. There is also the cost due to applications of perm,
which is O(hH), but this is suppressed by MC.

Generic Application. We now confine our interest to the case where H is the balanced
completed n1/k-ary tree of depth hH = k. This forces the base sets of Y and X to have
cardinality n1/k and n respectively. In this case we say X = hierk(Y). The operation hierk is
well-defined and can be thought as the converse direction of tree-stratification; thus, from
any poset Z one can construct a tree-stratifiable poset, namely hierk(Z), by first scaling
down the cardinality of the base set of Z to n1/k. (Since usually any set system is originally
defined in term of n). We write Z(n1/k) to emphasize the cardinality of base set. The
point is that when k is a constant, Eq.(3.12) allows one to construct a full scheme of n
users but with exactly the same asymptotic performances as those of (Z(n1/k))acc, which is
a “scaled-down” scheme, in both parameters MC, PC! Moreover, if cZ(n)(n, r) = O(r) then
we can show that chierk(Z(n1/k))(n, r) = O(kr) = O(r) (by exactly the same proof as that of
Theorem 3.10); therefore, HeaderSize is also unaffected.

3Recall that Remark 3.23 shows how to reduce this to negligible.

60 3.7 Concluding Remarks

3.6.2 Trapdoor RSA based Instantiation for LSIC

It is easy to see that LSIC[k] is tree-stratifiable since LSIC[k] = hierk(SIC(n1/k)). (We could
have define LSIC via hier operation rather than directly in Sec.3.3.2). An example is shown
in Fig.3-8. From the efficiency characterization we have:

Corollary 3.29. We have that

(i) MCtacc
LSIC[k] = O(n1/k(log2 n)/k),

PCtacc
LSIC[k] = O((log5 n)/k5).

(ii) MCtacc
LSIC[loga n] = O(a log a log n),

PCtacc
LSIC[loga n] = O(1).

Proof. From Corollary 3.24, we have

MCacc
C

SIC(n1/k)
= O((n1/k log2 n)/k2),

PCacc
C

SIC(n1/k)
= O((log5 n)/k5);

MCacc
CSIC(a)

= O(a log2 a),
PCacc

CSIC(a)
= O(1).

(In fact, for the case SIC(a), the maximum number of primes used per user is log a + 1, a
small constant). From these and from Eq.(3.12), we have the corollary statement.

3.7 Concluding Remarks

We presented three generic frameworks for constructing broadcast encryption and give
some efficient instantiations. Almost all subset-cover broadcast encryption schemes based
on PRSG (or one-way function) or RSA accumulator in the literature can be rewritten as
instantiations in our paradigms. In fact, [NNL01, HS02, M03, AKI03a, GST04, WNR04,
JHC+05, HLL05, HL06] can be viewed as PRSG-instantiated schemes and [Asa02, AKI03b,
GR04] are non-trapdoor-RSA-instantiated schemes from our frameworks.

The whole paradigm abstracts away the computational security issues and reduces the
problem to only pure combinatorics. We leave as an open problem the question of showing
any combinatorial bound from the efficiency characterization in each sub-framework. Note
that the previous bounds for broadcast encryption [LS98] are done in the setting where no
key derivation is involved.

Chapter 4

Unifying Public Key Encryption
with “High Functionalities”

4.1 Introduction

Public-key encryption (PKE) is one of the most fundamental concept in modern cryptogra-
phy. They allow any party to securely send a message to another securely, i.e., the contents
of message remain hidden from anyone intercepting the communication. This is done in
such a way that there is no need for the sender Bob to share any secret information in the
first place; all Bob needs to know is the public key of the intended recipient, Alice, who
disseminate her public key as she likes, e.g., publishing it in the internet and so forth.

In order to strengthen the security or to achieve some useful functionalities which are spe-
cific to applications thereof, the original concept of public-key encryption schemes has been
extended in various ways, giving raise to many kinds of what we call “public-key encryption
schemes with high functionalities”. Some examples are ID-based encryption [Sha84, BF01],
key-insulated encryption [DK02], forward-secure encryption [CHK03], certificate-based en-
cryption [Gen03], and many more. Although it is well-known that these are related primi-
tives as the approaches for constructing them are based on ID-based encryption, there was
no unified systematic framework for defining or constructing them.

In brief, in this work, we unify these public-key encryption schemes with high function-
alities in various aspects, namely a unified syntax, a unified security notion, and unified
generic/specific constructions. More precisely, we reduce a specification of such a primitive
to its necessary and sufficient information, which is its underlying graph: by specifying
a graph, the definition and constructions will be automatically induced. We also give a
primitive implication theorem which gives a criterion whether a primitive implies another.

In the following subsection, we explain motivations for those public-key encryption
schemes with high functionalities which are useful in different scenarios. We will later
describe our contributions in more details.

4.1.1 Background

Public-key encryption schemes with high functionalities solve some problems which basic
public-key encryption cannot. Among existing proposals, we can classify them by their
originally intended target problems to solve as follows.

62 4.1 Introduction

Simplifying Public-key Infrastructure

Basic public-key encryption schemes, despite their great flexibility, does not address the
issue of public key distribution problem. We have mentioned that Alice can publish her
public key via, e.g., the internet. But when Bob obtain Alice’s public key, how does he
know it really belongs to Alice and is not, for example, a fraud key created by a phisher Eve
to deceive him? To solve problem of this kind, public key infrastructure (PKI) is utilized.
The basic idea is to have a trusted authority known as CA (certification authority) digitally
sign a message known as a certificate, thereby vouching that a particular key corresponds
to a particular name. Bob then can check the authenticity of Alice’s public key via the
certificate. However, again, the management of certificates in public key directories are
needed.

Shamir [Sha84] introduced the idea of Identity-based Encryption (IBE) to eliminate the
need for PKI. The idea is very simple but elegant: it uses the identity of user to be served
as the public key of that user, so that public keys do not need to be distributed at all. In
order for Alice to obtain the private key corresponding to her name, she asks the private
key generator (PKG), who has the master secret, to derive for it. Bob uses the global public
key and the identity ‘Alice’ to produce an encrypted message. Although the concept was
proposed two decades ago, it is only recently that the first fully functional schemes were
proposed by Boneh and Franklin [BF01, BF03].

The advantage of IBE is clear: it eliminates the need for PKI. However, one unavoidable
primary disadvantage is private key escrow, i.e., the PKG can perform the decryption of
any users (since in particular, it knows the master secret). Certificate-based encryption
(CBE) [Gen03] and Certificateless PKE (CL-PKE) [AP03] are designed to preserve some
advantages of IBE while eliminating this key escrow problem. Both have the same core
mechanism: it allows Bob to encrypt messages by using Alice’s (non-ID-based) public key
as in the typical PKI but without requiring to check its authenticity, instead Alice have to
know not only her private key but also the certificate (which is functioned as a secondary
private key) in order to be able to decrypt.1

Protecting against Key Exposure

A normal public-key encryption scheme offers no security protection for any user whatsoever
once his private key is compromised. As an extension to the normal variant in order to cope
with the vulnerability against key exposure, the notion of forward security [Gün89] in the
context of public-key encryption was first studied by Anderson [And97]. A Forward-secure
public-key encryption (FS-PKE) allows Alice to update her private key periodically while
keeping the public key unchanged. Such a scheme guarantees that even if an adversary
learns the private key at some point, messages encrypted during all time periods prior to
that point remain secret. The first non-trivial forward-secure PKE was proposed by Canetti,
Halevi, and Katz [CHK03].

A similar scheme called Key-insulated public-key encryption was proposed by Dodis et
al. [DK02]. In such a scheme, updating key must be done via the collaboration with the other
module called helper server. Intrusion-resilient PKE [DFK+03] is a further strengthened

1For better understanding, one may think that the word ‘certificate-based’ is a property pointed to Alice
as she needs the certificate to decrypt, while ‘certificateless’ is a property pointed to Bob as he need no
ccertificate when encrypting.

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 63

version of Key-insulated PKE where its security is guaranteed as long as the adversary does
not compromise both modules (helper and user) in the same time period.

Achieving New Additional Functions

Examples of schemes in this class vary in a wide range. Public-key broadcast encryption,
which is a familiar theme in this thesis, provides a new function to PKE as it allows to
encrypt to groups of users. Public-key encryption with keyword search [BDOP04], loosely
speaking, allows one who possess keyword-based trapdoors to perform keyword-based search
over encrypted data without decrypting it. (We will construct efficient schemes for their
combination, i.e., public-key broadcast encryption with keyword search, in Chapter 5). In
Time-capsuled PKE [MHS03], one encrypts by also specifying an open time so that only
from that time on, the message can be decrypt. In order to be able to do so, there is a
releaser server, who periodically releases additional information to be used for decryption.

We note that many extensions such as hierarchical extensions are proposed. In Hierar-
chical IBE (HIBE) initiated by [HL02, GS02], many PKGs are incorporated in hierarchy,
where upper-level PKG can derive private keys for lower-level ones, with users in the low-
est level. Hierarchical version CBE is also proposed in its original paper [Gen03]. Some
combinations such as Forward-secure HIBE [YFDL04] were also proposed.

4.1.2 Our Approaches and Contributions

In this work, we present a unified framework called Directed Acyclic Graph Encryption
(DAGE). It has many consequences in the following. We first give a high-level overview of
DAGE.

Intuition for Directed Acyclic Graph Encryption. Our starting point is IBE and
HIBE. IBE schemes are indeed useful more than just managing identities and simplifying
PKI. In particular, the “identity” is not limited only to someone’s name, it can contain
any specified information. Therefore we can abstract the notion of identity completely.
Consequently, we can view an IBE scheme as a one-level tree hierarchy rooted at the PKG
with each edge corresponding to a derivation of a secret key to a leaf which corresponds to
a user. HIBE generalizes IBE to the case of arbitrary tree hierarchies.

Loosely speaking, DAGE is a generalization of HIBE to the case of directed acyclic graph
(DAG) hierarchies, which also includes tree structures of HIBE as special cases. A DAG is
a directed graph which contains no directed cycle in it. Another equivalent way to describe
any directed acyclic graph is to consider any set of all edges that share the same end node
as a hyper-edge denoted {V1, . . . ,Vd} → V∗ to represent the set of all edges Vi → V∗ in
the DAG that directed to V∗. Intuitively, while every edge in tree graph abstraction of
HIBE represents a derivation from the private key of one node to that of another, every
hyper-edge in directed acyclic graph abstraction of DAGE represents a derivation from the
private keys of many nodes to that of another node. The problem is how to define this
“derivation”, since it becomes involving many parent nodes. A natural way to define is to
assign to this hyper-edge a “derivation rule” which is specified as an access structure Θ over
{V1, . . . , Vd}. For example, Θ = {{V1, V2}, {V1, V3, V4}} means that the secret key of V∗

can be derived only by the collaboration of node V1 and V2 or that of node V1 and V3 and
V4. The “collaboration” of nodes is done without exposing their own secret keys to each
other. We formulate this by letting each node in collaboration output a “partial private

64 4.1 Introduction

key” which then is given to V∗ so that the secret key of V∗ is a function of all these partial
private keys, of which lacking even one it cannot derive a legitimate secret key. We call a
DAG whose each hyper-edge is assigned an access structure a Labeled Access DAG (LAD).

Unification. DAGE is very general since it deals with general graphs with general access
structures associated; nevertheless, we are able to give a unified formal definition of syntax
and its security notion for arbitrary labeled DAGs. It turns out that we can cast various
public-key encryption with high-functionalities, as DAGE (varied by the underlying directed
acyclic graphs), thus the security notion unifies the notions of these primitives. As exam-
ples, existing applications such as forward-secure encryption [CHK03], certificate-based en-
cryption [Gen03], key-insulated encryption [DK02], public-key broadcast encryption [DF02]
schemes and many more schemes described in the previous section are specific-case instan-
tiations of DAGE.

The heart to our formalism of those primitives as DAGEs indeed can be thought out as
to abstract away the very meaning of entity values such as identity, time, etc. with their
relations such as derivation, updating, etc. and merely think of them as pure “strings”
and “relations (among strings)”. This directly lets us form graphs, which contain “nodes”
and “hyper-edges (among nodes)”, where relations are governed by the access structures
assigned at hyper-edges.

Primitive Implications. We give a primitive implication theorem which provides a cri-
terion whether a primitive implies another (both casted as DAGE). The criterion is purely
logical-based and thus can be verified automatedly, in contrast with conventional complexity-
based proof which has to be produced by hand and newly for any pair of primitive. This
helps unifying and understanding more on properties of such primitives and simplifying
many related works in this line, e.g., [BP02, DKXY03].

Constructions. We first present a generic construction of DAGE for any graph from
HIBE. This demonstrates a possibility result that we can base DAGE on any HIBE. We
next show that weak versions of DAGE can be constructed from PKE, which is a seemingly-
weaker primitive, and a combinatorial family we call cover-admissible family. This demon-
strates a possibility result that we can based DAGE on PKE, if we can construct such a
family.

We show three more efficient constructions of DAGEs based on bilinear maps as follows.

• DAGE construction for any monotone OR-type of graphs with constant-size cipher-
text. Combining this with AND-multiple encryption yields DAGE for general graphs.

• DAGE construction for any monotone AND-type of graphs with constant-size cipher-
text. Combining this with OR-multiple encryption yields DAGE for general graphs.

• DAGE construction for what we called bounded-complete OR-type of graphs. Such a
graph is analog of complete graphs in the context of directed graph.

Functionalities. DAGE itself provides a flexible way to define such a new primitive by
just defining a “tailor-made” graph that fits for an application. Nevertheless, we define
some prototype of functionalities for converting any DAGE to its forward-secure version,
key-insulated version, time-capsuled version, or self-insulated version. This thus gives a

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 65

generic schema where we can get a scheme with combined functionalities or hierarchical
version of one functionality. An example might be hierarchically-key-insulated certificateless
encryption.

4.2 Definitions of DAGE

Derivability over Sets. We first review some terminology on access structures over sets.
Consider a (possibly infinite) set N . We call the subsets in N which are allowed to derive
some sort of secret qualified, and the subsets in N who should not be able to obtain any
information about the secret forbidden. We call Θ ∈ 2N a qualified access structure if Θ is
monotone non-decreasing, i.e., for each V ∈ Θ we have that if V ⊆ W then W ∈ Θ. We
denote by Θ(min) the collection of minimal sets in Θ. We call Ψ ∈ 2N a forbidden access
structure if Ψ is monotone non-increasing, i.e., for each V ∈ Θ we have that if W ⊆ V then
W ∈ Θ. We denote by Ψ(max) the collection of maximal sets in Ψ. The tuple (Θ, Ψ) is
called an access structure pair on N if Θ ∩Ψ = ∅. If Θ ∪Ψ = 2N , then we say that (Θ, Ψ)
is complete.

Since we often refer to the qualified one throughout the chapter, when we refer to access
structure we mean a qualified access structure, unless otherwise is specified. For an access
structure Θ, we call

⋃
W∈Θ W the support of Θ and denote it by Sup(Θ).

Labeled Access DAG. A Labeled Access DAG (or LAD) G = (V,H) consists of the set
V of all vertices and the set H of all access hyper-edges. Each vertex is uniquely specified
by a label which is a string in {0, 1}∗. An access hyper-edge (V, V∗, Θ) ∈ H consists of a
directed hyper-edge where V ⊆ V is the initial node set, V∗ ∈ V is the terminate node, and
a privileged access structure Θ over the set of initial nodes. In such a case, we also denote
Θ by ΘV∗ .

We provide some notations here. We denote W 4 V if there is a directed path from W
to V. For W ≺ V (that is, W 4 V but W 6= V), we write W ≺c V if there exists no V′ ∈ V
such that W ≺ V′ ≺ V. The indegree of node V is denoted by indeg(V). A source node is a
node with indegree 0.

A Language of Propositional Logic. In the following, to formally reason about key
derivability and ciphertext decryptability, we employ a language of propositional logic in
which the set of connectives is {t, f,¬,⇒,∨,∧} as usual and the set of symbols contains
elements written in the form of 〈〈V〉〉G where V ∈ VG is a node in a LAD G. If G is clear
from the context, we abuse the notation as 〈〈V〉〉. The entailment, `, denotes the syntactic
consequence (or equivalently, semantic consequence) for propositional logic. For notational
convenience, we define [V] =

∧
V∈V〈〈V〉〉G if V ⊆ VG and JΘK =

∨
S∈Θ

∧
V∈S〈〈V〉〉G if Θ is an

access structure over a set of node in G.

Derivability over LAD. We now describe the derivability over LADs, which is analog
to that of over sets described previously. For a LAD G = (V,H) we define two sets of
propositional formulae as follows.

• The Positive Derivability , Σ, is defined as a theory in propositional logic for capturing
all the privileged accessability relations defined by H:

Σ =
{
JΘK⇒ V∗ | (V, V∗, Θ) ∈ H

}
.

66 4.2 Definitions of DAGE

• The Negative Underivability Σc, as a theory in propositional logic for capturing all
forbidden accessability relations that are defined implicitly by the “complement” of
H (in some sense), in their negated forms:

Σc =
{
¬(

[W] ⇒ V∗
) | Σ 0 [W] ⇒ V∗, W ⊆ V, V∗ ∈ V

}
.

Furthermore, we say that ∆ is a relaxed negative underivability if ∆ ⊆ Σc.

We call (Σ,∆) a derivability structure pair if ∆ ⊆ Σc. We also call (Σ, Σc) complete.
Intuitively, Σ describes completely the syntax of DAGE, while Σc (resp., ∆ ⊆ Σc) describes
completely the security notion (resp., relaxed security notion) of DAGE.

4.2.1 Syntax of DAGE

Definition 4.1 (Syntax of G-DAGE in General Formulation). A G-DAGE scheme is
specified by six polynomial-time randomized algorithms GlobSetup, Setup, Extract, Combine,
Encrypt, and Decrypt as follows.

GlobSetup(1λ) → (gpk): Takes as input a security parameter 1λ. It outputs a global public
key gpk.

Setup(1λ, gpk,V) → (pkV, skV): Takes as input a security parameter 1λ, the global public
key gpk, and a source node V ∈ V (a node of indegree 0). It outputs a public key pkV

and a secret key skV of node V. This algorithm takes place at only each source node
to produce each corresponding public key.

Extract(V, V∗, Γ, pk(V∗), skV) → (skΓ,(V½V∗)): Takes as input a start node V, a target node
V∗ such that V ≺c V∗, an access structure Γ such that ` JΓK ⇒ JΘV∗K, the set of
all public keys at predecessor source nodes pk(V∗) defined as (gpk, {(W, pkW) | W 4
V∗, indeg(W) = 0}), and the secret key skV. It outputs a partial secret key skΓ,(V½V∗).
This algorithm takes place at node V and the output will be given to node V∗ in order
to be used in the Combine.

Combine(V∗,Γ, pk(V∗), SΓ,V∗,V) → (skV∗): Takes as the target node V∗, an access structure
Γ such that ` JΓK⇒ JΘV∗K, the public key set pk(V∗), and a set of partial secret keys
SΓ,V∗,V = (skΓ,(V½V∗))V∈V such that for all V ∈ V, V ≺c V∗ and that ` [V] ⇒ JΓK.
(Note that such V is not necessarily unique). It outputs the secret key skV∗ of node
V∗. This algorithm takes place at node V∗ to combine a legitimate set of partial secret
keys so as to produce a secret key at node V∗.

Encrypt(V, pk(V),M) → (C): Takes as input a recipient node V, the public key set pk(V)
corresponding to V, and a message M . It outputs the ciphertext C.

Decrypt(V, pk(V), skV, C) → (M): Take as input a recipient node V, the public key set pk(V)
corresponding to V, the secret key skV, and the ciphertext C. It outputs the message
M or a special symbol ⊥ indicating an error.

Correctness. We define the correctness property of a G-DAGE scheme as follows. Let
GlobSetup(1λ) → (gpk) and for each source node V, let Setup(1λ, gpk,V) → (pkV, skV). The
correctness holds if the following hold.

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 67

1. For all non-source node V∗ ∈ V, we have that for all choices of Γ,V up to constraint
that for all V ∈ V, V ≺c V∗ and that ` JΓK ⇒ JΘV∗K and ` [V] ⇒ JΓK, the output
skV∗ from the following process have the same distribution.

For all V ∈ V, Extract(V, V∗, Γ, pk(V∗), skV) → (skΓ,(V½V∗));

Combine(V∗,Γ, pk(V∗), (skΓ,(V½V∗))V∈V) → (skV∗).

2. For all V ∈ V, if pk(V) and skV∗ are correctly generated, then for all M ,

Decrypt
(
V, pk(V), skV, Encrypt(V, pk(V),M)

)
= M.

Remark 4.2. Definition 4.1 gives much generality, and thus is quite complex. We now
discuss some special cases or how to set some default so as to lessen its complexity.

• For a special case when there is only one source node in G, we collapse the algorithm
GlobSetup and will not use gpk.

• For a special case when ΘV∗ is the collection of singleton sets (OR-structure), it is
sufficient to set by default in Extract that Γ = {{V}}. This also implies that in
Combine, V = {V} is sufficient. Moreover, in a monotone OR-graph, we collapse
the algorithm Combine and simply let Extract output skV∗ (instead of a partial key,
skΓ,(V½V∗)).

• For a special case when ΘV∗ is the collection of one set (AND-structure), it is necessary
(and sufficient) to set by default in Extract that Γ = ΘV∗ . This also implies that in
Combine, {V} = ΘV∗ is necessary (and sufficient).

• For general cases, in one extreme, the scheme may set default in Extract for Γ to be a
single conjunctive access structure (i.e., the collection of one set). In such a case, V
is a unique set where Γ = {V}.

• For general cases, in the other extreme, it may set default as Γ = ΘV∗ . In this
case, Extract can be done “obliviously”, i.e., without the information on which access
structure will really be used for deriving secret key for V∗.

The default in the last case above indeed turns out to be sufficient to capture almost all
useful primitives, we thus make its explicit definition as follows. From now on, we will also
confine ourselves to this formulation unless otherwise specified.

Definition 4.3 (Syntax of G-DAGE in Oblivious Extraction Formulation). A G-
DAGE (in oblivious extraction formulation) is specified by six polynomial-time randomized
algorithms GlobSetup, Setup, Extract, Combine, Encrypt, and Decrypt with all algorithms
except Extract, Combine are defined exactly as in Definition 4.1. The remaining two are
defined as follows.

Extract(V, V∗, pk(V∗), skV) → (sk(V½V∗)): Takes as input a start node V, a target node V∗

such that V ≺c V∗, the set of all public keys at predecessor source nodes pk(V∗), and
the secret key skV. It outputs a partial secret key sk(V½V∗).

Combine(V∗, pk(V∗), SV∗,V) → (skV∗): Takes as the target node V∗, the public key set pk(V∗),
and a set of partial secret keys SV∗,V = (sk(V½V∗))V∈V such that for all V ∈ V, V ≺c V∗

and that ` [V] ⇒ JΘV∗K. (Note that such V is not necessarily unique). It outputs the
secret key skV∗ of node V∗.

68 4.2 Definitions of DAGE

4.2.2 Security Notions for DAGE

Message Indistinguishability Game. The negative underivability structure Σc of G
naturally “captures” security aspects for a G-DAGE since intuitively it contains all the
requirements about key derivation that adversary should not be able to do in order to
say that the scheme is secure. We now formalize this intuition in the standard way by
defining some appropriate oracle access in the following game between an adversary A and
a challenger C. Both C and A are given G as input.

Setup. The challenger C runs GlobSetup(1λ) → (gpk). It then gives gpk to A.

Phase 1. A adaptively issues queries where each is one of the following.

- Public key query (V) : ‘pkV =?’. C responds by giving A the pkV. If it is not defined
yet, C runs Setup(1λ, gpk, V) → (pkV, skV) and gives pkV to A.

- Partial secret key query (V, V∗) : ‘sk(V½V∗) =?’. C responds by giving A the sk(V½V∗).
If it is not defined yet, C appropriately runs Setup, Extract, Combine (but will use
those already-defined terms as some inputs) to obtain sk(V½V∗) and gives it to A.

- Secret key query (V) : ‘skV =?’. C responds by giving A the skV. If it is not defined
yet, C appropriately runs Setup, Extract, Combine (but will use those already-defined
terms as some inputs) to obtain skV and gives it to A.

- Decryption query (V, C) : ‘Decrypt(V, pk(V), skV, C) =?’. C responds by giving A the
result of Decrypt(V, pk(V), skV, C).

During this phase, C maintains the list of queries that have been asked for each oracle
type: Lpub, Lpar, Lsec, Ldec respectively. We also denote by Der the set of secret keys that the
adversary can trivially derive, i.e.,

Der = Lsec ∪
{

V∗
∣∣∣∣

there exists V such that ` [V] ⇒ JΘV∗K
and that for all V ∈ V : (V, V∗) ∈ Lpar

}
.

Since this is depended on and only on Lsec, Lpar we may write Der(Lsec, Lpar).

Challenge. Once A decides that Phase 1 is over, it outputs two messages M0,M1 ∈M of
equal length and a target node V? which it intends to attack. The only restriction is that

∆ ` ¬(
[Der] ⇒ 〈〈V?〉〉)

.

The challenger C then picks a random bit b ∈ {0, 1} and sets C? = Encrypt(V?, pk(V?),Mb).
It sends C? as a challenge to A.

Phase 2. A issues additional queries where each is one of the following. C maintains the
four lists as usual.

- Public key query (V) : ‘pkV =?’. C responds as usual.

- Partial secret key query (V, V∗) : ‘sk(V½V∗) =?’. Let Lsec, Lpar be the lists before
recording this query. C responds as in phase 1 if and only if either:

∆ ` ¬(
[Der(Lsec, Lpar)]∧〈〈V∗〉〉 ⇒ 〈〈V?〉〉)

or Der(Lsec, Lpar∪{(V, V∗)}) = Der(Lsec, Lpar).

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 69

- Secret key query (V) : ‘skV =?’. Let Lsec, Lpar be the lists before recording this query.
C responds as in phase 1 if and only if

∆ ` ¬(
[Der(Lsec, Lpar)] ∧ 〈〈V〉〉 ⇒ 〈〈V?〉〉)

.

- Decryption query (V, C) : ‘Decrypt(V, pk(V), skV, C) =?’. C responds as in phase 1 if
and only if (V, C) 6= (V?, C?).

Guess Finally A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We refer to such an adversary A as an IND-(a, f| G, ∆)-CCA adversary and the above
game as the IND-(a, f| G, ∆)-CCA game. In the following, we will consider its variations as
IND-(x, y| G, ∆)-Z notion where

• x ∈ {a, s} for adaptive/selective target node attack,

• y ∈ {f, n} for full/normal secret key exposure attack,

• Z ∈ {CCA, CPA} for chosen-ciphertext/chosen-plaintext attack.

For the ‘x’ dimension, a weaker notion of security can be defined by modifying the
above game so that it is exactly the same but except only that it is also required that the
adversary must disclose the target node V? before the Setup phase. We call such a notion
as IND-(s, f| G, ∆)-CCA. This notion is analogous to the notion of selective-identity secure
HIBE, given by Canetti, Halevi, and Katz [CHK03, CHK04]. Note that it is also required
that the restrictions on queries from phase 2 also hold in phase 1.

We define the advantage of the adversary A in attacking the G-DAGE scheme E in the
game IND-(x, f| G, ∆)-CCA as Adv(G,∆),x(E ,A) = |Pr[b = b′] − 1

2 |, where the probability is
over the random bits used by C and A in that game.

Definition 4.4 (∆-Security of G-DAGE). We say that a G-DAGE system E is (t, ε, qpub, qpar,
qsec, qdec)-IND-(x, f| G,∆)-CCA-secure if for any t-time IND-(x, f| G, ∆)-CCA adversaryA that
makes at most qoracle queries to oracle, we have that Adv(G,∆),x(E ,A) < ε. Moreover, two
deviations are defined as follows

• When qdec = 0, then we call that E is (t, ε, qpub, qpar, qsec)-IND-(x, f| G,∆)-CPA-secure.

• When qpar = 0, then we call that E is (t, ε, qpub, qsec, qdec)-IND-(x, n| G, ∆)-CCA-secure.

Note that their combinations can also be considered straightforwardly. Furthermore, when
t and qoracle’s are O(poly(λ)) and ε is negl(λ) where λ is the security parameter then we
simply say that E is IND-(x, y| G, ∆)-Z-secure (for corresponding x, y, Z).

4.2.3 Multiple Encryption on DAGE

We now introduce notions of multiple encryption on DAGE, which is an important ingre-
dient for many applications of DAGE. The functionalities of multiple encryption can be
stated as three add-on algorithms to previously defined DAGE as follows.

Definition 4.5 (Multiple-node DAGE). A multiple-node DAGE scheme with a collec-
tion P of qualified access structure over V consists of nine algorithms where six of which
are those of normal DAGEs and three add-on algorithms are defined as follows.

70 4.2 Definitions of DAGE

MEncrypt(Ω, pk(Ω),M) → (C): Takes as input a recipient access structure Ω ∈ P, the pub-
lic key set corresponding to source ancestors of nodes in Ω, more formally defined
as

pk(Ω) =
(

gpk,
⋃

V∈(
S

V∈Ω V)

{(W, pkW) | W 4 V, indeg(W) = 0}
)
,

and a message M . It outputs the ciphertext C.

MDecrypt(Ω, pk(Ω), V, skV, C) → (MV): Take as input a recipient access structure Ω, the
public key set pk(Ω), a node V and its secret key skV, and the ciphertext C. It
outputs a message share MV or a special symbol ⊥ indicating an error.

Gather(Ω, pk(Ω),X, (MV)V∈X) → (M): Take as input a recipient access structure Ω, the
public key set pk(Ω), a set of nodes X ∈ Ω, the set of all message shares corresponding
to each V ∈ X. It outputs a message M .

The correctness can be defined straight-forwardly as usual. We now define the security
notions as follows. Such notions follow the general multiple encryption [DK05].

Game for Multiple-node DAGE. The game is exactly the same as that of normal
DAGE, except for the points below.

Setup. Unchanged.

Phase 1. A adaptively issues some adaptive queries. The public key, partial private key,
and secret key oracles are unchanged. Only the decryption oracle is generalized as folllows.

- Multiple decryption query (Ω, V, C) : ‘MDecrypt(Ω, pk(Ω),V, skV, C) =?’. C responds
by giving A the result of MDecrypt(Ω, pk(Ω), V, skV, C).

- Weak multiple decryption query (Ω,X, C) :

‘Gather
(

Ω, pk(Ω),X,
(

MDecrypt(Ω, pk(Ω), W, skW, C)
)
W∈X

)
=?’,

C computes it and returns to A.

During this phase, C maintains the list of queries as usual. Lmdec, Lwmdec are the lists of two
above oracles.

Challenge. Once A decides that Phase 1 is over, it outputs two messages M0,M1 ∈M of
equal length and a target access structure Ω? which it intends to attack. The only restriction
is that

∆ ` ¬(
[Der] ⇒ JΩ?K)

.

The challenger C then picks a random bit b ∈ {0, 1} and sets C? = MEncrypt(Ω?, pk(Ω?),Mb).
It sends C? as a challenge to A.

Phase 2. A issues additional queries. Only the public key oracle is unchanged.

- Partial secret key query (V, V∗) : ‘sk(V½V∗) =?’. Let Lsec, Lpar be the lists before
recording this query. C responds as in phase 1 if and only if either:

∆ ` ¬(
[Der(Lsec, Lpar)]∧〈〈V∗〉〉 ⇒ JΩ?K)

or Der(Lsec, Lpar∪{(V, V∗)}) = Der(Lsec, Lpar).

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 71

- Secret key query (V) : ‘skV =?’. Let Lsec, Lpar be the lists before recording this query.
C responds as in phase 1 if and only if

∆ ` ¬(
[Der(Lsec, Lpar)] ∧ 〈〈V〉〉 ⇒ JΩ?K)

.

- Multiple decryption query (Ω, V, C). C responds as in phase 1 if and only if

(Ω, C) 6= (Ω?, C?) or [{W | (Ω?, W, C?) ∈ Lmdec}] ∧ 〈〈V〉〉 → JΩ?K

Guess Finally A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We use the same terminology as that of normal DAGEs except that one changes CPA
to MCPA and CCA to wMCCA or MCCA notions. The latter, MCCA, refers to the notion
exactly described in the game above, while the former, wMCCA, refers to weak multiple
CCA where the adversary is not allowed to ask the multiple decryption query (only the
weak multiple decryption query and the others are allowed). In conclusion, the notions
IND-(x, y| G, ∆)-Z for x ∈ {a, s}, y ∈ {f, n}, and Z ∈ {MCPA, wMCCA, MCCA} are defined
completely.

Construction for Multiple-node DAGE. An approach for CCA-secure multiple en-
cryption was considered in [ZHSI04, DK05]. Both are generic as it applies to any encryption
primitives. While the scheme by [ZHSI04] is proven in the random oracle model, the scheme
by [DK05] considered stronger notions and is provably secure without random oracle. Hence
it is preferable to use the latter scheme. Since we will use multiple encryption in a black-box
manner, we only briefly describe such method here.

Although the scheme of [DK05] can apply to any encryption primitive, it does not
apply directly. Instead a tag-based version (or called label in [Sho01, DK05]) of such
primitives is considered. Any CCA-secure encryption can be used to construct CCA-secure
tag-based version of it by using, for example, hybrid encryption paradigm [Sho01]. We
omit the detail of these notions here though. The construction of multiple-node DAGE is
described below. We will use one-time signature scheme and a set of secret sharing schemes
{ (Share|Sup(Ω)|,Ω, Recon|Sup(Ω)|,Ω) | Ω ∈ P} as components. EncryptT(·) is the encryption
with tag T.

Construction 4-1. Multiple-node DAGE

MEncrypt(Ω, pk(Ω),M) → (C): Let S =
⋃

V∈Ω V which we parse as S = {V1, . . . ,Vn}. Let
(sV1 , . . . , sVn , pub) ← Sharen,Ω(M), and generate (VSIG,KSIG) ← Gen(1λ). Set Ci =
Encrypt(VSIG)(Vi, pk(Vi), si). Then compute signature σ = SignKSIG

(C1, . . . , Cn, pub).
Output C = (C1, . . . , Cn, pub, VSIG, σ).

MDecrypt(Ω, pk(Ω), V, skV, C) → (MV): Parse C = (C1, . . . , Cn, pub, VSIG, σ). Then check
whether VrfyVSIG

((C1, . . . , Cn, pub), σ) = 1. If the verification fails, just output⊥. Note
that it must be that V = Vi for some i. Compute sV = Decrypt(VSIG)(Vi, pk(Vi), skVi

, Ci)
and output MV = (sV, pub).

Gather(Ω, pk(Ω),X, (MV)V∈X) → (M): Output M = Reconn,Ω(X, (sV)V∈X, pub).

72 4.3 Graph Syntactic Consequence

Theorem 4.6. Suppose that the underlying DAGE scheme is IND-(x, y| G, ∆)-Z-secure for
x ∈ {a, s}, y ∈ {f, n}, Z ∈ {CPA,CCA}. Then the above multiple-node DAGE scheme is IND-
(x, y| G, ∆)-MZ-secure.

Note that the proof follows almost directly from [DK05], albeit adapted to DAGE ap-
propriately.

4.2.4 Definition for Class of ID-based Graphs

From any LAD G = (V, H), we are interested in constructing its powerful extension where
each node in V can be assigned arbitrary string variable so that the new LAD will consist
of nodes where each is specified by its “position” which is exactly the label of node in G
and, in addition, its “variable” which is assigned by this extension. More precisely, a node
in the new LAD will be of the form

(
v, (idw)w4v

)
, i.e., it consists of the position V and the

ID variables for all of its ancestors. The formal definition is given below.

Definition 4.7. Let G = (V, H) be a LAD. Its ID-based graph extension GIdx(G) = (V,H)
defined from the base LAD G is given by

V =
{ (

v, (idw)w4v

)
| v ∈ V ; ∀w 4 v, if w ∈ V 0 then idw = ε else idw ∈ I

}

H =
{ {(

v1, (idw)w4v1

)
, . . . ,

(
vj , (idw)w4vj

)} Θ⊗Idx(idw)w4v∗−−−−−−−−−→
(
v∗, (idw)w4v∗

)

∣∣∣
(
{v1, . . . , vj} Θ−→ v∗

)
∈ H; ∀w 4 v∗, if w ∈ V 0 then idw = ε else idw ∈ I

}
.

where Θ⊗Idx (idw)w4v∗ =
{{(

vi1 , (idw)w4vi1

)
, . . . ,

(
vik , (idw)w4vik

)}
| {vi1 , . . . , vik} ∈ Θ

}
.

All of our DAGE constructions are built for ID-based graphs for generality. Construc-
tions for normal non-ID-based graphs are specific cases where the ID variables are fixed in
an appropriate way.

4.3 Graph Syntactic Consequence

Typically, the implication among primitives can be shown by first constructing one primi-
tive from black-box usage of another primitive then proving that the security of the base
primitive is reduced to the security of the resulting construction (in either black-box fashion
or not). Such a reduction proof must be reconstructed for every pair of primitives and is
usually complex in the context of computational complexity. It is thus preferable to have a
criterion which is relatively easier to justify for any pair of primitives but yet implies the full
implication, as described above. We obtain such a criterion for primitives that can be casted
as DAGE as the notion we call graph syntactic consequence. Somewhat surprisingly, this
notion can be described purely in the context of propositional logic. Therefore, such proofs
of relations among primitives can be made logically formal, and hence can be automated
verified. This section will elaborate the definition and its main theorem with the proof.

For a set S, let AS(S) denote the collection of all privileged access structures over S.
Let V0

G be the set of source nodes in G.

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 73

Definition 4.8. Let (Σ̂, ∆̂) (resp., (Σ, ∆)) be the positive derivability and a relaxed nega-
tive underivability of Ĝ (resp., G). We say that a tuple (Ĝ, Σ̂, ∆̂) graph syntactically implies
(G, Σ, ∆) and denote it by (Ĝ, Σ̂, ∆̂) °syn (G, Σ, ∆) if there exists injective mappings

σ : VG → AS(VĜ),

δ : VG → AS(VĜ)

with two simple prior requirements:

• for all V ∈ VG , we have ` Jσ(V)K⇒ Jδ(V)K,

• for all V ∈ V0
G , we have σ(V) ∈ AS(V0

Ĝ) and its minimal representation σ(V)(min) is the
collection of one set (i.e., σ(V) is an AND-structure); furthermore, write σ(V)(min) =
{X̂}, σ(W)(min) = {Ŷ}, it is required that X̂ ∩ Ŷ = ∅ for different V, W ∈ V0

G ;

such that the two following main properties hold:

1. Σ̂ ` Σ|(σ),

2. ∆̂ ` ∆|(σ,δ).

where we define two substitution procedures as follows. Let [V]|σ =
∧

V∈VJσ(V)K and let

Σ|(σ) =
{

[V]|σ ⇒ Jσ(V∗)K
∣∣∣ Σ ` [V] ⇒ 〈〈V∗〉〉

}
,

∆|(σ,δ) =
{
¬([V]|σ ⇒ Jδ(V∗)K)

∣∣∣ ∆ ` ¬([V] ⇒ 〈〈V∗〉〉)
}

.

Furthermore we also abuse the notation by denoting (Ĝ, Σ̂, Σ̂c) °syn (G, Σ, Σc) by just Ĝ °syn

G as its shorthand. (Recall that indeed G completely defines ΣG and hence also Σc
G).

Theorem 4.9 (The First Primitive Implication Theorem or The Soundness Theorem for
Graph Syntactic Consequence). Suppose that (Ĝ, Σ̂, ∆̂) °syn (G, Σ, ∆). Then we have a
black-box construction from IND-(x, n| Ĝ, ∆̂)-Z-secure Ĝ-DAGE to IND-(x, n| G, ∆)-Z-secure
G-DAGE for x ∈ {a, s}, Z ∈ {CPA,CCA}.

The above theorem indeed is constructive in the sense that we can describe the con-
struction explicitly. To state such a construction, we first give two lemmas as follows.

Lemma 4.10. Suppose that (Ĝ, Σ̂, ∆̂) °syn (G, Σ, ∆) via mappings σ, δ (as in Defini-
tion 4.8). Then for all V ⊆ {V ∈ VG | V ≺c V∗} such that ` [V] ⇒ JΘV∗K, let V =
{V1, . . . , Vt}, we have that for all

(
Ŵ1, . . . , Ŵt

) ∈ σ(V1) × · · · × σ(Vt), there exists
Ŷ ∈ σ(V∗)(min) such that

Σ̂ `
t∧

i=1

[Ŵi] ⇒ [Ŷ].

Lemma 4.11. Suppose that there exists a G-DAGE scheme E. Then the following polynomial-
time randomized algorithms can be constructed in a black-box manner from E.
XExtract: Takes as inputs Z = {Z1, . . . , Zk}, Y, (Zj , skZj) such that ΣG ` 〈〈Z1〉〉∧· · ·∧〈〈Zk〉〉 ⇒

〈〈Y〉〉 and 1 ≤ j ≤ k. It outputs tkZ,(Zj½Y).

74 4.3 Graph Syntactic Consequence

XCombine: Takes as inputs Z, Y, (tkZ,(Zj½Y))Zj∈Z. It outputs skY.

Now we can state the generic construction. Suppose that (Ĝ, Σ̂, ∆̂) °syn (G,Σ, ∆) via
the maps (σ, δ) and that we have a construction of Ĝ-DAGE, say the concrete scheme
Ê = (ĜlobSetup, Ŝetup, Êxtract, Ĉombine, Êncrypt, D̂ecrypt), which is extended to multiple-
node DAGE with algorithms M̂encrypt, M̂decrypt, Ĝather). Then we construct G-DAGE
which we denote by G-GenDAGE(Ê , Ĝ, σ, δ) as follows.

Construction 4-2. Generic Conversion from Ĝ-DAGE to G-DAGE: G-GenDAGE(Ê , Ĝ, σ, δ)

GlobSetup(1λ) → (gpk): Run ĜlobSetup(1λ) → (ˆgpk). Let gpk = ˆgpk and outputs it.

Setup(1λ, gpk,V) → (pkV, skV): Write σ(V)(min) = {X}. For all Ŵ ∈ X, run Ŝetup(1λ, ˆgpk, Ŵ) →
(pkŴ, skŴ). Let pkV = (pkŴ)Ŵ∈X and skV = (skŴ)Ŵ∈X.

In the following, for each V ∈ VG our construction will ensure that

skV =
(

skŴ

)
Ŵ∈Ŵ

for some Ŵ ∈ σ(V)(min). (4.1)

We prove Eq.(4.1) by induction over the partial ordering 4. The base case, i.e., at
source node V, is trivial due to the output of Setup. Fixing V∗ we assume that Eq.(4.1)
is true for V ≺c V∗ and prove that it holds for V∗.

Extract(V, V∗, pk(V∗), skV) → (sk(V½V∗)): First we denote some terms as follows.

• Parse skV = (skŴ)Ŵ∈Ŵ.

• Parse {V ∈ Θ(min)
V∗ | V ∈ V} as {V1, . . . ,Vm}.

• For i = 1, . . . ,m, parse Vi = {V, Vi,1, . . . ,Vi,ri}.
• For i = 1, . . . ,m and j = 1, . . . , ri, parse σ(Vi,j)(min) = {Ŵi,j,1, . . . , Ŵi,j,si,j}.

From Lemma 4.10, we have that for all i = 1, . . . ,m and d = (d1, . . . , dj) ∈ Di =
{1, . . . , si,1} × · · · × {1, . . . , si,ri}, there exists Ŷi,d ∈ σ(V∗)(min) such that

Σ̂ ` [Ŵ] ∧
ri∧

j=1

[Ŵi,j,dj] ⇒ [Ŷi,d]. (4.2)

Let Ẑi,d = Ŵ ∪ ⋃ri
j=1 Ŵi,j,dj . Also parse Ŷi,d = {Ŷi,d,1, . . . , Ŷi,d,ti,d}. Then for all

Ŵ ∈ Ŵ, i = 1, . . . ,m, d ∈ Di, and k = 1, . . . , ti,d, it runs

X̂Extract
(

Ẑi,d, Ŷi,d,k, (Ŵ, skŴ)
) → tkẐi,d,(Ŵ½Ŷi,d,k).

Note that such an algorithm is from Lemma 4.11 and can be run due to Eq.(4.2).
Finally it outputs

sk(V½V∗) =
(

tkẐi,d,(Ŵ½Ŷi,d,k)

)264 Ŵ∈Ŵ
i=1,...,m
d∈Di
k=1,...,ti,d

375.

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 75

Combine(V∗, pk(V∗), SV∗,V′) → (skV∗): Note that V′ ∈ ΘV∗ ; WLOG we can assume that

V′ ∈ Θ(min)
V∗ . Parse V′ = {V′1, . . . ,V′r}. Recall that skV′j = (skŴ)Ŵ∈Ŵ for some Ŵ ∈

σ(V′j)
(min). We denote such Ŵ by ŴV′j . From Lemma 4.10, we have that there exists

Ŷ
′
= {Ŷ′1, . . . , Ŷ′t} ∈ σ(V∗)(min) such that Σ̂ ` ∧r

j=1[ŴV′j] ⇒ [Ŷ
′
]. Let Ẑ

′
=

⋃r
j=1 ŴV′j .

Parse SV∗,V′ = (sk(V′j½V∗))j=1,...,r. For k = 1, . . . , t, do the following:

• From each sk(V′j½V∗), we can extract the part (tk
Ẑ
′
,(Ŵ½Ŷk)

)Ŵ∈ŴV′
j

. Collecting

these parts for j = 1, . . . , r, we obtain (tk
Ẑ
′
,(Ŵ½Ŷ′k)

)
Ŵ∈Ẑ

′ .

• Run X̂Combine(Ẑ
′
, Ŷ′k, (tkẐ

′
,(Ŵ½Ŷ′k)

)
Ŵ∈Ẑ

′) → skŶ′k
.

Finally it outputs skV∗ = (skŶ′k
)k=1,...,t. This satisfies Eq.(4.1) at V̂∗ and thus com-

pletes the induction proof.

Encrypt(V, pk(V),M) → (C): Run the multiple encryption M̂Encrypt(δ(V), pk(δ(V)), M) →
(C) and output the ciphertext C.

Decrypt(V, pk(V), skV, C) → (M): Parse skV = (skŴ)Ŵ∈Ŵ, where Ŵ ∈ σ(V)(min). Due to
property ` Jσ(V)K ⇒ Jδ(V)K, we have that there exists X̂ ∈ δ(V)(min) such that
X̂ ⊆ Ŵ. For each Ŵ ∈ X̂, run

M̂Decrypt
(

δ(V), pk(δ(V)), Ŵ, skŴ, C
) → (MŴ).

Then it runs Ĝather(δ(V), pk(δ(V)), X̂, (MŴ)Ŵ∈X̂) → (M) and outputs M .

Lemma 4.12. The construction of G-DAGE above is IND-(x, n| G, ∆)-Z-secure, for x ∈ {a, s},
Z ∈ {CPA, CCA}, assuming that the underlying Ĝ-DAGE is IND-(x, n| Ĝ, ∆̂)-Z-secure.

Proof (of Lemma 4.12). Suppose there exists an adversary, A, that has advantage ε in
attacking the G-DAGE scheme. We build an algorithm B that successfully attack the Ĝ-
DAGE scheme. Algorithm B proceeds by interacting with its challenger C and simulating
the challenger for the view of A as follows.

Setup. Algorithm B, upon input ˆgpk from C, gives this ˆgpk(= gpk) to A.

Phase 1. A adaptively issues queries where each is one of the following. WLOG, the same
query will be asked only once.

- Public key query (V) : ‘pkV =?’. B responds by first querying to C public key queries
(Ŵ) : ‘pkŴ =?’ for all Ŵ ∈ X, where σ(V)(min) = {X}. B then gives pkV = (pkŴ)Ŵ∈X
to A.

- Secret key query (V) : ‘skV =?’. In responding, B first randomly chooses Ŵ ∈ σ(V)(min)

and then queries to C secret key queries (Ŵ) : ‘skŴ =?’ for all Ŵ ∈ Ŵ. B finally returns
skV = (skŴ)Ŵ∈Ŵ to A.

76 4.3 Graph Syntactic Consequence

- Decryption query (V, C) : ‘Decrypt(V, pk(V), skV, C) =?’. In responding, B first ran-
domly chooses X̂ ∈ δ(V)(min) and queries to C a weak multiple decryption query
(δ(V), X̂, C) :

‘Ĝather
(

δ(V), pk(δ(V)), X̂,
(

M̂Decrypt(δ(V), pk(δ(V)), Ŵ, skŴ, C)
)
Ŵ∈X̂

)
=?’,

and returns the result to A.

Recall that during this phase, B maintains the list of queries that have been asked by A
for each oracle type: Lpub, Lsec, Ldec respectively. On the other hand, L̂pub, L̂sec, L̂dec are the
lists of queries by B to its challenger C. From the simulation above, it is direct that

` [L̂sec] ⇒ [Lsec]|σ, (4.3)

where we recall the notation [Lsec]|σ =
∧

V∈Lsec
Jσ(V)K.

Challenge. Once A decides that Phase 1 is over, it outputs two messages M0,M1 ∈M of
equal length and a target node V? which it intends to attack, which satisfies the restriction:

∆ ` ¬(
[Lsec] ⇒ 〈〈V?〉〉)

. (4.4)

Recall that since we consider the Normal type of notion, we have Der becomes Lsec. In
responding, B outputs to C the challenge (M0,M1, δ(V?)), obtains C?, and forward it to A.
We claim that this is a legitimate challenge, i.e., it satisfies

∆̂ ` ¬(
[L̂sec] ⇒ Jδ(V?)K)

. (4.5)

We prove the claim as follows. The second property of graph syntactic consequence, ∆̂ `
∆|(σ,δ), and Eq.(4.4) together ensure that challenge, i.e., it satisfies

∆̂ ` ¬(
[Lsec]|σ ⇒ Jδ(V?)K)

. (4.6)

From Eq.(4.3), one can deduce by a simple propositional logic deduction that

` (
[L̂sec] ⇒ Jδ(V?)K) ⇒ (

[Lsec]|σ ⇒ Jδ(V?)K)
,

and hence
` ¬(

[Lsec]|σ ⇒ Jδ(V?)K) ⇒ ¬(
[L̂sec] ⇒ Jδ(V?)K)

.

Combining this with Eq.(4.6), we have that Eq.(4.5) holds, as claimed.

Phase 2. A issues additional queries where each is one of the following. B maintains the
three lists as usual.

- Public key query (V) : ‘pkV =?’. B responds as usual.

- Secret key query (V) : ‘skV =?’. Let Lsec be the list before recording this query. Such
a query satisfies the restriction:

∆ ` ¬(
[Lsec] ∧ 〈〈V〉〉 ⇒ 〈〈V?〉〉)

.

As usual, B randomly chooses Ŵ ∈ σ(V)(min) and then queries to C secret key queries
(Ŵ) : ‘skŴ =?’ for all Ŵ ∈ Ŵ. At each query, L̂sec is incrementally accumulated so

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 77

that the restriction for the last query in Ŵ (and hence the overall restriction) will be

∆̂ ` ¬(
[L̂sec] ∧ [Ŵ] ⇒ Jδ(V?)K)

. (4.7)

By using exactly the same approach as that of Eq.(4.5), we can prove that Eq.(4.7)
holds.

- Decryption query (V, C) : ‘Decrypt(V, pk(V), skV, C) =?’, with the property (V, C) 6=
(V?, C?). As in phase 1, B responds by querying to C a weak multiple decryption query
(σ(V), X̂, C) for some X̂ ∈ σ(V)(min). The restriction is that (σ(V), C) 6= (σ(V?), C?)
but this is direct consequence from the above property.

Guess Finally A outputs its guess b′ ∈ {0, 1}. B just forwards b′ to C as its guess.

It is not hard to see that the simulation of oracles for A is perfect. Hence, B has the same
advantage as A, which is ε, in attacking Ĝ-DAGE scheme. This completes the proof.

4.4 Generic Constructions

4.4.1 Fully-secure Arbitrary Graph DAGE from HIBE

In this section, we give a fully-secure DAGE for any LAD from HIBE in a black-box manner.
For any LAD, we deduce a forest graph (so that HIBE is sufficient to implement it) that
graph syntactically implies it. The construction then follows from Construction 4-2 and the
normal security level, i.e., IND-(x, n| G, ∆)-Z, follows from Lemma 4.12. The main point in
this section is that when using such a forest graph, the deduced construction does not only
achieve the normal security level, but also the full security level, i.e., IND-(x, f| G, ∆)-Z,
where the partial key exposure is also allowed.

For generality, we will consider ID-based LADs, where any LADs can be casted by letting
some ID variable fixed appropriately. We now recall the definition of ID-based LADs (cf.
Definition 4.7). Let G = (V,H) be a LAD. Its ID-based extension GIdx(G) = (V,H) defined
from the base LAD G is given by

V =
{ (

v, (idw)w4v

)
| v ∈ V ; ∀w 4 v, if w ∈ V 0 then idw = ε else idw ∈ I

}

H =
{ {(

v1, (idw)w4v1

)
, . . . ,

(
vj , (idw)w4vj

)} Θ⊗Idx(idw)w4v∗−−−−−−−−−→
(
v∗, (idw)w4v∗

)

∣∣∣
(
{v1, . . . , vj} Θ−→ v∗

)
∈ H; ∀w 4 v∗, if w ∈ V 0 then idw = ε else idw ∈ I

}
.

where Θ⊗Idx (idw)w4v∗ =
{{(

vi1 , (idw)w4vi1

)
, . . . ,

(
vik , (idw)w4vik

)}
| {vi1 , . . . , vik} ∈ Θ

}
.

We are interested in constructing DAGE for the LAD GIdx(G) from HIBE, i.e., DAGE
of a tree graph. Fixing GIdx(G), the description of such a forest (or tree) graph that yields

78 4.4 Generic Constructions

GIdx(G)-DAGE is as follows. We denote it by T (GIdx(G)) = (V ′,H′).

V ′ =
{ (

v0, (v1, idv1), . . . , (vt, idvt)
)
| v0 ≺c v1 ≺c · · · ≺c vt; v0 ∈ V 0; idv1 , . . . idvt ∈ I

}

H′ =
{ {(

v0, (v1, idv1), . . . , (vt, idvt)
)}

→
(
v0, (v1, idv1), . . . , (vt+1, idvt+1)

)

∣∣∣ v0 ≺c v1 ≺c · · · ≺c vt+1; v0 ∈ V 0; idv1 , . . . idvt+1 ∈ I
}

.

Theorem 4.13. T (GIdx(G)) °syn GIdx(G) via the maps σfr ≡ δ which is defined recursively as
follows.

σfr : V → AS(V ′)
(
v
) 7→

{
{v}

}
for v ∈ V 0,

(
v, (idw)w4v

) 7→
{{

σfr

((
vi1 , (idw)w4vi1

)) ◦ (v, idv), . . . , σfr

((
vik , (idw)w4vik

)) ◦ (v, idv)
}

∣∣∣ {vi1 , . . . , vik} ∈ Θv

}
for v 6∈ V 0.

Here, recall that ◦ denotes the concatenation of strings.

Proof. We prove that ΣT (GIdx(G)) ` ΣGIdx(G)
as follows. It is sufficient to prove that for all

v ∈ V , for all (idw)w4v, for all {vi1 , . . . , vik} ∈ Θv, it must hold that

ΣT (GIdx(G)) `
[{(

vi1 , (idw)w4vi1

)
, . . . ,

(
vik , (idw)w4vik

)}]∣∣∣∣
σfr

⇒ σfr

((
v, (idw)w4v

))
.

But this is straightforward from our construction of σfr.

From this theorem and Theorem 4.9, we can conclude that if the underlying T (GIdx(G))-
DAGE scheme E (which is an HIBE) is IND-(x, n| G, ∆)-Z-secure, then the construction
GIdx(G)-GenDAGE(E , T (GIdx(G)), σfr, σfr) (cf. Construction 4-2) yields an IND-(x, n| G, ∆)-Z-
secure construction for GIdx(G)-DAGE.

The main point of this section is that such a construction indeed provides full security,
i.e., we have the following theorem.

Theorem 4.14 (The Second Primitive Implication Theorem). Suppose that the under-
lying T (GIdx(G))-DAGE scheme E is IND-(x, f| G, ∆)-Z-secure. Then the construction de-
scribed above, or more formally GIdx(G)-GenDAGE(E , T (GIdx(G)), σfr, σfr) (cf. Construction 4-
2), yields an IND-(x, f| G, ∆)-Z-secure construction for GIdx(G)-DAGE.

4.4.2 Weak DAGE from PKE and Cover-Admissable Families

In this section, we briefly describe how to construct DAGE from PKE. We give an observa-
tion that the existence of combinatorial structures which depends on the structure and the
notions of the target DAGE is sufficient. We call such a structure cover-admissable family.

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 79

Definition 4.15 (Cover-Admissible Family). For a LAD G and its derivability structure
pair (Σ, ∆), we say that a set system (N,S), where S = {S1, ..., S`} ∈ 2N , is a (G, Σ, ∆)-
cover-admissible family there are maps

σ̃ : VG → {1, ..., `}
δ̃ : VG → {1, ..., `}

such that

1. For all V ∈ 2VG , V∗ ∈ VG such that Σ ` [V] ⇒ 〈〈V∗〉〉 we have

Sσ̃(V∗) ⊆
⋃

V∈V

Sσ̃(V).

2. For all V ∈ 2VG , V∗ ∈ VG such that ∆ ` ¬([V] ⇒ 〈〈V∗〉〉) we have

Sδ̃(V∗) 6⊆
⋃

V∈V

Sσ̃(V).

3. For all V ∈ VG , we have Sδ̃(V) ⊆ Sγ̃(V).

Theorem 4.16. Suppose that (N,S) is a (G,Σ, ∆)-cover-admissible family. Let ĜPKE =
(N, ∅) be a LAD. Then we have (ĜPKE,ΣĜPKE

, (ΣĜPKE
)c) °syn (G, Σ, ∆) via the maps

σ : VG → ASN

V 7→ {Sσ̃(V)}
δ : VG → ASN

V 7→ {Sδ̃(V)}

The proof is straightforward. From this and Theorem 4.9, we can conclude that the
construction of IND-(a, f| G, ∆)-Z-secure G-DAGE is immediate from IND-CCA-secure PKE,
if one can construct a (Σ, ∆)-cover-admissible family where |S1|, ..., |S`| are O(poly(λ)).
As a special case, the generic construction of threshold collusion-resistant Key-insulated
PKE of [DK02] (which is further generalized to 2-level HIBE with threshold collusion-
resistant in [HHSI05]) is the one where the underlying cover-admissible family is rendered
to a standard cover-free family.

4.5 Efficient OR Graph DAGE Construction

In this section, we construct an efficient DAGE construction for monotone OR-graph from
bilinear pairing. Although one can construct it from HIBE via the generic conversion,
the resulting scheme does not enjoy practical efficiency. In particular, since the generic
conversion utilizes the generic multiple encryption, the expansion of ciphertext is linear
to the size of support of access structure for target recipients. In this section, we give a
construction with constant-size ciphertext based on bilinear pairing. The security proof is
done in the standard model. For generality, as usual we consider ID-based graphs.

Let G = (V,H) be a LAD that all access structures at hyper-edges are of OR-type, i.e.,
a monotone OR graph. (Note that thus one can also view G as a DAG). For simplicity, we

80 4.5 Efficient OR Graph DAGE Construction

consider the case that there is one source node. Its ID-based extension GIdx(G) = (V,H)
defined from the base DAG G is given by

V =
{ (

v, (idw)w4v

)
| v ∈ V ; ∀w 4 v, if w ∈ V 0 then idw = ε else idw ∈ I

}

H =
{ {(

v1, (idw)w4v1

)
, . . . ,

(
vj , (idw)w4vj

)} ∨−→
(
v∗, (idw)w4v∗

)

∣∣∣
(
{v1, . . . , vj} ∨−→ v∗

)
∈ H; ∀w 4 v∗, if w ∈ V 0 then idw = ε else idw ∈ I

}
.

Construction 4-3. OR Graph DAGE with Constant-Size Ciphertext

Setup(): Let G be a bilinear group of prime order p. The algorithm first picks a random
generator g ∈ G and a random α ∈ Zp. Let g1 = gα. Next, pick randomly g2, y ∈ G
and for each v ∈ V pick randomly hv ∈ G. Let J : V ×I → Zp be a collision-resistant
hash function. The public key and the master key are given by

pk =
(

g, g1, g2, y,
(
hv

)
v∈VG

, J
)
, msk = gα

2 .

Extract(): A private key of vertex V =
(
v, {(w, idw)}w4v

)
will be of the following form

skV =
(

d, z,
{
(w, dw)

}h
w 64v
w∈VG

i), where

d = gα
2 ·

y

∏

w4v

h
J(w,idw)
w

s

, z = gs, dw = hs
w.

To generate skV∗ for V∗ =
(
v∗, {(w, idw)}w4v∗

)
from skV, first pick a random elements

δ ∈ Zp. It then lets

d∗ = d ·

∏

w4v∗
w 64v

d
J(w,idw)
w

 ·

y

∏

w4v∗
h

J(w,idw)
w

δ

, z∗ = z · gδ, d∗w = dw · hδ
w.

It outputs skV∗ =
(

d∗, z∗,
{
(w, dw)

}h
w64v∗
w∈VG

i).

Encrypt(): To encrypt a message M ∈ GT , pick a random r ∈ Zp and output

C =

e(g1, g2)r ·M, gr,

y

∏

w4v∗
h

J(w,idw)
w

r
 .

Decrypt(): Consider a vertex V. To decrypt a given ciphertext C = (C1, C2, C3) using the

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 81

private key skV =
(

d, z,
{
(w, dw)

}h
w 64v
w∈VG

i), output

C1 · e(C3, z)
e(C2, d)

= M

Theorem 4.17. Suppose that the Decision |VG|-BDHE assumption holds in G. Then the
above scheme is IND-(s, f| GIdx(G), (ΣGIdx(G)

)c)-CPA-secure for any OR-graph G.

Proof. Suppose there exists an adversary, A, that has advantage ε in attacking the above
scheme. We build an algorithm B that solves the Decision n-BDHE problem in G, where
we denote n = |VG|. B is given as input a random n-BDHE challenge (g, h, ~yg,α,n, Z), where
~yg,α,n = (y1, . . . , yn, yn+2, . . . , y2n) and Z is either e(yn+1, h) or a random element in G1,
where we denote yj = g(αj). Algorithm B proceeds as follows.

Initialization. The selective node game begins with A first outputting a target node
V∗ =

(
v∗, {(w, id?

w)}w4v∗
)

that it intends to attack.

Setup. Algorithm B first defines a random bijective map f : VG → {1, . . . , n}. To generate
pk, algorithm B picks a random γ ∈ Zp and sets g1 = y1 = gα and g2 = y−1

n · gγ = gγ−(αn).
Next, B randomly chooses β1, . . . , βn, σ ∈ Zp then defines

hf(v) = yn+1−f(v) · gβf(v) ∈ G

for all v ∈ VG and sets
y = gσ ·

∏

w4v∗
y
−J(w,id?

w)
n+1−f(w).

It gives A the pk =
(

g, g1, g2, y,
(
hv

)
v∈V , J

)
. Since g, α, γ, σ and βj ’s are chosen randomly

and independently, pk has an identical distribution to that in the actual construction.

Phase 1. A issues up to qsec private key queries. Consider a query for the private key
corresponding to node V̂ =

(
v̂, {(w, îdw)}w4v̂

)
, of which we can categorize to two cases.

1. There exists v 4 v̂ such that v 4 v? and îdv 6= id?
v.

2. v? ≺ v̂ and for all w 4 v?, îdw = id?
w.

Case 1. For the first case, we assume WLOG that v is the smallest one, i.e., there
exists no v′ ≺ v with the same property. Note that such smallest v is not necessar-
ily unique; we just pick one. Therefore, îdw = id?

w for all w ≺ v. B computes a pri-
vate key for V =

(
v, {(w, îdw)}w4v

)
from which it then constructs a private key for the

requested node V̂ =
(
v̂, {(w, îdw)}w4v̂

)
. B picks random elements s ∈ Zp. We pose

s̃ = s + αf(v)/(J(v, îdv) − J(v, id?
v)). Note that s̃ is unknown to B. Next, B generates

the private key skV =
(

d, z,
{
(w, dw)

}h
w64v
w∈VG

i) where

d = gα
2 ·

y

∏

w4v

h
J(w,îdw)
w

s̃

, z = gs̃, dw = hs̃
w. (4.8)

82 4.5 Efficient OR Graph DAGE Construction

which is a valid random private key for node V by definition. We show that B can compute
all elements of this private key given the values that it knows. First assume that v ≺ v?.
To generate d we observe that

d = yγ
1 · y−1

n+1 ·
(

gσ+
P

w4v βf(w) ·
∏
w≺v

y
J(w,îdw)−J(w,id?

w)
n+1−f(w)

︸ ︷︷ ︸
=1

·yJ(v,îdv)−J(v,id?
v)

n+1−f(v) ·
∏

w4v?

w64v

y
−J(w,id?

w)
n+1−f(w)

)s̃

= y−1
n+1 · y(J(v,îdv)−J(v,id?

v))s̃
n+1−f(v)︸ ︷︷ ︸

T1

· g(σ+
P

w4v βf(w))s̃

︸ ︷︷ ︸
T2

·
∏

w4v?

w64v

y
−J(w,id?

w)s̃
n+1−f(w)

︸ ︷︷ ︸
T3

.

The term T1 can be computed by B since

T1 = y−1
n+1 · y

(J(v,îdv)−J(v,id?
v))(s+ αf(v)

(J(v,îdv)−J(v,id?
v))

)

n+1−f(v)

= y−1
n+1 · y(J(v,îdv)−J(v,id?

v))s
n+1−f(v) · yαf(v)

n+1−f(v) = y
(J(v,îdv)−J(v,id?

v))s
n+1−f(v) .

where the unknown term yn+1 is canceled out. The term T2 can be computed by using
yf(v), which is not yn+1 by definition of f(·). To see that each term in the product T3 is
computable, we observe that

ys̃
n+1−f(w) = ys

n+1−f(w) · y1/(J(v,îdv)−J(v,id?
v))

n+1−f(w)+f(v) .

It is clear that yn+1−f(w) can be computed (since f(w) 6= 0). For w 64 v, due to the bijection
of f we have that n + 1 − f(w) + f(v) 6= n + 1 and that 1 ≤ n + 1 − f(w) + f(v) ≤ n or
n + 2 ≤ n + 1− f(w) + f(v) ≤ 2n, hence yn+1−f(w)+f(v) can be computed.

It is left to consider the case v = v?. In this case, d is exactly the same as above except
that the last product term, T3, does not appear. The analysis of computability by B thus
follows from the same argument.

The component a1 can be generated since a1 = gs̃ = gs · y1/(Ik−I?k)
k . For j = k + 1, . . . , z,

bj can be computed as bj = hs̃
j = hs

j(yn+1−j+kyk)1/(Ik−I?k).

Case 2. In this case, let v′ be the node such that v? ≺c v′ and v′ 4 v̂. B responds to
the query by first computing a private key for node V′ =

(
v′, {(w, îdw)}w4v′

)
from which it

then construct a private key for the request node V̂ =
(
v̂, {(w, îdw)}w4v̂

)
. B picks random

elements s ∈ Zp. We pose s̃ = s + αf(v′)/(J(v′, idv′)). Note that s̃ is unknown to B. Next,
B generates the private key in exactly the same form as (4.8). From a similar observation
as above, one can show that B is able to compute this key.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ G1 on
which it wishes to be challenged. The algorithm B generates the challenge by first randomly
chooses a bit b ∈ {0, 1} and then computing

C? =
(

Z−1 · e(y1, h)γ ·Mb, h, hσ+
P

w4v? βf(w)J(w,idw)
)
.

We claim that when Z = e(yn+1, h) (that is, the input to B is a n-BDHE tuple) then
C? is a valid challenge to A as in a real attack game. To see this, write h = gt for some

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 83

(unknown) t ∈ Zp. Then, we have that

Z−1 · e(y1, h)γ =
(
e(y−1

n+1, g) · e(yγ
1 , g)

)t = e(y1, y
−1
n gγ)t = e(g1, g2)t

hσ+
P

w4v? βf(w)J(w,idw) =

(
gσ ·

∏

w4v∗
y
−J(w,id?

w)
n+1−f(w)

)
·

∏

w4v?

(yn+1−f(w) · gβf(w))J(w,id?
w)

t

=

y ·

∏

w4v?

h
J(w,id?

w)
w

t

.

Thus, by definition, C? is a valid encryption of the key Mb.
On the other hand, when Z is random in G1 (that is, the input to B is a random tuple)

then C? is independent of b in the adversary’s view.

Phase 2. A continues to ask queries not issued in Phase 1. B responds as before.

Guess. Finally, A outputs b′ ∈ {0, 1} for guessing b. If b = b′ then B outputs 1 (meaning
Z = e(yn+1, h)). Otherwise, it outputs 0 (meaning Z is random in G1).

We see that if (g, h, ~yg,α,n, Z) is sampled fromRBDHE then Pr[B(g, h, ~yg,α,n, Z) = 0] = 1
2 .

On the other hand, if (g, h, ~yg,α,n, Z) is sampled from PBDHE then |Pr[B(g, h, ~yg,α,n, Z) =
0] − 1

2 | ≥ ε. It follows that B has advantage at least ε in solving n-BDHE problem in G.
This concludes the proof of Theorem 4.17.

4.6 Efficient OR Bounded-Complete Graph DAGE Construc-
tion

In this section, we consider what we call a complete DAG. It is an analog of complete
graph for directed graph. The important of this kind of DAG is that it enables flexibility
of hierarchy since complete graph connects all nodes. When coming to the case of DAG,
which cyclic paths are not allowed, we have to refine what we mean by complete DAG.
Intuitively, we assign each node with rank, which starts at 0 for the source nodes. Only
nodes of lower ranks can be edged directed into those of upper ranks. Each node will be
specified completely by the structure of all lower-rank nodes edged into it with the ID for
each node. More formally we define the complete DAG as follows. First define recursively

V0 =
{
‘R’

}
,

Vi =
{
(V1, . . . , Vj , id)

∣∣ V1, . . . ,Vj ∈ V0 ∪ · · · ∪ Vi−1; j ≥ 1; id ∈ I}
.

The graph GComp = (V,H) is defined by

V = V0 ∪ V1 ∪ V2 ∪ · · ·
H =

{ {V1, . . . ,Vj} → (V1, . . . , Vj , id)
∣∣ (V1, . . . ,Vj , id) ∈ V}

.

If there is a directed path from W to V, we say that W is a predecessor of V, denoted W 4 V.
Due to exponential number of nodes in each rank of this DAG, it seems that to construct

a DAGE scheme for this DAG with monotone structure such as OR-graph is impossible at
first glance. Construction 4-3 cannot implement this since the public key size will end
up with exponential number. In this section, we present a OR-graph construction for a

84 4.6 Efficient OR Bounded-Complete Graph DAGE Construction

reasonable relaxed version of the complete DAG where we have a-priori bounded number
of predecessors of each node. We call such a graph the bounded-complete DAG. Let t be
such a bound. The graph GComp(t) = (V ′,H′) is defined by

V ′ = {
V ∈ V ∣∣ |{W ∈ V | W 4 V}| ≤ t

}

H′ = { {V1, . . . ,Vj} → (V1, . . . , Vj , id)
∣∣ (V1, . . . ,Vj , id) ∈ V ′}.

In what follows, we let ‖V‖ = |{W ∈ V | W 4 V}|.
Let the OR-graph LAD for the DAG GComp(t) be denoted by GComp-OR(t). We construct

a GComp-OR(t)-DAGE as follows.

Construction 4-4. OR Bounded-Complete Graph DAGE

Setup(G): Let G be a bilinear group of prime order p. The algorithm first picks a random
generator g ∈ G and a random α ∈ Zp. Let g1 = gα. Next, pick random elements
g2, h0, . . . , ht ∈ G. Let H : V → Z∗p be a collision-resistant hash function. The public
key and the master key are given by

pk = (g, g1, g2, h0, . . . , ht,H), msk = gα
2 .

Define F : Zp → G to be the function F (x) =
∏t

j=0 h
(xj)
j . (Recall that t is the

maximum number of predecessors allowed for one node).

Extract(): A private key of vertex V will be of the form skV = (d, (W, dW)W4V), where

d = gα
2 ·

∏

W4V

F (H(W))sW and dW = gsW .

To generate skV∗ from skV = (d, (W, dW)W4V), first pick random elements sW ∈ Zp

for W such that W 4 V∗, W 64 V. It then lets

d∗ = d ·
∏

W4V∗
W 64V

F (H(W))sW and d∗W =

{
dW if W 4 V,

gsW if W 4 V∗, W 64 V.

It outputs skV∗ = (d∗, (W, d∗W)W4V∗).

Encrypt(): To encrypt a message M ∈ GT , pick a random r ∈ Zp and output

C =
(
e(g1, g2)r ·M, gr,

(
F (H(W))r

)
W4V

)
.

Decrypt(): Consider a vertex V. To decrypt a given ciphertext C = (A,B, (CW)W4V) using
the private key skV = (d, (W, dW)W4V), output

A ·
∏

W4V e(CW, dW)
e(B, d)

= M

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 85

Theorem 4.18. Suppose that the Decision BDH assumption holds in G. Then the above
scheme is IND-(s, f| GComp-OR(t), (ΣGComp-OR(t)

)c)-CPA-secure.

Proof. Suppose there exists an adversary, A, that has advantage ε in attacking the DAGE
scheme. We build an algorithm B that solves the Decision BDH problem in G. Algorithm
B is given as input a random BDH challenge (g, ga, gb, gc, Z), where Z is either e(g, g)abc or
a random element in GT . Set g1 = ga, g2 = gb, g3 = gc. Algorithm B proceeds as follows.

Initialization. The game begins with A first outputting a node V? ∈ V ′.
Setup. To generate the public key, algorithm B first defines a (t)-degree polynomial in
Zp[x] as f(x) = atx

t + at−1x
t−1 + · · · + a1x + a0 for random elements ai ∈ Zp. Next it

defines
q(x) =

∏

W4V?

(
x−H(W)

)
= btx

t + bt−1x
t−1 + · · ·+ b1x + b0,

where we note that bi’s term can be computed completely from V? and note that for i ≥
‖V?‖, bi = 0. In this way and due to the collision-resistance of H, we can ensure that
q(x) = 0 if and only if x = H(W) for some W 4 V?. It then lets hj = g

bj

2 · gaj for
j = 0, . . . , t. We thus have

F (x) =
t∏

j=0

h
(xj)
j = g

q(x)
2 · gf(x).

It then outputs pk = (g, g1, g2, h0, . . . , ht,H). Since g, a, b, a0, . . . , at are chosen randomly
and independently, we have that pk has an identical distribution to that that in the actual
construction.

Phase 1. A issues up to qP private key queries. Consider a query for the private key
corresponding to node V. From the restriction, it must be that V 64 V?. Hence there must
be V′, V′′ such that V′ ≺c V′′ 4 V and V′ 4 V? but V′′ 64 V?. Note that this is not necessarily
unique. B responds to the query by first computing a private key for node V′′ from which
it then constructs a private key for request node V. Fix Y = H(V′′). Algorithm B picks
random element sw ∈ Zp for each w 4 V′′ and sets

d = g
−f(Y)/q(Y)
1 ·

∏

W4V′′
F (H(W))sW ,

(
dW

)
W≺V′′ =

(
gsW

)
W≺V′′ , dV′′ = gsw · g−1/q(Y)

1 .

Since V′′ 64 V? thus q(V′′) 6= 0, hence the above terms can be computed. We claim that this
is a valid random private key for V′′. We pose s̃V′′ = sV′′ − a/q(Y). Then observe that

g
−f(Y)/q(Y)
1 ·F (Y)sV′′ = g

−f(Y)/q(Y)
1 ·(gq(Y)

2 gf(Y))sV′′ = ga
2 ·(gq(Y)

2 gf(Y))sV′′−a/q(Y) = ga
2 ·F (Y)s̃V′′ .

It follows that the private key skV′′ = (d, (W, dW)W4V′′) defined above satisfies

d = ga
2 ·

(∏

W≺V′′
F (H(W))sW

)
· F (H(V′′))s̃V′′ ,

(
dW

)
W≺V′′ =

(
gsW

)
W≺V′′ , dV′′ = gs̃w ,

where (sW)W≺V′′ , s̃V′′ are uniform in Zp. This matches the definition of a private key for
V′′. Algorithm B then derives a private key for the requested node V properly and gives A
the result.

86 4.7 Efficient AND Graph DAGE Construction

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ GT .
To generate the challenge, B picks a random bit b ∈ {0, 1} and responds with ciphertext:

C =
(

Z ·Mb, g3,
(

g
f(H(W))
3

)
W4V?

)
.

For all W 4 V?, since q(H(W)) = 0 we have that g
f(H(W))
3 = F (H(W))c. Therefore,

if Z = e(g, g)abc = e(g1, g2)c then C is a valid encryption of Mb for node V?. On the
other hand, when Z is uniform and independent in GT then C is independent of b for the
adversary’s view.

Phase 2. A continues to ask queries not issued in Phase 1. B responds as before.

Guess. Finally, A outputs b′ ∈ {0, 1} for guessing b. If b = b′ then B outputs 1 (meaning
Z = e(g, g)abc). Otherwise, it outputs 0 (meaning Z is random in GT).

We see that if (g, g1, g2, g3, Z) is sampled fromRBDH then Pr[B(g, g1, g2, g3, Z) = 0] = 1
2 .

On the other hand, if (g, g1, g2, g3, Z) is sampled from PBDH then |Pr[B(g, g1, g2, g3, Z) =
0]− 1

2 | ≥ ε. It follows that B has advantage at least ε in solving the DBDH problem in G.
This concludes the proof.

4.7 Efficient AND Graph DAGE Construction

In this section, we construct an efficient DAGE construction for monotone AND-graph from
bilinear pairing. Similar to Construction 4-3 for the case of OR-graph, our AND-graph
scheme also enjoys constant-size ciphertext.

Let G = (V,H) be a LAD that all access structures at hyper-edges are of AND-type,
i.e., a monotone AND graph. (Note that thus one can also view G as a DAG). Its ID-based
extension GIdx(G) = (V,H) defined from the base DAG G is given by

V =
{ (

v, (idw)w4v

)
| v ∈ V ; ∀w 4 v, if w ∈ V 0 then idw = ε else idw ∈ I

}

H =
{ {(

v1, (idw)w4v1

)
, . . . ,

(
vj , (idw)w4vj

)} ∧−→
(
v∗, (idw)w4v∗

)

∣∣∣
(
{v1, . . . , vj} ∧−→ v∗

)
∈ H; ∀w 4 v∗, if w ∈ V 0 then idw = ε else idw ∈ I

}
.

The construction will depend heavily on the structure of the base DAG G. Let P be the
set of all directed paths from some source node to some sink node in G. For each v ∈ V ,
let Pv be the set of all paths in P that pass v. Define a function t : P → Z+ so that the
following properties hold.

1. For all non-source nodes v ∈ V , for all two different paths S, S′ ∈ Pv, we have
t(S) 6= t(S′).

2. For all two source nodes v, v′ ∈ V , we have t(Pv) ∩ t(Pv′) = ∅.

Here we let t(Pv) be {t(S) | S ∈ Pv}. In the following construction, the size of range |t(P)|
will determine the public key size; therefore, t is constructed in such a way that |t(P)| is
minimized. Wlog, for simplicity, we can choose t(P) = {1, 2, . . . , |t(P)|}. An example of
assignment for t(·) is shown in Figure 4-1.

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 87

1 2 3 4 5

Figure 4-1: A path function t(·) for an accumulated DAG G

Accumulated DAG. For simplicity, we first consider a special case of DAG. An accu-
mulated DAG G is defined as a DAG such that there is no tuple of nodes (v1, v2, v3, v4) such
that v1 ≺ v2 ≺ v4 and v1 ≺ v3 ≺ v4. Consequently, one can always define t(·) so that for all
v ∈ VG, t(Pv) =

⋃
w≺cv

t(Pw). This property enables a kind of aggregation for secret keys.

Construction 4-5. Accumulated AND Graph DAGE with Constant-Size Ciphertext

GlobSetup(): Let G be a bilinear group of prime order p. The algorithm picks a random
generator g ∈ G. Pick randomly ĝ, y ∈ G and for each v ∈ V pick randomly hv ∈ G.
Let H : V × I → Zp be a collision-resistant hash function. The global public key is
given by

gpk =
(

g, ĝ, y,
(
hv

)
v∈VG

, H
)

Setup(): The setup algorithm at source node v is done as follows. It first picks random
αi ∈ Zp for each i ∈ t(Pv). Let gi = gαi and ĝi = ĝαi . The public key and the master
key are given by

pkv =
(

gpk,
(
gi

)
i∈t(Pv)

)
, mskv =

(
ĝi

)
i∈t(Pv)

.

Extract(): A private key of vertex V =
(
v, {(w, idw)}w4v

)
will be of following the form

skV =
(

d, z,
{
(w, dw)

}h
w 64v
w∈VG

i), where

d =

 ∏

i∈t(Pv)

ĝi

 ·

y

∏

w4v

h
H(w,idw)
w

s

, z = gs, dw = hs
w.

To generate sk(V½V∗) for V∗ =
(
v∗, {(w, idw)}w4v∗

)
from skV where V ≺c V∗, first pick

88 4.7 Efficient AND Graph DAGE Construction

a random elements δ ∈ Zp. It then lets

d(V½V∗) = d ·

∏

w4v∗
w64v

d
H(w,idw)
w

 ·

y

∏

w4v∗
h

H(w,idw)
w

δ

,

z(V½V∗) = z · gδ,

d(V½V∗),w = dw · hδ
w.

It outputs sk(V½V∗) =
(

d(V½V∗), z(V½V∗),
{
(w, d(V½V∗),w)

}h
w64v∗
w∈VG

i).

Combine(): From
(
sk(V½V∗)

)
V: V≺cV∗

, it computes

d∗ =
∏

V: V≺cV∗
d(V½V∗), z∗ =

∏

V: V≺cV∗
z(V½V∗), d∗w =

∏

V: V≺cV∗
d(V½V∗),w,

for w 64 v∗ (for the last equation). It outputs skV∗ =
(

d∗, z∗,
{
(w, d∗w)

}h
w64v∗
w∈VG

i).

Encrypt(): To encrypt a message M ∈ GT , pick a random r ∈ Zp and output

C =

e

(∏

i∈t(Pv∗)

gi, ĝ
)r
·M, gr,

y

∏

w4v∗
h

H(w,idw)
w

r
 .

Decrypt(): Consider a vertex V. To decrypt a given ciphertext C = (C1, C2, C3) using the

private key skV =
(

d, z,
{
(w, dw)

}h
w 64v
w∈VG

i), output

C1 · e(C3, z)
e(C2, d)

= M

General DAG. Now we briefly describe how to adapt the above construction to the
case of general DAG. This time, there might be tuple of nodes (v1, v2, v3, v4) such that
v1 ≺ v2 ≺ v4 and v1 ≺ v3 ≺ v4. An illustration is given in Figure 4-2.

The only differences from the construction for accumulated DAG are the secret keys
part: the element d will not “aggregate” key components taken from all indexes of t(Pv)
into one element, but is separated to many elements depended on its predecessors.

Let T (v) = {t(Pv) ∩ t(Pw) | v ≺ w}. Let T0(v) be the set of minimal elements of T (v).
The secret key of node V =

(
v, {(w, idw)}w4v

)
will be of following the form:

skV =
(

d(S), z(S),
{
(w, d(S),w)

}h
w64v
w∈VG

i)
S∈T0(v)

,

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 89

1 2 3 4

Figure 4-2: A path function t(·) for a general DAG G

where

d(S) =

(∏

i∈S

ĝi

)
·

y

∏

w4v

h
H(w,idw)
w

s(S)

, z(S) = gs(S) , d(S),w = h
s(S)
w .

The algorithms GlobSetup,Setup,Encrypt are exactly the same, while Extract,Combine,Decrypt
can be generalized from the accumulated DAG case straightforwardly. We omit the detail
here.

Theorem 4.19. Suppose that the Decision |V|-BDHE assumption holds in G. Then the
above scheme is IND-(s, f| GIdx(G), (ΣGIdx(G)

)c)-CPA-secure for any AND-graph G.

The proof can be generalized from that of Theorem 4.17.

4.8 Prototype Functionalities

In this section, we give some prototype applications of DAGE.

General Methodology. To define a primitive, we define a class of LADs for the primitive,
which we will call definitional LADs since they give the definition of syntax and security
notion. This step must be intuitive enough so that it captures the purpose of the primitive
in question in a natural way. In other words, such a primitive should be described solely by
the graph, with as few as possible “meta-syntax”, which is a description about the functions
of key derivations at various hyper-edges in the LAD when the scheme is used in the real
application.

To construct a scheme for that primitive, we find another LAD that graph syntactically
implies the definitional LAD and possesses some good properties (e.g., , achieving better
efficiency or using more simple primitives) than directly working on the definitional LAD.
Such a LAD will be called a constructional LAD. Then the DAGE scheme for this con-
structional LAD is constructed. By Theorem 4.9, we convert this to DAGE scheme of the
definitional LAD, and we are done.

Notation in Graphs. In this section, we will draw many graphs to illustrate schemes.
We let the dot line represent that its adjacent nodes are exactly the identical node. (We
write some dot lines for some ease of visuality). The ellipse over more than one nodes
represent multiple encryption on those nodes (with some access structures which should be
clear from the context).

90 4.8 Prototype Functionalities

4.8.1 Forward-secure Functionality

In a forward-secure encryption scheme, a user maintains a fixed public key, but it evolves its
private key forward in such a way that, if its private key for time period t is compromised, the
security for previously encrypted message (i.e., for time period t−1 or earlier) is still guaran-
teed. Note that however, all future encrypted messages will be vulnerable since the attacker
can update the compromised key by itself. Canetti, Halevi, Katz [CHK03] constructed the
first non-trivial forward-secure public-key encryption based on HIBE scheme of Gentry and
Silverberg [GS02]. Yao et al. [YFDL04] consequently formalized and constructed forward-
secure HIBE. In this work, we give the definitional LAD for forward-secure version of any
DAGE. This thus gives the formalization and construction of forward-secure DAGE via our
unified definition and constructions. Let G = (V,H) be a LAD, the definitional LAD of its
forward-secure version, FDef-FS(G), is shown in Graph 1. We denote by ◦ the concatenation
of strings separated by a comma. When X is a set, we let t ◦X = {t ◦ x | x ∈ X}.

Graph 1. Definition of Forward-secure DAGE: FDef-FS(G) = (V ′,H′)

V ′ =
{

(t,V)
∣∣ t ∈ Z≥0; V ∈ V

}

H′ =
{{

(t,V∗)
} ∪ (t + 1) ◦ V

{
{(t,V∗)}

}
∪ (t+1)◦ΘV∗−−−−−−−−−−−−−−−−→ (t + 1) ◦ V∗

∣∣∣
(
V

ΘV∗−−→ V∗
) ∈ H

}

The description is quite intuitive: it states that “A node V updates its own private key
from time t to t+1 or some group in the qualified access structure (as specified by ΘV in G)
just derives the key for V instantly”. This is exactly the property of forward-secure version
of LAD G. Note that one may specify a-priori fixed T to be the maximum time period.

Although one can directly implement FDef-FS(G)-DAGE by the unified constructions.
A problem concerning efficiency is that the length of the longest directed path to node
(t,V) is proportional to t, which could make private key size as large as O(t). An efficient
constructional LAD which graph syntactically implies FDef-FS(G) can be constructed by
generalizing the time-tree approach from [CHK03]. Our constructional LAD, FCon-FS(G), is
given as follows.

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 91

Graph 2. A Construction of Forward-secure DAGE: FCon-FS(G) = (V ′′,H′′)

V ′′ =
{

(w, V)
∣∣ w ∈ {0, 1}≤m; V ∈ V

}

H′′ =
{{

(w, V∗)
} ∪ (w||b) ◦ V

{
{(w,V∗)}

}
∪ (w||b)◦ΘV∗−−−−−−−−−−−−−−−−→ (w||b) ◦ V∗

∣∣∣
(
V

ΘV∗−−→ V∗
) ∈ H, b ∈ {0, 1}

}

To state the maps that enable to prove the graph syntactic consequence, we first give
some terminology. Let T be the maximum time period. We image a complete balance binary
tree of depth ` = log2(T + 1)− 1. Let each node be assigned with a string in {0, 1}≤`. We
assign the root with the empty string ε. The left and right child of w is assigned w||0 and
w||1 respectively. Following the notation in [CHK03], we let wt to be the t-th node in a
pre-order traversal of the binary tree.2 We let Hang(w) be the set of the right sibling of
nodes on the path from the root to w in the binary tree.

Theorem 4.20. FCon-FS(G) °syn FDef-FS(G) via the following maps (σ, δ).

σ : V ′ → AS(V ′′)

(t, V) 7→ {{(w,V) | w ∈ Hang(wt)}}
δ : V ′ → AS(V ′′)

(t, V) 7→ {{(wt, V)}}

4.8.2 Key-insulated, Intrusion-resilient Functionality

Key-insulated DAGE. A key-insulated encryption scheme is a further-strengthened
version of forward-secure encryption where updating key must be done via the collaboration
of two modules, one is called a helper server and the other one is the user itself, instead
of only the user in the forward-secure setting. Key-insulated public-key encryption was
introduced in [DK02]. We generalize to DAGE.

The definitional LAD of key-insulated version of LAD G = (V,H), which we will denote
by FDef-KI(G), is similar to FDef-FS(G) with only the helper node ‘H’ included. It is defined
as follows.

2The pre-order traversal is started from the root, w1 = ε. From a node w it goes to w||0 if w is not a leaf
otherwise it goes to v||1 such that v||0 is the largest string with 0 at the end that is a prefix of w.

92 4.8 Prototype Functionalities

Graph 3. Definition of Key-insulated DAGE: FDef-KI(G) = (V ′,H′)
H

V ′ = {‘H’} ∪
{

(t, V)
∣∣ t ∈ Z≥0; V ∈ V

}

H′ =
{{

‘H’, (t,V∗)
} ∪ (t + 1) ◦ V

{
{‘H’,(t,V∗)}

}
∪ (t+1)◦ΘV∗−−−−−−−−−−−−−−−−−−→ (t + 1) ◦ V∗

∣∣∣
(
V

ΘV∗−−→ V∗
) ∈ H

}

The definition above can be described intuitively as private keys can be derived hierar-
chically or ‘H’ and V must collaborate to update the key of V.

Many variants of key-insulated encryption can be considered. The first categorization
is due to random updatability, which is the ability that the helper and a node (t, V) can
produce the key for node (t′,V) for any t′.

• Scheme with random update function. In this case, we redefine the hyper-edge set to

H̃′ =
{{

‘H’, (t, V∗) | t 6= t∗
} ∪ (t∗) ◦ V

{
{‘H’,(t,V∗)} | t6=t∗

}
∪ (t∗)◦ΘV∗−−−−−−−−−−−−−−−−−−−−−→ (t∗) ◦ V∗

∣∣∣
(
V

ΘV∗−−→ V∗
) ∈ H; t∗ ∈ Z≥0

}
.

Then the definitional LAD for this case is FDef-RandKI(G) = (V ′, H̃′).

• Scheme with don’t care condition for random update. The definition is exactly the
same as the standard one, FDef-KI(G), but with a weaker notion IND-(a, n| FDef-KI(G),∆)-
CCA where ∆ = (ΣFDef-RandKI(G))c ⊂ (ΣFDef-KI(G))c. Note that this variant is implied by
the previous one but not the reverse.

• Scheme secure with forward-only update. This is exactly the standard one with the
full structure of the negative underivability.

Another categorization is due to the security against malicious helper.

• The strongly key-insulated notion. This is exactly the notion IND-(a, n| FDef-KI(G),Σc
FDef-KI(G))-

CCA.

• The weakly key-insulated notion. This is exactly the notion IND-(a, n| FDef-KI(G), ∆)-
CCA where ∆ = (ΣFDef-KI(G) ∪A)c ⊆ ΣFDef-KI(G)

c where A = {(〈〈‘H’〉〉 ⇒ 〈〈(t,V)〉〉) | t ∈
Z≥1; V ∈ V}, i.e., the security against the exposure of helper’s key is not guaranteed.

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 93

Up to now, we consider only the normal security level, i.e., the exposure of partial keys
is not taken into account. The notion for key-insulated encryption with security against
partial key exposure is IND-(a, f| FDef-KI(G), Σc

FDef-KI(G))-CCA.
We now give two example of combinations from the above variants. The first one is

the weakest one among them, hence a simple structure of HIBE is sufficient to construct as
shown below.

Graph 4. A Construction of Weakly Key-insulated DAGE with Random Update:
FCon-wRandKI(G) = (V ′′,H′′)

H

V ′′ = {‘H’} ∪
{

(t, V)
∣∣ t ∈ Z≥0; V ∈ V

}

H′′ =
{

t ◦ V
t◦ΘV∗−−−−→ (t, V∗)

∣∣ (
V

ΘV∗−−→ V∗
) ∈ H; t ∈ Z≥0

}
∪

{
‘H’ → (t, V)

∣∣ V ∈ V0; t ∈ Z≥1

}

The second example is a constructional LAD of strongly key-insulated DAGE with
forward-only update. It can be constructed from a forward-secure G-DAGE and an IBE as
shown below.

Graph 5. A Construction of Strongly Key-insulated DAGE with Forward-only Update:
FCon-wRandKI(G) = (V ′′,H′′)

H

V ′′ = VFDef-FS(G) ∪ {‘H’} ∪
{

(t,V)
∣∣ t ∈ Z≥1; V ∈ V

}

H′′ = HFDef-FS(G) ∪
{

‘H’ → (t, V)
∣∣ V ∈ V; t ∈ Z≥1

}

To change the forward-only update option to random update, one can simply change the
underlying forward-secure G-DAGE to the normal G-DAGE instead.

94 4.8 Prototype Functionalities

Parallel Key-insulated PKE. Parallel key-insulated encryption [HHI06] is an extension
of key-insulated PKE with two helpers who exactly alternately involve in the updating turn
by turn. We can indeed consider general parallel key-insulated DAGE, but for simplicity
we consider the case of PKE.

Graph 6. Definition of Parallel Key-insulated PKE: GDef-2KI = (V,H)

1
H

2
H

1

2

3

4

5

6

7

0

.

.

.

V ={‘H1’, ‘H2’} ∪ {t | t ∈ Z≥0}
H =

{
{‘H1’, t− 1} ∧−→ t

∣∣ t ∈ Z≥1; t mod 2 = 1
}
∪

{
{‘H2’, t− 1} ∧−→ t

∣∣ t ∈ Z≥2; t mod 2 = 0
}

A constructional LAD is shown below. It turns out that 2-level HIBE is sufficient to
construct parallel key-insulated PKE. This is the first known generic construction.

Graph 7. A construction of Parallel Key-insulated PKE: GCon-2KI = (V ′,H′)

1
H

2
H

1

2

3

4

5

6

7

0

0

1

2

3

4

5

6
.

.

.

V ′ ={‘H1’, ‘H2’} ∪ {t, t̄ | t ∈ Z≥0}
H′ =

{
{‘H1’} → t

∣∣ t ∈ Z≥1; t mod 2 = 1
}
∪

{
{‘H2’} → t

∣∣ t ∈ Z≥2; t mod 2 = 0
}
∪

{t → t̄ | t ∈ Z≥0}

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 95

Theorem 4.21. GCon-2KI °syn GDef-2KI via the map σ ≡ δ where

σ : V → AS(V ′)

‘Hi’ 7→ {{‘Hi’}
}

for i = 1, 2

t 7→
{{{0}} for t = 0, 1{{t− 1, t}} for t ≥ 2

ID-based Hierarchical Key-insulated PKE. ID-based Hierarchical Key-insulated PKE
scheme [HHSI05] extends the normal key-insulated PKE by (1) enabling another upper level
modules to update the private key of lower-level helper servers and (2) changing one-user
setting to ID-based setting (helper is also ID-specific). This can be viewed as the applica-
tion of ID-based functionality over hierarchical key-insulation functionality. For simplicity,
we consider only 2 levels of helper, but this can be generalized straightforwardly. The
definitional graph is as follows.

Graph 8. Definition of ID-based Hierarchical Key-insulated PKE

...

id

id

id

S

id

(id,0)

(id,0,T)

(id,1,1) (id,1,2) (id,1,T) (id,2,1)

(id,1)

V ={‘S’} ∪ {id | id ∈ I} ∪ {(id, t1) |id ∈ I; t1 ∈ Z≥0}∪
{(id, t1, t2) |id ∈ I; t1 ∈ Z≥0; t2 = 0, . . . , T}

H =
{({‘S’} → id

)
,

({‘S’} → (id, 0)
)
,

({‘S’} → (id, 0, T)
) ∣∣ id ∈ I

}
∪

{
{id, (id, t1 − 1)} ∧−→ (id, t1)

∣∣ id ∈ I; t1 ∈ Z≥1

}
∪

{
{(id, t1), (id, t1, t2 − 1)} ∧−→ (id, t1, t2)

∣∣ id ∈ I; t1 ∈ Z≥0; t2 = 1, . . . , T
}
∪

{
{(id, t1 − 1), (id, t1 − 1, T)} ∧−→ (id, t1, 0)

∣∣ id ∈ I; t1 ∈ Z≥1

}

A constructional LAD for strongly key-insulated scheme is given below. In contrast with
the decomposition to HIBE in [HHSI05] where their result shows that n + 1-level HIBE is
sufficient for scheme with n levels of helpers, ours construction needs only 2-level HIBE for
scheme with any levels of helpers.

96 4.8 Prototype Functionalities

Graph 9. A Construction of ID-based Hierarchical Key-insulated PKE

...

id

id

id

S

... ...

V ={‘S’} ∪ {(i, id) | i = 0, 1, 2; id ∈ I}∪
{(i, id, ti+1) |i = 0, 1; id ∈ I; t1 ∈ Z≥0; t2 = 0, . . . , T}

H =
{({‘S’} → (i, id)

) ∣∣ i = 0, 1, 2; id ∈ I
}
∪

{
{(i, id)} → (i, id, ti+1)

∣∣ i = 0, 1; id ∈ I; t1 ∈ Z≥0; t2 = 1, . . . , T
}

Intrusion-resilient PKE. Intrusion-resilient PKE [DFK+03, DFK+04] combines the
functionality of forward-security and key-insulation. It extends key-insulated PKE by en-
abling helper keys also to be updateable. The advantage of this scheme is that its security is
guaranteed as long as the adversary does not compromise both modules (helper and user)
in the same time period; it retains the security except only at the time where the user
keys are compromised. Key-insulated PKE does not provide this since exposure of both
modules destroys the security of future time period completely. When both modules are
compromised at the same period, it still retains the minimal security of forward security,
where the past time period is still protected.

The original paper [DFK+03] presented the formalization where within each time period
both modules can proactively refresh their keys. For simplicity, we present the definitional
LAD with only one-time refresh (at the cross).

Graph 10. Definition of Our Variant of Intrusion-resilient PKE

...

...

(H,0) (H,0)

(u,0) (u,0)

(H,1) (H,1)

(u,1) (u,1)

V ={(‘H’, t), (‘H’, t), (‘u’, t), (‘u’, t) | t ∈ Z≥0}
H =

{
{(‘H’, t− 1))} → (‘H’, t)

∣∣ t ∈ Z≥1

}
∪

{
{(‘H’, t− 1), (‘u’, t− 1)} ∧−→ (‘u’, t)

∣∣ t ∈ Z≥1

}
∪

{
{(‘H’, t− 1), (‘u’, t− 1)} ∧−→ (‘H’, t)

∣∣ t ∈ Z≥1

}
∪

{
{(‘H’, t− 1), (‘u’, t− 1)} ∧−→ (‘u’, t)

∣∣ t ∈ Z≥1

}

A meta-syntax is that to encrypt to time t use node (‘u’, t). We remark that our

Chapter 4: Unifying Public Key Encryption with “High Functionalities” 97

formulation is not exactly equivalent to that of [DFK+03, DFK+04]. However, it captures
the same goal described above (in particular, the security is guaranteed unless simultaneous
compromises occur).

4.8.3 Broadcast Functionality

Public-key broadcast encryption scheme is broadcast encryption (cf. 3) in which the encrypt
key is public. The definitional LAD is GBE = (V,H) where V = {1, . . . , n}, H = ∅, with
multiple-node collection P = {{{i1}, ..., {ik}} | {i1, ..., ik} ⊆ V}. The definitional LAD for
broadcast version of any DAGE G = (V,H) is described below. It can be viewed as an
extension to ID-based DAGE.

Graph 11. Definition of Broadcast DAGE: FDef-BE(G) = (V ′,H′)

1 2 n

...

C

V ′ ={‘C’} ∪ {(i, V) | i = 1, . . . , n; V ∈ V}
H′ ={{‘C’} → (i,V) | i = 1, . . . , n; V ∈ V0}∪

{
i ◦ V

i◦ΘV∗−−−−→ (i,V∗)
∣∣ V

ΘV∗−−→ V∗ ∈ H
}

P =
{{{(i, V)} | i ∈ S

} | S ⊆ {1, . . . , n}; V ∈ V
}

A class of constructional DAGs that we consider is corresponding to subset-cover broad-
cast encryption.

4.8.4 Certificate-based Functionality

In Certificate-based PKE [Gen03], a user Bob creates his own public/private key pair and
also obtains a private key corresponding to his public key and his name, i.e., (Bob, pkBob),
in an IBE scheme. A sender will doubly encrypt with Bob’s public key and Bob’s identity
in the IBE scheme. Only Bob, who possess these two keys, can decrypt. The private key
from IBE scheme can be viewed of a certificate, thus its name. This scheme preserves a
good property from IBE as the sender needs not verify the public key, while at the same
time it eliminates the problem of key escrow in the IBE scheme.

As in the case of ID-based functionality, we present certificate-based version of any
DAGE G = (V,H) as follows. Such a definition essentially employs an IBE scheme GIBE =
(VIBE,HIBE). When DAGE itself is certificate-based scheme, we get hierarchical certificate-
based scheme recursively. The hierarchical certificate-based PKE of [Gen03] is also consis-
tent with our formulation.

98 4.9 Concluding Remarks

Graph 12. Definition of Certificate-based DAGE: FDef-CBE(G) = (V ′,H′)

id id=(pk ,id)
Bob Bob

pk
Bob

V ′ =V ∪ VIBE

H′ =H ∪HIBE

We add a meta-syntax that to encrypt to V ∈ V in bob’s scheme, use multiple encryption
for structure

{{(pkBob, idBob), pkBob}
}
.

4.9 Concluding Remarks

We have presented an encryption primitive called directed acyclic graph encryption (DAGE).
It works as a unified framework for various “public-key encryption with high functionali-
ties” in the aspects of a unified definition and a unified security notion. We then presented
first and second primitive implication theorems. The first theorem (Theorem 4.9) is more
general since it gives the criterion for primitive implications for any pair of DAGEs but
the security level considered is only normal, i.e., the IND-(x, n| G,∆)-Z notion, while the
second one (Theorem 4.14) states that any DAGEs can be induced from its related HIBE
in the full security notion, i.e., the IND-(x, f| G, ∆)-Z notion. We then gave three efficient
constructions from bilinear maps; two of which achieves constant-size ciphertext, while the
other can deal with the most complex graph (bounded-complete type). Finally we gave
prototypes for functionalities; one consequence from this is that we can obtain DAGEs of
any combinations of functionalities automatically.

We give a remark that very recently proposed encryption primitives called attribute-
based encryption [GPSW06], which is an extension of fuzzy ID-based encryption [SW05],
does not fit into our framework in the present form. However, it is possible to extend the
framework to a more complex one that will include also this primitive. The merit of doing
so is that one can possibly obtain some combinations such as forward-secure attribute-based
encryption, while the demerit is that the resulting framework might be too complex. We
postpone this as a future work.

Chapter 5

Practical Forward-Secure and
Searchable Broadcast Encryption

5.1 Introduction

We first review some facts on broadcast encryption previously described in Chapter 3.
Broadcast encryption (BE) scheme [FN93] allows a broadcaster to encrypt a message for
some designated subset of all users in the system. Any user in S can decrypt the message
by using his own private key while the coalition of all users outside S should not be able to
do so even if they collude. The set S can be arbitrary.

Public-key broadcast encryption is the one in which the broadcaster key is a public key.
Such a scheme is typically harder to construct than a private-key one. We let n denote the
number of all users.

The only scheme that achieves asymptotically optimal sizes, O(1), for both broadcast ci-
phertexts and user private keys so far in the literature was recently proposed by Boneh, Gen-
try, and Waters [BGW05]. Their scheme, which is a public-key scheme, however, achieves
such a performance with the price of O(n)-size public key. (To tradeoff the public key size,
they also proposed a generalized scheme that achieves the public key of size O(

√
n), while

ciphertext size is increased to O(
√

n)). The previously best schemes [NNL01, HS02, GST04]
can only achieve a broadcast ciphertext of size O(r) with each user’s private key being of
size O(log n), where r = n− |S|, the number of revoked users. Although these schemes are
improved in [AI05a] by reducing the private key size to O(1), the ciphertext is still of size
O(r).1 These NNL derivatives are originally private-key schemes. Dodis and Fazio [DF02]
gives a framework to extend these schemes to public-key versions using Hierarchical Identity-
Based Encryption (HIBE) [HL02, GS02]. Instantiating this framework with a recent efficient
HIBE scheme by Boneh, Boyen, and Goh [BBG05] gives a public-key version of NNL-based
schemes without any loss of performance.

Forward-Secure Broadcast Encryption. Unfortunately, a normal broadcast encryp-
tion scheme offers no security protection for any user whatsoever once his private key is
compromised. As an extension to the normal variant in order to cope with the vulnerabil-
ity against key exposure, the notion of forward security [Gün89, And97] in the context of

1Note that, as mentioned in Chapter 3, one advantage of these NNL-based schemes is that, in contrast
to the BGW scheme, all the other efficiency parameters, beside ciphertext sizes and private key sizes, are
also of sub-linear (in n) size.

100 5.1 Introduction

public-key broadcast encryption was first studied by Yao et al. [YFDL04]. A forward-secure
public-key broadcast encryption (FS-BE) allows each user to update his private key peri-
odically while keeping the public key unchanged. Such a scheme guarantees that even if an
adversary learns the private key of some user at time period τ , message encrypted during
all time periods prior to τ remain secret.

In [YFDL04], Yao et al. proposed a FS-BE scheme achieving ciphertexts of size O(r log T log n)
while each user’s private key is of size O(log3 n log T), where T is the maximum allowed
time period. Indeed, they proposed a forward-secure HIBE scheme and then applied it to
the NNL scheme in essentially the same manner as done by [DF02], as mentioned above.
Later, Boneh et al. [BBG05] proposed (at least two) more efficient forward-secure HIBE
schemes, which when applying to the NNL scheme gives a FS-BE scheme with ciphertexts
of size O(r) and user private keys of size O(log3 n log T) and another FS-BE scheme with
ciphertexts of size O(r log T) and user private keys of size O((log2 n)(log n + log T)). These
schemes are the best FS-BE schemes so far in the literature.

5.1.1 Our Contributions.

Towards constructing a more efficient FS-BE scheme, we introduce a new primitive called
Hierarchical Identity-Coupling Broadcast Encryption (HICBE), which can be considered as
a generalization either of BE that further includes hierarchical-identity dimension together
with key derivation functionality or of HIBE that further includes a user dimension together
with broadcast functionality. Besides forward security, HICBE can be used to construct BE
with other extended properties such as keyword-searchability, which is another feature that
we study as a side result in this chapter (see below).

FS-BE with Short Ciphertexts and Private Keys. Using HICBE as a building block,
we propose at least three new FS-BE schemes. One of our best two schemes achieves cipher-
texts of size O(1) and user private keys of size O(log2 T). The other best scheme achieves
ciphertexts of size O(log T) and user private keys of size O(log T). These outperform the
previous schemes in terms of both overheads. In particular, they are independent of the
parameters in the user dimension, namely n and r; moreover, the first scheme achieves the
constant-size ciphertext. These performances of our schemes are comparable to those of the
currently best single-user forward-secure public-key encryption scheme (cf. [BBG05]). The
public keys for both schemes are of size O(n + log T). Analogously to [BGW05], we can
show that this amount can be traded off to O(

√
n + log T) with ciphertext size being in-

creased to O(
√

n) and O(
√

n+log T) respectively in both schemes. Security of our systems
is based on the Decision Bilinear Diffie-Hellman Exponent assumption (BDHE), which is
previously used in [BGW05, BBG05]. We prove the security in the standard model (i.e.,
without random oracle).

Searchable Broadcast Encryption. Public-key BE can be applied naturally to en-
crypted file systems, which enable file sharing among privileged users over a public server,
as already suggested in [BGW05]. A file can be created by anyone using the public key
and the privileged subset can be arbitrarily specified by the creator of the file. Due to
a possible large amount of databases, a user Alice might want to retrieve only those files
that contain a particular keyword of interest (among all the files in which Alice is specified
as a privileged user), but without giving the server the ability to decrypt the databases.
Public-key Broadcast Encryption with Keyword Search (BEKS) allows to do exactly this.

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 101

It enables Alice to give the server a capability (or a trapdoor) to test whether a particular
keyword, w, is contained in any (and only) file that includes Alice as a privileged user. This
is done in such a way that (1) the server is unable to learn anything else about that file,
besides the information about containment of w, and (2) all the other users outside the
privileged set cannot learn anything, in particular, cannot generate such a trapdoor, even if
they collude. BEKS is a new generalization of public key encryption with keyword search
(PEKS) [BDOP04] that we introduce here. We then relate that an anonymous ICBE (1-level
HICBE) is sufficient to construct BEKS, analogously to the relation between anonymous
IBE and PEKS [ABC+05].

A trivial BEKS achieving ciphertexts of size O(n) can be constructed from the con-
catenation of PEKS-encryption of the same keyword to each privileged user. Our scheme
achieves ciphertexts of size O(r log n), trapdoors of size O(log3 n), and private keys of size
O(log4 n). Before coming up with this result, we constructively hint that even using the
same technique as our FS-BE schemes (where a non-anonymous HICBE is sufficient), it
might not be easy to construct a BEKS scheme with both ciphertext and private key of
sizes independent of n.

5.1.2 Organization of the Chapter.

In Section 5.2, we introduce our HICBE primitive and briefly describe its security notions.
In Section 5.3, we show how to construct HICBE schemes based on the BE scheme of Boneh,
Gentry, and Waters [BGW05] and the two HIBE constructions of Boneh and Boyen [BB04a]
and Boneh, Boyen, and Goh [BBG05]. In Section 5.4.1, we briefly describe the notion of
FS-BE schemes, followed by a generic construction from HICBE and a direct construc-
tion. We compare our schemes to the other previous FS-BE schemes in Section 5.4.5. In
Section 5.5, we introduce the BEKS primitive and its relation to Anonymous ICBE, then
give an anonymous HICBE construction based on the recent HIBE scheme of Boyen and
Waters [BW06].

5.2 Hierarchical Identity-Coupling Broadcast Encryption

In this section, we define a new primitive called Hierarchical Identity-Coupling Broadcast
Encryption (HICBE). It will be used as a building block to construct FS-BE systems, BEKS
systems and some generalizations in generic ways.

5.2.1 Syntax of HICBE

HICBE. A HICBE system consists of n users, each with index i ∈ {1, . . . , n}. In usage, a
user index will be coupled with some additional arbitrary identity tuple ID = (I1, . . . , Iz), for
any Ij in some predefined identity space and any z = 1, . . . , L where L is a predetermined
maximum depth of tuples. The user i coupling with ID, which we will refer as a node
(i, ID), will possess its own private key di,ID. If ID = (I1, . . . , Iz), then for j = 1, . . . , z, let
ID|j = (I1, . . . , Ij), and let ID|0 be the empty string ε. A HICBE system enables a derivation
from di,ID|z−1

to di,ID. In particular, di,(I1) can be derived from di, the root private keys of
i. A HICBE system enables one to encrypt a message to a set of nodes {(i, ID)|i ∈ S} for
arbitrary S ⊆ {1, . . . , n}. In this case, we say that it is encrypted to multi-node (S, ID).
If i ∈ S, the user i coupling with ID (who possesses di,ID) can decrypt this ciphertext.
Formally, a HICBE system is made up of five randomized algorithms as in the following.

102 5.2 Hierarchical Identity-Coupling Broadcast Encryption

For simplicity, we define HICBE as a key encapsulation mechanism (KEM). When L = 1,
we simply call it a ICBE.

Setup(n,L): Takes as input the number of all users n and the maximum depth L of the
identity hierarchy. It outputs a public key pk and a master key msk.

PrivKeyGen(i, pk, msk): Takes as input a user index i, the public key pk, and the master key
msk. It outputs a root private key di of user i.

Derive(i, ID, di,ID|z−1
): Takes as input a user i, an identity ID of depth z, and the private

key di,ID|z−1
of user i coupling with the parent identity ID|z−1. It outputs di,ID. Here

di,ID|0 = di.

Encrypt(pk, S, ID): Takes as input the public key pk, a subset S ⊆ {1, . . . , n}, and an identity
tuple ID. It outputs a pair (hdr,K) where hdr is called the header and K ∈ K is a
message encryption key. We will refer to hdr as the broadcast ciphertext.

Decrypt(pk, S, i, di,ID, hdr): Takes as input the pk, a subset S, a user i, the private key di,ID

of user i coupling with ID, and the header hdr. If i ∈ S it outputs K ∈ K else outputs
a special symbol ‘?’.

The system is correct if for all ID = (I1, . . . , Iz) ∈ I≤L, where I is the ID space, all
S ⊆ {1, . . . , n} and all i ∈ S, if (pk, msk) R←− Setup(n,L), di

R←− PrivKeyGen(i, pk, msk),
for j = 1, . . . , z, di,ID|j

R←− Derive(i, ID|j , di,ID|j−1
), and (hdr, K) R←− Encrypt(pk, S, ID) then

Decrypt(pk, S, i, di,ID, hdr) = K.

5.2.2 Security Notions for HICBE

In this section, we describe the security notions of HICBE omitted from Section 5.2.

Confidentiality. We define semantic security of a HICBE system by the following game
between an adversary A and a challenger C. Both C and A are given n,L as input.

Setup. The challenger C runs Setup(n, L) to obtain a public key pk and the master key
msk. It then gives the public key pk to A.

Phase 1. A adaptively issues queries q1, . . . , qµ where query qk is one of the following:

- Private key query 〈i, ID〉. C responds by running algorithm PrivKeyGen and Derive to
derive the private key di,ID, corresponding to the node (i, ID) and sends di,ID to A.

- Decryption query 〈S, ID, i, hdr〉 where i ∈ S. C responds by running algorithm PrivKeyGen
and Derive to derive the private key di,ID, corresponding to the node (i, ID). It then
gives to A the output from Decrypt(pk, S, i, di,ID, hdr).

Challenge. Once A decides that Phase 1 is over, it outputs (S?, ID?) which is the multi-
node it wants to attack, where S? ⊆ {1, . . . , n}. The only restriction is that A did not
previously issue a private key query for 〈i, ID〉 such that i ∈ S? and that either ID = ID? or
ID is a prefix of ID?. C then compute (hdr?,K) R←− Encrypt(pk, S?, ID?) where K ∈ K. Next
C picks a random b ∈ {0, 1}. It sets Kb = K and picks a random K1−b in K. It then gives
(hdr?, K0,K1) to A.

Phase 2. A issues additional queries qµ+1, . . . , qν where query qk is one of the following:

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 103

- Private key query 〈i, ID〉 such that if i ∈ S? then ID 6= ID? and ID must not be a prefix
of ID?, else if i 6∈ S? then ID can be arbitrary.

- Decryption query 〈S, ID, i, hdr〉 where i ∈ S and S ⊆ S?.2 The only constraint is that
hdr 6= hdr? if either ID = ID? or ID is a prefix of ID?.

In both cases, C responds as in Phase 1. These queries may be adaptive.

Guess Finally A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We refer to such an adversary A as an IND-aID-aSet-CCA adversary and the above game
as the IND-aID-aSet-CCA game.

Weaker notions of security can be defined by modifying the above game so that it is
required that the adversary must commit ahead of time to the target subset S? or the target
identity ID? or both. These notions are analogous to the notion of selective-identity secure
HIBE, given by Canetti, Halevi, and Katz [CHK03, CHK04]. We have 4 possible combina-
tions: the game IND-xID-ySet-CCA where (x, y) ∈ {(a, a), (a, s), (s, a), (s, s)}. If (x, y) = (s, ∗)
then it is exactly the same as IND-aID-aSet-CCA except that A must disclose to C the tar-
get identity ID? before the Setup phase. Analogously, if (x, y) = (∗, s), A must disclose the
target subset S? before the Setup phase. For only the case of (s, s), it is further required
that the restrictions on private key queries from phase 2 also hold in phase 1. Intuitively, s
means selective security and a means adaptive security.

We define the advantage of the adversary A in attacking the HICBE scheme E in the
game IND-xID-ySet-CCA as AdvHICBExy(E ,A) = |Pr[b = b′] − 1

2 |, where the probability is
over the random bits used by C and A in that game.

Definition 5.1. We say that a HICBE system E is (t, qP, qD, ε)-IND-xID-ySet-CCA-secure
if for any t-time IND-xID-ySet-CCA adversary A that makes at most qP chosen private key
queries and at most qD chosen decryption queries, we have that AdvHICBExy(E ,A) < ε.

Definition 5.2. We say that a HICBE system E is (t, qP, ε)-IND-xID-ySet-CPA-secure if E
is (t, qP, 0, ε)-IND-xID-ySet-CCA-secure.

Proposition 5.3. A HICBE system for n users which is (t, qP, qD, ε)-IND-xID-sSet-CCA-
secure is also (t, qP, qD, ε/2n)-IND-xID-aSet-CCA-secure. This also holds for the case of CPA.

Anonymity. Recipient anonymity is the property that the adversary be unable to distin-
guish the ciphertext intended for a chosen identity from another one intended for a random
identity. We capture via what we call ANO-xID-ySet-CCA[∆] game where ∆ ⊆ {0, . . . , L}
indicates a set of levels that satisfy anonymity, with 0 corresponds to the anonymity of the
set S. Such a notion is generalized from [ABC+05]. This is defined exactly the same as
IND-xID-ySet-CCA except the challenge phase: instead of creating challenge ciphertext as
usual, C picks a random bit b ∈ {0, 1} and computes (hdr?,K) R←− Encrypt(pk, S?

b , ID?
b) where

(S?
0 , ID?

0) = (S?, ID?) (the requested set and identity from A) and S?
1 is a random set in

2{1,...,n} if 0 ∈ ∆ otherwise S?
1 = S? and ID?

1 is an identity tuple of the same length as ID?,
denoted z, that has a random identity at each level in {1, . . . , z} ∩∆.

2Here, it is without loss of generality, and simpler, that we just restrict S ⊆ S? since for S such that
S 6⊆ S?, one can make a private key query for some i ∈ S \ S? and perform the decryption oneself.

104 5.3 HICBE Constructions

5.2.3 Conversion for Chosen-Ciphertext Security

A result of Canetti, Halevi, and Katz [CHK04] gives an efficient way to construct a selective-
identity, chosen-ciphertext secure L-level HIBE from a selective-identity, chosen-plaintext
secure L + 1-level HIBE. We can generalize this technique for applying to HICBE in a
straightforward way. We also note that a more efficient method by Boneh and Katz [BK05]
can also be generalized to the case of HICBE straightforwardly.

Given a HICBE scheme HICBE = (Setup,PrivKeyGen, Derive, Encrypt, Decrypt) for (L +
1)-level of identities which is IND-sID-ySet-CPA-secure, we construct another HICBE scheme
HICBE¦ = (Setup¦, PrivKeyGen¦, Derive¦, Encrypt¦, Decrypt¦) for L-level of identities secure
in the IND-sID-ySet-CCA sense. In the construction, we use a signature scheme Sig =
(Gen, Sign, Vrfy) in which the verification key output by Gen is in I, the identity space of the
HICBE scheme. We require that this scheme be secure in the sense of strong unforgeability.
The construction of HICBE¦ proceeds as follows: The first three algorithms of HICBE¦ are
exactly the same as those of HICBE. The rest two are as follow.

Encrypt¦(pk, S, ID): The algorithm first runs Gen to obtain verification key VSIG and signing
key KSIG. It computes (hdr, K) ← Encrypt(pk, S, ID||VSIG). Let hdr¦ = (hdr, SignKSIG

(hdr), VSIG).
It then outputs (hdr¦,K).

Decrypt¦(pk, S, i, di,ID, hdr¦): It parses hdr¦ = (hdr, σ, VSIG) then checks whether VrfyVSIG
(hdr, σ) =

1. If not, it outputs⊥. Otherwise, it outputs the result from Decrypt(pk, S, i, di,ID, hdr).

Before stating the theorem, we recall that Sig is (t, ε, qS) strongly existentially unforge-
able if no t-time adversary who makes at most qS signature queries can produce some new
(message,signature) pair with probability at least ε.

Theorem 5.4. Suppose the HICBE scheme for n users and maximum depth L + 1 is
(t, qP, ε1)-IND-sID-ySet-CPA-secure for some y ∈ {s, a} and the signature scheme is (t, ε2, 1)
strongly existentially unforgeable. Then HICBE¦ for n users and maximum depth L is
(t, qP, qD, ε1 + ε2)-IND-sID-ySet-CCA-secure for arbitrary n,L, t, qP, and qD.

5.3 HICBE Constructions

In this section, we will give our first two HICBE constructions. We begin by offering some
intuition into the design. A HICBE system must have both broadcast and hierarchical-
identity-based derivation properties. To achieve this we will combine some techniques from
the BGW broadcast encryption [BGW05] with the BB and BBG HIBE systems by Boneh-
Boyen [BB04a] and Boneh-Boyen-Goh [BBG05] respectively. We will first describe that a
HICBE system, however, cannot simply be obtained from combining a broadcast encryption
and a HIBE scheme in a naive manner.

An Efficient but Insecure Approach. Suppose we created BE and HIBE schemes
separately and let the key for node (i, ID) be composed of the private key for user i from
the BE scheme and the key for ID from the HIBE scheme. To encrypt to (S, ID), just
encrypt using any CCA-secure AND-double encryption [DK05] of BE-ciphertext for S and
HIBE-ciphertext for ID. In order to decrypt, a user i ∈ S coupling with ID will need to be
able to decrypt under both systems. However, two malicious users, Alice who possesses key
for node (j 6∈ S, ID) and Bob who possesses key for node (k ∈ S, ID′) where ID is a prefix of,

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 105

but not equal to ID′, can collude by using Alice’s HIBE-key and Bob’s BE-key to decrypt
the ciphertext.

Secure but Inefficient Approaches. We create a HIBE and let the first level to be
used as user indexes and lower levels be used as identity tuples. To encrypt to (S, ID),
just use OR-multiple encryption to each identity i||ID of the HIBE for all i ∈ S. This
yields ciphertext of size linear in |S|, which is quite inefficient. One may use a wild-card
HIBE [ACD+06], which allows to encrypt to many identities (in the same level) in one
ciphertext. But this allows only to encrypt to all users. A more sophisticated approach is
to “expand” this flat tree of users to the tree of key derivation patterns of NNL broadcast
encryption [NNL01, DF02] so as to trade off ciphertext size with private key size. This
“double hierarchies” (one for user-broadcast and one for identity) approach was already
appeared in [YFDL04, BBG05] in the context of forward-secure HIBE and BE. However,
the best ciphertext size we can achieve from NNL-like schemes is still only being O(r).

Indeed, these secure schemes share a common principle behind so as to resist the collu-
sion attack occurred in the first naive method. Such a principle is to construct private keys
in such a way that they must be “simultaneously” used for both broadcast and hierarchical
identity portions of a HICBE system. In particular, the secure naive approach above em-
beds both portions into one big HIBE, while the YFDL-like approaches make the two HIBE
systems essentially “intertwined”. Note that the two HIBE systems used in [YFDL04] are
two copies of Gentry-Silverberg HIBE [GS02], while in [BBG05], the BB and BBG systems
are used.

Our Design Intuition. In this chapter, we are able to make secure integrations between
the BGW broadcast encryption and the BB or BBG HIBE systems. We achieve this by
observing first that in the BB or BBG HIBE systems, each private key consists of a main
key and some cancelation keys. The main key is the product of a “core” part and a
“perturbation” part. The main point in our design is to replace the core part of the HIBE-
key with the private key of the BGW scheme. This will force the key to be simultaneously
used in both the BE and HIBE systems, thus we can hope that the two systems will
become intertwined! Intuitively speaking, due to the implicit “orthogonality” of the BGW
scheme and the BB or BBG scheme, other portions of the two sub-systems will not interfere
functionality and security of each other. This reason, together with the similarity among
their underlying assumptions, allows us to prove the security. There are some points to make
clear on the difference of our integration technique to the previous ones. The integrations
of two HIBE systems, GS and GS in [YFDL04] and BB and BBG in [BBG05], were able
to be done due to the fact that (1) both sub-systems are the same primitive (HIBE), and
(2) the core parts of keys in both sub-systems are algebraically exactly the same; therefore,
intuitively, collecting perturbation parts (multiplicatively) from both HIBE sub-systems to
the main key will simply force the intertwining. In contrast, our integration takes place over
different primitives (BE and HIBE) and the core part of the key in the BB or BBG system
is different from that of the BGW scheme, which itself also essentially provides different
one-element key for each user. Therefore, there could be a possibility that the two systems
were not compatible in the first place.

As a result, however, after proving all the functionality and security issues (which we
will do from now), it turns out that our intuition was correct. In particular, it means that
we are able to show that the BGW scheme and the BB or BBG scheme can be combined with

106 5.3 HICBE Constructions

the minimal modification as possible. Rather than a drawback (for lacking new elements),
we view this contribution as an advantage; indeed, the resulting schemes are simple and
inherit those good efficiency performances from the original sub-systems directly.

5.3.1 Our First HICBE Construction Based on BGW and BB

We first show how to combine the basic BGW scheme with the HIBE scheme by Boneh and
Boyen [BB04a]. We assume that the identity space I is Zp. Thus, if ID is of depth z then
ID = (I1, . . . , Iz) ∈ Z z

p . As in [BB04a], we can later extend the construction to arbitrary in
{0, 1}∗ by first hashing each Ij using a collision resistant hash function H : {0, 1}∗ → Zp.
We follow almost the same terminology from [BGW05, BB04a]. This scheme, denoted
BasicHICBE1, works as follows.

Construction 5-1. Our First HICBE: BasicHICBE1

Setup(n,L): Let G be a bilinear group of prime order p. The algorithm first picks a
random generator g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G for
i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it picks a random γ ∈ Zp and sets v = gγ ∈ G. It
then picks random elements h1, . . . , hL ∈ G. The public key is:

pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, h1, . . . , hL) ∈ G2n+L+1.

The master key is msk = γ. For j = 1, . . . , L, we define Fj : Zp → G to be the
function: Fj(x) = gx

1hj . The algorithm outputs the public key pk and the master key
msk.

PrivKeyGen(i, pk, msk): Set a root private key for user i as di = (gi)γ ∈ G. Indeed di = v(αi).

Derive(i, ID, di,ID|z−1
): To generate the private key for node (i, ID) where i ∈ {1, . . . , n} and

ID = (I1, . . . , Iz) ∈ Z z
p of depth z ≤ L, pick random elements s1, . . . , sz ∈ Zp and

output

di,ID =

(gi)γ ·

z∏

j=1

Fj(Ij)sj , gs1 , . . . , gsz

 ∈ Gz+1.

Note that the private key for node (i, ID) can be generated just given a private key
for node (i, ID|z−1) where ID|z−1 = (I1, . . . Iz−1) ∈ Z z−1

p , as required. Indeed, let
di,ID|z−1

= (a0, . . . , az−1) be the private key for node (i, ID|z−1). To generate di,ID,
pick a random sz ∈ Zp and output di,ID = (a0 · Fz(Iz)sz , a1, . . . , az−1, g

sz).

Encrypt(pk, S, ID): Pick a random t ∈ Zp and set K = e(gn+1, g)t. The value e(gn+1, g) can
be computed as e(gn, g1). Let ID = (I1, . . . , Iz). It outputs (hdr,K) by setting

hdr =

gt, (v ·

∏

j∈S

gn+1−j)t , F1(I1)t , . . . , Fz(Iz)t

 ∈ Gz+2. (5.1)

Decrypt(pk, S, i, di,ID, hdr): Parse the header as hdr = (C0, C1, A1, . . . , Az) ∈ Gz+2. Also

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 107

parse di,ID = (a0, . . . , az) ∈ Gz+1. Then output

K = e(gi, C1) ·
z∏

j=1

e(Aj , aj) / e(a0 ·
∏

j∈S
j 6=i

gn+1−j+i, C0).

We verify the correctness of BasicHICBE1 as follows. We use the fact that gαj

i = gi+j

for any i, j. User i ∈ S decrypts the ciphertext as:

K = e(gi, C1) ·
z∏

j=1

e(Aj , aj) / e(a0 ·
∏

j∈S
j 6=i

gn+1−j+i, C0)

= e(g(αi), (v ·
∏

j∈S

gn+1−j)t) ·
z∏

j=1

e(Fj(Ij)t, gsj) / e(v(αi) ·
z∏

j=1

Fj(Ij)sj ·
∏

j∈S
j 6=i

gn+1−j+i, gt)

= e(g(αi), (v ·
∏

j∈S

gn+1−j)t) ·
z∏

j=1

e(Fj(Ij)t, gsj) / e(v(αi) ·
∏

j∈S
j 6=i

gn+1−j+i, gt) · e(
z∏

j=1

Fj(Ij)sj , gt)

= e(g(αi), (gn+1−i)t) · e(g(αi), (v ·
∏

j∈S
j 6=i

gn+1−j)t) / e(v(αi) ·
∏

j∈S
j 6=i

gn+1−j+i, gt)

= e(gn+1, g)t · e(g, (v(αi) ·
∏

j∈S
j 6=i

gn+1−j+i)t) / e(v(αi) ·
∏

j∈S
j 6=i

gn+1−j+i, gt) = e(gn+1, g)t,

as required.
The scheme inherits a good property of the BGW scheme: the ciphertext size and user

private key size are independent of n. Indeed, when we let ID = ε, the corresponding
algorithms become those of the basic BGW scheme. Note that the ciphertext size and the
private key size is the same as in the BB scheme, which is z + 1 elements in G, where z
is the depth of ID. The public key contains 2n + L + 1 elements of G. The derivation
time will be dominated by O(z) exponentiations. The encryption time will be dominated
by n multiplications or O(z) exponentiations. The decryption time will be dominated by n
multiplications or z pairings. Finally, to connect the whole intuitive picture that was given
in the design guideline, we note that in the private key, the term (gi)γ is the “core” part,∏z

j=1 Fj(Ij)sj is the “perturbation” part, and those gsj terms compose the cancelation part.
The security proof, although vaguely resembles those of BGW and BB, is not straight-

forward as we have to simulate both sub-systems simultaneously.

Theorem 5.5. Let G be a bilinear group of prime order p. Suppose the Decision (t, ε, n)-
BDHE assumption holds in G. Then the BasicHICBE1 system for n users and maximum
depth L is (t′, qP, ε)-IND-sID-sSet-CPA-secure for arbitrary n,L and qP, and any t′ < t −
Θ(τexpLqP) where τexp is the maximum time for an exponentiation in G.

Proof. Suppose there exists an adversary, A, that has advantage ε in attacking the HICBE
scheme. We build an algorithm B that solves the Decision n-BDHE problem in G. Al-
gorithm B is given as input a random n-BDHE challenge (g, h, ~yg,α,n, Z), where ~yg,α,n =

108 5.3 HICBE Constructions

(g1, . . . , gn, gn+2, . . . , g2n) and Z is either e(gn+1, h) or a random element in G1 (recall that
gj = g(αj)). Algorithm B proceeds as follows.

Initialization. The selective (identity, subset) game begins with A first outputting a
multi-node (S?, ID?) where S? ⊆ {1, . . . , n} and ID? = (I?1, . . . , I

?
z) ∈ Z z

p of depth z ≤ L
that it intends to attack. If necessary, B appends random elements in Zp to ID? so that ID?

is a vector of length L.

Setup. To generate the public key pk, algotrithm B chooses a random u ∈ Zp and sets v =

gu(
∏

j∈S? gn+1−j)−1. B then picks β1, . . . , βL ∈ Zp at random and define hj = g
−I?j
1 gβj ∈ G

for j = 1, . . . , L. It gives A the public key

pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, h1, . . . , hL) ∈ G2n+L+1.

Note that since g, α, u and the βj values are chosen uniformly at random, the public key
has an identical distribution to that in the actual construction. As before, for j = 1, . . . , L

we define Fj : Zp → G to be the function Fj(x) = gx
1hj = g

x−I?j
1 gβj .

Phase 1. A issues up to qP private key queries. Consider a query for the private key
corresponding to node (i, ID), of which ID = (I1, . . . , Iw) ∈ Z w

p where w ≤ L. We divide to
two cases upon whether i is in S? or not.

- If i 6∈ S? then B responds to the query by first computing a root private key di from
which it can then construct a private key di,ID for the request node (i, ID). In this
case, B computes di as

di = gu
i · (

∏

j∈S?

gn+1−j+i)−1.

Indeed we have that di = (gu(
∏

j∈S? gn+1−j)−1)(α
i) = v(αi) as required.

- If i ∈ S? then from the restriction of the private key query, it must be that ID is
neither ID? nor any prefix of ID?. Let k be the smallest index such that Ik 6= I?k.
Necessarily 1 ≤ k ≤ w. B responds to the query by first computing a private key for
node (i, ID|k) from which it then construct a private key for the request node (i, ID).
B picks random elements s1, . . . , sk ∈ Zp and sets

a0 = gu
i

(∏

j∈S?

j 6=i

gn+1−j+i

)−1
· g

βk
Ik−I?

k
n ·

(
k∏

r=1

Fr(Ir)sr

)
, (5.2)

a1 = gs1 , . . . , ak−1 = gsk−1 , ak = g

1
Ik−I?

k
n gsk . (5.3)

We claim that (a0, a1, . . . , ak) is a valid random private key for node (i, ID|k). To see
this, let s̃k = sk + αn/(Ik − I?k). Then we have that

g

βk
Ik−I?

k
n · Fk(Ik)sk = g

βk
Ik−I?

k
n · (gIk−I?k

1 gβk)sk = g−1
n+1(g

Ik−I?k
1 gβk)

sk+ αn

Ik−I?
k = g−1

n+1Fk(Ik)s̃k .
(5.4)

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 109

Consequently, the private key (a0, a1, . . . , ak) defined above satisfies

a0 = gu
i

(∏

j∈S?

gn+1−j+i

)−1
·
(k−1∏

r=1

Fr(Ir)sr

)
Fk(Ik)s̃k = v(αi) ·

(k−1∏

r=1

Fr(Ir)sr

)
Fk(Ik)s̃k ,

a1 = gs1 , . . . , ak−1 = gsk−1 , ak = gs̃k ,

where s1, . . . , sk−1, s̃k are uniform in Zp. This matched the definition for a private key
for node (i, ID|k). Therefore, (a0, a1, . . . , ak) is a valid private key for node (i, ID|k). B
derives a private key for the requested node (i, ID) from (a0, a1, . . . , ak) and gives A
the result.

Challenge. To generate the challenge, B computes hdr? as (h, hu, hβ1 , . . . , hβz). It then
randomly chooses a bit b ∈ {0, 1} and sets Kb = Z and picks a random K1−b in G1. B then
gives (hdr?, K0,K1) to A.

We claim that when Z = e(gn+1, h) (that is, the input to B is a n-BDHE tuple) then
(hdr?, K0,K1) is a valid challenge to A as in a real attack game. To see this, write h = gt

for some (unknown) t ∈ Zp. Then, we have that

hu = (gu)t = (gu(
∏

j∈S?

gn+1−j)−1(
∏

j∈S?

gn+1−j))t = (v
∏

j∈S?

gn+1−j)t, (5.5)

and that hβj = (gβj)t = Fj(I?j)
t, for j = 1, . . . , z. Thus, by definition, (h, hu, hβ1 , . . . , hβz) is

a valid encryption of the key e(gn+1, g)t. Furthermore, e(gn+1, g)t = e(gn+1, h) = Z = Kb

and hence (hdr?,K0,K1) is a valid challenge to A.
On the other hand, when Z is random in G1 (that is, the input to B is a random tuple)

then K0,K1 are just random independent elements of G1.

Phase 2. A continues to ask queries not issued in Phase 1. B responds as before.

Guess. Finally, A outputs b′ ∈ {0, 1} for guessing b. If b = b′ then B outputs 1 (meaning
Z = e(gn+1, h)). Otherwise, it outputs 0 (meaning Z is random in G1).

We see that if (g, h, ~yg,α,n, Z) is sampled fromRBDHE then Pr[B(g, h, ~yg,α,n, Z) = 0] = 1
2 .

On the other hand, if (g, h, ~yg,α,n, Z) is sampled from PBDHE then |Pr[B(g, h, ~yg,α,n, Z) =
0] − 1

2 | ≥ ε. It follows that B has advantage at least ε in solving n-BDHE problem in G.
This concludes the proof of Theorem 5.5.

5.3.2 Our Second HICBE Construction Based on BGW and BBG

Our method of integrating the BGW system can also be applied to the BBG HIBE scheme
analogously to the previous integration. In contrast, this time we achieve a feature of
“reusing” the public key from the BGW portion to be used for the BBG portion. Conse-
quently, the resulting scheme has exactly the same public key as the BGW scheme except
for only one additional element of G.

We will assume that L ≤ n, otherwise just create dummy users so as to be so; a more
efficient way will be discussed in the next subsection. As usual we can assume that I is Zp.
The scheme, denoted by BasicHICBE2, works as follows.

110 5.3 HICBE Constructions

Construction 5-2. Our Second HICBE: BasicHICBE2

Setup(n,L): The algorithm first picks a random generator g ∈ G and a random α ∈ Zp.
It computes gi = g(αi) ∈ G for i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it randomly picks
y ∈ G, γ ∈ Zp and sets v = gγ ∈ G. The public key is:

pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, y) ∈ G2n+2.

The master key is msk = γ. It outputs (pk, msk). For conceptual purpose, let hj =
gn+1−j for j = 1, . . . , L; intuitively, the hj terms will be used to visually indicate the
BBG portion, while the gj terms are for the BGW portion.

PrivKeyGen(i, pk, msk): Set a root private key for i as di = (gi)γ = v(αi) ∈ G.

Derive(pk, i, ID, di,ID|z−1
): To generate the private key for node (i, ID) where i ∈ {1, . . . , n}

and ID = (I1, . . . , Iz) ∈ Z z
p of depth z ≤ L, pick a random element s ∈ Zp and output

di,ID =
(
(gi)γ · (hI1

1 · · ·hIz
z · y)s , gs , hs

z+1 , . . . , hs
L

)
∈ G2+L−z.

Note that the private key for node (i, ID) can be generated just given a private key
for node (i, ID|z−1) where ID|z−1 = (I1, . . . Iz−1) ∈ Z z−1

p , as required. Indeed, let
di,ID|z−1

= (a0, a1, bz, . . . , bL) be the private key for node (i, ID|z−1). To generate di,ID,
pick a random δ ∈ Zp and output di,ID =

(
a0 · bIz

z · (hI1
1 · · ·hIz

z · y)δ , a1 · gδ , bz+1 ·hδ
z+1

. . . , bL ·hδ
L

)
. This key has a proper distribution as a private key for node (i, ID) with

the randomness s = s′+ δ ∈ Zp, where s′ is the randomness in di,ID|z−1
. Note that the

private key di,ID becomes shorter as the depth of ID increases.

Encrypt(pk, S, ID): Pick a random t ∈ Zp and set K = e(gn+1, g)t. The value e(gn+1, g) can
be computed as e(gn, g1). Let ID = (I1, . . . , Iz). It outputs (hdr,K) where we let

hdr =

gt, (v ·

∏

j∈S

gn+1−j)t , (hI1
1 · · ·hIz

z · y)t

 ∈ G3.

Decrypt(pk, S, i, di,ID, hdr): Let hdr = (C0, C1, C2) ∈ G3 and let di,ID = (a0, a1, bz+1, . . . , bL) ∈
G2+L−z. Then output

K = e(gi, C1) · e(C2, a1) / e(a0 ·
∏

j∈S
j 6=i

gn+1−j+i, C0).

The scheme inherits good properties from both the BGW scheme: the ciphertext size
and user private key size are independent of n, and the BBG scheme: the ciphertext size
is constant. One difference from the BBG system is that we let the hj terms be of special
forms, namely hj = gn+1−j , instead of random elements in G as in [BBG05]. This allows us
to save the public key size since those gj terms are already used for the BGW system. Indeed,
suppose that the BGW BE system has been already established, it can be augmented to a
HICBE version by just once publishing one random element, namely y ∈ G, as an additional

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 111

public key. Note that defining hj terms in this way is also crucial to the security proof.
We prove the security under the Decision n-BDHE assumption. This strong assumption is
already necessary for both the (stand-alone) BGW and BBG systems.3

Theorem 5.6. Let G be a bilinear group of prime order p. Suppose the Decision (t, ε, n)-
BDHE assumption holds in G. Then the BasicHICBE2 scheme for n users and maximum
depth L is (t′, qP, ε)-IND-sID-sSet-CPA-secure for arbitrary n,L such that L ≤ n and qP, and
any t′ < t−Θ(τexpLqP) where τexp is the maximum time for an exponentiation in G.

Proof. Suppose there exists an adversary, A, that has advantage ε in attacking the HICBE
scheme. We build an algorithm B that solves the Decision n-BDHE problem in G. B is given
as input a random n-BDHE challenge (g, h, ~yg,α,n, Z), where ~yg,α,n = (g1, . . . , gn, gn+2, . . . , g2n)
and Z is either e(gn+1, h) or a random element in G1 (recall that gj = g(αj)). Algorithm B
proceeds as follows.

Initialization. The selective (identity, subset) game begins with A first outputting a
multi-node (S?, ID?) where S? ⊆ {1, . . . , n} and ID? = (I?1, . . . , I

?
z) ∈ Z z

p of depth z ≤ L
that it intends to attack.

Setup. To generate pk, algorithm B randomly chooses u, σ ∈ Zp and sets

v = gu · (
∏

j∈S?

gn+1−j)−1, y = gσ ·
z∏

j=1

g
−I?j
n+1−j .

It gives A the pk = (g, ~yg,α,n, v, y). Since g, α, u, σ are chosen randomly and independently,
pk has an identical distribution to that in the actual construction.

Phase 1. A issues up to qP private key queries. Consider a query for the private key
corresponding to node (i, ID), of which ID = (I1, . . . , Iw) ∈ Z w

p where w ≤ L. We distinguish
two cases according to whether i is in S? or not.

If i 6∈ S? then B responds to the query by first computing a root private key di from which
it can then construct a private key di,ID for the request node (i, ID). In this case, B computes
di as di = gu

i · (
∏

j∈S? gn+1−j+i)−1. Indeed, we have di = (gu(
∏

j∈S? gn+1−j)−1)(α
i) = v(αi),

as required.
If i ∈ S? then from the restriction of the private key query, it must be that ID is neither

ID? nor any prefix of ID?. We further distinguish two cases according to whether ID? is a
prefix of ID or not.

Case 1: ID? is not a prefix of ID. Then there must exist k ≤ z such that it is the smallest
index satisfying Ik 6= I?k. B responds to the query by first computing a private key for node
(i, ID|k) from which it then constructs a private key for the request node (i, ID). B picks
random elements s ∈ Zp. We pose s̃ = s+αk/(Ik− I?k). Note that s̃ is unknown to B. Next,
B generates the private key

(a0, a1, bk+1, . . . , bL) =
(
v(αi) · (hI1

1 · · ·hIk
k · y)s̃ , gs̃ , hs̃

k+1 , . . . , hs̃
L

)
(5.6)

which is a valid random private key for node (i, ID|k) by definition. We show that B
can compute all elements of this private key given the values that it knows. Recall that

3It was later shown in [BBG05, full] that a truncated form of Decision n-BDHE, namely the Decision
n-wBDHI∗, indeed suffices for BBG. This assumption is defined exactly the same as the former except that
we change the vector ~yg,α,n to ~y∗g,α,n := (g1, . . . , gn).

112 5.3 HICBE Constructions

hj = gn+1−j . To generate a0, we first assume that k < z, and observe

a0 = gu
i

(∏

j∈S?

gn+1−j+i

)−1
· (gσ ·

k−1∏

j=1

g
Ij−I?j
n+1−j

︸ ︷︷ ︸
=1

·gIk−I?k
n+1−k ·

z∏

j=k+1

g
−I?j
n+1−j)

s̃

= gu
i

(∏

j∈S?

j 6=i

gn+1−j+i

)−1
· g−1

n+1 · g
(Ik−I?k)s̃
n+1−k︸ ︷︷ ︸

T1

· gσs̃

︸︷︷︸
T2

·
z∏

j=k+1

g
−I?j s̃

n+1−j

︸ ︷︷ ︸
T3

.

The term T1 can be computed by B since

T1 = g−1
n+1 · g

(Ik−I?k)(s+ αk

Ik−I?
k

)

n+1−k = g−1
n+1 · g

(Ik−I?k)s
n+1−k · gαk

n+1−k = g
(Ik−I?k)s
n+1−k ,

where the unknown term gn+1 is canceled out. The term T2 can be computed by using gk,
which is not gn+1 since k ≤ z ≤ L ≤ n. Each term in the product T3 is computable since
gs̃
n+1−j = gs

n+1−j · g
1/(Ik−I?k)
n+1−j+k and for j = k + 1, . . . , z, the terms gn+1−j , gn+1−j+k are not

equal to gn+1 hence can be computed. It is left to consider the case k = z. In this case, a0

is exactly the same as above except that the last product term, i.e., T3, does not appear.
The analysis of computability by B thus follows from the same argument.

The component a1 can be generated since a1 = gs̃ = gs · g1/(Ik−I?k)
k . For j = k +1, . . . , L,

the value bj can be computed as bj = hs̃
j = hs

j · g
1/(Ik−I?k)
n+1−j+k.

Case 2: ID? is a prefix of ID. Then it holds that z + 1 ≤ w. B responds to the query by
first computing a private key for node (i, ID|z+1) from which it then construct a private key
for the request node (i, ID). B picks random elements s ∈ Zp. We pose s̃ = s + αz+1/Iz+1.
Note that s̃ is unknown to B. Next, B generates the private key in exactly the same form
as Eq.(5.6) (change k to z + 1, of course). From a similar observation as above, one can
show that B can compute this key.

Challenge. To generate the challenge, B computes hdr? as (h, hu, hσ). It then randomly
chooses a bit b ∈ {0, 1} and sets Kb = Z and picks a random K1−b in G1. B then gives
(hdr?, K0,K1) to A.

We claim that when Z = e(gn+1, h) (that is, the input to B is a n-BDHE tuple) then
(hdr?, K0,K1) is a valid challenge to A as in a real attack game. To see this, write h = gt

for some (unknown) t ∈ Zp. Then, we have that

hu = (gu)t = (gu(
∏

j∈S?

gn+1−j)−1(
∏

j∈S?

gn+1−j))t = (v
∏

j∈S?

gn+1−j)t,

hσ =
(z∏

j=1

g
I?j
n+1−j · (gσ ·

z∏

j=1

g
−I?j
n+1−j)

)t
= (hI?1

1 · · ·hI?z
z · y)t.

Thus, by definition, (h, hu, hσ) is a valid encryption of the key e(gn+1, g)t. Also, e(gn+1, g)t =
e(gn+1, h) = Z = Kb and hence (hdr?,K0,K1) is a valid challenge.

On the other hand, when Z is random in G1 (that is, the input to B is a random tuple)
then K0,K1 are just random independent elements of G1.

Phase 2. A continues to ask queries not issued in Phase 1. B responds as before.

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 113

Guess. Finally, A outputs b′ ∈ {0, 1}. If b = b′ then B outputs 1 (meaning Z = e(gn+1, h)).
Otherwise, it outputs 0 (meaning Z is random in G1).

We see that if (g, h, ~yg,α,n, Z) is sampled fromRBDHE then Pr[B(g, h, ~yg,α,n, Z) = 0] = 1
2 .

On the other hand, if (g, h, ~yg,α,n, Z) is sampled from PBDHE then |Pr[B(g, h, ~yg,α,n, Z) =
0] − 1

2 | ≥ ε. It follows that B has advantage at least ε in solving n-BDHE problem in G.
This concludes the proof of Theorem 5.6.

5.3.3 Extensions

Modification. Recall that for BasicHICBE2 when L > n, we created dummy users so that
the effective number of users is L. The resulting pk contained 2L+2 elements of G. We now
give a more efficient scheme in this case (L > n). First, we change ‘n’ in all appearances in
the description of BasicHICBE2 to ‘L’ except that the user indexes are as usual: {1, . . . , n}.
Then we modify the public key to pk = (g, g1, . . . , gL, gL+2, . . . , gL+n, v, y) ∈ GL+n+2, which
is of smaller size than that of the above method. This modified scheme is secure under the
Decision L-BDHE assumption. However, it can be shown to be secure under a weaker one
which is a new assumption that we call Decision 〈L, n〉-BDHE. (Two values are specified
instead of only one). It is defined exactly the same as the Decision L-BDHE except that
we change ~yg,α,L to ~yg,α,〈L,n〉 := (g1, . . . , gL, gL+2, . . . , gL+n).

Generalizations. Without going into details, we can also combine the BGW system with
the Hybrid BB/BBG scheme [BBG05, full §4.2], which can trade off the public key and
private key sizes with the ciphertext size. We denote this scheme by BasicHICBE(ω) for
parameter ω ∈ [0, 1]. It becomes BasicHICBE1 when ω = 1 and BasicHICBE2 when ω = 0. In
this scheme, the public key, the private key, and the ciphertext contains Lω+max(L1−ω, n)+
n + 1, ≤ L1−ω + Lω + 1, and ≤ Lω + 2 elements in G respectively. It can also be further
generalized in the other dimension, namely the user dimension, in the same manner as
the generalized BGW scheme [BGW05], which can trade off the public key size with the
ciphertext size while the private key size remains fixed. In the resulting scheme, denoted by
GenHICBE(ω, µ), for µ ∈ [0, 1], the public key, the private key, and the ciphertext contains
Lω+max(L1−ω, nµ)+nµ+n1−µ, ≤ L1−ω+Lω+1, ≤ Lω+n1−µ+1 elements in G respectively.
Note that it becomes BasicHICBE(ω) when µ = 1.

Chosen Ciphertext Security. We use the conversion due to Canetti, Halevi, and Katz [CHK04]
(adapted to the case of HICBE, see Section 5.2.3) to obtain a chosen ciphertext secure
scheme. Denote the converted scheme from BasicHICBE(w) and GenHICBE(w) as Full-
HICBE(w) and FullGenHICBE(w) respectively. This can also be done via a bit more efficient
conversions of [BK05] and [BMW05] (although the latter is not generic, it is compatible
with our schemes).

Moreover, following [BGW05], we also give a direct scheme which can save the ciphertext
size from FullHICBE1 by one group element in G. Denote this scheme as FullHICBE1′. The
details are as follows.

Construction 5-3. FullHICBE1′

The first three algorithms Setup,PrivKeyGen, Derive are exactly the same as in Section 5.3.1,
except that this time the scheme is for users 1, . . . , n−1. The Encrypt, Decrypt are as follow.
We will use a signature scheme Sig = (Gen,Sign,Vrfy) as in Section 5.2.3.

114 5.3 HICBE Constructions

Encrypt(pk, S, ID): Run Gen to obtain a verification key VSIG and a signing key KSIG. Recall
that for simplicity, we assume that VSIG ∈ Zp. Pick a random t ∈ Zp and set K =
e(gn+1, g)t. Let ID = (I1, . . . , Iz). Next, set

C =

gt, (v · gVSIG

1 ·
∏

j∈S

gn+1−j)t , F1(I1)t , . . . , Fz(Iz)t

 ∈ Gz+2,

hdr = (C, SignKSIG
(C), VSIG),

and output the pair (hdr, K).

Decrypt(pk, S, i, di,ID, hdr): Parse the header as hdr = (C, ϕ, VSIG) = ((C0, C1, A1, . . . , Az), ϕ, VSIG).
Also parse di,ID = (a0, . . . , az) ∈ Gz+1. It then checks whether VrfyVSIG

(C, ϕ) = 1. If
not, it outputs ⊥. Otherwise, it picks a random ω ∈ Zp and computes

â0 =
(

a0 · gVSIG
i+1 ·

∏

j∈S
j 6=i

gn+1−j+i

)
·
(

v · gVSIG
1 ·

∏

j∈S

gn+1−j

)ω

and ĝ = gig
ω.

It then outputs K = e(ĝ, C1) ·
∏z

j=1 e(Aj , aj) / e(â0, C0).

We emphasize that the decryption requires a randomization. This ensures that for any
i ∈ S the pair (â0, ĝ) is chosen from the following distribution

â0 = g−1
n+1 · (v · gVSIG

1 ·
∏

j∈S

gn+1−j)r ·
k∏

j=1

Fj(Ij)sj and ĝ = gr.

for uniform r, s1, . . . , sk ∈ Zp. The independency of i implies that all members of S generate
a sample from the same distribution. This randomization is crucial to the security proof.

Theorem 5.7. Let G be a bilinear group of prime order p. Suppose the Decision (t, ε1, n)-
BDHE assumption holds in G and the signature scheme is (t, ε2, 1) strongly existentially un-
forgeable. Then the FullHICBE1′ system for n−1 users and maximum depth L is (t′, qP, qD, ε1+
ε2)-IND-sID-sSet-CCA-secure for arbitrary n,L, qP, qD, and any t′ < t − Θ(τexpLqP) where
τexp is the maximum time for an exponentiation in G.

Proof. Suppose there exists an adversary, A, that has advantage ε1 + ε2 in attacking the
HICBE scheme (for n − 1 users). We build an algorithm B that solves the Decision n-
BDHE problem in G with advantage ε1. Algorithm B is given as input a random n-BDHE
challenge (g, h, ~yg,α,n, Z), where ~yg,α,n = (g1, . . . , gn, gn+2, . . . , g2n) and Z is either e(gn+1, h)
or a random element in G1 (recall that gj = g(αj)). Algorithm B proceeds as follows.

Initialization. The selective (identity, subset) game begins with A first outputting a
multi-node (S?, ID?) where S? ⊆ {1, . . . , n} and ID? = (I?1, . . . , I

?
z) ∈ Z z

p of depth z ≤ L
that it intends to attack. If necessary, B appends random elements in Zp to ID? so that ID?

is a vector of length L.

Setup. To generate the public key pk, algotrithm B first runs Gen to obtain V ?
SIG and K?

SIG.
Next, it chooses a random u ∈ Zp and sets v = gug

−V ?
SIG

1 (
∏

j∈S? gn+1−j)−1. B then picks

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 115

β1, . . . , βL ∈ Zp at random and define hj = g
−I?j
1 gβj ∈ G for j = 1, . . . , L. It gives A the

public key
pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, h1, . . . , hL) ∈ G2n+L+1.

Note that since g, α, u and the βj values are chosen uniformly at random, the public key
has an identical distribution to that in the actual construction. As before, for j = 1, . . . , L

we define Fj : Zp → G to be the function Fj(x) = gx
1hj = g

x−I?j
1 gβj .

Phase 1 (Private key query). A issues up to qP private key queries. The simulation is
very similar to that of BasicHICBE1. The only difference is that the term g

−V ?
SIG

1+i appears in
di in the first case and a0 in the second case (see below). Consider a query for the private
key corresponding to node (i, ID), of which ID = (I1, . . . , Iw) ∈ Z w

p where w ≤ L. We divide
to two cases upon whether i is in S? or not.

- If i 6∈ S? then B responds to the query by first computing a root private key di from
which it can then construct a private key di,ID for the request node (i, ID). In this
case, B computes di as

di = gu
i · g−V ?

SIG
1+i · (

∏

j∈S?

gn+1−j+i)−1.

Indeed we have that di = (gug
−V ?

SIG
1 (

∏
j∈S? gn+1−j)−1)(α

i) = v(αi) as required.

- If i ∈ S? then from the restriction of the private key query, it must be that ID is
neither ID? nor any prefix of ID?. Let k be the smallest index such that Ik 6= I?k.
Necessarily 1 ≤ k ≤ w. B responds to the query by first computing a private key for
node (i, ID|k) from which it then construct a private key for the request node (i, ID).
B picks random elements s1, . . . , sk ∈ Zp and sets

a0 = gu
i · g−V ?

SIG
1+i ·

(∏

j∈S?

j 6=i

gn+1−j+i

)−1
· g

βk
Ik−I?

k
n ·

(
k∏

r=1

Fr(Ir)sr

)
,

a1 = gs1 , . . . , ak−1 = gsk−1 , ak = g

1
Ik−I?

k
n gsk .

We claim that (a0, a1, . . . , ak) is a valid random private key for node (i, ID|k). To see
this, let s̃k = sk + αn/(Ik − I?k). Exactly the same argument as in BasicHICBE1 (cf.
Equation (5.4)) implies that

a0 = gu
i g
−V ?

SIG
1+i

(∏

j∈S?

gn+1−j+i

)−1
·
(k−1∏

r=1

Fr(Ir)sr

)
Fk(Ik)s̃k = v(αi) ·

(k−1∏

r=1

Fr(Ir)sr

)
Fk(Ik)s̃k ,

a1 = gs1 , . . . , ak−1 = gsk−1 , ak = gs̃k ,

where s1, . . . , sk−1, s̃k are uniform in Zp. This matched the definition for a private key
for node (i, ID|k). Therefore, (a0, a1, . . . , ak) is a valid private key for node (i, ID|k). B
derives a private key for the requested node (i, ID) from (a0, a1, . . . , ak) and gives A
the result.

Phase 1 (Decryption query). A issues up to qD private key queries. Let (S, ID, i, hdr)

116 5.3 HICBE Constructions

be such a query, where S ⊆ S? and i ∈ S. Let ID = (I1, . . . , Ik). Let hdr = (C, ϕ, VSIG) =
((C0, C1, A1, . . . , Az), ϕ, VSIG). B responds by first checking whether VrfyVSIG

(C, ϕ) = 1. If
not, it returns ‘invalid’ to A. Otherwise, we consider three cases:

- [VSIG = V ?
SIG, (C, ϕ) 6= (C?, ϕ?)]. In this case, B outputs a random bit b

R←− {0, 1} and
aborts the simulation.

- [VSIG = V ?
SIG, (C, ϕ) = (C?, ϕ?)]. From the restriction of decryption query, it must

be that ID is neither ID? nor any prefix of ID?. B responds by simply constructing
a private key of node (i, ID) as if responding to a private key query, then uses it to
decrypt C?, and returns the result to A.

- [VSIG 6= V ?
SIG]. In this case, B picks random elements r, s1, . . . , sk ∈ Zp and sets

ĝ = gr · g
1

VSIG−V ?
SIG

n ,

â0 = ĝu · gr(VSIG−V ?
SIG)

1 ·
∏

j∈S?\S
(gr

n+1−j · g
−1

VSIG−V ?
SIG

2n+1−j) ·
k∏

j=1

Fj(Ij)sj ,

â1 = gs1 , . . . , âk = gsk .

B then responds with K = e(ĝ, C1) ·
∏k

j=1 e(Aj , âj) / e(â0, C0). To see that this
respond is as in a real attack game, we pose r̃ = r + αn/(VSIG − V ?

SIG) and observe
that

â0 = g−1
n+1 · (v · gVSIG

1 ·
∏

j∈S

gn+1−j)r̃ ·
k∏

j=1

Fj(Ij)sj and ĝ = gr̃.

Furthermore, since r, s1, . . . , sk are uniform in Zp (and so does r̃), we have that
(ĝ, â0, . . . , âk) is correctly distributed as in the real decryption algorithm. Therefore,
B’s response to the query is identical to Decrypt(pk, S, i, di,ID, hdr), as required.

Challenge. To generate the challenge, B computes C = (h, hu, hβ1 , . . . , hβz) and lets
hdr? = (C, SignK?

SIG
(C), V ?

SIG). It then randomly chooses a bit b ∈ {0, 1} and sets Kb = Z

and picks a random K1−b in G1. B then gives (hdr?,K0,K1) to A.
We claim that when Z = e(gn+1, h) (that is, the input to B is a n-BDHE tuple) then

(hdr?, K0,K1) is a valid challenge to A as in a real attack game. To see this, write h = gt

for some (unknown) t ∈ Zp. Then, we have that

hu = (gu)t = (gu(gV ?
SIG

1

∏

j∈S?

gn+1−j)−1(gV ?
SIG

1

∏

j∈S?

gn+1−j))t = (v
∏

j∈S?

gn+1−j)t,

and that hβj = (gβj)t = Fj(I?j)
t, for j = 1, . . . , z. Thus, by definition, (h, hu, hβ1 , . . . , hβz) is

a valid encryption of the key e(gn+1, g)t. Furthermore, e(gn+1, g)t = e(gn+1, h) = Z = Kb

and hence (hdr?,K0,K1) is a valid challenge to A.
On the other hand, when Z is random in G1 (that is, the input to B is a random tuple)

then K0,K1 are just random independent elements of G1.

Phase 2. A continues to ask queries not issued in Phase 1. B responds as before.

Guess. Finally, A outputs b′ ∈ {0, 1} for guessing b. If b = b′ then B outputs 1 (meaning
Z = e(gn+1, h)). Otherwise, it outputs 0 (meaning Z is random in G1).

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 117

We see that if (g, h, ~yg,α,n, Z) is sampled fromRBDHE then Pr[B(g, h, ~yg,α,n, Z) = 0] = 1
2 .

On the other hand, if (g, h, ~yg,α,n, Z) is sampled from PBDHE then |Pr[B(g, h, ~yg,α,n, Z) =
0] − 1

2 | ≥ ε1 + ε2 − Pr[abort], where abort denotes the event that B aborted during the
simulation. This is since when (g, h, ~yg,α,n, Z) is sampled from PBDHE the simulation is
perfect if B does not abort. It follows that B has advantage at least ε1 + ε2 − Pr[abort] in
solving n-BDHE problem in G.

Next we claim that Pr[abort] < ε2. Otherwise A can be used to forge a signature with
probability ε2. We construct another simulator B2 that knows the master secret, γ, but
receives VSIG as a challenge in an existential forgery game. B2 makes one (and only one)
query to generate the signature of C? to construct the challenge hdr?. But the event abort
lets B2 to know another valid message-signature pair (C, ϕ) 6= (C?, ϕ?). B2 then just outputs
this and wins the game. This concludes the proof of Theorem 5.7.

Adaptive Security. An IND-aID-sSet-CCA-secure scheme can be constructed by combining
the BGW system with Waters’ HIBE [Wat05] in essentially the same way as previous two
schemes.

5.4 Forward-Secure Public-key Broadcast Encryption

In this section, we describe the notion of FS-BE schemes, followed by a generic construc-
tion from HICBE and a direct construction. We end up this section by comparing their
performances.

5.4.1 Syntax for FS-BE

Forward-Secure BE. The syntax of a forward-secure public-key broadcast encryption
(FS-BE) scheme is introduced in [YFDL04]. Following [BGW05], for simplicity we define
it as a key encapsulation mechanism. A key-evolving broadcast encryption is made up
of six randomized algorithms. Via (pk,msk0)

R←− Setup(n, T), where n is the number of
receiver and T is the total number of time period, the setup algorithm produces a pub-
lic key pk and an initial master private key msk0; via mski,τ

R←− MasUpdate(τ, mskτ−1)
the master key update algorithm outputs a new private key mski,τ of user i for time pe-
riod τ ; via ski,τ

R←− Regist(i, τ, pk, mskτ) the center outputs a private key ski,τ of user i

for time period τ ; via ski,τ
R←− Update(i, τ, ski,τ−1) the user i updates his private key to

ski,τ for a consecutive time period; via (hdr,K) R←− Encrypt(pk, S, τ), where S is the set of
recipients, a sender outputs a pair (hdr,K), a header and a message encryption key; via
K

R←− Decrypt(pk, S, i, ski,τ , hdr) a recipient i ∈ S outputs K ∈ K. A scheme is correct
if (1) when pk,mskτ , ski,τ−1 are correctly generated, the private key output either from
Regist(i, τ, pk, mskτ) or from Update(i, τ, ski,τ−1) must conform the same distribution; (2)
Encrypt and Decrypt are consistent (in the standard way).

5.4.2 Security Notions for FS-BE

We define chosen ciphertext security of a key-evolving broadcast encryption by the following
game between an adversary A and a challenger C. Both C and A are given n, T as input.

Setup. The challenger C runs Setup(n, T) to obtain a public key pk and the initial master
key msk0. It then gives the public key pk to A.

118 5.4 Forward-Secure Public-key Broadcast Encryption

Phase 1. A adaptively issues queries q1, . . . , qµ where query qk is one of the following:

- Private key query 〈i, τ〉. C responds by running algorithm MasUpdate and Regist to
derive the private key ski,τ , corresponding to user i at time τ and sends ski,τ to A.

- Master key query 〈τ〉. C responds by running algorithm MasUpdate to obtain mskτ

and gives it to A.

- Decryption query 〈S, τ, i, hdr〉 where i ∈ S. C responds by running MasUpdate and
Regist to derive ski,τ . It then gives to A the output from Decrypt(pk, S, i, ski,τ , hdr).

Challenge. Once A decides that Phase 1 is over, it outputs (S?, τ?) which is the target
recipient set and the time it wants to attack, where S? ⊆ {1, . . . , n} and τ? ≤ T . The
only restriction is that A did not previously issue a private key query for 〈i, τ〉 such that
i ∈ S? and τ ≤ τ? or a master key query for τ ≤ τ?. C then compute (hdr?,K) R←−
Encrypt(pk, S?, τ?) where K ∈ K. Next C picks a random b ∈ {0, 1}. It sets Kb = K and
picks a random K1−b in K. It then gives (hdr?,K0,K1) to A.

Phase 2. A issues additional queries qµ+1, . . . , qν where query qk is one of the following:

- Private key query 〈i, τ〉 where either i ∈ S? and τ > τ? or i 6∈ S? with arbitrary τ .

- Master key query 〈τ〉 where τ > τ?.

- Decryption query 〈S, τ, i, hdr〉 where i ∈ S and S ⊆ S?. The only constraint is that
hdr 6= hdr? if τ ≤ τ?.

In both cases, C responds as in Phase 1. These queries may be adaptive.

Guess Finally A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.
We refer to such an adversary A as an IND-aFS2-aSet-CCA adversary and the above

game as the IND-aFS2-aSet-CCA game. The IND-aFS1-aSet-CCA game is the exactly the
same one except that adversary is not allowed to ask master key queries. Weaker notions
of security can be defined by modifying the above game similarly to the case of HICBE.
Following a similar terminology, we have 4 possible combinations: the game IND-xFSi-ySet-
CCA where (x, y) ∈ {(a, a), (a, s), (s, a), (s, s)}, corresponding to whether τ? and/or S? must
be disclosed before the Setup phase or not.

We define the advantage of the adversary A in attacking the key-evolving broadcast
encryption scheme E in the game IND-xFS2-ySet-CCA as AdvFSBExy,2(E ,A) = |Pr[b =
b′]− 1

2 |, where the probability is over the random bits used by C and A in that game.

Definition 5.8. We say that a key-evolving broadcast encryption scheme E is (t, qP, qM, qD, ε)-
IND-xFS2-ySet-CCA-secure if for any t-time IND-xFS2-ySet-CCA adversary A that makes at
most qP chosen private key queries, qM chosen master key queries, and at most qD chosen
decryption queries, we have that AdvFSBExy,2(E ,A) < ε.

Definition 5.9. We say that a key-evolving broadcast encryption scheme E is (t, qP, qD, ε)-
IND-xFS1-ySet-CCA-secure if E is (t, qP, 0, qD, ε)-IND-xFS2-ySet-CCA-secure.

Definition 5.10. We say that a key-evolving broadcast encryption scheme E is (t, qP, qM, ε)-
IND-xFS2-ySet-CPA-secure if E is (t, qP, qM, 0, ε)-IND-xFS2-ySet-CCA-secure. (And similar for
FS1 notion).

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 119

Proposition 5.11. A key-evolving broadcast encryption for maximum time T which is
(t, qP, qM, qD, ε)-IND-sFS2-ySet-CCA-secure is also (t, qP, qM, qD, ε/T)-IND-aFS2-ySet-CCA-secure.
The result also holds for the FS1 case and the CPA case.

For almost all applications, the IND-xFS1-ySet-CCA-security is sufficient. In this case,
it is useful to consider the MasUpdate as a trivial algorithm as we let mskτ = msk0 for all
τ (and simply denote this by msk).

To convert a IND-xFS1-ySet-CCA-secure scheme to achieve IND-xFS2-ySet-CCA-security,
where master key queries are also allowed, we simply modify the scheme by letting mskτ

contains all the user keys of time τ . The MasUpdate just runs Update for each key. Obvi-
ously, this modified scheme is (t, q′P, q′M, qD, ε)-IND-xFS2-ySet-CCA-secure for q′P + nq′M ≤ qP

if the original scheme is (t, qP, qD, ε)-IND-xFS1-ySet-CCA-secure.

5.4.3 Conversion C

Given a HICBE scheme, we construct a FS-BE scheme using the “time tree” technique
of [CHK03], which was used to construct a forward-secure encryption from a binary tree
encryption. The construction here is essentially the same as in [CHK03] except that in our
description, the user dimension is introduced.

For a forward-secure BE with T time periods, we image a complete balance binary tree
of depth L = log2(T + 1) − 1. Let each node be labeled with a string in {0, 1}≤L. We
assign the root with the empty string. The left and right child of w is labeled w0 and w1
respectively. From now, to distinguish the abstract ‘node’ of a HICBE system from nodes
in the binary tree, we refer the former as h-node and the latter as usual. Following the
notation in [CHK03], we let wτ to be the τ -th node in a pre-order traversal of the binary
tree.4 Without loss of generality, we assume that 0, 1 ∈ I, the identity space. Hence, we
can view a binary string of length z ≤ L as an identity vector of length z. Encryption in
time τ for a set S of recipient uses the encryption function of the HICBE scheme to the
multi-node (S,wτ). At time τ the private key also contains, beside the private key of h-node
(i, wτ) of the HICBE scheme, all the keys of h-nodes (i, y) where y is a right sibling of the
nodes on the path from the root to wτ in the binary tree. When updating the key to time
τ + 1, we compute the private key of h-node (i, wτ+1) and erase the one of (i, wτ). Since
wτ+1 is a left child of wτ or one of the nodes whose keys are stored as the additional keys
at time τ , the derivation can be done, in particular using at most one application of Derive.
We denote this conversion as C(·) and write its formal description as follows.

Given a HICBE scheme HICBE = (Setup,PrivKeyGen, Derive, Encrypt, Decrypt), we con-
struct a key-evolving broadcast encryption scheme C(HICBE) = fsBE′ = (Setup′, MasUpdate′,Regist′,
Update′, Encrypt′, Decrypt′) as follows.

Construction 5-4. Forward-secure Broadcast Encryption: C(HICBE)

Setup′(n, T): Let L = log2(T +1)−1. Run Setup(n,L) and obtain pk, msk. It then outputs
pk′ = pk, and msk′ = msk.

Regist′(i, τ, pk′,msk′): If τ = 0, then it outputs sk′i,0 = di = PrivKeyGen(i, pk′, msk′). Other-
wise (τ ≥ 1), it runs Update recursively starting from sk′i,0 to obtain sk′i,τ and outputs
it.

4The pre-order traversal is started from the root, w1 = ε (the empty string). From a node w it goes to
w0 if w is not a leaf otherwise it goes to v1 if v0 is the largest string that is a prefix of w.

120 5.4 Forward-Secure Public-key Broadcast Encryption

Update′(i, τ, sk′i,τ−1): Parse wτ−1 as a binary string 〈τ − 1〉L−1〈τ − 1〉L−2 . . . 〈τ − 1〉L−k ∈
{0, 1}≤L. The private key sk′i,τ−1 is organized as sk′i,τ−1 = (a, cL−1, cL−2 . . . , c0) where
a = di,wτ−1 and for j = 1, . . . , k,

cL−j =

{
di,(〈τ−1〉L−1...〈τ−1〉L−j+11) if 〈τ − 1〉L−j = 0,
ε if 〈τ − 1〉L−j = 1,

and cL−(k+1) = · · · = c0 = ε (the empty string). To update to sk′i,τ we consider two
cases.

Case 1: [wτ−1 is a leaf] (i.e., k = L). Let j∗ be the largest j such that cL−j 6= ε. Then
let ā = di,wτ (= cL−j∗) and c̄L−j∗ = ε. It then outputs

sk′i,τ = (ā, cL−1, . . . , cL−j∗+1, c̄L−j∗ , cL−j∗−1, . . . , c0).

Case 2: [wτ−1 is an internal node] (i.e., k < L). We compute di,wτ−10 ← Derive(i, wτ−10, di,wτ−1)
and di,wτ−11 ← Derive(i, wτ−11, di,wτ−1). Let ā = di,wτ−10 and c̄L−(k+1) = di,wτ−11. It
outputs

sk′i,τ = (ā, cL−1, . . . , cL−k, c̄L−(k+1), cL−(k+2), . . . , c0).

Encrypt′(pk′, S, τ): Run Encrypt(pk, S, wτ).

Decrypt′(pk′, S, i, sk′i,τ , hdr): Run Decrypt(pk, S, i, di,wτ , hdr).

Theorem 5.12. Suppose that the scheme HICBE for L levels is (t, qP, qD, ε)-IND-xID-ySet-
CCA-secure (resp., (t, qP, ε)-IND-xID-ySet-CPA-secure) for some (x, y) ∈ {(a, a), (a, s), (s, a), (s, s)}.
Then the scheme C(HICBE) for T time periods is (t, q′P, qD, ε)-IND-xFS1-ySet-CCA-secure
(resp., (t, q′P, ε)-IND-xFS1-ySet-CPA-secure) for q′P ≤ qP/L, where L = log(T + 1)− 1.

Proof. We will deal with the case where (x,y)=(a,a) first. Suppose there exists an adversary,
A, that has advantage ε in attacking the fsBE′ scheme. We build an algorithm B that has
the same advantage ε in attacking the HICBE. B proceeds as follows. First B receives the
public key pk from its challenger. B just forwards this to A. When A asks for a private key
query (i, τ), B responds by asking its challenger for queries (i, 〈τ〉L−1 . . . 〈τ〉L−j+11) for all j
such that 〈τ〉L−j = 0. Indeed, these keys comprise the private key for ski,τ by the definition
of the scheme. B thus gives this set of keys to A. When A asks for a decryption query
(S, τ, i, hdr), B responds by asking its challenger for the decryption query (S, wτ , i, hdr) and
forwarding the result to A. When A decides that phase 1 is over, it will output (S?, τ?). B
responds by sending (S?, wτ?

) to its challenger asking for the challenge then forwarding the
received challenge ciphertext to A. B continues to respond to A in phase 2 in the same way
as before. It is easy to see that by the definition of the scheme, the restriction of queries in
the game attacking HICBE can be translated exactly to the restriction in the game attacking
fsBE′. Therefore, A will never ask for queries that B cannot answer. Finally in the guess
phase, B just outputs whatever A outputs. Since the simulation is perfect, B has the same
advantage as A in guessing the challenge bit.

For the other cases of (x,y), we construct A in exactly the same way except that the
target S? or/and τ? from A is received at the initialization time. B responds by outputting
S? or/and wτ?

to its challenger in the initialization time also. The same argument follows.
This completes the proof.

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 121

Resulting Efficiency. It is easy to see that the in resulting scheme, the private key size
is expanded by the factor O(log T) while the other parameters are unchanged from the
original HICBE scheme (instantiated for log(T + 1)− 1 levels of identities). We have that
the C(BasicHICBE1) scheme achieves ciphertext of size O(log T) and user private keys of
size O(log2 T) while the C(BasicHICBE2) scheme achieves ciphertexts of size O(1) and user
private keys of size O(log2 T).

5.4.4 Direct Construction

We also construct a more efficient but specific FS-BE scheme, which is not built via the
generic conversion. This scheme, denoted by DirFSBE, achieves O(log T) size for both
ciphertext and private key, in contrast to the C(BasicHICBE1) and C(BasicHICBE2), in
which the private key is of size O(log2 T). The scheme is very similar to C(BasicHICBE1).
Recall that BasicHICBE1 is based on the BB scheme. With the observation that in the BB
scheme, most private key components are unchanged from parent to child, we can thus cut
some redundancy and store only different components. This component reuse technique
is reminiscent of the “Linear fs-HIBE” scheme in [BBG05]. Note that this scheme can be
converted to a CCA-secure version by using the same technique as used for constructing
the FullHICBE1′ (Construction 5-3).

The following description is written in an analogous way to the generic conversion C in
Section 5.4.3; we encourage the reader to compare each other for better understanding.

Construction 5-5. Direct Forward-secure Broadcast Encryption: DirFSBE

Setup(n, T): Let L = log2(T + 1)− 1. The algorithm is exactly the same as Setup(n,L) of
the BasicHICBE1 in Section 5.3.1. The algorithm first picks a random generator g ∈ G
and a random α ∈ Zp. It computes gi = g(αi) ∈ G for i = 1, 2, . . . , n, n + 2, . . . , 2n.
Next, it picks a random γ ∈ Zp and sets v = gγ ∈ G. It then picks random elements
h1, . . . , hL ∈ G. The public key is:

pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, h1, . . . , hL) ∈ G2n+L+1.

The master key is msk = γ. For j = 1, . . . , L, we define Fj : Zp → G to be the
function: Fj(x) = gx

1hj . The algorithm outputs the public key pk and the master key
msk.

Regist(i, τ, pk, msk): If τ = 0, then it outputs di = (gi)msk = (gi)γ ∈ G. Otherwise (τ ≥ 1),
it runs Update recursively starting from sk′i,0 to obtain sk′i,τ and outputs it.

Update(i, τ, ski,τ−1): Parse wτ as a binary string 〈τ〉L−1〈τ〉L−2 . . . 〈τ〉L−k ∈ {0, 1}≤L. To
generate the private key ski,τ for user i at time τ , pick random s1, . . . , sk, s

′
1, . . . , s

′
k ∈

Zp and output ski,τ = (a0, a1, . . . , aL, (cL−1, eL−1), . . . , (c0, e0)) where

a0 = di ·
k∏

x=1

Fx(〈τ〉L−x)sx , a1 = gs1 , . . . , aL−k = gsL−k , aL−k+1 = · · · = aL = ε,

122 5.4 Forward-Secure Public-key Broadcast Encryption

and for j = 1, . . . , k,

(cL−j , eL−j) =

(
di ·

∏j−1
x=1 Fx(〈τ〉L−x)sx · Fj(1)s′j , gs′j

)
if 〈τ〉L−j = 0,

(ε, ε) if 〈τ〉L−j = 1,

and (cL−(k+1), eL−(k+1)) = · · · = (c0, e0) = (ε, ε), where ε is the empty string.

Intuitively, (cL−j , a1, . . . , aj−1, eL−j) forms a proper key of node (i, 〈τ〉L−1〈τ〉L−2 . . . 〈τ〉L−j+11)
in the BasicHICBE1 scheme. Note that ski,τ ∈ G1+L+2L′ where L′ = |{〈τ〉L−j = 0 :
1 ≤ j ≤ k}| ≤ k. Note that ski,τ can be derived from ski,τ−1, as required. To see
this, we first let k̃ = |wτ−1| and ski,τ−1 = (ã0, ã1, . . . , ãL, (c̃L−1, ẽL−1), . . . , (c̃0, ẽ0)).
Consider two cases:

Case 1: [wτ−1 is a leaf] (i.e., k̃ = L). Let j∗ be the largest j such that c̃L−j 6= ε. Let

ā0 = c̃L−j∗ , āj∗ = ẽL−j∗ and c̄L−j∗ = ε , ēL−j∗ = ε.

For j = 1, . . . , j∗ − 1, let āj = ãj . If j∗ < k̃, for j = j∗ + 1, . . . , k̃, let āj = ε. It then
outputs

ski,τ =
(

ā0, ā1, . . . , āL, (c̃L−1, ẽL−1), . . . , (c̃L−j∗+1, ẽL−j∗+1),

(c̄L−j∗ , ēL−j∗), (c̃L−j∗−1, ẽL−j∗−1), . . . , (c̃0, ẽ0)
)

.

In this case, the same randomness from ski,τ−1 is transfer to ski,τ (with some being
erased), in particular, if (s̃1, . . . , s̃k, s̃

′
1, . . . , s̃

′
k̃
) is the randomness in ski,τ−1, then the

randomness in ski,τ is (s̃1, . . . , s̃j∗ , s̃
′
1, . . . , s̃

′
j∗).

Case 2: [wτ−1 is an internal node] (i.e., k̃ < L). We first pick random elements
s̄k̃+1, s̄

′
k̃+1

∈ Zp. Then compute

ā0 = ã0 ·Fk̃+1(0)s̄k̃+1 , āk̃+1 = gs̄k̃+1 and c̄L−(k̃+1) = ã0 ·Fk̃+1(1)s̄′
k̃+1 , ēL−(k̃+1) = g

s̄′
k̃+1 .

For j = 1, . . . , k̃, k̃ + 2, . . . , L, let āj = ãj . It outputs

ski,τ =
(

ā0, ā1, . . . , āL, (c̃L−1, ẽL−1), . . . , (c̃L−k̃, ẽL−k̃),

(c̄L−(k̃+1), ēL−(k̃+1)), (c̃L−(k̃+2), ẽL−(k̃+2)), . . . , (c̃0, ẽ0)
)

.

In this case, the randomness in ski,τ is (s̃1, . . . , s̃k̃, s̄k̃+1s̃
′
1, . . . , s̃

′
k̃
, s̄′

k̃+1
).

Encrypt(pk, S, τ): Pick a random t ∈ Zp and set K = e(gn+1, g)t. The value e(gn+1, g) can
be computed as e(gn, g1). Write wτ as 〈τ〉L−1〈τ〉L−2 . . . 〈τ〉L−z ∈ {0, 1}≤L. Next, set

hdr =

gt, (v ·

∏

j∈S

gn+1−j)t , F1(〈τ〉L−1)t , . . . , Fz(〈τ〉L−z)t

 ∈ Gz+2,

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 123

and output the pair (hdr, K).

Decrypt(pk, S, i, ski,τ , hdr): Let z = |wτ |. Parse the header as hdr = (C0, C1, A1, . . . , Az) ∈
Gz+2. Also parse ski,τ = (a0, a1, . . . , aL, (cL−1, eL−1), . . . , (c0, e0)). Then output

K = e(gi, C1) ·
z∏

j=1

e(Aj , aj) / e(a0 ·
∏

j∈S
j 6=i

gn+1−j+i, C0).

Note that az+1, . . . , aL, (cL−1, eL−1), . . . , (c0, e0) are not used for decryption.

Theorem 5.13. Let G be a bilinear group of prime order p. Suppose the Decision (t, ε, n)-
BDHE assumption holds in G. Then the DirFSBE scheme for n users and maximum time
T is (t′, qP, ε)-IND-sFS1-sSet-CPA-secure for arbitrary n, T , qP, and any t′ < t−Θ(τexpLqP)
where τexp is the maximum time for an exponentiation in G.

The proof is similar to that of Theorem 5.5 (for the BasicHICBE1), and thus is omitted here.

5.4.5 Performance Comparisons and Some Terminologies

In this section, we draw comparisons among previous and our FS-BE schemes by wrapping
up in Table 1. We name the three previous schemes intuitively from their approaches as
follows. The first scheme, GS(NNL)×YFDLGS, is the scheme in [YFDL04] that is instantiated
with the subset difference (SD) method [NNL01]. It can be considered intuitively as a
“cross-product” (thus, “×” is used) of two copies of the HIBE schemes by [GS02]: one
hierarchy provides key derivations required in the SD method and the other provides key
derivations for updating keys in the time dimension. This “cross-product” nature results in
the expansion factor O(log n log T) in performances from the original SD method (in which
ciphertext size and private key size is O(r) and O(log2 n) resp.).

Boneh et al. [BBG05, Section 5.2] replaced the underlying HIBE from the GS scheme
to the basic BBG scheme, which is a more efficient scheme with constant-size ciphertexts,
and obtained another scheme, in our terminology, BBG(NNL)×YFDLBBG. This can reduce the
ciphertext size to O(r), the same as in the original SD method.

Boneh et al. [BBG05, Section C] subsequently removed the cross-product structure
by using two HIBE systems which are “orthogonal” and “complementary” to each other,
namely, the basic BBG scheme and the BB scheme. This system, which we denote BBG(NNL)⊥BBG BB
(“⊥” for orthogonal integration), can thus reduce the expansion factor from O(log n log T)
to O(log n + log T). Note that the term log n does not appear in the ciphertext size (see
Table 1) since the hierarchy corresponding to the SD method is the BBG system. (And
recall that BBG achieves constant-size ciphertext).

On the other hand, our schemes outperform the previous schemes in terms of both
private key and ciphertext sizes. They inherit good properties from their underlying scheme:
(1) the ciphertext size and the private key size are independent of n and r (as in the BGW
scheme) and (2) the ciphertext size is constant (as in the BBG scheme) if the BBG scheme is
used. Note that the |S| − 2 = O(n) group multiplications for the decryption in our schemes
are due to the calculation of

∏
j∈S,j 6=i gn+1−j+i, which indeed can be precomputed. This

suggestion of [BGW05] is useful if the privileged group S is incrementally changed to S′: in
this case, the computation can be reduced to only |S′ \ S|+ |S \ S′| group operations.

124 5.5 Public-key Broadcast Encryption with Keyword Search

Table 5.1: Comparison among previous and our FS-BE schemes (upper and lower table resp.).
T = |total time periods|. n = |all users|. r = |revoked users|. The time complexity is expressed in
terms of number of operations where [e] is exponentiation, [p] is bilinear pairing, and [m] is group
multiplication, while [o] indicates the time complexity for some other process. ‘⇐’ means that it
has the same value as the entry on its left.

Params↓ GS(NNL)×YFDLGS BBG(NNL)×YFDLBBG BBG(NNL)⊥BBG BB
[YFDL04] [BBG05, full §5.2] [BBG05, full §C]

Reg time O(log3 n log T) [e] ⇐ O((log2 n)(log n + log T)) [e]
Enc time O(r log n log T) [e] ⇐ O(r(log n + log T)) [e]
Dec time O(log n log T) [p] + O(r) [o] ⇐ O(log T) [p] + O(r) [o]
Upd time O(log3 n) [e] ⇐ O(log2 n log T) [e]
|Pub key| O(log n + log T) ⇐ ⇐
|Pri key| O(log3 n log T) ⇐ O((log2 n)(log n + log T))
|Cipher| O(r log n log T) O(r) O(r log T)

Params↓ C(BasicHICBE1) DirFSBE C(BasicHICBE2) C(GenHICBE(0.5, 0.5))
Reg time O(log T) [e] ⇐ ⇐ O(

√
log T) [e]

Enc time O(n) [m] + O(log T) [e] ⇐ ⇐ O(
√

n) [m] + O(
√

log T) [e]
Dec time O(n) [m]9+ O(log T) [p] ⇐ O(n) [m]9+O(1) [p]O(

√
n) [m] + O(

√
log T) [p]

Upd time O(1) [e] ⇐ ⇐ ⇐
|Pub key| O(n + log T) ⇐ ⇐ O(

√
n +

√
log T)

|Pri key| O(log2 T) O(log T) O(log2 T) O(log1.5 T)
|Cipher| O(log T) ⇐ O(1) O(

√
n +

√
log T)

Along the discussion in this section, we may also name our schemes, for future reference,
as ‘BGW¯new X’, for a X HIBE, where ¯new denotes our method of combination. Note that
all the considered operations, ×YFDL,⊥BBG,¯new, are neither black-box, generic, nor even
well-defined; they provide only rough guides for combinations. These terminologies will be
sometimes appropriately abused as HICBE or FS-HIBE or Double-HIBE (cf. Section 5.7),
instead of FS-BE here, depended upon the usage of underlying hierarchies which should be
clear from the context.

5.5 Public-key Broadcast Encryption with Keyword Search

5.5.1 Definitions and Relation to Anonymous ICBE

BE with Keyword Search. A public-key broadcast encryption with keyword search
(BEKS) consists of four algorithms. Via (pk, {sk1, . . . , skn}) R←− Setup(n) the setup algorithm
produces a public key and n user keys; via C

R←− BEKS(pk, S,w) a sender encrypts a keyword
w to get a ciphertext (C,S) intended for recipients in S ⊆ {1, . . . , n}; via ti,w

R←− Td(i,w, ski)
the receiver i computes a trapdoor (ti,w, i) for keyword w and provides it to the gateway;
via b ← Test(pk, i, ti,w, C, S) for i ∈ S the gateway can test whether C encrypts w where
b = 1 means “positive” and b = 0 means “negative”. Here if i 6∈ S it always outputs ‘?’.

We describe the right-keyword consistency (correctness), the computational consistency
(in the sense of [ABC+05]), and the security notion, which we name IND-xKW-ySet-CPA as
follows. The security captures the property that the adversary be unable to distinguish the
encryption of chosen keyword with a random one.

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 125

5.5.2 Consistency Properties

Right-Keyword Consistency. This property states the correctness of a BEKS scheme
in the sense that there should be no true negative error. The scheme is said to be right-
keyword consistent if for all S ⊆ {1, . . . , n}, all i ∈ S, and all w in the keyword space W,
if (pk, {sk1, . . . , skn}) R←− Setup(n), C

R←− BEKS(pk, S,w), ti,w
R←− Td(i,w, ski), then it must

hold that Test(pk, i, ti,w, C, S) = 1.

Computational Consistency. This property states the correctness of a BEKS scheme in
the sense that no false positive error should be produced by any computationally-bounded
adversary. It can be defined by the following game between an adversary A and a challenger
C. Both C and A are given n as input. This is generalized from [ABC+05].

Setup. The challenger C runs Setup(n) to obtain pk and sk1, . . . , skn. It then gives pk to
A.

Find. A outputs (i?, S?, w?
0,w

?
1). C then computes C? R←− BEKS(pk, S?, w?

0) and ti?,w?
1

R←−
Td(i?, w?

1, ski?). If w?
0 6= w?

1 and Test(pk, i?, ti?,w?
1
, C?, S?) = 1 then A wins the game.

We refer to such an adversary A as a CON-aKW-aSet-CPA adversary. Following a sim-
ilar terminology as before, we have 4 possible combinations: CON-aKW-aSet-CPA where
(x, y) ∈ {(a, a), (a, s), (s, a), (s, s)}, corresponding to whether (w?

0, w
?
1) and/or (i?, S?) must be

disclosed before the Setup phase or not. We say that a BEKS scheme E is (t, ε)-CON-xKW-
ySet-CPA-secure if for the winning probability of any t-time CON-xKW-ySet-CPA adversary
is less than ε.

Note that we do not need to take care about the false-positive type of consistency
regarding i, S since S is always included in the ciphertext and i is always included in the
trapdoor and the user private key. (In particular, since i, S are needed to be specified as
inputs to the Test algorithm).

5.5.3 Security Notion for BEKS

We define semantic security of a BEKS system by the following game between an adversary
A and a challenger C. Both C and A are given n as input.

Setup. The challenger C runs Setup(n) to obtain a public key pk and the private key
sk1, . . . , skn. It then gives the public key pk to A.

Phase 1. A adaptively issues queries q1, . . . , qµ where query qk is one of the following:

- Private key query 〈i〉. C responds by sending ski to A.

- Trapdoor query 〈i, w〉. C responds by running algorithm Td to derive ti,w and sends
to A.

Challenge. Once A decides that Phase 1 is over, it outputs (S?, w?). The only restriction is
that A did not previously issue a private key query for i ∈ S? or a trapdoor query for 〈i,w?〉
such that i ∈ S?. C then picks a random b ∈ {0, 1} and computes C? R←− BEKS(pk, S?,wb)
and return it to A where w0 = w? and w1 is a random keyword of the same length as w?.

Phase 2. A issues additional queries qµ+1, . . . , qν where query qk is one of the following:

- Private key query 〈i〉 such that i 6∈ S?.

126 5.6 Difficulty on Constructing Anonymous HICBE

- Trapdoor query 〈i,w〉 such that if i ∈ S? then w 6= w?, else w can be arbitrary.

In both cases, C responds as in Phase 1. These queries may be adaptive.

Guess Finally A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.
We refer to such an adversary A as an IND-aKW-aSet-CPA adversary (KW for “key-

word”) and the above game as the IND-aKW-aSet-CPA game. Following a similar termi-
nology as before, we have 4 possible combinations: the game IND-xKW-ySet-CPA where
(x, y) ∈ {(a, a), (a, s), (s, a), (s, s)}, corresponding to whether w? and/or S? must be disclosed
before the Setup phase or not.

We define the advantage of the adversary A in attacking the BEKS scheme E in the
game IND-xKW-ySet-CPA as AdvBEKSxy(E ,A) = |Pr[b = b′] − 1

2 |, where the probability is
over the random bits used by C and A in that game.

Definition 5.14. We say that a BEKS scheme E is (t, qP, qT, ε)-IND-xKW-ySet-CPA-secure
if for any t-time IND-xKW-ySet-CPA adversary A that makes at most qP chosen private key
queries and qT chosen trapdoor queries, we have that AdvBEKSxy(E ,A) < ε.

5.5.4 Conversion K

The conversion of [ABC+05] that compiles any anonymous IBE into a PEKS can be gener-
alized to a broadcast version straightforwardly. More concretely, we construct BEKS from
ICBE as follows. SetupBEKS(n) can be constructed from SetupICBE and PrivKeyGenICBE by
relating the same pk, and ski = di. We let the remaining algorithms work as follows: ti,w

R←−
Td(i, w, ski) = DeriveICBE(i,w, di); (C1, C2)

R←− BEKS(pk, S,w) = EncryptICBE(pk, S,w); and
Test(pk, i, tw, (C1, C2), S) outputs ‘?’ if i 6∈ S, else outputs 1 if DecryptICBE(pk, S, i, tw, C1) =
C2, else outputs 0. Denote this conversion as K(·). Its correctness is immediate from that
of ICBE; here ti,w, C1, C2 are related to di,w, hdr,K in the ICBE scheme respectively. Note
that our conversion is a little bit different from (and simpler than) that of [ABC+05] since
we have formalized the ICBE as KEM. We have the following result, which is generalized
from [ABC+05].

Theorem 5.15. If the scheme ICBE is ANO-xID-ySet-CPA[{1}]-secure for some (x, y) ∈
{(a, a), (a, s), (s, a), (s, s)}, then the BEKS scheme K(ICBE) is IND-xKW-ySet-CPA-secure
Further, if ICBE is semantically secure, then K(ICBE) is computationally consistent.

The proof is exactly the same as that of the IBE-to-PEKS conversion of [ABC+05]
except for only two differences: (1) our conversion is based on the ICBE that is formalized
as KEM, and (2) we have to simulate also the private key oracle, instead of only the trapdoor
oracle. But these make no problem and the proof is immediate. We thus omit the details
here.

5.6 Difficulty on Constructing Anonymous HICBE

As one may expect, the first attempt is to use our integration method to combine the BGW
system with the anonymous HIBE, BW, by Boyen-Waters [BW06]. Somewhat surprisingly
and unfortunately, the resulting HICBE scheme, BGW¯new BW, is not ANO-sID-sSet-CPA-
secure. Essentially, this is precisely due to the implicit orthogonality of BGW and BW
(which has a BB-like structure). Such a property enables any user outside the target subset

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 127

S? to use the independent part of private keys corresponding to the BW portion to easily
distinguish whether a ciphertext is intended for (S?, ID?) or (S?, R) for random R, thus
breaking anonymity. Dilemmatically, on the one hand, this orthogonality enables us to
prove the confidentiality of the combined scheme; on the other hand, this very property
gives an attack to the anonymity.

In this section, we explain why the BGW ¯new BW HICBE system does not preserve the
anonymity from the stand-alone BW HIBE system.

Background. We first recall the reason why the BB and BBG IBE systems are not anony-
mous [ABC+05, BW06]. In both systems, the ciphertext are of the form (gt, F (ID)t) ∈ G2,
for some computable F (see Eq.(5.1),(5-2)). Denote it by (G, F). To break the anonymity,
one just checks whether e(G, F (ID)) ?= e(g, F) to see if this ciphertext was intended for ID
or not.

An elegant idea in [BW06] to prevent such a check is to “split” one of the term G or F;
moreover, intuitively speaking, this splitting is done in a “linear” way, so that bilinearity will
enable only the receiver, who knows some secret, to recover a useful information. Depending
on whether G-term or F-term is splitted, we have two initial candidates of ciphertext to be
used in a modified scheme as follows:

1.
(

(gx)t−t1 , (gy)t1 , F (ID)t
)
∈ G3 or 2.

(
gt, (F (ID)x)t−t1 , (F (ID)y)t1

)
∈ G3,

where the underlying pairs represent the result from splitting; x, y are master secrets,
which “destroy” the information for checking; t, t1 are the randomness of the ciphertext.
In [BW06], the first type underlies their first IBE scheme in their primer section (which we
will denote BW1), while the second underlies their full HIBE scheme (denoted BW2). BW1

is a little bit more efficient than BW2 (when considered as IBE): the size of pk in the first
and second are 6 and 8 elements in G, both plus 1 elements in G1, while the other overheads
are the same. The security is based on the Decision Linear assumption.

Integrating BGW. To integrate the BGW scheme with the BW system, we use our
methodology similarly as before, along with some further modification. Concretely, we
have to add re-randomization and delegation parts for the user root private keys, besides
the term (gi)γ , which was the only element of private key. These parts must be essen-
tially depended on the master key of the BW portion (and hence must be output from
PrivKeyGen) since, as seen from the stand-alone BW system, intuitively these terms let the
receiver recovers useful information to decrypt the ciphertext whose structure once seem-
ingly has been destroyed by the “linear splitting” technique. Furthermore, for only type (1),
we must also split the term C1 = (v ·∏j∈S gn+1−j)t (see Eq.(5.1)), otherwise the adversary

can check e(C1, F (ID)) ?= e(v ·∏j∈S gn+1−j , F). For simplicity, we will confine to only the
case of (non-hierarchical) ICBE schemes; indeed, we will state some negative results, the
confinement only makes our result stronger. We will consider the integration to both types,
BW1 and BW2.

In the following, we describe the BGW¯new BW1 and BGW¯new BW2 ICBE system and
their (in)security analysis.

128 5.6 Difficulty on Constructing Anonymous HICBE

Construction 5-6. BGW¯new BW1 ICBE Scheme

Setup(n,L): Let G be a bilinear group of prime order p. The algorithm first picks a
random generator g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G for
i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it picks a random γ ∈ Z×p and sets v = gγ ∈ G. It
then picks random elements h0, h1 ∈ G and a1, b1, a2, b2 ∈ Zp The public key is:

pk ←

(
gaj , g

aj

1 , . . . , g
aj
n , g

aj

n+2, . . . , g
aj

2n, vaj

gbj , g
bj

1 , . . . , g
bj
n , g

bj

n+2, . . . , g
bj

2n, vbj

)

j=1,2

, h0, h1

 .

The master key is msk = (γ, a1, b1, a2, b2). The algorithm outputs pk and msk.

PrivKeyGen(i, pk, msk): Pick random elements (ρ1, ρ
′
1, ρ2, ρ

′
2) ∈ (Zp)4. Let

dmain
i =

(
Ai, Bi

)
←

(
(gγ

i)a1 , (gγ
i)b1

)

drerand
i =

(
f, f ′

)
←

(
gρ1a1b1+ρ2a2b2 , gρ′1a1b1+ρ′2a2b2

)

ddeleg
i =

(
a`,1, a′`,1, b`,1, b′`,1,
a`,2, a′`,2, b`,2, b′`,2

)

`=0,1

←
(

ha1ρ1

` , h
a1ρ′1
` , hb1ρ1

` , h
b1ρ′1
` ,

ha2ρ2

` , h
a2ρ′2
` , hb2ρ2

` , h
b2ρ′2
`

)

`=0,1

The algorithm outputs di = dmain
i ||drerand

i ||ddeleg
i .

Derive(i, ID, di): Pick r, r′ ∈ Zp. Let

di,ID =

fi,ID,
Ai,ID,1, Bi,ID,1,
Ai,ID,2, Bi,ID,2

 ←

f r · f ′r′ ,
Ai · (ar

0,1a
′r′
0,1) · (ar

1,1a
′r′
1,1)

ID, Bi · (br
0,1b

′r′
0,1) · (br

1,1b
′r′
1,1)

ID,

(ar
0,2a

′r′
0,2) · (ar

1,2a
′r′
1,2)

ID, (br
0,2b

′r′
0,2) · (br

1,2b
′r′
1,2)

ID

Encrypt(pk, S, ID): Pick a random t, t1, t2 ∈ Zp and set K = e(gn+1, g)a1b1t, which can be
computed from e((ga1

n), (gb1
1))t. (Note that (ga1

n) and (gb1
1) are contained in the public

key). Next, set

hdr =

F,(
C(a),1, C(b),1,

C(a),2, C(b),2

)
,

(
V(a),1, V(b),1,

V(a),2, V(b),2

)

←

(
h0 · hID

1

)t
,(

(ga1)t1 , (gb1)t−t1 ,
(ga2)t2 , (gb2)t−t2

)
,

(
((va1) ·∏j∈S(ga1

n+1−j))
t1 , ((vb1) ·∏j∈S(gb1

n+1−j))
t−t1

((va2) ·∏j∈S(ga2
n+1−j))

t2 , ((vb2) ·∏j∈S(gb2
n+1−j))

t−t2

)

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 129

and output the pair (hdr, K). Here it should be clear which terms are from pk.

Decrypt(pk, S, i, di,ID, hdr): Compute

K =e(F, fi,ID)·

·
2∏

κ=1

e
(
(gaκ

i), V(b),κ

)
· e

(
(gbκ

i), V(a),κ

)

e
(
Ai,ID,κ ·

∏
j∈S
j 6=i

(gaκ
n+1−j+i), C(b),κ

)
· e

(
Bi,ID,κ ·

∏
j∈S
j 6=i

(gbκ
n+1−j+i), C(a),κ

)

We leave the correctness verification to the reader. To convince that our BGW¯new BW1

is a natural and correct candidate in the first place, we show that it satisfies minimum
requirements in the following proposition.

Proposition 5.16. Let G be a bilinear group of prime order p. We have the following.

1. Suppose the Decision (t, ε, n)-BDHE assumption holds in G. Then the BGW¯new BW1

ICBE system for n users is (t′, qP, ε′)-IND-sID-sSet-CPA-secure for arbitrary n and qP

with t′ ' t and ε′ ' ε−Θ(qP/p).

2. Suppose the Decision (t, ε)-Linear assumption holds in G. Then the BGW¯new BW1

ICBE system for n users is secure against a restricted ANO-sID-sSet-CPA[{1}] where
the private key queries are confined to only 〈i ∈ S?, ID〉 where ID is neither ID? nor
its prefix.

We give only the proof idea. For the confidentiality proof, the simulator will simulate
the challenge ciphertext and the BGW portion of the private keys using the given D-BDHE
instance, while it chooses the randomness due to the BW portion, namely (a1, a2, b1, b2),
itself. This can be done exactly the same way as our previous two schemes, except that
those known blinding factors from the BW portion are required to be lifted appropriately.
The re-randomization and delegation parts of private keys can be simulated since they are
independent of unknown terms.

For the restricted anonymity proof, the simulator will simulate the game by using the
given D-Linear instance, while it chooses α, γ itself. The proof of the stand-alone BW system
enables the simulation of private key when ID is neither ID? nor its prefix, which is exactly
the same restriction as in our restricted game. Therefore the simulation can be done in the
same as in the stand-alone BW system, except that the factor αiγ in the core part of the
key is required to be lifted appropriately.

Theorem 5.17. The BGW¯new BW1 ICBE system is not ANO-sID-sSet-CPA[{1}]-secure.

Proof. Consider an adversary that outputs (S?, ID?) at the initialization. It then asks a
private key query for a user i 6∈ S?. When it is given the challenge ciphertext, it checks
whether

e(F ?, f) ?=
2∏

κ=1

(
e(a0,κaID?

1,κ , C?
(b),κ) · e(b0,κbID?

1,κ , C?
(a),κ)

)

If so, it returns 0, else returns 1. It is easy to verify that the advantage of the adversary
over the game ANO-sID-sSet-CPA[{1}] is ≥ 1− 1/p.

130 5.6 Difficulty on Constructing Anonymous HICBE

Construction 5-7. BGW¯new BW2 ICBE Scheme

Setup(n,L): Let G be a bilinear group of prime order p. The algorithm first picks a
random generator g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G for
i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it picks a random γ ∈ Z×p and sets v = gγ ∈ G. It
then picks random elements h0,1, h0,2, h1,1, h1,2 ∈ G and a1, b1, a2, b2 ∈ Zp The public
key is:

pk ←
(

g, g1, . . . , gn, gn+2, . . . , g2n, v,
(
ha1

`,1, h
b1
`,1, h

a2
`,2, h

b2
`,2

)
`=0,1

)
.

The master key is msk = (γ, a1, b1, a2, b2). The algorithm outputs pk and msk.

PrivKeyGen(i, pk, msk): Pick random elements (ρ1, ρ
′
1, ρ2, ρ

′
2) ∈ (Zp)4. Let

dmain
i =

(
w

)
←

(
gγ
i

)

drerand
i =

(
a1, a′1, b1, b′1,
a2, a′2, b2, b′2

)
←

(
ga1ρ1 , ga1ρ′1 , gb1ρ1 , gb1ρ′1 ,

ga2ρ2 , ga2ρ′2 , gb2ρ2 , gb2ρ′2

)

ddeleg
i =

(
f`, f ′`

)
`=0,1

←
(

ha1b1ρ1

`,1 · ha2b2ρ2

`,2 , h
a1b1ρ′1
`,1 · ha2b2ρ′2

`,2

)
`=0,1

The algorithm outputs di = dmain
i ||drerand

i ||ddeleg
i .

Derive(i, ID, di): Pick r, r′ ∈ Zp. Let

di,ID =

wi,ID,
Xi,ID,1, Yi,ID,1,
Xi,ID,2, Yi,ID,2

 ←

w · (f r
0 · f ′0r′) · (f r

1 · f ′1r′)ID,

ar
1 · a′r

′
1 , br

1 · b′r
′

1 ,

ar
2 · a′r

′
2 , br

2 · b′r
′

2

Encrypt(pk, S, ID): Pick a random t, t1, t2 ∈ Zp and set K = e(gn+1, g)a1b1t, which can be
computed from e((ga1

n), (gb1
1))t. (Note that (ga1

n) and (gb1
1) are contained in the public

key). Next, set hdr =

(
F(a),1, F(b),1,

F(a),2, F(b),2

)
,

C,
V

 ←

(
(ha1

0,1) · (ha1
1,1)

ID
)t1

,
(
(hb1

0,1) · (hb1
1,1)

ID
)t−t1

,
(
(ha2

0,2) · (ha2
1,2)

ID
)t2

,
(
(hb2

0,2) · (hb2
1,2)

ID
)t−t2

 ,

gt,
(v ·∏j∈S gn+1−j)t

and output the pair (hdr, K). Here it should be clear which terms are from pk.

Decrypt(pk, S, i, di,ID, hdr): Compute

K =
e(gi, V)

e(wi,ID
∏

j∈S
j 6=i

gn+1−j+i, C)
·

2∏

κ=1

(
e
(
F(a),κ, Yi,ID,κ

)
· e

(
F(b),κ, Xi,ID,κ

))

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 131

We can state a similar proposition for confidentiality and restricted anonymity as in the
previous scheme. We omit here. Now we state that the scheme is not anonymous as follows.

Theorem 5.18. The BGW¯new BW2 ICBE system is not ANO-sID-sSet-CPA[{1}]-secure.

Proof. Consider an adversary that outputs (S?, ID?) at the initialization. It then asks a
private key query for a user i 6∈ S?. When it is given the challenge ciphertext, it checks
whether

e(f0 · f ID?

1 , C?) ?=
2∏

κ=1

(
e(F ?

(a),κ, bκ) · e(F ?
(b),κ, aκ)

)

If so, it returns 0, else returns 1. It is easy to verify that the advantage of the adversary
over the game ANO-sID-sSet-CPA[{1}] is ≥ 1− 1/p.

5.7 Anonymous HICBE Construction

From the failed attempt, it is then natural to implement both the broadcast and identity
dimensions from two non-orthogonal sub-systems. Therefore, we construct our scheme,
denoted AnonHICBE, from the YFDL (cross-product) approach instantiated to two copies of
the BW hierarchies, or in our terminology, BW×YFDLBW. Such a scheme was already noticed,
without any details, in [BW06] in the context of anonymous FS-BE. (Thus, in particular,
the two hierarchies correspond to time-tree and anonymous identity dimension there, as
opposed to broadcast and anonymous identity dimension here). There, the authors merely
pointed the reference to [YFDL04, BBG05] for how to construct a forward-secure version of
their BW system. We found that, however, the approaches of BW⊥BBG BB and BW⊥BBG BBG
do not preserve the anonymity of BW. This is precisely due to the orthogonality of BW
and BB or BBG; indeed, an attack can be argued essentially in a similar manner as the one
on BGW¯new BW as described above, we thus omit the detail of the attack here.

To conclude, we construct our default AnonHICBE scheme via the BW(BE)×YFDLBW
approach, which we are the first to flesh out explicit details here. For generality, we present
our scheme for arbitrary subset-cover broadcast encryption BE. When instantiating with
the SD method, the resulting anonymous ICBE system achieves ciphertext of size O(r log n)
and private key of size O(log4 n) for the user level (level 0) and private key of size O(log3 n)
for level 1. These translate to the sizes of ciphertext, private key, and trapdoor in BEKS
respectively.

We now describe the AnonHICBE scheme postponed from Section 5.6. We do it in two
steps: first we construct anonymous HICBE from anonymous double-HIBE in a black-box
manner. We then later specify the construction of anonymous double-HIBE, which is done
via the BW×YFDLBW approach.

5.7.1 Double-HIBE

We first reformalize the notion of Multiple-HIBE, first mentioned in [YFDL04]. Such a
primitive allows multiple hierarchies that are evolved simultaneously. For our purpose it
suffices to consider the case of two hierarchies. It consists of 6 algorithms:

Setup(L1, L2): Takes as input the maximum depth L1, L2 of the two hierarchies. It outputs
a public key pk and a master key msk.

132 5.7 Anonymous HICBE Construction

Extract(pk,msk, ID(1), ID(2)): Take as input pk,msk and a pair of identity tuple. It outputs
the private key dID(1),ID(2) .

Derive1(ID(1), ID(2), d
ID

(1)
|z1−1

,ID(2)): Takes as input a pair of identity tuple ID(1) of depth z1

and ID(2) of depth z2 and the private key of (ID(1)
|z1−1, ID

(2)). It outputs the private
key dID(1),ID(2) .

Derive2(ID(1), ID(2), d
ID(1),ID

(2)
|z2−1

): Takes as input a pair of identity tuple ID(1) of depth z1

and ID(2) of depth z2 and the private key of (ID(1), ID
(2)
|z2−1). It outputs the private

key dID(1),ID(2) .

Encrypt(pk, ID(1), ID(2)): Takes as input pk and an identity tuple pair (ID(1), ID(2)). It out-
puts a pair (hdr,K).

Decrypt(pk, dID(1),ID(2) , hdr): Takes as input the pk, the private key of an identity tuple pair

(ID(1), ID(2)), and the header hdr. It outputs K.

The scheme is correct if the private keys dID(1),ID(2) output from either one of Extract, Derive1, Derive2

must conform the same distribution, and the Encrypt and Decrypt are consistent. The se-
curity notions for confidentiality, IND-x1ID1-x2ID2-CCA, and anonymity, ANO-x1ID1-x2ID2-
CCA[∆1, ∆2], can be defined in the standard manner.

5.7.2 From Double-HIBE to HICBE

We now describe our AnonHICBE Scheme. The description of our scheme below is reminis-
cent of the FS-BE scheme of [YFDL04], albeit we do it more generally: our description can
be instantiated to any arbitrary subset-cover based BE [NNL01]. We follow the formaliza-
tion via the tree decomposition framework of [AI05a]. We begin with some terminologies.

Definition 5.19. (Complement-Cover Set System) For a map c : Z2
>0 → Z>0, a

set system S = {S1, ..., Sm} over a base set N = {1, ..., n} is c-complement-cover if there
is a polynomial-time algorithm CoverS such that upon input any subset R ⊂ N , outputs
{Si1 , ..., Sit} for some 1 ≤ i1, . . . , it ≤ m such that N rR =

⋃t
j=1 Sij and that t ≤ c(n, |R|).

A public-key version of subset-cover-based broadcast encryption will be based on a tree
decomposition of the inclusion poset (S,⊆). We first review such a notion. First, a poset
S can be represented by a directed acyclic graph, denoted by DAG(S) = (V,E), whose the
node set being V = S and the (directed) edge set being E = {(S, S′) : S ⊂ S′; S, S′ ∈ S}.
A graph decomposition of a poset S is a family of connected subgraphs whose sets of nodes
partition the set of all nodes in the DAG(S). When each subgraph is a tree whose edges are
directed away from the root, we call it a tree decomposition. From a tree decomposition
of {(Vi, Ei) : i = 1, . . . , k} of S, we construct a big tree TS = (V ′, E′) by setting V ′ =
{r} ∪⋃k

i=1 Vi and E′ = {(r, ri) : i = 1, . . . , k} ∪⋃k
i=1 Ei, where r is a newly added root node

and ri is the root node of the subgraph (Vi, Ei). Let D denote the deepest depth of TS . For
i ∈ {1, . . . , n}, let Reach(i) = {S | i ∈ S; i 6∈ par(S), S ∈ V ′}, where par(S) is the parent of
S in the tree TS .

For each node S of the tree TS , we assign a different identity f(S) ∈ {0, 1}≤log s where s
is the number of all siblings of S in TS . We let the identity-tuple corresponding to S be the

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 133

vector VS = 〈f(S′1), . . . , f(S′j), f(S)〉, where r, S′1, . . . , S
′
j , S are the nodes on the path from

the root r to S in TS .

Construction. From a double-HIBE (Setup,Extract,Derive1,Derive2,Encrypt,Decrypt), we
construct a HICBE (Setup¦,PrivKeyGen¦, Derive¦, Encrypt¦,Decrypt¦) as follows. DEM is
any CCA-secure data encapsulation mechanism.

Setup¦(n,L): Run Setup(D, L). Let pk¦ = pk and msk¦ = msk.

PrivKeyGen¦(i, pk¦, msk¦): Using msk, it runs d(VS ,ε)
R←− Extract(pk, msk, (VS , ε)) for each

S ∈ Reach(i). It then let d¦i = {(S, d(VS ,ε)) | S ∈ Reach(i)}.
Derive¦(i, ID, d¦i,ID|z−1

): Parse d¦i,ID|z−1
= {(S, d(VS ,ID|z−1)) | S ∈ Reach(i)}. For each S ∈

Reach(i), run d(VS ,ID)
R←− Derive2(VS , ID, d(VS ,ID|z−1)). It then outputs d¦i,ID = {(S, d(VS ,ID)) | S ∈

Reach(i)}.
Encrypt¦(pk¦, S̄, ID): To encrypt to the set S̄, it first runs {Sj1 , . . . , Sjt} ← CoverS(N \ S̄).

For k = 1, . . . , t, it then runs (hdrjk
,Kjk

) R←− Encrypt(pk, VSjk
, ID). It randomly chooses

K̄ ∈MDEM. It lets hdr¦ = 〈j1, hdrj1 , DEM-Enc(Kj1
)(K̄)〉|| . . . ||〈jt, hdrjt ,DEM-Enc(Kjt)

(K̄)〉
and K¦ = K̄. It outputs the pair (hdr¦,K¦).

Decrypt¦(pk¦, S̄, i, d¦i,ID, hdr¦): Parse hdr¦ = 〈j1, hdrj1 , Cj1〉|| . . . ||〈jt, hdrjt , Cjt〉. From the
definition of the complement-cover set system, if i ∈ S̄ then there exists jk such that
i ∈ Sjk

. Necessarily, Sjk
is a descendent of one set in the collection Reach(i), say set

S̃. From d(VS̃ ,ID), it thus recursively applies Derive1 to derive d(VSjk
,ID). It then runs

Kjk
← Decrypt(pk, VSjk

, ID, hdrjk
) and K̄ ← DEM-Dec(Kjk

)(Cjk
).

Our full scheme will further use the OR-multiple encryption of [DK05] to achieve CCA se-
curity. It can be argued straightforwardly that if the underlying double-HIBE is IND-x1ID1-
x2ID2-CCA-secure then the resulting HICBE will be IND-x2ID-x1Set-CCA-secure. Also, if the
underlying double-HIBE is ANO-x1ID1-x2ID2-CCA[∅, ∆]-secure then the resulting HICBE
will be ANO-x2ID-x1Set-CCA[∆]-secure.

Instantiation by the SD method. Consider the balance complete binary tree of n
leaves. Denote this tree as BT. For node u, v such that u is an ancestor of v, let subset
difference dif(u,v) be the set of leaves under node u but not under node v. The SD method
defines SSD = {dif(u,v) : u is ancestor of v} ∪ {N}. It is known that SSD is (2r − 1)-
complement-cover set system [NNL01]. The tree decomposition TSSD

is defined by specifying
the edge set E = {(dif(u,v1), dif(u,v2)) | v1 is the parent of v2 in BT, u is an ancestor of v1}.
It is known that |Reach(i)| = log2 n+log n

2 + 1 [NNL01].

5.7.3 A Construction of Anonymous Double-HIBE

In this section, we explicitly describe the BW×YFDLBW double-HIBE scheme. Although,
such an approach was already noticed by Boyen and Waters [BW06] towards constructing
forward-secure version of their anonymous BW HIBE, they did not give an explicit descrip-
tion (indeed, since the main objection of their paper was to construct anonymous HIBE).
They only pointed the reference to [YFDL04, BBG05] for how to construct. At this point,
it may be misunderstood by a non-savvy reader to use the BW⊥BBG BB approach, as this

134 5.7 Anonymous HICBE Construction

methodology was contained in the latter reference (we write the name in our terminology,
though). However, as we have already discussed in Section 5.6, the BW⊥BBG BB scheme does
not preserve anonymity from the stand-alone BW HIBE. Therefore, it is important to give
an explicit description to avoid such ambiguities. On the other hand, we will omit the se-
curity proof since once the description is clear, the proof can be considered straightforward
from the BW scheme.

Let G be a bilinear group of prime order p. Let I≤L1
1 , I≤L2

2 be the identity-tuple spaces
for both hierarchies in the double-HIBE. Let H : I≤L1

1 ×I≤L2
2 → Zp be a collision-resistant

hash function, where H(ε, ε) = 1. (Recall that ε is the empty string). When there is no
confusion, we denotes I〈`1,`2〉 = H(ID(1)

|`1 , ID
(2)
|`2) for all 0 ≤ `1 ≤ z1, 0 ≤ `2 ≤ z2, where

z1, z2 are the lengths of vector ID(1) and ID(2) respectively. Thus I0,0 = 1. Let J =
(L1 + 1)(L2 + 1). Let A = {0, . . . , L1} × {0, . . . , L2}. For all 0 ≤ `1 ≤ L1, 0 ≤ `2 ≤ L2, let
R`1,`2 = A \ ({0, . . . , `1} × {0, . . . , `2}).

Construction 5-8. Anonymous Double-HIBE

Setup(L1, L2): The algorithm first picks a random generator g ∈ G and a random ω ∈ Z×p .

It then picks random elements
[
ακ, βκ, [θκ,〈`1,`2〉]〈`1,`2〉∈A

]J+1

κ=1
∈ ((Z×p)2×(Zp)J+1)J+1

then let

pk =

[
Ω,[

[aκ,〈`1,`2〉, bκ,〈`1,`2〉]〈`1,`2〉∈A

]J+1

κ=1

]
←

[
e(g, g)ω,[

[gακθκ,〈`1,`2〉 , gβκθκ,〈`1,`2〉]〈`1,`2〉∈A

]J+1

κ=1

]

msk =

[
w,[

aκ, bκ, [yκ,〈`1,`2〉]〈`1,`2〉∈A

]J+1

κ=1

]
←

[
gω,[

gακ , gβκ , [gακβκθκ,〈`1,`2〉]〈`1,`2〉∈A

]J+1

κ=1

]

Extract(pk,msk, ID(1), ID(2)): From msk, to generate a private key for a pair of identity-
tuples (ID(1), ID(2)) of depth z1 ≤ L1 and z2 ≤ L2 respectively, the algorithm first

picks random elements
[

ρκ, [ρκ,m]J+1
m=1

]J+1

κ=1
∈ (Zp)(J+2)(J+1) and lets

ddecrypt

ID(1),ID(2) =

[
k0,[

kκ,(a), kκ,(b)

]J+1

κ=1

]
←

w ·
J+1∏

κ=1

〈z1,z2〉∏

〈`1,`2〉=〈0,0〉
(y

I〈`1,`2〉
κ,〈`1,`2〉)

ρκ ,

[aρκ
κ , bρκ

κ]J+1
κ=1

drerand
ID(1),ID(2) =

[
fm,0,[

fm,κ,(a), fm,κ,(b)

]J+1

κ=1

]J+1

m=1

←

J+1∏

κ=1

〈z1,z2〉∏

〈`1,`2〉=〈0,0〉
(y

I〈`1,`2〉
κ,〈`1,`2〉)

ρκ,m ,

[
a

ρκ,m
κ , b

ρκ,m
κ

]J+1

κ=1

J+1

m=1

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 135

ddeleg

ID(1),ID(2) =

[
h〈`1,`2〉,[

hm,〈`1,`2〉
]J+1

m=1

]

〈`1,`2〉∈Rz1,z2

←

J+1∏

κ=1

yρκ

κ,〈`1,`2〉,

[
J+1∏

κ=1

y
ρκ,m

κ,〈`1,`2〉

]J+1

m=1

〈`1,`2〉∈Rz1,z2

The private key for (ID(1), ID(2)) is dID(1),ID(2) = ddecrypt

ID(1),ID(2) ||drerand
ID(1),ID(2) ||ddeleg

ID(1),ID(2) which

is an element in G2J+3 ×G(2J+3)(J+1) ×G(J+2)(J−(z1+1)(z2+1)).

Derive1(ID(1), ID(2), d
ID

(1)
|z1−1

,ID(2)): To generate the private key for a pair of identity-tuples

(ID(1), ID(2)) of depth z1 ≤ L1 and z2 ≤ L2 from d
ID

(1)
|z1−1

,ID(2) , it recursively computes

a sequence of temporary keys as follows.

d
ID

(1)
|z1−1

,ID(2) = s0 ⇒ s1 ⇒ · · · ⇒ sz2 ⇒ sz2+1 = dID(1),ID(2) .

Let T0 = Rz1−1,z2 and for 1 ≤ j ≤ z2 + 1 let Tj = Rz1−1,z2 \ ({z1} × {0, . . . , j − 1}).
Note that Tz2+1 = Rz1,z2 . From sj , it will compute sj+1. First parsing sj as

[
k0,[

kκ,(a), kκ,(b)

]J+1

κ=1

]
,

[
fm,0,[

fm,κ,(a), fm,κ,(b)

]J+1

κ=1

]J+1

m=1

,

[
h〈`1,`2〉,[

hm,〈`1,`2〉
]J+1

m=1

]

〈`1,`2〉∈Tj

which is an element in G2J+3 ×G(2J+3)(J+1) ×G(J+2)(J−(z1)(z2+1)−j).

It then picks [πm, [πm,m′]J+1
m′=1]

J+1
m=1 ∈ (Zp)(J+2)(J+1) and lets

sdecrypt
j+1 ←

(k0

J+1∏

m=1

(fm,0)πm)(h〈z1,j〉
J+1∏

m=1

(hm,〈z1,j〉)πm)I〈z1,j〉 ,

[
kκ,(a)

J+1∏

m=1

(fm,κ,(a))
πm , kκ,(b)

J+1∏

m=1

(fm,κ,(b))
πm

]J+1

κ=1

srerand
j+1 ←

(
J+1∏

m=1

(fm,0)πm,m′)(
J+1∏

m=1

(hm,〈z1,j〉)
πm,m′)I〈z1,j〉 ,

[
J+1∏

m=1

(fm,κ,(a))
πm,m′ ,

J+1∏

m=1

(fm,κ,(b))
πm,m′

]J+1

κ=1

J+1

m′=1

sdeleg
j+1 ←

h〈`1,`2〉
J+1∏

m=1

(hm,〈`1,`2〉)
πm ,

[
J+1∏

m=1

(hm,〈`1,`2〉)
πm,m′

]J+1

m′=1

〈`1,`2〉∈Tj+1

Then it lets sj+1 = sdecrypt
j+1 ||srerand

j+1 ||sdeleg
j+1 ∈ G2J+3×G(2J+3)(J+1)×G(J+2)(J−(z1)(z2+1)−(j+1)).

Derive2(ID(1), ID(2), d
ID(1),ID

(2)
|z2−1

): This algorithm is exactly the same as Derive1 with the

136 5.7 Anonymous HICBE Construction

role of two hierarchies swapped.

Encrypt(pk, ID(1), ID(2)): Pick random elements t, [tκ]J+1
κ=1 ∈ (Zp)J+2 and set K = Ωt. Next,

set

C =

gt,

〈z1,z2〉∏

〈`1,`2〉=〈0,0〉
b
I〈`1,`2〉
κ,〈`1,`2〉

tκ

,

〈z1,z2〉∏

〈`1,`2〉=〈0,0〉
a

I〈`1,`2〉
κ,〈`1,`2〉

t−tκ

J+1

κ=1

 ∈ G2J+3,

and output the pair (C, K).

Decrypt(pk, dID(1),ID(2) , C): Parse the ciphertext as C =
(
C0, [Aκ,(b), Aκ,(a)]

J+1
κ=1

)
∈ G2J+3.

Also parse ddecrypt

ID(1),ID(2) =
(
k0, [kκ,(a), kκ,(b)]

J+1
κ=1

)
. Then output

K = e(k0, C0) /
J+1∏

κ=1

e(Aκ,(b), kκ,(a))e(Aκ,(a), kκ,(b)).

Theorem 5.20. Let G be a bilinear group of prime order p. Suppose the Decision (t, ε)-
BDH assumption holds in G.5 Then the BW×YFDLBW double-HIBE scheme for maximum
depth L1, L2 is (t′, qP, ε′)-IND-sID1-sID2-CPA-secure for arbitrary L1, L2 and qP with t′ ' t
and ε′ ' ε−Θ(L1L2qP/p).

Theorem 5.21. Let G be a bilinear group of prime order p. Suppose the Decision (t, ε)-
Linear assumption holds in G. Then the BW×YFDLBW double-HIBE scheme for maximum
depth L1, L2 is (t′, qP, ε′)-ANO-sID1-sID2-CPA[{1, . . . , L1}, {1, . . . , L2}]-secure for arbitrary
L1, L2 and qP with t′ ' t and ε′ ' ε−Θ(L2

1L
2
2qP/p).

The proofs can be done by a straightforward generalization from that of the BW scheme,
albeit being quite complicated as the original one already was so. We thus omit them and
state only the intuition. The potential attack that was successful to break the anonymity
of those orthogonally combined systems is of the form that the adversary who possesses the
private key for (ID(1), ID

(2)
|z2−1) will correctly distinguish whether a ciphertext is intended

for (ID(1)
|z1−1, ID

(2)) or (ID(1)
|z1−1, X) for a random identity-tuple X of depth z2, something he

should not have been able to do if the anonymity were held. However, in the cross-product
approach, the attack of this type will not apply since intuitively all the useful information in
the key of (ID(1), ID

(2)
|z2−1) has already been together-evolved to index z1 in such a way that,

unlike in orthogonally combined schemes, he cannot unblind to index z1 − 1. Therefore he
cannot perform the check of identity as usual.

Efficiency of AnonHICBE. Combining all together, our anonymous HICBE of L levels,
instantiated with a cS-complement-cover set system S, yields ciphertext of size O(cS(n, r) ·
DS ·L) and private key of size O(|Reach(i)| ·D2

S ·L2) for all levels except the last level L at
which private key is of size O(|Reach(i)|·DS ·L) (since the rerand and deleg parts are no need

5The decision BDH problem [Jou00] in G is stated as follows: given a vector (g, ga, gb, gc, Z) ∈ G4 × G1

as input, determine whether Z = e(g, g)abc. The decision (t, ε)-BDH assumption posits the hardness of this
problem and can be formally defined in an analogous way as other assumptions.

Chapter 5: Practical Forward-Secure and Searchable Broadcast Encryption 137

anymore for the last level), where DS is the deepest depth of the tree decomposition TS .
Instantiating with the SD method (where DS = log n, |Reach(i)| = O(log2 n), cS(n, r) =
O(r)) yields the scheme with ciphertext of size O(r · log n · L) and private key of size
O(log4 n · L2) for all levels except the last, at which it is of size O(log3 n · L2).

5.8 Some Extended Primitives

In this section, we describe the details for some extensions of FS-BE and BEKS.

BETKS. A public-key broadcast encryption with temporary keyword search (BETKS) is
a generalization of BEKS (and analogous to PETKS generalized from PEKS) in which a
trapdoor can be issued for any desired window of time rather than forever. This can be
implemented analogous to PETKS of [ABC+05] by using ANO-xID-ySet-CPA[{1}]-secure
HICBE of 1+log T levels by putting keywords at the first level and a binary tree time frames
on the levels below. In such a scheme, unlike the time-tree of [CHK03], which utilized all
nodes in the tree as time-nodes, one uses only the ones at the leaf level (cf. [Kat02]), i.e.,
at level 1 + log T , as time-nodes and uses the other internal nodes as auxiliary nodes for
key delegation, so that any arbitrary set of time period, say A ⊆ {1, . . . , T}, can be covered
exactly by subtrees outside the minimum Steiner tree over leaves in {1, . . . , T} \A (cf. the
complete-subtree method in [NNL01]); the key for this time interval corresponds to all the
roots of those cover subtrees. This can be implemented via the AnonHICBE of Section 5.7.

Forward-Secure BE(T)KS. A forward-secure BE(T)KS scheme, FS-BE(T)KS, is a more
esoteric system which enables the autonomous updating for both the private key of each
user (done solely by that user i) and trapdoor (done solely by the gateway; furthermore, in
the FS-BETKS case, this is allowed to be done only in a specified limited period). These
schemes provide the security of any past-time BEKS-encrypted ciphertext even both the
present-time trapdoor for a target keyword and the present-time private key for any user in a
target set are given to the adversary. Many difficulties arise, for example, it must be ensured
that the time where a trapdoor is issued from a user to the gateway is oblivious to a sender,
who encrypts a keyword by specifying only the present time. This issuing-time-obliviousness
property is analogous to the join-time-obliviousness when constructing FS-HIBE [YFDL04].
As expected, we solve this problem by constructing forward-secure anonymous HICBE. First
we construct a triple-HIBE (cf. Section 5.7.1) by the approach BW×YFDL BW×YFDLBW,
which can be straightforwardly generalized (although complicated) from the BW×YFDLBW
double-HIBE in Section 5.7.3. We then utilize the first hierarchy as time dimension (via the
CHK time-tree conversion), and the other two hierarchies together as anonymous HICBE
dimension (via the double-HIBE⇒HICBE conversion in Section 5.7.2).

5.9 Conclusions and Open Problems

We presented the first FS-BE schemes with ciphertext and private key size being indepen-
dent of the number of users in the system. As a building block, we introduced the notion of
HICBE, constructed concrete schemes and then converted them via a generic CHK time-tree
conversion to obtain FS-BE schemes. A more efficient direct construction of FS-BE scheme
was also given. Our methodology provides a method for securely integrating the broadcast
encryption scheme of [BGW05] with the HIBE systems of [BB04a, BBG05, Wat05]. We
proved the security of our schemes against static adversarial collusion in the standard model

138 5.9 Conclusions and Open Problems

under the Decision n-BDHE assumption. A similar open problem as posed in [BGW05]
arises, that is, the question of building a FS-BE scheme with the same parameters as ours
but is secure against adaptive collusion (IND-xID-aSet-CCA).

We also introduced the notion of public-key broadcast encryption with keyword search
(BEKS) and provided a transform from anonymous (H)ICBE, of which a quasi-efficient
construction, based on the cross-product approach [YFDL04] over the anonymous HIBE
of [BW06], was explicitly presented. An open problem is to construct a BEKS with ci-
phertext and private key size being independent of the number of users. We constructively
hinted that even adapting the technique used in our FS-BE schemes (which achieved the
constant overheads), it may not be easy to do so.

Chapter 6

Conclusions

In this thesis, we have studied the class of encryption primitives with high functionalities.
This area of research is not only considered one of the main streams of recent advancement in
cryptography but some of them have also been already implemented and used as important
tools in the real-world systems. Our goals consisted of both practical and theoretical sides.

For practical side, in Chapter 3, we have chosen to focus on symmetric key broadcast
encryption, since it is one of only few highly-functional primitives that has been already
used in real-world practice. As an evidence to support this, we have seen that the subset-
difference broadcast encryption scheme by Naor et al. [NNL01] was recently chosen as a
new standard called Advance Access Content System (AACS) and will be used in the next-
generation DVD materials such as Blu-ray Disc (BD) and HD-DVD. Our aim regarding this
area of research was to construct more efficient scheme in which main parameters, ciphertext
sizes and private key sizes, are small and in particular “scalable”, i.e., being independent to
the growth of the number of all users in the system. As a result, we achieved the first such
schemes in the literature. Comparing to an independently proposed scheme of [BGW05]
which also achieved the same goal, ours yield much less computational cost while have to
pay off larger ciphertext size.

Our contributions regarding broadcast encryption do not confine only to some concrete
schemes, indeed we have presented three generic frameworks based on different key deriva-
tion techniques. It turned out that almost all recent broadcast encryption schemes can be
considered as instantiations from our frameworks.

For theoretical side, in Chapter 4, we presented a unified framework for public key
encryption with high functionalities. Such kinds of primitives are extensions of normal
public key encryption so as to strengthen the security or to achieve some useful function-
alities which are specific to applications thereof. These include, but not limit to, existing
primitives such as key-insulated encryption [DK02], forward-secure encryption [CHK03],
certificate-based encryption [Gen03], intrusion-resilient encryption [DFK+03], hierarchical
IBE (HIBE) [HL02, GS02], time-capsuled encryption [MHS03], and many more including
some of their generalizations themselves.

The unified framework, called directed acyclic graph encryption (DAGE), presented a
unified definition of algorithm syntax and a unified formalization of security notion for
almost all public key encryption primitives with high functionalities known to date. In
our framework, each encryption primitive is specified completely by the notion of labeled
access directed acyclic graph (LAD), and its definitions for syntax and security notion will

140

be derived automatically from the unified ones. The merit of the framework is directed as
it provides a convenient way to formalize a primitive without doing anew each time when
one wants to propose a new kind of encryption.

A central tool to DAGE framework is the primitive implication theorem which provides
a simple criterion stated in the propositional logic to check the relation between any pair of
encryption primitives casted as DAGEs. As a result, this allows an automated verification
of the relation proof.

We then presented a generic construction of DAGE for any graph from HIBE. This
demonstrates a possibility result that we can base DAGE on any HIBE. Next we proposed
efficient constructions based on bilinear maps for OR-graph and AND-graph DAGE that
require only constant-size ciphertext. Combining these with multiple encryption technique
gives the constructions of DAGE for general graph. We also gave the construction of OR-
graph DAGE for the most complex graph (bounded-complete type). These constructions
have merits not only in the theoretical point of view (where they show the possibility
results) but also in the practical aspect: the protocol designer can simply specify a “tailor-
made” graph for the on-purposed application and the implementation of the scheme will
be prompted to use. Finally we gave prototypes for many functionalities; one consequence
from this is that we can obtain DAGEs of any combinations of functionalities automatically.

Considering the combination of goals from two previous chapters, in Chapter 5, we
presented public key broadcast encryption schemes that are simultaneously practical and
featuring high functionalities. Although, broadcast encryption is already useful in the sym-
metric key setting as was focused in Chapter 3, we dealt with schemes in the public key
setting in this chapter since they give more flexibility. To be able to attain such practical
broadcast schemes, it is unavoidable to focus on more specific functionalities (not generic
as in the second topic above). We focused on some most useful functionalities, namely for-
ward security and keyword-based searchability. As a result, we achieved the most practical
and scalable forward-secure public key broadcast encryption so far and the first searchable
scheme broadcast encryption in the literature.

In conclusion, we have presented practical schemes and theoretical formalizations for
encryption primitives with high functionalities. We believe that our techniques for broadcast
encryption can be used to construct even more efficient schemes, and our unified framework
for public key encryption with high functionalities can be utilized to define and construct
even more useful new primitives. We also give a final remark for future research direction
that our unified framework, although already covers almost all encryption primitives known
to date, can be extended even more to include more primitives, such as recently proposed
attribute-based encryption [GPSW06] in a meaningful way.

Bibliography

[ABC+05] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-
Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions. In Advances in Cryptology —
CRYPTO 2005, volume 3621 of LNCS, pages 205-222. Springer-Verlag, 2005.

[ACD+06] M. Abdalla, D. Catalano, A. W. Dent, J. Malone-Lee, G. Neven and N. P.
Smart. Identity-based encryption gone wild. To appear in Cryptographers Track —
ICALP 2006, 2006.

[AMN99] M. Abdalla, S. K. Miner, and C. Namprempre. Forward-secure threshold signa-
ture schemes. In Topics in Cryptography — CT-RSA 2001, volume 2020 of LNCS,
pages 441-456. Springer- Verlag, 2001.

[AGKS05] M. Abe, R. Gennaro, K. Kurosawa, V. Shoup. Tag-KEM/DEM: A New Frame-
work for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In
Advances in Cryptology — Eurocrypt 2005, volume 3494 of LNCS, pages 128-146.
Springer-Verlag, 2005.

[AT83] S. G. Akl, P. D. Taylor. Cryptographic Solution to a Problem of Access Control
in a Hierarchy. In ACM Transactions on Computer Systems, Vol. 1, No. 3 (1983), pp.
239-248.

[AP03] S. Al-Riyami, K.G. Paterson. Certificateless Public Key Cryptography. In Advances
in Cryptology — Asiacrypt 2003, volume 2894 of LNCS, pages 452-473. Springer-
Verlag, 2003.

[ADR02] J.H. An, Y. Dodis, T. Rabin. On the Security of Joint Signature and Encryption.
In Advances in Cryptology — Eurocrypt 2002, volume 2332 of LNCS, pages 83-107.

[And97] R. Anderson. Two remarks on public-key cryptology. Invited lecture, 4th
ACM Conference on Computer and Communications Security, 1997. Available at
http://www.cl.cam.ac.uk/ ftp/users/rja14/.

[AMM99] J. Anzai, N. Matsuzaki and T. Matsumoto. Quick Group Key Distibution Scheme
with Entity Revocation. In Advances in Cryptology — Asiacrypt 1999, volume 1716 of
LNCS, pages 333-347, 1999.

[Asa02] T. Asano. A revocation scheme with minimal storage at receivers. In Advances in
Cryptology — Asiacrypt 2002, volume 2501 of LNCS, pages 433-450. Springer-Verlag,
2002.

142 BIBLIOGRAPHY

[AFI06] N. Attrapadung, J. Furukawa, and H. Imai. Forward-secure and searchable broad-
cast encryption with short ciphertexts and private keys. In Advances in Cryptology —
Asiacrypt 2006, volume 4284 of LNCS, pages 161-177.

[AFIM06] N. Attrapadung, J. Furukawa, H. Imai, K. Matsuura. Searchable public-key
broadcast encryption. In Proc. of SITA 2006.

[AHKI04] N. Attrapadung, G. Hanaoka, K. Kobara, H. Imai. ID-based Encryption for Di-
rected Acyclic Graph Hierarchies and Application to Key-evolving Encryption Primi-
tives. Technical report of IEICE, ISEC2004-77.

[AKI03a] N. Attrapadung, K. Kobara, and H. Imai. Sequential key derivation patterns for
broadcast encryption and key predistribution schemes. In Advances in Cryptology —
Asiacrypt 2003, volume 2894 of LNCS, pages 374-391. Springer-Verlag, 2003.

[AKI03b] N. Attrapadung, K. Kobara, and H. Imai. Broadcast encryption with short keys
and transmissions. In ACM Digital Rights Management Workshop — DRM 2003, pages
55-66, 2003.

[AI05a] N. Attrapadung and H. Imai. Graph-decomposition-based frameworks for subset-
cover broadcast encryption and efficient instantiations. In Advances in Cryptology —
Asiacrypt 2005, volume 3788 of LNCS, pages 100-120. Springer-Verlag, 2005.

[AI05b] N. Attrapadung, H. Imai. Short Encrypted Broadcast with Short Keys. In Proc. of
SCIS 2005, January 2005.

[AI05c] N. Attrapadung, H. Imai. Subset Incremental Chain Based Broadcast Encryption
with Shorter Ciphertext. In Proc. of SITA 2005, November 2005.

[AI07] N. Attrapadung, H. Imai. Practical Broadcast Encryption from Graph-Theoretic
Techniques and Subset-Incremental-Chain Structure. In IEICE Transaction on Funda-
mental of Electronics, Communications and Computer Sciences — Special Section on
Cryptography and Information Security, Vol.E90-A No.1 pp.187-203, Jan. 2007.

[BP97] N. Bari, B. Pfitzmann. Collision-Free Accumulators and Fail-Stop Signature
Schemes Without Trees. In Proc. of Eurocrypt 1997, volume 1233 of LNCS, pages
480-494.

[BC93] A. Beimel and B. Chor. Interaction in Key Distribution Schemes. In Advances in
Cryptology — Crypto 1993, volume 773 of LNCS, pages 444-457.

[BDJR97] M. Bellare, A. Desai, E. Jokipii, P. Rogaway. A Concrete Security Treatment of
Symmetric Encryption. In Proc. of FOCS 1997, pages 394-403.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, P. Rogaway. Relations Among Notions
of Security for Public-Key Encryption Schemes, In Advances in Cryptology — Crypto
1998, volume 1462 of LNCS, pages 26-45.

[BM99] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In Advances
in Cryptology — Crypto 1999, volume 1666 of LNCS, pages 431-448. Springer-Verlag,
1999.

BIBLIOGRAPHY 143

[BP02] M. Bellare, A. Palacio. Protecting against Key Exposure: Strongly
Key-Insulated Encryption with Optimal Threshold. Available at
http://eprint.iacr.org/2002/064/.

[BPR00] M. Bellare, D. Pointcheval, P. Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. In Advances in Cryptology — Eurocrypt 2000, volume
1807 of LNCS, pages 139-155.

[BR93] M. Bellare, P. Rogaway. Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols. In Proc. ACM Conf. on Computer and Communications Security
(CCS 1993), pages 62-73, 1993.

[BR94] M. Bellare, P. Rogaway. Optimal Asymmetric Encryption. In Advances in Cryptol-
ogy — Eurocrypt 1994, volume 950 of LNCS, pages 92-111.

[B91] S. Berkovits. How To Broadcast A Secret. In Advances in Cryptology — Eurocrypt
1991, volume 547 of LNCS, pages 535-541.

[BSS05] I.F. Blake, G. Seroussi, N.P. Smart. Advances in Elliptic Curve Cryptography.
London Mathematical Society Lecture Note Series 317, Cambridge University Press.
(2005).

[B84] R. Blom. An Optimal Class of Symmetric Key Generation Systems. In Advances in
Cryptology — Eurocrypt 1984, volume 209 of LNCS, pages 335-338.

[BSH+92] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro and M. Yung.
Perfectly Secure Key Distribution for Dynamic Conferences. In Advances in Cryptology
— Crypto 1992, volume 740 of LNCS, pages 471-486.

[BC94] C. Blundo and A. Cresti. Space Requirements for Broadcast Encryption. In Ad-
vances in Cryptology — Eurocrypt 1994, volume 950 of LNCS, pages 287-298.

[BMS96] C. Blundo, L. F. Mattos, D. R. Stinson. Trade-offs Between communication and
Storage in Unconditionally Secure Schemes for Broadcast Encryption and Interactive
Key Distribution. In Advances in Cryptology — Crypto 1996, volume 1109 of LNCS,
pages 387-400.

[BF01] D. Boneh, M.K. Franklin. Identity-Based Encryption from the Weil Pairing. In
Advances in Cryptology — Crypto 2001, volume 2139 of LNCS, pages 213-229.

[BF03] D. Boneh and M. Franklin. Identity Based Encryption from the Weil Pairing. SIAM
Journal of Computing, 32(3), pp.586-615, 2003, full version of [BF01].

[BD94] J. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Advances in Cryptology — EUROCRYPT 1993, volume 765 of
LNCS, pages 274-285.

[BMS96] C. Blundo, L. A. Frota Mattos, D. R. Stinson. Trade-offs between communication
and storage in unconditionally secure schemes for broadcast encryption and interactive
key distribution. In Advances in Cryptology — Crypto 1996, volume 1109 of LNCS,
pages 387-400. Springer-Verlag, 1996.

144 BIBLIOGRAPHY

[BB04a] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption
without random oracles. In Advances in Cryptology — Eurocrypt 2004, volume 3027
of LNCS, pages 223-238. Springer-Verlag, 2004.

[BB04b] D. Boneh, X. Boyen. Secure Identity Based Encryption Without Random Ora-
cles. In Advances in Cryptology —Crypto 2004, volume 3152 of LNCS, pages 443-459.
Springer-Verlag, 2004.

[BBG05] D. Boneh, X. Boyen, and E-J. Goh. Hierarchical identity based encryption
with constant size ciphertext. In Advances in Cryptology — Eurocrypt 2005, vol-
ume 3494 of LNCS, pages 440-456. Springer-Verlag, 2005. Full version available at
http://eprint.iacr.org/2005/015.

[BBS04] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in
Cryptology — Crypto 2004, volume 3152 of LNCS, pages 41-55. Springer-Verlag, 2004.

[BDOP04] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryp-
tion with keyword search. In Advances in Cryptology — Eurocrypt 2004, volume 3027
of LNCS, pages 506-522. Springer-Verlag, 2004.

[BGW05] D. Boneh, C. Gentry, and B. Waters. Collusion Resistant Broadcast Encryption
with Short Ciphertexts and Private Keys. In Advances in Cryptology — Crypto 2005,
volume 3621 of LNCS, pages 258-275. Springer-Verlag, 2005.

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.
In Advances in Cryptology — Crypto 2001, volume 2139 of LNCS, pages 213-229.
Springer-Verlag, 2001.

[BK05] D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built using
identity based encryption. In Proceedings of RSA-CT 2005, volume 3376 of LNCS,
pages 87-103. Springer-Verlag, 2005.

[BMW05] X. Boyen, Q. Mei, and B. Waters. Direct Chosen Ciphertext Security from
Identity-Based Techniques. In Proc. ACM Conf. on Computer and Communications
Security (CCS 2005), pages 320-329, ACM Press, 2005.

[BW06] X. Boyen and B. Waters. Anonymous Hierarchical Identity-Based Encryption
(Without Random Oracles). To appear in Advances in Cryptology — Crypto 2006,
2006.

[BS03] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324:71-90, 2003.

[Can01] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In Proc. of FOCS 2001 pages 136-145.

[CGI+99] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
security: A taxonomy and some efficient constructions. In Proc. IEEE INFOCOM ’99,
volume 2, pages 708.716, New York, NY, March 1999. IEEE.

[CGH98] R. Canetti, O. Goldreich, S. Halevi. The Random Oracle Methodology, Revisited
(Preliminary Version). In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing — STOC 1998, pages 209-218.

BIBLIOGRAPHY 145

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption
scheme. In Advances in Cryptology — Eurocrypt 2003, volume 2656 of LNCS, pages
255-271. Springer-Verlag, 2003.

[CHK04] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In Advances in Cryptology — Eurocrypt 2004, volume 3027 of LNCS, pages
207-222. Springer-Verlag, 2004.

[CHK05] R. Canetti, S. Halevi, and J. Katz. Adaptively-Secure, Non-interactive Public-
Key Encryption. In Theory of Cryptography Conference — TCC 2005, volume 3378 of
LNCS, pages 150-168. Springer-Verlag, 2005.

[CKN03] R. Canetti, H. Krawczyk, J.B. Nielsen. Relaxing Chosen-Ciphertext Security. In
Advances in Cryptology — Crypto 2003, volume 2729 of LNCS, pages 565-582.

[CMN99] R. Canetti, T. Malkin, and K. Nissim. Efficient communication-storage tradeoffs
for multicast encryption. In Advances in Cryptology — Eurocrypt 1999, volume 1592
of LNCS, pages 459-474, Springer-Verlag, 1999.

[Che06] J. H. Cheon. Security analysis of the strong Diffie-Hellman problem. In Advances
in Cryptology — Eurocrypt 2006, volume 4004 of LNCS, pages 1-11. Springer, 2006.

[CT89] G. C. Chick and S. E. Tavares. Flexible Access Control with Master Keys. In Ad-
vances in Cryptology — CRYPTO 1989, LNCS 435, pp. 316-322.

[CS98] R. Cramer, V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In Advances in Cryptology — CRYPTO
1998, volume 1492 of LNCS, pages 13-25. Springer, 1998.

[CS02] R. Cramer, V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen
Ciphertext Secure Public-Key Encryption. In Advances in Cryptology — Eurocrypt
2002, volume 2332 of LNCS, pages 45-64. Springer, 2002.

[CS03] R. Cramer, V. Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM Journal of Computing 33,
pages 167-226, 2003.

[DV98] Y. Desmedt, V. Viswanathan. Unconditionally Secure Dynamic Conference Key
Distribution. In Proc. of IEEE, ISIT 1998.

[D00] R. Diestel. Graph theory. 2nd ed., Graduate texts in mathematics 173, (2000).

[DH76] W. Diffie, M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Info.
Theory, IT-22, pages 644-654, 1976.

[DOW92] W. Diffie, P. van Oorschot, and W. Wiener. Authentication and authenticated
key exchanges. In Designs, Codes and Cryptography, volume 2, pages 107-125, 1992.

[DK05] Y. Dodis, J. Katz. Chosen-Ciphertext Security of Multiple Encryption. In Theory of
Cryptography Conference — TCC 2005, volume 3378 of LNCS, pages 188-209. Springer-
Verlag, 2005.

146 BIBLIOGRAPHY

[DK02] Y. Dodis, J. Katz, S. Xu, M. Yun. Key-Insulated Public Key Cryptosystems. In
Advances in Cryptology — EUROCRYPT 2002, volume 2332 of LNCS, pages 65-82.
Springer-Verlag, 2002.

[DKXY03] Y. Dodis, J. Katz, S. Xu, M. Yung. Strong Key-Insulated Signature Schemes. In
Public Key Cryptography — PKC 2003, volume 2567 of LNCS, pages 130-144. Springer-
Verlag, 2003.

[DFK+03] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, M. Yung. Intrusion-Resilient
Public-Key Encryption. In In Proceedings of CT-RSA 2003, pages 19-32.

[DFK+04] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, M. Yung. A Generic Construction
for Intrusion-Resilient Public-Key Encryption. In Proceedings of CT-RSA 2004, pages
81-98.

[DF02] Y. Dodis and N. Fazio. Public-key broadcast encryption for stateless receivers. In
ACM Digital Rights Management — DRM 2002, volume 2696 of LNCS, pages 61-80.
Springer, 2002.

[DF03] Y. Dodis and N. Fazio. Public-key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In Public Key Cryptography — PKC 2003, volume 2567 of
LNCS, pages 100-115. Springer-Verlag, 2003.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Nonmalleable Cryptography. In Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing — STOC 1991, ACM,
1991, pages 391-437, 1991.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable Cryptography. In SIAM Journal
of Computing 30(2), pages 391-437. (2000).

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), pages 469-472, 1985.

[FN93] A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology — Crypto
1993, volume 773 of LNCS, pages 480-491. Springer-Verlag, 1993.

[FO99] E. Fujisaki, T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryp-
tion Schemes. In Advances in Cryptology — Crypto 1999, volume 1666 of LNCS, pages
537-554. Springer-Verlag, 1999.

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern. RSA-OAEP Is Secure under
the RSA Assumption. In Advances in Cryptology — Crypto 2001, volume 2139 of
LNCS, pages 260-274. Springer-Verlag, 2001.

[GS02] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Advances in
Cryptology — Asiacrypt 2002, volume 2501 of LNCS, pages 548-566. Springer-Verlag,
2002.

[GR04] C. Gentry and Z. Ramzan. RSA Accumulator Based Broadcast Encryption. In Proc.
of Information Security Conference — ISC 2004, LNCS 3225, pages 73-86. Springer-
Verlag, 2004.

BIBLIOGRAPHY 147

[Gen03] C. Gentry. Certificate-Based Encryption and the Certificate Revocation Problem.
In Advances in Cryptology — Eurocrypt 2003, volume 2656 of LNCS, pages 272-293.
Springer-Verlag, 2003.

[Goh03] E. Goh. Secure indexes. Available at http://eprint.iacr.org/2003/216/.

[Gol99] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudo-randomness.
Springer-Verlag, Algorithms and Combinatorics, Vol 17, 1999.

[Gol01] O. Goldreich. Foundation of Cryptography (Basic Tools). Cambridge University
Press, 2001.

[GMW87] O. Goldreich, S. Micali, A. Wigderson. How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing — STOC 1987, ACM, 1987, pages
218-229.

[GM84] S. Goldwasser, S. Micali. Probabilistic Encryption. In J. Comput. Syst. Sci., 28(2),
pages 270-299 (1984).

[GMR85] S. Goldwasser, S. Micali, C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. In Proceedings of the 17th Annual ACM Symposium on Theory of Com-
puting — STOC 1985, ACM, 1985.

[GMR89] S. Goldwasser, S. Micali, C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. In SIAM Journal of Computing, volume 18(1), pages 186-208. (1989).

[GMR88] S. Goldwasser, S. Micali, R. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. In SIAM Journal on Computing 17(2), pages 281-
308. (1988).

[GSW04] P. Golle, J. Staddon and B. Waters. Secure conjunctive keyword search over
encrypted data. In Proc. of Applied Cryptography and Network Security — ACNS
2004, volume 3089 of LNCS, page 31-45. Springer-Verlag, 2004.

[GST04] M. T. Goodrich, J. Z. Sun, and R. Tamassia. Efficient tree-based revocation in
groups of low-state devices. In Advances in Cryptology — Crypto 2004, volume 3152
of LNCS, pages 511-527. Springer-Verlag, 2004.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Proc. ACM Conf. on Computer and Com-
munications Security (CCS 2006), pages 89-98, 2006.

[Gün89] C. Günther. An identity-based key exchange protocol. In Advances in Cryptology
— Eurocrypt 1989, volume 434 of LNCS, pages 29-37. Springer-Verlag, 1989.

[HS02] D. Halevy and A. Shamir. The LSD broadcast encryption scheme. In Advances in
Cryptology — Crypto 2002, volume 2442 of LNCS, pages 47-60. Springer-Verlag, 2002.

[HHSI05] Y. Hanaoka, G. Hanaoka, J. Shikata, H. Imai. Identity-Based Hierarchical
Strongly Key-Insulated Encryption and Its Application. In Advances in Cryptology
— Asiacrypt 2005, volume 3788 of LNCS, pages 495-514.

148 BIBLIOGRAPHY

[HHI06] Y. Hanaoka, G. Hanaoka, H. Imai. Parallel Key-Insulated Encryption. In Public
Key Cryptography — PKC 2006, volume 3958 of LNCS, pages 105-122.

[HL02] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In Advances
in Cryptology — Eurocrypt 2002, volume 2332 of LNCS, pages 466-481. Springer-
Verlag, 2002.

[HLL05] J. Y. Hwang, D. H. Lee, and J. Lim. Generic transformation for scalable broadcast
encryption Schemes. In Advances in Cryptology — Crypto 2005, volume 3621 of LNCS,
pages 276-292. Springer-Verlag, 2005.

[HL06] Y. H. Hwang, P. J. Lee. Efficient Broadcast Encryption Scheme with Log-Key Stor-
age. In Proc. of Financial Cryptography 2006, March 2006.

[ILL89] R. Impagliazzo, L.A. Levin, M. Luby. Pseudo-random Generation from one-way
functions. In Proc. of STOC 1989, pages 12-24.

[JHC+05] N-S Jho, J. Y. Hwang, J. H. Cheon, M-H. Kim, D. H. Lee, E. S. Yoo. One-way
chain based broadcast encryption schemes. In Advances in Cryptology — Eurocrypt
2005, volume 3494 of LNCS, pages 559-574. Springer-Verlag, 2005.

[Jou00] A. Joux. A one round protocol for tripartite Diffie-Hellman. In Proc. of Algorithmic
Number Theory Symposium IV, volume 1838 of LNCS, pages 385-394. Springer-Verlag,
2000.

[Kat02] J. Katz. A Forward-Secure Public-Key Encryption Scheme. Available at
http://eprint.iacr.org/2002/060.

[KRS99] R. Kumar, S. Rajagopalan, and A. Sahai. Coding constructions for blacklisting
problems without computational assumptions. In Advances in Cryptology — Crypto
1999, volume 1666 of LNCS, pages 609-623. Springer-Verlag, 1999.

[KR03] R. Kumar, A. Russell. A Note on the Set Systems used for Broadcast Encryption.
In Proc. of SODA 2003.

[KD04] K. Kurosawa, Y. Desmedt. A New Paradigm of Hybrid Encryption Scheme. In Ad-
vances in Cryptology — Crypto 2004, volume 3152 of LNCS, pages 426-442. Springer-
Verlag, 2004.

[KYDB98] K. Kurosawa, T. Yoshida, Y. Desmedt, M. Burmester. Some Bounds and a
Construction for Secure Broadcast Encryption. In Advances in Cryptology — Asiacrypt
1998, volume 1514 of LNCS, pages 420-433.

[Lam79] L. Lamport. Constructing Digital Signatures from a One-Way Function. Technical
Report CSL-98, SRI International, Palo Alto, 1979.

[LS98] M. Luby and J. Staddon. Combinatorial bounds for broadcast encryption. In
Advances in Cryptology — Eurocrypt 1998, volume 1403 of LNCS, pages 512-526.
Springer-Verlag, 1998.

[MMM02] T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure sig-
natures with an unbounded number of time periods. In Advances in Cryptology —
Eurocrypt 2002, volume 2332 of LNCS, pages 400-417. Springer-Verlag, 2002.

BIBLIOGRAPHY 149

[MI87] T. Matsumoto, H. Imai. On the Key Predistribution System: A Practical Solution
to the Key Distribution Problem. In Advances in Cryptology — Crypto 1987, pages
185-193.

[MS98] D. McGrew, A. T. Sherman. Key Establishment in Large Dynamic Groups Using
One-Way Function Trees. In IEEE Trans. Software Eng, 29(5) pages 444-458, (2003).

[Mer89] R.C. Merkle. A Certified Digital Signature. In Advances in Cryptology — Crypto
1989, volume 435 of LNCS, pages 218-238, Springer-Verlag, 1990.

[MH78] R.C. Merkle, M.E. Hellman. Hiding Information and Signatures in Trapdoor Knap-
sacks. IEEE Trans. Inform. Theory. Vol.24, pages 525-530, 1978.

[M03] M.J. Mihaljevic. Key Management Schemes for Stateless Receivers Based on Time
Varying Heterogeneous Logical Key Hierarchy. In Advances in Cryptology — Asiacrypt
2003, volume 2894 of LNCS, pages 137-154. Springer-Verlag, 2003.

[MHS03] M.C. Mont, K. Harrison, M. Sadler. The HP time vault service: exploiting IBE
for timed release of confidential information. In ACM-WWW 2003, pages 160-169.

[NNL01] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In Advances in Cryptology — Crypto 2001, volume 2139 of LNCS, pages
41-62. Springer-Verlag, 2001.

[NP00] M. Naor and B. Pinkas. Efficient trace and revoke schemes. In Financial Cryptog-
raphy — FC 2000, volume 1962 of LNCS, pages 1-20. Springer-Verlag, 2000.

[NY89] M. Naor, Yung. Universal One-Way Hash Functions and Their Cryptographic Ap-
plications. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing
— STOC 1989, ACM, 1989, pages 33-43.

[NY90] M. Naor, M. Yung. Public-key Cryptosystems Provably Secure against Chosen Ci-
phertext Attacks. In Proc. of STOC 1990, pages 427-437.

[Rab79] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractable as
Factoring. MIT/LCS/TR-212, 1979.

[RS91] C. Rackoff, D.R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and
Chosen Ciphertext Attack. In Advances in Cryptology — Crypto 1991, volume 576 of
LNCS, pages 433-444.

[RSA78] R. Rivest, A. Shamir, L. M. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. In Commun. ACM 21(2), pages 120-126. (1978)

[Rom90] J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Signatures.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing — STOC
1990, ACM, 1990, pages 387-394.

[SW05] A. Sahai, B. Waters. Fuzzy Identity-Based Encryption. In Advances in Cryptology
— Eurocrypt 2005, volume 3494 of LNCS, pages 457-473.

[Sha79] A. Shamir. How to share a secret. In Commun. ACM 22(11), pages. 612-613. (1979)

150 BIBLIOGRAPHY

[Sha84] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Advances in
Cryptology — CRYPTO 1984, pages 47-53.

[Sha49] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech. Jour.,
Vol.28, pages 656-715, 1949.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances
in Cryptology — Eurocrypt 1997, volume 1233 of LNCS, pages 256-266. Springer-
Verlag, 1997.

[Sho01] V. Shoup. A proposal for an ISO standard for public key encryption (version 2.1).

[Sho04] V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs.
IACR ePrint Report 2004/332.

[S76] Z. Star. An Asymptotic Formula in the Theory of Composition. In Aequationes Math,
Vol. 12, No. 1, page 113, 1976.

[Sti97] D. R. Stinson. On some methods for unconditionally secure key distribution and
broadcast encryption. In Designs, Codes and Cryptography, 12(3):215-243, 1997.

[Sti96] D.R.Stinson. On Some Methods for Unconditionally Secure Key Distribution and
Broadcast Encryption. In Designs, Codes and Cryptography 12 (1997), pages 215-243.

[SW98] D. Stinson, R. Wei. Some New Results on Key Distribution Patterns and Broadcast
Encryption. In Designs, Codes and Cryptography 14 (1998), pages 261-279.

[SWP00] D. X. Song, D. Wagner and A. Perrig. Practical techniques for searches on en-
crypted data. In Proc. of IEEE Symposium on Security and Privacy, page 44-55, 2000.

[WHA97] D.M. Wallner, E.J. Harder, and R.C. Agee. Key management for multicast: Issues
and architectures. IETF draft wallner-key, 1997.

[WNR04] P. Wang, P. Ning, and D.S. Reeves. Storage-Efficient Stateless Group Key Re-
vocation. In Proc. of Information Security Conference — ISC 2004, volume 3225 of
LNCS, pages 25-38. Springer-Verlag, 2004.

[Wat05] B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
Advances in Cryptology — Eurocrypt 2005, volume 3494 of LNCS, pages 114-127.
Springer-Verlag, 2005.

[WBDS04] B. Waters, D. Balfanz, G. Durfee and D. Smetters. Buliding an encrypted and
searchable audit log. In Proc. of Network and Distributed System Security Symposium
— NDSS 2004, page 205-214, 2004.

[WGL98] C. Wong, M. Gouda, and S. Lam. Secure group communications using key graphs.
In Proceedings of the ACM SIGCOMM ’98, pages 68-79. ACM Press, 1998.

[YFDL04] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-based encryption for com-
plex hierarchies with applications to forward security and broadcast encryption. In
Proc. ACM Conf. on Computer and Communications Security (CCS 2004), pages 354-
363, ACM, 2004.

BIBLIOGRAPHY 151

[ZHSI04] R. Zhang, G. Hanaoka, J. Shikata, H. Imai. On the Security of Multiple Encryp-
tion or CCA-security+CCA-security=CCA-security?. In Public Key Cryptography —
PKC 2004, volume 2947 of LNCS, pages 360-374.

Appendix A

List of Publications

Selected Journal and International Conference Papers

[1] N. Attrapadung, K. Kobara, and H. Imai. Broadcast encryption with short keys and
transmissions. In ACM Digital Rights Management Workshop — DRM 2003, pages
55-66, 2003.

[2] N. Attrapadung, K. Kobara, and H. Imai. Sequential key derivation patterns for broad-
cast encryption and key predistribution schemes. In Advances in Cryptology — Asi-
acrypt 2003, volume 2894 of LNCS, pages 374-391. Springer-Verlag, 2003.

[3] N. Attrapadung and H. Imai. Graph-decomposition-based frameworks for subset-cover
broadcast encryption and efficient instantiations. In Advances in Cryptology — Asi-
acrypt 2005, volume 3788 of LNCS, pages 100-120. Springer-Verlag, 2005.

[4] N. Attrapadung, J. Furukawa, and H. Imai. Forward-secure and searchable broadcast
encryption with short ciphertexts and private keys. In Advances in Cryptology — Asi-
acrypt 2006, volume 4284 of LNCS, pages 161-177. Springer-Verlag, 2006.

[5] N. Attrapadung, J. Furukawa, T. Gomi, G. Hanaoka, H. Imai, R. Zhang. Efficient
Identity-Based Encryption with Tight Security Reduction. In Cryptology and Network
Security — CANS 2006, volume 4301 of LNCS, pages 19-36. Springer-Verlag, 2006.

[6] N. Attrapadung, H. Imai. Practical Broadcast Encryption from Graph-Theoretic Tech-
niques and Subset-Incremental-Chain Structure. In IEICE Transaction on Fundamental
of Electronics, Communications and Computer Sciences — Special Section on Cryptog-
raphy and Information Security, Vol.E90-A No.1 pp.187-203, Jan. 2007.

Other Reviewed International Conference Papers

[1] N. Attrapadung, K. Kobara, H. Imai. Refining SD and LSD Broadcast Encryption
Schemes. International Symposium on Information Theory and its Applications —
ISITA 2004, Italy, October 2004.

[2] N. Attrapadung, K. Kobara, H. Imai. Broadcast Encryption Schemes Designed for
Low-Bandwidth Wireless Communication. Wireless Personal Media Communications
— WPMC 2005, Denmark, September 2005.

154

[3] N. Attrapadung, Y. Cui, D. Galindo, G. Hanaoka, I. Hasuo, H. Imai, K. Matsuura,
P. Yang, R. Zhang. Relations Among Notions of Security for Identity Based Encryp-
tion Schemes. Extended abstract version in Latin American Theoretical Informatics —
LATIN 2006, volume 3887 of LNCS, pages 130-141, Springer-Verlag, March 2006. Full
version in Journal of Information Processing Society of Japan (IPSJ Journal), Vol.47,
No. 8, June 2006.

[4] N. Attrapadung, K. Kobara, H. Imai. Subset Incremental Chain Based Broadcast En-
cryption with Shorter Ciphertext. International Symposium on Information Theory and
its Applications — ISITA 2006, South Korea, October 2006.

Invited Papers

[1] N. Attrapadung, H. Imai. A Survey on Recent Advances in Broadcast Encryption.
Invited Tutorial at the Annual IEICE General Conference 2006, Tokyo, March 2006 .

Non-Reviewed Domestic Conference Papers

[1] N. Attrapadung, K. Kobara, H. Imai. Key Predistribution Scheme based on Pseudo-
Random Generator secure Against Any Size of Collusion. In Proc. of SITA1 2002,
Gunma, December 2002.

[2] N. Attrapadung, K. Kobara, H. Imai. Broadcast Encryption with One Storage Key
at Each Receiver in One Transmission Message. In Proc. of SCIS2 2003, Shizuoka,
January 2003.

[3] N. Attrapadung, K. Kobara, H. Imai. Optimally Mastering Keys in Various Broadcast
Encryption Schemes. In Proc. of SITA 2003, Hyogo, December 2003.

[4] N. Attrapadung, K. Kobara, H. Imai. Efficient Broadcast Encryption from Trapdoor
One-way Accumulators. In Proc. of SCIS 2004, Sendai, January 2004.

[5] N. Attrapadung, G. Hanaoka, K. Kobara, H. Imai. ID-based Encryption for Directed
Acyclic Graph Hierarchies and Application to Key-evolving Encryption Primitives. Tech-
nical report of IEICE, ISEC2004-77, September 2004.

[6] N. Attrapadung, G. Hanaoka, K. Kobara, H. Imai. ID-based Encryption for Directed
Acyclic Graph Hierarchies: Unification of Key-evolving Encryption Primitives. In Proc.
of SITA 2004, Gifu, December 2004.

[7] N. Attrapadung, K. Kobara, H. Imai. Short Encrypted Broadcast with Short Key. In
Proc. of SCIS 2005, Kobe, January 2005.

[8] N. Attrapadung, K. Kobara, H. Imai. Subset Incremental Chain Based Broadcast En-
cryption with Shorter Ciphertext (Extended Abstract). In Proc. of SITA 2005, Oki-
nawa, November 2005. (? Received the best paper award of SITA 2005).

[9] N. Attrapadung, G. Hanaoka, H. Imai. Directed Acyclic Graph Encryption (Extended
Abstract). In Proc. of SCIS 2006, Hiroshima, January 2006. (? Received the best paper
award of SCIS 2006).

1SITA = Symposium on Information Theory and its Applications
2SCIS = Symposium on Cryptography and Information Security

Chapter A: List of Publications 155

[10] N. Attrapadung, J. Furukawa, H. Imai, K. Matsuura. Searchable public-key broadcast
encryption. In Proc. of SITA 2006, Hokkaido, November 2006.

[11] N. Attrapadung, J. Furukawa, H. Imai, K. Matsuura. Forward-secure broadcast en-
cryption with short ciphertexts and private keys. In Proc. of SCIS 2007, Nagasaki,
January 2007.

