
Design and Implementation of Scalable

High-performance Communication Libraries for

Wide-area Computing Environments

(広域計算環境における並列計算用のスケーラブル
な高性能通信ライブラリの設計と実装)

斎藤秀雄

Abstract

Over the past ten years, clusters have become the predominant architecture for performing par-

allel computation. By connecting multiple compute nodes by a Local Area Network (LAN),

clusters make a large amount of processing power, memory and storage available for parallel

computation. By connecting two or more of these clusters by a Wide Area Network (WAN),

even more computational resources become available for parallel computation. Recently, the

bandwidth of WANs has increased significantly, increasing the number of applications that can

potentially take advantage of multi-cluster environments. Unfortunately, multi-cluster environ-

ments are significantly more complex than single cluster environments. In particular, they intro-

duce or magnify problems concerning connectivity, scalability, locality and adaptivity. As it is

undesirable and unrealistic for each individual application to handle these problems separately,

demands have increased for wide-area communication libraries that handle these problems.

Concerning connectivity, wide-area communication libraries need to be aware that con-

nections between clusters are commonly blocked by firewalls or Network Address Transla-

tion (NAT). A simplistic scheme that assumes that all processes can connect to each other will

encounter problems when deployed in WANs. Only some connections will be allowed, and

messages must be routed between every pair of processes using those connections. As for

scalability, wide-area communication libraries need to avoid simplistic schemes that establish

a large number of connections. While all connections consume resources, wide-area connec-

tions especially consume a lot of resources, causing various resource allocation problems. In

addition to resource allocation problems, using a large number of wide-area connections in an

uncoordinated fashion can result in low communication performance due to congestion. The

two previous requirements basically say that a wide-area communication library will establish

connections between a subset of all process pairs. Then in order to maintain high commu-

nication performance, the process pairs that do establish connections should be selected in a

locality-aware manner. In general, connections between nearby processes should be favored

over connections between faraway processes, and connections between processes that commu-

i

ii

nicate frequently should be favored over those that communicate infrequently. Moreover, wide-

area communication libraries should automatically satisfy the three previous requirements by

adapting to environments and to applications. They should not rely on manual configuration,

because it is tedious, it does not scale, and it is the cause of various errors.

Much previous research has focused on each of these requirements separately, but more

work is necessary in order for wide-area communication libraries to meet all of these require-

ments at the same time. For example, research centered around message passing offers good

locality but poor scalability and adaptivity, while research centered around Peer-to-Peer (P2P)

overlay networks offers good scalability and adaptivity but poor locality. This has motivated me

to make two proposals concerning the design and implementation of scalable high-performance

communication libraries for wide-area computing environments: a locality-aware connection

management scheme and a locality-aware rank assignment scheme.

My connection management scheme overcomes firewalls and NAT by constructing an over-

lay network, and achieves scalability by limiting the number of connections that each process

establishes to O(log n) when the total number of processes is n. In order to achieve high perfor-

mance with a limited number of connections, the connections that are established are selected in

a locality-aware manner, based on latency and traffic information obtained from a short profil-

ing run. Meanwhile, my rank assignment scheme finds a low-overhead mapping between ranks

and processes by formulating the rank assignment problem as a Quadratic Assignment Problem

(QAP). It adapts to environments and to applications by setting up QAPs using the latency and

traffic information obtained from the profiling run.

Using the proposed connection management and rank assignment schemes, I have imple-

mented a wide-area Message Passing Interface (MPI) library called Multi-Cluster MPI (MC-

MPI). I have evaluated its performance using the NAS Parallel Benchmarks (NPB) and Dis-

tributed Verification Environment (DiVinE). Using 256 cores distributed equally across 4 clus-

ters, MC-MPI was able to limit the percentage of connections that each process established to

as low as 10 percent, while performing at least as well as existing methods. For benchmarks in

which many processes communicated simultaneously, MC-MPI actually performed better than

when many connections were used. Moreover, MC-MPI was able to find rank assignments that

performed up to 1.2 times better than commonly used assignments based on host names and up

to 4.0 times better than locality-unaware assignments.

In order to support not just MPI applications but any parallel application, I have also used

the proposed connection management scheme to implement a wide-area Sockets library called

iii

Scalable Sockets (SSOCK). In a 13-cluster environment with firewalls and NAT, SSOCK was

able to connect 1,262 processes with each other without any of the connectivity issues and

resource allocation problems that were encountered by existing methods. In another experiment

in which many processes simultaneously tried to establish connections with each other, SSOCK

was able to quickly establish connections between all pairs of processes, while an existing

method suffered from a large number of packet losses and finally timed out. Moreover, the

point-to-point communication performance of SSOCK was comparable to that of an existing

method, while the collective communication performance was better.

Acknowledgements

First, I would like to express my sincere gratitude to the members of my dissertation committee.

Professors Masaru Kitsuregawa and Masahiro Goshima gave me invaluable comments at our

annual advisor meetings, and Professors Kei Hiraki, Shuichi Sakai and Hiroyuki Morikawa

gave me important suggestions regarding the presentation of my work. It is because of their

help that my dissertation is in one piece.

I am deeply indebted to Professors Takashi Chikayama and Kenjiro Taura. As boss of

our lab, Professor Chikayama was my most important role model. He gave me some of the

most valuable suggestions, and made sure that I had the resources necessary for my research.

Meanwhile, Professor Taura was the one who initially got me interested in research. Then as

my supervisor for six years, he kept me motivated and led me through three degrees.

I am grateful to everyone in my lab for helping me finish this dissertation on time. Daisaku

Yokoyama and Yoshikazu Kamoshida gave me many insightful comments on my work. Tatsuya

Shirai, Kei Takahashi and Ken Hironaka procrastinated with me before numerous deadlines.

They also worked on some grueling projects with me—we deserve extra degrees for our fast

Flowshop solver and for setting up so many clusters!

Finally, a huge thanks goes to everyone else who supported me in various other ways as I

worked through my dissertation. In particular, I would like to thank Takuro Matsuda, Yuichi Sei

and Chinatsu Nakamura for their friendship, and my parents for sending me through countless

years of school.

December 17, 2008

v

Contents

1 Introduction 1

1.1 Background and motivation . 1

1.2 Contributions . 3

1.3 Organization of this dissertation . 5

2 Related Work 7

2.1 Overview . 7

2.2 VPN . 7

2.3 Firewall and NAT traversal techniques . 8

2.4 SmartSockets . 8

2.5 P2P overlay networks and IPOP . 9

2.6 Adaptive routing in wireless networks . 10

3 Message Passing 11

3.1 Overview . 11

3.2 Point-to-point communication . 12

3.3 Collective communication . 12

3.4 Wide-area-enabled MPI libraries . 13

3.5 Connection management . 14

3.6 Rank assignment techniques . 15

4 Design and Implementation of MC-MPI 19

4.1 Overview . 19

4.2 Profiling run . 20

4.2.1 Latency matrix . 20

4.2.2 Traffic matrix . 23

vii

viii CONTENTS

4.3 Locality-aware Connection Management . 23

4.3.1 Basic workings . 23

4.3.2 Bounding graph construction . 24

4.3.3 Routing table construction . 26

4.3.4 Spanning tree construction . 26

4.3.5 Lazy connection establishment and message forwarding 26

4.4 Locality-aware Rank Assignment . 29

4.4.1 Basic workings . 29

4.4.2 Setting up QAPs for rank assignment 29

4.4.3 Solving QAPs . 30

5 Performance Evaluation of MC-MPI 31

5.1 Overview . 31

5.2 Experimental environment . 31

5.3 Description of benchmarks . 33

5.3.1 NPB . 33

5.3.2 DiVinE . 34

5.4 RTT measurement time . 35

5.5 Bounding graph disconnect probability . 35

5.6 Connection management performance . 36

5.7 Lazy connection establishment performance 39

5.8 Rank assignment performance . 40

6 Scalable Sockets 49

6.1 Design and implementation . 49

6.1.1 Overview . 49

6.1.2 Libssock . 51

6.1.3 Ssockd . 52

6.2 Experimental results . 52

6.2.1 Experimental setup . 52

6.2.2 Connectivity and scalability . 54

6.2.3 Simultaneous connects . 55

6.2.4 Point-to-point and collective communication performance 56

CONTENTS ix

7 Conclusion and Future Work 61

7.1 Conclusion . 61

7.2 Future work . 62

7.2.1 Connection management . 62

7.2.2 SSOCK . 63

7.2.3 Broader goal . 63

Bibliography 65

Publications 73

Appendix 77

A.1 Quality of QAP solutions . 77

A.2 Traffic matrices of benchmarks . 77

List of Figures

4.1 Profiling run and real run in MC-MPI . 20

4.2 RTT estimation scheme . 21

4.3 Process selection with β = 2 . 25

5.1 RTT and bandwidth of each cluster and between each pair of clusters 32

5.2 Time required to obtain D with various values of α 42

5.3 Disconnect rate of bounding graphs with 3FW 42

5.4 Performance of BT (CLASS=D, NPROCS=256) with varying numbers of con-

nections . 43

5.5 Performance of EP (CLASS=D, NPROCS=256) with varying numbers of con-

nections . 43

5.6 Performance of IS (CLASS=C, NPROCS=256) with varying numbers of con-

nections . 44

5.7 Performance of LU (CLASS=D, NPROCS=256) with varying numbers of con-

nections . 44

5.8 Performance of MG (CLASS=D, NPROCS=256) with varying numbers of con-

nections . 45

5.9 Performance of SP (CLASS=D, NPROCS=256) with varying numbers of con-

nections . 45

5.10 Performance of MPI Allreduce-MPI Alltoall-Alltoallv with vary-

ing numbers of connections . 46

5.11 Performance of DiVinE with varying numbers of connections 46

5.12 Comparison of lazy connection establishment methods 47

5.13 Performance of the NPB with various rank assignments 48

6.1 Overview of SSOCK . 50

xi

xii LIST OF FIGURES

6.2 Libssocks and ssockds . 51

6.3 Experimental environment . 53

6.4 Completion time of all-to-all connect . 58

6.5 Intra-cluster ping-pong performance . 58

6.6 Inter-cluster ping-pong performance . 59

6.7 All-to-all performance . 59

A.1 Traffic matrix of BT (CLASS=D, NPROCS=64) 78

A.2 Traffic matrix of EP (CLASS=D, NPROCS=64) 78

A.3 Traffic matrix of IS (CLASS=C, NPROCS=64) 79

A.4 Traffic matrix of LU (CLASS=D, NPROCS=64) 79

A.5 Traffic matrix of MG (CLASS=D, NPROCS=64) 80

A.6 Traffic matrix of SP (CLASS=D, NPROCS=64) 80

A.7 Traffic matrix of DiVinE . 81

List of Tables

1.1 Number of concurrent sessions that some common firewalls can handle (through-

put is also given as a measure of the scale of the firewall) 2

3.1 Percentage of process pairs that communicate in the NPB 15

5.1 Specifications of each cluster . 31

5.2 Parameters used for the elevator controller model 35

5.3 Percentage of connections selected with various values of β (n = 256) 37

5.4 Parameters of the collective operations used in IS 39

6.1 Network configuration of each cluster . 54

A.1 Solutions obtained by the QAP solver . 77

xiii

Chapter 1

Introduction

1.1 Background and motivation

Over the past ten years, clusters have become the predominant architecture for performing par-

allel computation. Over 80 percent of the systems on the November 2008 version of the TOP500

Supercomputing Sites list are clusters, while fewer than 1 percent were clusters on the Novem-

ber 1998 list [64]. By connecting multiple compute nodes by a Local Area Network (LAN),

clusters make a large amount of processing power, memory and storage available for parallel

computation. By connecting two or more of these clusters by a Wide Area Network (WAN),

even more computational resources become available for parallel computation. Message pass-

ing applications, data intensive applications, and applications that use distributed file systems

are just a few of the applications that can take advantage of these resources.

Until recently, the narrow bandwidth of WANs prevented many of these applications from

being executed efficiently across multiple clusters. Recently, however, the bandwidth of WANs

has increased significantly. For example, the Science Information NETwork 3 (SINET3), which

connects universities and research institutions in Japan, has a capacity of up to 40Gbps [48].

Surfnet, a similar network in the Netherlands, has a capacity of up to 10Gbps [69]. These fast

WANs act as backbones for multi-cluster platforms such as InTrigger in Japan [32], the Dis-

tributed ASCI Supercomputer 3 (DAS-3) in the Netherlands [74] and Grid’5000 in France [21],

and has increased the number of applications that can potentially take advantage of multi-cluster

environments.

Unfortunately, multi-cluster environments are significantly more complex than single clus-

ter environments. In particular, they introduce or magnify problems concerning connectivity,

scalability and locality. As it is undesirable and unrealistic for each individual application to

1

2 CHAPTER 1. INTRODUCTION

Table 1.1: Number of concurrent sessions that some common firewalls can handle (throughput
is also given as a measure of the scale of the firewall)

Firewall Concurrent sessions Throughput
WatchGuard Firebox R©Edge X55e 10,000 100 Mbps
Juniper Networks NetScreen-208 128,000 375 Mbps
ITOS CR1000i 400,000 1 Gbps
Fortinet FortiGate-3600 1,000,000 4 Gbps

handle these problems separately, demands have increased for communication libraries that

are wide-area-enabled. Such wide-area communication libraries should satisfy the following

requirements:

Connectivity: Wide-area communication libraries need to be aware that connections between

clusters are commonly blocked by firewalls or Network Address Translation (NAT) [66].

A simplistic scheme that assumes that all processes can connect to each other will en-

counter problems when deployed in WANs. Only some connections will be allowed, and

messages must be routed between every pair of processes using those connections.

Scalability: In order to scale to a large number of processes, wide-area communication li-

braries need to avoid simplistic schemes that establish a large number of connections.

While all connections consume resources, wide-area connections especially consume a lot

of resources, causing various resource allocation problems. For example, the number of

sessions that a NAT gateway can handle is limited to about 65,000 (the number of ports),

and the number of sessions that a stateful firewall can handle is also limited (Table 1.1

lists the number of concurrent sessions that some common firewalls can handle). These

limitations apply to communication using the User Datagram Protocol (UDP) [54] as

well as that using the Transmission Control Protocol (TCP) [55], because NAT gateways

and stateful firewalls remember states for both protocols. Another resource consumed by

each connection is memory. Wide-area TCP connections especially use a large amount

of memory, because the send and receive buffers of a connection must be at least as large

as the bandwidth-delay product in order to achieve high bandwidth [65]. In addition to

resource allocation problems, using a large number of wide-area connections simultane-

ously in an uncoordinated fashion can result in low communication performance due to

congestion.

1.2. CONTRIBUTIONS 3

Locality: The two previous requirements basically say that a wide-area communication library

will establish connections between a subset of all process pairs. Then in order to maintain

high communication performance, the process pairs that do establish connections should

be selected in a locality-aware manner. In general, connections between nearby processes

should be favored over those between faraway processes (environment awareness). More-

over, connections between processes that communicate frequently should be favored over

those that communicate infrequently (application awareness).

Adaptivity: Wide-area communication libraries should satisfy the three previous requirements

automatically by adapting to environments and to applications. They should not rely

on manual configuration, because it is tedious, it does not scale, and it is the cause of

various errors (improper configuration can result in poor performance or even loss of

connectivity).

Much previous research has focused on each of these requirements separately, but more

work is necessary in order for wide-area communication libraries to meet all of these require-

ments at the same time. For example, research centered around message passing offers good

locality but poor scalability and adaptivity [22, 30, 31, 33, 34, 37, 46, 70, 71], while research

centered around Peer-to-Peer (P2P) overlay networks offers good scalability and adaptivity but

poor locality [63, 68, 81]. This has motivated me to study the design and implementation of

scalable high-performance communication libraries for wide-area computing environments.

1.2 Contributions

The main contributions of this dissertation are as follows:

1. Locality-aware connection management

I propose a connection management scheme for wide-area communication libraries. This

scheme overcomes firewalls and NAT by constructing an overlay network, and achieves

scalability by limiting the number of connections that each process establishes to O(log n)

when the total number of processes is n. In order to achieve high performance with

a limited number of connections, the connections that are established are selected in a

locality-aware manner, based on latency and traffic information obtained from a short

profiling run.

4 CHAPTER 1. INTRODUCTION

2. Locality-aware rank assignment

I also propose a rank assignment scheme for wide-area communication libraries. This

scheme finds a low-overhead mapping between ranks (process IDs) and processes by for-

mulating the rank assignment problem as a Quadratic Assignment Problem (QAP) [38].

It adapts to environments and to applications by setting up QAPs using latency and traffic

information obtained from the profiling run.

3. Multi-Cluster MPI (MC-MPI)

Using the proposed connection management and rank assignment schemes, I have im-

plemented a wide-area Message Passing Interface (MPI) [42] library called Multi-Cluster

MPI (MC-MPI). I have evaluated its performance using the NAS Parallel Benchmarks

(NPB) [13, 75] and Distributed Verification Environment (DiVinE) [2, 28]. Using 256

cores distributed equally across 4 clusters, MC-MPI was able to limit the percentage of

connections that each process established to as low as 10 percent, while performing at

least as well as existing methods. For benchmarks in which many processes communi-

cated simultaneously, MC-MPI actually performed better than when many connections

were used. Moreover, MC-MPI was able to find rank assignments that performed up to

1.2 times better than commonly used assignments based on host names and up to 4.0

times better than locality-unaware assignments.

4. Scalable Sockets (SSOCK)

In order to support not just MPI applications but any parallel application, I have used

my connection management scheme to implement a wide-area Sockets [53] library called

Scalable Sockets (SSOCK). In a 13-cluster environment with firewalls and NAT, SSOCK

was able to connect 1,262 processes with each other without any of the connectivity is-

sues and resource allocation problems that were encountered by existing methods. In

another experiment in which many processes simultaneously tried to establish connec-

tions with each other, SSOCK was able to quickly establish connections between all pairs

of processes, while an existing method suffered from a large number of packet losses and

finally timed out. Moreover, the point-to-point communication performance of SSOCK

was comparable to that of an existing method, while the collective communication per-

formance was better.

1.3. ORGANIZATION OF THIS DISSERTATION 5

1.3 Organization of this dissertation

The rest of this dissertation is organized as follows. First, in Chapter 2, I discuss related work in

the general context. Then, in Chapter 3, I discuss work specific to message passing, and give a

brief overview of the message passing model itself. In Chapters 4 and 5, I describe the design of

MC-MPI, explain my connection management and rank assignment schemes, and discuss rele-

vant experimental results. In Chapter 6, I describe the design and implementation of SSOCK,

and discuss relevant experimental results. Finally, in Chapter 7, I present my concluding re-

marks and possible future directions of research.

Chapter 2

Related Work

2.1 Overview

This chapter discusses related work in a general context. Work specific to message passing,

along with a brief overview of the message passing programming model itself, is discussed in

Chapter 3.

2.2 VPN

One way to get rid of the connectivity problems arising from firewalls and Network Address

Translation (NAT) [66] is to use a Virtual Private Network (VPN).

IP-VPN is a class of VPNs in which the Internet Service Provider (ISP) constructs a VPN.

A common method of constructing an IP-VPN is to use BGP/MPLS VPN [60]. This method

uses extensions to the Border Gateway Protocol (BGP) [58] to construct multiple VPNs within

a single Multi Protocol Label Switching (MPLS) [61] network. The main problem with IP-

VPN is that it is inflexible; joining and leaving the VPN can only happen on a per cluster basis,

requires changing IP addresses, and requires intervention of the ISP.

VPNs can also be constructed at the user level, using software such as OpenVPN [50] and

PacketiX VPN [29]. These solutions virtualize Ethernet [39] by providing tap devices that act

as virtual Ethernet adapters and bridge devices that act as virtual Ethernet hubs. Although user-

level VPNs are much more flexible than IP-VPN, they still require some manual configuration,

and they do not solve the scalability problems involved with establishing a large number of

connections.

7

8 CHAPTER 2. RELATED WORK

2.3 Firewall and NAT traversal techniques

Transmission Control Protocol (TCP) splicing is a method for traversing firewalls and NAT [12,

25]. This method allows two nodes to connect to each other even if both nodes are behind

firewalls that deny incoming connection attempts. Focusing on the fact that a typical firewall

permits replies to outgoing traffic, two nodes repeatedly send SYN packets to each other in

hope that the firewall on the other end will let one of the packets pass through. When one or

both machines are behind a NAT gateway, the connecting node must know which port will be

used by the gateway on the other end, but most NAT implementations use predictable mapping

schemes [24]. For the User Datagram Protocol (UDP), there is a similar method known as UDP

hole punching [62]. Unfortunately, TCP splicing and UDP hole punching only work in some

common situations. For example, they do not work when firewalls have complicated filtering

rules or when NAT is used inside a network already using NAT. Thus, these techniques alone

cannot solve all of the connectivity problems in a complex wide-area computing environment.

Another way to traverse firewalls and NAT is to insert helper agents into the network. Proxy

servers, such as SOCKS [40], and Application Level Gateways (ALGs) [67] fall into this cat-

egory. These agents solve connectivity problems by performing communication in place of

nodes that cannot communicate directly. However, some nodes may need the help of multiple

agents in order to communicate, and manual configuration to allow a large number of nodes to

communicate all-to-all can become quite a difficult task. Moreover, these agents solve connec-

tivity issues but not scalability issues; connecting a large number of nodes using proxy servers

or ALGs will result in a large number of wide-area connections.

2.4 SmartSockets

Maassen et al. have developed SmartSockets [41], a Java library that allows programmers to

use sockets in wide-area environments without worrying about connectivity issues. It provides

extended versions of the Socket and ServerSocket classes that transparently connect nor-

mally unconnectable nodes by selecting the proper technique from the following set of tech-

niques:

Direct Establishes a normal connection from the source to the destination. This technique only

works when communication is not blocked by firewalls or NAT.

Reverse Establishes a connection in the reverse direction, from the destination to the source.

2.5. P2P OVERLAY NETWORKS AND IPOP 9

This technique works if the source is not behind a firewall or NAT, even if the destination

is.

Splicing Uses the firewall and NAT traversal technique explained in Section 2.3.

Routed Uses forwarding daemons to route messages between nodes that cannot be connected

directly.

Unlike proxy servers and ALGs, SmartSockets involves almost no configuration. It automati-

cally chooses the correct technique, and the routing tables used by the forwarding daemons are

constructed automatically as well.

SmartSockets is the closest work to SSOCK (Chapter 6), but the main difference is that

SSOCK not only deals with connectivity issues but also with scalability issues. SmartSock-

ets establishes direct connections whenever possible, but SSOCK avoids establishing certain

connections even when possible.

2.5 P2P overlay networks and IPOP

One way of connecting a large number of nodes in a scalable fashion is to use a Peer-to-Peer

(P2P) overlay network. P2P overlay networks achieve scalability by limiting the number of

nodes with which each node communicates, and a routing layer forwards messages for nodes

that do not communicate directly. Some representative P2P overlay networks include Content

Addressable Network (CAN) [57], Chord [68], Pastry [63] and Tapestry [81]. In CAN, n nodes

are assigned IDs in a d-dimensional ID coordinate space, and nodes can communicate with each

other with an average of O(dn
1
d) hops if each node maintains information about just O(d) other

nodes. In Chord, nodes are assigned IDs in a circular ID space, and nodes can communicate with

each other with an average of O(log n) hops if each node maintains information about O(log n)

other nodes. Pastry [63] and Tapestry [81], which use a variant of Plaxton’s distributed search

technique [52], also allow n nodes to communicate with each other with O(log n) hops when

each node maintains information about O(log n) other nodes. The problem with P2P overlay

networks is that they make routing decisions based on addresses assigned in the P2P address

space, which often causes messages to take long detours in the physical network.

Ganguly et al. have proposed IP over P2P (IPOP) [17], which performs IP tunneling using

Brunet [7], a P2P overlay network that works in environments with firewalls and NAT. In or-

der to overcome the previously mentioned detour problem of P2P overlay networks, Ganguly

10 CHAPTER 2. RELATED WORK

et al. have also proposed to establish shortcut connections between nodes that communicate

frequently [18]. However, this method does not work well for applications in which many node

pairs communicate frequently, because it will result in a large number of shortcut connections.

Moreover, the virtual interface that IPOP uses to perform IP tunneling has an overhead that is

unacceptable for many parallel applications; while the latency within a cluster is several to sev-

eral tens of microseconds, the overhead incurred by the virtual interface is several milliseconds.

2.6 Adaptive routing in wireless networks

In many ways, adaptive routing schemes used in wireless networks [11, 15, 19, 78] are similar

to my connection management scheme. They assume that connectivity is limited, perform link

quality measurements, and recognize that shortest path routing does not necessarily result in the

best performance. However, there are some major differences between the two. For example,

signal stability is an important issue in wireless networks, but not in wired networks used for

parallel computation. Meanwhile, unlike my connection management scheme, routing schemes

for wireless networks do not need to handle the problem of reducing wide-area connections; far-

away nodes can often communicate in wired networks (except when firewalls and NAT prevent

it), but only nearby nodes can communicate in wireless networks.

Chapter 3

Message Passing

3.1 Overview

Message passing is a parallel programming model for distributed memory systems, and is com-

monly used for parallel programming on clusters. In message passing, communication is pro-

grammed explicitly. As a result, message passing usually performs better than other parallel

programming models such as distributed shared memory (DSM), but is often harder to write.

The Sockets Application Programming Interface (API) [53], in which communication is

programmed using the send and recv function calls, is the most basic API for message pass-

ing programming. The Sockets API does not provide much abstraction in terms of parallel

programming, so it is not too common for parallel applications to be written using this API.

However, middleware for parallel and distributed systems (e.g., communication libraries and

distributed file systems) are often written using this API. Thus, improving the Sockets API can

benefit parallel applications indirectly. While this is not the main focus of this dissertation, I

briefly discuss how my work can be applied to the Sockets API in Chapter 6.

The Message Passing Interface (MPI) [42], the main focus of this dissertation, is the de facto

standard API for message passing programming. It provides a higher level of abstraction than

the Sockets API by assigning a globally unique identifier (rank) to each process. The underlying

message passing system assigns a rank to each process inside an initialization function, and

communication patterns are expressed in terms of ranks and the total number of processes.

This makes the task of translating parallel algorithms to message passing programs intuitive.

The APIs for initialization, obtaining the rank of a process, and obtaining the total number of

processes is as follows:

• MPI Init(int *argc, char **argv);

11

12 CHAPTER 3. MESSAGE PASSING

(initializes the MPI execution environment)

• MPI Comm rank(MPI Comm comm, int *rank);

(returns the rank of the calling process in rank)

• MPI Comm size(MPI Comm comm, int *size);

(returns the total number of processes in size)

Another feature of MPI that makes it suitable for parallel programming is that the API is

platform independent. Platform-dependent issues are handled by the message passing system,

not the application. This helps message passing programs to be portable across different archi-

tectures and even to work in heterogeneous environments.

The rest of this chapter is organized as follows. First, in Sections 3.2 and 3.3, I describe the

two main kinds of communication primitives provided by MPI, point-to-point communication

and collective communication. Then, in Section 3.4, I describe the issues involved with running

MPI in wide-area environments. In Section 3.5, I describe the need for connection management

and the difficulties involved with it. Finally, in Section 3.6, I discuss different rank assignment

techniques for lowering communication overhead.

3.2 Point-to-point communication

Point-to-point operations, or 1-to-1 operations (i.e., send and receive), are used for commu-

nication between two processes. While there are many variants with different behaviors and

semantics, the two most basic point-to-point operations are the following:

• MPI Send(void *buf, int count, MPI Datatype datatype, int

dest, int tag, MPI Comm comm);

(performs a blocking send to the process with rank dest)

• MPI Recv(void *buf, int count, MPI Datatype datatype, int

source, int tag, MPI Comm comm, MPI Status *status);

(performs a blocking receive from the process with rank source)

3.3 Collective communication

Collective operations are communication operations that involve a group of processes. They can

be divided into three different groups based on the direction of data flow: 1-to-N operations

3.4. WIDE-AREA-ENABLED MPI LIBRARIES 13

(e.g., broadcast), N -to-1 operations (e.g., reduction) and N -to-N operations (e.g., all-to-all).

Some specific examples include the following:

• MPI Bcast(void *buffer, int count, MPI Datatype datatype,

int root, MPI Comm comm);

(broadcasts a message from the process with rank root to all other processes)

• MPI Reduce(void *sendbuf, void *recvbuf, int count,

MPI Datatype datatype, MPI Op op, int root, MPI Comm comm);

(reduces values on all processes to a single value on the process with rank root)

• MPI Alltoall(void *sendbuf, int sendcount, MPI Datatype

sendtype, void *recvbuf, int recvcnt, MPI Datatype recvtype,

MPI Comm comm);

(sends data from all to all processes)

Programming with collective operations is much easier than with just point-to-point oper-

ations, because collective operations can provide much functionality in just one function call.

At the same time, the use of collective operations can also improve the performance of parallel

programs. This is because message passing systems can take advantage of information such as

bandwidth and latency to provide optimal collective operations for a given environment. Gor-

latch provides an in-detail discussion on the effectiveness of collective operations in [20].

Proposing specific algorithms for performing collective operations efficiently is beyond the

scope of this dissertation. However, the heavy traffic caused by collective operations is very

relevant to connection management. This is discussed in more detail in Section 3.5.

3.4 Wide-area-enabled MPI libraries

While MPI has mostly been used for parallel computation on single clusters, there are strong

demands for running MPI applications across multiple clusters. Multi-cluster environments are

appealing, because they offer much more computational resources than single cluster environ-

ments. Unfortunately, multi-cluster environments are significantly more complex than single

cluster environments, introducing or magnifying problems concerning connectivity, scalability

and locality.

14 CHAPTER 3. MESSAGE PASSING

For example, collective communication algorithms for single cluster environments perform

poorly in multi-cluster environments. These algorithms often assume that the network is homo-

geneous [73], but such an assumption causes messages to go back and forth between clusters

when used in multi-cluster environments. Thus, some wide-area-enabled MPI libraries, includ-

ing MagPIe [37] and MPICH-G2 [33, 34, 46], provide network-heterogeneity-aware collective

operations. These libraries avoid messages from going back and forth between clusters by

differentiating between intra-cluster and inter-cluster communication and performing commu-

nication hierarchically.

Another issue in multi-cluster environments is connectivity. Some wide-area-enabled MPI

libraries have forwarding mechanisms that allow all processes to communicate with each other,

even in the presence of firewalls and Network Address Translation (NAT). GridMPI [22,70,71],

MPICH/MADIII [1] and PACX-MPI [16] fall into this category. These libraries use manually

provided information to connect some processes directly and establish multi-hop routes between

other processes. The problem with this approach is that the amount of necessary configuration

can become overwhelming as more computational resources and more complex environments

are used. Moreover, manual configuration is static, but factors such as load and faults change

the resources available for a computation from execution to execution. MC-MPI (Chapter 4)

differs from these libraries in that it does not require static, manual configuration; it discovers

process connectivity automatically.

3.5 Connection management

MPI libraries typically deliver point-to-point messages directly, and only route messages through

other processes when firewalls or NAT prevent direct communication. This is because direct

communication usually has lower latency and higher bandwidth than routed communication.

A simplistic implementation that delivers messages directly would pre-establish connections

between all pairs of processes inside MPI Init. However, such a design does not scale well,

because it results in a large number of connections. Moreover, when many process pairs com-

municate simultaneously, using a large number of connections results in low communication

performance due to congestion. These problems are especially significant when there is a large

number of wide-area connections, because wide-area connections consume more resources and

are more prone to congestion than local-area connections.

In order to reduce the number of connections that are established, many MPI libraries use

3.6. RANK ASSIGNMENT TECHNIQUES 15

Table 3.1: Percentage of process pairs that communicate in the NPB

Benchmark CLASS NPROCS Percentage
Block Tridiagonal (BT) D 256 5.5%
Embarrassingly Parallel (EP) D 256 0.78%
Integer Sort (IS) C 256 100%
Lower Upper (LU) D 256 4.6%
Multi Grid (MG) D 256 5.4%
Scalar Pentadiagonal (SP) D 256 5.5%

lazy connect strategies. MPICH [23,45] and MPICH2 [47] fall into this category. By establish-

ing connections only on demand, lazy connection establishment addresses scalability issues in

an application-aware manner. It works especially well when each process only communicates

with a few other processes, which is the case for many scientific applications. As shown in

Table 3.1, fewer than 6% of process pairs actually communicate in many of the benchmarks

included in the NAS Parallel Benchmarks (NPB) [13, 75].

However, some applications generate all-to-all or more or less uniform communication pat-

terns, and those applications will end up establishing a large number of connections even when

connections are established only on demand. Some examples of such applications are n-body

simulations, Integer Sort (IS) in the NPB and load balancing based on random work steal-

ing [6]. Moreover, simple lazy connect strategies will not extend to wide-area environments,

because lazy connects may fail due to firewalls or NAT. My proposed connection management

scheme (Section 4.3) also uses a lazy connect strategy, but overcomes these problems by pre-

determining a small number of connectable candidate connections during initialization.

3.6 Rank assignment techniques

The assignment of ranks to processes has a large effect on the performance of MPI applications,

for the following reasons:

• Many applications have non-uniform communication patterns, so some rank pairs com-

municate more than others.

• Some process pairs have higher communication costs than others. In a multi-cluster

environment, communication between clusters is more expensive than communication

16 CHAPTER 3. MESSAGE PASSING

within a cluster. Even in a single cluster environment, communication that spans multiple

switches is more expensive than communication that is contained within a single switch.

A traditional rank assignment scheme is to sort processes by host name or IP address and to

assign ranks in that order. There are two assumptions under this scheme:

1. Most communication takes place between processes with close ranks.

2. Processes with close host names or IP addresses have low communication cost.

Application programmers often take care to satisfy assumption 1, but they do not always do

so nor should they have to. For example, in the NPB, Lower Upper (LU) satisfies assumption

1 but Block Tridiagonal (BT) does not (graphical representations of the benchmarks used in

this dissertation are given in Appendix A.2). As for assumption 2, it may hold in a small

Local Area Network (LAN), but host names and IP addresses have a much smaller correlation

with communication cost in a Wide Area Network (WAN). Even within a LAN, virtualization

techniques such as Virtual LAN (VLAN) [77] disrelate IP addresses from communication costs.

Hatazaki et al. [26] and Traff [76] have proposed topology-aware rank assignment schemes

in the context of the topology creation functions of MPI (i.e., MPI Cart create and MPI

Graph create). They formulate the rank assignment problem as a graph partitioning prob-

lem and use a variant of the Kernighan-Lin heuristic [36] to produce good solutions quickly.

Unlike my proposed rank assignment scheme (Section 4.4), these schemes require communi-

cation costs and traffic patterns to be supplied manually; communication costs are supplied to

the MPI library as a weighted graph, and traffic patterns are supplied via the topology creation

function.

Bhanot et al. [5] have proposed a topology-aware rank assignment scheme for the Blue

Gene/L supercomputer (BG/L) [4], which like the two previous schemes, formulates the rank

assignment problem as a graph partitioning problem. The graph partitioning problem is then

handled by a library called METIS [35, 49]. Like my proposed rank assignment scheme, this

scheme can make use of traffic patterns from a profiling run. However, unlike my scheme, the

network topology is limited to a torus and communication costs must be supplied manually.

Adaptive MPI (AMPI) [30, 31] is an adaptive message passing system that uses virtual pro-

cessors. It performs load balancing by migrating virtual processors in a way that balances the

execution times of physical processors while minimizing inter-processor communication. This

load balancing scheme and my rank assignment scheme are similar in that they both adapt to

3.6. RANK ASSIGNMENT TECHNIQUES 17

applications by tracking the amount of communication that is performed. They differ, however,

in the way that they treat communication costs. AMPI is designed for single cluster environ-

ments, so it assumes that the communication cost of every processor pair is the same. My rank

assignment scheme, which is designed for multiple clusters, recognizes that different process

pairs have different communication costs.

Chapter 4

Design and Implementation of MC-MPI

4.1 Overview

In this chapter, I present the design and implementation of Multi-Cluster MPI (MC-MPI). MC-

MPI is a wide-area message passing library that implements most of the Message Passing In-

terface (MPI) [42] standard. The following are its two main features:

1. Locality-aware connection management

MC-MPI uses a locality-aware connection management scheme to establish connections

between processes. This scheme overcomes firewalls and Network Address Translation

(NAT) [66] by constructing an overlay network, and achieves scalability by limiting the

number of connections that each process establishes to O(log n) when the total number

of processes is n. In order to achieve high performance with a limited number of connec-

tions, the connections that are established are selected in a locality-aware manner, based

on latency and traffic information obtained from a short profiling run.

2. Locality-aware rank assignment

MC-MPI uses a locality-aware rank assignment scheme to find a low-overhead mapping

between ranks (process IDs) and processes. This scheme formulates the rank assignment

problem as a Quadratic Assignment Problem (QAP) [38], and adapts to environments

and to applications by setting up QAPs using the latency and traffic information obtained

from the profiling run.

The latency and traffic information used by the proposed connection management and rank

assignment schemes are obtained in the form of matrices. As illustrated in Figure 4.1, a short

19

20 CHAPTER 4. DESIGN AND IMPLEMENTATION OF MC-MPI

Figure 4.1: Profiling run and real run in MC-MPI

profiling run obtains a latency matrix and a traffic matrix, and those matrices are used to execute

an optimized real run.

In addition to latency and traffic information, the proposed connection management scheme

assumes that each process knows the endpoint of every other process (whether or not each

endpoint is connectable need not be known—just a list of IP addresses and port numbers is

sufficient). In order to provide processes a method for exchanging endpoints, MC-MPI uses

a Grid shell called GXP [72] for job submission. GXP allows a user to perform Secure Shell

(SSH) [80] logins to multiple nodes in multiple clusters. This creates a login tree that processes

can use as a side channel to exchange endpoints at startup. Other job submission methods can be

used as long as processes are brought up with some initial method to exchange their endpoints

(e.g., a connection to the master process).

The rest of this chapter is organized as follows. First, in Section 4.2, I describe the latency

and traffic matrices that are obtained from the profiling run. Then, in Section 4.3, I explain my

connection management scheme. Finally, in Section 4.4, I explain my rank assignment scheme.

4.2 Profiling run

4.2.1 Latency matrix

Latency matrix D represents the latency between processes in the target environment. Each ele-

ment dij represents the round-trip time (RTT) between processes i and j (i, j = 0, 1, 2, . . . , n−
1). Unfortunately, measuring the RTT of all process pairs takes a long time. Measuring the RTT

4.2. PROFILING RUN 21

Figure 4.2: RTT estimation scheme

between faraway processes takes particularly a long time for the following reasons:

• The RTT between faraway processes is long, and measurement time is proportional to the

RTT.

• Connections blocked by firewalls cause processes to wait for timeouts, and communica-

tion between faraway processes is more likely to be blocked than those between nearby

processes.

Thus, in the proposed method, RTTs between faraway processes are estimated based on

other RTTs (Figure 4.2). The algorithm that each process follows in order to measure and

estimate RTTs is shown in Algorithm 1 (each process autonomously executes obtain rtts (line

4)).

This estimation algorithm is based on the fact that the triangular inequality

|rtt(p, r) − rtt(r, q)| < rtt(p, q) < rtt(p, r) + rtt(r, q)

often holds for the RTTs of three processes p, q and r. In particular, when process p performs

RTT measurements with another process r, p receives from r the set of rtt(r, q) such that rtt(p, q)

is unknown to p but rtt(r, q) is known to r (line 9). It then estimates rtt(p, q) using rtt(p, r)

(measured) and rtt(r, q) (received) as follows:

• If rtt(p, r) > αrtt(r, q), use rtt(p, r) as an estimate for rtt(p, q).

• If rtt(p, r) < 1
α

rtt(r, q), use rtt(r, q) as an estimate for rtt(p, q).

• Otherwise, rtt(p, q) cannot be estimated accurately from rtt(p, r) and rtt(r, q).

22 CHAPTER 4. DESIGN AND IMPLEMENTATION OF MC-MPI

Algorithm 1 Algorithm followed by each process p for RTT measurement and estimation
1: // rtt(p, r) : the RTT between p and r
2: // S(p) : {q | rtt(p, q) is unknown to p}
3:
4: procedure obtain rtts():
5: S(p) = { all endpoints }
6: while S(p) 6= φ do
7: select r randomly from S(p)
8: rtt(p, r) = measure rtt(r)
9: T = receive rtts(r)

10: for all (q, rtt(r, q)) ∈ T do
11: if rtt(p, r) > αrtt(r, q) then
12: rtt(p, q) = rtt(p, r)
13: S(p) = S(p) − {q}
14: else if rtt(p, r) < 1

α
rtt(r, q) then

15: rtt(p, q) = rtt(r, q)
16: S(p) = S(p) − {q}
17: end if
18: end for
19: S(p) = S(p) − {r}
20: end while
21: endprocedure
22:
23: procedure measure rtt(r):
24: measure rtt(p, r) and return it
25: endprocedure
26:
27: procedure receive rtts(r):
28: receive {(q, rtt(r, q)) | q ∈ S(p) ∧ q /∈ S(r)} from r and return it
29: endprocedure

4.3. LOCALITY-AWARE CONNECTION MANAGEMENT 23

Here, α is a parameter that can be changed to improve the accuracy of RTT estimates at the cost

of more measurements. The effects of changing α is discussed in Section 5.4, but a fixed value

of α = 5 is used elsewhere.

4.2.2 Traffic matrix

Traffic matrix T represents the traffic between processes in the target application. Each element

tij represents the number of bytes sent from rank i to rank j during a trial run of the application

(i, j = 0, 1, 2, . . . , n − 1). If the application is iterative, the trial run consists of one iteration

of the main loop. If the application is not iterative, the trial run is a timed execution of the

application. For example, in the experiments in Chapter 5, a one-iteration trial run is used for the

NAS Parallel Benchmarks (NPB) [13, 75], while a five-second trial run is used for Distributed

Verification Environment (DiVinE) [2, 28].

The idea behind obtaining T from a trial run is that many applications repeat similar com-

munication patterns throughout their lifetime. Of course, the communication patterns of some

applications are unpredictable. In that case, my connection management scheme performs opti-

mizations using just D. Meanwhile, my rank assignment scheme only works when both D and

T are available.

4.3 Locality-aware Connection Management

4.3.1 Basic workings

The proposed connection management scheme overcomes firewalls and NAT by constructing an

overlay network, and achieves high scalability by only using O(log n) connections per process

to construct the overlay network. It achieves locality-awareness and adaptivity by selecting the

O(log n) connections based on latency matrix D and traffic matrix T .

In addition to only using O(log n) connections per process to construct the overlay network,

my connection management scheme uses a lazy connect strategy in order to reduce the number

of connections. In this strategy, the O(log n) connections are preselected during the initializa-

tion phase and are only established on demand. This causes few connections to be established

when few process pairs communicate, while the number of connections is bounded even when

many or all process pairs communicate.

The overall initialization procedure (i.e., MPI Init) consists of the following three steps:

24 CHAPTER 4. DESIGN AND IMPLEMENTATION OF MC-MPI

1. Bounding graph construction (Subsection 4.3.2)

Each process selects a subset of other processes based on D and T , and attempts to

establish temporary connections to them. The set of successful temporary connections is

called the bounding graph.

2. Routing table construction (Subsection 4.3.3)

Processes compute routes between all pairs of processes using edges of the bounding

graph.

3. Spanning tree construction (Subsection 4.3.4)

A spanning tree is created from the bounding graph. This spanning tree will act as a side

channel to assist lazy connection establishment. All of the temporary connections except

for those of a the spanning tree are closed.

The application starts with only the connections of the spanning tree established, and lazily

establishes real connections between neighboring processes of the bounding graph (Subsec-

tion 4.3.5). Connections are never established between processes not neighboring in the bound-

ing graph.

In the rest of this chapter, the terms temporary connection and real connection are used as

follows:

Temporary connection: A transient connection established during bounding graph construc-

tion. It is used to construct the routing table, but it is not used to actually route application

traffic.

Real connection: A permanent connection established on demand during execution of the ap-

plication body. It is used to route application traffic.

4.3.2 Bounding graph construction

In order to construct the bounding graph, each process p selects a subset of other processes as

shown below and attempts to establish temporary connections to them:

• Select all of the following β − 1 processes:

q1, q2, q3, . . . , qβ−1

4.3. LOCALITY-AWARE CONNECTION MANAGEMENT 25

Figure 4.3: Process selection with β = 2

• Select β out of the following 2j−1β processes (j = 1, 2, 3, . . . , log2
n
β

):

q2j−1β, q2j−1β+1, q2j−1β+2, . . . , q2jβ−1

Here, n is the total number of processes and β is a parameter that controls connection density.

Moreover, q1, q2, q3, . . . , qi, . . . , qn−1 are the n−1 processes besides p sorted in increasing order

of dpqi
. Figure 4.3 depicts process selection with β = 2.

By creating larger groups for processes with higher latency but selecting the same number

of processes from each group, nearby processes are connected densely while faraway processes

are connected sparsely. This results in routes with lower latency than if the same number of

connections were selected randomly, and consumes less wide-area resources.

For applications that have unpredictable communication patterns, β processes are selected

randomly from each group of 2j−1β. Meanwhile, for applications that have predictable com-

munication patterns (e.g, iterative applications), T is used to achieve application awareness in

addition to the environment awareness already achieved by using D. In this case, the probability

that qk is selected is proportional to tpqk
(k = 2j−1β, 2j−1β + 1, 2j−1β + 2, . . . , 2jβ − 1).

In order to determine an upper bound on the number of connections that are established,

assume that no connections are blocked by firewalls or NAT and that all attempts to establish

temporary connections succeed. Also assume that the n processes are distributed equally among

c clusters and that n is a power of 2. Then, as described below, O(log n) connections are estab-

lished by each process, and O(n log c) inter-cluster connections are established by all processes

collectively:

• Each process establishes βlog2
n
β

+ β − 1 connections.

26 CHAPTER 4. DESIGN AND IMPLEMENTATION OF MC-MPI

• Of those connections, βlog2c of them are inter-cluster connections. Thus, a total of

βnlog2c inter-cluster connections are established by all processes collectively.

Fewer connections are established when communication between some processes is blocked

by firewalls or NAT. Moreover, depending on the value of β and the number and location of

firewalls, there is a probability that the bounding graph is disconnected. However, as discussed

in Section 5.5, the disconnect probability of bounding graphs is low enough for practical use.

4.3.3 Routing table construction

Once the bounding graph has been constructed, routes using edges of the bounding graph are

computed. Processes exchange link state messages, and every process computes the shortest

path to every other process using Dijkstra’s algorithm [14] with RTT as the metric. In finding

routes, the fact that Transmission Control Protocol (TCP) [55] connections are bidirectional

is leveraged; each connect has a direction, but once a connection has been established, it can

be used in both directions. Thus, the bounding graph can be regarded as an undirected graph

when computing routes. However, the direction in which each temporary connection was es-

tablished is remembered, in order to assist lazy connection establishment (in order to prevent

lazy connects from failing, real connections are established in the same direction as temporary

connections).

4.3.4 Spanning tree construction

After the routing table has been constructed, all of the temporary connections except for those

of a spanning tree are closed. The spanning tree, which processes will use as a side channel to

assist lazy connection establishment, is created from the bounding graph as follows:

• Choose one process at random. This process is the root of the spanning tree.

• Find the set of edges included in the routes from the root process to all other processes.

This set of edges is the spanning tree.

Creation of the spanning tree ends the initialization procedure.

4.3.5 Lazy connection establishment and message forwarding

Real connections, which are used for routing application traffic, are established on de-

mand. The algorithm for forwarding messages while establishing connections on demand is

4.3. LOCALITY-AWARE CONNECTION MANAGEMENT 27

Algorithm 2 Algorithm for forwarding messages while establishing connections on demand
1: // BG : bounding graph
2: // ST : spanning tree
3: // req : message for requesting a connection
4: // self : the process executing a particular procedure
5:
6: procedure forward app msg(src, dst, msg):
7: next = get next hop(BG, dst)
8: if not connected(next) then
9: if connectable(next) then

10: establish a real connection with next
11: else
12: next2 = get next hop(ST, next)
13: send(ST, self, next, next2, req)
14: accept a real connection from next
15: end if
16: end if
17: send(BG, src, dst, next, msg)
18: endprocedure
19:
20: procedure get next hop(G, dst):
21: return the next hop to dst in G
22: endprocedure
23:
24: procedure connected(next):
25: if the real connection with next is already established then
26: return TRUE
27: else
28: return FALSE
29: end if
30: endprocedure
31:
32: procedure connectable(next):
33: if self established the temporary connection with next then
34: return TRUE
35: else
36: return FALSE
37: end if
38: endprocedure

28 CHAPTER 4. DESIGN AND IMPLEMENTATION OF MC-MPI

Algorithm 2 (cont’d)
39: procedure send(G, src, dst, next, msg):
40: forward msg using the real connection with next
41: upon receiving msg, next executes handle msg(G, src, dst, msg)
42: endprocedure
43:
44: procedure handle msg(G, src, dst, msg):
45: if G == BG then
46: if dst == self then
47: deliver msg to the application
48: else
49: forward app msg(src, dst, msg)
50: end if
51: else
52: if dst == self then
53: establish a real connection with src
54: else
55: next2 = get next hop(ST, dst)
56: send(ST, src, dst, next2, req)
57: end if
58: end if
59: endprocedure

shown in Algorithm 2. When the application sends a message msg from p to q, p executes

forward app message(p, q, msg) (line 6). After that, each process along the route from p to q

executes forward app message (line 49), and msg is recursively delivered to q. The process

executing forward app message can immediately forward msg if the real connection with the

next hop next is already established (line 17). If the real connection with next is not established

yet, it is established before msg is forwarded (lines 9–14).

If the temporary connection between self and next was established by self, the real connec-

tion between self and next can also be established by self (line 10). However, if the temporary

connection was established by next, it is not known whether a connection can be established

from self to next. Thus, self sends a message to next using the spanning tree, and has next

establish the real connection (lines 12–14).

Real connections are established along all edges of the bounding graph when many process

pairs communicate, but they are only established along the edges that are actually used when

only a few process pairs communicate. Even when only a few process pairs communicate, tem-

porary connections are established along all edges of the bounding graph. However, temporary

connections do not require as much memory as real connections, because they do not require

4.4. LOCALITY-AWARE RANK ASSIGNMENT 29

large TCP buffers like real connections.

Moreover, when forwarding small messages, the entire message is received before it is

forwarded (line 49). Meanwhile, large messages are split up into small segments and pipelined

in order to improve throughput.

4.4 Locality-aware Rank Assignment

4.4.1 Basic workings

As discussed in Chapter 2, rank assignment schemes based on host names or IP addresses do

not work well, because their assumptions about communication costs and traffic patterns are too

simplistic. Meanwhile, there are also topology-aware methods that do not make these simplistic

assumptions [5, 26, 76], but these methods require information such as communication costs to

be supplied manually.

Unlike existing topology-aware methods, the proposed rank assignment scheme requires no

information to be supplied manually. It uses latency matrix D and traffic matrix T , obtained

from the profiling run, to set up a QAP that reflects the application and its execution environment

(Subsection 4.4.2). Then a good approximate solution to the QAP is found in a short amount of

time using heuristics (Subsection 4.4.3)

4.4.2 Setting up QAPs for rank assignment

In the proposed rank assignment scheme, the communication overhead of a process pair is de-

fined as the product of the expected traffic and the communication cost, and the communication

overhead of the entire application is defined as the sum of the overheads of all process pairs.

Here, the expected traffic between ranks i and j and the communication cost of processes i and

j are defined as follows:

Expected traffic: tij (the number of bytes sent from rank i to rank j during the profiling run)

Communication cost: dij (the RTT between processes i and j measured or estimated during

the profiling run)

The problem of finding the rank-process mapping with the lowest communication overhead then

becomes a matter of finding a permutation p of the set N = {0, 1, 2, . . . , n− 1} that minimizes
n−1∑
i=0

n−1∑
j=0

tijdp(i)p(j)

30 CHAPTER 4. DESIGN AND IMPLEMENTATION OF MC-MPI

This is a problem in combinatorial optimization known as the Quadratic Assignment Problem

(QAP), and was first introduced by Koopmans and Beckman [38].

The rationale behind using RTT for communication cost is as follows. The RTT between

two processes is related to the number of communication links that are in between the two

processes, and the more links there are, the more likely that traffic between the two processes

will coincide with that of other processes. Thus, by assigning rank pairs with high traffic volume

to process pairs with short RTTs, my method optimizes for bandwidth as well as latency. Point-

to-point bandwidth is another possible metric for communication cost, but it does not work as

well as RTT, because it does not account for what happens when multiple process pairs share

the same link.

4.4.3 Solving QAPs

Like many other problems in combinatorial optimization, the QAP is non-deterministic poly-

nomial time hard (NP-hard), and it is unfeasible to find the optimal solution when n is large

(problems of n > 20 are not practically solvable). However, many good heuristics for find-

ing good suboptimal solutions have been proposed. Some such heuristics include cutting plane

algorithms [3, 8], simulated annealing algorithms [10, 43] and genetic algorithms [44, 79].

In my rank assignment scheme, a library developed by Resende and Pardalos [59] is used.

This library uses a heuristic called Greedy Randomized Adaptive Search Procedure (GRASP)

to obtain approximate solutions to QAPs. Tested against QAPLIB [9, 56], a publicly available

collection of QAPs, it was able to obtain approximate solutions that were within 3 percent of

the best known solution for instances of up to n = 256 in under 5 seconds. A problem size of

n means that there are n cores available, so n cores were used for computing QAP solutions

(GRASP can be parallelized easily). Appendix A.1 describes the results in more detail.

Chapter 5

Performance Evaluation of MC-MPI

5.1 Overview

In this chapter, I present experimental results concerning Multi-Cluster MPI (MC-MPI). First,

in Section 5.2, I describe the wide-area environment used in my experiments. Then, in Sec-

tion 5.3, I describe the NAS Parallel Benchmarks (NPB) [13, 75] and Distributed Verification

Environment (DiVinE) [2, 28], the benchmarks used in my experiments. In Sections 5.4 and

5.5, I evaluate my RTT estimation scheme and the disconnect probability of bounding graphs.

Finally, in Sections 5.6, 5.7 and 5.8, I evaluate my connection management and rank assignment

schemes using the NPB and DiVinE.

5.2 Experimental environment

The experimental environment consisted of 256 cores distributed equally across 4 clusters. Ta-

ble 5.1 shows the specifications of each cluster, and Figure 5.1 shows the round-trip time (RTT)

and the bandwidth of each cluster and between each pair of clusters. In terms of latency, there

was an order of magnitude difference between the RTT between clusters (0.3 to 6.4 millisec-

Table 5.1: Specifications of each cluster

Cluster Nodes (Cores) CPU RAM OS (TCP) Network
Chiba 32 (64) Core 2 Duo (2.13GHz) 4GB Linux 2.6.18 (BIC) GbE
Istbs 64 (64) Xeon MP (2.4GHz) 2GB Linux 2.6.18 (BIC) GbE
Kototoi 16 (64) Xeon 5140 (2.33GHz) 8GB Linux 2.6.18 (BIC) GbE
Suzuk 32 (64) Core 2 Duo (2.13 GHz) 4GB Linux 2.6.18 (BIC) GbE

31

32 CHAPTER 5. PERFORMANCE EVALUATION OF MC-MPI

Figure 5.1: RTT and bandwidth of each cluster and between each pair of clusters

5.3. DESCRIPTION OF BENCHMARKS 33

onds) and that within a cluster (0.11 to 0.24 milliseconds). In terms of bandwidth, the point-to-

point bandwidth between clusters (700 to 900 Mbps) was only slightly lower than that within a

cluster (930 to 940 Mbps). However, multiple communicating process pairs always had to share

bandwidth between clusters but they often did not have to within a cluster. Moreover, there was

a firewall around Kototoi, and that firewall permitted outgoing connections but denied incoming

connections.

5.3 Description of benchmarks

5.3.1 NPB

The NAS Parallel Benchmarks (NPB) are a set of benchmarks derived from important classes

of aerophysics applications [13, 75]. It contains both kernel benchmarks and simulated com-

putational fluid dynamics (CFD) applications. Below is a brief description of the benchmarks

used in the experiments in this chapter:

Block Tridiagonal (BT): BT is a simulated CFD application that solves three sets of uncou-

pled systems of equations. Its structure is similar to that of SP, except that the systems

of equations are block tridiagonal instead of scalar pentadiagonal. It requires a square

number of processes.

Embarrassingly Parallel (EP): EP is an “embarrassingly parallel” kernel. It provides an esti-

mate of the upper achievable limits for floating point performance (i.e., the performance

without significant inter-process communication). It runs on any number of processes.

Integer Sort (IS): IS is a kernel that performs a parallel sort of keys, in which the keys are

initially distributed equally across processes. It requires a power-of-two number of pro-

cesses.

Lower Upper (LU): LU is a simulated CFD application that performs a 2D partitioning of

the grid onto processes and performs Successive Over-Relaxation (SOR). It requires a

power-of-two number of processes.

Multi Grid (MG): MG is a simple 3D multigrid kernel that requires highly structured long

distance communication and tests both short and long distance data communication. It

requires a power-of-two number of processes.

34 CHAPTER 5. PERFORMANCE EVALUATION OF MC-MPI

Scalar Pentadiagonal (SP): SP is a simulated CFD application that solves three sets of uncou-

pled systems of equations. Its structure is similar to that of BT, except that the systems

of equations are scalar pentadiagonal instead of block tridiagonal. It requires a square

number of processes.

In my experiments, I used NPB3.2-MPI, the Message Passing Interface (MPI) [42] imple-

mentation of the NPB. In NPB3.2-MPI, BT, EP, LU, MG and SP are written mainly using point-

to-point communication primitives. The four most used communication primitives in these

benchmarks are MPI Irecv, MPI Isend, MPI Recv and MPI Send. Meanwhile, IS is

written mainly using collective communication primitives. MPI Allreduce, MPI Alltoall

and MPI Alltoallv account for almost all of the communication in IS.

5.3.2 DiVinE

In order to show that my work is relevant to a wider range of applications than just those of

the NPB, I also used Distributed Verification Environment (DiVinE) [2, 28] as a benchmark.

DiVinE is a set of enumerative linear temporal logic (LTL) model checking tools for verification

of concurrent systems.

DiVinE provides many tools, including one specifically tailored for shared memory archi-

tectures (DiVinE Multi-Core) and one specifically tailored for efficient usage of external mem-

ory devices (DiVinE I-O). I used DiVinE Cluster, the tool specifically tailored for distributed

memory architectures. DiVinE Cluster is implemented using MPI, and is written mainly using

point-to-point communication primitives. The four most used communication primitives are

MPI Isend, MPI Iprobe, MPI Recv and MPI Test.

DiVinE Cluster implements multiple algorithms, including one based on negative cycles

and one based on maximal accepting predecessors (MAP). Of these algorithms, I used One

Way Catch Them Young (OWCTY), the algorithm based on strongly connected components.

A look at the traffic matrix produced by the other algorithms suggest that they would produce

similar results, but this has not been verified.

The model that is checked using OWCTY is that of an elevator controller. Given the num-

ber of floors, the number of people and the strategy for controlling the elevator, the following

property is checked: if a person is waiting, he/she will be served eventually. The source code

for this model was taken from BEnchmarks for Explicit Model checkers (BEEM) [27, 51], but

the parameters were changed to those shown in Table 5.2 to increase the size of the problem.

5.4. RTT MEASUREMENT TIME 35

Table 5.2: Parameters used for the elevator controller model

Floors Persons Strategy
10 3 0

BEEM provides many other models, including those for communication protocols and mutual

exclusion algorithms, but the communication patterns that OWCTY produces for these models

are similar to those that OWCTY produces or the elevator controller model.

5.4 RTT measurement time

Figure 5.2 shows the time required to acquire latency matrix D with various values of α. When

α was large, many measurements were performed between faraway processes (i.e., processes

in different clusters). Because of the long RTT of faraway processes, these measurements took

a long time (e.g., the RTT between Chiba and Istbs was 36 times as long as the RTT within

Istbs). Moreover, the firewall around Kototoi caused attempts to establish connections from

other clusters to stall until they timed out, further increasing the required time. Meanwhile,

when α was small, few measurements were performed between faraway processes, allowing D

to be acquired in a short time.

In the following experiments, a fixed value of α = 5 is used to reduce the number of

measurements between faraway processes. With α = 5, there is an estimation error of up to

25%. However, this is sufficient for the proposed connection management and rank assignment

schemes, because it is accurate enough to distinguish between intra-cluster and inter-cluster

RTTs.

5.5 Bounding graph disconnect probability

This section presents the results of a simulation that shows that the disconnect probability of

bounding graphs is low enough for practical use. In this simulation, the disconnect rate was

computed for the following two environments:

1FW: An environment that closely resembles the real environment used in the other experi-

ments in this section. There are 4 clusters, there is a firewall around 1 of the clusters, and

the RTTs between nodes are the same as those in Figure 5.1.

36 CHAPTER 5. PERFORMANCE EVALUATION OF MC-MPI

3FW: An environment that is basically the same as 1FW, but with more blocked communica-

tion. Instead of there being a firewall around 1 of the clusters, there is a firewall around

3 of the clusters (no firewall is placed around the 4th cluster, because that would prevent

the clusters from being connected regardless of the method used).

The two parameters that were studied were β and the number of processes. The values of β

that were simulated were 1, 2 and 4, and the number of processes that were simulated were 8,

16, 32, 64 and 128 (as discussed later, larger values of β and number of processes did not result

in disconnected graphs).

For each pair of parameters, 108 bounding graphs were constructed, and the number of dis-

connected graphs were counted. With 1FW, no bounding graphs were disconnected regardless

of the value of β or the number of processes. With 3FW, some bounding graphs were discon-

nected, as shown in Figure 5.3. Yet even with 3FW, increasing the number of processes or β

resulted in fewer disconnected bounding graphs. With β = 4, no bounding graphs were dis-

connected regardless of the number of processes. Similarly, with 128 processes, no bounding

graphs were disconnected regardless of the value of β.

5.6 Connection management performance

In this experiment, I evaluated my connection management scheme by measuring the perfor-

mance of the NPB and DiVinE with varying numbers of connections. The following three

methods were compared:

MC-MPI: My locality-aware connection management scheme, described in Section 4.3. The

maximum percentage of connections allowed (the percentage of process pairs selected

during bounding graph construction) was varied by using different values of β as shown

in Table 5.3. Because of lazy connection establishment, fewer connections were actually

established in most cases.

Random: A locality-unaware scheme in which the bounding graph was constructed by ran-

domly selecting some percentage of connections. As in MC-MPI, these connections were

established lazily.

Manual A scheme in which the processes that perform forwarding were manually config-

ured. Processes connected all-to-all within clusters, but only the forwarding processes

5.6. CONNECTION MANAGEMENT PERFORMANCE 37

Table 5.3: Percentage of connections selected with various values of β (n = 256)

β Percentage
2 12.2%
4 20.1%
7 30.9%
10 39.1%
15 50.7%
21 60.6%
28 69.4%
38 79.7%
55 89.9%
128 100%

connected with processes in other clusters. The number of forwarding processes was

varied from 1 to 60 per cluster, and each forwarding process connected with exactly

one forwarding process in every other cluster. This method is representative of existing

wide-area-enabled MPI libraries with forwarding mechanisms (e.g., GridMPI). Again, all

connections were established lazily.

Figures 5.4 to 5.11 show the results. The graphs on the left side compare the performances of

MC-MPI, Random and Manual. In these graphs, the horizontal axis is the maximum percentage

of connections allowed, and the vertical axis is the performance relative to when all connections

were allowed. Allowing all connections is representative of MPI libraries that require all-to-

all connectivity (e.g., MPICH-G2). Meanwhile, the graphs on the right side show just the

performance of Manual. In these graphs, the horizontal axis is again the maximum percentage

connections allowed, but the vertical axis is the number of forwarding processes per cluster.

As a general trend, changing the number of forwarding processes drastically changed the

performance of Manual, underscoring the difficulties of manual configuration. Having only a

small number of forwarding processes resulted in lower performance for many of the bench-

marks, because of the following reasons:

• The inter-cluster bandwidth could not be fully utilized with a small number of forwarding

processes. One reason for this is that a forwarding process had to both receive and send

each message, preventing it from handling as much data as a non-forwarding process

could. Another reason is that when competing with the traffic of other applications, only

a small percentage of the bandwidth could be claimed with a small number of streams.

38 CHAPTER 5. PERFORMANCE EVALUATION OF MC-MPI

• The forwarding processes became heavily loaded, slowing down any computation that

those processes also had to handle.

Although increasing the number of forwarding processes increased performance, Manual was

not able to perform better than MC-MPI even when all processes were designated as forwarding

processes.

Manual particularly had problems with DiVinE (Figure 5.11). With 1 and 10 forwarding

processes per cluster, the elevator controller model could not be checked completely, because

the forwarding processes ran out of memory. This occurred because the forwarding processes

received data from within their own clusters much more quickly than they could forward data

outside their clusters. Meanwhile, MC-MPI and Random did not experience this problem,

because there were many more than 10 forwarding processes per cluster, even when only 10%

of the connections were allowed. MC-MPI and Random may also experience out-of-memory

errors if the forwarding processes received data even more quickly, and the real solution to

this problem is to implement flow control. However, existing MPI libraries typically do not

implement flow control, because it introduces new problems such as deadlocks. Thus, I do not

claim that MC-MPI solves this problem, but do claim that it fares better than simplistic methods

such as Manual.

The general trend for Random was that its performance dropped when the number of con-

nections was limited. Meanwhile, the performance of MC-MPI did not drop even when the

number of connections was limited. For example, limiting the number of connections caused

a sharp decrease in the performance of LU when Random was used, but not when MC-MPI

was used (Figure 5.7a). This is because many messages had to be forwarded with Random,

but all messages were delivered directly with MC-MPI. MC-MPI was able to deliver all mes-

sages directly even when only 10% of the connections were allowed, because each process only

communicated with a small number of processes, and MC-MPI was able to select those pro-

cesses based on T (LU is a benchmark that performs SOR, so each process performed most of

its communication with just 4 processes). Similar results were obtained for BT, MG and SP

(Figures 5.4a, 5.8a and 5.9a).

For IS, limiting the number of connections greatly improved the performance of both MC-

MPI and Random (Figure 5.6a). This is because IS is a benchmark that performs a lot of

collective communication. Figure 5.10 shows the results for when just the collective operations

of IS were executed, and the results were similar to those of IS (the parameters of the col-

lective operations are shown in Table 5.4). During collective communication, many processes

5.7. LAZY CONNECTION ESTABLISHMENT PERFORMANCE 39

Table 5.4: Parameters of the collective operations used in IS

Operation Data type Send count (Number of bytes)
MPI Allreduce MPI INT 1029 (4117B)
MPI Alltoall MPI INT 1 (4B)
MPI Alltoallv MPI CHAR 1024–3072 (1024–3072B)

communicate simultaneously, so the bandwidth available to each process is limited. However,

the Transmission Control Protocol (TCP) [55] operates independently for each connection, so

each connection may send too eagerly at the start of collective communication. Thus, conges-

tion is worse when there is a large number of connections. While both MC-MPI and Random

performed better with fewer connections, MC-MPI performed better than Random because it

established fewer inter-cluster connections, where bandwidth was particularly limited.

When MC-MPI was used for DiVinE, limiting the percentage of connections to 50% in-

creased performance, but further reduction decreased performance (Figure 5.11a). A small

reduction increased performance because it helped reduce congestion, but a larger reduction

decreased performance because the overhead of forwarded messages outweighed the benefits

of reduced congestion. Yet with any magnitude of reduction, MC-MPI performed better than

when all connections were allowed. Moreover, the curves of MC-MPI and Random have similar

shapes, but MC-MPI consistently outperformed Random with the same number of connections.

Finally, limiting the number of connections had no impact on the performance of EP regard-

less of the method used, because it involved little communication (Figure 5.5).

5.7 Lazy connection establishment performance

While MC-MPI succeeded in delivering messages directly in BT, LU, MG and SP by selecting

the processes that establish connections based on T , simply establishing connections on demand

(i.e., the strategy of MPICH) would not have worked. First, the firewall around Kototoi would

have caused some lazy connects to fail. Moreover, even in the absence of the firewall, a simple

lazy connect strategy would have resulted in a large number of connections for applications

with all-to-all or more or less uniform communication patterns.

In order to confirm that my lazy connect strategy works better than such a simple strategy, I

compared the two following methods:

MC-MPI: My lazy connect strategy, which pre-determines a small number of candidate con-

40 CHAPTER 5. PERFORMANCE EVALUATION OF MC-MPI

nections during initialization. β = 7 was used, limiting the number of connections to

approximately 30%.

MPICH-like: The lazy connect strategy used by MPICH, which establishes any connection on

demand.

The firewall around Kototoi was removed for this experiment, because MPICH-like requires

all-to-all connectivity. Note that MC-MPI would have worked even with the firewall in place.

In fact, in the environment of Figure 5.1, MC-MPI would have established the same exact set of

connections with or without the firewall. The only difference is that with the firewall, MC-MPI

would have established some of the connections in the reverse direction with the help of the

spanning tree.

Figure 5.12 shows the results. For BT, EP, MG, LU and SP, MC-MPI and MPICH-like

resulted in a similar number of connections and similar performance, showing that MC-MPI

works just as well as MPICH-like for applications in which few process pairs communicate.

For IS and DiVinE, in which all process pairs communicate, MPICH-like resulted in all process

pairs establishing connections. Meanwhile, MC-MPI successfully limited the percentage of

established connections to 30%. Moreover, by avoiding congestion, MC-MPI performed 1.83

times as well as MPICH-like for IS and 1.17 times as well as MPICH-like for DiVinE.

5.8 Rank assignment performance

In this experiment, I evaluated my rank assignment scheme by measuring the performance of

the NPB with various rank assignments. The following three methods were compared:

Random: A rank assignment scheme that assigns ranks to processes randomly.

Hostname: The rank assignment scheme based on host names, described in Subsection 3.6. In

addition to an assignment based on real host names, assignments based on virtual host

names, in which host names were swapped on a per cluster basis, were tested. Of the

4P4 = 24 sets of virtual host names, the best performing one is called Hostname (Best),

and the worst performing one is called Hostname (Worst).

QAP (MC-MPI): My locality-aware rank assignment scheme, described in Section 4.4.

For LU, the rank assignments based on host names (Hostname, Hostname (Best) and Host-

name (Worst)) performed 2.1 to 3 times better than Random (Figure 5.13d). This is because

5.8. RANK ASSIGNMENT PERFORMANCE 41

most of the communication took place between processes with close ranks (Figure A.4), and

the assignments based on host names placed processes with close ranks in the same cluster.

While all 24 assignments based on host names performed better than Random, some performed

better than others, depending on whether close ranks were assigned to processes in close clus-

ters. MC-MPI was able to perform almost as well as Hostname (Best). Similar results were

obtained for MG (Figure 5.13e).

For BT, the rank assignments based on host names again performed better than Random

(Figure 5.13a). This time, however, MC-MPI performed 20% better than even Hostname (Best).

This is because a significant amount of communication of took place between processes with

distant ranks (Figure A.1). For example, the ranks with which rank 0 communicated mainly

were 1, 15, 16, 31, 240 and 241. Similar results were obtained for SP (Figure 5.13f).

For EP, the three rank assignment schemes resulted in the same performance (Figure 5.13b),

because it involved little communication (Figure A.2). For IS, the three schemes resulted in

the same performance (Figure 5.13c), because it had a uniform communication pattern (Fig-

ure A.3).

42 CHAPTER 5. PERFORMANCE EVALUATION OF MC-MPI

Figure 5.2: Time required to obtain D with various values of α

Figure 5.3: Disconnect rate of bounding graphs with 3FW

5.8. RANK ASSIGNMENT PERFORMANCE 43

a. MC-MPI, Random and Manual b. Manual

Figure 5.4: Performance of BT (CLASS=D, NPROCS=256) with varying numbers of connec-
tions

a. MC-MPI, Random and Manual b. Manual

Figure 5.5: Performance of EP (CLASS=D, NPROCS=256) with varying numbers of connec-
tions

44 CHAPTER 5. PERFORMANCE EVALUATION OF MC-MPI

a. MC-MPI, Random and Manual b. Manual

Figure 5.6: Performance of IS (CLASS=C, NPROCS=256) with varying numbers of connec-
tions

a. MC-MPI, Random and Manual b. Manual

Figure 5.7: Performance of LU (CLASS=D, NPROCS=256) with varying numbers of connec-
tions

5.8. RANK ASSIGNMENT PERFORMANCE 45

a. MC-MPI, Random and Manual b. Manual

Figure 5.8: Performance of MG (CLASS=D, NPROCS=256) with varying numbers of connec-
tions

a. MC-MPI, Random and Manual b. Manual

Figure 5.9: Performance of SP (CLASS=D, NPROCS=256) with varying numbers of connec-
tions

46 CHAPTER 5. PERFORMANCE EVALUATION OF MC-MPI

a. MC-MPI, Random and Manual b. Manual

Figure 5.10: Performance of MPI Allreduce-MPI Alltoall-Alltoallv with varying
numbers of connections

a. MC-MPI, Random and Manual b. Manual

Figure 5.11: Performance of DiVinE with varying numbers of connections

5.8. RANK ASSIGNMENT PERFORMANCE 47

a. Percentage of connections established

b. Speedup vs. MPICH-like

Figure 5.12: Comparison of lazy connection establishment methods

48 CHAPTER 5. PERFORMANCE EVALUATION OF MC-MPI

a. BT b. EP

c. IS d. LU

e. MG f. SP

Figure 5.13: Performance of the NPB with various rank assignments

Chapter 6

Scalable Sockets

6.1 Design and implementation

6.1.1 Overview

While Multi-Cluster MPI (MC-MPI) solves many problems concerning connectivity, scalabil-

ity, locality and adaptivity, those solutions can only be enjoyed by Message Passing Interface

(MPI) [42] applications. Thus, in order to increase the number of applications that are sup-

ported, I have used my connection management scheme (Chapter 4.3) to implement a wide-area

Sockets [53] library called Scalable Sockets (SSOCK).

Theoretically, a Sockets library with wide-area-enabled connection management can turn

a local-area MPI library into one with wide-area-enabled connection management. Thus, ulti-

mately, SSOCK would encompass many of the features of MC-MPI (of course, MPI-specific

issues such as rank assignment and collective operations need to be handled separately). Un-

fortunately, SSOCK is currently only a prototype implementation and is missing some of the

trivial functionalities of a full Sockets library, so simply linking SSOCK to MPICH [23, 45] or

MPICH-2 [47] will not make it wide-area enabled. However, most of the important functional-

ity of a Sockets library has already been implemented, allowing me to conduct experiments to

evaluate its performance.

SSOCK implements most of the Sockets API, but also provides the following additional

features:

• Allows any node to connect to any other node even in the presence of firewalls and Net-

work Address Translation (NAT) [66].

• Allows all nodes to connect to each other without reaching various limits of the system.

49

50 CHAPTER 6. SCALABLE SOCKETS

Figure 6.1: Overview of SSOCK

• Has comparable point-to-point performance as a regular Sockets library (which does not

use a overlay network).

• Has better collective communication performance than a regular Sockets library.

Figure 6.1 illustrates the design of SSOCK. A forwarding daemon (ssockd) is brought up

on each node, and the ssockds construct a locality-aware overlay network using the method

described in Chapter 4.3. The application is linked to a communication library (libssock), which

connects to the ssockd running on the same node. When the application calls connect, a

virtual connection is established via the ssockd overlay, and when the application calls send,

data is delivered via the virtual connection.

This design is similar to that of SmartSockets [41], but there are two important differences:

• Data is routed through the ssockd overlay even when direct communication is possible.

This is crucial for achieving high scalability. Moreover, it improves collective communi-

cation performance, while only having a negligible impact on point-to-point communica-

tion performance.

6.1. DESIGN AND IMPLEMENTATION 51

Figure 6.2: Libssocks and ssockds

• The number of processes that forward data to other clusters is not limited to one per

cluster. This allows the inter-cluster bandwidth to be fully utilized, as was shown in the

MC-MPI experiments in Section 5.6.

The rest of this section is organized as follows. In Subsection 6.1.2, I describe libssock,

the library component of SSOCK. Then, in Subsection 6.1.3, I describe ssockd, the daemon

component of SSOCK.

6.1.2 Libssock

Libssock is the library component of SSOCK, and is linked to applications that use SSOCK.

It supports the primary parts of the Sockets API (i.e., connect, bind, listen, accept,

send and recv). The operating system versions of these functions are overridden by preload-

ing libssock. This is accomplished by using mechanisms such as LD PRELOAD on Linux and

52 CHAPTER 6. SCALABLE SOCKETS

DYLD INSERT LIBRARIES on Mac OS X.

To the application, it appears as if endpoints are connected directly when connect is

called and as if data is sent directly when send is called. Internally, however, endpoints are

connected virtually via the overlay network constructed by ssockds, and data is sent using those

virtual connections.

In order to access the ssockd overlay, upon the first invocation of a libssock function (usually

socket), libssock connects to the ssockd running on the same node. When multiple libssocks

are running on the same node (e.g., when multiple communicating processes are brought up on

a multi-core node), all of the libssocks running on the same node connect to the same ssockd.

SSOCK can easily be changed to allow a libssock to connect to an ssockd in a different node,

but this option has not been explored yet. Figure 6.2 depicts the mapping between libssocks and

ssockds.

6.1.3 Ssockd

Ssockd is the daemon component of SSOCK, and is responsible for transporting data among

libssocks. The current implementation requires exactly one ssockd to be brought up on every

node that will be used for computation, but this can be easily changed so that libssocks connect

to ssockds running on different nodes as necessary.

The connection management scheme used by ssockd is basically that same as that used

by MC-MPI. First, GXP [72] is used for endpoint exchange (Section 4.1), and latency be-

tween ssockds is measured using an estimation scheme (Subsection 4.2.1). Next, the latency

information is used to construct a bounding graph consisting of temporary connections (Sub-

section 4.3.2), and a routing table is constructed using edges of the bounding graph (Subsec-

tion 4.3.3). Then, a spanning tree is created from the bounding graph, and all of the temporary

connections except for those of a spanning tree are closed (Subsection 4.3.4). Finally, real

connections are established lazily between neighboring processes of the bounding graph (Sub-

section 4.3.5).

6.2 Experimental results

6.2.1 Experimental setup

This section presents the results to the experiments that I performed to evaluate SSOCK. While

SSOCK is still only a prototype implementation, these results show that SSOCK has many of

6.2. EXPERIMENTAL RESULTS 53

Figure 6.3: Experimental environment

the properties of MC-MPI as well as some new ones specific to Sockets libraries.

The experiments were performed using the environment shown in Figure 6.3. The environ-

ment consisted of 13 Linux clusters located in different parts of Japan and had a total of 506

nodes (1,264 cores). The network configuration of each cluster is shown in Table 6.1. Here,

Firewall, Global and NAT denote the following:

Firewall: Nodes in this configuration had global IP addresses, but incoming connects from

Istbs and Kototoi were filtered. All other traffic, including outgoing connects to Kototoi

and Istbs, was not filtered.

Global: Nodes in this configuration had global IP addresses, and traffic was not filtered.

NAT: Nodes in this configuration only had private IP addresses. A multi-homed gateway per-

formed address translation for these nodes, but the gateway itself was not used in my

experiments.

54 CHAPTER 6. SCALABLE SOCKETS

Table 6.1: Network configuration of each cluster

Cluster Network
Chiba Global
Hiro Global
Hongo Global
Imade NAT
Istbs Global
Keio Global
Kobe Firewall
Kototoi Global
Kyoto NAT
Kyushu Global
Mirai Global
Okubo Global
Suzuk Global

6.2.2 Connectivity and scalability

In this subsection, I show that SSOCK handles connectivity and scalability issues better than

the regular Sockets library as well as SmartSockets. A simple test was used for this purpose:

bring up a process on each core and establish connections between all pairs of processes. In

order to avoid SYN packets from being dropped, connection attempts were coordinated so that

they only occurred one at a time (simultaneous connects are discussed in Subsection 6.2.3).

As expected, the regular Sockets library was not able to complete the test due to connectivity

problems:

• Connections could not be established between the NAT clusters (Imade and Kyoto) re-

gardless of the direction.

• Connections could not be established to the NAT clusters from the other 11 clusters.

• Connections could not be established to the Firewall cluster (Kobe) from Istbs and Koto-

toi.

Meanwhile, a SmartSockets-like implementation (SmartSockets itself was not publicly avail-

able) suffered from no connectivity problems:

• Connections within clusters and between Global clusters were established using the Di-

rect technique. Connections from the NAT clusters and the Firewall cluster to the Global

6.2. EXPERIMENTAL RESULTS 55

clusters were also established using the Direct technique.

• Connections between the NAT clusters were established using the Routed technique.

• Connections to the NAT clusters from the other 11 clusters were established using the

Reverse technique. Connections from Istbs and Kototoi to the Firewall cluster were also

established using the Reverse technique.

However, the SmartSockets-like implementation suffered from two scalability problems:

• The limit on the number of file descriptors that each process could use was reached.

Each process had to connect to 1,263 other processes, but the operating system limit

on the number of file descriptors was 1,024. I was able to overcome this limitation by

increasing this limit on every node, but this may not always be possible because it requires

administrative privileges.

• Even after increasing the limit on the number of file descriptors, another resource allo-

cation problem was encountered: the limit on the number of connections that could be

handled by a single NAT gateway. The Direct and Reverse techniques tried to estab-

lish a total of 57,780 connections through Imade’s gateway, but the gateway’s NAT table

became full after 53,800 connections were established.

When SSOCK was used with the percentage of connections limited to 30%, connections

were established between all 1,264 processes without any of the previously mentioned con-

nectivity or scalability problems; connectivity issues were solved by the ssockd overlay, and

scalability issues were solved by limiting the number of connections.

6.2.3 Simultaneous connects

In my next experiment, I compared the behaviors of SSOCK and SmartSockets-like when a

large number of connection establishment attempts were made simultaneously. The same num-

ber of processes was brought up in each cluster, and every process tried to connect to every

other process simultaneously using non-blocking connects.

Figure 6.4 shows the results for 13 to 338 processes (1 to 26 processes per cluster). With

SmartSockets-like, it took 38 seconds to completely connect 52 processes, and the operation

failed for 78 or more processes because some connection attempts did not complete within 189

seconds and timed out 1. With SSOCK, it only took 1.8 seconds to completely connect 52
1In Linux, the connect system call times out after 189 seconds.

56 CHAPTER 6. SCALABLE SOCKETS

processes (10.2 seconds if the 8.4 seconds required to construct the ssockd overlay is included),

and less than 10 seconds even for 338 processes.

SmartSockets-like performed so poorly, because many SYN packets were dropped by routers.

Routers often prevent a large number of SYN packets from passing through them for security

reasons. As a result, the number of simultaneous connection attempts needs to be controlled in

order to avoid packet losses. This slows down the connection establishment phase and it also

makes programming difficult.

Meanwhile, SSOCK did not suffer from packet losses, because the number of SYN packets

that passes through routers was small. The establishment of some virtual connections caused

the lazy establishment of real connections, but the number of real connections established was

limited (to 30%), and most of them were between nearby ssockds. Therefore, unlike Smart-

Sockets and other simplistic schemes that establish a large number of wide-area connections,

SSOCK does not require connection establishment attempts to be “paced.”

6.2.4 Point-to-point and collective communication performance

In this subsection, I show that the point-to-point communication performance of SSOCK is

comparable to that of SmartSockets-like, and that the collective communication performance of

SSOCK is better than that of SmartSockets-like. For all of the experiments in this subsection, a

240-node ssockd overlay was used. 240 was the number of nodes necessary for using 338 cores

(26 cores in each of the 13 clusters).

First, the intra-cluster point-to-point communication performance was measured by per-

forming the ping-pong test using two nodes from Kototoi. As shown in Figure 6.5, SSOCK

and SmartSockets-like had similar performance. SSOCK performed as well as SmartSockets-

like despite communicating via the ssockd overlay, because the overlay was constructed in a

locality-aware manner. Messages traveled from one ping-pong process (libssock) to the ssockd

running on the same node, then to the ssockd running on the other node, and finally to the other

ping-pong process (libssock). Thus, compared to SmartSockets-like, SSOCK involved some

extra communication, but this did not lower the throughput because the extra communication

was contained within a single node.

Next, the inter-cluster point-to-point communication performance was measured by per-

forming the ping-pong test using one node from Hongo and one node from Okubo. Once again,

as shown in Figure 6.6, SSOCK and SmartSockets-like had similar performance. This time,

when SSOCK was used, messages traveled through three ssockds instead of two (the third

6.2. EXPERIMENTAL RESULTS 57

ssockd was in Hongo but a node different from the one where the ping-pong process was run-

ning). However, the negative impact on performance was negligible, because the extra hop

inside Hongo had more bandwidth than the inter-cluster hop.

Finally, collective communication performance was measured by performing the all-to-all

operation (the equivalent of MPI Alltoall but programmed with send and recv). As

shown in Figure 6.7, SSOCK consistently performed better than SmartSockets-like. The reason

for this is that SSOCK limited the number of connections that each process established, which as

in the case of Integer Sort (IS) in the NAS Parallel Benchmarks (NPB) [13, 75] and Distributed

Verification Environment (DiVinE) [2, 28], helped reduced congestion (Section 5.6).

58 CHAPTER 6. SCALABLE SOCKETS

Figure 6.4: Completion time of all-to-all connect

Figure 6.5: Intra-cluster ping-pong performance

6.2. EXPERIMENTAL RESULTS 59

Figure 6.6: Inter-cluster ping-pong performance

Figure 6.7: All-to-all performance

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, I studied the design and implementation of scalable high-performance com-

munication libraries for wide-area computing environments. I began by discussing the increase

in bandwidth of WANs and the new possibilities that it brought to parallel computation using

multi-cluster environments. Unfortunately, multi-cluster environments are significantly more

complex than single cluster environments, and they introduce or magnify problems concern-

ing connectivity, scalability and locality. After describing those problems, I discussed related

work in a general context and in the context of message passing, and pointed out the short-

comings of existing solutions. In order to overcome those shortcomings, I made two proposals

for wide-area communication libraries: a locality-aware connection management scheme and a

locality-aware rank assignment scheme.

My connection management scheme overcomes firewalls and NAT by constructing an over-

lay network, and achieves scalability by limiting the number of connections that each process

establishes to O(log n) when the total number of processes is n. In order to achieve high perfor-

mance with a limited number of connections, the connections that are established are selected in

a locality-aware manner, based on latency and traffic information obtained from a short profiling

run.

Meanwhile, my rank assignment scheme finds a low-overhead mapping between ranks and

processes by formulating the rank assignment problem as a QAP. It adapts to the environment

and to the application by setting up the QAP using the latency and traffic information obtained

from the profiling run. An approximate solution to the QAP is found using a library that uses

the GRASP heuristic.

61

62 CHAPTER 7. CONCLUSION AND FUTURE WORK

Using my proposed connection management and rank assignment schemes, I implemented

a wide-area MPI library called MC-MPI, and evaluated its performance using 256 cores dis-

tributed equally across 4 clusters. Highlights of these experiments included the following:

• MC-MPI was able to limit the percentage of connections that each process established to

as low as 10 percent, while performing at least as well as existing methods.

• For benchmarks in which many processes communicated simultaneously (IS and Di-

VinE), MC-MPI actually performed better than when many connections were used.

• MC-MPI was able to find rank assignments that performed up to 1.2 times better than

commonly used assignments based on host names and up to 4.0 times better than locality-

unaware assignments.

In order to increase the number of applications that are supported, I used my connection

management scheme to implement a wide-area Sockets library called SSOCK. Highlights of

the experiments performed to evaluate SSOCK included the following:

• In a 13-cluster environment with firewalls and NAT, SSOCK was able to connect 1,262

processes with each other without any of the connectivity issues and resource allocation

problems that were encountered by existing methods.

• In another experiment in which many processes simultaneously tried to establish connec-

tions with each other, SSOCK was able to quickly establish connections between all pairs

of processes, while an existing method (SmartSockets-like) suffered from a large number

of packet losses and finally timed out.

• The point-to-point performance of SSOCK was comparable to that of SmartSockets-

like, while the collective communication performance of SSOCK was better than that

of SmartSockets-like.

7.2 Future work

7.2.1 Connection management

A shortcoming of my connection management scheme is that it does not guarantee that bound-

ing graphs will be connected. While I have shown through simulations that the disconnect

7.2. FUTURE WORK 63

probability of bounding graphs is low enough for practical use, a formal analysis is necessary

for a deeper understanding of the properties of bounding graphs. Moreover, it is important to

note that simply having a “connected” bounding graph is not enough for achieving high com-

munication performance. Thus, one topic of particular interest is communication performance

when connectivity of the underlying network is severely limited and the number of connections

established by my connection management scheme deviates greatly from O(log n) connections

per process.

7.2.2 SSOCK

One important task concerning SSOCK is to make it support all or as much as possible of

the Sockets API. By doing so, all parallel applications instead of just MPI applications can

take advantage of my connection management scheme. An interesting experiment would be to

compare the performance of MC-MPI to that of MPICH or MPICH-2 linked to SSOCK.

Another task concerning SSOCK is to allow certain libssock pairs to establish real connec-

tions with each other directly instead of establishing virtual connections with each other through

the ssockd overlay network. Candidates for such behavior include libssocks that communicate

through one ssockd (intra-node communication) and libssocks that communicate through two

ssockds (communication is direct at the node level). This would lower forwarding overhead

without sacrificing scalability.

Yet another task is to allow a libssock to connect to an ssockd running on a different node.

This would allow new nodes to be added to a computation without reconstructing the ssockd

overlay network.

7.2.3 Broader goal

A broader goal is to study connection management and rank assignment schemes that recognize

that there is a large variance in the bandwidth of wide-area links. My current schemes correctly

recognize that the wide-area links are the weakest links in a multi-cluster environment, but

fail to recognize the difference between wide-area links that are relatively wide (e.g., 10Gbps)

and those that are relatively narrow (e.g., 100Mbps). One reason why such links need to be

differentiated is that the number of forwarding processes should be small for narrow links while

they should be large for wide links. Another reason is that rank assignment schemes should

assign more traffic to wide links than to narrow links. Recognizing the variance in the bandwidth

64 CHAPTER 7. CONCLUSION AND FUTURE WORK

of links is expected to become more and more important as newer technologies make the wider

links wider and wider.

Bibliography

[1] O. Aumage and G. Mercier. MPICH/MADIII: A Cluster of Clusters Enabled MPI Im-

plementation. In Proceedings of the 3rd IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGrid), pages 26–33, 2003.

[2] J. Barnat, L. Brim, I. Cerna, P. Moravec, P. Rockai, and P. Simecek. DiVinE – A Tool for

Distributed Verification. In Proceedings of the 18th International Conference on Computer

Aided Verification (CAV), pages 278–281, 2006.

[3] M. Bazarra and H. Sherali. On the Use of Exact and Heuristic Cutting Plane Methods for

the Quadratic Assignment Problem. Journal of the Operational Research Society (JORS),

33:991–1003, 1982.

[4] G. Bhanot, D. Chen, A. Gara, and P. Vranas. The Blue Gene/L Supercomputer. Nuclear

Physics B – Proceedings Supplements, 119:114–121, 2003.

[5] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. Secton, and R. Walkup. Optimizing

Task Layout on the Blue Gene/L Supercomputer. IBM Journal of Research and Develop-

ment, 49(2/3):489–500, 2005.

[6] R. Blumofe and C. Leiserson. Scheduling Multithreaded Computations by Work Stealing.

Journal of the ACM (JACM), 46(5):720–748, 1999.

[7] Brunet Software Library. http://boykin.acis.ufl.edu/wiki/index.php/Brunet.

[8] R. Burkard and T. Bonniger. A Heuristic for Quadratic Boolean Program with Appli-

cations to Quadratic Assignment Problems. European Journal of Operational Research

(EJOR), 13:374–386, 1983.

[9] R. Burkard, S. Karisch, and F. Rendl. QAPLIB - A Quadratic Assignment Problem Li-

brary. Journal of Global Optimization (JGO), 10:391–403, 1997.

65

66 BIBLIOGRAPHY

[10] R. Burkard and F. Rendl. A Thermodynamically Motivated Simulation Procedure

for Combinatorial Optimization Problems. European Journal of Operational Research

(EJOR), 17:169–174, 1984.

[11] K. Chin, J. Judge, A. Williams, and R. Kermode. Implementation Experience with

MANET Routing Protocols. ACM SIGCOMM Computer Communications Review (CCR),

32(5):49–59, 2002.

[12] A. Denis, O. Aumage, R. Hofman, K. Verstoep, T. Kielmann, and H. Bal. Wide-area Com-

munication for Grids: An Integrated Solution to Connectivity, Performance and Security

Problems. In Proceedings of the 13th International Symposium on High-Performance

Distributed Computing (HPDC), pages 97–106, 2004.

[13] R. der Wijngaart. NAS Parallel Benchmarks Version 2.4. NAS Technical Report NAS-02-

007, NASA Ames Research Center, 2002.

[14] E. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik,

1:269–271, 1959.

[15] R. Dube, C. Rais, K. Wang, and S. Tripathi. Signal Stability-Based Adaptive Routing

(SSA) for Ad Hoc Mobile Networks. IEEE Personal Communications (PCM), 4(1):36–

45, 1997.

[16] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed Computing in a Heterogeneous

Computing Environment. In Proceedings of the 5th European PVM/MPI User’s Group

Meeting, pages 180–187, 1998.

[17] A. Ganguly, A. Agrawal, P. Boykin, and R. Figueiredo. IP over P2P: Enabling Self-

configuring Virtual IP Networks for Grid Computing. In Proceedings of the 20th IEEE

International Parallel and Distributed Processing Symposium (IPDPS), 2006.

[18] A. Ganguly, A. Agrawal, P. Boykin, and R. Figueiredo. WOW: Self-Organizing Wide Area

Overlay Networks of Virtual Workstations. In Proceedings of the 15th IEEE International

Symposium on High Performance Distributed Computing (HPDC), pages 30–41, 2006.

[19] T. Goff, N. Abu-Ghazaleh, D. Phatak, and R. Kahvecioglu. Preemptive Routing in Ad

Hoc Networks. In Proceedings of the Seventh ACM SIGMOBILE Annual International

Conference on Mobile Computing and Networking (MobiComm), pages 43–52, 2001.

BIBLIOGRAPHY 67

[20] S. Gorlatch. Send-Receive Considered Harmful: Myths and Realities of Message-Passing.

ACM Transactions on Programming Languages and Systems, 26(1):47–56, 2004.

[21] Grid’5000. http://www.grid5000.fr/.

[22] GridMPI. http://www.gridmpi.org/.

[23] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance Portable Implementa-

tion of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789–828,

1996.

[24] S. Guha and P. Francis. Characterization and Measurement of TCP Traversal Through

NATs and Firewalls. In Proceedings of the 2005 Internet Measurement Conference (IMC),

pages 199–211, 2005.

[25] S. Guha, Y. Takeda, and P. Francis. Nutss: A SIP-based Approach to UDP and TCP

Network Connectivity. In Proceedings of the ACM SIGCOMM Workshop on Future Di-

rections in Network Architecture (FDNA), pages 43–48, 2004.

[26] T. Hatazaki. Rank Reordering Strategy for MPI Topology Creation Functions. In Pro-

ceedings of the 5th European PVM/MPI User’s Group Meeting, pages 188–195, 1998.

[27] http://anna.fi.muni.cz/models/. BEEM: BEnchmarks for Explicit Model checkers.

[28] http://divine.fi.muni.cz/. DiVinE Homepage.

[29] http://www.softether.com/. SoftEther Corporation (in Japanese).

[30] C. Huang, O. Lawlor, and L. Kale. Adaptive MPI. In Proceedings of the 16th International

Workshop on Languages and Compilers for Parallel Computing (LCPC), pages 306–322,

2003.

[31] C. Huang, G. Zheng, S. Kumar, and L. Kale. Performance Evaluation of Adaptive MPI.

In Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP), pages 12–21, 2006.

[32] InTrigger. http://www.intrigger.jp/.

68 BIBLIOGRAPHY

[33] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan. Exploiting Hi-

erarchy in Parallel Computer Networks to Optimize Collective Operation Performance. In

Proceedings of the 14th International Symposium on Parallel and Distributed Processing

(IPDPS), pages 377–384, 2000.

[34] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implementation of

the Message Passing Interface. Journal of Parallel and Distributed Computing (JPDC),

63(5):551–563, 2003.

[35] G. Karypis and V. Kumar. Multilevel Graph Partitioning Schemes. In Proceedings of the

24th International Conference on Parallel Processing (ICPP), pages 113–122, 1995.

[36] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. Bell

System Technical Journal, 49:291–307, 1970.

[37] T. Kielmann, R. Hofman, H. Bal, A. Plaat, and R. Bhoedjang. MagPIe: MPI’s Collec-

tive Communication Operations for Clustered Wide Area Systems. In Proceedings of

the 7th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), pages 131–140, 1999.

[38] T. Koopmans and M. Beckman. Assignment Problems and the Location of Economic

Activities. Econometrica, 25:53–76, 1957.

[39] LAN/MAN Standards Committee, IEEE Computer Society. IEEE Std. 802.3-2005 Stan-

dard for Information Technology – Telecommunications and Information Exchange Be-

tween Systems – Local and Metropolitan Area Networks – Specific Requirements, 2005.

[40] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS Protocol Version

5. IETF RFC 1928, 1996.

[41] J. Maassen and H. Bal. SmartSockets: Solving the Connectivity Problems in Grid Com-

puting. In Proceedings of the 16th IEEE International Symposium on High Performance

Distributed Computing (HPDC), pages 1–10, 2007.

[42] Message Passing Interface Forum. http://www.mpi-forum.org/.

[43] A. Misevicius. A Modified Simulated Annealing Algorithm for the Quadratic Assignment

Problem. Informatica, 14(4):497–514, 2003.

BIBLIOGRAPHY 69

[44] A. Misevicius. A Fast Hybrid Genetic Algorithm for the Quadratic Assignment Problem.

In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,

pages 1257–1264, 2006.

[45] MPICH – A Portable Implementation of MPI. http://www-unix.mcs.anl.gov/mpi/mpich1/.

[46] MPICH-G2. http://www3.niu.edu/mpi/.

[47] MPICH2: High-performance and Widely Portable MPI.

http://www.mcs.anl.gov/research/projects/mpich2/.

[48] Next-generation Science Information Network SINET3. http://www.sinet.ad.jp/.

[49] METIS Family of Multilevel Partitioning Algorithms. http://www.cs.umn.edu/˜metis/.

[50] OpenVPN. http://openvpn.net/.

[51] R. Pelanek. Web Portal for Benchmarking Explicit Model Checkers. Tech. Report FIMU-

RS-2006-03, Masaryk University Brno, 2006.

[52] C. Plaxton, R. Rajaraman, and A. Richa. Accessing Nearby Copies of Replicated Objects

in a Distributed Environment. In Proceedings of the 9th Annual ACM Symposium on

Parallel Algorithms and Architectures (SPAA), pages 311–320, 1997.

[53] Portable Applications Standards Committee, IEEE Computer Society. IEEE Std.

1003.1-2004 Standard for Information Technology – Portable Operating System Interface

(POSIX), 2004.

[54] J. Postel. User Datagram Protocol. IETF RFC 768, 1980.

[55] J. Postel. Transmission Control Protocol. IETF RFC 793, 1981.

[56] QAPLIB – A Quadratic Assignment Problem Library. http://www.opt.math.tu-

graz.ac.at/qaplib/.

[57] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content Ad-

dressable Network. In Proceedings of the 2001 Conference on Applications, Technologies,

Architectures and Protocols for Computer Communication (SIGCOMM), pages 161–172,

2001.

70 BIBLIOGRAPHY

[58] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). IETF RFC 4271,

2006.

[59] M. Resende and P. Pardalos. Algorithm 754: Fortran Subroutines for Approximate So-

lution of Dense Quadratic Assignment Problems Using GRASP. ACM Transactions on

Mathematical Software (TOMS), 22(1):104–118, 1996.

[60] E. Rosen and Y. Rekhter. BGP/MPLS VPN. IETF RFC 2547, 1999.

[61] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architecture.

IETF RFC 3031, 2001.

[62] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN - Simple Traversal of User

Datagram Protocol (UDP) Through Network Address Translators (NATs). IETF RFC

3489, 2003.

[63] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and Rout-

ing for Large-Scale Peer-to-Peer Systems. In Proceedings of the 18th IFIP/ACM Interna-

tional Conference on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

[64] TOP500 Supercomputing Sites. http://www.top500.org/.

[65] J. Snader. Effective TCP/IP Programming: 44 Tips to Improve Your Network Programs.

Addison Wesley, 2000.

[66] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Traditional

NAT). IETF RFC 3022, 2001.

[67] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology and

Considerations. IETF RFC 2663, 1999.

[68] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications. In Proceedings of the 2001 Con-

ference on Applications, Technologies, Architectures and Protocols for Computer Com-

munication (SIGCOMM), pages 149–160, 2001.

[69] Surfnet. http://www.surfnet.nl/.

BIBLIOGRAPHY 71

[70] R. Takano, M. Matsuda, T. Kudoh, Y. Kodama, F. Okazaki, and Y. Ishikawa. Effects of

Packet Pacing for MPI Programs in a Grid Environment. In Proceedings of the 9th IEEE

International Conference on Cluster Computing (Cluster), pages 382–391, 2007.

[71] R. Takano, M. Matsuda, T. Kudoh, Y. Kodama, F. Okazaki, Y. Ishikawa, and Y. Yoshizawa.

IMPI Relay Trunking for Improving the Communication Performance on Private IP Clus-

ters. In Proceedings of the 8th IEEE International Symposium on Cluster Computing and

the Grid (CCGrid), pages 401–408, 2008.

[72] K. Taura. GXP: An Interactive Shell for the Grid Environment. In Proceedings of

the 8th International Workshop on Innovative Architecture for Future Generation High-

Performance Processors and Systems (IWIA), pages 59–67, 2005.

[73] R. Thakur and W. Gropp. Improving the Performance of Collective Operations in MPICH.

In Proceedings of the 10th European PVM/MPI User’s Group Meeting, pages 257–267,

2003.

[74] The Distributed ASCI Supercomputer 3. http://www.cs.vu.nl/das3/.

[75] The NAS Parallel Benchmarks. http://www.nas.gov/Software/NPB/.

[76] J. Träff. Implementing the mpi process topology mechanism. In Proceedings of the 2002

ACM/IEEE Conference on Supercomputing (SC), 2002.

[77] Virtual Bridged Local Area Networks. IEEE Std. 802.1Q-2005 Standard for Local and

Metropolitan Area Networks, 2005.

[78] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of Reliable Multi-

hop Routing in Sensor Networks. In Proceedings of the 1st International Conference on

Embedded Networked Sensor Systems (SenSys), pages 14–27, 2003.

[79] Y. Xu, M. Lim, Y. Ong, and J. Tang. A GA-ACO-Local Search Hybrid Algorithm for

Solving Quadratic Assignment Problem. In Proceedings of the 8th Annual Conference on

Genetic and Evolutionary Computation, pages 599–605, 2006.

[80] T. Ylonen. The Secure Shell (SSH) Authentication Protocol. IETF RFC 4252, 2006.

72 BIBLIOGRAPHY

[81] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. Tapestry: A

Resilient Global-scale Overlay for Service Deployment. IEEE Journal on Selected Areas

in Communications (J-SAC), 22(1):41–53, 2004.

Publications

Journal and Transaction Papers

[1] Hideo Saito, Kenjiro Taura and Takashi Chikayama. Collective Operations for Wide-area

Message Passing Systems Using Adaptive Spanning Trees. International Journal of High

Performance Computing and Networking (IJHPCN). Vol.5, No.3, 2008, pp.179–188.

[2] Hideo Saito and Kenjiro Taura. Locality-aware Connection Management and Rank As-

signment for Wide-area MPI. IPSJ Transactions on Advanced Computing Systems. Vol.48

No.SIG 18 (ACS 20), pp.44–55, December 2007 (in Japanese).

[3] Hideo Saito, Kenjiro Taura and Takashi Chikayama. Collective Operations for Wide-area

Message Passing Systems Using Adaptive Spanning Trees. IPSJ Transactions on Advanced

Computing Systems. Vol.46 No.SIG 12 (ACS 11), pp.373–383, August 2005 (in Japanese).

[4] Hideo Saito, Kenjiro Taura and Takashi Chikayama. Expedite: An Operating System Ex-

tension to Support Low-latency Communication in Non-dedicated Clusters. IPSJ Transac-

tions on Advanced Computing Systems. Vol.45 No.SIG 12 (ACS 7), pp.229–237, October

2004.

International Symposiums and Workshops

[1] Hideo Saito and Kenjiro Taura. Locality-aware Connection Management and Rank As-

signment for Wide-area MPI. In Proceedings of the 7th IEEE International Symposium on

Cluster Computing and the Grid (CCGrid 2007), pp.249–256, Rio de Janeiro, Brazil, May

2007.

[2] Hideo Saito, Kenjiro Taura and Takashi Chikayama. Collective Operations for Wide-area

Message Passing Systems Using Adaptive Spanning Trees. In Proceedings of the 6th

73

74 PUBLICATIONS

IEEE/ACM International Workshop on Grid Computing (Grid 2005), pp.40–48, Seattle,

USA, November 2005.

Domestic Refereed Papers

[1] Hideo Saito and Kenjiro Taura. Locality-aware Connection Management and Rank As-

signment for Wide-area MPI. In Proceedings of the Symposium on Advanced Comput-

ing Systems and Infrastructures (SACSIS 2007), pp.339–348, Tokyo, Japan, May 2007 (in

Japanese).

[2] Hideo Saito, Kenjiro Taura and Takashi Chikayama. Expedite: An Operating System Ex-

tension to Support Low-latency Communication in Non-dedicated Clusters. In Proceedings

of the Symposium on Advanced Computing Systems and Infrastructures (SACSIS 2004),

pp.443–450, Sapporo, Japan, May 2004 (in Japanese).

Unrefereed Papers

[1] Hideo Saito, Kenjiro Taura. A Scalable High-performance Communication Library for

Wide-area Environments. IPSJ SIG Technical Report HPC-116 (SWoPP 2008), pp.181–

186, Saga, Japan, August 2008 (in Japanese).

[2] Hideo Saito, Yoshikazu Kamoshida, Shogo Sawai, Ken Hironaka, Kei Takahashi, Takeshi

Sekiya, Nan Dun, Takeshi Shibata, Daisaku Yokoyama and Kenjiro Taura. InTrigger: A

Multi-site Distributed Computing Environment Supporting Flexible Configuration Changes.

IPSJ SIG Technical Report HPC-111 (SWoPP 2007), pp.237–242, Asahikawa, Japan, Au-

gust 2007 (in Japanese).

[3] Hideo Saito, Kenjiro Taura and Takashi Chikayama. MPI/GXP: An Adaptive Message

Passing System for Wide-area Environments. IPSJ SIG Technical Report HPC-107 (SWoPP

2006), pp.25–30, Kochi, Japan, July 2006 (in Japanese).

[4] Hideo Saito, Kenjiro Taura and Takashi Chikayama. Latency-aware Connection Man-

agement for Wide-area Message Passing Systems. IPSJ SIG Technical Report HPC-103

(SWoPP 2005), pp.181–185, Takeo, Japan, August 2005 (in Japanese).

PUBLICATIONS 75

[5] Hideo Saito, Kenjiro Taura and Takashi Chikayama. Collective Operations for the Phoenix

Programming Model. IPSJ SIG Technical Report HPC-99 (SWoPP 2004), pp.223-228,

Aomori, Japan, July 2004 (in Japanese).

Poster Papers

[1] Hideo Saito, Ken Hironaka and Kenjiro Taura. A Scalable High-performance Communi-

cation Library for Wide-area Environments. In Proceedings of the 9th IEEE/ACM Interna-

tional Conference on Grid Computing (Grid 2008), pp.310–315, Tsukuba, Japan, Septem-

ber 2008.

[2] Hideo Saito and Kenjiro Taura. Locality-aware Connection Management and Rank As-

signment for Wide-area MPI. In Proceedings of the 12th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP 2007), pp.150–151, San Jose,

USA, March 2007.

[3] Hideo Saito, Kenjiro Taura and Takashi Chikayama. MPI/GXP: An Adaptive Message

Passing System for Wide-area Environments. At Symposium on Advanced Computing Sys-

tems and Infrastructures (SACSIS 2006), Osaka, Japan, June 2005 (in Japanese).

[4] Hideo Saito, Kenjiro Taura and Takashi Chikayama. Collective Operations for Wide-area

Message Passing Systems Using Dynamic Spanning Trees. At Symposium on Advanced

Computing Systems and Infrastructures (SACSIS 2005), Tsukuba, Japan, May 2005 (in

Japanese).

Co-authored Papers

[1] Ken Hironaka, Hideo Saito, Kei Takahashi and Kenjiro Taura. A Framework for Flexible

Programming in Complex Grid Environments. IPSJ Transactions on Advanced Computing

Systems (ACS). Vol.1 No.2, pp.157–168, August 2008 (in Japanese).

[2] Tatsuya Shirai, Hideo Saito and Kenjiro Taura. A Fast Topology Inference—A Building

Block for Network-aware Parallel Processing. IPSJ Transactions on Advanced Computing

Systems. Vol.48 No.SIG 13 (ACS 19), pp.156–165, August 2007 (in Japanese).

76 PUBLICATIONS

[3] Ken Hironaka, Hideo Saito, Kei Takahashi and Kenjiro Taura. gluepy: A Simple Dis-

tributed Python Framework for Complex Grid Environments. At the 21st Annual Inter-

national Workshop on Languages and Compilers for Parallel Computing (LCPC 2008),

Edmonton, Canada, August 2008.

[4] Kei Takahashi, Hideo Saito and Kenjiro Taura. A Stable Broadcast Algorithm. In Proceed-

ings of the 8th IEEE International Symposium on Cluster Computing and the Grid (CCGrid

2008), pp.392–400, Lyon, France, May 2008.

[5] Tatsuya Shirai, Hideo Saito and Kenjiro Taura. A Fast Topology Inference—A Building

Block for Network-aware Parallel Processing. In Proceedings of the 16th IEEE Interna-

tional Symposium on High Performance Distributed Computing (HPDC 2007), pp.11–21,

Monterey, USA, June 2007.

[6] Takayoshi Shiraki, Hideo Saito, Yoshikazu Kamoshida, Katsuhiko Ishiguro, Ryo Fukano,

Tatsuya Shirai, Kenjiro Taura, Mihoko Otake, Tomomasa Sato and Nobuyuki Otsu. Real-

time Motion Recognition Using CHLAC Features and Cluster Computing. In Proceedings

of the 3rd IFIP International Conference on Network and Parallel Computing (NPC 2006),

pp.50–56, Tokyo, Japan, October 2006.

Appendix

A.1 Quality of QAP solutions

Table A.1 lists the approximate solutions obtained by the library by Resende and Paradalos [59]

for the 11 largest instances of the QAPLIB [9, 56]. n cores were used for problem size n

(Table 5.1 shows the specifications of the compute nodes used). If the exact solution could not

be found after 5 seconds, the search was stopped.

Table A.1: Solutions obtained by the QAP solver

Instance n Best known solution Obtained solution Gap
esc128 128 64 64 0%
sko100a 100 152002 152944 0.62%
sko100b 100 153890 154828 0.61%
sko100c 100 147862 149024 0.79%
sko100d 100 149576 150694 0.75%
sko100e 100 149150 150174 0.69%
sko100f 100 149036 150180 0.77%
tai100a 100 21052466 21563582 2.4%
tai256c 256 44759294 44879278 0.27%
tho150 150 8133398 8216878 1.0%
wil100 100 273038 273878 0.31%

A.2 Traffic matrices of benchmarks

Figure A.1 to A.7 give graphical representations of the traffic matrices of the seven benchmarks

used in this dissertation. The gray areas represent rank pairs that perform a significant amount

of communication, and the white areas represent rank pairs that perform little or no communi-

cation. Rank pairs that performed less than 1KB of communication during the profiling run are

left white, as are rank pairs that performed less than 0.01% of the total communication.

77

78 APPENDIX

Figure A.1: Traffic matrix of BT (CLASS=D, NPROCS=64)

Figure A.2: Traffic matrix of EP (CLASS=D, NPROCS=64)

A.2. TRAFFIC MATRICES OF BENCHMARKS 79

Figure A.3: Traffic matrix of IS (CLASS=C, NPROCS=64)

Figure A.4: Traffic matrix of LU (CLASS=D, NPROCS=64)

80 APPENDIX

Figure A.5: Traffic matrix of MG (CLASS=D, NPROCS=64)

Figure A.6: Traffic matrix of SP (CLASS=D, NPROCS=64)

A.2. TRAFFIC MATRICES OF BENCHMARKS 81

Figure A.7: Traffic matrix of DiVinE

