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Abstract 
 

Photonic crystal with a defect as a nanocavity has been attracting much 

interest as a promising platform to manipulate light and light-matter interaction on 

wavelength-sized length scale due to existence of photonic bandgap. The Finite-

Difference Time-Domain (FDTD) method has been widely exploited as a powerful 

tool to simulate Maxwell’s equations in photonic crystal structures, enabling ones to 

design novel devices. After two decades of intense development, performance of two-

dimensional photonic crystal cavities, in term of quality (Q) factor, has reached 

saturation, in which experimental Q factors exceed a million with mode volume in the 

order of cubic wavelengths. However, there are still two issues needed to be 

considered. The first one is that those high Q cavities are usually sensitive to change 

in the cavity geometry inflicted by fabrication imperfections. The other one is their 

flexibility in applications. Generally, they can only be applied to material systems 

with sufficiently high index-contrast and with proper polarization, in which a photonic 

bandgap exists. On the other hand, progress in three-dimensional photonic crystal 

cavities is far behind that in two-dimensional system due to the difficulty in 

fabrication, in which a number of photonic crystal periods surrounding the cavity that 

can be fabricated is limited. This suggests that, considering current fabrication 

technologies, designs of high Q cavities that can be achieved even with small 

structural size, which is practical in fabrication, are required in order to demonstrate 

high Q cavities. This thesis aims to fill in the abovementioned gaps. Original research 

work on designs and fabrications of high Q nanocavities in both two- and three-

dimensional photonic crystals are presented. 

In Chapter 2, basic principles of photonic crystals that are necessary for 

understanding the research background and motivation of this thesis are introduced. 

Two-dimensional photonic crystal slabs with both triangular and square lattices and 

three-dimensional woodpile photonic crystal structures are described in details as they 

are basic building blocks of all the work in this thesis. The influence of cavity 
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geometry and structural parameters on the behavior of characteristics of photonic 

crystals, such as photonic bandgap, resonant frequencies, is discussed. Finally, defects 

are introduced by adding dielectric materials to perfect crystals to form nanocavities.  

In Chapter 3, details on computational methods used in this thesis, which are 

all based on the FDTD method, are described. The FDTD simulations are categorized 

into two classes with different boundary conditions, depending on the types of 

calculations to obtain efficient and accurate solution of electromagnetic waves. The 

applications of the 3D FDTD calculations to investigate photonic band structures, 

equi-frequency contours, resonant frequencies, field distributions, quality factors, 

mode volumes, and effective refractive indices are shown. 

In Chapter 4, a significant increase of Q-factor of dipole modes in photonic 

crystal H1-defect nanocavity after closing of the photonic bandgap are numerically 

and experimentally demonstrated by optimizing the slab thickness. The optimal slab 

thickness is equal to a wavelength of light confined in the cavity. The strong light 

confinement of the cavity in the in-plane direction is not caused by the photonic 

bandgap effect due to a lack of the photonic bandgap but resulted from the decoupling 

between the cavity mode and the guided mode in the momentum space. Because the 

slab thickness, which is the design parameter, can be precisely controlled by using 

epitaxial growth techniques, the parameter of the best fabricated cavity and that of the 

predicted one are almost exactly the same. This finding will contribute to extending 

the freedom of cavity design, such as that for the application to polarization entangled 

photon source, where it is required to form cavity modes with prescribed Q factor and 

polarization.  

In Chapter 5, a photonic crystal nanocavity with an ultra-high Q and small 

mode volume even there is no bandgap is presented. The air hole radii are modulated 

with a quadratic profile to decouple the cavity mode from possible losses consisting 

of guiding loss and radiation loss, resulting in doubly-degenerated modes with a ratio 

of Q to mode volume of two times higher than the highest value reported so far for 

doubly-degenerated modes. Therefore, this cavity is very promising for the realization 

of entangled photon sources. The designed cavity is also shown to be successfully 

applied to achieve high Q cavities for material with low index and for quantum cascade 

lasers, in which a lack of photonic bandgap usually hinders them from applications. 

The results achieved in this chapter extend the scope of optical devices that can utilize 
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photonic crystal cavities to improve their performances, while the photonic bandgap is 

no longer a preliminary requirement to achieve high Q. 

In Chapter 6, three designs of high-Q cavities in three-dimensional photonic 

crystals with finite structural size that can be practically fabricated are presented. 

High-Q cavity modes in square-shaped and rectangular-shaped nanocavities are 

achieved by tuning their frequencies to midgap frequency of a complete photonic 

bandgap, where light confinement is strongest, by means of optimizing size of the 

defects to gain an advantage from the photonic bandgap effect as much as possible. 

Apart from tuning cavity modes to the midgap frequency, the Q factor can be further 

improved by modifying cavity structure through shifting of dielectric rods 

surrounding the cavity. 4.3-time improvement of Q compared with the structure 

without modification of the cavity structure is obtained with a value of 73,300. 

Importantly, this high Q cavity only needs 17 stacked layers to obtain such high Q. 

These designed cavities show a great promise in the realization of high Q cavities 

using current fabrication technologies. 

In Chapter 7, experimental demonstrations of two high-Q cavities coupled 

with quantum dots in three-dimensional photonic crystals fabricated by using 

micromanipulation techniques are presented. The structures are shown to have very 

small stacking errors in order of 50 nm, in spite of their large number of the stacked 

layers. The square-shaped defect cavity in a 25-layer woodpile layer exhibits a cavity 

mode with Q factor of more than 8,600, which is the highest Q among those for three-

dimensional photonic crystal cavities reported so far. The high-Q nature of the cavity 

has been confirmed to be originated not only from a large number of the stacked 

layers, but also from the strong localization of the cavity mode when it was tuned to 

the midgap frequency of the complete photonic bandgap. The obtained cavity-Q can 

still be improved to more than 10,000 by finer tuning the cavity mode to the exact 

midgap. For the rectangular-shaped cavity, a cavity mode with Q factor of more than 

7,700 is obtained by choosing a cavity mode with high theoretical Q and tuning it to 

the midgap. The cavity mode has mode volume as small as 2 cubic half-wavelengths, 

approaching the diffraction limit value. These high Q/Veff cavities will give three-

dimensional photonic crystals a wide-open opportunity for the realization of the 

applications concerning the full control of light-matter interaction and an ultra-small 

optical three-dimensionally-integrated circuit.  
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In Chapter 8, conclusions to this thesis are presented. Implications of the 

results presented in this thesis are discussed. The outlook for future research and 

development is also given. 

One may expect it to take quite some time for an ultra-small optical three-

dimensionally-integrated circuit based on photonic crystals to be realized and 

implemented. Nevertheless, the results obtained in this thesis provide one important 

step towards the acquisition of complete manipulation of light. 
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Chapter 1 

Introduction 
 

1.1 Research background 
Photonic crystals are periodic structures made of dielectric materials. 

Regions with different dielectric constants alternate periodically and the period is of 

the order of the wavelength of light. Then, as light propagates inside the periodic 

material, it reflects at each interface of the different dielectric materials, in the same 

way as electron experiencing a periodic potential in a semiconductor crystal [1]. As a 

result of interference, total reflection occurs at specific wavelength-period 

combinations. Light with this specific wavelength cannot propagate or exist inside the 

photonic crystal. These forbidden wavelengths or frequencies form a bandgap for 

light, which is the basis of operation of photonic crystals, in analogy with forbidden 

energy bands in electronic system. This phenomenon is also present in the nature, for 

example, the wings of certain butterflies and moths are covered with periodic 

microscopic structures, which act as photonic crystals [2-4]. The wings reflect light 

that has a wavelength in the bandgap of the photonic crystal. This effect is seen as the 

color of the wings. Classes of photonic crystals are distinguished depending on the 

dimensionality of spatial periodicity. While the one-dimensional structures have been 

adopted for various lasers for more than three decades such as distributed feedback 

laser diodes [5-7] and vertical cavity surface-emitting lasers (VCSELs) [8,9], the 

extension of photonic crystals to two and three dimensions was simultaneously 

proposed by Yablonovitch and John in 1987 [10,11]. The first one dealt with the 

possibility of inhabiting spontaneous emission of electromagnetic radiation using 

three-dimensionally periodic structure. The latter paper discussed the strong 

localization of photons in defect intentionally introduced into the perfect lattice, 

resulting in trapping of electromagnetic radiation in the forbidden gap. Their works 
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have stimulated attention of researchers from all over the world in these new 

prospects in photonics. In the first decade after the proposal, most of work on 

photonic crystals has been concentrated on efforts to realize structures with a 

complete photonic bandgap, in which light is prohibited to propagate in all three 

directions. Such structures, of course, needs to be periodic in three dimensions. Three 

criteria were considered to seek for the structure and material that were capable to 

open the gap. A lattice with a first Brillouin zone closest to a spherical shape would 

help since gap for different directions would appear at similar energies. The best 

lattice for a photonic bandgap is thus the triangular lattice in two-dimensional 

structure and the face-centered-cubic in three-dimensional structure. In addition, an 

asymmetry lattice was necessary to break the degeneracy of the three-dimensional 

photonic band and open the gap [12]. As a consequence, most of all the three-

dimensional photonic bandgap structures realized up to now are based on the diamond 

structure [12,13]., an fcc structure with two optical atoms per unit cell. And in order 

to achieve an overlapping of the gaps at every point of the Brillouin zone boundary, a 

high refractive index contrast between the composing materials was required [10]. 

The first experimental demonstration of complete-photonic-bandgap materials 

appeared in 1991, which was based on a face-center-cubic (fcc) lattice, presented by 

Yablonovitch et al. [13,14]. The structural size was in centimeter order for the 

microwave regime. Since then many efforts have been concentrated to scale the 

various three-dimensional structures down to the visible or near-infrared regime [15-

20]. In application points of view, three-dimensional photonic crystals have been 

something disappointing, in spite of their ideal capability to fully control the light. 

One of the most promising goals of photonic crystals is an ultra-small optical three-

dimensionally-integrated circuit [21], which combines ultra-low threshold lasers 

arrays, sharp bend waveguides, an optical modulator, wavelength selectors, and so on, 

on one optical chip. However, only sharp bend waveguides in line-defect-embedded 

three-dimensional photonic crystals with low losses have been implemented so far 

[18,22-24]. Although three-dimensional photonic crystals offer a promise to realize an 

efficient nanocavity, by introducing a three-dimensionally-localized defect into a 

perfect crystal, because light can be strongly confined in very small volume for a long 

period of time due to Bragg reflection in all three directions, quality (Q) factors of 

cavities in three-dimensional photonic crystals are still modest. This deficiency 

mainly results from the difficulty in fabrication of the three-dimensional photonic 
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crystals. Especially when a light-emitting element and an artificial defect cavity are to 

be introduced into the three-dimensional structure to generate a light-emitting device, 

a fabrication technique that can simultaneously fulfil requirements of introduction of 

an artificial defect and a light-emitting element into the three-dimensional structure is 

essential. The existing techniques, such as colloidal self-assembly [25-31], direct 

writing by two-photon polymerization [32-35], and multibeam interference 

lithography [36-39], can carry out each of the requirement, but not both at the same 

time. Layer-by-layer method [15-17,40] and wafer-fusion method [18,19,41,42] have 

been shown to have a capability to accomplish the task. Nevertheless, their 

complicated procedures together with damage inflicted on the fine structure by 

multiple etching and heat treatment preclude them from making three-dimensional 

structures with large number of periods and with good quality, leading to a cavity 

with low Q factor of no more than several hundreds [40,43,44]. In contrast, 

micromanipulation techniques do not undergo such problem [45,46]. All photonic 

crystal components used to construct three-dimensional structure can be prepared 

using a single semiconductor processing sequence and no heating, enables 

components to be assembled with high precision and minimum damage to their fine 

structure irrespective of materials or complexity of photonic patterns. Therefore, 

micromanipulation technique is capable of introducing a defect cavity and light-

emitting elements into the structure at arbitrary positions. Recently, a cavity in 

woodpile structure with a record-Q of 2,300 has been reported with 17 stacked layers 

using micromanipulation techniques [47]. Yet, this Q seems to be insufficient to 

pursue ultimate applications, such as thresholdless lasers [48]. High-Q cavity in three-

dimensional photonic crystals still poses a great challenge to be realized. The low 

value of Q is partly resulted from the restricted structural size of photonic crystals that 

can be fabricated. There are two approaches, which should be done in parallel, to 

enhance the Q. One is the development of the fabrication techniques, which allow a 

larger size of photonic crystals to be made. The other one is to improve the cavity 

designs to be able to have high Q even with a limited size. If such a cavity can be 

achieved, not only the ultimate lasers, but also an ideal semiconductor system for 

demonstrating genuine strong coupling between three-dimensionally confined photon 

and electron may be obtained by introducing a single quantum dot [49] into the cavity 

[50,51]. 
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Fabrication of three-dimensional photonic crystal structures is still a difficult 

process, and a more appealing approach is based on the use of lower-dimensional 

photonic crystals. Therefore, many of researchers have turned their attention to two-

dimensional photonic crystals, whose periodicity is in two dimensions [52-56]. 

However, because such structures must be infinitely long in the direction 

perpendicular to the plane in which two-dimensional periodicity exists, they are not 

practical for applications since only finite height structures can be fabricated. A 

structure that have been attracted a lot of attention is a finite-thick semiconductor slab 

perforated with a two-dimensional lattice of holes [57-62]. Then, the two-dimensional 

photonic crystal slab can be easily fabricated following the standard microlithographic 

techniques and still retain most of the important features of full three-dimensional 

photonic crystals. In photonic crystal slabs, the localization of light in the vertical 

direction is controlled by the total internal reflection resulting from the high index 

contrast between the high-index slab and the low-index environment. On the other 

hand, the confinement in the in-plane direction is controlled by the Bragg reflection 

resulting from the photonic crystal lattice. Light in the photonic crystal slab cavity 

that does not fulfill the condition for the total internal reflection radiates vertically out 

of the cavity and thus limits Q factor of the cavity, while losses into the in-plane 

direction can be reduced exponentially with the number of photonic crystal layers 

surrounding the cavity. In 1999, when first photonic crystal defect cavity lasers was 

demonstrated, a Q of around 250 was reported for a single point defect [63]. Since 

then there have been various attempts to improve the Q factor. Thanks to the excellent 

suitability of the Finite-Difference Time-Domain (FDTD) method [64] to simulate 

light field dynamics and propagation in photonic crystal strctures and the flexibility in 

the design of two-dimensional photonic crystal slab nanocavities, various designs of 

ultra-high Q nanocavities have already been succeeded by, such as fine tuning of 

shape, size, and position of air holes near the cavity site [65-71] and exploiting a 

photonic crystal waveguide mode confined in a mode gap [72,73]. Designed Qs in the 

order of 107-108 has been achieved [72,73]. With the maturation of nanometer-size 

photonic crystal fabrication technology in past ten years, photonic crystal nanocavities 

with a passive Q factor of more than one million have been experimentally 

demonstrated [74,75]. However, most of designs of those structures are based on the 

modification of the defect structures, in which the high Q modes are very sensitive to 

their surrounding structural parameters. Thus, these designs require a precise control 
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of the cavity geometry in practical fabrication to achieve high Qs. Small variations in 

the geometry could easily reduce the Q by a factor of 10 [76]. This lack of robustness 

to changes in the cavity geometry becomes a great difficulty to practically fabricate 

the device with quality as good as the simulation results.  

Photonic bandgap has been shown above to be a great implement for 

confining light. There is a restrict rule of thumb in design of high-Q photonic crystal 

cavities, in which cavity modes must be properly designed to fall in the photonic 

bandgap to assure the strong light confinement in the in-plane direction, otherwise 

the light mode could couple with guided modes and leak out of the cavity. However, 

in some material systems, such as low-index materials [77-79] and quantum cascade 

lasers [80-82], which also desire to couple with localized optical modes in photonic 

crystal cavities with high Q to improve their performances, the photonic bandgap 

does not exist in a frequency range of interest, i.e., the photonic bandgap for the 

structure with low refractive index only exists in very high frequency range, while 

there is no photonic bandgap for light polarized in transverse magnetic (TM) -like 

mode, where photons are polarized in quantum cascade lasers, in the photonic crystal 

slab with air holes [60]. Search for cavity designs suitable for these material systems 

is still ongoing. 

 

1.2 Thesis objectives 
 After more than two decades since the proposal of photonic crystals, the 

performance of two-dimensional photonic crystal slab cavities, in term of cavity-Q, 

has reached saturation, in which experimental Q factors exceed a million with mode 

volume in the order of cubic wavelengths. It is thus interesting to divert the 

development of cavity designs to robustness of cavities to fabrication imperfections, 

which usually degrade the cavity performance from the design. In addition, a 

predesignated condition, in which a photonic bandgap is essential to achieve high Q, 

should be compromised to extend the scope of optical devices that can utilize 

photonic crystal cavities to improve their performance. Compared to the two-

dimensional system, progress in three-dimensional photonic crystal cavities is far 

behind due to the limitation in fabrication. This suggests that, considering current 

fabrication technologies, designs of high Q cavities that can be achieved even with 
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small structural size, which can be practically fabricated, should be realized in order 

to demonstrate high Q cavities. 

 This thesis aims to fill in the abovementioned gaps. Regarding to the two-

dimensional photonic crystal cavities, a cavity design based on simulations using 

FDTD computational method, in which its principal parameter of design used to boost 

Q factor is fabrication-tolerant and can be precisely controlled, is to be realized. This 

is the first objective of this thesis. Another key objective of this thesis is to show how 

to achieve high Q cavities even there is no photonic bandgap. In order to do so, 

mechanisms of losses of light when the bandgap is absent and a way to suppress them 

must be explicitly understood. In addition, experimental demonstrations should be 

performed on the designed cavities to confirm the availability of the strong light 

confinement in such counter-intuitive photonic crystal cavities. The last and most 

important objective is to demonstrate a high Q cavity in three-dimensional photonic 

crystals, which is one important step towards the acquisition of complete 

manipulation of light-matter interaction, by means of proposing new designs of high 

Q cavities with finite structural size. The author’s original contributions to the field 

are briefly summarized in the following thesis outline.  

 

1.3 Thesis outline 
 This thesis presents original research work on designs and fabrications of high 

Q nanocavities in both two- and three-dimensional photonic crystals. It is organized 

into eight chapters. Figure 1.1 shows how the eight chapters are logically related to 

one another. Chapter 1 gives the research background and thesis objectives. It also 

provides the reader with the thesis outline. 

In Chapter 2, basic principles of photonic crystals are discussed to understand 

the behavior of light in photonic crystals and the origins of photonic band structures 

and bandgaps. Two-dimensional photonic crystal slabs with both triangular and 

square lattices and three-dimensional woodpile photonic crystal structures are then 

described in details as they are the basic building blocks of all the work in this thesis. 

The influence of structural parameters, such as slab thickness and radius of air holes 

of two-dimensional photonic crystal slabs, which are the important parameters of the 

designs of high Q nanocavities in Chapters 4 and 5, on the behavior of photonic 
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bandgap is preliminarily discussed. Finally, photonic crystal nanocavities formed by 

introducing artificial defects into a perfectly periodic system are introduced.   

Chapter 3 describes computational methods used in this thesis, which are all 

based on the FDTD method. The FDTD simulations are categorized into two classes 

with different boundary conditions. To calculate the fields in the infinitely extended 

periodic system, i.e., to calculate photonic band diagram, periodic boundary condition 

reduces the computational domain to a primitive cell of the crystal. In the case of a 

finite structure, i.e., a photonic crystal structure with defect cavity, the entire structure 

has to be set up in the core region of the simulation and perfectly matched layer is 

exploited to enclose the region as a nonreflecting absorber, so that outgoing energy is 

not reflected back to the core region. Then applications of the FDTD method, together 

with the fast Fourier transformation, to the investigation of the characteristics of 

photonic crystal nanocavities, such as resonant frequencies, field distributions, Q 

factors, mode volumes of the cavity modes are presented.  

Figure 1.1 Thesis organization. 
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Chapters 4 and 5 concern work on the two-dimensional photonic crystal slab 

nanocavities. Chapter 4 serves for the first thesis objective regarding to a proposal of 

achievement of high Q cavity by optimizing slab thickness. A significant increase of 

Q factor of dipole modes in photonic crystal H1-defect nanocavity after closing of the 

photonic bandgap by tuning the slab thickness is numerically and experimentally 

demonstrated. It is shown that the optimal slab thickness is equal to a wavelength of 

light confined in the cavity, which is approximately two times thicker than that of 

conventional structures. Interestingly, the strong light confinement of the cavity in the 

in-plane direction is not caused by the photonic bandgap effect due to a lack of the 

photonic bandgap but resulted from the decoupling between the cavity modes and the 

guided modes in the momentum space yielding only weak coupling between these 

two modes. This finding contributes to extending the freedom of cavity design. It is 

also suggested that because the only parameter of this cavity that needs to be adjusted 

is the slab thickness which can be precisely controlled by using epitaxial growth 

techniques such as molecular beam epitaxy (MBE) or metal-organic chemical vapor 

deposition (MOCVD), discrepancy of structural parameters between the designed and 

the fabricated structures can be very small. 

Chapter 5 deals with the second objective aiming to extend the scope of 

applications of high Q photonic crystal cavities to structures where a photonic 

bandgap does not exist. The concept of mode decoupling established in Chapter 4 is 

extended to design a cavity with higher Q and more flexible in applications by 

gradually modulating air hole radii in square lattice photonic crystals. An ultra-high 

ratio of Q factor to mode volume, desired for applications such as entangled photon 

source, of these modes has been achieved and this value is about two times higher 

than the highest value reported so far. In addition, the designed cavity has been applied 

to achieve high Q cavities for material with low index and for quantum cascade lasers, in 

which a lack of photonic bandgap usually hinders them from applications. These 

results emphasize a flexibility of the cavity, while the photonic bandgap is no longer a 

preliminary requirement to achieve high Q. 

The topic is then turned to discussions on three-dimensional structures. In 

Chapter 6, three designs of high Q cavities in three-dimensional photonic crystals 

with finite structural size that can be practically fabricated are presented. Two of them 

are achieved by tuning resonant frequencies of their cavity modes to the middle 

frequency of the complete photonic bandgap, where the mode localization is strongest 
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to gain an advantage from the photonic bandgap effect as much as possible, and thus 

highest Qs, by means of optimizing size of the defect cavities. Apart from tuning 

cavity modes to the midgap frequency, it is also theoretically predicted that the Q 

factor can be further increased more than four times in magnitude compared with that 

of the unperturbed structure by slightly modifying the arrangement of dielectric rods 

surrounding the cavity site. 

In Chapter 7, the fabrication of the three-dimensional woodpile photonic 

crystal nanocavities designed in Chapter 6 using micromanipulation techniques and 

their optical characteristics are presented. Firstly, principles of the micromanipulation 

techniques and how to use them to assemble three-dimensional structures are 

described. The structures with a large number of stacked layers have been achieved 

with high alignment accuracy. After that, experimental results are given on optical 

characterization of the fabricated cavities coupled with quantum dots by means of 

photoluminescence measurements. For the cavity with square-shaped in the 25-layer 

woodpile structure, a cavity mode with Q factor of more than 8,600, which is the 

highest Q among those for three-dimensional photonic crystal cavities reported so far, 

has been achieved. This result is consistent with the calculation results discussed in 

Chapter 6, in which a cavity mode locating closest to the midgap possesses the 

highest Q. Moreover, for a cavity with rectangular-shaped and smaller size, a cavity 

mode with Q factor of more than 7,700 with an ultra-small mode volume of 2 cubic 

half-wavelengths has been obtained. The results presented in this chapter give three-

dimensional photonic crystals a wide-open opportunity for the realization of the 

applications concerning the control of light-matter interaction. 

Chapter 8 is the conclusion to this thesis. Implications of the results 

presented in this thesis are discussed. The outlook for future research and 

development is also given 
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Chapter 2  

Basis for Theoretical Analysis of 

Photonic Crystal 
 

Photonic crystal, which is a periodic arrangement of dielectric media, 

introduces a periodic potential to photons propagating through it in the same way as a 

crystal, in which electron experiences a periodic potential due to a periodicity of 

atoms or molecules, in electronic systems. This “optical potential” leads to the 

development of a band structure for photons in photonic crystals. Resulting photonic 

bandgaps which disallow the propagation of light in the crystal for frequencies inside 

the gap and artificially introduced defects can be applied to construct, for example, 

mirror, waveguide, or nanocavity structures. In order to accurately describe the 

behavior of light in photonic crystals, the full vector nature of light has to be taken 

into account using the Maxwell’s equations. 

 

2.1 Maxwell’s equations and the Bloch-Floquet theorem 
The macroscopic electromagnetic fields are described by the Maxwell’s equations 

   
t

H
c

E
∂

∂
−=×∇

r
rr 1                       (2.1) 

t
E

c
J

c
H

∂
∂

+=×∇
r

rrr επ 14                             (2.2) 

                         πρε 4=⋅∇ E
rr

                                 (2.3) 

    0=⋅∇ H
rr

                                 (2.4) 

where ),( trE rr
 and ),( trH rr

 are the electric and magnetic fields, which can be 

expressed by:  

   tierEtrE ω= )(),( rrrr
                              (2.5) 
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    tierHtrH ω= )(),( rrrr
                                             (2.6) 

J
r

is the free current density, ρ is the free charge density, and ε is the dielectric 

function. In the case that light propagating within a dielectric medium without any 

light sources, J
r

 and ρ can be set to zero. In addition, it is acceptable to restrict the 

dielectric function ε to the case of linear dielectrics. And also, ε is assumed to be 

independent of frequency and being a real number.  

 According to these assumptions, by substituting Eq. (2.5) and Eq. (2.6) into Eq. 

(2.1) and Eq. (2.2) and then combining them into one equation, which contains only 

)(rH rr
 components, called the master equation: 
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Then use Eq. (2.2) to regain )(rE : 
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It can be observed from Eq. (2.7) that it is a Hermitian eigenvalue problem an 

eigenfunction )(rH rr
 and an eigenvalue (ω/c)2. The eigenfunctions )(rH rr

 are the 

allowed fields in the structure, i.e., the electromagnetic modes of the system.  

An important feature of the electromagnetic modes is that there is no 

specified length scale involved. Once the eigenvalues and eigenfunctions of Eq. (2.7) 

are solved, they can be scaled to any physical size or wavelength range. This can be 

understood by defining rsr rr
=′ , s/∇=∇′

rr
, and )/()( srr rr εε =′ , and substituting them 

into Eq. (2.7). This results in  
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where )()/( rsr rr εε ′= . Thus 
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It can be seen that when the dimensions are scaled by a factor of s, the 

electromagnetic mode is the same, but has to be scaled as )/( srH rr
and the frequency 

has to be scaled as ω/s. Due to the scalability, photonic crystal components can be 
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designed without specifying the dimensions and subsequently fabricated in an scale to 

perform experiments in varying wavelength ranges. 

Because a photonic crystal is a periodically ordering dielectric media, its 

dielectric function )(rrε  becomes a periodic function of positions. The solution of the 

Hermitian eigenvalue problem shown in Eq. (2.7) can always be shown in the form of 
rkie
rr

⋅ (periodic function), where k
r

 is the wave vector. This is commonly known as 

Bloch-Floquet theorem [83]. A periodic function is expressed as: 

       )()( Rruru kk

rrrrr
rr +=                                             (2.11) 

for any lattice vector R
r

. If the function is periodic in all three dimensions, lattice 

vector R
r

 can be formed in:  

    321 anamalR rrrr
++=                                            (2.12) 

where (l, m, n) are integers and 1ar , 2ar  and 3ar are primitive lattice vectors.  

Therefore, the solution of Eq. (2.7) for a periodic dielectric function ε  is given by:  

)()()( RrueruerH k
rki

k
rki

k

rrrrrrr
r

rr

r
rr

r +== ⋅⋅                                (2.13) 

This Bloch state indicates each electromagnetic mode through its wave vector k
r

 and 

periodic function )(ruk

rr
r . To solve for )(ruk

rr
r , Eq. (2.13) is substituted into Eq. (2.7), 

another Hermitian eigenvalue problem is then obtained: 

   )()()(1)(
2

ru
c

rukiki kk

rrrrrrrr
rr ⎟

⎠
⎞

⎜
⎝
⎛=×+∇×+∇

ω
ε

                         (2.14) 

Due to the periodicity of )(ruk

rr
r , Eq. (2.14) can be considered as the eigenvalue 

problem over a unit cell of the photonic crystal. Corresponding to quantum mechanics, 

eigenvalue problem with a finite domain leads to a discrete set of eigenvalues. That is, 

there is a set of modes, denoted by )(kn

r
ω  (for band number n = 1, 2, 3, …), which are 

discretely spaced in frequencies and continuously varied as k
r

 varies. The plot of 

these frequency bands as a function of k
r

 is called the band structure of photonic 

crystal.  

Another important property of the Bloch states is that, in order to solve the 

eigenvalue problem for a wavevector k
r

, it is adequate to only solve the eigenvalue 

problem for k
r

 in a finite zone called the first Brillouin zone. By considering the 

Bloch state shown in Eq. (2.10), an eigensolution with wave vector k
r

 is identical to 
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an eigensolution with wave vector Gk
rr

+ , where G
r

 is a reciprocal lattice vector and 

defined as: 

321 bnbmblG
rrrr

++=                                             (2.15) 

where (l, m, n) are integers and 1b
r

, 2b
r

 and 3b
r

are primitive reciprocal lattice vectors. 

This vector can be evaluated from π2NRG =⋅
rr

(for N = 1, 2, 3, …). This means that, 

in order to solve the eigenvalue problem for k
r

, k
r

 will be bounded to only the region 

in reciprocal space where k
r

 cannot have any other values of itself by adding anyG
r

. 

This restricted region is called the first Brillouin zone. Furthermore, if additional 

symmetries, e.g., rotational symmetry, are applied to photonic crystals, it is 

unnecessary to solve for every k
r

 point in the first Brillouin zone. Only the region, in 

which those symmetries do not have any effects on )(kn

r
ω , is required. This region is 

called the irreducible Brillouin zone.  

 

2.2 Origin of photonic bandgap 

In certain structures of photonic crystal there can be a range of ω, in which no 

propagating states )(kn

r
ω  corresponding to the restricted wave vector k

r
 are allowed 

and all incident radiation is reflected. This frequency range is known as the photonic 

band gap. In order to understand the origin of the gap, two properties of Hermitian 

eigenvalue problem have to be concerned. Firstly, because the operator of Eq. (2.7) is 

Hermitian, its eigenvalue must be real and positive and its harmonic modes must be 

orthogonal: 

      021 =HH
rr

                                               (2.16) 

That is, an inner product of any two harmonic modes with different frequencies is 

zero. Secondly, corresponding to the electromagnetic variational theorem, the lowest 

frequency mode is the field pattern that minimizes the electromagnetic energy 

functional: 
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Other higher bands, e.g., the second band, also satisfy Eq. (2.17), but orthogonality of 

harmonics mode according to Eq. (2.16) must be fulfilled as well. From this 

expression, in order to minimize Ef, the field of the first band must be concentrated in 
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the regions of high dielectric constant ε to lower its potential energy. This yields to 

have a lower frequency. Additionally, the curl of field H
r

×∇  should be small, in 

other words, the field is varying slowly inside the high dielectric constant regions and 

containing no nodal plane, in order to lower its kinetic energy. When the case comes 

to the second band, this mode also wants to be concentrated in the high dielectric 

constant regions and contain no nodal plane inside those regions to obtain the 

minimum Ef. However, from Eq. (2.16), this mode must be orthogonal to the mode of 

the first band. As a result, the second band has to be concentrated in the regions of 

low dielectric constant and restrictedly have nodal plane in those regions to make the 

integral zero. This results in a difference in frequencies of these two bands and the 

band gap occurs. This can be understood by an example shown in Fig. 2.1(a). 

Applying the relation in Eq. (2.17), two equally symmetric modes, sin(πx/a) and 

cos(πx/a), are forced in a one-dimensional photonic crystal. The bandgap between the 

top of dielectric band and bottom of air band is visualized for a one-dimensional 

photonic crystal in Fig. 2.1(b). 

Unlike the simple one-dimensional photonic crystal, in which any nonzero 

periodic dielectric variation will result in a complete bandgap, achieving a photonic 

bandgap in higher-dimensional photonic crystal becomes complicated. This is because 

the forbidden gaps for all possible directions in reciprocal space are needed to be 

overlapped in some frequency. Therefore, with a fairly large contrast in ε between the 

high and low dielectric regions, a proper geometry of the periodic structure should be 

selected to create the photonic bandgap. Figure 2.2(a) shows the Brillouin zone of the 

face-centered-cubic lattice. A point on the surface of the Brillouin zone closest to the 

center is the L point, oriented toward the body diagonal of the cube. A point in the 

cubic direction is the X point. Considering a plane wave in the X direction as done in 

the case of the one-dimensional photonic crystal, it will sense the periodicity in the 

cubic direction, forming a standing wave and opening a forbidden gap as indicated by 

the shading in Fig. 2.2(b). Supposing, on the other hand, that the plane wave is going 

in the L direction, it will sense the periodicity along the cubic-body diagonal, and a 

gap will form in that direction as well. But the wave vector to the L point is ~ 14% 

smaller that the wavevector to the X point. Therefore, the gap at L is likely to be 

centered at a 14% smaller frequency than the gap at X. If the two gaps are not 
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Figure 2.1 (a) Schematic illustration of the electric fields of mode at air and 
dielectric bandedges in a multilayer film with lattice constant a. (b) Photonic band 
structure of the structure shown in (a).  
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wide enough, they will not overlap in frequency. As a result, for three-dimensional 

photonic crystal, the Brillouin zone should most closely resemble a sphere in order to 

increase the likely hood of a frequency overlap in all directions of space. In this case, 

the face-centered-cubic lattice has the highest potential among any other types of 

lattice to achieve a photonic bandgap due to its least percentage deviation of the 

Brillouin zone from a sphere.  

In the same way as in the three-dimensional system, the two-dimensional 

photonic crystals whose the Brillouin zone more closely resemble a circle will lead to 

a larger gap. This will be discussed in details in next subsection. 

 

2.3 Types of photonic crystals  
According to the order of dimensions that they periodically alter, photonic 

crystals can be classified into three categories, which are one-dimensional, two-

dimensional, and three-dimensional photonic crystals. These three types of photonic 

crystal are shown in Fig. 2.3. In one- and two-dimensional photonic crystals, 

Figure 2.2 (a) Brillouin zone of face-centered-cubic lattice. (b) Forbidden gap 
(shaded) at point L, which is centered at a frequency ~ 14% lower than X-point 
forbidden gap. 
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band structure diagrams and bandgaps are limited to the directions of periodic 

dielectric modulation. Unaffected propagation of electromagnetic waves is possible 

along those lattice directions showing no periodicity [84]. One-dimensional photonic 

crystals are known as Bragg mirrors. These structures have been used for a long time 

before the concept of photonic crystals was established, but the same concepts and 

principle apply to the one-dimensional structures also. They consist of periodically 

stacked layers of different refractive indices [85]. Two-dimensional photonic crystals 

have a periodicity in two dimensions and are infinitely extended in the third 

dimensions. They are often realized in practice by a periodic arrangement of air 

cylinders in a dielectric or by cylinders consisting of a dielectric material in air 

organized in a square or triangular lattice. [86-89]. Three-dimensional photonic 

crystals are the only true photonic crystals in the strict sense since in them light 

propagation can be forbidden in all directions. In the following subsections, only two-

dimensional photonic crystal slabs with both triangular and square lattices and three-

dimensional (woodpile) photonic crystal structures will be discussed as they are the 

basic building blocks of the work described in this thesis.  

 

2.4 Two-dimensional photonic crystal slabs 
 While the theoretical treatment of two-dimensional photonic crystals is 

relatively easy, their fabrication procedure is not straightforward since they are 

Figure 2.3 Schematic illustrations of photonic crystal (a) one-dimensional (b) two-
dimensional (c) three-dimensional.  

(a) (b) (c) 
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infinite structures in the third dimension. Therefore, the concept of a two-dimensional 

photonic crystal slab was proposed to overcome this obstacle [57]. Two-dimensional 

photonic crystal slab is essentially a two-dimensional photonic crystal with a finite 

third dimension. One typical structure is a membrane based photonic crystal shown in 

Fig. 2.4. An optically thin semiconductor slab (thickness is roughly λ/2) is surrounded 

with a low-refractive index material (usually air), and perforated with a two-

dimensional lattice of holes. When the slab is cladded by air on both sides, the 

structure is called a two-dimensional air-bridge photonic crystal. In such structure, the 

localization of light in all three dimensions is made possible by the combination of 

two mechanisms: in the vertical direction, light is confined to the slab by means of 

total internal reflection due to high index contrast between the high-index slab and the 

low-index environment, while in the in-plane direction light is controlled by means of 

distributed Bragg reflection due to the presence of two-dimensional lattice of holes. In 

the two-dimensional air-bridge photonic crystal shown in Fig. 2.4 the third dimension 

is not periodic nor infinite, and therefore photons incident to the surface between the 

semiconductor slab and air with smaller angles than the critical angle for total internal 

reflection can escape from the slab and couple into the continuum of radiation modes. 

These photons leak energy from the slab and therefore represent the loss mechanism 

of the two-dimensional photonic crystal slab. In order to take these losses into account, 

the notion of light cone is introduced in the analysis of photonic crystal by the light 

line. The light cone, where the leaky modes exist, is the region over the light  line. 

Dielectric  
slab 

Air 

Air 

Active Air 

Figure 2.4 Schematic illustration of photonic crystal slab.  
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The light cone, where the leaky modes exist, is the region over the light line. 

Concretely, examining the energy-momentum dispersion relation for a homogeneous 

dielectric cladding with refractive index n: 

   22
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where ω is the angular frequency, ∠k is the in-plane wave vector, ⊥k is the wave 

vector normal to the slab, and c is the speed of light. Light line can be confined as:   
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Since radiative modes exist at all frequencies, including the bandgap region, they 

close the bandgap, and the complete bandgap does not exist in two-dimensional 

photonic crystal slab. The forbidden frequency range still exists, however, for the 

guided modes of the slab, which is for the photons confined in the patterned slab and 

just decayed exponentially into the claddings. The gap for guided modes is shown by 

shaded region in Fig. 2.5. Therefore, in the case of two-dimensional photonic crystal 

slab, the bandgap is not complete and it exists only for the guided modes of the 

patterned slab. The properties of two-dimensional photonic crystal slab, such as 

position and width of the bandgap, depend strongly on several important parameters: 

the type of lattice (e.g., triangular, square), the thickness of the slab (d), the refractive 

of both slab and claddings, the periodicity of the lattice (a) and the radius of the holes 

(r). 

 In two-dimensional photonic crystal, due to the mirror reflection symmetry in 

the direction perpendicular to the plane of periodicity, modes of every two-

dimensional photonic crystal can be classified into two non-interacting classes of 

polarizations: TE polarized modes (electric field in plane of periodicity) and TM 

polarized modes (magnetic field in plane of periodicity). As in two-dimensional 

system, guided modes in photonic crystal slab can be also decomposed into two 

distinct classes. These are not purely TE and TM polarized as in the two-dimensional 

photonic crystal due to the finite extent of slab in the direction normal to the plane of 

slab. However, they are classified by whether they transform to be even or odd with 

respect to a horizontal mirror plane bisecting the slab. These even and odd states have 

the strong similarities with TE and TM modes, respectively, in two-dimensional 
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photonic crystal. In addition, within the slab they are TE- and TM-like, and closely 

resemble the TE and TM modes in two-dimensional system. 

 

2.4.1 Comparison between square and triangular photonic crystal lattices 

 Since in this thesis, two-dimensional photonic crystal slabs with two types of 

lattice, square and triangular, are concerned, they will be discussed in details in this 

subsection. The structure that is a GaAs slab, suspended in air, and patterned with 

square or triangular lattice of holes as illustrated in Fig. 2.6 and 2.7. The Three-

dimensional Finite-Difference Time-Domain method (3D-FDTD) was used to 

calculate the band diagrams (details on the computational method are discussed in 

Chapter 3). The thickness of the slab was d = 0.60a and hole radius was r = 0.40a. 

The refractive index of GaAs is assumed to be 3.4.  

Figure 2.5 Band diagram for the air-bridge slab structure with r = 0.30a and d = 
0.60a. The insets show triangular lattice of air holes in dielectric with refractive 
index of 3.4 and its first Brillouin zone.    
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Figure 2.7 The triangular lattice shown in (a) real space and (b) reciprocal space 
with their corresponding lattice vectors. The hexagon represents the first Brillouin 
zone, and Γ, K and M are the high-symmetry points.  
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Figure 2.6 The square lattice shown in (a) real space and (b) reciprocal space with 
their corresponding lattice vectors. The square represents the first Brillouin zone, 
and Γ, X and M are the high-symmetry points.  
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 Figure 2.6 (a) and (b) illustrate the square lattice in real space and reciprocal 

space, respectively. The lattice vectors in real space are 

)0,0,1(1 ⋅= aar and )0,1,0(2 ⋅= aar , and reciprocal lattice vectors are )0,0,1()/2(1 ⋅= ab π
r

 

and )0,1,0()/2(2 ⋅= ab π
r

. The square in Fig. 2.6(b) represents the first Brillouin zone, 

and Γ, X and M are the high-symmetry points with coordinates in reciprocal space: Γ 

= (0,0,0), X = (π/a,0,0), M = (π/a,π/a,0). In the case of the photonic crystal slab with 

triangular lattice, lattice vectors in the real space can be expresses 

as )0,2/3,2/1(1 ⋅= aar and )0,2/3,2/1(2 −⋅= aar , and reciprocal lattice vectors are 

)0,2/1,2/3()/2(1 ⋅= ab π
r

 and )0,2/1,2/3()/2(2 −⋅= ab π
r

. The hexagon in Fig. 

2.7(b) represents the first Brillouin zone, and the coordinates of high-symmetry points 

are Γ= (0,0,0), )0,3/1,1()/( ⋅= aM π , )0,0,3/4()/( ⋅= aK π .  

Band diagram for the vertically even (TE-like) eigenmodes of the two-

dimensional photonic crystal slab structure with square and triangular symmetry are 

shown in Fig. 2.8. Only band diagram for TE-like modes are concerned here since 

active materials adopted in this work are quantum dots, which have electronic states 

predominantly coupled to the TE modes. As it can be seen, in both structures the first-

order bandgap is open for the guided modes of the slab. The bandgap is formed only 

for the guided modes as discussed above. The photonic crystal slab with triangular 

lattice has a much wider bandgap than the square lattice, a result of the greater 

symmetry and the smoother Brillouin zone in that geometry, in other words, the 

Brillouin zone more closely resemble a circular shape. Therefore, the triangular lattice 

is in many ways a more promising geometry for the realization of photonic crystal 

devices. However, in many cases it is not necessary to work with photonic crystals 

that have wide bandgap. In Chapter 4 and 5, it will be shown that high quality factor 

cavity can be realized in the structures with a very small bandgap or even no bandgap 

at all.  

 

2.4.2 Effect of slab thickness and radius of air holes on photonic bandgap 

Because high quality factor photonic crystal nanocavities by optimizing the 

slab thickness and by modulating air hole radii will be presented in Chapter 4 and 5, 

respectively, in this subsection the influence that slab thickness and radius of air holes 

have on the behavior of photonic bandgap is discussed. A triangular lattice 
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Figure 2.8 Band diagrams for the air-bridge slab structure with (a) square and (b) 
triangular lattice. Slab thickness d = 0.60a, radius of air holes r = 0.40a, refractive 
index = 3.4 for both structures.   

(a) 

(b) 
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two-dimensional photonic crystal slab is studied, but results can be generalized to the 

square lattice photonic crystal slab as well.  

 As previously mentioned, a two-dimensional photonic crystal slab has a band 

gap for its guided modes. Among many photonic band gaps that can occur, the 

lowest-order photonic band gap that emerges between the lowest-order mode, a so-

called dielectric band, and the second-order mode, a so-called air band, is the most 

interesting due to lower density of radiation states in low frequency region, leading to 

lower radiation losses. However, this band gap can occur only when some of 

parameters of the slab are suitable. More concretely, if radius of the air holes r is large 

enough as well as appropriate slab thickness d is fulfilled, the gap may appear [60,90]. 

The radius of air holes has an important effect on the propagation of light in the slab, 

as it determines the width of the gap. Figure 2.9 shows the plots between the gap-mid 

gap ratio, which designates the band gap size, for and the slab thickness for TE-like 

modes in the air-bridge structure with r equal to 0.30a, 0.35a, and 0.40a indicated by 

boxed dots, circular dots, and triangular dots, respectively. The bandgap becomes 

wider as the holes become bigger. Because bandedges are shifted towards higher 

frequencies when the hole size is increased due to increased overlap with low-

dielectric material (air), the air-band modes that localize their energy in the air holes 

are more sensitive to changes in the hole size, and they experience larger blue shift 

than the dielectric-band modes, when holes are made bigger. This results in widening 

of the photonic bandgap. This is obvious over the range of the slab thickness less than 

0.60a. When the slab thickness is over 0.60a, the tendency of gap size becomes 

complex. This is because when the slab is thick, the gap is determined by the 

frequency range between the dielectric-band edge and the second-order guided mode 

cutoff, instead of the frequency range between the dielectric-band edge and the air-

band edge at K point of the first Brillouin zone as in the case of the slab thinner than 

0.60a. Figure 2.10 shows the band diagram when r = 0.40a and d = 1.10a. To achieve 

accurate values of the cutoff frequency, high-resolution and time-consumed 

computations are needed. As a result, the exact results are slightly inconsistent.  

The existence of the gap and the gap size also strongly depends on the slab 

thickness as shown in Fig. 2.9. It is obvious that there is an optimal slab thickness, 

which can yield the largest gap between the first two bands. When the slab is too thin, 

air holes are just like a weak perturbation on the bare slab. Guided modes still exist, 
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Figure 2.9 Dependence of Gap-mid gap ratio on slab thickness for air-bridge slab 
structure with r = 0.30a (square), r = 0.35a (circle), and r = 0.40a (triangle).   
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Figure 2.10 Band diagrams for the air-bridge slab structure with triangular lattice. 
The slab thickness is 1.10a.    
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but they cannot be strongly confined within the slab. As a result, the gap is very small. 

On the other hand, if the slab is too thick, the second-order modes will be created at 

low frequency, which may locate at frequencies very near to the lowest-order mode. If 

the slab is thick enough, the air band falls below the dielectric-band edge and is 

responsible for destroying the photonic bandgap. The photonic bandgap is closed at 

the slab thickness d = 1.10a, 1.25a, and 1.20a for the structure with r = 0.30a, 0.35a, 

and 0.40a, respectively. In the aspect of localized modes, which are confined in the 

photonic crystal slab defect cavity and have frequencies within the band gap, larger 

gap means the ability of the cavity to achieve better in-plane confinement for the 

localized modes. On the other hand, when the gap is closed, localized modes are able 

to couple to slab guided modes and then be guided through the slab in in-plane 

direction, resulting in very poor confinement in in-plane direction. With these reasons, 

conventional photonic crystal slab cavity structures usually have the slab thickness in 

the order of half wavelength of light confined in the cavity, which is about 0.60a. 

However, in Chapter 4, a design of high quality factor photonic crystal nanocavity 

with a wavelength-thick slab, where the bandgap is closed, will be shown. This has 

been achieved by decoupling the cavity mode from the leaky modes. 

 

2.5 Woodpile structures 
 The so-called “woodpile” geometry is a well-established three-dimensional 

photonic crystal lattice designed to provide a complete photonic bandgap in a 

structure with a straightforward fabrication process [91]. The woodpile has a narrower 

complete photonic bandgap than most of other types of three-dimensional photonic 

crystal structure [92], however, it is relatively easier to fabricate. Therefore, in this 

thesis, only this structure will be concentrated. The illustration of the woodpile 

structure is illustrated in Fig. 2.11. The structure is made of layers of dielectric rods 

with a stacking sequence that repeats itself every four layers with a periodicity c (= 4d, 

where d is the layer thickness) in stacking direction (z direction). Within each layer, 

the rods are arranged with their axes parallel and separated by an in-plane periodicity 

pitch a (in x and y directions). The orientations of the axes are rotated by 90° between 

adjacent layers and offset by a distance 0.5a from the layer two below. As discussed 

in Section 2.2, the face-centered-cubic lattice has the highest potential among any 
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Figure 2.11 Schematic illustration of woodpile structure with 11 in-plane periods 
and 17 vertical layers    

Figure 2.12 Band diagram for the woodpile structure showing a complete bandgap 
between a/λ = 0.40-0.48. The layer thickness and the rod width are 0.25a and 
0.25a, respectively. The refractive index is 3.4. 

z 
y
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other types of lattice to achieve a photonic bandgap due to its least percentage 

deviation of the Brillouin zone from a sphere. The woodpile structure appears to have 

a simple tetragonal lattice structure, with )ˆ,ˆ,ˆ( zcyaxa as the lattice basis. However, the 

lattice in fact has a more complex crystal structure. In addition to symmetry under 

translation by the lattice basis vectors given above, the woodpile lattice is also 

symmetric under translation by half a period in each direction. While this symmetry 

immediately implies a body-centered tetragonal structure, the lattice also has face-

centered tetragonal structure under a different orthogonal basis. Consider the 

basis )ˆ,ˆ,ˆ( ZcYaXa , where xyX ˆˆˆ += , xyY ˆˆˆ −=  and zZ ˆˆ = . This is an orthogonal basis, 

and the woodpile lattice is certainly symmetric under translations by the lattice 

vectors. The lattice is also symmetric under translation by the vectors: 

,ˆ)ˆˆ(
2
1 yaYaXa =+  

,ˆ
2

ˆ
2

ˆ
2

)ˆˆ(
2
1 zcyaxaZcXa ++=+  

.ˆ
2

ˆ
2

ˆ
2

)ˆˆ(
2
1 zcxayaZcYa +−=+  

Thus the woodpile lattice has face-centered tetragonal structure. In particular, 

if ac 2= , the orthogonal basis given above is cubic, therefore the lattice has face-

centered-cubic structure. This layered structure can be derived from the diamond 

lattice by replacing the (110) chains in the diamond structure by rods. The Brillouin 

zone of the face-centered-cubic lattice is shown in the inset of Fig. 2.12. Figure 2.12 

shows a calculated band diagram of the woodpile structure along the symmetry points 

which bound the irreducible Brillouin zone. The refractive index, rod width, and layer 

thickness were set to 3.4, 0.25a and 0.25a, respectively. The lattice exhibits an 

omnidirectional bandgap—a range of frequencies in which no mode, of any 

wavevector or polarization, exists. 

 

2.6 Photonic crystal defect nanocavities 

A very promising application of photonic crystals is to realize optical 

nanocavities that can trap the light in very small mode volumes and for a long period 

of time (proportional to the cavity quality factor). The strong light localization in 

photonic crystal nanocavities can dramatically increase the light-matter interaction 
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and the photon-photon interaction, which are important for a wide range of 

applications, ranging from basic science to engineering.  

Photonic crystal nanocavities can be formed by perturbing periodic 

components of perfect crystals (i.e., by adding or removing dielectric material). Such 

a break in the periodicity of the lattice introduces new energy levels within the 

photonic bandgap. This is analogous to the creation of energy levels within the 

semiconductor energy band gap by the addition of dopant atoms in semiconductor 

crystals. According to the perturbation theory applied to Maxwell’s equations, 

removing dielectric material, i.e., increasing the hole sizes of the two-dimensional 

photonic crystal slab, increases the energy of the modes supported in the slab and 

pulls up defect states from the dielectric band into the bandgap. Such bound states 

exist close to the dielectric band and shows similarity to the acceptor levels in 

semiconductors. Because of that, the modes created in this way are called the acceptor 

modes. Similarly, the reduction of the hole sizes decreases the energy of the mode and 

pulls down defect states from the air band into the bandgap. Such types of defect 

modes are called referred to as the donor modes. It shall be mentioned that, strictly 

speaking, the discrete translational symmetry of the lattice is already broken by one 

defect and the crystal could no longer be characterized by the concept of a k
r

-vector. 

But, as the periodic remainder of the ideally infinite lattice still works effectively as a 

perfect mirror, defect modes cannot penetrate the unperturbed crystal and is then 

confined in the defect region. Because the defect mode of the donor defect is typically 

more strongly localized in the dielectric material than that of the acceptor defect, 

throughout this thesis only donor defects will be discussed in consideration of 

introducing a light emitter, such as quantum dots, into the dielectric material. Figure 

2.13 shows illustrations of three kinds of defect structures, which are mainly studied 

throughout this thesis. The first two are H1-defect nanocavity in triangular lattice air-

bridge photonic crystal and square lattice air-bridge photonic crystal nanocavity with 

modulating air hole radii. The other one is square-shaped point-defect in woodpile 

structure. They will be discussed in details in the following Chapters. 

In the case of cavities defined in photonic crystal slabs, in which only 

bandgaps for guided modes exist, cavity modes will suffer from radiation losses due 

to the coupling into the continuum of radiation modes that exist within the light cone. 
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Figure 2.13 Three defect structures studied in the thesis. (a) H1-defect nanocavity 
in triangular lattice air-bridge photonic crystal. (b) Square lattice air-bridge 
photonic crystal nanocavity with modulating air hole radii (c) Square-shaped 
defect nanocavity in woodpile photonic crystal. 
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Light coupled with these radiation modes radiate out of the cavity into the vertical 

direction. These components contribute to the out-of-plane losses of the cavity, as 

shown in Fig. 2.14. At the same time, light can leak laterally due to the finite number 

of the photonic crystal layers surrounding the cavity contributing to the in-plane 

losses of the resonator. On the other hand, cavities in three-dimensional photonic 

crystals can have a complete photonic bandgap, in which cavity modes are confined 

by photonic bandgap effect in all directions; no radiation losses exist. Only losses due 

to the finite number of periodicity surrounding the cavity take place. The efficiency of 

a cavity, described by a quality (Q) factor, can be expressed as the ratio of energy 

stored in the cavity (U) and power P dissipating from the cavity at a center frequency 

ω0 as:  

P
UQ 0ω=                                                   (2.20) 

Taking into account that the power dissipating is the negative of the time rate of 

energy stored in the resonator, it is found that: 

Figure 2.14 Field distribution of dipole mode in the H1-defect photonic crystal 
slab nanocavity viewed in cross section. Blue arrow indicates the radiation loss 
and yellow arrow represents in-plane loss. 

air

air

slab

+

-

air

air

slab

+

-

air

air

slab

+

-

+

-
 



 33

Q
UP

dt
dU

0ω−=−=                                            (2.21) 

and thus 

Q
t

eUtU
0

0)(
ω

−

=                                             (2.22) 

The time dependence of the stored energy implies that oscillations of the field inside 

the cavity are damped as follows: 

tiQ
t

eeEtE )(2
0

0

0

)( δωω
ω

+
−

=                                         (2.23) 

Assuming that the resonant frequency does not change in presence of the losses, i.e., 

δω ≈ 0, and transforming the time dependence field into frequency, the relation can be 

shown in the following equation: 

Q
i

EE

2
)(

1)(
0

0

0 ωωω
ω

+−−
=                                     (2.24) 

Therefore an exponentially as Q
t

e 2
0ω

−

decaying field at the frequency ω0 has a frequency 

spectrum of Lorentzian intensity shape centered at ω0 with the full width at half 

maximum (FWHM) of 
Q

0ω
ω =Δ , which leads to another expression of the quality 

factor:  

ω
ω
Δ

= 0Q                                                     (2.25) 

To describe the spatial confinement of the cavity field, its effective volume with 

respect to the spatial distribution of the dielectric constant )(rrε  is defined. This leads 

to the definition of the cavity mode volume: 

])()(max[

)()(
2

32

rEr

rdrEr
Veff rrr

rrrr

ε

ε∫∫∫=                                           (2.26) 

Details on calculation of these parameters will be discussed in next chapter. 

 

2.7 Summary 
 In this chapter, the principle of photonic crystal has been reviewed 

theoretically. By cooperating of Maxwell’s equations and solid-state physics, the 

propagation of light in a photonic crystal can be studied. Due to a periodic dielectric 
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function of photonic crystal, the Bloch-Floquet theorem can then be applied to solve 

the Hermitian eigenvalue problem over a unit cell of the photonic crystal. The 

solution results in a discrete set of modes, which originates a band structure of the 

photonic crystal. In addition, by considering the electromagnetic variation theorem, 

the origin of the photonic band gap, in which no propagating modes can be existed, 

has been revealed. After that, two-dimensional photonic crystal slabs with both 

triangular and square lattices and three-dimensional woodpile photonic crystal 

structures have been described in details as they are the basic building blocks of all 

the work in this thesis. The influence of slab thickness and radius of air holes of two-

dimensional photonic crystal slabs, important parameters of the design of high-Q 

nanocavities in the following chapters, on the behavior of photonic bandgap have 

been preliminarily discussed. Finally, photonic crystal nanocavities formed by 

introducing defects to a perfectly periodic system have been introduced.   
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Chapter 3  

Finite-Difference Time-Domain Method 
 

The Finite-Difference Time-Domain (FDTD) method is a general method for 

numerically solving the time-dependent Maxwell’s equations in media that is 

structured on the scale of the wavelength. It is therefore particularly well suited to 

simulate light field dynamics and propagation in finite photonic crystal defect 

structures like nanocavities. Photonic band structures and spectra can be obtained via 

Fourier transformation of the time-dependent simulation data. The FDTD method 

therefore directly complements spectral methods in photonic band structure 

calculation and makes it an important tool for photonic band structure physics and 

engineering. This chapter summarizes the basic concepts of FDTD with respect to its 

application on photonic crystal simulations, including the calculations of band 

diagrams, equi-frequency contours, and several cavity characteristics such as resonant 

frequencies, field distributions, and Q factor of defect modes in photonic crystal 

nanocavities. 

 

3.1 The Yee algorithm 
 FDTD method [64] is based on a discretization of the Maxwell’s time 

dependent curl equations, i.e., Eq. (2.1) and (2.2), for both the E
r

 and H
r

fields. A 

schematic shown in Fig. 3.1 corresponds to the Yee’s algorithm, which represents 

positions in space of the E
r

- and H
r

-field vector components in a way what every 

E
r

component is surrounded by four circulating H
r

components and 

every H
r

component is surrounded by four circulating E
r

components, respectively. All 

field components are updated at discrete timesteps Δt in a leapfrog manner: At times 

tnt Δ+= )2/1(  the new E
r

field components are calculated using the spatial derivatives 
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of the surrounding H
r

vectors at times tnt Δ=  and the former electric field at 

time tnt Δ−= )2/1( , while at times tnt Δ+= )1(  the new H
r

field components are 

calculated using the spatial derivatives of the surrounding E
r

vectors at 

times tnt Δ+= )2/1( and the former magnetic field at time tnt Δ= . A Cartesian spatial 

grid is defined with increments Δx, Δy, and Δz. Δt is a time increment. Any field u of 

space (i,j,k) and time t is evaluated at a discrete point in space and time as:  

),,,(,, tnzkyjxiuun
kji ΔΔΔΔ=                                      (3.1) 

where n defines the point in time. The partial derivatives in the discretized system can 

be written as 

x
uu

tnzkyjxi
x
u n

kji
n

kji

Δ

−
=ΔΔΔΔ

∂
∂ −+ ,,2/1,,2/1),,,(                           (3.2) 

Applying Eq. (3.2) to Maxwell’s curl equations, six finite-difference equations for 

each of the electromagnetic fields are then solved and shown as [93]: 

 

Figure 3.1 Positions of field components using Yee’s cell. 
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Numerical instability of the Yee algorithm with a rectangular grid occurs for 

     

2220 )(
1
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1
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1

zyx
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t

Δ
+

Δ
+

Δ

>Δ                                       3.9) 

where c0 is the velocity of light in vacuum [93]. Considering the case of a three-

dimensional cubic-cell space lattice with Δx = Δy = Δz = Δ which we are exploiting, 

Eq. (3.9) becomes  

30c
t Δ

>Δ                                                     (3.10) 

Here we set the Δt to be Δ/(2c0) to assure the stability of the method.  

 

3.2 Boundary conditions 
 As for FDTD all field components are updated in every timestep, the whole 

amount of spatial components needs to be stored in the computational memory. 

Unfortunately no computer can store an unlimited amount of data. Therefore, a 

computational domain must be limited in size, but large enough to enclose the 

structure of interest. As a result, it is necessary to apply suitable boundary conditions 

the edges of the computational domain to simulate the behavior and to calculate the 

spatial derivatives at the edges. In this thesis, two types of boundary conditions have 

been exploited depending on the calculations. Absorbing boundary conditions are 

used to calculate a finite structure, such as photonic crystals with defects, in which the 

perfect periodicity is broken. On the other hand, periodic boundary condition is used 

to calculate the fields in the infinitely extended periodic system, such as a calculation 

of photonic band structure. 

 

3.2.1 Absorbing boundary condition 

When defects are present or introduced to generate a cavity the periodicity of 

the perfect photonic crystal is no longer available and one has to resort to open 

boundaries. In order to obtain efficient and accurate solution of electromagnetic 

waves as if the computational domain is unbounded and stretches to the infinity, the 

perfectly matched layer (PML) backed by perfect electric conductor must be 

introduced at all outer boundaries as a nonreflecting absorber [94]. The basic 

computational domain is embedded in a perfectly matched additional medium which 
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is just a half of lattice thick as shown in Fig. 3.2. The yellow cubic is a three-

dimensional computational domain, while the gray regions are the PML layers. In the 

PML medium, each component of the electromagnetic field is split into two parts 

yielding 12 subcomponents denoted as Exy, Exz, Eyz, Eyx, Ezx, Hxy, Hxz, Hyz, Hyx, Hzx, Hzy, 

and the Maxwell equations are replaced by 12 equations,  
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Figure 3.2 Three-dimensional computational domain (yellow) bounded by PML 
layers (gray).  
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Figure 3.3 Upper right part of a computational domain surrounded by PML 
layers. 
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where the parameters (σx,σy,σz,σx*,σy*,σz*) are homogeneous to electric and 

magnetic conductivities.  

Numerical implementation of the PML layer in a three-dimensional (3D) 

FDTD domain is straightforward. In the inner vacuum (the computational domain), 

the finite-difference equations are the usual discretizations of the Maxwell’s equations 

derived in Eq. (3.3)-(3.8). In the PML layer, there are 12 subcomponents expressed in 

Eq. (3.11)-(3.22) to be computed in place of the six components. The Yee’s grid is 

unchanged, the only change is that two subcomponents are computed at each point of 

the grid, i.e., Exy and Exz at Ex point. For instance, Exy is computed by the equation 

derived from Eq. (3.11),  
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where σy depends on the location in the layer. In the six sides of the domain, the 

absorbing media are matched PML media of transverse conductivities equal to zero. 

In the twelve edges, the conductivities are selected in such a way that the transverse 

conductivities are equal at the interfaces located between edge media and side media. 

This is obtained by means of two conductivities equal to zero and the other four equal 

to the conductivities of the adjacent side media, as shown in Fig. 3.3. In the eight 

corners of the domain, the conductivities are chosen equal to those of the adjacent 

edges, so that the transverse conductivities are equal at the interfaces between edge 

layers and corner layers. Therefore, the reflection equals zero from all the edge-corner 

interfaces in principle. However, due to the discretization of the PML equations, a 
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certain amount of numerical reflection occurs from sharp variations of conductivities 

at the interfaces. In order to reduce this reflection the conductivities must be increased 

from a small value in the vacuum-layer interfaces to a great value on the outer 

boundaries. 

3.2.2 Periodic boundary condition 

 Although a computational domain is bounded to be finite, it is also possible to 

simulate infinite structures as long as they are periodic. The Bloch-Floquet discussed 

in Section 2.1 is then used.  

 
RkierERrE
rrrrrrr

⋅=+ )()(  and RkierHRrH
rrrrrrr

⋅=+ )()(                    (3.24) 

In a simulation the boundary values of the fields are exchanged as illustrated in Fig. 

3.4, where bound field values are copied to the position next to each other by shifting 

the phase back and forth by k·L (L is length of the cell). It is obvious that the shift in 

phase requires complex field values. To implement this in FDTD, the computational 

domain is chosen to be one and two unit cells of the periodic structure in the case of 

the calculation of triangular and square photonic crystal lattices. Figure 3.5 shows a 

top view of the square and triangular photonic crystal lattices indicating unit cells of 

the photonic crystals with boundary conditions. These structures are periodic in two 

dimensions, the in-plane direction, however their third dimension lack of translational  

e-ikL

eikL

L

e-ikL

eikL

L

Figure 3.4 Lower and upper bound field values copied to the position next to 
each other by shifting the phase back and forth by k·L. 
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Figure 3.5 Top view of the photonic crystal slabs with (a) triangular lattice and 
(b) square lattice of air holes. Dotted squares indicate unit cells of each structure 
with periodic boundary condition. 
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Figure 3.6 Cross-section view of the unit cell showing a mixing of boundary 
conditions used to calculate band structures. The domain is wrapped by Bloch 
boundary condition in the in-plane direction and PML in the vertical direction  
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symmetry. As a result, the periodic boundary condition cannot be applied to the edge 

of computational domain in the vertical direction. In this case, the PML is introduced 

to absorb the waves propagating into the vertical direction as shown in Fig. 3.6.  

 

3.3 FDTD-simulations of photonic crystals 
 In this subsection, methods to calculate various characteristics of photonic 

crystals, such as photonic band structures, equi-frequency contours, cavity’s 

resonance frequencies, field distributions, quality factor, and etc., are shown.  

 

3.3.1 Band structures and equi-frequency contours 

 The starting point for the investigation of any photonic crystal devices is the 

calculation of a dispersion diagram for the modes supported in the structure. Figure 

3.7 shows a band diagram for the case of a triangular lattice photonic crystal slab. The 

band diagram is calculated only along the high-symmetry directions in the first 

Brillouin zone for the first four bands. The light line is also represented. In some 
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Figure 3.7 Band diagram for the air-bridge slab structure with r = 0.40a and d = 
0.60a. The insets show its first Brillouin zone and corresponding high-symmetry 
directions.   
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applications, for example, study of coupling between cavity modes and guided modes 

in momentum space, which will be realized in next Chapter, it is necessary to 

calculate not only along the high-symmetry directions in the first Brillouin zone but 

the full band diagram for all k-vectors in the first Brillouin zone. Figure 3.8 shows 

such a dispersion diagram for the first four bands of the structure with the same 

parameters as that in Fig. 3.7 for all k-vectors in the first Brillouin zone. The plot 

indicates a large gap between the first two bands. The light cone is represented by an 

unshaded area. It is obvious that the band diagram shown in Fig. 3.7 is a projected 

plot of the full band along the high-symmetry directions in the first Brillouin zone. 

For quantitative analysis, it is better to make equi-frequency contour plots, which are 

projections of the full band diagram cut at each frequency. An example is shown in 

Fig. 3.8, which are equi-frequency contours of the first band at each frequency with 

an increment of 0.02. These plots are very useful for the analysis of the coupling of 

multiple modes at a frequency because they contain information of the modes at the 

frequency in the momentum space.  

 

3.3.2 Cavity characteristics 

 By using the 3D FDTD calculation, resonant frequencies, field distributions, 

quality (Q) factor, mode volume of defect modes in photonic crystal cavities can be 

evaluated. In all calculations, lattice constant (a) is set to be equal to 20 space steps 

(20·Δx), where Δx = Δy = Δz (cubic lattice). The time step Δt is chosen to be equal to 

(Δx/2c), where c  is speed of light in free space. These values of steps ensure 

numerical stability as previously discussed. To obtain field distributions and Q factor 

of the defect modes, resonant frequencies of those modes must be calculated first. In 

order to do this, a pulse source with a Gaussian-shaped bandpass is excited in the at 

the point of low symmetry in the vicinity of the cavity, then the fields are 

subsequently evolved in time. The frequency bandwidth of this pulse source is broad 

enough to cover the total modes of interest. The profile of the excitation source in 

frequency domain is illustrated in Fig. 3.10(a). The time evolution of the fields is 

recorded at a point of low symmetry, and is calculated by the fast Fourier transform to 

obtain the cavity mode spectra in normalized frequency unit. As shown in Fig. 3.10(b), 

which is an example for a point defect cavity in two-dimensional photonic crystal slab 
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Figure 3.8 The band diagram for the first four bands for the air-bridge slab 
structure with r = 0.40a and d = 0.60a, calculated for all k-vectors in the first 
Brillouin zone shown in dotted hexagon.  

Figure 3.9 The equi-frequency contours for the first band. The step of increment 
of frequency is 0.02. 
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Figure 3.10 (a) Wide-band Gaussian-shaped excitation pulse shown in 
normalized frequency domain. (b) Spectra of cavity modes for a point defect 
photonic crystal obtained by Fourier transforming the time response of the cavity 
field. 
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there are many sharp peaks occurred within the bandwidth of the source. They are 

cavity modes. Then, another single pulse, which has the frequency bandwidth narrow 

enough to excite only one cavity mode of interest, is applied to the cavity. An 

example for one of the modes achieved in Fig. 3.10(b), is shown in Fig. 3.11. The 

time dependence of the intensity shows the excitation pulse and then exponential 

decay of the energy inside the cavity after turning off the excitation pulse. 

 Snap-shot of each time-varying field components can be recorded to illustrate 

the point-in-time view of field distributions of the resonant mode. The field profile 

can be viewed in any arbitrary cut plane of the computational model. The Q factor is 

obtained by measuring the exponential decay of electromagnetic energy after turning 

off the oscillation of the source [95]: 

 ]/)(exp[)0()/exp()0()( 0 QtUtUtU ph ωτ −=−=                     (3.25) 

where U(t) is the electromagnetic energy in the mode at time t, and ω0 is the 

frequency of the cavity mode. The total Q factor is evaluated by measuring the slope 

of the logarithm plot of this energy-time relation. In fact, the Q factor can also be 

calculated by measuring spectrum linewidth of the cavity mode. However, the value 

calculated by this method is not accurate limited by the resolution in frequency 

domain of the calculations. As discussed in Section 2.6 in the case of two-dimensional 

photonic crystal slab cavity, in order to efficiently determine what factors are limiting 

the Q factor of the defect modes, another calculation method is adopted to separate 

out losses into different directions, vertical and in-plane directions. The vertical and 

in-plane losses are caused by leaky modes above the light line and imperfection of 

Bragg reflection resulted from lack of number of photonic crystal layers that surround 

the defect region or cavity modes not locating inside the photonic bandgap, 

respectively. The total radiating power P can be divided in to vertical radiation P┴ 

and in-plane radiation P//. The total radiating power P = P┴+P// is related to the 

electromagnetic energy U(t) by [95]: 

Q
U

dt
dUP 0ω

=−=                                                (3.26) 

where ω0 is the angular frequency of the cavity mode. As a result, the total Q factor 

can be separated into vertical and in-plane components, denoted as Q┴ and Q//, 

respectively, and satisfy the following relation: 
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Figure 3.12 Schematic illustration of the computational domain for a two-
dimensional photonic crystal slab cavity with separation of power-collecting 
boundaries at a half-wavelength from the slab. Yellow arrows indicate the energy 
losses into the in-plane direction. Blue arrows define the energy losses into 
radiation modes. 
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Figure 3.11 Decay of the electromagnetic intensity stored in the photonic crystal 
defect cavity. After the initial excitation pulse, the exponential decay of the 
cavity modes sets in. 
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Combine the relations in Eq. (3.26) and Eq. (3.27), the Q factor in each direction is 

then given by [96]: 
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0
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⊥
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P
UQ ω                              (3.28) 

In practical calculation, these effective Q values are calculated by spatial separation of 

the power radiated by the mode that is absorbed in the outer boundary. The in-plane 

radiation P// is defined as the Poynting vectors that are absorbed into the sidewalls that 

extend from approximately a half-wavelength above the waveguide to a half-

wavelength below the waveguide to separate the guiding losses from the radiation 

losses as shown in the illustration in Fig. 3.12. The vertical radiation P┴ is defined as 

the Poynting vector that are absorbed into the rest of the boundaries, where the 

radiating power can be considered as radiation losses. With this separation of Q, the 

factors that limit the performance of the cavity can be understood. A proper design 

can then applied to improve the performance. However, this method of separation of 

Q is not applicable to three-dimensional structures, because in this case light is 

confined by Bragg reflection in all directions. As a result, proper separation 

boundaries cannot be simply determined.  

Purcell factor [97], which indicates strength of interaction between 

electromagnetic field and emitters inside a cavity, and mode volume [98] are 

calculated using the following definition: 
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where )(rrε is the dielectric constant at position rr , V is a volume of the computational 

domain, and )(rE rr
is the total electric field at position rr . In addition, the effective 

refractive index of photonic crystal structures is determined by taking the square root 

of the space-averaged dielectric constant [99]: 
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In next Chapter, this value of effective refractive index will play an important role to 

partly explain the origin of strong confinement of light in the cavity after the closing 

of the photonic bandgap. 

  
3.4 Summary 
 In this chapter, details of the calculation method based on the three-

dimensional finite-difference time-domain method have been described. Two types of 

boundary conditions, perfectly matched layer and periodic boundary conditions, have 

been selected to bound the computational domain depending on the calculations to 

obtain efficient and accurate solution of electromagnetic waves. The applications of 

the 3D FDTD calculations to investigate photonic band structures, equi-frequency 

contours, cavity’s resonance frequencies, field distributions, quality factor, mode 

volume, and effective refractive index have been shown. The computational methods 

described in this chapter will be applied to the calculation of all structures in the 

following chapters. 
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Chapter 4 

High-Q Photonic Crystal Nanocavity 

after Closing of Photonic Bandgap with 

Optimal Slab Thickness  
 

4.1 Introduction 
 As mentioned in Chapter 2, complete control of light in three dimensions can 

be achieved in three-dimensional photonic crystal, which possesses a three-

dimensional band gap. However, fabricating such an ideal structure has still been a 

great challenge due to the requirement of highly-advanced structural designs as well 

as fabrication techniques. Therefore, most of research on photonic crystal has been 

focused on photonic crystal slab structure, which requires only relatively easy top-

down fabrication process. In order to minimize out-of-plane scattering loss, a so-

called air-bridge photonic crystal slab structure, which is the photonic perforating 

dielectric slab cladded with air, is one of the most promising structures. However, in 

air-bridge slab structure, there are only gaps for guided modes not for all modes. 

Therefore radiation losses, which correspond to the mode locating above the light line, 

in the vertical direction still exist. When a defect is introduced to the slab to form a 

nanocavity, the vertical radiation loss will limit the Q factor in the vertical direction. 

While the in-plane Q factor can be increased exponentially with the number of 

photonic crystal layers surrounding the defect region, the vertical Q factor limits the 

total Q factor to only low values [96]. This is one of the most important obstacles for 

photonic crystal slab nanocavities to achieve high-efficiency light sources such as low 

threshold lasers and single-photon emitters. Much research has been done to design the 

structures that can reduce the vertical radiation losses. Thanks to the flexibility in the 
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design of two-dimensional photonic crystal slab nanocavity, various designs of ultra-

high Q nanocavities have already been succeeded [65-69,72,73]. A designed Q in the 

order of 107-108 has been recently achieved [72,73]. With the maturation of 

nanometer-size photonic crystal fabrication technology in past ten years, photonic 

crystal nanocavities with a Q factor of more than one million have been 

experimentally demonstrated [74,75]. However, most of designs of those structures 

are based on the modification of the defect structures, in which the high Q modes are 

very sensitive to their surrounding structural parameters, that is, these designs require 

a precise control of position and size of air holes in practical fabrication, in which the 

Q-factor significantly degrades when the structural parameters are deviated from their 

ideal setups [76,100] This lack of robustness to changes in the cavity geometry 

becomes a great difficulty to practically fabricate the device with quality as good as 

the simulation results. On the other hand, slab thickness, which is also a parameter of 

design, can be precisely controlled by using epitaxial growth techniques such as 

molecular beam epitaxy (MBE) or metal organic chemical vapour deposition 

(MOCVD). So far, slab thickness of photonic crystal slab structure is usually chosen 

in the order of half wavelength to ensure that PBG exists and to confine cavity modes 

strongly within the slab [60]. 

In this Chapter, a new approach to design high Q factor photonic crystal 

nanocavities by just simply changing slab thickness without modification of structural 

parameters of air holes surrounding the defect cavities is presented. Dependence of Q-

factor of dipole modes in H1-defect nanocavity on slab thickness is numerically and 

experimentally investigated and found that high-Q can be obtained after closing of the 

photonic bandgap. These dipole modes in H1 cavity consist of two orthogonal 

polarized modes and are energetically degenerated, so the cavity possessing such 

modes can be applied to polarization entangled photon sources [101,102]. 

 

4.2 Structural parameters and defect modes 
 In this section, details of structural parameters exploited in the FDTD 

calculation and defect mode of interest are presented. The computational model of the 

design of the cavity is based on an air-bridge type photonic crystal slab, which is a 

dielectric slab thick d with refractive index of 3.4, corresponding to that of GaAs, 

cladded with air in both upper and lower sides. The photonic crystal geometry is a 
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triangular lattice of air holes with lattice constant a and radius of air hole r. The 

schematics of the calculation model are shown in Fig. 4.1. The calculation domain 

contains eleven air holes along the Γ-K direction. A defect, called a H1-defect, is 

formed by simply removing one air hole at the center as shown as a missing hole at the 

center. The defect cavity contains no modification in shape and position of the 

surrounding holes. 

 The H1-defect cavity in a triangular lattice photonic crystal slab is well-known to 

support doubly-degenerated dipole modes in a bandgap, in which Q factor, limited by the 

radiation losses, is only a few hundreds in the conventional structure with parameters d = 

0.50a and r = 0.30a [59]. The defect mode of interest is the x-dipole mode [96], which is 

one of the doubly-degenerated dipole modes, and its field distributions of Ey component 

at the center of the slab is shown in Fig. 2(a). Ex-field distribution of the y-dipole mode is 

also depicted in Fig. 2(b). It can be seen that the two modes are polarized orthogonally to 

each other. In the FDTD calculation, a cubic lattice, in which size of grid cells in three 

dimensions are identical, is used as mentioned in Chapter 3.1. Therefore, the structure is 

not a completely perfect triangular lattice. As a result, anisotropy occurs in the x and y 

directions, which leads to splitting of the dipole degeneracy. The full-width at half-

maximum (FWHM) of the emitter inside the cavity is ensured to be narrow enough to 

excite only the mode of interest when cavity Q and mode volume are calculated. 
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Figure 4.1 (a) Top-view and (b) schematic view of the H1-defect nanocavity in a 
two-dimensional photonic crystal. Circles represent air holes with refractive index 
of 1 etched into a slab of GaAs with refractive index of 3.4.  
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Figure 4.2 Field distributions at the center of the slab of (a) Ey component of x-
dipole mode and (b) Ex component of y-dipole mode. The circular lines show 
boundaries of air holes. 
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4.3 Increase of cavity Q of H1 dipole modes by optimizing slab 

thickness 
 Dependence of Q factor of the x-dipole mode on a wide range of slab thickness, 

from 0.65a to 2.90a, for the air-bridge slab with radius of air holes r = 0.40a, is shown in 

Fig. 4.3(a). The results for the y-dipole mode are also shown in Fig. 4.3(b). Because 

the behavior of Q for both modes is in similar, only the x-dipole mode is discussed in 

this section. As seen in Fig. 4.3(a), the Q factor of the x-dipole mode is significantly 

improved by slightly increasing the slab thickness. The Qtotal reaches the highest value up 

to 16,200 at the slab thickness d = 1.35a with small mode volume Veff  = 0.44(λ/n)3. 

Interestingly, such a high Q factor is obtained after the photonic bandgap for TE-like 

modes between the lowest two TE-like bands, denoted as 1st- and 2nd-guided band, is 

closed at d = 1.20a. Field distributions shown in Fig. 4.4 confirm that the cavity mode in 

the structure with d = 1.35a is indeed more strongly confined within the cavity than that 

of the structure with conventional slab thickness (d = 0.60a). The Qtotal was divided into 

two components, Q// and Q┴, in order to separately observe a behavior of the Q factor 

in each direction. Firstly, a tendency of Q-factor in a conventional range of slab 

thickness, before closing of the photonic bandgap, should be explained. The in-plane 

Q can be increased by increasing the number of air holes surrounding the cavity, however, 

the Qtotal of dipole mode is limited by decay to the free space, and thus the Qtotal is only a 

few hundreds. It gradually drops as the slab thickness increases resulted from the 

reduction of Q// due to the decrease in the photonic bandgap size [60]. It should be 

clarified that the peak of Q┴ at the minimum value of Qtotal and Q// has no physical 

significance. In that region, because of the coupling between the cavity mode and the 

2nd-guided mode, the cavity mode mainly leaks into the slab guided mode. Therefore, 

the component of light that can radiate toward the vertical direction becomes very 

small, which unavoidably results in a large value of Q┴ without any evidence of 

strong confinement of light in this direction due to the cavity. 

 After the gap is closed, both Q┴ and Q// (and thus Qtotal), increase together to 

their peaks at d = 1.35a and then decrease when the slab thickness exceeds that value. 

Only Q┴ significantly rises up again when the slab thickness keeps increasing and 

another maximum peak occurs at d = 2.70a. The increase of Qtotal after closing of the 
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Figure 4.3 Dependence of Q factor on slab thickness for the (a) x-dipole and (b) 
modes in H1-defect cavity with r = 0.40a. The total Q factor (square), the vertical 
Q factor (circle) and the in-plane Q factor (triangle) are plotted separately. The 
photonic bandgap is closed when d ≥ 1.20a. 
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Figure 4.4 Comparison of field distributions between the structures with (a) d = 
0.60a and (b) d = 1.35a. Both structures have r = 0.40a. The Ey-field profiles are 
shown in cross section at the center of the cavities along Γ-K direction. 
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PBG is unexpected because Q// is supposed to greatly drops limiting Qtotal. The origin of 

the strong light confinement mechanisms at the optimized slab thickness in each 

direction is separately considered. In the vertical direction, there are two maximum 

peaks of Q┴ at d = 1.35a and 2.70a. These values of slab thickness correspond to ~1λ 

and 2λ, where the effective refractive indices of the structures were calculated to be 

2.608 and 2.619, respectively, using Eq. (3.31). Therefore, the strong confinement 

mechanism in the vertical direction is due to the resonance of the cavity mode when 

the slab thickness is equal to a multiple of wavelength. 

If the slab is thick enough, by more than 1.20a, the 2nd-guided band falls 

below the lowest-order band edge and is responsible for destroying the photonic 

bandgap. As a result, the photonic bandgap effect cannot be used to explain the strong 

light confinement mechanism in the in-plane direction. Figure 4.5 shows a band 

diagram for the structure with d = 1.35a. The cavity mode in this structure has a 

normalized frequency of a/λ = 0.292, which is spectrally matched with the 2nd-guided 

mode near the light line. Furthermore, the cavity mode also has the same symmetry as 

Figure 4.5 Band diagram for the structure with d = 1.35a and r = 0.40a. The x-
dipole mode with normalized frequency of 0.292 overlaps with the 2nd-guided 
mode.  
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that of the guided mode, even symmetry about the center of the slab. If their 

wavevectors are additionally matched, they can be coupled with each other. In order 

to do that, coupling between the cavity mode and the guided mode was studied in the 

momentum space. The field distributions of the cavity mode in momentum space 

were obtained by directly taking the field distributions of the cavity mode in real 

space a two-dimensional spatial-Fourier transform. Figure 4.6(a) shows Ey-field 

distribution in momentum space for the x-dipole mode with d = 1.35a, which is the 

optimal slab thickness with high Q// of more than 30,000. That for the structure with d 

= 1.75a, which has low Q// of about 1,000, is also shown in Fig. 4.6(b) for comparison. 

For the guided mode, equi-frequency contour (EFC) of the 2nd-guided mode, which 

represents its distribution in the momentum space, at the same frequency as the cavity 

mode was calculated. The equi-frequency contours for both the structures with d = 

1.35a and 1.75a are in circular shape and are plotted as dotted circles in Fig. 4.6. For 

the optimal structure with d = 1.35a, the equi-frequency contour only overlaps with 

faint components of the cavity mode field, which leads to decoupling between the 

cavity mode and the 2nd-guided mode and thus high Q//. In addition, amount of the 

momentum components that locates within the light line is very small, which is 

corresponding to small radiation losses into the vertical direction. This is consistent 

with the previous assumption that this structure has very high Q┴. In contrast, in the 

structure with d = 1.75a with Q// of about 1,000, there are strong components of the 

field distribution that overlap with the equi-frequency contour of the 2nd-guided mode, 

especially at M point of the first Brillouin zone. As a result, the cavity mode is not 

strongly confined in the cavity but well guided through the slab. Amounts of overlap 

between the cavity mode and the equi-frequency contour of the 2nd-guided mode of 

each structure with the slab thickness from 1.20a to 1.75a are summarized in Fig. 4.7. 

These amounts of overlap were calculated by firstly normalizing the field 

distributions in momentum space and then taking them a line integral over the equi-

frequency contour. As expected, the amounts of overlap show the opposite behavior 

to Q//, while the minimum amount of overlap occurs at the slab thickness where the 

Q// is maximum. With these results, the origin of high Q// is concluded to be resulted 

from the decoupling between the cavity mode and the guided mode in the momentum 

space. Such a counter intuitive behavior of Q factor after closing of the photonic bandgap 

is also attainable in the y-dipole mode of the same cavity structure and experimental 

confirmations will be shown in next section.  
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Figure 4.6 Ey-field distributions in momentum space for the cavity mode in the 
cavities with (a) d = 1.35a and (b) d = 1.75a including light lines (solid circles) 
and equi-frequency contours of 2nd-guided modes at the cavity mode frequencies 
(dotted circles). 
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The behavior of Q factor as a function of the slab thickness of another type of a cavity 

was also investigated to see whether the assumption of light confinement after closing of 

the photonic bandgap in the H1-cavity is available. A model of a three-missing-hole 

(L3) cavity [103] is shown in Fig. 4.8(a). The calculation model of the L3-defect 

structure contains the same number of periods of air holes surrounding the cavity as 

that of the H1-cavity. A fundamental mode of the L3-defect cavity was exploited as a 

defect mode. Its field distribution is depicted in Fig. 4.8(b). Dependence of Q factor 

on the slab thickness of the L3-defect structure is shown in Fig. 4.9(a). The radius of 

air holes was set to 0.30a, not 0.40a like in the case of the H1-defect cavity, because 

with r = 0.40a the fundamental mode is embedded in the first band. With this radius 

of air holes, the photonic bandgap is closed when the slab thickness is equal or more 

than 1.10a. The total Q factor is highest at d = 0.65a, and decreases as the slab 

thickness increases beyond the value at the maximum Q factor due to decreasing in 

gap size. It can be seen that no peak of the total Q factor is observed in the range of 

the slab thickness after the bandgap is closed. The coupling between the cavity mode 

Figure 4.7 In-plane Q versus amounts of overlap between the cavity mode and the 
equi-frequency contour of the 2nd-guided mode of each structure with the slab 
thickness from 1.20 to 1.75a. 
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Figure 4.8 (a) Schematic of the L3-defect slab nanocavity with three missing air 
holes. (b) Ey-field distribution of the fundamental mode of the L3-defect structure 
detected at the center of the slab. The circular dotted lines show the regions of air 
holes for reference. 
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Figure 4.9 (a) Dependence of Q factor on slab thickness for the fundamental mode 
in L3-defect cavity with r = 0.30a. The photonic bandgap is closed when d ≥ 
1.10a. (b) Ey-field distribution in momentum space for the fundamental mode with 
d = 1.75a including light line (solid circle) and equi-frequency contour of 2nd-
guided mode (dotted circle). 
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and the guided mode in the momentum space after the closing of the photonic 

bandgap was then investigated. Figure 4.9(b) shows the Ey-field distribution in the 

momentum space for the fundamental mode with d = 1.75a and equi-frequency 

contour of the 2nd-guided mode at the same frequency. There are strong components 

of the field distribution overlapping with the equi-frequency contour of the 2nd-guided 

mode. Therefore, the cavity mode is strongly coupled with the guided mode and 

laterally leaks out of the cavity, leading to very low Q factor. 

 In this section, the anomalous behavior of Q factor of the modes in H1-cavity 

after closing of the photonic bandgap has been numerically presented. In the following 

sections, the numerical prediction of high-Q cavities will be experimentally confirmed 

and shown that the experimental results are in good agreement with the calculated 

results. 

 

4.4 Fabrication processes 
To demonstrate emissions from the designed cavity, gallium arsenide (GaAs) 

material system with quantum dot as an active material has been used. Four samples 

with different thickness of the active slab were prepared. Each sample was grown on 

an undoped (100)-oriented GaAs substrate by molecular beam epitaxy. First, a 300-

nm-thick GaAs buffer layer was deposited on the substrate at 600oC followed by a 

700-nm-thick Al0.7Ga0.3As sacrificial layer. Finally, GaAs slab layers with the slab 

thickness of 190, 315, 390, and 450 nm including a self-assembled indium gallium 

arsenide (InGaAs) quantum dot (QD) layer at the center of the slab were grown on 

each sample. The quantum dot density was ~ 1010 cm-2. The emission from the QD 

ensemble can be used to prove the cavity characteristics because of its broad spectrum 

across a wide range of wavelength of 920-1050 nm at 4 Kelvin.  

Figure 4.10 summarizes whole fabrication process for fabricating the 

designed cavities. Firstly, 150 nm of silicon-dioxide (SiO2) was deposited on the 

samples by magnetron sputtering to be used as a hard mask. Sputtering condition was 

as follows: Argon (Ar) 12 sccm, Oxygen (O2) 3 sccm, RF power 300 W, sputtering 

time 12 minutes. Because the thick active layers and large fraction of air in the 

photonic crystal patterns of the designed structures compared to those of conventional 

devices, the thickness of the SiO2 mask layer was chosen to be thick enough to make 

sure that the photonic crystal patterns could be well transferred through the active 
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Figure 4.10 Fabrication process flow for a two-dimensional air-bridge photonic 
crystal nanocavity. 
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layer with good profile of sidewall of the air holes. Then, the samples were spin 

coated with electron-beam resist (ZEP-520A). The conditions for the spin coating 

process were as follows; spinning speed 500 rpm for 5 seconds, 4000 rpm for 60 

seconds, and pre-baking at 180 ºC for 20 minutes in an oven. With these conditions, 

the resist thickness was approximately 350 nm. Photonic crystal patterns with radius 

of air holes r = 0.40a and various periodicities between a = 245-360 nm were 

prepared. The wide range of periodicities covers a range of the slab thickness of 

interest. One air hole at the center of each pattern was omitted to form the H1-defect 

cavity. The photonic crystal structures were patterned using an electron-beam 

lithography system (JEOL JBX-6000) at 50 kV, with 80 pA current and 75 μC/cm2 

dose. The exposed ZEP-520A was developed in n-amyl acetate (Nihon-Zeon, ZED-

N50) at 20 ºC for 10 seconds, and rinsed in mixed solvent (Nihon-Zeon, ZMD-B) at 

room temperature for 30 seconds. The photonic crystal patterns were subsequently 

transferred to the SiO2 layer by an inductive coupled plasma reactive ion etching 

(ICP-RIE) using a tetra fluorocarbon (CF4) and Ar mixture. Flow rates of gases were 

set to 5 sccm and 6 sccm for CF4 and Ar, respectively. The etching process was 

performed for 75 seconds with RF platen power of 500 W and source power of 125 W. 

The pressure during the process was set to 0.75 Pa and all the process was done at 

room temperature. Dry etching of the GaAs membrane was then performed in an ICP-

RIE using a chlorine (Cl2) and Ar mixture. Etching conditions were as follows: Cl2 5 

sccm, Ar 1.5 sccm, platen power 500 W, source power 125 W, initial pressure 1.2 Pa, 

final pressure 0.5 Pa, temperature 50 ºC and etching times 60, 70, 75, 90 seconds for 

the samples with the slab thickness of 190, 315, 390, 450 nm, respectively. The active 

layer was intentionally over-etched into the underlying sacrificial layer to assure the 

slab with vertical and smooth sidewalls of etched air holes. Finally, the sacrificial 

layer was removed by dipping the samples in a 1:9 hydrogen fluoride solution 

(HF:H2O) to form suspending air-bridge structures. The sample drying process after 

the wet etching was crucial and needed to be taken care of. To avoid the collapse of 

the air-bridge structures as a result of surface tension caused by trapped liquid 

underneath the membranes, the samples was rinsed in isopropyl alcohol (IPA), which 

has surface tension force relatively smaller than water, as the last rinsing solvent after 

the wet etching process to substitute the water. The fabricated air-bridge H1-defect 

nanocavity with d = 390 nm is shown in the scanning electron 
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Figure 4.11 Scanning electron micrograph of the fabricated H1-defect nanocavity 
with the slab thickness of 390 nm viewed in (a) Cross sectional view and (b) Top 
view.
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micrographs of Fig. 4.11 in cross sectional and top views. In spite of defining circular 

shapes of masks, the fabricated photonic crystal patterns have air holes slightly 

elongated in y direction resulted from fabrication errors occurred during the dry 

etching process. This elongation of air holes will play an important role in breaking of 

degeneracy of the doubly-degenerated dipole modes in the H1-cavity as will be shown 

in the next section. 

 

4.5 Optical characterization 
 

4.5.1 Experimental setup of photoluminescence measurements 

To investigate optical properties of the nanocavities, photoluminescence (PL) 

measurements were performed in a temperature-controlled liquid-helium cryostat at 4 

K. Figure 4.12 illustrates schematics of the measurement setup. The cryostat was 

pumped down to vacuum. A continuous-wave (CW) titanium:sapphire laser operated 

at 780 nm was used as an excitation source. The pump laser beam was focused to a 4 

μm-diameter spot on the sample surface by a microscope objective [50×, numerical 

aperture = 0.42], and was positioned on the photonic crystal regions using piezo-

electric nanopositioners. For imaging purpose, white light from a lamp was 

illuminated on the sample and a charge-coupled device (CCD) camera was used to 

image the positions of the photonic crystals. The photoluminescence from the QDs 

was collected by the same microscope objective and analyzed with both a 

monochromator equipped with a cooled InGaAs multichannel detector array and a 

triple grating monochromator equipped with a cooled Si CCD for high-resolution 

measurements. A mirror located in front of the monochromator can be flipped to 

select the detections, image of photonic crystals or luminescence. A polarizer was 

located just before the monochromator to filter the different in-plane polarization 

components of the emitted light from the cavity.  

 

4.5.2 Experimental results 

Figure 4.13(a) shows PL spectrum for the H1-cavity with a = 280 nm, r = 

0.40a, and d = 390 nm. The cavity modes shown as sharp peaks are clearly 

distinguishable from the broad background emission range of the quantum dot 
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Figure 4.12 Schematic illustration of photoluminescence measurement setup. 
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Figure 4.13 (a) PL spectrum from the H1-nanocavity with a = 280 nm, r = 0.40a, 
and d = 390 nm. (b) Periodicity dependence of wavelength of the cavity modes. 
All the cavities have r = 0.40a and d = 390 nm. Error bars are also shown. 
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ensemble. The spectra of the cavity modes can be tuned throughout the emission 

range of the quantum dots by changing the periodicity of the photonic crystals [105]. 

The periodicity dependence of wavelength of the cavity modes are plotted in Fig. 

4.13(b) with the separation between the two modes of approximately 10 nm. All the 

cavities have r = 0.40a and d = 390 nm. The pair of modes observed in Fig. 4.13(a) is 

a result of the two perpendicular dipole modes in this cavity. When filtering the 

spectrum with a polarizer, they are linearly polarized and orthogonal to each other as 

shown in Fig. 4.14. The mode at the shorter wavelength corresponds to the x-dipole 

mode, while the other is y-dipole mode. Spectral splitting of the modes does not occur 

in a completely symmetric H1-defect cavity within a two-dimensional photonic 

crystal, since the structure with a 60º rotational symmetry leaves two degenerated 

eigenmodes. Therefore the measured mode splitting of around 1% relative to the 

wavelength in the figure is expected to result from fabrication fluctuations within the 

photonic crystals [105]. One possible fluctuation is the elongation of air holes as can 

be observed in the SEM image of the fabricated structure shown in Fig. 4.11(b). Such 

a degeneracy lifting occurs even in 3D-FDTD simulations as discussed in Chapter 4.2. 

Sharp peaks of both x-dipole and y-dipole modes of the structure with the slab 

thickness d = 390 nm and periodicity a = 290 nm, which is corresponding to d = 

1.345a, reflect their high Q. In contrast, the cavity with d = 190 nm and a = 360 nm, 

which is corresponding to d = 0.53a, shows much broader linewidths of both modes. 

Figure 4.15 shows a high-resolution PL spectrum for the x-dipole mode of the cavity 

with d = 1.345a, fitted with a Lorentzian function. The linewidth of 0.34 nm 

corresponds to the estimated Q factor of about 3,000 calculated from ratio of the 

center wavelength of the peak to its full width at half maximum (FWHM). Figure 4.16 

summarizes the measured-Q over a wide range of the slab thickness for both the x-

dipole mode and y-dipole mode compared with the calculation results extracted from 

Fig. 4.3. The experimental results were obtained from all four samples and were 

plotted in the graphs with their corresponding d/a. The Qs at each d/a shown in the 

figure were measured from more than ten identical cavities. The square symbols 

representing the measured-Qs are the averaged values with the error bars. It can be 

seen that the measured-Qs have tendencies very close to that of the calculated-Qs. In 

the range of the slab thickness before closing of the photonic bandgap (at d = 1.20a), 
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the measured-Qs for both x- and y-dipole modes are very low, and they gradually drop 

as the slab thickness increases due to the reduction of the photonic bandgap size. These 

results are consistent with the results of previous studies on the dipole modes of the 

H1-cavity with no modification of the defect structure [59,105]. However, they 

significantly increase by more than an order of magnitude after closing of the photonic 

bandgap with the highest measured-Q being approximately 3,000 at d = 1.345a for the 

x-dipole mode and about 2,000 at d = 1.393a for the y-dipole mode. The calculated-Q 

for the x-dipole and y-dipole modes are 16,200 at d = 1.35a and 7,500 at d = 1.40a, 

respectively. These differences between the measured and calculated values can be 

attributed to the quantum dot absorption and the fabrication errors causing the 

roughness of the sidewall and the fluctuation of shape and size of the etched air holes. 

The results clearly show that the structural parameters of the best fabricated cavity 

and those of the predicted one are almost exactly the same, in which the slab thickness 

d = 1.345a of the experimental results is close to d = 1.35a of the calculated ones, 

because the only parameter that needs to be adjusted is the slab thickness which can 
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Figure 4.15 High-resolution PL spectrum for the x-dipole mode shown in Fig. 
4.14(a) fitted with a Lorentzian function (red curve). 
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be precisely controlled by using epitaxial growth techniques such as MBE and 

MOCVD. The cavity modes in the samples with the slab thickness around 1a cannot 

be recognized due to their very low Q. 

 

4.6 Summary 
In summary, a significant increase of Q-factor of dipole modes in photonic 

crystal H1-defect nanocavity after closing of the photonic bandgap were numerically 

and experimentally demonstrated in this Chapter by tuning the slab thickness. The 

optimal slab thickness is equal to a wavelength of light confined in the cavity 

confirmed by calculating effective refractive index of the porous structure. The 

maximum calculated-Q and measured-Q are ~ 16,200 at d = 1.35a and ~ 3,000 at d = 

1.345a, respectively. They were obtained after closing of the photonic bandgap. In 

this cavity, the strong light confinement of the cavity in the in-plane direction is not 

caused by the photonic bandgap effect due to a lack of the photonic bandgap but 

resulted from the decoupling between the cavity mode and the guided mode in the 

momentum space yielding only weak coupling between these two modes. As a result, 

the light can be strongly confined within the cavity despite of no photonic bandgap. 

The results clearly show that the structural parameters of the best fabricated cavity 

and those of the predicted one are almost exactly the same, in which the slab thickness 

d = 1.345a of the experimental results is close to d = 1.35a of the calculated ones, 

because there is no modification of the defect structure and the only parameter that 

needs to be adjusted to achieve high Q is the slab thickness which can be precisely 

controlled by using epitaxial growth techniques such as MBE and MOCVD. This 

finding will contribute to extending the freedom of cavity design, such as that for the 

application to polarization entangled photon source, where it is required to form 

cavity modes with prescribed Q factor and polarization.  
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Chapter 5 

High-Q Photonic Crystal Nanocavity 

without Photonic Bandgap by 

Modulating Air Hole Radii in Square 

Lattice  
 

5.1 Introduction 

 In the previous Chapter, high quality factor dipole modes in photonic crystal 

H1-defect nanocavity were shown to be achieved even there was no photonic 

bandgap at the frequencies of the cavity modes. These have been numerically and 

experimentally proved to be a result of decoupling between the cavity modes and the 

losses in the momentum space. However, the cavity used in the previous section 

requires definite structural parameters in order to achieve high Q factor. That means, 

if some of the parameters are different, for example, refractive index is different or 

the structure is not an air-bridge slab, the cavity is needed to be re-designed from the 

starting point to have high Q or is even impossible to achieve high Q after all due to 

the restriction of the design. In addition, the maximum designed Q factor of 16,200 

of the dipole mode in H1-cavity is still preferable to be further increased with 

consideration of many applications, such as cavity quantum electrodynamics (cavity-

QED) and quantum information processing [100,106-112]. In a strong coupling 

cavity-QED system [106-108], a large figure of merit effVQ / is desired for 

improving the quantum coherence, while high Q/Veff is preferable in a weak coupling 

regime [100,109-112]. Therefore, a cavity with large Q factor is required with mode 

volume being kept small. Moreover, in some applications, such as structures with 
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low refractive index and quantum cascade lasers, there is no photonic bandgap in a 

frequency region of interest, i.e., photonic bandgap for the structure with low 

refractive index only exists in very high frequency range, while the photonic bandgap 

is not open for light polarized in transverse magnetic (TM) -like mode, where 

photons are polarized in quantum cascade lasers. So far, there is no appropriate 

design of photonic crystal cavities that can achieve high Q for both structures. 

 In this Chapter, the concept of mode decoupling that allows one to have high 

Q cavities despite of no existence of photonic bandgap, obtained in the previous 

Chapter, is applied to design high Q photonic crystal nanocavities with square lattice. 

The high Q cavities are achieved by modulating air hole radii surrounding the 

cavities with proper modulation profile. Although there is no photonic bandgap at the 

cavity mode frequency, the maximum Q factor of the doubly-degenerated modes in 

the designed cavity exceeds 120,000 with the mode volume of 0.79(λ/n)3, leading to 

a large figure of merit Q/Veff in the weak coupling regime of about two times higher 

than the highest value reported so far for doubly degenerated modes in photonic 

crystal cavities. Therefore, the designed cavity is very promising for realizing 

entangled photon sources. In addition, it is shown that the designed cavity can also 

be effectively applied to achieve high Q cavity in low index material and high Q 

cavity for quantum cascade lasers, in which a lack of photonic bandgap usually 

hinders them from applications. 

 

5.2 Cavity structures and defect modes 
Because the concept of mode decoupling obtained in the previous Chapter 

directly deals with the distribution of cavity field and losses in the momentum space, 

a photonic crystal structure with a square lattice is adopted to design a high Q cavity 

rather than a triangular lattice. This is because the square lattice has lower symmetry, 

and hence simplifies the cavity design. There are three symmetry points in a square 

lattice where a defect can be introduced to form a cavity. Two of them possess a 90º 

rotational symmetry (points d and f) and the other has 180º rotational symmetry (point 

e) as shown in Fig. 5.1. A designed cavity is chosen to have a defect located at point f, 

in which the cavity is surrounded by four innermost holes and doubly-degenerated 

modes are expected to exist. The computational model of the design of the cavity is 
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based on an air-bridge type photonic crystal slab, which is a dielectric slab thick d 

with refractive index of 3.4, corresponding to that of GaAs, cladded with air in both 

upper and lower sides. Air holes have a lattice constant a and radius r. In order to 

form a cavity, periodic components of the square lattice photonic crystals are 

perturbed to introduce a defect. The simplest ways to do this are shown in Fig. 5.2. A 

defect can be generated by shifting positions, reducing sizes, or both of the innermost 

air holes without removing of any hole. Such kinds of perturbations result in cavities 

with donor defect modes as discuss in Chapter 2. Doubly-degenerated modes existing 

in this cavity are shown in Fig. 5.3, where the defect cavity is formed by shifting the 

innermost holes outward for 0.05a. Ex component field distribution at the center of the 

slab of x-mode is shown in Fig. 5.3(a), and Ey component field distribution of y-mode is 

depicted in Fig. 5.3(b). It is worth noting that these x- and y-modes are a new type of 

doubly-degenerated modes in photonic crystal cavities. In the FDTD calculation, as same 

as in Section 4.2, a cubic lattice, in which size of grid cells in three dimensions are 

identical, is used. However, unlike in the case of the triangular lattice, the cubic grid cell 

can well be exploited to model the structure with the square lattice without adding any 

anisotropy to the structure. As a result, resonant frequencies of the x- and y-mode are 

completely coincided in the spectrum. In order to selectively excite only one mode at a 

Figure 5.1 Real space lattice of a two-dimensional square lattice. High symmetry 
points about which a defect can be formed are also shown. Points d, e, and f 
correspond to 90º, 180º, and 90º rotational symmetry points, respectively. 
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Figure 5.2 Three types of defect cavities generated at a symmetry point f in 
photonic crystals with a square lattice. 
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Figure 5.3 Field distributions at the center of the slab of (a) Ex component of x-
mode and (b) Ey component of y-mode. The circular lines show boundaries of air 
holes. Radius and thickness of the structure are set to 0.40a and 0.5a, respectively. 
Nearest neighbor holes are shifted outward for 0.05a to form a cavity. 
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time, a pulse source is intentionally located at a symmetry point where one mode has its 

antinode at that position, while the other mode has its node. And thus, only the mode with 

its antinode at the position of the source is excited.  

 Because the behavior of Q for the x- and y-modes is in similar, only the x-

mode is discussed in this section. As can be expected, Q factors of these modes are very 

low. In this cavity both the vertical Q and in-plane Q are only a few hundreds and 

thousands, respectively. Figure 5.4 illustrates total electric field distribution in momentum 

space of the x-mode shown in Fig. 5.3(a). The low Q in the vertical direction roots from 

two mechanisms. The first one is that the modes have an antinode of their fields at the 

center of the cavity and this plays an important role in coupling out of the slab. Like in the 

case of the dipole modes in the H1-cavity, the antinode of the cavity mode field leads to 

large components of wavevectors located inside the lightcone, and these components 

couple to the radiation modes and radiated out of the cavity. The other reason is that the 

mode is well confined in a small region of the cavity in real space, leading to 

delocalization of the mode in momentum space [113]. As can be seen, the dominant 

momentum components of the x-mode locating around M-point of the first Brillouin zone 

Figure 5.4 Absolute value of the electric field distribution of the x-mode shown in 
Fig. 5.3(a) in momentum space. Solid square and dotted circle represent the 
corresponding first Brillouin zone and light line, respectively. 
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strongly leak into the light cone. In the in-plane direction as previously mentioned, the 

photonic bandgap of the square lattice is at best very narrow, consequently, it requires a 

lot of effort to design a cavity with cavity modes inside the bandgap. Because the x-mode 

locates very close to the M-point of the valence bandedge, it is necessary to reduce 

coupling between the cavity mode and neighborhoods surrounding the M-point, 

especially when the cavity mode is embedded in the valence band and is strongly coupled 

to the guided mode, to obtain high in-plane Q.  

 

5.3 High cavity Q in graded photonic crystal structure by mode 

decoupling 
5.3.1 Graded photonic crystal nanocavity with modulating air hole radii 

 Figure 5.5(a) shows a top-view showing in-plane pattern of the designed cavity. 

This kind of structure is called a graded lattice structure [114]. The cavity is centered at 

point f surrounded by four innermost holes with r = 0.20a (cavity A). The air hole radii 

are then increased quadratically outwards from the innermost holes over six periods from 

r = 0.21a to 0.40a. The graded area is surrounded by four periods of air holes with a fixed 

air hole radius of 0.40a. The air hole radii profile is the same in both x and y directions in 

order not to break the degeneracy of the modes (Fig. 5.5(b)). The radius of the second 

nearest air holes is increased a little bit, approximately 2% from the value of the quadratic 

distribution. This jump of air hole size acts like a potential well and thus helps confine the 

mode in real space. However, too quick jump of holes leads to delocalization of the mode 

in momentum space, consequently, the mode undesirably couples to the losses. The size 

of jump is well selected to compromise the mode localization in real space and 

momentum space. In addition, the grading profile is also important. A Q-degradation is 

observed for gradings which occur too slowly or too quickly. The radii profile with too 

sharp modulation results in the stronger mode localization in real space and subsequent 

Fourier space broadening of the mode. On the other hand, too slow modulation destroys 

the mode confinement and the in-plane losses increase. In order to compare the Q factors 

and to thoroughly study the confinement mechanisms of the mode later, another cavity 

(cavity B) with different air hole radii profile is also investigated. Its radii profile 

compared with that of cavity A is plotted in Fig. 5.5(b). Both cavities have the same slab 

thickness of 0.60a. 
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5.3.2 Improvement of cavity Q in graded structure by mode decoupling 

 Figure 5.6 (a) and (b) show the absolute value of the electric field distribution 

of the x- and y-modes in cavity A. They are doubly-degenerated and orthogonally-

polarized. Both modes are a little expanded from the cavity site but still strongly 

confined within the grading region. It is also shown that the modes are well confined 

within the slab in the vertical direction, implying very high vertical Q. The Q factor 

reaches the highest value of more than 120,000 with mode volume Veff = 0.79(λ/n)3 

for both modes with the slab thickness d = 0.60a. This Q value is more than two 

orders of magnitude higher than the structure without grading. The figure of merit 

Q/Veff in the weak coupling regime is about two times higher than the highest value 

reported so far for doubly-degenerated modes [115]. In addition, such a high ratio of 

Q/Veff of cavity A is obtained even the modes are not located inside the photonic bandgap. 

The cavity modes slightly embed in the valence band near the M-point of the irreducible 

1st Brillouin zone as shown in Fig. 5.7. On the other hand, the x- and y-modes in cavity 

B have Q factor of only 12,000, about an order of magnitude lower than that of cavity 

A. It is worth noting that the cavity modes in cavity B also locate outside the photonic 

bandgap. The Q factors of cavity A and B are divided into the vertical Q of 175,000 

and 16,300, respectively, and into the in-plane Q of 336,000 and 53,000, respectively. 

This means that both vertical and in-plane Qs of cavity A are higher than those of 

cavity B. Details on the reasons why cavity A has very high Q even the cavity modes 

are not in the photonic bandgap, and why Q factors of the two cavities are so different 

are discussed in the followings.  

Figure 5.8(a) describes the distribution of the cavity mode, radiation mode 

and waveguide mode in momentum space. As aforementioned, the cavity mode is 

embedded in the valence band near point M, resulting in a circular shape of field 

distribution extracted from the equi-frequency contour of the 1st-guided mode at 

frequency of the cavity mode. It can be seen that the field distribution of the guided 

mode is very close to the cavity mode. Therefore, they are needed to be decoupled 

from each other in order to have strong confinement of the cavity mode in the in-

plane direction. In the vertical direction, components of the cavity mode field that 

expand into the light cone will be coupled out of the cavity. As a result, the cavity 

mode and the radiation mode must also be decoupled to have high vertical Q. 

Couplings of the modes to other modes (losses) can be considered through the 
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Figure 5.6 Total electric field intensities of the (a) x-mode and (b) y-mode in 
cavity A. (c) Cross sectional view of field intensity of the x-mode in xz plane. 
Broken lines represent the boundaries of the slab. 
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dielectric perturbation Δη(r), where η = 1/ε is the inverse of the dielectric profile of 

the lattice and r is the in-plane coordinate [114]. Δη(r) induces the change of cavity 

mode field and the coupling amplitude between the cavity mode and the leaky modes 

is determined by the Fourier amplitude of the dielectric perturbation )(~ kηΔ . Therefore, 

by reducing )(~ kηΔ at the corresponding vectors from the dominant Fourier 

components of the cavity modes to the leaky modes in momentum space, leakages 

into in-plane and vertical directions can be limited. As can be seen in Fig. 5.8(a), for 

the designed cavity modes, the modes mainly couple to the guided mode with the 

momentum components along the Γ-M and M-X directions, while they dominantly 

couple to the radiation mode along the Γ-M direction. Consequently, it is necessary to 

reduce the quantity of )(~ kηΔ at points where the guided mode is along the Γ-M and 

M-X directions and at region of light cone along the Γ-M direction. Figure 5.8(b) and 

(c) show the distributions of the dielectric perturbation for cavity A in real space and 

momentum space. The perturbation distribution in real space is firstly obtained by 

Figure 5.7 Band diagram for cavity A. The cavity modes with normalized 
frequency of 0.298 overlap with the 1st-guided mode near point M.  
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Figure 5.8 (a) Schematic illustration of mode distributions of cavity, radiation, and 
waveguide modes in momentum space. (b), (c) Distributions of the dielectric 
perturbation in real space and momentum space, respectively.  
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calculating the difference between the hole radii profile of cavity A and that of the 

structure with fixed r/a of 0.40a. Then the distribution in momentum space is 

achieved by taking the real space distribution two-dimensional spatial Fourier 

transform. Figure 5.9(a) and (b) are one dimensional line scans of )(~ kηΔ along Γ-M 

and M-X, respectively. The values of momentum components of the 1st-guided mode 

and the light cone are extracted from the photonic band diagram. The 1st-guided mode 

only overlaps with very small amplitudes of )(~ kηΔ  for cavity A in both directions, 

while it locates at the regions where the amplitudes of )(~ kηΔ are large for cavity B. 

This is because cavity B has the radii of air holes in the vicinity of the cavity larger 

than cavity A, and this increases the frequency of the cavity mode. Thus the cavity 

mode goes closer to the bandedge at the M point than that of cavity A. Therefore, the 

cavity mode of cavity B tends to more strongly couple to the guided mode and thus 

low in-plane Q. For the vertical direction, the amplitudes of )(~ kηΔ are likely to be 

small near the Γ point for both cavities. However, the size of light cone plays an 

important role here. Because the frequency of the cavity mode in cavity B is higher 

than that in cavity A, the size of light cone becomes bigger, consequently resulting in 

larger components of the amplitudes of )(~ kηΔ that lies within the light cone. 

Therefore the vertical Q of the mode in cavity B decreases. These are the reasons why 

the total Q factor of the mode in cavity A is much higher than that of cavity B. These 

results are then confirmed by concretely investigating and comparing the coupling 

behaviors of the modes in both cavities. Figure 5.10(a) and (b) shows the total electric 

field distributions in momentum space and their magnifications around the light cone 

region for the x-mode of cavity A and B including. Their magnitudes are normalized 

in order to accurately compare with each other. For the guided mode, equi-frequency 

contours of the 1st-guided modes at the same frequencies as the cavity modes are 

calculated. They are in circular shape and are plotted as solid circles in the figure. The 

equi-frequency contours only overlap with faint components of the cavity mode field 

for cavity A compared with that of cavity B, resulting in decoupling between the 

cavity mode and the 1st-guided mode and thus higher in-plane Q. Moreover, because 

of the localization of the mode in Fourier space and smaller size of light cone, the 

cavity mode in cavity A has a smaller number of momentum components falling 

inside the light cone and thus higher vertical Q than that of cavity B. These results 
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Figure 5.9 Comparison between the dielectric perturbations of cavity A and B 
along (a) Γ-M and (b) M-X directions with arrows indicating positions of the 
guided mode and the light cone. 
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(b) 

(a) 

Figure 5.10 Total electric field distributions in momentum space and their 
magnifications around the light cone for the x-mode of (a) cavity A and (b) cavity 
B including light lines (broken circles) and equi-frequency contours of 1st-guided 
modes at the cavity mode frequencies (solid circles). They are presented in 
normalized unit. 
 

-1                      0                      1
kx (2π/a)

1

0

-1

k y
 (2

π/
a)

Γ X

M

-0.5                        0                        0.5
kx (2π/a)

0.5

0

-0.5
k y

 (2
π/

a)

0

Max.

-1                      0                  1
kx (2π/a)

1

0

-1

k y
 (2

π/
a)

-0.5                        0                        0.5
kx (2π/a)

0.5

0

-0.5

k y
 (2

π/
a)

-1                      0                      1
kx (2π/a)

1

0

-1

k y
 (2

π/
a)

Γ X

M

-1                      0                      1
kx (2π/a)

1

0

-1

k y
 (2

π/
a)

Γ X

M

-0.5                        0                        0.5
kx (2π/a)

0.5

0

-0.5
k y

 (2
π/

a)
-0.5                        0                        0.5

kx (2π/a)

0.5

0

-0.5
k y

 (2
π/

a)

0

Max.

-1                      0                  1
kx (2π/a)

1

0

-1

k y
 (2

π/
a)

-1                      0                  1
kx (2π/a)

1

0

-1

k y
 (2

π/
a)

-0.5                        0                        0.5
kx (2π/a)

0.5

0

-0.5

k y
 (2

π/
a)

-0.5                        0                        0.5
kx (2π/a)

0.5

0

-0.5

k y
 (2

π/
a)



 94

agree well with the results from the study of couplings through the amplitudes of the 

dielectric perturbation in momentum space. 

Another important parameter that requires a great intention to have high Q 

cavity is the slab thickness. Figure 5.11(a) shows dependence of the in-plane Q factor 

of the cavity mode in cavity A as a function of the slab thickness. The normalized 

frequencies of the cavity mode, conduction bandedge, and valence bandedge are also 

plotted in the graph. The frequencies of the bandedges decrease as the slab thickness 

increase due to a larger fraction of dielectric. The conduction bandedge comes down 

more quickly than the valence band resulting in the reduction of bandgap size. 

However, that does not concern the case here, because the cavity mode is always 

below the valence bandedge. However, the in-plane Q factor decreases as the slab is 

thicker. This comes from two reasons. The first one is the effect from the losses 

induced by the valence band (1st-guided mode). As the slab becomes thicker, the 

cavity mode and the valence bandedge come closer to each other. This results in a 

smaller diameter of the equi-frequency contour of the 1st-guided mode near point M. 

As a result, the equi-frequency contour tends to overlap with stronger components of 

the cavity mode whose its peak intensity is at point M. The other reason comes from 

the coupling between the cavity mode and the conduction band (2nd-guided mode). 

The conduction bandedge falls down as a function of the slab thickness and comes 

below the valence bandedge when the slab thickness is more than 0.90a. And the in-

plane Q abruptly degrades when the cavity mode starts to couple to this additional 

guided mode. Total electric field distribution in the momentum space of cavity A with 

the slab thickness d = 1.0a with the equi-frequency contours confirms these 

assumptions as shown in Figure 5.11(b). The equi-frequency contour of the 1st-guided 

mode becomes very small and overlaps with strong components of the cavity 

modenear the point M. Moreover, because the cavity mode spectrally overlaps with 

the 2nd-guided mode, the coupling between the two modes must also be taken into 

account. The equi-frequency contour of the 2nd-guided mode exists in the vicinity of 

the light line and it overlaps with expanded components of the cavity mode as seen in 

the figure, leading to additional loss of the cavity mode into the in-plane direction. 

From these results, it is preferable to restrict the slab thickness around 0.60a to assure 

the high in-plane Q. It is worth noting that the vertical Q just slightly increases as the 

slab thickness increase due to a decrease in the frequency of the mode, thus reducing 

the size of the light cone. 
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Figure 5.11 (a) Dependence of normalized frequencies of the cavity mode, 
valence bandedge, and conduction bandedge of cavity A on the slab thickness. The 
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 In this section, it has been shown that a cavity with an ultra-high Q can be 

obtained even cavity modes do not locate within the gap or even no bandgap at all. 

This has be achieved by decoupling the cavity mode from possible losses, consisting 

of guiding loss and radiation loss, by appropriately design the distribution of them in 

the momentum space. In the following section, various applications of the designed 

cavity, such as materials with low refractive index and quantum cascade lasers, will 

be presented. Those results will prove a promising performance and flexibility of the 

cavity. 

  

5.4 Applications of high-Q graded photonic crystal cavities  
 Light emitters confined in photonic crystal cavities are promising candidates for 

the development of various high performance optical devices. However, there are some 

applications that have been hindered from the utilization of photonic crystals to improve 

their performances, such as materials with low refractive index, and quantum cascade 

lasers, due to a lack of photonic bandgap in a frequency region of interest. In the 

previous section, the designed cavity has been shown that it can have an ultra-high Q in a 

GaAs-based (refractive index = 3.4) air-bridge structure for transverse electric (TE) 

polarized light. In this section, it is shown that the designed cavity can also be applied to 

achieve high Qs in colloidal nanocrystals with low index of only 1.575 and in transverse 

magnetic (TM) -like polarized quantum cascade lasers. In addition, the designed cavity is 

shown to be very promising for realization of highly-efficient entangled photon sources. 

 

5.4.1 High-Q graded photonic crystal nanocavity with low refractive index 

 Figure 5.12(a) shows an in-plane scanning electron microscope image of a 

patterned structure after development and a sketch of the final air-bridge structure after 

wet etching. The slab is an electronic resist (ZEP520-12) embedding colloidal 

nanocrystals with a refractive index of 1.575 [116,117]. Due to the low index contrast 

between the slab and the surrounding air cladding, strong light confinement cannot be 

achieved with conventional cavity structures. Both vertical and in-plane Qs in such 

cavities are very low resulted from high frequencies of cavity modes and very small size 

of photonic bandgap locating at very high frequency range. The designed graded cavity 

was then utilized to improve the Q factor. The air hole radii profile was the same as that 

of cavity A, which is the optimized cavity, in both x and y direction. The slab thickness 
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(b) 

(a) 

Figure 5.12 (a, above) Scanning electron microscope image of the patterned 
nanocavity. (a, below) Sketch of the final air-bridge structure. (b) 
Photoluminescence spectra from the nanocavity at room temperature. 
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was increased from 0.60a of cavity A to around 1.20a to reduce the cavity mode 

frequency, and thus the size of light cone, to assure a strong localization in the vertical 

direction. The highest theoretical Q for the cavity was equal to 5,700 with mode volume 

of 1.8(λ/n)3. The large difference in the theoretical Q between this structure and the 

GaAs-based structure roots from the difference in the refractive index. Figure 5.12(b) 

shows a typical spectrum collected from the suspended resist cavity. A sharp peak, with 

a Q factor of ~ 700, is present in the emission spectrum, which is in a visible range. This 

value of Q is the highest value reported so far in low index materials coupled with 

photonic crystal cavities. These results reveal that the designed graded cavity is very 

flexible. It can be applied to the structure with much less refractive index without any 

major change of the design in order to achieve high Q. 

 

5.4.2 Reduction of threshold current of quantum cascade lasers by graded 

photonic crystal cavity 

 In quantum cascade lasers, whose light emission is resulted from intersubband 

transitions, photons are polarized in TM-like modes. Unfortunately, two-dimensional 

photonic crystal with air holes does not possess a photonic bandgap for such modes in 

a frequency region of interest. As a result, with conventional cavity structures light 

dominantly leaks out of the cavity in the in-plane direction. Moreover, structure of the 

quantum cascade laser is not an air-bridge. Since it is necessary to inject electrical 

current to drive a quantum cascade laser, cladding layers have to be semiconductors 

as shown in Fig. 5.13(a). These cladding layers generate an additional leaky channel 

of light into substrate, and thus decreasing vertical Q. These problems can be solved 

by exploiting the designed graded cavity. The air hole radii profile of cavity A was 

adopted in both x and y direction. The slab thickness was optimized to be 6a to 

improve the light confinement in the vertical direction. Cavity mode field 

distributions for vertical component of electric field (Ez) are shown in Fig. 5.13(b). 

The mode is well confined in the graded region within the core layer with the 

maximum calculated Q of 2,200, which is 18-time higher than the value of 

conventional cavities designed for TM-like modes [118]. The Q factor is lower than 

that of cavity A due to the additional leak into the substrate direction. This 

improvement of Q with consideration of effect of material absorption allows the 

threshold current of the designed structure to be reduced to at least one fifteenth of 
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Figure 5.13 (a) Schematics of a graded photonic crystal quantum cascade lasers 
microcavity. (b) Mode distributions of vertical electric field component (Ez) with d 
= 5a in in-plane view and cross sectional view. 
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that of a conventional Fabry-Perot quantum cascade lasers. These results suggest a 

new way of cavity designs for TM-like polarized light, which have been an 

unexplored field up to now. 

 

5.4.3 Prospects of graded photonic crystal nanocavity for highly-efficient 

entangled photon sources 

 It has been suggested that embedding a quantum dot in a cavity supporting 

doubly-degenerated cavity modes can improve the degree of entanglement of 

polarization-entangled photon sources based on biexciton-exciton cascade emissions 

[101,102] by increasing a photon emission rate through a so-called Purcell effect [97]. 

And because the emission rate enhancement factor is proportional to a ratio of Q and Veff, 

a cavity with ultra-high Q/Veff doubly-degenerated modes is preferable to realize highly-

efficient entangled photon sources. The designed cavity discussed in Chapter 5.3 (cavity 

A) is then very suitable to be applied to such devices due to its ultra-high Q/Veff, which is 

about two times higher that the record value [115]. With this cavity together with an 

improvement of growth technique, which can fine control a number and a position of 

quantum dots, the realization of entangled photon sources can be expected. Another 

important parameter to realize the entangled photon source is a spatial overlap between 

the degenerated modes, because it indicates an available area where a quantum dot 

should be located to undergo the effect from the fields of modes and generate entangled 

photon pairs. The overlapping area between two modes was defined to be the area in 

which their field intensities are more than a half of their maxima. Assuming the 

wavelength of the cavity modes to be 1 μm, the overlapping area of x- and y-modes of 

cavity A is shown in Fig. 5.14(a). There is a large central area of around 90×90 nm2 and 

small areas of around 30×15 nm2 in the vicinity of the most inner holes. These sizes of 

overlapping area are comparative with those reported in Ref. 115, while the Q/Veff of the 

designed cavity is two times higher. The overlapping area  tried to increase the 

possibility to generate the entangled photon pairs. The simplest way to increase the 

overlapping area, and thus the possibility to generate the entangled photon pairs, is to 

just remove the 4 innermost holes. As expected, the overlapping area becomes much 

bigger as shown in Fig. 5.14(b). The central area becomes around 300×300 nm2. 

However, there is a trade off in the degradation of Q/Veff, in which Q decreases to 15,000 

and Veff becomes larger being about 1.267(λ/n)3. 
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5.5 Summary 
In this chapter, a photonic crystal nanocavity with an ultra-high Q and small 

mode volume has been achieved even cavity modes do not locate within the gap or 

even no bandgap at all. The air hole radii have been modulated with a quadratic 

profile to decouple the cavity mode from possible losses consisting of guiding loss 

and radiation loss, resulting in strong light confinement in all three directions. By 

reducing the Fourier amplitude of the dielectric perturbation, governed by the air hole 

radii profile, at the corresponding vectors from the dominant Fourier components of 

the cavity modes to the leaky modes in momentum space, leakages into in-plane and 

vertical directions have been limited, leading to doubly-degenerated modes with very 

high Q of 120,000 and mode volume Veff of 0.79(λ/n)3. The figure of merit Q/Veff in 

the weak coupling regime is about two times higher than the highest value reported so 

far for doubly-degenerated modes. Therefore, this cavity is very promising for the 

realization of entangled photon sources. Finally, the designed cavity has been applied to 

achieve high Q cavities for material with low index and for quantum cascade lasers, in 

which a lack of photonic bandgap usually hinders them from applications. These 

results emphasize a flexibility of the cavity. The results achieved in this chapter 

300nm

~ (90 x 90) nm2~ (30 x 15) nm2

300nm

~ (90 x 90) nm2~ (30 x 15) nm2

300nm300nm

~ (90 x 90) nm2~ (30 x 15) nm2

Figure 5.14 Overlapping area of the degenerated modes in (a) cavity A and (b) 
cavity A with the 4 innermost holes removed.   
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extend the scope of optical devices that can utilize photonic crystal cavities to 

improve their performances, while the photonic bandgap is no longer a preliminary 

requirement. 
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Chapter 6 

Designs of High-Q Nanocavities in 

Three-Dimensional Photonic Crystals 

with Finite Structural Sizes 
 

6.1 Introduction 
 Since the concept of photonic crystals has been proposed [10,11], the use of 

them to manipulate light has become an active field of research due to the existence of 

the photonic bandgap. Thus far, the mainstream of the photonic crystal research has 

been focused on two-dimensional structures, including the results presented in 

Chapter 4 and Chapter 5, because of ease in fabrication that is based on well-

established fabrication technologies. Many striking achievements, such as ultra-low 

threshold lasers [119-122], single photon sources [100,123,124], and cavity quantum 

electrodynamics in a strong coupling regime [106,125-128] have already been 

realized. However, in order to achieve a full control of light in all three dimensions, it 

is necessary to extend the photonic bandgap to the third dimension. Several three-

dimensional photonic crystal structures with a complete photonic bandgap, a 

frequency range in which light is forbidden to propagate in all directions, have been 

demonstrated so far [13,18,40]. When an artificial defect is introduced into a perfect 

crystal, localized modes within the PBG can be generated. Therefore, light that 

couples to these modes can be strongly confined within a point defect cavity or guided 

along a line defect waveguide without loss. Because it is difficult to simultaneously 

fulfil the requirements of introduction of an artificial defect and a light-emitting 

element into a three-dimensional structure, most of research on three-dimensional 

photonic crystals has been concentrated on defects in passive devices [13,22-
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24,40,129] or on active devices with unperturbed crystals [130]. Because of this 

restriction in the aspect of fabrication, study on designs of defect cavities in three-

dimensional photonic crystals has been left as an almost-unexplored field of research 

up to now [131-136]. In fact, one may think that because the confinement mechanism 

of light in three-dimensional photonic crystal cavities is Bragg reflection in all three 

dimensions, Q factors of cavity modes embedded in the photonic bandgap can be 

exponentially increased with a number of photonic crystal periods surrounding the 

cavity. Therefore, a cavity with infinite Q can be achieved by just locating the cavity 

inside an infinitely-large three-dimensional photonic crystal structure without any 

complicated designs like in the two-dimensional case. However, with current 

fabrication technologies, the number of periods that can be practically fabricated is 

still very limited. The highest experimental Q ever reported so far for three-

dimensional photonic crystal cavities is only 2,300 [47], compared with a few ten 

thousands in active cavities [126,127,137] and a few millions in passive cavities 

[74,75] in two-dimensional photonic crystal structures. The low value of Q is partly 

resulted from a lack of proper cavity designs, which can achieve high designed-Q 

even with a small size of three-dimensional structures, and this value is still needed to 

be improved in order to realize many promising applications including ultralow 

threshold lasers and quantum information processing. 

 In this chapter, three designs of high Q cavities in three-dimensional photonic 

crystals with finite structural size that can be practically fabricated are presented. Two 

of them are achieved by tuning resonant frequencies of their cavity modes to the 

middle frequency of the complete photonic bandgap, where the mode localization is 

strongest, and thus high Qs, by means of optimizing size of the defect cavities. Apart 

from tuning cavity modes to the midgap frequency, the Q factor is then further 

improved by modifying the cavity structure through shifting of dielectric rods 

surrounding the cavity. The highest designed Q is up to 73,300 which is about an 

order of magnitude improved, compared with the non-modified cavity with the same 

structural size. Therefore, by introducing an efficient light emitter into these designed 

cavities, ultralow threshold lasers or cavity quantum electrodynamical effects may be 

expected. 
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6.2 Designs of high-Q nanocavities in woodpile photonic crystals by 

tuning cavity modes to photonic midgap 
 In two-dimensional photonic crystal structures, a number of photonic crystal 

periods surrounding the cavities that can be fabricated can be considered as infinite. 

Therefore, if cavity modes is well designed to be located inside photonic bandgap, 

only out-of-plane losses is required to be suppressed in order to achieve high-Q 

cavities, while propagating losses into the plane of photonic crystal patterns can be 

negligible. In contrast, the size of three-dimensional structures that can be fabricated 

is limited. And this is the main factor that has been hindered the three-dimensional 

photonic crystals from the realization of high-Q cavities. Cavity mode that has a 

frequency inside photonic bandgap is localized in the defect region and exponentially 

decays once it enters the crystal. Moreover, because the rate of decay is the largest 

when the frequency is near the center of the gap [84], modes with frequencies at the 

center of the gap are then most strongly attached to the cavity. As a result, it is 

necessary to design the cavity to have cavity mode located closet to the middle 

frequency of the photonic bandgap to gain an advantage from the photonic bandgap 

effect as much as possible. Previous work on a design of defect cavity in a three-

dimensional photonic crystal has only roughly investigated this kind of tuning 

[24,131]. 

 In this section, two types of cavities, square-shaped and rectangular-shaped 

defect nanocavities, in woodpile photonic crystal structures are designed according to 

the concept discussed above. Their sizes are fine optimized in order to tune the cavity 

modes to the midgap frequency. It is shown that a cavity mode that is nearest to the 

midgap frequency actually has the highest Q factor, and the Q factor decreases as the 

mode is detuned from the midgap. 

 

6.2.1 Square-shaped defect nanocavity 

The design structure is based on a so-called woodpile structure, which is a stack 

of dielectric rods. The rods of adjacent layers cross each other orthogonally, and those 

of the next nearest neighboring layers are aligned parallel but with a half period  shift 

as shown in Fig. 6.1(a), in which a portion of upper stacked layers is removed to show 

a cross section of the stacked structure and to reveal a cavity. The dielectric rods 
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Figure 6.1 (a) Schematic illustration of the designed structure. A portion of upper 
layers is removed to show a cross section of the stacked structure and to reveal the 
cavity. (b) A magnification of the cavity. 
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that constitute the woodpile cavity have a refractive index of 3.4 corresponding to that 

for GaAs. The width r and thickness t of the rods are 0.25a and 0.40a, respectively, 

where a is an in-plane periodicity (rod pitch). A number of in-plane rods for each 

layer is fixed at 11. This number of rods is the limited value that can be fabricated 

using micromanipulation techniques, which will be described in next Chapter. A 

cavity layer containing a defect is inserted between upper and lower stacked layers 

resulting in a total number of the stacked layers of Nu + 1 + Nl, where Nu (Nl) 

represents a number of the upper (lower) stacked layers. Nu is set to be equal to Nl for 

all structures studied in this thesis. A three-dimensional photonic crystal defect with a 

square shape with width of each side D is located at the center of the pattern of the 

cavity layer to construct a nanocavity. A magnified view of the nanocavity is depicted 

in Fig. 6.1(b). With these computational parameters, a complete photonic bandgap is 

open in a range from 0.346 to 0.408 in a normalized frequency unit. There are six 

cavity modes, defined as modes A to F, existing inside or in a vicinity of the bandgap. 

A large number of cavity modes is resulted from the large size of the cavity. The size 

of defect D is varied from 1.0a square to 1.3a square to tune the modes across the 

bandgap. The normalized frequency of each cavity mode is shown in Fig. 6.2 as a 

function of defect size. The complete photonic bandgap is also depicted in the figure 

as an unshaded region, where a dotted line represents the midgap frequency of the 

photonic bandgap. It can be seen that as the cavity size is increased, the frequencies of 

all modes decrease, because the mode fields are concentrated more and more in the 

high-index dielectric region. Therefore changing the defect size can be used as an 

effective tool to tune the cavity mode of interest to the midgap frequency. The size of 

the square-shaped defect D2 is varied from (1.0a)2 to (1.3a)2. At D = 1.1a, mode D 

approaches the midgap, while mode C is slightly deviated from the midgap. Modes B 

and E get close to the bandedge. Mode A is at the bandedge, while mode F is slightly 

embedded within the lower bandedge. Figure 6.3(a)-(f) show field distributions of Ex 

component of modes A to F at the center of the cavity layer with D = 1.1a. Gray lines 

show boundaries of the dielectric rods and the cavity. Obviously, the field 

distributions directly associate with the position of the modes in the bandgap. The 

modes that are near the midgap (Modes C and D) are strongly confined within the 

cavity. The mode confinement becomes weakened as the mode frequency deviates 
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from the midgap (Modes B and E). And the modes lose the strong confinement in the 

cavity and start to expand over a wide area when they reach the bandedge (modes A 

and F). These results are a direct evidence of the photonic bandgap effect. Then, the 

defect size is set to D = 1.1a and Q factors for modes A to F are investigated as a 

function of the number of the stacked layers. The number of stacked layers is varied 

from 9 to 41. Figure 6.4 shows that total Q factors for all modes depicted in solid lines 

increase exponentially as the number of the stacked layers increase until their 

saturations. It is worth noting that dividing the total Q factor (Qtotal) into in-plane Q 

(Q//) and vertical Q (Q┴) for three-dimensional structures is not straightforward like in 

the two-dimensional systems discussed in previous Chapters. Because the structure 

here is not based on a waveguide like in the two-dimensional systems, boundaries set 

at a half-wavelength above and below the structure to separate in-plane and out-of-

plane losses are not available for three-dimensional systems. A possible way to 

separately consider losses into each direction in order to understand which factor  

limits the total Q is to estimate the in-plane Q to be the saturated value of the total Q 

when the number of stacked layers is very large, i.e., 49 layers. With such a 

Figure 6.2 Normalized frequencies of six cavity modes (A to F) existing in the 
cavity as a function of the size of the square-shaped defect. Unshaded region and 
dotted line represent the complete photonic bandgap and midgap frequency, 
respectively. 
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Figure 6.3 (a)-(f) Field distributions of Ex component of modes A to F, 
respectively, at the center of the cavity layer with D = 1.1a. Gray lines show 
boundaries of the dielectric rods and the cavity. 
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Figure 6.4 Dependences of total Qs (solid lines with closed symbols) and vertical 
Qs (dotted lines with open symbols) of modes A to F on the number of stacked 
layers with D = 1.1a. In-plane Qs for modes A to F are calculated to be 1800, 
10970, 45460, 138540, 29000, and 1610, respectively. 
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large number of stacked layers, losses into the vertical direction are negligible, 

leading to a relation: 

     
totaltotal QQQQ
1111

//

≈−=
⊥

                                          (6.1) 

Therefore, the in-plane Q is obtained using this relation, where Qtotal is the total Q of 

the structure with 49 stacked layers, and is set to be constant with the increase of the 

stacked layers. From Fig. 6.4, when the number of the stacked layers is small, the 

vertical Q is much lower than the in-plane Q, and thus limits the total Q. However, the 

vertical Qs of all modes can be increased exponentially by adding the number of the 

stacked layers as shown in the figure, except for that of mode F because mode F is 

embedded in the lower band and rarely undergoes the photonic bandgap effect. It 

should be noted that although the growing rate as a function of the number of the 

layers is the same, value of the vertical Q for each mode is different. In the vertical 

direction, apart from the photonic bandgap effect, the cavity field cancellation also 

helps confine the mode. Concretely, the mode with node of electric field at the center 

of the cavity results in higher vertical Q, because the field cancels out in the far field. 

This is why, for example, mode C has higher total Q than mode D when the number 

of the stacked layers is small, i.e., less than 25, due to its higher vertical Q. However, 

with a large number of the stacked layers, the in-plane Q becomes the factor that 

limits the total Q. An obvious way to break this deadlock would be to increase the 

number of in-plane rods to increase the in-plane Q. Nevertheless, this is still a 

question considering the present fabrication technique. For that reason, tuning the 

cavity mode to the midgap frequency to gain an advantage from the photonic bandgap 

effect with restricted in-plane rods as much as possible would be then the best 

solution unless the fabrication technique is to be developed. As shown in Fig. 6.4, the 

saturated Q values are inversely proportional to the distance that the modes are 

separated from the midgap frequency. As expected, mode D whose frequency is the 

closest to the midgap has the highest Q with its value exceeding 105 when the number 

of the stacked layers is more than 33.  

The number of the stacked layers is then fixed at 25, which is the number of 

stacked layers that will be practically fabricated in later Chapter, and investigate the 

dependence of the Q factors on the size of the defect. Again, as shown in Fig. 6.5, all 

modes have their maximum Qs when their frequencies locate the nearest to the 

midgap frequency and decrease as they deviates from the midgap. It can be seen 
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that with D = 1.1a, the Q factors of modes C and D are very high and comparative 

with each other. However, in various applications concerning light-matter interaction, 

such as cavity quantum electrodynamics, mode that has an antinode of electric field at 

the center of the cavity would be more promising. If light-emitting elements, such as 

quantum dots, are located at the antinode of the electric field, they can effectively interact 

with each other. Moreover, electron and hole densities are much lower near the surfaces 

of the etched patterns [96]. As a result, light modes, in which their antinodes locate near 

the rim of the cavity region, cannot be efficiently coupled with the emitters locating inside 

the cavity. From above reasons, mode D with its antinode of the field at the center of the 

cavity would be more suitable for applications. The Q factor of mode D is highest when 

D = 1.1a with its value about 41,000 with mode volume of ~ 0.441(λ/n)3. Therefore, 

in fabrication discussed in Chapter 7, the cavity size will be set to this value. The Q 

factors (mode volumes) for mode A, B, C, E, and F are ~ 1,700 (1.462(λ/n)3), 10,800 

(0.553(λ/n)3), 39,000 (0.668(λ/n)3), 22,000 (0.553(λ/n)3), and 1,550 (1.462(λ/n)3), 

respectively. It should be notified beforehand that the sensitivity of Qs on the size of 

Figure 6.5 Dependences of total Qs of modes A to F on size of defect when the 
number of the stacked layers is fixed at 25. 
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the defect shown in Fig. 6.5 will play a major role in discussion of experimental Qs 

obtained from the fabricated devices discussed in Chapter 7.  

 

6.2.2 Rectangular-shaped defect nanocavity 

 In section 5.3.1, a high-Q cavity with square shape has been presented. 

However, the cavity is quite large and contains a lot of cavity modes with small 

frequency separations, as can be seen in Fig. 6.2. This may lead to multi-mode 

operation, which is undesirable in some applications, such as lasers, when the light 

emitter is introduced into the defect cavity. By changing shape and reducing size of 

the defect, a cavity with a small number of modes with wide frequency separation can 

be achieved [131].  

The fundamental structure used to design is the same as that in last 

subsection, a woodpile structure with 11 in-plane rods, with width r = 0.30a and 

thickness t = 0.40a. The same defect structure as in Ref. 131 is exploited to form a 

nanocavity. The cavity has a rectangular shape with its length and width defined as Δx 

and Δy, respectively, where a ratio of Δx to Δy is fixed to 2. A schematic illustration 

of the nanocavity is depicted in Fig. 6.6 (a). A complete photonic bandgap is open in a 

range from 0.327 to 0.384 in a normalized frequency unit. The normalized 

frequencies of cavity modes in the rectangular-shaped cavity are shown in Fig. 6.6(b) 

as a function of defect size, where Δx/Δy is fixed to 2. The complete photonic 

bandgap is also depicted in the figure as an unshaded region, where a dotted line 

represents the midgap frequency of the photonic bandgap. In comparison with Fig. 6.2, 

the number of the cavity modes is reduced to three modes, a half of that of the square-

shaped defect cavity. Only the first two lowest modes (modes 1 and 2) are 

investigated here, because Q factor of the highest-order mode (mode 3) is relatively 

low compared to those of the other two. It can be seen that the cavity modes can be 

tuned well by changing the size of the defect, in which modes 1 and 2 are closest to 

the midgap frequency when Δx is equal to 0.8a and 0.9a, respectively. Figures 6.7(a) 

and (b) show field distributions of Ex component of modes 1 and 2 at the center of the 

cavity layer with Δx = 0.8a and 0.9a, respectively. Gray lines show boundaries of the 

dielectric rods and the cavity. Both modes are well confined in the cavity due to 

strong light confinement near the midgap frequency. Then, total Q factors of both 

modes are calculated as a function of the number of the stacked layers and the size of 
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Figure 6.6 (a) Schematic illustration of the designed rectangular-shaped 
nanocavity. (b) Normalized frequencies of three cavity modes (1 to 3) existing in 
the cavity as a function of the size of the defect, where Δx/Δy is fixed to 2. 
Unshaded region and dotted line represent the complete photonic bandgap and 
midgap frequency, respectively. 
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Figure 6.7 Field distributions of Ex component at the center of the cavity layer of 
(a) mode 1 with Δx = 0.8a and (b) mode 2 with Δx = 0.9a. Gray lines show 
boundaries of the dielectric rods and the cavity. 
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the cavity, and plotted in Fig. 6.8. The number of stacked layers is varied from 17 to 

41, while the size of the cavity is varied from 0.8a to 1.0a. As can be expected, the 

total Q factors for both modes in all structures increase exponentially with the number 

of the stacked layers until their saturations determined by power losses into the in-

plane direction limited by the small number of the in-plane periods. The same 

description in the behavior of the total Q discussed in the previous subsection can also 

be applied to the case here. When the number of the stacked layers is small, the total 

Q is limited by losses into the vertical direction, but it can be increased by enhancing 

the number of the stacked layer. When the number of the stacked layers is more than 

25, however, the total Q becomes saturated. The differences in value of the total Q of 

each mode with different defect sizes can be understood by considering the separation 

in frequency between the mode and the midgap frequency. Both modes have their 

maximum Qs when their frequencies locate the nearest to the midgap frequency. The 

total Q of mode 1 is highest when Δx is equal to 0.8a, and degrades more and more as 

the defect size is enlarged. Mode 2 has its highest Q when Δx is equal to 0.9a and the 

Q rapidly reduces when the mode is detuned from the midgap. Interestingly, the total 

Q of mode 2 is much higher, almost an order of magnitude, than that of mode 1 over 

the entire range of the number of the stacked layers. The reason for this is already 

discussed in the previous subsection. Mode 2 has its node of electric field at the center 

of the cavity leading to very high vertical Q, compared with mode 1, in which its field 

has antinode, as can be seen in Fig. 6.7. Therefore, if mode 2 can be well tuned to the 

midgap, its in-plane Q is also high, resulting in high total Q. In fact, the previous work 

concerning this kind of cavity [131] has only investigated mode 1, leaving mode 2 

overlooked in spite of its very Q. As a result, if light-emitting elements can be 

introduced into the cavity and coupled with mode 2, demonstration of high-Q cavity 

can be expected. This will be shown in Chapter 7. 

In Chapter 7, the rectangular-shaped with Δx = 0.9a, where the Q factor of 

mode 2 is maximum, will be fabricated to demonstrate high-Q cavity. With 21 

stacked layers, the total Q factors of mode 1 and 2 are 17,800 and 94,000, respectively. 

It is worth pointing out that due to the small size of the cavity and the strong 

localization of the mode in the bandgap, the mode volumes of both modes are only 

0.286(λ/n)3 and 0.217(λ/n)3 for mode 1 and 2, respectively. These values are 

relatively small compared with those of the square-shaped cavity, whose size is 
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Figure 6.8 Dependences of total Qs of (a) mode 1 and (b) mode2 on the number of 
stacked layers and the size of the cavity. 
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almost three times larger. Therefore, the rectangular-shaped cavity is very suitable for 

applications to the cavity electrodynamics under both the weak coupling and strong 

coupling regimes, which prefers a cavity with strong optical confinement within a 

small volume. 

In this section, it has been shown that tuning cavity modes in three-

dimensional photonic crystal nanocavities to midgap frequency of a complete 

photonic bandgap by means of optimization of the cavity sizes is an effective tool to 

achieve high-Q modes in the structures with restricted sizes. Cavity modes with high 

Q factors can be obtained with a reasonable number of stacked layers, which can be 

practically fabricated. Therefore, by exploiting these designed cavities with an 

incorporation of efficient light-emitting elements, many promising applications, such 

as ultralow threshold lasers and cavity quantum electrodynamics, may be expected. 

 

6.3 Further improvement of cavity Q by shifting rods in cavity 

neighborhood 
 From the results presented in last section, it has been shown that high-Q 

cavities can be achieved by tuning cavity modes to middle of a complete photonic 

bandgap where light confinement is strongest. However, in those designed structures, 

a moderately large number of stacked layers, i.e. more than 20, is needed in order to 

have Q factors beyond 104. This number of stacked layers is still a challenge for most 

of present fabrication technologies [40,42,138-140]. Although a woodpile structure 

with this number of stacked layers can be fabricated using micromanipulation 

techniques, stacking errors, which usually degrade Q factor of practical devices, tend 

to be increased as the number of stacked layers increases. This will be discussed in 

next Chapter. By all means, a cavity that can have high designed Q with small number 

of stacked layers is preferable. It should be notified that a woodpile structure with 17 

stacked layers has been successfully fabricated with precise alignment in the literature 

[47]. Therefore, a structure with 17 stacked layers will be concentrated in this section. 

Considering the designed cavities presented in previous section, the Q factor of the 

structure with 17 stacked layers is limited by losses into the vertical direction. 

Therefore, to improve the total Q, it is necessary to find a way to improve the vertical 

Q without adding more stacked layers.  
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 In this section, a designed of high-Q defect nanocavity in woodpile photonic 

crystal by shifting rods surrounding the cavity is presented. With a fixed 17 stacked 

layers, the total Q is more than 73,300, which is improved by more than 4 times 

compared with that of the unperturbed structure. The high Q of the cavity is resulted 

from the significant improvement of the vertical light confinement. In the last part, the 

designed cavity is compared with the double-heterostructure nanocavity, which is a 

three-dimensional photonic crystal nanocavity with highest calculated Q factor reported 

so far [135], and is shown that it is more promising than the double-heterostructure 

with the compromise between the Q factor and the difficulty in fabrication. 

 

6.3.1 Structural parameters and cavity mode 

 The basic structure used to design is the same as that in last section, a 

woodpile structure with 11 in-plane rods, with width r = 0.15a and thickness t = 

0.30a. The numbers of stacked layers is fixed to 17 unless otherwise indicated. A 

square-shaped defect with width of each side D is used to form a cavity. Field 

distribution of Hz-component of the cavity mode of interest which is a high-order 

mode is shown in Fig. 6.9(a). This mode is exploited because its electric field 

distributions have antinodes at the center of the cavity, which leads to relatively high 

vertical Q by nature as discussed in previous section. At first, size of the defect is 

varied from 0.95a to 1.35a in order to tune the cavity mode to the midgap frequency. 

The mode is closet to the midgap when D is equal to 1.15a as shown in Fig. 6.9(b). 

Therefore, the defect size is set to this value in order to guarantee strong light 

confinement as discussed in previous section. Q factor and mode volume of the cavity 

are then calculated to be 17,000 and 0.66(λ/n)3, respectively. Using the method 

described in Section 6.2.1, the total Q is then divided to be in-plane Q and vertical Q 

with values of 174,000 and 19,000, respectively. Obviously, the total Q of the 

structure is limited by the vertical Q. It is then essential to enhance the vertical Q so as 

to improve the total Q. 
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Figure 6.9 (a) Hz-field distribution of the cavity mode at the center of the cavity 
layer with D = 1.15a. Gray lines show boundaries of the dielectric rods and the 
cavity. (b) Normalized frequencies of the cavity mode as a function of the size of 
the defect. Unshaded region and dotted line represent the complete photonic 
bandgap and midgap frequency, respectively. 
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6.3.2 Enhancing Q factor by fine shifting dielectric rods 

 In order to increase the vertical Q, and thus the total Q, dielectric rods at 7 

positions, w1 to w7, surrounding the cavity are shifted from their original positions 

inward and outward with respect to the cavity. The illustrations of the cross sections 

of the structure in xz and yz planes showing the positions of the rods are shown in Fig. 

6.10. The definition of the directions is the same as that in Fig. 6.1(a). The 

dependence of the total Q on the shifting of rods at each position is plotted in Fig. 

6.11(a). At first, the rods at position w1 are optimized. When the total Q comes to its 

peak, the value of w1 is fixed and the rods at position w2 are then optimized. This 

process continues until all positions are optimized. The maximum Q of up to 73,300 

with mode volume of 0.636(λ/n)3 is achieved when the shifting parameters are w1 = 

0.25a, w2 = -0.10a, w3 = -0.10a, w4 = 0.05a, w5 = -0.05a, w6 = -0.10a, and w7 = -

0.10a. This value of Q is about 4.3 times higher than the value for the structure without 

shifting of the rods with the same structural size. As can be presumed, shifting of the rods 

nearer to the cavity site has a stronger effect on changing of Q than that of farther rods, 

e.g., the total Q depends on the shifting of rods at position w1, w3, and w7 more strongly 

than the shifting of rods at position w2, w4, w5 and w6. In order to understand the 

reason why the total Q increases when the rods are shifted, the in-plane Q and the 

vertical Q of the optimized structure are compared with those of the structure without 

shifting of the rods. The results are shown in Fig. 6.11(b). The in-plane Q of the 

optimized structure remains almost the same as that of the structure without shifting 

of any rods. However, the vertical Q is significantly improved. With 17 stacked layers, 

the in-plane Q of the optimized structure slightly reduces from 174,000 of the 

unperturbed structure to 163,000. However, the vertical Q is significantly increased 

from 19,000 to 133,000, which is about 7-time improvement. It means that the shift of 

the rods results in stronger light confinement in the vertical direction leading to the 

4.3-time increase in the total Q. Figures 6.12(a) and (b) show cavity mode field 

distributions in the cross-sectional view of the structure without shifting of rods and 

the optimized structure, respectively. The amplitudes of the fields are 100-time 

magnified to be able to observe the evanescent field of the cavity mode. By 

comparing the fields in both structures, more losses that leak out of the structure in the 

vertical direction can be observed in the structure without shifting of rods, while the 

losses into the in-plane direction are almost unchanged between the two structures.  
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Figure 6.10 Cross-sectional views of the designed structure in (a) xz plane and (b) 
yz plane. Shifting of rods at 7 positions, w1 to w7, surrounding the cavity is also 
shown. 
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Figure 6.11 (a) Dependence of total Q factor on shifting of rods at 7 positions 
(w1-w7). (b) Comparison of vertical Q (solid line) and in-plane Q (dotted line) 
between the optimized structure (square) and the structure with no shifting of rods 
(diamond) as a function of number of stacked layers. 
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Figure 6.12 Cross sectional views of Hz-field intensities of the cavity mode of (a) 
structure without shifting of any rods and (b) optimized structure. The amplitudes 
of the fields are 100-time magnified. The lines show boundaries of dielectric rods.  
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These results are consistent with the calculated vertical and in-plane Qs summarized 

in Fig. 6.11(b).  

 
6.3.3 Comparison with double-heterostructure three-dimensional photonic 

crystal nanocavity 

 In this subsection, the Q factor of the designed structure is compared with that of 

a double-heterostructure nanocavity, which possesses the highest calculated-Q for three-

dimensional photonic crystals reported so far [135], with consideration of possibility in 

fabrication.  

The structure of the double-heterostructure cavity is also based on the woodpile 

structure. In stead of inserting a point defect into a three-dimensionally-periodic 

structure to form a cavity, a line defect is used to form a cavity. Along the waveguide, 

unit cell length is modulated to generate localized modes with ultra-high Q in a 

waveguide mode gap, which is located in the complete bandgap. In order to 

accurately compare the designed cavity with the double-heterostructure cavity, the 

number of the in-plane rods of the designed structure is increased from 11 to 13 to 

have the same in-plane structural size as the double-heterostructure cavity. With the 

increased in-plane rods, the total Q of the designed cavity increases to 113,000 with 

the in-plane Q of 770,000, where the vertical Q remains the same, 133,000. The total 

Q factor of the designed cavity with optimized shifting of rods is then compared with 

that of the double-heterostructure cavity as a function of the number of the stacked 

layers in Fig. 6.13. Because the optimized structure has very high vertical Q as 

previously shown in Fig. 6.11(b), when the number of the stacked layers is more than 

17, the total Q becomes saturated due to limited in-plane Q of 770,000. On the other 

hand, the total Q of the double-heterostructure cavity shows no sign of saturation with 

the number of the stacked layers because its in-plane Q is very high, which is ~ 

1.8×107, due to a combination of the mode confinements by mode gap and by the 

complete bandgap. However, its total Q is only ~ 7,500, limited by the vertical Q. 

This is because, in order to have high in-plane Q, the mode is needed to be tuned to 

the middle of the mode gap, which in turn detunes the mode from the middle of the 

complete bandgap, resulting in the weak confinement in vertical direction. The total Q 

of the double-heterostructure cavity with 17 layers is more than 15 times lower than 

that of the optimized cavity. In order to obtain the total Q as high as the optimized 

cavity with 17 stacked layers, the double-heterostructure cavity needs almost 
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30 stacked layers. In addition, it is necessary to stack almost 40 layers to build the 

double-heterostructure cavity with higher Q than the optimized cavity. With current 

fabrication techniques, such a large number of stacked layers is still a great challenge. 

As a result, the designed cavity structure with shifting rods is more promising to be 

considered as a high-Q cavity in the aspect of possibility of practical fabrication. 

  In this section, a design of high-Q three-dimensional photonic crystal 

nanocavity with small structural volume has been presented. By tuning the cavity 

mode in the square-shaped defect nanocavity to the midgap frequency and by 

optimizing the defect structure by shifting the rods surrounding the cavity, the 

maximum Q of up to 73,300 and mode volume of 0.636(λ/n)3 have been achieved. 

This value of Q is more than 4 times higher than the value for the structure without any 

modification of the cavity structure. This improvement of total Q has been resulted from 

the significantly enhanced vertical Q in the optimized structure. In the last subsection, it 

has been shown that when the situation comes to the practical fabrication, the designed 

Figure 6.13 Dependence of total Q factor of the double-heterostructure nanocavity 
(circle) and the designed nanocavity with optimized shifting rods (square) on the 
number of stacked layers. Red and blue lines are guided lines for eye showing 
trends of increase of Qs. 
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structure is more promising than the ultra-high-Q double-heterostructure cavity because it 

needs no more than 17 stacked layers to achieve very high Q of 73,300. On the other hand, 

the double-heterostructure cavity requires almost 30 stacked layers in order to obtain that 

value. 

 

6.4 Summary 
 In this chapter, three designs of high-Q cavities in three-dimensional photonic 

crystals with finite structural size that can be practically fabricated have been 

presented. High-Q cavity modes in square-shaped and rectangular-shaped 

nanocavities have been achieved by tuning their frequencies to midgap frequency of a 

complete photonic bandgap, where light confinement is strongest, by means of 

optimizing size of the defects to gain an advantage from the photonic bandgap effect 

as much as possible. Apart from tuning cavity modes to the midgap frequency, the Q 

factor can be further improved by modifying cavity structure through shifting of 

dielectric rods surrounding the cavity. 4.3-time improvement of Q with a value of 

73,300 has been achieved compared with the structure without modification of the 

cavity structure. Importantly, this high-Q cavity only needs 17 stacked layers to obtain 

such high Q. By introducing an efficient light emitter into these high-Q designed 

cavities, various promising applications including ultralow threshold lasers and cavity 

quantum electrodynamical effects, may be expected. 
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Chapter 7 

Fabrication and Characterization of 

High-Q Three-Dimensional Photonic 

Crystal Nano cavities 
 

7.1 Introduction 

 By the time that first experimental observation of cavity states in a three-

dimensional photonic crystal at optical wavelengths was demonstrated [40], highly-

advanced applications, such as electrically-driven lasers [140] and vacuum Rabi 

splitting in quantum dot-cavity system [106], have already been realized in two-

dimensional photonic crystal cavities owing to their mature fabrication technologies 

and designs of high-Q cavities with tiny volume. Such a large gap in progress 

between two- and three-dimensional systems is directly related to difficulties in 

fabrications of three-dimensional structures, especially when dealing with light in 

optical wavelengths. In the optical characteristic point of view, Q factor of modes 

existing in cavities is usually regarded as an index to evaluate classes of applications 

that cavities can be applied to. For example, in cavity quantum electrodynamics 

(cavity-QED), which is the study of the interaction between light confined in a cavity 

and a quantum emitter, to create spontaneous emission rate enhancement through 

Purcell effect, the Q factor to mode volume ratio Q/Veff is to be maximized. For 

nonlinear optical effects, a large ratio of Q2/Veff is preferable, while for the strong 

coupling regime of cavity QED, ratios of g/κ ~ effVQ /  and g/γ ~ effV/1  are to be 

optimized, where g is the emitter-cavity field coupling rate, κ and γ are decay rates of 

cavity and emitter [51]. It can be seen that all of these applications desire a cavity 

with high Q and small mode volume. In Chapter 6, various designs of high-Q cavities 
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in three-dimensional photonic crystals with reasonably small structural size that can 

be practically fabricated have been presented. Bringing these complex structures from 

computer model to experimental reality, however, involves several unique, difficult, 

and interrelated challenges in the fabrication of the required precise, submicron three-

dimensional structures. With a lot of efforts, various fabrication techniques for three-

dimensional photonic crystals have been put forward, such as colloidal self-assembly 

[141-144], direct writing by two-photon polymerization [32,33,145,146], multibeam 

interference lithography [36-39], layer-by-layer method [15,16,40], and wafer-fusion 

method [19,42,148]. These techniques have been demonstrated that they are potential 

to make complete-photonic-bandgap structures. In order to use three-dimensional 

photonic crystals to manipulate light-matter interaction, in which light-emitting 

elements must be incorporated into a defect cavity located inside the photonic crystals, 

a fabrication technique that can simultaneously fulfil requirements of introduction of 

an artificial defect and a light-emitting element into the three-dimensional structure is 

essential. Colloidal self-assembly, direct writing by two-photon polymerization, and 

multibeam interference lithography can carry out each of the requirement, but not 

both at the same time. On the other hand, layer-by-layer method and wafer-fusion 

method have been shown to have a capability to accomplish the task. Nevertheless, 

their complicated procedures together with damage inflicted on the fine structure by 

multiple etching and heat treatment preclude them from making three-dimensional 

structures with large number of periods and with good quality. Hence, most of 

research on three-dimensional photonic crystals with defects has been concentrated on 

passive devices [22-24,129,149,150], or active devices with low-Q cavities [43,44]. In 

contrast, micromanipulation techniques do not undergo such problem [45,46]. All 

photonic crystal components used to construct three-dimensional structure can be 

prepared using a single semiconductor processing sequence and no heating, enables 

components to be assembled with high precision and minimum damage to their fine 

structure irrespective of materials or complexity of photonic patterns. Therefore, 

micromanipulation technique is capable of introducing a defect cavity and light-

emitting elements into the structure at arbitrary positions. Recently, a cavity in 

woodpile structure with a record-Q of 2,300 has been reported with 17 stacked layers 

using micromanipulation techniques [47]. Still, this Q seems to be insufficient to 

pursue ultimate applications, such as thresholdless lasers [48] and strong light-matter 

coupling [106,125-128].  
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In this chapter, the fabrication of the three-dimensional woodpile photonic 

crystals with the square-shaped and rectangular-shaped defect nanocavities designed 

in Chapter 6 using micromanipulation techniques is presented. Principles of the 

micromanipulation techniques and preparations of their constituents and samples are 

described. The structures with 25 stacked layers are achieved with high accuracy and 

the stacking errors are shown to be 50 nm at most. After that, experimental results are 

given on optical characterization of the fabricated cavities coupled with 

InAs/Sb:GaAs quantum dots by means of photoluminescence measurements. For the 

cavity with square-shaped in the 25-layer woodpile structure, a cavity mode with Q 

factor of more than 8,600, which is the highest Q among those for three-dimensional 

photonic crystal cavities reported so far, was achieved. This result is consistent with 

the calculation results, which indicated that a high-Q cavity can be achieved in a 

structure with finite size by fine tuning a cavity mode to middle of a complete 

photonic bandgap, where the light confinement is strongest. Moreover, for the 

rectangular-shaped cavity, a cavity mode with Q factor of more than 7,700 with an 

ultra-small mode volume of 2 cubic half-wavelengths was obtained by stacking 21 

layers and by tuning a cavity mode with high Q to the midgap. The results presented 

in this chapter give three-dimensional photonic crystals a wide-open opportunity for 

the realization of the applications concerning the control of light-matter interaction. 

 

7.2 Fabrication of three-dimensional photonic crystal nanocavities by 

micromanipulation techniques 
7.2.1 Principles of micromanipulation techniques 

 Because one period of a woodpile structure in the stacking direction consists 

of four layers, in which the rods of adjacent layers crossed each other orthogonally, 

and those of the next nearest neighboring layers are aligned parallel but with a half-

period shift, an idea of the micromanipulation techniques is to initially slice the final 

three-dimensional structure into four layers. Each layer only contains a one-

dimensional grating pattern prepared in a form of air-bridge plate using a 

conventional semiconductor processing procedure, and consequently, each layer is 

assembled with specific alignment at a designated position to form the final woodpile 

structure by micromanipulation. The micromanipulation system is installed in the 

specimen chamber of a scanning electron microscope (SEM) with a 
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field-emission gun (JEOL, JSM-6460) as shown in an illustration in Fig. 7.1. In this 

SEM system, the magnification range is from 17 to 300,000. Image in the chamber is 

monitored in real-time during the process. Semiconductor samples and glass probe 

coated with gold are mounted on two separate Piezo-driven three-axial stages. The 

samples and probes are placed perpendicular to each other and at 45 degree to the 

direction of the electron beam. The position of both stages is controllable with a 

precision of within 0.1 nm. By this fine positioning configuration, fine positioning of 

the probe to a specific point can be done in a large working area. A voltage between 

charges on the surface of the plate due to the electron beam irradiation and the probe, 

which is grounded, make it possible to use the probe to pick and position the plate 

owing to electrostatic and van der Waals forces. Gravitational force is proportional to 

the third power of the object size, whereas the electrostatic and van der Waals forces 

are proportional to the first or second power of the size [152,153]. Therefore, the 

electrostatic and van der Waals forces are dominant compared with the gravitational 

force for manipulating micron-sized objects. The adhesion between the plate and 

Figure 7.1 Configuration of micromanipulation system. 
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probe is controlled by adjusting the accelerating voltage and spot size of the electron 

beam. In addition, humidity in the chamber is important. As the relative humidity 

increases, water absorbs on the sample, decreasing the resistivity and increasing the 

rate of charge decay to the environment, which reduces the electrostatic adhesion 

[154]. Therefore, in order to increase the success rate of pickup, the humidity of the 

system is kept low by covering the SEM system with humidity control unit (APISTE, 

PAU-1300S-DR).  

 

7.2.2 Preparations of micromanipulation components and samples 

 As described in the previous section, in order to pick the plate up and 

assemble it to form the final structure, a probe that is suitable for this task is necessary. 

Moreover, an apparatus used to assign the position of the aligned plate with high 

precision is also essential. In this case, aligning posts are to be developed. Of all 

importance, samples containing plates with and without light-emitting elements that 

will be assembled to constitute three-dimensional photonic crystal nanocavities must 

be prepared in the form that is simple to be picked up by the probe with small 

structural damages to preserve their nanometer-sized fine structures. In this section, 

fabrication processes for these components are described. 

 

7.2.2.1 Probe and posts 

 The probe was a 1mm-diameter glass rod (NARISHIGE, G-1000) pulled using 

a micropipette puller (NARISHIGE, PC-10) while heating at 60 degree Celsius. Then 

it was evaporated with 40nm-thick chromium followed by 60nm-thick gold, at rate of 

0.2 nm per second, to prevent chargeup and assure that voltage between the probe and 

plate takes place during the micromanipulation process. An SEM image of the 

fabricated probe is shown in Fig. 7.2. The probe is tapered with a tip in hemispherical 

shape with a diameter of about 200 nm. The size of the tip was predetermined to be 

matched well with size of frame of the plate, where there is no photonic crystal 

pattern, in order not to introduce any damage to the plate when it is picked up.  
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To achieve high-precision assembly of the plates, square-shaped posts were 

prepared on a GaAs wafer. As shown in an SEM image in Fig. 7.3(a), one positioning 

site consisted of three posts located at predesignated positions, which fit well with V-

shaped notches introduced at the corners and sides of each plate, illustrated as dotted 

square in the figure. These posts allowed precise alignment of the plates, which would 

be aligned between these posts by the micromanipulation techniques. Firstly, 375 nm 

of SiO2 was deposited on GaAs substrate by magnetron sputtering to be used as a hard 

mask. Sputtering condition was as follows: Ar 12 sccm, O2 3 sccm, RF power 300 W, 

sputtering time 25 minutes. As will be described later, the thickness of each plate was 

200 nm, which consequently needed at least 5 μm-height posts in order to assemble 

25 plates. Therefore, the thickness of the SiO2 mask layer was chosen to be thick 

enough to make sure that the posts could be etched to such depth. Then, the sample 

was spin coated with electron-beam resist (ZEP-520A). The conditions for the spin 

coating process were as follows; spinning speed 500 rpm for 5 seconds, 3000 rpm for 

60 seconds, and pre-baking at 180 ºC for 20 minutes in an oven. With these 

conditions, the resist thickness was approximately 400 nm. Post patterns with 

numerical label above each group of them were prepared. The size of each post was 

(3×3) μm2. They were then written on the sample using an electron-beam lithography 

system (JEOL JBX-6000) at 50 kV, with 80 pA current and 75 μC/cm2 dose. 

Figure 7.2 Scanning electron micrograph of probe after being coated with 
chromium and gold. The tip size is ~ 200 nm in diameter. 
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Figure 7.3 Scanning electron micrographs of positioning posts in (a) top view and 
(b) side view. Dotted square in (a) represents a plate with their notches fitted with 
corners of posts. 
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The exposed ZEP-520A was developed in n-amyl acetate (Nihon-Zeon, ZED-N50) at 

20 ºC for 10 seconds, and rinsed in mixed solvent (Nihon-Zeon, ZMD-B) at room 

temperature for 15 seconds. The post patterns were subsequently transferred to the 

SiO2 layer by an ICP-RIE dry etching using CF4 and Ar mixture. Flow rates of gases 

were set to 5 sccm and 6 sccm for CF4 and Ar, respectively. The etching process was 

performed for 195 seconds with RF platen power of 500 W and source power of 125 

W. The pressure during the process was set to 0.75 Pa and all the process was done at 

room temperature. Difficulty occurred in GaAs etching process, because of the strict 

requirement that the posts must be etched to at least 5 μm-depth with straight side 

walls. The sidewall profile would play a major role and determine the stacking 

accuracy. The optimized etching condition using an ICP-RIE with Cl2 and Ar mixture 

were as follows: Cl2 5 sccm, Ar 2 sccm, platen power 100 W, source power 250 W, 

initial pressure 2 Pa, final pressure 1 Pa, temperature 50 ºC and etching times 7 

minutes. A key point was to etch with low platen power with long etching time to 

reduce physical etching by ionized gas bombarding, which would erode the entire 

SiO2 mask before ending of the process. In addition, the ratio of Cl2 to Ar was also 

important. With the optimized value, posts with straight sidewalls were achieved. The 

fabricated posts are shown in the scanning electron micrographs of Fig. 7.3(b) in side 

view. The posts have very straight side walls with about 5.5 μm in height. Using these 

posts as the positioning pins, aligning 25 plates or more with high precision can be 

expected. It is worth noting that the use of posts made of the same material as the 

stacking components (GaAs) greatly contributed to keeping both contamination and 

distortion of the photonic crystals to a minimum. 

 

7.2.2.2 Plates 

 From the calculation results presented in previous chapter, woodpile structures 

with the square-shaped and rectangular-shaped defect nanocavities with optimized 

sizes were fabricated. Both of them had general structural parameters in common, 

therefore, their fabrication processes are described concurrently. As aforementioned, 

one unit in the stacking direction of the final woodpile structure consisted of four layers, 

each containing a simple line-and-space pattern with a number of in-plane rods of 11. 

The line-and-space patterns were set to have in-plane periodicities a = 500 nm and 

480 nm for the structures with square-shaped and rectangular-shaped defects, 
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respectively. The size of plates was set to 10μm×10μm, which was sufficient to 

contain that number of rods with those pitches. The rod widths were 0.25a and 0.30a 

for the structures with square-shaped and rectangular-shaped cavities, respectively. 

Two types of plates were fabricated. One was a normal plate with normal line and 

space patterns used to stack the upper and lower cladding layers, while the other one 

was an active plate containing light-emitting elements and cavities, located between 

the upper and lower layers. They were prepared on separated samples. 

In the fabrication, each layer was a 200-nm-thick GaAs slab grown on a 

1000-nm-thick Al0.7Ga0.3As sacrificial layer, which was on a 300-nm-thick GaAs 

buffer layer, using metal organic chemical vapour deposition (MOCVD). Then, 170 

nm of SiO2 was sputter on the sample to be used as a hard mask. The sputtering 

condition was the same as that for the process in previous subsection, except that the 

sputtering time was reduced to 14 minutes. Such a thick mask layer was required 

despite of the thin slab to be etched. In order to increase the success rate of pickup, 

the patterns were needed to be etched to the substrate, as will be described in details 

in next section. Considering the sample used here, etching depth of more than 1.5 μm 

was requisite. Then, the samples were spin coated with electron-beam resist (ZEP-

520A). The conditions for the spin coating process were as follows; spinning speed 

500 rpm for 5 seconds, 4000 rpm for 60 seconds, and pre-baking at 180 ºC for 20 

minutes in an oven. With these conditions, the resist thickness was approximately 350 

nm. The photonic crystal structures were patterned using an electron-beam 

lithography system (JEOL JBX-6000) at 50 kV, with 80 pA current and 60 μC/cm2 

standard dose. To compensate for the proximity effect in the lithography, a dose 

profile for each plate pattern was developed as shown in Fig. 7.4 to equalize the 

energy deposited by backscattered electrons [155]. Numbers in the figure indicate the 

percentage of dose deviated from the standard dose for each exposure point. The dose 

profile could also be well applied to the other three plate patterns and could also be 

used for patterns with different in-plane periods and rod widths by just slightly 

changing the standard dose. The exposed ZEP-520A was developed in n-amyl acetate 

(Nihon-Zeon, ZED-N50) at 20 ºC for 65 seconds, and rinsed in mixed solvent (Nihon-

Zeon, ZMD-B) at room temperature for 60 seconds. The photonic crystal patterns 

were subsequently transferred to the SiO2 layer by ICP-RIE dry etching using a CF4 

and Ar mixture. Flow rates of gases were set to 5 sccm and 6 sccm for CF4 and 
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Ar, respectively. The etching process was performed for 85 seconds with RF platen 

power of 500 W and source power of 125 W. The pressure during the process was set 

to 0.75 Pa and all the process was done at room temperature. Dry etching into the 

semiconductor layers was then performed in an ICP-RIE dry etching using a Cl2 and 

Ar mixture. Etching conditions were as follows: Cl2 3 sccm, Ar 2 sccm, platen power 

100 W, source power 300 W, initial pressure 2 Pa, final pressure 1 Pa, temperature 50 

ºC and etching times 100 seconds. With this condition, the patterns were etched to 

about 2μm-depth as shown in Fig. 7.5(a). It should be notified that the profile of the 

etched sacrificial layer, which was a little indent, was insignificant as long as that of 

the plate slab was straight and the patterns were not deteriorated or collapsed, because 

it would beeventually removed after wet etching. The sacrificial layer was removed 

by dipping the samples in a 1:9 hydrogen fluoride solution (HF:H2O) for 40 seconds 

to form suspending air-bridge structures. To avoid the collapse of the air-bridge 

structures, the sample was rinsed in isopropyl alcohol (IPA) as the last rinsing solvent 

after the wet etching process to substitute the water. One unit of the fabricated 

Figure 7.4 Plate pattern (gold) with electron beam dose profile to compensate for 
the proximity effect. Numbers indicate percentage of dose deviated from the 
standard dose for each exposure point 
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Figure 7.5 Scanning electron micrographs in bird’s-eye view of one unit of 
buiding blocks consisting of four plates after (a) Cl2/Ar dry etching and (b) wet 
etching. 

10μm10μm

8μm8μm

(a) 

(b) 
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air-bridge building blocks consisting of four plates is shown in the scanning electron 

micrograph of Fig. 7.5(b) in bird’s-eye view. All the plates are linked to the substrate 

by four small bridges to make them hung in the air. 

Active plates were prepared in the same way as for the normal plates except 

that they contained three-layer stacked InAs/Sb:GaAs quantum dot layers, in which 

the middle quantum dot layer was at the center of the slab. Antimony-surfactant-

mediated growth was used to grow high density quantum dots with good optical 

properties emitting beyond 1.3 μm [156-158]. The dot density was 2 × 1010 cm-1 per 

layer. The quantum dot ground state emission peaks were at 1.41 μm and 1.29 μm at 

room temperature for the samples for square-shaped (sample A) and rectangular-

shaped (sample B) cavities, respectively. A square-shaped defect with width of each 

side D = 1.1a, which is the optimized value obtained in last chapter was located at the 

center of the pattern of the active plate of sample A to form a nanocavity. For sample 

B, a rectangular-shaped defect with dimensions Δx×Δy = 0.9a×0.45a was introduced 

as a defect cavity. SEM images of the active plates with both defect cavities are 

shown in top view in Fig. 7.6. The SEM-observed defect sizes and shapes, however, 

deviated a little from the designed values due to fabrication errors during the resists 

developing and etching processes. The actual square-shaped and rectangular-shaped 

defects became approximately 1.05a×1.05a and 1.0a×0.5a, respectively, with their 

Figure 7.6 Scanning electron micrographs in top view of active plates with (a) 
square-shaped and (b) rectangular-shaped nanocavities after wet etching. 
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corners rounded. These structural deviations will affect optical properties of the 

cavities as will be discussed in next chapter. 

 

7.2.3 Assembly into three-dimensional structures by micromanipulation 

 The precedently prepared unit plates were assembled using micromanipulation 

techniques. The accelerating voltage of the primary electron beam of the SEM system 

was set to 6 kV. The relative humidity and temperature measured outside the chamber 

were controlled to 25% and 28 ºC, respectively. The samples, consisting of samples of 

normal plates, posts, and active plates, together with probe, which was placed 

perpendicular to the samples, were inserted into the chamber. The chamber was then 

vacuumized to order of 10-5 Pa to start the micromanipulation. SEM images of the 

assembly procedure are shown in Fig. 7.7. Firstly, due to the difference in altitude 

between the probe and the samples, the probe was lowered down to approach the 

plates. After reaching the level of the plates, the probe tip was pushed to break the 

linking bridges in order to release the plate from the substrate. The white scratches at 

the interface between the plate and the linking bridges as seen in Fig. 7.7(a) indicate 

that the plate is already free from those linking bridges. Because the probe was quite 

fragile, it must not be applied with too strong tension, otherwise it would be broken. 

Another important point that needed a great caution was that the plate must not be 

dropped onto the substrate because the electrostatic and van der Waals forces between 

the plate and substrate were much stronger than those between the plate and probe. 

Plates that were fallen down on the substrate would never be able to be peeled off. 

This was avoided by levering the plate up to lie on the bridges after two bridges on 

the upper side of the plate were broken. After that, the linking bridge on the lower-

right hand side of the plate was broken, while maintaining the plate not to fall down 

from the bridges on the upper side onto the substrate. Then, the plate was pushed from 

the right hand side so that it a little rotated and applied a tension to the left bridge on 

the lower-left hand side of the plate to break it. Consequently, the plate separated 

from the substrate was picked up with the probe as shown in Fig. 7.7(b). The probe 

should be settled at a location where there was no photonic crystal pattern in order not 

to damage it. The probe with the plate attached on it was then transferred to the 

location of the posts. After being approached to the post level, the plate was released 

from the probe by laying it on one of the posts as shown in Fig. 7.7(c). The 
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Figure 7.7 SEM images of assembly procedure by micromanipulation. (a) A 
bridge of a plate is broken by pushing it with a probe tip. (b) A plate is picked up 
with a probe. (c) A plate is released from a probe by sticking it on a post. (d) A 
plate is pushed and pressed down with a probe to stick with underlying layers. (e) 
A plate is stacked on underlying layers with high precision. (f) A final 25-layer 
woodpile structure. 

5μm1μm 5μm5μm1μm1μm

(a) (b) 

(c) (d) 

(e) (f) 
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plate tended to stick on the post rather than the probe due to stronger adhesive force 

between the plate and the post. The probed was used to guide the plate to the 

appropriate position where the notches at the corners and sides of the plate fitted with 

the corners of the three posts. Finally as shown in Fig. 7.7(d), the plate was pushed 

and pressed down for a few seconds with a probe after the arrangement in the final 

position to make the plate self-bonded with the underlying plates and never peeled off. 

Figure 7.7(e) shows a magnified SEM image of the plate after being stacked on the 

underlying layers. The alignment is very precise, as can be seen in the figure that the 

rods of the next nearest underlying layer are aligned parallel but with a half-period 

shift according to the topmost layer. The assembly procedures were repeated and 

finally formed the final multilayer three-dimensional structures. One sequence of the 

assembly for one plate was completed within 10 minutes in average. An SEM image 

of the fabricated 25-layer woodpile structure is shown in Fig. 7.7(f), where the sample 

is tilted up to 45º to reveal the three-dimensional structure. The stacking errors were 

measured from the side of the structure, and determined to be 50 nm at most. 

Therefore, high Q factors can be expected in these fabricated cavities. The structure 

with the square-shaped cavity was fabricated with 25 stacked layers, where the active 

layer with the defect cavity was placed between twelve upper and twelve lower 

normal layers, while the structure with the rectangular-shaped cavity was fabricated 

with 21 stacked layers with ten upper and ten lower layers. More than five structures 

were fabricated for each cavity with the same structural parameters. Figure7.8 shows 

a 4×7 matrix of assemblies with some failed structures. Each positioning site was 

labelled numerically for easy recognition of the position on the substrate when 

performing measurements. These large number of fabricated photonic crystal 

components reflects the capability to achieve high fabrication throughput of the 

micromanipulation techniques.  



 144

 

7.3 Experimental setup of photoluminescence measurements 
To investigate optical properties of the nanocavities, photoluminescence (PL) 

measurements were performed in a temperature-controlled liquid-helium cryostat at 6 

K for the square-shaped defect cavity and at room temperature for the rectangular-

shaped defect cavity. Figure 7.9 illustrates schematics of the measurement setup. The 

cryostat was pumped down to vacuum. A continuous-wave (CW) diode laser operated 

at 780 nm was used as an excitation source. The pump laser beam was focused to a 4 

μm-diameter spot on the samples by a microscope objective [50×, numerical aperture 

= 0.42], and was positioned on the photonic crystal regions using piezo-electric 

nanopositioners. Special care must be taken in adjusting the focal plane of the laser 

beam to the height where the cavity is in order to effectively excite the quantum dots 

inside the cavity. For imaging purpose, white light from a lamp was illuminated on 

the sample and a charge-coupled device (CCD) camera was used to image the 

positions of the photonic crystals. The PL from the quantum dots was collected by the 

same microscope objective and analyzed with both a monochromator and a triple 

grating monochromator equipped with InGaAs multichannel detector 

Figure 7.8 View of fabricated three-dimensional photonic crystal structures in a 
4×7 matrix. 

50μm50μm
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arrays. A mirror located in front of the monochromator can be flipped to select the 

detections, image of photonic crystals or luminescence. A polarizer was located just 

before the monochromator to filter the different in-plane polarization components of 

the emitted light from the cavity.  

 

7.4 Results of photoluminescence measurements 

7.4.1 Square-shaped defect nanocavity 

 Figure 7.10(a) shows the PL spectra for the fabricated 25-layer woodpile 

structure with the square-shaped defect nanocavity when measured at the regions with 

and without photonic crystals, which was a frame region of the plates as depicted in 

Fig. 7.10(b). Only broad PL from a quantum dot ensemble without any apparent sharp 

peak was observed outside the photonic crystal pattern. On the other hand, the spectra 

measured on the photonic crystal nanocavity exhibit four sharp and polarized peaks at 

approximately 1243, 1270, 1292, and 1308 nm. These peaks are fallen within a 

complete bandgap between 1225 and 1445 nm depicted in the figure as an unshaded 

Figure 7.9 Schematic illustration of photoluminescence measurement setup. 
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region, where a dotted line represents the midgap frequency of the photonic bandgap. 

A set of broader peaks near 1200 nm corresponds to bandedge modes, in which the 

emission enhancement is resulted from the high density of states at the edges of the 

photonic bandgap. The peaks at 1243 and 1270 nm are strongly polarized along y 

direction, while the peaks at 1292 and 1308 nm are polarized along the x direction. 

The definition of the polarization directions are given in Fig. 7.10(c), where x- and y-

directions correspond to the directions perpendicular and along the rods in the defect 

layer. From their position-sensitive behavior and polarization dependence, these four 

peaks were then concluded to be originated from the cavity resonances. The Q factors 

of the cavity modes were then determined. Figure 7.11 shows the high-resolution PL 

spectrum for the peak at 1308 nm fitted with a Lorentzian function. The linewidth of 

0.152 nm corresponds to the estimated Q factor of more than 8,600, which is the 

highest value reported so far in three-dimensional photonic crystals with almost four-

time improvement [47]. Another few structures with the same configuration were also 

tested and found that the high Q mode was reproducible in all samples. Moreover, the 

peak at 1292 nm also has very high Q with value of 7,100, while the cavity Qs for the 

peaks at 1243 and 1270 nm are approximately 420 and 1,275, respectively.  

High-Q nature of the cavity was originated not only from a large number of 

the stacked layers, but also from the strong localization of the cavity mode when it 

was tuned to the midgap frequency of the complete photonic bandgap as discussed in 

Chapter 6. From the measurement results, it can be seen that Q factors are high for the 

modes located deep inside the bandgap and become lower as the modes detuned from 

the midgap frequency. Considering from their wavelengths, Q factors, and 

polarizations, the measured peaks at 1243, 1270, 1292, and 1308 nm are, in fact, 

respectively corresponding to modes A, B, C, and D of the designed cavity 

numerically discussed in Chapter 6. The spectra of cavity modes A to F in the square-

shaped cavity with width of each side D = 1.1a are also plotted in Fig. 7.10 (a) for 

comparison. Modes E and F could not be recognized in the measured spectra, because 

they were out of quantum dot emission range. The polarization of modes A, B, C, and 

D obtained in the experiment are consistent with the FDTDcalculations, which were 

determined by considering in-plane field parities and dominant near-field emission of 

the cavity modes shown in Fig. 6.3 of Chapter 6. However, the measured 



 147

Figure 7.10 (a) PL spectra from the square-shaped nanocavity with polarization 
filtering. Corresponding spectrum from the region without PhC structure collected 
with no filter is shown for comparison. The complete bandgap and midgap 
frequency are shown in unshaded area and dotted line, respectively. The calculated 
spectra of cavity modes A to F in the square-shaped cavity with width of each side 
D = 1.1a are also plotted for comparison. (b) SEM image of the fabricated 
structure with excited regions indicated. (c) Definition of polarization directions. 
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wavelengths and Q factors of those modes are deviated from the simulation results. 

The wavelengths of modes C and D are red-shifted,while those of modes A and B are 

a little shifted to longer wavelength. These changes can be attributed to structural 

fluctuation of the cavity caused by the fabrication processes, especially by the dry 

etching process. As discussed in Chapter 6, wavelengths (or normalized frequencies) 

of cavity modes are very sensitive to change in size and shape of the defect cavity. By 

observing SEM images of the fabricated structure, the actual square-shaped defect 

with its designed size of 1.1a×1.1a became approximately 1.05a×1.05a with their 

corners rounded. With this defect size, mode D, which was designed in Chapter 6 to 

have its resonant frequency closest to the midgap frequency, was slightly detuned 

from the midgap as can be seen in Fig. 7.10(a). This detuning degraded the theoretical 

Q of mode D in the fabricated cavity from the designed values of 41,000 to 20,000, 

calculated using the actual cavity size. The calculated Qs using the actual defect size 

for mode A, B, and C were 450, 1600, and 12,500, respectively. The tendency of the 

calculated Qs with 25 stacked layers using the actual defect size agrees well with that 
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Figure 7.11 High-resolution PL spectrum for the peak at 1308 nm fitted with a 
Lorentzian function (red curve). 
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of the measured ones. Nevertheless, there is still a large difference between the 

measured Qs and the calculated Qs, which can be attributed to two main reasons, 

material absorption and additional structural degradation due to fabrication errors, 

such as roughness of the rod sidewalls and stacking errors. These extrinsic losses can 

be related to the measured-Q (Qmeasured) and calculated Q with actual size of cavity 

(Qcalculated,actual) by the following relation: 

    
fababsorptionactualcalculatedmeasured QQQ ,,

111
+=                                (7.1) 

, where Qabsorption,fab is the Q factor determined by material absorption and fabrication 

imperfections. Equation (7.1) shows that no matter how large the designed cavity-Q, 

its quality factor will ultimately be limited by material losses (and fabrication 

imperfections). For that reason, quality factors in structures containing active areas, 

such as quantum dots, largely lag behind passive structures. So far, two-dimensional 

GaAs photonic crystal cavities with quantum dots are limited to Q values of a few 104 

[126,127,137], while photonic crystals in Si near 1550 nm, where Si appears 

transparent, have already passed the 1-million mark [74,75]. From Eq. (7.1), 

Qabsorption,fab of the fabricated structure was calculated to be near 15,000. This means 

that if the structural parameters of the cavity can be kept to their designed values by, 

for example, compensating the cavity size in the lithography process, the cavity-Qs 

can still be increased to approach 15,000. 

 

7.4.2 Rectangular-shaped defect nanocavity 

 Figure 7.12(a) shows the PL spectra measured at room temperature for the 

fabricated 21-layer woodpile structure with the rectangular-shaped defect nanocavity 

for different polarization filtering. There are two apparent peaks at 1392 and 1417 nm 

inside a photonic bandgap between 1250 and 1470 nm depicted in the figure as an 

unshaded region, where a dotted line represents the midgap frequency of the photonic 

bandgap. Both peaks are polarized along x direction, which is the longer side of the 

defect structure, which agree well with the FDTD calculation results. The peak at 

1392 nm is very sharp reflecting its high Q factor. Figure 7.12(b) shows the high-

resolution PL spectrum for the peak at 1392 nm fitted with a Lorentzian function. The 

linewidth of 0.1806 nm corresponds to the estimated Q factor of more than 7,700, 

which is more than three times higher than the previous report [47] on the same cavity 

structure with 17 stacked layers but without the optimization of the defect size. The 
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Figure 7.12 (a) PL spectra from the rectangular-shaped nanocavity collected with 
polarization filtering. The complete bandgap and midgap frequency are shown in 
unshaded area and dotted line, respectively. (b) High-resolution PL spectrum for 
the peak at 1392 nm fitted with a Lorentzian function (red curve). 
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peak at 1417 nm cannot be recognized when analysed with the triple grating 

monochromator to obtain high resolution PL due to its very weak signal resulted from 

its coupling to an emission tail of the quantum dot ensemble emission, in spite of its 

narrow linewidth.  

 The 3.3-fold improvement of Q factor compared with the previous work 

originated not only from a larger number of stacked layers, but it was mainly resulted 

from the tuning of the mode with higher theoretical Q to the midgap frequency. As 

discussed in Chapter 6, the second-lowest mode (mode 2) has much higher calculated-

Q than the fundamental mode (mode 1) with the same number of stacked layers. 

Therefore, mode 1 should be tuned to the midgap in order to achieve high Q. In the 

previous report, mode 1 was the mode of interest and it was tuned to the midgap, 

leaving mode 2 largely deviated from the midgap. In contrast, the cavity studied here 

has its mode 2 tuned to the vicinity of the midgap as depicted in Fig. 7.12(a), resulting 

in higher calculated-Q, and thus higher measured-Q. The calculated-Q for mode 2 of 

the designed cavity was 94,000 with the cavity size Δx×Δy = 0.9a×0.45a. It is obvious 

that there is a large difference between the measured-Q and the calculated-Q. As 

earlier discussed in the previous subsection, this large difference can be attributed to 

the fabrication imperfections and the material absorption. By observing SEM images 

of the fabricated structure, the shape of the cavity was deteriorated from the designed 

one with size stretched from Δx×Δy = 0.9a×0.45a to 1.0a×0.5a and its corners 

rounded. The simulation was done to calculate the spectrum and the Q factors of the 

cavity with actual size. Figure 7.13 shows the PL spectrum from the same fabricated 

cavity shown in Fig. 7.12(a) but with higher resolution, compared with the calculated 

spectrum obtained from the structure with actual size. In the aspect of wavelength of 

the cavity modes, the experimental result agrees well with the calculated one. Slight 

discrepancy in the value of the wavelengths is assumed to be affected from the round 

shape of the cavity corners, which was not included in the computational model. 

Broader linewidths of the calculated peaks are resulted from the limited resolution of 

the computations. The calculated Q of mode 2 with actual size of the cavity was 

degraded to 35,000. Using Eq. (7.1), Qabsorption,fab of the fabricated structure was 

calculated to be near 10,000. This value of Qabsorption,fab of the rectangular-shaped 

cavity is a little deviated from 15,000 of the square-shaped cavity possibly due to 

difference in resonant wavelengths and smaller size of the rectangular-shaped cavity, 
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which is influenced more strongly  by the round shape of the cavity corners. There is 

still a room to improve the measured-Q of the rectangular-shaped cavity by 

optimizing the fabrication processes to keep the cavity to its designed size and shape. 

Interestingly, mode 2 in the fabricated rectangular-shaped cavity has very small mode 

volume of only 2(λ/n)3, approaching the diffraction limit value of (λ/n)3. This mode 

volume is smaller than any of two-dimensional photonic crystal cavities reported up 

to now with comparative Q factors [159]. In two-dimensional photonic crystal slab 

cavities, the Q factor increases at a price of a larger mode volume due to the imperfect 

optical confinement resulting from an escaping light cone [160], in which cavity 

modes have to be extended in real space in order to limit wavevector components 

located in the light cone. Thus, it is still a challenge to build high-Q cavities as the 

mode volume approaches (λ/n)3. In contrast, the Q factor in three-dimensional 

photonic crystal cavities can be infinitely large, while the mode volume is kept small, 

due to its complete photonic bandgap. Therefore, the fabricated rectangular-shaped 

with ultra-high Q/Veff is very promising for applications, such as ultra-low threshold 
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Figure 7.13 PL measured on the fabricated structure compared with calculated 
spectrum obtained from the structure with Δx×Δy = 1.0a×0.5a. 
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lasers and nonlinear optical effects. In particular, introducing a single quantum dot in 

the cavity may provide us the ideal semiconductor system for demonstrating genuine 

strong coupling between three-dimensionally confined photon and electron [161]. 

 

7.5 Summary 

In this chapter, experimental demonstrations of two high-Q cavities coupled 

with quantum dots in three-dimensional photonic crystals fabricated by using 

micromanipulation techniques have been presented. The structures have been shown 

to have very small stacking errors in order of 50 nm, in spite of their large number of 

the stacked layers. A square-shaped defect cavity in a 25-layer woodpile layer has 

exhibited a cavity mode with Q factor of more than 8,600, which is the highest Q 

among those for three-dimensional photonic crystal cavities reported so far. The high-

Q nature of the cavity has been confirmed to be originated not only from a large 

number of the stacked layers, but also from the strong localization of the cavity mode 

when it was tuned to the midgap frequency of the complete photonic bandgap. The 

obtained cavity-Q can still be improved to more than 10,000 by finer tuning the cavity 

mode to the exact midgap. For a rectangular-shaped cavity, a cavity mode with Q 

factor of more than 7,700 has been obtained by choosing a cavity mode with high 

theoretical Q and tuning it to the midgap. The cavity mode has been shown to have 

mode volume as small as 2 cubic half-wavelengths, approaching the diffraction limit 

value of a cubic half-wavelength. These high Q/Veff cavities will give three-

dimensional photonic crystals a wide-open opportunity for the realization of the 

applications concerning the control of light-matter interaction. In addition, due to the 

flexibility of the micromanipulation techniques, structures that can be fabricated are 

not restricted to only the woodpile. By just changing patterns of plates, realization of 

more complicated structures, such as rod-connected diamond photonic crystal 

structure, which has a larger photonic bandgap than the woodpile, or a three-

dimensional structure with upper layers acting as a lens, are also possible. 
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Chapter 8 

Conclusions and Future Outlook 
 

8.1 Conclusions 
New concepts and results on designs, fabrications, and applications of high Q 

nanocavities in both two- and three-dimensional photonic crystals have been 

presented in this thesis. The results on high Q two-dimensional photonic crystal 

cavities have shown a great promise extending the scope of applications that can 

utilize photonic crystal cavities to improve their performance, where a photonic 

bandgap is no longer a preliminary requirement. The demonstration of high Q cavities 

in three-dimensional photonic crystals achieved in this thesis gives three-dimensional 

photonic crystals a wide-open opportunity for the realization of the applications 

concerning the control of light-matter interaction. 

In Chapter 2, basic principles of photonic crystals that are necessary for 

understanding the research background and motivation of this thesis have been 

introduced. Two-dimensional photonic crystal slabs with both triangular and square 

lattices and three-dimensional woodpile photonic crystal structures have been 

described in details as they are the basic building blocks of all the work in this thesis. 

The influence of cavity geometry and structural parameters on the behavior of 

characteristics of photonic crystals, such as photonic bandgap, resonant frequencies, 

has then been discussed. Finally, donor defects have been introduced by adding 

dielectric materials to perfect crystals to form defect nanocavities.  

In Chapter 3, details of the calculation method based on the three-dimensional 

finite-difference time-domain (3D FDTD) method have been described. The FDTD 

simulations have been categorized into two classes with different boundary conditions, 

depending on the types of calculations to obtain efficient and accurate solution of 

electromagnetic waves. The applications of the 3D FDTD calculations to investigate 
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photonic band structures, equi-frequency contours, resonant frequencies, field 

distributions, quality factors, mode volumes, and effective refractive indices have 

been shown. 

In Chapter 4, a significant increase of Q-factor of dipole modes in photonic 

crystal H1-defect nanocavity after closing of the photonic bandgap have been 

numerically and experimentally demonstrated by optimizing the slab thickness. The 

optimal slab thickness is equal to a wavelength of light confined in the cavity. The 

strong light confinement of the cavity in the in-plane direction is not caused by the 

photonic bandgap effect due to a lack of the photonic bandgap but resulted from the 

decoupling between the cavity mode and the guided mode in the momentum space 

yielding only weak coupling between these two modes. The results clearly show that 

the structural parameters of the best fabricated cavity and those of the predicted one 

are almost exactly the same, in which the slab thickness d = 1.345a of the 

experimental results is close to d = 1.35a of the calculated ones, because there is no 

modification of the defect structure and the only parameter that needs to be adjusted 

to achieve high Q is the slab thickness which can be precisely controlled by using 

epitaxial growth techniques such as MBE and MOCVD. This finding will contribute 

to extending the freedom of cavity design, such as that for the application to 

polarization entangled photon source, where it is required to form cavity modes with 

prescribed Q factor and polarization.  

In Chapter 5, a photonic crystal nanocavity with an ultra-high Q and small 

mode volume has been achieved even cavity modes do not locate within the gap or 

even no bandgap at all. The air hole radii were modulated with a quadratic profile to 

decouple the cavity mode from possible losses consisting of guiding loss and radiation 

loss. The Fourier amplitude of the dielectric perturbation, governed by the air hole 

radii profile, at the corresponding vectors from the dominant Fourier components of 

the cavity modes to the leaky modes in momentum space was suppressed, resulting in 

doubly-degenerated modes with very high Q of 120,000 and mode volume Veff of 

0.79(λ/n)3. The figure of merit Q/Veff in the weak coupling regime is about two times 

higher than the highest value reported so far for doubly-degenerated modes. Therefore, 

this cavity is very promising for the realization of entangled photon sources. The 

designed cavity has also been successfully applied to achieve high Q cavities for material 

with low index and for quantum cascade lasers, in which a lack of photonic bandgap 
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usually hinders them from applications. The results achieved in this chapter extend 

the scope of optical devices that can utilize photonic crystal cavities to improve their 

performances, while the photonic bandgap is no longer a preliminary requirement to 

achieve high Q. 

In Chapter 6, three designs of high-Q cavities in three-dimensional photonic 

crystals with finite structural size that can be practically fabricated have been 

presented. High-Q cavity modes in square-shaped and rectangular-shaped 

nanocavities have been achieved by tuning their frequencies to midgap frequency of a 

complete photonic bandgap, where light confinement is strongest, by means of 

optimizing size of the defects to gain an advantage from the photonic bandgap effect 

as much as possible. Apart from tuning cavity modes to the midgap frequency, the Q 

factor can be further improved by modifying cavity structure through shifting of 

dielectric rods surrounding the cavity. 4.3-time improvement of Q with a value of 

73,300 has been achieved compared with the structure without modification of the 

cavity structure. Importantly, this high Q cavity only needs 17 stacked layers to obtain 

such high Q. These designed cavities show a great promise in the realization of high 

Q cavities using current fabrication technologies. 

In Chapter 7, experimental demonstrations of two high-Q cavities coupled 

with quantum dots in three-dimensional photonic crystals fabricated by using 

micromanipulation techniques have been presented. The structures have been shown 

to have very small stacking errors in order of 50 nm, in spite of their large number of 

the stacked layers. A square-shaped defect cavity in a 25-layer woodpile layer has 

exhibited a cavity mode with Q factor of more than 8,600, which is the highest Q 

among those for three-dimensional photonic crystal cavities reported so far. The high-

Q nature of the cavity has been confirmed to be originated not only from a large 

number of the stacked layers, but also from the strong localization of the cavity mode 

when it was tuned to the midgap frequency of the complete photonic bandgap. The 

obtained cavity-Q can still be improved to more than 10,000 by finer tuning the cavity 

mode to the exact midgap. For a rectangular-shaped cavity, a cavity mode with Q 

factor of more than 7,700 has been obtained by choosing a cavity mode with high 

theoretical Q and tuning it to the midgap. The cavity mode has been shown to have 

mode volume as small as 2 cubic half-wavelengths, approaching the diffraction limit 

value. These high Q/Veff cavities will give three-dimensional photonic crystals a wide-
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open opportunity for the realization of the applications concerning the full control of 

light-matter interaction.  

In summary, all the key objectives of this thesis have been accomplished 

(See Section 1.2). High Q cavity, in which its principal parameter of design is 

fabrication-tolerant and can be precisely controlled, has been obtained. In addition, 

the freedom of designs and applications of photonic crystal nanocavities have been 

extended, because the photonic bandgap is no longer a preliminary requirement to 

achieve high Q. Finally, high Q nanocavities in three-dimensional photonic crystals 

have been demonstrated. This achievement is one important step towards the 

acquisition of complete manipulation of light-matter interaction. 

 

8.2 Future outlook  
 The designs and demonstrations of high Q cavities that have been presented in 

this thesis have much room for future development. From the results of high Q 

cavities in three-dimensional photonic crystals, with proper excitation source, the first 

demonstration of lasing operation can be expected. In addition, as briefly discussed in 

Chapter 7, due to the flexibility of the micromanipulation techniques, structures that 

can be fabricated are not restricted to only the woodpile. By just changing patterns of 

plates, realization of more complicated structures, such as a rod-connected diamond 

photonic crystal structure [162], which has a larger photonic bandgap than the 

woodpile is possible. As a result, cavity modes with higher Qs but less sensitive to 

changes in cavity geometry can be expected from such structure because they can be 

located deeper inside the wide bandgap. Furthermore, in micromanipulation 

techniques all the unit plates are separately prepared, those used for constituting the 

upper layers can be designed to have graded index profile, and consequently can act 

like a lens to improve the outcoupling efficiency into a collection lens or fiber. In the 

two-dimensional photonic crystal cavities, both of the designed cavities possess high 

Q/Veff doubly-degenerated cavity modes that are orthogonally-polarized. Therefore, 

they can be used to suppress nondegeneracy of an intermediate exciton level of a 

single quantum dot, which is crucial for the realization of polarization-entangled 

photon sources [101,102]. 
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