
Fast Algorithms for Sequential Pattern

Mining

Zhenglu Yang

Department of Information and Communication Engineering

University of Tokyo

A thesis submitted for the degree of

Doctor of Philosophy

February 2008

ThesisFigs/UT.eps

Acknowledgements

First of all, I would like to thank my advisor, Masaru Kitsuregawa. Through

his support, care, and patience, Professor Kitsuregawa has fostered a strug-

gling graduate student into an experienced researcher. His insight and

ideas have helped me to form the foundation of this dissertation, and his

guidance and care helped me get over various hurdles during my graduate

years.

Secondly, I would like to thank my parents for their endless love, uncon-

ditional support and deep care. They make me always feel happiness and

gratitude, which help me overcome every obstacle I must face.

Special thanks to Miyuki Nakano and Masashi Toyoda for being the re-

viewers of my presentation and thesis. They gave me many helpful com-

ments on various aspects of my presentation. These comments made my

presentation much better, and I learned a lot from their comments. An-

other person to whom I want to thank is Anirban Mondal. He helped me a

lot on polishing my paper and I learned much from him.

I would also like to thank other members in Kitsuregawa Lab., including

Toshihiro Nemoto, Takeshi Sagara, Nobuhiro Kaji, Kazuo Goda, Shingo

Otsuka, Reiko Hamada, Shinji Suzuki, Masanori Yasukawa, Saneyasu Ya-

maguchi, Takayuki Tamura and Takashi Hoshino. I also want to thank to

Lin Li, Wenyu Qu, Kulwadee Somboonviwat, Yanhui Gu and Yongkun

Wang, for their great effort on building such a nice environment that just

like a family I live.

Abstract

Sequential pattern mining, which extracts frequent subsequences from a

sequence database, has attracted a great deal of interest during the recent

surge in data mining research because it is the basis of many applications.

Much work has been carried out on mining frequent patterns, however,

their performance is still far from satisfactory because of two main chal-

lenges: large search spaces and the ineffectiveness in handling dense data

sets. To offer a solution to the above challenges, we have proposed a series

of novel algorithms, called the LAst Position INduction (LAPIN) sequen-

tial pattern mining, which is based on the idea that the last position of

an item, α, is the key to judging whether or not a frequent k-length se-

quential pattern can be extended to be a frequent (k+1)-length pattern by

appending the item α to it. LAPIN can largely reduce the search space

during the mining process, and is very effective in mining dense data sets.

Our performance study demonstrates that LAPIN outperforms the existing

state-of-the-art algorithms by up to orders of magnitude on pattern dense

data sets. Moreover, in this thesis, we propose our effective Web log min-

ing system based on our efficient sequential mining algorithm to extract

user access patterns from traversal path in Web logs.

Recently, the skyline query has attracted considerable attention. In this

thesis, we are interested in the general model of skyline query, General

Dominant Relationship. We find the interrelated connection between se-

quential pattern mining and the general dominant relationship. Based on

this discovery, we extend sequential pattern mining techniques to effi-

ciently answer the general dominant relationship queries. Extensive ex-

periments illustrate the effectiveness and efficiency of our methods.

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Contributions . 5

1.3 Organization of the Thesis . 6

2 Problem Definition and Related Work 7

2.1 Sequential Pattern Mining Problem 7

2.2 Existing Sequential Pattern Mining Algorithms 8

2.2.1 AprioriALL . 8

2.2.2 GSP . 11

2.2.3 SPADE . 14

2.2.4 SPAM . 17

2.2.5 PrefixSpan . 19

3 LAPIN: Efficient Sequential Mining Algorithms 22

3.1 Problem of Existing Algorithms . 22

3.1.1 Experiment of Comparing Existing Algorithms 23

3.1.2 Analysis . 23

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining) 26

3.2.1 General Idea . 26

3.2.1.1 Lexicographic Tree 29

3.2.1.2 Formulation . 30

3.2.2 LAPIN: Design and Implementation 33

3.2.3 LAPIN Suffix . 36

3.2.4 LAPIN LCI . 38

iii

CONTENTS

3.2.5 A Complete Example . 41

3.3 Experimental Evaluation and Performance Study 42

3.3.1 Synthetic Data. 45

3.3.2 Real Data. 48

3.3.3 Analysis. 51

4 Improved Efficient Sequential Mining Algorithms 53

4.1 LAPIN PAID Algorithm (Passed Item Deduction Frequent Pattern Min-

ing) . 53

4.1.1 General Idea . 53

4.1.1.1 Formulation . 56

4.1.2 Design and Implementation 59

4.2 LAPIN SPAM Algorithm . 62

4.2.1 General Idea . 63

4.2.2 Implementation . 64

4.2.2.1 Space Optimization 64

4.3 Experimental Evaluation and Performance Study 65

4.3.1 Scalability test between PrefixSpan, SPADE and LAPIN algo-

rithms . 66

4.3.2 Real Data Evaluation between PrefixSpan, SPADE and LAPIN

algorithms . 67

4.3.3 Scalability Study between SPAM and LAPIN-SPAM 69

4.3.4 Memory Usage Analysis between SPAM and LAPIN SPAM . 69

4.3.5 Systemic Study on Different Algorithms 72

4.3.5.1 PrefixSpan v.s. LAPIN Suffix v.s. LAPIN PAID . . 72

4.3.5.2 SPADE v.s. LAPIN LCI 74

4.3.5.3 SPAM v.s. LAPIN SPAM 74

4.3.5.4 PrefixSpan v.s. SPADE v.s. LAPIN SPAM 77

4.3.5.5 LAPIN PAID v.s. LAPIN LCI v.s. LAPIN SPAM . 77

4.3.5.6 Summary . 79

iv

CONTENTS

5 Applications of Sequential Pattern Mining 82

5.1 Introduction of Web Log Mining . 82

5.1.1 Data Preparation . 83

5.1.1.1 Data Cleaning. 83

5.1.1.2 User Identification. 83

5.1.1.3 Session Identification. 84

5.1.2 Pattern Discovery . 84

5.1.3 Pattern Analysis . 85

5.2 LAPIN Web Algorithm . 85

5.2.1 General Idea . 85

5.2.2 Implementation . 86

5.3 Experimental Evaluation and Performance Study 89

5.3.1 Datasets . 89

5.3.2 Experiments and Evaluations 90

5.3.2.1 Comparing PrefixSpan with LAPIN WEB 90

5.3.2.2 Visualization Result 91

6 Extension of Sequential Pattern Mining 95

6.1 Introduction of Skyline Query . 95

6.2 Related Work . 97

6.2.1 Skyline Query . 97

6.2.2 Sequential Pattern Mining 99

6.2.3 Data Cube . 100

6.2.4 Partial Order Mining . 100

6.2.5 Graph Construction . 101

6.3 General Dominance Relationship Analysis 102

6.3.1 Preliminaries . 102

6.3.2 General Idea . 103

6.3.3 Constructing Partial Order Data Cube (ParCube) 104

6.3.3.1 Optimization of Sequential Pattern Mining 107

6.3.3.2 Compression of the ParCube Data Cube 109

6.3.4 Efficient ParCube Querying 110

6.4 Experimental Evaluation and Performance Study 111

v

CONTENTS

6.4.1 Datasets . 111

6.4.2 Skyline Query Performance 112

6.4.3 Dominant Relationship Query Performance 112

6.4.4 Index Data Structure Construction Performance 112

6.4.5 Effectiveness of Compression 115

7 Discussion 118

7.1 Extension of Sequential Pattern Mining 118

7.1.1 Constraint-based Mining of Sequential Patterns 118

7.1.2 Mining Closed and Maximal Sequential Patterns 119

7.1.3 Mining Approximate Sequential Patterns 119

7.1.4 Sequential Patterns Compression 119

7.1.5 Sequential Pattern Mining Over Data Stream 121

7.1.6 Toward Mining Other Kinds of Structured Patterns 121

7.2 Extension of Skyline Mining . 121

7.2.1 Ranked Skyline Queries . 121

7.2.2 Constrained Skyline Queries 122

7.2.3 Dynamic Skyline Queries 122

7.2.4 Enumerating and K-dominating Queries 123

7.3 Summary . 123

8 Conclusions 125

8.1 Summary of the Thesis . 125

8.2 Future Research Directions . 126

A Publication List 128

A.1 Journal Papers . 128

A.2 International Conference Papers . 128

A.3 Workshop Papers . 130

References 142

vi

Chapter 1

Introduction

Data mining is to find valid, novel, potentially useful, and ultimately understandable

patterns in data [37]. Sequential pattern mining, which extracts frequent subsequences

from a sequence database, has attracted a great deal of interest during the recent surge

in data mining research because it is the basis of many applications, such as customer

behavior analysis, stock trend prediction, and DNA sequence analysis. The sequen-

tial mining problem was first introduced in [5]; two sequential patterns examples are:

“80% of the people who buy a television also buy a video camera within a day”, and

“Every time Microsoft stock drops by 5%, then IBM stock will also drop by at least

4% within three days”. The above patterns can be used to determine the efficient use

of shelf space for customer convenience, or to properly plan the next step during an

economic crisis. Sequential pattern mining is also very important for analyzing bio-

logical data [8] [36], in which a very small alphabet (i.e., 4 for DNA sequences and 20

for protein sequences) and long patterns with a typical length of few hundreds or even

thousands, frequently appear.

Sequence discovery can be thought of as essentially an association discovery over

a temporal database. While association rules [4, 51] discern only intra-event patterns

(itemsets), sequential pattern mining discerns inter-event patterns (sequences). There

are many other important tasks related to association rule mining, such as correlations

[20], causality [86], episodes [67], multi-dimensional patterns [49, 60], maximal pat-

terns [13], partial periodicity [44], and emerging patterns [35]. Elaborate exploration

of sequential pattern mining issue will be beneficial to the other research problems

shown above a lot. In Chapter 5, as an example, one extension of sequential pattern

1

mining will be introduced. Thus, effective and efficient sequential pattern mining is an

important and interesting research problem.

Efficient sequential pattern mining methodologies have been studied extensively

in many related problems, including the general sequential pattern mining [5, 7, 79,

88, 109], constraint-based sequential pattern mining [39], incremental sequential pat-

tern mining [74], frequent episode mining [66], approximate sequential pattern mining

[55], partial periodic pattern mining [44], temporal pattern mining in data stream [93],

maximal and closed sequential pattern mining [64, 95, 105].

Although there are so many problems related to sequential pattern mining explored,

we realize that the general sequential pattern mining algorithm development is the most

basic one because all the others can benefit from the strategies it employs, i.e., Apriori

heuristic and projection-based pattern growth. Hence we aim to develop an efficient

general sequential pattern mining algorithm in this paper.

Much work has been carried out on mining frequent patterns, as for example, in [5,

7, 79, 88, 109]. However, all of these works suffer from the problems of having a large

search space and the ineffectiveness in handling dense data sets, i.e., biological data.

In this work, we propose new strategies to reduce the space necessary to be searched.

Instead of searching the entire projected database for each item, as PrefixSpan [79]

does, we only search a small portion of the database by recording the last position

of each item in each sequence. Because support counting is usually the most costly

step in sequential pattern mining, the LAst Position INduction (LAPIN) technique can

improve the performance greatly by avoiding cost scanning and comparisons using a

pre-constructed table in bit vector format.

However, we found that the improvement is at the price of much memory con-

suming when building the list of item’s last position because LAPIN uses a bitmap

strategy. We aim to obtain an efficient and balanced pattern mining algorithm with low

memory consuming and thus, we proposed an improved algorithm which makes good

use of not only the position of item but also the intermediate value (support value) of

k-length pattern when fining (k+1)-length pattern. The experiments demonstrated that

our improved algorithm performs the best in limited resource environments for dense

datasets.

Ayres et al. [7] claimed that SPAM is very efficient for long pattern mining and

it can outperform PrefixSpan by up to an order of magnitude. Our experiments show

2

that, although SPAM can handle long patterns in dense data sets, it is limited in the

length of long patterns it can handle, and its high speed comes at a price of large space

consumption. We proposed a new algorithm named LAPIN SPAM, which combines

the idea of LAPIN and SPAM. The experiments demonstrated that LAPIN SPAM sig-

nificantly outperforms the original SPAM, and is the best under unlimited resource

assumption for dense datasets.

The WWW provides a simple yet effective media for users to search, browse, and

retrieve information in the Web. Web log mining is a promising tool to study user

behaviors, which could further benefit web-site designers with better organization and

services. Although there are many existing systems that can be used to analyze the

traversal path of web-site visitors, their performance is still far from satisfactory. In

this thesis, we propose our effective Web log mining system based on our efficient se-

quential mining algorithm, LAPIN WEB, an extension of LAPIN algorithm to extract

user access patterns from traversal path in Web logs. Our experimental results and

performance studies demonstrate that LAPIN WEB is very efficient and outperforms

well-known PrefixSpan by up to an order of magnitude on real Web log datasets. More-

over, we also implement a visualization tool to help interpret mining results as well as

predict users’ future requests.

Recently, the skyline query has attracted considerable attention because it is the

basis of many applications, e.g., multi-criteria decision making [19], user-preference

queries [50] [47] and microeconomic analysis [61]. Given an N-dimensional dataset

D, a point p is said to dominate another point q if p is better than q in at least one

dimension and equal to or better than q in the remaining dimensions. Skyline mining

aims to find those non-dominated points, in a N-dimensional spatial dataset. This

problem can be seen as a special class of pareto preference queries [50].

Efficient skyline querying methodologies have been studied extensively. However,

all the papers concerned only the pure dominant relationship among a dataset, i.e.,

a point p is whether dominated by others or not, and got those non-dominated ones

as results. In the real world, users are more interested in the detail of the dominant

relationship in a dataset, i.e., a point p dominates how many other points and whom

they are. This problem can be seen as a general dominant relationship analysis to the

skyline query and has not been studied.

3

1.1 Motivation

In this thesis, we find the interrelated connection between sequential pattern mining

and the general dominant relationship. Based on this discovery, we propose efficient

algorithms to answer the general dominant relationship queries by using efficient se-

quential pattern mining algorithms and several other strategies. Extensive experiments

illustrate the effectiveness and efficiency of our methods.

1.1 Motivation

Most of the previous studies on sequential pattern mining, such as [5, 7, 88, 109], adopt

an Apriori-like approach, which is based on an anti-monotone Apriori heuristic [4]: if

any length k pattern is not frequent in the database, its length (k + 1) super-pattern can

never be frequent. On the other hand, Pei et al. proposed a projection-based algorithm,

PrefixSpan [79], which scans and counts the support of the candidates in the projected

databases.

The two kinds of approaches can achieve good performance by reducing the size

of candidate sets. However, in situations to mine those dense datasets with prolific

sequential patterns and long patterns, the existing state-of-the-art algorithms may still

suffer from the problems of having a large search space and the ineffectiveness in

handling dense data sets.

As sequential pattern mining is an essential data mining task, developing efficient

sequential mining techniques has been an important research direction in data mining.

There are some interesting questions that need to be answered.

• Apriori is one basic principle in frequent pattern mining. To improve the ef-

ficiency of sequential pattern mining substantially, is there any way to obtain

this advantage while avoiding the costly duplicate candidate test and repeated

database scan operations?

• Projection-based algorithm (i.e., PrefixSpan) shows good performance when

mining sparse datasets. Could we improve the efficiency by avoiding the dis-

advantage of scanning large projection databases?

4

1.2 Contributions

• Due to the trade-off between the Apriori-based algorithm and the projection-

based algorithm on mining various kinds of datasets, could we find an integrated

heuristic strategy to efficiently discovery the sequential patterns?

• Sequential pattern mining has many potential applications. Can we extend the

effective and efficient sequential pattern mining methods to solve some other

interesting data mining problems?

This thesis tries to make good progress in answering the above questions.

1.2 Contributions

In this thesis, we study the problem of efficient and effective sequential pattern mining,

as well as some of its extensions and applications. In particular, we make the following

contributions.

• We systematically develop a location aware method for sequential pattern min-

ing. A family of novel algorithms, LAPIN, is proposed for efficiently mining

sequential patterns on large dense datasets. The algorithms are developed for

varies of kinds datasets. We conducted comprehensive experiments to confirm

the efficiency of our algorithms.

• We apply our proposed algorithm to mine web log with modification with regard

to the special property of the web log. We build an integrated system to facilitate

the analysis web user behavior.

• We extend the sequential pattern mining method to allow the analysis of domi-

nant relationship, which is an important issue in spatial data mining. The idea is

based on the correlation between time and space. Our study shows that sequen-

tial pattern mining methods can be helpful in spatial data mining. Interesting

techniques are developed to solve the dominant relationship analysis effectively.

5

1.3 Organization of the Thesis

1.3 Organization of the Thesis

The remainder of the thesis is structured as follows:

• In Chapter 2, we present the sequential pattern mining problem and an overview

of related work systematically.

• In Chapter 3, a family of novel sequential pattern algorithms, LAPIN, is devel-

oped. The correctness and efficiency of LAPIN are verified by theoretical anal-

ysis and experimental tests. We also explain the reason of developing different

algorithms to tackle varies kind of datasets.

• Even though LAPIN is efficient in mining large dense databases, it may have

the problem while dealing with vary kinds of datasets. In Chapter 4, we propose

LAPIN PAID, which retains the advantages of LAPIN but avoids redundant sup-

port counting. Our performance study shows that LAPIN PAID achieves good

scalability in mining large databases and is also efficient in space. Moreover,

we develop an improved algorithm based on SPAM [7], which is the best one in

resource unlimited environments for dense datasets.

• By applying the algorithms what we develop, we build an integrated web log

mining system, which will be studied in Chapter 5.

• We extend the sequential pattern mining methods to solve the general dominant

relationship analysis problem in Chapter 6. The study indicates that, with some

modification and customization, sequential pattern mining methods can be ap-

plied to mine patterns from various kinds of databases.

• In Chapter 7 we discuss several issues which are related and can be extended

based on general sequential pattern mining techniques and skyline mining, such

as constraint-based pattern mining, approximate pattern mining, pattern com-

pression, data stream mining, Top-K query. Specially, the inter-connection be-

tween sequential pattern mining and Skyline query is emphasized and we believe

that these two fields can learn from each other.

• The thesis concludes in Chapter 8. Some future directions are further presented.

6

Chapter 2

Problem Definition and Related Work

In this chapter, we first define the problem of frequent pattern mining, then we revisit

the existing heuristic and algorithms.

2.1 Sequential Pattern Mining Problem

Let I = {i1, i2, . . . , ik} be a set of items. A subset of I is called an itemset or an

element. A sequence, s, is denoted as 〈t1, t2, . . . , tl〉, where tj is an itemset, i.e.,

(tj ⊆ I) for 1 ≤ j ≤ l. The itemset, tj , is denoted as (x1x2 . . . xm), where xk is

an item, i.e., xk ∈ I for 1 ≤ k ≤ m. For brevity, the brackets are omitted if an

itemset has only one item. That is, itemset (x) is written as x. The number of

items in a sequence is called the length of the sequence. A sequence with length l

is called an l-sequence. A sequence, sa = 〈a1, a2, . . . , an〉, is contained in another

sequence, sb = 〈b1, b2, . . . , bm〉, if there exists integers 1 ≤ i1 < i2 < . . . < in ≤ m,

such that a1 ⊆ bi1 , a2 ⊆ bi2 ,. . . , an ⊆ bin . We denote sa a subsequence of sb,

and sb a supersequence of sa. Given a sequence s = 〈s1, s2, . . . , sl〉, and an item

α, s � α denotes that s concatenates with α, which has two possible forms, such as

Itemset Extension (IE), s � α=〈s1, s2, . . . , sl ∪ {α}〉, or Sequence Extension (

SE), s � α=〈s1, s2, . . . , sl, {α}〉. If s′ = p � s, then p is a prefix of s′ and s is a

suffix of s′.

A sequence database, S, is a set of tuples 〈sid, s〉, where sid is a sequence id and

s is a sequence. A tuple 〈sid, s〉 is said to contain a sequence β, if β is a subsequence

7

2.2 Existing Sequential Pattern Mining Algorithms

of s. The support of a sequence, β, in a sequence database, S, is the number of tuples

in the database containing β, denoted as support(β). Given a user specified positive

integer, ε, a sequence, β, is called a frequent sequential pattern if support(β) ≥ ε. In

this work, the objective was to find the complete set of sequential patterns of database

S in an efficient manner.

2.2 Existing Sequential Pattern Mining Algorithms

Sequential pattern mining algorithms can be grouped into two categories. One category

is Apriori-like algorithm, such as Apriori-all [5], GSP [88], SPADE [109], and SPAM

[7], the other category is projection-based pattern growth, such as PrefixSpan [79].

Next the five algorithms are surveyed one by one.

2.2.1 AprioriALL

Sequential pattern mining was first introduced in [5]. The authors proposed three

Apriori-based algorithms. There are five phases in the whole work flow of the al-

gorithms. To conveniently explain them, we use a sample database hereafter, as shown

in Figure 2.1.

• Sort Phase: At first, the original transaction database is sorted with customer-id

as the major key and transaction time as the minor key. The result is the set of

customer sequences. The sample database in Figure 2.1 is indeed the transaction

data after sorting.

• L-itemsets Phase: Then we scan the sorted database obtain the large 1-itemsets

based on the predefined support threshold. Suppose the minimal support is 60%,

the minimal support count is thus 2. The result of large 1-itemsets is listed in

Figure 2.2, which are a, b, c and d (mapped ID).

• Transformation Phase: In this phase, the customer sequences are replaced by

those large itemsets they contain. All the large itemsets are mapped into a series

of integers (here we use characters to convenient the explanation) to make the

mining more efficient. At the end of this phase the original database is trans-

formed into the set of customer sequences represented by those large itemsets.

8

2.2 Existing Sequential Pattern Mining Algorithms

C ustom er ID T ransaction T im e Item s B ough t
1 July 3 '07 Apple
1 July 6 '07 Strawberry
1 July 8 '07 Banana, Strawberry
1 July 10 '07 Pear
1 July 12 '07 Apple, Banana, Strawberry
1 July 16 '07 Apple
1 July 21 '07 Pear
2 July 4 '07 Banana
2 July 7 '07 Strawberry, Pear
2 July 9 '07 Apple
2 July 10 '07 Strawberry
2 July 15 '07 Banana, Pear
3 July 13 '07 Pear
3 July 15 '07 Banana, S trawberry
3 July 21 '07 Apple, S trawberry
3 July 24 '07 Strawberry, Pear

Figure 2.1: Database Sorted by Customer ID and Transaction Time

For example, transactions with customer-id 1 are transformed into customer se-

quence 〈ac(bc)d(abc)ad〉, with the help of the map table in Figure 2.2. Finally

the result database is shown in Figure 2.3.

• Sequence Phase: This is an essential phase that all frequent sequential patterns

are generated from the transformed sequential database.

• Maximal Phase: To reduce information redundant, those sequential patterns

that are contained in other sequential patterns are pruned because those maximal

sequential patterns are more interested by users.

It is shown that the sequence phase is the most time consuming one among the five

phases [5]. Next we introduce AprioriAll because it is the best one among the three

algorithms proposed in [5]. There are two steps in AprioriAll, candidate generation

and test. The first step is to generate those sequences that may be frequent. Then in the

second step the sequence database is scanned to check the support of each candidate

9

Chapter1/Chapter1Figs/EPS/OriginalSampleData.eps

2.2 Existing Sequential Pattern Mining Algorithms

Large Itemsets Mapped To
Apple a

Banana b
Strawberry c

Pear d

Figure 2.2: Large Itemsets

Customer ID Customer Sequence
1 < ac(bc)d(abc)ad >
2 < b(cd)ac(bd) >
3 < d(bc)(ac)(cd) >

Figure 2.3: Transformed Database

to determine frequent sequential patterns based on the minimal support. The time cost

of the two steps is mainly determined by the number of passes over the database and

number of candidates.

Similar to the technique proposed in [4], AprioriAll applies Apriori heuristic to

prune those candidate sequences whose subsequence is not frequent. The difference is

that sequential pattern mining can be seen a general model of association rule mining

and thus, more candidates are generated. For example, based on the items, a and b,

three candidates 〈ab〉, 〈ba〉 and 〈(ab)〉 can be generated. But in association rule mining

only 〈(ab)〉 is generated. The reason is that in association rule mining, the time order

is not taken into account. Obviously the number of candidate sequences in sequential

pattern mining are much larger than the size of the candidate itemsets in association

rule mining during the generation of candidate sequences. Table 2.1 shows how to

generate candidate 5-sequences by joining large 4-sequences. By scanning the large 4-

itemsets, it finds that the itemsets 〈(bc)ad〉 and 〈(bc)(ac)〉 share their first three items,

according to the join condition of Apriori they are joined to produce the candidate

sequence 〈(bc)(ac)d〉. Similarly other candidate 5-sequences are generated.

It is easily to test and count the support of candidates, by scanning the original

database directly. AprioriAll was the first algorithm to mine sequential patterns. The

10

Chapter1/Chapter1Figs/EPS/MappingTable.eps
Chapter1/Chapter1Figs/EPS/TransformedSampleData.eps

2.2 Existing Sequential Pattern Mining Algorithms

Table 2.1: AprioriAll Candidate Generation L4 to C5

Large 4-sequences Candidate 5-sequences

〈b(ac)d〉 〈(bc)(ac)d〉
〈bcad〉 〈d(bc)ad〉
〈bdad〉 〈d(bc)da〉
〈bdcd〉 〈d(bc)(ad)〉
〈(bc)ad〉
〈(bc)(ac)〉
〈(bc)cd〉
〈c(ac)d〉
〈d(ac)d〉
〈dbad〉
〈d(bc)a〉
〈d(bc)d〉
〈dcad〉

main drawback of AprioriAll is that there are many passes over the database and many

candidates generated, which are time consuming. As will be introduced later, Apriori-

All’s key idea (i.e., Apriori heuristic) is the basis for many other efficient algorithms.

2.2.2 GSP

GSP [88] is proposed by the same authors of AprioriAll, which is also an Apriori

based algorithm for sequential pattern mining. The difference is that GSP inserts some

constraints into the mining process, i.e., time constraints, and relaxes the definition

of transaction. Moreover, it takes the taxonomies into account. For time constraints,

maximum gap and minimal gap are defined to specified the gap between any two ad-

jacent transactions in the sequence. If the distance between two transactions is not in

the range between the maximum gap and the minimal gap, then the two transactions

can not be taken as two consecutive transactions in a sequence. This algorithm relaxes

the definition of transaction by using a sliding window that, if the distance between the

maximal transaction time and the minimal transaction time of those items is not bigger

11

2.2 Existing Sequential Pattern Mining Algorithms

than the sliding window, those items can be deemed as in the same transaction. The

taxonomies is applied to generate multiple level sequential patterns. With these new

parameters, sequential pattern mining can be defined as: given a sequence data D, a

taxonomy T, user-defined min-gap and max-gap time constraints, a user-defined slid-

ing window-size, to find all sequences whose support is greater than the user-defined

minimum support [88].

GSP has two steps in the mining process, candidate generation and test, which

is similar to other Apriori-based algorithms. In the candidate generation step, k-

sequences candidates are generated based on the large (k-1)-sequences. Given a se-

quence s = 〈s1, s2, . . . , sn〉 and subsequence c, c is a contiguous subsequence of s if

any of the following conditions hold: (1) c is derived from s by dropping an item from

either s1 or sn; (2) c is derived from s by dropping an item from an element sj that

has at least 2 items; and (3) c is a contiguous subsequence of c′, and c′ is a contiguous

subsequence of s. The candidate sequences are generated in two phases.

• Join Phase: Candidate k-sequences are generated by joining two (k-1)-sequences

that have the same contiguous subsequences. This is similar to AprioriAll that

when joining the two sequences, the item can be inserted as a part of the ele-

ment or as a separated element. For example, 〈d(bc)a〉 and 〈d(bc)d〉 have the

same contiguous subsequence 〈d(bc)〉, then candidate 5-sequences 〈d(bc)(ad)〉,
〈d(bc)ad〉 and 〈d(bc)da〉 can be generated. These two steps (i.e., item is inserted

as a part of the element or as a separated element), as will be shown shortly in

the SPAM algorithm [7], can be called I-Step and S-Step.

• Prune Phase: Those candidate sequences that have a contiguous subsequence

whose support count is less than the minimal support are deleted. Furthermore,

the hash-tree structure [73] is employed to fasten the prune process.

GSP algorithm is difficult to count the support of candidate sequences because of

the maximal and minimal gaps incorporation. There are two phases in the contain

test, forward phase and backward phase, which are repeated until all the patterns are

found. Here we give an example to show how to judge a data-sequence d contain

a candidate sequence s by two phases: (1) Forward Phase, GSP finds successive

elements of s in d as long as the difference between the end-time of the element and

12

2.2 Existing Sequential Pattern Mining Algorithms

Table 2.2: GSP Candidate Generation L4 to C5

Large 4-sequences Candidate 5-sequences after joining Candidate 5-sequences after pruning

〈b(ac)d〉 〈(bc)(ac)d〉 〈(bc)(ac)d〉
〈bcad〉 〈d(bc)ad〉 〈d(bc)ad〉
〈bdad〉 〈d(bc)da〉
〈bdcd〉 〈d(bc)(ad)〉
〈(bc)ad〉
〈(bc)(ac)〉
〈(bc)cd〉
〈c(ac)d〉
〈d(ac)d〉
〈dbad〉
〈d(bc)a〉
〈d(bc)d〉
〈dcad〉

the start-time of the previous element is less than max-gap. If the difference is more

than max-gap, it switches to the backward phase. If an element is not found then

sequence s is not contained in d; (2) Backward Phase, GSP tries to pull up the

previous element. Suppose si is the current element and end-time(si)=t. GSP checks

if there is existing some transactions containing si−1 and their transaction-times are

after time of max-gap. Since after pulling up si−1, the difference between si−1 and

si−2 may not satisfy the gap constraints, the backward pulls back until the difference

of si−1 and si−2 satisfies the max-gap or the first element has been pulled up. Then

the algorithm switches to the forward phase. If any element can not be pulled up the

data-sequence d does not contain s.

GSP performs better than AprioriAll because the number of candidate sequences

of the former is much smaller than that of the latter, by incorporating constraint into

mining process. Moreover, the discovered frequent patterns show more reasonable

semantic meaning to the users.

13

2.2 Existing Sequential Pattern Mining Algorithms

43

33

4323

13422333

52225232

22511261

71315151

41213111

TIDSIDTIDSIDTIDSIDTIDSID

dcba

Figure 2.4: Vertical Id-List

SID (Item , T ID) pairs
1 (a, 1) (c, 2) (b, 2) (c, 2) (d, 4) (a, 5) (b, 5) (c, 5) (a, 6) (d, 7)
2 (b, 1) (c, 2) (d, 2) (a, 3) (c, 4) (b, 5) (d, 5)
3 (d, 1) (b, 2) (c, 2) (a, 3) (c, 3) (c, 4) (d, 4)

Figure 2.5: Vertical to Horizontal Database

2.2.3 SPADE

SPADE [109] is an algorithm that is based on lattice theory and applies temporal join-

ing operation to find sequential patterns. It is also based on Apriori heuristic and

performs much better than AprioriAll and GSP.

In SPADE the original sequence database is firstly transformed into a vertical id-list

database format, in which each id is associated with the corresponding customer se-

quence (SID) and the time stamp (TID). The vertical database of Figure 2.1 is shown in

Figure 2.4. For example, item a appears in (1,1), (1,5), (1,6), (2,3), (3,3) and hence, the

support of item a is 3. Frequent 1-sequences can be easily discovered by scanning the

database once. To test the 2-sequence patterns, the original database is scanned again

and the new vertical to horizontal database is created by grouping those items with the

same SID and in increase order of TID. The result vertical to horizontal database is

shown in Figure 2.5. By scanning the vertical to horizontal database, 2-sequences are

14

Chapter1/Chapter1Figs/EPS/SPADE_VerticalTable.eps
Chapter1/Chapter1Figs/EPS/SPADE_HorizontalTable.eps

2.2 Existing Sequential Pattern Mining Algorithms

SID TID
1 1
1 5
1 6
2 3
3 3

SID
1 1
1 5
1 6
2 3
3 3

SID TID
1 3
1 5
2 1
2 5
3 2

SID
1 3
1 5
2 1
2 5
3 2

52
51
31

TIDSID

51
TIDSID

33
61
51

TIDSID

 a b

<ab>

<(ab)>

<ba>+

Supp{ab}=2

Supp{(ab)}=1

Supp{ba}=2

Figure 2.6: Temporal join in SPADE algorithm

generated. All the 2-length sequence found are used to construct the lattice, which is

quite large to be filled in the main memory. However, the lattice can be further de-

composed to different classes. Sequences that have the same prefix items belong to

the same class. By decomposition, the lattice is partitioned into small partitions that

can be filled in the main memory. During the third scanning of the database, all those

longer sequences are enumerated by using temporal join [109].

There are two methods of enumerating frequent sequences of a class: Breadth First

Search (BFS) and Depth First Search (DFS). In BFS, the classes are generated in a

recursive bottom-up manner. For example to generate the 3-length sequences all the

2-length sequences have to be processed. On the contrary, in DFS only one 2-length

sequence and a k-length sequence are necessary to generate (k+1)-length sequence.

BFS needs much bigger main memory to store all the consecutive 2-length sequences,

but DFS just needs to store the last 2-length sequence of the newly generated k-length

sequences. However BFS has more information to prune the candidate k-length se-

quences. All the k-length patterns are discovered by temporal joining the frequent

15

Chapter1/Chapter1Figs/EPS/SPADE_TempJoin.eps

2.2 Existing Sequential Pattern Mining Algorithms

SID TID {a} {b} {c} {d}

1 1 1 0 0 0
1 2 0 0 1 0
1 3 0 1 1 0
1 4 0 0 0 1
1 5 1 1 1 0
1 6 1 0 0 0
1 7 0 0 0 1
2 1 0 1 0 0
2 2 0 0 1 1
2 3 1 0 0 0
2 4 0 0 1 0
2 5 0 1 0 1
3 1 0 0 0 1
3 2 0 1 1 0
3 3 1 0 1 0
3 4 0 0 1 1

Figure 2.7: Bitmap Vertical Table

(k-1)-length patterns which have the same (k-2)-length prefix. There are three possible

joining results which is the same in the candidate generation process of GSP [88].

Figure 2.6 illustrates one example of temporal join operations in SPADE. Suppose

we have already got 1-length patterns, a and b. By joining these two patterns, we

can test the three candidate sequences, 〈ab〉, 〈ba〉 and 〈(ab)〉. The joining operation is

indeed to compare the {SID, TID} pairs of the two (k-1)-length patterns. For example,

the pattern b has two pairs {1, 3}, {1, 5} which are larger than (behind) the pattern a’s

one pair {1, 1}, in the same customer sequence. Hence, 〈ab〉 should exist in the same

sequence. By the same way, other candidate sequences’ support can be accumulated,

as illustrated on the right part of Figure 2.6.

16

Chapter1/Chapter1Figs/EPS/SPAM_VerticalTable.eps

2.2 Existing Sequential Pattern Mining Algorithms

0
0
1
0

0
0
1
0
0

1
0
0
0
1
1
0

0
0
1
0
1
0
0
1
0
0
0
1

0
1
0
0

0
1
0
1
0
0
1
0
0
0
1

0
1
0
0

{a} {b}

S -step

1

1
1

1
1
1
1
1
1

0
0
1
0
1
0
0
1
0
0
0
1

0
1
0
0

0
1
0
1
0
0
1
0
0
0
1

0
1
0
0

{a}s {b}

&

0
0
0
0

0
0
0
0
1

0
0
1
0
1
0
0

<ab>

S up{ab}=2

0
0
0

0
0
0

0

Figure 2.8: SPAM S-Step join

2.2.4 SPAM

Ayres et al. [7] proposed SPAM algorithm based on the key idea of SPADE. The

difference is that SPAM utilizes a bitmap representation of the database instead of

{SID, TID} pairs used in the SPADE algorithm. Hence, SPAM can perform much

better than SPADE and others by employing bitwise operations.

While scanning the database for the first time, a vertical bitmap is constructed for

each item in the database, and each bitmap has a bit corresponding to each itemset

(element) of the sequences in the database. If an item appears in an itemset, the bit

corresponding to the itemset of the bitmap for the item is set to one; otherwise, the

bit is set to zero. The size of a sequence is the number of itemsets contained in the

sequence. Figure 2.7 shows the bitmap vertical table of that in Figure 2.3. A sequence

in the database of size between 2k+1 and 2k+1 is considered as a 2k+1-bit sequence. The

bitmap of a sequence will be constructed according to the bitmaps of items contained

in it.

17

Chapter1/Chapter1Figs/EPS/SPAM_SJoin.eps

2.2 Existing Sequential Pattern Mining Algorithms

0
0
0
0

0
0
1
0
1

0
0
1
0
1
0
0

0
1
1
0
1
0
0
0
1
0
1
0

0
1
1
1

0

1
0
1
0
0

0

0
1

<ab> {c}

I-s tep

0
0
0
0

0
0
0
0
0

0
0
1
0
1
0
0

<a(bc)>

S up{a(bc)}=1

Figure 2.9: SPAM I-Step join

To generate and test the candidate sequences, SPAM uses two steps, S-step and I-

step, based on the lattice concept. As a depth-first approach, the overall process starts

from S-step and then I-step. To extend a sequence, the S-step appends an item to it

as the new last element, and the I-step appends the item to its last element if possible.

Each bitmap partition of a sequence to be extended is transformed first in the S-step,

such that all bits after the first bit with value one are set to one. Then the resultant

bitmap of the S-step can be obtained by doing ANDing operation for the transformed

bitmap and the bitmap of the appended item. Figure 2.8 illustrates how to join two

1-length patterns, a and b, based on the example database in Figure 2.3. On the other

hand, the I-step just uses the bitmaps of the sequence and the appended item to do

ANDing operation to get the resultant bitmap, as shown in Figure 2.9, which extend

the pattern 〈ab〉 to the candidate 〈a(bc)〉. The support counting becomes a simple check

how many bitmap partitions not containing all zeros. Yet for the inherent characteristic

existed in the sequential pattern mining problem, these ANDing operations cost a lot

during the whole mining process, which should be reduce for efficiency improving.

18

Chapter1/Chapter1Figs/EPS/SPAM_IJoin.eps

2.2 Existing Sequential Pattern Mining Algorithms

According to the two processes existed in SPAM, it uses two pruning techniques:

S-step pruning and I-step pruning, based on the Apriori heuristic to minimize the size

of the candidate items.

The main drawback of SPAM is the huge memory space necessary. For example,

although an item, α, does not exist in a sequence, s, SPAM still uses one bit to represent

the existence of α in s. This disadvantage restricts SPAM as a best algorithm on mining

large datasets in limit resource environments.

2.2.5 PrefixSpan

PrefixSpan [79] utilizes the method of database projection to make the database for

next pass much smaller and consequently make the algorithm more speedy. The au-

thors claimed that in PrefixSpan there is no need for candidates generation [79] 1. It

recursively projects the database by already found short length patterns. This pattern

growth idea is similar to that in Apriori heuristic. Different projection methods were

discussed for PrefixSpan: level-by-level projection, bi-level projection and pseudo pro-

jection.

In PrefixSpan, it supposes that items within elements are in alphabetical order be-

cause the item order within an element does not affect the sequential mining. The first

step of PrefixSpan is to scan the sequential database to get the length-1 patterns, which

is in fact the large 1-itemsets. Then the sequential database is divided into different

partitions according the number of length-1 sequence. Each partition is the projection

of the sequential database that take the corresponding length-1 sequences as prefix. For

example, with the frequent 1-sequence as the prefix, the projected database is shown in

Figure 2.10 (b). The projected databases only contain the suffix of these sequences, by

scanning the projected database all the length-2 sequential patterns that have the parent

length-1 sequential patterns as prefix can be generated. Then the projected database

is partitioned again by those length-2 sequential patterns. The same process are exe-

cuted recursively until the projected database is empty or no more frequent length-k

sequential patterns can be generated.

1However,we find that PrefixSpan also needs to test the candidates, which are existing in the pro-

jected database. We explain this issue in Chapter 3.

19

2.2 Existing Sequential Pattern Mining Algorithms

Customer ID Customer Sequence
1 <ac(bc)d(abc)ad>
2 <b(cd)ac(bd)>
3 <d(bc)(ac)(cd)>

(a) Example Database (b) Projected Database

0<a>
0 (3 2 1)

0<c> (3 3 2) (2 3 2)
0<d> (3 3 0) (3 3 1) (3 3 2)

<a> <c> <d>

(c) The S-matrix

a

b

c

d

Large Itemsets Projected Database
<c(bc)d(abc)ad>

<(_c)d(abc)ad>

<c(bc)d(abc)ad>

<(abc)ad>

<c(bd)>

<(cd)ac(bd)>

<(_d)ac(bd)>

<ac(bd)>

<(_c)(cd)>

<(_c)(ac)(cd)>

<(ac)(cd)>

<(bc)(ac)(cd)>

Figure 2.10: PrefixSpan Mining Process

The main cost of the above method is the time and space used to construct and scan

the projected databases as shown in Figure 2.10 (b). This is called level-by-level pro-

jection. Another projection method is called bi-level projection, which aims to reduce

the number and size of projected databases 1. The first step is the same, by scanning

the sequential database we can get the frequent 1-sequence. In the second step, instead

of constructing projected database, a n×n triangle matrix M is constructed, as shown

in Figure 2.10 (c). The matrix represents all the supports of length-2 sequences. For

1As indicated by the same authors of PrefixSpan in their extension paper [79], this bi-level projec-

tion is useless to improve the efficiency. We introduce it here to show the original idea of PrefixSpan.

20

Chapter1/Chapter1Figs/EPS/PrefixSpan_Process.eps

2.2 Existing Sequential Pattern Mining Algorithms

example M[〈d〉, 〈a〉]=(3, 3, 0) means supports of 〈da〉, 〈ad〉 and 〈(ad)〉 are 3, 3 and

0, respectively. After that the S-matrix projected databases are constructed for those

frequent length-2 sequences. All the processes iterate until the projected database be-

comes empty or no frequent sequence can be found. By using the triangle S-matrix

to represent all supports of length-2 sequences, the number of projected databases be-

comes smaller and hence it requires less space.

To make the projection more efficient, the authors proposed pseudo projection

when the projected database can be fitted in main memory. Actually no physical pro-

jection database is constructed. Each suffix is represent by a pair of pointer and offset

value. By avoiding to copy the database, pseudo projection is more efficient than the

other two projection methods. However the limitation is that the size of the database

must can be fitted into the main memory.

The main cost of PrefixSpan is the projected database scanning process. In order to

improve the performance a bi-level projection method that uses the triangle S-Matrix

is introduced. The main problem of PrefixSpan, is the time consuming on scanning the

projected database, which may be very large if the original dataset is huge.

21

Chapter 3

LAPIN: Efficient Sequential Mining

Algorithms

Although much work has been carried out on mining sequential patterns, as for exam-

ple, in [5, 7, 79, 88, 109], all of these works suffer from the problems of having a large

search space and the ineffectiveness in handling dense data sets, i.e., biological data.

In this thesis, we aim to propose new strategies to reduce the space necessary to be

searched, by which improving the efficiency of the sequential pattern mining . We first

analyze the state-of-the-art algorithms to delve into the issue, and then new techniques

will be introduced to tackle the drawbacks of the existing strategies.

3.1 Problem of Existing Algorithms

The issue of sequential pattern mining has been introduced more than ten years and

many efficient algorithms have been proposed [5, 7, 79, 88, 109]. The state-of-the-art

techniques have demonstrated that the performance has been improved by an order of

magnitude or more [41, 79, 109]. However, the cost of the sequential pattern min-

ing problem, due to its intrinsic complexity, is still unsatisfied especially for large

dense datasets. We first illustrate the existing algorithms performance by conducting

on varies kinds of datasets in Section 3.1.1, and then analyze the reasons in Section

3.1.2.

22

3.1 Problem of Existing Algorithms

3.1.1 Experiment of Comparing Existing Algorithms

To fairly evaluate the performance of the state-of-the-art algorithms, we downloaded

the program implementations from their authors’ website 1. From the comprehensive

experiments what have been done, several phenomena were observed, which are dif-

ferent from the traditional standpoint and will be explained shortly.

At first two dataset (C10T5S5I5N100D1K and C30T20S30I20N200D20K) were

used to evaluate, one is relative small (C10T5S5I5N100D1K) and the other is relative

large (C30T20S30I20N200D20K). Figure 3.1 (a) shows the execution comparison re-

sult and Figure 3.1 (b) illustrates the memory usage comparison result. There are some

observations:

• We find that SPADE is better than PrefixSpan on some kinds of datasets (i.e.,

the relative large dataset C30T20S30I20N200D20K). This is contradictory to

traditional opinion that PrefixSpan is always faster than SPADE [79]. The reason

will be explained shortly and more experiments will be shown in latter part of

this thesis.

• SPAM is slower than the other two algorithms on some kinds of datasets (i.e.,

C10T5S5I5N100D1K) and fails on running some large datasets (i.e., C30T20S30

I20N200D20K). This confirms the statement of the authors in their paper [7]. To

evaluate the efficiency of SPAM furthermore, we show another experiment re-

sult, as Figure 3.2 illustrates. It proves that SPAM can be faster than SPADE and

PrefixSpan about an order of magnitude. However, this is an trade-off between

time and space. In fact, SPAM fails on running some reasonable size of datasets.

In the next section, I will explain the reasons for the above phenomena.

3.1.2 Analysis

We have found that SPADE and PrefixSpan have their own advantages for different

types of data sets. Suppose that we have two sequence databases, as shown in Figure

1PrefixSpan: http://illimine.cs.uiuc.edu/

SPADE: http://www.cs.rpi.edu/ zaki/software/

SPAM: http://himalaya-tools.sourceforge.net/Spam/

23

3.1 Problem of Existing Algorithms

E
xe

cu
tio

n
tim

e
(s

)

Dataset (C30T20S30I20N200D20K)

Minimum support

(a) Execution time comparison of PrefixSpan, SPADE and SPAM

Dataset (C10T5S5I5N100D1K)

Minimum support (%)

T
o

ta
l m

e
m

o
ry

 u
se

d
 (

M
B

)

Dataset (C30T20S30I20N200D20K)

(b) Memory usage comparison of PrefixSpan, SPADE and SPAM

Minimum support

Dataset (C10T5S5I5N100D1K)

E
xe

cu
tio

n
tim

e
(s

)
T

o
ta

l m
e

m
o

ry
 u

se
d

 (
M

B
)

Minimum support (%)

*SPAM failed on testing C30T20S30I20N200D20K

0

200

400

600

800

1000

0.02 0.04 0.06 0.08 0.1

P refixS pan
S P AD E
S P AM

0

2000

4000

6000

8000

0.91 0.92 0.93 0.94 0.95

P refixS pan
S P AD E

0

2

4

6

8

0.02 0.04 0.06 0.08 0.1

P refixS pan
S P AD E
S P AM

100

150

200

250

0.91 0.92 0.93 0.94 0.95

P refixS pan
S P AD E

Figure 3.1: Performance comparison of existing state-of-the-art algorithms on different

datasets

3.3 (a), the prefix sequence is a, and the min support = 1. To test the 2-length candidate

sequences, whose prefix is a for DB (i), the PrefixSpan algorithm scans the projected

DB, which requires a 1 × 5 = 5 scanning time. The SPADE algorithm scans the

local candidate item list for each sequence, which requires a 5 × 5 = 25 scanning

time. However, for DB (ii), suppose we want to grow from 〈aa〉 to longer patterns.

PrefixSpan algorithm requires a 4 scanning time (because there are four items, b, c, d,

e in the projected DB of 〈aa〉), and the SPADE algorithm requires a 0 scanning time

(because only one candidate item, a, in the local list, and no need to join). The effect

of these two data sets on the two approaches is shown in Figure 3.3 (b).

24

Chapter2/Chapter2Figs/EPS/ExistingAlgorithmsDrawbackPerformance_Color.eps

3.1 Problem of Existing Algorithms

Minim um s upport

Ex
ec

ut
io

n
tim

e
(s

)

Dataset (C10T15S5I5N50D1K)

Minim um s upport

To
ta

l m
em

or
ey

 u
se

d
(M

B
)

Dataset (C10T15S5I5N50D1K)

(a) Execution time comparison (b) Memory usage comparison

0

300

600

900

1200

0.6 0.62 0.64 0.66 0.68 0.7

P refixS pan
S P AD E
S P AM

0

3

6

9

0.6 0.62 0.64 0.66 0.68 0.7

Figure 3.2: One example of SPAM outperforming other existing algorithms

SPADE belongs to LCI-oriented category of algorithms, because the candidates

are come from the local candidate item list. PrefixSpan belongs to Suffix-oriented

category of algorithms because the candidates are come from the suffix of the dataset.

The above example illustrates that, if the average suffix sequence length is less than

the average element length for those items in the local candidate list, as in DB (i), then

Suffix-oriented spends less time. However, if the average suffix sequence length is

larger than the average element length for those items in the local candidate list, as in

DB (ii), then LCI-oriented is faster. In summary, which is different from traditional

opinions that Suffix-oriented algorithm (i.e., PrefixSpan) is always better than LCI-

oriented algorithm (i.e., SPADE), we believe that the two kinds of algorithms have

their own advantages and disadvantages with regard to different datasets. The reason

that PrefixSpan is worse than SPADE is due to the useless of scanning those items

which are already not frequent in the projected DBs (i.e., b, c, d, and e in DB (ii) as

shown in Figure 3.3 (a)). In other words, PrefixSpan can not fully utilize the Apriori

heuristic because the intrinsic difference of the two algorithms.

Based on the discovery from these experiments and evaluation, we decided to de-

velop two kinds of algorithms based on LCI-oriented and Suffix-oriented, respec-

tively.

SPAM is a time efficiency improved version of SPADE, with the trade-off on the

memory usage, because bitmap strategy can largely improve the efficiency by using

25

Chapter2/Chapter2Figs/EPS/SPAM_Adv_Color.eps

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

(a) Two special DBs (b) Effect on different type of DBs

Figure 3.3: Performance of Suffix-oriented and LCI-oriented algorithms on different

DB

bitwise operations. We believe that in an resource unlimited environment (i.e., huge

memory available) SPAM can outperform others by about an order of magnitude on

some kinds of datasets. Hence, we decided to develop one algorithm based on SPAM.

The comprehensive summary of existing algorithms will be introduced in Section

4.3.5.

3.2 LAPIN Algorithms (Last Position Induction Fre-

quent Pattern Mining)

We have found that the last position of an item is very important to judge whether a

k-length pattern could grow to a (k+1)-length pattern. With this finding, we only need

to search a small portion of the database by recording the last position of each item

in each sequence. Because support counting is usually the most costly step in sequen-

tial pattern mining, the LAst Position INduction (LAPIN) technique can improve the

performance greatly by avoiding cost scanning and comparisons.

3.2.1 General Idea

Discovering (k+1)-length frequent patterns. For any time series database, the last

position of an item is the key used to judge whether or not the item can be appended

to a given prefix (k-length) sequence (assumed to be s). For example, in a sequence, if

26

Chapter2/Chapter2Figs/EPS/ClassificationExample.eps

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Table 3.1: Sequence Database

SID Sequence

10 ac(bc)d(abc)ad

20 b(cd)ac(bd)

30 d(bc)(ac)(cd)

Table 3.2: SE Item Last Position List

SID Last Position of SE Item

10 blast
↓
= 5 clast = 5 alast = 6 dlast = 7

20 alast = 3 clast
↓
= 4 blast = 5 dlast = 5

30 blast = 2 alast = 3 clast
↓
= 4 dlast = 4

the last position of item α is smaller than, or equal to, the position of the last item in s,

then item α cannot be appended to s as a (k+1)-length sequence extension in the same

sequence. Similarly to S-Step, in I-Step, if the last position of the 2-length itemset

extension sequence, θ, (whose first item is the same as the last item of s) is smaller

than the position of the last item in s, then θ cannot be appended to s as an itemset

extension in this sequence.

Example 3.1. Let our running database be the sequence database S shown in Table

3.1 with min support = 2. We will use this sample database hereafter in this thesis. The

set of items in the database is {a,b,c,d}. The length of the second sequence is equal to

7. A 2-sequence 〈ac〉 is contained in the sequence 10, 20, and 30, respectively, and its

support is equal to 3. Therefore, 〈ac〉 is a frequent pattern.

Example 3.2. When scanning the database in Table 3.1 for the first time, we obtain

Table 3.8, which is a list of the last positions of the 1-length frequent sequences in

ascending order. At the same time, we can obtain Table 3.9, which is a list of the

last positions of the frequent 2-length IE sequences in ascending order. Suppose that

we have a prefix frequent sequence 〈a〉, and its positions in Table 3.1 are 10:1, 20:3,

30:3, where sid:eid represents the sequence ID and the element ID. Then, we check

27

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Table 3.3: IE Item Last Position List

SID Last Position of IE Item

10 (ab)last
↓
= 5 (ac)last = 5 (bc)last = 5

20 (cd)last = 2 (bd)last
↓
= 5

30 (bc)last = 2 (ac)last
↓
= 3 (cd)last = 4

Table 3.8 to obtain the first indices whose positions are larger than 〈a〉’s, resulting in

10:1, 20:2, 30:3, i.e., (10:blast = 5, 20:clast = 4, and 30:clast = 4), symbolized as “↓”.

We start from these indices to the end of each sequence, and increment the support

of each passed item, resulting in 〈a〉 : 1, 〈b〉 : 2, 〈c〉 : 3, and 〈d〉 : 3, from which,

we can determine that 〈ab〉, 〈ac〉 and 〈ad〉 are the frequent patterns. In our imple-

mentation, we constructed a mapping table for a specific position to the corresponding

index of the item-last-position list, thus avoiding searching in each iteration. The I-

Step methodology is similar to the S-Step methodology, with the only difference being

that, when constructing the mapping table, I-Step maps the specific position to the in-

dex whose position is equal to or larger than the position in Table 3.9. To determine

the itemset extension pattern of the prefix sequence 〈a〉, we obtain its mapped indices

in Table 3.9, which are 10:1, 20:2, and 30:2. Then, we start from these indices to

the end of each sequence, and increment the support of each passed item, resulting in

〈(ab)〉 : 1, and 〈(ac)〉 : 2. We can also obtain the support of the 3-length sequences

〈a(bc)〉 : 1, 〈a(bd)〉 : 1, and 〈a(cd)〉 : 1, which is similar to the bi-level strategy of

PrefixSpan, but we avoid scanning the entire projected database.

From the above example, we can show that the main difference between LAPIN

and previous works is the scope of the search space. PrefixSpan scans the entire pro-

jected database to find the frequent pattern. SPADE temporally joins the entire ID-

List of the candidates to obtain the frequent pattern of next layer. LAPIN can obtain

the same result by scanning only part of the search space of PrefixSpan and SPADE,

which indeed, are the last positions of the items. Table 3.4 shows the search space of

LAPIN based on Table 3.1 (S-Step). We can avoid scanning the ∗ part in the projected

database or in the ID-List. Let D̄ be the average number of customers (i.e., sequences)

in the projected DB, L̄ be the average sequence length in the projected DB, N̄ be the

average total number of the distinct items in the projected DB, and m be the distinct

28

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Table 3.4: Last Position of DB (S-Step)

SID Sequence

10 ∗ ∗ (∗∗) ∗ (∗bc)ad

20 ∗(∗∗)ac(bd)

30 ∗(b∗)(a∗)(cd)

item recurrence rate or density in the projected DB. Then m=L̄/N̄ (m ≥ 1), and the re-

lationship between the runtime of PrefixSpan (Tps) and the runtime of LAPIN (Tlapin)

in the support counting part is

Tps/Tlapin = (D̄×L̄)/(D̄×N̄) = m (1).

Because support counting is usually the most costly step in the entire mining pro-

cess, Eq.(1) illustrates the main reason why LAPIN is faster than PrefixSpan for dense

data sets, whose m (density) can be very high. For example, suppose we have a spe-

cial data set, which has only one single long sequence with one distinct item a and

the sequence length is 100. The total time used to scan the projected databases in

PrefixSpan is 100 + 99 + 98 + 97 + . . . + 1=5050. However, LAPIN only needs

100 + 1 + 1 + . . . + 1=199 scanning time. Hence, we have m=5050/199≈25. From

this example, we know that scanning most of the duplicate items in the projected DB

is useless and time consuming.

3.2.1.1 Lexicographic Tree

We used a lexicographic tree [7] [13] as the search path of our algorithm. Furthermore,

we followed a lexicographic order, which adopts the Depth First Search (DFS) strategy.

Figure 3.4 shows an example of the lexicographic tree used. We obeyed the following

rules based on DFS:

(a) If γ
′

= γ � θ, then γ < γ
′
; (Search the prefix first, then the sequence. For

example, we first search 〈a〉, then 〈(ab)〉.)
(b) If γ = α �s θ and γ

′
= α �i θ, then γ < γ

′
; (Search the sequence-extension first,

then the itemset-extension. For example, we first search 〈ab〉, then 〈(ab)〉.)
(c) If γ = α � θ and γ

′
= α � θ

′
, θ < θ

′
indicates γ < γ

′
. (For two sequences

29

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

that have the same prefix, search them based on the alphabetic order of the suffix. For

example, we first search 〈aa〉, then 〈ab〉.)

Figure 3.4: Lexicographic Tree

3.2.1.2 Formulation

LAPIN follows the pattern growth strategy. To grow to (k+1)-length sequence, LAPIN

first gets the knowledge of k-length prefix frequent pattern. For the sake of simplicity,

the definitions and lemmas involved with S-Step are introduced in this section.

Definition 1 (Prefix border position set). Given two sequences, A=〈A1A2 . . . Am〉 and

B=〈B1B2 . . . Bn〉, suppose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m and l ≤ n,

and that C is a common prefix for A and B. We record both positions of the last item C l

in A and B, respectively, e.g., Cl=Ai and Cl=Bj . The position set, (i, j), is called the

prefix border position set of the common prefix C, denoted as Sc. Furthermore, we

denote Sc,i as the prefix border position of the sequence, i.

For instance, if A=〈abc〉 and B=〈acde〉, then we can deduce that one common prefix

of these two sequences is 〈ac〉, whose prefix border position set is (3,2), which is the

last item c’s positions in A and B. To get the prefix border position, PrefixSpan needs

O(D̄×L̄) time (see Section 1.3), because it uses pseudo projection in sequential search

order, while LAPIN applies the binary search for vertical representation of database,

as will be explained in Section 2.2, whose time complexity is O(D̄ × log(L̄)).

To test (k+1)-length candidate sequences, PrefixSpan scans in the prefix k-length

frequent pattern’s projected database. In contrast, LAPIN searches in the prefix k-

length frequent pattern’s projected item-last-position list.

30

Chapter2/Chapter2Figs/EPS/LexicographicTree.eps

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Definition 2 (Item-last-position list). Given two sequences, A=〈A1A2 . . . Am〉 and B=

〈B1B2 . . . Bn〉, the list of the last positions of the different frequent 1-length items in

ascending order (or if the same, based on alphabetic order) for these two sequences

is called the item-last-position list, denoted as L. Furthermore, we denote Ln as the

item-last-position list of the sequence, n. Each node of Ln is associated with two

values, i.e., an item and an element number (denoted as Dn.item and Dn.num for

Dn ∈ Ln)

Definition 3 (Candidate border index set). Given two sequences, A=〈A1A2 . . . Am〉
and B=〈B1B2 . . . Bn〉, suppose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m and l ≤ n,

and that C is a common prefix for A and B. Then we have the prefix border position

set SC,i and the item-last-position list Li for customer sequence i. We denote the in-

dex CanIC,i, which points to the node Di, as the candidate border index of customer

sequence i, and the index set CanIC as the candidate border index set of the common

prefix C, if the following conditions hold:

(a) Di ∈ Li

(b) Di.num > SC,i

(c) ∀Ei ∈ Li before Di, Ei.num <= SC,i

For instance, for the example DB in Table 3.1, if we have the prefix sequence which

is 〈a〉, then we can get its candidate border index set, 10:1, 20:2, 30:3, symbolized

as “↓” in Table 3.8.

Definition 4 (Projected item-last-position list). Let C be a sequential pattern in a se-

quence database S. The C-projected item-last-position list, denoted as P |C , is the col-

lection of suffixes in the item-last-position list with regards to prefix C.

For instance, in Table 3.8, the part behind the candidate border index (↓) (including

the element to which the index points) of each user sequence, is the projected item-

last-position list of the corresponding prefix 〈a〉.
Definition 5 (Support counting). Let C be a sequential pattern in sequence database

S, and A be a sequence with prefix C. The support counting of A in C-projected item-

last-position list P |C , denoted as supportP |C(A), is the number of sequences α in P |C
such that A � C ·α.

The relationship between the runtime of PrefixSpan and the runtime of LAPIN

has been described as Eq.(1) in Section 1.3, which is decided by the density of the

31

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

projected DB, m. The worst case of LAPIN is that when there is no duplicate item

existing in the database (i.e., association rule mining), which means that the time used

in searching the projected item-last-position list is the same as that used in searching

the projected DB. However, for common data sets, especially for dense database such

as DNA sequence, m is probably very large. Hence, searching in projected item-last-

position list is much more efficient than searching in projected database. Nevertheless,

here we have a question that, is the result got by searching in the projected DB the

same as searching in the projected item-last-position list? The answer can be got from

the following two Lemmas.

Lemma 1 (Projected item-last-position list). Let A and C be two sequential patterns

in a sequence database S such that C is a prefix of A.

1. P |A = (P |C)|A, and

2. for any sequence B with prefix C, supportP (B) = supportP |C(B).

Proof. The proof of the Lemma 1 is similar to the proof in [79] (Lemma 3.2). The

first part of the lemma follows the fact that, for a sequence B, the suffix of B with

regards to A, B/A, equals to the sequence resulted from first doing projection of B

with regards to C, i.e., B/C, and then doing projection B/C with regards to A. That

is B/A = (B/C)/A. The second part of the lemma states that to collect support count

of a sequence B, only the sequences in the database sharing the same prefix should be

considered. Furthermore, only those suffixes with the prefix being a super-sequence of

B should be counted.

Lemma 2 (Support counting equivalency). Let C be a sequential pattern in sequence

database S, then support counting in C-projected item-last-position list gets the same

result as support counting in C-projected database.

Proof. The only difference between C-projected item-last-position list (Definition 4)

and C-projected database is that the former records the last position of different items,

and the latter records all positions list of different items. From the support definition,

duplicate appearance in the same customer sequence does not contribute to the support

counting, which means that the additional information stored in C-projected database

is useless. Hence, support counting in C-projected item-last-position list gets the same

result as support counting in C-projected database.

32

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Note that the definitions and lemmas involved with I-Step can be presented in a

similar way, as done in this section.

3.2.2 LAPIN: Design and Implementation

In this section, we describe the LAPIN algorithms in detail. We use a lexicographic tree

[7] as the search path of LAPIN and adopt a lexicographic order [7], which employs

the Depth First Search (DFS) strategy. The pseudo code of LAPIN is shown in Table

3.5.

As in other algorithms, certain key strategies were adopted, i.e., candidate sequence

pruning, database partitioning, and customer sequence reducing. Combined with the

LAPIN strategy, our algorithms can efficiently find the complete set of frequent pat-

terns.

In Step 1, by scanning the DB once, we obtain the SE position list table, as in

Table 3.6 and all the 1-length frequent patterns. Based on the last element in each

position list, we sort and construct the SE item-last-position list in ascending order,

as shown in Table 3.8. To find the frequent 2-length IE sequences, during the first

scan, we construct a 2-dimensional array indexed by the items’ ID and update the

counts for the corresponding 2-length IE sequences by using similar methods to those

used in [109]. Then, we merge the SE position lists of the two items, which compose

the frequent 2-length IE sequence, to obtain the 2-length IE sequence position list.

Finally, we sort and construct the IE item-last-position list of each frequent 2-length

IE sequence in ascending order, as shown in Table 3.9. As Example 3.2 in Section

3.2.1 shows, the I-Step methodology is similar to the S-Step methodology in LAPIN.

We will first describe the S-Step process, and the I-Step process will be explained in

Section 2.2.3.

In function Gen Pattern, to find the prefix border position set of k-length α (Step

4), we first obtain the position list of the last item of α, and then perform a binary

search in the list for the (k-1)-length prefix border position. For S-Step, we look for

the first position that is larger than the (k-1)-length prefix border position.

Step 5, shown in Figure 3.5, is used to find the frequent SE (k+1)-length pattern

based on the frequent k-length pattern and the 1-length candidate items. Step 5 can

be justified based on Lemma 1 and Lemma 2 in Section 2.1. Commonly, support

counting is the most time consuming part in the entire mining process. Here, we face a

33

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Table 3.5: LAPIN Algorithm pseudo code

INPUT: A sequence database, and the minimum support threshold, ε

OUTPUT: The complete set of sequential patterns

Function: Gen Pattern(α, S, CanIs, CanIi)

Parameters: α = length k frequent sequential pattern; S = prefix border position set of (k-

1)-length sequential pattern; CanIs = candidate sequence extension item list of

(k+1)-length sequential pattern; CanIi = candidate itemset extension item list of

(k+1)-length sequential pattern

Goal: Generate (k+1)-length frequent sequential pattern

Main():

1. Scan DB once to do:

1.1 Ps ← Create the position list representation of the 1-length SE sequences

1.2 Bs ← Find the frequent 1-length SE sequences

1.3 Ls← Obtain the item-last-position list of the 1-length SE sequences

1.4 Bi← Find the frequent 2-length IE sequences

1.5 Pi← Construct the position lists of the frequent 2-length IE sequences

1.6 Li← Obtain the item-last-position list of the frequent 2-length IE sequences

2. For each frequent SE sequence αs in Bs

2.1 Call Gen Pattern (αs, 0, Bs, Bi)

3. For each frequent IE sequence αi in Bi

3.1 Call Gen Pattern (αi, 0, Bs, Bi)

Function: Gen Pattern(α,S ,CanIs ,CanIi)
4. Sα← Find the prefix border position set of α based on S

5. FreItems,α ← Obtain the SE item list of α based on CanIs and Sα

6. FreItemi,α ← Obtain the IE item list of α based on CanIi and Sα

7. For each item γs in FreItems,α

7.1 Combine α and γs as SE, results in θ and output

7.2 Call Gen Pattern (θ, Sα, FreItems,α, FreItemi,α)

8. For each item γi in FreItemi,α

8.1 Combine α and γi as IE, results in η and output

8.2 Call Gen Pattern (η, Sα, FreItems,α, FreItemi,α)

34

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Table 3.6: SE Position List of DB

SID Item Positions

10 a : 1→ 5→ 6→ null

b : 3→ 5→ null

c : 2→ 3→ 5→ null

d : 4→ 7→ null

20 a : 3→ null

b : 1→ 5→ null

c : 2→ 4→ null

d : 2→ 5→ null

30 a : 3→ null

b : 2→ null

c : 2→ 3→ 4→ null

d : 1→ 4→ null

problem. ”Where do the appended 1-length candidate items come from?” We can test

each candidate item in the local candidate item list (LCI-oriented), which is similar

to the method used in SPADE [109]. Another choice is to test the candidate item in

the projected DB, just as PrefixSpan [79] does (Suffix-oriented). The correctness of

these methods was discussed in [109] and [79], respectively.

We have found that LCI-oriented and Suffix-oriented have their own advan-

tages for different types of data sets, as described in Section 3.1. Based on this discov-

ery, we formed a series of algorithms categorized into two classes. One class was LCI-

oriented, LAPIN LCI, and the other class was Suffix-oriented, LAPIN Suffix. We

can dynamically compare the suffix sequence length with the local candidate item list

size and select the appropriate search space to build a single general framework. How-

ever, because we used a space consuming bitmap strategy in LAPIN LCI, which will

be explained in Section 2.2.1, in order to save memory space and clarify the advantages

and disadvantages of each method, we deconstructed the general framework into two

approaches. Nevertheless, it is easy to combine these two approaches, and evaluate the

efficiency of the entire general framework, whose runtime, T , and maximum memory

space required, M , are

35

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Table 3.7: Finding the SE frequent patterns using LAPIN Suffix

INPUT: Sα = prefix border position set of length k frequent sequential pattern α;

Ls = SE item-last-position list; ε = user specified minimum support

OUTPUT: FreItems = local frequent SE item list

1. For each sequence, F

2. Sα,F ← obtain prefix border position of F in Sα

3. Ls,F ← obtain SE item-last-position list of F in Ls

4. M = Find the corresponding index for Sα,F

5. while (M < Ls,F .size)

6. Suplist[M.item]++;

7. M++;

8. For each item β in Suplist

9. If (Suplist[β] ≥ ε)

10. FreItems.insert(β);

T ≈ {TLAPIN LCI , TLAPIN Suffix}min

M ≈ {MLAPIN LCI , MLAPIN Suffix}max.

3.2.3 LAPIN Suffix

When the average size of the candidate item list is larger than the average size of the

suffix, then scanning in the suffix to count the support of the (k+1)-length sequences

is better than scanning in the local candidate item list, such as for DB (i) in Figure 3.3.

Therefore, we proposed a new algorithm, LAPIN Suffix. In the item-last-position

list, i.e., Table 3.8, we look for the first element whose last position is larger than the

prefix border position. Then, we go to the end of this list and increment each passed

item’s support. Obviously, we only pass and count once for each different item in the

suffix (projected database). In contrast, PrefixSpan needs to pass every item in the pro-

jected database regardless of whether or not they are the same as before. The pseudo

code of LAPIN Suffix is shown in Table 3.7.

Example 3.3. When scanning the database in Table 3.1 for the first time, we obtain

Table 3.8, which is a list of the last positions of the 1-length frequent sequences in

ascending order. At the same time, we can obtain Table 3.9, which is a list of the

36

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Table 3.8: SE Item Last Position List

SID Last Position of SE Item

10 blast
↓
= 5 clast = 5 alast = 6 dlast = 7

20 alast = 3 clast
↓
= 4 blast = 5 dlast = 5

30 blast = 2 alast = 3 clast
↓
= 4 dlast = 4

Table 3.9: IE Item Last Position List

SID Last Position of IE Item

10 (ab)last
↓
= 5 (ac)last = 5 (bc)last = 5

20 (cd)last = 2 (bd)last
↓
= 5

30 (bc)last = 2 (ac)last
↓
= 3 (cd)last = 4

last positions of the frequent 2-length IE sequences in ascending order. Suppose that

we have a prefix frequent sequence 〈a〉, and its positions in Table 3.1 are 10:1, 20:3,

30:3, where sid:eid represents the sequence ID and the element ID. Then, we check

Table 3.8 to obtain the first indices whose positions are larger than 〈a〉’s, resulting in

10:1, 20:2, 30:3, i.e., (10:blast = 5, 20:clast = 4, and 30:clast = 4), symbolized as “↓”.

We start from these indices to the end of each sequence, and increment the support

of each passed item, resulting in 〈a〉 : 1, 〈b〉 : 2, 〈c〉 : 3, and 〈d〉 : 3, from which,

we can determine that 〈ab〉, 〈ac〉 and 〈ad〉 are the frequent patterns. In our imple-

mentation, we constructed a mapping table for a specific position to the corresponding

index of the item-last-position list, thus avoiding searching in each iteration. The I-

Step methodology is similar to the S-Step methodology, with the only difference being

that, when constructing the mapping table, I-Step maps the specific position to the in-

dex whose position is equal to or larger than the position in Table 3.9. To determine

the itemset extension pattern of the prefix sequence 〈a〉, we obtain its mapped indices

in Table 3.9, which are 10:1, 20:2, and 30:2. Then, we start from these indices to

the end of each sequence, and increment the support of each passed item, resulting in

〈(ab)〉 : 1, and 〈(ac)〉 : 2. We can also obtain the support of the 3-length sequences

〈a(bc)〉 : 1, 〈a(bd)〉 : 1, and 〈a(cd)〉 : 1, which is similar to the bi-level strategy of

PrefixSpan, but we avoid scanning the entire projected database.

37

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

3.2.4 LAPIN LCI

LAPIN LCI tests each item which is in the local candidate item list. In each customer

sequence, it directly judges whether an item can be appended to the prefix sequence or

not by comparing this item’s last position with the prefix border position. Increment

the support value of the candidate item by 1 if the candidate item’s last position is larger

than the prefix border position. As an optimization, we use bitmap strategy to avoid

such comparison process. A pre-constructed table, named ITEM IS EXIST TABLE

is constructed while first scanning to record the last position information. For exam-

ple, Figure 3.5 (a), which is based on the example database shown in Table 1, shows

one part of the ITEM IS EXIST TABLE for the first sequence. The left-hand column

denotes the position number and the top row is the item ID. In the table, we use a bit

vector to represent all the 1-length frequent items existing for a specific position. If

the bit value is unity, then it indicates that the corresponding item exists. Otherwise,

the item does not exist. To accumulate the candidate sequence’s support, we only need

to check this table, and add the corresponding item’s vector value, thus avoiding the

comparison process.

This strategy is especially useful for those dense data sets with long patterns and

a small number of items, such as DB (ii) in Figure 3.3. However, the comparison

precess will consume a lot of time because the recursive property. Can we avoid such

comparison and directly accumulate the candidates support?

We can avoid the comparison operations of LAPIN LCI by using a pre-constructed

table, named ITEM IS EXIST TABLE. The last position information is recorded in a

bit vector for each specific position. For example, Figure 3.5 (a), which is based on the

example database shown in Table 1, shows one part of the ITEM IS EXIST TABLE

for the first sequence. The left-hand column denotes the position number and the top

row is the item ID. In the table, we use a bit vector to represent all the 1-length frequent

items existing for a specific position. If the bit value is unity, then it indicates that the

corresponding item exists. Otherwise, the item does not exist. The bit vector size is

equal to the size of the 1-length frequent items list. For example, when the current

position is 5, we obtain the bit vector 1001, indicating that only items a and d exist

in the same sequence after the current prefix. To accumulate the candidate sequence’s

support, we only need to check this table, and add the corresponding item’s vector

value, thus avoiding the comparison process.

38

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

(a) ITEM_IS_EXIST_TABLE (b) Optimized ITEM_IS_EXIST_TABLE

Figure 3.5: Bitmap representation table

It can be easily shown that the main memory used in LAPIN LCI is no more than

that used in SPAM [7], because we use each bit to represent each item’s existence for

each specific position in each sequence. However, this invokes a significantly high

space cost if the original database is large. After consideration, we found that only part

of the table was useful, and that most was not.

For example, in Figure 3.5 (a), Positions 5 and 6 are key positions, whereas the

others are not. (Position 7 is not a key position because its bit vector is equal to zero).

Space Optimization of LAPIN LCI. We found that only part of the table was

useful, and that most was not. For example, in Figure 3.5 (a), when the prefix bor-

der position was smaller than five, then all the items exist, and when the position was

larger than six, no items existed. Therefore, the useful information is stored in some

key positions’ lines, which indicate the last positions of the 1-length frequent items

(except the last one). The optimized ITEM IS EXIST TABLE is shown in Figure 3.5

(b), which stores only two bit vectors instead of the seven shown in Figure 3.5 (a). For

a dense data set, this space saving strategy proved more efficient. The pseudo code of

LAPIN LCI is shown in Table 3.10.

Example 3.4. Let us assume that we have obtained the prefix border position set

of the pattern 〈a〉 in Table 3.1, i.e., (1,3,3). We also know that the local candidate

item list is (a, b, c, d). Then, instead of comparing each last position of the candi-

date item with the prefix border position, we obtain the bit vector mapped from the

specific position. Here, we obtain the bit vectors 1111, 0111, and 0011 with respect to

39

Chapter2/Chapter2Figs/EPS/ITEM_IS_EXIST_TABLE_ORG.eps

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Table 3.10: Finding the SE frequent patterns using LAPIN LCI

INPUT: Sα = prefix border position set of length k frequent sequential pattern α;

BVs = bit vectors of the ITEM IS EXIST TABLE; CanIs = candidate

sequence extension items; ε = user specified minimum support

OUTPUT: FreItems = local frequent SE item list

1. For each sequence, F

2. Sα,F ← obtain prefix border position of F in Sα

3. bitV← obtain the bit vector of the Sα,F indexed from BVs

4. For each item β in CanIs

5. Suplist[β] = Suplist[β] + bitV[β];

6. For each item γ in Suplist

7. if (Suplist[γ] ≥ ε)

8. FreItems.insert(γ);

the pattern 〈a〉’s prefix border position set, (1,3,3), and accumulate them, resulting in

〈a〉 : 1, 〈b〉 : 2, 〈c〉 : 3, and 〈d〉 : 3. From here, we can deduce that 〈ab〉, 〈ac〉, and 〈ad〉
are frequent patterns.

I-Step of LAPIN. As Ayres et al. did in [7], the whole process of sequential pat-

tern mining should includes two steps: a sequence-extension step (S-Step) and a

itemset-extension step (I-Step).

In LAPIN, the I-Step is similar to the S-Step. One difference is that in I-Step, the

basic unit is 2-length itemset extension sequence, i.e., (ab), (bc), instead of 1-length

sequence, i.e., a, b, in S-Step. From the step 1 of Figure 3.5, we can get the frequent

2-length IE sequence position list as shown in Table 3.11 and the I-Step item-last-

position list, as shown in Table 3.9. In the step 4 of Figure 3.5, we first get the position

list of the last 2-length IE item of α, then do a binary search in Table 3.11. Here we

look for the first position which is equal to or larger than the (k-1)-length prefix border

position (in STL, the function is named lower bound). Note that when patterns grow,

I-Step should guarantee that the prefix sequences of the tested candidates are the same.

We deal with it by joining the position list of each candidate IE item after current

prefix position, which is similar to the method used in SPADE [109]. This issue,

however, has not been mentioned in the implementation of PrefixSpan algorithm [79].

40

3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)

Table 3.11: IE Position List of DB

SID Item Positions

10 (ab) : 5→ null

(ac) : 5→ null

(bc) : 3→ 5→ null

20 (bd) : 5→ null

(cd) : 2→ null

30 (ac) : 3→ null

(bc) : 2→ null

(cd) : 4→ null

We think that the remedy should be the same as SPADE and LAPIN algorithms, which

should pay for some time efficiency. To find the frequent (k+1)-length IE sequences

in the step 6 of Figure 3.5, similar to S-Step, we have two classes of algorithms, one is

local-candidate-items oriented which directly compares the last positions of 2-length

IE sequence with the prefix border positions to judge whether the frequent k-length

sequence could be appended with the 2-length IE sequence, to be a (k+1)-length IE

sequence. The first item of the 2-length IE sequence should be the same as the last

item of the k-length prefix sequence. The other is postfix oriented which uses the Table

3.9 to facilitate the I-Step support counting.

3.2.5 A Complete Example

In this section, we show a complete example to illustrate the work flow of the LAPIN

algorithm. For simplicity and without loss of generality, we focus on S-Step of the

mining process.

By scanning the original dataset shown in Table 3.1, we can know the 1-length

frequent patterns are 〈a〉, 〈b〉, 〈c〉, and 〈d〉. The by far traversed lexicographic tree is

shown in Figure 3.6. Based on DFS order, we next need to get those 2-length fre-

quent patterns whose prefix is 〈a〉. We first get the prefix 〈a〉’s positions by binary

searching in the SE Position List ofDB, as shown in Figure 3.7 (a). The blue ar-

row indicates the index whose value is the position. Then we look for the indices in the

Item Last Pos Table, as shown in Figure 3.7 (b), whose values are just larger the prefix

41

3.3 Experimental Evaluation and Performance Study

a b c d

{ }

Figure 3.6: Lexicographic tree after 1-length frequent patterns discovered

〈a〉’s positions. The discovered indices are those point to the items 10:b, 20:c, 30:c, as

indicated by the blue arrows in Figure 3.7 (b). Start from these indices, we scan to the

end of each sequence in the Item Last Pos Table, accumulate the support of each

item passed. In this example, we get the support of each item as 〈a〉:1, 〈b〉:2, 〈c〉:3, and

〈d〉:3, from where we know that the 2-length frequent patterns are 〈ab〉, 〈ac〉, and 〈ad〉
(with min support=2). Figure 3.8 shows the lexicographic tree traversed so far. Based

on the DFS order, next we need to test those candidates whose prefix is 〈ab〉. To find

the position of the prefix, we use binary search in the SE Position List of DB, as

shown in Figure 3.9 (a). The purple indices indicates the result positions, whose values

are 10:3, 20:5, 30:null. Next we look for the indices in the Item Last Pos Talbe, as

shown in Figure 3.9 (b), whose values are just larger than the prefix 〈ab〉’s positions.

The result indices are illustrated as blue color in the table. Start from these indices,

we scan to the end of each sequence to accumulate the support of each passed item,

resulting in 〈a〉:1, 〈b〉:1, 〈c〉:1, and 〈d〉:1, from where we know that no frequent pattern

with prefix 〈ab〉 exists. The by far traversed lexicographic tree is shown in Figure 3.10.

The next pattern we need to test are those ones whose prefix is 〈ac〉. The later steps

and methods are similar to the ones described as above. By this recursive process, we

finally find all the sequential patterns.

3.3 Experimental Evaluation and Performance Study

In this section, we will describe our experiments and evaluations conducted on both

synthetic and real data, and compare LAPIN with PrefixSpan and SPAM to demon-

strate the efficiency of the proposed algorithms. We performed the experiments using

a 1.6 GHz Intel Pentium(R)M PC machine with a 1 G memory, running Microsoft

42

Chapter2/Chapter2Figs/EPS/WorkFlow1.eps

3.3 Experimental Evaluation and Performance Study

10 a 1->5->6->null
b 3->5->null
c 2->3->5->null
d 4->7->null

20 a 3->null
b 1->5->null
c 2->4->null
d 2->5->null

30 a 3->null
b 2->null
c 2->3->4->null
d 1->4->null

10 bl=5 cl=5 al=6 dl=7
20 al=3 cl=4 bl=5 dl=5
30 bl=2 al=3 cl=4 dl=4

(b) Item_Last_Pos_Table (LAPIN_Suffix)

(a) SE Position List of DB

Figure 3.7: Mining process when testing the 2-length candidate sequences whose pre-

fix is a

a b c d

ab ac ad

{ }

Figure 3.8: Lexicographic tree after 2-length frequent patterns (with prefix a) discov-

ered

43

Chapter2/Chapter2Figs/EPS/WorkFlow2.eps
Chapter2/Chapter2Figs/EPS/WorkFlow3.eps

3.3 Experimental Evaluation and Performance Study

10 a 1->5->6->null
b 3->5->null
c 2->3->5->null
d 4->7->null

20 a 3->null
b 1->5->null
c 2->4->null
d 2->5->null

30 a 3->null
b 2->null
c 2->3->4->null
d 1->4->null

10 bl=5 cl=5 al=6 dl=7
20 al=3 cl=4 bl=5 dl=5
30 bl=2 al=3 cl=4 dl=4

(a) SE Position List of DB

(b) Item_Last_Pos_Table (LAPIN_Suffix)

Figure 3.9: Mining process when testing the 3-length candidate sequences whose pre-

fix is ab

a b c d

ab ac ad

{ }

Figure 3.10: Lexicographic tree after 3-length frequent patterns (with prefix ab) dis-

covered

44

Chapter2/Chapter2Figs/EPS/WorkFlow4.eps
Chapter2/Chapter2Figs/EPS/WorkFlow5.eps

3.3 Experimental Evaluation and Performance Study

Table 3.12: Parameters used in data set generation

Symb. Meaning

D Number of customers in the data set

C Average number of transactions per customer

T Average number of items per transaction

S Average length of maximum sequences

I Average length of transactions within maximum sequences

N Number of different items in the data set

Windows XP. All three algorithms are written in C++ software, and were compiled in

an MS Visual C++ environment. The output of the programs was turned off to make

the comparison equitable.

We first compared PrefixSpan and our algorithms using synthetic and real data sets,

and showed that LAPIN outperformed PrefixSpan by up to an order of magnitude on

dense data sets with long patterns and low minimum support.

3.3.1 Synthetic Data.

The synthetic data sets were generated by an IBM data generator, as described in [4].

The meaning of the different parameters used to generate the data sets is shown in

Table 3.12. In the first experiment, we compared PrefixSpan, SPADE and our algo-

rithms using several low-, medium-, and high- density data sets for various minimum

supports. The statistics of these data sets is shown in Figure 3.11 (a).

We defined search space as in PrefixSpan, to be the size of the projected DB,

denoted as Sps, and in LAPIN the sum of the number of different items for each se-

quences in the suffix (LAPIN Suffix) or in the local candidate item list (LAPIN LCI),

denoted as Slapin. Figure 3.11 (b) and Figure 3.11 (c) show the execution times

and the searched space comparison between PrefixSpan and LAPIN and clearly il-

lustrate that PrefixSpan is slower than LAPIN using the medium density data set

(C30T20S30I20N200D20K) and the high density data set (C50T20S50I20N300D100K).

This is because the searched spaces of the two data sets in PrefixSpan were much larger

than that in LAPIN. For the low density data set (C10T5S5I5N100D1K), the ineffec-

tiveness of searched space saving and the initial overhead needed to set up meant that

45

3.3 Experimental Evaluation and Performance Study

LAPIN was slower than PrefixSpan. Overall, our runtime tests showed that LAPIN

excelled at finding the frequent sequences for many different types of large data sets.

Eq.(1) in Section 1.3 illustrates the relationship between the runtime of PrefixS-

pan and the runtime of LAPIN in the support counting part. However, for the entire

mining time, we also need to consider the initialization part and the implementation

detail, which are very difficult to evaluate because of the complexity of the sequen-

tial pattern mining problem. Commonly, support counting is usually the most costly

step in the entire mining process. Hence, we can approximately express the relation-

ship between the entire mining time of PrefixSpan and that of LAPIN based on Eq.(1),

where we generalize the meaning of N̄ to denote the average total number of the dis-

tinct items in either the projected DB (LAPIN Suffix) or in the local candidate item list

(LAPIN LCI), and the meaning of m to denote either the distinct item recurrence rate

of the projected DB (LAPIN Suffix) or the local candidate list (LAPIN LCI). Eq.(1)

illustrates that, the higher the value of m is, then the faster LAPIN becomes compared

to PrefixSpan. However, the entire mining time of LAPIN is not faster than that of Pre-

fixSpan m times because of the initialization overhead, but near to m times because

of the importance of the support counting in the entire mining process. The experi-

mental data shown in Figure 3.11 (b) and Figure 3.11 (c) is in accordance with our

theoretical analysis, where the searched space comparison determines the value of m,

m = Sps/Slapin.

LAPIN Suffix vs. LAPIN LCI: Because LAPIN Suffix and LAPIN LCI are imple-

mented in the same framework, in addition to the small difference in the initial phase,

the only implementation difference is in the support counting phase: LAPIN Suffix

searches in the suffix, whereas LAPIN LCI searches in the local candidate item list.

Let N̄Suffix be the average total number of the distinct items in the projected DB,

N̄LCI be the average total number of the distinct items in the local candidate item list,

mSuffix be the distinct item recurrence rate of the projected DB, mLCI be the distinct

item recurrence rate of the local candidate item list. We can express the relationship

between the entire mining time of LAPIN Suffix (TSuffix) and that of LAPIN LCI

(TLCI) as

TSuffix/TLCI ≈ SSuffix/SLCI = mLCI/mSuffix (2).

46

3.3 Experimental Evaluation and Performance Study

Dataset (C10T5S5IN100D1K)

Minimum support

S
ea

rc
he

d
sp

ac
e

(G
B

)

Dataset (C30T20S30I20N200D20K)

Minimum support

S
ea

rc
he

d
sp

ac
e

(G
B

)

Minimum support

S
ea

rc
he

d
sp

ac
e

(G
B

)

(b) Execution time comparison

(a) Dataset characteristics

Dataset (C30T20S30I20N200D20K)

Minimum support

To
ta

l m
em

or
y

us
ed

 (M
B

)

(d) Memory usage comparison

(c) Searched space comparison

Dataset (C30T20S30I20N200D20K)Dataset (C10T5S5IN100D1K) Dataset (C50T20S50I20N300D100K)

Minimum support

To
ta

l m
em

or
y

us
ed

 (M
B

)

Minimum supportMinimum support Minimum support

Minimum support

To
ta

l m
em

or
ey

 u
se

d
(M

B
) Dataset (C10T5S5I5N100D1K)

E
xe

cu
tio

n
tim

e
(s

)

E
xe

cu
tio

n
tim

e
(s

)

E
xe

cu
tio

n
tim

e
(s

)

Dataset (C50T20S50I20N300D100K

0

200

400

600

800

1000

0.02 0.04 0.06 0.08 0.1

PrefixSpan
LAPIN_Suffix
LAPIN_LCI
SPADE

0

2000

4000

6000

8000

0.91 0.92 0.93 0.94 0.95

PrefixSpan
LAPIN_Suffix
LAPIN_LCI
SPADE

0

1000

2000

3000

4000

5000

0.984 0.986 0.988 0.99 0.992

PrefixSpan
LAPIN_Suffix
LAPIN_LCI
SPADE

0

2

4

6

8

10

0.02 0.04 0.06 0.08 0.1

PrefixSpan
LAPIN_Suffix
LAPIN_LCI
SPADE

0

100

200

300

0.91 0.92 0.93 0.94 0.95

PrefixSpan
LAPIN_Suffix
LAPIN_LCI
SPADE

0

50

100

150

0.984 0.986 0.988 0.99 0.992

PrefixSpan
LAPIN_Suffix
LAPIN_LCI
SPADE

0

5

10

15

20

0.02 0.04 0.06 0.08 0.1

PrefixSpan
LAPIN_Suffix
LAPIN_LCI
SPADE

100

150

200

250

0.91 0.92 0.93 0.94 0.95

PrefixSpan
LAPIN_Suffix
LAPIN_LCI
SPADE

450

600

750

900

0.984 0.986 0.988 0.99 0.992

PrefixSpan
LAPIN_Suffix
LAPIN_LCI
SPADE

Figure 3.11: Performance comparison on different size of data sets

47

Chapter2/Chapter2Figs/EPS/LAPIN_DiffSize_New_Color.eps

3.3 Experimental Evaluation and Performance Study

where we have the searched space of LAPIN Suffix, SSuffix = D̄ × N̄Suffix = D̄ ×
L̄/mSuffix, and the searched space of LAPIN Suffix, SLCI = D̄×N̄LCI = D̄×L̄/mLCI .

Eq.(2) is in accordance with the experimental data shown in Figure 3.11 (b) and Figure

3.11 (c). LAPIN Suffix is faster than LAPIN LCI for low-density data sets because

the former one searches smaller spaces than the latter one does. However, for medium

and high-density data sets, which have many long patterns, LAPIN LCI is faster than

LAPIN Suffix because the situation is reversed.

Different parameters analysis: In the second experiment, we compared the perfor-

mance of the algorithms as several parameters in the data set generation were varied.

The meaning of these parameters are shown in Table 3.12. As Figure 3.12 shows, when

C increases, T increases, and N decreases, then the performance of LAPIN improves

even more relative to PrefixSpan, by up to an order of magnitude. Let us consider

Eq.(1), m=L̄/N̄=C̄ × T̄ /N̄ , where C̄ is the average number of transactions per cus-

tomer in the projected DB, and T̄ is the average number of items per transaction in the

projected DB. On keeping the other parameters constant, increasing C, T and decreas-

ing N , respectively, will result in an increase in the distinct item recurrence rate, m,

which is in accordance with the experimental data shown in Figure 3.12. This confirms

the correctness of Eq.(1).

With regards to the other three parameters, as S, I and D varies, the discrepancy

between the execution times does not change significantly because under uniform dis-

tribution assumption, these parameters do not apparently contribute to the variance of

the distinct item recurrence rate, m, which means that the discrepancy between the

searched space does not change much as these three parameters are varied. Between

the two LAPIN algorithms, LAPIN LCI and LAPIN Suffix, the former one is always

the fastest because its searched space is less than that of the latter one.

3.3.2 Real Data.

We consider that results from real data will be more convincing in demonstrating the

efficiency of our proposed algorithm. In this section, we discuss tests on two real data

sets, Gazelle and Protein. A portion of Gazelle was used in KDD-Cup 2000. More

details on the information in this data set can be found in [52]. The second real data

set used, Protein, was extracted from the web site of the National Center for Biotech-

48

3.3 Experimental Evaluation and Performance Study

(a) Different C (b) Different T (c) Different S

(e) Different N (f) Different D(d) Different I

Dataset (C?T40S20I20N1000D1K) Dataset (C40T?S20I20N1000D1K) Dataset (C40T40S?I20N1000D1K)

Dataset (C40T40S20I?N1000D1K) Dataset (C40T40S20I20N?D1K) Dataset (C40T40S20I20N1000D?)

E
xe

cu
tio

n
tim

e
(s

)

E
xe

cu
tio

n
tim

e
(s

)

E
xe

cu
tio

n
tim

e
(s

)

E
xe

cu
tio

n
tim

e
(s

)

E
xe

cu
tio

n
tim

e
(s

)

E
xe

cu
tio

n
tim

e
(s

)

Average number of transactions per
 customer (sup=0.9)

Average number of items per
 transaction (sup=0.9)

Average length of maximal
 sequences (sup=09)

Average length of transactions
within the maximal sequences
 (sup=0.9)

Number of itmes (sup=0.9) Number of customers in the
 dataset (*1K) (sup=0.94)

0

200

400

600

800

35 36 37 38 39 40

PrefixSpan
LAPIN_Suffix
LAPIN_LCI

0

200

400

600

800

35 36 37 38 39 40

PrefixSpan
LAPIN_Suffix
LAPIN_LCI

0

200

400

600

800

20 22 24 26 28 30

0

200

400

600

800

20 22 24 26 28 30
0

500
1000
1500
2000
2500

900 950 1000 1050 1100
0

150

300

450

600

1 2 3 4 5

PrefixSpan
LAPIN_Suffix
LAPIN_LCI

PrefixSpan
LAPIN_Suffix
LAPIN_LCI

PrefixSpan
LAPIN_Suffix
LAPIN_LCI

PrefixSpan
LAPIN_Suffix
LAPIN_LCI

Figure 3.12: Varying the parameters of the data sets

49

Chapter2/Chapter2Figs/EPS/LAPIN_DiffPara_Color.eps

3.3 Experimental Evaluation and Performance Study

Dataset (Protein)

Minimum support

(a) Dataset characteristics

Dataset (Protein)

S
ea

rc
he

d
sp

ac
e

(G
B

)

(b) Execution time comparison

(c) Searched space comparison

Dataset (Gazelle)

Minimum support

E
xe

cu
tio

n
tim

e
(s

)

Dataset (Gazelle)

Minimum support

S
ea

rc
he

d
sp

ac
e

(G
B

) Dataset (Rat)
S

ea
rc

he
d

sp
ac

e
(G

B
)

Minimum support

Minimum support

E
xe

cu
tio

n
tim

e
(s

)

Dataset (Rat)

E
xe

cu
tio

n
tim

e
(s

)

Minimum support

Figure 3.13: Real data sets

50

Chapter2/Chapter2Figs/EPS/LAPIN_RealDatasets_test_Color.eps

3.3 Experimental Evaluation and Performance Study

nology Information (USA) 1. This was extracted using a conjunction of: (1) search

category = “Protein”, (2) sequence length range = [400:600], and (3) data submission

period = [2004/7/1, 2004/12/31]. The third real data set, Rat (Rattus norvegicus)2 is

constructed from gene data contained in GenBank [15] release 117. The statistics of

these data sets is shown in Figure 3.13 (a). Note that in this thesis we mine the se-

quence datasets in basic model of sequential pattern mining, the same as [5] [109] [79]

[7]. The gap between two consecutive elements in a sequence is unimportant in our

model of study. Therefore, LAPIN can not directly mine particular applications, such

as DNA sequence with semantic meaning, which requires gap-sensitive and approx-

imate mining. However, LAPIN can be easily extended in similar ways with that in

[94] [46] to deal with biological datasets. Another issue is that we set the support value

very high in testing the Protein data. The reason is that we can not terminate if setting

the value to small one. This seems to be unpractical for real DNA sequence mining.

As explained in the former part in this paragraph, DNA sequence has its own special

property. With the constraint of these property, we believe that the mining efficiency

will improve much and the support value could be set lower. However, in this thesis,

we only consider on how to mine general sequences.

As shown in Figure 3.13 (b), LAPIN outperformed PrefixSpan for all the three

real data sets. The reason why LAPIN performed so well was similar to that for the

synthetic data sets in Section 3.1.1, and was based on the searched space saving, as

shown in Figure 3.13 (c). This experiment confirmed the superiority of the proposed

method using real-life data.

3.3.3 Analysis.

With the above thorough performance study, we are convinced that LAPIN is much

more effective than PrefixSpan, and SPADE on dense datasets. There are several rea-

sons:

• The Last Position Induction strategy (LAPIN) scans only a small part of pro-

jected database or local candidate list. However, the other algorithms need to

scan the whole (projected) database, or join all the pairs of candidate items in

the local list to count the candidate support.

1http://www.ncbi.nlm.nih.gov
2Rat is available at: http://bit.uq.edu.au/altExtron/gb147/ae gb147 gene data.html.

51

3.3 Experimental Evaluation and Performance Study

• By using a vertical representation format of the original database, LAPIN can

apply binary search in each iteration to find the corresponding frequent prefix

sequence position. In contrast, the other algorithms apply sequential search,

which is obviously much slower than LAPIN for long pattern large datasets.

However, as experiments illustrated, different algorithm has its own advantage and

disadvantage. Given a sequence dataset, how to select a proper efficient algorithm is

an important issue. We will systemically study this problem in the next section. With

new improved algorithms introduced, the selecting process will becomes simpled.

52

Chapter 4

Improved Efficient Sequential Mining

Algorithms

4.1 LAPIN PAID Algorithm (Passed Item Deduction

Frequent Pattern Mining)

The general LAPIN strategy is very efficient with regard to execution time. However,

this improvement is at the price of much memory consuming when building the list

of item’s last position because LAPIN uses a bitmap strategy, as introduced in the last

section. This problem motivates our further work. We aim to obtain an efficient and

balanced pattern mining algorithm with low memory consuming.

4.1.1 General Idea

Discovering (k+1)-length frequent patterns. For any sequence database, the last po-

sition of an item is the key used to judge whether or not the item can be appended to

a given prefix (k-length) sequence (assumed to be s). For example, in a sequence, if

the last position of item α is smaller than, or equal to, the position of the last item in s,

then item α cannot be appended to s as a (k+1)-length sequence extension in the same

sequence. This strategy is named LAPIN, as described in the former part of this thesis.

Moreover, we can deduce which items “disappear” after growing k-length sequence

to (k+1)-length sequence, based on their last positions are larger than the (k+1)-length

sequence border position or not. Then, we can reduce the supports of these “disap-

53

4.1 LAPIN PAID Algorithm (Passed Item Deduction Frequent Pattern Mining)

Table 4.1: Sequence Database

SID Sequence

10 bdbcbdabad

20 dcaabcbdab

30 cadadcadca

peared” items from already found results (support value) of k-length frequent patterns

to get (k+1)-length candidate sequence’ supports, avoiding to scan k-length frequent

pattern’s projected database, which is probably very large. Because the reuse strategy

in this algorithm is based on passed (disappeared) items, we named this algorithm as

LAPIN PAID (PAssed Item Deduction based on LAPIN).

Example 4.1. When scanning the database in Table 4.1 for the first time, we obtain

Figure 4.1 (a), which is a list of the last positions of the 1-length frequent sequences

in ascending order. “↓” means the first index whose position is larger than the position

of the last item in the corresponding prefix sequence. The initialization value for these

indices is “1”, whose corresponding prefix is 〈 〉. We can also get 1-length frequent

sequences with their support, 〈a〉 : 3, 〈b〉 : 2, 〈c〉 : 3, and 〈d〉 : 3, as shown in Figure

4.1 (b), which is indeed the support count of each item in the 〈 〉-projected DB.

Following the Depth First Search (DFS) path, to find the 2-length frequent patterns

whose common prefix is item a, we first get item a’s positions in Table 4.1 are 10:7,

20:3, 30:2, where sid:eid represents the sequence ID and the element ID. Then, we

check Figure 4.1 (a) to obtain the first indices whose positions are larger than 〈a〉’s,
resulting in 10:2, 20:1, 30:1, i.e. (10:blast = 8, 20:clast = 6, and 30:dlast = 8), as shown

in Figure 4.2 (a). From Figure 4.1 (a) and Figure 4.2 (a), we can know that only the

index for the first customer sequence changed, which indicates item c “disappeared” by

extending from 〈〉 to 〈a〉 for the customer whose SID is 10. So we reduce the support

value of item c by 1 from Figure 4.1 (b) to get each candidate item’s support, resulting

in 〈a〉 : 3, 〈b〉 : 2, 〈c〉 : 2, and 〈d〉 : 3, as shown in Figure 4.2 (b). They are indeed

the supports of 2-length sequences, i.e. 〈aa〉 : 3, 〈ab〉 : 2, 〈ac〉 : 2, 〈ad〉 : 3. Thus we

can determine that 〈aa〉, 〈ab〉, 〈ac〉 and 〈ad〉 are the 2-length frequent patterns whose

54

4.1 LAPIN PAID Algorithm (Passed Item Deduction Frequent Pattern Mining)

Figure 4.1: Prefix sequence is 〈 〉

Figure 4.2: Prefix sequence is 〈 a 〉

common prefix is a.

From the above example, we can show that the main difference between LAPIN PAID

and previous works is to make use of the intermediate result (support value) or not.

PrefixSpan, SPADE and LAPIN accumulate the support of each candidate item from

scratch. However, LAPIN PAID can obtain the same result by reducing the support

of “disappeared” candidate item from previously found prefix pattern’s support. In

LAPIN PAID, it judges an item’s disappearance by checking its last position. Obvi-

ously, by making good use of the intermediate result, LAPIN PAID can scan much

smaller space than the other algorithms do. For the above example, to find the 2-length

frequent patterns whose common prefix is a, PrefixSpan needs 18 scanning times in

the projected DB and LAPIN needs 11 scanning times. However, LAPIN PAID only

needs 4 comparison times to discover the same result.

55

Chapter3/Chapter3Figs/EPS/LastPositionIndices1.eps
Chapter3/Chapter3Figs/EPS/LastPositionIndices2.eps

4.1 LAPIN PAID Algorithm (Passed Item Deduction Frequent Pattern Mining)

4.1.1.1 Formulation

Definition 1 (Prefix border position set). Given two sequences, A=〈A1A2 . . . Am〉 and

B=〈B1B2 . . . Bn〉, suppose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m and l ≤ n,

and that C is a common prefix for A and B. We record both positions of the last item

Cl in A and B, respectively, e.g., Cl=Ai and Cl=Bj . The position set, (i, j), is called

the prefix border position set of the common prefix C, denoted as Sc. Furthermore, we

denote Sc,i as the prefix border position of the sequence, i.

For instance, if A=〈abc〉 and B=〈acde〉, then we can deduce that one common

prefix of these two sequences is 〈ac〉, whose prefix border position set is (3,2), which

is the last item c’s positions in A and B. To get the prefix border position, PrefixSpan

needs O(D̄ × L̄) time, where D̄ is the average number of customers and L̄ is the

average sequence length in the projected database, because it uses pseudo projection

in sequential search order, while LAPIN PAID applies the binary search, whose time

complexity is O(D̄ × log(L̄)).

To test (k+1)-length candidate sequences, PrefixSpan searches in the prefix k-

length frequent pattern’s projected database. In contrast, LAPIN PAID scans in the

prefix k-length frequent pattern’s projected item-last-position list.

Definition 2 (Item-last-position list). The list of the last positions of the different fre-

quent 1-length items in ascending order (or if the same, based on alphabetic order)

for a sequences is called the item-last-position list, denoted as Ls. Furthermore, we

denote Ls,n as the item-last-position list of the sequence, n. Each node of Ls,n is

associated with two values, i.e., an item and an element number (denoted as Ds,n.item

and Ds,n.num for Ds,n ∈ Ls,n)

Definition 3 (Candidate border index set). Given two sequences, A=〈A1A2 . . . Am〉
and B=〈B1B2 . . . Bn〉, suppose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m and l ≤ n,

and that C is a common prefix for A and B. Then we have the prefix border position

set SC,i and the item-last-position list Ls,i for customer sequence i. We denote the

index CanIC,i, which points to the node Di, as the candidate border index of customer

sequence i, and the index set CanIC as the candidate border index set of the common

prefix C, if the following conditions hold:

(a) Di ∈ Ls,i

(b) Di.num > SC,i

(c) ∀Ei ∈ Ls,i before Di, Ei.num <= SC,i

56

4.1 LAPIN PAID Algorithm (Passed Item Deduction Frequent Pattern Mining)

For instance, for the example DB in Table 4.1, if we have the prefix sequence which

is 〈a〉, then we can get its candidate border index set, 10:2, 20:1, 30:1, i.e. (10:blast

= 8, 20:clast = 6, and 30:dlast = 8), symbolized as “↓”, as shown in Figure 4.2 (a).

Definition 4 (Projected item-last-position list). Let C be a sequential pattern in a se-

quence database S. The C-projected item-last-position list, denoted as P |C , is the col-

lection of suffixes in the item-last-position list with regards to prefix C.

Definition 5 (Support counting in projected item-last-position list). Let C be a sequen-

tial pattern in sequence database S, and A be a sequence with prefix C. The support

counting of A in C-projected item-last-position list P |C , denoted as supportP |C(A), is

the number of sequences α in P |C such that A � C ·α.

The time complexity of searching in the projected database is O(D̄ × L̄), while

searching in the projected item-last-position list is O(D̄× N̄), where N̄ is the average

total number of the distinct items in the projected DB. Here we have L̄/N̄ = m (m ≥
1), where m denotes the distinct item recurrence rate of the projected DB, or the density

of the projected DB. The worst case of LAPIN PAID is that when there is no duplicate

item existing in the database (i.e. association rule mining), m is equal to 1, which

means that the time used in searching the projected item-last-position list is the same

as that used in searching the projected DB. However, for common datasets, especially

for dense database such as DNA sequence, m is probably very large. Here we have a

question that, is the result got by searching in the projected DB the same as searching

in the projected item-last-position list? The answer can be got from the following two

Lemmas.

Lemma 3 (Projected item-last-position list). Let A and C be two sequential patterns

in a sequence database S such that C is a prefix of A.

1. P |A = (P |C)|A, and

2. for any sequence B with prefix C, supportP (B) = supportP |C(B).

Proof. The proof of the Lemma 1 is similar to the proof in [79] (Lemma 3.2). The

first part of the lemma follows the fact that, for a sequence B, the suffix of B with

regards to A, B/A, equals to the sequence resulted from first doing projection of B

with regards to C, i.e., B/C, and then doing projection B/C with regards to A. That

57

4.1 LAPIN PAID Algorithm (Passed Item Deduction Frequent Pattern Mining)

is B/A = (B/C)/A. The second part of the lemma states that to collect support count

of a sequence B, only the sequences in the database sharing the same prefix should be

considered. Furthermore, only those suffixes with the prefix being a super-sequence of

B should be counted.

Lemma 4 (Support counting equivalency). Let C be a sequential pattern in sequence

database S, then support counting in C-projected item-last-position list gets the same

result as support counting in C-projected database.

Proof. From Definition 4, we know that the only difference between C-projected item-

last-position list and C-projected database is that the former records the last position

of different items, and the latter records all positions list of different items. From

the support definition, we know that duplicate appearance in the same customer se-

quence does not contribute to the support counting, which means that the additional

information stored in C-projected database is useless. Hence, support counting in C-

projected item-last-position list gets the same result as support counting in C-projected

database.

From Lemma 1 and Lemma 2, we can know that if we want to get the support of

(k+1)-length sequence, we can count the support of its k-length prefix’s projected item-

last-position list. However, for large datasets, this naive support counting in projected

item-last-position list is not efficient than making use of already found results (support

value) of k-length frequent pattern strategy. Hence, we have the following Lemma.

Lemma 5 ((k+1)-length sequence support counting). Let C be a k-length sequential

pattern and A be a (k+1)-length sequential pattern in sequence database S, such that

C is a prefix of A. Then we have supportP |A = supportP |C − supportP |C−P |A .

Proof. From Definition 4, we know that the relationship between C-projected item-

last-position list and A-projected item-last-position list is P |A = P |C − (P |C − P |A).

Because item-last-position list only records each distinct item once in every customer

sequence, the relationship of support counting between the two projected item-last-

position lists P |A and P |C is supportP |A = supportP |C − supportP |C−P |A.

Lemma 3 illustrates the core idea of LAPIN PAID, which makes good use of the

intermediate result (support value) of frequent k-length sequences, to get the supports

of (k+1)-length candidate sequences by reducing the supports of those “disappeared”

58

4.1 LAPIN PAID Algorithm (Passed Item Deduction Frequent Pattern Mining)

items. Based on the above discussion, the pseudo code of LAPIN PAID is presented

in Table 4.2.

4.1.2 Design and Implementation

We used a lexicographic tree [7] as the search path of our algorithm and adopted a

lexicographic order [7]. This used the Depth First Search (DFS) strategy. The pseudo

code of LAPIN PAID is presented in Table 4.2.

In Step 1, by scanning the DB once, we can obtain the position list table, as in Table

4.3 and all the 1-length frequent patterns. Based on the last element in each position

list, we can sort and construct the item-last-position list in ascending order, as shown

in Figure 4.1 (a). After scanning the DB once, we can also get the support count of

〈〉-projected item-last-position list, which is indeed the 1-length frequent sequences

support.

In function Gen Pattern, to find the prefix border position set of k-length α (Step

3), we first obtain the position list of the last item of α, and then perform a binary

search in the list for the (k-1)-length prefix border position. (We can do this because

the position list is in ascending order.) We look for the first position that is larger than

the (k-1)-length prefix border position.

Step 4 and Step 5, shown in Table 4.2, are used to find the (k+1)-length frequent

pattern based on the frequent k-length pattern and the 1-length candidate items in

the projected DB (projected item-last-position list). These two steps are justified by

Lemma 1, Lemma 2 and Lemma 3. Commonly, support counting is the most time

consuming part in the entire mining process. Here, we test the candidate item in the

projected DB (projected item-last-position list), just as PrefixSpan [79] does. The cor-

rectness of the strategy was discussed in [79]. The pseudo code of finding (k+1)-length

sequential patterns is shown in Table 4.4.

Finding (k+1)-length frequent pattern. In the item-last-position list, i.e., Fig 4.1

(a), we look for the first element whose last position is larger than the prefix border

position, as Step 4 and Step 5 in Table 4.4 do. Then, we discovery those items, which

“disappear” after growing from (k-1)-length prefix frequent sequence to k-length prefix

frequent sequence, and decrement these “disappeared” items support from the support

count of the projected item-last-position list, as shown in Step 6 to Step 8. Finally,

59

4.1 LAPIN PAID Algorithm (Passed Item Deduction Frequent Pattern Mining)

Table 4.2: LAPIN PAID algorithm pseudo code

INPUT: A sequence database, and the minimum support threshold, ε

OUTPUT: The complete set of sequential patterns

Function: Gen Pattern(α, S, SupportP)

Parameters: α = length k frequent sequential pattern; S = prefix border position set

of (k-1)-length sequential pattern; SupportP = support count in (k-1)-

length sequential pattern’s projected item-last-position list

Goal: Generate (k+1)-length frequent sequential pattern

Main():

1. Scan DB once to do:

1.1. Ps← Create the position list representation of 1-length sequences

1.2. Bs← Find the frequent 1-length sequences

1.3. Ls← Obtain the item-last-position list of the 1-length sequences

1.4. SupportP |〈〉 ← Find the support count of 〈〉-projected item-last-

position list

2. For each frequent sequence αs in Bs

2.1. Call Gen Pattern (αs, 0, SupportP |〈〉)

Function: Gen Pattern(α, S , SupportP)

3. Sα← Find the prefix border position set of α based on S

4. SupportP |α ← Obtain the support count of α-projected item-last-

position list, based on S, Sα and SupportP

5. FreItems,α ← Obtain the item list of α based on SupportP |α
6. For each item γs in FreItems,α

6.1. Combine α and γs, results in θ and output

6.2. Call Gen Pattern (θ, Sα, SupportP |α)

60

4.1 LAPIN PAID Algorithm (Passed Item Deduction Frequent Pattern Mining)

Table 4.3: Position List of DB

SID Item Positions

10 a : 7→ 9→ null

b : 1→ 3→ 5→ 8→ null

c : 4→ null

d : 2→ 6→ 10→ null

20 a : 3→ 4→ 9→ null

b : 5→ 7→ 10→ null

c : 2→ 6→ null

d : 1→ 8→ null

30 a : 2→ 4→ 7→ 10→ null

b : null

c : 1→ 6→ 9→ null

d : 3→ 5→ 8→ null

we can get the frequent items in the projected item-last-position list (projected DB),

as shown in Step 9 to Step 11. Obviously, in dense datasets, the size of “disappeared”

projected item-last-position list should be much smaller than the projected DB, which

is scanned by PrefixSpan algorithm. Moreover, we only pass and count once for each

different item in the “disappeared” projected item-last-position list because, in item-

last-position list, we record the last position of each item for a specific sequence. In

contrast, PrefixSpan needs to pass every item in the projected database regardless of

whether or not they are the same as before. Therefore, LAPIN PAID will save much

time because our search space is much smaller than the one used in PrefixSpan by

making good use of the intermediate result (support value). The example has been

described in Section 4.1.1.

I-Step of LAPIN PAID. As Ayres et al. did in [7], the whole process of sequen-

tial pattern mining should includes two steps: a sequence-extension step (S-Step)

and a itemset-extension step (I-Step). We have already described the S-Step of

LAPIN PAID. The I-Step is similar to the S-Step. One difference is that in I-Step,

the basic unit is 2-length itemset extension sequence, i.e., (ab), (bc), instead of 1-length

sequence, i.e., a, b, in S-Step. Another difference is that when patterns grow, I-Step

61

4.2 LAPIN SPAM Algorithm

Table 4.4: Finding (k+1)-length frequent patterns

INPUT: S = prefix border position set of (k-1)-length frequent sequential pat-

tern; Sα = prefix border position set of k-length frequent sequential pat-

tern α; SupportP = support count in (k-1)-length sequential pattern’s

projected item-last-position list; ε = user specified minimum support

OUTPUT: FreItems = local frequent item list

1. For each sequence, F

1.1. SF ← obtain prefix border position of F in S

1.2. Sα,F ← obtain prefix border position of F in Sα

1.3. M = Find the corresponding index for SF

1.4. N = Find the corresponding index for Sα,F

1.5. while (M != Null && M < N)

1.5.1. SupportP [M.item] - -;

1.5.2. M++;

2. For each item β in Suplist

2.1. If (SupportP [β] ≥ ε)

2.1.1. FreItems.insert(β);

should guarantee that the prefix sequences of the tested candidates are the same. We

deal with it by joining the position list of each candidate IE item after current prefix

position, which is similar to the method used in SPADE [109].

4.2 LAPIN SPAM Algorithm

As introduced in Section 3.1, we have found that SPAM is very efficient in resource

unlimited environments (i.e., huge memory available). Hence, we aim to develop one

algorithm based on SPAM. We have found more efficiency improving space in the

support counting process of SPAM based on the basic idea of LAPIN.

In SPAM, to judge a candidate is a pattern or not, it does as many ANDing opera-

tion as to the number of customers involved. For example, if there are 10000 customers

in certain dataset, it will cost 10000 ANDing operation time for each candidate item

testing. Consider the recursive characteristic in the implementation, this cost is too big.

So how to avoid this ANDing operation becomes essential step.

62

4.2 LAPIN SPAM Algorithm

Figure 4.3: Bitmap representation table

Figure 4.4: Optimized ITEM IS EXIST TABLE

4.2.1 General Idea

As mentioned earlier, if given a current position in certain customer, we can know

which items are behind current position and which are not based on the last posi-

tion of them. So a naive method to judge a candidate is to compare the last posi-

tion of it with the current position. This is in fact the same cost as ANDing oper-

ation in SPAM. To avoid this comparison or ANDing operation, we can construct a

ITEM IS EXIST TABLE when scanning the database for the first time. In each iter-

ation, we only need to check this table to get information that a candidate is behind

current position or not. By this way, we can save much time by avoiding ANDing

operation or comparison.

Figure 4.3, which is built based on the example database in Table 1, shows one part

of the ITEM IS EXIST TABLE for the first customer. The left column is the position

number and the top row is the item ID. In the table, we use bit vector to represent

candidates existence for respective position. Bit value is 1 indicates the item existing,

otherwise the item does not exist. The bit vector size is equal to the total number of the

63

Chapter3/Chapter3Figs/EPS/ITEM_IS_EXIST_TABLE_ORG.eps
Chapter3/Chapter3Figs/EPS/ITEM_IS_EXIST_TABLE_OPT.eps

4.2 LAPIN SPAM Algorithm

—————————————————————————————————–

1. For each customer sequence F

2. for each item α in local candidate item list

3. result← bitmapprefix & bitmapα;

4. if (result != 0)

5. Suplist[α]++;

—————————————————————————————————–

Figure 4.5: S-Step support counting of SPAM

candidate items. For example, if the current position is 2, we can get its correspond-

ing bit vector as 1111, which means that all candidates can be appear behind current

prefix. When the current position is 8, we can get the bit vector as 1001, indicates

that only item a and d exist in the same customer sequence after the current prefix.

To accumulate the candidate sequence’s support, we only need to check this table and

add the corresponding item’s vector value, avoiding comparison, ANDing operation or

constructing S-Matrix in each recursive step, which largely improve efficiency during

mining. Attention that here we only discuss the S-Step process, the reader can easily

extend it to the I-Step process based on the same strategy.

4.2.2 Implementation

The pseudo code of SPAM and LAPIN-SPAM are shown as Figure 4.5 and Figure 4.6,

which present the main difference between of them on support counting part.

The Figure 4.5 and Figure4.6 show that LAPIN-SPAM avoids the step 3 of SPAM.

The experimental result in Section 4.3 shows that SPAM always does three times AND-

ings operations more than LAPIN-SPAM does.

4.2.2.1 Space Optimization

SPAM assumes that the whole vector representation of the database should be filled in

the main memory, yet the space necessary is always a key factor of an algorithm. As

Figure 4.3 shows, we can easily know that the main memory used in LAPIN-SPAM is

no more than twice of that used in SPAM, because each item needs one bit for every

transaction no matter it exists or not in the ITEM IS EXIST TABLE.

64

4.3 Experimental Evaluation and Performance Study

—————————————————————————————————–

1. For each customer sequence F

2. bitV← get the bit vector indexed by the

prefix border position

3. for each item α in local candidate item list

4. Suplist[α]=Suplist[α]+bitV[α];

—————————————————————————————————–

Figure 4.6: S-Step support counting of LAPIN SPAM

After consideration, we find that only part of the table is useful and most are not.

For example in Figure 4.3, when the current position is smaller than 4, all items exist

and when the position is larger than 9, there is no item existing. So the useful informa-

tion is store in some key positions’ lines. We define key position as follows: Given a

position, if its corresponding bit vector is different from that of the position one smaller

than it (except the one whose bit vector is equal to 0), this position is called key posi-

tion. For example, in Figure 4.3, the position 4, 8 and 9 are key positions and others are

not (position 10 is not because its bit vector is equal to 0). We can find that these key

positions are indeed the last positions of the candidates items (except the last one). The

optimized ITEM IS EXIST TABLE is shown in Figure 4.4, which stores only two bit

vectors instead of eight ones shown in Figure 4.3. For long pattern dataset, this space

saving strategy is more efficient. Through thorough experiments what we will men-

tion in Section 4.3.2, the memory used to store the ITEM IS EXIST TABLE is less

than 10 percent of the one used in SPAM, which can be neglected when comparing

LAPIN-SPAM and SPAM efficiency.

4.3 Experimental Evaluation and Performance Study

In this section, we will describe our experiments and evaluations conducted on both

synthetic and real data, and compare LAPIN PAID and LAPIN SPAM with LAPIN Suffix,

LAPIN LCI, PrefixSpan and SPAM to demonstrate the efficiency of the proposed al-

gorithms. Moreover, we evaluated all the algorithms on judging which situation they

prefer and give a summary at the end. We first performed the experiments using a

1.6 GHz Intel Pentium(R)M PC machine with a 1 G memory, running Microsoft Win-

dows XP. All these algorithms are written in C++ software, and were compiled in an

65

4.3 Experimental Evaluation and Performance Study

(a) Dataset(C50T20S50I20N0.3) (b) Dataset(T40S30I30N0.8D1) (c) Dataset(C40S30I30N0.8D1)

Average number of transactions per
customer (sup=0.9) transaction (sup=0.9)

Average number of items perNumber of customer sequences
(*1K) (sup=0.98)

Ex
ec

ito
pm

 ti
m

e
(s

)

Ex
ec

ito
pm

 ti
m

e
(s

)

Ex
ec

ito
pm

 ti
m

e
(s

)

Figure 4.7: Scalability performance

MS Visual C++ environment. The output of the programs was turned off to make the

comparison equitable.

4.3.1 Scalability test between PrefixSpan, SPADE and LAPIN al-

gorithms

Scalability Test. Because only some parameters are important for performance, as

illustrated and explained in Chapter 3. We study how LAPIN PAID performs with

increasing number of customer sequences (D), average number of events per customer

sequence (C) and average number of items per event (T), respectively. We first only

compare the execution time and shortly, we will systemically study the performance

of all the algorithms.

Figure 4.7 (a) shows how LAPIN PAID scales up as the number of customer se-

quences is increased, from 10K to 50K, whose corresponding database size ranging

from 40M to 200M. The experiment was performed on the C50T20S50I20N0.3 with

minimum support is 0.98. It can be observed that LAPIN PAID scales almost lin-

early and is much faster than the other three algorithms. For example, in Figure 4.7

66

Chapter3/Chapter3Figs/EPS/Scalability_new_Color.eps

4.3 Experimental Evaluation and Performance Study

(a) Distribution of frequent sequences (b) Performance comparison

0

2

4

6

8

0 10 20 30
Length of frequent k-sequences

0.00062

0.0006

0.00058

0.00057

0.00055

N
u

m
b
e

r
o

f
fr

e
q
u
e
n

t
s
e

q
u

e
n

c
e

s
 (

lo
g

a
ri
th

m
 s

c
a
le

)

Figure 4.8: Dataset (Gazelle)

(a), when D = 50, LAPIN PAID (runtime = 544 seconds) is about 8 times faster than

PrefixSpan (runtime = 4329 seconds), five times faster than SPADE (runtime = 2903

seconds) and two times faster than LAPIN (runtime = 1292 seconds). Figure 4.7 (b)

and 4.7 (c) show the other two scalability experimental results. For both the graphs,

we used S30I30N0.8D1. In Figure 4.7 (b) we set T to 40, and varied C from 35 to 40,

and Figure 4.7 (c) we set C to 40, varied T from 35 to 40. It can be easily observed

LAPIN PAID scales linearly with the two varying parameters and is always faster than

the other three algorithms.

4.3.2 Real Data Evaluation between PrefixSpan, SPADE and LAPIN

algorithms

We consider that results from real data will be more convincing in demonstrating the

efficiency of our proposed algorithm. In this section, we discuss tests on two real

datasets.

The first real dataset, Gazelle, was obtained from Blue Martini company, which

was also used in KDD-Cup 2000. This dataset contains 59602 sequences (i.e., cus-

tomers), 149639 sessions, and 497 distinct page views. The average sequence length

is 2.5 and the maximum sequence length is 267. More detailed information about

67

Chapter3/Chapter3Figs/EPS/Gazelle_Color.eps

4.3 Experimental Evaluation and Performance Study

(a) Distribution of frequent sequences (b) Performance comparison

0

1

2

3

4

5

6

7
N

um
be

ro
f f

re
qu

en
ts

eq
ue

nc
es

(lo
ga

rit
hm

sc
al

es
)

0.00015
0.00014
0.00013
0.00012
0.00011

Figure 4.9: Dataset (MSNBC)

this dataset can be found in [52]. Figure 4.8 (a) shows the distribution of frequent

sequences of Gazelle dataset for different support thresholds. We can see that this

dataset is a sparse dataset compared with Rat because, only when the support thresh-

old is very low are there some long frequent sequences (i.e., when min sup=0.00062,

total frequent sequences number = 207168). Figure 4.8 (b) shows the performance

comparison between PrefixSpan, SPADE and LAPIN PAID for Gazelle dataset. We

can see that LAPIN PAID is more efficient than PrefixSpan and SPADE. For example,

at support 0.00055, LAPIN PAID (runtime = 583 seconds) is near five times faster

than PrefixSpan (runtime = 2642 seconds) and four times faster than SPADE (runtime

= 1857 seconds). The running time of LAPIN is 677 seconds.

We have obtained the second dataset, MSNBC, from the UCI KDD Archive1.

This dataset comes from Web server logs for msnbc.com and news-related portions

of msn.com on Sep. 28, 1999. There are 989,818 users and only 17 distinct items,

because these items are recorded at the level of URL category, not at page level, which

greatly reduces the dimensionality. The average sequence length is 6 and the max-

imum sequence length is 14,795. Figure 4.9 (a) shows the distribution of frequent

sequences of Rat dataset for different support thresholds, from 0.00011 to 0.00015.

When the support threshold is 0.00011, there are many frequent sequences (total num-

1http://kdd.ics.uci.edu/databases/msnbc/msnbc.html

68

Chapter3/Chapter3Figs/EPS/MSNBC_Color.eps

4.3 Experimental Evaluation and Performance Study

ber = 45,541,248). Figure 4.9 (b) shows the performance comparison among PrefixS-

pan, SPADE and LAPIN PAID for MSNBC dataset. The result mirrors that of the

Gazelle dataset closely.

4.3.3 Scalability Study between SPAM and LAPIN-SPAM

We tested both SPAM and LAPIN-SPAM using the synthetic data, since SPAM limits

the sequence length to 64. We consider the different parameters used to generate the

datasets on testing the performance. Figure 4.10(a) shows the result when changing

the number of the customers. Figure 4.10(b) presents the effect when varying average

number of transactions per customer. Figure 4.10(c) shows the result when changing

the average number of items per transaction parameter. Figure 4.10(d) modifies the

average length of maximal sequences and the variable in Figure 4.10(e) is the number

of different items in the datasets. We can see that no matter which parameter changes,

LAPIN-SPAM is always faster than SPAM about 2 to 3 times. The primary reason that

LAPIN-SPAM performs so well for all datasets is due to avoiding ANDing operation

or comparison of the bitmap for efficient counting. This process is critical because it is

performed many times at each recursive step, and LAPIN-SPAM can save much time

compared with SPAM.

4.3.4 Memory Usage Analysis between SPAM and LAPIN SPAM

Using bit vector to represent items’ existence is the most space consuming part in our

LAPIN SPAM algorithms. Let D be the number of customers in the database, C the

average number of transactions per customer, and N the total number of items across

all of the transactions. As Ayres et al. pointed in [7], SPAM requires (D × C ×N)/8

bytes to store all of the data. In LAPIN, let C ′ be the average number of the key

positions per customer, then our LAPIN SPAM requires (D × C ′ × N)/8 bytes to

store the last position information for all the items. For those datasets with long pattern

and small number of items, the C ′/C should be very small, which means that our

LAPIN SPAM algorithm get high speed performance at the price of relevant small

space consuming compared with SPAM.

69

4.3 Experimental Evaluation and Performance Study

Dataset (C?T20S20I4N1D15)

Average number of transactions per customer
(sup=0.3%)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Dataset (C15T?S20I4N1D10)

Average number of items per transaction
 (sup=1%)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
) Dataset (C15T10S?I4N1D10)

Average length of maximal sequences
 (sup=7%)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Dataset (C15T10S20I?N1D10)

Average length of transactions within maximal
 sequences (sup=7%)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
) Dataset (C15T10S20I4N1D?)

Number of customers (sup=10%)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)Dataset (C15T10S20I4N?D8)

Number of different items in the dataset
 (sup=2.2%)

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

0

60

120

180

1 3 5 7 9
0

60

120

180

1 2 3 4 5 6
0

80

160

240

4 6 8 10 12

0

120

240

360

1 3 5 7 9
0

30

60

90

1 2 3 4 5
0

60

120

180

1 2 3 4 5 6

Figure 4.10: Execution time comparison when varying parameters of the datasets

(SPAM vs LAPIN SPAM)

70

Chapter3/Chapter3Figs/EPS/DiffPara_SPAM_Color.eps

4.3 Experimental Evaluation and Performance Study

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

Dataset (C10T?S5I5N50D5K)Dataset (C?T10S5I5N50D5K) Dataset (C10T10S?I5N50D5K)

Dataset (C10T10S5I?N50D5K) Dataset (C10T10S5I5N?D5K) Dataset (C10T10S5I5N50D?)

Average number of transactios per customer
 (sup=0.7)

Average number of items per transaction
 (sup=0.7)

Average length of maximal sequences
 (sup=0.7)

Average length of transactions within maximal
 sequences (sup=0.7)

Number of different items in the dataset
 (sup=0.7)

Number of customers (sup=0.7)(*1K)

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

0

25

50

75

8 9 10 11 12

SPAM
LAPIN_SPAM

SPAM
LAPIN_SPAM

SPAM
LAPIN_SPAM

SPAM
LAPIN_SPAM

SPAM
LAPIN_SPAM

SPAM
LAPIN_SPAM

0

25

50

75

8 9 10 11 12
25

30

35

40

45

3 4 5 6 7

25

30

35

40

45

3 4 5 6 7
0

15

30

45

42 44 46 48 50
0

160

320

480

640

5 6 7 8 9

Figure 4.11: Memory usage comparison when varying parameters of the datasets

(SPAM vs LAPIN SPAM)

71

Chapter3/Chapter3Figs/EPS/DiffPara_SPAM_MEM_Color.eps

4.3 Experimental Evaluation and Performance Study

Figure 4.12: Classified algorithms to be evaluated

4.3.5 Systemic Study on Different Algorithms

As mentioned above and in Chapter 3, we have found the effect of the three parameters,

C, T and N on the performance of different algorithms. The reason is that under

uniform distribution assumption 1, these three parameters contribute to the density m,

where we have m=C × T/N . Hereafter, we decide to use the density value m, as

the basic parameter to analyze the performance of the algorithms. Another decision

is that, as shown in Figure 4.12, we will compare algorithms in their own category

(i.e., the algorithms in the same row, as for example, SPAM and LAPIN SPAM) to

convenient our evaluation. Later we will compare the best ones in each category to

make a comprehensive conclusion.

4.3.5.1 PrefixSpan v.s. LAPIN Suffix v.s. LAPIN PAID

In this section, we compare the algorithms of PrefixSpan, LAPIN Suffix and LAPIN PAID

on varying the density m. The characteristic of the tested datasets is shown in Figure

4.13 (a). We change the density from 0.5 to 6. Figure 4.13 illustrates the result. Specif-

ically, Figure 4.13 (b) shows that LAPIN Suffix and LAPIN PAID will become much

faster than PrefixSpan, when m becomes larger than 1. The execution time perfor-

mance becomes reverse if m is small than 1. For the memory usage, as illustrated in

Figure 4.13 (c), LAPIN Suffix and LAPIN PAID always consumes the same mem-

ory because they use the same data structure. As m increases, the difference between

LAPIN algorithms with PrefixSpan will get smaller. Specifically, when m is 2, LAPIN

algorithms consume about 2 times memory of PrefixSpan. In summary, LAPIN PAID

is always better than LAPIN Suffix on considering both execution time and memory

usage. m = 2 can be seen as a criterion to judge whether use LAPIN PAID or Pre-

fixSpan that, when m ≤2, LAPIN PAID is preferred and otherwise, select PrefixSpan.

1The IBM data generator what we used is supposed to generate uniform distribution data.

72

Chapter3/Chapter3Figs/EPS/AlgorithmTable.eps

4.3 Experimental Evaluation and Performance Study

Figure 4.13: Performance results of comparing PrefixSpan, LAPIN Suffix and

LAPIN PAID

73

Chapter3/Chapter3Figs/EPS/ResultPSCategoryComparison.eps

4.3 Experimental Evaluation and Performance Study

4.3.5.2 SPADE v.s. LAPIN LCI

In this section, we compare the algorithms of SPADE and LAPIN LCI on varying

the density m. The characteristic of the tested datasets is shown in Figure 4.14 (a).

We change the density from 0.5 to 6. Figure 4.14 illustrates the result. Specifically,

Figure 4.14 (b) shows that LAPIN LCI will become much faster than SPADE, when

m becomes larger than 1. We can also mention that although m is smaller than 1,

LAPIN LCI is still faster than SPADE to some extent. For the memory usage, as

illustrated in Figure 4.14 (c), as m increases, the difference between LAPIN LCI and

SPADE will get smaller. Similar to the experiment in last section, in summary, m = 2

can be seen as a criterion to judge whether use LAPIN LCI or SPADE that, when

m ≤2, LAPIN LCI is preferred and otherwise, we use SPADE.

4.3.5.3 SPAM v.s. LAPIN SPAM

In this section, we compare the algorithms of SPAM and LAPIN SPAM on varying

the density m. The characteristic of the tested datasets is shown in Figure 4.15 (a). We

change the density from 0.1 to 6. Figure 4.15 illustrates the result. Specifically, Figure

4.15 (b) shows that LAPIN SPAM is always faster than SPAM, by about two to three

times, no matter what the value of m. The reason is that the ANDing operations in

SPAM is about three times more than that of LAPIN SPAM. For the memory usage,

as illustrated in Figure 4.15 (c), the difference between LAPIN SPAM and SPAM is

between 1 and 1.5, which means LAPIN SPAM at most consume about 150% memory

of that used in SPAM. In summary, the overall performance of LAPIN SPAM is better

than SPAM no matter with the value of m..

Through the three sections, Section 4.3.5.1, Section 4.3.5.2 and Section 4.3.5.3, we

have found that the best algorithm in each category. Moreover, we discovered the trade

off between these algorithms and found a criterion value of m, which is 2, to judge the

best algorithm. In the next sections, we further compare the best one in each category

to give a overall summary of existing algorithms. When the value of m is smaller

than 2, the best three algorithms in the three categories are PrefixSpan, SPADE and

LAPIN SPAM. When the value of m is larger than 2, the best three algorithms in the

three categories are LAPIN PAID, LAPIN LCi and LAPIN SPAM. We will compare

them accordingly.

74

4.3 Experimental Evaluation and Performance Study

Figure 4.14: Performance results of comparing SPADE and LAPIN LCI

75

Chapter3/Chapter3Figs/EPS/ResultSPADECategoryComparison.eps

4.3 Experimental Evaluation and Performance Study

Figure 4.15: Performance results of comparing SPAM and LAPIN SPAM

76

Chapter3/Chapter3Figs/EPS/ResultSPAMCategoryComparison.eps

4.3 Experimental Evaluation and Performance Study

4.3.5.4 PrefixSpan v.s. SPADE v.s. LAPIN SPAM

In this section, we first compared the algorithms of SPADE and PrefixSpan when the

density m is smaller than 2. The characteristic of the tested datasets is shown in Figure

4.16 (a). We change the density from 0.1 to 1.5. Figure 4.16 (b) illustrates the result.

Specifically, PrefixSpan is always faster than SPADE, by up to orders of magnitude

on small value of m. As m increases, the difference of the two algorithms becomes

smaller. For the memory usage, as illustrated in Figure 4.16 (b), PrefixSpan always

consumes smaller memory than SPADE, and the difference between the two algorithms

becomes smaller as m increases. In summary, the overall performance of PrefixSpan

is better than SPADE when the value of m is smaller than 2.

Next we compare the algorithms of PrefixSpan and LAPIN SPAM when the den-

sity m is smaller than 2. The characteristic of the tested datasets is shown in Figure

4.16 (a). We change the density from 0.1 to 1.5. Figure 4.16 (c) illustrates the result.

Specifically, when m is small (i.e., 0.1), PrefixSpan is much faster than LAPIN SPAM,.

However, when m is 1.5, LAPIN SPAM is much faster than PrefixSpan. Note that

when m is 1, LAPIN SPAM is about 2 times faster than PrefixSpan. For the memory

usage, as illustrated in Figure 4.16 (c), PrefixSpan always consumes smaller memory

than LAPIN SPAM. However, the difference becomes smaller when m increases and

note that when m is 1, LAPIN SPAM consumes about two times memory of that used

in PrefixSpan. In summary, the overall performance considering on execution and

memory is that, when m is smaller than 1, PrefixSpan is better than LAPIN SPAM,

otherwise (when 1< m <2), LAPIN SPAM is better.

4.3.5.5 LAPIN PAID v.s. LAPIN LCI v.s. LAPIN SPAM

In this section, we first compared the algorithms of LAPIN LCI and LAPIN PAID

when the density m is larger than 2. The characteristic of the tested datasets is shown

in Figure 4.17 (a). We change the density from 2 to 6. Figure 4.17 (b) illustrates

the result. Specifically, LAPIN PAID is always faster than LAPIN LCI, by up to two

times. For the memory usage, as illustrated in Figure 4.17 (b), LAPIN PAID always

consumes smaller memory than LAPIN LCI. In summary, the overall performance of

LAPIN PAID is better than LAPIN LCI though the difference is not so big, when the

value of m is larger than 2.

Next we compare the algorithms of LAPIN PAID and LAPIN SPAM when the

77

4.3 Experimental Evaluation and Performance Study

Figure 4.16: Performance results of comparing PrefixSpan, SPADE and LAPIN SPAM

78

Chapter3/Chapter3Figs/EPS/ResultMsmaller2.eps

4.3 Experimental Evaluation and Performance Study

density m is larger than 2. The characteristic of the tested datasets is shown in Figure

4.17 (a). We change the density from 2 to 6. Figure 4.17 (c) illustrates the result.

Specifically, when m increases, LAPIN SPAM is much faster than LAPIN PAID by

up to an order of magnitude. For the memory usage, as illustrated in Figure 4.17 (c),

LAPIN PAID always consumes smaller memory than LAPIN SPAM. However, the

difference is very small. In summary, the overall performance is that LAPIN SPAM is

better than LAPIN PAID and LAPIN LCI.

4.3.5.6 Summary

The above sections systemically studied the performance of all the algorithms. It illus-

trates that our LAPIN strategy is very efficient, if mining on dense datasets with long

patterns. Furthermore, there are two issues should be mentioned:

• In resource limited environments, we observed that the criterion value of m is

around 2, which is used to judge whether use PrefixSpan or LAPIN PAID. How-

ever, here we only give a rough criterion because of the complexity of the issue.

It may be that when m is smaller than 2, LAPIN PAID is better than PrefixSpan.

In other words, once the value of m is large enough to eliminate the side-effect of

LAPIN strategy (i.e., building the item last position table), then LAPIN SPADE

will be better than PrefixSpan. From theoretical analysis, if m is smaller than 1,

PrefixSpan will definitely faster than LAPIN PAID. Hence, the real criterion is

indeed should be a range (i.e., m is from 1 to 2). If m is larger than this range,

then LAPIN PAID is better. Otherwise if m falls into the criterion range, it is dif-

ficult to judge which algorithm is better unless to do the experiments. The reason

is due to the different programming skill used in algorithm implementation.

• The value of m is computed as C×T/N , as explained in Chapter 3, is under the

assumption that the data distribution is uniform. We can make this assumption

for synthetic datasets because the data generator creates only uniform distribu-

tion data. However, for real datasets, this assumption does not hold. That is the

reason why for some real datasets with the density m smaller than 1, our algo-

rithms are still much faster than PrefixSpan and SPADE. The readers can see

the experiments in Section 3.3.2 and Section 4.3.2 (i.e., Gazelle dataset). For

these kinds of datasets, it is very difficult to judge the criterion. Fortunately, our

79

4.3 Experimental Evaluation and Performance Study

Figure 4.17: Performance results of comparing LAPIN PAID, LAPIN LCI and

LAPIN SPAM

80

Chapter3/Chapter3Figs/EPS/ResultMlarger2.eps

4.3 Experimental Evaluation and Performance Study

LAPIN family algorithms always show better performance on these real datasets,

which confirm the efficiency of LAPIN strategy what we proposed.

81

Chapter 5

Applications of Sequential Pattern

Mining

There are many applications that are based on the sequential pattern mining techniques,

i.e., DNA sequence discovery, customer behavior analysis, stock trend prediction, etc.

In this chapter, we study one typical application that how Web log systems can be

beneficial from the improvement of basic sequential pattern mining algorithms.

5.1 Introduction of Web Log Mining

The World Wide Web has become one of the most important media to store, share and

distribute information. At present, Google is indexing more than 8 billion Web pages

[40]. The rapid expansion of the Web has provided a great opportunity to study user

and system behavior by exploring Web access logs. Web mining that discovers and

extracts interesting knowledge/patterns from Web could be classified into three types

based on different data that mining is executed: Web Structure Mining that focuses

on hyperlink structure, Web Contents Mining that focuses on page contents as well as

Web Usage Mining that focuses on Web logs. In this thesis, we are concerned about

Web Usage Mining (WUM), which also named Web log mining.

The process of WUM includes three phases: data preprocessing, pattern discovery,

and pattern analysis [31].

82

5.1 Introduction of Web Log Mining

5.1.1 Data Preparation

During preprocessing phase, raw Web logs need to be cleaned, analyzed and converted

before further pattern mining. The data recorded in server logs, such as the user IP

address, browser, viewing time, etc, are available to identify users and sessions. How-

ever, because some page views may be cached by the user browser or by a proxy server,

we should know that the data collected by server logs are not entirely reliable. This

problem can be partly solved by using some other kinds of usage information such as

cookies. After each user has been identified, the entry for each user must be divided

into sessions. A timeout is often used to break the entry into sessions. The following

are some preprocessing tasks [31]: (a) Data Cleaning: The server log is examined to

remove irrelevant items. (b) User Identification: To identify different users by over-

coming the difficulty produced by the presence of proxy servers and cache. (c) Session

Identification: The page accesses must be divided into individual sessions according

to different Web users.

The raw Web log data is usually diverse and incomplete and difficult to be used

directly for further pattern mining. In order to process it, we need to:

5.1.1.1 Data Cleaning.

In our system, we use server logs in Common Log Format. We examine Web logs

and remove irrelevant or redundant items like image, sound, video files which could

be downloaded without an explicit user request. Other removal items include HTTP

errors, records created by crawlers, etc., which can not truly reflect users’ behavior.

5.1.1.2 User Identification.

To identify the users, one simple method is requiring the users to identify themselves,

by logging in before using the web-site or system. Another approach is to use cookies

for identifying the visitors of a web-site by storing an unique ID. However, these two

methods are not general enough because they depend on the application domain and

the quality of the source data, thus in our system we only set them as an option. More

detail should be implemented according to different application domains.

We have implemented a more general method to identify user based on [31]. We

have three criteria:

(1) A new IP indicates a new user.

83

5.1 Introduction of Web Log Mining

(2) The same IP but different Web browsers, or different operating systems, in terms

of type and version, means a new user.

(3) Suppose the topology of a site is available, if a request for a page originates

from the same IP address as other already visited pages, and no direct hyperlink

exists between these pages, it indicates a new user. (option)

5.1.1.3 Session Identification.

To identify the user sessions is also very important because it will largely affects the

quality of pattern discovery result. A user session can be defined as a set of pages

visited by the same user within the duration of one particular visit to a web-site.

According to [99] [80], a set of pages visited by a specific user is considered as

a single user session if the pages are requested at a time interval not larger than a

specified time period. In our system, we set this period to 30 minutes.

5.1.2 Pattern Discovery

The second phase of WUM is pattern mining and researches in data mining, machine

learning as well as statistics are mainly focused on this phase. As for pattern mining,

it could be: (a) statistical analysis, used to obtain useful statistical information such

as the most frequently accessed pages; (b) association rule mining [4], used to find

references to a set of pages that are accessed together with a support value exceeding

some specified threshold; (c) sequential pattern mining [5], used to discover frequent

sequential patterns which are lists of Web pages ordered by viewing time for predicting

visit patterns; (d) clustering, used to group together users with similar characteristics;

(e) classification, used to group together users into predefined classes based on their

characteristics. In this thesis, we focus on sequential pattern mining for finding inter-

esting patterns based on Web logs.

Sequential pattern mining, which extracts frequent subsequences from a sequence

database, has attracted a great deal of interest during the recent surge in data mining

research because it is the basis of many applications, such as Web user analysis, stock

trend prediction, and DNA sequence analysis. Much work has been carried out on min-

ing frequent patterns, as for example, in [5] [88] [109] [79] [7]. However, all of these

works suffer from the problems of having a large search space and the ineffectiveness

in handling long patterns. In Section 3 and Section 4, we proposed a family of novel

84

5.2 LAPIN Web Algorithm

algorithms to reduce searching space greatly. Instead of searching the entire projected

database for each item, as PrefixSpan [79] and SPADE [109] does, we only search a

small portion of the database by recording the last position of item in each sequence

(LAPIN: LAst Position INduction). While support counting usually is the most costly

step in sequential pattern mining, the proposed LAPIN could improve the performance

significantly by avoiding cost scanning and comparisons. In order to meet special fea-

tures of Web data and Web log, we propose LAPIN WEB by extending our previous

work.

5.1.3 Pattern Analysis

In pattern analysis phase, which mainly filter out uninteresting rules obtained, we im-

plement a visualization tool to help interpret mined patterns and predict users’ future

request.

We could see from pattern mining process that given a support, usually there are

great number of patterns produced and effective method to filter out and visualize

mined pattern is necessary. In addition, web-site developers, designers, and maintain-

ers also need to understand their efficiency as what kind of visitors are trying to do

and how they are doing it. Towards this end, we developed a navigational behavior

visualization tool based on Graphviz 1.

At present, our prototype system has only implemented the basic sequential pat-

tern discovery as the main mining task, which requires relevant simple user-computer

interface and visualization. As more functions are added and experiment done, we will

make the tool more convenient to the users.

5.2 LAPIN Web Algorithm

5.2.1 General Idea

LAPIN algorithm, as introduced in the former chapters of this thesis, can be employed

to mine Web log sequences. However, we can not get the best performance by directly

applying LAPIN (LAPIN PAID) to Web log ming because of the different properties

between general sequence datasets and Web log datasets. Comparing with general

1http://www.research.att.com/sw/tools/graphviz

85

5.2 LAPIN Web Algorithm

transaction data sequences that are commonly used, Web logs have following charac-

teristics:

(a) no two items/pages are accessed at the same time by the same user.

(b) very sparse, which means that there are huge unique items and few item repeti-

tion in one user sequence.

(c) user preference should be considered during mining process.

Based on above points, we extended LAPIN (i.e., LAPIN PAID) to LAPIN WEB with:

(1) dealing with only Sequence Extension (SE) case, no Itemset Extension (IE)

case.

(2) using sequential search instead of binary search. In more detail, LAPIN WEB

does not use binary search in the item position list, but use pointer+offset

sequential search strategy, which is similar to that used in PrefixSpan.

(3) incorporating user preference into mining process to make the final extracted

pattern more reasonable.

5.2.2 Implementation

We used a lexicographic tree [7] as the search path of our algorithm. Furthermore, we

adopted a lexicographic order, which was defined in the same way as in [105]. This

used the Depth First Search (DFS) strategy.

For Web log, because it is impossible that a user clicks two pages at the same

time, Itemset Extension (IE) case in common sequential pattern mining does not exist

in Web log mining. Hence, we only deal with Sequence Extension (SE) case. The

pseudo code of LAPIN WEB is shown in Figure 5.1. In Step 1, by scanning the DB

once, we can obtain all the 1-length frequent patterns. Then we sort and construct the

SE item-last-position list in ascending order based on each 1-length frequent pattern’

last position, as shown in Table 3.8.

Definition 6 (Prefix border position set). Given two sequences, A=〈A1A2 . . . Am〉 and

B=〈B1B2 . . . Bn〉, suppose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m and l ≤ n,

and that C is a common prefix for A and B. We record both positions of the last item

Cl in A and B, respectively, e.g., Cl=Ai and Cl=Bj . The position set, (i, j), is called

the prefix border position set of the common prefix C, denoted as Sc. Furthermore, we

denote Sc,i as the prefix border position of the sequence, i. For example, if A=〈abc〉

86

5.2 LAPIN Web Algorithm

Table 5.1: LAPIN WEB Algorithm pseudo code

INPUT: A sequence database, and the minimum support threshold, ε

OUTPUT: The complete set of sequential patterns

Function: Gen Pattern(α, S, CanIs)

Parameters: α = length k frequent sequential pattern; S = prefix border position set of

(k-1)-length sequential pattern; CanIs = candidate sequence extension

item list of length k+1 sequential pattern

Goal: Generate (k+1)-length frequent sequential pattern

Main():

1. Scan DB once to do:

1.1. Bs← Find the frequent 1-length SE sequences

1.2. Ls← Obtain the item-last-position list of the 1-length SE sequences

2. For each frequent SE sequence αs in Bs

2.1. Call Gen Pattern (αs, 0, Bs)

Function: Gen Pattern(α, S ,CanIs)

3. Sα← Find the prefix border position set of α based on S

4. FreItems,α ← Obtain the SE item list of α based on CanIs and Sα

5. For each item γs in FreItems,α

5.1. Combine α and γs as SE, results in θ and output

5.2. Call Gen Pattern (θ, Sα, FreItems,α)

and B=〈acde〉, then we can deduce that one common prefix of these two sequences is

〈ac〉, whose prefix border position set is (3,2), which is the last item C’s positions in A

and B.

In function Gen Pattern, to find the prefix border position set of k-length α (Step

3), we first obtain the sequence pointer and offset of the last item of α, and then perform

a sequential search in the corresponding sequence for the (k-1)-length prefix border

position. This method is similar to pseudo-projection in PrefixSpan, which is efficient

for sparse datasets.

Definition 7 (Local candidate item list). Given two sequences, A=〈A1A2 . . . Am〉 and

B=〈B1B2 . . . Bn〉, suppose that there exists C=〈C1C2 . . . Cl〉 for l ≤ m and l ≤ n,

87

5.2 LAPIN Web Algorithm

Table 5.2: Finding the SE frequent patterns

INPUT: Sα = prefix border position set of length k frequent sequential pattern

α; BVs = bit vectors of the ITEM IS EXIST TABLE; Ls = SE item-

last-position list; CanIs = candidate sequence extension items; ε = user

specified minimum support

OUTPUT: FreItems = local frequent SE item list

1. For each sequence, F, according to its priority (descending)

2. Sα,F ← obtain prefix border position of F in Sα

3. if (Sizelocal cand item list > Sizesuffix sequence)

4. bitV← obtain the bit vector of the Sα,F indexed from BVs

5. For each item β in CanIs

6. Suplist[β] = Suplist[β] + bitV[β];

7. CanIs,p← obtain the candidate items based on prior sequence

8. else

9. Ls,F ← obtain SE item-last-position list of F in Ls

10. M = Find the corresponding index for Sα,F

11. while (M < Ls,F .size)

12. Suplist[M.item]++;

13. M++;

14. CanIs,p← obtain the candidate items based on prior sequence

15. For each item γ in CanIs,p

16. if (Suplist[γ] ≥ ε)

17. FreItems.insert(γ);

and that C is a common prefix for A and B. Let D = (D1D2 . . .Dk) be a list of

items, such as those appended to C, and C ′ = C � Dj (1 ≤ j ≤ k) is the common

sequence for A and B. The list D is called the local candidate item list of the prefix

C’. For example, if A=〈abce〉 and B=〈abcde〉, we can deduce that one common prefix

of these two sequences is 〈ab〉, and 〈abc〉, 〈abe〉 are the common sequences for A and

B. Therefore, the item list (c,e) is called the local candidate item list of the prefixes

〈abc〉 and 〈abe〉.

Step 4, shown in Figure 5.1, is used to find the frequent SE (k+1)-length pattern

based on the frequent k-length pattern and the 1-length candidate items. Commonly,

88

5.3 Experimental Evaluation and Performance Study

support counting is the most time consuming part in the entire mining process. In

Section 3, we have found that LCI-oriented and Suffix-oriented have their own

advantages for different types of datasets. Based on this discovery, in this thesis, dur-

ing the mining process, we dynamically compare the suffix sequence length with the

local candidate item list size and select the appropriate search space to build a single

general framework. In other words, we combine the two approaches, LAPIN LCI and

LAPIN Suffix, together to improve efficiency at the price of low memory consuming.

The pseudo code of the frequent pattern finding process is shown in Figure 5.2.

From a system administrator’s view, the logs of special users (i.e. domain experts)

are more important than other logs and thus, should be always considered more prior,

as shown in Figure 5.2 (Step 1). The appended candidate items are also judged based

on this criteria (Step 7 and Step 14).

5.3 Experimental Evaluation and Performance Study

In this section, we will describe our experiments and evaluations conducted on the real-

world datasets. We performed the experiments using a 1.6 GHz Intel Pentium(R)M PC

machine with a 1 G memory, running Microsoft Windows XP. The core of LAPIN WEB

algorithm is written in C++ software. When comparing the efficiency between LAPIN WEB

and PrefixSpan, we turned off the output of the programs to make the comparison eq-

uitable.

5.3.1 Datasets

We consider that results from real data will be more convincing in demonstrating the ef-

ficiency of our Web log mining system. There are two datasets used in our experiments,

DMResearch and MSNBC. DMResearch was collected from the web-site of China

Data Mining Research Institute 1, from Oct. 17, 2004 to Dec. 12, 2004. The log is

large, about 56.9M, which includes 342,592 entries and 8,846 distinct pages. After ap-

plying data preprocessing described in Section 2.1, we identified 12,193 unique users

and average length of the sessions for each user is 28. The second dataset, MSNBC,

was obtained from the UCI KDD Archive 2. This dataset comes from Web server logs

1http://www.dmresearch.net
2http://kdd.ics.uci.edu/databases/msnbc/msnbc.html

89

5.3 Experimental Evaluation and Performance Study

Table 5.3: Real Dataset Characteristics

Dataset # Users # Items Min. len. Max. len. Avg. len. Total size

DMResearch 12193 8846 1 10745 28 56.9M

MSNBC 989818 17 1 14795 5.7 12.3M

for msnbc.com and news-related portions of msn.com on Sep. 28, 1999. There are

989,818 users and only 17 distinct items, because these items are recorded at the level

of URL category, not at page level, which greatly reduces the dimensionality. The

17 categories are ”frontpage”, ”news”, ”tech”, ”local”, ”opinion”, ”on-air”, ”misc”,

”weather”, ”health”, ”living”, ”business”, ”sports”, ”summary”, ”bbs”, ”travel”, ”msn-

news”, and ”msn-sports”. Each category is associated with a category number using

an integer starting from ”1”. The statistics of these datasets is given in Table 5.3.

5.3.2 Experiments and Evaluations

5.3.2.1 Comparing PrefixSpan with LAPIN WEB

Figure 5.1 shows the running time and the searched space comparison between Pre-

fixSpan and LAPIN WEB. Figure 5.1 (a) shows the performance comparison between

PrefixSpan and LAPIN WEB for DMResearch data set. From Figure 5.1 (a), we can

see that LAPIN WEB is much more efficient than PrefixSpan. For example, at support

1.3%, LAPIN WEB (runtime = 47 seconds) is more than an order of magnitude faster

than PrefixSpan (runtime = 501 seconds). This is because the searched space of Pre-

fixspan (space = 5,707M) was much larger than that in LAPIN WEB (space = 214M),

as shown in Figure 5.1 (c).

Figure 5.1 (b) shows the performance comparison between PrefixSpan and LAPIN WEB

for MSNBC data set. From Figure 5.1 (b), we can see that LAPIN WEB is much more

efficient than PrefixSpan. For example, at support 0.011%, LAPIN WEB (runtime =

3,215 seconds) is about five times faster than PrefixSpan (runtime = 15,322 seconds).

This is because the searched space of Prefixspan (space = 701,781M) was much larger

than that in LAPIN WEB (space = 49,883M), as shown in Figure 5.1 (d).

We have not compared PrefixSpan and LAPIN WEB on user’s preference, because

the former one has no such function.

90

5.3 Experimental Evaluation and Performance Study

5.3.2.2 Visualization Result

To help web-site developers, and Web administrators analyze the efficiency of their

web-site by understanding what and how visitors are doing on a web-site, we devel-

oped a navigational behavior visualization tool. Figure 5.2 and Figure 5.3 show the

visualization result of traversal pathes for the two real datasets, respectively. Here,

we set minimum support to 9% for DMResearch and 4% for MSNBC. The thickness

of edge represents the support value of the corresponding traversal path. The number

value, which is right of the traversal path, is the support value of the corresponding

path. The ”start” and ”end” are not actual pages belong to the site, they are actually

another sites placed somewhere on the internet, and indicate the entry and exit door to

and from the site.

From the figures, We can easily know that the most traversed edges, the thick ones,

are connecting pages ”start” → ”\loginout.jsp” → ”end” in Figure 5.2, and ”start”

→ ”frontpage” → ”end” in Figure 5.3. Similar interesting traversal path can also be

understood, and used by web-site designers to make improvement on link structure as

well as document content to maximize efficiency of visitor path.

91

5.3 Experimental Evaluation and Performance Study

Dataset (MSNBC)

(c) Searched space comparison

S
ea

rc
he

d
S

pa
ce

 (M
)

E
xe

cu
tio

n
tim

e
(s

)

E
xe

cu
tio

n
tim

e
(s

)

(a) Execution time comparison (b) Execution time comparison

Minimum support (%) Minimum support (%)

Minimum support (%) Minimum support (%)

S
ea

rc
he

d
S

pa
ce

 (M
)

Dataset (DMResearch)

Dataset (MSNBC)Dataset (DMResearch)

(d) Searched space comparison

Figure 5.1: Real datasets comparison

92

Chapter4/Chapter4Figs/EPS/RealDataComparison_Color.eps

5.3 Experimental Evaluation and Performance Study

Figure 5.2: DMResearch visualization result

93

Chapter4/Chapter4Figs/EPS/VisualDMResearch.eps

5.3 Experimental Evaluation and Performance Study

Figure 5.3: MSNBC visualization result

94

Chapter4/Chapter4Figs/EPS/VisualMSNBC.eps

Chapter 6

Extension of Sequential Pattern

Mining

6.1 Introduction of Skyline Query

Recently, the skyline query has attracted considerable attention because it is the basis

of many applications, e.g., multi-criteria decision making [19], user-preference queries

[50] [47] and microeconomic analysis [61]. Skyline mining [19] aims to find those

points, which are not dominated by others, in a d-dimensional spatial dataset. This

problem can be seen as a special class of pareto preference queries [50]. Figure 6.1

shows one classic example of skyline query that customers are always interested in

those “best” hotels that are better than others at least at one of the two criteria, the

distance and the price, with smaller values. The skyline of the example dataset in

Figure 6.1 consists of a and c.

Efficient skyline querying methodologies have been studied extensively, including

the general full-space skyline points querying [19] [29] [54] [72], subspace skyline

points mining [108] [92] [101], skyline points extracting in stream [62] [91] [69], Top-k

and high-dimensional skyline points extracting [25] [24], mining skyline in distributed

environments [10] [48] [100], approximate skyline querying [53].

All the above papers concerned only the pure dominant relationship among a dataset,

i.e., a point p is whether dominated by others or not, and got those non-dominated ones

as results. However, in some real applications, users are more interested in the detail

of the general dominant relationship in a business model, i.e., a point p dominates how

95

6.1 Introduction of Skyline Query

a

b
c

d

e

f
price

distance

x

y

1 2 3 4 5 6

2

1

3

4

5

6

Figure 6.1: Example of the skyline query to find “best” hotels

many other points and is dominated by how many others. In Figure 6.1, although the

hotel b is not a skyline, its manager also wants to know how many hotels b dominates

(i.e. 2), how many hotels dominates b (i.e. 2) and whom they are, from where the

manager can know the business position of b in the local area. Obviously, this kind

of dominant relationship analysis requires more information explored than the original

one of skyline query [19].

To illustrate our proposed core idea, here we show a simple example. Figure 6.2 is

the corresponding partial order (encoded as DAG format) of Figure 1. We can know

that item b dominates items d and e and is dominated by items a and c, by checking

the out-link and in-link of b, respectively. Moreover, no in-link nodes such as a

and c are candidate items (skyline). From this example, we know that the general

dominant relationships of a dataset can be represented into their corresponding partial

order representation (i.e., DAGs). In this chapter we formally justify this discovery and

moreover, explore how to efficiently find such succinct representative partial orders

based on traditional sequential pattern mining techniques.

Different users may have different preferences (i.e., a user may issue either weight

or sensor resolution combined with price as his preference). To cope with this problem,

we propose a compressed data cube to encode all the possibilities in a concise format

and devise efficient strategies to extract the information. There are some other issues

(i.e., top-k query, querying on non-numerical attributes, etc) to be further discussed in

96

Chapter5/Chapter5Figs/EPS/Example1.eps

6.2 Related Work

a c

b f

d

e

Figure 6.2: DAG representation in 2-d space

this thesis.

In this thesis, we aim at proposing efficient and effective methods to answer the

general dominance relationship queries. Because of the interrelated connection be-

tween the partial order and the dominant relationship, we propose a new data structure

called ParCube, which concisely represents the complete information of the general

dominant relationship based on the partial order analysis. Specifically, we record the

partial order as a Directed Acyclic Graph (DAG) for each cuboid in ParCube and pro-

pose efficient data structures and strategies to answer the general dominant relation-

ship queries. Furthermore, we introduce efficient strategies to construct and maintain

ParCube. The experimental results and performance study confirms the efficiency

and effectiveness of our strategies.

6.2 Related Work

6.2.1 Skyline Query

Skyline query was first introduced in [19]. The problem comes from some old classic

topics, such as convex hull [83] and maximum vectors [56].

Skyline query algorithms can be classified into two categories. The first one is

non-index based method, i.e., BNL [19], SFS [29], DC [19]. The second category

is index based method, i.e., NN [54], BBS [72], SUBSKY [92]. As expected, the

index-based methods have been shown to be superior over the non-index-based ones

and furthermore, the index-based strategies can progressively return answers without

97

Chapter5/Chapter5Figs/EPS/DAG_representation.eps

6.2 Related Work

having to scan the entire data input.

BNL [19] uses a straightforward approach that compare each point p with every

other point to judge whether p is skyline. It uses some optimizations, i.e., those points

which are found to dominate multiple other points are likely to be checked first. SFS

[29] uses pre-sorting technique to improve the efficiency of BNL. DC [19] divides the

dataset into several partitions and mines in each one. Finally it gets the whole skyline

by merging the partial results. Bitmap [90] applies bit-wise operations by encoding the

dataset into bitmaps to improve efficiency.

Index [90] uses B-tree to organize the data into d lists, where the i-th (1 ≤ i ≤ d)

list contains points whose coordinates on the i-th axis are the smallest among all the di-

mensions (minC). It gets all skyline by scanning B-tree according to ascending order

of minC. NN [54] combines nearest neighbor search and DC techniques together, and

constructs a R-tree to index all the data. It also applies several methods to eliminate

duplicate result. BBS [72] is the best algorithm for full space skyline discoverying.

It only performs a single traversal of R-tree, which is different from NN’s multiple

queries. BBS processes the leaf nodes of their mindist (minimum distance) in as-

cending order. Recently, SUBSKY [92] was proposed to compute low-dimensional

Skylines. Based on the data distribution, SUBSKY creates an anchor point for each

cluster, and builds a B+-tree on the L∞ distance between each object to its correspond-

ing anchor. Then, SUBSKY scans the tree leaf nodes according to the ascending order

of the points’s smallest value of d-dimension to get Skylines.

From the view point of dimension concerned, the existing algorithms can be also

classified into two categories, i.e., full space based method [54] [72], and subspace

based method [92] [108] [101]. Other related work on skyline mining includes min-

ing skyline in distributed environments [10] [48] [100], skyline query in data stream

[62] [91] [69], approximate skyline query [53], interesting skyline points in high-

dimensional space [25] [24].

All the above works concerned only the pure dominant relationship and, outputted

those points which are not “dominated” by others. Note that in addition to the original

meaning in [19], “dominated” here can be a variant, i.e., k-dominant [24].

In contrast, Li et al. proposed to analyze a more general dominant relationship

from a microeconomic aspect [61]. The users are always interested in not only the

binary dominant relation between the points in a dataset, but also the statistical in-

formation, i.e., how many other points are dominating/dominated by a specific point.

98

6.2 Related Work

In [61], the authors proposed three basic Dominant Relationship Queries (DRQs)

and constructed a data cube, DADA, to efficiently organize the information necessary

to DRQs. Moreover, a novel data structure, D*-tree, was proposed to fulfill efficient

computation for DRQs.

However, in the real world, users are always interested in not only “how many” ob-

jects are dominating/dominated by a specific object, but also “whom” they are, which

was however, not mentioned in [61]. Moreover, the real world is dynamic instead of

static. These problems cannot be easily solved by using the methodologies proposed in

[61] because of the large duplicate storage cost in DADA and naive updating scheme.

In this chapter, we propose efficient data structure and strategies to solve such kind of

general dominant relationship queries in dynamic environments based on our discovery

that GDRQ has interrelated connection with partial order.

6.2.2 Sequential Pattern Mining

Sequential pattern mining has been attracted much attention after it was first introduced

in [5] due to the broad applications it involves. Efficient mining methodologies have

been studied extensively, including the general sequential pattern mining [7, 68, 79,

88, 109], constraint-based sequential pattern mining [39, 81], frequent episode mining

[66], cyclic association rule mining [71], temporal relation mining [16], partial periodic

pattern mining [44], and long sequential pattern mining in noisy environment [107].

In recent years many studies have presented convincing arguments that for min-

ing frequent patterns (for both itemsets and sequences), one should not mine all fre-

quent patterns but the closed ones because the latter leads to not only more com-

pact yet complete result set but also better efficiency. Mining closed patterns has a

direct connection with the elegant mathematical framework of formal concept anal-

ysis (FCA) [38]. Initial use of closed itemsets for association rules was studied in

[75, 112]. Since then many algorithms for mining all the closed sets have been pro-

posed [12, 21, 32, 78, 97, 111]. The idea of mining just closed sequential patterns

instead of all frequent patterns stems from the parallel case of mining closed itemsets.

There are two famous algorithms in closed sequential pattern mining, Clospan [105]

and BIDE [96]. Both algorithms adopt the framework of PrefixSpan [79], which grows

patterns by itemset extension and sequence extension. Clospan prunes the search space

by sub/super sequences with equivalent projected databases, while BIDE prunes the

99

6.2 Related Work

search space if the current pattern can be enumerated by other pattern.

In this chapter, we direct apply these existing efficient algorithms with several mod-

ification with regard to the special property of the skyline context.

6.2.3 Data Cube

The skyline query research is also related to the data cube problem [42] and recently,

several scholars mentioned this [108] [101] [61]. Interestingly, as claimed in [61],

“the dominant relationship between cells in the attribute space can be organized as a

lattice structure as well”, informally confirmed the possibility of combining the skyline

dominant relationship analysis and closed sequential pattern mining together, because

the formalization of closed sequential pattern mining is just based on Galois lattice

[9] [22] [33]. This thesis can be seen as a generalization of [61], yet we use a total

different strategy.

For the pure data cube computation, the concept of data cube was first proposed

in [42]. Data cube computation has been an active research topic. A number of tech-

niques have been introduced [2, 17, 42, 102, 113]. Specifically, several heuristics for

computing multiple group-bys (i.e., cuboids) efficiently have been identified, such as

smallest-parent, cache-results, amortizedscans, share-sorts, and share-partitions [84].

6.2.4 Partial Order Mining

Partial order has appeared, sometimes a little coyly, in many computational models.

There are a lot of applications involves with partial order issues, such as concurrent

models [58], optimistic rollback recovery [89], biology [59], security [87] and prefer-

ence query [50].

In this thesis, we mainly consider the problem that how to convert the spatial dataset

into partial order representation, which are then queried to get the general dominant

relationship efficiently. As far as we know, there is no work on this problem. An inter-

esting study investigated the problem of mining a small set of partial orders globally

fitting data best [65]. Particularly, [65] addressed sequence data. Very different from

the problem studied here, [65] tried to find one or a (small) set of partial orders that fit

the whole dataset as well as possible, which is an optimization problem. An implicit

assumption is that the whole dataset somehow follows a global order. More recently,

[23] were intended for discovering several small partial orders from a set of sequences

100

6.2 Related Work

instead of only one that describes all or most of the set. They proposed to use closed

partial orders to summarize sequential data in a concise manner. Yet different from

this thesis, they did not further explore the partial orders for a specific purpose (i.e.,

dominant relationship extraction).

6.2.5 Graph Construction

There has been a lot of research on inducing a graph structure based on the contents of

tuples of a database. In [18], the authors proposed to treat the tuples as nodes, which

are connected by edges induced by foreign key and other relationships. Answers to

keyword queries are ranked using a notion of proximity coupled with the prestige of

nodes based on incoming edges. There are some other related work in this direction,

including [11] and [43]. Although very interesting, this line of work further reinforces

the notion that while in the case of the web the structure of the web graph is apparent,

there is no work done to convert the online relational data into partial order represen-

tation (DAGs).

In this chapter, we need to determinate the partial orders given a spatial dataset.

We propose a simple method of converting the spatial dataset to the corresponding

sequence dataset and then, apply existing strategies such as that used in [23] with

modification by considering skyline property to generate the partial orders. Further-

more, we propose several optimization strategies when querying on the partial order

representation models (DAGs).

Another related direction is the work on preference query systems. A framework

for quantitative preference queries that rank answers based on scoring functions has

been proposed in [6], and performance issues have been addressed in work such as

[47]. Both [28] and [50] have separately proposed frameworks for qualitative prefer-

ence queries that deal with binary preference relations between tuples. While there

are several operators designed to evaluate preference queries (e.g., winnow operator

[27] and Best Matches Only [50]), these schemes are designed for more general pref-

erence queries. Moreover, they require at least one scan through the dataset, making it

unattractive for producing fast initial response time.

101

6.3 General Dominance Relationship Analysis

6.3 General Dominance Relationship Analysis

6.3.1 Preliminaries

Given a d-dimension space S={s1, s2, . . . , sd}, a set of points D={p1, p2, . . . , pn} is

said to be a dataset on S if every pi ∈ D is a d-dimensional data point on S. We use

pi.sj to denote the jth dimension value of point pi. For each dimension si, we assume

that there exists a total order relationship. For simplicity and without loss of generality,

we assume smaller values are preferred [19] (i.e., MIN operation) in this chapter.

Definition 8 (dominate). A point p is said to dominate another point q on S if and only

if ∀sk ∈ S, p.sk ≤ q.sk and ∃st ∈ S, p.st < q.st.

A partial order on D is a binary relation � on D such that, for all x,y,z ∈ D, (i)

x � x (reflexivity), (ii) x � y and y � x imply x=y (antisymmetry), (iii) x � y and

y � z imply x � z (transitivity). We use (D,�) to denote the partial order set (or

poset) of D. We denote by ≺ the strict partial order on D, i.e., x ≺ y if x � y and

x �= y. Given x,y ∈ D, x and y are said to be comparable if either x ≺ y or y ≺ x;

otherwise, they are said to be incomparable.

The Definition 1 can be translated into the ordering context as follows:

Definition 9 (dominate in ordering context). A point p is said to dominate another

point q on S if and only if ∀sk ∈ S, p.sk � q.sk and ∃st ∈ S, p.st ≺ q.st.

The partial order (D,�) can be represented by a DAG G = (D, E), where (υ, ω) ∈
E if ω � υ and there does not exist another value x ∈ D such that ω � x � υ.

For simplicity and without loss of generality, we assume that G is a single connected

component.

Definition 10 (dominating set, DGS(p, D, S’)). Given a point p, we use DGS(p, D, S’)

to denote the set of points from D which are dominated by p in the subspace S’ of S.

Definition 11 (dominated set, DDS(p, D, S’)). Given a point p, we use DDS(p, D, S’)

to denote the set of points from D which dominate p in the subspace S’ of S.

The problems that we want to solve are as follows:

Problem 1 (General Point Query(GPQ)). Given a dataset D, dimension space S’ and

a point p, find DGS(p, D, S’) and DDS(p, D, S’).

102

6.3 General Dominance Relationship Analysis

a

b
c

d

e

f

D1

D2

1 2 3 4 5 6

1

2

3

4

5

6
a b c d e f

D1 2 3 1 5 6 4
D2 1 4 3 5 6 2
D3 3 1 6 2 5 4

(a) Example spatial dataset (b) Representation in 2-d space {D1,D2}

Figure 6.3: Example spatial dataset

Note that GPQ is the generalized model of subspace analysis queries (SAQ)[61].

Example 1. Consider the 3-dimensional dataset D = {a, b, c, d, e, f} in Figure 6.3

(a). Given a query point b, dimension space S ′={D1, D2}, the dominating set DGS(b,

D, S ′) = {d, e} and the dominated set DDS(b, D, S ′) = {a, c}. We will use this dataset

as a running example in the rest of this chapter.

6.3.2 General Idea

We find that the dominance relationship between two items in a d-dimensional dataset

(i.e., a dominants b) can be represented as a frequent sequence pattern in the corre-

sponding d-customer sequence dataset. Because the small-large pair (dominant) rela-

tionship in the spatial dataset is equivalent to the early-late pair (dominant) relationship

in the converted sequence dataset. For example, the example spatial dataset in Figure

6.3 (a) can be converted to a sequence dataset, by considering each dimension as a

customer in the sequence dataset. The result dataset is D1: 〈cabfde〉, D2: 〈afcbde〉,
D3: 〈bdafec〉. By employing sequential pattern mining algorithms, we can get the fre-

quent patterns, i.e., (afde), which indicates that a dominates f and dominates d and

dominates e. The order in the pattern describes the dominance relationship between

items. After we get the frequent sequence pattern, we merge them into partial orders,

which is the concise model of the dominance relationship representation.

103

Chapter5/Chapter5Figs/EPS/Example2.eps

6.3 General Dominance Relationship Analysis

sequential patterns partial orders (DAGs)sequence DBspatial DB

process 1 process 2 process 3

Figure 6.4: The work flow of ParCube constructing

6.3.3 Constructing Partial Order Data Cube (ParCube)

In this section, we explain how to construct the partial order data cube (ParCube) with

a spatial dataset input. As far as we know, there is no work on this problem. In

this thesis, we propose to apply strategies from another research context, sequential

pattern mining [5], to get the partial order representation from a spatial dataset. The

whole work flow is shown in Figure 6.4. We propose a simple method of converting

the spatial dataset to the corresponding sequence dataset in the first process and then,

apply existing strategies such as that used in [23] with little modification in the second

and third processes to generate DAGs from the transformed sequence dataset. Note that

we mainly illustrate how to compute the cube for a dominating set since computation

of a dominated set can be done in a similar fashion.

The first process in Figure 6.4 is to convert the original spatial dataset to the se-

quence dataset. With a k-dimensional dataset, we simply get a k-customer sequence

dataset, by sorting the objects in each customer (dimension) according to their value

in ascending order. For example, Figure 6.5 (b) shows the converted sequence dataset

of the example spatial dataset in Figure 6.5 (a). Note that the specific values of these

points on k-dimension are resident on the disk. Efficient management methods (i.e.,

D*-tree [61]) are employed, as will be explained in later sections.

Theorem 1. The converted sequence dataset records all the dominant relationship of

the points in the spatial dataset.

Proof. Trivial because the small-large pair (dominant) relationship in the spatial dataset

is equivalent to the early-late pair (dominant) relationship in the converted sequence

dataset.

The second and the third processes in Figure 6.4 aim to determine a partial order

that describes the point set in the subspace S ′ of data space S in D′. The related

problem is addressed in [65] and more recently in [23]. In this chapter, we simply apply

the approach in [23] with a minor modification that, instead of mining closed sequential

104

Chapter5/Chapter5Figs/EPS/WorkFlow.eps

6.3 General Dominance Relationship Analysis

D1D2D3

D2D3D1D3D1D2

D2D1 D3

 root

<afde>
<abde>
<cbde>

<afe>
<bfe>
<dfe>

<afc>
<afe>
<bd>
<be>

<afe>
<be>

<cadbfe> <afcbed> <bdafec>

a b c d e f
D1 2 3 1 5 6 4
D2 1 4 3 5 6 2
D3 3 1 6 2 5 4

(a) Example spatial dataset (b) Transformed sequence dataset

(c) The data cube (lattice) whose cuboid consists
 of the local maximal common sequential patterns

D1D2D3

D2D3

D1D3D1D2

D2D1 D3

 root

 c
a f
 e
 b
 d

c a d b f e a f c b e d b d a f e c

 f
a d e
 b
c

a
b f e
d

a f e
 b

Dim. Sequence
 c a b f d e
 a f c b d e
 b d a f e c

1D

2D

3D

(d) DAG representation of partial order in data cube ParCube

Figure 6.5: The result representation of each process for the example spatial dataset

105

Chapter5/Chapter5Figs/EPS/WorkFlowGraph.eps

6.3 General Dominance Relationship Analysis

patterns [105], we mine general sequential patterns [5]. In process 2 as shown in Figure

6.4, we discovery the sequential patterns from the transformed sequence dataset by

applying PrefixSpan algorithm [79]. Note that we can use any one of the state-of-

the-art sequential pattern mining algorithms to do the task. To save space, we merge

these sequential patterns as local maximal sequential sequences, which are not the

subsequence of other sequential sequences in the same subspace. For example, in

subspace {D1, D2}, although 〈afd〉, 〈afe〉, 〈ade〉 and 〈fde〉 are length-3 sequential

patterns, we merge them as length-4 local maximal sequential sequences, as 〈afde〉.
The result data cube (SeqCube) got from process 2 for the example dataset is shown

in 6.5 (c).

Theorem 2. SeqCube records all the dominant relationship of the points in the se-

quence dataset D.

Proof. (Proof by Contradiction.) For simplicity, we only prove for a specific subspace

of SeqCube. Assume to the contrary that there is a dominant relationship between

two points, a dominates b in a subspace S ′, is not represented in the cuboid S ′ of

SeqCube. This means that the sequential pattern 〈ab〉 is not listed in S ′ of SeqCube,

which contradicts our assumption that the sequential pattern mining process can find

all the sequential patterns.

In process 3, the combinations of the local maximal sequential sequences are

enumerated to generate partial orders with DAGs representation, by applying the method

proposed in [23]. The result data cube (ParCube) got from process 3 for the example

dataset is shown in 6.5 (d).

Theorem 3. ParCube records all the dominant relationship of the points in the spatial

dataset D.

Proof. Proof can be deduced based on Theorem 1, Theorem 2 in this thesis and [23].

The pseudo code of constructing ParCube is shown in Figure 6.1, where the three

lines describe the three processes and can be justified based on Theorem 1, 2 and 3,

respectively.

106

6.3 General Dominance Relationship Analysis

Table 6.1: Constructing ParCube

INPUT: The spatial dataset D

OUTPUT: The data cube ParCube

1. Convert the spatial dataset D to the corresponding sequence dataset D ′

2. Apply PrefixSpan [79] to get all the sequential patterns from D ′, merge

them to the maximal sequential sequences as SeqCube

3. Apply the algorithm proposed in [23] to get the partial order representa-

tion (DAGs) as ParCube

Complexity analysis: It is well known that to compute the (maximal) sequential pat-

tern in process 2 is a #P-complete problem [106], which indicates no polynomial-time

algorithms exist. Fortunately, we only execute ParCube construction once as off-line

preprocessing.

6.3.3.1 Optimization of Sequential Pattern Mining

Among the three processes of partial orders finding as illustrated in Figure 6.5, the

second one, sequential pattern mining, is the slowest process although the state-of-the-

art algorithm is used. To improve the efficiency of the whole system, we aim to develop

a new algorithm to fasten the mining process by considering the special property of the

converted sequence datasets.

We find that the converted sequence dataset has one important characteristic: for

each customer sequence (dimension), one item appears and only appears once. In other

words, there is no two same items existing in the same customer sequence (dimension).

This is very different from general sequence, i.e., Web log sequence, customer shop-

ping history or DNA sequence. Based on this discovery, we have the following two

lemmas:

Lemma 6 (Transitivity). Let AB and BC be two sequential patterns in k-customer

sequences with support 1, then AC should also be a frequent sequence with support 1

in the k-customer sequences.

Lemma 7 (Pattern Growth). Let AB and BC be two sequential patterns in k-customer

sequences with support 1, then ABC should also be a frequent sequence with support

1 in the k-customer sequences.

107

6.3 General Dominance Relationship Analysis

Table 6.2: Finding (k+1)-length frequent patterns with optimization

INPUT: DB = the converted sequence DB

OUTPUT: FreMaxPatterns = frequent maximal sequential patterns

Function: Gen Pattern(S)

Parameters: S = Set of k-length frequent patterns

Goal: Generate (k+1)-length frequent sequential pattern

Main():

1. F2 = Scan DB to find 2-length sequential patterns;

2. Call Gen Pattern (F2);

3. FreMaxPatterns = Merge all the atoms in Fi;

Function: Gen Pattern(S)

4. For all atoms Ai ∈ F2

5. Ti = ∅;
6. For all atoms Aj ∈ F2, with j ≥ i

7. R = Ai ∨ Aj;

8. Ti = Ti ∪ R;

9. F|R| = F|R| ∪ R;

10. For all Ti �= ∅
11. Call Gen Pattern (Ti);

Based on Lemma 7, we can develop a much more efficient and simple algorithm to

find the sequential patterns. The pseudo code of the algorithm is shown in Table 6.2.

Because every item (point) must exist in each customer sequence (dimension), we

do not need to find 1-length patterns. In line 1, we thus directly find the 2-length se-

quential patterns. We scan each item’s suffix database to accumulate the support of

2-length candidate sequences. Note that here we need to combine S-Step and I-Step

together to fulfill the special property of dominant relation semantic meaning. Then in

line 2, we recursively call the function Gen Pattern to get those patterns whose length

are larger than 2. We just merge two atoms together based on their prefix sequences.

For example, when merging two patterns, i.e., ab and ac, we need to check the exis-

tence of bc or cb in the frequent pattern list. The pattern abc could be claimed if bc

108

6.3 General Dominance Relationship Analysis

D1D2D3

D2D3D1D3D1D2

D2D1 D3

 root

<afde>
<abde>
<cbde>

<afe>
<bfe>
<dfe>

<afc>
<afe>
<bd>
<be>

<afe>
<be>

<cadbfe> <afcbed> <bdafec>

(a) The data cube (lattice) whose cuboid consists
 of the local maximal common sequential patterns

D1D2D3

D2D3

D1D3D1D2

D2D1 D3

 root

 c
a f
 e
 b
 d

c a d b f e a f c b e d b d a f e c

 f
a d e
 b
c

a
b f e
d

a f e
 b

(c) DAG representation of partial order in data cube ParCube

D1D2D3

D2D3D1D3D1D2

D2D1 D3

 root

<afde>
<abde>
<cbde>

<afe>
<bfe>
<dfe>

<afc>
<afe>
<bd>
<be>

<afe>
<be>

<cadbfe> <afcbed> <bdafec>

D1D2D3

D2D3

D1D3D1D2

D2D1 D3

 root

 c
a f

 b
 d

c a d b f e a f c b e d b d a f e c

 f
a d e
 b
c

b f e
d

a f e
 b

(b) Compression of (a)

(d) Compression of (c)

Figure 6.6: Compression of ParCube data cube

is found. By this way, we do not need to do candidate-generation-test operation in

SPADE algorithm, or the Db projecting and scanning operation in PrefixSpan, which

largely reduce the computation cost. The experiments in Section 6.4 illustrates the im-

provement of this strategy. In line 3, we merge these sequential patterns to get maximal

ones.

6.3.3.2 Compression of the ParCube Data Cube

The local maximal sequential sequences compress the data to some extent, we can

further improve the compression by employing the technique of closed sequence [105]

[22]. If a local maximal sequence l exists in two subspaces, S1 and S2 where S1 ⊂ S2,

109

Chapter5/Chapter5Figs/EPS/WorkFlowGraphCompression.eps

6.3 General Dominance Relationship Analysis

a c

bf

d

e
Figure 6.7: DAG representation of the example dataset in 2-dimensional space {D1,

D2}

then l is only recorded in S2. The method used in Section 6.3.3 is unchanged and the

result data cube which records the partial order of each cuboid is shown in Figure 6.6.

For instance, although a sequence, a → f → e, exists in two subspaces {D1,D3} and

{D1,D2,D3}, we only record it in the super-subspace, i.e., {D1,D2,D3}. However, this

kind of compression is obtained while paying for query time. The reason is that instead

of getting all the dominant relationship in the local subspace, it should also check the

super-subspace because some local sequences are absorbed by their super-subspace

ones. Because the purpose of our strategy is to get a best query performance, in this

thesis, we do not apply the technique of closed sequences.

6.3.4 Efficient ParCube Querying

In this section, we introduce the strategy to efficiently answer the general dominant

relationship query. The semantic meaning kept in the ParCube data cube is the key

used to extract the general dominant relationship.

Given a dataset D, a query point Pquery, and a subspace S ′, the most basic GPQ

is to compute the points that dominate or are dominated by Pquery. We focus the case

when the point Pquery is in the dataset D, Pquery ∈ D.

• Pquery ∈ D

An important observation in this case is that, if Pquery is in D, all the general

dominant relationship related to Pquery can be easily discovered by traversing the DAG

110

Chapter5/Chapter5Figs/EPS/ExampleDataset_DAG.eps

6.4 Experimental Evaluation and Performance Study

in a specific subspace. No disk access is performed because we do not need to check

their individual value of each dimension.

As an example, Fig. 6.7 shows the DAG representation in subspace {D1, D2}.
To facilitate the counting process, the numbers of points dominating/dominated by

current nodes (points) are inserted into each node. This process is executed in the

precomputed-mode. Suppose the query point is b, we can get the points dominated by

b immediately, which is 2. For users who are interested in knowing where these two

points are, they go downward following the out-link of b, and gets the dominating set

of b as {d, e}.

6.4 Experimental Evaluation and Performance Study

To evaluate the efficiency and effectiveness of our strategies, we conducted extensive

experiments. We performed the experiments using a Intel(R) Core(TM) 2 Dual CPU

PC (3GHz) with a 3G memory, running Microsoft Windows XP. All the algorithms

were written in C++, and compiled in an MS Visual C++ environment. We conducted

experiments on both synthetic and real life datasets.

Detailed implementation of the algorithms used to compare is described as follows:

1. SUBSKY. SUBSKY was tested with the algorithm developed in [92], which is the

state-of-the-art algorithm for subspace skyline query.

2. BBS+. BBS+ was tested with the modification of BBS algorithm [72] which

takes the characteristic of dominance relationship query into account.

3. ParCube. ParCube was implemented as described in this thesis. The optimiza-

tion strategy has been introduced in Section 6.3.3.1.

6.4.1 Datasets

We employ the synthetic data generator [19] to create our synthetic datasets. They

have independent distribution, with dimensionality d in the range [3, 6] and data size

in the range [10k, 50k]. The default values of dimensionality were 5. The default value

of cardinality for each dimension was 50k.

111

6.4 Experimental Evaluation and Performance Study

6.4.2 Skyline Query Performance

In this section, we evaluated the query answering performance of ParCube compared

with the state-of-the-art algorithm, SUBSKY [92].

Figure 6.8(a) and Figure 6.8 (b) show the skyline query time against number of

points in the datasets and dimensionality, respectively. We can see that the ParCube

algorithm outperforms the SUBSKY in both cases by up to an order of magnitude.

This is because the SUBSKY algorithm needs to traverse the tree data structure (i.e.,

B-tree) to extract the skyline on the fly. On contrary, ParCube pre-computes and

stores the skyline points into partial order data structure, which can be easily extracted

out because they exist in the first layer of DAG graph. Moreover, from the figures we

can know that dimensionality has more effect on query performance compared with

the number of points in the datasets.

6.4.3 Dominant Relationship Query Performance

To test the effect of General Dominant Relationship query (GDRQ), we randomly gen-

erated 100 different points based on the synthetic dataset and get the final execution

time as the average time of the 100 points. Figure 6.9 (a) and 6.9 (b) show the query

time against number of points in the datasets and dimensionality, respectively. We can

see that the ParCube approach is better than BBS+. The performance of BBS+ be-

comes worse as number of points or dimensionality is larger, while ParCube remains

almost the same. The reason is similar to that explained in Section 6.4.2. BBS+ needs

to traverse the index data structure (i.e., R-Tree) to compare and extract all the required

points. In contrast, ParCube only traverse the DAG graph to direct extract every node

it passed and no comparison is necessary.

6.4.4 Index Data Structure Construction Performance

The efficiency of ParCube is rooted in the compressed data structure it discoveries,

partial order data cube (ParCube). In this section, we show the construction time for

ParCube with optimization (which is introduced in Section 6.3.3.1.) compared with

cost of building other index data structure (i.e., R-Tree) in the BBS+ algorithm. Fig-

ure 6.10 (a) and 6.10 (b) show the execution time for index building against number of

points in the datasets and dimensionality, respectively. We can see that the ParCube is

112

6.4 Experimental Evaluation and Performance Study

Figure 6.8: Execution time comparison between SUBSKY and ParCube on skyline

query

113

Chapter5/Chapter5Figs/EPS/SkylineQuery.eps

6.4 Experimental Evaluation and Performance Study

Figure 6.9: Execution time comparison between BBS+ and ParCube on general

dominant relationship query

114

Chapter5/Chapter5Figs/EPS/GDRQuery.eps

6.4 Experimental Evaluation and Performance Study

sensitive to the number of points in the datasets, that when the number gets larger, the

performance of ParCube construction is much worse than that of R-Tree building.

However, as illustrated in 6.10 (b), R-Tree construction becomes worse as dimension-

ality grows, which means that R-Tree index building is more sensitive to the dimen-

sionality compared with ParCube index building. The reason why the performance of

ParCube construction is good, because in high dimensional space, the probability of

one point dominates another one, is very low. Hence, the sequential pattern is very few

in high dimensional space and the mining process can terminate quickly. In summary,

the two index structure have their own advantages and disadvantages, and may fail on

building large datasets (i.e., high dimensionality and large number of points). In the

future, we should consider on how to efficient index large datasets.

6.4.5 Effectiveness of Compression

In this experiment, we explored the compression benefits of ParCube compared with

R-Tree method.

Figure 6.11 (a) and Figure 6.11 (b) show the compression effect on building the

data cube by partial order representation (ParCube), compared with R-Tree. They

illustrate that using the compressed data format, DAG, is very efficient on space usage.

Similar to query performance, dimensionality has more effect on the compression fac-

tor compared with the number of points in the datasets. However, although ParCube

largely reduces the space used to store the information, it still consumes a lot. For ex-

ample, for the dataset (point=10K, dimension=6) whose size is about 409K, ParCube

requires 140M to store the partial order information. This will becomes impractical

for large datasets. In the future, we would like to reduce more space necessary.

115

6.4 Experimental Evaluation and Performance Study

Figure 6.10: Execution time comparison between R-Tree building and ParCube con-

struction

116

Chapter5/Chapter5Figs/EPS/IndexBuildTime.eps

6.4 Experimental Evaluation and Performance Study

Figure 6.11: Compression effect of ParCube against dimensionality and number of

points in datasets

117

Chapter5/Chapter5Figs/EPS/ParCubeCompression.eps

Chapter 7

Discussion

7.1 Extension of Sequential Pattern Mining

Comparing with mining (unordered) frequent (itemset) patterns, mining sequential pat-

terns is one step toward mining more sophisticated frequent patterns in large databases.

With the successful development of the sequential pattern mining method, LAPIN, it

is interesting to explore how such a method can be extended to handle more sophisti-

cated cases. In this chapter, we will discuss several problems related to the sequential

patterns.

7.1.1 Constraint-based Mining of Sequential Patterns

For many sequential pattern mining applications, instead of finding all the possible

sequential patterns in a database, a user may often like to enforce certain constraints to

find desired patterns. The mining process which incorporates user-specified constraints

to reduce search space and derive only the user-interested patterns is called constraint-

based mining.

Constraint-based mining has been studied extensively in frequent pattern mining,

such as [14, 70, 77]. In general, constraints can be characterized based on the notion of

monotonicity, anti-monotonicity, succinctness, as well as convertible and inconvertible

constraints, respectively, depending on whether a constraint can be transformed into

one of these categories if it does not naturally belong to one of them. This has become

a classical framework for constraint-based frequent pattern mining.

118

7.1 Extension of Sequential Pattern Mining

7.1.2 Mining Closed and Maximal Sequential Patterns

A frequent long sequence contains a combinatorial number of frequent subsequences.

For a sequential pattern of length 100, there exist 2100 − 1 nonempty subsequences. In

such cases, it is prohibitively expensive to mine the complete set of patterns no matter

which method is to be applied.

Similar to mining closed and maximal frequent patterns in transaction databases

[13, 75], which mines only the longest frequent patterns (in the case of max-pattern

mining) or the longest one with the same support (in the case of closed-pattern mining),

for sequential pattern mining, it is also desirable to mine only (frequent) maximal or

closed sequential patterns, where a sequence s is maximal if there exists no frequent

supersequence of s, while a sequence s is closed if there exists no supersequence of s

with the same support as s.

The development of efficient algorithms for mining closed and maximal sequential

patterns in large databases is an important research problem. A related study in [105]

proposed an efficient closed sequential pattern method, called CloSpan, as a further

development of the PrefixSpan mining framework. In a similar way, our algorithms

can be extended to efficiently mine closed sequential patterns.

7.1.3 Mining Approximate Sequential Patterns

In this study, we have assumed all the sequential patterns to be mined are exact match-

ing patterns. In practice, there are many applications that need approximate matches,

such as DNA sequence analysis which allows limited insertions, deletions, and muta-

tions in their sequential patterns. The development of efficient and scalable algorithms

for mining approximate sequential patterns is a challenging and practically useful di-

rection to pursue. A related study on mining long sequential patterns in a noisy envi-

ronment [107] is a good example in this direction.

7.1.4 Sequential Patterns Compression

The complete set of frequent patterns is often huge in number, which makes the inter-

pretability of frequent patterns very difficult. The concepts of closed frequent patterns

and maximal frequent patterns usually can help in reducing the output size. However,

they can only partly alleviate the problem. The size of closed frequent patterns (or

119

7.1 Extension of Sequential Pattern Mining

maximal frequent patterns) often remains to be very large and thus it is still difficult

for users to examine and understand them.

Recently, several proposals were made to discover k patterns or profiles. This al-

lows users to specify the value of k and thus only discover a small number of patterns

or approximation. The concept of top-k patterns is proposed by Han et al. [45]. Al-

though this provides users the option to discover only the k most frequent patterns,

this is not a generalization of all frequent patterns satisfying a support threshold. k

covering sets was proposed by Afrati et al. [1] to approximate a collection of frequent

patterns, i.e. each frequent pattern is covered by at least one of the k sets. The proposal

is interesting in generalizing the collection of patterns into k sets. However, the sup-

port information is ignored in the approximation and it is unknown how to recover the

support of a pattern from the k sets. Support is a very important property of a pattern

and plays a key role in distinguishing patterns.

Yan et al. [103] proposed an approach to summarizing patterns into k profiles by

considering both pattern information and support information; each cluster (profile) is

represented with three elements: the master pattern, i.e. the union of the patterns in

the cluster, the number of transactions supporting the clusters, the probability of items

of the master pattern in the set of transactions supporting the pattern. The supports

of frequent patterns can be estimated from the k clusters. It is assumed in [103] that

the items in the master pattern are independent in each profile. Cong et al. [30] adopt

an alternative probability model to represent a profile composed of a set of frequent

patterns. The authors consider the pairwise probabilities that are still easy to compute.

From the pairwise probabilities, the authors build simple Bayesian Network to estimate

the n-dimensional probability distribution, and thus can estimate the supports of the

patterns.

All the methods mentioned above deal with itemset patterns. As far as we know,

there is no sequential patterns compression technique developed. However, because of

the inter-relation between Frequent Itemset Pattern and Frequent Sequential Pattern,

we can utilize the strategies introduced above to effectively compress the sequential

patterns.

120

7.2 Extension of Skyline Mining

7.1.5 Sequential Pattern Mining Over Data Stream

Recently, the data mining community has focused on a new challenging model where

data arrives sequentially in the form of continuous rapid streams. It is often referred

to as data streams or streaming data. Since data streams are continuous, high-speed

and unbounded, it is impossible to mine sequential patterns by using algorithms that

require multiple scans.

Mining sequential patterns over data streams is a new research problem in data

mining. We can do this job based on the success of itemset mining over stream data.

7.1.6 Toward Mining Other Kinds of Structured Patterns

Besides mining sequential patterns, another important task is the mining of frequent

substructures in a database composed of structured or semistructured data sets. The

substructures may consist of trees, directed-acyclic graphs (i.e., DAGs), or general

graphs which may contain cycles. There are a lot of applications related to mining

frequent substructures since most human activities and natural processes may con-

tain certain structures, and a huge amount of such data has been collected in large

data/information repositories, such as molecule or biochemical structures, Web con-

nection structures, and so on. It is important to develop scalable and flexible methods

for mining structured patterns in such databases. There have been some recent work

on mining frequent subtrees, such as [110], and frequent subgraphs, such as [57, 104],

in structured databases. The strategies can be learned to extend our algorithms to effi-

ciently mine closed subgraph and subtree patterns.

7.2 Extension of Skyline Mining

Skyline mining can be seen as the specific case of general dominance relationship

analysis. In this section, we will introduce several novel variations of skyline queries.

7.2.1 Ranked Skyline Queries

Ranked skyline query was first proposed in [72]. Given a set of points in the d-

dimensional space [0, 1]d, a ranked (top-K) skyline query (i) specifies a parameter K,

and a preference function f which is monotone on each attribute, (ii) and returns the

121

7.2 Extension of Skyline Mining

K skyline points p that have the minimum score according to the input function. Be-

cause the change of the preference function, the dominant relationship between points

is also changed. For the special case of dominant relationship, skyline, consider the

running example as shown in Figure 6.1, where K=1 and the preference function is

f(x,y)=2x2+y. The output skyline points should be c.

ParCube can easily handle such queries by modifying a little when ordering differ-

ent points based on the preference function. This modification should be implemented

in the process of changing spatial datasets to sequence datasets.

7.2.2 Constrained Skyline Queries

Given a set of constraints, a constrained skyline query returns the most interesting

points in the data space defined by the constraints [34]. Typically, each constraint is

expressed as a range along a dimension and the conjunction of all constraints forms

a hyper-rectangle (referred to as the constraint region) in the d-dimensional attribute

space. Consider the hotel example as shown in Figure 6.1, where a user is interested

only in hotels whose price (x-axis) is in the range 2-4. The skyline in this case contains

point a, as it is the most interesting hotel in the specified range.

ParCube can process such queries with little modification. While extracting sky-

line or traverse DAG to extracting dominated points, intersecting test is employing to

limit the result points that meet the requirement of the constraint.

7.2.3 Dynamic Skyline Queries

Assume a database containing points in d-dimensional space with axes d1, d2, . . . , dd.

A dynamic (or spatial) skyline query specifies m dimension functions f1, f2, . . . , fm

such that each function fi (1≤i≤m) takes as parameters the coordinates of the data

points along a subset of the d axes [85]. The goal is to return the skyline in the new

data space with dimensions defined by f1, f2, . . . , fm. Consider a database that stores

the following information for each hotel: (i) its x-, (ii) y- coordinates, and (iii) its

price (i.e., the database contains 3 dimensions). Then, a user specifies his/her current

location (ux, uy), and requests the most interesting hotels, where preference must take

into consideration the hotels’ proximity to the user (in terms of Euclidean distance)

and the price. Each point p with coordinates (px, py, pz) in the original 3D space is

transformed to a point p’ in the 2D space with coordinates (f1(px, py), f2(pz)).

122

7.3 Summary

For this issue, some existing technique can be directly applied with little modifica-

tion (i.e., BBS [72]). However, our proposed method, ParCube can not easily tackle

this problem because we predefine the order between points and during the query pro-

cess, this order can not be changed. We consider on how to borrow some strategies

from mobile data management research field to settle down the issue.

7.2.4 Enumerating and K-dominating Queries

Enumerating queries return, for each skyline point p, the number of points dominated

by p. This information may be relevant for some applications as it provides some

measure of “goodness” for the skyline points [72]. This issue has been solved by Lin

et al. in their paper [63]. However, our proposed method, ParCube, is also very well

to tackle it. While constructing the partial order, we can easily insert into the node, the

number of how many points it dominates. The K-dominating query is just a variant

of enumerating query, which is the Top-K points which have the most large number

of dominating points. While users ask for K-dominating points, we just extract and

compare the nodes in higher layers until top K nodes are found. The reason is that the

points in higher layers in DAG should have more dominating points than those exist in

lower layers.

7.3 Summary

We have found the inter-connection between sequential pattern mining problem and

the dominant relationship analysis. It is built based on the intuitive idea that there is

correlation between space (patterns with dominant relationship) and time (sequential

patterns). To mine sequential patterns in sequence datasets, is indeed, the same as to

find dominant relationship between points in the corresponding spatial datasets. Based

on this intrinsic similarity between the two research fields, there are many related issues

could be beneficial from each other. As a summary, we could list several common

research topics as follows:

• Top-K strategy. Due to the rank-aware characteristic of the two problems, find-

ing only the top-K patterns becomes a common topic [45, 63]. Moreover, rank-

aware query processing has become a vital need for many other applications, i.e.,

123

7.3 Summary

Web search, multimedia and digital libraries similarity search, etc. The answer

to a top-k join query is an ordered set of join results according to some provided

function (i.e., occurrence frequency) that combines the orders on each attribute

(customer or dimension).

• Compression issue. Mining the whole result set is always time and space cost,

no matter how efficient an algorithm is. Hence, to mine the core patterns (or

centers of the clusters) is an important task to simplify the mining process while

preserving reasonable semantic meaning. There are some recent papers [76, 105]

towards this trend.

• Approximation method. Most of the attention has paid to precisely get the re-

sults. It is natural to get only approximate results (i.e., with more than 90% pre-

cision) to fasten the mining process. This kind of idea is come from Information

Retrieval, in which precisely get all the results is impossible and is unnecessary.

There are several papers mentioned this issue [53, 55] and even more, a recent

paper [82] aimed to get the patterns on uncertain datasets.

• Constraint based. General sequential pattern mining and dominance relation

query may be not sufficient for users. For example, to mine interesting frequent

DNA sequences, minimum gap between items in a pattern should be always

satisfied [98]. There is another related paper in dominance relationship analysis

field [34]. We believe that, constraint-aware algorithms could be applied directly

to real applications. However, note that nearly all the constraint based algorithms

are derived from general purpose algorithms and hence, general purpose algo-

rithms are more critical contributing to the performance of the mining process.

Constraint based approaches can be seen as real application oriented.

• Stream data. Recently, there is emerging an important research issue that stream

data mining, whose process is to extract knowledge structures from continuous,

rapid data records. The difficulty of data stream mining is that we can read only

once or a small number of times using limited computing and storage capabili-

ties. There are several papers related to sequential pattern mining and dominant

relationship analysis [26, 62]. This issue should be always a challenging prob-

lem and a approximate solution seems reasonable.

124

Chapter 8

Conclusions

In this section, the summary of the thesis and the future research directions will be

described.

8.1 Summary of the Thesis

In this thesis, we systematically studied the sequential pattern mining problem. we

proposed a novel series of algorithms called LAPIN for efficient sequential pattern

mining. Our main idea is that the last position of an item s in each customer sequence

is very useful and key to judge whether a k-length frequent sequence could grow to

a frequent (k+1)-length sequence by appending it with s. So LAPIN could reduce

searching greatly by only scanning a small portion of the projected database or the

ID-List as well as handle long pattern efficiently, which is inherently difficult for most

existing algorithms. By thorough experiments and comparison, we demonstrated that

LAPINs outperform the existing state-of-the-art algorithms by up to orders of magni-

tude on dense datasets.

However, we found that the improvement of LAPIN is at the price of much memory

consuming when building the list of item’s last position because LAPIN uses a bitmap

strategy. We further aim to obtain an efficient and balanced pattern mining algorithm

with low memory consuming and thus, we proposed an improved algorithm which is

based on reuse strategy. The experiments demonstrated that our improved algorithm

performs the best in limited resource environments on dense datasets.

SPAM is proved very efficient for long pattern mining and it can outperform Pre-

125

8.2 Future Research Directions

fixSpan and SPADE by up to an order of magnitude in resource unlimited environ-

ments. We proposed a new algorithm named LAPIN SPAM, which combines the key

idea of LAPIN and SPAM. The experiments demonstrated that LAPIN SPAM sig-

nificantly outperforms the original SPAM, and is the best under unlimited resource

assumption on dense datasets.

We systematically compared and summarized different algorithms on different

kinds of datasets. The conclusion is that when the density of m is large enough to

overcome the side-effect of LAPIN strategy (i.e., building the item last position table),

then our LAPIN algorithm will be faster. For those datasets which have large value of

m, our algorithms could be orders of magnitude faster than others.

In this thesis, we constructed an effective Web log mining system based on our effi-

cient sequential mining algorithm, LAPIN WEB, an extension of LAPIN algorithm to

extract user access patterns from traversal path in Web logs. Our experimental results

and performance studies demonstrate the efficiency of LAPIN WEB on real Web log

datasets. Moreover, we also implemented a visualization tool to help interpret mining

results as well as predict users’ future requests.

In this thesis, we have found the interrelated connection between sequential pattern

mining and the general dominant relationship. Based on this discovery, we proposed

efficient algorithms to answer the general dominant relationship queries by using ef-

ficient sequential pattern mining algorithms and several other strategies. Extensive

experiments illustrate the effectiveness and efficiency of our methods. We believe that

the two research fields, sequential pattern mining and dominance relationship analysis,

can be beneficial from each other.

8.2 Future Research Directions

There are many future work that can be stemmed from this thesis. We list several of

them:

• Top-K sequential pattern mining, or Top-K skyline query.

• Sequential pattern result compression, or dominance relationship result com-

pression.

126

8.2 Future Research Directions

• Approximate mining sequential patterns, or dominance relationship approximate

representation on uncertain data.

• Sequential patterns discovering on stream data, or dominance relationship anal-

ysis on stream data.

• Constraint based sequential pattern mining, or constraint based dominance rela-

tionship analysis.

127

Appendix A

Publication List

A.1 Journal Papers

Zhenglu Yang, Yitong Wang, and Masaru Kitsuregawa. Effective Algorithms for Se-

quential Pattern Mining. DBSJ Letters, Vol. 5, No. 1, pp. 53-56, Jun. 2006.

A.2 International Conference Papers

Zhenglu Yang, Yitong Wang, and Masaru Kitsuregawa. An Effective System for Min-

ing Web Log. In Proceedings of 8th Asia-Pacific Web Conference (APWeb’06), pp.

40-52, Harbin, China, Jan. 2006.

Zhenglu Yang, Yitong Wang, and Masaru Kitsuregawa. PAID: Mining Sequential Pat-

terns by Passed Item Deduction in Large Databases. In Proceedings of 10th Interna-

tional Database Engineering & Applications Symposium (IDEAS’06), pp. 113-120,

Delhi, India, Dec. 2006.

Zhenglu Yang, Botao Wang, and Masaru Kitsuregawa. General Dominant Relationship

Analysis based on Partial Order Models. In Proceedings of 22nd ACM Symposium on

Applied Computing (SAC’07), pp. 470-474, Soul, Korea, Mar. 2007.

128

A.2 International Conference Papers

Zhenglu Yang, Yitong Wang, and Masaru Kitsuregawa. LAPIN: Effective Sequen-

tial Pattern Mining Algorithms by Last Position Induction for Dense Databases. In

Proceedings of 12th International Conference on Database Systems for Advanced Ap-

plications (DASFAA’07), pp. 1020-1023, Bankok, Thailand, Apr. 2007.

Zhenglu Yang, Lin Li, Botao Wang, and Masaru Kitsuregawa. Towards Efficient Dom-

inant Relationship Exploration of the Product Items on the Web. In Proceedings of the

16th international conference on World Wide Web (WWW’07), pp. 1205-1206, Banff,

Alberta, Canada, May 2007.

Zhenglu Yang, Lin Li, Botao Wang, and Masaru Kitsuregawa. Towards Efficient Dom-

inant Relationship Exploration of the Product Items on the Web. In Proceedings of

22nd National Conference on Artificial Intelligence (AAAI’07), pp. 1483-1488, Van-

couver, Canada, Jul. 2007.

Lin Li, Zhenglu Yang, Botao Wang, and Masaru Kitsuregawa. Dynamic Adaptation

Strategies for Long-Term and Short-Term User Profile to Personalize Search. In Pro-

ceedings of joint conference of the 9th Asia-Pacific Web Conference and the 8th In-

ternational Conference on Web-Age Information Management (APWeb/WAIM’07), pp.

228-240, Huangshan, China, Jun. 2007.

Lin Li, Zhenglu Yang, and Masaru Kitsuregawa. Aggregating User-Centered Rankings

to Improve Web Search. In Proceedings of 22nd National Conference on Artificial In-

telligence (AAAI’07), pp. 1884-1885, Vancouver, Canada, Jul. 2007.

Lin Li, Zhenglu Yang, Kulwadee Somboonviwat, Masaru Kitsuregawa. User-assisted

similarity estimation for searching related web pages. In Proceedings of the 18th ACM

Conference on Hypertext and Hypermedia (HT’07), pp. 11-20, Manchester, UK, Sep.

2007.

129

A.3 Workshop Papers

A.3 Workshop Papers

Zhenglu Yang, Yitong Wang, and Masaru Kitsuregawa. Effective Sequential Pattern

Mining Algorithms for Dense Database. In Proceedings of National Data Engineering

WorkShop (DEWS’06), Japan, Mar. 2006.

Zhenglu Yang and Masaru Kitsuregawa. LAPIN-SPAM: An Improved Algorithm

for Mining Sequential Pattern. In Proceedings of International Special Workshop on

Databases For Next Generation Researchers (SWOD’05), in conjunction with ICDE,

pp. 8-11, Japan, Apr. 2005.

Zhenglu Yang and Masaru Kitsuregawa. Effective Mining Sequential Pattern by Last

Position Induction. In Proceedings of National Data Engineering WorkShop (DEWS’05),

Japan, Mar. 2005.

130

References

[1] F. Afrati, A. Gionis, and H. Mannila. Approximating a collection of frequent

sets. In Proceedings of ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 12–19, 2004. 120

[2] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ramakr-

ishnan, and S. Sarawagi. On the computation of multidimensional aggregates.

In Proceedings of International Conference on Very Large Data Bases, pages

506–521, 1996. 100

[3] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between

sets of items in large databases. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, pages 207–216, 1993.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proceedings of International Conference on Very Large Data Bases, pages 487–

499, 1994. 1, 4, 10, 45, 84

[5] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of Inter-

national Conference on Data Engineering, pages 3–14, 1995. 1, 2, 4, 8, 9, 22,

51, 84, 99, 104, 106

[6] R. Agrawal and E. Wimmers. A framework for expressing and combining pref-

erences. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 297–306, 2000. 101

[7] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential pattern mining using a

bitmap representation. In Proceedings of ACM SIGKDD International Confer-

131

REFERENCES

ence on Knowledge Discovery and Data Mining, pages 429–435, 2002. 2, 4, 6,

8, 12, 17, 22, 23, 29, 33, 39, 40, 51, 59, 61, 69, 84, 86, 99

[8] T. L. Bailey and C. Elkan. Fitting a mixture model by expectation maximization

to discover motifs in biopolymers. In Proceedings of International Conference

on Intelligent Systems for Molecular Biology, pages 28–36, 1994. 1

[9] J. L. Balcazar and G. Casas-Garriga. On horn axiomatizations for sequential

data. In Proceedings of International Conference on Database Theory, pages

215–229, 2005. 100

[10] W.-T. Balke, U. Guentzer, and J. X. Zheng. Efficient distributed skylining for

web information systems. In Proceedings of International Conference on Ex-

tending Database Technology, pages 256–273, 2004. 95, 98

[11] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based

keyword search in databases. In Proceedings of International Conference on

Very Large Data Bases, pages 564–575, 2004. 101

[12] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent

patterns with counting inference. SIGKDD Explorations, 2(2), 2000. 99

[13] R. J. Bayardo. Efficiently mining long patterns from databases. In Proceedings

of the ACM SIGMOD International Conference on Management of Data, pages

85–93, 1998. 1, 29, 119

[14] R. J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining

on large, dense data sets. In Proceedings of International Conference on Data

Engineering, pages 188–197, 1999. 118

[15] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp, and D. L.

Wheeler. Genbank. Nucleic Acids Research, 30(1):17–20, 2002. 51

[16] C. Bettini, X. S. Wang, and S. Jajodia. Mining temporal relationships with

multiple granularities in time sequences. Data Engineering Bulletin, 21(1):32–

38, 1998. 99

132

REFERENCES

[17] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg

cubes. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, pages 359–370, 1999. 100

[18] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword

searching and browsing in databases using banks. In Proceedings of Interna-

tional Conference on Data Engineering, pages 431–440, 2002. 101

[19] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceed-

ings of International Conference on Data Engineering, pages 421–430, 2001.

3, 95, 96, 97, 98, 102, 111

[20] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing

association rules to correlations. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, pages 265–276, 1997. 1

[21] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: a maximal frequent itemset al-

gorithm for transactional databases. In Proceedings of International Conference

on Data Engineering, pages 443–462, 2001. 99

[22] G. Casas-Garriga. Towards a formal framework for mining general patterns

from ordered data. In Proceedings of ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining Workshop on MRDM, pages 14–26,

2003. 100, 109

[23] G. Casas-Garriga. Summarizing sequential data with closed partial orders. In

Proceedings of SIAM International Conference on Data Mining, pages 380–

391, 2005. 100, 101, 104, 106, 107

[24] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. Finding k-

dominant skylines in high dimensional space. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data, 2006. 95, 98

[25] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. On high di-

mensional skylines. In Proceedings of International Conference on Extending

Database Technology, pages 478–495, 2006. 95, 98

133

REFERENCES

[26] G. Chen, X. Wu, and X. Zhu. Sequential pattern mining in multiple streams. In

Proceedings of IEEE International Conference on Data Mining, pages 585–588,

2005. 124

[27] J. Chomicki. Querying with intrinsic preferences. In Proceedings of Interna-

tional Conference on Extending Database Technology, pages 34–51, 2002. 101

[28] J. Chomicki. Preference formulas in relational queries. ACM Transactions on

Database Systems, 24(4):1–39, 2003. 101

[29] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In

Proceedings of International Conference on Data Engineering, pages 717–719,

2003. 95, 97, 98

[30] G. Cong, B. Cui, Y. Li, and Z. Zhang. Summarizing frequent patterns using

profiles. In Proceedings of International Conference on Database Systems for

Advanced Applications, pages 171–186, 2006. 120

[31] R. Cooley, B. Mobasher, and J. Srivastava. Data preparation for mining world

wide web browsing patterns. Knowledge and Information Systems, 1(1):5–32,

1999. 82, 83

[32] D. Cristofor, L. Cristofor, and D. A. Simovici. Galois connection and data

mining. Jounal of Universal Computer Science, 6(1):60–73, 2000. 99

[33] B. A. Davey and H. Priestley. Introduction to lattices and order. Cambridge

University Press, 1990. 100

[34] E. Dellis, A. Vlachou, I. Vladimirskiy, B. Seeger, and Y. Theodoridis. Con-

strained subspace skyline computation. In Proceedings of ACM Conference on

Information and Knowledge Management, pages 415–424, 2006. 122, 124

[35] G. Dong and J. Li. Efficient mining of emerging patterns: discovering trends

and differences. In Proceedings of ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 43–52, 1999. 1

[36] E. Eskin and P. Pevzner. Finding composite regulatory patterns in dna se-

quences. In Proceedings of International Conference on Intelligent Systems

for Molecular Biology, pages 354–363, 2002. 1

134

REFERENCES

[37] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances

in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996. 1

[38] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.

Springer-Verlag, 1999. 99

[39] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining

with regular expression constraints. In Proceedings of International Conference

on Very Large Data Bases, pages 223–234, 1999. 2, 99

[40] Google. http://www.google.com. 2007. 82

[41] K. Gouda, M. Hassaan, and M. J. Zaki. Prism: A prime-encoding approach for

frequent sequence mining. In Proceedings of IEEE International Conference on

Data Mining, 2007. 22

[42] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational ag-

gregation operator generalizing group-by, cross-tab, and sub-total. In Proceed-

ings of International Conference on Data Engineering, pages 152–159, 1996.

100

[43] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank: Ranked keyword

search over xml documents. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 16–27, 2003. 101

[44] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time

series database. In Proceedings of International Conference on Data Engineer-

ing, pages 106–115, 1999. 1, 2, 99

[45] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns

without minimum support. In Proceedings of IEEE International Conference

on Data Mining, pages 211–218, 2002. 120, 123

[46] J. Ho, L. Lukov, and S. Chawla. Sequential pattern mining with constraints on

large protein databases. In Proceedings of International Conference on Man-

agement of Data (COMAD), 2005. 51

[47] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A system for the

efficient execution of multiparametric ranked queries. In Proceedings of the

135

REFERENCES

ACM SIGMOD International Conference on Management of Data, pages 259–

270, 2001. 3, 95, 101

[48] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline queries against mobile

lightweight devices in manets. In Proceedings of International Conference on

Data Engineering, page 66, 2006. 95, 98

[49] M. Kamber, J. Han, and J. Chiang. Metarule-guided mining of multi-

dimensional association rules using data cubes. In Proceedings of ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 207–210, 1997. 1

[50] W. Kieβling. Foundations of preferences in database systems. In Proceedings

of International Conference on Very Large Data Bases, pages 311–322, 2002.

3, 95, 100, 101

[51] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.

Finding interesting rules from large sets of discovered association rules. In

Proceedings of ACM Conference on Information and Knowledge Management,

pages 401–407, 1994. 1

[52] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. Proceedings of acm

sigkdd international conference on knowledge discovery and data mining-cup

2000 organizer’s report: Peeling the onion. SIGKDD Explorations, 2:86–98,

2000. 48, 68

[53] V. Koltun and C. H. Papadimitriou. Approximately dominating representatives.

In Proceedings of International Conference on Database Theory, pages 204–

214, 2005. 95, 98, 124

[54] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online

algorithm for skyline queries. In Proceedings of International Conference on

Very Large Data Bases, pages 275–286, 2002. 95, 97, 98

[55] H. C. Kum, J. Pei, W. Wang, and D. Duncan. Approxmap: Approximate mining

of consensus sequential patterns. In Proceedings of SIAM International Confer-

ence on Data Mining, pages 311–315, 2003. 2, 124

136

REFERENCES

[56] H. Kung, F. Luccio, and F. Preparata. On finding the maxima of a set of vectors.

Journal of ACM, 22(4), 1975. 97

[57] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of

IEEE International Conference on Data Mining, pages 313–320, 2001. 121

[58] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–564, 1978. 100

[59] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial

order graphs. Bioinformatics, 18(3):452–464, 2002. 100

[60] B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proceedings

of International Conference on Data Engineering, pages 220–231, 1997. 1

[61] C. Li, B. C. Ooi, A. K. Tung, and S. Wang. Dada: A data cube for dominant

relationship analysis. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, 2006. 3, 95, 98, 99, 100, 103, 104

[62] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Efficient skyline

computation over sliding windows. In Proceedings of International Conference

on Data Engineering, pages 502–513, 2005. 95, 98, 124

[63] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most repre-

sentative skyline operator. In Proceedings of International Conference on Data

Engineering, pages 86–95, 2007. 123

[64] C. Luo and S. Chung. Efficient mining of maximal sequential patterns using

multiple samples. In Proceedings of SIAM International Conference on Data

Mining, pages 64–72, 2005. 2

[65] H. Mannila and C. Meek. Global partial orders from sequential data. In Pro-

ceedings of ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 161–168, 2000. 100, 104

[66] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes

in sequences. In Proceedings of ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 210–215, 1995. 2, 99

137

REFERENCES

[67] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in

event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

1

[68] F. Masseglia, F. Cathala, and P. Poncelet. The psp approach for mining sequen-

tial patterns. In Proceedings of European Conference on Principles and Practice

of Knowledge Discovery in Databases, pages 176–184, 1998. 99

[69] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k

queries over sliding windows. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, 2006. 95, 98

[70] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and

pruning optimizations of constrained associations rules. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, pages 13–

24, 1998. 118

[71] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In

Proceedings of International Conference on Data Engineering, pages 412–421,

1998. 99

[72] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algo-

rithm for skyline queries. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 467–478, 2003. 95, 97, 98, 111,

121, 123

[73] J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm for

mining association rules. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 175–186, 1995. 12

[74] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas. Incremental and

interactive sequence mining. In Proceedings of ACM Conference on Information

and Knowledge Management, pages 251–258, 1999. 2

[75] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed

itemsets for association rules. In Proceedings of International Conference on

Database Theory, pages 398–416, 1999. 99, 119

138

REFERENCES

[76] J. Pei, A. W.-C. Fu, X. Lin, and H. Wang. Computing compressed multidimen-

sional skyline cubes efficiently. In Proceedings of International Conference on

Data Engineering, pages 96–105, 2007. 124

[77] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with convert-

ible constraints. In Proceedings of International Conference on Data Engineer-

ing, pages 433–442, 2001. 118

[78] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent

closed itemsets. In Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data Int’l Workshop on Data Mining and Knowledge

Discovery, pages 11–20, 2000. 99

[79] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and

M. Hsu. Mining sequential patterns by pattern-growth: The prefixspan ap-

proach. IEEE Transactions on Knowledge and Data Engineering, 16(11):1424–

1440, November 2004. 2, 4, 8, 19, 20, 22, 23, 32, 35, 40, 51, 57, 59, 84, 85, 99,

106, 107

[80] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining access pattern efficiently

from web logs. In Proceedings of Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining, pages 396–407, 2000. 84

[81] J. Pei, J. Han, and W. Wang. Mining sequential patterns with constraints in large

databases. In Proceedings of ACM Conference on Information and Knowledge

Management, pages 18–25, 2002. 99

[82] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data.

In Proceedings of International Conference on Very Large Data Bases, pages

15–26, 2007. 124

[83] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

Springer-Verlag, 1985. 97

[84] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. In Tech-

nical report RJ10026, IBM, 1996. 100

[85] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In Proceedings of

International Conference on Very Large Data Bases, pages 751–762, 2006. 122

139

REFERENCES

[86] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for

mining causal structures. Data Mining and Knowledge Discovery, 4(2-3):163–

192, 2000. 1

[87] S. W. Smith and J. Tygar. Security and privacy for partial order time. In ISCA In-

ternational Conference on Parallel and Distributed Computing Systems, pages

70–79, 1994. 100

[88] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and

performance improvements. In Proceedings of International Conference on Ex-

tending Database Technology, pages 3–17, 1996. 2, 4, 8, 11, 12, 16, 22, 84,

99

[89] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM

transactions on Computer Systems, 3(3):204–226, 1985. 100

[90] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation.

In Proceedings of International Conference on Very Large Data Bases, pages

301–310, 2001. 98

[91] Y. Tao and D. Papadias. Maintaining sliding window skylines on data streams.

IEEE Transactions on Knowledge and Data Engineering, 18(3):377–391, 2006.

95, 98

[92] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of skylines in

subspaces. In Proceedings of International Conference on Data Engineering,

page 65, 2006. 95, 97, 98, 111, 112

[93] W. G. Teng, M. Chen, and P. Yu. A regression-based temporal pattern mining

scheme for data streams. In Proceedings of International Conference on Very

Large Data Bases, pages 93–104, 2003. 2

[94] S. Tono, H. Kitakami, K. Tamura, Y. Mori, and S. Kuroki. Efficiently min-

ing sequence patterns with variable-length wildcard regions using an extended

modified prefixspan methods. In Proceedings of International Conference on

Intelligent Systems for Molecular Biology, 2005. 51

140

REFERENCES

[95] P. Tzvetkov, X. Yan, and J. Han. Tsp: Mining top-k closed sequential patterns.

In Proceedings of IEEE International Conference on Data Mining, pages 347–

358, 2003. 2

[96] J. Wang and J. Han. Bide: efficient mining of frequent closed sequences. In

Proceedings of International Conference on Data Engineering, pages 79–90,

2004. 99

[97] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for min-

ing frequent closed itemsets. In Proceedings of ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 236–245, 2003.

99

[98] K. Wang, Y. Xu, and J. X. Yu. Scalable sequential pattern mining for biological

sequences. In Proceedings of ACM Conference on Information and Knowledge

Management, pages 178–187, 2004. 124

[99] K. Wu, P. Yu., and A. Ballman. Speedtracer: A web usage mining and analysis

tool. IBM Systems Journal, 37(1):89–105, 1998. 84

[100] P. Wu, C. Zhang, Y. Feng, B. Y.Zhao, D. Agrawal, and A. E. Abbadi. Paralleliz-

ing skyline queries for scalable distribution. In Proceedings of International

Conference on Extending Database Technology, pages 112–130, 2006. 95, 98

[101] T. Xia and D. Zhang. Refreshing the sky: The compressed skycube with efficient

support for frequent updates. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, 2006. 95, 98, 100

[102] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing iceberg cubes

by top-down and bottom-up integration. In Proceedings of International Con-

ference on Very Large Data Bases, pages 476–487, 2003. 100

[103] X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: A profile-

based approach. In Proceedings of ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 314–323, 2005. 120

[104] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Pro-

ceedings of IEEE International Conference on Data Mining, pages 721–724,

2001. 121

141

REFERENCES

[105] X. Yan, J. Han, and R. Afshar. Clospan: mining closed sequential patterns

in large datasets. In Proceedings of SIAM International Conference on Data

Mining, pages 166–177, 2003. 2, 86, 99, 106, 109, 119, 124

[106] G. Yang. The complexity of mining maximal frequent itemsets and maximal

frequent patterns. In Proceedings of ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 344–353, 2004. 107

[107] J. Yang, P. S. Yu, W. Wang, and J. Han. Mining long sequential patterns in a

noisy environment. In Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, pages 406–417, 2002. 99, 119

[108] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient computation

of the skyline cube. In Proceedings of International Conference on Very Large

Data Bases, pages 241–252, 2005. 95, 98, 100

[109] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Ma-

chine Learning Journal, 42:31–60, 2001. 2, 4, 8, 14, 15, 22, 33, 35, 40, 51, 62,

84, 85, 99

[110] M. J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 71–80, 2002. 121

[111] M. J. Zaki and C. Hsiao. Charm: An efficient algorithm for closed itemset

mining. In Proceedings of SIAM International Conference on Data Mining,

pages 398–416, 2002. 99

[112] M. J. Zaki and M. Ogihara. Theoretical foundations of association rule. In ACM

Proceedings of the ACM SIGMOD International Conference on Management of

Data Workshop on Research Issues in Data Mining and Knowledge Discovery,

1998. 99

[113] Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for si-

multaneous multidimensional aggregates. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 159–170, 1997. 100

142

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization of the Thesis

	2 Problem Definition and Related Work
	2.1 Sequential Pattern Mining Problem
	2.2 Existing Sequential Pattern Mining Algorithms
	2.2.1 AprioriALL
	2.2.2 GSP
	2.2.3 SPADE
	2.2.4 SPAM
	2.2.5 PrefixSpan

	3 LAPIN: Efficient Sequential Mining Algorithms
	3.1 Problem of Existing Algorithms
	3.1.1 Experiment of Comparing Existing Algorithms
	3.1.2 Analysis

	3.2 LAPIN Algorithms (Last Position Induction Frequent Pattern Mining)
	3.2.1 General Idea
	3.2.1.1 Lexicographic Tree
	3.2.1.2 Formulation

	3.2.2 LAPIN: Design and Implementation
	3.2.3 LAPIN_Suffix
	3.2.4 LAPIN_LCI
	3.2.5 A Complete Example

	3.3 Experimental Evaluation and Performance Study
	3.3.1 Synthetic Data.
	3.3.2 Real Data.
	3.3.3 Analysis.

	4 Improved Efficient Sequential Mining Algorithms
	4.1 LAPIN_PAID Algorithm (Passed Item Deduction Frequent Pattern Mining)
	4.1.1 General Idea
	4.1.1.1 Formulation

	4.1.2 Design and Implementation

	4.2 LAPIN_SPAM Algorithm
	4.2.1 General Idea
	4.2.2 Implementation
	4.2.2.1 Space Optimization

	4.3 Experimental Evaluation and Performance Study
	4.3.1 Scalability test between PrefixSpan, SPADE and LAPIN algorithms
	4.3.2 Real Data Evaluation between PrefixSpan, SPADE and LAPIN algorithms
	4.3.3 Scalability Study between SPAM and LAPIN-SPAM
	4.3.4 Memory Usage Analysis between SPAM and LAPIN_SPAM
	4.3.5 Systemic Study on Different Algorithms
	4.3.5.1 PrefixSpan v.s. LAPIN_Suffix v.s. LAPIN_PAID
	4.3.5.2 SPADE v.s. LAPIN_LCI
	4.3.5.3 SPAM v.s. LAPIN_SPAM
	4.3.5.4 PrefixSpan v.s. SPADE v.s. LAPIN_SPAM
	4.3.5.5 LAPIN_PAID v.s. LAPIN_LCI v.s. LAPIN_SPAM
	4.3.5.6 Summary

	5 Applications of Sequential Pattern Mining
	5.1 Introduction of Web Log Mining
	5.1.1 Data Preparation
	5.1.1.1 Data Cleaning.
	5.1.1.2 User Identification.
	5.1.1.3 Session Identification.

	5.1.2 Pattern Discovery
	5.1.3 Pattern Analysis

	5.2 LAPIN_Web Algorithm
	5.2.1 General Idea
	5.2.2 Implementation

	5.3 Experimental Evaluation and Performance Study
	5.3.1 Datasets
	5.3.2 Experiments and Evaluations
	5.3.2.1 Comparing PrefixSpan with LAPIN_WEB
	5.3.2.2 Visualization Result

	6 Extension of Sequential Pattern Mining
	6.1 Introduction of Skyline Query
	6.2 Related Work
	6.2.1 Skyline Query
	6.2.2 Sequential Pattern Mining
	6.2.3 Data Cube
	6.2.4 Partial Order Mining
	6.2.5 Graph Construction

	6.3 General Dominance Relationship Analysis
	6.3.1 Preliminaries
	6.3.2 General Idea
	6.3.3 Constructing Partial Order Data Cube (ParCube)
	6.3.3.1 Optimization of Sequential Pattern Mining
	6.3.3.2 Compression of the ParCube Data Cube

	6.3.4 Efficient ParCube Querying

	6.4 Experimental Evaluation and Performance Study
	6.4.1 Datasets
	6.4.2 Skyline Query Performance
	6.4.3 Dominant Relationship Query Performance
	6.4.4 Index Data Structure Construction Performance
	6.4.5 Effectiveness of Compression

	7 Discussion
	7.1 Extension of Sequential Pattern Mining
	7.1.1 Constraint-based Mining of Sequential Patterns
	7.1.2 Mining Closed and Maximal Sequential Patterns
	7.1.3 Mining Approximate Sequential Patterns
	7.1.4 Sequential Patterns Compression
	7.1.5 Sequential Pattern Mining Over Data Stream
	7.1.6 Toward Mining Other Kinds of Structured Patterns

	7.2 Extension of Skyline Mining
	7.2.1 Ranked Skyline Queries
	7.2.2 Constrained Skyline Queries
	7.2.3 Dynamic Skyline Queries
	7.2.4 Enumerating and K-dominating Queries

	7.3 Summary

	8 Conclusions
	8.1 Summary of the Thesis
	8.2 Future Research Directions

	A Publication List
	A.1 Journal Papers
	A.2 International Conference Papers
	A.3 Workshop Papers

	References

