|   | ····································· | 速 | 報                                                   |
|---|---------------------------------------|---|-----------------------------------------------------|
| 1 | 久松敬弘他:アマルガメーテッド・アルミニゥムの               | 3 | 一色貞文他: Co <sup>60</sup> の 7線による鉄の透過検査法に<br>関する二三の測定 |
| 2 | が電陽で行往<br>中田 一郎:容量変換式微電流計の試作について      | 4 | 橘藤雄他:噴流を受ける平面の熱伝達(液体噴流)                             |
|   |                                       |   | · · · · · · · · · · · · · · · · · · ·               |

アマルガメーテッド・アルミニゥムの流電陽極特性

松 敬 弘·鈴 木 鉄 肋 久

電導性媒質中の鉄鋼構造物の防蝕には陰極防蝕法(Cathodic protection) がもっとも完全で有利であるが, こ れには外部直流電源を用いる方法と流電陽極 (galvanic anode) を用いる方法がある. 流電陽極として現用され ているものは Mg-合金 (3% Zn, 6% Al)および高純亜 鉛である. Al は Mg および Zn が2価でとけるのに対 して3価でとけるから、重量当りの発生電気量が有利で あろう. ところが Al はよく知られているように表面に 保護酸化被膜をもっているため,熱力学的に予期される ような less noble な電位を示さず、純Alでは鉄を陰極 的に完全に保護することができない.それで今までに研 究された Al 合金流電陽極としては 1%以上の Zn を含 む合金があるが<sup>1)</sup> 実用段階に入っていない. Al をアマ ルガメートすると、電子顕微鏡の試料調製でよく知られ ているように酸化膜をはがすことができ,かように表面 をアマルガメートした Al の電位は非常に less noble な 値を示すが、このものの流電陽極としての特性について 発表された報告が見当らないので、短期間試験の結果を 以下にまとめてみた.

## (i) 各種 Al 陽極の比較

流電陽極特性の比較にはいろいろな方法があるが、そ の一つとして、人工海水(11)中で一定面積の鉄陰極(100 ×300mm 鉄板を円筒にまいて裏面絶縁塗装)と一定面積 の陽極(鋳造のままの20mm¢ 丸棒の中央部 30mm を露 出、上下をポリエステル樹脂で包む)と短絡して、短絡 電流、陰極閉路電位、陽極の閉路および開路電位を測定 した. 陰極面積は陽極面積の大体 16 倍である. 陽極は 99.99% A1 と99.99% Zn を用いて作り、0、1、5、10% Zn の4種類につきアマルガメートしたもの-(A)で表 わす — としないもの合計 8種について行った. 1% お よび 5% Zn 合金をアマルガメートしたものは一昼夜で Hg の粒界侵蝕によりバラバラに崩壊した. 定常になっ た陽極の開路電位(飽和甘汞電極基準,以下同じ)は0% Zn (A) で-1.58V, 10% Zn (A) で -1.07, 5% Zn およ び10% Znで-1.09, 1% Zn で-1.03, 0% Zn で-0.75 である. 主要なものにつき短絡電流・閉路電位の時間に よる変化を示すと第1図のようになる.(A)の二者では 



析量より計算した当量電気量で除したもの)を比較する ことは妥当でないが、0% Zn (A) すなわち 99.99% Al をアマルガメートしたものの効率が一番高くこれは80% から次第に低下して 60% になる. 現在一番広く用いら れている Mg 合金陽極 (普通 0.1A/dm<sup>2</sup> 程度の電流密度 で用いる)の効率が50%程度であるから、このような大 きな電流密度(0.3A/dm<sup>2</sup>)では(短期間では)効率が多 少よいことがわかる. 10% Zn (A) ではアマルガムの効 果が急激に落ちている.

## (ii) 淡水中の Al (A) 陽極

淡水(比電導度1.8×10-4Ω-1・cm-1) 中で同様な鉄陰

極と組合せた 99. 99%Al(A)陽極の 挙動をみると第2 図のようになり, 8日後から完全陰 極防蝕(鉄の電位 が -0.77V より less noble であれ



42

96

80

-70

60

50

40

-30

20

10

CI

n

0

Ng-anode

ば腐蝕は完全に防止できる)ができなくなる. このよう なとき陽極はかえって閉・開路電位とも -1.60V より less noble になっている.

(iii) Al(A) の自然腐蝕速度





中では数日後急速 に腐蝕速度が大き くなって、かえっ て人工海水よりも 腐蝕がひどいこと がわかる. このよ うな腐蝕速度のは やくなった状態で

は侵蝕が粒界にそ

第3図 Al(A)の自然腐蝕速度 の時間による変化

って内部に進み表面はボサボサになる.人工海水でも粒 界がきわ立ってくるが程度が全然ちがう. このような腐 蝕速度の時間による変化は(i)の人工海水中のAl(A) 陽極の効率の低下, (ii)の淡水中の挙動の時間的変化 と大体ならんでいる.

## (iv) 完全陰極防蝕の範囲

鉄鋼構造物へ流電陽極をとりつけた場合の完全に陰極 防蝕できる範囲は環境の電導度と幾何学的形状および陽 極の電位とによっておもに決ってくるが、海水のように 電導度が大きくなると小さな規模で実験室的に行えない 程広い範囲に及ぶ. それで 3×1.5×1.5m の水槽に, 3'×6'の鉄板を水面下 200mm に水平に吊して, この中 央にAl(A)陽極または Dow Chemical の Mg 陽極 (Ga-



lvo-line) をおい て、淡水より、食 塩添加により種々 の電導度の水につ いて電位分布測定 により完全防蝕範 囲を求めた(写真 1参照). 陽極はい ずれも下側をポリ エステルに埋込ん であり,表面積は A1(A) ℃ 110×28 ×5, Mgで 140× 20×5mm である.

写真1 淡水中のMg陽極 一例として比電導 度 4.16×10-3Ω-1·cm-1 の場合の Al(A) 陽極をとりつ けたときの電位分布を示すと第4図のようになる. こ

-0.700V 194 less nobleである. 各電導度における 完全防蝕の範囲を 示すと第5図のよ うになる (参考ま でに海水の比電導 度は大体 4×10-2 Ω<sup>-1</sup>·cm<sup>-1</sup>). 淡水 のような電導度の 低い場合を除けば Al(A) 陽極は Mg 陽極より不利だと はいえない.Mg陽 極は淡水 (1.82× 10-4) 中でも写真 1のように磨き鉄 板の美しい面を陽 極の周囲に保って いるが. Al(A)陽 極ではこのような 部分がほとんどみ られない、以上の 測定はそれぞれ3 ~7 日後までの測 定である. (v) 結論

の場合板の全面が

**4**0 30 20 10 Cm. 第4図 電位分布の例(曲線の 数値は電位, 飽和甘汞基準) 5000 4000 3000 2000 ( CM<sup>2</sup> ) 1000 800 600 蕉 400 20 W 5 200 1 100 2 80 A1(A)anode Al はこの表面 60

電位介布図

3

170

,900

89

Amalgamated A1 Anode  $\kappa = 4.16 \times 10^{-3} \Omega^{-1} \cdot \text{cm}^{-1}$ 

をアマルガメート する (本実験では

3 4 56789 2 3 4 5 6 789 10-4 比電導度(Ω<sup>-1</sup>•cm<sup>-1</sup>) 第 5 図 完全陰極防蝕範囲

飽和昇汞に3分間 浸漬)と熱力学的に予期されるものに近い活性を示す. 高純 Al をアマルガメートしたものについての実験によ ると、淡水中では流電陽極として到底使用できない、海水 中では、実際の場合は1~2年の寿命を考える必要がある からさらに長期にわたっての試験を行ってみないとこれ が実用に耐えるかどうか不明である.Al 合金のアマルガ メーションについては水銀による粒界侵蝕の問題がおこ りやすくなるから恐らく純 Al の方が安全であろう. 純 Al の時間による挙動の変化にも大いにこの現象が関係 しているように思われる.この意味からも海水中での使 用を考える場合高電流密度による使用を考えるべきもの と思われる. (1955.1.12)

50

## 女 献

R.B.Mears & C.D.Brown; Corrosion, 1, 113 (1945) 1) R. B. Hoxeng, E. D. Verink & R. H. Brown; Corrosion, 3, 263(1947) 根野;腐蝕·防蝕討論会(1954) 講演