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Abstract 
 
Recently, many areas of research on humanoid robots have been 

studied, such as motion control, man-machine interfaces, artificial 
intelligence (AI), and so on. Among them many research projects have tried 
to create artist robots, with the common objective of exploring new sensing, 
artificial intelligence, and manipulation techniques. 

The research described in this thesis explores new vision and 
manipulation techniques through painting tasks. The ultimate goal is to 
create a robot painter that has capabilities similar to those of human artists. 

Regarding vision, the key problems of 2D/3D object segmentation, 
color perception, orientation mapping, and geometric edge processing are 
directly addressed by our method. 

This research focuses, first, on an effective 2D segmentation scheme 
using local and global classifiers. Our proposed method can effectively deal 
with a foreground cut, multiple cuts, and cut before matting. Then it is 
shown how to exploit normal stereo cameras to roughly extract the object 
automatically, based on 3D background subtraction and other vision 
techniques, and how to use our 2D segmentation to extract the object area 
correctly. 

The robot must analyze color distribution of the object to select the 
best set of colors to use. Normally, clustering colors face the tendency to 
produce colors with low contrast. We solve this problem by incorporating 
two clustering methods: maximum distance clustering and K-means. 

Then, in order to draw brush strokes meaningfully, the robot senses 
the orientation of the object. To smooth the orientation of the whole object, 
we apply global orientation that exploits the radial basis function to generate 
a style similar to Van Gogh, for instance, for the entire object.  

Furthermore, some human artists usually use edges to enhance their 
paintings. Technically, many researchers use gradient information to 
represent edges of objects. However, this would be affected by the color 
information on the surface. Hence, we decided to use 3D geometric edges as 
an input. We then extract 2D edges from the 3D model. Finally, the 2D 
edges are processed into brush strokes. 

We show how to apply these methods to high-level manipulation 
using a robot platform that consists of two arms and multi-fingered hands. 
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The robot also has a stereo vision system. Based on the derived information, 
the robot then performs a visual feedback drawing. First, it detects a brush 
and grabs it using cameras and force sensors. Second, it calculates the 
position of the brush tip using principal component analysis (PCA). Third, it 
then draws and compares the canvas with the picture produced by the stereo 
cameras. 

Finally, as the trajectories planned by the robot may not be realized on 
the real robot platform because of its physical limitations, this research 
presents a method to filter and optimize trajectories targeting offline and 
online applications. All physical attributes, namely angle, collision, velocity, 
and dynamic force, are considered as a set of constraints to be met and 
represented as B-spline coefficients, making the limits guaranteed. 

The proposed method will be shown to outperform the current 
methods in the sense of correctness and minimal user interaction, and it does 
so in a reasonable computation time. 
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Chapter1 
 
 
Introduction 
 
 

Development of the humanoid robot has recently been progressing, and the 
technologies surrounding it have progressed simultaneously. Applications for the 
humanoid robot are expanding as well as its hardware and software development. A 
number of research studies have been conducted in this area for various purposes. Current 
studies on humanoid robots focus on such techniques as motion control, human-machine 
interfaces, artificial intelligence (AI), and so on. 

In order to improve such technologies as well as to study human beings’ 
mechanisms, among many approaches, a number of projects are devoted to the creation 
of artist robots. ISAC, for example, is a robot that can track an artist’s hand trajectory and 
mimic it [SCN*98]. AARON is a unique robot that creates artworks by itself based on 
adapting a geometrical model of a subject [Mon97]. The Teleoperated Drawing Robot 
considers the possibility of a teleoperated robot that can track markers in the human hand 
online to generate brush trajectories [Dtr]. Draw-Bot focuses on force feedback to draw a 
simple pre-programmed shape [Db]. 

The research described in this dissertation attempts to create a robot that can 
mimic painting activities. The ultimate goal is to have a robot that can paint using its own 
creativity. Among the differences from the previous works are, first, our robot can plan 
“what” as well as “how” to paint automatically, by using cameras (shown in Fig. 1.1) to 
select the subject and choose colors and orientation in drawing. Second, the robot can 
move a paintbrush in a manner similar to that of human beings by using a multi-fingered 
hand shown in the figure to grasp the paintbrush and draw on a canvas.  
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Fig. 1.1 Our robot painter. 

 
 
1.1 Background 
 
 

What is a robot painter? 
 

Our robot painter is a system that can perform painting activities similar to those 
of human beings. The abilities can be divided into three parts, namely, 
observation/planning, physical interaction/execution, and verification/revision. This 
research forms a hypothesis that these three parts consist of several internal mechanisms 
as shown in Fig. 1.2. We attempt to develop a robot based on these mechanisms. 

The observation/planning part consists of visual information analysis units A and 
B, a verbal information analysis unit, a strategy unit, and a tactical unit. Unit A captures 
and processes the 3D object to derive 3D/2D data, for example, edges and color. Unit B 
compares a 2D image with a pre-installed database to alter the image using computer 
vision techniques, for example, computer techniques related to impressionism. The verbal 
unit deals with information regarding listening and speaking, interactive conversation 
between people that could affect the strategy of the painter. Then, the strategy unit creates 
some form of picture model, which can be called a desired outcome. The desired outcome 
does not need to be exactly like the subject, for example, there could be model boundaries 
using edges or model areas using colors. After this, the tactical unit then transforms the 
picture model into brush strokes. Furthermore, the tactic depends on the strategy. For 
example, if the edge picture model is used, the tactic is how to extract meaningful edges. 
If the color picture model is used, the tactic is how to select the colors and trace their 
orientation. 

The physical interaction/execution part then applies the brush strokes to draw on 
the canvas by task and skill models, referred to here as what to do with the paintbrush and 
how do it, respectively. Among the task models are grasping the paintbrush, calculating 
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the position of the tip, detecting brush-canvas contact, and drawing a brush stroke. The 
skill model deals with techniques to accomplish such tasks, using vision and force 
sensors. Furthermore, the skill model of painting can be simulated without having to 
perform a real painting experiment. 

The verification/revision part consists of unit B, visual information analysis unit 
C, the strategy unit, and the tactical unit. Unit B observes the canvas after drawing each 
brush stroke, and then can change the strategies or tactics. For example, it could adapt the 
original picture model to the actual canvas or adapt the brush stroke’s size, respectively. 
Unit C observes the tip of the paintbrush in real time and informs the tactical unit to 
change the position of the paintbrush on-the-fly.  
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Fig. 1.2 Analysis of painting tasks. Our present robot painter consists of solid-line 
boxes. [This diagram is made by Masaki Fujihata, the project leader of this robot painter 

project.] 
 
 

Why do we need to develop a robot painter? 
 

 This research achieves painting tasks by a robot, not a simulation program, based 
on the following reasons. First, dynamic characteristics of painting activities are sources 
of inspiration for artists. When a human draws, first, he or she observes the subject, using 
units A and B in Fig. 1.2. Then, the painter produces the picture model and the brush 
stroke model in his or her brain. Based on the models, the painter starts to paint using the 
physical interaction/execution part. However, the canvas might be different from the 
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picture model. For example, colors on canvas can spread out in an unpredictable manner 
due to the deformable characteristics of the tip of the brush as well as the difference in 
thickness of colors, or a drop of color may unintentionally fall on the canvas. So the 
painter must refine strategies and tactics to cope with such disturbances using the 
verification/revision part. Often, artists consider the disturbances as a stimulus and a 
source of creativity. This final part is an essential element that is lacking in simulation 
programs.  

Furthermore, the resulting technology of this achievement is also interesting from 
the viewpoint of art. This technology enables a robot to be a medium for reproducing 
human-like painting activities and the paintings. This medium is far more impressive for 
users than typical media based on simulation programs because users can appreciate real 
painting of real objects. 

In addition, this medium has a potential to provide ways to improve current 
technology of computer vision and robotics. These technologies enable researchers to 
improve our everyday life by using robots in unwanted or complex tasks. Until now, most 
of such development is still limited to static tasks, which the robot knows the state of 
activities. Unfortunately, in reality, uncertainty is inevitable. Hence, it is important to 
enable a robot to handle tasks dynamically. The painting process involves uncertainty and 
is thus good training for dynamic solutions. 
 
 

What are the technical challenges in making a robot painter? 
 
Constructing all the elements presented in Fig. 1.2 requires a great deal of effort. 

At the present time, this research focuses on a compact scale of the robot painter shown 
in solid-line boxes in Fig. 1.2, which uses the visual unit A, the strategy unit, the tactical 
unit, the task model, the skill model, and the simulator. Based on this simplified method, 
we will explain the technical challenges of the three different parts, namely, 
observation/planning, physical interaction/execution, and verification/revision. 

In the observation/planning part, the robot must be able to distinguish the 
foreground and the background robustly in reasonable time.  

Then, the tactical unit needs to decide how to use the paintbrush. The decisions 
include the direction of brush strokes, how to paint areas, and how to draw outlines. 
These require techniques to sense orientation, select colors, and extract meaningful edges. 

In the physical interaction/execution part, among the challenges are how to locate 
and move the paintbrush. Techniques to locate the paintbrush in noisy images are 
important. Grasping and moving the paintbrush to draw on a canvas is not 
straightforward. 

In the verification/revision part, a visual feedback painting is performed using a 
simulator, and the grasping is omitted. At this stage, this research still does not deal with 
actual physical uncertainty effectively. Even so, the routine that generates brush strokes is 
not just a rendering program; it can be integrated into the robot in the future. An 
underlying difficulty is how to decide where to start drawing each brush stroke.  
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How do we overcome the technical challenges? 
 
This research focuses, first, on how to extract the foreground robustly in 

reasonable time. It starts by using 3D segmentation techniques to roughly extract the 
object. Then we propose to use this noisy foreground/background as an initial input to a 
2D segmentation program, which is more robust since it features more information such 
as that of color and gradient. 

Furthermore, since current 2D segmentation technology has not been perfectly 
solved, this research proposes an approach to segment the foreground area correctly. The 
benefit is twofold: first, it can deal with foreground segmentation robustly, and second, it 
requires little input when there are many holes in the foreground and/or background as 
well as when there are thin or long objects on the boundary between foreground and 
background, for example, hair.  

Next, to generate a color palette, the robot clusters the color distribution of the 
foreground. We propose to solve the low contrast problem of previous clustering routines 
by using Maximum Distance Clustering (MDC) to generate initial cluster positions for K-
means clustering. Moreover, as MDC is comparatively slow when the number of desired 
colors is high, a suboptimal algorithm is therefore proposed.  

Then, to draw brush strokes smoothly, the robot senses the orientation of the 
object. To generate smooth orientation for the whole object, we interpolate the orientation 
using a technique called Radial Basis Function (RBF). 

To further draw the outlines, the robot extracts meaningful edges. We propose a 
concept of geometric edges that more precisely represents the outlines. A clustering 
method is used to transform the geometric edges into brush strokes.  

Implementation related to the physical interaction/execution part and the 
verification/revision part is explained in the next subsection. 
 
 

What do we implement? 
 

Experiments are performed using the robot painter in Fig. 1.1. It has a stereo 
vision system with nine cameras and is used for obtaining an object’s positions in 3D 
space. The camera head is equipped with a pan-tilt structure that allows its head to pan 
vertically and horizontally. The robot has two robot arms with seven Degrees Of 
Freedom (DOFs) each, and a multi-fingered hand on each arm. The right hand functions 
to handle the brush and has four fingers as shown in Fig. 6.1. The first finger has four 
DOFs while the other fingers each have three DOFs. On the tip of each finger, there are 
force sensors. We use a multi-fingered hand in order to undertake delicate paintbrush 
techniques that human painters use. 

Regarding skills to detect and move the paintbrush, first, the robot detects a brush 
and grasps it using the cameras and the force sensors. Then, the orientation of the brush 
and the position of the brush tip are determined using principal component analysis 
(PCA). Verifying of brush-canvas contact is performed using force sensors. The robot 
uses the edge picture model as a goal for painting. 
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For visual feedback simulation, this research uses the color picture model. The 
decision to draw brush strokes is based on comparing the virtual canvas and the color 
picture model, in which a threshold of color difference is used to decide whether an area 
is already painted. The visual feedback is then examined in a hierarchical manner, which 
begins with large brushes and subsequently moves to small brushes to add details. 
 
 
1.2 Related Work 
 
 

1) Foreground Segmentation 
 

Human painters often concentrate on specific areas of an image. This tendency is 
applicable for the robot painter to make paintings appear more beautiful. To accomplish 
this, object segmentation can be used to segment the subject area in a 3D image, for 
example, [TW05] and [MGS*05]. However, the methods cannot return the boundary of 
the subject correctly. Hence, this research focuses on how to segment the object area 
correctly and automatically, based on 3D techniques and a 2D segmentation method.  By 
incorporating the 2D segmentation, the 3D extraction becomes more robust since it 
exploits features differently from 3D techniques. 

Recent approaches to 2D segmentation attempt to extract the foreground using 
color information, edge information, or both, for example, Bayes matting [CCSS01], 
snakes [HBS99], or graph cut [BJ01]. However, the first scheme is not robust when the 
color distribution is not well separated. The second scheme is sensitive to gradient 
information. The third scheme cannot segment small or thin objects. 

For methods that apply 2D segmentation to extract 3D objects, some works show 
how to apply graph cut to segment 3D images, such as medical images [BK04]. Some 
works regard video images as 3D objects and use graph cut to segment the foreground 
[WBC*05]. Among these methods, the drawback is that they require human interaction to 
mark the foreground and the background roughly. There is another group of works that 
uses special video sensors to capture and extract the foreground automatically [MMP05]. 
However, they need special, and expensive, hardware, whereas the robot painter can 
extract the foreground automatically using regular stereo cameras. 
 
 

2) Color Perception 
 

After extraction and segmentation, the robot must analyze color distribution of the 
object to select a small set of colors to formulate the picture model. Color perception can 
use splitting, clustering, AI, a spatial characteristic-based method, or a region-based 
method. Among the first group that applies a splitting-based algorithm are median-cut 
[Hec82] and octree [GP90]. However, they tend to produce false colors. The second 
group uses a clustering-based algorithm, such as K-means [YK04] and C-means [SK87]. 
This group faces the problem of low contrast. The third group uses AI for better 
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classification results, for example, the Kohenen network [Dek94] and Neural Gas 
[AP06]. However, AI is time-consuming and difficult to implement. The fourth group 
tries to enhance the quality of the output image by considering spatial characteristics such 
as dithered color quantization  [BFH*98], which cannot produce a color for each area 
effectively. The final group is region-based color segmentation, for example, watershed 
[VS91] and mean shift [CM02]. However, this approach often cannot reduce the number 
of colors effectively, and instead is applied in the field of region segmentation. 
 
 

3) Global Orientation Calculation 
 

For the local orientation used to guide brush strokes, gradient information can be 
used to guide brush strokes that are more robust to texture [Her98], whereas image 
moment is more robust to shape orientation [SY00]. However, such methods do not 
produce good brush strokes because the gradient or moment that a robot preserves could 
be noisy. To interpolate the orientation for the whole object, global orientation that 
exploits a radial basis function [Bor] to generate an orientation similar in style to Van 
Gogh can be used [HE04]. However, this consumes a great deal of time. It means that 
after the subject is designated, the robot must analyze the orientation for minutes before 
starting to draw. Such a long delay is not acceptable on many occasions, for instance, 
when using the robot to paint human subjects in an exhibition. 
 
 

4) Brush Manipulation 
 

Based on the picture model, the robot then performs brush strokes painting, which 
requires manipulation techniques. Some researchers have tried to manipulate by a multi-
fingered hand [Nap56], [Cut89], [KI97]. However, they expect that their method would 
be used for rigid objects, and therefore few studies have been carried out that require 
manipulating deformable objects, like a brush in this study. The contact states of such 
objects do not rely only on a kinematics model, but also on other parameters such as force 
acting on fingers. 
 
 

5) Robot Constraints 
 

Finally, as robots have physical limitations, a motion generation routine must be 
applied to prevent limit violations. The limit violations lead to error in trajectories, and 
the error might result in collision and damage to the hardware. This must be prevented by 
applying a motion generation routine that guarantees angle, velocity, force, and collision 
limits.  

Among motion generation methods, a filter-based approach is a fast way to 
retarget motion [PHRA02]. However, forces and collision avoidance are not considered. 
Trajectory optimization is another approach [UAR04]. The objective function can 
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minimize physical characteristics; however, it is not guaranteed that such values will 
satisfy limits.  A real-time approach also presents problems [RUWA03]. Attempts to 
limit physical characteristics rely on kinematics-based optimization to reduce values, 
rather than applying specific limitations [DVS01]. Thus, it faces the same problem of 
guaranteeing limit values. 
 
 
1.3 Organization of the Thesis 
 
 Our method directly addresses these key problems: foreground segmentation, 
color perception, orientation mapping, geometric edge processing, skill level sensing and 
manipulation, and constraints to the trajectory. In Chapter 2, our 2D/3D foreground 
segmentation is explained. Chapter 3 explains the color perception method. Chapter 4 
demonstrates multi-scale painting using an orientation map. Chapter 5 explains how to 
extract and process geometric edges of an object. Chapter 6 shows paintbrush 
manipulation by a camera and force sensors. Finally, Chapter 7 contains our conclusions. 
Robot constraint functions are shown in Appendix A with their online and offline 
applications. Appendix B explains Chebyshev’s inequality, which is used as an 
underlying theory for foreground segmentation. 
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Chapter 2 
 
 
Foreground Segmentation 
 
 

In order to extract the subject area, the object is placed in front of the robot. The 
robot then automatically extracts the foreground. The question is: how does the robot 
accomplish that? Attempts to extract objects using 3D information to gain adequate 
information and resolution of images have been relying on high quality hardware, for 
example, the medical capturing device [BJ01], the laser range finder [ROI06], or special 
stereo cameras [MMP05]. At present, one challenge in this field is whether it is possible 
to extract such information using normal stereo cameras.  

Because conventional 3D techniques always produce a noisy image that is not 
suitable to be used as a model for painting, whereas 2D segmentation methods often give 
a clear boundary, in this research, 3D segmentation is used first to extract the boundary 
roughly and then a novel 2D segmentation is used to extract the correct boundary. This 
chapter emphasizes the 2D segmentation method and then discusses its application to 3D 
material. 

2D image segmentation has been extensively researched and is useful in image 
processing, in computer vision, and in many other aspects of computer graphics. It plays 
an important role not only in editing still images but also in editing video images [LSS05] 
[WBC*05], disparity cut [KYO*07] [RKOSI07], 3D image enhancement [BK04], 3D 
modeling [ROI06], etc. 

This work focuses on a method that optimizes local similarity and global fitness 
with iterative edge constraint and that can deal with the problems of a foreground cut, 
multiple cuts, and cut before matting. Hence, it is called “Comprehensive Iterative 
Foreground Segmentation (CIFS).” Specifically, it will be shown here that this method 
answers questions that have become growing concerns for computer vision researchers: 
What are the conditions for robust segmentation? And why is it that many previous 
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methods that are robust for a foreground cut cannot deal with multiple cuts effectively? In 
these cases, based on existing schemes, how should the algorithm be revamped? Why are 
many high-end matting approaches comparatively weak in dealing with data distribution 
that is not well separated? Then, how can matting be performed effectively? Furthermore, 
as many of the current high-end segmentation methods are more or less robust when 
enough input is provided, we are well aware that any novelty that could reduce user 
interaction warrants serious consideration. Our method can effectively deal with many of 
these problems. 

It is widely known that many segmentation approaches have had different 
limitations mainly because of their interfaces, underlying mathematics, and algorithms. 
Among many approaches, we observe that the supervised region-based approach with an 
edge constraint scheme has not been widely applied to difficult images. Research in other 
fields has discovered that considering some parameters as a constraint as opposed to a 
cost function yields extra performance; hence, it is worthwhile to ascertain what benefit 
could be gained if the optimization is constrained. 

With this in mind, this research considers how to integrate and improve graph cut 
and region growing based on the following reasons. Whereas graph cut can segment a 
foreground well as its cost function deals with both local and global similarity, its 
optimization scheme is unconstrained. We will show that using a similar cost function, 
constrained optimization improves user interaction, while the robustness of graph cut is 
preserved. On the other hands, region growing’s use is very limited since its cost function 
is too simple. However, region growing has states, which means it stops before growing 
further. The benefit of this notion of state is not clearly addressed earlier, and we will 
consider this as a constrained optimization problem. 

Our novelty is, first, we propose to parameterize the state based on a statistical 
value of Chebyshev’s inequality. In doing so, the proposed method can constrain the 
timing before searching for a remote area as well as before matting. This reduces user 
interaction a great deal either when there are multiple holes in the images or when 
matting is required in difficult images, as the user does not have to mark every hole or the 
boundary for matting. Second, the cost function used in this work consists of local and 
global similarity, similar to that of graph cut, which leads to robustness. Conventional 
region growing programs cannot exploit such cost function. This is accomplished by our 
notion of subjecting each local and global term to each constraint. 

When the behavior differences are studied, the proposed method is an 
improvement compared to previous approaches, namely, graph cut, region growing, 
object recognition, and matting.  

In 3D segmentation, the method is then applied to allow the robot’s stereo 
cameras to extract the boundary of the foreground correctly. The success of this 
procedure relies on how good the quality of the 3D foreground is. Then, a number of 
dilations and erosions are performed on the 3D foreground to produce a rough foreground 
for 2D segmentation. 

The rest of this chapter is organized as follows.  Section 1 explains the differences 
between previous approaches and our CIFS. In Section 2, the core notions of the 
proposed system are explained. The system is then applied to a foreground cut. Section 3 
explains how to perform multiple cuts. Section 4 extends the notion to tackle the problem 
of cut before matting. Section 5 shows how to apply the method for 3D object extraction. 
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Extensive discussion is provided in Section 6. To better understand the notion, the 
algorithm is provided in Section 7. Finally, there is a summary in Section 8. 
 
 
2.1 Related Work 

 
Despite the value of image segmentation, the segmentation problem is still 

imperfectly solved. We first discuss several current approaches to segmentation and their 
limitations. 

Most current segmentation methods require human input: a user marks areas as 
being foreground vs. background or marks a contour for use as a guideline. Interestingly, 
it is also shown that not only the mathematics and the algorithm that defines performance 
are different, but user interfaces are also different. For example, marking areas as being 
foreground or background is different from drawing the guideline contour. In the former 
interface, users can directly specify features to be used for data distribution.  Controlling 
topology is also more straightforward. Our program uses this interface. 
 
 

1) Unsupervised Edge-based Approach 
 

Active contour models or “snakes” are among the most famous methods in the 
unsupervised edge-based approach to segmentation. A user marks one or more contours 
for use as initial boundaries. The notion of snakes is used to evolve the contour or 
contours  in image L X  based on internal and external measures of edge “energy,” as 
expressed in the following equation  
 

∫∫∫ ∇−+= dsLXdsLdsLLE sss
222
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where the first and second terms are internal forces that measure the length of the contour 
and its stiffness or rigidity, weighted by parameters ς  and ξ , whereas the third term is 
external force, which is generally based on image gradient. L  and  denote the first and 
second derivative with respect to the curve parameter 

s ssL

s . 
Since the seminal paper on snakes [KWT88], many variants of snakes have been 

proposed. Generally, snakes function can be divided into two main categories, explicit 
and implicit. 

Explicit function such as splines can be used to represent the contour. The curve 
can be propagated based on different energy terms. However, explicit function faces 
difficulty when the curves need to be split or merged for multiple section segmentation. 
Some studies try to overcome the local minima problem, for example, using balloon force 
[Coh91]. Even so, the active contour cannot be made to extrude through any significant 
protrusions that the shape may possess. 

Another breakthrough in the edge-based approach that can effectively deal with 
multiple cuts is the exploitation of implicit functions. “Level set” [MSV95] is one such 
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solution in which snakes become “geodesic active contour” [CKS97]. The use of implicit 
representation of contour simplifies the process of evolving so that there is no longer a 
need to carefully control the splitting or merging of explicit function. 

However, the edge-based approach is seriously criticized as segmentations depend 
heavily on initialization and gradient information. Recently, edge tracking and hybrid 
methods have also been proposed, namely, intelligent scissors [MB95] and a graph-cut 
based active contour [XBA03], respectively. The former can be considered as a 
supervised edge-based approach although it is affected by irrelevant gradient information. 

Additionally, users may find it is not easy to mark or revise an appropriate snakes 
guideline contour for difficult images. 
 
 

2) 

3) 

Unsupervised Region-based Approach 
 

In contrast to using gradient information, many works calculate external energy 
based on other features instead. This is shown to be more robust for initialization 
[CRD06]. 

Nevertheless, by drawing the guideline contour as input, users may find it is not 
easy to mark the guideline contour. Moreover, they cannot directly specify pixels to be 
used as input data distribution. 

On the contrary, for works that automatically divide images into multiple regions 
[SbFAZ00] [VC02] the decision is based on grouping similar features directly, which can 
be considered as clustering [BW04]. However, the decision would not work well if the 
data distributions are not well separated. 
 
 

Supervised Region-based Approach 
 

Supervised region-based methods interact with a user naturally. A user marks 
foreground vs. background, and these marked regions can be used to compute the image’s 
data distribution. This means that users not only control a region’s topology but can also 
specify its feature samples. There are four famous methods for this approach, namely, 
“region growing,” “object recognition,” “matting,” and “graph cut.” 

 
 

3.1) Region Growing 

In this type of method, a region can expand based on local characteristics such as 
color similarity, and there is always some criterion to stop the searching process such as 
heuristic strong edge information or optimal threshold between foreground and 
background [FSA07]. 

However, region growing is not a sophisticated method and is generally used for 
labeling rather than for segmentation. Attempts to improve region growing fail because 
the issue of global data distribution is not well addressed. 
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3.2) Object Recognition 

In problems of object recognition, in which color patterns are often unknown or 
change only slightly, color-distribution-based separation methods are of limited use. 
Instead, machine learning dominates this field. [FWF02] focuses on combining belief and 
neural networks to apply a set of labels (e.g., sky, vegetation) to images. [WJ05] uses a 
probability model to extract an object of interest based on input training data without 
human interaction. These techniques, however, focus on unsupervised object recognition 
more than on how to effectively segment the foreground. 

On the other hand, supervised learning techniques such as [MFM04] detect 
meaningful edges in images by exploiting brightness, color, and texture. They compare 
the use of density estimation, decision trees, logistic regression, hierarchical mixtures of 
expert systems, and support vector machines. [FO03] compares various machine-learning 
algorithms such as neural network, nearest-neighbor, and decision trees with the objective 
being to recognize a hand in moving images. However, a great deal of user interaction is 
required during the initial training. 

Another problem with object recognition is that it is usually noisy and does not 
give a clear enough boundary for image/video editing. 

 
 

3.3) Matting 

An example of a recent method that exploits color distribution to produce a soft 
boundary, in other words, matting, is Bayes matting [CCSS01], which is an improvement 
on the algorithms presented in [Mis93], [BVD00], and [RT00]. From a user-marked 
foreground/background, an “alpha” value, which is the method’s descriptor of being 
foreground vs. background, is computed over the remaining region. [LLW06] proposes a 
close form solution to the alpha matting problem. It can be seen that using color 
information extensively applies to a problem of alpha value approximation. However, the 
notion often fails when color distributions between foreground and background are not 
well separated. 

Often, users need to mark an area to be matted manually, which is a tedious task. 
[WC05] tries to address the problem by introducing an iterative approximation approach. 
Their recent result can be found in [WC07]. However, the method shares a similar 
weakness to normal matting for images when the foreground/background colors are too 
ambiguous. This is the downside of considering only the color information. In addition, 
segmentations depend on initialization. 
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3.4) Graph Cut 

Optimizing both smoothness between neighboring pixels and fitness to the model 
derived from data distribution given by users seems to offer an advantage. Graph cut 
[BJ01] [GPS89] is one such technique, and is presented in the following equation. 
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where the image is an array  for which optimized cut energy can be derived 
by maximizing the smoothness  and the fitness E ; given the model , weighted by a 
parameter 
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Since the original graph cut algorithm was developed, there have been various 

improvements. [BJ01] focuses on a multidimensional graph cut. [RKB04] improves the 
graph cut method by allowing interactive estimation and incomplete labeling, both of 
which reduce the amount of needed user interaction. [LSTS04] incorporates interactive 
boundary editing by representing the border as a set of vertices.  

One clear advantage of graph cut is that it is less sensitive to initialization and 
color distribution, as both local and global information are considered at the same time.  

However, the tradeoff generally makes graph cut incapable of extracting small or 
thin objects, in contrast to the matting method. [RKB04] proposed to cut before matting 
by performing graph cut and then erosion to generate unknown areas for the matting 
algorithm. However, the number of erosions is ad hoc, which is one problem [WC05] 
tries to address as mentioned. 

Another problem with graph cut is the high degree of user interaction required in 
some cases of multiple cuts. 
 
 

4) The Proposed Segmentation Method 
 

This research tries to generate a method that is robust against sensitivity to 
initialization, ambiguous color distribution, and the loss of thin or small sections. When 
considering user interaction, the topics extend to how easily the user can guide the initial 
mark, how convenient it is to revise the marked data, how to give small input for images 
with multiple sections, and how to perform matting without having users further mark 
areas to be matted.  

In light of the limitations of former approaches, we propose a comprehensive 
iterative foreground segmentation “CIFS” that can segment the foreground based on 
optimizing a cost function of feature similarity, locally and globally, with a constraint of 
edge strength. Unlike “graph cut,” which tries to trade off between local and global 
information using a weighting parameter, CIFS exploits “region growing” and “alpha 
value calculation” to deal with local and global optimization, respectively. The weighting 
is directly done using the constraint.  
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First, do: 
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For yet-to-be-decided pixels, do: 
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where maximizes the smoothness of known pixel  to unknown neighboring pixel ; 
given the constraint value a ,  maximizes the applicability to the model ; given the 
constraint function C  based on the gradient of that pixel Grad and the constraint 
value . 
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In other words, first, local region growing is performed, given a statistical 
constraint value used as a threshold. Then only for pixels that cannot be decided using 
region growing, global classification is checked. In contrast with region growing, the 
global scheme has no pixel difference to be used as a threshold, and classification of each 
pixel is constrained by its gradient, given the same constraint value (its relation will be 
explained in the next section). The higher the gradient is, the stricter the decision is. In 
this way, optimizations are independent but linked to each other by the constraint, leading 
to computationally efficient algorithms. 

We first proposed the notion for a foreground cut in [ROI06], targeting 3D 
modeling, and used it for our robot painter program [RKO*07]. However, at that time 
only global data distribution was considered and the constraint setting was not effective, 
which resulted in a time of about 10 seconds for a 640*480 image on a laptop with a 
1.8GHz CPU. CIFS generalizes and extends [ROI06], and is used for the disparity image 
cut in [RKOSI07]. At present, the computation time is reduced by more than ten times. 

It will be shown here that this scheme is not sensitive to initialization. The 
constraint of edge is used as a state indicator to perform multiple cuts automatically. 
More importantly, to perform cut and matting, timing can be used to stop the search 
process effectively before matting. The constraint, which was not effective in previous 
methods, is made possible by “Chebyshev’s inequality” (see Appendix A). 

Apart from the core idea of optimizing a cost function of feature similarity and 
using a constraint of edge strength, another key aspect of the proposed method is the use 
of the algorithm that can consider local and global optimization at the same time. This 
research proposes to employ the tradeoff between local and global constraints. 

Hence, first, the next section explains how to estimate and update the edge 
constraint as well as how to weight between local and global information, and how to use 
the proposed algorithm to cut a foreground. 
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2.2 Theory and an Application for a Foreground 
Cut 

 
Now, we shall see how to consider both local and global cost function at the same 

time with edge constraint. 
From marked input, the search process will try to identify unknown pixels. Since 

the algorithm considers edge information as a constraint to stop the search process, if the 
constraint is too large, foreground/background regions can grow incorrectly into each 
other. So Chebyshev’s inequality, which covers all data distribution models, is applied to 
initialize the constraint. 

As both the local and global information are used, one can imagine that for 
constrained optimization, there must be two constraints for each of them. This section, 
first, explains how to derive “constraint value” for “local region growing” from color 
distributions. Although the best color domain is CIEL*a*b*, many works use the RGB 
domain. Hence, in order to benchmark against them, this research uses the RGB domain. 
Also, we tested and found that the segmentations do not depend very much on the choice 
between these two color models.   

On the other hand, “constraint function” for “global classification” and its relation 
to the constraint value will be described later in this section. Global optimization could be 
“any classification methods” that can give continuous alpha value between 1 (absolute 
foreground) and 0 (absolute background). One important point that is different from other 
energy optimization schemes is how to trade off between local and global information. 
This “smart weighting” is embedded into the constraint function. 

Regarding the algorithm, first, local region growing will be used. If region 
growing is unable to decide on some unmarked pixel, global classification is then 
performed. After searching forward and backward on the image array , the 
present constraint value a  will be updated to . This updating is modeled by a mixture 
of Gaussians. The process continues until there are no remaining unknown pixels. 

),...,( 1 NxxX =
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1) Constraint Initialization 
 

In order to derive the initial constraint value for region growing so that the 
foreground and background grow correctly, a statistical method is used to model the input 
image’s foreground/ background distribution. As opposed to conventional methods that 
try only to form a threshold based on first order moment [FSA07] that is weak when the 
image is complex, classical Chebyshev’s inequality is appropriate to be used for 
calculating how far an arbitrary point in the color domain can grow to neighboring colors, 
by directly considering the distribution.  

First, we calculate the color standard deviation of the foreground, the background, 
and of both areas. After that the constraint value can be calculated from (2.6). 

 

Proof. Based on Chebyshev’s inequality, at least 99% of all samples will fall within +/- 
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10 of the standard deviation. This range can be considered to be like a box in the RGB 

domain with a width, height, and depth of Rσ20 , 20 , and 
Gσ Bσ20 . Next, further consider 

the distribution boundary to be a sphere with a diameter determined in equation (2.5). 

The claim that at least 99% of all samples are within the box will hold for this sphere. 

Although the sphere is larger than the box, a small difference from 99% is not 

statistically important, as the actual population needed is 100%. 

ssdBGR 20400400400 222 =++ σσσ  (2.5)

 
Based on this spherical standard deviation, , of foreground, background, and 

both areas, calculate the region growing constraint from (2.6). Note that the factor of 20 
can be ignored since the relation between each parameter is linear. 

ssd
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In (2.6), constant k  enables a region to grow for the case in which the 

intersection between foreground and background is too tight, and is set to unity as this 
represents the smallest color difference in a digital image. There is also a scaling factor, 

, whose value is important. Too small a k  will make the growing process 
unnecessarily slow, while too large a  can cause erroneous growing of the foreground 
into the background, or vice versa. According to Chebyshev’s inequality, it is possible 
that almost none of the samples will fall within +/- 1 of the standard deviation, here , 
so that the ideal optimum constraint from foreground that would not intrude into the 
background, and vice versa, would be 1 . Note that generally the outcome of (2.6) 
would be biased to a smaller value than  statistically to compensate for non-
ideal distribution. As we are going to use the timing that  equal to  and 

 for multiple cuts and cut before matting, as will be shown in Sections 4 and 5, 
respectively,  must be lower than 1, which will not affect the performance much as it 
only results in more iterations. In our experiments, it is set to be 0.5, which proved to be 
robust for all 40 test images. 
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2) Local Classification 
 

Based on the optimum constraint value, region growing is performed by 
calculating pixel differences from the user’s marked core data. If the Euclidean distance 
in the color domain between the known foreground/background and its surrounding 
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unmarked pixels is smaller than the constraint value , an unknown pixel will be 
changed to foreground or background. 

na

 
 

3) Global Classification 
 

Translating our global optimization idea into a classification criterion, since the 
alpha value ranges between 1 and 0 for foreground and background, respectively, any 
yet-to-be-marked pixel is judged as foreground or background using the criterion of (2.7). 
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where  is the alpha value of pixel i , and C  is the constraint function calculated 
from gradient information of pixel i , given the region growing’s “constraint value” for 
iteration n is a .  
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For alpha value calculation, presently, in order to calculate the alpha value, the 
foreground cut uses statistical clustering functions such as the Gaussian Mixture Model 
(GMM) in [RKB04] or k-means clustering as in [LSTS04] or strong nonlinear classifier 
as in our previous work [ROI06]. In the present work, k-means is used to compare with 
graph cut implementation of [LSTS04], and neural network is used for the case that input 
consists of multiple features. For now, alpha value from k-means is calculated from: 
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in which I  is the RGB value of pixel i  and  is the closest cluster mean of the 
background (or foreground) RGB. 

i
c
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For constraint function, as opposed to constraint value, the two constraints must 
contain some relation, as region growing compares two neighboring pixels whereas 
classification compares the pixel and the data distributions. This will be explained in the 
next section. 
 
 

4) Tradeoff Between Local and Global Data 
 

In previous works that consider complex cost function, the decision to weight 
between inside parameters faces the problem of inconsistency from cost function to cost 
function. There have been attempts to generate such a weighting parameter [CKS97] 
[DM00]. On the contrary, if the optimization is constrained, it is possible to trade off each 
and every constraint directly. This is unexpectedly robust and very easy to implement. 
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By considering priority, global classification should be given lower priority than 
local region growing. Hence, the constraint for global classification in (2.7), C , 
should be: 1) 0.5 when a gradient value is strong, indicating that the unknown pixel is 
probably around the boundary. Regarding priority, the constraint should be high when the 
gradient is higher than the region growing’s constraint. 2) Gradually relax to 0 as the 
gradient value become smaller than the region growing’s constraint. 

),( ni aGrad

At first, we used Haar-like function as the constraint and found that it cannot 
produce a good result, evidently because it violates the second condition mentioned 
above. It is discovered from experiments that, similar to classical nonlinear classification, 
the effective group of function is variants of sigmoid.  

In order to make the relation to region growing’s constraint linear so that 
increasing one will affect another equally, sigmoid is adapted to be a linear function of a .  
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Equation (2.9) is a scalable version of a sigmoid function in which the constant  

is the point where constraint function approximately reaches maximum value, here 6.75. 
This is actually our method’s weighting parameter. The higher  is, the more weight is 
given to local similarity. The effect of increasing a  or reducing w  in the gradient-
constraint domain is similar to shifting the sigmoid function rightward as shown in Fig. 
2.1. 
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Among the advantages of this weighting are the following five:  1) It is easy to 
implement. 2) It is compatible with existing schemes. 3) Prioritizing is straightforward; it 
tries not to decide on pixels where the gradient is stronger than , which means the 
global classification has lower priority than local region growing, and passing the 
decision if the gradient is smaller than a . Between these two milestones, the decision 
is based on nonlinear function, here sigmoid. 4) Both constraint value a  and constraint 
function  are always consistent as they are derived from data distribution. The 
reason that both can be based on Chebyshev’s inequality is that the initial constraint a  
reflects both color difference and gradient. 5) It is extendable to other features without 
any adaptation. In multidimensional features, region growing should use alpha value 
instead of color, as will be shown in the discussion section. Consequently, a  will be 
calculated from alpha distribution which then reflects alpha difference and gradient in 
alpha domain. 
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Note that when the feature is only color, region growing does not have to use an 
alpha value instead of color. Also this can reduce the inconsistency of alpha value 
calculation due to tight color distribution or not-well-structured classifier. This advantage 
can be seen from the second row of Fig. 2.3. 

In this scheme, one important thing to stress is the difference from merely 
weighting the cost function, as the latter is difficult to derive, especially when the cost 
function is complex, as when weighting between local and global information. 
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Constraint function value 

Gradient 

Fig. 2.1 Constraint function. wan −  = 0 and 5 shown in two lines, respectively. 
 
 

5) Constraint Update 
 

After the region cannot grow further using the present constraint value and 
constraint function, the constraint value will be relaxed from a  to a . As opposed to the 
constraint initialization that does not model the distribution, the relaxing process is 
modeled based on the mixture of truncated symmetry Gaussians in features domain with 
the width of 

n 1+n

σ6 . The Gaussians are symmetrical and have a fixed size, as the constraint is 
unbiased on axis and actual distribution in the features domain. 

At the end of iteration, assuming the worst scenario, the Gaussians expand to the 
width of σ6  and touch each other perfectly, meaning some Gaussians of the foreground 
are touching those of the background. In the next iteration where the constraint will be 
relaxed and the Gaussians will likely expand further, the optimal intruding would be σ , 
according to the less insignificant part of the distribution. So the optimal relaxing factor is 

. This is iteratively done at every iteration end. 33.1 &

Note that by performing a segmentation experiment using only local region 
growing, this factor also serves the method very well.  

In global optimization, the constraint function C , which has lower 
priority, is relaxed for the same portion.  The process continues until there are no 
remaining unknown pixels. 
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6) Experimental Result 
 
In order to compare our proposed method with the current technology of 

foreground segmentation, a method that exploits both local and global information, graph 
cut, is used as a benchmark. To make the comparison fair, both methods apply the 
watershed algorithm [VS91] to generate pre-segment input images and use k-means as 
the classification agent with the same number of clusters. 

For the case that the boundary is clear and the foreground and background data 
distributions are well separated, both graph cut and CIFS can segment the foreground 
effectively, as can be seen in the first row of Fig. 2.2. On the other hand, region growing 
easily fails. 
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If the data distributions are ambiguous and there are strong edges that are not the 
boundary, graph cut often fails whereas our smart constraint exhibits improvement as can 
be seen in the second and third rows of Fig. 2.2. This does not mean that our method is 
better than graph cut in all aspects as we are still relying on the choice of the constraint 
function . A better outcome of graph cut can be expected if more weight is 
given to global information. 

),( ni aGradC

In any case, even when the marks for foreground and background are close to 
each other, Chebyshev’s inequality proves to be robust in preventing the foreground from 
incorrectly growing into the background, and vice versa, as can be seen from column (d). 

The overall process, without the pre-segmentation step of watershed, typically 
consumes less than one second for a 640*480 image on a laptop with a 1.8GHz CPU. The 
time consumption is linear to the dimension of the images. Although the time 
consumption is reasonable, this is not faster than graph cut. Since even the notion of 
independent local and global classification leads to algorithmic efficiency, the iterative 
constraint produces delay in segmentation. However, this constraint will be shown to 
have outstanding merits in the next two sections. 
 
 

 
(a) (b) (c) (d) (e) 

Fig. 2.2 Comparison of foreground cut tools.  
(a) Input image. (b) Graph cut. (c) Applied region growing with Chebyshev’s inequality. 

(d) At constraint based on Chebyshev’s inequality. (e) CIFS. 
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2.3 Multiple Cuts 

One advantage of the proposed method is the use of edge information as a 
constraint. Not only does this improve the problem of trading off between color similarity 
and edge strength but this also enables multiple object searching without having the user 
mark all the separate objects in an image. Searching too early in remote areas results in 
false positive objects, as can be seen in Fig. 2.3 column (b); searching too late might miss 
a chance to distinguish remote sections if they were already incorrectly detected as shown 
in column (c). This indicates that previous approaches are inferior to our system in the 
sense that they do not possess the notion of growing to some edge constraint before 
splitting. 
 
 

1) Remote Search Criterion 
 

Automatic searching is possible in our algorithm by letting the region grow to a 
statistically certain iteration. Since it is possible that there are remote sections that should 
be judged to be foreground (or background) but are blocked by background (or 
foreground), without multiple section mode these areas would never connect to the 
foreground (background), as shown in Fig. 2.3. So instead of letting the region grow 
further, we start searching in remote unmarked areas for pixels that fall into the global 
data distribution of the foreground (or background) but not vice versa. These detected 
pixels are used in the next iteration as additional cores.  

Statistically, the timing limits for searching can be obtained by considering the 
lower bound of Chebyshev’s inequality. According to the theory, the ideal optimum 
constraint from foreground that would not grow into background, and vice versa, is when 

 equals 1. As  was set to 0.5, so the remote section search process started when 
. We can use this to search for remote sections, and must do so, because if we do 

not constrain the timing, remote foreground (background) objects will be incorrectly 
turned into background (foreground) in the consecutive iterations.  
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At the end of this iteration, all the remote sections are detected and marked as new 
cores. Then the process continues as usual until no unknown pixel is left. 
 
 

2) Experimental Result 
 

Multiple cuts mode is benchmarked against an object recognition scheme similar 
to [MFM04] and [FO03]. Although [FO03] exploits high dimensional training input that 
forces the use of a comparatively fast but weak classification method, we have found that 
this larger window is slow and does not always produce good recognition results. 
Especially when the foreground/background consists of many different regions, using a 
larger window usually confuses the classifier because it encounters patterns that are too 
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complex. Hence, recognition is done on a pixel basis here. To simplify the comparison, 
both methods apply the watershed algorithm to generate pre-segment input images and 
use k-means as the classification agent.  

From the result in Fig. 2.3, first, the first row shows a well-separated distributions 
case where both approaches perform equally. The second row presents a not-well-
structured classifier (including underfitting and overfitting). Here, the background 
contains clear color but the structure of the classifier is over-complex so that the result of 
classification is prone to error. On the other hand, using the same classifier, multiple cuts 
mode gives a robust result due to exploitation of local region growing.  

Even when the color distribution is not well separated, as can be observed in 
column (b), multiple cuts mode exhibits robustness to some extent. The reason is as 
mentioned: exploiting Chebyshev’s inequality as a constraint enables the region to grow 
to the critical statistical limit shown in column (d) before searching for remote sections 
resulting in column (e). Note that the method inevitably shares similar weakness with 
object recognition and the contour evolving approach when the foreground/background 
features are too ambiguous, as can be seen in the third row. However, considering the 
final row, in which the intersection between foreground and background is also tight but 
not as complex as that of the third row, CIFS shows substantial improvement. 

Regarding time complexity, multiple cuts mode consumes approximately the 
same as that of a foreground cut mode. 
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(a) (b) (c) (d) (e) 

Fig. 2.3 Comparison of multiple cuts tools. 
(a) Input image. (b) Object recognition. (c) Foreground cut mode. (d) At twice the 

constraint based on Chebyshev’s inequality. (e) Multiple cuts mode. 
 
 
2.4 Cut Before Matting 

 
Presently, matting is often required in image editing, as subjects to be segmented 

from original images often contain small or thin sections. However, a great deal of user 
interaction is usually required to mark areas around the boundary manually. Hence, this 
problem is important because it attacks such considerations as whether it is possible to, 
first, use high-end foreground segmentations to generate pre-cut images, and then, use 
matting tools to generate a soft boundary. In other words, can the process be automatic? 
This would reduce user interaction, which would be a great benefit to people in media 
fields. 
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1) Cut before Matting Criterion 
 

Although many matting tools are available in both commercial and research 
format, using pre-cut images is often required for difficult images where data distribution 
is not well separated. [RKB04] propose to use their graph cut implementation to cut, and 
then perform erosion to some heuristic iterations, before using a matting tool like 
[CCSS01] to generate a soft boundary. [WC05] sees this approach as an ad-hoc decision, 
and proposes the use of belief propagation to iteratively revise the matting process. Our 
work, though not perfect, shows improvement over the mentioned schemes even when 
the distribution is ambiguous. 

Similar to multiple cuts mode, cut before matting mode relies on the process of 
growing to some certain statistical constraint. Naturally, the pre-segmentation step of 
watershed is omitted since it would generate undesired blobs in the thin sections. 
Consequently, region growing can produce undesired growth due to noises in the original 
image (without watershed smoothing). Hence, region growing is omitted in the early 
iterations where a , based on the previous section analysis. 

02an <

Again, the timing limits for searching can be obtained by considering the lower 
bound of Chebyshev’s inequality. Whereas multiple cuts strictly stops before search at the 
constraint that “would not allow foreground and background to grow into each other” 
(ideally equal to 1 ), cut before matting can tolerate more since it is not concerned with 
losing remote sections. Hence, it is designed to stop before matting at the constraint that 
just “would not allow foreground to grow into existing background’s data distribution, 
and vice versa ” (ideally equal to 2 ). As  was set to 0.5, so the remote section 
search process started when . 

fbs*

fbs*

0

scalek

4aan ≥

After this iteration, constraint function (2.9) is set to be zero, meaning that 
decision is based on local region growing with a constraint value or on alpha value 
directly (without constraint function). Even when a pixel is judged using region growing, 
its alpha value is recorded to represent composite images automatically. 

Additionally, as opposed to some works that use a fixed size large window for 
searching, CIFS increases the size of such a window at the end of iteration. This is done 
because using a fixed size window gives a similar result but consumes considerably more 
time. 
 
 

2) Experimental Result 
 

In this experiment, three types of images are used, namely, uniformly distributed 
colors, well separated colors, and tightly separated colors.  

For all these kinds of images, CIFS shows a better result than robust matting 
[WC07], which is a state-of-the-art matting program, in the sense that it is less sensitive 
to initialization, as shown in Fig. 2.4. However, it can be observed that in the sense of 
“softness” of the boundary, a specific matting program can do its job slightly better. 

However, when the color distributions are not well separated, as can be seen in 
the third and fourth rows, CIFS gives substantially better results. Chebyshev’s inequality 
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does not fail us regardless of how dense the distribution is. This kind of result would not 
be obtained if a conventional erosion before matting scheme were used, as a small 
number of erosions would not cover the size of the boundaries, and a large number would 
give pre-cut images that are too far from the boundaries and, in the case of ambiguous 
color distributions, would result in completely wrong cuts. 

Considering the difficulty in marking the images, it can be seen that users do not 
have to carefully trace the hairs. They can just roughly place a mark around the subjects. 

Time consumption of this mode is, of course, larger than the previous two modes 
since a large search window is used. The overall process typically consumes less than ten 
seconds for a 640*480 image on a laptop with a 1.8GHz CPU. This is generally as fast as 
robust matting [WC07], which also tries to address the problem of automatic matting. 
 
 

 
(a) (b) (c) (d) (e) 

Fig. 2.4 Comparison of matting tools. 
(a) Input image. (b) Robust matting. (c) At four times the constraint based on 

Chebyshev’s inequality. (d) Cut before matting mode. (e) Cut before matting in (c) used 
as input for other high-end matting method. 
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2.5 3D Object Segmentation 
 
 Using normal cameras, for example, 280x200-pixel cameras in a robot’s head, 
after disparity map and 3D background subtraction, the extracted foreground is usually, if 
not always, noisy, as shown in Fig. 2.5. 
 
 

(a) (b) 
Fig. 2.5 Conventional stereo segmentation method. 

(a) An image captured by a camera attached to the robot in Fig. 1.1. (b) Disparity map 
and background subtraction. 

 
 
 We then notice that interactive foreground segmentation can be used to solve this 
problem, as described in [BK04] [WBC*05] [LSS05] and [ROI06], which require a user 
to roughly mark foreground and background. Subsequently, the correct foreground can 
then be extracted using their algorithms. 
 In contrast with such methods, instead of letting a user mark foreground and 
background, this research directly exploits the extracted foreground shown in Fig. 2.5 (b). 
As the data is noisy, dilations and erosions are performed on foreground and background. 
The number of dilations and erosions is fixed for each calibration. This automatically 
marked image is shown in Fig. 2.6 (a). 
 Then, this image is used as an input for our 2D CIFS, the result is shown in Fig. 
2.6. 
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(a) (b) 
Fig. 2.6 Stereo segmentation using 3D data as an input for our method. 

(a) Input from dilations and erosions on Fig. 2.5 (b). (b) Object segmentation result. 
 
 
2.6 Discussion 

 
This section describes comparative studies from the aspects of mathematics and 

algorithms. Among the important aspects considered here are sensitivity to initialization, 
robustness, noises in multiple cuts, cut area before matting, matting itself, 
multidimensional features, and user interaction. 
 
 

1) Sensitivity to Initialization 
 

CIFS, similar to graph cut, is evidently robust against initialization. The reason is 
quite obvious; both of them exploit local and global similarity at the same time. On the 
contrary, matting and edge-based approaches are often criticized for sensitivity to 
initialization. Matting is robust and capable of generating a soft area locally, but when it 
comes to large areas, not-well-separated feature distributions in images force the alpha 
classification to the corner. For the latter, having the flow process rely on gradient 
information is weak when the boundary area contains a large number of edges. 
Unsupervised region-based approach is also robust against initialization, [CRD06], but it 
is difficult to make this comparison since the user input is different. 
 
 

2) Robustness 
 

Furthermore, the use of both local and global similarity also leads to robustness 
against tight data distributions, which is one drawback in the matting and unsupervised 
edge-/region-based approaches. While the reason that such a drawback exists in the 
matting approach is immediately understandable, as the method relies considerably on 
feature distribution, the cause for the unsupervised approach is not so clear.  For the 
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boundary to evolve, a user is required to draw a guideline roughly. This is an unforeseen 
defect. Users cannot mark areas as being foreground and background, which means that 
they more or less lose control of the topology. Also, the initial data distribution would 
never be given, which also means that the cost function cannot exploit similarity to data 
distribution, since this is not given.  
 
 

3) Multiple Cuts 
 

Whereas the unsupervised edge-based approach is weak in images with noisy 
gradient information, CIFS, fortunately, is very similar to the unsupervised region-based 
approach. The latter two give noisy results when the feature distributions are not well 
separated. The unsupervised region-based approach can reduce this noise by imposing a 
cost function on the geometry of an evolving boundary whereas our approach grows to 
reduce noise before searching for remote areas.  

Although the unsupervised region-based approach is more flexible since the cost 
function can be adapted whereas our method relies considerably on the data distribution, 
a more important feature than flexibility is robustness. Although applying internal force 
in such approach may reduce noise, it can also limit geometric flexibility and prevent the 
representation of thin objects [MT95]. It is difficult to say which one performs better 
since the input is different. Ultimately, in the case that feature distributions are well 
separated, multiple cuts can segment the foreground correctly without having a user mark 
all areas, as shown in Fig. 2.7. Even in not-well-separated cases, it shows robustness to 
noise as can be seen in Fig. 2.3. 
 
 

 
(a) (b) (c) 

Fig. 2.7 Multiple cuts mode with noise. 
(a) Input image. (b) At twice the constraint based on Chebyshev’s inequality. (c) Result 

of multiple cuts. 
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4) Cut Before Matting 

 
It can be clearly seen that the proposed method gives a substantially better cut 

since the regions grow from both core foreground and core background, before stopping 
at the timing based on Chebyshev’s inequality. Combined with the notion of local and 
global optimization, this is a great benefit not available in previous works. 

Moreover, this mode can be used as a standalone matting program as well as an 
input generation for other high-end matting methods. In this regard, evidently, in difficult 
images from Fig. 2.4, if users prefer correctness to softness, cut before matting is 
recommended as a standalone matting program. 
 
 

5) Multidimensional Features 
 

When exploiting other input along with color, for example, texture, there are 
generally two ways to classify these complex features. The first scheme is by weighting 
between color similarity and other features’ similarity. The difficulty in this scheme is 
how to decide the weighting parameter. Many previous works select it by trial-and-error 
and face the problem of inconsistency.  The second scheme lets the pattern classifier do 
the job, but this scheme relies on the performance of the chosen classifier. CIFS employs 
this latter scheme. 

In order to take other features into account, whereas global optimization already 
relies on an alpha value that can be generated from all features, the input for local region 
growing must be changed from color value to scaled alpha value, without loss in 
generality as explained in Section 3. Also, the pre-segmentation step is not applied here 
as it would filter out texture information undesirably.  

Based on its main strength, effectiveness in classification, a neural network with 
one hidden layer is used in this work, instead of clustering schemes that cannot provide 
meaningful discrimination power in such complex input domain. The Levenberg-
Marquardt training algorithm is chosen since it converges well. As alpha value ranges 
between 0 and 1, sigmoid function is used as a transfer function. The user-marked data 
are then used to train the network for 100 epochs.  

In the experiment, images with very tight color distributions are used.  For 
example, in Fig. 2.8, even a human can hardly see the rectangle in the middle. By 
exploiting texture here, using conventional local variance of a five-by-five window, a 
gross area of the object can be detected.  

In spite of the fact that the extracted boundary is not smooth since CIFS does not 
have an internal cost function, one can clearly see the effectiveness of the method to 
enhance an object. 
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(a) (b) (c) 

Fig. 2.8 Using a neural network with various features to generate alpha value. 
(a) Input image. (b) Using RGB. (c) Using RGB and variance. 

 
 

6) User Interaction 
 

Finally, as mentioned earlier, user interaction also plays an important role in the 
segmentation algorithm. If the segmentation is not perfect, it can be corrected more easily 
in the interface.  “Mark areas as being foreground vs. background” is an easier task than 
“mark a guideline contour.” 

In addition, CIFS offers two important options that can greatly reduce user 
interaction: multiple cuts and cut before matting.  
 
 
2.7 Algorithm 
 
TrainClassifier(); 

r = 1; 

an = a0 = ConstraintInitialization();  

if (modeMatting) 

 doRegionGrowing = false; 

else 

 doRegionGrowing = true; 

 

// In each iteration, running forward or backward in image domain // 

while (n != 0) 

{ 

 if (mark[i][j] == surroundedByUnknownPixel) 

 { 
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  surround = false;  

  for (x = i-r; x< = i+r; x++) 

  { 

   for (y = j-r; y< = j+r; y++) 

   { 

    if (mark[x][y] == unknownPixel) 

    { 

     surround = true;  

     undecided = false; 

 

     // Region growing // 

     if (doRegionGrowing) 

      undecided = CriterionRegionGrowing(); 

       

     // Global classification // 

     if (!doRegionGrowing || undecided) 

     { 

      alpha = FindAlphaValue(); 

      CriterionGlobalClassifiacation(); 

     } 

 

    } 

   } 

  } 

  if (surround == false) 

   mark[i][j] = !surroundedByUnknownPixel; 

 } 

 

 // Stop criterion // 

 n0 = n; 

 n = 0;  

 for (i = 0; i<row; i++) 

 { 

  for (j = 0; j<col; j++) 

  { 

   if (mark[i][j] == unknownPixel) 

    n++; 

  } 

 } 

 if (n == 0) break; 

   

 // Special mode // 

 if (evenIteration || n == n0) 

 { 

  if (modeMultipleCuts && an >= 2*a0) 

  { 

   SearchRemoteArea(); 

   modeMultipleCuts = false; 

  }    
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  else if (modeMatting){ 

   r++; 

   if (an >= 4*a0) 

    doRegionGrowing = true; 

  } 

  an *= relaxedGain; 

 }   

} 
 
 
2.8 Summary 
 

This research presents a supervised comprehensive iterative foreground 
segmentation (CIFS) based on local and global optimization with edge constraint that can 
effectively deal with a foreground cut, multiple cuts, and cut before matting. It uses the 
cost function similarly to graph cut but extends the algorithms by the notion of edge 
constraint. The constraint that was not effective in conventional region growing is made 
possible by Chebyshev’s inequality and proves to be robust. This is the first novelty. 

Since both local and global cost functions have their own constraints, a novel 
weighting method is shown to perform in the constraint domain instead of in the cost 
function. Although it is difficult to compare this notion with conventional weighting, our 
scheme is more straightforward if there are local and global components in the cost 
function. This notion can also deal with multidimensional features. 

Considering a foreground cut, CIFS is as robust as graph cut, since their cost 
functions are quite similar. Nevertheless, graph cut, in difficult images, applies only to 
the foreground cut problem. 

The third novelty is automatic multiple cuts that are capable of reducing a great 
deal of user interaction. This approach is robust against a not well-structured classifier as 
well as ambiguous data distribution. The notion of growing to an edge constraint based 
on Chebyshev’s inequality before searching is novel and can reduce a great deal of error. 
This is completely different from the contour evolving approach. Compared to this 
approach, the main differences are among the algorithms: the proposed method does not 
split or merge to perform multiple cuts. CIFS relies on data distribution and thus is more 
straightforward, whereas the other approach seems to be more flexible due to its internal 
and external cost function. 

For cut before matting, the proposed method can generally gives substantially 
better pre-cut images since it uses Chebyshev’s inequality as opposed to heuristic erosion. 
The scheme can be used as a standalone matting program as well as an input generation 
for other high-end matting methods. 

The final novelty is that the method is then applied to perform 3D object 
segmentation automatically. In order to extract the subject area, this research focuses on 
how to exploit normal stereo cameras to roughly extract the object automatically using 
disparity map and 3D background subtraction, and then uses CIFS to extract the object 
area correctly. 3D background subtraction is usually noisy; thus, dilations and erosions 
are required. CIFS, then, exploits the local and global color similarity optimization with a 
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constraint of edge to extract the boundary correctly. This is a promising paradigm, which 
can be applied in wide varieties of 3D segmentation/detection tasks. 
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Chapter 3 
 
 
Color Perception 
 
 
  After the object boundary is derived, the robot must represent the object’s color 
using an appropriate set of colors. This chapter attacks the problem of whether it is 
possible for a robot to perceive colors in an image in the same way a human does. 
 The question falls into the domain of color reduction. Usually, digital color 
images consist of up to 16 million different colors in a 24-bit color space. However, in 
many applications, namely compression, presentation, and transmission, it is preferred to 
have as small a number of colors as possible. Color reduction is a process that transforms 
a full color image to an image with a smaller number of colors, by grouping similar 
colors and replacing them with a representative color. 
 Our research proposes a color reduction scheme that incorporates two clustering 
methods, maximum distance clustering (MDC) and K-means. It shows that, using MDC 
+ an iteration of K-means, in RGB color space, the result is better than using K-means 
alone. This results in high-quality, well-contrasted output images; and even the reduction 
in the number of colors is very low. We also solve the speed problem of MDC using a 
proposed sub-optimal algorithm. Then it is shown that behavior of clustering schemes in 
CIEL*a*b* color space is different from that in RGB color space. 
 Another objective of this research is an algorithm that anyone could easily 
implement, and this is already achieved since our improvement is based on well-known 
and easy algorithms, MDC and K-means. 
 For benchmarking, we use Photoshop’s perceptual-based palette generation 
[AP7], region-based color segmentation of watershed [VS91], and clustering-based 
method of normal K-means. It will be shown that, in RGB color space, although MDC + 
an iteration K-means performs better than K-means, however, in CIEL*a*b* color space, 
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both approaches are comparable if K-means is performed forward and backward on 
image coordinate. 
 This key problem of high-quality interactive color reduction is what our method 
can directly address. Section 1 shows some related works. In Section 2, the incorporation 
of MDC and K-means is described with some experimental result. The performance in 
CIEL*a*b* domain is analyzed in Section 3. Finally, Section 4 contains a summary. 
 
 
3.1 Related Work 
 
 Presently, several paradigms for color reduction have been proposed. The first 
scheme processes colors by splitting the color space into smaller regions. Among the 
methods for accomplishing this are median-cut [Hec82], octree [GP90], and variance-
based algorithm [WPW90]. However, their disadvantage is that the resulting image often 
contains regions with colors largely different from the original ones, when viewed by 
human eyes.  

The second paradigm falls into the domain of clustering. K-means [Ver95] and 
[YK04], C-means [SK87], and fuzzy C-means [LL90] are among the practical clustering-
based color reduction methods. A general drawback of clustering is that it tends to 
produce colors with low contrast.  
 Another more complex approach makes use of a neural network for better 
classification results, for example, the Kohenen network [Dek94], adaptive color 
reduction [PAS02], and Neural Gas [AP06]. Nevertheless, exploitation of the neural net 
is time consuming and difficult to implement.  
 The fourth paradigm tries to enhance the quality of the output image by 
considering spatial characteristics, for example, dithered color quantization  [BFH*98]. 
The method can produce good quality images by performing color reduction along with 
dithering at the same time. However, this cannot produce a color for each area 
effectively.  
 The final scheme is region-based color segmentation, such as [VS91], which 
automatically finds color segments based on the minimum acceptable size of a region 
specified by a user or [CM02], which allows a user to specify not only a color difference 
threshold but also the spatial radius of a filter and the minimum acceptable size of a 
region for a given color. However, this approach often cannot reduce the number of 
colors effectively, and, instead, is applied in the field of region segmentation. Ultimately, 
although many techniques are available, an acceptable interactive method that can 
produce a higher-quality result is still needed. 
 
 
3.2 Maximum Distance Clustering + 1 K-means 
 
 In order to solve the contrast problem of clustering-based color reduction, 
maximum distance clustering (MDC), considered a weak clustering method, is initially 
used to specify the highest contrasted colors. The set of maximum contrast colors is then 
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used to initialize K-means clustering. K-means clustering is robust and widely used in 
various fields of research. The drawback is that it tends to lessen the contrast in the output 
image. Hence, we [RKO*07] propose a method that weights the contrasted colors 
obtained by MDC and the statistically calculated colors obtained by K-means. 
 
 

1) Maximum Distance Clustering 
 
 To capture the maximum contrast of colors of an image, MDC is applied to the 
image in the RGB color space. The first iteration starts by sampling a pixel from the input 
image and then identifying a color with the largest Euclidean distance from the sampled 
pixel’s color. For all consecutive iteration, the criterion for a new color is (3.1). 
 

 maxmin ,,1max, jikjikk ceccd −=+  (3.1)

 
where  is the maximum distance of cluster k+1, k is the number of  existing 
clusters, i,j is the coordinate of a pixel, cc  is the existing cluster’s colors, and ce  
represents colors at each coordinate, and is a candidate for a new cluster. 

1max, +kd

k ji,

 Since the colors would be used to initialize K-means clustering, the algorithm 
continues until the number of clusters equals the desired number of colors, or there is no 
other candidate color. In other words, the method requires running k iterations on an 
image to find k initial cluster means. 
 
 

2) K-means Clustering 
 
 The derived highest contrasted colors are used as initial means for K-means 
clustering. Then, each new piece of data is used to compute the new mean of the closest 
cluster derived from (3.2). 
 

jikk
cecc , min −  (3.2)

 
 In order to prevent K-means from dominating the clustering process, it must not 
be run until converged. Practically, running K-means for only one iteration gives the best 
result. Finally, each pixel of an image is rendered based on the closest derived cluster 
mean. 
 
 

3) Sub-Optimal Maximum Distance Clustering 
 
 Since it is preferable that color reduction returns the output image as fast as 
possible, MDC is the bottleneck of our previous algorithm [RKO*07] as it consumes a 
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considerable amount of time when the number of colors is high (see table 3.1). This is 
due to the fact that searching for one maximum distance cluster requires an iteration 
search on an image. So we [RKOSI07, Ruc07] propose a sub-optimal MDC. 
 The algorithm starts similarly by identifying a color with the largest Euclidean 
distance from a sampled pixel’s color. The difference is that every new cluster color is 
derived within the second iteration search by a criterion explained as follows. First, 
calculate a minimum Euclidean distance of a pixel from the existing cluster(s) using 
(3.3).  
 

 min ,,min, jikkji ceccd −=  (3.3)

 
,max,,min, kclusteranyforddif kji >  

   . , jipwithkclusterexistingthereplace
, &0 max,,min,,min, clustersallfordddifelse kjiji ≤≠  

    
.

,

numberdesiredthethanlowerstillisclustersofnumber
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 Using this new algorithm, running sub-optimal MDC consumes approximately the 
same time as running an iteration of K-means. In other words, running sub-optimal MDC 
+ an iteration of K-means consumes time approximately equal to that of two iterations K-
means. 
 
 
3.3 Experimental Result 

 
 As shown in Fig. 3.2, it can be seen that the (sub-optimal) MDC + an iteration of 
K-means outperforms the region-based algorithm of [VS91], the commercial perceptual-
based color reduction by Photoshop [AP7], and the normal K-means clustering. Note that 
we discover that running K-means using the same order of input will result in even lower 
contrasted image, so K-means, here, is performed forward for one iteration and backward 
for the next iteration, and vice versa, on image coordinate domain. 
 Thus, using sub-optimal MDC + 1 K-means is preferable to running K-means 
alone since the former give better result in shorter time, in RGB color space. 
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Fig. 3.1 Input images for color reduction. 

 
 

 

  
(a) (b) (c) (d) (e) 

Fig. 3.2 Comparison of color reduction tools when performing color reduction to 16 
colors in RGB color space. 

(a) Watershed. (b) Photoshop. (c) 15 iterations of K-means forward and backward. (d) 
MDC + an iteration of K-means. (e) Sub-optimal MDC + an iteration of K-means. 
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Method Time complexity 16 colors 64 colors 
K-means )( itrkN ⋅⋅Ο  2.33 7.64 
MDC + an iteration of K-means )( 2kN ⋅Ο  + )( kN ⋅Ο  1.21 15.83 
Sub-optimal MDC + an iteration of 
K-means 

)( kN ⋅Ο  + )( kN ⋅Ο  0.29 1.03 

Table 3.1 Color reduction algorithm time comparison. 
N is the image size (here 640x480), k is the number of colors, and itr is the number of 

iterations until convergence (here 15). Time is in seconds. Average is based on 20 images 
using a laptop with 1.8 GHz CPU. 

 
 
3.4 Performance in CIEL*a*b* Color Space 
 
 According to our previous finding, using MDC with K-means gives a better result 
than using K-means alone. In this research, we also discover that such a claim is trivial if 
the clustering is performed on CIEL*a*b* color space, instead of other color spaces like, 
for example, RGB. 
 CIEL*a*b* is designed to produce a color that is more perceptually linear than 
other color space, meaning that a change of the same amount in color value should result 
in a change of about the same visual importance. Nevertheless, it might be assumed that 
the comparison result in the former section should hold even if the color space is changed 
from RGB to CIEL*a*b*. Surprisingly, it is not. 
 This research shows that, using CIEL*a*b*, two powerful yet easy-to-implement 
color reduction methods can be achieved. The best choice is the sub-optimal MDC + an 
iteration of K-means. The second one is running K-means for two iterations, forward and 
backward. 
 Comparing Fig. 3.2 and 3.3, it can be seen that if CIEL*a*b* is used, both K-
means and sub-optimal MDC + an iteration of K-means can generate images that can 
preserve contrast and objects in scene well. 
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(a) (b) (c) 

Fig. 3.3 Comparison of clustering methods when performing color reduction to 16 colors 
in CIEL*a*b* color space. 

(a) 2 iterations of K-means forward and backward. (b) 15 iterations of K-means forward 
and backward. (c) Sub-optimal MDC + an iteration of K-means. 

 
 

Method MSE 
Photoshop 86.121 

 
K-means RGB CIEL*a*b* 
 1 iteration 168.581 115.22 
 2 iterations 131.606 90.499 
 2 iterations forward backward 110.640 67.156 
 15 iterations 95.913 70.699 
 15 iterations forward backward 86.895 60.762 

 
MDC + an iteration of K-means 84.769 62.345 
Sub-optimal MDC + an iteration of K-means 87.626 63.718 

Table 3.2 Mean square error (MSE) from original images measured in CIEL*a*b* color 
space. 

Average on 20 images reduced to 16 colors. 
 
 
 It can be seen from table 3.2 that, first, using RGB color space, error of (sub-
optimal) MDC + an iteration of K-means is as low as that of K-means with a high 
number of forward and backward iterations, as well as that of Photoshop’s perceptual 
color palette. However, it would be a misinterpretation to conclude that they are 
comparable. Photoshop cannot preserve contrast in scene well whereas K-means is slow 
and cannot preserve the colors with a small number of pixels, as can be seen in Fig. 3.2. 
On the other hands, our method can preserve the contrast in an image best in reasonable 
time. 
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 Second, it can be seen that although the more iterations K-means uses, the less the 
error would be, the contrast sometimes gets worse when the number of iterations goes too 
high. Also, practically, the number of iterations is limited by the interactive requirement. 

 Third, running K-means forward and backward helps reduce a great deal of error. 
 Finally, it can be clearly seen that CIEL*a*b* offers higher quality in color 
reduction than RGB. In CIEL*a*b*, running only two iterations of K-means, one forward 
and one backward, is comparable to sub-optimal MDC + an iteration of K-means. 
 We also tested another color space, HSL. The results are not good, as expected, 
since the distance between points in such color domain does not provide meaningful 
measurement. 
 
 
3.5 Summary 
 
 Using maximum distance clustering (MDC) to generate initial cluster positions 
for K-means can solve the general problem of clustering-based color reduction methods. 
It is required to run K-means for only one iteration to prevent it from dominating the 
process. Thus, the convergence-speed problem of K-means is not present in our 
algorithm. 

As MDC is comparatively slow when the number of desired colors is high, a sub-
optimal algorithm is proposed and shown to be extremely fast and able to generate a 
higher quality image than many existing interactive color reduction methods, in RGB 
color space. 

However, in human perception color space, CIEL*a*b*, K-means alone is 
comparable to MDC + an iteration of K-means, provided that K-means is run for two 
iterations or higher, one iteration forward and another iteration backward. Considering 
time, running MDC + an iteration of K-means consumes approximately the same as that 
of two iterations of K-means. 
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Chapter 4 
 
 
Brush Stroke Planning Using Global 
Orientation 
 
 
  After the foreground and its appropriate number of colors are derived, a method 
that mimics human painting style is used.  
  In this chapter, Section 1 shows related works. The next section shows how to 
calculate global orientation. Then hierarchical painting is shown in Section 3. Section 4 
shows some of the experimental results based on 2D and 3D input. A summary is in 
Section 5. 
 
 
4.1 Related Work 
 
  For the local orientation used to guide brush strokes, [Her98] uses a gradient to 
guide brush strokes that are more robust to texture, whereas [SY00] uses image moment 
that is more robust to shape orientation. However, such methods do not produce good 
brush strokes because the gradient or moment that a robot preserves could be noisy. 
Recently, methods that consider global gradient include [HE04], which selects only a 
strong gradient and applies a linear radial basis function (RBF) to interpolate a gradient 
on other areas. This seems to match an artist’s perception. In fact, results shown in 
[HE04] resemble Van Gogh’s style. This research modifies the method of [HE04] to 
generate practical end-effector trajectories for the robot, by making it faster using a 
certain size of RBF window. 
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4.2 Global Orientation Calculation 
 
  From an original image, the robot would then calculate the normal orientation. 
Orientation, (4.1), is calculated using the gradient operator. 
 

)/(tan 1
xy GradGrad−=θ  (4.1)

 
where θ  has a range between {-π /2, π /2}. 
 
  This normal vector is not directly used to guide the brush because it would be 
noisy as shown in Fig. 4.1 (a). Instead, the robot uses linear basis RBF [Bor] to 
interpolate the gradient field. Differing from [HE04], where only strong edges are used as 
an input for RBF, and which could fail to capture some subtle but important edge such as 
human hair, this research exploits all gradient values as an input for RBF, which is 
possible by weighting function of (4.2).  
 

22
yx GradGradw +=  (4.2)

 
  Furthermore, the orientation image is not calculated totally globally since doing 
so would make an orientation of any pixel affected by the whole image’s orientation, 
making straight lines bend. Also, globally computing consumes a lot of time; for each 
pixel, the number of operations required is shown in (4.3). 
 

CR *  (4.3)
 
where R is the number of rows and C is the number of columns of an image.  
  For example, a 640x480 image would require overall 9.4372e+010 sets of 
operations. 
  In order to enable the robot to calculate this in a reasonable time, instead, the 
robot just focuses around an area and calculates global orientation in this area. By doing 
this, the processing time would be reduced as shown in (4.4). 
 

cr *  (4.4)
 
where r is the number of rows and c is the number of columns of a mask.  
  For example, a 640x480 image with a 10x10 RBF mask, used in this work, would 
require only around 3.0720e+007 sets of operations. In the case that there is no 
information of input orientation in the mask, as can be seen from the input figure, the 
mask size for searching is doubled until orientation information is found. In other words, 
the area that has no orientation information would use the orientation of the surrounding 
area. The result is shown in Fig. 4.1 (b). 
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(a) (b) (c) 

Fig. 4.1 Orientation of an image scaled from {-π /2, π /2} to {0, 255}. 
(a) Original image. (b) Original orientation of each pixel. (c) Orientation after RBF is 

applied. 
 
 
  As can be clearly seen on the subject hair and on the building, the result is very 
much the same as when humans perceive orientation in a scene, even with the presence of 
a noisy gradient. 
  Whereas the above image uses texture to guide brush strokes, we observe that 
using the gradient of the object may or may not generate good trajectories. Hence, if the 
gradient information of the boundary between foreground and background is used, the 
result is shown in the below image. 
 
 

(a) (b) 
Fig. 4.2 Orientation of an image’s boundary scaled from {-π /2, π /2} to {0, 255}. 

(a) Original orientation of boundary. (b) Orientation after RBF is applied. 
 
 
  It is also possible to use range data instead of gradient information. In doing so, 
range data from stereo cameras is also input into the RBF. The result is shown in Fig. 4.3. 
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(a) (b) 
Fig. 4.3 Range image. 

(a) Original range image. (b) Range after RBF is applied. 
 
 
4.3 Hierarchical Painting 
 
  The robot then scans each color segment derived from chapter 3 to find an area 
that contains a number of pixels larger than  (4.5). 
 

2rkth regionregion ×=  (4.5)

 
where r is the pre-computed radius of the brush, and  is the constant depends on 
drawing style. 

regionk

  If such an area is found, the robot starts to draw. To check whether the brush tip 
touches the canvas or not, the force sensor is then used along with the position of the 
brush tip detected in real time.  
  For the next movement, the robot then focuses along the normal direction of 
orientation derived earlier, and counts all yet-to-be-drawn pixels with the same color. If 
the number of pixels is higher than the threshold described in (4.5), the robot would 
decide to move the brush.  
  Each stroke is considered finished if an area found in the normal orientation 
direction is smaller than (4.5). After all the colors in each hierarchy are painted, the next 
hierarchy starts, where the robot then selects a smaller brush. The number of hierarchies 
depends on the error criterion between the picture in the robot’s mind and the painting on 
the canvas. 
 
 
4.4 Experimental Result 
 
  At the present time, due to insufficient drawing equipment and other resources, 
the artworks the robot created are subjected only to drawing of the geometry edge, as can 
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be seen in the next chapter. In color filling, simulation on a laptop is done,  is set to 
be 0.5 for the first iteration and 0.3 for consecutive iterations, and brush size is reduced 
by the ratio of 0.5 every hierarchy. Also, prior object segmentation allows for the 
background to usually require less detail than the foreground, so it can be drawn with a 
smaller number of hierarchies. This usually makes the foreground stand out and also 
leads to considerable time reduction, an advantage that can be seen in Fig. 4.4, or we can 
draw only the foreground as shown in Figs. 4.5 and 4.6. 

regionk

 
 

 
 

  
Fig. 4.4 Visual feedback painting with object segmentation (subject’s face here). 
The first row shows each hierarchy, and the second row shows the overall result. 

  
 



 48

(a) (b) 
Fig. 4.5 Visual feedback painting with object segmentation using global gradient 

information with 1 brush size. 
(a) Trajectories, (b) Area filling result. 

 
 

 
(a) (b) 

Fig. 4.6 Visual feedback painting with object segmentation using global range 
information with 1 brush size. 

(a) Trajectories, (b) Area filling result. 
 
 
4.5 Summary 
 

For the local orientation used to guide brush strokes, using a gradient to guide 
brush strokes is more robust to texture, whereas using image moment is more robust to 
area orientation. However, local orientation is usually noisy and thus results in 
inappropriate brush strokes. In this sense, global orientation, which can be described as a 
smoothed version of local orientation, is applied. 
  In this research, a linear radial basis function (RBF) is selected as the smoothing 
method, as previous works suggested. We approach the problem differently by focusing 
also on the speed of the algorithm. Speedup is accomplished by calculating RBF using a 
fixed size window.  For an area that has no orientation information the RBF window is 
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increased until it covers the surrounding area that contains orientation. This substantially 
reduces the time consumption so that RBF can be performed in real time. 
  It can be seen that the RBF can be applied not only in the gradient domain but 
also in any other similar domains to generate smooth output. 
  After the foreground, color, and orientation information are derived, the robot can 
perform brush stroke planning automatically based only on the brush size information.  

 At this point, the result of area filling is verified using a computer simulation. 
This type of visual feedback simulation consumes around 1 second per hierarchy, for a 
640x480 image, on a laptop with 1.8GHz CPU; thus, it should not be any load at all for 
the real robot platform. The problem to be aware of in the real drawing by the robot is 
how to consider the color mixing on canvas, and how it would affect the drawing as a 
whole. 
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Chapter 5 
 
 
Geometric Edges Processing 
 
 
 Some human artists use edges to enhance their paintings. Small children are also 
taught to do so in their early school period. The idea is to see an object and select an 
appropriate set of edges to represent the object in the painting. This is one fundamental 
way human sense an object. We use geometric edges of an object to represent these edges. 

This chapter is divided into 4 sections. Related work and 3D sensor hardware is 
explained in Section 1. Generating a 3D model is described in Section 2. How to extract 
2D feature lines from 3D shapes is briefly shown in Section 3. As these lines contain 
redundancy, they cannot be used by the robot painter directly, so Section 4 describes how 
to process them into brush trajectories. Section 5 is the summary. 
 Test objects used in this work are shown below. 
 
 

 

(a) (b) (c) (d) 
Fig. 5.1 Test objects for processing geometric edges. 

(a) Apple. (b) Old man doll. (c) Tinker Bell doll. (d) Cupid doll. 
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5.1 Related Work 
 

Technically, many researchers use gradient information to represent edges of 
objects. However, this information can be distorted by the color information on the 
surface. For example, even though a ball contains only 1 circular edge, color on its 
surface will generate unnecessary gradient information. 

Hence, we decided to use 3D geometric edges of an object as input for the robot 
to draw as they represent the object well. As painting is done in 2D space, we describe 
how to extract 2D edges from the 3D model. Then, we explain how the 2D edges are 
processed into brush strokes. 

In the first phase, the 3D shape is reconstructed from multi-view range images or 
multi-view camera images. In this research, we use a 3D model sensor called Vivid 900 
as it can capture 3D geometric edges in high detail. The sensor is shown in Fig. 5.2. 
 
 

 
Fig. 5.2 Vivid 900 sensor. 
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5.2 3D Model Generation 
 

Examples of the range images captured by the Vivid 900 sensor are shown in Fig. 
5.3. An adequate number of local images, which overlap each other, are captured from 
several viewpoints, and they are aligned and merged, resulting in the image shown in Fig. 
5.4.  

Note that outliers in the range images are deleted by a user manually to achieve 
the results shown in Fig. 5.3. Generally, the range image of each view consists of 
foreground and background, and the user must delete the background manually before 
exploiting the foreground images to generate the 3D model. This is a tedious task. Hence, 
we propose the use of foreground segmentation to delete these noises more effectively. 
The foreground segmentation described in Chapter 2 can be used directly to assist the 
current technology of multi-sensor modeling by segmenting the color image of each view 
and applying the result to the corresponding range image. 

We use another object as a test subject in Fig. 5.5. Here the foreground contains 
color similar to that of the background. One might propose to use range information as an 
input for a segmentation program to overcome the not-well-separated color distribution 
problem. However, as we explained in Chapter 2, our foreground segmentation has 
components of both local and global classifiers. As a result, it is robust even when the 
foreground and background contain similar features. 

Furthermore, even though our foreground segmentation scheme can deal with 
multidimensional features, it is not always appropriate to use range information as an 
input to the segmentation scheme since it could result in bad training data, as shown in 
Fig. 5.6, which would confuse the classifier. In these images, we just use color 
information. 

An example of a 3D model generated from segmented color and range images is 
shown in Fig. 5.7. 
 
 

   
Fig. 5.3 Range images of an apple captured by the Vivid 900 sensor from different 

viewpoints. 
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Fig. 5.4 3D model of Fig. 5.3. 
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(a) (b) 
Fig. 5.5 Foreground segmentation of each view.  

(a) User input. (b) Segmentation result. 
 
 

  
(a) (b) 

Fig. 5.6 Range images of Fig. 5.5. 
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Fig. 5.7 3D model of Fig. 5.6. 

 
 
5.3 Extracting Geometric Edges 
 

After the 3D model is derived, we can proceed to the next step of geometric edge 
extraction.  

A 3D model consists of triangular patches. A geometric edge is defined as the 
common edge at which the sign of inner product of the normal vector of a patch and the 
viewing direction changes, as shown in Fig. 5.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Geometric edge 

Sign of inner-product

- 

+ -

+ 

Virtual view point 

View vector 

Normal vector 

Triangular polygon 

Fig. 5.8 Geometric edges extraction. 
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Actually, the geometric edges extracted in this way, Fig. 5.9, include hidden 

edges and many very short edges that are not appropriate for the painting task. These will 
be reduced in the next section. 

 
Fig. 5.9 Original geometric edges of the apple. 

 
 
5.4 Conversion to Brush Strokes 
 
 After 2D geometric edge extraction, still, original data possess redundant points 
and links that are not suitable to be used as brush strokes. As an example, the input to this 
section, the Tinker Bell doll, is shown in Fig. 5.10. This image has redundancies as can 
be seen in Fig. 5.11 (a). 
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Fig. 5.10 Original geometric edges of Tinker Bell dolla. 

 

 

a Red color represents vertexes of edges, blue color represents spline curves that show 
connection between these vertexes. 
 
 
 The redundant points and links are reduced using methods described below. 
 
 

1) Reduce Redundant Points 
 
 This is a case where there are 2 links between point A and B instead of 1 link. In 
other words, link A-B and link B-A. A simple search method is used to find this linkage 
false. If a redundant link is found, one link will be deleted. 
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(a) (b) 

Fig. 5.11 Redundancy points reduceda. 
(a) Original coordinates. (b) After processing. 

 
 

2) Cluster Points 
 

 Too many points do not provide a robot with good brush trajectories to draw.  
Using the above redundancy-points-reduced coordinate, the brush strokes will still be 
noisy and meaningless. Also, they consume a lot of drawing time. So, simple clustering 
based on spatial difference is performed on the trajectory coordinate. Here are some 
examples of such clustering schemes with various clustering radii. 
 
  

(a) (b) 
Fig. 5.12 Clustered points with different radiia. 

(a) Radius equals 10. (b) Radius equals 20. 
 
 

With the radius equal to 20, here is an example of the processed trajectories. 
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Fig. 5.13 Clustered points with radius equal to 20a. 

 
 

 By looking at the above image, one can still see there are redundant links in the 
sense that they are too similar to be draw by two brush strokes. It is necessary to 
eliminate this coordinate to save manipulation time. The process is divided into steps 3 
and 4. 
 
 

3) Reduce Redundant Links 1/2: Comparing a Link to Previous 
Trajectories’ Links 

 
 This step is based on a practical point of view that the robot should not draw  
similar trajectories onto finished brush strokes. To accomplish this, a link is compared to 
the previously processed links. If two links are too close, the new one will be deleted. 
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Fig. 5.14 Redundant links reduced: Comparing a link to previous trajectories’ linksa. 
 
 

 Based on the above image, redundancy links are still present within the same 
brush stroke. This is resolved in step 4. 
 
 

4) Reduce Redundant Links 2/2: Comparing a Link to the Present 
Trajectory’s Links 

 
 Hence, a further step to eliminate similar links requires comparing two links in the 
same brush stroke. This is performed in forward and backward manner to be able to best 
eliminate such links. 
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Fig. 5.15 Redundant links reduced: Comparing a link to the present trajectory’s linksa. 

 
 

 
Fig. 5.16 Planned brush strokes of the cupid dolla. 
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Note: 
Upper-left image is considered the original trajectory, while the upper-right image is a 
processed trajectory. The lower-left image is the result up to the present stage, while the  
lower-right image is the result after adding the processed trajectory. 

 
Fig. 5.17 Planned brush strokes of the apple. 

 
5.5 Summary 
 

Some human artists use edges to enhance their paintings. Although many 
researchers use gradient information to represent edges of objects, this information can be 
distorted by the color information on the surface. Hence, we decided to use 3D geometric 
edges of an object as input for the robot to draw, since they represent the object well. 

After using a range sensor to capture multiple-viewpoint images, we align and 
merge the images to generate a 3D model. Because painting is done in 2D space, 2D 
edges are extracted from the 3D model. A geometric edge is defined as the common edge 
at which the sign of the inner product of the normal vector of a patch and the viewing 
direction changes.  

Finally, the noisy 2D edges are processed into brush strokes by reducing various 
kinds of redundancy.  
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Chapter 6 
 
 
Brush Manipulation and Experimental 
Result 
 
 

In the last phase, painting by a robot with multi-fingered hands is achieved. One 
of the important challenges here is manipulation of a paintbrush by a multi-fingered hand. 
This process is definitely different from drawing by an XY-plotter in which a paintbrush 
is fixed on the arm by bolts. In grasping by a multi-fingered hand, we need to overcome 
problems such as the fact that the state of the grasp changes with motion and the grasp 
becomes unstable against a particular direction of force. The reason why we use a multi-
fingered hand in spite of the difficulty is that we believe fingers are necessary to 
reproduce precise human techniques for manipulating a paintbrush. In this phase, visual 
feedback using stereo cameras is also performed.  

In the remainder of this chapter, first, we describe some of the related works in 
Section 1. Next, grasping technique is presented in Section 2. Section 3 shows how to 
detect the tip of the brush. Detecting brush-canvas contact is explained in Section 4. 
Section 5 explains how to plan brush direction to prevent brush slide. Section 6 shows 
some of our techniques in actual painting skills. An experimental result is shown in 
Section 7. Section 8 gives a summary.  
 
 
6.1 Related Work 
 

In most studies about manipulating objects by a robot, the objects are fixed on the 
robot arm and they only the relationship among the objects is studied. Some researchers 
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have tried manipulation by a multi-fingered hand [Nap56], [Cut89], [KI97]. They 
classified grasp and developed an algorithm to manipulate objects based on the 
classification. However, they expected that their method would be used for a 
manufacturing application, and therefore few studies have been executed about 
manipulating daily objects, which are often deformable like a brush in this study. 
 
 

Force sensor

Fig. 6.1 Multi-fingered hand. 
 
 
6.2 Grasping a Paintbrush 

 
In this system, an ordinary commercial paintbrush is used. However, because the 

fingers of the robot are much thicker than the fingers of people, a thick handle is attached 
to the brush (Fig. 1.1). In grasping, the paintbrush is supported by four points, which are 
three fingers (thumb, forefinger, and second finger) and the root of the thumb (Fig. 6.2). 
This is almost an imitation of human grasping of a paintbrush. This grasping produces 
stable support of a paintbrush against forces from all direction except one direction. The 
one direction occurs when using the right hand to draw outward from right to left. In 
order to avoid this instability, the brush trajectory is planned so as to avoid the weak 
direction of brush motion when the picture is painted. 
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The process of grasping is explained as follows. First, the position of the handle 
of a paintbrush is detected using the vision system. The detail of the algorithm is 
described in the following section. Next, the right hand approaches the paintbrush. When 
the force sensor in the middle finger detects the contact between the finger and the 
paintbrush, the system decides that the hand is adequately close to the paintbrush for 
grasping, and stops the hand motion. Finally, power is gradually added to the fingers. The 
force on the fingers is watched during this phase, and power is added until a firm grasp is 
realized. Then the paintbrush is pulled up. These steps can be seen in Fig. 6.3. 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tip of finger 

Root of thumb

 
Fig. 6.2 Grasping using force sensor. 

 
 

 
(a) (b) (c) 

Fig. 6.3 Grasp states. 
(a) Approaching. (b) Grip. (c) Pull up. 
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6.3 Detecting the Tip of a Brush 
 
The detection of the tip of a brush is performed using the stereo vision system 

shown in Fig. 6.4. First, the position of the handle of a paintbrush is detected, and then 
the position of the brush’s tip is derived from it. In this system, because the paintbrush is 
grasped by the multi-fingered hand, the relative position of the tip to the arm changes a 
bit with every trial of grasping. Moreover, the position can change by an unexpected slip 
of the paintbrush during painting. Therefore, it is required that the tip position is 
frequently detected in order that the system always knows the correct position. The 
reason why the tip position is not detected directly is that direct detection is difficult 
because the brush is deformable and its color changes according to the color of the paint. 

First, pixels belonging to the handle are extracted from the captured image (Fig. 
6.5). The color of the handle is given a parameter here, and the hue and saturation are 
used for the extraction. The 3D position of each pixel is calculated by stereo calculation. 
For improving accuracy, the area to detect is limited to the possible area determined from 
the hand position and rotation. Next, principal component analysis (PCA) is performed 
on the extracted pixels (in 3D space), and used to calculate the axis of the handle (Fig. 
6.6). The pixel in the lowest position is regarded as the lowest point of the handle. 
Finally, the position of the tip is derived from these two factors: the axis and the lower 
point of the handle (Fig. 6.7). 

Table 6.1 shows the result of measuring the accuracy of tip detection. The tip 
position was calculated ten times, keeping the paintbrush in the same position. Because 
the paintbrush does not move, the result must always be the same, but some error appears 
due to the vision system. The table shows the standard deviation of the detected positions. 
Three trials, in each of which the tip position is detected ten times, are performed in 
various positions and rotations. In every trial, the standard deviation of the error is within 
about 1.0 mm. However, although the brush deforms during painting, this algorithm does 
not consider it. In the actual case, an error of about 10 mm appears because of the 
deformation.  
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Fig. 6.4 Stereo vision system’s output. 

 
 

 
Fig. 6.5 Detection of the tip of a brush: Color extraction. 
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Fig. 6.6 Detection of the tip of a brush: Calculating 3D position. 
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Fig. 6.7 Detection of the tip of a brush: Offsetting. 
 
 

Trial x-axis y-axis z-axis 
1 0.64 0.89 0.66 
2 0.77 1.50 0.80 
3 0.90 1.60 0.49 

Table 6.1 Evaluation of tip detection [mm]. This table shows the standard deviation of the 
detected positions. 

  
 
6.4 Detecting Brush-Canvas Contact 
 
 Force sensors in the fingers are used for the detection of the contact between a 
brush and a canvas. The integration of force acting on the three fingers that support a 
paintbrush ( ) is focused here. According to Newton’s equation, if a paintbrush is 
regarded as moving in a quasi-static process,  is formulated as (6.1). 

fingerF

fingerF
 

groundfinger FmgF +−=  (6.1)
 
where m is the mass of the paintbrush, g is the gravity acceleration, and F  is the 
ground reaction acting on the paintbrush. From this equation, it can be said that F begins 
to decrease when the brush contacts a canvas. 

ground

Fig. 6.8 shows the change of F while pushing down a paintbrush, drawing a line, 
and pulling up the paintbrush. It is seen that F suddenly decreases when contact between 
brush and canvas occurs. Therefore, we set a threshold to detect this contact. 
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Fig. 6.8 Force acting on finger. The integration of force acting on the three fingers that 
support a paintbrush. 

 
 
6.5 Reducing Brush Slide 

 
Because the robot hands are designed to mimic human hands, there are 

movements that allow a brush to easily slip out of the hand, for instance, when using the 
right hand to draw outward from right to left. A human artist naturally avoids drawing at 
these angles. 

For the robot, the best way to tackle the brush slide problem is to plan the 
trajectories carefully so that the brush avoids drawing at an angle that would tend to slide. 
To do this, the direction from point to point is reversed. For example, if drawing from A 
to B is in the range of angle that might cause the brush to slip, this trajectory is inverted  
to draw from B to A, as shown in Fig. 6.9. 
 
 
 
 

 
 
 
 

Weak direction 

Dividing 

Fig. 6.9 Inverting the direction of a brush stroke. 
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Let the weak direction be from lθ  to uθ , counterclockwise, here 4/π  to 4/3π , 

the result would be like Fig. 6.10. 
 
 

 
Fig. 6.10 Planned brush strokes of the apple. 

Note: 
Upper-left image is considered the original trajectory, while the upper-right image is a 
processed trajectory. The lower-left image is the result up to the present stage, while the  
lower-right image is the result after adding the processed trajectory. 
 
6.6 Parameterized Paintbrush Technique 
 

Now, the following three paintbrush techniques are parameterized (see Fig. 6.11): 
. Leaning a paintbrush to the drawing direction (a lean angle) 
. Pushing a paintbrush onto a canvas (an amount of pressure) 
. Pulling a paintbrush up gradually (an amount of sweep) 

The first parameter is a lean angle of a paintbrush. The drawn lines and curves, 
especially curves, vary according to the lean angle. 

The second parameter is an amount of pressure. When a paintbrush is pushed 
down upon a canvas, it does not stop moving downward as soon as it contacts the canvas, 
but it keeps moving for a while. The duration to keep moving is varied as the parameter. 
It controls painting pressure.  
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The third parameter is an amount of sweeping performed by a paintbrush at the 
end of drawing. In drawing a curve with a paintbrush, the tip motion of the brush tends to 
lag behind the motion of the arm because the brush deforms during drawing. Therefore, if 
the arm stops when it reaches its target position, the tip often still remains behind its 
target position. In order to avoid this situation, a paintbrush is pulled up while gradually 
moving to the target direction. The parameter determines an amount of this motion. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.11 Parameterized paintbrush technique. 

Lean angle 

Pressure 

 
 
6.7 Experimental Result 
 
 First, let’s consider the effect of the brush parameter on painting. Fig. 6.12 shows 
the difference between pulling brush up gradually and abruptly, respectively. 
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Fig. 6.12 Parameterized paintbrush technique: Pulling brush up gradually and abruptly, 

respectively. 
 
 
 Next, consider the pressure on the canvas. This can be represented by the distance 
between the brush and the canvas. 
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Fig. 6.13 Parameterized paintbrush technique: Changing the depth of vertical axis [mm]; 

10, 15, 20, 20 to 5, 5 to 20, respectively. 
 
 

Human artists use these same techniques in painting as well. 
 
Fig. 6.14 is the result of painting an apple where the picture model is obtained 

previously. The results are different for every trial because of the error included in 
detecting the position of the brush by the vision system. This is actually interesting, as it 
shows the same imperfections that occur when human artists paint. 
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Fig. 6.14 Experimental result. 
 
 

For our future work, our first priority is filling a region. Since we have already 
developed a method to generate a picture model for filling, in order to have it performed 
by a robot with a multi-fingered hand, we need to introduce an additional operation, such 
as changing paintbrushes and dipping a paintbrush into water color. We are expecting to 
have a painting like that shown in Fig. 6.15. 
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(a) (b) (c) 
Fig. 6.15 Combining area filling and edge drawing (simulation). 

(a) Brush trajectories. (b) Area filling. (c) Geometry edge drawing. 
 
 
6.8 Summary 
 

The steps used for brush manipulation are described in this chapter. Stereo 
cameras on the robot’s head are used to locate the brush. Then the robot approaches and 
grasps the brush, with force sensors in its hand playing an important role in ascertaining 
the grip. The position of the brush tip is then pre-computed by finding the PCA of the 
handle and projecting this to a known distance. 

When drawing, the robot checks whether the brush touches the canvas or not by 
calculating the force that needs to be applied to its fingers. A technique to prevent the 
brush from slipping out of the robot’s hand and painting techniques adapted to it are 
shown, and the experimental result of these techniques is presented. 

It is interesting to note that even when the same picture model is used, the result 
shows that all of the paintings are quite different. 
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Chapter 7 
 
 
Conclusion 
 
 
 This research presents vision and manipulation techniques applied to a robot 
painter, namely, object segmentation, color perception, orientation mapping, geometric 
edge processing, and then shows how to apply these methods to high-level manipulation.
 This chapter presents the contribution of this research (Section 1) as well as 
extensive discussion (Section 2). As each part of the project can be considered as   
separate research, contribution and discussion are divided into states.  
 
 
7.1 Contribution 
 
 

1) Foreground Segmentation 
 

The first novelty is a supervised comprehensive iterative foreground segmentation 
(CIFS) based on local and global optimization with edge constraint. In other words, it is a 
region growing with the cost function similar to graph cut. Then, this concept is used in 
3D images to enable the robot to extract the foreground automatically. 

The second novelty is our constraint based on Chebyshev’s inequality, which was 
proved to be robust. Such constraint setting was not effective in conventional region 
growing.  

The third novelty is, since both local and global cost functions have their own 
constraints, a weighting method to perform in the constraint domain instead of in the cost 
function. This method can also deal with multidimensional features. 
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The fourth novelty is automatic multiple cuts that are capable of reducing a great 
deal of user interaction. The notion of growing to an edge constraint based on 
Chebyshev’s inequality before searching is novel and can reduce error significantly. 

The final novelty is cut before matting, where some previous works tried to 
heuristically erode the boundary before matting, the notion of growing to a certain 
statistical constraint before matting gives a better result than state-of-the-art matting 
programs. 
 
 

2) Color Perception Based on Two Clustering Schemes 
 

 Since normal K-means clustering usually produces low contrast color and 
consumes considerable time, we use maximum distance clustering (MDC) prior to an 
iteration of K-means to solve both efficiency and time consumption problems.  

As maximum distance clustering (MDC) is comparatively slow when the number 
of desired colors is high, a sub-optimal algorithm is proposed and shown to be extremely 
fast. 

Another objective of this research is an algorithm that anyone could easily 
implement, and this is already achieved since our improvement is based on well-known 
and easy algorithms, MDC and K-means. 

     MDC + an iteration of K-means can be applied to clustering in general. 
 
 

3) Global Orientation 
 
  In this research, a linear radial basis function (RBF) is used to smooth the 
orientation domain, as previous works suggested. We approach the problem differently 
by focusing also on the speed of the algorithm. Speedup is accomplished by calculating 
RBF using a fixed size window.  For the area that has no orientation information the RBF 
window is increased until it covers the surrounding area that contains orientation. This 
substantially reduces the time consumption so that RBF can be performed in real time. 
  It can be seen that the RBF can be applied not only in a gradient domain but also 
in other similar domains to generate smooth output. 
 
 

4) Paint Brush Manipulation 
 

Stereo cameras on the robot’s head are used to locate the brush. Then the robot 
approaches and grasps the brush, with force sensors in its hand playing an important role 
in ascertaining the grip. Although the position of the brush tip is pre-computed, by 
finding PCA of the handle and projecting down to a known distance, force sensors are 
also used for checking whether the brush touch the canvas or not. This process is similar 
to that used by a human artist. 
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When looking at the overall manipulation process, one sees that this is the 
integration and realization of many robotics concepts into one system. 
 
 
7.2 Discussion 
 
 

1) Foreground Segmentation 
 

Considering a foreground cut, comprehensive iterative foreground segmentation 
(CIFS) is as robust as graph cut, since their cost functions are quite similar. Nevertheless, 
graph cut, in difficult images, applies only to the foreground cut problem. 

Using the notion of growing to a certain statistical constraint, before searching for 
a remote area or before matting, the program can effectively deal with a foreground cut, 
multiple cuts, and cut before matting.  

The multiple cuts method is robust against a not well-structured classifier as well 
as ambiguous data distribution. This is completely different from the contour evolving 
approach. Compared to this approach, the main differences are among the algorithms: the 
proposed method does not split or merge to perform multiple cuts. CIFS relies on data 
distribution and thus is more straightforward, whereas the other approach seems to be 
more flexible due to its internal and external cost function. 

For cut before matting, the proposed method can generally gives substantially 
better pre-cut images since it uses Chebyshev’s inequality as opposed to heuristic erosion. 
The scheme can be used as a standalone matting program as well as an input generation 
for other high-end matting methods. 

Furthermore, our novel weighting method, between local and global information, 
is shown to perform in the constraint domain instead of in the cost function. Although it 
is difficult to compare this notion with conventional weighting, our scheme is more 
straightforward if there are local and global components in the cost function. 

The method is then applied to perform 3D object segmentation automatically. In 
order to extract the subject area, this thesis focuses on how to exploit normal stereo 
cameras to roughly extract the object automatically using a disparity map and 3D 
background subtraction, and then using CIFS to extract the object area correctly. 3D 
background subtraction is usually noisy, thus dilations and erosions are required. CIFS, 
then, exploits the local and global color similarity optimization with a constraint of edge 
to extract the boundary correctly. This is a promising paradigm, which can be applied to a 
wide variety of 3D segmentation/detection tasks. 
 
 

2) Color Perception Based on Two Clustering Schemes 
 
 Using maximum distance clustering (MDC) prior to an iteration of K-means 
benefits not only color reduction application but also to clustering methods in general. K-
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means should be run for only one iteration to prevent it from dominating the process. 
Thus, the convergence-speed problem of K-means is not present in our algorithm. 

The method can generate a higher quality image than many existing interactive 
color reduction methods in RGB color space. 

However, in human perception color space, CIEL*a*b*, K-means alone is 
comparable to MDC + an iteration of K-means, provided that K-means is run for two 
iterations or more, one iteration forward and another iteration backward. Considering 
time, running MDC + an iteration of K-means consumes approximately the same time as 
that of two iterations of K-means. 
 
 

3) Global Orientation 
 

For the local orientation used to guide brush strokes, using a gradient to guide 
brush strokes is more robust to texture, whereas using image moment is more robust to 
area orientation. However, local orientation is usually noisy and thus results in 
inappropriate brush strokes. In this sense, global orientation, which can be described as a 
smoothed version of local orientation, is applied. In this research, a linear radial basis 
function (RBF) is selected as the smoothing method. 
 
 

4) Area Filling 
 
  After the foreground, color, and orientation information are derived, the robot can 
perform brush stroke planning automatically based only on the brush size information. 
Actually this is the process of visual feedback where the robot:  
 

� Selects a color 
� Decides which area to start drawing 
� Starts moving based on orientation information 
� Pulls brush up 
� Visually verifies the canvas, comparing it to the picture model the robot 

processed initially 
� Starts next brush strokes or changes color 

If there is no area left to draw, then the painting is considered finished. 
  

 At this point, the result of area filling is verified using a computer simulation. 
This type of visual feedback simulation consumes around 1 second per hierarchy, for a 
640x480 image, on a laptop with 1.8GHz CPU; thus, it should be a minimal load for the 
real robot platform. The problem to be aware of in the real drawing by the robot is how to 
consider the color mixing on canvas, and how it would affect the drawing as a whole. 
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5) Geometric Edge Processing 
 

Some human artists use edges to enhance their paintings. Although many 
researchers use gradient information to represent edges of objects, this distorts the color 
information on the surface. Hence, we decide to use 3D geometric edges of an object as 
input for the robot to draw, as these represent the object well. 

After range sensors capture multiple-viewpoint images, they are aligned and 
merged to generate a 3D model. 

In this process of 3D model generation, where outliers must be deleted before 
merging into the final model, we also propose the use of foreground segmentation to 
delete outliers in range images semi-automatically. 

As painting is done in 2D space, 2D edges are extracted from the 3D model. A 
geometric edge is defined as the common edge at which the sign of the inner product of 
the normal vector of a patch and the viewing direction changes. Then, the noisy 2D edges 
are processed into brush strokes by reducing various kinds of redundancy. 
 
 

6) Paint Brush Manipulation 
 

The brush is used in a manner similar to that used by a human artist. The position 
of the brush tip is pre-computed by stereo cameras. The robot checks whether the brush 
touch the canvas or not by calculating the force applied to its fingers.  

Furthermore, just as a human artist avoids moving a hand in some awkward 
direction, a robot’s hand needs to avoid an awkward direction. Hence, a technique to 
prevent a brush from slipping out of a robot’s hand is presented. Some painting 
techniques are shown along with the experimental result. 

Seeing the paintings, it is interesting to note that even when the same picture 
model is used, all of the paintings are quite different. This variation mimics the same 
quality in human artists. 
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Appendix A 
 
 
Robot Constraints 
 
 

This appendix focuses on space-time motion generation methods with the robot’s 
physical constraints. 

It is widely known that motion generation methods for robots have had problems 
because the physical capabilities of humanoid robots are limited. There are limits relating 
to physical attributes, such as angle, collision, velocity, force, and balance consistency.  

For an industrial robot, the physical constraint problem can be solved by allowing 
the robot a longer time to finish a task, to satisfy the limits. The main requirement is the 
precision in the world coordinate, the so-called “space constraint.” 

With the emergence of the humanoid robot, there is a new problem called “space-
time constraint” in which the robot is required to finish a task at a certain time. This is a 
requirement when the robot is used as a demonstrator (offline), when it is used during 
plans before moves (offline), when it is teleoperated (online), or when it interacts with 
other entities (online). 

Currently, without considering balance control, many research groups are trying 
to solve the space-time problem with physical limits. The significance of such motion 
generation is clear, because in many works balance control is achieved but methods to 
deal with other physical limits are not effective. If such limits are not satisfied, the 
trajectories will have a large error, which leads to collision problems and balance 
inconsistency. If these are not prevented, the robot will be damaged. However, no 
research was successful in limiting all physical characteristics. 

This paper presents the first space-time method that can effectively guarantee 
angle, collision, velocity, and force limits, based on the B-spline function. The method 
can be used for both an offline and an online environment. 
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As our robot platform in Fig. 1.1 is not designed to deal with abrupt movement, 
we use HRP-2 as the test bed. The test data are the Japanese traditional dances captured 
from professional dancers as test motions as shown in Fig. A.1. These dances are very 
complex; their motions exceed many physical limits of our HRP-2 robot and cannot be 
easily performed by any humanoid robot using existing methods. If our algorithm could 
deal with such dances, it would benefit other kinds of motion research as well.   
 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.1 Japanese traditional dance performed by dancer vs. HRP-2. 
 
 

First, let us look at present space-time research. 
Among motion generation methods, a filter-based approach is a fast way to 

retarget motion. [PHRA02] realizes upper-body dances using a humanoid robot by 
scaling the angle and filtering velocity. However, first, since each joint is scaled 
separately, the overall motion may be different than the desired path [SPH03]. Second, 
collision avoidance and dynamic forces are not considered. Third, the method cannot be 
applied for trajectory optimization since it processes each data input directly while 
optimization usually considers trajectory as a function. Finally, it cannot be used in real 
time since the velocity filter requires running it forward and backward. 

Trajectory optimization is another approach. [LS99] uses a hierarchical B-spline 
whereas [UAR04] uses B-spline wavelets. However, their algorithm does not deal with 
physical limits effectively. The objective function can minimize physical characteristics; 
however, it is not guaranteed that such values will satisfy limits. Limit violation can 
occur, requiring a user to manually adjust trajectories, which is very tedious work. On the 
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other hand, if the cost function is set too strictly, the result may be ineffective movement 
or large errors in end effectors.  

A real-time approach, as described in [RUWA03], also presents problems. 
Attempts to limit physical characteristics rely on kinematics-based optimization to reduce 
values, rather than applying specific limitations, as described in [DVS01].  

These problems have posed very difficult challenges that have caused 
considerable discussion. This paper solves this challenge by representing all physical 
limits in the term of B-spline coefficients. Also, most of our constraints are totally 
different from those of a conventional industrial robot. 

The proposed constraints can be used as an offline filtering approach. 
Furthermore, since the constraints are applied on B-spline curve rather than on raw data, 
we propose an effective method to decompose a trajectory to a B-spline. 

For the offline optimization approach, the proposed constraints can be used 
directly as the constraint function for this approach. In addition, it is usually necessary to 
locate the problem period that should be re-optimized in higher hierarchies. To do this 
effectively, not only the traditional trajectory’s error detector but also our preemptive 
knot density detector [RNKI05] are used. 

In real-time approach, our angle, collision, and velocity constraints can be applied 
directly. Unfortunately, force constraint, which requires iteratively running, might not be 
suited to this approach. A different technique to limit force is presented. 

The remainder of this appendix is organized as follows. We describe the physical 
constraint functions in Section 1. Section 2 explains how to decompose a trajectory into a 
B-spline curve and how to use the constraints to filter the curve. Section 3 focuses on 
issues related to using the constraints in an optimization approach, and motion refinement 
based on a hierarchical B-spline. Section 4 explains a real-time approach and the issues 
related to adaptation of the constraints along with some drawbacks. Finally, discussion 
and conclusion are presented in Section 5. 
 
 
A.1 Physical Constraint Functions 

 
Presently various problems occur when attempts are made to limit physical 

attributes. Four physical attributes govern the movement of the robot, namely, angle, 
collision, velocity, and force. The attributes must be limited for many vital reasons.  

For angle and force, if these attributes are not well limited, the robot trajectories 
would be different from the planned trajectories as the robot does not have the capability 
to follow the planned motion. At first glance, this seems to be a negligible problem; 
however, it is not. Error in trajectories could lead to two serious problems, collision and 
balance inconsistency. Whereas the collision problem due to a violated angle is clear and 
present, and inadequate force also leads to an incorrect angle, balance inconsistency is 
more obscure. Balance inconsistency is related to the whole body control of the 
humanoid robot. There are various methods to control the balance of the robot. These 
include [HZS06], which shows use of the spline function in biped gate optimization 
based on zero moment point (ZMP); driving torque analysis, [HKKH03], which analyzes 
ZMP for arm/leg coordination tasks of humanoid robots; [Kaj02], which involves real-
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time biped pattern generation; and [TNMY05], which deals with biped walking patterns 
on slopes. Practically, these methods usually require the upper body motion to be planned 
prior to adjusting the whole body posture, such as by re-calculating the waist angle 
[NNK*07]. However, if the upper body motion is different from the planned one, the 
center of gravity and zero moment would be different from the planned whole body 
motion, and the robot could collapse. This must be prevented by applying a method that 
effectively limits angle and force. Though angle limit can be achieved easily, force is 
often not well limited due to the complexity of the dynamic equation. Most previous 
works can only reduce the force attribute, rather than giving it definite limits, as our 
method does. 

Velocity limits pose another problem. Usually, for most kinds of electric actuators 
used in humanoid robots, there is a back electromotive force (emf) that increases 
proportionally with velocity. Excessive emf could lead to undesired actuator wear. 
Although [PHRA02] proposed a method to filter velocity trajectories, this method 
requires running forward and backward iteratively; hence, it cannot be used in a real-time 
approach. Also, the method does not consider force filtering or collision avoidance. 

As mentioned before, collision is a clear and present problem that must be 
avoided to prevent any damage to the robot. Various collision avoidance methods can be 
found in literature, such as [KL06], which focuses on a cylindrical body, [YES*06], 
which shows whole body collision avoidance of a humanoid robot, and [SKH05], which 
contains the notion of check points. The idea of check points placed on the robot’s body 
is adopted in this work. In this paper, the problem of collision avoidance is not considered 
as an objective function to be reduced but as a constraint to be limited. Our experiment 
proved this to be effective, compared with methods such as [ZN02], which only uses an 
objective function. 

Another must-be-considered aspect is a data representation method. In order to 
ensure the smoothness of trajectories and to create the constraint functions that are 
compatible with various motion generation methods, namely filtering, optimization, and 
real-time-approaches, a curve representation method is required. When employed, instead 
of processing a trajectory as a set of points that could lead to a jerky motion, a trajectory 
would be altered by adapting parameters of the curve representation function. The choice 
of curve representation method is very important as it determines how the constraint 
functions work. Constraints are required to limit physical attributes of such curves 
directly, which means that constraints are to be implemented based on the curve 
representation method’s parameters. Traditionally, even though a curve representation 
function is used, its role is to ensure smoothness or to perform successive refinement 
only, as shown in [LS99], [UAR04], and [AMH01], whereas in this work the physical 
attributes are also limited based on a curve representation function. This is a major 
advantage of this method, which differs from other methods in this respect. 

The following portions of this section start with a discussion of curve 
representation. Then, based on the best representation method, the physical constraints of 
angle, collision, velocity, and force from [RNKI06] are explained. The velocity and force 
constraints are influenced by an iterative soft-constraint paradigm [RNKI06] that makes 
limiting very effective. 
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1) Data Representation 
 

In the robotics field, B-spline is widely used for manipulator motion-planning 
[KT03] and even for intelligent control [FZK99]. The important characteristics of B-
spline are, first, changing a parameter of the B-spline function affects only the limit range 
of a curve and, second, the method involves hierarchical refinement. For the space-time 
problem of a human-like figure, [LS99] has used a hierarchical structure of B-spline to 
generate trajectories. 

Recently, wavelet [CDF92] is used in many fields. As wavelets share the two 
important desirable properties with B-spline, some previous works [Got95] have 
compared the advantages of these techniques. [UAR00] proposes to use B-spline 
wavelets for trajectory optimization. Their comprehensive work can be found in 
[UAR04]. It is understandable that the authors are trying to enhance the convergence 
characteristics of B-spline by adding wavelets, as the latter converge faster than the 
former if the trajectory contains an inadequate space constraint [Got95]. This, however, is 
not the case for motion generation, as a large amount of data can be derived from a 
human trainer or even from the trajectories the robot plans itself. 
 
 

  
(a) (b) 

Fig. A.2 Scale, velocity, and acceleration of B-spline and wavelet.  
(a) B-spline. (b) Wavelet. 

 
 

With the criterion in mind that the method must be exploitable for constraint 
functions, B-spline is the method of choice as its angle, velocity, and acceleration 
functions (also implying the force function) have a clear structure compared to wavelets 
[RNKI05]. Furthermore, B-spline is superior to wavelets for its usability in a real-time 
approach. As will be shown in Section 4, using an online force limit faces a problem due 
to B-spline’s acceleration function. But since a wavelet’s velocity shares a physical 
structure similar to a B-spline’s acceleration, it would be ineffective to use wavelets in 
real time for both velocity and force limiting. 

Let’s look back a little on the use of B-spline for physical constraint. Industrial 
robots have long been using B-spline with physical constraints in trajectory planning, 
[SM85], [SY89]; however, such methods apply limits by scaling the time domain, which 
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is not applicable for a space-time problem. In this work, space-time B-spline based 
constraints are proposed as described in the following sections. 
 
 

2) Angle Limits 
 
Cubic B-spline has a characteristic that its amplitude will not be higher than the 

magnitude of a control point. Hence, angle limiting can be done directly by applying 
bounded constraints to the magnitude of control points in a B-spline function (of one knot 
period) as shown below. 
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where q is angle, t is time, and  is control point. np

 
 

3) Self-Collision Avoidance 
 

In order to decide whether collision occurs or not, check points are placed on or 
inside a robot body and an arm is considered as a link of cylinders. Collision is detected if 
the distance between a cylinder and any check point is lower than a certain value. 

All angles responsible for moving such a cylinder are then searched to see which 
one requires the least angle change to avoid collision.  

 
)/(maxarg , jnj

pdj ∆=  (A.2)

 
where j is the joint number, d is the distance from the collision point, ∆  is the change 
of value in control point number n of joint j, where n is the closest control point to the 
collision period. 

jnp ,

For example, to avoid collision on the lower arm, three joints in the shoulder and 
a joint in the elbow are explored. The result of avoiding collision of the head is shown in 
Fig. A.3. 

Actually, we have tried to do collision avoidance using a cost function proposed 
in [ZN02], and found that solving it using a constraint is more effective and 
straightforward for choosing critical distances from collision check points. 
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Fig. A.3 A collision check point is placed at the center of mass of a robot’s head. 

(left) Without collision avoidance. (right) With collision avoidance. 
 
 

4) Velocity Limits 
 

Our velocity limit checking is done on B-spline function at the beginning and the 
middle of each period as well as at the peak velocity. From (A.1), velocities at the 
beginning of a period and at the middle of a previous period are: 
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where T is the length of the knot period. 

Interestingly enough, (A.3) must be checked before (A.4) to avoid divergence of 
trajectory, by altering  and , respectively. This is based on two criteria. The first 
criterion is the sensitivity of altering the control point (a higher sensitivity control point 
affects the shape of a curve more). This must be high for checking the present period and 
low for past or future periods. 

2p 1p

It can be seen that there are similar ways that meet the criterion; however, these 
will also lead to divergence or ineffective limiting. So the second criterion is required: 
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after changing in (A.3), altering  in (A.4) does not affect (A.3) and affects previous 
checking only in a supportive way. 

2p 1p

It is likely that the peak velocity would not occur at the beginning or the middle of 
a knot period. So we also check the peak velocity which is in the term of  (A.5). 
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To limit, it has to be determined which control point provides the highest 

sensitivity for the function, which is .  1p
However since  is in a second-order term, solving it directly may yield complex 

numbers. Hence, a search method is required, and a method like hill climbing is adequate.  
1p

 
 

5) Dynamic Force Limits 
 

The force in each joint can be calculated from this inverse dynamics equation: 
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where F is the applied force, M is the inertia matrix, I is the actuator’s inertia of the 
present joint, C is a centripetal and Coriolis forces matrix, G is gravitational loading, and 
Q is a set of all joint angles. 

M greatly influences the dynamics equation, and the acceleration multiplies M. 
Since the acceleration is a straight line, its peak values are located at the beginning of 
each knot period; therefore, limiting force only at the beginning of a knot period is 
sufficient. 

The above equation is used to limit values by altering a control point to alter Q 
and its derivatives, first inserting velocity and acceleration in the form of a B-spline. Note 
that since the dynamic equation’s parameters are nonlinear in Q, it can be considered to 
be constants that are updated recursively. 
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From (A.7), it can be seen that since the term multiplies M, changing  provides 

the highest sensitivity. So if one rearranges the function to isolate terms that contain  
from those that do not, the following equations result. 

1p

1p

 
 (A.8)
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This is a set of nonlinear equations that cannot be solved explicitly. So they are 

solved by recursively searching for the value  of joint i alone that satisfies a limit. The 
hill climbing method is used for this recursive search.  

1p

A new problem arises upon the use of this method:  changing  often results in 
the force of a previous period being larger than the limit, making force constraint 
ineffective. This can be solved using the method described next. 

1p

 
 

6) Iterative Soft Limits 
 

Suppose that a value that needs to be reduced is 1. The easiest way to do this is 1-1 
= 0; however, this poses the problem stated above, in case that such value represents  
force. Another way to do this is: 
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In the case of force constraints, instead of limiting force to the desired value, 

reduce it only y of the needed amount (present force minus force limit value) iteratively, 
say, 0.5 with 46 iterations. 

 

09999990.999999991)5.01(5.01
45

0
≈−=−− ∑

=i

i  
(A.10)

 
Although the reduced value does not exactly equal the portion needed, such 

difference is extremely low and clearly negligible, as shown in (A.10). 
Furthermore, if both velocity and force constraints are to be used separately, the 

resulting trajectories would meet force limits while velocity limits are often violated. 
Fortunately, if both are put under the iterative soft constraint, for offline approaches, they 
will gradually converge to limit values. For an online approach, the soft constraint, which 
requires running forward and backward iteratively, cannot be applied. Hence adaptation 
of force constraint function is required and will be explained in Section 4. 
 
 
A.2 Filtering Approach 
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The fastest and easiest way to retarget original motion to the joint angles that can 
be represented by a robot with physical limits is filtering. Previous filtering approach 
work, such as described in [PHRA02], is not effective enough in the sense that it does not 
consider all important physical attributes, while our work does. 

Since all of the constraints operate on a B-spline function in order to ensure 
smoothness, it is required to decompose a joint trajectory to a B-spline curve prior to 
limiting physical attributes. 
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1) Decomposition From Raw Data 
 

Unfortunately, it is inappropriate to use B-spline hierarchical decomposition, 
[CQ92] or [FB88], in cases where it is extensively used for an optimization approach 
such as [LS99] or as described in Section 3 of this appendix. Let us explain the 
differences. Differing from the optimization approach, where the appropriate value of 
control points is unknown at first, the filtering approach needs only a set of control points 
that can precisely represent the original trajectory. It is more like one-shot filtering on an 
already decomposed B-spline curve that first represents the original data. 

On the other hand, if a trajectory is downsampled and then the derived samples 
are used as control points for a B-spline, the decomposed curve will have a large error 
around the end of it as shown in Fig. A.6 (a). 
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We observed that the downsampling error occurs due to lack of synchronization 
between the number of control point periods and the number of knot periods. From (A.1), 
it is shown that a knot period consists of three control point periods instead of only one 
control point period.  

To synchronize these two domains, a redundant control point is placed at each end 
point. From Fig. A.5, it can be imagined that at each end of the curve there will be the 
same two control points, so the result is like a control point period, between a and b, 
corresponding to a knot period, generated from the four control points, as required. The 
result of this decomposition method is shown in Fig. 6 (b). 

In order to acquire an appropriate sampling rate, we use the error detector shown 
below. 

 
thErrnPnqne >−= |)(),(|)( θ  (A.11)

 
where n represents discrete time, P is a set of the present angle’s control points, is 
the curve magnitude of B-spline, 

),( Pnq
)(nθ is the angle from inverse kinematics, and thErr is 

the threshold for error. 
If the curve is not precise enough, we increase the sampling rate. 

 
 

2) Filtering Based on The Proposed Constraints 
 

After the B-spline curve is derived, a set of constraints in Section 1 can be applied 
to the B-spline curve directly. For a combination of constraints, after angle limit, collision 
avoidance is checked prior to the other constraints. This order is adopted because 
collision avoidance may pose discontinuity in trajectories, which can be solved by force 
and velocity constraints. Collision may occur, but it can be solved automatically by 
increasing the critical distance.  

Users might prefer to set the initial and final postures of joint trajectories to be the 
same as the original data. This can be achieved by fixing the first and the last three 
control points. Angle and collision constraints must be given higher priority than fixing 
the end point, as can be seen in Fig. A.7. Furthermore, due to forcing of the end point 
position, an abrupt surge in the force domain can be seen. Practically, actuators 
characteristic usually allows instantaneous force to be more or less substantially higher 
than the constant force limit. Since three control points are fixed, the surge would occur 
only for two knot periods, which is not a problem since the duration is very short. 

If the end point is allowed to change, the result of an open-end curve is shown in 
Fig. A.8. 

The effect of approximating the dynamic equation to be linear, (A.7), can be seen 
more clearly when the limit is set to be stricter, for example, in Fig. A.9. Some small 
spikes that occur are a little higher than the force limit, which is not a problem since 
actuators’ characteristic allows instantaneous force. 

Compared to the optimization result in the next section, the filtering approach 
gives a more precise trajectory since there is no influence due to the optimization process. 
However, the disadvantage of this approach is that the multiple objectives may not be 
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realized if any of them cannot be formed in term of constraint. In that case, the 
optimization method is required.  
 
 
A.3 Optimization Approach 
 

Traditionally, using a cost function to reduce physical characteristics, as described 
in [UAR04] or [RGBC96], is inadequate since it does not apply specific limits to those 
values. Limit violation can occur, especially in a multiple-objectives task, requiring a user 
to manually adjust trajectories, which is very tedious work. On the other hand, if the cost 
function is set too strictly, it cannot exploit all the capacity of the robot, which often 
results in ineffective movement or a large error in end effectors. 

Hence in this study, physical attributes are limited using constraints, as shown in 
Section 1, while a cost function is used to preserve the essence of original input motion 
and will be explained in this section.  

Although a cost function is optimized and constraints are checked, the curve may 
still not be as precise as expected. In that case, optimization is done hierarchically, first 
using a small number of control points to represent a curve, then if the precision is not 
satisfied, decomposing the original set of control points to a larger number of control 
points and re-optimizing it. Prior to decomposition, two methods are used to detect the 
problem of the present hierarchy curve, novel knot density approximation [RNKI05] and 
error detection (A.11). 
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1) Optimization 
 

Based on the B-spline function, optimizing the joint angles is usually enough for a 
robot to represent human motion, so an acceptable objective function is: 

 

∑
=

Θ−=
N

n
nPnQPf

1
2||)(),(||)(  

(A.12)

 
where N is the sampling length of a trajectory, and Θ  is a set of all angles derived from 
inverse kinematics. 

From Fig. A.1, the markers attached to the body of the human via an elastic suit 
may be not balanced, or they may slip during the capture process, so some of the 
sequences of angles computed by inverse kinematics may have large errors. Therefore, 
another objective function that considers both angles and end-effector is used for such 
motions: 
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(A.13)

 
where w is weight derived from experiment, FK is forward kinematics , and h is the hand 
position of the trainer. 

One may choose to use only (A.12), trading off time to calculate forward 
kinematics. In this research, the decision to use (A.12) or (A.13) depends on the 
designer’s subjective judgment of the data after inverse kinematics. Adding more cost 
functions is possible.  
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Fig. A.4 Positions of markers, inverse kinematics, and optimization using (A.13). 

 
 

Constraints can be applied very much like the filtering approach, except that there 
is no redundancy control point at the end of each curve, as in Section 2. 

Note that the global optimization program described in [HN98] is used in this 
research with some adaptation so that many constraints can be used.  
 
 

2) Motion Refinement 
 

For many reasons, optimized trajectories may contain errors, caused by such 
factors as the fact that the number of control points is not appropriate, for example.  

Fortunately, the B-spline function allows a hierarchical structure so that a 
trajectory can be re-optimized, using a larger number of B-spline bases by the process 
called knot insertion. Prior to knot insertion, there must be criteria to decide whether the 
present hierarchy’s curve needs to be re-optimized or not. 

First, the convergence could be made faster with less error by assigning an 
appropriate hierarchy to each part of a trajectory using our proposed knot density detector 
[RNKI05]. 

Furthermore, even if the density of a control point is appropriate, error can occur 
for reasons such as the optimization process does not fully converge. Hence, along with 
knot density approximation, a traditional error detector (A.11) is applied. 

Now, if a density problem or error is detected, that set of B-spline coefficients 
must be fed into a hierarchical B-spline decomposition, [CQ92] or [FB88], to generate a 
new B-spline that has a greater number of control points.  

This new set of control points, at the period of the joint angle trajectory that has a 
problem, is optimized again to find a new optimum set of points for the B-spline. The 
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cost functions and constraints can be applied in a higher hierarchy without any adaptation 
required. 
 
 
A.4 Real-Time Approach 
 

As opposed to filtering or optimization approaches where the entire input 
trajectories could be derived a priori from a human trainer or from a robot’s self-
generated path, real-time motion generation focuses on how to teleoperate the robot with 
time delay [LS06], plan its path in a dynamic environment [LL95], or on force-feedback 
[MO06]. Attempts to limit physical characteristics rely on kinematics-based optimization 
to reduce values, rather than supplying specific limitations, [DVS01]. 

This research focuses on how to control the robot in real time using constraint 
functions. Among the novelties are, first, the fact that, since the trajectory is represented 
by a B-spline, the smoothness of the output trajectories will always be ensured. Second, 
many physical limits are guaranteed. However, since all the constraint functions operate 
on a B-spline parameter, new input time frames must be decomposed into the B-spline, 
and this introduces delay into output trajectories, which will be explained next. 

Even though angle, collision, and velocity constraints can be used directly, force 
constraint requires running forward and backward iteratively, and cannot be used in a 
real-time scheme. A method to limit force at each time frame is proposed in this section. 
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1) Real-Time Decomposition From Raw Data 
 

In a manner much like the decomposition technique presented in Section 2, new 
time frame data are downsampled and their amplitude values are used as control point 
values.  

There are two interesting aspects different from offline processing. First is 
sampling rate. Offline decomposition can choose the appropriate sampling rate from an 
error criterion (A.11). However, an online method does not know the data in advance. So 
the sampling rate is subjectively set based on the trainer’s capabilities. For example, in 
the case that original data is derived from a human, a sampling rate of 30 control points 
per second would be appropriate. In our experiment, a sampling rate of 20 control points 
is set to compare with offline approaches. 

Second, it is important to consider what kind of model of decomposition would be 
appropriate. Formerly in a filtering approach, a redundant control point is inserted at the 
beginning and at the end of the trajectory. In a real-time approach, this introduces delay 
in processing. Fig. A.11 (a) shows that it is necessary to wait for the third sampled control 
point, c, because a knot of B-spline consists of 4 control points. Hence, the processing 
delay introduced is a sampling rate lag. However, the original curve is well preserved, as 
can be seen in Fig. A.12 (a). 

On the other hand, if the two redundant control points are placed only at the 
beginning of the curve as shown in Fig. A.11 (b), after the second control point, b, 
arrives, filtering could start immediately. It is not surprising that these inserts introduce a 
delay in output trajectory as shown in Fig. A.12 (b). The delay, in this case, is not a 
processing delay as in the former decomposition method but is a physical delay that 
occurs in output trajectory and must be avoided.  

Hence, the approach of inserting a control point at the beginning and the end 
would be used. 
 
 

2) Real-Time Limiting Based on The Proposed Constraints 
  

After the B-spline curve is derived, most of the constraints in Section 1 can be 
applied to the B-spline curve directly, namely, angle, collision, and velocity. The result 
after passing through these filters is shown in Fig. A.13. 

However, for force equation (A.8), changing the highest sensitivity control point 
affects the former period in an unwanted manner. This can be solved in an offline case 
using the iterative soft limit. Unfortunately, it cannot be applied in real time. So, if (A.8) 
is solved directly, the resulting force trajectory is not well limited as shown in Fig. A.14. 

Hence, it is necessary to modify the force constraint function. From (A.7), 
considering the term that multiplies M, instead of changing the highest sensitivity control 
point, , we choose to change the control point that does not affect the force of the 
previous period, which is . Then we rearrange the function to isolate terms that contain 

 from those that do not. As a result, (A.8) would be superseded by (A.14). 

1p

2p

2p
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Using this new constraint function, force can be well limited as shown in Fig. 

A.15 (c). Nevertheless, since  is not the highest sensitivity control point, a considerable 
change in its value is needed, so that joint trajectory (or velocity trajectory) violates its 
limit, as can be seen in Fig. A.15 (a). This is the drawback of real-time force constraint. 

2p

 
 
A.5 Discussion 
 

The proposed physical constraints based on the B-spline function bring many 
benefits into motion generation, not only at the offline level, but also at the online level. It 
is the first space-time method that can ensure angle, collision, velocity, and force limits. 
This is possible by using our proposed B-spline-based equations, which, on the whole, 
are totally different from those for industrial robots.  

Considering using the constraints offline, the proposed iterative soft constraint is 
one key to success in the comprehensive constraints. First, it makes force limiting, which 
was not available before, possible. Second, it prevents conflict between velocity and force 
constraints when all constraints are used simultaneously. 

Then, for the offline filtering approach, a novel decomposition from raw data is 
shown to generate a B-spline curve that resembles the original trajectory with less error 
than existing methods. After that, all the proposed constraints mentioned above can be 
used as filtering. 

Furthermore, the offline/online optimization algorithm can use the proposed 
constraints as its constraint function directly. For offline optimization, the proposed 
density scheme and error in the trajectory are used as criteria before decomposing a B-
spline to a larger number of control points that can be readapted. For online 
consideration, the best way to decompose the B-spline is shown. Although it produces a 
delay equal to one sampling rate lag compared to existing methods that use kinematics-
based optimization, the sample rate can be set high enough so that the delay is negligible.  

The only factor that could deter progress toward a generalization of using B-
spline-based constraints is the problem of real-time force constraint that could violate 
other limits. However, our online method can ensure a smooth trajectory with angle, 
collision, and velocity limits. Actually, this is not a drawback since, in a dynamic 
environment, it may be better to put force in a cost function and optimize the force of all 
joints as a whole. If the force is too great, the robot cannot move to the desired position, 
similar to a situation when a human attempts to lift objects that are too heavy. Such cost 
function is beyond the scope of this paper. 
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To summarize, among the offline manipulation possibilities offered by our 
approach are 1) using the robot as a demonstrator, 2) picking up objects whose static 
parameters can be approximated prior to the action (to be used in force dynamic equation 
(A.8)). For online cases, with the appropriate cost function, the method can be used 3) for 
smooth teleoperation as well as 4) when the robot interacts with objects or other entities. 

 
 

 
 
 
 

ba ba

a b
Insert redundant control points 

Fig. A.5 Inserting a redundant control point at the beginning and the end of the trajectory. 
 
 

 
(a) (b) 

Fig. A.6 Decomposition from 200 fps to 20 control points per secondb. 
(a) Conventional method. (b) Our method. 

 
 

 
(a) (b) (c) 

Fig. A.7 Apply constraints simultaneously with fixed end postureb. 
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force [+/-4.8112]. 

 
 

 
(a) (b) (c) 

Fig. A.8 Apply constraints simultaneously without fixing end postureb. 
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force [+/-4.8112]. 
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(a) (b) (c) 

Fig. A.9 Apply constraints simultaneously with strict force limitb. 
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force half of [+/-4.8112]. 

 
 
 
 
 
 
 
 

(a) (b) (c) 
Fig. A.10 Optimization result with fixed end postureb. 

(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force [+/-4.8112]. 
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Insert redundant control points 
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Insert redundant control points 
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a 

 
 
 

(a) (b) 
Fig. A.11 Inserting redundant control points. 

(a) A control point at the beginning (and, although not shown here, at the end. (b) 
Two control points at the beginning. 

 
 

 
(a) (b) 

Fig. A.12 Real-time decomposition from 200 fps to 20 control points per secondb. 
(a) When a control point is added at the beginning and the end. (b) When two control 

points are added at the beginning. 
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(a) (b) (c) 

Fig. A.13 On-the-fly application of angle and velocity constraints simultaneouslyb. 
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force. 

 
 

 
(a) (b) (c) 

Fig. A.14 On-the-fly application of angle, velocity, and force constraints simultaneouslyb. 
(a) Angle [+/-1.5184]. (b) Velocity [+/-3.74129]. (c) Force half of [+/-4.8112] cannot 

be well limited. 
 
 

 
(a) (b) (c) 

Fig. A.15 On-the-fly application of angle, velocity, and real-time force constraints 
simultaneouslyb. 

(a) Angle [+/-1.5184] is violated since real-time force limiting. (b) Velocity [+/-3.74129]. 
(c) Force half of [+/-4.8112]. 

 
 

bRed, blue, and black lines represent original data (velocity is calculated from the angle, 
force is calculated from the velocity), generated data, and limit lines, respectively. 
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Appendix B 
 
 
Chebyshev’s Inequality 
 
 

Pafnuty Chebyshev, a Russian mathematician (1821-1894), proved the so-called 
Chebyshev's inequality that in any data sample or probability distribution, nearly all the 
values are close to the mean value, which can be described mathematically as follows: 
 
Theorem. Let  be a random variable with expected value Y µ  and finite variance σ . 

Then for any positive real number k : 
2

 
21)Pr( kkY ≤≥− σµ . (B.1)

                     
Note that only the cases provide useful information.  1>k
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