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ABSTRACT

Digital three-dimensional models created by computer vision and graphics techniques
are becoming widely used for a variety of purposes. Specifically, modeling cultural
heritage objects has attracted considerable attention, since such objects are worth pre-
serving, and the data can be utilized for restoration when an object faces the crisis of
collapse. Automation for creating 3D models has therefore attracted much interest,
since most models are currently created by manual operation, adding significantly to
the cost.

Creating an accurate model of an object requires knowledge of the object’s shape
and surface reflectance. Acquiring shape information is facilitated by the develop-
ment of sensors and the progress of data processing algorithms, but acquiring surface
reflectance properties remains a challenge, specifically with outdoor objects.

This paper targets large-scale objects such as architectural structures in an outdoor
environment. The size of target objects may be as much as 100 m × 100 m × 50 m.
Measuring the surface properties of such huge objects is a challenge. The appearance
of an object can be modeled by mapping image textures to the known shape of the object.
However, to achieve consistent colors among image textures, the effect of illumination
has to be removed before mapping these textures by using surface color estimation and
surface reflectance estimation techniques.

Two methods that calculate a surface color by a pixel-based operation are presented.
Most previous methods assume uniform illumination in a scene, but this is not always
true in images with shadows or with curved objects. The proposed methods enable
pixel-based operation by utilizing illumination change. Two models of illumination
colors that we introduce enable a surface color to be uniquely determined from two
pixel values. First, the paper proposes a method that uses blackbody radiation and
analyzes the stability and practicality of the method. Then, a more practical method
is proposed that can perform robust estimation using a statistical model derived from
outdoor illumination data. Robust estimation is achieved by introducing the plausible
range of outdoor illumination colors.

In practical situation, surface reflectance would be required for relighting purposes.
A method is presented to estimate surface reflectance from spherical images with
known shape information. Spherical images have nearly a 360-degree field of view; they
capture target objects and surrounding illumination at one shot. Therefore they do not
require specific apparatus or calibration of exposure times, apertures, and camera gain
factors. Furthermore, geometric calibration between an image and shape information
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becomes robust owing to the characteristic of a spherical camera. Measurement and
data-processing cost will be decreased by the method compared to previous methods
that need elaborate procedures. This is critical specifically for large-scale objects.

The main contribution of this thesis is that the author has proposed three methods
that estimate surface properties of an object. It can be summarized by the three fol-
lowing points: First, the research provides insights into the stability and practicality of
pixel-based surface color estimation. Second, a pixel-based method for surface color
estimation has been developed that is robust and accurate even for real outdoor objects.
None of the conventional methods can perform a pixel-based operation with higher
accuracy than the proposed method. Third, an efficient method has been developed
that estimates surface reflectance of large-scale objects under outdoor environment.
The proposed techniques form the foundation for developing a system that models the
appearance of a large-scale object in an outdoor environment.

ii



論文要旨

近年，コンピュータグラフィクスによるコンテンツは産業，文化，教育，エンタテインメ

ントの多分野にわたり，至る所で利用されている．とりわけ，文化財のモデル化が注目を

集めている．文化財はそれ自身が高価で，データを保存することに価値がある上，崩壊の

危機にある場合，修復に役立てられる．現在，モデルの作成は人手により行われており，

効率の低下を招いている．この自動化が可能となれば，大きな経費削減が図れる．そこ

で，物体の三次元モデル化技術への期待が高まっている．

実物体を計算機上で完全に再現するには，物体の幾何情報，および，光学情報が必要と

なる．幾何情報の取得技術は，レンジセンサに代表される形状取得センサの発達に加え，

データ統合・処理アルゴリズムの進歩により実用に近づいている．その一方で，光学情報

（反射率）の取得は，特に屋外の物体について課題となっている．

本論文で対象とする物体は，屋外にある建造物のような大規模な物体である．対象物の

大きさは，およそ 100m×100m×50m程度までである．このような大きな物体の場合，物
体表面の反射特性をどのように計測するかは重要な問題となる．物体の見えは，既知の三

次元形状に画像をテクスチャマッピングすることによりモデル化できる．しかしながら，

テクスチャ間で統一的な色を再現するためには，事前に光源の影響を除く必要がある．こ

のために，表面色推定，及び，表面反射率推定の手法を提案する．

本稿では，ピクセル単位で表面色推定を行う手法を二つ提案する．既存の表面色推定手

法（色恒常性手法とも呼ばれる）は，シーン内で一定の照明光を仮定するが，これは影や

曲面を含むような画像では，一般に成り立たない．提案手法は，光源色の変化を用いるこ

とにより，ピクセル単位の処理を可能にした．二つの手法は，それぞれ光源色のモデルを

利用することで，二つの画素値から表面色を一意に決定することができる．まずはじめ

に，本稿は黒体放射を光源色のモデルとした手法を提案する．また，手法の安定性と実用

性について述べる．次に，より実用的な手法を提案する．ここでは，モデルは屋外光源色

の統計的なデータを基にしている．光源色の範囲を用いることで，ロバストな推定が可能

となる．

任意の光源環境下での見えを合成するには，物体の反射率が必要とされる．ここでは，

全周画像と既知の形状を用いて，物体の反射率を推定する手法を提案する．全周画像は，

ほぼ 360度の画角を持つため，対象物の輝度と周囲の光源環境の輝度を一度に撮影するこ
とができる．このお陰で，推定に特殊な光学機器の必要がなく，またカメラの露光時間や

絞り，ゲインなどの情報が無くても，推定を行うことができる．さらには，全周画像の特

長として，幾何形状との較正がロバストに行えるという利点がある．提案手法により，計

測およびデータ処理にかかるコストを大きく削減できる．多くの手間を必要とする従来手

法と比較したとき，大型の物体に関して，これは大きな利点となる．

以上の研究に関して，本論文の主要な貢献は，物体表面の反射特性を推定する三つの手
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法を提案したことにある．具体的には，次の三点にまとめられる．第一に，ピクセル単位

の表面色推定における安定性と実用性に関して，物理学的な側面から知見を得た．第二

に，屋外のシーンに対してもロバストでかつ正確な計算が可能な，ピクセル単位の表面色

推定の手法を開発した．既存の手法の中には，ピクセル単位の推定を提案手法以上の精度

で推定できるものは，筆者の知る限り存在しない．第三に，屋外環境下にある大規模物体

に対して，表面反射率推定を行うのための，効率的な手法を開発した．本論文による提案

手法は，屋外における大規模物体の見えのモデル化システムを開発する際の基礎的な手法

として実用化できる．
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Chapter 1

Introduction

1.1 Background
Digital three-dimensional models created by computer vision and graphics techniques
are widely used in a variety of workplaces, such as mechanical and architectural in-
dustries, and for a variety of purposes, such as visualization in the fields of research,
education, and entertainment. Specifically, modeling cultural heritage objects has at-
tracted considerable attention [IOT∗07], since such objects are worth preserving and the
data can be utilized for restoration when an object faces the crisis of collapse. The data
can be linked to geometrical information [Gooa] via communication network and can
be broadcasted to people to view and enjoy remotely. The data could also be utilized
for virtual space [Sec] and a virtual museum, and for driving simulators, movies, and
games. Thus, digital three-dimensional models offer substantial commercial possibili-
ties.

Automation for creating 3D models has also attracted much interest as the need for
such models has increased. Currently, most models are created by manual operation
[Aut, Goob], causing a significant increase in cost, and therefore more sophisticated
techniques for modeling a real world object are demanded for supplying 3D data at
lower cost. Such techniques could also be used for automation in industries and for
robotic vision.

To simulate the accurate appearance of an object, we have to know the object’s shape
and surface reflectance properties. Acquiring shape information has been facilitated by
the development of sensors and the progress of data processing algorithms [IOT∗07].
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Meanwhile, a number of methods that reconstruct 3D shapes from images with mul-
tiple views have been intensively studied, such as stereo techniques [DM76, DA89],
visual hull [Lau94, MBR∗00], voxel coloring, and space carving [SD97, KS00], and these
methods have achieved highly convincing results. However, to re-render the object’s
color under novel lighting conditions, the object’s surface reflectance properties are
required. The recovered colors from the methods cited above only represent a specific
appearance under one lighting condition.

Acquiring surface reflectance properties remains a challenge, specifically with out-
door objects. In the late 1990s, several modeling methods with range sensors were
proposed [PCD∗97, NK99, LHS00, WKSS01, BMR01]; however, those methods cre-
ated surface textures by simply blending images taken from multiple views. Mean-
while, physics-based reflectance estimation methods [TW89a, KSK90, NIK91, ON51,
DvGNK97, SWI97, LL99, NZI01, MYT03, YXA07], photometric stereo techniques [Ike81,
Hor86, BJ01, ZBK02, HS05, GCHS05, CGS06], and image-based rendering techniques
[LH96, GGSC96, KBK01, RH02, SOSI03, WMTG05] have been proposed to create more
physically correct object appearances than those created in the early 1990s. Physics-
based reflectance estimation is based on physical reflection models [CT81, ON51] and
estimates the parameters of the models by fitting the data to them. The methods have
achieved highly accurate re-renderings, yet they need accurately calibrated illuminants
and cameras. Some of those methods [DvGNK97, SWI97, NZI01, MYT03, YXA07] re-
quire around 100 images for an accurate estimation. Photometric stereo is a method
that captures images under three different lighting conditions and estimates the surface
reflectance and the surface normal of the shape. Generally, it assumes a known distant
point light source, and therefore it is unsuitable for outdoor conditions. Image-based
rendering is a technique that samples appearances under a number of different lighting
conditions, and re-renders the appearance by interpolating the images. For instance,
diffuse objects would require about 30 images, and more than 100 images are needed
for specular objects [SOSI03]. Creating such a number of different illumination con-
ditions is impractical for an outdoor environment, and so it is difficult to be applied
to outdoor objects. In other words, an appearance of a small object, without complex
reflection (transparent, layered, or metallic), can be accurately modeled by calibrating
illumination and sampling a number of images.

This paper attempts to handle a large-scale object such as an architectural structure
in an outdoor environment. Figure 1.1 shows an example, a 3D model of Bayon Temple,
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Figure 1.1: An example of a large-scale 3D model. A 3D model of the Bayon Temple, a
stone heritage object in Angkor, Cambodia.

a stone heritage object in Angkor, Cambodia. The size of Bayon Temple is around 100
m × 100 m × 50 m. For such a huge object, measuring the surface reflectance properties
becomes a challenge. Figure 1.2 shows the result of directly mapping the acquired
images by texture mapping [Hec86, DW80] to the model of Bayon Temple. As Figure
1.2 shows, the color of the object varies from left to right, due to the difference of time
at which the images are taken. The aforementioned methods cannot be applied to this
object because of the difficulty in controlling the lighting condition, and therefore an
alternative is required to remove the color difference due to the illumination change.

This paper models the appearance of an object by mapping the image textures to the
known shape of the object. To avoid the discontinuity in textures (Figure 1.2) and arrive
at consistent colors, we analyze the images and remove the effect of illumination before
mapping them by using the surface chromaticity estimation and surface reflectance
estimation techniques. Chromaticity is a concept that represents color information; it
is a color value normalized by its intensity value. Surface chromaticity estimation,
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Figure 1.2: Textured 3D model of the south side of the Bayon Temple in Cambodia.
The color of the textures is different depending on illumination at the time they were
taken. The objective of this research is to remove the effect of illumination color from
those textures.
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so-called color constancy, has been intensively studied in the computer vision research
field. Surface reflectance estimation has been studied in terms of albedo estimation.
The paper will show that the color appearance of an object can be modeled by using
those techniques. The following section surveys methods that have been proposed
related to those research topics.

1.1.1 Color Constancy

The simplest way to remove the effect of illumination and to acquire the object’s surface
color is white balance, a method widely used by professional photographers. White
balance is a method that balances RGB values by attaching color filters in front of the
lens, so that a reference white board looks white in the image. In the case of large-scale
objects, a white board may not be able to capture the identical illumination over the
target object. Hence, a method to achieve an automatic white balance would be of great
benefit.

Human perception has this kind of ability, automatic white balance, which is specif-
ically called color constancy. Color constancy has been studied in the field of computer
vision, where it is regarded as the same as surface chromaticity estimation. Color is
converted by scaling original RGB values. At this point, the ratio of the scaling factors
between RGB channels is important, since there is a scale ambiguity in the absolute
illumination/surface reflectance relation. Therefore, not the absolute surface color but
the surface chromaticity (color normalized by its intensity) is estimated. This color
conversion is physically correct for diffuse planar objects, except for approximating
the spectral conversion by the RGB conversion. Figure 1.3 shows an example of the
results of color constancy. We can see that this technique is fundamental for acquiring
an object’s surface property.

Many color-constancy methods have been proposed, while none of them can per-
form perfect color constancy. Methods that use the presence of highlighting [DL86,
Lee86, TW89b, Lee90, FS01, TNI04], are accurate though less applicable for large out-
door objects such as the Bayon Temple. Methods that can handle diffuse objects are
categorized into two groups [Hor06]: algorithms that use information from a learning
phase [For90, NS92, Fin96, BF97, RHT01, FHH01, TEW01, TW02, FHM05, FHT06] and
those based on low-level image features [Buc80, Lan77, FT04, vdWGG07, GG07]. Both
methods have difficulties when the scene includes few surface colors, and usually as-
sume a scene lit by a uniformly colored illumination, which is not the case for curved
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(a) Original image.

(b) Result of color constancy.

Figure 1.3: Color constancy. The top image is taken at dusk, and the bottom image is
the result of color constancy.
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objects or objects with shadows, under outdoor environment.

1.1.2 Albedo Estimation

With respect to diffuse objects of arbitrary shape, we need to estimate not only the
surface chromaticity but also the absolute surface reflectance, so-called surface albedo, for
recovering the appearance of the object under a novel illumination condition. Albedo
is the ratio of reflected light to the incident electromagnetic radiation, i.e., how much
light a material will reflect regarding the incident light. This paper defines the albedo
on each RGB channel; the maximum albedo (no absorption) is (1.0, 1.0, 1.0) for (R, G,
B). Albedo estimation calculates the absolute scale on each sensor channel, while color
constancy allows the scale ambiguity. Figure 1.4 shows an example of surface albedo.
We can clearly see that the surface albedo is the most essential component in terms
of the object’s surface property. However, we have to take the shape information into
account.

Albedo has been an important concept in climatology and astronomy for environ-
mental monitoring and predicting the properties of far objects that cannot be resolved
by telescopes. In terms of climatology, the earth’s surface albedo has been regularly
estimated via remote sensors such as NASA’s ASTER, MISR, and MODIS devices on the
Terra and Aqua satellites. The collected data indicate materials that constitute the sur-
face of the earth. In those cases, a mathematical model of the BRDF is used to translate a
sample set of satellite reflectance measurements into estimates of the set of reflectance.
Different models from those in computer vision and graphics research fields have been
used because of the difference in resolution and the effect of atmospheric absorption.

In computer vision and graphics research fields, several methods that handle out-
door images have been proposed. A few are using images of monitoring cameras
placed outdoors. Weiss [Wei01] derived intrinsic images, which are images represent-
ing surface albedo, by assuming that the sudden change caused by reflectance remains
constant in the image sequence, while that caused by illumination varies depending on
the time. Therefore, by taking the median of derivative filter outputs of input images,
the reflectance image can be estimated. Matsushita et al. extended the idea so that it can
handle non-Lambertian surfaces, and proposed an illumination normalization scheme
utilizing the illumination eigen space and a shadow interpolation method based on
shadow hulls [MNIS04].

For directly calculating surface reflectance properties, one would need three com-
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(a) Appearance. (b) Shape and illumination.

(c) Surface albedo.

Figure 1.4: The object’s appearance is determined by its shape, surrounding illumina-
tion, and surface reflectance (albedo.)
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ponents: the shape of a target object, the actual appearance of the object, and the
illumination environment. Shape information and actual appearance can be obtained
by range and image sensors, respectively.

Two methods, as far as we know, that recovered outdoor objects’ surface reflectance,
measured the listed three components. Yu et al., the first who handled outdoor objects,
according to the author’s knowledge, took photographs of the sun and sky to measure
their radiance distribution [YM98]. As they used a normal camera, they included
landmarks in each photograph so that they could use them to recover the camera pose
later. Debevec et al., the second and the latest to tackle the outdoor problem, used a
specific apparatus to measure the outside illumination [DTG∗04]. They used a mirrored
sphere to image the sky and clouds, a shiny black sphere to indicate the position of the
sun, and a diffuse grey sphere to indirectly measure the intensity of the sun. Those
methods need elaborate procedures and therefore the size of the objects they handled
was rather small compared with our target objects.

1.2 Research Objective
This dissertation describes two research objectives: one is to estimate surface chro-
maticity from images and the other is to estimate surface albedo from an image with
known shape information. Estimating surface chromaticity is important for modeling
the appearance of an object. In general color constancy methods we have to assume a
uniform illumination in the scene. However, this is not always the case; suppose that
shadows are presented in an image. Shadowed regions outdoors are usually illumi-
nated by sky light, while non-shadowed regions are illuminated by the combination
of sky light and sunlight. Thus, this paper proposes methods that can calculate the
surface color by a pixel-based operation.

Our methods enable a pixel-based operation by utilizing the change of the illumi-
nation. The change of the illumination can be a key for estimating surface colors from
image values. Outdoor illumination is well known to be modeled by blackbody radia-
tion, which is the spectra that are emitted from a black body (graphite, etc.) when it is
heated. By introducing this model for illumination colors, a surface color is uniquely
determined from two image values taken under different illumination. First we pro-
pose a method that utilizes the blackbody radiation formula, and analyze the stability
and practicality of this problem from the physical perspective. Then, we propose a
more practical method that can perform robust estimation by using another model
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for illumination colors derived from statistical outdoor illumination data. The robust
estimation is realized by introducing the plausible range of outdoor illumination colors.

In a practical situation, estimating surface albedo would be the principal goal for
acquiring the surface properties of diffuse objects, since surface chromaticity represents
the surface property up to a scale, while surface albedo is the absolute value. The meth-
ods of surface color estimation are adequate for planar objects; however, objects with an
arbitrary shape will cause an undesirable effect, due to the variation in surface normals.
This will need further processing of images, which should involve the estimation of
surface normals and illumination distributions.

In our approach, we assume that the shape information is already acquired, and
attempt to estimate surface albedos from spherical images. With respect to surface
albedo estimation, there are a few methods that handle outdoor scenes, and previ-
ously proposed methods need elaborate procedures such as photometrical calibration
of measuring devices and geometrical calibration between the acquired illumination
distribution and the shape information. We propose a novel method that utilizes spher-
ical images with shape information. Spherical images have a nearly 360-degree field
of view. Thus, geometric calibration between the image and shape information be-
comes robust. Furthermore, we do not need to know the camera gain factor, exposure
time, and aperture, since all those factors are shared in both illumination and surface
radiance distributions. Spherical images capture both illumination distribution and
surface radiance distribution at one shot, which is a great advantage for estimating
surface albedos. Measurement and data-processing cost will be greatly decreased by
this method.

1.3 Thesis overview
Chapter 2 describes a method that estimates surface colors by assuming that the black-
body radiation approximates the outdoor illumination colors. The chapter provides
a theoretical analysis that a surface color can be uniquely determined from two im-
age values taken under two sets of illumination. After briefly reviewing the previous
works and the blackbody radiation model, the chapter explains a formulation of es-
timating surface colors and of blackbody illumination colors in a chromaticity space.
Chromaticity is a color ratio between RGB values, and is an important concept in most
color constancy methods. Then, a novel approach to calculate surface colors is pre-
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sented, and experimental results on both synthetic and real data are provided. Having
discussed the robustness of the proposed method, the chapter summarizes the method.

Chapter 3 proposes a method that stabilizes illumination-color estimation by using
the statistical model of illumination colors and the idea of a finite illumination color
space. We first describe the objective and novelty of the method, and then explain the
assumptions and definitions that are used in the method. The solution for estimating
surface color is presented, and the effect of input errors on this solution is investigated
thoroughly. A method for robust estimation is presented and experimental evaluation
is provided. Subsequently, an extension of the method to a single image using the
shadowed and non-shadowed regions is described. We explain an algorithm to extract
two representative colors from those regions and provide experimental results on both
toy objects and large-scale objects in an outdoor environment. Finally, we summarize
the method.

Chapter 4 proposes a new, efficient method to estimate surface reflectance (albedo)
of diffuse outdoor objects from only one measurement with a spherical camera. After
reviewing the previous works, we explain the mathematical formulation of the scene’s
radiance acquisition. Both illumination radiance and surface radiance can be captured
by the spherical camera that we used. Then, a method for estimating surface reflectance
is described. Surface irradiance can be calculated from captured illumination irradi-
ance, and the surface reflectance is calculated by dividing the surface radiance by its
irradiance. After explaining techniques for practically applying the method to outdoor
scenes, we evaluate the method with experiments. Finally, we provide discussions and
a summary.

Chapter 5 concludes this dissertation by summarizing this research and contribu-
tions, and discussing possible future research directions.
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Chapter 2

Estimating Surface Chromaticity from
Blackbody Illumination

From two colors of a surface taken under two illuminations, the surface chromaticity
is determined uniquely, if the illumination colors are both equal to ideal blackbody
radiation. This chapter provides a theoretical analysis of this fact, and proposes a
surface-chromaticity estimation method based on it. The novelty of the method is that
it uses the direct mathematical model of blackbody radiation, Planck’s formula, as the
illumination color model. Aside from Planck’s formula, we have also assumed that the
bandwidth of camera-sensor sensitivity is sufficiently narrow.

Differing from what we expected, the experimental results showed that although
this method is a perfect vehicle for simulation data, it produces significant errors
with real data. From a thorough investigation of the cause of errors, we can learn
how important the assumptions on both blackbody radiation and narrow-band camera
sensitivities are to the method. Finally, we discuss the robustness of our method, and
the limitation of estimating surface color using the illumination color constraint.

2.1 Introduction
Acquiring an object’s inherent color is important when modeling a real-world object.
Since color appearance is significantly influenced by the illumination color, a method to
remove it and to estimate the actual color of the object’s surface, its “color constancy 1”
in computer vision, is required. It is the goal of this work to estimate surface color, the
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object’s color under white illumination, from the object’s colors under arbitrary colored
illumination. In general, surface color estimation is achieved by capturing the object’s
color under a known illuminant, and dividing it by the illumination color. We cannot,
however, apply this method when the target objects are huge and are located outdoors,
because the illumination condition is not either controllable or known. It would be of
great benefit to achieve color constancy only from colors received by sensors.

In this chapter, we propose a new method for surface color (chromaticity) esti-
mation that inputs two colors taken under different illumination and estimates each
illumination color numerically by regarding the blackbody radiation as the illumina-
tion spectra (Fig.2.1). Blackbody radiation accurately models the light from heated
metals. Moreover, several researchers reported that it can predict the general shape of
daylight illuminations [FS01, JMW64].

In addition to the blackbody illumination assumption, our method assumes that the
bandwidth of camera-sensor sensitivity is sufficiently narrow [FFB95, BFF97, MO00].
The method uses three sensor values at each wavelength, since it is designed to use
image values. However, any wavelength can be chosen for the algorithm, which means
that the algorithm can be applied to a spectral separation method without any loss of
generality.

2.1.1 Related Work

A number of methods to estimate surface/illumination colors have been proposed by
researchers. We can categorize them into two groups: dichromatic-based methods
and diffuse-based methods. Dichromatic-based methods [DL86, Lee86, TW89b, Lee90,
FS01, TNI04], though they are accurate, require the presence of highlighting, and are
therefore less applicable for large outdoor objects such as the Bayon Temple 2, or the
Kamakura Buddha 3.

Most diffuse-based methods use a single input image of objects lit by a uniformly
colored illumination. According to the recent survey by Hordley [Hor06], diffuse-
based methods can be divided into two groups: algorithms that use information from
a learning phase and those based on low-level image features. The former methods

1 “Color constancy” often implies recovering an object’s actual surface color in the field of
computer vision. Note that, to be precise, it is a psychological term meaning the ability to
perceive a color as constant under varying illumination.

2A stone heritage object in Angkor, Cambodia.
3A large statue of Buddha in Kamakura, Japan.
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Unknown outdoor illumination
Color sensor

Object’s surface

Object’s color under
pure white illumination

Blackbody radiation assumption

Figure 2.1: The goal of this work; to estimate surface color, the object’s color under white
illumination, from the object’s colors under arbitrary colored illumination. Blackbody
radiation is regarded as the illumination spectra.

[For90, NS92, Fin96, BF97, LMHK99, RHT01, FHH01, TEW01, TW02, FHM05, FHT06]
use color-distribution bias in an image; by comparing the bias to the previously acquired
color distribution, they estimate the illumination color. Therefore, they usually require
strong constraints in surface color domain, and cannot accurately handle images with
few surface colors [TW02].

The latter is represented by the Gray-World [Buc80] and the White-Patch [Lan77]
algorithms. The Gray-World algorithm assumes that the average reflectance color is
gray. The White-Patch algorithm assumes that the brightest patch in the image is
white. A method that uses Minkowski-norm to generalize low-level feature methods is
proposed by Finlayson et al., which is referred to as the general Gray-World algorithm
[FT04]. Van de Weijer et al. extended the idea regarding that the average of the
reflectance differences in a scene is gray (the Gray-Edge algorithm) [vdWGG07]. They
tested those algorithms on an image data set [CF03]; the experimental results are shown
in Figure 2.2. The general Gray-World algorithm perform the best in the image of the
top row, while the Gray-Edge does in the middle, and so does the 2nd-Order Gray-
Edge in the bottom row. Gisenij et al. [GG07] adaptively used those algorithms with
respect to the natural image statistics. The Weibull distribution is used to parameterize
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input image Gray-World general Gray-World Gray-Edge 2nd Order Gray-Edge

Figure 2.2: The comparison between the state-of-the-art color constancy algorithms
[vdWGG07]: the Gray-World, the general Gray-World, and the Gray-Edge algorithms.
The gray spheres exhibit the ground truths of the illumination color. The angular error
between the estimated and the ground truth is indicated by the number in the right
bottom corner. They still have difficulties when the scene includes few surface colors,
or the scene is dominated by a single color.

the image and decide which algorithm to use. Those methods [Buc80, Lan77, FT04,
vdWGG07, GG07] are simple and easy to implement, though they still have difficulties
when the scene includes few surface colors, or the scene is dominated by a single color.

Several methods are proposed that calculate illumination invariant values. Illumi-
nation invariant is the key idea for color constancy itself, so that the methods can be
applied to object recognition under varying illumination conditions. Land et al. [LM71]
first introduced an idea to use reflectance edges for invariant features. Researchers such
as Nayar et al. [NB93] and Geusebroek et al. [GBSG02, GBSG03] utilized the idea for
object recognition and color constancy. Independently, but at the same time, Finlayson
et al. [FH01] and Marchant et al. [MO00, MO01, MO02] introduced an idea to calculate
the invariant values by assuming that blackbody radiation approximates the illumina-
tion color. Blackbody radiation is the energy emitted from a heated blackbody. Those
methods can calculate the invariant features of objects, though they cannot estimate
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surface/illumination colors.
Surface/illumination color separation is also studied in the spectral imaging re-

search area. Maloney and Wandell [MW92] proposed to use a small number of
basis functions to approximate the spectral function. They revealed that with two-
dimensional surface reflectance, we can calculate all the unknown parameters that
characterize the spectral functions by sampling at different spatial locations with three-
dimensional sensors. Normal RGB image sensors are supposed to be used in the work;
however, they would produce large errors with real images since the two-dimensional
reflectance model is too strict. However, the idea can be extended for spectral imaging
that has numerous sensors; the dimension of reflectance and illumination can be in-
creased. Thus, this elegant idea has been extended to many spectral imaging methods
up to this time [D’Z92, OH94, CH04, DF07, CH07].

Methods based on a varying illumination color were introduced by a few re-
searchers [D’Z92, OH94, FFB95, BFF97]. They considered that the change of illumi-
nation color could be a key to solving the color constancy problem. D’Zmura [D’Z92]
proposed a method using approximated linear basis functions to form a closed-form
equation. One drawback of the method is that it fails to provide robust estimations for
real images, since many objects’ reflectance cannot be expressed by the linear combina-
tion of a small number of basis functions. Ohta et al. [OH94] stabilized the estimation
based on D’Zmura’s assumption and CIE Daylight constraint.

Finlayson et al. [FFB95] used a single surface color illuminated by two different
illumination colors and performed the estimation by assuming that the illumination
colors form a line in an inverse-chromaticity space. Barnard et al. [BFF97] utilized
the Retinex algorithm [LM71] to automatically obtain a surface color with different
illumination colors, and then applied the aforementioned method of Finlayson et al.
[FFB95] to estimate varying illumination colors in a scene.

To summarize those works, surface color estimation of diffuse objects still has room
for improvement in terms of accuracy and robustness, especially for a single-colored
object. To handle single-colored objects, it is straightforward to take multiple illumi-
nation colors into account for solving the problem. Assuming a specific illumination
color model would make the problem easier and could make the estimation robust.
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2.1.2 Blackbody Illumination

Several researchers reported that blackbody radiation can predict the general shape
of daylight illumination [FS01, JMW64]. The author has reviewed studies of daylight
spectra measured in several countries: America, England, Canada, South Africa, Aus-
tralia, India and Spain. This paper concludes that blackbody radiation could be a good
model representing daylight illumination colors around the world.

In the middle 1960s, Judd et al. [JMW64] collected 249 daylight spectral samples
from Rochester, New York, 274 from Enfield, England, and 99 from Ottawa, Canada,
to calculate the characteristics of daylight spectra. The collected data were plotted
in the 1931 CIE chromaticity diagram, a color space that created by the International
Commission on Illumination (CIE) in 1931. Judd et al.’s data are shown in Fig. 2.3 (a);
Rochester, Enfield, and Ottawa are indicated by open circles, by crosses, and by solid
circles. The horizontal and vertical axes correspond to X/(X+Y+Z) and Y/(X+Y+Z),
where X,Y,Z are tri-stimulus values which are roughly red, green and blue, based on
human visual perception. The red dotted line is added by the author to emphasize
the locus of chromaticities implied by Planck’s blackbody radiation law. As Fig.2.3 (a)
shows, daylight spectra clustered very closely around the locus.

Slightly before Judd et al., Nayatani and Wyszecki [NW63] measured the colors of
daylight from a near-north sky at Ottawa, Canada. The measured colors plotted in
the chromaticity diagram are shown in Fig. 2.3 (b). As in (a), daylight illumination
colors make a cluster around the Planckian locus. Figs. 2.3 (c) and (d) present the
data in South Africa and Australia obtained by Winch et al. [WBKT66] and Dixon
[Dix78], respectively. In the Southern Hemisphere, daylight colors are even closer to
the Planckian locus compared to that of the Northern Hemisphere.

Sasturi et al. [SD68] measured daylight spectra in Pretoria, India; their data are
shown in Fig 2.4 (a). In this work, they measured the lights from the north sky that
were reflected by an aluminized mirror. Usually, a magnesium oxide or barium sulfate
surface is used instead of measuring a reflection of a mirror, since the light from a
mirror covers very narrow field-of-view of the sky. This would be the reason why
their data are so widely distributed. Hernandez-Andres et al. [HARN01] purposely
measured narrow-field-of-view light in Granada, Spain, which is shown in Fig 2.4 (b).
The colors are widely distributed, particularly in the bluer region. However, the colors
are dominantly spread very close to the Planckian locus.

As can be observed, the Planckian locus could approximate daylight well in most
places of the world, though there are slight variances. The variances may come from
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(a) America, England and Canada. (b) Canada.

(c) South Africa. (d) Australia.

20000 K

5263 K

5000 K

12500 K

Figure 2.3: Daylight spectra plotted in the 1931 CIE chromaticity diagram, obtained
in the following: (a) America, England and Canada [JMW64], (b) Canada [NW63], (c)
South Africa [WBKT66] and (d) Australia [Dix78]. The red dotted curves indicate the
locus of chromaticities implied by Planck’s blackbody radiation law. The Planckian
locus could approximate daylight colors well in most places of the world.

the different atmospheric condition, but also the region of the sky measured. An
integrating sphere was used for Figs. 2.3 (c) and (d), a white plate was used for (a)
and (b), while an aluminized mirror was used in Fig. 2.4 (a). Direct measurement
within 3-degree fields of view was conducted in Fig. 2.4 (b). These findings mean that
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(a) India. (b) Spain.

Figure 2.4: Daylight spectra obtained with a narrow field-of-view apparatus, plotted
in the 1931 CIE chromaticity diagram: (a) India [SD68], (b) Spain [HARN01]. The red
dotted curves indicate the Planckian locus.

lights from a specific part of the sky were measured in Figs. 2.4 (a), (b), 2.3 (a) and (b),
while the lights that integrated in a sphere (lights that come from all directions) were
measured in 2.3 (c) and (d). In terms of diffuse objects, the lights that come from all
directions matter. Thus, Figs. 2.3 (c) and (d) are the data that attract our interest. In
Figs. 2.3 (c) and (d), the Planckian locus describes the daylight colors very well. The
apparatus difference also relates to the wide range of temperatures in Figs. 2.4 (a), (b),
2.3 (a) and (b), but not in 2.3 (c) and (d).

2.2 General Problem Formulation
Colors perceived by humans or camera sensors are light intensities that are emitted
from a light source, reflected by an object surface, and filtered by color sensors. Surface
color estimation is an inverse process of these, i.e., we estimate surface and illumination
properties from a filtered color. This paper defines the problem as the separation of an
image’s chromaticity ic into surface and illumination chromaticities sc and ec, using the
following equation;

ic = scec c = {r, g}. (2.1)
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Chromaticity is defined as a ratio of R and G values to B value;

ir =
IR

IB
, ig =

IG

IB
. (2.2)

Eq. (2.1) holds by using this definition. We use the notation r, g for chromaticities and
R,G,B for intensities to distinguish them simply.

Eq. (2.1) is derived by assuming a narrow-band camera model and converting
intensities into chromaticities defined by Eq. (2.2). Details are as follows. Image
intensities of diffuse objects taken by a digital color camera can be described as Eq.
(2.3);

Ic = τ

∫
Ω

S(λ)E(λ)qc(λ)dλ c = {R,G,B} (2.3)

� τ Sc Ec (Sc = S(λc), Ec = E(λc)) (2.4)

where S(λ) is a surface spectral reflectance and E(λ) is an illumination spectral power
distribution. qc(λ) is a camera-sensor sensitivity, where index c stands for the type of
sensors (R,G, and B). The integration is done over the visible spectrum (Ω). τ is a gain
determined by the aperture, the integration time, and the electronic amplification.

Then, we introduce a narrow-band camera model, which assumes that each color
sensor has all its sensitivity concentrated on a single wavelength λc. That is, each
sensitivity is approximated by a Dirac’s delta function δ(.) whose center wavelength is
λc. Therefore, qc(λ) � δ(λ−λc) and we can subsequently obtain Eq. (2.4). λR, λG, λB are
the wavelengths on which the sensitivities are concentrated.

Surface color estimation focuses on recovering chromaticities instead of intensities.
This is because there is a scale ambiguity between surface spectral reflectance and
illumination spectral power distribution. We cannot distinguish a dark surface with
bright illumination from a bright surface with dark illumination. Thus, we convert the
intensity space to the chromaticity space by substituting Eq. (2.4) into Eq. (2.2), and
obtain Eq. (2.1). The surface chromaticity [SR/SB, SG/SB]t is rewritten as [sr, sg]t, and
the same is true for the illumination chromaticity.

2.3 Illumination Chromaticity Formulation
This paper assumes that most illumination spectra can be approximated by blackbody
radiation. The assumption is useful since an illumination chromaticity, that is a two-
dimensional vector, becomes a function of a single scalar, temperature T. The scalar T
is often called color temperature for representing the color.
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In a mathmatical form, an illumination chromaticity can be expressed as:

er(T) =
M(λR,T)
M(λB,T)

, eg(T) =
M(λG,T)
M(λB,T)

(2.5)

where e = [er(T), eg(T)]t is an illumination chromaticity, M(λ∗,T) is the spectral power
of the blackbody radiation, T is temperature in kelvin, and λR, λG, λB are the center
wavelengths of a camera sensitivity. The narrow-band assumption and the chromaticity
definition of Eq. (2.2) are used to derive the last equation.

From Planck ’s formula, M(λ,T) is:

M(λ,T) = c1λ
−5[exp(c2/λT) − 1]−1 (2.6)

where c1 is 3.7418 × 10−16 (Wm2), c2 is 1.4388 × 10−2 (mK), and λ is the wavelength (m).
Substituting Eq. (3.28) into Eq. (2.5), we obtain:

er(T′) = kr
ΦB(T′)
ΦR(T′)

(
kr =

λ5
B

λ5
R

)
(2.7)

eg(T′) = kg
ΦB(T′)
ΦG(T′)

(
kg =

λ5
B

λ5
G

)
(2.8)

where T′ = c2/T, and Φ∗(T′) are defined as follows for simplicity.

ΦR(T′) = exp(T′/λR) − 1

ΦG(T′) = exp(T′/λG) − 1

ΦB(T′) = exp(T′/λB) − 1 (2.9)

2.4 Our Problem Formulation
The difference between our approach and conventional approaches is using the exact
blackbody radiation for the model of illumination colors. Consequently, the surface-
color estimation problem becomes equivalent to estimating a color temperature T. Eq.
(2.1) shows the interdependency between surface and illumination chromaticities. Also,
an illumination chromaticity can be parameterized by the color temperature T as Eqs.
(2.7) and (2.8) show. Thus, when the color temperature T is known, the illumination
chromaticity and then the surface chromaticity can be calculated explicitly.

The equations to solve can be established as follows. When we observe a surface
chromaticity s under two blackbody illuminations e(T1) and e(T2), we can estimate each
color temperature T1 and T2 from obtained colors i1 and i2 (Fig. 2.5). Let the two image
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)( 1Te 1i

s

)( 2Te 2i

Figure 2.5: Illustration of notations. Color temperatures T1 and T2 are estimated from
image chromaticities i1 and i2 taken under two blackbody illumination. Consequently,
surface chromaticity s can be calculated.

chromaticities be i1 = [ir1, ig1]t and i2 = [ir2, ig2]t. We can derive the following equations,
since the surface chromaticity is identical:

Θr(T′1,T
′
2) = ir1ΦR(T′1)ΦB(T′2) − ir2ΦR(T′2)ΦB(T′1) = 0 (2.10)

Θg(T′1,T
′
2) = ig1ΦG(T′1)ΦB(T′2) − ig2ΦG(T′2)ΦB(T′1) = 0 (2.11)

Surface-color estimation will be solved if T′1 and T′2 are specified from those equations.
Detailed derivations of Eqs. (2.10) and (2.11) are as follows. Since the surface

chromaticity is identical, the following equations can be derived from Eq. (2.1):

ir1/er1 − ir2/er2 = 0 (2.12)

ig1/eg1 − ig2/eg2 = 0 (2.13)

while Eqs. (2.7) and (2.8) can be converted as follows:

1/er = ΦR(T′)/krΦB(T′) (2.14)

1/eg = ΦG(T′)/kgΦB(T′) (2.15)

By substituting Eqs. (2.14) and (2.15) into Eqs. (2.12) and (2.13), Eqs. (2.10) and (2.11)
are obtained.

2.5 Solutions
We propose a stable method using bracketing [PFTV88], since Eqs. (2.10) and (2.11) are
difficult to solve by minimizing the square sum of Eqs. (2.10) and (2.11). This is due
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to the exponential character of the functions in those equations. The overview of the
algorithm is as follows.

1. First, we select the initial values of T′1 and T′2. We denote them as t′1 and t′2.

2. Assuming that t′1 is correct, we solve Eqs. (2.10) and (2.11) independently using
bracketing. Let the solutions be t′2r and t′2g.

3. If t′2r and t′2g are sufficiently similar to each other, we output t′1 and (t′2r + t′2g)/2.

4. Otherwise, we modify t′1 so that the difference between t′2r and t′2g decreases.
Again, t′1 can be found using bracketing.

5. Go back to 2.

In order to realize the above algorithm, we must clarify the two following points:

• How to solve Eqs. (2.10) and (2.11),

• How to determine t′1 that decreases the difference between t′2r and t′2g,

using bracketing technique.

Bracketing for Step2

The following shows how to solve Eq. (2.10). The same argument can be applied to Eq.
(2.11). Given an arbitrary T′1, Eq. (2.10) has a unique solution of T′2 on T′2 > 0 (under
the condition described below.) The solutions can be calculated by bracketing. The
initial brackets are automatically determined. They are derived from the shape of the
evaluation function Θr, which is illustrated in Figure 2.6. As the figure shows, Θr is
convex downward and has only one local minimum. It starts from zero and gradually
approaches infinity. Therefore, a solution of T′2 always exists and can be calculated by
bracketing. We can randomly select one side of the initial brackets, and find the other
side by going up or down the slope until the sign of Θr changes.

The shape of Θ∗ and the conditions for which those equations have solutions, are
derived from the following propositions.

1. If T′1 is positive, the function Θ∗ is convex downward.

2. Θ∗(T′1, 0) is zero for any T′1.
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Θr

0 T'2

Figure 2.6: The shape of the evaluation functionΘr, given an arbitrary T′1. T′2 that gives
Θr = 0 always exists and can be calculated by bracketing. We let the initial value of t′2
be one side of the brackets, and find the other side by going up or down the slope until
the sign of Θr changes.

3. If T′1 is positive, limT′2→∞Θ∗(T
′
1,T

′
2) = +∞.

4. If T′1 is positive, Θr = 0 has solutions on T′2 > 0, if and only if

ir2ΦB(T′1)/λR − ir1ΦR(T′1)/λB > 0. (2.16)

Similarly, Θg = 0 has solutions on T′2 > 0, if and only if

ig2ΦB(T′1)/λG − ig1ΦG(T′1)/λB > 0.

Brief proofs of those propositions are as follows.
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Proof of Proposition 1.
We show that the second derivative of Θr is positive at the extremum?D We usedΘr

for the proof, but the same argument can be done by using Θg. We differentiate Θr

by T′2.
∂Θr

∂T′2
=

ir1

λB
ΦR(T′1) exp(T′2/λB) − ir2

λR
exp(T′2/λR)ΦB(T′1)

From the last equation, T′2 which gives the extremum can be calculated.

T′2 =
λRλB

λR − λB

(
log

( ir2

λR
ΦB(T′1)

)
− log

( ir1

λB
ΦR(T′1)

))
(2.17)

According to the last equation, Θr has a unique extremum. From the continuity
of Θr as well as ∂Θr/∂T′2, Θr is convex upward or convex downward. We further
differentiate Θr by T′2.

∂2Θr

∂T′22

=
( 1
λB
− 1
λR

) ir1

λB
ΦR(T′1) exp(T′2/λB) +

ir1

λB

∂Θr

∂T′2

Since ∂Θr/∂T′2 is zero at the extremum,

∂2Θr

∂T′22

=
( 1
λB
− 1
λR

) ir1

λB
ΦR(T′1) exp(T′2/λB)

The last equation is positive because λB < λR. Thus,Θr is convex downward. Q.E.D.

Proposition 2.
Trivial. Q.E.D.

Proposition 3.
Trivial. Q.E.D.

Proof of Proposition 4.
We prove only the former part, but the latter can be proved similarly. From Prop.1,
Θr is convex downward. That is, the equation possibly has two solutions at most.
One of those solutions is zero because of Prop.2. Consequently, a solution on T′2 > 0
exists if the local minimum ofΘr exists on T′2 > 0. Such a condition can be written as
Eq. (2.16) from Eq. (2.17). A solution on T′2 > 0 certainly exists from Prop.3. Q.E.D.
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Bracketing for Step 4

Let us show how to determine t′1 that decreases the difference between t′2r and t′2g. If t′1
increases/decreases, t′2r − t′2g increases/decreases around the true solution as illustrated
in Figure 2.7. Therefore, again we can calculate the solutions by bracketing. The facts
are derived from the following proposition:

5. Let the true solutions be T̂′1 and T̂′2 for Eqs. (2.10) and (2.11). If T′1 increases/decreases
around them, T′2r − T′2g increases/decreases as long as T̂′1 > T̂′2.

In order to automatically determine the initial brackets, we need to clarify the shape
of the function where it crosses the zero point. The Taylor expansion of Eqs. (2.10) and
(2.11) are used for this purpose. Detailed derivation of Proposition 5 is as follows.

T'1

T'2r T'2g
_

0

Figure 2.7: The shape of T′2r − T′2g around the true solution. If T′1 increases/decreases,
T′2r − T′2g increases/decreases. Therefore, the solution can be calculated by bracketing.
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Derivation of Proposition 5. We derive the Taylor series of Θr about a point (t′1, t
′
2r),

Θr = Θr(t′1, t
′
2r) +

(
ir1ΦB(t′2r)
λR

exp(
t′1
λR

) − ir2ΦR(t′2r)
λB

exp(
t′1
λB

)
)
Δt′1

+

(
ir1ΦR(t′1)
λB

exp(
t′2r

λB
) − ir2ΦB(t′1)

λR
exp(

t′2r

λR
)
)
Δt′2r

whereΔt′1 = T′1− t′1, Δt′2r = T′2r− t′2r. We can simplify the last equation using Eq. (2.10),

Θr = ir1ΦR(t′1)ΦB(t′2r)(Hr(t′1)Δt′1 −Hr(t′2r)Δt′2r) (2.18)

where
Hr(t) =

exp(t/λR)
λRΦR(t)

− exp(t/λB)
λBΦB(t)

.

In a similar way, we derive the Taylor series of Θg about another point (t′1, t
′
2g).

Θg = ig1ΦG(t′1)ΦB(t′2g)(Hg(t′1)Δt′1 −Hg(t′2g)Δt′2g) (2.19)

From the last two equations, T′2r − T′2g against Δt′1 can be expressed as:

T′2r − T′2g =

⎛⎜⎜⎜⎜⎝ Hr(t′1)
Hr(t′2r)

− Hg(t′1)
Hg(t′2g)

⎞⎟⎟⎟⎟⎠Δt′1 + (t′2r − t′2g)

Around the true solutions T̂′1, T̂
′
2, the last equation becomes

T′2r − T′2g =
( Hr(T̂′1)

Hr(T̂′2)
− Hg(T̂′1)

Hg(T̂′2)

)
Δt′1. (2.20)

The following function

I(T′1,T
′
2) = Hr(T′1)Hg(T′2) −Hg(T′1)Hr(T′2) (2.21)

is obviously I(T′1,T
′
2) = −I(T′2,T

′
1). We confirmed that I(T′1,T

′
2) is positive if T′1 is larger

than T′2 by calculating every case from 2000K to 10000K with a 1K interval. Thus,
T′2r − T′2g is positive/negative if Δt′1 is positive/negative as long as T̂′1 > T̂′2.
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2.6 Experiments
Experiments with simulation and real data have been conducted to evaluate the ef-
fectiveness of the method. Differing from what we expected, the results showed that
although this method is a perfect vehicle for simulation data, it produces significant
errors with real data. Thorough investigation of the cause of errors indicates how
important the assumptions on both blackbody illuminations and narrow-band camera
sensitivities are to the method.

2.6.1 Simulation Data

The effectiveness of the proposed method is evaluated with simulation data. In particu-
lar, we checked the two following points: (1) Average estimation error using simulation
data. (2) Dependency on initial values.

The error was defined as the difference between estimated and true reciprocal
color temperatures. Reciprocal color temperatures were proposed by Judd[Jud33], in
which differences correspond more closely to equal perceptual color differences than
normal color temperatures. The unit is called “mired” (= 106K−1), and is defined as
Trec = 106/T. Empirically, the Just Noticeably Different (JND) chromaticity difference
is 5.5 mired [TW02, Jud33]. The range from 2500 K to 8500 K in color temperatures
corresponds to from 400 to 118 mired in reciprocal color temperatures.

(1) Estimation error with simulation data Methods We calculated the average esti-
mation error using seven kinds of blackbody illuminants and six reflectance patches.

Seven color temperatures were 2500, 3500, 4500, 5500, 6500, 7500, and 10000 in
Kelvin, which are shown in Figure 2.8 (a). Six reflectance patches were, as shown
in Figure 2.8 (b), “Blue,” “Green,” “Red,” “Yellow,” “Magenta,” and “Cyan” in the
GretagMacbeth ColorChecker, hereafter referred to as “Macbeth.” All the reflectance
data were obtained by measuring the spectrum of a color patch with a spectrometer
(Photo Research PR-650) under a known illuminant.

The total combination was 7C2 × 6 = 126. A camera sensitivity which is 1 at a
particular wavelength (red: 624 nm, green: 548 nm, blue: 480 nm), and is 0 at others
was used (shown in Figure 2.8 (c).)

Results The average estimation error was 1.64× 10−5 mired for T1, and 1.74× 10−5

mired for T2 as shown in Table 2.1. The estimation by the previous method [FFB95] is
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also shown for reference. The error converges to zero in all cases by using the proposed
method.

Table 2.1: The average estimation error in 126 experiments using simulation data. The
estimation error by the previous method [FFB95] is also shown for reference.

T1 Error T2 Error
Method (mired) (CIE LAB) (mired) (CIE LAB)

Proposed method 1.64×10−5 0 1.74×10−5 0
Previous method [FFB95] 5.11×10 8.5 5.52×10 9.2

(2) Dependency on initial values Methods We did our estimation 500 times with
different initial values but the same reflectance and illuminants and calculated the
average and the standard deviation of estimation error.

The color temperatures of illuminants were 3500 and 7500 in Kelvin. We used
“Red” reflectance of the Macbeth ColorChecker.

A camera sensitivity that is 1 at the wavelength (red: 624 nm, green: 548 nm, blue:
480 nm), and is 0 at others was used. Initial values were randomly and uniformly
distributed over the range of the true temperature ±1000 K.

Results The averages and the standard deviations of estimation error were 3.53×
10−6 mired and 2.18× 10−6 mired for T1, and 3.78× 10−6 mired and 2.35× 10−6 mired for
T2, as shown in Table 2.2.

The standard deviation is nearly the estimation accuracy, which is about 10−6 due
to the machine accuracy. Therefore, we conclude that initial values do not affect the
estimation. However, the result temperatures can be an impractical number such as
2 trillion Kelvin if the relation (for instance T1 > T2) is reversed in the initial values
(T1 < T2). In other words, initial values can be any numbers if the relation between T1

and T2 is retained.

2.6.2 Real Data

We conducted four sets of experiments to see if the method could work on real data.
In the first set of experiments, we tested our algorithm with various kinds of natural
illuminants and reflectances, and erroneous results were obtained.
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Figure 2.8: Ideal data used in the experiments; (a) seven kinds of blackbody illuminants;
correspoinding colore temperatures are 2500, 3500, 4500, 5500, 6500, 7500, and 10000
in Kelvin. (b) Six reflectance patches of GretagMacbeth ColorChecker used in the
experiments. (c) Ideal camera sensitivity.
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Table 2.2: The average and the standard deviation of estimation errors in 500 experi-
ments with different initial values.

T1 Error T2 Error
Parameter (mired) (mired)

Average 3.53×10−6 3.78×10−6

Std. dev 2.18×10−6 2.35×10−6

We presumed there are two causes of the error. One cause might have been the
failure of the blackbody radiation to accurately portray the actual illuminants. To
understand this problem, we conducted the second set of experiments and observed
how the violation of the blackbody assumption affects the estimation. We also tested
how different real spectra appear to blackbody radiations in the thrid set of experiments.
The other cause of error must have been the violation of the narrow-band sensitivity
assumption. We tested how it affects the estimation in the fourth set of experiments.

The following explains experiments that were conducted, and each focuses on: (1)
Estimation error on experiments with real data. (2) Error caused by the assumption of
blackbody illumination. (3) Difference between spectra of the blackbody radiation and
real spectra. (4) Error caused by the assumption of narrow-band sensitivity.

(1) Estimation error with real data Methods We calculated the average estimation
error using eight kinds of natural illuminants and six kinds of reflectance.

Eight illuminants were A, B, C of CIE standard illuminants and Judd daylight
phases D48, D55, D65, D75 and D100 [JMW64]; they are shown in Figure 2.9 (a). Six
reflectance were “Blue,” “Green,” “Red,” “Yellow,” “Magenta,” and “Cyan” of the
Macbeth ColorChecker, which are shown in Figure 2.9 (b).

The total combination was 8C2 × 6 = 168. Band-pass filters, MellesGriot 03FIV119,
03FIV111, 03FIV004, were used for camera sensitivity. Their full-width at half-maximum
was 10 nm, and their center wavelength were 620 nm, 532 nm, and 450 nm, for red,
green and blue channels. They are shown in Figure 2.9 (c).

Results The average estimation error was 3.67 × 103 mired for T1, and 1.17 × 104

mired for T2 as shown in Table 2.3. The erroneous results force us to think what the
substantial causes of those errors are. As stated in the beginning of this subsection,
there are two possible causes: the violations of the blackbody assumption and the
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narrow-band sensitivity assumption. The following experiments investigate how the
violations affect the estimation. We discuss the robustness of the method in Section 2.7.

Table 2.3: The average estimation error in 168 experiments using real data. The esti-
mation error by the previous method [FFB95] is also shown for reference. 18 results of
the previous method were excluded from the average CIE LAB error calculation, since
those estimates include negative values.

T1 Error T2 Error
Method (mired) (CIE LAB) (mired) (CIE LAB)

Proposed method 3.67×103 44.2 1.17×104 42.0
Previous method [FFB95] 7.97×10 17.0 8.43×10 18.0

(2) Error caused by the blackbody assumption Methods We plotted the change of
estimation error against the error on illumination chromaticity. Let Δer and Δeg be the
error on illumination chromaticity. One illumination chromaticity was chosen, and Δer

and Δeg were added to it. Δer and Δeg were changed from 0 to 1 % by 0.1 %.
The illuminants’ color temperatures were 3000 and 9000 in Kelvin. The reflectance

used was “Dark skin,” the top left brown reflectance of the Macbeth ColorChecker.
Camera sensitivity is 1 at these wavelengths: red: 624 nm, green: 548 nm, blue: 480
nm, and is 0 at others.

Results ΔT1 andΔT2 in Figure 2.10 show the estimation errorΔT1 andΔT2 against
the percentage of the modeling error Δer and Δeg of illumination colors. The unit of the
horizontal axis is %, and that of the vertical axis is mired. Figure 2.10 also shows the
line of Just Noticeably Different chromaticity difference (5.5 mired). The figure shows
that the modeling error should be under about 0.1% if we want the estimation error to
be lower than 5.5 mired.

(3) Difference between blackbody and real spectrum Methods We calculated the
difference between blackbody illuminants and spectra of the CIE standard illuminants
(A,B,C) and Judd’s daylight phases (D48, D55, D65, D75, D100). First, we searched the
blackbody color temperature whose color is the nearest to the real illuminant. Then we
calculated the color difference between the two. The value that represents the difference
is defined as (chromaticity of the real illuminant − chromaticity of the searched color
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Figure 2.9: Real data used in the experiments; (a) eight illuminants’ spectra: A, B, C
of CIE standard illuminants and Judd daylight phases D48, D55, D65, D75 and D100.
Note the difference between the data shown in Figure 2.8 (a). (b) Six reflectance patches.
(c) Camera sensitivities. They are the sensitivities of band-pass filters: MellesGriot
03FIV119, 03FIV111, 03FIV004.
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temperature)/(chromaticity of the searched color temperature). The sensitivity which
is 1 at 620 nm (red), 532 nm (green), 450 nm (blue) and 0 at others was used.

Results Table 2.4 shows the difference between the color of blackbody and real
spectra. Except for CIE standard illumination A, all illumination has more than 0.1%
difference. Therefore, the proposed method would produce significant errors when
those illuminants are used.

Table 2.4: Difference between blackbody and real spectra. Δer and Δeg are the error
percentage of the illuminant’s color to the nearest blackbody color. Note that the
difference is defined in the color space of the sensitivity used in this experiment.

Δer Δeg Nearest T
Illuminants [%] [%] [K]

CIE A 0.0029 -0.0165 2856
CIE B 2.6368 -4.6126 5087
CIE C 5.5397 -6.1154 7451
Judd D48 -1.0788 2.0506 4818
Judd D55 -1.0617 1.6286 5584
Judd D65 -0.9358 1.1519 6698
Judd D75 -0.7690 0.8096 7842
Judd D100 -0.4606 0.3816 10852

(4) Error caused by the narrow-band assumption Methods We made a virtual sen-
sitivity with variable bandwidth by using the Gaussian function as shown in Figure
2.11. The σ of the Gaussian function was the parameter to change the bandwidth. The
center wavelengths were red: 620 nm, green: 532 nm, blue: 450 nm.

Color temperatures of illuminants were 4000 and 9000 in Kelvin. For the reflectance,
we used “Dark skin,” “Light skin,” and “Green” of the Macbeth ColorChecker, which
are shown in Figure 2.12 denoted by “Dark skin,” “Light skin,” and “Green.”

Results Figure 2.13 shows the estimation error against the bandwidth of a camera
sensitivity. The more the bandwidth (the standard deviation σ of a Gaussian function)
grows, the larger the estimation error becomes. The speed of the error growth depends
on reflectance. In the case of “Green” or “Light skin” reflectance, the estimation breaks
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down when the σ of Gaussian function is larger than 5 nm, while in the case of “Dark
skin,” the estimation performs well until the σ becomes 20 nm.

If a reflectance varies linearly around wavelengths of a camera sensitivity, the inte-
gration in Eq. (2.3) becomes a multiplication by a constant number. Thus, the modeling
error by the narrow-band assumption can be ignored. Otherwise, the modeling error
affects the estimation; as Figure 2.12 shows, the reflectance “Dark skin” varies linearly
around wavelengths of a camera sensitivity compared to “Green” and “Light skin.”
When σ is set to 5 nm, half of the test data set provided good results within the error of
5.5 mired.
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Figure 2.13: The plot of estimation error against the violation of the narrow-band
sensitivity assumption. The more the bandwidth of a camera sensitivity (the standard
deviation σ of a Gaussian function) grows, the larger the estimation error becomes.
Three reflectances “dark skin,” “light skin,” and “green” were tested. The speed of the
error growth depends on reflectance.
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2.7 Discussion
Assuming illumination to be the blackbody radiation made the estimation sensitive
to the modeling error. There are two other ways to express illumination by a one-
dimensional parameter. One is to use Wien’s approximation for blackbody radiation
and the other is to use Finlayson et al.’s straight line approximation. The blackbody
illumination model can be compared to those models. Wien’s approximation to the
Planck formula can be expressed as:

M(λ,T) � c1λ
−5 exp(c2/λT)−1. (2.22)

From the last equation, we can derive the following relation [FH01, MO00]:

er = meA
g (2.23)

where e = [er, eg]t is an illumination chromaticity, A = ( 1
λR
− 1
λB

)/( 1
λG
− 1
λB

) and m =
λ5A

G

λA
Rλ

5A−5
B

are constant numbers characterizing a camera. If we substitute the equation into
Eqs. (2.12) and (2.13), we obtain two redundant equations and cannot determine the
solutions for each color temperature. The Planck formula and Wien’s approximation
are very similar when the color temperature is low. Therefore, estimation of our method
would be unstable if the two color temperatures of input illumination are both low.

Finlayson et al. assumed that natural daylight illumination falls on a line [FFB95]
in an inverse-chromaticity space. Namely, they assumed the following relation:

1/eg = m(1/er) + c. (2.24)

Note that the last equation does not appear in the reference[FFB95] but it expresses its
idea. The paper[FFB95] assumes that a set of all diagonal matrices mapping chromatic-
ities under arbitrary illumination (er, eg) to canonical illumination (ecanonical

r , ecanonical
g )

appears linear in the 1st-2nd diagonal matirx component space. In other words, it as-
sumes f (x) = m′x+ c′, where x and f (x) correspond to the first and the second diagonal
matrix component ecanonical

r /er and ecanonical
g /eg, respectively. We can derive Eq. (2.24),

since both ecanonical
r and ecanonical

g could be any constant numbers, they can be replaced by
(1, 1).

If we substitute the last equation into Eqs. (2.12) and (2.13), we can solve all the
unknown parameters explicitly. (This paper was inspired by this discovery.) The
gradient m and the intercept c in Eq. (2.24) are constant numbers calculated by the
least-square fitting to the data of CIE standards and Judd’s daylight phases. The
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difference between those illumination data points and the straight line is shown in
Table 2.5. Considering the results shown in Table 2.3, the previous method, Finlayson
et al.’s straight line model, is the most successful, and we think that this is the only
model for solving color constancy with illumination constraint. However, as shown in
Tables 2.3 and 2.5, even the straight line model cannot help suffering from the effect of
the modeling error.

Table 2.5: Difference between real illumination colors and colors calculated from the
straight line illumination model. Δer andΔeg are the error percentage of the illuminant’s
color to the straight line color model. Note that the difference is defined in the color
space of the sensitivity used in Table 2.4.

Δer Δeg

Illuminants [%] [%]

CIE A 6.9829 -7.2289
CIE B -1.9758 4.0070
CIE C -1.1578 2.7347
Judd D48 -0.6929 1.3720
Judd D55 -0.4382 0.9421
Judd D65 -0.0239 0.0553
Judd D75 0.3781 -0.9191
Judd D100 1.0385 -2.6985

Thus, the comparison of one-dimensional models of the illumination shows that
illumination color constraint can work itself as long as there is no modeling error.
However, the modeling error cannot be ignored and must be considered in order
to perform stable and accurate color constancy. We conclude that both illumination
constraint and other rich information such as assumptions on reflectances should be
taken into account for a robust estimation.

2.8 Summary
We proposed a new method to solve color constancy problem by exploiting black-
body radiation. Based on the approach, we examined and obtained the results in the
following four points:
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1. Our method performed considerably well in the experiments with simulation
data.

2. To achieve the accuracy within the error of Just Noticeable Difference, the mod-
eling error between the blackbody radiation and the illuminants should be lower
than 0.1%.

3. Though the method uses initial values, the results do not depend on how to
choose them.

4. Most illuminants have larger than 0.1% difference from the blackbody radiation.

The discussion about the robustness of our method and the possibility of solving
color constancy using a one-dimensional model of the illumination shows that much
information such as assumptions about reflectances should be taken into account with
the constraint on illumination to achieve stable and accurate color constancy.
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Chapter 3

Robust Framework to Estimate Surface
Chromaticity from Illumination
Changes

The appearance of surface colors of an object is both deceptive and inconsistent. Color
sensors do not see the true color of the surface because its appearance is significantly
altered by varying illumination colors. To derive the actual and consistent surface
colors, we have to estimate and then remove the illumination colors. This chapter
proposes a method that stabilizes illumination-color estimation by using the idea of a
finite illumination color space. It is a finite line where every illumination color exists.
By restricting the estimated illumination colors to be on this line, the method succeeds
in making the estimation more robust and accurate. We have shown the difficulty of
estimating illumination colors in the previous chapter. Thus, the method presented
here would be a strong alternative for solving the problem. Experiments show the
effectiveness of our method.

We also show a method to find two differently illuminated regions in a single image.
This would make the proposed method applicable to a single image. The technique
we introduce utilizes shadowed and non-shadowed regions by using physics-based
knowledge of outdoor illuminations. Experimental results with real outdoor images
show the effectiveness of our method.
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3.1 Introduction
Reflected light from an object is the product of surface spectral reflectance and illu-
mination spectral power distribution. Consequently, illumination color significantly
determines the object’s color appearance. When the illumination color changes, the ob-
ject color appearance changes accordingly. This leads to many problems in algorithms
of computer vision. An example is shown in Figure 1.2; it shows that the illumination
change in creating a realistic model causes the color appearance of an object to be in-
consistent. Recovering the surface’s actual color requires a method that discounts the
inconsistencies caused by variations in illumination.

This chapter aims to estimate and to remove the illumination color of outdoor
scenes, and to accurately estimate the surface color of the object. In real outdoor
images, the presence of input errors is inevitable. Such errors include measurement
errors caused by sensor noises and systematic errors caused by variation of the medium
(air), assumption of simple reflection models, interreflection, and imperfect paintings
of the object. Outdoor illumination colors may also include a small error from the
assuming color model. The previous methods [D’Z92, FFB95] would produce large
errors when those errors are included in the input images; details of the related works
for estimating surface colors are summarized in 2.1.1. This paper aims to minimize the
effect of those errors by calculating the most likely values of error-less input. We have
also analyzed those errors and identified the situations in which we could robustly
perform the estimation. Experiments on real images show the effectiveness of the
method.

Another problem to deal with in outdoor images is the presence of shadows. An
image often includes both shadowed and non-shadowed regions. Images with shad-
ows cannot be correctly handled by the previous methods [BF97, FHH01, TW02] be-
cause those methods require uniformly colored illumination in images. Previously
researchers (for example, [FF94]) have found that shadowed regions are illuminated
by sky light, while non-shadowed regions are illuminated by a combination of sky
light and sunlight. This paper proposes a method that can handle them by utilizing
this difference of illuminations in shadowed and non-shadowed regions. It estimates
illumination colors for both sunlight and sky light and then removes them. Two col-
ors from shadowed and non-shadowed regions are extracted automatically by using
the expectation-maximization (EM) algorithm. Illumination colors are assumed to be
uniform inside each region.
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3.2 Assumptions and Definitions
This paper assumes the following: (1) Linearity assumption: The output of camera re-
sponse is linear to the flux of incoming light intensity. (2) Narrowband assumption: The
camera sensitivity function is narrowband and known. (3) Straight-line assumption:
The illumination color can be approximated by a straight line in an inverse-chromaticity
space. (4) Two-region assumption: Target scenes can be segmented into two differently
illuminated regions, and each region is lit by a uniformly colored light. (5) Common-
region assumption: A target object exists in the scene under the two-region assumption,
and the target surface color exists in both regions in the scene. (6) Non-interreflection
assumption: The diffuse interreflection is negligible.

The linearity and narrowband assumptions are common in many color constancy
algorithms. The two-region assumption is valid when the target scene includes a region
lit by strong direct sunlight and a hard-shadowed region.

Image Formation

According to the linearity assumption, the image intensity of diffuse objects taken by a
digital color camera can be described as:

Ic =

∫
Ω

S(λ)E(λ)qc(λ)dλ (3.1)

where Ic is the sensor response (RGB pixel values), S(λ) is the surface spectral reflectance,
E(λ) is the illumination spectral power distribution, qc is the three-element vector
of sensor sensitivity, and index c represents the type of sensors (R, G, and B). The
integration is done over the visible spectrum (Ω). In this model we ignore camera noise
and gain. By the narrowband assumption that follows the Dirac delta function, Eq.
(3.1) can be simply rewritten as:

Ic = ScEc (3.2)

where Sc = S(λc) and Ec = E(λc). Camera sensitivity can be obtained using a monochrom-
eter and a spectrometer [VFTB97]. If camera sensitivity cannot be approximated by
the Dirac delta function (narrowband sensor), we could apply camera sharpening al-
gorithms proposed by [FDF94, BCF01].
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Chromaticity

Following [FFB95], this paper defines chromaticity (or specifically image chromaticity)
as:

ir =
IR

IB
, ig =

IG

IB
(3.3)

The reason for using Eq. (3.3) is because the relation of Eq. (3.2) still holds in this color
space:

ic = scec c = {r, g} (3.4)

where sc and ec correspond to the chromaticities of Sc and Ec. We call sc surface
chromaticity and ec illumination chromaticity. In Eq. (3.3), either the red or green
channel may be alternatively used as the denominator if the intensity of the blue
channel is considerably low.

3.3 Surface Color Estimation
The problem of color constancy can be considered, from Eq. (3.4), as the problem of
estimating the values of ec and sc given the value of ic, where the index is c = {r, g}.
However, estimating four unknown values (er, eg, sr, sg) from two equations is mathe-
matically ill-posed. Therefore, we add constraints to increase the number of equations
and make them solvable. First, we increase the number of image chromaticities: i1

c and
i2
c are taken from a single surface chromaticity (sc) but with different illuminations (e1

c

and e2
c ):

i1
r = sre1

r , i2
r = sre2

r (3.5)

i1
g = sge1

g , i2
g = sge2

g (3.6)

Four equations with six unknowns (sr, sg, e1
r , e1

g, e2
r , e2

g) can be obtained.
Second, we model the relation between er and eg by utilizing the knowledge of nat-

ural (outdoor) illumination distributions. Regarding Finlayson et al.’s method [FFB95],
which assumes that the correlation can be approximated as a straight line in the inverse-
chromaticity space, we can write the relation of (1/er, 1/eg) as:

1
eg
= m

1
er
+ c (3.7)

We call this line an Illumination line for convenience. Having introduced Eq. (3.7), we
have six equations with six unknowns and thus the set of the six equations becomes



3.4. The Effect of Input Errors 47

solvable. Note that the last equation does not appear in the reference [FFB95], but it
can be simply derived from it. The gradient m and the intercept c are constant numbers
calculated by the least-square fitting to the data of CIE (International Commission on
Illumination) standard illuminants (A, B, C) and Judd et al.’s daylight phases (D48,
D55, D65, D75, D100).

Fig. 3.1 (a) shows that those illuminants roughly form a line in the inverse-
chromaticity space. The sensitivity used to calculate the color space is shown in Fig. 3.1
(b). It is the sensitivity of SONY-DXC9000 which we used for our experiments. We can
predict that daylight illuminants would also form a line in other inverse-chromaticity
spaces as well, such as in inverse 1931 CIE chromaticity diagram [FFB95]. As summa-
rized in 2.1.2, Planckian locus could approximate the distribution of daylight colors.
Since the locus can be approximated by a line in a certain range, we can predict that
daylight colors would be approximated by a line in any inverse-chromaticity spaces.

Solutions of the equations can be derived as follows. By substituting Eq. (3.7) into
Eqs. (3.5) and (3.6), the following two linear independent equations can be obtained:

sg =
(
m

i1
g

i1
r

)
sr + i1

gc (3.8)

sg =
(
m

i2
g

i2
r

)
sr + i2

gc (3.9)

Each equation means an expanded Illumination line whose r axis is scaled by the factor
of ir and whose g axis is scaled by the factor of ig. The surface color (sr, sg) becomes the
intersection of two generated lines.

sr =
i1
r i2

r (i2
g − i1

g)

i2
r i1

g − i1
r i2

g

c
m

(3.10)

sg =
i1
gi2

g(i2
r − i1

r )

i2
r i1

g − i1
r i2

g
c (3.11)

3.4 The Effect of Input Errors
While surface color estimation using the straight-line assumption can theoretically
solve the problem, in practice we observe that it is significantly sensitive to input
errors. Assuming that input chromaticities are affected by errors, two generated lines
in Eqs. (3.8) and (3.9) will be incorrect. As a result, the intersection, the surface color
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Figure 3.1: (a) Typical daylight data roughly form a line in an inverse-chromaticity
space. Crosses: Daylight data (CIE standards and Judd et al.’s daylight phases). Line:
Finlayson et al.’s illumination line obtained by the least-square fitting. The Planckian
locus is also shown for comparison. (b) The sensitivity of SONY-DXC9000. Each
chromaticity in (a) was calculated in the color space of it.
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estimated, will deviate significantly from the correct one, especially when the gradients
of two lines are similar.

This section examines possible input errors and their effects on surface color es-
timation. We analytically derive the average amount of input errors and discuss the
condition in which the estimation could endure such input errors.

3.4.1 Input errors

Error model

Sensor output includes noises and systematic errors. Sensor noises include: read,
quantization, dark current, and shot noises. They can be reduced by averaging input
values from increasing the number of pixels used, or by using the High Dynamic Range
imaging technique.

Images of outdoor scenes also include systematic errors for surface color estima-
tion. Those systematic errors come from the discrepancy between the reality and the
assumption: (1) the straight-line assumption for outdoor illumination colors, (2) the
narrowband assumption that is only an approximation for general cameras, (3) the
effect of the participating medium (air), (4) simple reflection models (objects may not
be entirely diffuse), (5) interreflection, and (6) imperfect paintings or dust on surfaces.
These systematic errors cannot be reduced by using such averaging techniques.

Among those errors, we focused on errors caused by straight-line and narrowband
assumptions. This is because those are the most dominant factors among them. Con-
sidering the errors, an actual chromaticity ic deviates from an ideal chromaticity îc, with
an error Δic.

ic = îc + Δic c = {r, g}. (3.12)

Note that the effect of the straight-line and narrowband assumptions cannot be sepa-
rately treated. The straight line already includes small error from the ideal illumination
line defined in a narrowband camera’s color space, because the illumination line is com-
puted in a color space of a camera that has rather wide sensitivity.

The ideal chromaticity îc can be written as

îc = ŝcêc, (3.13)

where êc is the ideal illumination chromaticity that lies on the illumination line, and ŝc
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is an ideal surface chromaticity, a surface color under pure white illumination;

ŝc =

∫
ω

S(λ)qc(λ)dλ. (3.14)

where the total power of the sensitivity qc(λ) is supposed as follows;
∫
ω

qc(λ)dλ = 1.0.
An input error can be defined as the difference between the actual ic and the ideal ŝcêc

image chromaticities.

Error simulation

Using the error models defined, we calculated actual and ideal image chromaticities of
surfaces with various natural illuminations. Examples plotted in inverse-chromaticity
space according to six surface colors are shown in Figures 3.2, 3.3 and 3.4. The crosses
are the set of actual chromaticities ic calculated from a surface color with different
illuminations whereas the lines are the set of ideal chromaticities îc. The values ic and
îc were calculated using Eq. (3.1) and ŝcêc, respectively.

Data used for surface reflectance, illumination spectra, and camera sensitivity are
listed in Table 3.1. Here, we have conducted simulations of image measurements by
SONY DXC-9000, of which filtering characteristics are shown in Figure 3.1 (b), using 18
different kinds of reflectance patches in the Macbeth color checker, under 12 blackbody
and 7 CIE standard illuminants.

Most actual image chromaticities include small errors from ideal values, as shown
in Figures 3.2, 3.3 and 3.4, because 12 blackbody and 7 CIE standard illuminants in
Table 3.1 do not strictly follow the straight line, and the camera sensitivity shown in
Figure 3.1 (b) is not sufficiently narrow. Furthermore, it is difficult to predict the error
value Δic from the input value ic, as shown in Figures 3.2, 3.3 and 3.4.

Table 3.1: Data used to simulate actual and ideal image chromaticities.

Number of
Data Details samples

Reflectance Reflectance of Color Checker (GretagMacbeth) 18
Illuminants Blackbody illuminants (3500K-12000K) 12

CIE standard illuminants (B,C,D48-D100) 7
Camera sensitivity SONY DXC-9000 (Shown in Figure 3.1 (b)) 1
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Figure 3.2: Simulated image chromaticities under illumination change: Actual (crosses)
and ideal (lines) chromaticities in inverse-chromaticity space according to (a) Blue,
(b) Green, (c) Red, (d) Yellow, (e) Magenta, and (f) Cyan reflectances with various
illuminations; the details of data used for this simulation are shown in Table 3.1. Most
actual image chromaticities (ir, ig) include a small error (Δir,Δig) from ideal values (îr, îg)
due to the straight-line and the narrowband assumptions. While it is difficult to predict
an error value from an input value.
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(a) Dark skin. (b) Light skin.
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Figure 3.3: Other examples of simulated image chromaticities under illumination
change: Actual (crosses) and ideal (lines) chromaticities according to (a) Dark skin,
(b) Light skin, (c) Blue sky, (d) Foliage, (e) Blue flower and (f) Bluish green.
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Figure 3.4: Other examples of simulated image chromaticities under illumination
change: Actual (crosses) and ideal (lines) chromaticities according to (a) Orange, (b)
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value was 0.0496, and the mode was 0.027. We also tested the distributions with Nikon
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numbers predict that SONY DXC-9000 and Nikon D1 will produce similar algorithm
performance.

Total error approximation

The surface color estimation uses four input values i1
r , i1

g, i2
r , and i2

g that may include
errors. To deal with the four values at once, we approximate that the sum of the four
input error values Dinput affects the estimation error values;

Dinput ≡
∣∣∣∣∣∣∣
⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
Δi1

r

î1
r

∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
Δi1

g

î1
g

∣∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎠ + n

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
Δi2

r

î2
r

∣∣∣∣∣∣ +
∣∣∣∣∣∣∣
Δi2

g

î2
g

∣∣∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣ (3.15)

where n is 1.0 when the sign of Δi1
r is equal to that of Δi2

r and is −1.0 otherwise. The n
is introduced because either Δi1

r and Δi2
r or Δi1

g and Δi2
g cancel the effect of each other

when their signs are equal.
The distribution of Dinput that are calculated from the data in Figures 3.2, 3.3 and

3.4 is illustrated in Figure 3.5, where the horizontal and vertical axes represent Dinput

and the number of samples, respectively. The average value of Dinput was about 0.05.
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Table 3.2: The values of estimation error rate when the inputs include errors.

Error rate in r channel Error rate in g channel
Input Δsr/sr Δsg/sg

i1
r = î1

r + Δi1
r

Δi1r
î1r

1

1−
⎛⎜⎜⎜⎜⎝1+Δi1r

ˆi1r

⎞⎟⎟⎟⎟⎠ e1
r /e

1
g

e2
r /e

2
g

Δi1r
î1r

1

1−
⎛⎜⎜⎜⎜⎝1+Δi1r

ˆi1r

⎞⎟⎟⎟⎟⎠ e1
r /e

1
g

e2
r /e

2
g

î1r
i1g

i2g−i1g

i2r−î1r

i1
g = î1

g + Δi1
g −Δi1g

î1g

1⎛⎜⎜⎜⎜⎜⎝1+
Δi1g

ˆi1g

⎞⎟⎟⎟⎟⎟⎠−
e1
r /e

1
g

e2
r /e

2
g

i2g
i2r

i2r−i1r
i2g−î1g

−Δi1g

î1g

1⎛⎜⎜⎜⎜⎜⎝1+
Δi1g

ˆi1g

⎞⎟⎟⎟⎟⎟⎠−
e1
r /e

1
g

e2
r /e

2
g

i1r
î1g

i2g
i2r

3.4.2 The effect of input errors on surface color estimation

When the input chromaticities include errors, two generated lines, Eqs. (3.8) and (3.9),
will be incorrect. As a result, the intersection, the surface color estimated, will deviate
significantly from the correct one, especially when the gradients of two lines are similar.

This can be shown in a mathematical way. The surface chromaticity sr is given as in
Eq. (3.10). For instance, assume that an image chromaticity inlcludes an error Δi1

r from
an ideal value î1

r , then the estimated surface chromaticity will deviate from the correct
value sr to sr + Δsrr.

sr + Δsrr =
(î1

r + Δi1
r )i2

r (i2
g − i1

g)

i2
r i1

g − (î1
r + Δi1

r )i2
g

c
m
. (3.16)

Then, the error rate Δsrr/sr can be calculated as follows;

Δsrr

sr
=
Δi1

r

î1
r

1

1 −
(
1 + Δi1r

î1r

)
e1

r /e1
g

e2
r /e2

g

(3.17)

We summarize those error rate in Table 3.2. Each row in Table 3.2 provides the
effect from each channel. Deriving from Table 3.2, the estimation error rate of Δsrr/sr

becomes;
Δsrr

sr
≈ Δi1

r

î1
r

1(
1 − e1

r /e1
g

e2
r /e2

g

) = Δi1
r

î1
r

W (3.18)

where we assumed 1 + Δi1
r/î1

r ≈ 1.
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W in Eq. (3.18) increases as the color temperature difference between two illu-
mination decreases. The actual numerical values of W are plotted in Figure 3.6. The
horizontal and vertical axes mean the color temperature difference 4 and the value of W,
respectively. As shown in Figure 3.6, W is always larger than 1.0, and thus, it magnifies
the input error for the estimation. Note that we can approximate 1 + Δic/îc ≈ 1. Then,
all the second terms of the equations in Table 3.2 can be approximated as W. Namely,
W equally affects all input errors, Δic.
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Figure 3.6: We simulated the actual value of W, which affects the surface chromaticity
estimation. W is always larger than 1.0, and thus, it magnifies the input error for the
estimation. The sensitivity shown in Figure 3.1 (b) was used to calculate the illumination
chromaticity in this simulation.

3.4.3 Decreasing the effect of input errors

We have conducted experiments of surface color estimation using the straight-line
method [FFB95], and plotted the estimation error against the multiplication of Dinput

4 The unit of color temperature difference is 106/K =mired (microreciprocal degrees). Two-
hundred-mired difference corresponds to the difference between 3300K and 10000K, which
covers the possible range of outdoor illumination colors.
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and W; i. e. , the sum of the input error values and the factor that magnify the input
error. The result is shown in Figure 3.7.

As illustrated in Figure 3.7, the estimation error increases approximately linearly
against DinputW;

(Estimation error value) ∝ DinputW (3.19)

In Figure 3.7, the horizontal and vertical axes are DinputW and the color difference
between the estimated e1

est and the true e1
true illumination colors in CIE LAB space,

respectively. CIE LAB space is a color space in which the distance corresponds to the
visual importance in human perception, and can be computed via simple formulas from
the CIE 1931 XYZ space [WS00]. We used CIE LAB space to evaluate the estimation
error in the system of human perception. Examples of CIE LAB colors are shown in
Figure 3.8. From the figure, we decided that the error in surface/illumination estimation
should be less than 10.0 in CIE LAB color space.

In order to suppress the estimation error value under 10.0 CIE LAB errors, Figure
3.7 indicates that the value of DinputW needs to be less than 0.20. With respect that the
average value of Dinput is about 0.05, as stated in 3.4.1, the preferable color temperature
difference between two illumination colors should be more than 100 mired, W ≤ 4,
according to Figure 3.6.

As we mentioned in Section 3.4.1, it is difficult to predict an input error value
Δic from an image chromaticity ic. In order to minimize the estimation error under
the presence of input errors, color temperature difference between two illuminations
is preferred to be as large as possible (more than 100 mired). However, the color
temperature difference during a day is not likely to be more than 100 mired. We
have measured daylights in Tokyo on a sunny day, 31st January in 2007. The reddest
was observed at sunset, when the measuring device was facing the sun direction; the
correlated color temperature was 260 mired. The bluest was 150 mired at meridian
passage and at sunset, when the device was against the sun; the maximum difference
was 110 mired. The difference is mostly less than our recommended color difference,
100 mired. Hence, a method to detect and reduce the input errors is necessary.
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Figure 3.8: CIE LAB color examples. The value of L* is uniform in the figure. From the
figure, we decided that the error in surface/illumination estimation should be less than
10.0 in CIE LAB color space.
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3.5 Proposed method I: Robust Framework
We propose a method for detecting the estimation error and reducing it by utilizing the
finite range of the illumination color space. We can define the possible range of color
temperature for outdoor illumination. Then, the plausible solutions of illumination
colors are on the specific line segment along the Illumination line. This line segment
provides a constraint to examine the soundness of the solution.

If the estimated illumination chromaticities are outside of the defined line segment,
the estimated chromaticities contain errors. The estimation error is influenced by input
errors; the method makes an attempt to correct the input error. Specifically, it chooses
one of four input chromaticity values (i1

r , i1
g), (i2

r , i2
g) and adjusts the chromaticity value.

Each procedure of the whole algorithm is as follows:

1. Estimate illumination color from the Illumination line segment.

2. If the estimation includes no error,⇒ terminate the process.

3. Otherwise,⇒ select one of the image chromaticity values and adjust it.

4. Do the illumination estimation once again with the new adjusted chromaticities.

The details of each procedure are explained in the following subsections; Subsections
3.5.1, 3.5.2, 3.5.3 and 3.5.4 are about the procedures 1, 2, and 3, respectively.

3.5.1 Finite range of outdoor illumination

Since the possible range of outdoor illumination colors is finite (assuming that the
illumiation follows blackbody radiator), the Illumination line is actually a line segment
in the real world. This range of color temperatures varies from approximately 3500 K
(286 mired) to 7500 K (133 mired) according to the data that we measured in Tokyo,
Japan. We determined the gradient and the intercept of the line by using the least
square fitting to the data of CIE A, B, C and Judd’s daylight phases D48, D55, D65, D75
and D100. The range of the line was determined by the range of color temperatures,
3500 to 7500 in Kelvin.

As a consequence of defining the line segment, the two lines generated by Eqs.
(3.8) and (3.9) become two line segments. The surface color is the intersection of those
line segments. The important point is that when the intersection divides a line segment in
p : 1 − p, the illumination color e1 = {e1

r , e1
g} divides the Illumination line segment in p : 1 − p,
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as illustrated in Figure 3.9. Let one line segment generated from i1 = {i1
r , i1

g} be Line 1,
and the other line segment generated from i2 be Line2. When the intersection s = {sr, sg}
internally divides Line 1 in p : 1 − p, the illumination color e1 would be the point that
divides the Illumination line segment in p : 1 − p.

Similarly, when the intersection s internally divides Line 2 in q : 1− q, the illumina-
tion color e2 would be the point that divides the Illumination line segment in q : 1 − q.
If the intersection does not exist on both lines, we could consider that the estimation
contain errors.

This can be proved as follows. From Eqs. (3.5) and (3.6),⎡⎢⎢⎢⎢⎣ sr

sg

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ i1

r 0
0 i1

g

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ 1/e1

r

1/e1
g

⎤⎥⎥⎥⎥⎦ (3.20)

⎡⎢⎢⎢⎢⎣ sr

sg

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ i2

r 0
0 i2

g

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ 1/e2

r

1/e2
g

⎤⎥⎥⎥⎥⎦ . (3.21)

Namely, Eq. (3.7) of the Illumination line (Figure 3.9, right) can be converted to Eq.
(3.8) of a line (Figure 3.9, left, Line 1) by a simple scaling as expressed in Eq. (3.20).
Scaling does not change the ratio of internal division. Thus, when the intersection s
internally divides Line 1 in p : 1 − p, the illumination color e1 would be the point that
divides the Illumination line in p : 1 − p.

3.5.2 Detecting the Estimation error

The implementation of detecting the estimation error is as follows. Suppose that we
generate a line segment from an image chromaticity, and let the coordinates of its start
and end points be (l1

rmin, l1
gmin) and (l1

rmax, l1
gmax). Let the other line segment’s start and

end points be (l2
rmin,l2

gmin) and (l2
rmax,l2

gmax). The coordinate of the intersection point is (sr,
sg). The intersection point exists on both line segments if and only if,

l1
rmin ≤ sr ≤ l1

rmax and (3.22)

l2
rmin ≤ sr ≤ l2

rmax. (3.23)

The above condition may be rewritten as follows by using the g-coordinate.

l1
gmin ≤ sg ≤ l1

gmax and (3.24)

l2
gmin ≤ sg ≤ l2

gmax (3.25)

We can determine whether the estimation has an error or not using either the equations
(3.22) and (3.23), or (3.24) and (3.25).
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Figure 3.9: Lines 1 and 2 are generated by i1 and i2. When the intersection s divides
Line 1 in p : 1 − p, the light color e1 divides the Illumination line in p : 1 − p.
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3.5.3 Correcting the Error of Input Image Chromaticity

‘The following describes a method to reduce the estimation error by correcting the
input error. When the intersection does not exist on both line segments, the estimation
must have failed because of input errors. Therefore, the method selects one of the input
image chromaticities and adjusts it so that the intersection will be on both lines. Since
an input image chromaticity determines the gradient and the intercept of the generated
line, it can change the position of the intersection.

Input image chromaticities consist of the four following values i1
r , i1

g, i2
r , and i2

g, but
we only adjust one of them. If we allow two values to change, one can move the
intersection to an arbitrary position in many ways. How to select one from four values
is explained in the next subsection.

The correction value can be constrained using Eqs. (3.22) and (3.23), or (3.24) and
(3.25). We can assume that i2 is redder, or has a lower color temperature, than i1

without loss of generality. When the value i2
g is selected, for instance, Eqs. (3.22) and

(3.23) determine the range of possible ĩ2
g value. By substituting Eq. (3.10) into Eqs.

(3.22) and (3.23), the range for the adjusted value ĩ2
g can be calculated:

i1
g

i2
r (l∗rmin

m
c + i1

r )

i1
r (l∗rmin

m
c + i2

r )
≤ ĩ2

g ≤ i1
g

i2
r (l∗rmax

m
c + i1

r )

i1
r (l∗rmax

m
c + i2

r )
where ∗ = {1, 2}

The current value i2
g will be adjusted to the nearest ĩ2

g that satisfies the last equation.
In the case where we select i2

r for adjustment, the range for ĩ2
r can be calculated in a

similar way.

i1
r

i2
g(l∗gmax

1
c − i1

g)

i1
g(l∗gmax

1
c − i2

g)
≤ ĩ2

r ≤ i1
r

i2
g(l∗gmin

1
c − i1

g)

i1
g(l∗gmin

1
c − i2

g)
where ∗ = {1, 2}

where it assumes l∗gmin
1
c − i2

g > 0.

3.5.4 Selecting the Input Image Chromaticity to be Corrected

There is an issue of selecting one from four image chromaticity values, i1
r , i1

g, i2
r , and i2

g,
to be adjusted. Selecting input i1 or input i2 would make no difference in illumination
color estimation as shown in Figure 3.10. The left of Figure 3.10 is the case of selecting
i1
g, and the right is the case of selecting i2

g. Even if we adjust i1
g or i2

g, the new intersection
would internally divide each line segment in the same ratio. As mentioned in 3.5.1,
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the ratio determines the illumination colors, and thus the estimated results would be
unchanged in both cases.

On the other hand, a different estimation results depending on which channel to
select, r or g. Therefore, we calculate the effectiveness of each channel for the estimation
and select the one that has greater effectiveness. We define the effectiveness α as

α =

∣∣∣∣∣∣∣
(
i2
r − i1

r

)
(
i2
g − i1

g

) i2
g

i2
r

∣∣∣∣∣∣∣ (3.26)

The above equation assumes that the input i1 is going to be adjusted. If α is larger
than 1, a small difference in channel g affects the estimation compared to channel r and
therefore the method selects channel g to be adjusted. Otherwise, channel r will be
selected.

The detailed derivation of the effectiveness α is as follows. As aforementioned in
Table 3.1, when i1

g has noise Δi1
g, then the error ratio of estimated surface chromaticity

becomes

Δsrg

sr
=
Δi1

g

i1
g

−1

1 +
Δi1g
i1g
− i1r /i1g

i2r /i2g

(
i2
r − i1

r

)
i2
g(

i2
g − i1

g

)
i2
r

≈ Δi1
g

i1
g

−1

1 − i1r /i1g
i2r /i2g

(
i2
r − i1

r

)
i2
g(

i2
g − i1

g

)
i2
r

≈ −Δsrr

sr

(
i2
r − i1

r

)
i2
g(

i2
g − i1

g

)
i2
r

. (3.27)

This shows that even the error ratio of i1
r and i1

g are the same, the effect on the estimation

error ratio depends on the factor
∣∣∣∣∣ (i2r−i1r )i2g
(i2g−i1g)i2r

∣∣∣∣∣. We derived the factor using Δsr/sr, but the

same can be derived by using Δsg/sg.

3.5.5 Experiments

Evaluation with Macbeth color checker

Method We conducted experiments to evaluate the proposed method. Images of the
GretagMacbeth ColorChecker were taken under six illuminants using SONY DXC-9000
progressive 3 CCD digital cameras by setting its gamma correction off. Images that
are taken are shown in Figure 3.11. From Figure 3.11 (a) through (f), the color of the
illuminant gradually changes from red to blue. The colors of the illuminants plotted
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Figure 3.10: (a) The case of adjusting i1
g. (b) The case of adjusting i2

g. The ratio p does
not change in either case.

in the inverse-chromaticity space are shown in Figure 3.12 (a), L1 through L6, and one
of their measured spectral distributions is shown in Figure 3.12 (b). The details of six
illuminants are shown in Table 3.3. We have cut out each image of eighteen surface
color patches, those surrounded by the red dotted line in Figure 3.11 (a), and prepared
18×6 color patch images. Each was resized to 70×70 pixels.

Having selected a pair of color patch images whose surface color is identical, we
randomly chose one pixel from each image and estimated their illumination chromatic-
ities. This was repeated 50,000 times for a pair. The same was done with the previous
method [FFB95] for comparison. The total combination number of two illuminants and
a surface was 6C2 × 18 = 270.

Results From the results of the 270 experiments, we obtained Figures 3.13, 3.14, 3.15,
3.16, 3.17, 3.18, 3.19, 3.20, and 3.21. Each row of those figures shows a pair of input
images, estimated chromaticities (of two illuminants and a surface) obtained by the
proposed method, the ground truth, and the previous method [FFB95]. Each figure
includes two surfaces that provided similar results to each other. Authors selected the
order of the figures so that the effectiveness of the proposed methods becomes clearer

5Correlted Color Temperature.
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(a) Image taken under L1. (b) Image taken under L2.

(c) Image taken under L3. (d) Image taken under L4.

(e) Image taken under L5. (f) Image taken under L6.

Figure 3.11: Images of the Macbeth ColorChecker taken under different outdoor illumi-
nants (L1 to L6). Illuminant’s color gradually changes from (a) to (f). Eighteen surface
colors (colors surrounded by the red dotted line) were used in the experiments.
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Figure 3.12: (a) Six illuminants which are plotted in the inverse-chromaticity space. (b)
The spectral distribution of L6 is shown as an example. The spectrum also shown is
the blackbody radiation curve of 7083 K.
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Table 3.3: Details of six illuminants used in the evaluation experiments.

CCT 5

Illuminants Details (K)

L1 2003/8/22 17:30, Tokyo, Outdoor illumination, Fine day 3539
L2 2007/3/16 16:30, Tokyo, Outdoor illumination, Cloudy day 4083
L3 2003/3/16 15:30, Tokyo, Outdoor illumination, Cloudy day 5130
L4 2003/3/16 13:00, Tokyo, Outdoor illumination, Cloudy day 5632
L5 2003/7/14 14:30, Tokyo, Outdoor illumination, Cloudy day 5991
L6 2003/7/14 18:20, Tokyo, Outdoor illumination, Cloudy day 7083

to the readers.
In Figures 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, and 3.19, it is clear to see that the proposed

method improves the previous methods’ [FFB95] results. The bottom rows in the figures
show the average of the estimated surface colors by each method. We can see that if
we take the average of the estimated surface color, the results can be much improved.
However, some of the previous method’s [FFB95] results can be very unstable, while
they can be stably estimated by the proposed method.

In order to numerically evaluate our method, we took the histograms of the estima-
tion errors of two illuminants and a surface; they are shown in Figure 3.22. Here, the
estimation error is defined as the Euclidean distance between the estimated and true
chromaticities in CIE LAB color space. The average estimation errors of the proposed
method were 8.6 (redder illuminants e1), 8.7 (bluer illuminants e2) and 8.0 (surfaces.)
Those of the previous method [FFB95] were 104.2 (redder illuminants), 98.6 (bluer
illuminants) and 74.2 (surfaces.) The previous method provides larger errors than
10.0 [CIE LAB] (surfaces) in 150 data sets, while the proposed method provides 122.
The previous method provides larger errors than 30.0 [CIE LAB] (surfaces) in 47 data
sets, while the proposed method provides none. The proposed method surpasses the
previous method in terms of both the average and the maximum error values.

As an example, we show the results when selecting L1 and L6 for illuminants and
Blue sky for a surface color (shown in Figure 3.20 (a).) We sampled a pixel randomly
from each color patch image, performed the estimation, and repeated this for 50,000
times. Distributions of the two estimated chromaticities (of L1 and L6) are shown in
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Figure 3.13: The figure shows the results of using (a) Red, and (b) Dark skin, of the
Macbeth chart. Each row shows a pair of input images, estimated chromaticities (of
two illuminants and a surface) obtained by the proposed method, the ground truth,
and the previous method [FFB95]. L1 to L6 are the outdoor illuminants that are used;
there are 6C2 = 15 rows for each surface color. The bottom row shows the average of
the estimated surface colors by each method.
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Figure 3.14: The figure shows the results of using (a) Orange, and (b) Moderate red, of
the Macbeth chart.
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Figure 3.15: The figure shows the results of using (a) Purple, and (b) Magenta, of the
Macbeth chart.
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Figure 3.16: The figure shows the results of using (a) Purplish blue, and (b) Blue, of the
Macbeth chart.
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Figure 3.17: The figure shows the results of using (a) Orange yellow, and (b) Yellow, of
the Macbeth chart.
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Figure 3.18: The figure shows the results of using (a) Foliage, and (b) Bluish green, of
the Macbeth chart.



3.5. Proposed method I: Robust Framework 75

Surface colorSurface colorSurface colorSurface color

L1 - L2

- L3

- L4

- L5

- L6

L2 - L3

- L4

- L5

- L6

L3 - L4

- L5

- L6

L4 - L5

- L6

L5 - L6

Input 
image (Proposed) (Truth) (Previous)

Estimated chromaticities

e1 e2 s e1 e2 s e1 e2 s 
(Proposed) (Truth) (Previous)

Estimated chromaticities

e1 e2 s e1 e2 s e1 e2 s e1 e2 s e1 e2 s e1 e2 s 
(Proposed) (Truth) (Previous)

Estimated chromaticities

e1 e2 s e1 e2 s e1 e2 s 
(Proposed) (Truth) (Previous)

Estimated chromaticities

e1 e2 s e1 e2 s e1 e2 s e1 e2 s e1 e2 s e1 e2 s 

Input 
image

Average

(a) (b)

Figure 3.19: The figure shows the results of using (a) Green, and (b) Yellow green, of
the Macbeth chart.
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Figure 3.20: The figure shows the results of using (a) Blue sky, and (b) Cyan, of the
Macbeth chart.
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Figure 3.21: The figure shows the results of using (a) Light skin, and (b) Blue flower, of
the Macbeth chart.
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Figure 3.22: Histograms of estimation errors of the illuminant 1; e1 (top), illuminant 2;
e2 (middle), and surface; s (bottom). The estimation error is defined as the Euclidean
distance between the estimated and true chromaticities in CIE LAB color space. The
averages of the proposed method were 8.6 (redder illuminants e1), 8.7 (bluer illuminants
e2) and 8.0 (surface s). Those of the previous method [FFB95] were 104.2 (redder
illuminants e1), 98.6 (bluer illuminants e2) and 74.2 (surface s).
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Figures 3.23 (a) and (b). Figures 3.23 (a) and (b) show the distributions of estimated
colors of L1 and L6, respectively. The color temperature difference between L1 and L6
was 142 mired.
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Figure 3.23: The estimated illumination chromaticities’ distribution in an inverse-
chromaticity space. Estimated values are restrained on the defined line segment. In (c)
and (d), the estimated values were more widely spread compared to (a) and (b), due to
the less color difference of illuminations.

As Figs. 3.23 (a) and (b) show, estimated chromaticities are restrained on a specific
range. They tend to concentrate on the end-points of the line segment. The reason for
this is that when an intersection by the proposed method is made, one of the estimated
illumination chromaticities would always be one of the end-points of the line segment.

The averages ( 1
er
, 1

eg
, 1

eb
) of the distributions of L1 were (0.609, 0.845, 1.0) from Fig-

ure 3.23 (a), and the ground truths obtained by the standard white reference were
(0.525, 0.784, 1.0.) Those of L6 from Figure 3.23 (b) were (1.41, 1.38, 1.0), and the truths
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were (1.63, 1.50, 1.0.) The color differences between those values were 3.6 for L1, 3.8 for
L6, and 3.1 for the surface, in CIE LAB space.

We showed other results in Figures 3.23 (c) and (d), which were obtained by selecting
L3 and L4 for illuminants and Blue sky for the surface. The color temperature difference
between L3 and L4 was 78 mired, and this is lower than our recommended color
difference, 100 mired. Consequently, the estimated values were more widely spread
compared to Figures 3.23 (a) and (b). The averages of L3 were (1.06, 1.15, 1.0) and the
ground truths were (1.06, 1.17, 1.0). Those of L4 were (1.18, 1.23, 1.0), and the truths
were (1.21, 1.30, 1.0). The color differences between them were 0.9 (L3), 2.3 (L4), and
1.1 (the surface) in CIE LAB. As Figures 3.23 (c) and (d) shows, one estimation is less
reliable, and therefore it is better to do the estimation repeatedly and calculate the
average as we did in this experiment.

Evaluation with outdoor object

Method We conducted experiments on real images, taken using a SONY DXC-9000,
a progressive 3 CCD digital camera, by setting its gamma correction off. To ensure
that the outputs of the camera were linear to the flux of incident light, we used a
spectrometer: Photo Research PR-650. We used planar and convex objects to avoid
interreflection, and excluded saturated pixels from the computation. For evaluation,
we compared the results with the average values of image chromaticity of a white
reference image (Photo Research Reflectance Standard model SRS-3), captured by the
same camera.

In our implementation, we captured two images of a scene from a fixed object and
camera position but under different illumination. From the same pixel location of the
two images, we convert the sensor response values into image chromaticity values.
Surface and illumination colors are calculated from those inputs, and we eliminated
the illumination color from input images by using the estimated values.

Results Figure 3.24 (a) and 3.24 (b) show input image chromaticities of pixels taken
from an outdoor object illuminated by cloudy sky-light at 15:00 and 18:00. The actual
surface color obtained by using the standard white reference is shown in 3.24 (c). Figure
3.24 (d) shows our surface color estimation, while 3.24 (e) is produced by Finlayson et
al.’s method. We have several conditions of experiment with the same object, and our
estimation produced consistent results, while the results of Finlayson et al.’s method
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were so inconsistent that the result could be green or blue, which is far from the ground
truth.

Figure 3.25 (a) shows a scene of one of our two input images. This image was taken
at 18:05 illuminated by cloudy daylight. Another input (Figure 3.25 (b)) was taken
at 15:05 also illuminated by cloudy daylight on the same day. Figure 3.25 (c) shows
our estimation result of the image. To produce this image, we considered only pixels
whose intensities are not saturated and above camera dark. We computed the average
of the estimated illumination color of image shown in Figure 3.25 (a), and normalized
that image. Note that we excluded the needles of the tower’s clock as well as moving
leaves from the computation by evaluating the image chromaticity difference. Figure
3.25 (d) is the result based on the standard white reference which shows that our result
is quite good.

Results from images that are taken from different view points are shown in Figure
3.27. Figures 3.27 (a) and (b) are the input images, which were taken at 18:00 with
cloudy illumination on different days. Those images were aligned by using a 3D shape
of the object. Other alignment techniques such as homography can be alternatively
used. Figure 3.27 (c) shows our estimation result of the image, and Figure 3.27 (d)
is the result based on the standard white reference. From those results, we found
that the method produces convincing results with images that have small difference in
illumination. Also, we found that the camera view point can be arbitrary.

3.6 Proposed method II: Using Shadows
This section proposes a method to accomplish the illumination color estimation from
a single image. The method uses shadowed and non-shadowed regions in an image.
Previous researchers (for example, [FF94]) have found that shadowed regions are illu-
minated by sky light, while non-shadowed regions are illuminated by the combination
of sky light and sunlight. Based on this difference of illuminations in shadowed and
non-shadowed regions, we estimate illumination colors for both sunlight and sky light
and then remove them. Note that illumination colors are assumed to be uniform inside
each region.

Blackbody Radiation The blackbody assumption assumes that natural (outdoor) il-
lumination can be approximated by blackbody radiation, and modeled by Planck’s
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(a) Input 1. (b) Input 2. (c) Estimated.

(d) Gound truth. (e) Result from [FFB95].

Figure 3.24: Comparison results between our proposed method and Finlayson et al.’s
method.

formula:
M(λ) = c1λ

−5[exp(c2/λT) − 1]−1 (3.28)

where c1 = 3.7418 × 10−16 Wm2, c2 = 1.4388 × 10−2 mK, λ is wavelength (m), and T is
temperature in Kelvin. By combining with known sensor sensitivity, we can obtain a
camera response of Planck’s formula:

Ic =

∫
Ω

M(λ,T)qc(λ)dλ c = {R,G,B} (3.29)

The colors from Eq. (3.29) with different temperature T form a curved line in chromatic-
ity space that is called the Planckian locus. The temperature is called color temperature
(CT).

3.6.1 Shadowed and Non-shadowed Region

Color temperatures of a shadowed region and a non-shadowed region are generally
different. There are two kinds of illuminants outdoors: direct sunlight and sky light.
Statistically, both spectra can be approximated by blackbody radiation [FF94, JMW64].
Therefore, if we have shadowed and non-shadowed regions of the same surface in
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(a) Input image taken at 18:05.

(b) Input image taken at 15:05.

Figure 3.25: (a) One of the two input scene, illuminated by cloudy daylight at 18:05.
(b) The other input, illuminated by cloudy daylight at 15:05.
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(a) Estimated result by the proposed method.

(b) Estimated by using the standard white reference.

Figure 3.26: (a) The estimated scene actual color of the image shown in Fig. 3.25 (a),
computed using our proposed method. (b) The estimated scene actual color using the
standard white reference.
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(a) Input image taken at 18:00.

(b) Input image taken from different view at 18:00 on another day.

Figure 3.27: (a) One of the two input scene, illuminated by cloudy daylight at 18:05.
(b) The other input, illuminated by cloudy daylight at 15:05.
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(a) Estimated result by the proposed method.

(b) Estimated by using the standard whtie reference.

Figure 3.28: (a) The estimated scene actual color of the image shown in (a), computed
using our proposed method. (b) The estimated scene actual color using the standard
white reference.
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an image, we can apply the method described in Section 3.5 and estimate the actual
surface color.

3.6.2 Illumination Invariant

In order to extract two colors of the same surface from a single image, we further
add a constraint to the assumption of blackbody illuminants. Previously researchers
[FH01, FHLD06, MO00] have found that if we use Wien’s approximation M(λ) =
c1λ−5 exp(−c2/λT), then the Planckian locus can be approximated as:

er = meA
g (3.30)

where A =
(

1
λR
− 1
λB

)
/
(

1
λG
− 1
λB

)
, m =

λ5A
G /λ5A

B

λ5
R/λ

5
B

, and both are constant numbers characterizing
the camera. λc (where index c = {R,G,B}) is the center wavelength of the camera
sensitivity. (er, eg) is a chromaticity of a blackbody illuminant. If we substitute Eq.
(3.30) into Eqs. (3.5) and (3.6), we obtain:

i1
r =

sr

(sg)A (i1
g)A (3.31)

i2
r =

sr

(sg)A (i2
g)A. (3.32)

If two pixels have an identical surface color, they will have the same values; i1
r/(i1

g)A =

i2
r/(i2

g)A = sr/(sg)A even though their image chromaticities are different. Therefore, we
use this value as an illumination invariant and determine whether their surface color
is identical. Following Marchant et al. [MO00], the value sr/(sg)A is referred to as F.

If we take a logarithm of Eqs. (3.31) and (3.32), the following relations can be
obtained.

log(i1
r ) = log(F) + A log(i1

g) (3.33)

log(i2
r ) = log(F) + A log(i2

g) (3.34)

Thus, all the chromaticities make a line in log(r)-log(g) space as their illumination
color changes. Gradients are the same constant number A determined by a camera.
Chromaticities from shadowed and non-shadowed regions of the same surface colors
fall on a line whose intercept is log(F). We classify pixels that have the same surface
colors by the log(F) value, since the space becomes linear.

Note that some surface colors can coincide in F by chance; a reddish surface cannot
be distinguished from a white surface lit by a reddish sunlight. Currently, the method
assumes those are not included in an image.
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3.6.3 Implementation for Extracting Two Colors

We propose the following procedures for estimating illumination chromaticities by
extracting two chromaticities of shadowed and non-shadowed regions.

1. Fit a Gaussian mixture model to the histogram of log(F) values.

2. Select pixels that have the mean value of the Gaussian that has the maximum
weight.

3. Fit a Gaussian mixture model to the histogram of log(r) values of the selected
pixels’ chromaticities.

4. Select pixels that have values close to the mean value of each Gaussian.

5. Estimate illumination chromaticities using a pair of pixels randomly chosen from
each selected set of pixels, repeatedly.

6. Calculate the average of estimated chromaticities.

Procedures 1 and 2 extract dominant surface colors in an image. For simplicity,
the method assumes that an area of dominant surface color in an image has both
shadowed and non-shadowed regions. It also assumes that if F values of two pixels are
the same, their surface colors are identical. The Gaussian Mixture Model that we used
was p(x) = ΣN

i=1ξi G(x, μi, σ2
i ), where x is the variable, N is the number of the Gaussians,

ξ is the weight, and G() is the Gaussian function whose parameters are μ and σ2. In
Procedure 1, the user decides the number of Gaussians N.

Procedures 3 and 4 extract shadowed and non-shadowed pixels that have dominant
surface colors. Therefore, in this case, N is set to 2 in the Gaussian fitting process. We
extracted not only the pixels that have the mean value, but also the pixels close to the
mean value. This is for extracting relatively large number of pixels for denoising. The
threshold is set to the mean value ±σ/2. All the Gaussian fittings are processed by the
EM algorithm.

3.6.4 Experiments

Evaluation with toy objects

Method We conducted the following experiments to evaluate estimation from a single
image. We placed two illuminants and target objects as Figure 3.29 (a) shows, and
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took images of objects so that those images contained two chromaticities of a surface
with different illuminations. The camera used was SONY DXC-9000 with its gamma
correction off. The details of illuminants are shown in Table 3.4. We selected planar
convex singly-colored objects as target objects. The four images taken are shown in
Figure 3.29 (b)-(e).

We measured illumination colors (ground truths) by taking an image of the standard
white reference every time we replaced objects.

Table 3.4: Details of illuminants used in the evaluation experiments.

CCT 6

Illuminants Details (Kelvin)

L7 Halogen lamp (JCDBL100V500W, LPL Co., Ltd.) 4096
+ Color filter
(PolyColor B-4, Tokyo Butai Showmei Co., Ltd.)

L8 Tungsten lamp with a color filter 7169/
(Eyelamp PSR500WD, Iwasaki Electric Co., Ltd.) 11763

Results Having conducted experiments using four images shown in Figure 3.29 (a)-
(e), we summarized the estimated results in Table 3.5, which shows both estimated
and true chromaticities. It also shows the color difference between estimated and
true chromaticities in CIE LAB space. The average color difference of the proposed
method was 8.9. We also provided input image, estimated, estimated from the previos
method [FFB95], and true surface chromaticities in Figures 3.30 (a), (b), (c) and (d),
respectively. Figure 3.30 (e) shows the pixels chosen by the proposed method, and
used for illumination color estimation. While there is room for improving the accuracy,
the estimated surface chromaticities are closer to the true chromaticities than to the
input chromaticities, as a result of the proposed method’s color constancy.

Gaussian fitting results are shown in Figure 3.31. The left is the Gaussian fitted
to the histogram of log(F) values, and the right is that of log(r) values that have the
selected F value. The distributions fit the Gaussians well in log(F) and log(r) spaces,
and therefore two colors from shadowed and non-shadowed regions can be extracted
successfully. The image used was Figure 3.30 (c). Two of four experiments failed to

6Correlated color temperature.
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Light (L7) Light (L8)

Target object

Camera

(b) Blue object. (c) Yellow object.

(d) Green object. (e) Red object.

(a)

Figure 3.29: Experimental setup and obtained input images: (a) We placed the target
object and light sources so that each surface of the object is illuminated by different
illuminants. (b) - (e) Obtained images of blue, yellow, green, and red objects.
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generate the correct histograms of F values, because of assuming narrowband sensitiv-
ity for a camera that has a relatively wide band. In those cases, we corrected the value
of A in Eq. (3.30).

Table 3.5: Estimated and true chromaticities of illumination colors.

Input Proposed True Previous Error Error
(r,g) 7 (r,g) (r,g) (Proposed) (Previous)

(CIE LAB) (CIE LAB)

Blue object e1 (1.20, 1.03) (1.45, 1.07) (1.13, 0.96) 4.84 5.97
e2 (0.43, 0.55) (0.65, 0.60) (0.41, 0.52) 7.70 9.07

Yellow object e1 (1.12, 0.99) (1.45, 1.07) (1.11, 0.99) 6.26 6.35
e2 (0.56, 0.65) (0.65, 0.60) (0.56, 0.65) 6.11 6.01

Green object e1 (0.95, 0.92) (1.37, 1.02) (0.24, 0.34) 8.54 48.99
e2 (0.39, 0.51) (0.46, 0.44) (0.10, 0.16) 8.56 44.61

Red object e1 (2.01, 1.30) (1.37, 1.02) (3.24, 1.51) 10.03 21.35
e2 (0.60, 0.69) (0.46, 0.44) (0.97, 0.92) 19.46 30.78

Applying the method to outdoor scenes

We show the results of applying the proposed method to real images of natural outdoor
scenes in Figures 3.32 and 3.34. Figure 3.32 (a) is the input image, (b) shows the input
image chromaticities, (c) is the result of removing illumination colors from (a), and (d)
shows image chromaticities of (c). While (b) has two chromaticities due to the presence
of different illuminations, (d) has unified chromaticities since those illumination colors
are removed.

Figure 3.33 shows details of our method’s processes. Figure 3.33 (a) shows the
pixels used for illumination color estimation. The blue pixels of (a) are chosen from
shadowed region, and red pixels are chosen from non-shadowed region. Figure 3.33
(b) shows the classified pixels that belong to shadowed and non-shadowed regions,
and (c) is the visualized F values of the input image in grayscale.

Another result is shown in Figure 3.34. Fig. 3.34 (a) is the input image, (b) shows
its image chromaticity, (c) shows the result of color constancy, and (d) is the image

7b=1.0.
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Figure 3.30: Experimental Results of four objects. (a) Input image chromaticities. (b)
Estimated surface chromaticity by the proposed method. (c) Results of the previous
method [FFB95]. (d) Ground truths of the top row. (e) Used pixels for our estimation.
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(a) Gaussians fitted to the histogram of log(F) values. (b) Gaussians fitted to the histogram of log(r) values 
that have the selected F value.

Figure 3.31: Results of fitting the Gaussian mixture model to the input image’s dis-
tributions. The image used was Figure 3.30 (c). The left is the Gaussian fitted to the
histogram of log(F) values of the input image, and the right is that of log(r) values that
have the selected F value. The distributions fit the Gaussians well in log(F) and log(r)
spaces, and therefore two colors from shadowed and non-shadowed regions can be
extracted successfully.

chromaticity of (c). The object’s color becomes uniform in (c). Figure 3.35 (a) shows
the selected pixels from shadowed and non-shadowed regions, (b) shows the classified
pixels that belong to shadowed and non-shadowed regions, and (c) shows F values of
Fig. 3.34 (a). Those results indicate the realizability of illumination color estimation for
real images of natural outdoor scenes.

3.7 Summary
We have proposed a method to estimate surface and illumination chromaticities using
an illumination change. Our main contribution is to develop a method that is robust
and accurate even for outdoor objects, where conditions are less controllable compared
with conditions for indoor objects. We analyzed the effect of input errors on the previ-
ous method, and found the two following facts: (1) Color difference between two input
illuminations magnifies the input errors, and thus the estimation may produce large
errors; (2) The usual daylight-color changes are less than preferable color difference
regarding the usual input chromaticity channel’s error. Based on those facts, we made
the previous method more robust and accurate by considering the possible range of
outdoor illumination colors, that is a specific line segment in a color space. Experi-
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(a) Input image. (b) Input image chromaticity.

(c) Estimated surface color of (a). (d) Estimated surface chromaticity of (a).

Figure 3.32: An example of applying the proposed method to an outdoor image.
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(a) Used pixels for illumination (b) Classified pixels for illumination
color estimation. color removal.

(c) Visualized F values of Fig. 3.32 (a).

Figure 3.33: Details of our method’s processes.
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(a) Input image. (b) Input image chromaticity.

(c) Estimated surface color of (a). (d) Estimated surface chromaticity of (a).

Figure 3.34: Another example of applying the method to an outdoor image. Two
chromaticities in (b) are unified in (d).
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(a) Used pixels for illumination (b) Classified pixels for illumination
color estimation. color removal.

(c) Visualized F values of Fig. 3.34 (a).

Figure 3.35: Details of our method’s processes.
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mental evaluation has been done and it showed the effectiveness of our method. For
accomplishing the estimation using a single image, we proposed a method utilizing the
shadowed and non-shadowed region. The experimental results on an outdoor scene
show the effectiveness of our method.

The remaining problem is the improvement of the accuracy of our estimation. We
think that the method could be improved by using multiple surface colors, or using
previously acquired information of a few surface colors. There are several problems
for the estimation from a single image. The first is that the method assumes there are
only two illumination colors included in an image. This is not the case when a curved
surface is placed under two illuminants; the illumination colors would be blended on
the surface. The second is that even if the F values are the same, the surface colors may
not be identical if multiple surface colors are included in an image. We would like to
extend the proposed method so that it can solve those problems.
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Chapter 4

Estimating Surface Reflectance Using
Spherical Images

This chapter proposes a new, efficient method to estimate reflectance parameters of
diffuse outdoor objects from only one measurement with a spherical camera. The
camera we used captures nearly 75 percent of a 360-degree field of view; thus, it
captures the radiance of an object and illumination environment at one shot. By
taking the known object’s shape into account, the illumination effect is calculated
and the surface reflectance is derived. Measurement and data-processing cost will be
greatly decreased by this method compared to previous methods that need elaborate
procedures. Neither specific apparatus nor calibration of the camera gain factor is
needed. The shape of the object and the pose of the spherical camera are assumed to be
known. We also assume that the target object only has diffuse reflection, and outdoor
illumination is at infinity.

4.1 Introduction
Computer vision and graphics techniques to create a realistic model of a real world ob-
ject have attracted interest from a wide range of research fields and industries in recent
years. To simulate the accurate appearance of an object, we have to know the object’s
(1) shape and (2) surface reflectance properties. Acquiring shape information has been
facilitated by the development of sensors and the progress of data processing algo-
rithms, while acquiring surface reflectance properties remains a challenge, specifically
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with outdoor objects.
This paper proposes a new, efficient method to estimate reflectance parameters

of diffuse outdoor objects from only one measurement with a spherical camera. A
spherical camera has nearly a 360-degree field of view; thus, it captures the radiance
of an object and illumination environment at one shot. This enables us to capture
both the object and illumination with an identical camera sensitivity, exactly at the
same time, and in a geometrically consistent manner. By taking the known shape of
the object into account, the illumination effect is calculated and the surface reflectance
is derived. Measurement and data-processing cost will be greatly decreased by this
method. Neither specific apparatus nor calibration of the camera gain factor is needed.
However, the camera should cover a high dynamic range in order to measure both the
intensity of the sun and the object. The shape of the object and the pose of the spherical
camera are assumed to be known. We also assume that the target object only has diffuse
reflection, and outdoor illumination is at infinity.

4.1.1 Related work

Acquiring surface reflectance properties has attracted a lot of attention in computer
vision and computer graphics research fields. In the late 1990s, several modeling
methods with range sensors were proposed [PCD∗97, NK99, LHS00, WKSS01, BMR01],
however, those methods created surface textures by simply blending images taken from
multiple views.

Meanwhile, physics-based reflectance estimation methods [DvGNK97, SWI97, LL99,
MYT03], image-based rendering techniques [SOSI03, WMTG05], and techniques to
measure the BRDF (Bidirectional Reflectance Distribution Function) [JC02] have been
studied to create a more physically correct object appearance compared with those cre-
ated in the early 1990s. Those methods have achieved highly accurate re-renderings,
yet they were designed for an indoor environment where one can easily change lighting
conditions [IOT∗07].

For calculating surface reflectance properties, one would need (1) the shape of a
target object, (2) the actual appearance of the object, and (3) illumination environment.
Shape information and actual appearance can be obtained by range and image sensors,
respectively.

The illumination environment can be acquired in several ways. Yu et al., the
first who handled outdoor objects to authors’ knowledge, took photographs of the
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sun and sky to measure their radiance distribution [YM98]. As they used a normal
camera, they included landmarks in each photograph so that they could use them to
recover the camera pose later. The position of the sun was calculated by the time
and date, and the sky radiance was fitted to the CIE (International Commission on
Illumination) standard model to extrapolate the missing portion of the sky. The color
could have been calibrated by hand, since CIE standard model does not include spectral
information. They first recovered diffuse reflectance from measured sky irradiance
and from appearance, and then they acquired specular properties by fitting multiple
photographs to the Lafortune model. Debevec et al., the second and the latest to tackle
the outdoor problem, used a specific apparatus to measure the outside illumination
[DTG∗04]. They used a mirrored sphere to image the sky and clouds, a shiny black
sphere to indicate the position of the sun, and a diffuse grey sphere to indirectly
measure the intensity of the sun. They decided the reflectance parameters of the
previously obtained BRDF by an iterative calculation using the object’s photographs
from multiple views.

Methods to acquire a near light source environment have also been proposed. Sato
et al. used omnidirectional stereo to recover illumination with geometric information
[SSI99]. Takai et al. took an image of a pair of diffuse spheres, and used the difference
between them to first estimate point light sources and then the remaining lighting
environment [TNMM04]. The two methods successfully superimposed virtual objects
into room scenes as well as exterior scenes by recovering illumination of the scenes.

To summarize those recent works, surface reflectance estimation needs a lot of
elaborate procedures, such as calibration between absolute intensity and photometric
device, calibration of the coordinates between geometric data, image sensors, and
photometric device. With respect to large-scale objects set in outdoor, more practical
methods are needed.

4.2 Scene Radiance Acquisition with a Spherical Camera
This paper proposes to use a spherical camera for acquiring the radiance distributions
of the object and surrounding illumination. The benefit of it is that it captures the object
and illumination with an identical camera sensitivity, exactly at the same time, and in a
geometrically consistent manner. Using the same camera sensitivity for capturing the
object and illumination, the algorithm becomes simple and no calibration of the camera
gain factor is needed. It is always sure that the image intensity of the object reflects the
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Figure 4.1: A camera Ladybug2 [Lad].

instantaneous response to the surrounding illumination that is captured in the same
image. The camera pose calibration is required only once; the object and illumination
are geometrically consistent in the acquired image.

A spherical camera used in this paper is Point Grey Research Ladybug2 [Lad].
Ladybug2 has 6 lenses, one of them and the others point to vertical and horizontal
directions, as shown in Figure 4.1. We show an image taken by Ladybug2 in Figure
4.2. The image’s vertical and horizontal axes correspond to the polar and zenith angles.
The camera captures nearly 75 percent of a 360-degree field of view, so it captures the
radiance distributions of the sky and the target object at a time.

The reflectance of the target object’s surface can be estimated by using the image
taken by Ladybug2. The incoming spectrum which is irradiated from surrounding
illumination to the target object is calculated by integrating the incident radiance dis-
tribution of illumination from all the directions; we can calculate the irradiance of the
target object’s surface. By dividing the surface radiance by its irradiance, the surface
reflectance can be obtained. Mathematical formulations of illumination and surface
radiance are described in the following subsections.

4.2.1 Illumination radiance

As Figure 4.3 shows, the camera records the spherical radiance distribution of illu-
mination at the camera center C. Let us denote the incident radiance distribution of
illumination as L(λ, θ, φ), where λ is the wavelength, θ and φ are the polar and zenith
angles.

When recorded by a camera, the light will be multiplied by the camera sensitivity
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360 degree

180 degree

Target object

Surrounding environment

Figure 4.2: An image taken by Ladybug2.

function qk(λ), then integrated over the visible spectrum Ω. Thus, image intensity Ik

can be expressed as;

Ik(θ, φ) = τk

∫
Ω

L(λ, θ, φ)qk(λ)dλ, (4.1)

where k and τ are the type of sensors and the camera gain determined by the aperture,
the integration time, and the electronic amplification.

Assume that the camera sensitivity can be approximated by a Dirac’s delta function
(narrow-band camera assumption), the wavelength λ can be considered as a constant; the
last equation can be rewritten as;

Ik(θ, φ) � τkL(λk, θ, φ) k = {r, g, b}. (4.2)

4.2.2 Surface radiance

The camera also records the radiance of the object’s surface. Let us consider an in-
finitesimal solid angle dωi. Seen from a point A, dωi is constituted by a size dθi in polar
angle and dφi in zenith angle as shown in Figure 4.4;

dωi = sinθidθidφi. (4.3)

Then, the light energy that the point A receives from the infinitesimal solid angle dωi

will be [SSI99];
Li(λ, θi, φi) cosθi sinθidθidφi. (4.4)
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n

r

Camera center
C

Target object’s 
surface A

φ

θ

Illumination environment
L(λ, θ, φ )

Figure 4.3: Illustration of our notations. The spherical camera at camera center C
acquires radiance distribution of illumination environment L(λ, θ, φ) as well as the
radiance of the surface A. θ and φ are the polar and zenith angles.

The irradiance E at the point A is the integration of the incoming light energy over
the hemisphere whose north pole is at the surface normal direction (Figre 4.4 (a));

EA(λ) =
∫ π

−π

∫ π
2

0
Li(λ, θi, φi) cosθi sinθidθidφi. (4.5)

Assume that the surface is a Lambertian surface. Then, the reflected light of the
point A is uniform regardless of the viewing direction. Therefore, the radiance I of
the point A can be simply written as the multiplication of irradiance E and the surface
reflectance S;

IA(λ) =
∫ π

−π

∫ π
2

0
SA(λ)Li(λ, θi, φi) cosθi sinθidθidφi

= SA(λ)EA(λ). (4.6)

When recorded by a camera, the radiance IA(λ) will be filtered by the camera
sensitivity function. By using the narrow-band camera assumption which is introduced
before Eq.4.2, the wavelength λ becomes a constant. Hence, the image intensity Ik of
the point A can be written as;

IA
k = τkSA

k EA
k k = {r, g, b}. (4.7)
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Target surface
Camera
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Figure 4.4: (a) The direction (θi, φi) of incident light rays to the surface A. (b) The solid
angle at the direction (θi, φi).

4.3 Reflectance Estimation from Scene Radiance and Ob-

ject’s Shape

4.3.1 Surface irradiance

Let us consider again the irradiance which the point A in Figure 4.3 receives. Owing
to the assumption that the illumination is at infinity, the r in Figure 4.3, the distance
between the camera and the point A, can be approximated as zero compared to the
distance to the illumination. For this reason, surrounding illumination seen from the
camera and the object surface is nearly equal;

L(λ, θ, φ) � Li(λ, θi, φi). (4.8)

Then, the irradiance E at the point A (Eq. 4.5) can be rewritten using Eq. 4.8;

EA(λ) =
∫
Φ

∫
Θ

L(λ, θ, φ) cosψ sinθdθdφ (4.9)

whereψ is the angle between the surface normal and the incoming light direction (θ, φ).
The new integral rangesΘ and Φ are introduced to reflect the change of the coordinate
system.
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By introducing the narrow-band camera assumption to Eq. 4.9,

τkEA
k = τk

∫
Φ

∫
Θ

L(λk, θ, φ) cosψ sinθdθdφ. (4.10)

By substituting Eq. 4.2,

τkEA
k =

∫
Φ

∫
Θ

Ik(θ, φ) cosψ sinθdθdφ. (4.11)

The camera pose and the object shape are known, hence, we can calculate the value of
ψ,Θ,Φ. Thus, we obtain the irradiance τkEA

k from the acquired illumination radiance
Ik(θ, φ).

4.3.2 Surface reflectance estimation

Surface reflectance can be obtained by dividing its radiance value by the irradiance
value. We let the rendering software to calculate the irradiance of a surface point (Eq.
4.11). We let it render the object appearance seen from the camera position under the
acquired illumination distribution Ik(θ, φ), where the surface reflectance SA

k was set to
1.0 for all sensors k and for all points A. We denote this image intensity as I′Ak . This
could be considered as substituting 1.0 into SA

k in Eq. 4.7. Therefore, the image intensity
I′Ak can be expressed as;

I′Ak = τkEA
k . (4.12)

The rendered image is the image of τkEA
k . By dividing the acquired image intensity

IA
k by the rendered image intensity I′Ak , (Eq. 4.7/Eq. 4.12), the surface reflectance SA

k can
be obtained.

SA
k = IA

k /I
′A
k (4.13)

4.4 Experiment

4.4.1 Measurement of the scene radiance

We used Point Grey Research Ladybug2, a spherical digital video camera. We cap-
tured the radiance distributions of the object and surrounding illumination by using
Ladybug2.

To capture the wide level of intensity, we took images with ND filters and multiple
shutter speeds. We used two ND filters, Fujifilm ND-4.0 and ND-3.0 that reduce
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incoming light to 1/10000 and 1/1000, respectively. Each filter was placed in front of
the lenses, as Figure 4.5 shows. We also tuned the shutter speeds carefully to cover the
entire dynamic range in conjunction with these filters, and took images, as Figure 4.6
shows.

Figure 4.5: Ladybug2 with an ND filter.

4.4.2 Vignetting rectification

The ND filters attached in front of the lens produce vignette-like effect. Image brightness
gradually reduces from the center towards the periphery of the image, as Figure 4.7
(a) shows. This is due to the reflection at the interface of the ND filter. Light that is
reflected by the filter increases when its incident angle is off the optical axis.

To rectify the reduction of image brightness, we took images of a white board
by Ladybug2 with and without the ND filter. In this experiment, images from each
camera lens were output. Then, we modeled the effect by an empirical mathematical
model, and calculated the parameter by the least square fitting. Figure 4.7 (b) shows
the estimated vignetting effect. By dividing the images taken with ND filters by Figure
4.7 (b), rectified images can be acquired, as shown in Figure 4.7 (c).
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Shutter speed : 1/39, with ND-4.0 filter Shutter speed: 1/10000

Shutter speed : 1/19, with ND-4.0 filter Shutter speed: 1/2500

Shutter speed : 1/9, with ND-4.0 filter Shutter speed: 1/1250

Shutter speed : 1/5, with ND-4.0 filter Shutter speed: 1/625

Shutter speed : 1/39, with ND-3.0 filter Shutter speed: 1/312

Shutter speed : 1/19, with ND-3.0 filter Shutter speed: 1/156

Figure 4.6: A set of images taken on a sunny day. The unit of shutter speeds is micro
second. Normally, about twenty and ten images were taken on sunny and cloudy days,
respectively.
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(a)

(b)

(c)

Figure 4.7: (a) an image with vignette-like effect. See the upper right of the image. The
reduction of image is highly visible. (b) the estimated vignette-like effect. (c) an image
rectified. Image brightness is recovered.
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4.4.3 Generating an HDR image

We generated an HDR (High Dynamic Range) image. At this point, we eliminated
pixels which had values of brightness less than 10 or more than 210, because those
pixels could be under camera dark or saturated. We also revised some pixels seemed
to make lens flare in images taken.

Images taken with an ND filter were colorized by the filter. To rectify it, we took two
images by Ladybug2 with and without the ND filter. By comparing these two images,
we calculated the color scaling factors. Images with an ND filter were corrected with
these parameters.

4.4.4 Measurement of the object’s shape

We measured the shape of a diffuse outdoor object using a Cyrax 2500 [Cyr], a range
sensor. We chose a planar convex object to avoid interreflection. The shape of sur-
rounding environment was included to make the calibration easier. We could also get
more real radiance distributions of surrounding illumination by taking the shape of
surrounding environment into account.

We calibrated the object and the camera coordinates using Tsai’s method [Tsa86].
We found corresponding points between the shape of the object and the images taken,
then we calculated the view point and the projection matrix using those coordinate
pairs.

4.4.5 Estimation of the surface reflectance

We rendered the object’s shape, of which the surface reflectance was set to be 1.0, under
the lighting environment captured by the Ladybug2. The view point was set to the
estimated camera position. We used the rendering system software RADIANCE [Rad].

We generated the surface reflectance image by dividing the original HDR image by
the rendered object image, where its surface reflectance was set to be white; Sk = 1.0,
for all k.

4.4.6 Evaluation

We conducted the experiment three times, with different times and days. Figures
4.9 (a), 4.9 (b) and 4.9 (c) are the captured radiance images. They were taken at
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.8: The captured images at (a) 14:35, illuminated by cloudy daylight, (b) 17:52,
illuminated by twilight, (c) 11:50, illuminated by sunny daylight, are shown. The
rendered images of the object’s shape, (d) on cloudy day, (e) at dusk, and (f) on a sunny
day, are shown in the middle row. Images in the bottom row are the estimated surface
reflectance. (g) was derived from the images (a) and (d), (h) was from the images (b)
and (e), and (i) was from (c) and (f).
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(a) (b) (c)

Figure 4.9: Zoomed images of estimated surface reflectance, shown in Fig. (g), (h) and
(i).

14:35, illuminated by cloudy daylight, at 17:52, illuminated by twilight, and at 11:50,
illuminated by sunny daylight, respectively. Figures 4.9 (d), 4.9 (e) and 4.9 (f) are the
rendered images of the object’s shape, of which the surface reflectance was set to be
1.0, under the cloudy light, twilight and daylight, respectively. Figures 4.9 (g), 4.9 (h)
and 4.9 (i) are the estimated images of surface reflectance, derived from (a) and (d), (b)
and (e), and (c) and (f), respectively.

Nevertheless there is much difference between the images (a), (b) and (c), the three
estimated surface images, (g), (h) and (i), look similar to each other. The median RGB
values of the part of the tower were (120, 108, 105) in (g), (120, 107, 98) in (h), and (141,
127,111) in (i). The intensity is slightly different, whereas the chromaticity, (0.360, 0.324,
0.315) in (g), (0.369, 0.329, 0.302) in (h), and (0.372, 0.335, 0.292) in (i) are surprisingly
similar. This indicates that the narrowband assumption is valid with the object used in
the experiment.

4.5 Discussion
The appearance of one side of the clock tower is quite different from that of the other
side in Figure 4.9 (i). One of the reasons for this difference is that we could not generate
an accurate HDR image from images taken on the sunny day. This is partly because the
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sky was so bright, that some portion of the sky could not be captured correctly. Then,
an inaccurate HDR image, as shown in Figure 4.10, was generated. We did not need to
use ND filters on the cloudy day and at dusk.

We see there is much noise in the brighter side of the clock tower in Figure 4.9 (i). The
uneven and rough surface of the object causes this noise. When bright light illuminates
an uneven and rough plane, some surface patches on the plane are illuminated by
direct light and others are not. Therefore, the difference between the appearance of the
bright patches and that of the dark patches becomes remarkable, and they are seen as
noise.

Normally, we have to take interreflection into account. In this paper, we assumed
that all the objects in the surrounding environment were white. Thus, the interreflection
of white surfaces was calculated in the experiments. However, the interreflection
between the ground and the surface of the building, or between the two surfaces of
the building, is slightly different from what we have calculated, since their true colors
are different from white. Estimated surface reflectance parameters may become lower
than correct parameters, since the interreflection between white surfaces is brighter
than that between colored surfaces.

Figure 4.10: An inaccurate HDR image.

In the future, we should acquire more accurate scene radiance by generating more
accurate HDR image. To do so, we can possibly design a new camera which consists
of several fish-eye lenses. Cameras with higher performance such as high-end digital



114 Chapter 4 Estimating Surface Reflectance Using Spherical Images

cameras have several advantages. Not only do they have higher resolution, they have
a wide range of exposure times and apertures, and the flare, vignetting and distortion
effects are minimized in those lenses.

The more precise shape of the target object could improve the quality of estimated
surface albedos. Those could be achieved by using the principal component analysis
to estimate accurate normals from the surrounding surface patches.

The diffuse interreflection is one of the significant problems in the proposed method.
The problem seems to be ill-posed, but it could be possibly solved by using some
assumptions or constraints, such as a uniform surface reflectance or a partially uniform
surface reflectance.

4.6 Summary
We have proposed a new, efficient method to estimate reflectance parameters of diffuse
outdoor objects from only one measurement with a spherical camera, since the radiance
distributions of the object and surrounding illumination can be captured at one shot.
Surface reflectance can be calculated from the measured surface radiance and calcu-
lated surface irradiance from the measured illumination radiance. The measurement
and data-processing cost are greatly decreased by this method compared to previous
methods that need elaborate procedures.

One of the challenging tasks of the method is how to acquire such a high-dynamic
range, since the measurement must cover the range of both the radiance of the object and
the illumination. Due to the limitation of shutter speeds of the device, neutral density
filters have to be used. Attaching the filters in front of the lens causes a vignette-like
effect because of the reflection at the interface of the filter. However, by modeling the
effect with an empirical model, the original image intensity can be recovered.

Images taken under three different illumination conditions provided similar estima-
tions of surface reflectance, in terms of both intensity and chromaticity. This encourages
us to believe that the method can be applied to many outdoor objects with diffuse re-
flection. The method tends to provide results with undesirable effect on images taken
on a sunny day. This is due to the limitation of the sensor device, and future work
should be to combine cameras that have higher performance to produce better results.
Development of a method that can handle specular surfaces and can take the diffuse
interreflection into account would be a difficult but challenging work.
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Chapter 5

Conclusions

5.1 Summary
The goal of this paper is to provide basic techniques for estimating surface properties
of a large-scale object such as an architectural structure in an outdoor environment.
Measuring surface reflectance properties of such a huge object becomes a challenge.
Under the assumption that the appearance of an object can be modeled by mapping the
image texture to the known shape of the object, we have proposed methods to arrive
at consistent colors by using color constancy techniques and reflectance estimation
techniques. Two methods were proposed for color constancy: a method that directly
uses the physical model of illumination color, and a method that performs more robust
estimation for a practical use. Both methods use illumination change as a constraint, so
that they can perform a pixel-based operation. For the purpose of estimating surface
reflectance, an efficient method that uses spherical images has been proposed.

5.1.1 Estimating surface chromaticity from Blackbody illumination

We proposed a method to solve color constancy problem by exploiting blackbody ra-
diation. Our method performed considerably well in the experiments with simulation
data, while it produced significant errors with real outdoor illumination data. We
specified that the allowable error in the system should be lower than 0.1%. Most illu-
minants have larger than 0.1% difference from blackbody radiation, and this resulted
in the errors.
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The discussion about the robustness of our method and the possibility of solv-
ing color constancy from an illumination change shows that much information such
as assumptions on reflectances should be taken into account with the constraint on
illumination to achieve stable and accurate color constancy.

5.1.2 Robust framework to estimate surface chromaticity from illu-

mination changes

We have proposed a method to estimate surface and illumination chromaticities using
a single image. Our main contribution is to develop a method that is robust and
accurate even for outdoor objects, where conditions are less controllable compared
with conditions for indoor objects.

We have examined the effect of input errors on the previous method, and found the
two following facts: (1) Color difference between two input illuminations magnifies
the input errors, and thus the estimation may produce large errors; (2) With regards
to the usual color difference between two daylights, it is difficult to perform a robust
estimation, when a normal input chromaticity error exists.Based on those facts, we
made the previous method more robust and accurate by considering the possible range
of outdoor illumination colors, that is, a specific line segment in a color space. Exper-
imental evaluation has been done and it showed the effectiveness of our method. For
accomplishing the estimation using a single image, we proposed a method utilizing the
shadowed and non-shadowed regions. The experimental results on an outdoor scene
show the effectiveness of our method.

5.1.3 Estimating surface reflectance using spherical images

We have proposed a new, efficient method to estimate reflectance parameters of diffuse
outdoor objects from only one measurement with a spherical camera, since it captures
the radiance distributions of both the object and surrounding illumination. Surface
reflectance is derived by dividing the surface radiance by its irradiance calculated from
the measured illumination radiance.

Several practical techniques to acquire such a high-dynamic range that includes
both sunlight and light from dark diffuse surfaces have also been presented. We
have succeeded in deriving similar reflectance images from images taken in different
illumination conditions, and this shows the effectiveness of the method.
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5.2 Contributions
In this thesis, we have proposed three methods that estimates surface properties of
an object. Those are developed to provide fundamental techniques for estimating the
surface properties of a large-scale object such as an architectural structure in an outdoor
environment. The main contributions are summarized as follows:

1. Insights into the stability and practicality of pixel-based color constancy.

We introduced a method that assumes blackbody radiation as illumination colors.
This enabled us to investigate the stability and practicality of the pixel-based color
constancy problem theoretically.

2. Development of a method that performs surface color estimation from two pixel values.

Though numerous methods have previously been proposed, none of them can
perform a pixel-based operation other than the methods [FFB95, FH01] proposed
by Finlayson et al., and the method [MO00] proposed by Marchant et al. In fact,
the methods 8 [FH01, MO00] are not for color constancy but for calculating the
illumination invariant values. Therefore, our method is one of the two meth-
ods that perform pixel-based surface color estimation presently; the other is the
method proposed by Finlayson et al. [FFB95], to which we have compared our
method and shown that our method is an improvement.

3. Development of an efficient method that estimates surface reflectance of large-scale objects
in an outdoor environment.

The advantage of the method is that neither specific apparatus nor calibration
of exposure times, apertures, and camera gain factors is needed. Furthermore,
geometric calibration between an image and shape information tends to be ro-
bust owing to the characteristic of a spherical camera. Measurement and data-
processing cost will be decreased by the method compared to previous methods
[YM98, DTG∗04]. This is critical specifically for large-scale objects.

5.3 Future Directions
This thesis has shown basic techniques for acquiring the surface properties of a large-
scale object in an outdoor environment. While significant progress has been made,

8They independently proposed methods that do the same processing.
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there remain some important issues to be explored to develop a system that models the
object’s appearance in reality.

5.3.1 Applying surface color estimation for plausible texture genera-

tion

We have shown the problem that happens when images taken at different times are
used directly for textures (Figure 1.2.) The color of the textures mapped on a model
varies according to the illumination at the time the texture is captured. Our surface
color estimation method is proposed with this problem as a starting point, and could
be applied to solve the problem.

5.3.2 Surface color estimation using photo-sharing site

Owing to the development of network infrastructures, we are able to collect many
pictures from photo-sharing sites. Since our method can estimate surface colors more
accurately with a large number of images, a use of a photo-sharing site would be an
interesting future work. At this point, the variation of camera sensitivities would be
one of the challenging tasks to solve.

5.3.3 Shadow extraction

The proposed method succeeds in extracting colors from shadowed and non-shadowed
regions. By utilizing the idea, a shadow extraction from an image could be possible.
At this point, we would have to consider how to distinguish colors that have the same
invariant. A method for extending the current method so that it can handle images
with plenty of colors would be an interesting future work.

5.3.4 Development of high-performance spherical camera

A new spherical camera with higher performance would improve the visual effects of
the current results. Cameras with higher performance such as high-end digital cameras
have higher resolution and a wide range of exposure times and apertures. Furthermore,
the flare, vignetting, and distortion effects are minimized in those lenses. Designing a
new spherical camera would provide improvement of the current system.
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5.3.5 Surface reflectance estimation of specular objects

We could extend the current reflectance estimation method so that it can handle specular
objects. For this purpose, we may have to take images from multiple views. The diffuse
interreflection must be also taken into account. The problem seems to be ill-posed, but
it could possibly be solved by using some assumptions or constraints, such as a uniform
surface reflectance or a partially uniform surface reflectance.

5.3.6 Illumination recovery from partially acquired albedo

It may be a good idea to use the estimated albedo from spherical images to estimate
albedos in different images. This would be a problem of recovering an unknown
illumination with a partially acquired albedo. The technique would be practical and
useful specifically for large-scale objects.
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