
博士学位申請論文

A STUDY OF PEER-TO-PEER SYSTEMS

FOR SPATIAL DATA SHARING

(空間データ共有のためのピアツーピアシステム
に関する研究)

指導教員：瀬崎　薫　助教授

東京大学大学院 情報理工学系研究科
電子情報学専攻

47406 魏　新法
(Xinfa WEI)

A STUDY OF PEER-TO-PEER SYSTEMS

FOR SPATIAL DATA SHARING

by

XINFA WEI

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Department of Information and Communication

Engineering, Graduate School of Information Science and Technology

The University of Tokyo, 2006

Tokyo, Japan

ABSTRACT

This thesis is about peer-to-peer systems for sharing spatial data. In recent years,

tremendous improvements in data gathering techniques have contributed to an unprece-

dented growth of available spatial data at geographically distributed locations. This has

created a strong motivation for the efficient sharing of such data. While peer-to-peer sys-

tems becomes an important approach of massively distributed systems not only for file

transfers but also for searchable data network, in this thesis we study the methods of

sharing geographically distributed data with P2P networks. By now, there are a number

of P2P protocols proposed, but most of them are based on distributed hashing tables, such

as CAN and Chord which support exact match only and have limited number of search

predicates support. When we consider a set of peer nodes as a massively geographically

distributed database, several types of search predicates should be provided in addition to

exact match search. So in order to efficiently support spatial data sharing peer-to-peer

application, we need to design new peer-to-peer systems that broaden the types of query

processing, improve the performance and are of fault-tolerance.

This thesis first presents the design and evaluation of GNet, an early work of exploring

the possibility of geographical peer-to-peer protocol that targets supporting wide area

location-based service. The GNet protocol uses hierarchical geographic address as the

identifiers of peer nodes. By combining domain-progressive routing mechanism like plaxton

mesh with geographical domain hierarchy, this protocol has the advantages of efficient

routing, locality preserving, etc. It supports position-based and especially geographically

scoped operations efficiently. Though implementation prerequisites limits its application

area, analysis and evaluation results demonstrate its scalability, query efficiency and load

balancing features, which makes it adaptable to certain applications.

As the main contribution of this thesis, DHR-Trees peer-to-peer protocol is presented

with its structure design, collaborative multidimensional query method, maintenance

method and the cost analysis, and methods to strengthen fault-tolerance of structure and

query execution under dynamic network environment. Essentially, DHR-Trees structure

is the first peer-to-peer structure that has semi-independent R-Trees structure and sup-

ports region-based multidimensional search predicates, such as range queries and nearest

neighbor queries as in R-Trees structure, while dealing with network dynamism efficiently

as well.

The thesis presents the structure details of DHR-Trees. Instead maintaining a global

centralized R-Trees index, each peer owns a semi-independent partial region tree structure,

which makes it possible to keep correctness of structure even under dynamic network

changes. Each geographically distributed peer node is identified by its Hilbert value on a

Hilbert space filling curve, by which the peer’s two-dimensional geographical location is

mapped to one-dimensional identifier. Peer nodes self-organize into a virtual ring topology,

sorted by the identifiers. As the core part of the DHR-Trees’ protocol, each peer maintains

a routing table, which contains two principal parts: For routing purpose, it holds pointers

to a number of nodes in the network; for supporting spatial query purpose, the region

information of sub-trees in the DHR-Trees is contained.

Spatial queries are executed in a distributed fashion by collaborative efforts among

peers. DHR-Trees mainly provides three spatial query functions: point query, range query

and nearest neighbor query. By exploiting region information in routing table, the spatial

query evaluation results show that DHR-Trees can execute spatial queries much more

efficiently than its competitor, the Squid P2P protocol. Furthermore, the nearest neighbor

query, one of most important spatial queries which is unsupportable in Squid, can also be

efficiently executed.

DHR-Trees faces network churn problem as well as other P2P systems. To keep the

system working properly while nodes join, leave, and fail on their own agenda, each peer

node is required to maintain both the ring structure and routing table. To maintain ring

structure, it uses similar ring stabilization approach as in Chord protocol. For routing

table maintaining, processes includes ping, stabilization, and notification process are run

periodically or triggered by routing table change events. Our analysis and evaluation

result shows that the overhead of updating routing tables when a new node joins or fails

increases nearly logarithmically to the network size. This demonstrates the scalability of

DHR-Trees peer-to-peer system.

To improve the fault-tolerance on spatial query support, DHR-Trees proposes two ap-

proaches: entry successor list and adaptive bounding rectangle. By introducing successor

lists to the entries in the routing table, robustness and resilience are greatly improved.

Moreover, to eliminate the frequent updating requirements of the region information in

harsh churn environment, we introduce the usage of adaptive bounding rectangle as the

replacement of minimum bounding rectangle. This approach decreases the updating over-

head and greatly improves the quality of query result under churn.

Through this thesis, two new novel peer-to-peer protocols are provided. Both GNet and

DHR-Trees are designed to be architectures for sharing geographically distributed spatial

data. In particular, the DHR-Trees can not only index spatial data as in centralized R-

Trees, but also be able to handle dynamism in the peer-to-peer network. We believe our

approaches can help realization of certain distributed spatial data sharing applications.

We hope our works will stimulate more research interest in both peer-to-peer structures

and spatial data sharing applications.

ACKNOWLEDGMENTS

A lot of people have provided social and technical supports to the research work presented

in this thesis. First and foremost I’d like to thank my advisor professor Kaoru Sezaki, for

his comments about this research and for always encouraging me and supporting me all

these years.

I would like to thank Professor Asano, Professor Asami, Professor Morikawa, Professor

Matsuura, and Professor Kamijo, for their valuable comments and advises at my doctoral

dissertation.

Thanks to all members in the Sezaki laboratory, especially to Mr. Konitoshi Komatsu,

Mrs. Kaho Matsumoto and Mr. Konomi from Sezaki laboratory, University of Tokyo for

their daily support on my research works.

I owe my deepest thanks to my family - my parents, my wife and children. Words

cannot express the gratitude I owe them. Without their love, patience and support, I

would not have been finished the thesis.

ii

Table of Contents

List of Figures vi

List of Abbreviations viii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals and Contribution . 3

2 Background 7

2.1 Peer-to-Peer Systems . 7

2.1.1 Characteristics . 7

2.1.2 P2P Structures and Applications . 8

2.2 The Most Related Works . 9

2.3 Related Projects and Prototypes . 11

3 GNet: A Geographic Address-based P2P System 13

3.1 Overview of GNet . 13

3.2 Introduction . 13

3.3 GNet Protocol . 14

3.3.1 Geographic Domain Name Identifier 15

3.3.2 Node State and Routing . 16

3.3.3 Geographically Scoped Routing . 19

3.3.4 Dynamic Operations . 20

3.3.5 Characteristics . 24

3.4 Location-based Applications . 25

3.4.1 Data aggregation . 26

3.4.2 Information Dissemination . 26

3.5 Evaluation . 26

3.5.1 Routing Path Length . 27

3.5.2 Load balancing . 27

3.6 Summary . 28

iii

4 DHR-Trees P2P System 29

4.1 Introduction . 29

4.2 System Model . 30

4.3 DHR-Trees P2P structure . 33

4.3.1 Overview of DHR-Trees . 35

4.3.2 Components on a Peer Node . 37

4.4 Predecessor and Successor . 38

4.5 Composite Routing Table . 39

4.5.1 DHR-Trees Routing Table Properties 42

4.5.2 Mapping between Identifier and Network Address 44

4.5.3 Wrapping-around problem . 45

4.6 Evaluation . 45

4.7 Summary . 47

5 Multidimensional Queries Support in DHR-Trees 49

5.1 Introduction . 49

5.2 Multidimensional Queries . 50

5.2.1 Range Queries . 50

5.2.2 k-Nearest Neighbors queries . 51

5.3 Evaluation . 52

5.3.1 Two-Dimensional DHR-Trees . 53

5.3.2 High Dimensional DHR-Trees . 54

5.3.3 Performance Comparison with Squid 55

5.4 Summary . 55

6 Maintenance in DHR-Trees 61

6.1 Preliminary Knowledge . 61

6.1.1 Consistent State . 61

6.1.2 Lookup Procedure . 62

6.1.3 Tracker List Structure . 63

6.2 Node join . 65

6.3 Maintenance of Ring structure . 68

6.3.1 Ring stabilization . 68

iv

6.3.2 Successor list . 68

6.3.3 Analysis of ring robustness . 69

6.4 Maintenance of Routing Table . 69

6.4.1 Ping process and Stabilization Process 69

6.4.2 Notification mechanism . 70

6.4.3 Theoretical analysis of joining cost 71

6.4.4 General Form of Maintenance Cost 77

6.4.5 Verification of Analysis . 79

6.4.6 Maintaining Region Information in Routing Table 80

6.5 Scalability of DHR-Trees . 82

6.6 Summary . 83

7 Improving Fault-Tolerance in DHR-Trees 86

7.1 Problem with Region information Update 86

7.2 Using Adaptive Bounding Rectangle . 87

7.3 An Example . 88

7.4 Strengthening query path by successor lists 90

7.5 Evaluation . 91

7.6 Summary . 92

8 Conclusion and Future Work 95

8.1 Conclusion . 95

8.2 Future Work for DHR-Trees . 98

A Appendix 100

A.1 Calculation of Adaptive Bounding Rectangle 100

A.1.1 Hilbert Space Filling Curve . 100

A.1.2 The Fast Recursive Algorithm . 101

A.2 The Proof of Theorem 1 . 104

Bibliography 105

v

List of Figures

1.1 Peer-to-Peer Networks for spatial data sharing 3

1.2 The hierarchy of peer-to-peer networks for spatial data sharing 4

3.1 GNet system architecture . 16

3.2 A example of three-levels hierarchical address 18

3.3 The nodes distribution with times of being DCN 28

4.1 Hilbert R-Tree Example . 34

4.2 Global view of DHR-Trees structure (Network Size N = 32) 35

4.3 Overview of DHR-Trees . 36

4.3 Overview of DHR-Trees (con’t) . 37

4.4 Routing table of Peer p5 . 38

4.4 Routing table of Peer p5 (con’t) . 39

4.5 An example of DHR-Trees with routing tables at p2 and related peers . . . 42

4.6 Three types of distribution(each for (2000 nodes)) 45

4.7 Routing Table Height (nodes.maxLevel) . 46

4.8 Routing Path Length (hops) . 47

4.9 Improvement with Auxiliary MBR . 48

5.1 The difference on query execution . 50

5.2 2-dimensional DHR-Trees . 52

5.2 2-dimensional DHR-Trees (con’t) . 58

5.3 Multidimensional DHR-Trees . 59

5.3 Multidimensional DHR-Trees (con’t) . 60

5.4 Query performance comparison with Squid 60

6.1 Processes for DHR-Trees maintenance . 62

6.2 Procedure of setting track list . 65

6.3 Ring structure changes when node joins . 66

6.4 Reducing maintenance cost without degradation in query performance . . . 72

6.5 Times of being referenced at same level . 74

6.6 Analysis vs. Simulation on cost when a node joins 79

vi

6.7 The average cost for node join and failure 80

6.8 Total Maintenance Messages and MBR update messages (joins only) 81

6.9 The scalability on maintenance cost . 82

7.1 difference between ABR and MBR . 88

7.2 An example of Adaptive Bounding Rectangle 89

7.3 Advantage of ABR . 89

7.4 The Entry Successor List . 90

7.5 The improvement by entry successor list . 92

7.6 Query Cost Degeneration with ABR . 93

A.1 Hilbert curve of order 1, 2, and 3 . 101

vii

List of Symbols and Abbreviations

N The Network Size, the number of nodes of the network.

d Order of DHR-Trees, the number of entries at a routing level ranges

from [d, 2d].

D The average fan-out of a routing level; In DHR-Trees structure, D =
3d
2 − 1.

m The number of non-empty entries in a routing level.

z The length of successor list. For both ring structure and routing table

entries.

HCode The Hilbert value of given multidimensional point. Obtained by map-

ping through Hilbert Space Filling Curve.

H The height of the routing table.

n A peer node n.

p,q Peer nodes p, q.

Mi Messages at routing level i.

Ci Routing table chagnes at routing level i.

PU The probability of changing Upper Bound U at above routing level.

PUi The PU at routing level i.

Pmr The probability of changing next routing entry.

Pmri The Pmr at routing level i.

Pru The probability of changing Upper Bound U at above routing level,

indirectly by influencing next entries.

Prui The Pru at routing level i.

Smsg The sum of messages.

ABR Adaptive Bounding Rectangle.

DCN Domain Contact Node.

viii

DHT Distributed Hash Tables.

GID Geographical Identifier.

HSFC Hilbert Space Filling Curve.

MBR Minimum Bounding Rectangle.

DHR-Trees Distributed Hilbert R-Trees.

GNet Geographic address-based peer-to-peer Network.

ix

Chapter 1

Introduction

1.1 Motivation

In recent years, tremendous improvements in data gathering techniques have generated

an unprecedented growth of available spatial data at geographically distributed locations.

Technical progress such as wireless communications, cheap sensor device, and location

tracking systems such as GPS, encourage end users to gather data locally and voluntarily

share with other users.

Suppose there are many geographically distributed spatial data sources as illustrated

in Figure 1.1(a). Such data sources may be video camera monitor, sensor data collection,

real estate information, and so on. The volume of the data may be huge, and they are

probably updated frequently, i.e. gathering data from physical environment periodically

to keep the data freshness. To share these spatial data, using centralized approach is not

appropriate because the lack of scalability with the huge volume of data and requirement

of frequently updating.

Moreover, the spatial data collecting and sharing may be conducted by end users vol-

untarily in an ad-hoc fashion. Such service providers have more freedom of decision on

data contents to share and sharing agenda. Different from traditional system architecture,

the service providers and consumers forms into a loosely-constrained network, in which

membership may change frequently and freely. This implies new challenges to traditional

system architecture and topology.

The Peer-to-Peer network has attracted many interest in both Internet users and re-

search community. Rather than requiring the mediation or support of a centralized server

1

CHAPTER 1. INTRODUCTION

or authority, it is designed for sharing computer resources (data content, CPU cycles)

by direct exchanges. There is no official definition for Peer-to-Peer network, we cite a

definition from literature [6] as:

. Peer-to-peer systems are distributed systems consisting of interconnected nodes able to

self-organize into network topologies with the purpose of sharing resources such as content,

CPU cycles, storage and bandwidth, capable of adapting to failures and accommodating

transient populations of nodes while maintaining acceptable connectivity and performance,

without requiring the intermediation or support of a global centralized server or authority.

P2P becomes an important approach of massively distributed systems not only for file

transfers but also for searchable data network. In this thesis we study the methods of

sharing geographically distributed data with P2P networks. By now, there are a number

of P2P protocols proposed, but most of them are based on distributed hashing tables,

such as CAN and Chord which support exact match only or have limited number of

search predicate support. When we consider a set of P2P nodes as a massively distributed

database, several types of search predicates should be provided in addition to exact match

search. So in order to efficiently support spatial data sharing P2P application, we need

to design new P2P protocols that broaden the types of query processing, improve the

performance and fault-tolerance.

Peer-to-peer systems is a new computer network paradigm as described above. It is

believed that the peer-to-peer system is not only targeted on sharing music or video file,

but also may work in many area like communication, computing, database, etc. As in

Figure 1.1(b), we imagine that many distributed data sources are connected together

using peer-to-peer network. The computing device, which holds a piece of spatial data

source, is a peer node in the systems. Peer nodes can join, leave on their own agenda or

sometimes fail suddenly due to power loss etc. In this thesis, we explore the possibility

of sharing spatial data with peer-to-peer systems. We try to answer the problems such

as: what the structure should be; what queries can be supported; how to implement the

robustness, scalability and fault-tolerance under dynamic network environment.

2

")#��+* 8� �$�*3(6"��3$

��� ������	
���� ����������� ��� ����

�������

��� ������������� ���� � ��� ������ ����

�����

/��
�� 8�8. �����	���� $���	��� �	� ������� ���� �������

)*# ��'+� '�, -������.����

#���� �����
��� ������������� ������� ��	2���� ��� ���	� �����	���� ����	���� ��� ��

������� 	� ��������� ��� �����	���� ����	��� �� ���������� +%������ ������� ��� �	����

�
��� 	� ()������ � � ������� ��� ������	�� ��� �
��� �
��	�� �� ������� �
� �	 ���

��������� ������������	�� ��� ����� ���
�������� 	� �����	���� ������� �	� �������

���� ������� �� ��������� ���.

������� �	
�� �	����� ����	
� ��� ��������,�� ����%��� �������� ����� �� ��� ���

��� ��	
�� �	����	�������� �
��	�� �	� 	��� �%��� �
��� �� �� 	���� �������� �
� ���	

����� �
��� ��� ������� ������	� �
��� �Æ�������� ��� ���� ��� 	� �
��� ���������� ���� �

������ ��� ����
���� �	 �
��� �	�� H�%���� ��� �	����
� ���������	�� 	��� ��� ��	 �
���

�%������ ���. I��� 9 ��	���� ��������� #�4 �	����� �
�� �	����	� ��J� I��� ��� �������

��������
�� ��� ��	%��� �	���������	� ������ ����	� *�J�

���� �����
����
� �� ���� ������� �� ���
�� ��� �
�� ���� 	� �����	���� ������� ��

������� ����	�� �����	������ ��� ���� �	��� ��� 2	�� 	� ����� ��� ����	�� ����
������

��� ������ �
�� �� ���� �������� ��� ���
��
�� �� ����� ���������� ���� ���� �
��� ��

��������	�� ��� ������ �
�� �� ���� �	 ����	�� �	 �	���� ����� ���� �
1����� ���	���

9

CHAPTER 1. INTRODUCTION

TCP/IP

Spatial P2P Network and Object Management

Routing Indexing Replication

 Bootstrapping Service Spatial Query Service Access Management

(Range query)

(Nearest Neighbor Query)

Connectivity

Core Services

 Waiting-time monitor Parking space finder Emergency message disseminationApplications

Internetworking

Figure 1.2: The hierarchy of peer-to-peer networks for spatial data sharing

Robustness and Fault Tolerance. The system must be robust to network churn. The

global consistency should not be a requirement for uninterrupted service provision. The

system must be available under massive failures. The system must be able to recover from

massive failures without interrupt of service provision.

As in the hierarchy illustrated in Figure 1.2, my research focuses on the peer-to-peer

structures, which include routing and indexing in connectivity layer, and spatial query

support in core services layer.

This thesis first presents the design and evaluation of GNet, an early work of exploring

the possibility of geographical peer-to-peer protocol that targets supporting wide area

location-based service. The GNet protocol uses hierarchical geographic address as the

identifiers of peer nodes. By combining domain-progressive routing mechanism like plaxton

mesh with geographical domain hierarchy, this protocol has the advantages of efficient

routing, locality preserving, etc. It supports position-based and especially geographically

scoped operations efficiently. Though implementation prerequisites limits its application

area, analysis and evaluation results demonstrate its scalability, query efficiency and load

balancing features, which makes it adaptable to certain applications.

As the main contribution of this thesis, DHR-Trees protocol is then presented with

its design, multidimensional query method and performance, maintenance method and

cost analysis, structure fault-tolerance and query fault-tolerance under churn. DHR-Trees

structure is the first peer-to-peer structure that supports region-based multidimensional

4

CHAPTER 1. INTRODUCTION

search predicates, such as range queries and nearest neighbor queries as in R-Trees struc-

ture, the predominant indexing structure in spatial databases.

The thesis presents the structure of DHR-Trees and multidimensional query support

mechanism. Instead maintaining a global centralized R-Trees index, each peer owns a

semi-independent partial region tree structure, which makes it possible to keep correct-

ness of structure even under dynamic network changes. Each geographically distributed

peer node is identified by its value on Hilbert space filling curve, which maps Euclidean

space into one-dimensional identifier space. Peer nodes self-organize into a virtual ring,

sorted by the value of the identifier. For routing purpose and query supporting purpose,

each peer maintains a routing table which contains pointers to a number of nodes in the

network and region information of underlying entries in the DHR-Trees. The routing cost

is logarithmical to network size. The spatial query evaluation results show that queries

can be efficiently supported with less traffic than its competitor, the Squid P2P protocol.

Furthermore, the nearest neighbor query, which is not supported in Squid, can also be

efficiently executed.

The thesis then provides analysis of DHR-Trees peer-to-peer systems under network

churn, including scalability, robustness and resilience. To keep the structure correct as

nodes join, leave, and fail, peer node in the network periodically run two stabilization pro-

cesses, i.e. ring stabilization and routing table stabilization. Our analysis and evaluation

result shows that the overhead of updating routing tables when a new node joins increases

logarithmically to the network size. This demonstrates the scalability of DHR-Trees. By

introducing successor lists to the entries in the routing table, robustness and resilience are

greatly improved. Moreover, to eliminate the frequent updating requirements of the re-

gion information in harsh churn environment, we introduce the usage of adaptive bounding

rectangle as the replacement of minimum bounding rectangle. This approach decreases

the updating overhead and greatly improves the quality of query result under churn.

Through this thesis, two new novel peer-to-peer protocols are provided. Both GNet and

DHR-Trees are designed to be architectures for sharing geographically distributed spatial

data. In particular, the DHR-Trees can not only index spatial data as in centralized R-

Trees, but also be able to handle dynamism in the peer-to-peer network. We believe our

approaches can help realization of certain distributed spatial data sharing applications.

We hope our works will stimulate more research interest in both peer-to-peer structures

5

CHAPTER 1. INTRODUCTION

and spatial data sharing applications.

6

Chapter 2

Background

2.1 Peer-to-Peer Systems

Peer-To-Peer networks are distributed systems in nature, without any hierarchical or-

ganization or centralized control. Peer-to-peer overlay systems go beyond services offered

by client-server systems by having symmetry in roles where a client may also be a server.

It allows access to its resources by other systems and supports resource sharing, which

requires fault-tolerance, self-organization and massive scalability properties.

In a broad sense, P2P overlay network can be viewed as a kind of communication frame-

work, which specifies a fully-distributed, cooperative network design with peers building

a self-organizing system.

2.1.1 Characteristics

There are two distinct characteristics of peer-to-peer architectures than traditional

systems are as follows[6]:

• The sharing of computer resources is by direct exchange, without requiring the in-

termediation of a centralized server. Centralized servers can sometimes be used

for specific tasks (system bootstrapping, adding new nodes to the network, obtain

global keys for data encryption). As the nodes of a peer-to-peer network cannot

rely on a central server coordinating the exchange of content and the operation of

the entire network, they are required to actively participate by independently per-

forming tasks such as searching for other nodes, locating or caching content, routing

information and messages, connecting to or disconnecting from other neighboring

7

CHAPTER 2. BACKGROUND

nodes, encrypting, introducing, retrieving, decrypting and verifying content, as well

as others.

• Their ability to treat instability and variable connectivity as the norm, automatically

adapting to failures in both network connections and computers, as well as to a

transient population of nodes. This fault-tolerant, self-organizing capacity suggests

the need for an adaptive network topology that will change as nodes enter or leave

and network connections fail or recover, in order to maintain its connectivity and

performance.

2.1.2 P2P Structures and Applications

By structure, we refer to whether the P2P overlay network is created non-deterministically

(ad hoc) as nodes and content are added, or whether its creation is based on specific rules.

We categorize peer-to-peer networks as follows, in terms of their structure:

Unstructured. The placement of content (files) is completely unrelated to the overlay

topology. In an unstructured network, content typically needs to be located. Searching

mechanisms range from brute force methods, such as flooding the network with propagat-

ing queries in a breadth-first or depth-first manner until the desired content is located, to

more sophisticated and resource-preserving strategies that include the use of random walks

and routing indices. The searching mechanisms employed in unstructured networks have

obvious implications, particularly in regards to matters of availability, scalability, and

persistence. Unstructured systems are generally more appropriate for accommodating

highly-transient node populations. Some representative examples of unstructured systems

are Napster, Gnutella[1], Kazaa[2], as well as others.

Structured. These have emerged mainly in an attempt to address the scalability

issues that unstructured systems were originally faced with. In structured networks, the

overlay topology is tightly controlled and files (or pointers to them) are placed at precisely

specified locations. These systems essentially provide a mapping between content (e.g.

file identifier) and location (e.g. node address), in the form of a distributed routing

table, so that queries can be efficiently routed to the node with the desired content.

Structured systems offer a scalable solution for exact-match queries, that is, queries where

the exact identifier of the requested data object is known (as compared to keyword queries).

8

CHAPTER 2. BACKGROUND

Using exact-match queries as a substrate for keyword queries remains an open research

problem for distributed environments. A disadvantage of structured systems is that it

is hard to maintain the structure required for efficiently routing messages in the face

of a very transient node population, in which nodes are joining and leaving at a high

rate. Typical examples of structured systems include Chord[44], CAN[37], PASTRY[40],

Tapestry among others.

Category Applications

Communication and Collaboration Chat/Irc, Aol, Icq, Yahoo, MSN, and Skype

Distributed Computation Seti@home, genome@home, and others.

Internet Service Support P2P multicast systems, BitTorrent, and security

applications against DoS attacks

Database Systems PIER, Piazza

Content Distribution Napster, Gnutella, WinMX and Winny and oth-

ers.

Table 2.1: The classifications of P2P application

Peer-to-peer architectures have been employed for a variety of different application

categories, which are listed in the Table 2.1. Our work for supporting spatial data sharing

is considered to be categorized into “Content Distribution”.

2.2 The Most Related Works

There emerged many peer-to-peer protocols and its applications. Among them, most of

them are designed for content distribution purpose and support limited query predicates

only. For spatial data sharing and multi-dimensional query support purpose, we pick up

most related works to ours as following:

GeoPeer. GeoPeer[8] uses physical geographic address as node identifier and nodes self-

organize a planar Delaunay triangulation. To reach physically distant node, routing will

take too many steps in the mesh of nodes when using greedy forwarding as in ad hoc

network[29]. To mitigate this problem, three schemes are proposed to build Long Range

9

CHAPTER 2. BACKGROUND

Contacts. But the LRC building process tends to be complicated and some problems such

as limitation of unbounded number of LRCs and dynamic operations (node join, leave and

fail) will be difficult to solve in large-scale system.

P2PR-Trees. Mondal et al. [35] proposed P2PR-Trees, a variant of R-Trees that targets

P2P networks. They showed in their simulation study that P2PR-Trees show better scal-

ability , since they do not suffer from the central server bottleneck. However, maintenance

of a dynamic R-Tree, the most important issue in P2P systems, was left unaddressed.

ZNet. ZNet[42] partitions data in the multidimensional space in a way as in the gener-

alized quad-tree. ZNet makes use of Skip Graphs[9] as an overlay network which routes

in one dimensional space, therefore multidimensional data space is mapped to one dimen-

sional index space, such that it can be mapped to nodes in the network. ZNet supports

range queries, however, they only provide probabilistic guarantees on data availability

even when the index is fully consistent due to the underlying Skip Graphs. Moveover, the

search performance of the ZNet is O(d · logdN) while search performance of DHR-Trees is

O(logdN).

Squid. Squid’s proposed structure is the closest one to our DHR-Trees. In [41], Schmidt

C. et al. presents the design of Squid P2P System and its evaluation . The space is first

mapped down into an one dimensional space using a Hilbert space filling curve. The one

dimensional data is then range partitioned in one dimension and mapped onto Chord[44]

overlay network. For load balancing purpose, however, the original Chord protocol requires

that data’s identifiers are uniformly distributed in one-dimensional space. This restriction

make it inappropriate to use location as data identifier directly, because data can not

always be guaranteed of being distributed uniformly in the space. It uses recursive query

decomposition to execute range queries, which is not efficient comparing with our proposed

DHR-Trees. Furthermore, since routing relies on Chord, which is originally designed for

equality search only, the query type is also limited. For example, to realize nearest neighbor

query is not easy with Squid since there is no spatial information being preserved.

10

CHAPTER 2. BACKGROUND

2.3 Related Projects and Prototypes

The IrisNet[19] is an challenging project by Intel Research. It utilizes distributed

server-based approach intending to realize wide-area architectures for pervasive sensing

and to enable powerful distributed sensing services. In IrisNet, the sensors—including

video cameras (Webcams), microphones, and motion detectors—are connected to the in-

ternet via low-cost PCs, which are expected to be deployed globally. They proposed a

new concept as worldwide sensor web, which is envisioned to provide service such as

• Alert services for notifying users when to head to the bus stop or when water con-

ditions have become dangerous

• Waiting-time monitors for reporting on queueing delays at post offices, food courts,

and so on

• Parking-space-finder services for directing drivers to available parking spaces near

their destinations

• Lost-and-found services for locating lost objects or pets

• Watch-my-child (or watch-my-parent) services for monitoring children playing in the

neighborhood (or elderly parents about town)

The researchers of IrisNet analyzed and concluded that such a service should be able to

overcome challenges as: planet-wide local data collection and storage, real-time adaptation

of collection and processing, all data as a single queriable unit, queries posed anywhere

on the Internet, data integrity and privacy, robustness, ease of service authorship. In the

IrisNet architecture, the nodes that can provide generic interface to access sensors are

modeled as sensing agents(SA) and the nodes that implement the distributed database

are called organizing agents(OA). The OAs are organized hierarchically by geographical

locations to manage local sensor data, such hierarchy can be regarded as mapping of

location hierarchy. Such organization is designed to easily facilitate XPATH query, since

XML content is organized typically as a tree structure and XPATH is a query language

which typically uses hierarchical keyword. The OAs are distributed database and assigned

to manage some portion data at certain geographical location. The IrisNet project team

has built a parking-space finder prototype application, which promises to provide real-time

information about available parking-space near the end user location.

11

CHAPTER 2. BACKGROUND

The SenseWeb[31] project at Microsoft Research aims to address these challenges by

providing a common platform and set of tools for data owners to easily publish their data

and users to make useful queries over the live data sources. The SenseWeb platform trans-

parently provides mechanisms to archive and index data, to process queries, to aggregate

and present results on geo-centric web interfaces such as MSN Virtual Earth, etc. They

expect that such a platform will encourage the community to publish more live data on

web and users to build useful services on top of it.

In the proposed architecture, there are primarily two main components,

• GeoDB. GeoDB is the portal for registering sensor metadata. It is assumed that typ-

ical user queries will be based on sensor types, descriptive keywords, and geographic

locations, such as list of all cameras along a route or average temperature reported

by all the thermometers inside a geographic region, etc. To efficiently support this

type of queries, GeoDB indexes data by using hierarchical triangular mesh (HTM)

indexing scheme which is particularly suitable for geographic queries.

• Aggregator. The aggregator mashes up sensor data with maps. It accepts queries

from the client and redirect the geographic components of the queries to the GeoDB.

After obtaining the metadata of a set of sensors that satisfy a client query, it contacts

the sensors (data publishing toolkits) for their real-time data. It then aggregates the

data accordingly (e.g., depending on the zoom level of the underlying map shown

to the client). By doing so, SenseWeb provides useful summarization of data to

the client. The particular aggregation performed by the aggregator depends on

sensor types. For example, an average of the temperatures in a neighborhood can

be displayed for data collected from thermometers.

Nevertheless, both the IrisNet and the SenseWeb are based on the traditional approach:

some servers and some clients. In this thesis, we intend to explore the possibility of the

usage of peer-to-peer systems. Since the system structure change a lot, there are many

issues to address such as scalability, fault-tolerance etc.

12

Chapter 3

GNet: A Geographic Address-based P2P

System

3.1 Overview of GNet

In this chapter, we present design and evaluation of GNet, a peer-to-peer(P2P) pro-

tocol that is well suited to support wide area location-based service. The GNet protocol

uses hierarchical geographic address as identifier of Internet-connected nodes. By combin-

ing domain-progressive routing mechanism like plaxton mesh with geographical domain

hierarchy, this P2P protocol has the advantages of efficient routing, locality preserving

and load balancing etc. In particular, it will benefit Internet scale location-aware applica-

tions by supporting position-based, proximity-based and especially geographically scoped

operations.

3.2 Introduction

In ubiquitous computing environment, to provide context to support context aware

service, more and more devices will be embedded into the surrounding physical environ-

ment. Such device might include sensor network units, web cameras as well as invisible

computers in the future. By accessing these devices with physical location, some exciting

applications can be expected.

Such location-based application examples include reading and aggregating information

collected by sensor nodes in a given region (for security purposes or environmental moni-

toring), querying for specific resources available in a geographic area (for instance, looking

13

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

for a available parking space in a given neighborhood), and disseminating notifications to

all nodes in a given region (to send bargain advertisement information from a department

store, to multicast warnings about natural disaster such as floods, etc).

We believe that a practical way to connect and access these devices is to employ the

Internet. However, in current Internet, data communication is based on network address

rather than its physical location so that mechanism of correlation of geographical address

and network address becomes necessary. Another more important issue we recognized is

about the appropriate architecture for large scale location-based applications. To operate

with huge number of device nodes, traditional way such as client/server model which

usually works well at campus or enterprise level can not support such wide area large-scale

system (to be weak of single node failure by malicious attack, or tends to be overloaded if

many resource-hungry real time data processing tasks are simultaneously imposed upon

a single node). In such a situation, we propose a new P2P architecture (called GNet)

to support Internet scale location-based applications. GNet organizes nodes by their

geographical location and especially address geographically scoped operations. GNet has

advantages such as low network diameter (any node in GNet is always reachable in very

limited hops), locality preserving (suitable for proximity application and region scoped

operations) and self-organization etc. Our protocol in this chapter is mainly designed for

location-based applications, but it can also be extended to other overlay network scenarios

with little modification (e.g. distributed file system) in which node identifier is based on

domain-based naming scheme and domain-based operations are required.

The rest of this chapter is organized as follows: in section 3.3 and section 3.4, we

introduce our GNet protocol and some applications. We show some simulation results in

section 3.5 and make conclusion in section 3.6.

3.3 GNet Protocol

In GNet, nodes self-organize into a flat overlay network using their geographic identifier

that is different from physical address used in GeoPeer[8]. A geographic identifier is a

geographic address where the node is physically located. It takes form of hierarchical

domain as described in section 3.3.1. Each node has an elaborately built routing table

where there keeps tracking nodes of some selected domains with their geographic addresses

and their network addresses (IP address). A node therefore can make a routing path by

14

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

limited overlay hops to any arbitrary node of the whole network in a domain-progressive

manner. In section 3.3.2 we will illustrate this in detail.

Our GNet implementation takes the form of library to be used in location-based applica-

tion. The user application interacts with GNet in several ways. In current implementation,

lookup (id), unicast (id, msg) and geocast (domain,msg) are supported. Function lookup

(id) resolves IP address of node with specified id. The unicast (id,msg) sends a message to

node with specified id. The geocast (domain, msg) enables application to deliver message

to all nodes in region of a specified domain.

Figure 3.3 shows architecture of system using GNet. In this architecture, the Internet

becomes just a low-level transport tool. The GNet layer, which is the main contribution we

have done in this chapter, acts as a substrate for routing geographically over the Internet.

The service layer on a node provides service (for instance, region-based data aggregation)

to the node itself or other node in the GNet. When service layer at a node receives a

service request, it will decide, depending on covering region of service request, either to

forward request to other node(s) or do service reply. We illustrate two example service in

section 3.4. The service layer is open for developing new service based on our GNet. User

application layer consume service provided by lower service layer by calling service layer

API.

It must be noticed that our protocol is not designed for content distribution application

such as mp3 file sharing, but is to be a substrate for location-based service. Since our

GNet is not a general purpose P2P architecture, GNet does not provide facilities such as

to save message/content based their hash value like in DHT-based protocols directly. Our

architecture is rather suitable to region-based operation which other P2P protocols can

hardly provide.

3.3.1 Geographic Domain Name Identifier

GNet assumes that all geographically distributed nodes each have a globally unique

Geographic domain name IDentifier (GID). The GID takes the form of textual domain-

based name in a hierarchical fashion. Mailing address scheme is a straightforward ex-

ample that has hierarchical elements as state, city, street, and unit etc. For instance,

“Tokyo.Meguro.Komaba.chome4.N001” stands for a node N001 located at “chome4, Komaba,

Meguro, Tokyo” in Japan. It is obvious that relations between such GIDs can be repre-

15

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

User Application

Location-based Service

(Message Dessimination, Nearby Object Finding, etc.)

GNet Routing Layer

The Internet

Figure 3.1: GNet system architecture

sented by a abstract domain tree. A city domain is a child domain of state, while a street

domain is a child domain of city, and so on. It must be noticed that assigned GIDs are

all leaf nodes (non-domain nodes) in the domain tree.

Comparing with DHT-based overlay network, we see the distinct difference between

them. DHT-based protocol uses digital number, which is of less meaning by simply hash-

ing node name (such as IP address, user name etc.), to identify individual node. Using

hash value of node name string of geographical address as node identifier, will inevitably

lose hierarchical tree property and make it difficult to preserve geographical relationship

between nodes. It will then be difficult to do region-constrained operation to support

location-based service. On the contrary, geographic address scheme keeps the inherent

domain nature (i.e. domain is actually a physical region) and will preserve physical lo-

cation relationship between nodes. In practice, the nodes whose GID has same domain

prefix can be roughly considered physically adjacent or close to each other from the whole

address space view, and nodes which are physically adjacent will share a same domain

name with high probability. This characteristic is important to support region-based (ac-

tually domain-based) communication. Our work essentially depends on this domain-tree

property of geographic address.

3.3.2 Node State and Routing

Each node maintains a routing table. Routing table is the core part of GNet. We begin

with description of the routing table and then describe routing process. Process to build

routing table will be discussed in node joins of section 3.3.4.

16

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

The routing table is composed of a number of pair entries of GID and IP address. In

P2P network, peer does not have global knowledge of the whole network. Due to constantly

changing network feature, maintaining information of huge number of all GID and their

IP addresses on every individual node is impractical, so we designed a routing table that

each node selectively holds information about a number of nodes of whole network. We

describe routing table of any node N with GID x1.x2. . . xh as following:

• Node N maintains a routing table.

• A routing table has h ROWs. Row at level i is denoted by ROW i.

• ROW i (i ∈ [1, h]) contains a self entry N for self domain x1.x2. . . x i−1.xi and d-1

entries of domain contact node (DCN) for neighbor domains of x1.x2. . . x i−1.xi.

The d is the number of child domains of upper domain x1.x2. . . x i−1 at domain level

i. Each DCN represents neighbor domain of x1.x2. . . x i−1.xi at same domain level.

A DCN entry contains a pair of GID and its IP address of one of potentially many

nodes that is located within the neighbor domain. DCN behaves like an entrance

point to the domain it represents and is used when node N want to refer to the

domain.

• ROW i is tagged as x1.x2. . . x i−1.This is parent domain that stands for upper

domain of all node entries in ROW i.

Note:

• Domain x0 is defined as virtual root of domain tree.

• DCN of smallest domain (leaf node in domain tree) x1.x2. . . xh is node N itself.

Here is a simple example to explain routing table. Suppose a number of nodes are

distributed in a geographical area as shown in Figure 3.2, geographic address of all nodes

forms a 3-levels hierarchical domain tree. Node a3.b8.c15 then has a routing table shown in

Table 3.1. First row of the table contains three domains a1, a2 and a3 and their respective

DCNs. These DCN entries each represents domain it belongs to. In this example, node

a1.b2.c5 is DCN of domain a1 and stands for domain a1, a2.b4.c8 is DCN of domain a2

and stands for domain a2 and a3.b8.c15 (self node) is DCN of domain a3 and stands for

17

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

domain a3. In the second row, domain a3.b8 and sibling domains have their DCNs being

contained: a3.b6.c11 for a3.b6, a3.b7.c14 for a3.b7 and a3.b8.c15 (self node) for a3.b8. In

the 3rd row, domain a3.b8.c15 is indeed node a3.b8.c15 and siblings are a3.b8.c16 and

a3.b8.c17. Here it should be noticed that DCN of a domain was randomly selected during

node-join process and could be safely replaced by other node of the same domain when

this DCN leaves or fails subsequently.

c7
c8

c16

c15

c17

c13

c14

c12

c10 c9

a2

a3

b5

b7

b8

c1

c2 c3

c5

c4 c6 c11 b2

b1

b3

b6
a1

b4

Figure 3.2: A example of three-levels hierarchical address

Parent Domain Sub Domain and contact node

(root) a1.b2.c5 a2.b4.c8 a3.b8.c15

a3 a3.b6.c11 a3.b7.c14 a3.b8.c15

a3.b8 a3.b8.c15 a3.b8.c16 a3.b8.c17

Table 3.1: Routing table of node a3.b8.c15

Now we describe routing process. First let us see a routing example and then conclude

the process using pseudo code. Suppose source node Ns with GID a1.a2....ah sends message

to destination node Nd with GID b1.b2...bl. Because Nd has top domain as b1, source node

Ns first look up its own routing table and found out DCN of domain b1, say node N2,

then Ns forward message to N2. N2 is a DCN of domain b1 so that N2’s GID must begin

with b1. And in addition, in N2’s routing table, ROW 2 contains DCNs of all child domain

of b1, including domain b1.b2. Suppose DCN of domain b1.b2 is N3, at next step message

is forwarded to N3 that represents smaller (lower) domain b1.b2. After N3 receive routing

message, in the same way, it will find smaller domain towards the destination node Nd. We

18

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

conclude that the routing will finally converge at the destination node in this progressive

manner. The overlay hops to reach the destination will be less than or equal to l, where

l is the node depth in the view of domain tree. We describe this routing process using

pseudo code shown in algorithm 1.

Algorithm 1: n.route (dest gid, msg)

// Node n route message msg to node of dest gid

Input: dest gid destination gid

Input: msg message to route

begin1

if n = dest gid then2

n get msg;3

else4

n′ = n.smallest domain dcn(dest gid);5

end6

end7

Node degree, which means the number that a node has to keep record of other nodes,

is also an important factor that needs to be considered. GNet has a reasonable node

degree. This is referred to the number of DCNs in our routing table. From the definition

of routing table, the degree of node N is:

D =
h∑

i=1

(di − 1) (3.1)

Suppose having a balanced domain tree where h=8 and di = 10 (i ∈[1. . . h]) with total

number of nodes 108, total number of entries in the routing table is up to only 72.

3.3.3 Geographically Scoped Routing

Geographically scoped routing is implemented in routine geocast(region,msg). This

routine disseminate a message to a given region. Because in GNet the lookup(id) and

unicast (id,msg) is implemented similarly as lookup(id) , we do not explain these two

operations in detail.

As mentioned in section 3.2, geographically scoped operation is one of important

19

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

Algorithm 2: n.smallest domain dcn(dest gid)

// Node n search the local routing table for the

// DCN of smallest (lowest) domain to which dest gid belongs

Input: dest gid destination gid

Input: msg message to route

begin1

parent domain = commonDomain(n.GID, dest gid);2

row = getRowfromRoutingTable(parent domain);3

next sub domain = nextSmallerDomain(dest gid, parent domain);4

n′ = row.getDCN(next sub domain);5

return n′;6

end7

location-based service. We recognize it as a fundamental operation that needs to be

supported at the GNet layer. In current scheme in this chapter, we only provide sym-

bolic domain based routing. By mapping physical geographic address space to logical

geographic address space, we are able to adapt GNet to physical address space as well.

Any GNet node has the ability to initiate a geographically scoped routing. This oper-

ation routes a message to all nodes in a specified domain. We define it using pseudo code

in algorithm 3 and some notation is same as defined before algorithm 1:

It should be noticed that the destination domain can be an arbitrary region at any

domain level. The region is either a single geographic domain or a compound domain.

Given a compound domain being composed of some smaller domains, GNet is able to route

message to the given compound domain simply by decomposing it to smaller domains and

call above routine separately and recursively.

3.3.4 Dynamic Operations

Although nodes embedded in the environment tend to be stationary and may not join

or leave frequently, as a autonomous peer-to-peer system, in practice, GNet needs to

deal with node that join or leave the system voluntarily or fail occasionally. This section

describes how GNet handles these dynamic situations.

20

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

Algorithm 3: n.geocast (dest domain, msg)

// Node n route a message msg to dest domain

Input: dest domain destination domain

Input: msg message to route

begin1

if n.GID is within dest domain then2

if dest domain is equal to n then3

n get msg;4

for all direct child domain of dest domain do5

n′ = DCN of direct child domain;6

n′.geocast(child domain, msg);7

end8

else9

n′ = n.smallest domain dcn(dest domain);10

n′.geocast(dest domain, msg);11

end12

end13

Node Joins. When a new node X is about to join, it needs to inform other nodes of

its presence, and then initialize its routing table with DCNs of some domains. We assume

the new node knows initially about a GNet node A that is already part of the system.

Such a node can be located using expanding ring IP multicast, or be obtained by the

system administrator through outside channels.

Let us assume the new node is X. Node X then ask node A to route a special join

message with the GID and IP of X. GNet finally route this message to the existing node

Z that is located in same or closest domain with X. The routing method is same as

described in section 3.3.2.

In response to receiving join request, node Z then reply a message that contains Z’s

route table. Because X is located within same (or closest) domain as Z is, X’s routing

table will be composed of same (or similar entries) as Z’s routing table, node X can copy

most entries from Z and use it directly with little alternation if X and Z are located

21

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

Algorithm 4: n.smallest domain dcn(dest gid)

// Search the local routing table for the DCN of

// smallest (closest) domain to dest domain

Input: dest gid destination gid

Input: msg message to route

begin1

parent domain = commonDomain(n.GID, dest gid);2

row = getRowfromRoutingTable(parent domain);3

next sub domain = nextSmallerDomain(dest gid, parent domain);4

n′ = row.getDCN(next sub domain);5

return n′;6

end7

within same domain.

However, subsequently copying may lead to “hot spot” problem, because all sequent

joining node that belongs to same domain as Z does will all hold same DCN for same

domains. To avoid this, after copying routing table, X then asks each DCN in the routing

table to provide alternative DCN of domain it represents. Receiving the request, the

DCN either select an appropriate node for the desired domain from its routing table, or if

necessary use geocast routine to find out a node, then sends reply message to X with the

newly selected node GID and IP address.

Node Leaves. When a node X leaves, it needs to inform nodes of its departure to

those who have entry of X in their routing tables. This will give a chance to these holder

nodes to replace X with alternative node as new DCN. Doing this is important to these

holder nodes to keep correctness of routing table and to prevent from wrong routing paths

to domain that X was representing.

For example, in Figure 3.2, a3.b6.c11 is DCN of domain a3.b6 in routing table of node

a3.b8.c15. When a3.b6.c11 leaves, node a3.b8.c15 will lose domain contact to domain

a3.b6, so a3.b8.c15 must has a3.b6.c11 entry replaced with new DCN to keep correctness

of routing table.

Broadcasting to all top domains to inform all network nodes of X’s departure generate

22

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

unnecessary excessive communication overhead and is apparently inappropriate. Since

only a small number of nodes hold entry of X, GNet chooses to let X maintain a holder

list. The holder list contains all nodes which hold entry of X. The holder list is updated

when other node became holder of X.When leaves, X just send message to nodes in holder

list to let holder nodes to replace X with other alternative DCN. We must notice that

this holder list does not increase node degree because it needs not to be always correct,

i.e. it is unnecessary to communicate with holder node to verify its aliveness.

Furthermore, GNet can optionally let X provide holder with one of its neighbors as

alternative DCN when leaves. This can reduce traffic when a holder needs to find new

alternative DCN.

Node Fails. The correctness of the GNet protocol relies on the fact that each node

knows DCN of neighbor domains at each domain level. However, this invariant can be

compromised if DCN nodes fail. Unlike node leave, sudden failure of node will make holder

nodes unable to route into the domain where failed node was acting as DCN. For example

refering to Figure 3.2 and Table 3.1, when a3.b6.c11 fails, one of its holder node a3.b8.c15

consequently loses domain contact of domain a3.b6. The routing table unfortunately lost

its correctness temporarily until new substitute node found proactively. To handle this,

each node has two modes (proactive mode and reactive mode) for checking routing table

correctness. In proactive mode, node checks DCNs’ aliveness periodically. In reactive

mode, node does not perceive DCN’s failure until trying to route message or execute

service request to the DCN’s domain. Whenever a DCN is no longer alive, a node has to

try to find out an alternative to substitute it. This is done as follows: Node X sends a

request to any valid node R in its routing table to search alternative DCN with domain

information. On receiving request, node R initiates a search mission using geocast as

described in previous section 3.3.3. Nodes at last receive such search message will reply

back to the node X with its GID and IP address. X in turn, randomly choose one of them

as new DCN.

To increase robustness, for each DCN entry, GNet node optionally maintains a backup

DCN list of size r. If a DCN does not respond, the node can try the second entry in its

backup list, and so on. Only all backup list nodes’ simultaneous failure can result failure

of routing into that domain.

23

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

3.3.5 Characteristics

From the definition of routing table, routing process and discussion on dynamic prob-

lem, our proposed GNet can be expected to have following features. We must be aware

that GNet requires geographic address tree to be nearly balanced for better performance.

1. Locality Preserving: GNet has good location proximity property. The node N

knows more about nodes within same domain and close neighbor domains than

about nodes far away. This important feature contributes to shorter routing path in

location-proximity application effectively. For instance, if Ns is a node under domain

a1.a2...ac with GID a1.a2...acac+1...ah and Nd is a also node under domain a1.a2...ac

with GID a1.a2...acbc+1...bl, then the length of routing path would be l − c, shorter

than l.

2. Load Balancing: In GNet, load includes routing load and service execution load.

When node joins, it will have equal probability to be a DCN as other nodes under

same domain at any level. Hence, each node will act as a “router” with same chance

and routing load is shared by these DCN for same domain.

More than route load balancing, location-based service built on GNet is able to take

advantage of load balancing as well. Because DCN that represents a certain domain

can act as service provider on behalf of the domain as well, any service request for the

domain will be executed on anyone of DCNs of the domain. Since each node within

the same domain has the equal probability to be a DCN, service execution load is

expected to distributed evenly through these DCNs. Node in GNet not only behaves

as a consumer, but also as a router, a data aggregator or a database server etc. In

this way, service execution load are well geographically balanced among nodes.

3. Efficient Routing: In particular, routing path in GNet is relatively short. Since

our routing process is domain-progressive and every routing hop will make at least

one level lower to destination node, the routing cost will be less than lmax hops,

where lmax is the maximum number of domain levels of domain tree. DHT catego-

rized P2P protocol, for example well-known Chord, has mean routing path length of

O(log(n)). GNet is better in routing cost respect than other P2P protocol, especially

in proximity applications. This is very important and meaningful for large-scale net-

24

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

work.

4. Scalability: The size of routing table (node degree) is very small in comparison

with the total network size n when level of tree l is a moderate number as shown in

Equation 3.1.

Given a regular and balanced domain tree, when the n increase as total level l being

fixed, which implies increasing of each domain degree d, the average size of routing

table will increase too. Suppose we have a regular domain tree with levels = l and

size =n, the routing table size is D = l ∗ (l
√

n − 1) . Because our GNet is specially

designed to support location-aware service, and in real world case geographic address

hierarchy is about to have roughly 6-10 levels, so D tends to be a reasonable small

number. Assume l is 8 and network size is 108, the routing table size D will be 72

and this network degree is reasonably small. While Chord[44] has routing table size

of O(log(n)) = O(27) under above assumption, our protocol is comparable in this

respect.

5. Decentralization: GNet generally requires no server to support. It works at peer-

to-peer mode. No node is more important than any other. This can help avoid

single-point-failure to improve robustness and make GNet appropriate for loosely-

organized applications.

3.4 Location-based Applications

GNet will especially help support location-based applications. Its location aware na-

ture makes it particularly appropriate to support many applications which are based on

geographical location and region over Internet.

Some example applications include location-based applications depend upon known

host location, proximity-based applications depend upon discovery of host nodes. We

now illustrate the benefits of our system by giving two examples of context-aware services

that can be implemented on top of GNet. It should be noted that, with the exception of

GeoPeer and variation of Squid, no other peer-to-peer system would directly support this

service.

25

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

3.4.1 Data aggregation

Similar to Parking Space Finder in IrisNet[19], it is used to collect information from

nodes located inside a given geographic region. This service can be used for real-time

environmental or security monitoring of geographical areas by connection the relevant

sensors to the GNet nodes. For a given domain, GNet first find a DCN of the query

domain (or multiple DCNs of compound domain) and forward query to this node. This

DCN node, in turn, can efficiently send query to all nodes in a given domain, collect all the

replies, and send the aggregation result back to the client in a single message. If needed,

the DCN can also perform data fusion services (such as computing averages, selecting the

lowest or highest values, etc).

3.4.2 Information Dissemination

Application such as geographical advertising consists in disseminating a message to all

nodes located inside a given geographic region. This service can be used, for instance,

to disseminate alarm or bargain information. The service can be easily implemented by

routing a notification to a DCN on behalf of the destination areas, which will, in turn,

initiate a geocast of the notification, using the technique demonstrated in algorithm 3.

3.5 Evaluation

In this section, we present some experimental results we conducted experiments by

using a prototype implementation of GNet. All our experiment software was implemented

in Java and based on PlanetSim[27]. All experiments were performed on a Dell Optiplex

370 (3.0GHz Intel Pentium ET) with 2GBytes of main memory, running Windows XP

Professional. In our experiments in this chapter, the GNet nodes were configured to run

in a single Java VM.

For simplicity, we use a collection of hierarchical addresses that form a regular balanced

tree shape, which means all branch in the domain tree have equal length and each domain

has almost same number of child domains/nodes. Here we define some notation:

l: number of levels of domain tree

d: degree of a domain in the tree

r: mean routing path length in a network

26

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

n: network size

3.5.1 Routing Path Length

In our simulations, our program will begin with building GNet with configuration as

the initial phase. Node joins into GNet every several steps and its routing table is to be

built as described in node joins in section 3.3.2.

To verify effectiveness of GNet, we change l from 3 to 8, the range similar to real-

world geographic address length. The reason why choose small l is because that level

of geographic hierarchy in practice is small. The degree of each domain d is configured

from 4 to 10. The network size vary from 1000-100000 which is appropriately maximum

capacity for operation under our experiment hardware limitation.

Unlike DHT-based P2P protocol, in GNet, the routing path length is not directly

related to network size, but depends mainly on l. We changed l in experiments and the

results in Table. 3.2 shows: 1) r is always less than domain-tree depth. 2) r is roughly

proportional to l. Because of locality preserving feature of GNet, the r will become smaller

in location-proximity applications where source and destination node are closer.

Tree Depth 3 4 5 6 7 8

Avg. Hops 2.72 3.60 4.28 4.82 5.24 6.11

Table 3.2: Domain tree depth vs. Average number of routing hops

3.5.2 Load balancing

We expect that all nodes should ideally be selected as DCN in order to sharing routing

load and service execution load. This can be verified through investigating their routing

table. We do this by observing how many times of a node being a DCN entry for domains

it is located in. We built a network with n = 5000 nodes and l = 4. Figure 3.3 shows that

times of being DCN t are mostly ranged from 0-40. It implies that most of GNet nodes

tends to share the routing load and service load among them from the whole network view.

The variance from node to node is due to order they joined the network and randomness

of being selected. Some “hot spot” can be elimitated by constraining node degree so that

27

CHAPTER 3. GNET: A GEOGRAPHIC ADDRESS-BASED P2P SYSTEM

0 20 40 60 80 100
0

100

200

300

400

500

600

N
um

be
r

of
 N

od
es

Times of being DCN

Figure 3.3: The nodes distribution with times of being DCN

network load becomes more balancing.

3.6 Summary

This chapter illustrates our early work on a new peer-to-peer protocol called GNet.

GNet protocol is a domain-tree based P2P protocol and has the advantages of short local-

ity preserving and short routing path. It does not directly support general-purpose P2P

application such as file sharing, but it is well suited for wide area location-aware service

over Internet. It is suitable for provision of services such as region-scoped multicast or

region-scoped queries, which can be used by applications to disseminate alarm or adver-

tisement message to a given area, to collect or aggregate sensor network unit data from an

interested region. Although there are still some work to do such as performance on mass

failures and balance addressing problems, we believe it can be useful in some particular

location-based applications.

28

Chapter 4

DHR-Trees P2P System

4.1 Introduction

Enabling efficient access to distributed and dynamic data is a requirement for handling

multidimensional data in P2P systems. Complex queries, such as range queries and k-

nearest neighbors queries over multidimensional data, are becoming more important as

large amount of data are shared between thousands of peers. For example, a P2P auction

network [46], where peers store information on local real estate (geographical location,

price, etc) needs to frequently deal with queries such as “find all real-estate advertisement

for properties in a given region of a city”. Another query example are P2P-based sensor

data provision networks for environmental surveillance, which are required to answer re-

quests such as “find the average temperature and dioxide concentration within 100 meters

from point A”.

Multidimensional indexing and complex queries problems have been extensively studied

in the world of databases. The most popular structures in the database are R-Trees[21]

and its variants. These tree structures split space with hierarchically nested, and possibly

overlapping, minimum bounding rectangles (regions). The queries, started from the root

of the tree, use the bounding rectangles to decide whether or not to search inside a child

node. In this way, most of the nodes in the tree are never “touched” during a search.

Therefore queries can be executed efficiently in most cases (the way of query execution

in R-Trees is referred as R-Trees-like query in this chapter). However, it is nontrivial to

apply R-Trees in P2P context, since it requires efficient network-based query processing,

fault-tolerant network topology and low cost of network maintenance. Without any central

29

CHAPTER 4. DHR-TREES P2P SYSTEM

index server, all peers and shared data must be reachable and searchable while the network

constantly changes. Much research effort has been done on P2P structures and many P2P

structures have been proposed. However, few of them can deal with multidimensional

queries efficiently. None of them can support R-Trees-like query in a distributed fashion.

In this chapter, we propose DHR-Trees (Distributed Hilbert R-Trees), a decentralized

multidimensional indexing structure for P2P systems, which enables self-organization of

peers, supports range queries and nearest neighbor queries efficiently and does network

maintenance at low cost. In DHR-Trees, each peer is assumed to control a multidimen-

sional data set enclosed by a rectangle in the space. Intuitively, the peer itself (with

data rectangle) can be regarded as a leaf-node of R-Trees. Peer in DHR-Trees has its

independent view of R-Trees (in which peer itself can be looked as left-most leaf node).

In peer’s routing table, peer dynamically acquires and maintains rectangle information

on root-to-leaf path of the R-Trees. With these rectangle information, a peer analyzes

multidimensional query and decides next peer to forward the query, as making decision

of whether or not search inside a child node in the R-Trees. This makes it possible to

accommodate existing R-Trees query algorithms with minor modification in P2P systems.

We designed the DHR-Trees structure, in which the core part is the peer’s routing table.

We also designed two major multidimensional query execution algorithms: range query

and nearest neighbor query. We have evaluated DHR-Trees system under various settings.

Experiments are performed with different network sizes, different types of data distribu-

tion etc. The results proved the correctness of P2P systems and effectiveness of range

query and nearest neighbor query algorithms. Comparison results also demonstrates that

its query execution requires much less node visits than in Squid[41].

The rest of this chapter is organized as follows: In Section 4.3, we introduce our

DHR-Tree structure, its dynamic features, and implementation issues. We then show

multidimensional query algorithms of range query and nearest neighbor query in Section

5.2. In Section 5.3, simulation results are shown. Finally, conclusion in Section 5.4.

4.2 System Model

In DHR-Trees based p2p system, each peer node is responsible for storing a collection

of spatial data objects within a spatial region. The peer is the controller of the region and

is identified by assigned location key. A data object has either point location property or

30

CHAPTER 4. DHR-TREES P2P SYSTEM

spatial extent property, such as line, circle, polygon and so on. The region is a minimum

bounding rectangle enclosing all data objects, which are stored at the peer. The region

may shrink or expand at runtime when data objects are inserted in or deleted from the

system. The location key is a Hilbert value of location.

The DHR-Trees protocol has essentially three operations:

1. Point query. Given a search point, find node(s) responsible for data located at the

point. For example, “Find data object at the location P”.

2. Region query. Given a search region, find node(s) responsible for data located in

the region. For example, “Find data object within the region R”.

3. Nearest neighbor query. Given a search point, find the nearest k nodes to the

point, where k is number of nodes desired. For example, “Find k closest data objects

near the location P”.

The DHR-Trees system provides a distributed lookup service that allow applications

to insert, lookup, and delete data objects using point and region as a handle. We expect

the predominant use of DHR-Trees system to be as a lookup service for sharing spatial

data among geographically distributed peers.

The API provided by DHR-Trees consists of serveral main functions, shown in Table

4.1. These API functions can be called by any applications built over DHR-Trees system.

The first two functions are used when node join and leave a DHR-Trees system. When

lookup(key) is called, DHR-Trees efficiently find the corresponding node and return it

to the caller. When RangeQuery(region) is called, the system find node(s) responsible

for data located in the region and return the collection of them to the caller. When

NNQuery(point, k) is called, the system find the nearest nodes to the point, where k is

number of nearest neighbors desired.

The DHR-Trees system is implemented as an application-layer overlay network. The

underlying layer is usually the TCP/IP network, where node is identified by its Internet

Protocol address. Each DHR-Trees node maintains a set of the data objects, as well as

routing table entries that point to a subset of carefully chosen DHR-Trees nodes. Client

application may, but is not constrained to, runs on the same hosts as DHR-Trees nodes

that provides storage and query service. This distinction is not important to the DHR-

Trees protocol described in this chapter.

31

CHAPTER 4. DHR-TREES P2P SYSTEM

Function Description

join(n) Causes a node to add itself as a server to the

Chord system that node n is part of. Returns

success or failure.

leave() Leave the DHR-Trees system.

lookup(key) Returns the node associated with the key. The

key is a mapped value on Hilbert Space Filling

Curve, and the lookup is a exact match without

using spatial information.

RangeQuery(region) Returns nodes that owns region overlapping the

parameter region.

NNQuery (point, k) Returns k closest nodes by distance between

node-owned region and search point

Table 4.1: API of DHR-Trees system

Based on the features described above and conditions on the Internet, we set the

following design goals for DHR-Trees system.

1. Scalability. The system should scale well to potentially billions of keys, stored

on hundreds or millions of nodes. This implies that any operations that are sub-

stantially larger-than-logarithmic in the number of keys are likely to be impractical.

Furthermore, any operations that require contacting (or simply keeping track of) a

large number of server nodes are also impractical.

2. Availability. Ideally, the lookup service should be able to function despite network

partitions and node failures. While guaranteeing correct service across all patterns of

network partitions and node failures is difficult, we provide a“best-effort”availability

guarantee based on access to at least one of r reachable replica nodes.

3. Load-balanced operation. If resource usage is evenly distributed among the

machines in the system, it becomes easier to provision the service and avoid the

problem of high peak load swamping a subset of the servers. Chord takes a step in

32

CHAPTER 4. DHR-TREES P2P SYSTEM

this direction by distributing the keys and their values evenly among the machines

in the system. More refined load balancing, for example to deal with a single highly

popular key by replicating it, can be layered atop the basic system.

4. Dynamism. In a large distributed system, it is the common case that nodes join

and leave, and the Chord system needs to handle these situations without any“

downtime”in its service or massive reorganization of its key/value bindings to other

nodes.

4.3 DHR-Trees P2P structure

In multidimensional database, R-Tree[21] and its variants use tree structure for storing

information. Each node of an R-tree has a variable number of entries (up to some pre-

defined maximum). Each entry within a non-leaf node stores two pieces of data; a way of

identifying a child node, and the bounding rectangle of all entries within this child node.

Thus, a R-Tree can be regarded as an overlapping region (i.e. rectangle) tree. Search

algorithms usually run from root of the tree; use bounding rectangles to decide whether or

not to search inside a child node. Therefore, most nodes in the R-Tree are never “touched”

during a search. The way of processing leads to high efficiency on query execution.

The Hilbert R-Trees, one of the best-performing multidimensional index structures[17]

in R-Trees family, combines the overlapping regions technique of R-Tree with Hilbert

space filling curves. It first stores the Hilbert values of the data rectangle centroid in a

B+-tree, then enhances each interior B+-tree node by the minimum bounding rectangle of

the sub-tree below. This facilitates the insertion and deletion of new objects considerably.

Figure 4.1(a) demonstrates two dimensional space with some data objects and Figure

4.1(b) shows its corresponding Hilbert R-Tree.

P-Trees[14], a recently proposed Peer-to-Peer systems, enables one-dimensional range

query to be executed collaboratively by peers. Instead of using Distributed Hash Tables

method, it organize all nodes into a closed virtual ring by node identifiers (without hash-

ing). As a result, one-dimensional range queries then becomes possible, since the proximity

between peers’ identifiers is preserved. Each peer independently maintains a routing ta-

ble, where entries are exactly those on the left-most root-to-leaf path of B+-Tree. Each

peer has its own view of B+-Tree, in which the peer’s identifier is located at the left-most

33

CHAPTER 4. DHR-TREES P2P SYSTEM

(a) Data rectangles in a Hilbert R-Tree

(b) A Hilbert R-Tree

Figure 4.1: Hilbert R-Tree Example

leaf node. To keep freshness and correctness of routing table, peers in P-Trees system

periodically call stabilization method (called stabilizeLevel).

DHR-Trees combines advantages of P-Trees and Hilbert R-Trees together. It takes the

same topology as in P-Trees. It enhances peer’s routing table with bounding rectangle

information. It can be loosely regarded as a distributed version of Hilbert R-Trees, but

each node has independent view of the Hilbert R-Trees. It can also be regarded as multidi-

mensional extension of P-Trees, enabling indexing and flexibly searching multidimensional

information in P2P systems.

34

CHAPTER 4. DHR-TREES P2P SYSTEM

0 10

20

30

40

50

60

70

80

90

100

110

120

130

140

150160170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

Figure 4.2: Global view of DHR-Trees structure (Network Size N = 32)

4.3.1 Overview of DHR-Trees

The idea is partially inspired by and based on the work of P-Trees [14], which is

designed for supporting one-dimensional range queries in P2P network. While P-Trees

can be viewed as a “distributed b+-tree” for one-dimensional data sharing, our DHR-

Trees can be viewed as a “distributed Hilbert R-Trees” for spatial data sharing. The

main enhancement is that each peer keeps relevant region tree information in its routing

table. Hence it supports the same class of queries as in centralized R-Trees. This is

significant since many complex multidimensional query algorithms can be adapted into

the P2P network environment.

It gives up the notion of maintaining and sharing a globally consistent R-Tree by all

peers, and instead maintains semi-independent DHR-Trees at each peer. This allows

for fully distributed index maintenance without any need for inherently centralized and

unscalable techniques such as primary copy replication.

In a DHR-Trees P2P system, each peer is assumed to control some data set comprised

by a Minimum Bounding Rectangle (MBR) in multidimensional space. Peer p is associated

with data rectangle p.MBR and with p.HCode, where p.HCode is the Hilbert value of

35

CHAPTER 4. DHR-TREES P2P SYSTEM

(a) Peers in 2-dimensional space (b) Mapping by Hilbert Space Filling Curve

Figure 4.3: Overview of DHR-Trees

centroid of p.MBR from the space. The p.HCode is used as the index value (key) of p in

the one-dimensional space. At the underlying network layer, each peer identifies itself by

p.peer, which is usually the peer’s IP network address. Peers organize themselves into a

virtual ring as in P-Tree by their p.HCode. The Hilbert curve therefore becomes a closed

ring and peers are indexed by their p.HCode in the ring.

Figure 4.3 demonstrates the structure of DHR-Trees for two-dimensional space case.

There are eight peers in 16 × 16 space in Figure 4.3(a). For simplicity, each is assumed

to store one point data at its location. As shown in Figure 4.3(b), by mapping from two-

dimensional to one-dimensional space, each peer has a unique Hilbert value. These values

are used as peer identifiers in DHR-Trees P2P system. Peers organize themselves into a

virtual ring by their identifiers. Each peer has a pair of predecessor peer and successor peer

as in Chord[44] system. Each peer also has its own composite routing table as in Figure

4.3(c). The composite routing table is the most important component of DHR-Trees. With

Hilbert value and coverage information in routing table, DHR-Trees P2P system supports

routing and equality search similarly as in P-Trees. By having spatial region information

in the composite routing table, DHR-Trees P2P system supports multidimensional query

directly and efficiently as in centralized R-Trees.

36

CHAPTER 4. DHR-TREES P2P SYSTEM

(c) Virtual ring of peers with routing table

Figure 4.3: Overview of DHR-Trees (con’t)

4.3.2 Components on a Peer Node

As a member of DHR-Trees, each peer is designed to keep some links to other peer

nodes. Basically, each peer has two types of links: Firstly, it should be aware of its

preceding and succeeding nodes in the identifier space, so that all nodes can form into a

ring structure and are properly ordered and linked together; Secondly, it has a routing

table, which enable key lookup and query to be routed to other nodes efficiently. Table 4.2

illustrates primary components on a peer node and their description and their description.

The predecessor is the previous node on the identifier circle. The successor is the next

node on the identifier circle. The nodes is the Composite Routing Table, which has

two significant purpose. Firstly, the nodes store some carefully selected neighbor nodes

that will speed up the lookup process by identifier. Secondly, by having spatial region

information in it, a spatial query can be efficiently executed by comparing with the region

information.

37

CHAPTER 4. DHR-TREES P2P SYSTEM

(a) Content (b) Related peers

Figure 4.4: Routing table of Peer p5

4.4 Predecessor and Successor

DHR-Trees topology takes the form of ring structure. In DHR-Trees peer-to-peer

systems, nodes are identified by the corresponding code on Hilbert space filling curve that

mapping Euclidean space to one-dimensional identifier space. Assuming all nodes have

unique number as their identifiers, then it is possible to sort all nodes by the identifiers.

The ring is formed by connecting the biggest identifier to the smallest identifier existing

in the system.

Therefore, each peer, including the peer with smallest identifier and the peer with

largest identifer, has only one closest preceding identifier and one closest succeeding iden-

tifier. Having correct predecessor and successor for each peer is a sufficient condition for

the whole ring structure to be built correctly without disorder, sub-ring or partitioning.

For instance in Figure 4.4(b), the peer p3 has p2 as predecessor and p4 as successor, which

both are closest to peer p3 along the DHR-Trees ring. The peer p8, with which is largest

number in the system, has p7 as its predecessor and p1 as its successor.

38

CHAPTER 4. DHR-TREES P2P SYSTEM

(c) Region information

Figure 4.4: Routing table of Peer p5 (con’t)

4.5 Composite Routing Table

In DHR-Trees systems, each peer stores nodes information of the left-most root-to-leaf

path of independent Hilbert R-Trees from its view in its composite routing table. The

significant enhancement to P-Tree is that region information MBR (we inherit the word

MBR from the database world for convenience) is stored as a part of multidimensional

overlapping regions tree. The MBR is a minimum bounding rectangle of the sub-tree

below (see example in Figure 4.4(a)). As an important part of DHR-Trees, the MBR

entry facilitates multidimensional queries, e.g. range queries could be executed efficiently

as in centralized R-Trees. Details of routing table are presented below.

As illustrated in Table 4.2, a peer p maintains a routing table p.node, a double in-

dexed array, containing nodes information. Formally, the routing table p.node consists

of numLevels rows. There are p.node[i].numEntries of node entries at level i, where

0 < i ≤ numLevels. The numLevels is at most [logdN], where N is the number of peers

being indexed and d is the order of the R-Tree. The p.node[i].numEntries is between d

39

CHAPTER 4. DHR-TREES P2P SYSTEM

Component Definition

nodes The Composite Routing Table; A double in-

dexed array, containing nodes information

nodes[i] A row at level i in the Composite Routing Table.

It is also called as a Routing Level

nodes[i][j] The jth routing entry in the routing level

nodes[i]. It is also called as a Routing Entry

successor The next node on the identifier circle; always

equal to nodes[1][1]

predecessor The previous node on the identifier circle.

Table 4.2: Components on a Peer Node p

and 2d at the non-root level of the Tree. At root level, p.node[i].numEntries is between

2 and 2d. Each entry in the row contains a group of elements as following:

⟨HCode,MBR, peer, L, U⟩

which points to the peer peer that owns MBR and is identified by the index value HCode.

In the routing table p.node, every peer’s MBR at level i is a minimum bounding rectangle

that comprises all peer.node[i − 1][j].MBR, where 1 ≤ j ≤ peer.node[i − 1].numEntries.

The L and U in Table 4.3 is used for maintenance purpose.

Formally, these five elements have meaning and usage as follows:

1. HCode. An Hilbert Code used as identifier for a peer node. It is a Hilbert

value of a given Euclidean point when mapped to a Hilbert Space Filling Curve.

The Euclidean point is usually the centroid of local spatial data.

2. MBR. Minimum Bounding Rectangle. If the i is 1, the MBR is the minimum

spatial extension of local data. If the i is larger than 1, then it is a minimum

bounding rectangle which contains all underlying MBRs.

3. peer. The network address of a peer node with HCode as identifier at the overlay

network. It is a IP address when the DHR-Trees peer-to-peer is built on an IP

network.

40

CHAPTER 4. DHR-TREES P2P SYSTEM

Element Definition

HCode An Hilbert Code used as identifier for a peer

node.

MBR Minimum Bounding Rectangle.

peer The network address of a peer node with HCode

as identifier at the overlay network.

L The lower bound for the next routing entry (or

minimum distance between this and next rout-

ing entry).

U The upper bound for the next routing entry (or

the maximum distance between this and next

routing entry).

Table 4.3: Elements in a routing entry p.nodes[i][j]

4. L. The lower bound for the next routing entry (or minimum distance between

this and next routing entry). It is dth HCode at level [i-1] in routing table of peer.

Formally equal to peer.nodes[i-1][d].HCode. If i=1, it is peer.HCode itself. Used as

lower bound (exclusive) for the p.nodes[i][j+1].HCode.

5. U . The upper bound for the next routing entry (or the maximum distance

between this and next routing entry). The successor of the entry that can be reached

through right-most path of peer.nodes[i-1]. If i=1, it is peer.successor. Used as upper

bound (inclusive) for the p.nodes[i][j+1].HCode

Figure 4.4 shows the composite routing table of peer p5 and its meaning for intu-

itive purpose. Figure 4.4(a) presents the composite routing table of peer p5, where

p5.numLevels is 2. There are three entries at each level where the first one is about p5 it-

self. At level 1, there are 3 entries corresponding to the triples (128,R128,p5), (157,R157,p6)

and (185,R185,p7). R128 is p5’s data MBR. R157 and R185 are acquired from p6 and p7 re-

spectively during p5 stabilization process on level 1. Notice that p5,p6 and p7 in the triples

represent the network address of these peers respectively. At level 2, there are three en-

tries corresponding to the triples (128,R2
128,p5), (251,R2

251,p8) and (49,R2
49,p3). MBR at

41

CHAPTER 4. DHR-TREES P2P SYSTEM

Figure 4.5: An example of DHR-Trees with routing tables at p2 and related peers

level above 1 is tagged with level i as superscript, such as R2
128, R2

251 and R2
49. R2

128 is

calculated and updated by calling Algorithm 14. The value of R2
251 and R2

49 are updated

at corresponding peers, p8 and p3, and in turn these values are obtained by p5 during

p5 later stabilization process on level 2. Figure 4.4(b) illustrates the distribution of p5’s

routing table entries. Level 1 consists of closest succeeding peers. At level 2, entries are

succeeding peers with widened intervals. The interval is equivalent to the coverage range

in P-Tree. In Figure 4.4(c), the region information MBRs that are stored in p5 routing

table is shown. We can see that these rectangles in the Figure can be regarded as the

left-most route-to-leaf part of the “sliding” Hilbert R-Trees, which has p5 as its left-most

leaf node. The R2
251 is special as it contains two rectangles, one is the rectangle before the

end point 255, the other is the rectangle after wrapping point 0. The issue of the wrapped

region will be introduced in subsection 4.5.3.

4.5.1 DHR-Trees Routing Table Properties

As shown in previous subsection, each peer p has a composite routing table, the p.nodes.

To ensure routing efficiency and query efficiency, a routing table should comply with the

following properties. Some properties are similar to P-Trees. Figure 4.5 shows routing

table of p2 and relevant peers.

1. MBR Containment This property describes that upper MBR region information

enclose all spatial region of the sub-trees. It ensures all lower spatial region and

spatial data are indexed by the MBR and no missed objects exist. Formally, for any

42

CHAPTER 4. DHR-TREES P2P SYSTEM

entry p.nodes[i][j] with peer as p′,

∀j′ ≤ p′.nodes[i − 1].numEntries,

p′.nodes[i − 1][j′].MBR ∈ p.nodes[i][j].MBR
(4.1)

2. Fanout By fanout, we refer to the number of entries per routing entry. All non-root

nodes have between d and 2d entries, while the root node has between 2 and 2d

entries. Formally,

∀i < p.nodes.max Level,

p.nodes[i].numEntries ∈ [d, 2d]
(4.2)

While at the root level,

p.nodes[p.maxLevel].numEntries ∈ [2, 2d]

Allowing the number of entries in a node to vary makes nodes more resilient to inser-

tions and deletions as the invariant will not be violated for every insertion/deletion.

3. Coverage This property ensures that all search key values are indeed indexed by

the DHR-Tree; i.e., it ensures that no values are “missed” by the index structure. In

general, if there are many “missed” values between two adjacent entries, the search

performance can degrade due to the long sequential scan along the ring (although

the search will eventually succeed). Any“gaps” between adjacent sub-trees imply

that search cost for certain queries can no longer be guaranteed to be logarithmic.

The coverage property addresses this problem by ensuring that there are no gaps

between adjacent sub-trees. A similar issue is ensuring that the subtree rooted at

the last entry of each root node wraps all the way around the DHR-Trees ring. These

two properties together ensure that all values are reachable using the index.

Formally, assume p.nodes[i][j] and p.nodes[i][j + 1] are two adjacent entries in the

routing table, the coverage property of p.nodes[i][j + 1] is satisfied iff:

p.nodes[i][j + 1].HCode ≤ p.nodes[i][j].U (4.3)

4. Separation The separation property ensures that the overlap between adjacent sub-

trees is not excessive by ensuring that two adjacent entries at level i have at least d

non-overlapping entries at level i-1. Though some overlap is possible and desirable

43

CHAPTER 4. DHR-TREES P2P SYSTEM

because the sub-trees can then be independently maintained, excessive overlap can

compromise logarithmic search performance.

Formally, the separation property of p.nodes[i][j + 1] is satisfied between these two

entries iff

p.nodes[i][j].L < p.nodes[i][j + 1].HCode (4.4)

4.5.2 Mapping between Identifier and Network Address

Peer-to-peer systems is viewed as a kind of overlay network. From the layered structure

view, it locates itself on top of existing network which is usually IP network. When run a

query or lookup at a node in a structured peer-to-peer network, the node will make a deci-

sion of to which nodes to forward the request and perhaps some intermediate result. This

is be done by referencing routing table, looking up appropriate node identifier to which

may meet the query request. Having made decision on next hop nodes to forward, the

node has to employ underlying network transporting mechanism that is usually a function

of IP network, where each node is identified by an IP address. Therefore, the mapping

between node identifier and network address is prerequisite for the overlay network to

work.

In DHR-Trees peer-to-peer network, the mapping is done in the routing table. As shown

in Table 4.3 in previous subsection, there is a triple in every routing entries, composed of

HCode, MBR and peer. The HCode is used as the node identifier and peer is network

address of the peer node in the underlying overlay network. The mapping between HCode

and peer is one-to-one relationship. We have two assumption for keeping correctness of

mapping: one is that the set of all HCode has property of uniqueness, which means there

is no duplicate HCode exists; the other assumption is that peer has uniqueness in the

network address space. The network address is guaranteed by existing network protocols,

while the uniqueness of HCode should be guaranteed by implementation of DHR-Trees

peer-to-peer system itself.

Since the pair of HCode and peer is always updated at the same time, the mapping

relation always holds under any circumstances. However, when contacting with the node

by the address failed, the routing entry is marked as stale entry . This occurs in either

of following situations:

44

CHAPTER 4. DHR-TREES P2P SYSTEM

(a) Uniform peer distribu-

tion

(b) Clustered peer distribu-

tion

(c) Skewed peer distribution

Figure 4.6: Three types of distribution(each for (2000 nodes))

• The node intentionally leaved the network.

• The node changed its address and unfortunately failed to notify other relevant nodes.

4.5.3 Wrapping-around problem

Since all peer nodes are indexed in a Hilbert curve ring, a problem about MBR arises:

when a peer is near the end of curve, the MBR entries (i.e. p.node[i][0].MBRs) at upper

level of the routing table will need to cover a group of peer.MBR located near the starting

of the Hilbert curve, which are distant from p.MBR in the m-dimension space. Intuitively,

redundant space will be possibly comprised and it will result in increasing search cost. To

solve this problem, we introduce an auxiliary MBR, denoted as AuxMBR, for containing

the wrapped-around rectangles, while MBR still contains non-wrapped ones. Therefore a

more general structure of route entry should be

⟨HCode,MBR,AuxMBR, peer, L, U⟩

A null value of AuxMBR is allowed when no wrapping-around MBR exists. Accordingly,

the range query search (Algorithm 5) should be also altered. Experiment in Figure 4.9

shows routing cost decreased when this solution is applied.

4.6 Evaluation

To evaluate the basic features of DHR-Trees, we conducted experiments using a two-

dimensional space. This space was mapped by a Hilbert curve of order 16 down into a

45

CHAPTER 4. DHR-TREES P2P SYSTEM

32 64 128 256 512 1024 2048 4096 8192 16384 32768
0

1

2

3

4

5

6

7

8

9

10

T

re
e

H
ei

gh
t(

ro
ut

e
ta

bl
e)

Network Size

 uniform
 clustered
 skewed

Figure 4.7: Routing Table Height (nodes.maxLevel)

one-dimensional space such that it is partitioned into a 216 × 216 grid. For simplicity of

evaluation, we assumed that each peer controlled a rectangle of size 1 × 1. For testing

purpose, the number of routing entry at one level was fixed as 4 (the D) and the network

size varied from 128 to 16384 nodes. The simulation begins with DHR-Trees building

progress as the initial phase. Nodes randomly joins into DHR-Trees every several steps in a

random order and the stabilization processes (the stabilization processes will be introduced

in Chapter ??) works periodically, together with the UpdateMBR process. Routing and

query experiments were executed after the network becomes stabilized. Three types of

distribution of data sets were used: uniform, clustered and skewed distributions as shown

in Figure 4.6(a), Figure 4.6(b), Figure 4.6(c).

Routing Table Height. Figure 4.7 illustrates that average routing path height (the

nodes.maxLevel) are almost the same on the 3 types of distributions. It implies that

results show that DHR-Trees were built correctly on 3 different distributions and DHR-

Trees was well-balanced in all cases. The routing table height is roughly equal to (logDN).

This illustrates the scalability of routing table to the network size.

Routing Path Length. Figure 4.8 illustrates that average routing path length are

46

CHAPTER 4. DHR-TREES P2P SYSTEM

32 64 128 256 512 1024 2048 4096 8192 16384 32768
0

1

2

3

4

5

6

7

8

9

10

R
ou

tin
g

P
at

h
Le

ng
th

Network Size

 uniform
 clustered
 skewed

Figure 4.8: Routing Path Length (hops)

almost the same on the 3 types of distributions. The routing path length is less than tree

height (logdN) since routing initiated at a peer near the destination peer needs less hops

due to proximity.

Improvement by Auxiliary MBR. In Section 4.5.3, the auxiliary MBR is introduced

to solve the extensive coverage problem of wrapping-around MBR. Figure 4.9 (uniform

distribution) shows that this approach reduced routing cost (number of visited peers) at

about 12% ∼ 13% in the case of uniform distribution.

4.7 Summary

In this chapter, we presented the new multidimensional indexing structure called Dis-

tributed Hilbert R-Trees. To the best of our knowledge, DHR-Trees structure is the first

R-Trees-based P2P structure that can handle dynamism of P2P systems. It utilizes semi-

independent R-Tree structure and allows fully distributed index maintenance. Preliminary

experimental results under various configuration show that routing cost increase logarith-

mically as network size increases, which demonstrates routing table scalability and routing

path scalability to the network size.

47

CHAPTER 4. DHR-TREES P2P SYSTEM

32 64 128 256 512 1024 2048 4096 8192 16384 32768
0

2

4

6

8

10

12

14

16

18

20

22

24

V
is

ite
d

P
ee

rs

Network Size

 MBR only
 MBR and AuxMBR

Figure 4.9: Improvement with Auxiliary MBR

48

Chapter 5

Multidimensional Queries Support in

DHR-Trees

5.1 Introduction

In multidimensional database, the centralized index is exploited to facilitate multidi-

mensional queries. In contrast, in the DHR-Trees peer-to-peer system, the big difference

is the absence of centralized index structure. Instead, the index are distributed among

peers in the system. Each peer holds only partial region tree in its routing table. A

number of other peers and their level-dependent subtree information are also maintained

in the routing table as well. These features make the query execution quite different from

traditional database.

The main difference from centralized database are recognized as follows:

• Collaborative Query Execution. In peer-to-peer systems, a peer node usually

neither know the whole indexing structure nor holds all data in the system. The

execution is often fulfilled by collaborative effort among peers. For example, in an

R-Tree database, searching data within a region is a process of descending the R-

Tree structure, along with comparing the query window with rectangles stored at the

non-leaf nodes. All these operations are done within same memory in the computing

device. On the contrary, the query initiated at a peer, will have to be resent by the

peer to other peer nodes for fulfilling the query. The query execution can be viewed

as a collaborative job among relevant peers.

• Query Cost Evaluation. The region information (i.e. the rectangles) stored

49

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

(a) R-tree (Descending the R-tree)

(b) DHR-Trees (Collaborative query execution)

Figure 5.1: The difference on query execution

at R-Trees non-leaf nodes, are distributed among peers’ routing tables. During a

query, any movement among non-leaf nodes becomes an action of visiting peer. In

the database community, the storage access overhead is an quantitative criterion

for evaluating query cost. In peer-to-peer systems, the network traffic becomes

more important than storage access. Consequently, the number of visited peers (or

messages sent among peers) becomes an important evaluation standard.

The query execution difference is illustrated in Figure 5.1.

5.2 Multidimensional Queries

5.2.1 Range Queries

In previous chapter, it is shown that the rectangle-based overlapping region trees are

kept and maintained in a distributed fashion among peers. This characteristic makes DHR-

Trees capable of doing R-Tree-like range queries in P2P systems. Due to the similarity of

50

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

point queries and range queries, we focus on how range queries are executed.

Lemma. Given that a DHR-Trees is in consistent state, a range query initiated at any

peer can finally be answered with all qualified data object that exist in the network with

guarantee.

In DHR-Trees, each peer is ordered by an one-dimensional value - Hilbert code, and

all peers are orderly indexed in the underlying ring. When the system reached consis-

tent state, any two neighboring entries at same level in routing table are guaranteed with

coverage property, that is, no peer (and data) is “missed” by the index structure. Fur-

thermore, the coverage property also ensures that all peer entries at the lower level are

contained by entries at the higher level. Since MBR at the higher level is a combination

of all lower peer.MBR and is guaranteed with correctness by UpdateMBR, that works

from the lowest level to highest level, we can prove all MBRs at higher level comprise all

lower MBRs by induction bottom-up. As a result, we can assert that any peer’s MBR

is contained by root level entries on a peer in the P2P system. By virtually descending

region tree in the routing table, DHR-Trees can guarantee all qualified data object for a

query being returned.

The pseudo-code of range query process is listed in Algorithm 5. The start level l is

initialized as highest level of DHR-Trees. Notice that the result, usually being composed

of several pieces, is returned in an asynchronous fashion due to different path length

and network latency. The peer initiated query has to be responsible for collecting and

synthesizing the results.

5.2.2 k-Nearest Neighbors queries

The k-nearest neighbors (kNN) query is described as follows. Given a query point

pt, find k nearest neighbors from the multidimensional data. The kNN issue is also re-

searched extensively in database world. The design of kNN query algorithm in DHR-Trees

uses similar metric as in work of Roussopoulos et al. [39]. The pseudo-code of kNN query

is listed in Algorithm 6. It adapts an ordered depth first traversal into DHR-Trees. At

the start, knnList, the container of kNN results, is initialized to empty and l is initialized

to highest level in the routing table. The branchList, the container of sorted searching

branch, is built from MBR at the level l and sorted by distance to the point pt incre-

51

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

32 64 128 256 512 1024 2048 4096 8192 16384 32768

2

4

6

8

10

12

14

16

18

20

22

24

V
is

ite
d

P
ee

rs

Network Size

 uniform
 clustered
 skewed

(a) Point queries cost

Figure 5.2: 2-dimensional DHR-Trees

mentally. The distance is minimum Euclidian distance applied to a point and a rectangle

(same as MINDIST in [39]). This distance is zero if the point is inside the rectangle.

The p.kNNQuery is executed iteratively as depth-firth traversal, and terminate when k

neighbors are discovered and no more closer branches exist.

5.3 Evaluation

In this section, we present the results of our experiments using DHR-Trees which was

implemented in Java and based on PlanetSim[27]. All experiments were performed on

a 3.0GHz Intel Pentium ET machine with 2GBytes of main memory, running Windows

XP Professional. In our current simulation environment , the DHR-Trees nodes were

configured to run in a single Java Virtual Machine.

52

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

5.3.1 Two-Dimensional DHR-Trees

The first experiments were conducted using a two-dimensional space. This space was

mapped by a Hilbert curve of order 16 down into a one-dimensional space such that it is

partitioned into a 216 × 216 grid. For simplicity of evaluation, we assumed that each peer

controlled a rectangle of size 1× 1. The order d of R-Tree was fixed as 4 and the network

size varied from 128 to 16384 nodes. The simulation begins with DHR-Trees building

progress as the initial phase. Nodes randomly joins into DHR-Trees every several steps

in a random order and the stabilization process of P-Trees works periodically, together

with the UpdateMBR process. Insertion/deletion, routing and query experiments were

executed after the network becomes stabilized. Three types of distribution of data sets

were used: uniform, clustered and skewed distributions as shown in Figure 4.6(a), Figure

4.6(b), Figure 4.6(c).

Point Queries. Point queries cost is measured as the number of visited peers during

a query. Using different distributions caused slightly different results as shown in Figure

5.2(a). In the case of skewed distribution and clustered distribution, more peers were

visited. This is because dense data sets produce more extensive overlapping MBRs in the

routing table, so that query messages are more frequently forwarded to unnecessary peers.

Range Queries. In range query experiments, we used data set in uniform distribution,

where network size N varies from 128 ∼ 16384 nodes. Rectangles were used as query

windows with side length being adjusted in accordance to the network size, such that the

same number of matched peers (MBRs) could be expected to fall into a query window.

In our experiments, the number of matches was configured as 5 and 10 hits respectively.

The location of a query window was randomly selected and peers that initiated a query

were also randomly chosen from the network. Query costs were measured by number of

visited peers. For each combination of N and matches, the queries were executed 1000

times and results were averaged. The results shown in Figure 5.2(b) indicates that range

queries can be efficiently executed in DHR-Trees.

Nearest Neighbor Queries. In nearest neighbor queries experiments, a query point

was randomly generated. Then a query was initiated at a randomly chosen peer. The

depth-first traversal algorithm was then executed among peers. Finally, the desired num-

ber of nearest neighbor peers was found and returned to the query peer. Figure 5.2(c)

53

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

shows the result of the experiments with configuration for 5,10 and 20 hits, respectively.

It demonstrates that the search cost increased slowly as the network size increased.

5.3.2 High Dimensional DHR-Trees

Some experiments with high dimensional data has also been conducted. Space dimen-

sionality m is changed from 2 to 6. Network size is set as 5m, changing from 25 (m =

2) to 15625 (m = 6). In each dimensionality configuration, side length of space fixed at

1024 (therefore the space has 1024m hypercubes) and Hilbert curve of order 10 is used.

Multidimensional data are distributed uniformly in the space. Auxiliary MBR is enabled

in all experiments.

Point Queries. As shown in Figure 5.3(a), Point queries cost increases as network

size increases. The value is close to the result in the 2-dimensional case. This indicates

that point queries cost is mainly determined by network size, while dimensionality has less

influence on point queries performance. This is because the point queries cost is mainly

determined by tree height, which is further determined by total network size when with

same order of d.

Range Queries. Three group of range query experiments has been executed. Query

window size is set to be 0.05, 0.1 and 0.2 respectively. As for each combination of query

window size and dimensionality m, the center of query window is randomly chosen in

space and query is executed 1000 times to average results. Figure 5.3(b) shows: With

small windows size, query cost increases slowly. With big window size, however, the query

cost increases rapidly when dimensionality and network size both increases. This indicates

that more peers will have to be involved in query since bigger query window overlaps much

more MBRs in multidimensional cases.

Nearest Neighbor Queries. m-dimensional query point is randomly generated.

Queries are initiated at randomly picked peers. Nearest neighbors k is configured as 5,10

and 20 respectively. As for each combination of k and dimensionality m, the query is

executed 1000 times and number of visited peers is averaged. Figure 5.3(c) indicates the

query cost increase slowly with dimensionality and network size increases.

54

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

5.3.3 Performance Comparison with Squid

As introduced in Section 2.2, Squid P2P system is the most related one to DHR-Trees

as they have the same method of mapping higher dimension space to one-dimensional

space and use the similar virtual ring as the overlay network structure. The most different

part is that it uses a different routing table (called finger table) and a different query

execution mechanism. Squid does cluster refinement to decompose query ranges into

smaller query clusters recursively until it reaches finest level of the Hilbert curve, since

top-down queries are not supported as each peer has no region information in its routing

tables; In contrast, DHR-Trees supports R-Trees-like queries directly by having MBR

region information maintained in peer’s routing table. Hence, DHR-Trees visits less peers

and generates less traffic messages when performing range queries, proving it is superior

to Squid in efficiency of query execution. Figure 5.4 shows the comparison results of

range queries. Moreover, nearest neighbor query is even not supported by Squid system

because spatial proximity in multidimensional space is not preserved after mapping into

one-dimensional space.

5.4 Summary

In this chapter, we presented two major multidimensional query algorithms with DHR-

Trees Peer-to-Peer system. The initial experiment shows that it performs well on multidi-

mensional range query and nearest neighbor queries, which is not supported well in other

P2P systems. By comparison with squid, which is closest one to DHR-Trees by using ring

structure and reducing dimensionality with Hilbert Space Filling Curve, our experiment

results demonstrates that DHR-Trees outperforms squid in query efficiencies.

55

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

Algorithm 5: p.WindowQuery (Rectangle w, int l)

Input: w query window

Input: l level of search to start

begin1

j = 1;2

localIntersect = false;3

if l > 1 then4

while j <p.node[l].numEntries do5

if p.node[i][j].MBRintersectsw AND l > 1 then6

p′ = p.node[i][j].peer;7

p′.WindowQuery(w, l − 1);8

if j = 1 then9

localIntersect = true;10

j + +;11

end12

if l = 1 then13

while j < p.node[l].numEntries do14

if p.node[i][j].MBR intersects w then15

p′ = p.node[i][j].peer;16

// search in local data set and reply any results to

requestor

reply p′.searchLocalData(w);17

j + +;18

end19

if localIntersect then20

this.WindowQuery(w, l − 1);21

end22

56

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

Algorithm 6: p.kNNQuery (Point pt, int l, int k, List knnList)

Input: pt search point

Input: l level of search to start

Input: k desired number of nearest neighbors

Input: knnList container of k nearest neighbors; empty at start

Output: knnList container of k nearest neighbors result

begin1

if l >1 then2

// sort all MBRs at level l by distance to pt and save into

temporary branchList

branchList = p.sortMBRs(l);3

while j <branchList.size do4

// sort by distance to point pt and prune to size k

sort(knnList, pt);5

prune(knnList, k);6

// distance of furthest MBR in knnList

distanceofFurthest = distance(knnList[k], pt);7

if distance(branchList[j].MBR, pt) < distanceofFurthest then8

p′ = branchList[j].peer;9

p′.kNNQuery(pt, l − 1, k, knnList);10

j + +;11

end12

if l = 1 then13

// add lowest level data to knnList

p.addLocalData(knnList);14

// sort by distance to point pt and prune to size k

sort(knnList, pt);15

prune(knnList, k);16

end17

57

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

32 64 128 256 512 1024 2048 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

V
is

ite
d

P
ee

rs

Network Size

 Matches=5
 Matches=10

(b) Range queries

32 64 128 256 512 1024 2048 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

V
is

ite
d

P
ee

rs

Network Size

Nearest Neigbors
 k=5
 k=10
 k=20

(c) Nearest neighbor queries

Figure 5.2: 2-dimensional DHR-Trees (con’t)

58

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

2 3 4 5 6
0

2

4

6

8

10

12

Dimensionality d (N=5d)

V
is

ite
d

P
ee

rs

 Visited Peers

(a) Point queries cost

2 3 4 5 6
1

10

100

V
is

ite
d

P
ee

rs

Dimensionality d (N=5d)

Query Window Size
 0.05
 0.10
 0.20

(b) Range queries

Figure 5.3: Multidimensional DHR-Trees

59

CHAPTER 5. MULTIDIMENSIONAL QUERIES SUPPORT IN DHR-TREES

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

V
is

ite
d

P
ee

rs

dimensions (N=d5)

 k=5
 k=10
 k=20

(c) Nearest neighbor queries

Figure 5.3: Multidimensional DHR-Trees (con’t)

32 64 128 256 512 1024 2048 4096 8192 16384 32768
0

20

40

60

80

100

120

140

160

180

200

220

V
is

ite
d

P
ee

rs

Network Size

 10 matches in squid
 5 matches in squid
 10 matches in dhr-trees
 5 matches in dhr-trees

Figure 5.4: Query performance comparison with Squid

60

Chapter 6

Maintenance in DHR-Trees

A Peer-to-Peer system is an evolving system, since nodes can join/leave/fail at any

time. In structured P2P systems, every node must keep correctness of its links to other

nodes by making changes according to the node members’ changes. In this chapter, the

discussion will be made about dynamic operations of joining, leaving and failure. The

problem definition is that, assuming the network is in steady state, and suppose a node

joins into, leaves from or fails in the system, then what is the changes to make and

how many changes will occur in the whole system. We will give algorithms that allow

nodes to actively maintain its components. The global view of maintenance processes are

illustrated in Figure 6.1. The ring stabilization repairs incorrect predecessor and successor

relationship for the ring structure; the ping process check if the entries are alive and if

they are consistent in the routing table; the routing table stabilization process repair

inconsistent entries; the change notifier are triggered to inform relevant nodes in the

system when certain changes occurred in current table. Before discussion of this problem,

some preliminary knowledge will be first given.

6.1 Preliminary Knowledge

6.1.1 Consistent State

We define consistent state upon components on a peer node as follows.

Definition. A node n is in consistent state iff following invariants are preserved:

1. In the network, there is no node n′ , which satisfies n.id < n′.id < n.successor.id.

61

CHAPTER 6. MAINTENANCE IN DHR-TREES

Figure 6.1: Processes for DHR-Trees maintenance

This invariant ensure that the node has correct preceding/succeeding relations on the

circle.

2. Routing table of the node is correctly filled. The criterion of ”correctness” is that

the properties of routing table holds.

If all nodes in the network are in consistent state, then the network is said to be in

consistent state.

6.1.2 Lookup Procedure

Given a identifier id, the lookup is used to find the corresponding node. At the node

where the lookup originated, the node selects the farthest away pointer that does not

overshoot id and forwards the query to that peer. Once the algorithm reaches the lowest

level of the DHR-Trees, it traverses the successor list until the value of a peer is equal to

id. We show the necessary algorithms used in lookup procedure. Algorithm 8 illustrates

lookup procedure: the node first set level to MaxLevel, call closest preceding node (Al-

gorithm 7) to get closest preceding node to the specified id, then forward lookup query to

that node. The process is recursively run (at other remote nodes) until the level reaches

to lowest level of routing table.

62

CHAPTER 6. MAINTENANCE IN DHR-TREES

Algorithm 7: p.closest preceding node (id, level)

Input: id identifier of the peer node to find

Input: level the level under which the routing table is traversed

begin1

closest = p;2

while i < level do3

forall entryinp.nodes[i] do4

if closest.id < entry.id AND entry.id > id then5

closest = entry;6

end7

end8

i++;9

end10

return closest;11

end12

6.1.3 Tracker List Structure

To reduce messages of polling routing nodes for their L and U , a Tracker List Structure

is introduced. For a peer q, the TLS is a storage for the nodes that have q as a routing

entry in their routing tables. When a peer p find q as appropriate routing entry that

satisfies the L and U and decided to put q into its routing table at level i, it send q a

message informing the addition of q. The q then put the p into the TLS with the level i.

We call peer p as a tracker. The procedure of setting a Tracker to the TLS is shown in

Figure 6.2.

The usage of Tracker List is: when detected change of U at level i, the peer will send

the updated U to nodes at level i in the track list. Essentially, the messages of updating U

is only triggered when U change occurs. This reduces the message overhead of periodically

polling request for U to maintain the consistent state of routing table.

Property of Tracker List Structure The Tracker List Structure can be viewed as

a reverse for routing table. Because a Tracker p appears in the TLS of a tracked peer q

iff the Tracker has q in its routing table, the sum of number of entries in TLS should be

63

CHAPTER 6. MAINTENANCE IN DHR-TREES

Algorithm 8: p.lookup (id)

Input: id identifier of the peer node to find

begin1

level = p.nodes.MaxLevel;2

if p.id = id then3

return p;4

end5

p′ = p;6

while p′.id ̸= id AND level > 0 do7

p′ = p′.closest preceding node(id, level);8

level −−;9

end10

if p′.id = id then11

return p′;12

else// lookup failed13

14

return null;15

end16

end17

equal to the total entries in routing table if both are correct. While routing table is core

part of DHR-Trees peer-to-peer systems, the TLS is an auxiliary tool to support updates

of U item in routing table. The routing table is critical to the system to work properly

and must be maintained correctly and refreshed frequently, the TLS is not necessarily

to be precisely correct, i.e. the TLS is allowed to contain redundant obsolete Trackers

information. When the Tracker p failed, the TLS of q has no means to sense this and

is unaware of the failure of p until the q need to send U update message to p and the

transmission failed.

64

CHAPTER 6. MAINTENANCE IN DHR-TREES

Figure 6.2: Procedure of setting track list

6.2 Node join

To keep the consistent state discussed above, when a node n joins the network, we

have to perform three operations: First, initialize the predecessor and successor. Second,

initialize routing table of node n. Third, update the routing tables and predecessors/-

successors of existing nodes to reflect the change in the network topology caused by the

addition of n. We assume that the bootstrapping for a new node is handled off-line, per-

haps by someone configuring the newly joining node n with the identifier of at least one

other node n′ already in the Chord network. Once this is done, node n uses n′ to initialize

its state. It performs the above three tasks as follows.

Initializing predecessor/successor: Node n ask bootstrapping node n′ to find suc-

cessor for it. The n′ will run find successor to fulfill it, as listed in algorithm 9. It will

cost only logdN messages. After getting acknowledged, n will set it as successor. Then n

notifies the successor, allowing successor to set n as its predecessor. The stabilization for

ring structure use same algorithm as in [44]. The stabilization process periodically runs

at each peer, checking whether the n.successor.predecessor is the n. If not, it will get the

n.successor.predecessor as its new successor. This approach can handle concurrent node

joins.

65

CHAPTER 6. MAINTENANCE IN DHR-TREES

Figure 6.3: Ring structure changes when node joins

Initializing routing table: Having established predecessor/sucessor relationship with

previous/next nodes in the identifier space, node n can eventually build its routing table

by stabilizationLevel process. However, this will use many messages to find appropriate

nodes and fill them into routing table, since finding each node require O(logdN) messages.

Furthermore, this will take many stabilization cycle until all entries are filled, which leads

to long time period before reaching consistent state again. To alleviate this, node n gets

a copy of routing table of its successor. Node n send a message to request a copy to

its successor. The successor, after getting the message, encloses its routing table into a

message and replies to n with it. Node n then only need to replace the first entry at

each level with itself. The entries in new routing table may not holds the coverage and

separation properties, but succedent stabilization process will do the checking task and, if

necessary, the replacing task. This can speed up stabilizing process and reduce messages.

Updating existing nodes’ routing tables: After node n joined into the network

and established predecessor/successor relationship with certain nodes, its predecessor and

successor will be aware its existence. The predecessor p will set n as new successor and

insert n into routing table as the first entry in p.nodes[0]. This insertion may cause U

of p.nodes[0] to change. If the change occurs, p will send U update messages to trackers

contained in the first level of its Tracker List Structure. In turn, the peers received U

message may further notifies their trackers of changes in their routing table. In this way,

eventually, A small part of the existing nodes will update some entries in their routing

66

CHAPTER 6. MAINTENANCE IN DHR-TREES

table if needed. The coverage and separation may, however, may subsequently be violated

due to updates to the routing tables. In next section, we illustrate the Ping process

that periodically checks aliveness of nodes in the routing table and check the consistent

state of each entry for the coverage and separation. If the node is not contactable or

the coverage/separation condition is broken, then at some time, the routing table will be

repaired by stabilization process shown in next section.

Algorithm 9: p.find successor (id)

Input: id identifier of the peer node to find

begin1

p′ = p.find predecessor(id);2

return p′.successor;3

end4

Algorithm 10: p.find predecessor (id)

Input: id identifier of the peer node to find

begin1

level = p.nodes.MaxLevel;2

if p.id = id then3

return p;4

end5

p′ = p;6

while id /∈ (p′.id, p′.successor) AND level > 0 do7

p′ = p′.closest preceding node(id, level);8

level −−;9

end10

return p′;11

end12

67

CHAPTER 6. MAINTENANCE IN DHR-TREES

6.3 Maintenance of Ring structure

6.3.1 Ring stabilization

In a dynamic network environment, nodes join and leave frequently with the network

evolving. The first definition in the consistent state 6.1.1 implies that all peer nodes

are ordered properly by their identifier along the ring structure. This may not holds if

there is harsh changes, such as concurrent joins/leaves. To deal with such case, periodical

checking and repairing for predecessor/successor relationship is required. DHR-Trees’s

ring structure uses the similar ring stabilization approach as in Chord[44] to realize this.

With strengthening by successor list to be introduced in next subsection, the ring structure

is expected to be robust and resilient enough under dynamic network circumstances. The

algorithm of ring stabilization is shown in Algorithm 11.

Algorithm 11: p.stabilizeRing

begin1

x = p.successor;2

x = x.predecessor;3

if x ∈ (p, p.successor) then4

p.successor = x;5

// Notify x of adding x as p’s successor.

// Let x set p as x’s predecessor.

notify(x);6

end7

6.3.2 Successor list

To improve the robustness of ring structure in DHR-Trees, we use successor list in

DHR-Trees peer-to-peer systems. It has similar property of robustness as in other ring

structure P2P systems. When a node entry in the successor list failed, it will be removed

away and following entries will just shift left. If the length becomes less than predefined

system parameter Z, then one of ring stabilization process will send message to the last

one n′ in the successor list to obtain successor list of n′, and fill them into successor list

68

CHAPTER 6. MAINTENANCE IN DHR-TREES

of node n.

6.3.3 Analysis of ring robustness

We use Tstabr as period of ring stabilization, Z as number of entries in successor list

and Pfailure as fail rate, which means the probability of failing per unit time. A node will

lose its connection to next nodes on the ring iff all nodes in the successor list failed during

Tstabr. Then we have: The probability of losing connection to next nodes in the ring is,

Ploss =
Z∏

i=1

(Pfailurei
∗ Tstabr) = (Pfailure ∗ Tstabr)Z

For instance, assume the ring stabilization period Tstabr is 10s, Z is 16 and Pfailure is

0.005, the possibility of disconnection is

Ploss = 1.526 × 10−21

6.4 Maintenance of Routing Table

The main task of maintenance of routing table is to keep consistency of routing table

under dynamic network changes. The DHR-Trees has the similar structure as P-Trees.

The main difference is that DHR-Trees exclusively uses notification-on-change to actively

inform changes to referencing nodes and that a node in DHR-Trees system needs to addi-

tionally maintain region information of MBR.

We first introduce the maintenance method for consistency. In particular, we emphasize

the method for updating U by exploiting the Tracker List Structure. We then give a

analytical result on maintenance cost for routing table, which is not presented in the P-

Trees[14]. The experimental results is shown later to prove the correctness of the analysis.

Finally, we illustrate the region information maintenance in routing table.

6.4.1 Ping process and Stabilization Process

The Ping process is similar to the P-Trees[14]. For the stabilization process, although

it is also used in P-Trees, but the definition of L and approach of retrieving L and U (the

reach in P-Trees) from other nodes is not addressed enough and no quantitative analysis

on traffic cost is given. The P-Trees use periodical processes to detect any changes in

referenced peers’ routing table, which could bring a lot of redundant traffic even if there is

69

CHAPTER 6. MAINTENANCE IN DHR-TREES

few changes to occur. The distinct feature of DHR-Trees maintenance is that it introduces

a trigger-based process for notifying changes. It uses Tracker List Structure to notify the

relevant nodes of the U changes in its routing table. This improvement is important

for reducing overhead of maintenance, because the stabilization process is done without

inquiring other nodes in the system. At the same time, keeping tracker list does not

requires additional messages. As described in subsection 6.1.3, the tracker list for one

node is added when referencing nodes setting the node in their routing tables. The stale

entry in the tracker list is deleted when sending notification to a node failed.

Algorithm 12: p.Ping (int level)

Input: level The level of routing table to ping

begin1

j = 1;2

while j < p.nodes[level].numEntries do3

if p.nodes[level][j].peerhasfailed then4

Remove(p.nodes[level][j]);5

else6

p.nodes[level][j].state =7

CheckCovSep(p.nodes[l][j-1], p.nodes[l][j]);8

j++;9

end10

end11

6.4.2 Notification mechanism

As introduces in subsection 6.1.3, Tracker List Structure is employed to notify refer-

encing nodes of changes occurred in local routing table. Different from ping process and

stabilization process, the notification process is trigger-based, i.e. only when some event

occurs, it is called and passed with some parameter.

REACH message. To reduce maintenance messages, a conservative strategy is

adopted for notification purpose in DHR-Trees peer-to-peer systems. The notification

is only triggered for one kind of event: the change of U of the first entry in the routing

70

CHAPTER 6. MAINTENANCE IN DHR-TREES

table row, i.e. when nodes[i][1].U changed its value. The message for the U is denoted as

REACH.

The reason for notifying U only is that, when the coverage property is satisfied, the

cost of lookup is guaranteed logarithmically. If the coverage is not satisfied at some peers,

the lookup at the peers has to be executed sequentially at level 1 to ensure that no data

is missed. In contrast, even if the separation properties is temporarily destroyed, it does

not directly affect query performance. Moreover, in the conservative strategy, although

the value of L does not has explicit message for update purpose, it will be updated by

REACH message which carries not only new U , but also L value (updated or unchanged)

when REACH message occurs. By doing these, the U is maintained with high priority

and the L is updated some time by REACH message.

The Figure 6.4.2 proved our description above. The Figure 6.4(a) demonstrate that

maintenance messages reduced about 18% - 40% with network size varying from 256 -

16384. In Figure 6.4(b), the network size is fixed at 1024. We adding randomly generated

nodes into the network, then run spatial query(query window is set for 5 matches in a

query) to see the difference for U-only scheme and both U and L notification scheme is

enabled. The result proves that there is nearly no difference of query performance between

two notification schemes.

Notification Process. Since a peer p is referenced with its first routing entries at each

level (nodes[i][1]), changes to these entries is to be informed to the referencing nodes set

S (stored in Tracker List Structure). For all peer s (s ∈ S), after updating entries of p at

routing level i, will recalculate L and U of own first entry at upper level. If U is changed,

peer s will in turn send REACH message to peers that reference s. If U is unchanged,

no message need to send and the notification stops at s. While such notification process

is parallel and disperse, other nodes may send REACH nodes to relevant nodes. The

notification is bounded at the top level of routing table, where there is no further upper

level requiring update.

6.4.3 Theoretical analysis of joining cost

As a node joins into the network, becoming aware of its existence, a part of nodes

already existing in the network eventually update their routing table to reflects the ex-

istence of this node. Some peers need to insert, replace or delete one or more entries in

71

CHAPTER 6. MAINTENANCE IN DHR-TREES

128 256 512 1024 2048 4096 8192 16384
0

20

40

60

80

100

120

140

160

180

200

M
ai

nt
en

an
ce

 C
os

t (
on

e
no

de
 jo

in
)

Network Size

 Messages (U and L)
 Messages (U only)

(a) Maintenance cost(join only) decreases when notifying U changes only

0 100 200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

20

25

30

35

40

Q
ue

ry
 C

os
t(

M
es

sa
ge

s)

Node addition(Initial N=1000)

 maintenance upon U and L changes
 maintenance upon U changes only

(b) Query performance(Range query, 5 matches)

Figure 6.4: Reducing maintenance cost without degradation in query performance
72

CHAPTER 6. MAINTENANCE IN DHR-TREES

their routing table to make the routing table consistent again after the node joins. In this

section, we theoretically analyze: 1. The number of entry changes in routing tables to

occur after a node join; 2. The number of messages notifying U changes to send.

As illustrated in Chapter4, DHR-Trees structure works dependently on the routing

tables. In essence, each routing table stores links (or pointers) to certain selected peers in

the network. The property coverage ensures all peers and data are indexed and logarith-

mical search efficiency. The property separation ensures indexing efficiency by eliminating

excessive overlap. In practice, the coverage is more important because the sequential scan

will occurs when it is violated, which leads to query latency. Temporary separation viola-

tion, which may increases height of DHR-Trees, does not impose direct influence on query.

Therefore, we focus on the quantitative analysis on effort to keep coverage consistency.

Overview of Influence First, we generally outline the influence by a newly joined node.

When joins into the network, a node finds its successor and copies routing table from it.

Then its predecessor will learn its existence by ring stabilization process, and will put it

into its routing table at level 1. After changing its routing table, the predecessor p, which

in turn referenced by some other peers in their routing table, has to notify them of the

change occurred on p.nodes[1][1].U in its routing table by sending REACH message. These

peers then update entry of p. These updates, may again leads to changes on nodes[2][1].U

in the routing tables of the peers. The peers which has changes on U will send again new

REACH messages to notify relevant nodes. This procedure runs recursively until reaching

the highest level of the routing tables.

In the following analysis, we will first give some intuitive analysis during the initial

phase of recursive notification, then we conclude the formal result. Finally, experiment

result is shown to verify correctness of the analysis.

Lemma 1. With high probability, the number of times for a node to appear at a certain

level i (i <p.nodes.MaxLevel) of all other nodes’ routing tables is D = 3d
2 −1. The number

of times that a node appears in other nodes’ routing tables is (3d
2 − 1) × log3d/2 N .

Proof: From the definition of routing table in chapter 4, we have: given a node, it has a

routing table of log3d/2 N levels; at each level, there is [d,2d] entries. Let us think of level

l, where l ∈ [1, log3d/2 N]. The average numbers of entries at level l is (3d
2 − 1), because

73

CHAPTER 6. MAINTENANCE IN DHR-TREES

nl n

n

n

n n

n

n n

Figure 6.5: Times of being referenced at same level

the length of a table level is expected to be randomly distributed in [d,2d]. Then all nodes

in the routing table will have totally N ∗ (3d
2 − 1) numbers of entries at level l, which

means that there are totally N ∗ (3d
2 − 1) level-l references to the nodes in the system.

Because the structure is symmetrical, each node is referenced N ∗ (3d
2 − 1)/N times, i.e.

a node tends to appears (3d
2 − 1) times in other routing tables at level l. Note that this

holds at any level and the routing table has log3d/2 N levels, so a node tends to appear

(3d
2 − 1) × log3d/2 N times in other routing tables.

Since the Tracker List Structure is an inverse image of routing table, the following

corollary holds.

Corollary 1. On average, the size of Tracker List at level i (i <p.nodes.MaxLevel) is

(3d
2 − 1). The total number of entries in Tracker List structure is (3d

2 − 1) × log3d/2 N .

The Corollary 1 implies that when U of a level occurs, the peer generally needs to send

(3d
2 − 1) messages notifying of change.

Lemma 2. A. When a node join the network, the number of peers setting n as its successor

is 1. B. The probability for the peer to change its nodes[i][1]|i=1.U is 100%. C. The number

of REACH message to send is about (3d
2 − 1).

Proof: The part A of Lemma 2 is obvious because the uniqueness in identifier space and

ordering along the ring. When a node n join into the network, through the bootstrapping

node, it will find out its successor n′, which has predecessor p. After ring stabilization

process, having detected its successor changed from n′ to n, the predecessor p will reset

successor to n. Since there is no other nodes more closer to n than p in the anticlockwise

direction, the Lemma 2 holds. The part B of Lemma 2 is true because the nodes[i][1]|i=1.U

74

CHAPTER 6. MAINTENANCE IN DHR-TREES

is actually the successor. As the successor changed, the nodes[i][1]|i=1.U will change

subsequently. By combining Corollary 1 with Lemma 2 A and B, we can prove correctness

of part C in Lemma 2.

Intuitively, Lemma 2 describes direct influence to existing peers in the network when

a new node joins. The influence includes two parts: First, the number of table changes to

occur is one (A peer set n as successor and altered its routing table once); Second, (3d
2 −1)

REACH messages will be generated to notify other nodes of change of U . These REACH

messages will again affect other peers in their routing tables.

Formally, we denote table changes at level i (change of nodes[i][1].U) times as Tabsi,

the number of generated REACH for next

Lemma 3. In routing level p.nodes[i], when one entry p.nodes[i][x]

(1 < x ≤ p.nodes[i].numEntries) is changed with its U , the p.nodes[i + 1][1].U will be

changed at probability

PU =
1

d + 1

2d∑
m=d

1
m − 1

(6.1)

Proof: In general, the length of p.nodes[i] (i < p.nodes.maxLevel) is expected to be

evenly distributed in [d,2d]. We denote m as the length of p.nodes[i]. Then the probability

mass function of m is:

f(m) =

1

d+1 , d ≤ m ≤ 2d

0, otherwise

From the definition of routing table, the p.nodes[i + 1][1].U is equal to U of last entry at

level p.nodes[i]. It implies the p.nodes[i+1][1].U will change iff p.nodes[i][m].U is changed.

Assume the entry with updated U is located at j of level[i], only if the j happens to be

the m, the p.nodes[i + 1][1].U will change. When j < m, the p.nodes[i + 1][1].U will not

change directly. So the probability for p.nodes[i+1][1].U to change given p.nodes[i].length

is m is

P (Ui+1|nodes[i].length = m) =
1

m − 1
Therefore, we conclude that PUi+1 is independent of level i:

PU =
2d∑

m=d

P (Ui+1|nodes[i].length = m)∗f(m) =
1

d + 1

2d∑
m=d

1
m − 1

Lemma 3 illustrates that the probability that a peer update its nodes[i+1][1].U when the

peer received a REACH message at level i. If the peer updated the upper reach, it will

has to send new REACH messages to peers at level i in its Tracker List.

75

CHAPTER 6. MAINTENANCE IN DHR-TREES

The PU is independent on network size N and the routing level i. We calculated its

value with d changing from 2-10 and the result is listed in Table 6.1.

Lemma 4. Consider REACH message when a new node joined, the new U carried by

REACH message will probably point to a smaller number.

Proof: This is because the U can be regarded as a upper bound of index range for the

routing entry. When some new nodes with identifer that falls into the range, due to the

capacity of the sub-trees, some biggest identifier (the right-most identifier of the sub-trees)

will be squeezed out from the U . As a result, the U will adjust to new smaller right-most

identifier of the sub-trees.

Lemma 5. In case of one node join, at routing level p.nodes[i], when p received one

REACH message for updating entry p.nodes[i][j].U , the probability for the coverage prop-

erty between p.nodes[i][j] and p.nodes[i][j+1] to be violated, i.e. the probability Pmri (The

replacement caused by a message) for the p.nodes[i][j + 1] to be replaced is expected to

be,

Pmri =
1

di−1

di−1∑
m=1

1
m

Proof: Based on Lemma4, the coverage between p.nodes[i][j] and p.nodes[i][j+1] is to be

destroyed iff lower bound (the HCode) of p.nodes[i][j +1] happens to be equal to original

p.nodes[i][j].U . As p.nodes[i][j + 1].HCode is evenly distributed in [p.nodes[i][j].L +

1, p.nodes[i][j].U] and

(U − L − 1) ∈ [1, di−1]

, the probability for coverage to be destroyed is expected to be,

Pmri =
1

di−1

p.nodes[i][j].L+di−1+1∑
m=p.nodes[i][j].L+1

1
m − (p.nodes[i][j].L)

Pmri =
1

di−1

di−1∑
m=1

1
m

Based on above Lemmas, we conclude Lemma 6 as follows. In Lemma 6, it implies that

the number of routing table changes and the number number of notifying messages is

independent of network size.

76

CHAPTER 6. MAINTENANCE IN DHR-TREES

Lemma 6. Given the system is in stable state and routing tables are randomly distributed,

consider a node join into the system, the total number of messages to notify routing table

changes is

Smsg =
H∑

i=1

Msgi

where

H =
⌈
log 3d

2
N

⌉
, Mi = D · PUi−1 · Mi−1 · (1 + Pmri−1 · Prui−1)

The Msgi is defined as total notification messages received at routing level i through

the whole network, and H is ceiling(log3d/2 N). When receiving totally Mi−1 at level i−1

(i > 0) through all peers’ routing table, the total number of routing entries at level i − 1

(i > 0) to change is approximately

Ci−1 = Mi−1 · Pmri−1

The total number of newly generated messages at level i−1 to notify current level i(i > 0)

is
Mi = (Ci−1 · Prui−1 + Mi−1) · PUi−1 · D

= D · PUi−1 · Mi−1 · (1 + Pmri−1 · Prui−1)

For bootstrapping, the value is (i = 0) : M0 = 0, Pmr0 = 1, PU0 = 1, C0 = 1. Other

parameter when i > 0 is defined above.

Note that the expression of Ci is an approximation. It omitted possible changes on the

right side of the entry change induced by a message. The reason for this is that entries

entry changed by message is guaranteed under the condition of node join only.

6.4.4 General Form of Maintenance Cost

In previous subsection, the cost including message cost and routing table changes are

analyzed for case of node join. As to node failure, the analysis is similar except that all

referencing nodes to the failure node need to find substitute for it. As described in Lemma

1, a peer appears in other peers’ routing table about D times at each level. This implies

two important thing: The first is that when a peer joins into the network, it will sooner

or later be incorporated into other routing tables and will appears D times at certain

routing level. The second implication is that when a peer leaves or fails, referencing peers

will replace the peer in their routing table D times at certain routing level. When such a

77

CHAPTER 6. MAINTENANCE IN DHR-TREES

replacement occurs, it may affect the right-side routing entry, and may further affect the

U of current level, i.e. the upper level will change the U . Formally, the replacement will

cause the routing level to change its U at probability Prui . So the Msgi should additionally

include D entry substitutes as follows:

Mi = D · (Ci−1 · PUi−1 + D · Prui−1)

= D · PUi−1 · Mi−1 · (1 + Pmri−1 · Prui−1) + D2 · Prui−1

Therefore, the general form of cost for node addition into the network or deletion from

the network evaluation purpose is as follows.

Smsg =
H∑

i=1

Mi

where, the Mi refers to the number of messages created at certain routing level i, and H

is log3d/2 N . The Mi is defined as: Because the Pmri−1 decreases quickly with i, the S is

simplified as:

Smsg =
H∑

i=1

Mi =
H∑

i=1

(D · PUi−1 · Mi−1 + D2 · Prui−1) (6.2)

In this expression, the PUi−1 is a constant when the parameter d is known. However, due

the uncertainty for right-side entries to replace, and the new value for further new entries,

the Prui−1 is difficult to calculate. Assuming the Prui−1 is unified to Pru for a certain

system, the we have (The proof is given in Appendix A.2):

Theorem 1. Consider a node join or failure, the upper bound for total number of generated

notification messages is

Smsg =
a · (aH − 1)

(a − 1)
· M0 +

b · [aH+1 − H · (a − 1) − a]
(a − 1)2

where

D =
3d

2
− 1, H =

⌈
log 3d

2
N

⌉
, a = D · PU , b = D2 · Pru

For any random replacement in routing table, suppose the probability for consistent

state of next right-side entry to be violated is a constant Pv, similar to the calculation of

PU , we can prove the:

Pru =
(1 − PD

v)
(1 − Pv) · D

then we have simplified maintenance cost as:

S =
a · (aH − 1)

(a − 1)
· M0 +

D · (1 − PD
v)[aH+1 − a − H · (a − 1)]
(1 − Pv)(a − 1)2

(6.3)

78

CHAPTER 6. MAINTENANCE IN DHR-TREES

6.4.5 Verification of Analysis

To verify the correctness of Lemma 6, we run a number of simulation test. We set the

network size N to 4096, the order of DHR-Trees to 4. We first let the peer-to-peer system

reached stable state, i.e. no network membership changes and the routing tables of all

peers reach to consistent state. Then randomly generated 100 nodes are added into the

network, every time before adding a node, we run stabilize to let all peers maintain their

routing tables to reach consistent state. The result is collected statistics on routing table

changes and messages generated for notifying purpose.

Table 6.2 shows the analysis result for DHR-Trees p2p systems with order 4. The value

of Msgi and Ci both are independent of network size N . The unlisted PUi is 0.22 (i ≥ 1).

0 1 2 3 4 5

0

5

10

15

20

25

30

N
um

be
r

of
 M

sg
s/

C
ha

ng
es

Level of the Routing Tables

 Msgs(Analysis)
 Msgs(Simulation)

 Changes(Analysis)
 Changes(Simulation)

Figure 6.6: Analysis vs. Simulation on cost when a node joins

To verify Theorem 1, we run simulation with network size N varying from 256 to 16384,

with order d changed from 4 to 8. For the expression 6.3, we set Pv as 0.5, which is a

experimental value in practice. We then compare the result in Figure 6.7.

79

CHAPTER 6. MAINTENANCE IN DHR-TREES

128 256 512 1024 2048 4096 8192 16384 32768
50

100

150

200

250

300

M
ai

nt
en

an
ce

 C
os

t(
m

es
sa

ge
s)

Network Size N

Simulation
 d=4
 d=6
 d=8

Analysis
 d=4
 d=6
 d=8

Figure 6.7: The average cost for node join and failure

6.4.6 Maintaining Region Information in Routing Table

One of the challenges for structured P2P network is maintaining peer’s routing table

while the network constantly changes. DHR-Trees’ semi-independent structure enable

each peer to maintain its composite routing table properly. The maintenance process is

nearly the same as in P-Tree[14], except that peer.MBR needs additional update. The

peer.HCode is updated as its equivalent peer.value in P-Tree. With regard to MBR,

p only needs to calculate MBR for the first entry, in which the peer is the p itself, by

calling UpdateMBR method. UpdateMBR method is shown in Algorithm 14. Other

entries (p.nodes[i][j].MBR (j>1)) will be acquired and updated from corresponding peers,

p.nodes[i][j].peer, during modified p.stabilizeLevel(i) process (In P-Tree, stabilizeLevel is

periodically called to keep routing table fresh and correct. For details, see [14]). The only

exception is that when at level 1, the MBR is the original rectangle of data set that peer

owns and there is no need to call UpdateMBR.

Through our experiments, as shown in Figure 6.8 (uniform distribution), almost all

maintenance messages are generated by underlying overlay network, while update of MBR

requires very few messages to inform other nodes. The basic intuition of such result is:

80

CHAPTER 6. MAINTENANCE IN DHR-TREES

128 256 512 1024 2048 4096 8192 16384

0

25

50

75

100

125

150

175

200

M
es

sa
ge

s

Network Size

 Total Maintenance Messages
 Messages used for MBR update

Figure 6.8: Total Maintenance Messages and MBR update messages (joins only)

when any change occurs, e.g. peers join/leave/fail, the update message of underlying

binary index of HCode (the P-Trees) are propagated to all related nodes where the MBR

should also be updated. Therefore, there are very few exception in which the MBR need

to be updated using explicit messages. As a conclusion, the multidimensional structure of

DHR-Trees require the same class maintenance cost as in P-Trees.

In practice, the MBR also employs the Tracker List Structure and is updated by the

form of trigger-based notification. When MBR is renewed, a message that carries new

MBR is sent to referencing nodes. For spatial query to be correctly executed, the MBR

information must keep up with the change of the network. This may leads to overhead

when the peer-to-peer network changes quickly. To relax such updating requirements,

the system can choose usage of Adaptive Bounding Rectangle instead of MBR, which

use automatically-calculated region information for spatial query purpose and does not

require real region information. The adaptive bounding rectangle will be introduced in

the chapter 8.

81

CHAPTER 6. MAINTENANCE IN DHR-TREES

6.5 Scalability of DHR-Trees

As well as one of the distinct feature of peer-to-peer systems, the dynamism of network

is also a challenge requiring to address enough. To maintain the consistent of the routing

tables, high maintenance cost can cause network traffic overhead seriously when network

grows very large. In this section, we discuss the scalability of DHR-Trees by analyzing

upper bound of maintenance cost.

In the equation 6.2, the PUi−1 is independent to the i and can be given by 6.1. If the

Prui−1 can be assumed to be level-independent Pru, then the equation 6.2 will be:

Smsg =
H∑

i=1

Mi =
H∑

i=1

(D · PU · Mi−1 + D2 · Pru) (6.4)

Given M0 is known, then 6.4 is:

Smsg =
a · (aH − 1)

(a − 1)
· M0 +

b · [aH+1 − H · (a − 1) − a]
(a − 1)2

(6.5)

where a = D · PU and b = D2 · Pru. Because Pru is the one and only variable, so it is

obvious that Smsg is maximum when Pru takes value 1. So formally, we have following

conclusion.

100 1000 10000 100000 1000000

0

500

1000

1500

2000

M
ai

nt
en

an
ce

 C
os

t(
an

al
yt

ic
al

)

Network Size N

 d=2
 d=3
 d=4
 d=6
 d=8
 d=10

Figure 6.9: The scalability on maintenance cost

82

CHAPTER 6. MAINTENANCE IN DHR-TREES

Theorem 2. Consider a node join or failure, the upper bound for total number of generated

notification messages is

Smsg =
a · (aH − 1)

(a − 1)
· M0 +

D2 · [aH+1 − H · (a − 1) − a]
(a − 1)2

where

D =
3d

2
− 1, a = D · PU , H =

⌈
log 3d

2
N

⌉
In the above formula, total message S includes two parts: the first part with M0 is

created by the direct notification messages bottom-up, as described in previous subsection;

The second part can be viewed as the subsequent cost for adding or removing the peer in

other routing tables.

From the Figure 6.9, even the network size increases exponentially, the maintenance cost

for a node addition or deletion increases nearly linearly. Moreover, the figure illustrates

that the maintenance cost increases when big value is selected as the degree d of DHR-

Trees.

6.6 Summary

One of the main concern of scalability in structured peer-to-peer systems is the main-

tenance cost. Structured design provides efficient lookup and query performance, but the

maintenance is indispensable and must be efficient and lightweight in the dynamic network

environment. The number of messages being used for maintenance purpose is commonly

considered as the maintenance cost.

In this chapter, after the consistent state, lookup procedure and tracker list structure

being first introduced, we described the process for a node to join the network. We then

illustrate the processes for maintenance, ping process to maintain the ring structure and

stabilization process incorporating with notification mechanism to maintain the routing

tables. We then give analysis of cost for routing table maintenance when a node joins.

Finally, a more general form of cost is given. Our simulation concludes that the cost

increases almost logarithmically to the network size. As a result, it proved the scalability

of the DHR-Trees.

83

CHAPTER 6. MAINTENANCE IN DHR-TREES

Algorithm 13: p.Stabilize(int level)

Input: level The level of routing table to stabilize

begin1

j = 1;2

while j < p.nodes[level].numEntries do3

if p.nodes[l][j].state! = consistent then4

prevPeer = p.nodes[l][j - 1].peer;5

newPeer = succ(prevPeer.nodes[l - 1][d - 1].peer);6

if p.nodes[l][j].state == coverage then7

INSERT(p.nodes[l],j,newPeer);8

p.nodes[l].numEntries++(max 2d);9

else10

REPLACE(p.nodes[l],j,newPeer);11

p.nodes[l][j + 1].state12

= CheckCovSep(p.nodes[l][j], p.nodes[l][j + 1]);13

if COV ERS(p.nodes[l][j], p.HCode) then14

p.nodes[l].numEntries = j + 1;15

j++;16

end17

while ¬COV ERS(p.nodes[l][j − 1], p.HCode)
∧

j < d do18

prevPeer = p.nodes[l][j-1].peer;19

newPeer = succ(prevPeer.nodes[l-1][d-1].peer);20

INSERT(p.nodes[l],j,newPeer);21

j++;22

end23

if COV ERS(p.nodes[l][j − 1], p.HCode) then24

return true;25

else26

return false;27

end28

84

CHAPTER 6. MAINTENANCE IN DHR-TREES

order d 2 3 4 5 6 7 8 9 10

PU 0.6111 0.3208 0.2186 0.1659 0.1388 0.1121 0.0847 0.0965 0.0754

Table 6.1: The Probability PU

level (i) Msgi(input) Ci Pmr Mi+1 (level i output)

0 0 1 1 5

1 5 5 1 11

2 11 5.72 0.52 18.39

3 18.39 3.86 0.21 24.47

4 24.47 1.81 0.074 28.92

5 28.92 0.58 0.02 32.45

Table 6.2: Notifying Messages(Msg) and Routing Table Changes (Changes)

Algorithm 14: p.UpdateMBR (int i)

Input: i level of routing table, i >1

begin1

reset p.nodes[i][1].MBR to empty;2

j = 1;3

while j < p.nodes[i − 1].numEntries do4

p.nodes[i][1].MBR = CombineRect(p.nodes[i][1].MBR,5

p.nodes[i − 1][j].MBR);

j + +;6

end7

end8

85

Chapter 7

Improving Fault-Tolerance in DHR-Trees

In this chapter, we discuss the fault-tolerance of query execution in DHR-Trees peer-

to-peer systems. We also give the method to make DHR-Trees more fault-tolerant in

query processing. The methods include the usage of Adaptive Bounding Rectangle, and

the introducing of successor list as alternatives for entries in routing tables.

7.1 Problem with Region information Update

In chapter 4, the DHR-Trees structure and its properties are demonstrated. Essentially,

a DHR-Tree (stored the routing table) on a peer node is composed of information along

the left-most root-to-leaf path of a Hilbert R-Tree, in which the peer node itself is located

at the left-bottom of the Tree.

The capability of supporting multidimensional indexing and querying is dependent on

the region information, which is stored in the routing table. So the correctness of indexing

and querying is guaranteed as long as the relevant region information is correctly stored in

routing tables of relevant nodes in the P2P system. This is not a problem if the system is

changing slowly and the stabilization process is run relatively frequently, i.e. no frequent

nodes’ joining/leaving/failing occur, and the minimum bounding region information of

peer nodes generate relatively few updates during the runtime.

However, even if the system changes slowly, the DHR-Trees can not guarantee all

qualified data to be retrieved at 100%. Considering query that are send to the network

before the routing table being updated to reflect new comer nodes, the query result will

not include the data stored on the new comer, even though the new comer is existing

in the network. After all, the DHR-Trees is a best-effort system in case of dynamically

86

CHAPTER 7. IMPROVING FAULT-TOLERANCE IN DHR-TREES

changing network. This is because that some query may unfortunately goes to the nodes

that are still under inconsistent state, though such a rate could be expected to be very

low.

7.2 Using Adaptive Bounding Rectangle

In this chapter, we propose new approach with regard to the region information. Rather

than using real region information (the MBR), we instead use the “adaptive bounding

rectangle” (denoted as ABR) information. Though the ABR may contain much bigger

region than the real MBR, but it can be calculated with HCode already in the routing table

by a node itself, without contacting other nodes for retrieving fresh region information.

This new approach has the following advantages:

1. Less maintenance traffic.

It eliminates the requirement of retrieving and updating MBR information from

other nodes. So that the messages for stabilization purpose need not anymore carry

MBR information during stabilization process. This decreases the size of mainte-

nance message, which originally requires to carry MBR and AuxMBR in a routing

entry of a peer node.

2. Higher quality of query result under churn

The region information is automatically calculated by the peer node itself. So the

condition of consistent state of nodes become unnecessary for processing query cor-

rectly. Therefore even under the higher churn rate, the systems becomes possible

to answer queries without missing data by combining with entry success list in next

subsection.

The ABR for each routing entry in the routing table is defined as:

Adaptive Bounding Rectangle. Given a routing entry in the routing table, the adaptive

bounding rectangle (ABR) is the minimum bounding rectangle of Hilbert curve segment

between its Hilbert code (HCode) and the closest next Hilbert code in the routing table.

Figure 7.1(a) illustrates a ABR between two points. For comparison purpose, the

MBR is illustrated in Figure 7.1(b). In a DHR-Tree, a MBR is calculated with the region

information of all sub-trees. So the correctness of the MBR is dependent on the region

87

CHAPTER 7. IMPROVING FAULT-TOLERANCE IN DHR-TREES

(a) Adaptive Bounding Rectangle (b) Minimum Bounding Rectangle

Figure 7.1: difference between ABR and MBR

information of all subjacent region information in the routing table. But in a dynamic

network environment, the frequent membership change induces MBR change, which may

seriously affect the correctness of MBR. Synchronizing and Checking correctness of such

information has to be run frequently to keep up with the changes, which causes network

traffic by many messages.

7.3 An Example

Let us see an example of ABR and see the calculation of ABR. In figure reffig:abr-

example, suppose we need to calculate the ABR of first routing entry at level 3. To

calculate it, we need only know the next closest HCode, which is 110 in this example. We

use 20 and 110 as input and run algorithm A.1. Then we can get the region informa-

tion. Note this procedure does not require any information of the subjacent information.

The calculating is straightforward and not influenced by any failure or incorrectness of

subjacent routing entries.

However, the calculation of MBR is dependent on the subjacent information and sen-

sitive to changes below. It requires that region information of all entries at level 2 is

correctly stored. For instance, if a node with HCode 70 joined the network, the region

information in nodes[2][2] is not updated until the stabilization process executed.

88

CHAPTER 7. IMPROVING FAULT-TOLERANCE IN DHR-TREES

Figure 7.2: An example of Adaptive Bounding Rectangle

(a) ABR enclose all possible subjacent

region

(b) MBR needs update to reflect point

70

Figure 7.3: Advantage of ABR

89

CHAPTER 7. IMPROVING FAULT-TOLERANCE IN DHR-TREES

Figure 7.4: The Entry Successor List

7.4 Strengthening query path by successor lists

In structured peer-to-peer systems, queries are executed distributed and cooperatively.

When an query is sent to the network, the peer node who receives the query will play

the role of query executor and result collector. To resolve the query, as described in

section5.2, the node lookups its routing table, finds nodes that may possess required data,

and then forwards the query or sub-queries towards them. In consequence, the correctness

of routing table determines whether the query can be executed correctly.

For DHR-Trees p2p systems, it experiences the same problem in dynamic network en-

vironment. The participating nodes may fail suddenly, which consequently results in stale

entries in routing table which contains pointers to them. So the queries to be forwarded to

these nodes will have to terminate exceptionally. When such problems occur, it becomes

impossible to fulfill the query, or only partial results can be retrieved. This may extremely

deteriorate p2p network reliability and service quality.

To mitigate such problems, several approaches are possibly to be effective. Among

them, one method is to find alternate nodes to forward the query. As to ring structure

like Chord, one choice is to route query along the ring using successor instead of routing

table, though the query performance will avoidably worsen by bigger latency. Chord[44]

has reported that latency increases as more successor are used for routing query.

We take a novel approach to strengthen the query path. It makes query path more

reliable and robust. The idea is inspired by successor list for a peer node. The details of

the approach is as following: In a routing table, each entry contains additional successor

list to the peer node in the entry; the successor list is just the same as the one being hold

at the peer node. When needs to forward a query to the peer node, the current node try

to forward and if the time-out occurs in underlying network to reach the peer node, then

90

CHAPTER 7. IMPROVING FAULT-TOLERANCE IN DHR-TREES

the destination node must have already failed or left the network. The current node, then

choose a successor of the destination node from the routing table entry as a substitute

and send the query to the substitute. The figure 7.4 shows the routing table of peer node

with identifier 20. And the successor list here is 4.

Probability of Routing Success. First let us consider a single forwarding step. Since

the successor list works as the one for ring structure, the forward will success at the

following probability:

Assume the query involve s forwarding steps to fulfill, then the query will success iff

all forwarding goes successfully. So the global success is at probability as:

Psuccess =
s∏

i=1

Pforward=
s∏

i=1

(1 − (Pfailure ∗ Tstabr)z) = (1 − (Pfailure ∗ Tstabr)z)s

7.5 Evaluation

Improvement in fault-tolerance of query.

Using adaptive bounding rectangle, DHR-Trees P2P systems is expected to be more

failure-tolerant and the MBR updating load could also be alleviated.

To verify the effectiveness of successor lists added into routing table, we run simulation

and have nodes suddenly failed. Without stabilization processes stopped, the range query

is executed and the number of range success is measured. We tested two scenarios: one

is without successor lists equipped and another is with successor lists equipped. We run

150 range queries each and see how many range query finally succussed without any

interruption by broken routing path. The results illustrated in Figure 7.5 shows that the

scenario using entry successor list greatly improved that path effectiveness and success

rate of range query decreased little even when massive nodes failed.

Degradation in query cost.

The adoption of ABR can solve data missing problem and make the system more reliable

because it eliminated the need of updating region information when nodes joins or leaves.

However, it can lead to slight degradation in query performance. This is because ABR

contains some unnecessary region information, which leads to, for example, that a range

query goes to some irrelevant nodes due to in the network. We evaluated the performance

91

CHAPTER 7. IMPROVING FAULT-TOLERANCE IN DHR-TREES

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

T
he

 r
at

e
of

 r
an

ge
 q

ue
ry

 s
uc

ce
ss

ed

The ratio of failed nodes

 Query completed without Successors
 with Successors

Figure 7.5: The improvement by entry successor list

of the range query and verified this experimentally. In the experiment in Figure 7.5, the

network size is set to 1000, the order of DHR-Trees d is 4 and the matches is set to 5 data

items.

7.6 Summary

Since the MBR is the minimum region information that enclose spatial information of

sub-trees below, as illustrated in Figure 7.5, it execute query efficiently that ABR. The

ABR, which does not directly require information exchange between peers, can decreases

communication traffic in maintenance. This is helpful in band-limited network environ-

ment. Moreover, by combining with entry successor list, which though does not holds

any MBR information at all, spatial query can be executed with high guarantee even un-

der highly churning environment. As the trade-off of fault-tolerance improvement, ABR

approach require more query message to exchange (for instance, range query execution).

As a result, to select MBR or ABR, the tradeoff between spatial query cost and fault-

tolerance has to be considered. If the network is with less churn, we select MBR to

decrease spatial query result. In contrast, if the network is too dynamic with more churn,

92

CHAPTER 7. IMPROVING FAULT-TOLERANCE IN DHR-TREES

32 64 128 256 512 1024 2048 4096 8192 16384 32768
0

5

10

15

20

25

30

35

40

V
is

ite
d

P
ee

rs

Network Size

 with MBR
 with ABR

Figure 7.6: Query Cost Degeneration with ABR

the ABR can be a good choice so that the query can be guaranteed with answers with

higher probability, though it requires more messages to fulfill the query.

93

CHAPTER 7. IMPROVING FAULT-TOLERANCE IN DHR-TREES

Issue DHR-Trees with MBR DHR-Trees with ABR

(Minimum Bounding Rectangle) (Adaptive Bounding Rectangle)

Region Precision Precise Contains extra regions

Spatial query cost Less More

To obtain
region information Inquire owner nodes Calculate on the fly

Updating overhead Yes No

Query fault-tolerance No Yes

Table 7.1: Comparison of MBR and ABR

94

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, the peer-to-peer systems to support spatial data sharing are studied.

Although there are many existing approach for supporting data sharing, most of them are

designed for one-dimensional data and only a number of them is capable of complex query

such as range queries. Moreover, few of them can support spatial data sharing among

participating peers. The difficulties we identified is the peer-to-peer structure that should

be able to support handling network dynamism as well as spatial data indexing, since the

continual network membership changes is a regular issue in peer-to-peer systems.

In this thesis, two new novel peer-to-peer protocols are proposed. Both GNet and

DHR-Trees are designed to be architectures for sharing geographically distributed spatial

data. In particular, DHR-Tree’s structure, properties, query support, fault-tolerance and

maintenance cost method and theoretical analysis are provided in this thesis. To the best

of our knowledge, DHR-Trees structure is the first peer-to-peer structure that has semi-

independent R-Trees structure and is capable of supporting region-based multidimensional

search predicates efficiently, while handling network dynamism efficiently as well.

Comparing with other protocols (see Table 8.1), The DHR-Trees has good resilience

under network churn, rich search predicates to support, logarithmical maintenance cost for

scalability and query result guarantee under dynamic network environment. We believe

our approaches can help realization of certain distributed spatial data sharing applications.

We hope our works will stimulate more research interest in both peer-to-peer structures

and spatial data sharing applications.

95

CHAPTER 8. CONCLUSION AND FUTURE WORK

P
ro

to
co

l
G

eo
P
ee

r
Sq

ui
d

Z
N

et
P

2P
R

-T
re

e
G

N
et

D
H

R
-T

re
es

D
im

en
si

on
M

ap
pi

ng
N

o
B

y
H

SF
C

B
y

Z
-C

ur
ve

N
o

G
eo

gr
ap

hi
ca

l
ad

dr
es

s
B

y
H

SF
C

T
op

ol
og

y
M

es
h

R
in

g
Sk

ip
L
is

t
T
re

e
T
re

e
R

in
g

R
ou

ti
ng

ta
bl

e
si

ze
O

(m
)

lo
g
(n

)
lo

g
(n

)
d
∗

lo
g d

N
d
∗

lo
g d

N
d
∗

lo
g d

N

R
ou

ti
ng

pa
th

le
ng

th

(h
op

s)

O
(√

N
)

in
w

or
st

ca
se

lo
g
n

d
∗

lo
g d

N
≤

lo
g d

N
≤

lo
g d

N
≤

lo
g d

N

C
hu

rn
R

es
ili

en
ce

of

st
ru

ct
ur

e

△
(l

on
g

ra
ng

e

co
nt

ac
t)

○
○

×
×

○

L
og

ar
it

hm
ic

al
M

ai
n-

te
na

nc
e

C
os

t

○
○

○
×

×
○

R
an

ge
Q

ue
ry

C
os

t
○

△
(c

lu
st

er
de

co
m

-

po
si

ti
on

re
qu

ir
e-

m
en

t)

△
○

○
○

N
ea

re
st

N
ei

gh
bo

r

Q
ue

ry
Su

pp
or

t

×
×

×
×

○
○

Q
ue

ry
R

es
ul

t
G

ua
r-

an
te

e

○
○

△
(p

ro
ba

bi
lis

ti
c)

×
×

○
(u

si
ng

A
B

R
)

*m
is

th
e

d
im

e
n
si

o
n

o
f
sp

a
c
e
;

n
is

th
e

si
z
e

o
f
id

e
n
ti

fi
e
r

sp
a
c
e
;

N
is

th
e

n
u
m

b
e
r

o
f
n
o
d
e
s;

d
is

th
e

o
rd

e
r

o
f
T
re

e
;

T
ab

le
8.

1:
P

2P
pr

ot
oc

ol
s

co
m

pa
ri

so
n

96

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.2 Future Work for DHR-Trees

Access Control. Peer-to-peer systems present a particular challenge for the access

control problem due to their open and anonymous nature. In DHR-Trees p2p systems,

a special concern arises: If the user application is allowed to run some kinds of queries

without any control, then malicious behaviors could be a potential threat to the system.

Imagine some user client application run range queries with query windows setting to

the whole spatial area, all peer nodes in the system will be probably involved into the

query execution and the query result content could probably be huge. This may saturate

the network with query messages and result messages quickly.

A possible solution is employing a central certification or identification authority. As

an alternative, constraining query window or trimming query window smaller is a possible

approach. Before processing query and forwarding refined sub-queries, decision could be

made to reject the query request at routing layer of DHR-Trees.

Handling Heterogeneity. By now, most peer-to-peer systems is based on the as-

sumption of equivalency of all peer devices. In the future, the variety of computing devices

to be used in the peer-to-peer systems is an important issue to address. Different com-

puting power, storage, available network bandwidth characterize heterogeneity of devices.

Current DHR-Trees p2p systems does not address heterogeneity issue. Some transient

peer nodes could degrade stability, because the system has to frequently adjust to handle

network member changes. Furthermore, if the system (the routing table of peers) is in the

inconsistent state or there are many stale routing entries in the routing table, the query

performance may degrade sharply in worst case.

One possible solution is to make a multi-tier DHR-Trees p2p system. Peers are catego-

rized by the computing capability, storage and transiency. Powerful and stable (with long

lifetime) nodes compose the top-tier of the network, which can be regarded as backbone of

the systems. Each top-tier peer node then additionally acts as a super-peer to manage an

smaller DHR-Trees system below, in which second-class peers are clustered. Peer nodes

in the second-tier DHR-Trees, in turn can be a super-node to manage third-class peers,

etc. Considering spatial data sharing, spatially local clustering is expected. In multi-tier

DHR-Trees, maintenance cost decreases due to that under tier nodes need not join top-tier

ring structure, instead join into local ring structure. The query performance is kept due

97

CHAPTER 8. CONCLUSION AND FUTURE WORK

to hierarchy of DHR-Trees.

98

Chapter A

Appendix

A.1 Calculation of Adaptive Bounding Rectangle

The problem of calculating Adaptive Bounding Rectangle is described as8: given two

Hilbert value a and b, calculate the minimum rectangle that bounds the Hilbert curve

segment between a and b. The naive approach to calculate the ABR is to do a traversal of

all possible Hilbert value between start point and end point, decoding them into locations

in Euclidean space, and then merge them together into a rectangle. However, this can be

too costly since the segment can be very long when the order of the Hilbert curve is high.

Here, after introduction of the Hilbert Space Filling Curve, we illustrate the method that

we used in practice.

A.1.1 Hilbert Space Filling Curve

Mapping multi-dimensional data to one dimension, enabling simple and well-understood

one-dimensional access methods to be exploited, has been suggested as a solution in the

literature in the multidimensional database area. One way of realizing such a mapping

is to utilize space-filling curves which pass through every point in a space once so giving

a one-one correspondence between the coordinates of the points and the one-dimensional

sequence numbers of the points on the curve.

Many mapping method have been proposed and evaluated. The most prominent ones

include the z-order, Hilbert curve. Hilbert curve and others were a topic of interest for

leading pure mathematicians in the late 19th century and the first graphical representation

of one was given by David Hilbert in 1891.

99

CHAPTER A. APPENDIX

The basic Hilbert curve of a 2*2 grid, denoted H1, is shown in Fig. A.1. The procedure

to derive higher orders of the Hilbert curve is to rotate and reflect the curve at vertex 0

and at vertex 3. The curve can keep growing recursively by following the same rotation

and reflection pattern at each vertex of the basic curve. Fig. 2.3 also shows the Hilbert

curves of order 2 and 3.

Figure A.1: Hilbert curve of order 1, 2, and 3

A.1.2 The Fast Recursive Algorithm

We designed this algorithm to improve the speed of calculating Adaptive Bounding

Rectangle. The basic idea is to recursively decompose the space into some subspaces,

checking the Hilbert value range [s, t] of each subspace and process them by comparing the

range with the Hilbert curve segment between [a, b]. There are three cases of relationships

of the range of subspace and range of Hilbert curve segment. The cases and handling are

as follows, where R denoted as the range of subspace [s, t] and S denoted as segment range

[a, b].

1. Separation. If R∩S = ∅, then the subspace is discarded. No further decomposition

on it is needed.

2. Containment. If R∩S = R, then the subspace is merged into the ABR. No further

decomposition on it is needed.

3. Intersection. If R ∩ S ̸= ∅, then the subspace needs further decomposition.

The recursive algorithm stops when either the process has reached the finest level of

the Hilbert curve or no more intersection requires further decomposition. For reference,

100

CHAPTER A. APPENDIX

the source code is listed as follows.

Listing A.1: Calculation of ABR

/∗∗
∗ Given H i l b e r t v a l u e range between a and b ,
∗ c a l c u l a t e t he Adapt ive Bounding Rec tang l e .
∗ @param a lower bound (i n c l u s i v e)
∗ @param b upper bound (i n c l u s i v e)
∗ @return the ABR of a and b .
∗/
pub l i c s t a t i c Region getABR(long a , long b) {

i f (a<=b)
return ca l cRect (a , b , 0 , 1 , nu l l) ;

e l s e
return nu l l ;

}
/∗∗
∗ @param a lower bound (i n c l u s i v e)
∗ @param b upper bound (i n c l u s i v e)
∗ @param s t a r t The s t a r t po in t t h a t i s s e t as 0 a t b e g inn ing .
∗ @param decompose order Decomposit ion order , i n i t i a l v a l u e 1 .
∗ @constant ORDER The order o f H i l b e r t Space F i l l i n g Curve .
∗/
pr i va t e s t a t i c Region ca lcRect (long a , long b , long s ta r t ,
i n t decompose order , Region mbr)
{

i n t o r d e r d i f f = ORDER−decompose order ;
Region r ;

i n t coords [] , x , y ;
i n t boundary [] = new in t [4] ;

long min , max ;
long span = 1<<(o r d e r d i f f <<1);
f o r (i n t i =0; i <4; i++){
// check f our b l o c k s a t one decompos i t ion .

min = (s t a r t + i)∗ span ;
max = (s t a r t + i + 1)∗ span−1;
// con ta in t h i s b l o c k
i f (a<=min && b>=max){

r = new Region () ;

101

CHAPTER A. APPENDIX

// g e t t he cood ina t i on o f corner po in t o f t he b l o c k .
coords = Hi lb e r t . decode2d (s t a r t+i , decompose order) ;
x = coords [0] ; y = coords [1] ;
boundary [0] = x << o r d e r d i f f ;
boundary [1] = y << o r d e r d i f f ;
boundary [2] = ((x+1) << o r d e r d i f f) − 1 ;
boundary [3] = ((y+1) << o r d e r d i f f)−1;
r . s e t (boundary) ;
i f (mbr==nu l l) mbr = r ;
e l s e mbr = Region . CombineRegion (mbr , r) ;

}
// not o v e r l a p t h i s b l ock , s k i p t h i s b l o c k .
e l s e i f (a>max | | b<min){}
// p a r t i a l l y con ta in the b l o c k .
// f u r t h e r re f inement r e qu i r e d
e l s e {

i f (decompose order<ORDER){
r = ca lcRect (a , b , (s t a r t+i)<<2,

decompose order+1, mbr) ;
i f (mbr==nu l l) mbr = r ;
e l s e mbr = Region . CombineRegion (mbr , r) ;

}
}

}
return mbr ;

}

102

CHAPTER A. APPENDIX

A.2 The Proof of Theorem 1

Theorem 1 is described as:

Consider a node join or failure, the total number of generated messages to notify

changes is

Smsg =
a · (aH − 1)

(a − 1)
· M0 +

b · [aH+1 − H · (a − 1) − a]
(a − 1)2

The Proof:

Because

Mi = D · PUi−1 · Mi−1 + D2 · Prui−1

we denote D · PU as a, and D2 · Prui−1 as b, we have:

M1 = a · M0 + b

M2 = a · M1 + b = a2M0 + ab + b

...

MH = a · MH−1 + b = aHM0 + aH−1b + aH−2b + · · · + ab + b

Then

S =
H∑

i=1

Mi = (a + a2 + · · · + aH) · M0 + aH−1b + 2aH−2b + 3aH−3b + · · · + H · b︸ ︷︷ ︸
part U

For part U ,

U = aH−1b + 2aH−2b + 3aH−3b + · · · + H · b

U · a = aHb + 2aH−1b + 3aH−2b + · · · + H · ab

Solve U as:

U =
b · [aH+1 − H · (a − 1) − a]

(a − 1)2

Finally, we conclude:

Smsg =
a · (aH − 1)

(a − 1)
· M0 +

b · [aH+1 − H · (a − 1) − a]
(a − 1)2

where

D =
3d

2
− 1, H =

⌈
log 3d

2
N

⌉
, a = D · PU , b = D2 · Pru

103

Bibliography

[1] The gnutella web site. http://gnutella.wego.com.

[2] The kazaa web site. http://www.kazaa.com.

[3] Hilbert r-tree: An improved r-tree using fractals. In Proceedings of the Twentieth

International Conference on Very Large Databases, pages 500–509, Santiago, Chile,

1994.

[4] Accessing nearby copies of replicated objects in a distributed environment. In ACM

Symposium on Parallel Algorithms and Architectures, pages 311–320, 1997.

[5] Karl Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Sys-

tems, volume 2172. January 2001.

[6] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer

content distribution technologies. ACM Comput. Surv., 36(4):335–371, 2004.

[7] A. Andrzejak and Zhichen Xu. Scalable, efficient range queries for grid informa-

tion services. In Peer-to-Peer Computing, 2002. (P2P 2002). Proceedings. Second

International Conference on, pages 33–40, 2002.

[8] F. Araujo and L. Rodrigues. Geopeer: a location-aware peer-to-peer system. Network

Computing and Applications, 2004.(NCA 2004). Proceedings. Third IEEE Interna-

tional Symposium on, pages 39–46.

[9] James Aspnes and Gauri Shah. Skip graphs. In SODA ’03: Proceedings of the

fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 384–393,

Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

[10] Farnoush Banaei-Kashani and Cyrus Shahabi. Swam: a family of access methods

for similarity-search in peer-to-peer data networks. In CIKM ’04: Proceedings of the

thirteenth ACM international conference on Information and knowledge management,

pages 304–313, New York, NY, USA, 2004. ACM Press.

104

[11] P.A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and

I. Zaihrayeu. Data management for peer-to-peer computing: A vision. Proceedings

of the WebDB Workshop, 2002.

[12] B. Carton and V. Mesaros. Improving the scalability of logarithmic-degree dht-based

peer-to-peer networks. Proc. of EUROPAR, 2004.

[13] G. Chen and D. Kotz. A survey of context-aware mobile computing research. Dart-

mouth Computer Science Technical Report TR2000-381, 2000.

[14] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and Jayavel Shanmugasun-

daram. Querying peer-to-peer networks using p-trees. In WebDB ’04: Proceedings of

the 7th International Workshop on the Web and Databases, pages 25–30, New York,

NY, USA, 2004. ACM Press.

[15] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common

api for structured peer-to-peer overlays. Proc. of IPTPS, 58, 2003.

[16] C. Faloutsos and I. Kamel. Beyond uniformity and independence: analysis of R-trees

using the concept of fractal dimension. ACM Press New York, NY, USA, 1994.

[17] Volker Gaede and Oliver Gunther. Multidimensional access methods. ACM Comput.

Surv., 30(2):170–231, 1998.

[18] Prasanna Ganesan, Beverly Yang, and Hector Garcia-Molina. One torus to rule them

all: multi-dimensional queries in p2p systems. In WebDB ’04: Proceedings of the 7th

International Workshop on the Web and Databases, pages 19–24, New York, NY,

USA, 2004. ACM Press.

[19] PB Gibbons, B. Karp, Y. Ke, and S. Nath. Irisnet: an architecture for a worldwide

sensor web. Pervasive Computing, IEEE, 2(4):22–33, 2003.

[20] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica.

The impact of dht routing geometry on resilience and proximity. In SIGCOMM ’03:

Proceedings of the 2003 conference on Applications, technologies, architectures, and

protocols for computer communications, pages 381–394, New York, NY, USA, 2003.

ACM Press.

105

[21] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In

SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international conference on

Management of data, pages 47–57, New York, NY, USA, 1984. ACM Press.

[22] A.Y. Halevy, Z.G. Ives, P. Mork, and I. Tatarinov. Piazza: data management in-

frastructure for semantic web applications. Proceedings of the twelfth international

conference on World Wide Web, pages 556–567, 2003.

[23] U. Hengartner and P. Steenkiste. Exploiting information relationships for access

control. Proceedings of 3rd IEEE International Conference on Pervasive Computing

and Communications (PerCom 2005), pages 269–278, 2005.

[24] R. Huebsch, J.M. Hellerstein, N. Lanham, B.T. Loo, S. Shenker, and I. Stoica. Query-

ing the internet with pier. Proceedings of the 29th VLDB, 2003.

[25] T. Imielinski and J.C. Navas. Gps-based geographic addressing, routing, and resource

discovery. Commun. ACM, 42(4):86–92, 1999.

[26] H. V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. Baton: a balanced tree struc-

ture for peer-to-peer networks. In VLDB ’05: Proceedings of the 31st international

conference on Very large data bases, pages 661–672. VLDB Endowment, 2005.

[27] Helio Tejedor Navarro Jordi Pujol Ahullo, Ruben Mondejar Andreu. Planetsim.

http://planet.urv.es/planetsim/.

[28] Hye-Young Kang, Bog-Ja Lim, and Ki-Joune Li. P2P Spatial Query Processing by

Delaunay Triangulation, volume 3428. January 2005.

[29] B. Karp and HT Kung. Gpsr: greedy perimeter stateless routing for wireless net-

works. Proceedings of the 6th annual international conference on Mobile computing

and networking, pages 243–254, 2000.

[30] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the evolution of peer-

to-peer systems. Proceedings of the twenty-first annual symposium on Principles of

distributed computing, pages 233–242, 2002.

106

[31] R. Lopez-Gulliver, H. Tochigi, T. Sato, M. Suzuki, and N. Hagita. Senseweb: collab-

orative image classification in a multi-user interaction environment. Proceedings of

the 12th annual ACM international conference on Multimedia, pages 456–459, 2004.

[32] Q. Lv, P. Cao, E. Cohen, K. Li, and Shenker. Search and replication in unstructured

peer-to-peer networks. Proceedings of the 16th international conference on Supercom-

puting, pages 84–95, 2002.

[33] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dynamic

emulation of the butterfly. In PODC ’02: Proceedings of the twenty-first annual

symposium on Principles of distributed computing, pages 183–192, New York, NY,

USA, 2002. ACM Press.

[34] K. Minami and D. Kotz. Secure context-sensitive authorization. Pervasive and Mobile

Computing, 1(1):123–156, 2005.

[35] Anirban Mondal, Yi Lifu, and Masaru Kitsuregawa. P2PR-Tree: An R-Tree-Based

Spatial Index for Peer-to-Peer Environments, volume 3268. January 2004.

[36] C. Greg Plaxton, Rajmohan Rajaraman, and Andrew W. Richa. Accessing nearby

copies of replicated objects in a distributed environment. In SPAA ’97: Proceedings

of the ninth annual ACM symposium on Parallel algorithms and architectures, pages

311–320, New York, NY, USA, 1997. ACM Press.

[37] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.

A scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001

conference on Applications, technologies, architectures, and protocols for computer

communications, pages 161–172, New York, NY, USA, 2001. ACM Press.

[38] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a dht. Proceed-

ings of the USENIX Annual Technical Conference, 2004.

[39] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. Proceedings

of the 1995 ACM SIGMOD international conference on Management of data, pages

71–79, 1995.

107

[40] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Lo-

cation, and Routing for Large-Scale Peer-to-Peer Systems, volume 2218. January

2001.

[41] C. Schmidt and M. Parashar. Enabling flexible queries with guarantees in p2p sys-

tems. Internet Computing, IEEE, 8(3):19–26, 2004.

[42] Yanfeng Shu, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou. Supporting multi-

dimensional range queries in peer-to-peer systems. In Peer-to-Peer Computing, 2005.

P2P 2005. Fifth IEEE International Conference on, pages 173–180, 2005.

[43] Joo-Han Song, Vincent W.S. Wong, and Victor C.M. Leung. A framework of secure

location service for position-based ad hoc routing. In PE-WASUN ’04: Proceedings of

the 1st ACM international workshop on Performance evaluation of wireless ad hoc,

sensor, and ubiquitous networks, pages 99–106, New York, NY, USA, 2004. ACM

Press.

[44] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In SIGCOMM

’01: Proceedings of the 2001 conference on Applications, technologies, architectures,

and protocols for computer communications, pages 149–160, New York, NY, USA,

2001. ACM Press.

[45] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In

IMC ’06: Proceedings of the 6th ACM SIGCOMM on Internet measurement, pages

189–202, New York, NY, USA, 2006. ACM Press.

[46] E. Tanin, A. Harwood, and H. Samet. A distributed quadtree index for peer-to-peer

settings. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st International

Conference on, pages 254–255, 2005.

[47] Yannis Theodoridis and Timos Sellis. A model for the prediction of r-tree perfor-

mance. In PODS ’96: Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, pages 161–171, New York, NY, USA,

1996. ACM Press.

108

[48] Haojun Wang, Roger Zimmermann, and Wei-Shinn Ku. Aspen: an adaptive spatial

peer-to-peer network. In GIS ’05: Proceedings of the 13th annual ACM international

workshop on Geographic information systems, pages 230–239, New York, NY, USA,

2005. ACM Press.

[49] Shenyquan Wang, Dong Xuan, and Wei Zhao. On resilience of structured peer-to-peer

systems. In Global Telecommunications Conference, 2003. GLOBECOM ’03. IEEE,

volume 7, pages 3851–3856 vol.7, 2003.

[50] Xinfa Wei and Kaora Sezaki. Gnet: a peer-to-peer protocol for internet scale location-

based applications. In Embedded Software and Systems, 2005. Second International

Conference on, pages 8 pp.–, 2005.

[51] Xinfa Wei and Kaoru Sezaki. Dhr-trees: A distributed multidimensional indexing

structure for p2p systems. ispdc, 0:281–290, 2006.

[52] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. Dis-

tributed Computing Systems, 2002. Proceedings. 22nd International Conference on,

pages 5–14, 2002.

[53] B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph. Tapestry: An infrastructure for fault-

tolerant wide-area location and routing. Computer, 2001.

[54] R. Zimmermann, We-Shinn Ku, and Haojun Wang. Spatial data query support

in peer-to-peer systems. In Computer Software and Applications Conference, 2004.

COMPSAC 2004. Proceedings of the 28th Annual International, volume 2, pages 82–

85 vol.2, 2004.

109

	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Goals and Contribution

	2 Background
	2.1 Peer-to-Peer Systems
	2.1.1 Characteristics
	2.1.2 P2P Structures and Applications

	2.2 The Most Related Works
	2.3 Related Projects and Prototypes

	3 GNet: A Geographic Address-based P2P System
	3.1 Overview of GNet
	3.2 Introduction
	3.3 GNet Protocol
	3.3.1 Geographic Domain Name Identifier
	3.3.2 Node State and Routing
	3.3.3 Geographically Scoped Routing
	3.3.4 Dynamic Operations
	3.3.5 Characteristics

	3.4 Location-based Applications
	3.4.1 Data aggregation
	3.4.2 Information Dissemination

	3.5 Evaluation
	3.5.1 Routing Path Length
	3.5.2 Load balancing

	3.6 Summary

	4 DHR-Trees P2P System
	4.1 Introduction
	4.2 System Model
	4.3 DHR-Trees P2P structure
	4.3.1 Overview of DHR-Trees
	4.3.2 Components on a Peer Node

	4.4 Predecessor and Successor
	4.5 Composite Routing Table
	4.5.1 DHR-Trees Routing Table Properties
	4.5.2 Mapping between Identifier and Network Address
	4.5.3 Wrapping-around problem

	4.6 Evaluation
	4.7 Summary

	5 Multidimensional Queries Support in DHR-Trees
	5.1 Introduction
	5.2 Multidimensional Queries
	5.2.1 Range Queries
	5.2.2 k-Nearest Neighbors queries

	5.3 Evaluation
	5.3.1 Two-Dimensional DHR-Trees
	5.3.2 High Dimensional DHR-Trees
	5.3.3 Performance Comparison with Squid

	5.4 Summary

	6 Maintenance in DHR-Trees
	6.1 Preliminary Knowledge
	6.1.1 Consistent State
	6.1.2 Lookup Procedure
	6.1.3 Tracker List Structure

	6.2 Node join
	6.3 Maintenance of Ring structure
	6.3.1 Ring stabilization
	6.3.2 Successor list
	6.3.3 Analysis of ring robustness

	6.4 Maintenance of Routing Table
	6.4.1 Ping process and Stabilization Process
	6.4.2 Notification mechanism
	6.4.3 Theoretical analysis of joining cost
	6.4.4 General Form of Maintenance Cost
	6.4.5 Verification of Analysis
	6.4.6 Maintaining Region Information in Routing Table

	6.5 Scalability of DHR-Trees
	6.6 Summary

	7 Improving Fault-Tolerance in DHR-Trees
	7.1 Problem with Region information Update
	7.2 Using Adaptive Bounding Rectangle
	7.3 An Example
	7.4 Strengthening query path by successor lists
	7.5 Evaluation
	7.6 Summary

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work for DHR-Trees

	A Appendix
	A.1 Calculation of Adaptive Bounding Rectangle
	A.1.1 Hilbert Space Filling Curve
	A.1.2 The Fast Recursive Algorithm

	A.2 The Proof of Theorem 1

	Bibliography

