

Robot Painter: High-Level Planning
Based on Visual Perception

描画ロボット： 視覚に基づく高レベルプランニング

Miti Ruchanurucks

A Doctoral Dissertation
博士論文

Submitted to
The Graduate School of Information Science and Technology

The University of Tokyo
in Partial Fulfillment of the Requirements

for the Doctoral Degree of Information and Communication Engineering

Thesis Supervisor: Katsushi Ikeuchi 池内 克史
Professor of Graduate School of Interdisciplinary Information

Studies

 i

Abstract

Recently, many areas of research on humanoid robots have been

studied, such as motion control, man-machine interfaces, artificial
intelligence (AI), and so on. Among them many research projects have tried
to create artist robots, with the common objective of exploring new sensing,
artificial intelligence, and manipulation techniques.

The research described in this thesis explores new vision and
manipulation techniques through painting tasks. The ultimate goal is to
create a robot painter that has capabilities similar to those of human artists.

Regarding vision, the key problems of 2D/3D object segmentation,
color perception, orientation mapping, and geometric edge processing are
directly addressed by our method.

This research focuses, first, on an effective 2D segmentation scheme
using local and global classifiers. Our proposed method can effectively deal
with a foreground cut, multiple cuts, and cut before matting. Then it is
shown how to exploit normal stereo cameras to roughly extract the object
automatically, based on 3D background subtraction and other vision
techniques, and how to use our 2D segmentation to extract the object area
correctly.

The robot must analyze color distribution of the object to select the
best set of colors to use. Normally, clustering colors face the tendency to
produce colors with low contrast. We solve this problem by incorporating
two clustering methods: maximum distance clustering and K-means.

Then, in order to draw brush strokes meaningfully, the robot senses
the orientation of the object. To smooth the orientation of the whole object,
we apply global orientation that exploits the radial basis function to generate
a style similar to Van Gogh, for instance, for the entire object.

Furthermore, some human artists usually use edges to enhance their
paintings. Technically, many researchers use gradient information to
represent edges of objects. However, this would be affected by the color
information on the surface. Hence, we decided to use 3D geometric edges as
an input. We then extract 2D edges from the 3D model. Finally, the 2D
edges are processed into brush strokes.

We show how to apply these methods to high-level manipulation
using a robot platform that consists of two arms and multi-fingered hands.

 ii

The robot also has a stereo vision system. Based on the derived information,
the robot then performs a visual feedback drawing. First, it detects a brush
and grabs it using cameras and force sensors. Second, it calculates the
position of the brush tip using principal component analysis (PCA). Third, it
then draws and compares the canvas with the picture produced by the stereo
cameras.

Finally, as the trajectories planned by the robot may not be realized on
the real robot platform because of its physical limitations, this research
presents a method to filter and optimize trajectories targeting offline and
online applications. All physical attributes, namely angle, collision, velocity,
and dynamic force, are considered as a set of constraints to be met and
represented as B-spline coefficients, making the limits guaranteed.

The proposed method will be shown to outperform the current
methods in the sense of correctness and minimal user interaction, and it does
so in a reasonable computation time.

 iii

Acknowledgment

First, I would like to express my sincere gratitude to my advisor, Prof.
Katsushi Ikeuchi, for his consideration and direction. He kindly took me on
as his student from my master’s degree through my doctoral degree. He also
granted me sufficient freedom to pursuit my own research goals. In addition,
the research environment provided by him enabled me to concentrate on
testing many ideas in both theory and applications. Finally, his management
strategy taught me how to deal with people. These gifts and skills will be
invaluable to my future.
 I am very grateful to Dr. Koichi Ogawara, Dr. Jun Takamatsu, and Dr.
Shunsuke Kudoh. They worked very hard to build our robot platform and
spent a great deal of time guiding me not only in programming but also
regarding concepts in computer vision and robotics. Furthermore, they
improved my presentations on various occasions. Dr. Koichi Ogawara often
asked me about underlying concepts. Dr. Jun Takamatsu’s comments were
frank and helpful. Dr. Shunsuke Kudoh taught me a great deal about how to
be a good programmer.
 I would like to thank Prof. Atsushi Nakazawa for giving me many
breakthrough ideas during my master’s program as well as frank comments
when we made presentations at conferences. I am very grateful to Dr.
Shinichiro Nakaoka who was my mentor during my master’s program. He
provided a great deal of guidance, especially about humanoid robot
technology. Some of his ideas changed my perspective about robotics. I
would like to thank Dr. Takaaki Shiratori who supported me in everyday life
in Japan, teaching me how to survive in the Japanese culture.
 I also would like to express my sincere gratitude to Dr. Atsuhiko
Banno, Dr. Shintaro Ono, Dr. Rei Kawakami, Mr. J.H. Manoj Vincent
Perera, Mr. Bjoern Rennhak, Mr. Phongtharin Vinayavekhin, and other
members of the Ikeuchi laboratory.

I am also very grateful to all members of Humanoid Robotics Group
of AIST that have supported this research in various ways.

I also would like to thank Mr. Tanas Sirangul, Ms. Kuniko Urakawa,
Dr. Atit Tamtrakarn, Ms. Siriluck Sujiwarodom, and other friends too
numerous to name for their support, guidance, helpful conversation, and
friendship.

 iv

I also would like to express my sincere gratitude to my defense
committee who gave me valuable guidance on how to improve my research.
They provided ideas on how to evaluate research projects and presentations,
which will be particularly valuable to my future.

I would like to thank Dr. Joan Knapp and her son Mr. Robert Knapp
for proofreading my papers as well as giving me guidance on how to
improve my English.

Also, I could not finish this research without love from my father, my
mother, and my wife.

 v

Content

Abstract i

Acknowledgment iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background 2
1.2 Related Work 6
1.3 Organization of the Thesis 8

2 Foreground Segmentation 9
2.1 Related Work 11
2.2 Theory and an Application for a Foreground Cut 16
2.3 Multiple Cuts 22
2.4 Cut Before Matting 24
2.5 3D Object Segmentation 27
2.6 Discussion 28
2.7 Algorithm 31
2.8 Summary 33

3 Color Perception 35
3.1 Related Work 36
3.2 Maximum Distance Clustering + 1 K-means 36
3.3 Experimental Result 38
3.4 Performance in CIEL*a*b* Color Space 40
3.5 Summary 42

4 Brush Stroke Planning Using Global Orientation 43
4.1 Related Work 43
4.2 Global Orientation Calculation 44
4.3 Hierarchical Painting 46
4.4 Experimental Result 46
4.5 Summary 48

5 Geometric Edge Processing 51
5.1 Related Work 52
5.2 3D Model Generation 53
5.3 Extracting Geometric Edges 56
5.4 Conversion To Brush Strokes 57
5.5 Summary 63

 vi

6 Brush Manipulation and Experimental Result 65
6.1 Related Work 65
6.2 Grasping a Paintbrush 66
6.3 Detecting the Tip of a Brush 68
6.4 Detecting Brush-Canvas Contact 71
6.5 Reducing Brush Slide 72
6.6 Parameterized Paintbrush Technique 73
6.7 Experimental Result 74
6.8 Summary 78

7 Conclusion 79
7.1 Contribution 79
7.2 Discussion 81

Appendix A: Robot Constraints 85
A.1 Physical Constraint Functions 87
A.2 Filtering Approach 93
A.3 Optimization Approach 96
A.4 Real-Time Approach 99
A.5 Discussion 101

Appendix B: Chebyshev’s Inequality 105

Reference 107

List of Publications 114

 vii

List of Figures

1.1 Our robot painter. 2
1.2 Analysis of painting tasks. 3
2.1 Constraint function. 20
2.2 Comparison of foreground cut tools. 21
2.3 Comparison of multiple cuts tools. 24
2.4 Comparison of matting tools. 26
2.5 Conventional stereo segmentation method. 27
2.6 Stereo segmentation using 3D data as an input for our method. 28
2.7 Multiple cuts mode with noise. 29
2.8 Using a neural network with various features to generate alpha value. 31
3.1 Input images for color reduction. 39
3.2 Comparison of color reduction tools when performing color reduction to
16 colors in RGB color space.

39

3.3 Comparison of clustering methods when performing color reduction to
16 colors in CIEL*a*b* color space.

40

4.1 Orientation of an image scaled from {-π /2, π /2} to {0, 255}. 45
4.2 Orientation of an image’s boundary scaled from {-π /2, π /2} to {0, 255}. 45
4.3 Range image. 46
4.4 Visual feedback painting with object segmentation (subject’s face here). 47
4.5 Visual feedback painting with object segmentation using global gradient
information with 1 brush size.

48

4.6 Visual feedback painting with object segmentation using global range
information with 1 brush size.

48

5.1 Test objects for processing geometric edges. 51
5.2 Vivid 900 sensor. 52
5.3 Range images of an apple captured by the Vivid 900 sensor from
different viewpoints.

53

5.4 3D model of Fig. 5.3. 57
5.5 Foreground segmentation of each view. 54
5.6 Range images of Fig. 5.5. 55
5.7 3D model of Fig. 5.6. 56
5.8 Geometric edges extraction. 56
5.9 Original geometric edges of the apple. 57
5.10 Original geometric edges of Tinker Bell doll. 58
5.11 Redundancy points reduced. 59
5.12 Clustered points with different radii. 59
5.13 Clustered points with radius equal to 20. 60
5.14 Redundant links reduced: Comparing a link to previous trajectories’
links.

61

5.15 Redundant links reduced: Comparing a link to the present trajectory’s
links.

62

5.16 Planned brush strokes of the cupid doll. 62
5.17 Planned brush strokes of the apple. 63
6.1 Multi-fingered hand. 66

 viii

6.2 Grasping using force sensor. 67
6.3 Grasp states. 67
6.4 Stereo vision system’s output. 69
6.5 Detection of the tip of a brush: Color extraction. 69
6.6 Detection of the tip of a brush: Calculating 3D position. 70
6.7 Detection of the tip of a brush: Offsetting. 71
6.8 Force acting on finger. 72
6.9 Inverting the direction of a brush stroke. 72
6.10 Planned brush strokes of the apple. 73
6.11 Parameterized paintbrush technique. 74
6.12 Parameterized paintbrush technique: Pulling brush up gradually and
abruptly, respectively.

75

6.13 Parameterized paintbrush technique: Changing the depth of vertical axis
[mm]; 10, 15, 20, 20 to 5, 5 to 20, respectively.

76

6.14 Experimental result. 77
6.15 Combining area filling and edge drawing (simulation). 78
A.1 Japanese traditional dance performed by dancer vs. HRP-2. 86
A.2 Scale, velocity, and acceleration of B-spline and wavelet. 89
A.3 A collision check point is placed at the center of mass of a robot’s head. 91
A.4 Positions of markers, inverse kinematics, and optimization using (A.13). 98
A.5 Inserting a redundant control point at the beginning and the end of the
trajectory.

102

A.6 Decomposition from 200 fps to 20 control points per second. 102
A.7 Apply constraints simultaneously with fixed end posture. 102
A.8 Apply constraints simultaneously without fixing end posture. 102
A.9 Apply constraints simultaneously with strict force limit. 103
A.10 Optimization result with fixed end posture. 103
A.11 Inserting redundant control points. 103
A.12 Real-time decomposition from 200 fps to 20 control points per second. 103
A.13 On-the-fly application of angle and velocity constraints simultaneously. 104
A.14 On-the-fly application of angle, velocity, and force constraints
simultaneously.

104

A.15 On-the-fly application of angle, velocity, and real-time force constraints
simultaneously.

104

 ix

List of Tables

3.1 Color reduction algorithm time comparison. 40
3.2 Mean square error (MSE) from original images measured in CIEL*a*b*
color space.

41

6.1 Evaluation of tip detection [mm]. This table shows the standard deviation
of the detected positions.

71

 x

 1

Chapter1

Introduction

Development of the humanoid robot has recently been progressing, and the
technologies surrounding it have progressed simultaneously. Applications for the
humanoid robot are expanding as well as its hardware and software development. A
number of research studies have been conducted in this area for various purposes. Current
studies on humanoid robots focus on such techniques as motion control, human-machine
interfaces, artificial intelligence (AI), and so on.

In order to improve such technologies as well as to study human beings’
mechanisms, among many approaches, a number of projects are devoted to the creation
of artist robots. ISAC, for example, is a robot that can track an artist’s hand trajectory and
mimic it [SCN*98]. AARON is a unique robot that creates artworks by itself based on
adapting a geometrical model of a subject [Mon97]. The Teleoperated Drawing Robot
considers the possibility of a teleoperated robot that can track markers in the human hand
online to generate brush trajectories [Dtr]. Draw-Bot focuses on force feedback to draw a
simple pre-programmed shape [Db].

The research described in this dissertation attempts to create a robot that can
mimic painting activities. The ultimate goal is to have a robot that can paint using its own
creativity. Among the differences from the previous works are, first, our robot can plan
“what” as well as “how” to paint automatically, by using cameras (shown in Fig. 1.1) to
select the subject and choose colors and orientation in drawing. Second, the robot can
move a paintbrush in a manner similar to that of human beings by using a multi-fingered
hand shown in the figure to grasp the paintbrush and draw on a canvas.

 2

Fig. 1.1 Our robot painter.

1.1 Background

What is a robot painter?

Our robot painter is a system that can perform painting activities similar to those
of human beings. The abilities can be divided into three parts, namely,
observation/planning, physical interaction/execution, and verification/revision. This
research forms a hypothesis that these three parts consist of several internal mechanisms
as shown in Fig. 1.2. We attempt to develop a robot based on these mechanisms.

The observation/planning part consists of visual information analysis units A and
B, a verbal information analysis unit, a strategy unit, and a tactical unit. Unit A captures
and processes the 3D object to derive 3D/2D data, for example, edges and color. Unit B
compares a 2D image with a pre-installed database to alter the image using computer
vision techniques, for example, computer techniques related to impressionism. The verbal
unit deals with information regarding listening and speaking, interactive conversation
between people that could affect the strategy of the painter. Then, the strategy unit creates
some form of picture model, which can be called a desired outcome. The desired outcome
does not need to be exactly like the subject, for example, there could be model boundaries
using edges or model areas using colors. After this, the tactical unit then transforms the
picture model into brush strokes. Furthermore, the tactic depends on the strategy. For
example, if the edge picture model is used, the tactic is how to extract meaningful edges.
If the color picture model is used, the tactic is how to select the colors and trace their
orientation.

The physical interaction/execution part then applies the brush strokes to draw on
the canvas by task and skill models, referred to here as what to do with the paintbrush and
how do it, respectively. Among the task models are grasping the paintbrush, calculating

 3

the position of the tip, detecting brush-canvas contact, and drawing a brush stroke. The
skill model deals with techniques to accomplish such tasks, using vision and force
sensors. Furthermore, the skill model of painting can be simulated without having to
perform a real painting experiment.

The verification/revision part consists of unit B, visual information analysis unit
C, the strategy unit, and the tactical unit. Unit B observes the canvas after drawing each
brush stroke, and then can change the strategies or tactics. For example, it could adapt the
original picture model to the actual canvas or adapt the brush stroke’s size, respectively.
Unit C observes the tip of the paintbrush in real time and informs the tactical unit to
change the position of the paintbrush on-the-fly.

Visual
information

analysis unit A
3D/2D data

Database

Task
model

Simulator

Skill
model

Physical interaction/execution

Tactical
unit

Brush
stroke
model

Verbal
information
analysis unit
Listening and

speaking

Strategy
unit

Picture
model

3D object

Visual
information

analysis unit C
Brush position

Visual
information

analysis unit B
Computer vision

2D image

Observation/planning

Canvas

Verification/revision

Fig. 1.2 Analysis of painting tasks. Our present robot painter consists of solid-line
boxes. [This diagram is made by Masaki Fujihata, the project leader of this robot painter

project.]

Why do we need to develop a robot painter?

 This research achieves painting tasks by a robot, not a simulation program, based
on the following reasons. First, dynamic characteristics of painting activities are sources
of inspiration for artists. When a human draws, first, he or she observes the subject, using
units A and B in Fig. 1.2. Then, the painter produces the picture model and the brush
stroke model in his or her brain. Based on the models, the painter starts to paint using the
physical interaction/execution part. However, the canvas might be different from the

 4

picture model. For example, colors on canvas can spread out in an unpredictable manner
due to the deformable characteristics of the tip of the brush as well as the difference in
thickness of colors, or a drop of color may unintentionally fall on the canvas. So the
painter must refine strategies and tactics to cope with such disturbances using the
verification/revision part. Often, artists consider the disturbances as a stimulus and a
source of creativity. This final part is an essential element that is lacking in simulation
programs.

Furthermore, the resulting technology of this achievement is also interesting from
the viewpoint of art. This technology enables a robot to be a medium for reproducing
human-like painting activities and the paintings. This medium is far more impressive for
users than typical media based on simulation programs because users can appreciate real
painting of real objects.

In addition, this medium has a potential to provide ways to improve current
technology of computer vision and robotics. These technologies enable researchers to
improve our everyday life by using robots in unwanted or complex tasks. Until now, most
of such development is still limited to static tasks, which the robot knows the state of
activities. Unfortunately, in reality, uncertainty is inevitable. Hence, it is important to
enable a robot to handle tasks dynamically. The painting process involves uncertainty and
is thus good training for dynamic solutions.

What are the technical challenges in making a robot painter?

Constructing all the elements presented in Fig. 1.2 requires a great deal of effort.

At the present time, this research focuses on a compact scale of the robot painter shown
in solid-line boxes in Fig. 1.2, which uses the visual unit A, the strategy unit, the tactical
unit, the task model, the skill model, and the simulator. Based on this simplified method,
we will explain the technical challenges of the three different parts, namely,
observation/planning, physical interaction/execution, and verification/revision.

In the observation/planning part, the robot must be able to distinguish the
foreground and the background robustly in reasonable time.

Then, the tactical unit needs to decide how to use the paintbrush. The decisions
include the direction of brush strokes, how to paint areas, and how to draw outlines.
These require techniques to sense orientation, select colors, and extract meaningful edges.

In the physical interaction/execution part, among the challenges are how to locate
and move the paintbrush. Techniques to locate the paintbrush in noisy images are
important. Grasping and moving the paintbrush to draw on a canvas is not
straightforward.

In the verification/revision part, a visual feedback painting is performed using a
simulator, and the grasping is omitted. At this stage, this research still does not deal with
actual physical uncertainty effectively. Even so, the routine that generates brush strokes is
not just a rendering program; it can be integrated into the robot in the future. An
underlying difficulty is how to decide where to start drawing each brush stroke.

 5

How do we overcome the technical challenges?

This research focuses, first, on how to extract the foreground robustly in

reasonable time. It starts by using 3D segmentation techniques to roughly extract the
object. Then we propose to use this noisy foreground/background as an initial input to a
2D segmentation program, which is more robust since it features more information such
as that of color and gradient.

Furthermore, since current 2D segmentation technology has not been perfectly
solved, this research proposes an approach to segment the foreground area correctly. The
benefit is twofold: first, it can deal with foreground segmentation robustly, and second, it
requires little input when there are many holes in the foreground and/or background as
well as when there are thin or long objects on the boundary between foreground and
background, for example, hair.

Next, to generate a color palette, the robot clusters the color distribution of the
foreground. We propose to solve the low contrast problem of previous clustering routines
by using Maximum Distance Clustering (MDC) to generate initial cluster positions for K-
means clustering. Moreover, as MDC is comparatively slow when the number of desired
colors is high, a suboptimal algorithm is therefore proposed.

Then, to draw brush strokes smoothly, the robot senses the orientation of the
object. To generate smooth orientation for the whole object, we interpolate the orientation
using a technique called Radial Basis Function (RBF).

To further draw the outlines, the robot extracts meaningful edges. We propose a
concept of geometric edges that more precisely represents the outlines. A clustering
method is used to transform the geometric edges into brush strokes.

Implementation related to the physical interaction/execution part and the
verification/revision part is explained in the next subsection.

What do we implement?

Experiments are performed using the robot painter in Fig. 1.1. It has a stereo
vision system with nine cameras and is used for obtaining an object’s positions in 3D
space. The camera head is equipped with a pan-tilt structure that allows its head to pan
vertically and horizontally. The robot has two robot arms with seven Degrees Of
Freedom (DOFs) each, and a multi-fingered hand on each arm. The right hand functions
to handle the brush and has four fingers as shown in Fig. 6.1. The first finger has four
DOFs while the other fingers each have three DOFs. On the tip of each finger, there are
force sensors. We use a multi-fingered hand in order to undertake delicate paintbrush
techniques that human painters use.

Regarding skills to detect and move the paintbrush, first, the robot detects a brush
and grasps it using the cameras and the force sensors. Then, the orientation of the brush
and the position of the brush tip are determined using principal component analysis
(PCA). Verifying of brush-canvas contact is performed using force sensors. The robot
uses the edge picture model as a goal for painting.

 6

For visual feedback simulation, this research uses the color picture model. The
decision to draw brush strokes is based on comparing the virtual canvas and the color
picture model, in which a threshold of color difference is used to decide whether an area
is already painted. The visual feedback is then examined in a hierarchical manner, which
begins with large brushes and subsequently moves to small brushes to add details.

1.2 Related Work

1) Foreground Segmentation

Human painters often concentrate on specific areas of an image. This tendency is
applicable for the robot painter to make paintings appear more beautiful. To accomplish
this, object segmentation can be used to segment the subject area in a 3D image, for
example, [TW05] and [MGS*05]. However, the methods cannot return the boundary of
the subject correctly. Hence, this research focuses on how to segment the object area
correctly and automatically, based on 3D techniques and a 2D segmentation method. By
incorporating the 2D segmentation, the 3D extraction becomes more robust since it
exploits features differently from 3D techniques.

Recent approaches to 2D segmentation attempt to extract the foreground using
color information, edge information, or both, for example, Bayes matting [CCSS01],
snakes [HBS99], or graph cut [BJ01]. However, the first scheme is not robust when the
color distribution is not well separated. The second scheme is sensitive to gradient
information. The third scheme cannot segment small or thin objects.

For methods that apply 2D segmentation to extract 3D objects, some works show
how to apply graph cut to segment 3D images, such as medical images [BK04]. Some
works regard video images as 3D objects and use graph cut to segment the foreground
[WBC*05]. Among these methods, the drawback is that they require human interaction to
mark the foreground and the background roughly. There is another group of works that
uses special video sensors to capture and extract the foreground automatically [MMP05].
However, they need special, and expensive, hardware, whereas the robot painter can
extract the foreground automatically using regular stereo cameras.

2) Color Perception

After extraction and segmentation, the robot must analyze color distribution of the
object to select a small set of colors to formulate the picture model. Color perception can
use splitting, clustering, AI, a spatial characteristic-based method, or a region-based
method. Among the first group that applies a splitting-based algorithm are median-cut
[Hec82] and octree [GP90]. However, they tend to produce false colors. The second
group uses a clustering-based algorithm, such as K-means [YK04] and C-means [SK87].
This group faces the problem of low contrast. The third group uses AI for better

 7

classification results, for example, the Kohenen network [Dek94] and Neural Gas
[AP06]. However, AI is time-consuming and difficult to implement. The fourth group
tries to enhance the quality of the output image by considering spatial characteristics such
as dithered color quantization [BFH*98], which cannot produce a color for each area
effectively. The final group is region-based color segmentation, for example, watershed
[VS91] and mean shift [CM02]. However, this approach often cannot reduce the number
of colors effectively, and instead is applied in the field of region segmentation.

3) Global Orientation Calculation

For the local orientation used to guide brush strokes, gradient information can be
used to guide brush strokes that are more robust to texture [Her98], whereas image
moment is more robust to shape orientation [SY00]. However, such methods do not
produce good brush strokes because the gradient or moment that a robot preserves could
be noisy. To interpolate the orientation for the whole object, global orientation that
exploits a radial basis function [Bor] to generate an orientation similar in style to Van
Gogh can be used [HE04]. However, this consumes a great deal of time. It means that
after the subject is designated, the robot must analyze the orientation for minutes before
starting to draw. Such a long delay is not acceptable on many occasions, for instance,
when using the robot to paint human subjects in an exhibition.

4) Brush Manipulation

Based on the picture model, the robot then performs brush strokes painting, which
requires manipulation techniques. Some researchers have tried to manipulate by a multi-
fingered hand [Nap56], [Cut89], [KI97]. However, they expect that their method would
be used for rigid objects, and therefore few studies have been carried out that require
manipulating deformable objects, like a brush in this study. The contact states of such
objects do not rely only on a kinematics model, but also on other parameters such as force
acting on fingers.

5) Robot Constraints

Finally, as robots have physical limitations, a motion generation routine must be
applied to prevent limit violations. The limit violations lead to error in trajectories, and
the error might result in collision and damage to the hardware. This must be prevented by
applying a motion generation routine that guarantees angle, velocity, force, and collision
limits.

Among motion generation methods, a filter-based approach is a fast way to
retarget motion [PHRA02]. However, forces and collision avoidance are not considered.
Trajectory optimization is another approach [UAR04]. The objective function can

 8

minimize physical characteristics; however, it is not guaranteed that such values will
satisfy limits. A real-time approach also presents problems [RUWA03]. Attempts to
limit physical characteristics rely on kinematics-based optimization to reduce values,
rather than applying specific limitations [DVS01]. Thus, it faces the same problem of
guaranteeing limit values.

1.3 Organization of the Thesis

 Our method directly addresses these key problems: foreground segmentation,
color perception, orientation mapping, geometric edge processing, skill level sensing and
manipulation, and constraints to the trajectory. In Chapter 2, our 2D/3D foreground
segmentation is explained. Chapter 3 explains the color perception method. Chapter 4
demonstrates multi-scale painting using an orientation map. Chapter 5 explains how to
extract and process geometric edges of an object. Chapter 6 shows paintbrush
manipulation by a camera and force sensors. Finally, Chapter 7 contains our conclusions.
Robot constraint functions are shown in Appendix A with their online and offline
applications. Appendix B explains Chebyshev’s inequality, which is used as an
underlying theory for foreground segmentation.

 9

Chapter 2

Foreground Segmentation

In order to extract the subject area, the object is placed in front of the robot. The
robot then automatically extracts the foreground. The question is: how does the robot
accomplish that? Attempts to extract objects using 3D information to gain adequate
information and resolution of images have been relying on high quality hardware, for
example, the medical capturing device [BJ01], the laser range finder [ROI06], or special
stereo cameras [MMP05]. At present, one challenge in this field is whether it is possible
to extract such information using normal stereo cameras.

Because conventional 3D techniques always produce a noisy image that is not
suitable to be used as a model for painting, whereas 2D segmentation methods often give
a clear boundary, in this research, 3D segmentation is used first to extract the boundary
roughly and then a novel 2D segmentation is used to extract the correct boundary. This
chapter emphasizes the 2D segmentation method and then discusses its application to 3D
material.

2D image segmentation has been extensively researched and is useful in image
processing, in computer vision, and in many other aspects of computer graphics. It plays
an important role not only in editing still images but also in editing video images [LSS05]
[WBC*05], disparity cut [KYO*07] [RKOSI07], 3D image enhancement [BK04], 3D
modeling [ROI06], etc.

This work focuses on a method that optimizes local similarity and global fitness
with iterative edge constraint and that can deal with the problems of a foreground cut,
multiple cuts, and cut before matting. Hence, it is called “Comprehensive Iterative
Foreground Segmentation (CIFS).” Specifically, it will be shown here that this method
answers questions that have become growing concerns for computer vision researchers:
What are the conditions for robust segmentation? And why is it that many previous

 10

methods that are robust for a foreground cut cannot deal with multiple cuts effectively? In
these cases, based on existing schemes, how should the algorithm be revamped? Why are
many high-end matting approaches comparatively weak in dealing with data distribution
that is not well separated? Then, how can matting be performed effectively? Furthermore,
as many of the current high-end segmentation methods are more or less robust when
enough input is provided, we are well aware that any novelty that could reduce user
interaction warrants serious consideration. Our method can effectively deal with many of
these problems.

It is widely known that many segmentation approaches have had different
limitations mainly because of their interfaces, underlying mathematics, and algorithms.
Among many approaches, we observe that the supervised region-based approach with an
edge constraint scheme has not been widely applied to difficult images. Research in other
fields has discovered that considering some parameters as a constraint as opposed to a
cost function yields extra performance; hence, it is worthwhile to ascertain what benefit
could be gained if the optimization is constrained.

With this in mind, this research considers how to integrate and improve graph cut
and region growing based on the following reasons. Whereas graph cut can segment a
foreground well as its cost function deals with both local and global similarity, its
optimization scheme is unconstrained. We will show that using a similar cost function,
constrained optimization improves user interaction, while the robustness of graph cut is
preserved. On the other hands, region growing’s use is very limited since its cost function
is too simple. However, region growing has states, which means it stops before growing
further. The benefit of this notion of state is not clearly addressed earlier, and we will
consider this as a constrained optimization problem.

Our novelty is, first, we propose to parameterize the state based on a statistical
value of Chebyshev’s inequality. In doing so, the proposed method can constrain the
timing before searching for a remote area as well as before matting. This reduces user
interaction a great deal either when there are multiple holes in the images or when
matting is required in difficult images, as the user does not have to mark every hole or the
boundary for matting. Second, the cost function used in this work consists of local and
global similarity, similar to that of graph cut, which leads to robustness. Conventional
region growing programs cannot exploit such cost function. This is accomplished by our
notion of subjecting each local and global term to each constraint.

When the behavior differences are studied, the proposed method is an
improvement compared to previous approaches, namely, graph cut, region growing,
object recognition, and matting.

In 3D segmentation, the method is then applied to allow the robot’s stereo
cameras to extract the boundary of the foreground correctly. The success of this
procedure relies on how good the quality of the 3D foreground is. Then, a number of
dilations and erosions are performed on the 3D foreground to produce a rough foreground
for 2D segmentation.

The rest of this chapter is organized as follows. Section 1 explains the differences
between previous approaches and our CIFS. In Section 2, the core notions of the
proposed system are explained. The system is then applied to a foreground cut. Section 3
explains how to perform multiple cuts. Section 4 extends the notion to tackle the problem
of cut before matting. Section 5 shows how to apply the method for 3D object extraction.

 11

Extensive discussion is provided in Section 6. To better understand the notion, the
algorithm is provided in Section 7. Finally, there is a summary in Section 8.

2.1 Related Work

Despite the value of image segmentation, the segmentation problem is still

imperfectly solved. We first discuss several current approaches to segmentation and their
limitations.

Most current segmentation methods require human input: a user marks areas as
being foreground vs. background or marks a contour for use as a guideline. Interestingly,
it is also shown that not only the mathematics and the algorithm that defines performance
are different, but user interfaces are also different. For example, marking areas as being
foreground or background is different from drawing the guideline contour. In the former
interface, users can directly specify features to be used for data distribution. Controlling
topology is also more straightforward. Our program uses this interface.

1) Unsupervised Edge-based Approach

Active contour models or “snakes” are among the most famous methods in the
unsupervised edge-based approach to segmentation. A user marks one or more contours
for use as initial boundaries. The notion of snakes is used to evolve the contour or
contours in image L X based on internal and external measures of edge “energy,” as
expressed in the following equation

∫∫∫ ∇−+= dsLXdsLdsLLE sss
222

)()(ξς (2.1)

where the first and second terms are internal forces that measure the length of the contour
and its stiffness or rigidity, weighted by parameters ς and ξ , whereas the third term is
external force, which is generally based on image gradient. L and denote the first and
second derivative with respect to the curve parameter

s ssL

s .
Since the seminal paper on snakes [KWT88], many variants of snakes have been

proposed. Generally, snakes function can be divided into two main categories, explicit
and implicit.

Explicit function such as splines can be used to represent the contour. The curve
can be propagated based on different energy terms. However, explicit function faces
difficulty when the curves need to be split or merged for multiple section segmentation.
Some studies try to overcome the local minima problem, for example, using balloon force
[Coh91]. Even so, the active contour cannot be made to extrude through any significant
protrusions that the shape may possess.

Another breakthrough in the edge-based approach that can effectively deal with
multiple cuts is the exploitation of implicit functions. “Level set” [MSV95] is one such

 12

solution in which snakes become “geodesic active contour” [CKS97]. The use of implicit
representation of contour simplifies the process of evolving so that there is no longer a
need to carefully control the splitting or merging of explicit function.

However, the edge-based approach is seriously criticized as segmentations depend
heavily on initialization and gradient information. Recently, edge tracking and hybrid
methods have also been proposed, namely, intelligent scissors [MB95] and a graph-cut
based active contour [XBA03], respectively. The former can be considered as a
supervised edge-based approach although it is affected by irrelevant gradient information.

Additionally, users may find it is not easy to mark or revise an appropriate snakes
guideline contour for difficult images.

2)

3)

Unsupervised Region-based Approach

In contrast to using gradient information, many works calculate external energy
based on other features instead. This is shown to be more robust for initialization
[CRD06].

Nevertheless, by drawing the guideline contour as input, users may find it is not
easy to mark the guideline contour. Moreover, they cannot directly specify pixels to be
used as input data distribution.

On the contrary, for works that automatically divide images into multiple regions
[SbFAZ00] [VC02] the decision is based on grouping similar features directly, which can
be considered as clustering [BW04]. However, the decision would not work well if the
data distributions are not well separated.

Supervised Region-based Approach

Supervised region-based methods interact with a user naturally. A user marks
foreground vs. background, and these marked regions can be used to compute the image’s
data distribution. This means that users not only control a region’s topology but can also
specify its feature samples. There are four famous methods for this approach, namely,
“region growing,” “object recognition,” “matting,” and “graph cut.”

3.1) Region Growing

In this type of method, a region can expand based on local characteristics such as
color similarity, and there is always some criterion to stop the searching process such as
heuristic strong edge information or optimal threshold between foreground and
background [FSA07].

However, region growing is not a sophisticated method and is generally used for
labeling rather than for segmentation. Attempts to improve region growing fail because
the issue of global data distribution is not well addressed.

 13

3.2) Object Recognition

In problems of object recognition, in which color patterns are often unknown or
change only slightly, color-distribution-based separation methods are of limited use.
Instead, machine learning dominates this field. [FWF02] focuses on combining belief and
neural networks to apply a set of labels (e.g., sky, vegetation) to images. [WJ05] uses a
probability model to extract an object of interest based on input training data without
human interaction. These techniques, however, focus on unsupervised object recognition
more than on how to effectively segment the foreground.

On the other hand, supervised learning techniques such as [MFM04] detect
meaningful edges in images by exploiting brightness, color, and texture. They compare
the use of density estimation, decision trees, logistic regression, hierarchical mixtures of
expert systems, and support vector machines. [FO03] compares various machine-learning
algorithms such as neural network, nearest-neighbor, and decision trees with the objective
being to recognize a hand in moving images. However, a great deal of user interaction is
required during the initial training.

Another problem with object recognition is that it is usually noisy and does not
give a clear enough boundary for image/video editing.

3.3) Matting

An example of a recent method that exploits color distribution to produce a soft
boundary, in other words, matting, is Bayes matting [CCSS01], which is an improvement
on the algorithms presented in [Mis93], [BVD00], and [RT00]. From a user-marked
foreground/background, an “alpha” value, which is the method’s descriptor of being
foreground vs. background, is computed over the remaining region. [LLW06] proposes a
close form solution to the alpha matting problem. It can be seen that using color
information extensively applies to a problem of alpha value approximation. However, the
notion often fails when color distributions between foreground and background are not
well separated.

Often, users need to mark an area to be matted manually, which is a tedious task.
[WC05] tries to address the problem by introducing an iterative approximation approach.
Their recent result can be found in [WC07]. However, the method shares a similar
weakness to normal matting for images when the foreground/background colors are too
ambiguous. This is the downside of considering only the color information. In addition,
segmentations depend on initialization.

 14

3.4) Graph Cut

Optimizing both smoothness between neighboring pixels and fitness to the model
derived from data distribution given by users seems to offer an advantage. Graph cut
[BJ01] [GPS89] is one such technique, and is presented in the following equation.

∑∑ +=

i
i

ji
ji xExxEXE),(),()(2

,
1 ψλ (2.2)

where the image is an array for which optimized cut energy can be derived
by maximizing the smoothness and the fitness E ; given the model , weighted by a
parameter

),...,(1 NxxX =

1E 2 Ψ

λ .
Since the original graph cut algorithm was developed, there have been various

improvements. [BJ01] focuses on a multidimensional graph cut. [RKB04] improves the
graph cut method by allowing interactive estimation and incomplete labeling, both of
which reduce the amount of needed user interaction. [LSTS04] incorporates interactive
boundary editing by representing the border as a set of vertices.

One clear advantage of graph cut is that it is less sensitive to initialization and
color distribution, as both local and global information are considered at the same time.

However, the tradeoff generally makes graph cut incapable of extracting small or
thin objects, in contrast to the matting method. [RKB04] proposed to cut before matting
by performing graph cut and then erosion to generate unknown areas for the matting
algorithm. However, the number of erosions is ad hoc, which is one problem [WC05]
tries to address as mentioned.

Another problem with graph cut is the high degree of user interaction required in
some cases of multiple cuts.

4) The Proposed Segmentation Method

This research tries to generate a method that is robust against sensitivity to
initialization, ambiguous color distribution, and the loss of thin or small sections. When
considering user interaction, the topics extend to how easily the user can guide the initial
mark, how convenient it is to revise the marked data, how to give small input for images
with multiple sections, and how to perform matting without having users further mark
areas to be matted.

In light of the limitations of former approaches, we propose a comprehensive
iterative foreground segmentation “CIFS” that can segment the foreground based on
optimizing a cost function of feature similarity, locally and globally, with a constraint of
edge strength. Unlike “graph cut,” which tries to trade off between local and global
information using a weighting parameter, CIFS exploits “region growing” and “alpha
value calculation” to deal with local and global optimization, respectively. The weighting
is directly done using the constraint.

 15

First, do:

)|,(),(
,

1 nki
ki

ln axxEaXE ∑= (2.3)

For yet-to-be-decided pixels, do:

∑ Ψ=Ψ

i
niign aGradCxEaGradXE)),(|,(),,,(2 (2.4)

where maximizes the smoothness of known pixel to unknown neighboring pixel ;
given the constraint value a , maximizes the applicability to the model ; given the
constraint function C based on the gradient of that pixel Grad and the constraint
value .

1E

na

kx ix

n

), na
2E Ψ

(iGrad i

In other words, first, local region growing is performed, given a statistical
constraint value used as a threshold. Then only for pixels that cannot be decided using
region growing, global classification is checked. In contrast with region growing, the
global scheme has no pixel difference to be used as a threshold, and classification of each
pixel is constrained by its gradient, given the same constraint value (its relation will be
explained in the next section). The higher the gradient is, the stricter the decision is. In
this way, optimizations are independent but linked to each other by the constraint, leading
to computationally efficient algorithms.

We first proposed the notion for a foreground cut in [ROI06], targeting 3D
modeling, and used it for our robot painter program [RKO*07]. However, at that time
only global data distribution was considered and the constraint setting was not effective,
which resulted in a time of about 10 seconds for a 640*480 image on a laptop with a
1.8GHz CPU. CIFS generalizes and extends [ROI06], and is used for the disparity image
cut in [RKOSI07]. At present, the computation time is reduced by more than ten times.

It will be shown here that this scheme is not sensitive to initialization. The
constraint of edge is used as a state indicator to perform multiple cuts automatically.
More importantly, to perform cut and matting, timing can be used to stop the search
process effectively before matting. The constraint, which was not effective in previous
methods, is made possible by “Chebyshev’s inequality” (see Appendix A).

Apart from the core idea of optimizing a cost function of feature similarity and
using a constraint of edge strength, another key aspect of the proposed method is the use
of the algorithm that can consider local and global optimization at the same time. This
research proposes to employ the tradeoff between local and global constraints.

Hence, first, the next section explains how to estimate and update the edge
constraint as well as how to weight between local and global information, and how to use
the proposed algorithm to cut a foreground.

 16

2.2 Theory and an Application for a Foreground
Cut

Now, we shall see how to consider both local and global cost function at the same

time with edge constraint.
From marked input, the search process will try to identify unknown pixels. Since

the algorithm considers edge information as a constraint to stop the search process, if the
constraint is too large, foreground/background regions can grow incorrectly into each
other. So Chebyshev’s inequality, which covers all data distribution models, is applied to
initialize the constraint.

As both the local and global information are used, one can imagine that for
constrained optimization, there must be two constraints for each of them. This section,
first, explains how to derive “constraint value” for “local region growing” from color
distributions. Although the best color domain is CIEL*a*b*, many works use the RGB
domain. Hence, in order to benchmark against them, this research uses the RGB domain.
Also, we tested and found that the segmentations do not depend very much on the choice
between these two color models.

On the other hand, “constraint function” for “global classification” and its relation
to the constraint value will be described later in this section. Global optimization could be
“any classification methods” that can give continuous alpha value between 1 (absolute
foreground) and 0 (absolute background). One important point that is different from other
energy optimization schemes is how to trade off between local and global information.
This “smart weighting” is embedded into the constraint function.

Regarding the algorithm, first, local region growing will be used. If region
growing is unable to decide on some unmarked pixel, global classification is then
performed. After searching forward and backward on the image array , the
present constraint value a will be updated to . This updating is modeled by a mixture
of Gaussians. The process continues until there are no remaining unknown pixels.

),...,(1 NxxX =

n 1+na

1) Constraint Initialization

In order to derive the initial constraint value for region growing so that the
foreground and background grow correctly, a statistical method is used to model the input
image’s foreground/ background distribution. As opposed to conventional methods that
try only to form a threshold based on first order moment [FSA07] that is weak when the
image is complex, classical Chebyshev’s inequality is appropriate to be used for
calculating how far an arbitrary point in the color domain can grow to neighboring colors,
by directly considering the distribution.

First, we calculate the color standard deviation of the foreground, the background,
and of both areas. After that the constraint value can be calculated from (2.6).

Proof. Based on Chebyshev’s inequality, at least 99% of all samples will fall within +/-

 17

10 of the standard deviation. This range can be considered to be like a box in the RGB

domain with a width, height, and depth of Rσ20 , 20 , and
Gσ Bσ20 . Next, further consider

the distribution boundary to be a sphere with a diameter determined in equation (2.5).

The claim that at least 99% of all samples are within the box will hold for this sphere.

Although the sphere is larger than the box, a small difference from 99% is not

statistically important, as the actual population needed is 100%.

ssdBGR 20400400400 222 =++ σσσ (2.5)

Based on this spherical standard deviation, , of foreground, background, and

both areas, calculate the region growing constraint from (2.6). Note that the factor of 20
can be ignored since the relation between each parameter is linear.

ssd

))),,max((*max(min0 kssdssdssdka bffbscale −= (2.6)

In (2.6), constant k enables a region to grow for the case in which the

intersection between foreground and background is too tight, and is set to unity as this
represents the smallest color difference in a digital image. There is also a scaling factor,

, whose value is important. Too small a k will make the growing process
unnecessarily slow, while too large a can cause erroneous growing of the foreground
into the background, or vice versa. According to Chebyshev’s inequality, it is possible
that almost none of the samples will fall within +/- 1 of the standard deviation, here ,
so that the ideal optimum constraint from foreground that would not intrude into the
background, and vice versa, would be 1 . Note that generally the outcome of (2.6)
would be biased to a smaller value than statistically to compensate for non-
ideal distribution. As we are going to use the timing that equal to and

 for multiple cuts and cut before matting, as will be shown in Sections 4 and 5,
respectively, must be lower than 1, which will not affect the performance much as it
only results in more iterations. In our experiments, it is set to be 0.5, which proved to be
robust for all 40 test images.

min

scalek

ssd*2

scale

fb

scalek

*

fbssd

fbssd

scalek ssd*

fbscale ssdk * fbssd

fb

scalek

2) Local Classification

Based on the optimum constraint value, region growing is performed by
calculating pixel differences from the user’s marked core data. If the Euclidean distance
in the color domain between the known foreground/background and its surrounding

 18

unmarked pixels is smaller than the constraint value , an unknown pixel will be
changed to foreground or background.

na

3) Global Classification

Translating our global optimization idea into a classification criterion, since the
alpha value ranges between 1 and 0 for foreground and background, respectively, any
yet-to-be-marked pixel is judged as foreground or background using the criterion of (2.7).





−≤
+≥

),(5.0;background
),(5.0;foreground

 be
nii

nii
i aGradC

aGradC
x

α
α

(2.7)

where is the alpha value of pixel i , and C is the constraint function calculated
from gradient information of pixel i , given the region growing’s “constraint value” for
iteration n is a .

iα),(ni aGrad

n

For alpha value calculation, presently, in order to calculate the alpha value, the
foreground cut uses statistical clustering functions such as the Gaussian Mixture Model
(GMM) in [RKB04] or k-means clustering as in [LSTS04] or strong nonlinear classifier
as in our previous work [ROI06]. In the present work, k-means is used to compare with
graph cut implementation of [LSTS04], and neural network is used for the case that input
consists of multiple features. For now, alpha value from k-means is calculated from:

c
bi

c
fi

c
bi

i II
I

µµ

µ
α

−+−

−
=

(2.8)

in which I is the RGB value of pixel i and is the closest cluster mean of the
background (or foreground) RGB.

i
c
bµ

For constraint function, as opposed to constraint value, the two constraints must
contain some relation, as region growing compares two neighboring pixels whereas
classification compares the pixel and the data distributions. This will be explained in the
next section.

4) Tradeoff Between Local and Global Data

In previous works that consider complex cost function, the decision to weight
between inside parameters faces the problem of inconsistency from cost function to cost
function. There have been attempts to generate such a weighting parameter [CKS97]
[DM00]. On the contrary, if the optimization is constrained, it is possible to trade off each
and every constraint directly. This is unexpectedly robust and very easy to implement.

 19

By considering priority, global classification should be given lower priority than
local region growing. Hence, the constraint for global classification in (2.7), C ,
should be: 1) 0.5 when a gradient value is strong, indicating that the unknown pixel is
probably around the boundary. Regarding priority, the constraint should be high when the
gradient is higher than the region growing’s constraint. 2) Gradually relax to 0 as the
gradient value become smaller than the region growing’s constraint.

),(ni aGrad

At first, we used Haar-like function as the constraint and found that it cannot
produce a good result, evidently because it violates the second condition mentioned
above. It is discovered from experiments that, similar to classical nonlinear classification,
the effective group of function is variants of sigmoid.

In order to make the relation to region growing’s constraint linear so that
increasing one will affect another equally, sigmoid is adapted to be a linear function of a .

n

)0),5.0
)exp(1

1max(),(−
−−+

=
wGrada

aGradC
in

ni
(2.9)

Equation (2.9) is a scalable version of a sigmoid function in which the constant

is the point where constraint function approximately reaches maximum value, here 6.75.
This is actually our method’s weighting parameter. The higher is, the more weight is
given to local similarity. The effect of increasing a or reducing w in the gradient-
constraint domain is similar to shifting the sigmoid function rightward as shown in Fig.
2.1.

w

w

n

Among the advantages of this weighting are the following five: 1) It is easy to
implement. 2) It is compatible with existing schemes. 3) Prioritizing is straightforward; it
tries not to decide on pixels where the gradient is stronger than , which means the
global classification has lower priority than local region growing, and passing the
decision if the gradient is smaller than a . Between these two milestones, the decision
is based on nonlinear function, here sigmoid. 4) Both constraint value a and constraint
function are always consistent as they are derived from data distribution. The
reason that both can be based on Chebyshev’s inequality is that the initial constraint a
reflects both color difference and gradient. 5) It is extendable to other features without
any adaptation. In multidimensional features, region growing should use alpha value
instead of color, as will be shown in the discussion section. Consequently, a will be
calculated from alpha distribution which then reflects alpha difference and gradient in
alpha domain.

na

wn −

n

),(ni aGradC

0

0

Note that when the feature is only color, region growing does not have to use an
alpha value instead of color. Also this can reduce the inconsistency of alpha value
calculation due to tight color distribution or not-well-structured classifier. This advantage
can be seen from the second row of Fig. 2.3.

In this scheme, one important thing to stress is the difference from merely
weighting the cost function, as the latter is difficult to derive, especially when the cost
function is complex, as when weighting between local and global information.

 20

Constraint function value

Gradient

Fig. 2.1 Constraint function. wan − = 0 and 5 shown in two lines, respectively.

5) Constraint Update

After the region cannot grow further using the present constraint value and
constraint function, the constraint value will be relaxed from a to a . As opposed to the
constraint initialization that does not model the distribution, the relaxing process is
modeled based on the mixture of truncated symmetry Gaussians in features domain with
the width of

n 1+n

σ6 . The Gaussians are symmetrical and have a fixed size, as the constraint is
unbiased on axis and actual distribution in the features domain.

At the end of iteration, assuming the worst scenario, the Gaussians expand to the
width of σ6 and touch each other perfectly, meaning some Gaussians of the foreground
are touching those of the background. In the next iteration where the constraint will be
relaxed and the Gaussians will likely expand further, the optimal intruding would be σ ,
according to the less insignificant part of the distribution. So the optimal relaxing factor is

. This is iteratively done at every iteration end. 33.1 &

Note that by performing a segmentation experiment using only local region
growing, this factor also serves the method very well.

In global optimization, the constraint function C , which has lower
priority, is relaxed for the same portion. The process continues until there are no
remaining unknown pixels.

),(ni aGrad

6) Experimental Result

In order to compare our proposed method with the current technology of

foreground segmentation, a method that exploits both local and global information, graph
cut, is used as a benchmark. To make the comparison fair, both methods apply the
watershed algorithm [VS91] to generate pre-segment input images and use k-means as
the classification agent with the same number of clusters.

For the case that the boundary is clear and the foreground and background data
distributions are well separated, both graph cut and CIFS can segment the foreground
effectively, as can be seen in the first row of Fig. 2.2. On the other hand, region growing
easily fails.

 21

If the data distributions are ambiguous and there are strong edges that are not the
boundary, graph cut often fails whereas our smart constraint exhibits improvement as can
be seen in the second and third rows of Fig. 2.2. This does not mean that our method is
better than graph cut in all aspects as we are still relying on the choice of the constraint
function . A better outcome of graph cut can be expected if more weight is
given to global information.

),(ni aGradC

In any case, even when the marks for foreground and background are close to
each other, Chebyshev’s inequality proves to be robust in preventing the foreground from
incorrectly growing into the background, and vice versa, as can be seen from column (d).

The overall process, without the pre-segmentation step of watershed, typically
consumes less than one second for a 640*480 image on a laptop with a 1.8GHz CPU. The
time consumption is linear to the dimension of the images. Although the time
consumption is reasonable, this is not faster than graph cut. Since even the notion of
independent local and global classification leads to algorithmic efficiency, the iterative
constraint produces delay in segmentation. However, this constraint will be shown to
have outstanding merits in the next two sections.

(a) (b) (c) (d) (e)

Fig. 2.2 Comparison of foreground cut tools.
(a) Input image. (b) Graph cut. (c) Applied region growing with Chebyshev’s inequality.

(d) At constraint based on Chebyshev’s inequality. (e) CIFS.

 22

2.3 Multiple Cuts

One advantage of the proposed method is the use of edge information as a
constraint. Not only does this improve the problem of trading off between color similarity
and edge strength but this also enables multiple object searching without having the user
mark all the separate objects in an image. Searching too early in remote areas results in
false positive objects, as can be seen in Fig. 2.3 column (b); searching too late might miss
a chance to distinguish remote sections if they were already incorrectly detected as shown
in column (c). This indicates that previous approaches are inferior to our system in the
sense that they do not possess the notion of growing to some edge constraint before
splitting.

1) Remote Search Criterion

Automatic searching is possible in our algorithm by letting the region grow to a
statistically certain iteration. Since it is possible that there are remote sections that should
be judged to be foreground (or background) but are blocked by background (or
foreground), without multiple section mode these areas would never connect to the
foreground (background), as shown in Fig. 2.3. So instead of letting the region grow
further, we start searching in remote unmarked areas for pixels that fall into the global
data distribution of the foreground (or background) but not vice versa. These detected
pixels are used in the next iteration as additional cores.

Statistically, the timing limits for searching can be obtained by considering the
lower bound of Chebyshev’s inequality. According to the theory, the ideal optimum
constraint from foreground that would not grow into background, and vice versa, is when

 equals 1. As was set to 0.5, so the remote section search process started when
. We can use this to search for remote sections, and must do so, because if we do

not constrain the timing, remote foreground (background) objects will be incorrectly
turned into background (foreground) in the consecutive iterations.

scalek

an ≥

scalek

02a

At the end of this iteration, all the remote sections are detected and marked as new
cores. Then the process continues as usual until no unknown pixel is left.

2) Experimental Result

Multiple cuts mode is benchmarked against an object recognition scheme similar
to [MFM04] and [FO03]. Although [FO03] exploits high dimensional training input that
forces the use of a comparatively fast but weak classification method, we have found that
this larger window is slow and does not always produce good recognition results.
Especially when the foreground/background consists of many different regions, using a
larger window usually confuses the classifier because it encounters patterns that are too

 23

complex. Hence, recognition is done on a pixel basis here. To simplify the comparison,
both methods apply the watershed algorithm to generate pre-segment input images and
use k-means as the classification agent.

From the result in Fig. 2.3, first, the first row shows a well-separated distributions
case where both approaches perform equally. The second row presents a not-well-
structured classifier (including underfitting and overfitting). Here, the background
contains clear color but the structure of the classifier is over-complex so that the result of
classification is prone to error. On the other hand, using the same classifier, multiple cuts
mode gives a robust result due to exploitation of local region growing.

Even when the color distribution is not well separated, as can be observed in
column (b), multiple cuts mode exhibits robustness to some extent. The reason is as
mentioned: exploiting Chebyshev’s inequality as a constraint enables the region to grow
to the critical statistical limit shown in column (d) before searching for remote sections
resulting in column (e). Note that the method inevitably shares similar weakness with
object recognition and the contour evolving approach when the foreground/background
features are too ambiguous, as can be seen in the third row. However, considering the
final row, in which the intersection between foreground and background is also tight but
not as complex as that of the third row, CIFS shows substantial improvement.

Regarding time complexity, multiple cuts mode consumes approximately the
same as that of a foreground cut mode.

 24

(a) (b) (c) (d) (e)

Fig. 2.3 Comparison of multiple cuts tools.
(a) Input image. (b) Object recognition. (c) Foreground cut mode. (d) At twice the

constraint based on Chebyshev’s inequality. (e) Multiple cuts mode.

2.4 Cut Before Matting

Presently, matting is often required in image editing, as subjects to be segmented

from original images often contain small or thin sections. However, a great deal of user
interaction is usually required to mark areas around the boundary manually. Hence, this
problem is important because it attacks such considerations as whether it is possible to,
first, use high-end foreground segmentations to generate pre-cut images, and then, use
matting tools to generate a soft boundary. In other words, can the process be automatic?
This would reduce user interaction, which would be a great benefit to people in media
fields.

 25

1) Cut before Matting Criterion

Although many matting tools are available in both commercial and research
format, using pre-cut images is often required for difficult images where data distribution
is not well separated. [RKB04] propose to use their graph cut implementation to cut, and
then perform erosion to some heuristic iterations, before using a matting tool like
[CCSS01] to generate a soft boundary. [WC05] sees this approach as an ad-hoc decision,
and proposes the use of belief propagation to iteratively revise the matting process. Our
work, though not perfect, shows improvement over the mentioned schemes even when
the distribution is ambiguous.

Similar to multiple cuts mode, cut before matting mode relies on the process of
growing to some certain statistical constraint. Naturally, the pre-segmentation step of
watershed is omitted since it would generate undesired blobs in the thin sections.
Consequently, region growing can produce undesired growth due to noises in the original
image (without watershed smoothing). Hence, region growing is omitted in the early
iterations where a , based on the previous section analysis.

02an <

Again, the timing limits for searching can be obtained by considering the lower
bound of Chebyshev’s inequality. Whereas multiple cuts strictly stops before search at the
constraint that “would not allow foreground and background to grow into each other”
(ideally equal to 1), cut before matting can tolerate more since it is not concerned with
losing remote sections. Hence, it is designed to stop before matting at the constraint that
just “would not allow foreground to grow into existing background’s data distribution,
and vice versa ” (ideally equal to 2). As was set to 0.5, so the remote section
search process started when .

fbs*

fbs*

0

scalek

4aan ≥

After this iteration, constraint function (2.9) is set to be zero, meaning that
decision is based on local region growing with a constraint value or on alpha value
directly (without constraint function). Even when a pixel is judged using region growing,
its alpha value is recorded to represent composite images automatically.

Additionally, as opposed to some works that use a fixed size large window for
searching, CIFS increases the size of such a window at the end of iteration. This is done
because using a fixed size window gives a similar result but consumes considerably more
time.

2) Experimental Result

In this experiment, three types of images are used, namely, uniformly distributed
colors, well separated colors, and tightly separated colors.

For all these kinds of images, CIFS shows a better result than robust matting
[WC07], which is a state-of-the-art matting program, in the sense that it is less sensitive
to initialization, as shown in Fig. 2.4. However, it can be observed that in the sense of
“softness” of the boundary, a specific matting program can do its job slightly better.

However, when the color distributions are not well separated, as can be seen in
the third and fourth rows, CIFS gives substantially better results. Chebyshev’s inequality

 26

does not fail us regardless of how dense the distribution is. This kind of result would not
be obtained if a conventional erosion before matting scheme were used, as a small
number of erosions would not cover the size of the boundaries, and a large number would
give pre-cut images that are too far from the boundaries and, in the case of ambiguous
color distributions, would result in completely wrong cuts.

Considering the difficulty in marking the images, it can be seen that users do not
have to carefully trace the hairs. They can just roughly place a mark around the subjects.

Time consumption of this mode is, of course, larger than the previous two modes
since a large search window is used. The overall process typically consumes less than ten
seconds for a 640*480 image on a laptop with a 1.8GHz CPU. This is generally as fast as
robust matting [WC07], which also tries to address the problem of automatic matting.

(a) (b) (c) (d) (e)

Fig. 2.4 Comparison of matting tools.
(a) Input image. (b) Robust matting. (c) At four times the constraint based on

Chebyshev’s inequality. (d) Cut before matting mode. (e) Cut before matting in (c) used
as input for other high-end matting method.

 27

2.5 3D Object Segmentation

 Using normal cameras, for example, 280x200-pixel cameras in a robot’s head,
after disparity map and 3D background subtraction, the extracted foreground is usually, if
not always, noisy, as shown in Fig. 2.5.

(a) (b)
Fig. 2.5 Conventional stereo segmentation method.

(a) An image captured by a camera attached to the robot in Fig. 1.1. (b) Disparity map
and background subtraction.

 We then notice that interactive foreground segmentation can be used to solve this
problem, as described in [BK04] [WBC*05] [LSS05] and [ROI06], which require a user
to roughly mark foreground and background. Subsequently, the correct foreground can
then be extracted using their algorithms.
 In contrast with such methods, instead of letting a user mark foreground and
background, this research directly exploits the extracted foreground shown in Fig. 2.5 (b).
As the data is noisy, dilations and erosions are performed on foreground and background.
The number of dilations and erosions is fixed for each calibration. This automatically
marked image is shown in Fig. 2.6 (a).
 Then, this image is used as an input for our 2D CIFS, the result is shown in Fig.
2.6.

 28

(a) (b)
Fig. 2.6 Stereo segmentation using 3D data as an input for our method.

(a) Input from dilations and erosions on Fig. 2.5 (b). (b) Object segmentation result.

2.6 Discussion

This section describes comparative studies from the aspects of mathematics and

algorithms. Among the important aspects considered here are sensitivity to initialization,
robustness, noises in multiple cuts, cut area before matting, matting itself,
multidimensional features, and user interaction.

1) Sensitivity to Initialization

CIFS, similar to graph cut, is evidently robust against initialization. The reason is
quite obvious; both of them exploit local and global similarity at the same time. On the
contrary, matting and edge-based approaches are often criticized for sensitivity to
initialization. Matting is robust and capable of generating a soft area locally, but when it
comes to large areas, not-well-separated feature distributions in images force the alpha
classification to the corner. For the latter, having the flow process rely on gradient
information is weak when the boundary area contains a large number of edges.
Unsupervised region-based approach is also robust against initialization, [CRD06], but it
is difficult to make this comparison since the user input is different.

2) Robustness

Furthermore, the use of both local and global similarity also leads to robustness
against tight data distributions, which is one drawback in the matting and unsupervised
edge-/region-based approaches. While the reason that such a drawback exists in the
matting approach is immediately understandable, as the method relies considerably on
feature distribution, the cause for the unsupervised approach is not so clear. For the

 29

boundary to evolve, a user is required to draw a guideline roughly. This is an unforeseen
defect. Users cannot mark areas as being foreground and background, which means that
they more or less lose control of the topology. Also, the initial data distribution would
never be given, which also means that the cost function cannot exploit similarity to data
distribution, since this is not given.

3) Multiple Cuts

Whereas the unsupervised edge-based approach is weak in images with noisy
gradient information, CIFS, fortunately, is very similar to the unsupervised region-based
approach. The latter two give noisy results when the feature distributions are not well
separated. The unsupervised region-based approach can reduce this noise by imposing a
cost function on the geometry of an evolving boundary whereas our approach grows to
reduce noise before searching for remote areas.

Although the unsupervised region-based approach is more flexible since the cost
function can be adapted whereas our method relies considerably on the data distribution,
a more important feature than flexibility is robustness. Although applying internal force
in such approach may reduce noise, it can also limit geometric flexibility and prevent the
representation of thin objects [MT95]. It is difficult to say which one performs better
since the input is different. Ultimately, in the case that feature distributions are well
separated, multiple cuts can segment the foreground correctly without having a user mark
all areas, as shown in Fig. 2.7. Even in not-well-separated cases, it shows robustness to
noise as can be seen in Fig. 2.3.

(a) (b) (c)

Fig. 2.7 Multiple cuts mode with noise.
(a) Input image. (b) At twice the constraint based on Chebyshev’s inequality. (c) Result

of multiple cuts.

 30

4) Cut Before Matting

It can be clearly seen that the proposed method gives a substantially better cut

since the regions grow from both core foreground and core background, before stopping
at the timing based on Chebyshev’s inequality. Combined with the notion of local and
global optimization, this is a great benefit not available in previous works.

Moreover, this mode can be used as a standalone matting program as well as an
input generation for other high-end matting methods. In this regard, evidently, in difficult
images from Fig. 2.4, if users prefer correctness to softness, cut before matting is
recommended as a standalone matting program.

5) Multidimensional Features

When exploiting other input along with color, for example, texture, there are
generally two ways to classify these complex features. The first scheme is by weighting
between color similarity and other features’ similarity. The difficulty in this scheme is
how to decide the weighting parameter. Many previous works select it by trial-and-error
and face the problem of inconsistency. The second scheme lets the pattern classifier do
the job, but this scheme relies on the performance of the chosen classifier. CIFS employs
this latter scheme.

In order to take other features into account, whereas global optimization already
relies on an alpha value that can be generated from all features, the input for local region
growing must be changed from color value to scaled alpha value, without loss in
generality as explained in Section 3. Also, the pre-segmentation step is not applied here
as it would filter out texture information undesirably.

Based on its main strength, effectiveness in classification, a neural network with
one hidden layer is used in this work, instead of clustering schemes that cannot provide
meaningful discrimination power in such complex input domain. The Levenberg-
Marquardt training algorithm is chosen since it converges well. As alpha value ranges
between 0 and 1, sigmoid function is used as a transfer function. The user-marked data
are then used to train the network for 100 epochs.

In the experiment, images with very tight color distributions are used. For
example, in Fig. 2.8, even a human can hardly see the rectangle in the middle. By
exploiting texture here, using conventional local variance of a five-by-five window, a
gross area of the object can be detected.

In spite of the fact that the extracted boundary is not smooth since CIFS does not
have an internal cost function, one can clearly see the effectiveness of the method to
enhance an object.

 31

(a) (b) (c)

Fig. 2.8 Using a neural network with various features to generate alpha value.
(a) Input image. (b) Using RGB. (c) Using RGB and variance.

6) User Interaction

Finally, as mentioned earlier, user interaction also plays an important role in the
segmentation algorithm. If the segmentation is not perfect, it can be corrected more easily
in the interface. “Mark areas as being foreground vs. background” is an easier task than
“mark a guideline contour.”

In addition, CIFS offers two important options that can greatly reduce user
interaction: multiple cuts and cut before matting.

2.7 Algorithm

TrainClassifier();

r = 1;

an = a0 = ConstraintInitialization();

if (modeMatting)

 doRegionGrowing = false;

else

 doRegionGrowing = true;

// In each iteration, running forward or backward in image domain //

while (n != 0)

{

 if (mark[i][j] == surroundedByUnknownPixel)

 {

 32

 surround = false;

 for (x = i-r; x< = i+r; x++)

 {

 for (y = j-r; y< = j+r; y++)

 {

 if (mark[x][y] == unknownPixel)

 {

 surround = true;

 undecided = false;

 // Region growing //

 if (doRegionGrowing)

 undecided = CriterionRegionGrowing();

 // Global classification //

 if (!doRegionGrowing || undecided)

 {

 alpha = FindAlphaValue();

 CriterionGlobalClassifiacation();

 }

 }

 }

 }

 if (surround == false)

 mark[i][j] = !surroundedByUnknownPixel;

 }

 // Stop criterion //

 n0 = n;

 n = 0;

 for (i = 0; i<row; i++)

 {

 for (j = 0; j<col; j++)

 {

 if (mark[i][j] == unknownPixel)

 n++;

 }

 }

 if (n == 0) break;

 // Special mode //

 if (evenIteration || n == n0)

 {

 if (modeMultipleCuts && an >= 2*a0)

 {

 SearchRemoteArea();

 modeMultipleCuts = false;

 }

 33

 else if (modeMatting){

 r++;

 if (an >= 4*a0)

 doRegionGrowing = true;

 }

 an *= relaxedGain;

 }

}

2.8 Summary

This research presents a supervised comprehensive iterative foreground
segmentation (CIFS) based on local and global optimization with edge constraint that can
effectively deal with a foreground cut, multiple cuts, and cut before matting. It uses the
cost function similarly to graph cut but extends the algorithms by the notion of edge
constraint. The constraint that was not effective in conventional region growing is made
possible by Chebyshev’s inequality and proves to be robust. This is the first novelty.

Since both local and global cost functions have their own constraints, a novel
weighting method is shown to perform in the constraint domain instead of in the cost
function. Although it is difficult to compare this notion with conventional weighting, our
scheme is more straightforward if there are local and global components in the cost
function. This notion can also deal with multidimensional features.

Considering a foreground cut, CIFS is as robust as graph cut, since their cost
functions are quite similar. Nevertheless, graph cut, in difficult images, applies only to
the foreground cut problem.

The third novelty is automatic multiple cuts that are capable of reducing a great
deal of user interaction. This approach is robust against a not well-structured classifier as
well as ambiguous data distribution. The notion of growing to an edge constraint based
on Chebyshev’s inequality before searching is novel and can reduce a great deal of error.
This is completely different from the contour evolving approach. Compared to this
approach, the main differences are among the algorithms: the proposed method does not
split or merge to perform multiple cuts. CIFS relies on data distribution and thus is more
straightforward, whereas the other approach seems to be more flexible due to its internal
and external cost function.

For cut before matting, the proposed method can generally gives substantially
better pre-cut images since it uses Chebyshev’s inequality as opposed to heuristic erosion.
The scheme can be used as a standalone matting program as well as an input generation
for other high-end matting methods.

The final novelty is that the method is then applied to perform 3D object
segmentation automatically. In order to extract the subject area, this research focuses on
how to exploit normal stereo cameras to roughly extract the object automatically using
disparity map and 3D background subtraction, and then uses CIFS to extract the object
area correctly. 3D background subtraction is usually noisy; thus, dilations and erosions
are required. CIFS, then, exploits the local and global color similarity optimization with a

 34

constraint of edge to extract the boundary correctly. This is a promising paradigm, which
can be applied in wide varieties of 3D segmentation/detection tasks.

 35

Chapter 3

Color Perception

 After the object boundary is derived, the robot must represent the object’s color
using an appropriate set of colors. This chapter attacks the problem of whether it is
possible for a robot to perceive colors in an image in the same way a human does.
 The question falls into the domain of color reduction. Usually, digital color
images consist of up to 16 million different colors in a 24-bit color space. However, in
many applications, namely compression, presentation, and transmission, it is preferred to
have as small a number of colors as possible. Color reduction is a process that transforms
a full color image to an image with a smaller number of colors, by grouping similar
colors and replacing them with a representative color.
 Our research proposes a color reduction scheme that incorporates two clustering
methods, maximum distance clustering (MDC) and K-means. It shows that, using MDC
+ an iteration of K-means, in RGB color space, the result is better than using K-means
alone. This results in high-quality, well-contrasted output images; and even the reduction
in the number of colors is very low. We also solve the speed problem of MDC using a
proposed sub-optimal algorithm. Then it is shown that behavior of clustering schemes in
CIEL*a*b* color space is different from that in RGB color space.
 Another objective of this research is an algorithm that anyone could easily
implement, and this is already achieved since our improvement is based on well-known
and easy algorithms, MDC and K-means.
 For benchmarking, we use Photoshop’s perceptual-based palette generation
[AP7], region-based color segmentation of watershed [VS91], and clustering-based
method of normal K-means. It will be shown that, in RGB color space, although MDC +
an iteration K-means performs better than K-means, however, in CIEL*a*b* color space,

 36

both approaches are comparable if K-means is performed forward and backward on
image coordinate.
 This key problem of high-quality interactive color reduction is what our method
can directly address. Section 1 shows some related works. In Section 2, the incorporation
of MDC and K-means is described with some experimental result. The performance in
CIEL*a*b* domain is analyzed in Section 3. Finally, Section 4 contains a summary.

3.1 Related Work

 Presently, several paradigms for color reduction have been proposed. The first
scheme processes colors by splitting the color space into smaller regions. Among the
methods for accomplishing this are median-cut [Hec82], octree [GP90], and variance-
based algorithm [WPW90]. However, their disadvantage is that the resulting image often
contains regions with colors largely different from the original ones, when viewed by
human eyes.

The second paradigm falls into the domain of clustering. K-means [Ver95] and
[YK04], C-means [SK87], and fuzzy C-means [LL90] are among the practical clustering-
based color reduction methods. A general drawback of clustering is that it tends to
produce colors with low contrast.
 Another more complex approach makes use of a neural network for better
classification results, for example, the Kohenen network [Dek94], adaptive color
reduction [PAS02], and Neural Gas [AP06]. Nevertheless, exploitation of the neural net
is time consuming and difficult to implement.
 The fourth paradigm tries to enhance the quality of the output image by
considering spatial characteristics, for example, dithered color quantization [BFH*98].
The method can produce good quality images by performing color reduction along with
dithering at the same time. However, this cannot produce a color for each area
effectively.
 The final scheme is region-based color segmentation, such as [VS91], which
automatically finds color segments based on the minimum acceptable size of a region
specified by a user or [CM02], which allows a user to specify not only a color difference
threshold but also the spatial radius of a filter and the minimum acceptable size of a
region for a given color. However, this approach often cannot reduce the number of
colors effectively, and, instead, is applied in the field of region segmentation. Ultimately,
although many techniques are available, an acceptable interactive method that can
produce a higher-quality result is still needed.

3.2 Maximum Distance Clustering + 1 K-means

 In order to solve the contrast problem of clustering-based color reduction,
maximum distance clustering (MDC), considered a weak clustering method, is initially
used to specify the highest contrasted colors. The set of maximum contrast colors is then

 37

used to initialize K-means clustering. K-means clustering is robust and widely used in
various fields of research. The drawback is that it tends to lessen the contrast in the output
image. Hence, we [RKO*07] propose a method that weights the contrasted colors
obtained by MDC and the statistically calculated colors obtained by K-means.

1) Maximum Distance Clustering

 To capture the maximum contrast of colors of an image, MDC is applied to the
image in the RGB color space. The first iteration starts by sampling a pixel from the input
image and then identifying a color with the largest Euclidean distance from the sampled
pixel’s color. For all consecutive iteration, the criterion for a new color is (3.1).

 maxmin ,,1max, jikjikk ceccd −=+ (3.1)

where is the maximum distance of cluster k+1, k is the number of existing
clusters, i,j is the coordinate of a pixel, cc is the existing cluster’s colors, and ce
represents colors at each coordinate, and is a candidate for a new cluster.

1max, +kd

k ji,

 Since the colors would be used to initialize K-means clustering, the algorithm
continues until the number of clusters equals the desired number of colors, or there is no
other candidate color. In other words, the method requires running k iterations on an
image to find k initial cluster means.

2) K-means Clustering

 The derived highest contrasted colors are used as initial means for K-means
clustering. Then, each new piece of data is used to compute the new mean of the closest
cluster derived from (3.2).

jikk
cecc , min − (3.2)

 In order to prevent K-means from dominating the clustering process, it must not
be run until converged. Practically, running K-means for only one iteration gives the best
result. Finally, each pixel of an image is rendered based on the closest derived cluster
mean.

3) Sub-Optimal Maximum Distance Clustering

 Since it is preferable that color reduction returns the output image as fast as
possible, MDC is the bottleneck of our previous algorithm [RKO*07] as it consumes a

 38

considerable amount of time when the number of colors is high (see table 3.1). This is
due to the fact that searching for one maximum distance cluster requires an iteration
search on an image. So we [RKOSI07, Ruc07] propose a sub-optimal MDC.
 The algorithm starts similarly by identifying a color with the largest Euclidean
distance from a sampled pixel’s color. The difference is that every new cluster color is
derived within the second iteration search by a criterion explained as follows. First,
calculate a minimum Euclidean distance of a pixel from the existing cluster(s) using
(3.3).

 min ,,min, jikkji ceccd −= (3.3)

,max,,min, kclusteranyforddif kji >

 . , jipwithkclusterexistingthereplace
, &0 max,,min,,min, clustersallfordddifelse kjiji ≤≠

.

,

numberdesiredthethanlowerstillisclustersofnumber
presenttheifptoequalvaluewithclusternewagenerate ji

 Using this new algorithm, running sub-optimal MDC consumes approximately the
same time as running an iteration of K-means. In other words, running sub-optimal MDC
+ an iteration of K-means consumes time approximately equal to that of two iterations K-
means.

3.3 Experimental Result

 As shown in Fig. 3.2, it can be seen that the (sub-optimal) MDC + an iteration of
K-means outperforms the region-based algorithm of [VS91], the commercial perceptual-
based color reduction by Photoshop [AP7], and the normal K-means clustering. Note that
we discover that running K-means using the same order of input will result in even lower
contrasted image, so K-means, here, is performed forward for one iteration and backward
for the next iteration, and vice versa, on image coordinate domain.
 Thus, using sub-optimal MDC + 1 K-means is preferable to running K-means
alone since the former give better result in shorter time, in RGB color space.

 39

Fig. 3.1 Input images for color reduction.

(a) (b) (c) (d) (e)

Fig. 3.2 Comparison of color reduction tools when performing color reduction to 16
colors in RGB color space.

(a) Watershed. (b) Photoshop. (c) 15 iterations of K-means forward and backward. (d)
MDC + an iteration of K-means. (e) Sub-optimal MDC + an iteration of K-means.

 40

Method Time complexity 16 colors 64 colors
K-means)(itrkN ⋅⋅Ο 2.33 7.64
MDC + an iteration of K-means)(2kN ⋅Ο +)(kN ⋅Ο 1.21 15.83
Sub-optimal MDC + an iteration of
K-means

)(kN ⋅Ο +)(kN ⋅Ο 0.29 1.03

Table 3.1 Color reduction algorithm time comparison.
N is the image size (here 640x480), k is the number of colors, and itr is the number of

iterations until convergence (here 15). Time is in seconds. Average is based on 20 images
using a laptop with 1.8 GHz CPU.

3.4 Performance in CIEL*a*b* Color Space

 According to our previous finding, using MDC with K-means gives a better result
than using K-means alone. In this research, we also discover that such a claim is trivial if
the clustering is performed on CIEL*a*b* color space, instead of other color spaces like,
for example, RGB.
 CIEL*a*b* is designed to produce a color that is more perceptually linear than
other color space, meaning that a change of the same amount in color value should result
in a change of about the same visual importance. Nevertheless, it might be assumed that
the comparison result in the former section should hold even if the color space is changed
from RGB to CIEL*a*b*. Surprisingly, it is not.
 This research shows that, using CIEL*a*b*, two powerful yet easy-to-implement
color reduction methods can be achieved. The best choice is the sub-optimal MDC + an
iteration of K-means. The second one is running K-means for two iterations, forward and
backward.
 Comparing Fig. 3.2 and 3.3, it can be seen that if CIEL*a*b* is used, both K-
means and sub-optimal MDC + an iteration of K-means can generate images that can
preserve contrast and objects in scene well.

 41

(a) (b) (c)

Fig. 3.3 Comparison of clustering methods when performing color reduction to 16 colors
in CIEL*a*b* color space.

(a) 2 iterations of K-means forward and backward. (b) 15 iterations of K-means forward
and backward. (c) Sub-optimal MDC + an iteration of K-means.

Method MSE
Photoshop 86.121

K-means RGB CIEL*a*b*
 1 iteration 168.581 115.22
 2 iterations 131.606 90.499
 2 iterations forward backward 110.640 67.156
 15 iterations 95.913 70.699
 15 iterations forward backward 86.895 60.762

MDC + an iteration of K-means 84.769 62.345
Sub-optimal MDC + an iteration of K-means 87.626 63.718

Table 3.2 Mean square error (MSE) from original images measured in CIEL*a*b* color
space.

Average on 20 images reduced to 16 colors.

 It can be seen from table 3.2 that, first, using RGB color space, error of (sub-
optimal) MDC + an iteration of K-means is as low as that of K-means with a high
number of forward and backward iterations, as well as that of Photoshop’s perceptual
color palette. However, it would be a misinterpretation to conclude that they are
comparable. Photoshop cannot preserve contrast in scene well whereas K-means is slow
and cannot preserve the colors with a small number of pixels, as can be seen in Fig. 3.2.
On the other hands, our method can preserve the contrast in an image best in reasonable
time.

 42

 Second, it can be seen that although the more iterations K-means uses, the less the
error would be, the contrast sometimes gets worse when the number of iterations goes too
high. Also, practically, the number of iterations is limited by the interactive requirement.

 Third, running K-means forward and backward helps reduce a great deal of error.
 Finally, it can be clearly seen that CIEL*a*b* offers higher quality in color
reduction than RGB. In CIEL*a*b*, running only two iterations of K-means, one forward
and one backward, is comparable to sub-optimal MDC + an iteration of K-means.
 We also tested another color space, HSL. The results are not good, as expected,
since the distance between points in such color domain does not provide meaningful
measurement.

3.5 Summary

 Using maximum distance clustering (MDC) to generate initial cluster positions
for K-means can solve the general problem of clustering-based color reduction methods.
It is required to run K-means for only one iteration to prevent it from dominating the
process. Thus, the convergence-speed problem of K-means is not present in our
algorithm.

As MDC is comparatively slow when the number of desired colors is high, a sub-
optimal algorithm is proposed and shown to be extremely fast and able to generate a
higher quality image than many existing interactive color reduction methods, in RGB
color space.

However, in human perception color space, CIEL*a*b*, K-means alone is
comparable to MDC + an iteration of K-means, provided that K-means is run for two
iterations or higher, one iteration forward and another iteration backward. Considering
time, running MDC + an iteration of K-means consumes approximately the same as that
of two iterations of K-means.

 43

Chapter 4

Brush Stroke Planning Using Global
Orientation

 After the foreground and its appropriate number of colors are derived, a method
that mimics human painting style is used.
 In this chapter, Section 1 shows related works. The next section shows how to
calculate global orientation. Then hierarchical painting is shown in Section 3. Section 4
shows some of the experimental results based on 2D and 3D input. A summary is in
Section 5.

4.1 Related Work

 For the local orientation used to guide brush strokes, [Her98] uses a gradient to
guide brush strokes that are more robust to texture, whereas [SY00] uses image moment
that is more robust to shape orientation. However, such methods do not produce good
brush strokes because the gradient or moment that a robot preserves could be noisy.
Recently, methods that consider global gradient include [HE04], which selects only a
strong gradient and applies a linear radial basis function (RBF) to interpolate a gradient
on other areas. This seems to match an artist’s perception. In fact, results shown in
[HE04] resemble Van Gogh’s style. This research modifies the method of [HE04] to
generate practical end-effector trajectories for the robot, by making it faster using a
certain size of RBF window.

 44

4.2 Global Orientation Calculation

 From an original image, the robot would then calculate the normal orientation.
Orientation, (4.1), is calculated using the gradient operator.

)/(tan 1
xy GradGrad−=θ (4.1)

where θ has a range between {-π /2, π /2}.

 This normal vector is not directly used to guide the brush because it would be
noisy as shown in Fig. 4.1 (a). Instead, the robot uses linear basis RBF [Bor] to
interpolate the gradient field. Differing from [HE04], where only strong edges are used as
an input for RBF, and which could fail to capture some subtle but important edge such as
human hair, this research exploits all gradient values as an input for RBF, which is
possible by weighting function of (4.2).

22
yx GradGradw += (4.2)

 Furthermore, the orientation image is not calculated totally globally since doing
so would make an orientation of any pixel affected by the whole image’s orientation,
making straight lines bend. Also, globally computing consumes a lot of time; for each
pixel, the number of operations required is shown in (4.3).

CR * (4.3)

where R is the number of rows and C is the number of columns of an image.
 For example, a 640x480 image would require overall 9.4372e+010 sets of
operations.
 In order to enable the robot to calculate this in a reasonable time, instead, the
robot just focuses around an area and calculates global orientation in this area. By doing
this, the processing time would be reduced as shown in (4.4).

cr * (4.4)

where r is the number of rows and c is the number of columns of a mask.
 For example, a 640x480 image with a 10x10 RBF mask, used in this work, would
require only around 3.0720e+007 sets of operations. In the case that there is no
information of input orientation in the mask, as can be seen from the input figure, the
mask size for searching is doubled until orientation information is found. In other words,
the area that has no orientation information would use the orientation of the surrounding
area. The result is shown in Fig. 4.1 (b).

 45

(a) (b) (c)

Fig. 4.1 Orientation of an image scaled from {-π /2, π /2} to {0, 255}.
(a) Original image. (b) Original orientation of each pixel. (c) Orientation after RBF is

applied.

 As can be clearly seen on the subject hair and on the building, the result is very
much the same as when humans perceive orientation in a scene, even with the presence of
a noisy gradient.
 Whereas the above image uses texture to guide brush strokes, we observe that
using the gradient of the object may or may not generate good trajectories. Hence, if the
gradient information of the boundary between foreground and background is used, the
result is shown in the below image.

(a) (b)
Fig. 4.2 Orientation of an image’s boundary scaled from {-π /2, π /2} to {0, 255}.

(a) Original orientation of boundary. (b) Orientation after RBF is applied.

 It is also possible to use range data instead of gradient information. In doing so,
range data from stereo cameras is also input into the RBF. The result is shown in Fig. 4.3.

 46

(a) (b)
Fig. 4.3 Range image.

(a) Original range image. (b) Range after RBF is applied.

4.3 Hierarchical Painting

 The robot then scans each color segment derived from chapter 3 to find an area
that contains a number of pixels larger than (4.5).

2rkth regionregion ×= (4.5)

where r is the pre-computed radius of the brush, and is the constant depends on
drawing style.

regionk

 If such an area is found, the robot starts to draw. To check whether the brush tip
touches the canvas or not, the force sensor is then used along with the position of the
brush tip detected in real time.
 For the next movement, the robot then focuses along the normal direction of
orientation derived earlier, and counts all yet-to-be-drawn pixels with the same color. If
the number of pixels is higher than the threshold described in (4.5), the robot would
decide to move the brush.
 Each stroke is considered finished if an area found in the normal orientation
direction is smaller than (4.5). After all the colors in each hierarchy are painted, the next
hierarchy starts, where the robot then selects a smaller brush. The number of hierarchies
depends on the error criterion between the picture in the robot’s mind and the painting on
the canvas.

4.4 Experimental Result

 At the present time, due to insufficient drawing equipment and other resources,
the artworks the robot created are subjected only to drawing of the geometry edge, as can

 47

be seen in the next chapter. In color filling, simulation on a laptop is done, is set to
be 0.5 for the first iteration and 0.3 for consecutive iterations, and brush size is reduced
by the ratio of 0.5 every hierarchy. Also, prior object segmentation allows for the
background to usually require less detail than the foreground, so it can be drawn with a
smaller number of hierarchies. This usually makes the foreground stand out and also
leads to considerable time reduction, an advantage that can be seen in Fig. 4.4, or we can
draw only the foreground as shown in Figs. 4.5 and 4.6.

regionk

Fig. 4.4 Visual feedback painting with object segmentation (subject’s face here).
The first row shows each hierarchy, and the second row shows the overall result.

 48

(a) (b)
Fig. 4.5 Visual feedback painting with object segmentation using global gradient

information with 1 brush size.
(a) Trajectories, (b) Area filling result.

(a) (b)

Fig. 4.6 Visual feedback painting with object segmentation using global range
information with 1 brush size.

(a) Trajectories, (b) Area filling result.

4.5 Summary

For the local orientation used to guide brush strokes, using a gradient to guide
brush strokes is more robust to texture, whereas using image moment is more robust to
area orientation. However, local orientation is usually noisy and thus results in
inappropriate brush strokes. In this sense, global orientation, which can be described as a
smoothed version of local orientation, is applied.
 In this research, a linear radial basis function (RBF) is selected as the smoothing
method, as previous works suggested. We approach the problem differently by focusing
also on the speed of the algorithm. Speedup is accomplished by calculating RBF using a
fixed size window. For an area that has no orientation information the RBF window is

 49

increased until it covers the surrounding area that contains orientation. This substantially
reduces the time consumption so that RBF can be performed in real time.
 It can be seen that the RBF can be applied not only in the gradient domain but
also in any other similar domains to generate smooth output.
 After the foreground, color, and orientation information are derived, the robot can
perform brush stroke planning automatically based only on the brush size information.

 At this point, the result of area filling is verified using a computer simulation.
This type of visual feedback simulation consumes around 1 second per hierarchy, for a
640x480 image, on a laptop with 1.8GHz CPU; thus, it should not be any load at all for
the real robot platform. The problem to be aware of in the real drawing by the robot is
how to consider the color mixing on canvas, and how it would affect the drawing as a
whole.

 50

 51

Chapter 5

Geometric Edges Processing

 Some human artists use edges to enhance their paintings. Small children are also
taught to do so in their early school period. The idea is to see an object and select an
appropriate set of edges to represent the object in the painting. This is one fundamental
way human sense an object. We use geometric edges of an object to represent these edges.

This chapter is divided into 4 sections. Related work and 3D sensor hardware is
explained in Section 1. Generating a 3D model is described in Section 2. How to extract
2D feature lines from 3D shapes is briefly shown in Section 3. As these lines contain
redundancy, they cannot be used by the robot painter directly, so Section 4 describes how
to process them into brush trajectories. Section 5 is the summary.
 Test objects used in this work are shown below.

(a) (b) (c) (d)
Fig. 5.1 Test objects for processing geometric edges.

(a) Apple. (b) Old man doll. (c) Tinker Bell doll. (d) Cupid doll.

 52

5.1 Related Work

Technically, many researchers use gradient information to represent edges of
objects. However, this information can be distorted by the color information on the
surface. For example, even though a ball contains only 1 circular edge, color on its
surface will generate unnecessary gradient information.

Hence, we decided to use 3D geometric edges of an object as input for the robot
to draw as they represent the object well. As painting is done in 2D space, we describe
how to extract 2D edges from the 3D model. Then, we explain how the 2D edges are
processed into brush strokes.

In the first phase, the 3D shape is reconstructed from multi-view range images or
multi-view camera images. In this research, we use a 3D model sensor called Vivid 900
as it can capture 3D geometric edges in high detail. The sensor is shown in Fig. 5.2.

Fig. 5.2 Vivid 900 sensor.

 53

5.2 3D Model Generation

Examples of the range images captured by the Vivid 900 sensor are shown in Fig.
5.3. An adequate number of local images, which overlap each other, are captured from
several viewpoints, and they are aligned and merged, resulting in the image shown in Fig.
5.4.

Note that outliers in the range images are deleted by a user manually to achieve
the results shown in Fig. 5.3. Generally, the range image of each view consists of
foreground and background, and the user must delete the background manually before
exploiting the foreground images to generate the 3D model. This is a tedious task. Hence,
we propose the use of foreground segmentation to delete these noises more effectively.
The foreground segmentation described in Chapter 2 can be used directly to assist the
current technology of multi-sensor modeling by segmenting the color image of each view
and applying the result to the corresponding range image.

We use another object as a test subject in Fig. 5.5. Here the foreground contains
color similar to that of the background. One might propose to use range information as an
input for a segmentation program to overcome the not-well-separated color distribution
problem. However, as we explained in Chapter 2, our foreground segmentation has
components of both local and global classifiers. As a result, it is robust even when the
foreground and background contain similar features.

Furthermore, even though our foreground segmentation scheme can deal with
multidimensional features, it is not always appropriate to use range information as an
input to the segmentation scheme since it could result in bad training data, as shown in
Fig. 5.6, which would confuse the classifier. In these images, we just use color
information.

An example of a 3D model generated from segmented color and range images is
shown in Fig. 5.7.

Fig. 5.3 Range images of an apple captured by the Vivid 900 sensor from different

viewpoints.

 54

Fig. 5.4 3D model of Fig. 5.3.

 55

(a) (b)
Fig. 5.5 Foreground segmentation of each view.

(a) User input. (b) Segmentation result.

(a) (b)

Fig. 5.6 Range images of Fig. 5.5.

 56

Fig. 5.7 3D model of Fig. 5.6.

5.3 Extracting Geometric Edges

After the 3D model is derived, we can proceed to the next step of geometric edge
extraction.

A 3D model consists of triangular patches. A geometric edge is defined as the
common edge at which the sign of inner product of the normal vector of a patch and the
viewing direction changes, as shown in Fig. 5.8.

Geometric edge

Sign of inner-product

-

+ -

+

Virtual view point

View vector

Normal vector

Triangular polygon

Fig. 5.8 Geometric edges extraction.

 57

Actually, the geometric edges extracted in this way, Fig. 5.9, include hidden

edges and many very short edges that are not appropriate for the painting task. These will
be reduced in the next section.

Fig. 5.9 Original geometric edges of the apple.

5.4 Conversion to Brush Strokes

 After 2D geometric edge extraction, still, original data possess redundant points
and links that are not suitable to be used as brush strokes. As an example, the input to this
section, the Tinker Bell doll, is shown in Fig. 5.10. This image has redundancies as can
be seen in Fig. 5.11 (a).

 58

Fig. 5.10 Original geometric edges of Tinker Bell dolla.

a Red color represents vertexes of edges, blue color represents spline curves that show
connection between these vertexes.

 The redundant points and links are reduced using methods described below.

1) Reduce Redundant Points

 This is a case where there are 2 links between point A and B instead of 1 link. In
other words, link A-B and link B-A. A simple search method is used to find this linkage
false. If a redundant link is found, one link will be deleted.

 59

(a) (b)

Fig. 5.11 Redundancy points reduceda.
(a) Original coordinates. (b) After processing.

2) Cluster Points

 Too many points do not provide a robot with good brush trajectories to draw.
Using the above redundancy-points-reduced coordinate, the brush strokes will still be
noisy and meaningless. Also, they consume a lot of drawing time. So, simple clustering
based on spatial difference is performed on the trajectory coordinate. Here are some
examples of such clustering schemes with various clustering radii.

(a) (b)
Fig. 5.12 Clustered points with different radiia.

(a) Radius equals 10. (b) Radius equals 20.

With the radius equal to 20, here is an example of the processed trajectories.

 60

Fig. 5.13 Clustered points with radius equal to 20a.

 By looking at the above image, one can still see there are redundant links in the
sense that they are too similar to be draw by two brush strokes. It is necessary to
eliminate this coordinate to save manipulation time. The process is divided into steps 3
and 4.

3) Reduce Redundant Links 1/2: Comparing a Link to Previous
Trajectories’ Links

 This step is based on a practical point of view that the robot should not draw
similar trajectories onto finished brush strokes. To accomplish this, a link is compared to
the previously processed links. If two links are too close, the new one will be deleted.

 61

Fig. 5.14 Redundant links reduced: Comparing a link to previous trajectories’ linksa.

 Based on the above image, redundancy links are still present within the same
brush stroke. This is resolved in step 4.

4) Reduce Redundant Links 2/2: Comparing a Link to the Present
Trajectory’s Links

 Hence, a further step to eliminate similar links requires comparing two links in the
same brush stroke. This is performed in forward and backward manner to be able to best
eliminate such links.

 62

Fig. 5.15 Redundant links reduced: Comparing a link to the present trajectory’s linksa.

Fig. 5.16 Planned brush strokes of the cupid dolla.

 63

Note:
Upper-left image is considered the original trajectory, while the upper-right image is a
processed trajectory. The lower-left image is the result up to the present stage, while the
lower-right image is the result after adding the processed trajectory.

Fig. 5.17 Planned brush strokes of the apple.

5.5 Summary

Some human artists use edges to enhance their paintings. Although many
researchers use gradient information to represent edges of objects, this information can be
distorted by the color information on the surface. Hence, we decided to use 3D geometric
edges of an object as input for the robot to draw, since they represent the object well.

After using a range sensor to capture multiple-viewpoint images, we align and
merge the images to generate a 3D model. Because painting is done in 2D space, 2D
edges are extracted from the 3D model. A geometric edge is defined as the common edge
at which the sign of the inner product of the normal vector of a patch and the viewing
direction changes.

Finally, the noisy 2D edges are processed into brush strokes by reducing various
kinds of redundancy.

 64

 65

Chapter 6

Brush Manipulation and Experimental
Result

In the last phase, painting by a robot with multi-fingered hands is achieved. One
of the important challenges here is manipulation of a paintbrush by a multi-fingered hand.
This process is definitely different from drawing by an XY-plotter in which a paintbrush
is fixed on the arm by bolts. In grasping by a multi-fingered hand, we need to overcome
problems such as the fact that the state of the grasp changes with motion and the grasp
becomes unstable against a particular direction of force. The reason why we use a multi-
fingered hand in spite of the difficulty is that we believe fingers are necessary to
reproduce precise human techniques for manipulating a paintbrush. In this phase, visual
feedback using stereo cameras is also performed.

In the remainder of this chapter, first, we describe some of the related works in
Section 1. Next, grasping technique is presented in Section 2. Section 3 shows how to
detect the tip of the brush. Detecting brush-canvas contact is explained in Section 4.
Section 5 explains how to plan brush direction to prevent brush slide. Section 6 shows
some of our techniques in actual painting skills. An experimental result is shown in
Section 7. Section 8 gives a summary.

6.1 Related Work

In most studies about manipulating objects by a robot, the objects are fixed on the
robot arm and they only the relationship among the objects is studied. Some researchers

 66

have tried manipulation by a multi-fingered hand [Nap56], [Cut89], [KI97]. They
classified grasp and developed an algorithm to manipulate objects based on the
classification. However, they expected that their method would be used for a
manufacturing application, and therefore few studies have been executed about
manipulating daily objects, which are often deformable like a brush in this study.

Force sensor

Fig. 6.1 Multi-fingered hand.

6.2 Grasping a Paintbrush

In this system, an ordinary commercial paintbrush is used. However, because the

fingers of the robot are much thicker than the fingers of people, a thick handle is attached
to the brush (Fig. 1.1). In grasping, the paintbrush is supported by four points, which are
three fingers (thumb, forefinger, and second finger) and the root of the thumb (Fig. 6.2).
This is almost an imitation of human grasping of a paintbrush. This grasping produces
stable support of a paintbrush against forces from all direction except one direction. The
one direction occurs when using the right hand to draw outward from right to left. In
order to avoid this instability, the brush trajectory is planned so as to avoid the weak
direction of brush motion when the picture is painted.

 67

The process of grasping is explained as follows. First, the position of the handle
of a paintbrush is detected using the vision system. The detail of the algorithm is
described in the following section. Next, the right hand approaches the paintbrush. When
the force sensor in the middle finger detects the contact between the finger and the
paintbrush, the system decides that the hand is adequately close to the paintbrush for
grasping, and stops the hand motion. Finally, power is gradually added to the fingers. The
force on the fingers is watched during this phase, and power is added until a firm grasp is
realized. Then the paintbrush is pulled up. These steps can be seen in Fig. 6.3.

Tip of finger

Root of thumb

Fig. 6.2 Grasping using force sensor.

(a) (b) (c)

Fig. 6.3 Grasp states.
(a) Approaching. (b) Grip. (c) Pull up.

 68

6.3 Detecting the Tip of a Brush

The detection of the tip of a brush is performed using the stereo vision system

shown in Fig. 6.4. First, the position of the handle of a paintbrush is detected, and then
the position of the brush’s tip is derived from it. In this system, because the paintbrush is
grasped by the multi-fingered hand, the relative position of the tip to the arm changes a
bit with every trial of grasping. Moreover, the position can change by an unexpected slip
of the paintbrush during painting. Therefore, it is required that the tip position is
frequently detected in order that the system always knows the correct position. The
reason why the tip position is not detected directly is that direct detection is difficult
because the brush is deformable and its color changes according to the color of the paint.

First, pixels belonging to the handle are extracted from the captured image (Fig.
6.5). The color of the handle is given a parameter here, and the hue and saturation are
used for the extraction. The 3D position of each pixel is calculated by stereo calculation.
For improving accuracy, the area to detect is limited to the possible area determined from
the hand position and rotation. Next, principal component analysis (PCA) is performed
on the extracted pixels (in 3D space), and used to calculate the axis of the handle (Fig.
6.6). The pixel in the lowest position is regarded as the lowest point of the handle.
Finally, the position of the tip is derived from these two factors: the axis and the lower
point of the handle (Fig. 6.7).

Table 6.1 shows the result of measuring the accuracy of tip detection. The tip
position was calculated ten times, keeping the paintbrush in the same position. Because
the paintbrush does not move, the result must always be the same, but some error appears
due to the vision system. The table shows the standard deviation of the detected positions.
Three trials, in each of which the tip position is detected ten times, are performed in
various positions and rotations. In every trial, the standard deviation of the error is within
about 1.0 mm. However, although the brush deforms during painting, this algorithm does
not consider it. In the actual case, an error of about 10 mm appears because of the
deformation.

 69

Fig. 6.4 Stereo vision system’s output.

Fig. 6.5 Detection of the tip of a brush: Color extraction.

 70

Fig. 6.6 Detection of the tip of a brush: Calculating 3D position.

 71

Fig. 6.7 Detection of the tip of a brush: Offsetting.

Trial x-axis y-axis z-axis
1 0.64 0.89 0.66
2 0.77 1.50 0.80
3 0.90 1.60 0.49

Table 6.1 Evaluation of tip detection [mm]. This table shows the standard deviation of the
detected positions.

6.4 Detecting Brush-Canvas Contact

 Force sensors in the fingers are used for the detection of the contact between a
brush and a canvas. The integration of force acting on the three fingers that support a
paintbrush () is focused here. According to Newton’s equation, if a paintbrush is
regarded as moving in a quasi-static process, is formulated as (6.1).

fingerF

fingerF

groundfinger FmgF +−= (6.1)

where m is the mass of the paintbrush, g is the gravity acceleration, and F is the
ground reaction acting on the paintbrush. From this equation, it can be said that F begins
to decrease when the brush contacts a canvas.

ground

Fig. 6.8 shows the change of F while pushing down a paintbrush, drawing a line,
and pulling up the paintbrush. It is seen that F suddenly decreases when contact between
brush and canvas occurs. Therefore, we set a threshold to detect this contact.

 72

Begin to push brush down

Brush-canvas contact!

frame

Ffinger[N]

-
-
-
-
-
-
-
-
-
-
-
-

Fig. 6.8 Force acting on finger. The integration of force acting on the three fingers that
support a paintbrush.

6.5 Reducing Brush Slide

Because the robot hands are designed to mimic human hands, there are

movements that allow a brush to easily slip out of the hand, for instance, when using the
right hand to draw outward from right to left. A human artist naturally avoids drawing at
these angles.

For the robot, the best way to tackle the brush slide problem is to plan the
trajectories carefully so that the brush avoids drawing at an angle that would tend to slide.
To do this, the direction from point to point is reversed. For example, if drawing from A
to B is in the range of angle that might cause the brush to slip, this trajectory is inverted
to draw from B to A, as shown in Fig. 6.9.

Weak direction

Dividing

Fig. 6.9 Inverting the direction of a brush stroke.

 73

Let the weak direction be from lθ to uθ , counterclockwise, here 4/π to 4/3π ,

the result would be like Fig. 6.10.

Fig. 6.10 Planned brush strokes of the apple.

Note:
Upper-left image is considered the original trajectory, while the upper-right image is a
processed trajectory. The lower-left image is the result up to the present stage, while the
lower-right image is the result after adding the processed trajectory.

6.6 Parameterized Paintbrush Technique

Now, the following three paintbrush techniques are parameterized (see Fig. 6.11):
. Leaning a paintbrush to the drawing direction (a lean angle)
. Pushing a paintbrush onto a canvas (an amount of pressure)
. Pulling a paintbrush up gradually (an amount of sweep)

The first parameter is a lean angle of a paintbrush. The drawn lines and curves,
especially curves, vary according to the lean angle.

The second parameter is an amount of pressure. When a paintbrush is pushed
down upon a canvas, it does not stop moving downward as soon as it contacts the canvas,
but it keeps moving for a while. The duration to keep moving is varied as the parameter.
It controls painting pressure.

 74

The third parameter is an amount of sweeping performed by a paintbrush at the
end of drawing. In drawing a curve with a paintbrush, the tip motion of the brush tends to
lag behind the motion of the arm because the brush deforms during drawing. Therefore, if
the arm stops when it reaches its target position, the tip often still remains behind its
target position. In order to avoid this situation, a paintbrush is pulled up while gradually
moving to the target direction. The parameter determines an amount of this motion.

Fig. 6.11 Parameterized paintbrush technique.

Lean angle

Pressure

6.7 Experimental Result

 First, let’s consider the effect of the brush parameter on painting. Fig. 6.12 shows
the difference between pulling brush up gradually and abruptly, respectively.

 75

Fig. 6.12 Parameterized paintbrush technique: Pulling brush up gradually and abruptly,

respectively.

 Next, consider the pressure on the canvas. This can be represented by the distance
between the brush and the canvas.

 76

Fig. 6.13 Parameterized paintbrush technique: Changing the depth of vertical axis [mm];

10, 15, 20, 20 to 5, 5 to 20, respectively.

Human artists use these same techniques in painting as well.

Fig. 6.14 is the result of painting an apple where the picture model is obtained

previously. The results are different for every trial because of the error included in
detecting the position of the brush by the vision system. This is actually interesting, as it
shows the same imperfections that occur when human artists paint.

 77

Fig. 6.14 Experimental result.

For our future work, our first priority is filling a region. Since we have already
developed a method to generate a picture model for filling, in order to have it performed
by a robot with a multi-fingered hand, we need to introduce an additional operation, such
as changing paintbrushes and dipping a paintbrush into water color. We are expecting to
have a painting like that shown in Fig. 6.15.

 78

(a) (b) (c)
Fig. 6.15 Combining area filling and edge drawing (simulation).

(a) Brush trajectories. (b) Area filling. (c) Geometry edge drawing.

6.8 Summary

The steps used for brush manipulation are described in this chapter. Stereo
cameras on the robot’s head are used to locate the brush. Then the robot approaches and
grasps the brush, with force sensors in its hand playing an important role in ascertaining
the grip. The position of the brush tip is then pre-computed by finding the PCA of the
handle and projecting this to a known distance.

When drawing, the robot checks whether the brush touches the canvas or not by
calculating the force that needs to be applied to its fingers. A technique to prevent the
brush from slipping out of the robot’s hand and painting techniques adapted to it are
shown, and the experimental result of these techniques is presented.

It is interesting to note that even when the same picture model is used, the result
shows that all of the paintings are quite different.

 79

Chapter 7

Conclusion

 This research presents vision and manipulation techniques applied to a robot
painter, namely, object segmentation, color perception, orientation mapping, geometric
edge processing, and then shows how to apply these methods to high-level manipulation.
 This chapter presents the contribution of this research (Section 1) as well as
extensive discussion (Section 2). As each part of the project can be considered as
separate research, contribution and discussion are divided into states.

7.1 Contribution

1) Foreground Segmentation

The first novelty is a supervised comprehensive iterative foreground segmentation
(CIFS) based on local and global optimization with edge constraint. In other words, it is a
region growing with the cost function similar to graph cut. Then, this concept is used in
3D images to enable the robot to extract the foreground automatically.

The second novelty is our constraint based on Chebyshev’s inequality, which was
proved to be robust. Such constraint setting was not effective in conventional region
growing.

The third novelty is, since both local and global cost functions have their own
constraints, a weighting method to perform in the constraint domain instead of in the cost
function. This method can also deal with multidimensional features.

 80

The fourth novelty is automatic multiple cuts that are capable of reducing a great
deal of user interaction. The notion of growing to an edge constraint based on
Chebyshev’s inequality before searching is novel and can reduce error significantly.

The final novelty is cut before matting, where some previous works tried to
heuristically erode the boundary before matting, the notion of growing to a certain
statistical constraint before matting gives a better result than state-of-the-art matting
programs.

2) Color Perception Based on Two Clustering Schemes

 Since normal K-means clustering usually produces low contrast color and
consumes considerable time, we use maximum distance clustering (MDC) prior to an
iteration of K-means to solve both efficiency and time consumption problems.

As maximum distance clustering (MDC) is comparatively slow when the number
of desired colors is high, a sub-optimal algorithm is proposed and shown to be extremely
fast.

Another objective of this research is an algorithm that anyone could easily
implement, and this is already achieved since our improvement is based on well-known
and easy algorithms, MDC and K-means.

 MDC + an iteration of K-means can be applied to clustering in general.

3) Global Orientation

 In this research, a linear radial basis function (RBF) is used to smooth the
orientation domain, as previous works suggested. We approach the problem differently
by focusing also on the speed of the algorithm. Speedup is accomplished by calculating
RBF using a fixed size window. For the area that has no orientation information the RBF
window is increased until it covers the surrounding area that contains orientation. This
substantially reduces the time consumption so that RBF can be performed in real time.
 It can be seen that the RBF can be applied not only in a gradient domain but also
in other similar domains to generate smooth output.

4) Paint Brush Manipulation

Stereo cameras on the robot’s head are used to locate the brush. Then the robot
approaches and grasps the brush, with force sensors in its hand playing an important role
in ascertaining the grip. Although the position of the brush tip is pre-computed, by
finding PCA of the handle and projecting down to a known distance, force sensors are
also used for checking whether the brush touch the canvas or not. This process is similar
to that used by a human artist.

 81

When looking at the overall manipulation process, one sees that this is the
integration and realization of many robotics concepts into one system.

7.2 Discussion

1) Foreground Segmentation

Considering a foreground cut, comprehensive iterative foreground segmentation
(CIFS) is as robust as graph cut, since their cost functions are quite similar. Nevertheless,
graph cut, in difficult images, applies only to the foreground cut problem.

Using the notion of growing to a certain statistical constraint, before searching for
a remote area or before matting, the program can effectively deal with a foreground cut,
multiple cuts, and cut before matting.

The multiple cuts method is robust against a not well-structured classifier as well
as ambiguous data distribution. This is completely different from the contour evolving
approach. Compared to this approach, the main differences are among the algorithms: the
proposed method does not split or merge to perform multiple cuts. CIFS relies on data
distribution and thus is more straightforward, whereas the other approach seems to be
more flexible due to its internal and external cost function.

For cut before matting, the proposed method can generally gives substantially
better pre-cut images since it uses Chebyshev’s inequality as opposed to heuristic erosion.
The scheme can be used as a standalone matting program as well as an input generation
for other high-end matting methods.

Furthermore, our novel weighting method, between local and global information,
is shown to perform in the constraint domain instead of in the cost function. Although it
is difficult to compare this notion with conventional weighting, our scheme is more
straightforward if there are local and global components in the cost function.

The method is then applied to perform 3D object segmentation automatically. In
order to extract the subject area, this thesis focuses on how to exploit normal stereo
cameras to roughly extract the object automatically using a disparity map and 3D
background subtraction, and then using CIFS to extract the object area correctly. 3D
background subtraction is usually noisy, thus dilations and erosions are required. CIFS,
then, exploits the local and global color similarity optimization with a constraint of edge
to extract the boundary correctly. This is a promising paradigm, which can be applied to a
wide variety of 3D segmentation/detection tasks.

2) Color Perception Based on Two Clustering Schemes

 Using maximum distance clustering (MDC) prior to an iteration of K-means
benefits not only color reduction application but also to clustering methods in general. K-

 82

means should be run for only one iteration to prevent it from dominating the process.
Thus, the convergence-speed problem of K-means is not present in our algorithm.

The method can generate a higher quality image than many existing interactive
color reduction methods in RGB color space.

However, in human perception color space, CIEL*a*b*, K-means alone is
comparable to MDC + an iteration of K-means, provided that K-means is run for two
iterations or more, one iteration forward and another iteration backward. Considering
time, running MDC + an iteration of K-means consumes approximately the same time as
that of two iterations of K-means.

3) Global Orientation

For the local orientation used to guide brush strokes, using a gradient to guide
brush strokes is more robust to texture, whereas using image moment is more robust to
area orientation. However, local orientation is usually noisy and thus results in
inappropriate brush strokes. In this sense, global orientation, which can be described as a
smoothed version of local orientation, is applied. In this research, a linear radial basis
function (RBF) is selected as the smoothing method.

4) Area Filling

 After the foreground, color, and orientation information are derived, the robot can
perform brush stroke planning automatically based only on the brush size information.
Actually this is the process of visual feedback where the robot:

� Selects a color
� Decides which area to start drawing
� Starts moving based on orientation information
� Pulls brush up
� Visually verifies the canvas, comparing it to the picture model the robot

processed initially
� Starts next brush strokes or changes color

If there is no area left to draw, then the painting is considered finished.

 At this point, the result of area filling is verified using a computer simulation.
This type of visual feedback simulation consumes around 1 second per hierarchy, for a
640x480 image, on a laptop with 1.8GHz CPU; thus, it should be a minimal load for the
real robot platform. The problem to be aware of in the real drawing by the robot is how to
consider the color mixing on canvas, and how it would affect the drawing as a whole.

 83

5) Geometric Edge Processing

Some human artists use edges to enhance their paintings. Although many
researchers use gradient information to represent edges of objects, this distorts the color
information on the surface. Hence, we decide to use 3D geometric edges of an object as
input for the robot to draw, as these represent the object well.

After range sensors capture multiple-viewpoint images, they are aligned and
merged to generate a 3D model.

In this process of 3D model generation, where outliers must be deleted before
merging into the final model, we also propose the use of foreground segmentation to
delete outliers in range images semi-automatically.

As painting is done in 2D space, 2D edges are extracted from the 3D model. A
geometric edge is defined as the common edge at which the sign of the inner product of
the normal vector of a patch and the viewing direction changes. Then, the noisy 2D edges
are processed into brush strokes by reducing various kinds of redundancy.

6) Paint Brush Manipulation

The brush is used in a manner similar to that used by a human artist. The position
of the brush tip is pre-computed by stereo cameras. The robot checks whether the brush
touch the canvas or not by calculating the force applied to its fingers.

Furthermore, just as a human artist avoids moving a hand in some awkward
direction, a robot’s hand needs to avoid an awkward direction. Hence, a technique to
prevent a brush from slipping out of a robot’s hand is presented. Some painting
techniques are shown along with the experimental result.

Seeing the paintings, it is interesting to note that even when the same picture
model is used, all of the paintings are quite different. This variation mimics the same
quality in human artists.

 84

 85

Appendix A

Robot Constraints

This appendix focuses on space-time motion generation methods with the robot’s
physical constraints.

It is widely known that motion generation methods for robots have had problems
because the physical capabilities of humanoid robots are limited. There are limits relating
to physical attributes, such as angle, collision, velocity, force, and balance consistency.

For an industrial robot, the physical constraint problem can be solved by allowing
the robot a longer time to finish a task, to satisfy the limits. The main requirement is the
precision in the world coordinate, the so-called “space constraint.”

With the emergence of the humanoid robot, there is a new problem called “space-
time constraint” in which the robot is required to finish a task at a certain time. This is a
requirement when the robot is used as a demonstrator (offline), when it is used during
plans before moves (offline), when it is teleoperated (online), or when it interacts with
other entities (online).

Currently, without considering balance control, many research groups are trying
to solve the space-time problem with physical limits. The significance of such motion
generation is clear, because in many works balance control is achieved but methods to
deal with other physical limits are not effective. If such limits are not satisfied, the
trajectories will have a large error, which leads to collision problems and balance
inconsistency. If these are not prevented, the robot will be damaged. However, no
research was successful in limiting all physical characteristics.

This paper presents the first space-time method that can effectively guarantee
angle, collision, velocity, and force limits, based on the B-spline function. The method
can be used for both an offline and an online environment.

 86

As our robot platform in Fig. 1.1 is not designed to deal with abrupt movement,
we use HRP-2 as the test bed. The test data are the Japanese traditional dances captured
from professional dancers as test motions as shown in Fig. A.1. These dances are very
complex; their motions exceed many physical limits of our HRP-2 robot and cannot be
easily performed by any humanoid robot using existing methods. If our algorithm could
deal with such dances, it would benefit other kinds of motion research as well.

Fig. A.1 Japanese traditional dance performed by dancer vs. HRP-2.

First, let us look at present space-time research.
Among motion generation methods, a filter-based approach is a fast way to

retarget motion. [PHRA02] realizes upper-body dances using a humanoid robot by
scaling the angle and filtering velocity. However, first, since each joint is scaled
separately, the overall motion may be different than the desired path [SPH03]. Second,
collision avoidance and dynamic forces are not considered. Third, the method cannot be
applied for trajectory optimization since it processes each data input directly while
optimization usually considers trajectory as a function. Finally, it cannot be used in real
time since the velocity filter requires running it forward and backward.

Trajectory optimization is another approach. [LS99] uses a hierarchical B-spline
whereas [UAR04] uses B-spline wavelets. However, their algorithm does not deal with
physical limits effectively. The objective function can minimize physical characteristics;
however, it is not guaranteed that such values will satisfy limits. Limit violation can
occur, requiring a user to manually adjust trajectories, which is very tedious work. On the

 87

other hand, if the cost function is set too strictly, the result may be ineffective movement
or large errors in end effectors.

A real-time approach, as described in [RUWA03], also presents problems.
Attempts to limit physical characteristics rely on kinematics-based optimization to reduce
values, rather than applying specific limitations, as described in [DVS01].

These problems have posed very difficult challenges that have caused
considerable discussion. This paper solves this challenge by representing all physical
limits in the term of B-spline coefficients. Also, most of our constraints are totally
different from those of a conventional industrial robot.

The proposed constraints can be used as an offline filtering approach.
Furthermore, since the constraints are applied on B-spline curve rather than on raw data,
we propose an effective method to decompose a trajectory to a B-spline.

For the offline optimization approach, the proposed constraints can be used
directly as the constraint function for this approach. In addition, it is usually necessary to
locate the problem period that should be re-optimized in higher hierarchies. To do this
effectively, not only the traditional trajectory’s error detector but also our preemptive
knot density detector [RNKI05] are used.

In real-time approach, our angle, collision, and velocity constraints can be applied
directly. Unfortunately, force constraint, which requires iteratively running, might not be
suited to this approach. A different technique to limit force is presented.

The remainder of this appendix is organized as follows. We describe the physical
constraint functions in Section 1. Section 2 explains how to decompose a trajectory into a
B-spline curve and how to use the constraints to filter the curve. Section 3 focuses on
issues related to using the constraints in an optimization approach, and motion refinement
based on a hierarchical B-spline. Section 4 explains a real-time approach and the issues
related to adaptation of the constraints along with some drawbacks. Finally, discussion
and conclusion are presented in Section 5.

A.1 Physical Constraint Functions

Presently various problems occur when attempts are made to limit physical

attributes. Four physical attributes govern the movement of the robot, namely, angle,
collision, velocity, and force. The attributes must be limited for many vital reasons.

For angle and force, if these attributes are not well limited, the robot trajectories
would be different from the planned trajectories as the robot does not have the capability
to follow the planned motion. At first glance, this seems to be a negligible problem;
however, it is not. Error in trajectories could lead to two serious problems, collision and
balance inconsistency. Whereas the collision problem due to a violated angle is clear and
present, and inadequate force also leads to an incorrect angle, balance inconsistency is
more obscure. Balance inconsistency is related to the whole body control of the
humanoid robot. There are various methods to control the balance of the robot. These
include [HZS06], which shows use of the spline function in biped gate optimization
based on zero moment point (ZMP); driving torque analysis, [HKKH03], which analyzes
ZMP for arm/leg coordination tasks of humanoid robots; [Kaj02], which involves real-

 88

time biped pattern generation; and [TNMY05], which deals with biped walking patterns
on slopes. Practically, these methods usually require the upper body motion to be planned
prior to adjusting the whole body posture, such as by re-calculating the waist angle
[NNK*07]. However, if the upper body motion is different from the planned one, the
center of gravity and zero moment would be different from the planned whole body
motion, and the robot could collapse. This must be prevented by applying a method that
effectively limits angle and force. Though angle limit can be achieved easily, force is
often not well limited due to the complexity of the dynamic equation. Most previous
works can only reduce the force attribute, rather than giving it definite limits, as our
method does.

Velocity limits pose another problem. Usually, for most kinds of electric actuators
used in humanoid robots, there is a back electromotive force (emf) that increases
proportionally with velocity. Excessive emf could lead to undesired actuator wear.
Although [PHRA02] proposed a method to filter velocity trajectories, this method
requires running forward and backward iteratively; hence, it cannot be used in a real-time
approach. Also, the method does not consider force filtering or collision avoidance.

As mentioned before, collision is a clear and present problem that must be
avoided to prevent any damage to the robot. Various collision avoidance methods can be
found in literature, such as [KL06], which focuses on a cylindrical body, [YES*06],
which shows whole body collision avoidance of a humanoid robot, and [SKH05], which
contains the notion of check points. The idea of check points placed on the robot’s body
is adopted in this work. In this paper, the problem of collision avoidance is not considered
as an objective function to be reduced but as a constraint to be limited. Our experiment
proved this to be effective, compared with methods such as [ZN02], which only uses an
objective function.

Another must-be-considered aspect is a data representation method. In order to
ensure the smoothness of trajectories and to create the constraint functions that are
compatible with various motion generation methods, namely filtering, optimization, and
real-time-approaches, a curve representation method is required. When employed, instead
of processing a trajectory as a set of points that could lead to a jerky motion, a trajectory
would be altered by adapting parameters of the curve representation function. The choice
of curve representation method is very important as it determines how the constraint
functions work. Constraints are required to limit physical attributes of such curves
directly, which means that constraints are to be implemented based on the curve
representation method’s parameters. Traditionally, even though a curve representation
function is used, its role is to ensure smoothness or to perform successive refinement
only, as shown in [LS99], [UAR04], and [AMH01], whereas in this work the physical
attributes are also limited based on a curve representation function. This is a major
advantage of this method, which differs from other methods in this respect.

The following portions of this section start with a discussion of curve
representation. Then, based on the best representation method, the physical constraints of
angle, collision, velocity, and force from [RNKI06] are explained. The velocity and force
constraints are influenced by an iterative soft-constraint paradigm [RNKI06] that makes
limiting very effective.

 89

1) Data Representation

In the robotics field, B-spline is widely used for manipulator motion-planning
[KT03] and even for intelligent control [FZK99]. The important characteristics of B-
spline are, first, changing a parameter of the B-spline function affects only the limit range
of a curve and, second, the method involves hierarchical refinement. For the space-time
problem of a human-like figure, [LS99] has used a hierarchical structure of B-spline to
generate trajectories.

Recently, wavelet [CDF92] is used in many fields. As wavelets share the two
important desirable properties with B-spline, some previous works [Got95] have
compared the advantages of these techniques. [UAR00] proposes to use B-spline
wavelets for trajectory optimization. Their comprehensive work can be found in
[UAR04]. It is understandable that the authors are trying to enhance the convergence
characteristics of B-spline by adding wavelets, as the latter converge faster than the
former if the trajectory contains an inadequate space constraint [Got95]. This, however, is
not the case for motion generation, as a large amount of data can be derived from a
human trainer or even from the trajectories the robot plans itself.

(a) (b)

Fig. A.2 Scale, velocity, and acceleration of B-spline and wavelet.
(a) B-spline. (b) Wavelet.

With the criterion in mind that the method must be exploitable for constraint
functions, B-spline is the method of choice as its angle, velocity, and acceleration
functions (also implying the force function) have a clear structure compared to wavelets
[RNKI05]. Furthermore, B-spline is superior to wavelets for its usability in a real-time
approach. As will be shown in Section 4, using an online force limit faces a problem due
to B-spline’s acceleration function. But since a wavelet’s velocity shares a physical
structure similar to a B-spline’s acceleration, it would be ineffective to use wavelets in
real time for both velocity and force limiting.

Let’s look back a little on the use of B-spline for physical constraint. Industrial
robots have long been using B-spline with physical constraints in trajectory planning,
[SM85], [SY89]; however, such methods apply limits by scaling the time domain, which

 90

is not applicable for a space-time problem. In this work, space-time B-spline based
constraints are proposed as described in the following sections.

2) Angle Limits

Cubic B-spline has a characteristic that its amplitude will not be higher than the

magnitude of a control point. Hence, angle limiting can be done directly by applying
bounded constraints to the magnitude of control points in a B-spline function (of one knot
period) as shown below.

}3)3(2)132333(

1)42633(0)13233{(
6

1
)(

ptpttt

pttpttttq

++++−+

+−++−+−=

(A.1)

where q is angle, t is time, and is control point. np

3) Self-Collision Avoidance

In order to decide whether collision occurs or not, check points are placed on or
inside a robot body and an arm is considered as a link of cylinders. Collision is detected if
the distance between a cylinder and any check point is lower than a certain value.

All angles responsible for moving such a cylinder are then searched to see which
one requires the least angle change to avoid collision.

)/(maxarg , jnj

pdj ∆= (A.2)

where j is the joint number, d is the distance from the collision point, ∆ is the change
of value in control point number n of joint j, where n is the closest control point to the
collision period.

jnp ,

For example, to avoid collision on the lower arm, three joints in the shoulder and
a joint in the elbow are explored. The result of avoiding collision of the head is shown in
Fig. A.3.

Actually, we have tried to do collision avoidance using a cost function proposed
in [ZN02], and found that solving it using a constraint is more effective and
straightforward for choosing critical distances from collision check points.

 91

Fig. A.3 A collision check point is placed at the center of mass of a robot’s head.

(left) Without collision avoidance. (right) With collision avoidance.

4) Velocity Limits

Our velocity limit checking is done on B-spline function at the beginning and the
middle of each period as well as at the peak velocity. From (A.1), velocities at the
beginning of a period and at the middle of a previous period are:

T
ppbeginpresentq

2
):(02 −=&

(A.3)

T
ppppmiddlepreviousq

8
55):(1012 −−−+

=&
(A.4)

where T is the length of the knot period.

Interestingly enough, (A.3) must be checked before (A.4) to avoid divergence of
trajectory, by altering and , respectively. This is based on two criteria. The first
criterion is the sensitivity of altering the control point (a higher sensitivity control point
affects the shape of a curve more). This must be high for checking the present period and
low for past or future periods.

2p 1p

It can be seen that there are similar ways that meet the criterion; however, these
will also lead to divergence or ineffective limiting. So the second criterion is required:

 92

after changing in (A.3), altering in (A.4) does not affect (A.3) and affects previous
checking only in a supportive way.

2p 1p

It is likely that the peak velocity would not occur at the beginning or the middle of
a knot period. So we also check the peak velocity which is in the term of (A.5).

]
33

)2()[(
2
1

1012

2
101

11max
−

−
− +−+−

+−
+−=

pppp
ppppp

T
q&

(A.5)

To limit, it has to be determined which control point provides the highest

sensitivity for the function, which is . 1p
However since is in a second-order term, solving it directly may yield complex

numbers. Hence, a search method is required, and a method like hill climbing is adequate.
1p

5) Dynamic Force Limits

The force in each joint can be calculated from this inverse dynamics equation:

)()()(
,

QGQQQCQIQQMF i
kj

kjijki
j

jiji +++= ∑∑ &&&&&& (A.6)

where F is the applied force, M is the inertia matrix, I is the actuator’s inertia of the
present joint, C is a centripetal and Coriolis forces matrix, G is gravitational loading, and
Q is a set of all joint angles.

M greatly influences the dynamics equation, and the acceleration multiplies M.
Since the acceleration is a straight line, its peak values are located at the beginning of
each knot period; therefore, limiting force only at the beginning of a knot period is
sufficient.

The above equation is used to limit values by altering a control point to alter Q
and its derivatives, first inserting velocity and acceleration in the form of a B-spline. Note
that since the dynamic equation’s parameters are nonlinear in Q, it can be considered to
be constants that are updated recursively.

i
kj

kjijk

i
j

jiji

G
T

pp
T

ppC

T
pppI

T
pppMF

+
−−

+

+−
+

+−
=

∑

∑

,

0202

2
012

2
012

)
2

()
2

(

)2()2(

(A.7)

From (A.7), it can be seen that since the term multiplies M, changing provides

the highest sensitivity. So if one rearranges the function to isolate terms that contain
from those that do not, the following equations result.

1p

1p

 (A.8)

 93

i
j k

kjijk

j
jij

j
jiji

G
T

pp
T

ppC

T
ppIM

T
pIMF

+
−−

+

+
++

−
+=

∑∑

∑∑

)
2

()
2

(

))(()2)((

0202

2
02

2
1

This is a set of nonlinear equations that cannot be solved explicitly. So they are

solved by recursively searching for the value of joint i alone that satisfies a limit. The
hill climbing method is used for this recursive search.

1p

A new problem arises upon the use of this method: changing often results in
the force of a previous period being larger than the limit, making force constraint
ineffective. This can be solved using the method described next.

1p

6) Iterative Soft Limits

Suppose that a value that needs to be reduced is 1. The easiest way to do this is 1-1
= 0; however, this poses the problem stated above, in case that such value represents
force. Another way to do this is:

1;011)1(1
inf

0
<=−=−− ∑

=

yyy
i

i
(A.9)

In the case of force constraints, instead of limiting force to the desired value,

reduce it only y of the needed amount (present force minus force limit value) iteratively,
say, 0.5 with 46 iterations.

09999990.999999991)5.01(5.01
45

0
≈−=−− ∑

=i

i
(A.10)

Although the reduced value does not exactly equal the portion needed, such

difference is extremely low and clearly negligible, as shown in (A.10).
Furthermore, if both velocity and force constraints are to be used separately, the

resulting trajectories would meet force limits while velocity limits are often violated.
Fortunately, if both are put under the iterative soft constraint, for offline approaches, they
will gradually converge to limit values. For an online approach, the soft constraint, which
requires running forward and backward iteratively, cannot be applied. Hence adaptation
of force constraint function is required and will be explained in Section 4.

A.2 Filtering Approach

 94

The fastest and easiest way to retarget original motion to the joint angles that can
be represented by a robot with physical limits is filtering. Previous filtering approach
work, such as described in [PHRA02], is not effective enough in the sense that it does not
consider all important physical attributes, while our work does.

Since all of the constraints operate on a B-spline function in order to ensure
smoothness, it is required to decompose a joint trajectory to a B-spline curve prior to
limiting physical attributes.

Marker position

Passed

Detected

B-spline

Output angle

Constraint filters

Error detector

Decomposition

Input angle

Inverse kinematics

Overview of filtering approach.

1) Decomposition From Raw Data

Unfortunately, it is inappropriate to use B-spline hierarchical decomposition,
[CQ92] or [FB88], in cases where it is extensively used for an optimization approach
such as [LS99] or as described in Section 3 of this appendix. Let us explain the
differences. Differing from the optimization approach, where the appropriate value of
control points is unknown at first, the filtering approach needs only a set of control points
that can precisely represent the original trajectory. It is more like one-shot filtering on an
already decomposed B-spline curve that first represents the original data.

On the other hand, if a trajectory is downsampled and then the derived samples
are used as control points for a B-spline, the decomposed curve will have a large error
around the end of it as shown in Fig. A.6 (a).

 95

We observed that the downsampling error occurs due to lack of synchronization
between the number of control point periods and the number of knot periods. From (A.1),
it is shown that a knot period consists of three control point periods instead of only one
control point period.

To synchronize these two domains, a redundant control point is placed at each end
point. From Fig. A.5, it can be imagined that at each end of the curve there will be the
same two control points, so the result is like a control point period, between a and b,
corresponding to a knot period, generated from the four control points, as required. The
result of this decomposition method is shown in Fig. 6 (b).

In order to acquire an appropriate sampling rate, we use the error detector shown
below.

thErrnPnqne >−= |)(),(|)(θ (A.11)

where n represents discrete time, P is a set of the present angle’s control points, is
the curve magnitude of B-spline,

),(Pnq
)(nθ is the angle from inverse kinematics, and thErr is

the threshold for error.
If the curve is not precise enough, we increase the sampling rate.

2) Filtering Based on The Proposed Constraints

After the B-spline curve is derived, a set of constraints in Section 1 can be applied
to the B-spline curve directly. For a combination of constraints, after angle limit, collision
avoidance is checked prior to the other constraints. This order is adopted because
collision avoidance may pose discontinuity in trajectories, which can be solved by force
and velocity constraints. Collision may occur, but it can be solved automatically by
increasing the critical distance.

Users might prefer to set the initial and final postures of joint trajectories to be the
same as the original data. This can be achieved by fixing the first and the last three
control points. Angle and collision constraints must be given higher priority than fixing
the end point, as can be seen in Fig. A.7. Furthermore, due to forcing of the end point
position, an abrupt surge in the force domain can be seen. Practically, actuators
characteristic usually allows instantaneous force to be more or less substantially higher
than the constant force limit. Since three control points are fixed, the surge would occur
only for two knot periods, which is not a problem since the duration is very short.

If the end point is allowed to change, the result of an open-end curve is shown in
Fig. A.8.

The effect of approximating the dynamic equation to be linear, (A.7), can be seen
more clearly when the limit is set to be stricter, for example, in Fig. A.9. Some small
spikes that occur are a little higher than the force limit, which is not a problem since
actuators’ characteristic allows instantaneous force.

Compared to the optimization result in the next section, the filtering approach
gives a more precise trajectory since there is no influence due to the optimization process.
However, the disadvantage of this approach is that the multiple objectives may not be

 96

realized if any of them cannot be formed in term of constraint. In that case, the
optimization method is required.

A.3 Optimization Approach

Traditionally, using a cost function to reduce physical characteristics, as described
in [UAR04] or [RGBC96], is inadequate since it does not apply specific limits to those
values. Limit violation can occur, especially in a multiple-objectives task, requiring a user
to manually adjust trajectories, which is very tedious work. On the other hand, if the cost
function is set too strictly, it cannot exploit all the capacity of the robot, which often
results in ineffective movement or a large error in end effectors.

Hence in this study, physical attributes are limited using constraints, as shown in
Section 1, while a cost function is used to preserve the essence of original input motion
and will be explained in this section.

Although a cost function is optimized and constraints are checked, the curve may
still not be as precise as expected. In that case, optimization is done hierarchically, first
using a small number of control points to represent a curve, then if the precision is not
satisfied, decomposing the original set of control points to a larger number of control
points and re-optimizing it. Prior to decomposition, two methods are used to detect the
problem of the present hierarchy curve, novel knot density approximation [RNKI05] and
error detection (A.11).

Marker position

Output angle

Passed

Detected
Hierarchical B-spline

Error detectorKnot density detector
B-spline structure

Constraint

Objective function
Optimization

Input angle

Inverse kinematics

Overview of optimization approach.

 97

1) Optimization

Based on the B-spline function, optimizing the joint angles is usually enough for a
robot to represent human motion, so an acceptable objective function is:

∑
=

Θ−=
N

n
nPnQPf

1
2||)(),(||)(

(A.12)

where N is the sampling length of a trajectory, and Θ is a set of all angles derived from
inverse kinematics.

From Fig. A.1, the markers attached to the body of the human via an elastic suit
may be not balanced, or they may slip during the capture process, so some of the
sequences of angles computed by inverse kinematics may have large errors. Therefore,
another objective function that considers both angles and end-effector is used for such
motions:

∑
=

−+Θ−=
N

n
nhPnQFKwnPnQPf

1
22 }||)()),((||||)(),({||)(

(A.13)

where w is weight derived from experiment, FK is forward kinematics , and h is the hand
position of the trainer.

One may choose to use only (A.12), trading off time to calculate forward
kinematics. In this research, the decision to use (A.12) or (A.13) depends on the
designer’s subjective judgment of the data after inverse kinematics. Adding more cost
functions is possible.

 98

Fig. A.4 Positions of markers, inverse kinematics, and optimization using (A.13).

Constraints can be applied very much like the filtering approach, except that there
is no redundancy control point at the end of each curve, as in Section 2.

Note that the global optimization program described in [HN98] is used in this
research with some adaptation so that many constraints can be used.

2) Motion Refinement

For many reasons, optimized trajectories may contain errors, caused by such
factors as the fact that the number of control points is not appropriate, for example.

Fortunately, the B-spline function allows a hierarchical structure so that a
trajectory can be re-optimized, using a larger number of B-spline bases by the process
called knot insertion. Prior to knot insertion, there must be criteria to decide whether the
present hierarchy’s curve needs to be re-optimized or not.

First, the convergence could be made faster with less error by assigning an
appropriate hierarchy to each part of a trajectory using our proposed knot density detector
[RNKI05].

Furthermore, even if the density of a control point is appropriate, error can occur
for reasons such as the optimization process does not fully converge. Hence, along with
knot density approximation, a traditional error detector (A.11) is applied.

Now, if a density problem or error is detected, that set of B-spline coefficients
must be fed into a hierarchical B-spline decomposition, [CQ92] or [FB88], to generate a
new B-spline that has a greater number of control points.

This new set of control points, at the period of the joint angle trajectory that has a
problem, is optimized again to find a new optimum set of points for the B-spline. The

 99

cost functions and constraints can be applied in a higher hierarchy without any adaptation
required.

A.4 Real-Time Approach

As opposed to filtering or optimization approaches where the entire input
trajectories could be derived a priori from a human trainer or from a robot’s self-
generated path, real-time motion generation focuses on how to teleoperate the robot with
time delay [LS06], plan its path in a dynamic environment [LL95], or on force-feedback
[MO06]. Attempts to limit physical characteristics rely on kinematics-based optimization
to reduce values, rather than supplying specific limitations, [DVS01].

This research focuses on how to control the robot in real time using constraint
functions. Among the novelties are, first, the fact that, since the trajectory is represented
by a B-spline, the smoothness of the output trajectories will always be ensured. Second,
many physical limits are guaranteed. However, since all the constraint functions operate
on a B-spline parameter, new input time frames must be decomposed into the B-spline,
and this introduces delay into output trajectories, which will be explained next.

Even though angle, collision, and velocity constraints can be used directly, force
constraint requires running forward and backward iteratively, and cannot be used in a
real-time scheme. A method to limit force at each time frame is proposed in this section.

Marker position

B-spline

Output angle

Constraint filters

Decomposition

Input angle

Inverse kinematics

Overview of real-time approach.

 100

1) Real-Time Decomposition From Raw Data

In a manner much like the decomposition technique presented in Section 2, new
time frame data are downsampled and their amplitude values are used as control point
values.

There are two interesting aspects different from offline processing. First is
sampling rate. Offline decomposition can choose the appropriate sampling rate from an
error criterion (A.11). However, an online method does not know the data in advance. So
the sampling rate is subjectively set based on the trainer’s capabilities. For example, in
the case that original data is derived from a human, a sampling rate of 30 control points
per second would be appropriate. In our experiment, a sampling rate of 20 control points
is set to compare with offline approaches.

Second, it is important to consider what kind of model of decomposition would be
appropriate. Formerly in a filtering approach, a redundant control point is inserted at the
beginning and at the end of the trajectory. In a real-time approach, this introduces delay
in processing. Fig. A.11 (a) shows that it is necessary to wait for the third sampled control
point, c, because a knot of B-spline consists of 4 control points. Hence, the processing
delay introduced is a sampling rate lag. However, the original curve is well preserved, as
can be seen in Fig. A.12 (a).

On the other hand, if the two redundant control points are placed only at the
beginning of the curve as shown in Fig. A.11 (b), after the second control point, b,
arrives, filtering could start immediately. It is not surprising that these inserts introduce a
delay in output trajectory as shown in Fig. A.12 (b). The delay, in this case, is not a
processing delay as in the former decomposition method but is a physical delay that
occurs in output trajectory and must be avoided.

Hence, the approach of inserting a control point at the beginning and the end
would be used.

2) Real-Time Limiting Based on The Proposed Constraints

After the B-spline curve is derived, most of the constraints in Section 1 can be
applied to the B-spline curve directly, namely, angle, collision, and velocity. The result
after passing through these filters is shown in Fig. A.13.

However, for force equation (A.8), changing the highest sensitivity control point
affects the former period in an unwanted manner. This can be solved in an offline case
using the iterative soft limit. Unfortunately, it cannot be applied in real time. So, if (A.8)
is solved directly, the resulting force trajectory is not well limited as shown in Fig. A.14.

Hence, it is necessary to modify the force constraint function. From (A.7),
considering the term that multiplies M, instead of changing the highest sensitivity control
point, , we choose to change the control point that does not affect the force of the
previous period, which is . Then we rearrange the function to isolate terms that contain

 from those that do not. As a result, (A.8) would be superseded by (A.14).

1p

2p

2p

 101

ii
j

jij

i

j
j

k
kijk

ij
i

G
T

ppI
T

ppM

T
pp

T
I

T
pp

T
ppC

T
M

F

+
+−

+
+−

+

−
+

−−
+=

∑

∑ ∑

)22()22(

)
2

(2

)
2

]()
2

(
2

[

2
01

2
01

02

0202

(A.14)

Using this new constraint function, force can be well limited as shown in Fig.

A.15 (c). Nevertheless, since is not the highest sensitivity control point, a considerable
change in its value is needed, so that joint trajectory (or velocity trajectory) violates its
limit, as can be seen in Fig. A.15 (a). This is the drawback of real-time force constraint.

2p

A.5 Discussion

The proposed physical constraints based on the B-spline function bring many
benefits into motion generation, not only at the offline level, but also at the online level. It
is the first space-time method that can ensure angle, collision, velocity, and force limits.
This is possible by using our proposed B-spline-based equations, which, on the whole,
are totally different from those for industrial robots.

Considering using the constraints offline, the proposed iterative soft constraint is
one key to success in the comprehensive constraints. First, it makes force limiting, which
was not available before, possible. Second, it prevents conflict between velocity and force
constraints when all constraints are used simultaneously.

Then, for the offline filtering approach, a novel decomposition from raw data is
shown to generate a B-spline curve that resembles the original trajectory with less error
than existing methods. After that, all the proposed constraints mentioned above can be
used as filtering.

Furthermore, the offline/online optimization algorithm can use the proposed
constraints as its constraint function directly. For offline optimization, the proposed
density scheme and error in the trajectory are used as criteria before decomposing a B-
spline to a larger number of control points that can be readapted. For online
consideration, the best way to decompose the B-spline is shown. Although it produces a
delay equal to one sampling rate lag compared to existing methods that use kinematics-
based optimization, the sample rate can be set high enough so that the delay is negligible.

The only factor that could deter progress toward a generalization of using B-
spline-based constraints is the problem of real-time force constraint that could violate
other limits. However, our online method can ensure a smooth trajectory with angle,
collision, and velocity limits. Actually, this is not a drawback since, in a dynamic
environment, it may be better to put force in a cost function and optimize the force of all
joints as a whole. If the force is too great, the robot cannot move to the desired position,
similar to a situation when a human attempts to lift objects that are too heavy. Such cost
function is beyond the scope of this paper.

 102

To summarize, among the offline manipulation possibilities offered by our
approach are 1) using the robot as a demonstrator, 2) picking up objects whose static
parameters can be approximated prior to the action (to be used in force dynamic equation
(A.8)). For online cases, with the appropriate cost function, the method can be used 3) for
smooth teleoperation as well as 4) when the robot interacts with objects or other entities.

ba ba

a b
Insert redundant control points

Fig. A.5 Inserting a redundant control point at the beginning and the end of the trajectory.

(a) (b)

Fig. A.6 Decomposition from 200 fps to 20 control points per secondb.
(a) Conventional method. (b) Our method.

(a) (b) (c)

Fig. A.7 Apply constraints simultaneously with fixed end postureb.
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force [+/-4.8112].

(a) (b) (c)

Fig. A.8 Apply constraints simultaneously without fixing end postureb.
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force [+/-4.8112].

 103

(a) (b) (c)

Fig. A.9 Apply constraints simultaneously with strict force limitb.
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force half of [+/-4.8112].

(a) (b) (c)
Fig. A.10 Optimization result with fixed end postureb.

(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force [+/-4.8112].

ba

ba

a a
Insert redundant control points

c

cb

a b
Insert redundant control points

a

a

(a) (b)
Fig. A.11 Inserting redundant control points.

(a) A control point at the beginning (and, although not shown here, at the end. (b)
Two control points at the beginning.

(a) (b)

Fig. A.12 Real-time decomposition from 200 fps to 20 control points per secondb.
(a) When a control point is added at the beginning and the end. (b) When two control

points are added at the beginning.

 104

(a) (b) (c)

Fig. A.13 On-the-fly application of angle and velocity constraints simultaneouslyb.
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force.

(a) (b) (c)

Fig. A.14 On-the-fly application of angle, velocity, and force constraints simultaneouslyb.
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force half of [+/-4.8112] cannot

be well limited.

(a) (b) (c)

Fig. A.15 On-the-fly application of angle, velocity, and real-time force constraints
simultaneouslyb.

(a) Angle [+/-1.5184] is violated since real-time force limiting. (b) Velocity [+/-3.74129].
(c) Force half of [+/-4.8112].

bRed, blue, and black lines represent original data (velocity is calculated from the angle,
force is calculated from the velocity), generated data, and limit lines, respectively.

 105

Appendix B

Chebyshev’s Inequality

Pafnuty Chebyshev, a Russian mathematician (1821-1894), proved the so-called
Chebyshev's inequality that in any data sample or probability distribution, nearly all the
values are close to the mean value, which can be described mathematically as follows:

Theorem. Let be a random variable with expected value Y µ and finite variance σ .

Then for any positive real number k :
2

21)Pr(kkY ≤≥− σµ . (B.1)

Note that only the cases provide useful information. 1>k

 106

 107

Reference

[AMH01] A. Ahmed, F. Mokhtarian, and A. Hilton, “Parametric Motion Blending

through Wavelet Analysis,” Proceedings of Eurographics, 2001.
[AP06] A. Atsalakis and N. Papamarkos, “Color Reduction and Estimation of

the Number of Dominant Colors by Using a Self-Growing and Self-
Organized Neural Gas,” Engineering Applications of Artificial
Intelligence 19, pp. 769–786, 2006.

[AP7] Adobe Photoshop 7.
[BFH*98] J.M. Buhmann, D.W. Fellner, M.Held, J.Ketterer, and J. Puzicha,

“Dithered Color Quantization,” Proceedings of Eurographics, vol. 17,
no. 3., pp. 219–231, 1998.

[BJ01] Y. Boykov and M. P. Jolly, “Interactive Graph Cuts for Optimal
Boundary and Region Segmentation of Objects in N-D Images,” IEEE
International Conference on Computer Vision, 2001.

[BK04] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
26, no.9, pp. 1124-1137, 2004.

[BKT*05] C. Breazeal, C. Kidd, A. L. Thomaz, G. Hoffman, and M. Berlin,
“Effects of Nonverbal Communication on Efficiency and Robustness in
Human-Robot Teamwork,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005.

[Bor] A. G. Bors, Introduction of Radial Basis Function (RBF) Networks,
Online Symposium for Electronics Engineers, vol.1 of DSP Algorithms:
Multimedia.

[BVD00] A. Berman, P. Vlahos, and A. Dadourian, “Comprehensive Method for
Removing From an Image the Background Surrounding a Selected
Object,” U.S. Patent 6,134,345, 2000.

[BW04] T. Brox and J. Weickert, “Level Set Based Image Segmentation with
Multiple Regions,” Proceedings of 26th DAGM, pp.415-423, 2004.

[CCSS01] Y. Y. Chuang, B. Curless, D. Salesin, and R. Szeliski, “A Bayesian
Approach to Digital Matting,” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2001.

[CDF92] E. Cohen, I. Daubechies, and J. C. Feauveau, “Biorthogonal Bases of
Compactly Supported Wavelets,” Communication on Pure and Applied
Mathematics 45, pp. 485–560, 1992.

[CKS97] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active Contours,”
International Journal of Computer Vision, 22(1):61-79, 1997.

[CM02] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach Toward
Feature Space Analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence 24, 2002.

[Coh91] L. D. Cohen, “On Active Contour Models and Balloons,” Computer
Vision, Graphics, and Image Processing, vol. 53, no. 2, pp. 211-218,

 108

1991.
[CQ92] C. K. Chui and E. Quak, An Introduction to Wavelets, Wavelet Analysis

and its Application, Academic Press, vol. 1, 1992.
[CRD06] D. Cremers, M. Rousson, and R. Deriche, “Review of Statistical

Approaches to Level Set Segmentation: Integrating Color, Texture,
Motion and Shape,” International Journal of Computer Vision, 2006.

[Cut89] M. R. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of
Hands for Manufacturing Tasks,” IEEE Transactions on Robotics and
Automation, 5(3):269–279, 1989.

[Db] http://robix.com/drawbot.htm
[Dek94] A. H. Dekker, “Kohonen Neural Networks for Optimal Color

Quantization,” Network: Computat. Neural Syst., vol. 5, pp. 351–367,
1994.

[DM00] H. Delingette and J. Montagnat, “New Algorithms for Controlling
Active Contours Shape and Topology,” European Conference on
Computer Vision, 2000.

[Dtr] http://techhouse.brown.edu/~neel/drawing_telerobot/
[DVS01] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning Inverse

Kinematics,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2001.

[FB88] D. Forsey and R. Bartels, “Hierarchical B-Spline Refinement,”
Proceedings of Computer Graphics and Interactive Techniques, 1988.

[FO03] J. A. Fails and D. R. Olsen, “A Design Tool for Camera-Based
Interaction,” Conference on Human Factors in Computing Systems,
2003.

[FSA07] I. Fondon, C. Serrano, and B. Acha, “Segmentation of Skin Cancer
Images Based on Multistep Region Growing,” IAPR Conference on
Machine Vision Applications, pp.339-342, 2007.

[FWF02] X. Feng, C. K. I. Williams, and S. N. Felderhof, “Combining Belief
Networks and Neural Network for Scene Segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24, 2002.

[FZK99] M. Ferch, J. Zhang, and A. Knoll, “Robot Skill Transfer Based on B-
Spline Fuzzy Controllers For Force-Control Tasks” IEEE International
Conference on Robotics and Automation, 1999.

[Got95] S. J. Gotler, “Hierarchical and Variational Geometric Modeling with
Wavelets,” ACM Symposium on Interactive 3D Graphics, pp. 35-42,
1995.

[GP90] M. Gervautz and W. Purgathofer, “A Simple Method for Color
Quantization: Octree Quantization,” Graphics Gems, A. S. Glassner,
Ed. New York: Academic, pp. 287–293, 1990.

[GPS89] D. Greig, B. Porteous, and A. Seheult, “Exact MAP Estimation for
Binary Images,” J. Roy. Stat. Soc. B., 51:271–279, 1989.

[HBS99] J. Hug, C. Brechbuhler, and G. Szekely, “Tamed Snake: A Particle
System for Robust Semi-Automatic Segmentation,” Proceedings of Intl.
Conf. on Medical Image Computing and Computer-Assisted
Intervention, 106-115, 1999.

 109

[HBZ06] M. Hueser, T. Baier, and J. Zhang, “Learning Demonstrated Grasping
Skills by Stereoscopic Tracking of Human Hand Recognition,” IEEE
International Conference on Robotics and Automation, 2006.

[HE04] J. Hays and I. Essa, “Image and Video Based Painterly Animation,”
International Symposium on Non-Photorealistic Animation and
Rendering, 2004.

[Hec82] P. Heckbert, “Color Image Quantization for Frame Buffer Display,”
Comput. Graph., vol. 16, pp. 297–307, 1982.

[Her98] A. Hertzmann, “Painterly Rendering with Curved Brush Strokes of
Multiple Sizes,” Proceedings of ACM SIGGRAPH , 1998.

[HKKH03] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa, “ZMP Analysis for
Arm/Leg Coordination,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2003.

[HKY05] Y. Hirano, K. Kitahama, and S. Yoshizawa, “Image-Based Object
Recognition and Dexterous Hand/Arm Motion Planning Using RRTs
for Grasping in Cluttered Scene,” IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2005.

[HN98] W. Huyer and A. Neumaier, Multilevel coordinate search, Kluwer
Academic Publishers, 1998. Available:
http://www.mat.univie.ac.at/~neum/ software/ls/

[HZS06] L. Hu, C. Zhou, and Z. Sun, “Biped Gait Optimization Using Spline
Function Based Probability Model,” IEEE International Conference on
Robotics and Automation, 2006.

[Kaj02] S. Kajita, “A Realtime Pattern Generator for Biped Walking,” IEEE
International Conference on Robotics and Automation, 2002.

[KI97] S. B. Kang and K. Ikeuchi. Toward automatic robot instruction from
perception — mapping human grasps to manipulator grasps. IEEE
Transactions on Robotics and Automation, 13(1):81–95, 1997.

[KL06] J. Ketchel and P. Larochelle, “Collision Detection of Cylindrical Rigid
Bodies for Motion Planning,” IEEE International Conference on
Robotics and Automation, 2006.

[KORI06] S. Kudoh, K. Ogawara, M. Ruchanurucks, and K. Ikeuchi, “Painting
Robot with Multi-Fingered Hands and Stereo Vision,” IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems, 2006.

[KT03] W. Korb and I. Troch, “Data Reduction for Manipulator Path
Planning,” Robotica, vol. 21, pp. 605-614, 2003.

[KWT88] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International Journal of Computer Vision, 1:321-331, 1988.

[KYO*07] T. Kang, J. Yu, J. Oh, Y. Seol, K. Choi and M. Kim, “Object Based
Contour Detection by Using Graph-Cut on Stereo Image,” IAPR
Conference on Machine Vision Applications, pp.319-322, 2007.

[LL90] Y. W. Lim and S. U. Lee, “On the Color Image Segmentation
Algorithm Based on the Thresholding and the Fuzzy C-Means
Techniques,” Pattern Recognit., vol. 23, no. 9, pp. 935–952, 1990.

[LL95] T.-Y. Li and J.-C. Latombe, “Online Manipulation Planning for Two

http://www.buginword.com
http://www.mat.univie.ac.at/~neum/software/ls/

 110

Robot Arms in a Dynamic Environment,” IEEE International
Conference on Robotics and Automation, 1995.

[LLW06] A. Levin, D. Lischinski, and Y. Weiss, “A Closed Form Solution to
Natural Image Matting,” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2006.

[LS06] D. Lee and M. W. Spong, “Passive Bilateral Teleoperation with
Constant Time Delays” IEEE International Conference on Robotics
and Automation, 2006.

[LS99] J. Lee and S. Y. Shin, “A Hierarchical Approach to Interactive Motion
Editing for Human-Like Figures,” Proceedings of ACM SIGGRAPH,
pp. 39-48, 1999.

[LSS05] Y. Li, J. Sun, and H. Y. Shum, “Video Object Cut and Paste,”
Proceedings of ACM SIGGRAPH, 2005.

[LSTS04] Y. Li, J. Sun, C. K. Tang, and H. Y. Shum, “Lazy Snapping,”
Proceedings of ACM SIGGRAPH, 2004.

[MB95] E. Mortensen and W. Barrett, “Intelligent Scissors for Image
Composition,” Proceedings of ACM SIGGRAPH, 1995.

[MFM04] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to Detect Natural
Image Boundaries Using Local Brightness, Color, and Texture Cues,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26,
2004.

[MGS*05] M. Marrn, J. C. Garca, M. A. Sotelo, D. Fernndez, and D. Pizarro,
“XPFCP: An Extended Particle Filter for Tracking Multiple and
Dynamic Objects in Complex Environment,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005.

[Mis93] Y. Mishima, “Soft Edge Chroma-Key Generation Based upon
Hexoctahedral Color Space,” U.S. Patent 5,355,174, 1993.

[MMP05] M. McGuire, W. Matusik, H. Pfister, J. F. Hughes, and F. Durand,
“Defocus video matting,” Proceedings of ACM SIGGRAPH, 2005.

[MO06] M. Mahvash and A. M. Okumura, “Friction Compensation for a Force-
Feedback Telerobotic System”, IEEE International Conference on
Robotics and Automation, 2006.

[Mon97] P. Monaghan, “An Art Professor Uses Artificial Intelligence to Create a
Computer That Draws and Paints,” The Chronicle of Higher Education,
1997.

[MSV95] R. Malladi, J.A. Sethian, and B.C. Vemuri, “Shape Modeling with
Front Propagation: A Level Set Approach,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17(2):158-174, 1995.

[MT95] T. McInerney and D. Terzopoulos, “Topologically Adaptable Snakes,”
IEEE International Conference on Computer Vision, 1995.

[Nap56] J. Napier, “The Prehensile Movements of the Human Hand,” Journal of
Bone and Joint Surgery, 38B(4):902–913, 1956.

[NNK*07] S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, H.
Hirukawa, K. Ikeuchi, “Learning from Observation Paradigm: Leg Task
Models for Enabling a Biped Humanoid Robot to Imitate Human
Dances,” The International Journal of Robotics Research, vol. 26, no.

 111

8, pp. 829-844, 2007.
[PAS02] N. Papamarkos, A. E. Atsalakis, and C. P. Strouthopoulos, “Adaptive

color reduction,” IEEE Transactions on System, Man, and Cybernatics,
vol. 32, no. 1, pp. 44-56, 2002.

[PHRA02] N. S. Pollard, J. K. Hodgins, M. J. Riley, and C. G. Atkeson, “Adapting
Human Motion for the Control of a Humanoid Robot,” IEEE
International Conference on Robotics and Automation, 2002.

[RGBC96] C. Rose, B. Guenter, B. Bodenheimer, and M. F. Cohen, “Efficient
Generation of Motion Transitions Using Spacetime Constraints,”
Proceedings of ACM SIGGRAPH, 1996.

[RKB04] C. Rother, V. Kolmogorov, and A. Blake, “GrabCut–Interactive
Foreground Extraction Using Iterated Graph Cut,” Proceedings of ACM
SIGGRAPH, 2004.

[RKO*07] M. Ruchanurucks, S. Kudoh, K. Ogawara, T. Shiratori, and K. Ikeuchi,
“Humanoid Robot Painter: Visual Perception and High-Level
Planning,” IEEE International Conference on Robotics and
Automation, 2007.

[RKOSI07] M. Ruchanurucks, S. Kudoh, K. Ogawara, T. Shiratori, and K. Ikeuchi,
“Robot Painter: From Object to Trajectory,” IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2007.

[RNKI05] M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Generation
of Humanoid Robot Motions with Physical Constraints Using
Hierarchical B-Spline,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005.

[RNKI06] M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Humanoid
Robot Motion Generation with Sequential Physical Constraints,” IEEE
International Conference on Robotics and Automation, 2006.

[ROI] (submitted) M. Ruchanurucks, K. Ogawara, and K. Ikeuchi, “Region
Growing Graph Cut,” IEEE Transactions on Pattern Analysis and
Machine Intelligence.

[ROI06] M. Ruchanurucks, K. Ogawara, and K. Ikeuchi, “Neural Network
Based Foreground Segmentation with an Application to Multi-Sensor
3D Modeling,” IEEE International Conference on Multisensor Fusion
and Integration for Intelligent Systems, 2006.

[RT00] M. A. Ruzon and C. Tomasi, “Alpha Estimation in Natural Images,”
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 18–25, 2000.

[Ruc07] M. Ruchanurucks, “Clustering Based Color Reduction: Improvement
and Tips,” Meeting on Image Recognition and Understanding, 2007.

[RUWA03] M. Riley, A. Ude, K. Wade, and C. G. Atkeson., “Enabling Real-Time
Full Body Imitation: A Natural Way of Transferring Human
Movements to Humanoids,” IEEE International Conference on
Robotics and Automation, 2003.

[SbFAZ00] C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia, “A Level Set
Model for Image classification,” International Journal of Computer
Vision, 40(3):187–197, 2000.

 112

[SCN*98] A. Srikaew, M. E. Cambron, S. Northrup, R. A. Peters II, M. Wilkes,
and K. Kawamura, “Humanoid Drawing Robot,” IASTED International
Conference on Robotics and Manufacturing, 1998.

[SK87] S. A. Shafer and T. Kanade, “Color vision,” Encyclopedia of Artificial
Intelligence, S. C. Shapiro and D. Eckroth, Eds. New York:Wiley, pp.
124–131, 1987.

[SKH05] F. Seto, K. Kosuge and Y. Hirata, “Self-Collision Avoidance Motion
Control for Human Robot Cooperation System Using RoBE,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005.

[SM85] K.G. Shin and N.D. McKay, “Minimum-Time Control of Robotic
Manipulators with Geometric Path Constraints,” IEEE Transactions on
Automatic Control, vol. 30, no.6, pp. 531-541, June 1985.

[SPH03] A. Safonova, N. S. Pollard, and J. K. Hodgins, “Optimizing Human
Motion for the Control of a Humanoid Robot,” 2nd International
Symposium on Adaptive Motion of Animals and Machines, 2003.

[SY00] M. Shiraishi and Y. Yamaguchi, “An Algorithm for Automatic
Painterly Rendering Based on Local Source Image Approximation,”
International Symposium on Non-Photorealistic Animation and
Rendering, 2000.

[SY89] J. -J. E. Slotine and H. S. Yang, “Improving the Efficiency of Time-
Optimal Path-Following Algorithms,” IEEE Transactions on Robotics
and Automation, vol.5, no.1, pp. 118-124, February 1989.

[TNMY05] M. Takahashi, T. Narukawa, K. Miyakawa and K. Yoshida, “Combined
Control of CPG and Torso Attitude Control for Biped Locomotion,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005.

[TW05] D. R. Thompson and D. Wettergreen, “Multi-object Detection in
Natural Scenes with Multiple-view EM Clustering,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005.

[UAR00] A. Ude, C. G. Atkeson, and M. Riley, “Planning of Joint Trajectories
for Humanoid Robots Using B-Spline Wavelets,” IEEE International
Conference on Robotics and Automation, 2000.

[UAR04] A. Ude, C. G. Atkeson, and M. Riley, “Programming Full Body
Movements for Humanoid Robot by Observation,” Robotics and
Autonomous Systems, vol. 47, pp. 93-108, 2004.

[VC02] L. Vese and T. Chan, “A Multiphase Level Set Framework for Image
Segmentation Using the Mumford and Shah Model,” International
Journal of Computer Vision, 50(3):271–293, 2002.

[Ver95] O. Verevka, “The Local K-Means Algorithm for Color Image
Quantization,” M.Sc. dissertation, Univ. Alberta, Canada, 1995.

[VS91] L. Vincent and P. Soille, “Watersheds in Digital Spaces: An Efficient
Algorithm Based on Immersion Simulations,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13, 1991.

[VS91] L. Vincent and P. Soille, “Watersheds in Digital Spaces: An Efficient
Algorithm Based on Immersion Simulations,” IEEE Transactions on

 113

Pattern Analysis and Machine Intelligence 13, 1991.
[WBC*05] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Cohen,

“Interactive Video Cutout,” Proceedings of ACM SIGGRAPH, 2005.
[WC05] J. Wang and M. F. Cohen, “An Iterative Method Approach for Unified

Image Segmentation and Matting,” IEEE International Conference on
Computer Vision, 2005.

[WC07] J. Wang and M. F. Cohen, “Optimized Color Sampling for Robust
Matting,” IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2007.

[WJ05] J. Win and N. Jojic, “LOCUS: Learning Object Classes with
Unsupervised Segmentation,” IEEE International Conference on
Computer Vision, 2005.

[WPW90] S. J. Wan, P. Prusinkiewicz, and S. K. M. Wong, “Variance Based
Color Image Quantization for Frame Buffer Display,” Color Res.
Applicat., vol. 15, no. 1, pp. 52–58, 1990.

[XBA03] N. Xu, R. Bansal, and N. Ahuja, “Object Segmentation Using Graph
Cuts Based Active Contours,” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2003.

[YES*06] E. Yoshida, C. Esteves, T. Sakaguchi, J.-P. Laumond, and K. Yokoi,
“Smooth Collision Avoidance: Practical Issues in Dynamic Humanoid
Motion,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2006.

[YK04] K. J. Yoon and I. S. Kweon, “Human Perception Based Color Image
Quantization,” IEEE International Conference on Pattern Recognition
17, 2004.

[ZN02] L. Zlajpah and B. Nemec, “Kinematic Control Algorithms for Online
Obstacle Avoidance for Redundant Manipulators,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2002.

 114

List of Publications

Journal Paper

M. Ruchanurucks, K. Ogawara, and K. Ikeuchi, “Comprehensive Iterative Foreground
Segmentation Using Region Growing Graph Cut,” IEEE Transactions on Pattern
Analysis and Machine Intelligence. (submitted)

M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Space-Time Physical
Constraints for Offline and Online Motion Generation,” IEEE Transactions on Robotics.
(submitted)

IEEE International Conference

M. Ruchanurucks, S. Kudoh, K. Ogawara, T. Shiratori, and K. Ikeuchi, “Robot Painter:
From Object to Trajectory,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007.

M. Ruchanurucks, S. Kudoh, K. Ogawara, T. Shiratori, and K. Ikeuchi, “Humanoid
Robot Painter: Visual Perception and High-Level Planning,” IEEE International
Conference on Robotics and Automation, 2007.

M. Ruchanurucks, K. Ogawara, and K. Ikeuchi, “Neural Network Based Foreground
Segmentation with an Application to Multi-Sensor 3D Modeling,” IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems, 2006.

S. Kudoh, K. Ogawara, M. Ruchanurucks, and K. Ikeuchi, “Painting Robot with Multi-
Fingered Hands and Stereo Vision,” IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems, 2006.

M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Humanoid Robot Motion
Generation with Sequential Physical Constraints,” IEEE International Conference on
Robotics and Automation, 2006.

M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Generation of Humanoid
Robot Motions with Physical Constraints Using Hierarchical B-Spline,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005.

Domestic Conference

M. Ruchanurucks, “Clustering Based Color Reduction: Improvement and Tips,” Meeting
on Image Recognition and Understanding, 2007.

	Region Growing
	Object Recognition
	Matting
	Graph Cut
	5EdgeProcessing.pdf
	Fig. 5.2 Vivid 900 sensor.

	6BrushManipulation.pdf
	Trial

	7Conclusion.pdf
	Conclusion

	Reference.pdf
	Journal Paper
	Domestic Conference

	0Preface.pdf
	Abstract
	Acknowledgment

