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CHAPTER 1 

INTRODUCTION 
    

1.1 General Introduction 
 
In electric power system, the optimization problems play a crucial role in many aspects 

such as cost minimization, profit maximization etc. The process of seeking optimum for these 
problems usually consists of modeling and solving [1]. In the past, the problems were modeled in 
such a way that the classical optimization techniques, such as gradient-based optimization 
algorithm and linear programming etc. [2], could handle and then the optimal solutions were 
gained. Unfortunately, a large number of optimization problems in present electric power system 
become more complex and larger in size. The process of problem modeling, approximation, and 
assumptions in order to apply the classical optimization techniques seems to be more difficult and 
unacceptable. In addition, the classical optimization techniques are powerless to obtain the 
desired solution, when they are applied to solve optimization problems which are highly non-
linear, non-smooth, and non-convex in nature. Therefore, the development of state-of-the-art 
methods becomes very important.  

To respond to the above-mentioned need, novel and modern heuristic methods such as 
Evolutionary Programming (EP) [1, 3], Genetic Algorithm (GA), Simulated Annealing (SA), 
Tabu Search (TS), Artificial Neutral Network (ANN), etc., have been developed continuously to 
surpass limitations of the classical techniques. Among them, EP was proved to be a promising 
algorithm for solving constrained optimization problems. Due to its characteristics, which are 
independent on gradient search, less complex in algorithm, and unrestricted to types of objective 
functions and constraints in optimization problems, the application of EP now becomes popular 
in many fields and particularly necessary for solving highly non-linear optimization problems.  

In this dissertation, the application of EP-based methods to optimal power flow (OPF) 
problem, one of the most important optimization problems in power system operation, is explored 
and presented. The transient and voltage stability issues, which play an important role on major 
blackouts in many countries, are also considered in the OPF problem. This dissertation is 
organized as follows. Chapter 1 gives the overviews and objective of this research. Chapter 2 
presents the formulations of different types of OPF problems. Chapter 3 explains the mechanisms 
and main components of the proposed EP-based methods. Chapter 4 is of the topic on the 
proposed artificial neural network for transient stability assessment. Chapter 5 reports the results 
of different types of OPF problems solved by the proposed EP-based methods. Finally the 
conclusion is drawn in Chapter 6. 
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1.2 Overview of Evolutionary Programming (EP) 
 
In 1960’s,  the EP technique was originally developed by Lawrence Fogel [1] and firstly 

used finite state machines as the based structure to be evolved. In 1990’s, EP was later developed 
to solve optimization problem in the real space. After that, EP becomes an important tool widely 
used to solve various practical optimization problems.  
 The EP technique is a stochastic and iterative optimization method in the area of 
evolutionary computation emphasizing on evolution process. It works by evolving a population 
of candidate or potential solutions toward the global solution through the use of mutation 
operator and selection scheme. The population comprises a set of individuals representing the 
trial solutions in an optimization problem. During each evolution, a new population (offspring) is 
formed from an existing population (parent) through the use of a mutation operator. This 
mutation operator produces a new population by perturbing each individual in the parent 
population with a random number such as Gaussian random number etc. It is possible to use more 
than one mutation operator to a single parent to provide the diversification to the candidate 
solutions. The degree of optimality of each candidate solution (individual) is measured by its 
fitness, which can be defined as a value of the objective function in the optimization problem [4]. 
The selection scheme based on the fitness value of both parent and offspring will be performed to 
create the new parent for the next evolution. In the process of mutation, the fitness of the parent 
population and the number of evolutions or iterations are two key factors that define how far 
offspring can be mutated. Firstly, a parent with good fitness will generate an offspring in its 
vicinity, and on the contrary a parent with bad fitness will let an offspring move far away from it. 
This will give a chance to an offspring to improve the quality in terms of fitness from its parent. 
Secondly, at the beginning evolution, a large mutated distance of an offspring from its parent is 
allowed, then when the number of evolutions increases, the distance gets smaller and smaller, and 
lastly EP converges to the optimal solution.  
 An example of the general optimization problem [2] can be formulated as follows: 
 
 Min           ( )F X      

 when            ( )1, , T n
nX x x= ⊆ℜ  

 Subject to     ( ) 0g X =     

  ( ) 0h X ≤                                              (1.1) 

where g(X) and h(X) express the equality and inequality constraints respectively.  
 

Generally, EP [4] has the main steps for obtaining the optimal solution as follows: 

• Initialization 
 The P candidate solutions or individuals of the problem are randomly selected to form the 
initial population by using some distribution random numbers, e.g. uniform random number 
Gaussian random number etc.  
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• Mutation 
 From the present set of candidate solutions, the offspring will be created on a one-by-one 

basis using mutation scale (σ ) and probability distribution functions, e.g. Gaussian distribution, 
Cauchy distribution, Levy distribution etc. The offspring will be obtained according to the 
following equation. 

 
 (0,1)i i ix x Dσ′ = + ×                          (1.2) 
 
where D(0,1) is the probability distribution function; σ  is mutation scale which can be the 
function of the fitness value; number of iteration and other parameters; ix′  and x′  are the 
offspring and parent respectively. 

The mutation scale should provide the opportunity to the offspring to avoid local optimums 
and help the algorithm to converge to the optimal solution. The types of distribution function 
D(0,1) also have influence on quality of the solution. In Fig. 1.1, Gaussian and Cauchy 
distribution functions are plotted. From this figure, it can be seen that the Cauchy mutation has a 
longer tail than Gaussian mutation. Obviously, the Cauchy mutation can produce the offspring, 
which is quite different (far) from their parent. Therefore, Cauchy mutation is suitable for 
searching in large neighborhood whereas Gaussian mutation is good at searching in the local 
neighborhood. In addition, mutation operators both Gaussian and Cauchy can be applied to a 
population at the same time to enhance search template.   

• Selection 
 In this process, the current parent and offspring populations are combined together making 

the combined population and the new parent population will be selected from the combined 
population based on their fitness. For optimization to occur or the movement to the global 
optimum, the fitter or better solutions should have a greater chance of selection. Note that fitness 
should reflect the quality of a solution. In the minimization problem, an individual with a high 
objective function value should have lower fitness than that with a low objective function value. 
For example if the value of objective function is F, the fitness (f) can be defined as 1/F. A 
selection technique intensively used is a tournament scheme described in the following. 
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Fig. 1.1 The comparison between Gaussian and Cauchy distribution functions 
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 In the tournament scheme, each individual has to compete with Nt individuals randomly 
selected from the combined population on a one-by-one basis. According to Eq. (1.3) if the 
fitness value of the individual (fi) is greater than that of the selected opponent (fr), the individual 
scores 1 or wins. Otherwise, it scores 0 or loses.                                                                                                  
 When all individuals in the combined population get their competition scores (si), they will 
be ranked in descending order according to their competition score. The first P individuals with 
higher competition score are transcribed along with their fitness to form a new parent population 
of the next generation. 
 To select the potential individuals for the next generation, other selection schemes used in 
Simulated Annealing (SA) or Genetic Algorithm (GA) can be applied. In addition, since almost 
all selection schemes try to give a chance to weak individuals to survive, there will be a case that 
an individual with the best fitness will not be selected. To solve the problem, elitism can be also 
used to keep the best individual of each evolution.  

• Stopping Criteria 
 The above-mentioned mutation and the selection processes will be repeated until the 

convergence condition or stopping criterion is satisfied. The maximum generation number can be 
used as a stopping criterion. Another possible criterion is based on an improvement of solution, 
i.e. the EP processes will be terminated if there is no improvement of the solutions over the 
specific generation number. 

 
Various versions of EP algorithms can be found in [2]. Based on the characteristic of EP 

algorithm described above, the parallel algorithm can be easily put into the search template. By 
doing so, the computational time of EP will be definitely decreased. 

   
The procedure of EP for solving optimization problem can be simply shown as follows: 

Step 1:  Load all data, set g = 1 
Step 2:  Initialization & Fitness evaluation 
Step 3:  Mutation & Fitness evaluation 
Step 4:  Selection 
Step 5:  If g < Gmax, set g = g + 1 and go back to Step 3. Otherwise, terminate the process. 

 
 
 
 
 



 

 5

1.3 Application of EP to Power System Optimization Problems 
 
In this section, the examples of EP application toward various kinds of optimization 

problems in electric power system, i.e. economic load dispatch, optimal power flow, unit 
commitment, transmission expansion planning, power flow control by facts, optimal placement 
of distributed generators in distribution networks, and transient & subtransient parameter 
estimation, are briefly illustrated. The results presented in this chapter show that EP works well 
on both the real-valued functions and mixed integer functions. This emphasizes that EP can be a 
promising tool to solve the optimization problems in the future. 

1.3.1 Economic Load Dispatch (ELD) 

Economic load dispatch is an optimization problem in power system operation. The main 
task is to allocate the available power generation in system to supply the load. The primary 
objective function is to minimize total fuel cost of all generating units while satisfying all 
operational constraints of available generators. 

The representation of solution (individual) in EP algorithm is a set of power generation of 
all generators Xi= [Pi,….,PNG]. In [5], various kinds of mutation operators are applied to generate 
an offspring from its parent as below: 

 
Gaussian Mutation (CEP) 
 

 2(0, )
ii iP P N σ′= +                                                      (1.4) 

 
where N(0, iσ ) is Gaussian random variable with mean 0 and standard deviation iσ . 
 

Cauchy Mutation (FEP) 
 

 (0,1)i i iP P Cσ′= + ×                                                   (1.5) 
 

where C(0,1) is Cauchy random variable with scale parameter t =1 centered at zero. 
 
Mean of Gaussian and Cauchy mutations (MFEP) 
 

 { }/ 2 (0,1) (0,1)i i iP P N Cσ′= + +                                           (1.6) 
 

Selection of the Better One from Gaussian and Cauchy mutations (IFEP) 
 

      1

2

(0,1)
(0,1)

i i i

i i i

P P N
P P C

σ
σ

′ = + ×
′ = + ×

                                                  (1.7) 

 
From IFEP, the objective function values of both offspring are evaluated and compared. 

The better one will be chosen.  



 

 6

 Above EP algorithm with the competition in selection process is tested with fuel cost with 
valve-point loading. The valve-point loading effect normally occurs in a thermal generating unit 
causing the fuel cost function non-smooth and non-convex. The results show that mutation 
operator in FEP type performs better than other types in a small system (13-unit case) as shown 
in Fig. 1.2a, but IFEP type gives the best solution and the fastest convergence rate in bigger 
system (40-unit case) as shown in Fig. 1.2b. However, IFEP type requires computatioanl time 
slightly higher than others because it has to produce two solutions per one mutation. In addition, 
the results of all types of EP-based methods in [5] outperform those obtained by Genetic 
Algorithm (GA).  

1.3.2 Optimal Power Flow (OPF) 

It can be said that OPF problem is an extension problem of ELD. In OPF, the solution is not 
only power generation but also other controllable parameters in a power system such as voltages 
at generator bus, transformer tap settings, etc. The constraints in ELD are also extended. The real 
loss in the system is calculated and added into power balance equation whereas in ELD the 
system loss is obtained by approximation. All additional variable limits in the system are 
considered as inequality constraints, for instance voltage limit at load bus, line flow limit on the 
transmission line, stability limit etc.  Various objection functions can be considered in OPF, for 
example fuel cost minimization, system loss minimization, optimal voltage profile, power 
transfer maximization, and load shedding minimization under an emergency condition and in 
some cases the multi-objective is taken into account. The minimization of both fuel cost and 
system loss at the same time is one of the multi-objective functions. Therefore, the OPF problem 
is a large scale of non-linear optimization problem requiring a powerful tool to solve it. 

 In [6], EP algorithm is a selected tool to solve OPF with cost minimization. The control 
variables or solutions are the power generation, voltage at generator bus, and transformer tap 
position. To handle the inequality constraints, the original objective function is added by the 
penalty terms. The EP algorithm is tested on IEEE 30-bus system with three different types of 

    

      (a) 13-unit case                                                                    (b) 40-unit case 

Fig. 1.2 Convergence comparisons between different types of EP algorithms for ELD problem 
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cost function; namely quadratic, piecewise quadratic and quadratic with sine component curves. 
The results show that EP works well with both smooth and non-smooth cost functions. 

In [7], the optimal reactive power dispatch which is the active loss minimization is 
considered as an objective function. The results in this paper show that the EP method is able to 
undertake global search with a fast convergence rate and a feature of robust computation, and 
possesses an inherent capability for parallel processing. From the simulation study, it has been 
found that the results of EP are always better than that obtained using the quasi Newton method, 
one of the classical optimization techniques, under all circumstances. 

In [8, 9], multi-objective optimization problems, which consider loss minimization, cost 
minimization of reactive power source installment, and voltage deviation minimization 
simultaneously, are solved by EP. In [9], a dynamic mutation and metropolis selection EP method 
(DMMEP) is proposed and compared with the conventional EP (CEP). The results on the multi-
objective OPF problem show that DMMEP converges to the solution much faster than CEP as 
shown in Fig. 1.3. 

1.3.3 Unit Commitment (UC) 

 UC is an operation scheduling function [10], which hourly schedules the on and off times of 
all generating units in the whole system with the minimum cost while satisfying the forecasted 
power demand plus the system reliability, and considering start-up and shut-down costs and 
minimum-up and minimum-down times of each generating unit. For hourly schedule of 
generating unit, ELD will be calculated to obtain the operating cost of each hour. In terms of time 
scales, UC is hourly operation decision with one-day or one-week horizon. The UC problem 
formulation [11] can be expressed as follows: 

 
Min     TC = TFC + TSUC + TSDC                                          (1.8) 

                 
where TC is total cost for scheduling period; TFC is the total fuel cost of committed units 
(calculated from ELD) for scheduling period; TSUC is the total start-up cost; and TSDC is the 
total shut-down cost.  

         

Fig. 1.3 Convergence natures of DMMEP and CEP for multi-objective OPF problem 

 



 

 8

The main constraints are as follows: all committed unit capacity should meet the hourly 
power demand and spinning reserve (normally 10% of hourly demand). Minimum-up and 
minimum-down times of each generating unit must be ensuring. In other words, once the unit is 
committed or decommitted, there is a minimum time before it can be decommitted or 
recommitted. In each hour, the committed units should also supply power demand within their 
maximum and minimum limits etc. 
 The solution of UC problem is principally the status of all generating units in each hour and 
it is demonstrated in Fig. 1.4. In this figure, ‘1’ indicates that the unit is ‘on-line’ and ‘0’ 
indicates that the unit is ‘shut-down’ or ‘off-line’. Because EP fundamentally treats the candidate 
solution as real number, the modification is needed. The original ‘0’ and ‘1’ schedules are 
transformed to real number as shown in Fig. 1.5. The aij refers to as “state variable” of unit i at 
the j-th reduced period. Therefore, the representation of an individual becomes Sk = [ai1, ai2 ai3, 
ai4, ai5, ai6]. These elements take on the integer values shown in Fig. 1.6a. 

         

Fig. 1.4 Solution representation of UC problem 

 

               

Fig. 1.5 Solution representation of EP for UC problem 

 

         

Fig. 1.6 Defining the unit’s operating code for UC problem 
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To add minimum-up and minimum-down time constraints (Let say both are 4 hrs), firstly 
the coding begins with a simple binary system (Fig. 1.6a) and then eliminates the combinations 
that violate the constraints (Fig. 1.6b) and lastly it is rearranged with respect to the number of on-
line hours (Fig. 1.6c). For example, “-2” and “2” indicate a unit run for 2 hours; in the first case 
the unit is brought on-line and in the second case the unit is brought off-line.  
 The EP is used to solve UC problem with 10-unit case. The EP performances, when the 
number of generations is increased and when the number of P candidates is increased, are plotted 
in Fig.1.7. At the same computational time (25 minutes), EP algorithm performs much better with 
“more generations” ($564800) than it does with “more candidates” ($565150). Fig. 1.7 also 
indicates that the execution time increases in a quadratic manner with the increase of the 
population size whereas the execution time increases almost in a linear manner with the increase 
of the generation number. 

 In addition, the EP gives the better performance for UC problem compared to solution 
obtained from GA, e.g. less computational time and lower total cost. 

1.3.4 Transmission Expansion Planning 

In case that the existing transmission network is fully committed, the new transmission is 
needed to equip to the system in order to supply power in a secure manner. Briefly, in this 
problem, the objective is to identify where and what type of equipment (transmission line) should 
be installed to minimize the investment and operating costs while subject to investment 
constraints; limitation of the number of circuits in one path (arc) etc. The representation of EP 
algorithm in [12] is  Sk =[nk,ij ; for all arcij] ,when nk,ij denotes the number of circuits in arcij of 
individual k and arcij denotes the transmission path connecting between node i and node j. The 
mutation process creates a single offspring from its parent as below: 
 

,k ijn ′ = integer 2
, ,(0, )k ij k ijn N σ⎡ ⎤+⎣ ⎦  

  , ,max min( ) /k ij ij kn F S Fσ β= ⋅ ⋅                                                 (1.9)    
                

where nij,max denotes the maximum number of circuits in an arcij; β is a scaling factor. 

         
     (a)                                                                                       (b) 

Fig. 1.7 EP performances for UC problem 
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Table 1.1 summarizes the performance of the EP algorithm proposed in [12] and the results 

which were obtained using a genetic algorithm (GA), a simulated annealing (SA) technique, and 
a hybrid method that integrates features of GA, SA and Tabu Search (TS). It can be seen that the 
EP approach is shown to have a better performance than others in terms of the smallest number of 
fitness evolutions. 

1.3.5 Power Flow Control by FACTS 

 The development of FACTS (flexible AC transmission systems) based on power electronic 
devices such as thyristor etc. has many benefits on both steady state power flow control and 
dynamics stability control. Under some emergency conditions in power system, the power flow in 
critical lines has to be limited or to be controlled. This power flow is sometimes beyond the 
control ability of generator.  However, this can be achieved by controlling FACTS parameters.  

In [13] phase shifter and series compensator based on an unified power flow controller 
(UPFC) device, one type of the FACTS devices, are equipped to the system at a specific location. 
They can be used to regulate both angles and magnitudes of branch voltages. Their equivalent 
circuits are modeled in Figs. 1.8 and 1.9. 

By controlling parameters of Tij, Ф and xc, power flow in the line equipped with the devices 
can be controlled. The objective function is to minimize active power loss and to control power 
flow in critical lines to a specific value under emergency conditions, such as circuit outages etc., 
while subject to power balance and parameter limits of phase shifters and series compensators.  
The objective function (F) can be formulated as below: 

 

Min ( )2MAX
loss k k k

k CL

F P P Pλ
∈

= + −∑                                       (1.10) 

 
where λk is a penalty factor for the critical line k; Pk is power flow in the critical line k; Pk

MAX is 
the limited power flow on branch k; CL is a set of the critical lines under emergency condition. 

Table 1.1 Performance of various algorithms for transmission planning problem 
 

Algorithm Number of fitness evaluations 
before the best solution is created 

Number of fitness evaluations 
requires to achieve convergence 

GA 598 881 
SA 594 754 

Hybrid 470 528 
EP 224 320 

 

 

             
Fig. 1.8 Phase shifter with tap change equivalent circuit       Fig. 1.9 Series compensator equivalent circuit 
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The locations of four phase shifters and three series compensators in modified IEEE 30-bus 
system are shown in Fig. 1.10. 

Three cases have been studied. Case 1 is the normal operation state. Case 2 and 3 are 
contingency states. Case 2 has one circuit outage of branch (6, 28). Case 3 has two circuit outages 
of branches (6, 28) and (10, 21). Two branches (10, 22) and (8, 28) are selected as the limited 
power flow branches whose limits are set to 0.1 p.u. The results of all cases are tabulated in Table 
1.2. After optimization, the power flows in branches (10, 22) and (8, 28) are regulated back into 
their limit in both case 2 and case 3 as shown in the table. 

1.3.6 Optimal Placement of Distributed Generators in Distribution Networks 

Due to a high cost of electrical network expansion in order to meet load growth, distributed 
generation (DG), defined as an electric power source connected directly to the distribution 
network on customer side, can be a promising choice to delay expensive infrastructure 
investment. The rising interest in DG is not only due to the economical reasons but also 
government incentives to create a combination of a generation group that is less dependent on 
only one type of power source. The optimal location can also lead to significant reduction in 
feeder losses. However, DG’s installation can cause some disturbances to the system such as 
power quality etc. Normally, the energy provided by DG, is more expensive than that provided 
by large central generators. Therefore, the placement location and sizing of DG on the 
distribution system are important issues on the power system planning. 

Table 1.2 Results of power flows of branches with and without power flow control 
 

 Initial conditions  Optimal Results 
Branches (10,22)           (8,28) (10,22)           (8,28) 

Case 1   0.080            0.021   0.0766        0.0254 
Case 2   0.086            0.147 0.100          0.100 
Case 3   0.231            0.158 0.100          0.100 

 

        

Fig. 1.10 Modified IEEE 30-bus system with FATCS devices  

 



 

 12

The objective of DG’s installation is to minimize the supply cost i.e. the total cost paid by 
the utility in order to supply the feeder loads while considering the investment and operation cost 
of DGs and bus voltage variation. The objective in [14] is formulated as follows: 

 
Max    B A

T T v vF C C Pλ= − −                                                   (1.11)                   
 

where CB
T is the total load supply cost for a period before DG’s installation; CA

T is the total load 
supply cost for a period after DG’s installation, which includes the supply cost from substation 
and DGs as well as cost of DG’s installation. The third term is a penalty function in which the 
DG’s operation makes the generation bus voltages exceed a specified variation tolerance. 

 The load daily variation is considered by three demand levels i.e. peak, intermediate, and 
low (it assumes to be equal for whole year). DG is considered as a negative constant load with 
maximum and minimum limits of active and reactive capacity. The possible generation interval 
of a DG is divided into discrete levels as shown in Fig.1.11. 

The numbers cP and cQ are an integer located between 0 and nP and between 0 to nQ 
respectively. This number expresses the amount of active and reactive power supply from a DG 
based on its nominal capacity ( nom

GP ) in each load demand level. The solution of the problem 
consists of position, nominal capacity (type), and operation schedule (cP and cQ) of DGs. 
Therefore, the representation of an EP candidate solution is depicted in Fig. 1.12. 

      

Fig. 1.11 Active and reactive generated power intervals of DG 

 

   
Fig. 1.12 Representation of an EP candidate solution for optimal placement of DGs 
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The algorithm is tested with a part of distribution system in Brazil and the horizon time for 
evaluation of the DG’s installation is 5 years. The maximum number of the installed DGs is 2. 
Solved by the EP algorithm, the optimal installations of two DGs are obtained at bus 128 
(Generator 1) and 116 (Generator 2). Table 1.3 shows the comparison of system loss and supply 
cost before and after the installation of two DGs. The results show that by adding two DGs into 
the distribution system, the total loss in feeder lines and the total supply cost including the 
investment of DG’s installation are remarkably reduced. 

1.3.7 Transient and Subtransient Parameter Estimation 

The issue of dynamic parameter estimation of a generator is important for power system 
analysis, control system design, and fault analysis. The accuracy of dynamic parameter 
estimation indicates the accuracy of dynamic analysis of a power system. As known, the dynamic 
parameters of a generator clearly play a very significant role on the power system stability 
analysis. Generally, the generator parameters are estimated by observing stimulus and response 
data. The objective of this problem is to minimize a value of the squared predictive error, which 
is a function of dynamic generator parameters. The dynamic model of a generator [15] can be 
simply written as follows: 

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

e e

k k e e k k

x t A p x t B p u t B p y t w t
y t C p x t C p y t v t

= + + +

= + +
                              (1.12) 

and  
[ , , , , , , , , , , ]

( ) [ , , , , , ]
d d d q q do do qo d

q q d fd

p X X X X X T T T M D S

x t E E E Eδ ω

′ ′′ ′′ ′ ′′ ′′=

′ ′′ ′′= Δ Δ Δ Δ Δ Δ
                              (1.13) 

 
where p is the parameter vector to be estimated, x(t) is state variable; y(tk) and ye(tk) are the output 
signal at time step tk; w(t) and v(tk) are the system and measurement noises respectively.  
 The objective function is to minimize an error function of the real response and estimated 
response from the set of parameters (p). 
 

Min    ( ) ( ( , ))T
kF p E e p t=  

Table 1.3 Comparison of system loss and supply cost before and after the installation of two DGs 
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where                                                ( , ) ( ) ( ) ( ) ( ) ( )k k k e e ke p t y t C p x t C p y t= − +  

   
1

1( ( )) ( )
T

t
E e t e t

T =

= ∑                                                               (1.14) 

 
where e(p,tk) is the error function. x(tk) is value of state variable at time tk, which is obtained from 
integral process by a numerical method; T is the number of components in vector e(p,tk).  
 Ref. [15] introduces an adaptive mutation scale (σ ) in EP algorithm, which is different 
from a fixed adaptive mutation scale in some previous applications. The adaptive scaling factor 
guarantees that if the objective function increases, the scaling factor will be kept large for the 
extended search area to make sure that any better solution will not be ignored. On the other hand, 
if the objective function decreases, the scaling factor will reduce to make a smooth convergence. 
 The corrected extended Kalman Filter (CEKF) is used as the comparison method. Four case 
studies are conducted with different noise levels (Noises in Case 1 are zero and in Case 4 are the 
highest). The results solved by EP and CEKF are tabulated in Table 1.4. The results indicate that 
in no noise (Case 1) or in low noise (Case 2), the results of CEKF are the same or even better 
than those of EP. However, in high-noise (Cases 3 and 4), the performance of CEKF deteriorates 
while EP still gives the satisfactory results. This shows that EP is a robust search to obtain good 
parameter estimation from the data, which is full of noises.  

 
 
 

 
 
 
 
 
 
 
 
 

Table 1.4 Numerical results of transient and subtransient parameter estimation 
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1.4 Overview of Optimal Power Flow (OPF) problem 
 

The OPF has had a long history in its development. It was first discussed by Carpenter in 
1962 [16–18]. It was introduced as an extension of conventional economic dispatch to determine 
the optimal settings for control variables while respecting various constraints and took a long 
time to become a successful algorithm that could be applied in everyday use.  

The OPF is a power system optimization problem designed to optimize a prescribed 
objective function F(x,u) while at the same time satisfying equality constraints g(x,u,p)=0 and 
inequality constraints h(x,u,y)≤0. g(x,u,p) represents bus power balance equations which are the 
functions of vector x, u and p. h(x,u,y) is the inequality constraints. x is the vector of state 
variables including all load bus voltage magnitudes, all bus voltage angles excluding slack bus. u 
is the vector of control variables corresponding to real power generations of all PV buses 
excluding slack bus, voltage magnitudes of PV buses and slack bus, tap settings of variable-tap 
transformer, phase shifter angles, switched capacitor settings. p is the vector of demand variables 
including real and reactive power loads. y is the vector of output variables including slack bus’s 
real power generation, reactive power generation of all generators, and line and transformer 
loadings. Some objectives and related constraints commonly found in OPF problems are listed in 
Table 1.5. 
 

Table 1.5 Objectives and related constraints commonly found in OPF problem [10, 17] 
 

Objectives Constraints 
1. Active power objectives 
• Minimize generation cost 
• Minimize transmission loss 
• Maximize power transfer 

 
2. Reactive power objectives  
• Minimize transmission loss 
 

3. General objectives 
• Minimize deviation from a target 

schedule 
• Minimize control shifts to alleviate 

violations 
• Minimize load shedding 
• Optimize voltage profile 

 
4. Environmental dispatch objectives 
• Minimize emissions 

 

1. Limits on control variables 
• Generator output in MW 
• Transformer tap limits 
• Generator bus voltage limits 
• Shunt capacitor range 
 

2. Operating limits on 
• Line and transformer flows      

(MVA, Amps, MW, MVAR) 
• MW and MVAR interchange 
• MW and MVAR reserve margins 
• Load bus voltage limits 
• Voltage angle difference limits 
 

3. Security constraints limit 
• Limit on operations with simulated 

line outage 
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The objective function used in OPF normally is selected based on the operational 
condition of the power system. For example, during the normal operation, fuel cost minimization 
or gas emission minimization may be selected, whereas during the emergency condition such as 
line fault etc., load shedding minimization or voltage profile optimization may be considered. In 
addition, in some cases multiple objective functions (fuel cost minimization and gas emission 
minimization) can also be taken into consideration at the same time. In such a case, the scaling 
factor is needed to define in order to weight the importance of each objective function. 

For OPF studies, the power system network is typically modeled at the main transmission 
level, including transmission units. The model may also include other auxiliary generating units 
and representation of internal or external parts of the system are used in deciding the optimum 
state of the system [10].  
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1.5 Literature Review of Optimization Techniques for OPF 
 

Since the OPF is an optimization problem, the purpose of optimization is to determine the 
optimal setting of all control variables with respect to a predefined objective. 
 A wide variety of optimization techniques have been applied to solving OPF problems. 
Basically, it can be classified into the classical optimization approach and artificial-intelligence 
based approach. The former lacks in the ability of finding the global optimum whereas the latter 
consumes extensive computation time. Most of the optimization techniques, applied to OPF 
problem in the past, were in classical optimization approaches. However, due to advances of 
current computer technology, many artificial intelligence (AI) techniques have been proposed to 
solve the OPF problem. A review of literatures focused on these two kinds of optimization 
approaches is stated in the following: 

1.5.1 OPF Problem with Classical Optimization Techniques 

The OPF literature up to 1993 has been surveyed by J.A Momoh et al. [19, 20]. They 
classified classical optimization techniques applied to solve OPF problems into six categories as 
shown below: 

 
1.  Nonlinear programming (NLP), 
2.  Quadratic programming (QP), 
3.  Newton-based solution of optimality conditions, 
4.  Linear programming (LP), 
5.  Hybrid versions of linear programming and integer programming, and 
6.  Interior point methods. 
 

For each category, they mentioned a theory in brief and displayed the statistics of its 
application to OPF problems as follows: 

 
Non-Linear Programming (NLP) 

Nonlinear programming (NLP) deals with problems involving nonlinear objective function 
and constraints. The constraints may consist of equality and/or inequality formulations. The 
inequality can be specified by being bounded both above and below. 

Several methods such as sequential unconstrained minimization technique (SUMT), 
Lagrange multiplier based, and the modular in-core nonlinear optimization system (MINOS) 
augmented concept have been used to solve OPF problems. This class assumes nonlinear 
objectives and constraints. A survey of most commonly found applications revealed that about 
8% of OPF formulations employed general purpose packages applied for both real-time on-line 
and off-line operational problems. 

Quadratic Programming (QP) 

Quadratic programming is a special form of nonlinear programming whose objective 
function is quadratic with linear or linearized constraints. Several QP methods in this category 
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(about 15%) have been used to solve OPF (loss, voltage economic dispatch) type of problems. 
Quasi-Newton and sensitivity-based methods have been employed for solving real on-line OPF 
problems. 

Newton-Based Solutions 

In this approach, the necessary conditions of optimality commonly referred to as the Kuhn-
Tucker conditions are obtained. In general, these are nonlinear equations requiring iterative 
methods of solution. The Newton method is favored for its quadratic convergence properties. 

Linear Programming (LP) 

Linear programming treats problems with constraints and objective function formulated in 
linear forms with non-negative variables. The simplex method is known to be quite effective for 
solving LP problems. 

Roughly 25% of the papers reviewed in [19, 20] solve the OPF problems using LP based 
techniques. The most commonly used technique is the revised simplex method. The objective 
functions (voltage, loss, economic dispatch and VAR) are linearized to enable an LP solution. 

Mixed Integer Programming (MIP) 

Mixed integer programming (MIP) is a particular type of linear programming whose 
constraint equations involve variables restricted to being integers. Integer programming and 
mixed integer programming, like nonlinear programming are extremely demanding of computer 
resources and the number of discrete variables is an important indicator of how difficult and MIP 
problem will be to solve. 

Literature in this category employs a mixture of linear and mixed integer programming 
techniques to solve typical OPF problems such as VAR planning (power loss minimization). The 
mathematical optimization technique assumes linear objectives, and the constraints are a 
combination of linear and nonlinear with discrete or integer variables. 

Interior Point Methods 

The interior point method, recently re-discovered by Karmarkar, has stunned the 
operational research community since the scheme solves LP problem faster and is perhaps better 
than the conventional simplex algorithm. The extension of the interior point method to apply to 
NLP and QP problems has shown superior qualities and promising results. The interior point 
methods convert the inequality constraints to equalities by the introduction of nonnegative slack 
variables. A logarithmic barrier function of the slack variables is then added to the objective 
function, multiplied by the barrier parameter, which is gradually reduced to zero during the 
solution process. 

1.5.2 OPF Problem with Artificial Intelligence Based Optimization Techniques 

The OPF programs based on classical optimization approaches reviewed in the previous 
section are used daily to solve very large OPF problems. However, they are not guaranteed to 
converge to global optimum of the general non-convex OPF problem, although there are some 
empirical evidences on the uniqueness of the OPF solution within the domain of interest. 
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Moreover, the classical optimization techniques need some mathematical assumptions, such as 
convex and smooth objective functions, linear constraints, to solve the problem. Several 
disadvantages of the classical optimization techniques have been concluded by M. A. Abido [21] 
in the following paragraph. 

 Nonlinear programming based procedures have many drawbacks such as insecure 
convergence properties and algorithmic complexity. Quadratic programming based techniques 
have some disadvantages associated with the piecewise quadratic cost approximation. Newton-
based techniques have a drawback of the convergence characteristics that are sensitive to the 
initial conditions and they may even fail to converge due to the inappropriate initial conditions. 
Sequential unconstrained minimization techniques are known to exhibit numerical difficulties 
when the penalty factors become extremely large. Although linear programming methods are fast 
and reliable, they have some disadvantages associated with the piecewise linear cost 
approximation. Interior point methods have been reported as computationally efficient; however, 
if the step size is not chosen properly, the sub-linear problem may have a solution that is 
infeasible in the original nonlinear domain [22]. In addition, interior point methods, in general, 
suffer from bad initial, termination, and optimality criteria and, in most cases, are unable to solve 
nonlinear and quadratic objective functions [18]. 

Since there are recent attempts to overcome the limitations of the classical optimization 
approaches, the application of artificial intelligence (AI) techniques to solve optimization 
problem has emerged. Some of AI techniques, such as Simulated Annealing (SA), Tabu Search 
(TS), Genetic Algorithm (GA), hybrid Tabu Search/Simulated Annealing (TS/SA), Evolutionary 
Programming (EP), Improved Evolutionary Programming (IEP), and Particle Swarm 
Optimization (PSO), have been introduced to solve the OPF problems. A brief review of each 
algorithm has been concluded as follows: 

Simulated Annealing (SA) 

A new technique to obtain near to optimum solutions of optimization problems entitled 
Simulated Annealing (SA) was proposed by Scott Kirkpatrick, C. Daniel Gelatt and Mario P. 
Vecchi in 1983. SA has been tested in several optimization problems showing a great ability for 
not been trapped in local minima. Due to its implementation simplicity and good results shown, 
its use has been growing since mid 80’s. SA techniques were originally inspired by the formation 
of crystals in the solids during cooling. The method itself has a direct analogy with 
thermodynamics, specifically with the way that liquids freeze and crystallize. 

 SA is a method based on local search in which each movement is accepted if it improves 
the objective function. Other possible solutions are also accepted according to a probabilistic 
criterion. Such probabilistic nature is based on annealing process and they are obtained as a 
function of the system temperature. 

The SA strategy starts with a “high” temperature giving a high probability to accept non-
improving movement. The temperature and probabilistic levels diminish as long as the algorithm 
advances to the optimal solution. Therefore, SA has the ability to escape from local minima by 
accepting non-improving solutions during the first and medium stages of the algorithm [23]. The 
main drawback of SA procedure is that the annealing procedure is very CPU consuming although 
its convergence has been theoretically improved. 
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Tabu Search (TS) 

 TS is an AI-based method firstly proposed by Glover that guides the search for the optimal 
solution making use of flexible memory system, which exploits the history of the search. It 
consists of the systematic prohibition of some solutions to prevent cycling and to avoid the risk of 
trapping in local minima. New solutions are searched in the neighborhood of the current one. The 
neighborhood is defined as a set of the points reachable with a suitable sequence of local 
perturbations, starting from the current solution. 
 To prevent cycling movement, Tabu list of T length is introduced to prevent moving back to 
the previous solution just visited. In addition, some aspiration criteria, which allow overriding of 
Tabu status, can be introduced if that move is still found to lead to a better cost with respect to the 
cost of the current optimum. 
 One of the most important features of TS is that a new configuration may be accepted even 
if the value of the objective function is worse than that of the current solution prompted by using 
short-term and long-term process. In this way it is possible to avoid being trapped in local 
minima [24].  
 TS approach is proposed to solve OPF problem, which is examined on standard IEEE 30-
bus test system with different objectives and generator cost curves. The results are promising and 
show the effectiveness and robustness of the proposed approach [25]. 

Genetic Algorithm (GA) 

GA is computational procedures, which use ideas borrowed from evolution genetics in that 
they solve problems by maintaining populations that survive and evolve through chance and rule 
“survival of fittest”.  
 In a simple genetic algorithm, individuals are simplified to a chromosome that codes for the 
variable of the problem. The strength of an individual is the objective function that must be 
optimized. A population of candidates evolves by genetic operators: mutation, crossover and 
selection. The characteristics of good candidates have more chance to be inherited, because good 
candidates live longer. Therefore, the average strength of the population rises through the 
generations. Finally, the population stabilizes, because no better individual can be found. At this 
stage, the algorithm has converged, and most of the individuals in the population are mostly 
identical, and represent sub-optimal to the problem [26, 27]. 
 GA is applied to solve the OPF problem with a versatile FACTS device, i.e. Unified Power 
Flow Controller (UPFC), with the modified IEEE 14-bus test system. The results show that 
UPFC does not contribute much on cost reduction but it can help to reduce reactive power loss 
and increase the voltage stability margin [26]. 

Hybrid Tabu Search/Simulated Annealing (TS/SA) 

 A hybrid TS/SA approach is an integrated approach between TS and SA by using TS as a 
main algorithm. The trial generated neighborhood solution of SA is used for generating 
neighborhood solution for TS. In addition, the probabilistic acceptance criterion of SA is used 
instead of aspiration criteria of TS. Cooling schedule and Tabu list restriction are also used in this 
approach [28]. 
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 The hybrid TS/SA is proposed to minimize the generator fuel cost in OPF problem with 
FACTS devices when power flow controls are not needed. The IEEE 30-bus system is used to 
test the performance of the hybrid TS/SA algorithm. The results show that the cost saving is 
increased when more FACTS devices are added in the system. In addition, the hybrid TS/SA 
method contributes to better solutions and requires less CPU times than using TS or SA alone 
[29]. 

Evolutionary Programming (EP) 

Similar to GA, the EP technique is a stochastic and iterative optimization method in the area 
of evolutionary computation, which uses the mechanics of evolution to produce optimal solutions 
to a given problem. However, EP works on real value coded strings rather than binary strings 
used by GA. It works by evolving a population of candidate solutions toward the global minimum 
through the use of mutation operator and selection scheme. During each iteration, a new 
population (offspring) is formed from an existing population (parent) through the use of a 
mutation operator. The mutation operator produces offspring by perturbing the parent with some 
probability distribution functions. The degree of optimality of each candidate solution 
(individual) is measured by its fitness, which can be defined as a value of the objective function 
of the problem being optimized [4]. By applying a competition scheme, the individuals in the 
population compete with each other. The winning individuals form a resultant population, which 
is transcribed to the next generation. 
  The EP is employed to minimize the generator fuel cost in OPF problem with FACTS 
devices. The IEEE 30-bus system is a test case to investigate the performance of EP algorithm 
with three different generation cost curves. The results show that EP approach can obtain the 
satisfactory results for all types of cost curves [6].   
 Also, EP is applied to handle power flow control in the OPF problem with FACTS devices 
on the modified IEEE 30-bus test system. The security constraints are considered in the OPF 
problem by setting the line flow limit of some critical transmission lines under the emergency 
case. The results show that the application of EP can effectively find out the global solution [13]. 

Improved Evolutionary programming (IEP) 

 To prevent premature convergence and to balance the exploration and exploitation abilities, 
an improved EP (IEP) was proposed by using multiple sub-populations to perform parallel search 
with random initialization in the divided solution space, and applying multiple mutation operators 
to enhance search template. Moreover, probabilistic update strategy based on annealing schedule 
like SA is utilized to avoid the dependence on fitness function and to avoid being trapped in local 
optimum. Moreover, re-assignment of individuals of every sub-population is designed to fuse 
information and enhance population diversity [30].  

 IEP is applied to solve the OPF problem with three different types of generator fuel cost 
curves. It is shown that total generator fuel cost solved by IEP is less expensive than those solved 
by EP, TS, and hybrid TS/SA [31].  

Moreover, due to its characteristic, IEP can easily facilitate parallel implementation to 
reduce the computational time without sacrificing the quality of solution.  
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Particle Swarm Optimization (PSO) 

PSO is an efficient and reliable evolutionary-based approach which combines social 
psychology principles in socio-cognition human agents and evolutionary computations. PSO has 
been motivated by the behavior of organisms such as fish schooling and bird flocking. Unlike the 
other heuristic techniques, PSO has a flexible and well-balanced mechanism to enhance and 
adapt to the global and local exploration abilities. It works by moving particles (changing 
positions) over a multi-dimensional search space using local and global information of Pbest (the 
best position reached by a particular particle) and Gbest (the best position reached by all particles) 
until the computational limitation is exceeded. 

In [21], PSO is applied to solve the OPF problem with different objectives that include fuel 
cost minimization, voltage profile improvement, and voltage stability enhancement. The results 
confirm the potential of PSO and show its effectiveness and superiority over the classical 
gradient and GA techniques. 
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1.6 Objectives of This Research 
 

The objectives of this research can be summarized as follows.  
 
1.  Study and formulate the OPF problems with transient and voltage stability 

considerations. 
2.  Propose and develop new versions of the EP-based methods to solve the problems. 
3.  Examine the sensitivity of parameters used in the proposed method on the obtained 

solutions and simulation time.  
4.  Compare the effectiveness of new EP-based methods with the conventional EP and 

in some cases if possible with other heuristic methods. 
5.  Compare the results between the different OPF problems. 
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Fig. 1.13 Structure of this dissertation 

1.7 Structure of Dissertation 
 
This research proposes the EP-based methods to solve the OPF problem with the 

considerations of transient and voltage stability issues. Fig. 1.13 shows the structure of this 
research. This dissertation is organized in as follows. Four types of the OPF problems are 
formulated in Chapter 2. In Chapter 3, the procedure and main components of the EP-based 
methods are elaborated. Chapter 4 is of the topic on the proposed artificial neural network for 
transient stability assessment used in Transient Stability Constrained Optimal Power Flow 
(TSCOPF) problem. Chapter 5 reports all results of different types of OPF problems solved by 
the proposed EP-based methods. Finally the conclusion is drawn in Chapter 6.    
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CHAPTER 2 

OPTIMAL POWER FLOW (OPF) PROBLEM WITH 
TRANSIENT AND VOLTAGE STABILITY 
CONSIDERATIONS 
    

2.1 Introduction 
 

This chapter will mainly describes the statements and formulations of four different OPF 
problems, namely conventional OPF, transient stability constrained OPF (TSCOPF), OPF with 
steady-state voltage stability consideration, and OPF with both transient and voltage stability 
considerations. The corresponding objectives and constraints in each problem are clearly 
illustrated. Furthermore, the strategies to cope with the related constraints both equality and 
inequality ones are explained here.  

To analyze the OPF problem with fuel cost minimization, the input-output characteristic of 
a thermal generating unit is an important issue to be first mentioned. The higher the accuracy of 
the characteristic representation is the more realistic the solution of OPF problem will be. In this 
dissertation, three different input-output characteristics are considered in the simulation. 

Characteristic Representation of Thermal Generating Unit 

In analyzing the problems associated with the controlled operation of power systems, there 
are many possible parameters of interest. Fundamental to the economic operating problem, is the 
set of input-output characteristics of a thermal power generating unit [1]. Typically, the data used 
to create the input-output characteristic are obtained from design calculations or from heat rate 
tests. The input of the unit can be used in terms of heat rate (MBtu/hr) or converted into total 
generation cost per hour ($/hr) whereas the output is normally the net electrical output of the 
generating unit in MW.  

To simplify the characteristic representation of a generating unit, the input-output 
characteristic can be modeled as a smooth and convex curve shown in Fig. 2.1. The characteristic 
shown is idealized in that it is presented as the smooth, convex curve. The minimum output of 
unit is caused by fuel combustion stability and inherent steam generator design constraints. 

However, for large steam turbine generators, the input-output characteristics shown in Fig. 
2.1 are not always as smooth as indicated. Large steam turbine generators will have a number of 
steam admission valves that are opened in sequence to obtain ever-increasing output of the 
thermal generating unit. When a valve is first opened, the throttling losses increase rapidly and 
then, reduce gradually until the opening of next valve. The valve-point loading effect exhibits a 
greater variation in the input-output curve as shown in Fig. 2.2. Points A, B, and C are the 
operating points when valves are opened. 
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Besides, a power system operation usually uses a combined-cycle unit as a peak load 

serving unit. It consists of a series of single-cycle gas turbines in conjunction with some heat-
recovery steam generators (HRSGs) [2]. Fig. 2.3 shows the input-output characteristic of a 
combined cycle plant with two gas turbines. 

In conclusion, Fig. 2.1 represents the rough approximation of input ($/hr)-output (MW) 
characteristic of a thermal generating unit, Fig. 2.2 gives the more accurate representation of 
input-output characteristic of a generating unit when three valve-point loading effects are taken 
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Fig. 2.1 Input-output curve of a thermal generating unit 
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Fig. 2.2 Input-output curve of a thermal generating unit with three valve points 
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into consideration, and Fig. 2.3 represents the approximation of input-output characteristic of a 
combined 2-thermal generating unit. Based on this assumption, these three types of input-output 
characteristic of the thermal unit can be represented by the quadratic, quadratic with sine 
component, and piecewise quadratic curves respectively. These three cost curves will be used in 
the OPF simulation in order to investigate the effectiveness of the proposed algorithms. 

Please note that most of the classical optimization problems can handle the OPF problem 
only when the cost curve of a thermal generating unit is represented by the quadratic function 
(Fig. 2.1), which is simple but not so accurate. Linear Programming (LP) is even worse. It cannot 
deal with this simple quadratic function. The linearization process is required to convert from the 
quadratic function to piecewise linear function. Undoubtedly, this approximation will degrade the 
accuracy of the OPF solution when in the future the cost curve of the generating unit will become 
more and more complicated. On the other hand, the proposed EP-based methods do not have such 
limitation. They can solve the OPF problem with any type of generator cost curve even though 
the cost curve is non-smooth or non-convex.   
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Fig. 2.3 Input-output curve of a combined-cycle unit with two gas turbines 
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2.2 Conventional OPF Problem 
 

The OPF is an optimization problem that optimizes a selected objective while satisfying 
network equality and inequality constraints. The general OPF problem can be expressed as:  

 
Min or Max              F(x,u)                                                         (2.1) 

 
         Subject to        g(x,u,p)=0,                                                      (2.2) 

h(x,u,y)≤0,                                                (2.3) 
 

where 
F(x,u) is the objective function to be optimized. 
g(x,u,p) is the equality constraint representing bus power balance equations. 
h(x,u,y) is the system operating constraint. 
x is the vector of state variables including load bus voltage magnitudes and all bus 

voltage angles excluding the angle at the slack bus. 
u is the vector of control variables including real power generation outputs except at the 

slack bus, voltage magnitudes of all PV buses including the slack bus, and transformer 
tap settings. 

p is the vector of the demand variables including the real power demand and reactive 
power demand of all buses. 

y is the vector of the output variables including real power generation at the slack bus, 
reactive power generation of all generators, and power flows in transmission lines and 
transformer loadings. 

2.2.1 Objective Function 

In the OPF problem formulation, a wide variety of objectives can be selected. In this 
dissertation, the selected objective of the OPF problem is to minimize the total generator fuel 
cost. This objective is primarily used in the operation and planning of a power system. It can be 
expressed mathematically as:  

 

 ∑
=

=
NG

i
Gii PFF

1
)(                                             (2.4) 

 

where  
F is the total generation cost. 
Fi(PGi)  is the i-th generating unit’s generation cost which is a function of real power 

generation output. 
PGi is the real power generation output (in MW) of the i-th generator, 
NG is the number of generating units. 

 
Note that due to the flexibility of the EP-based methods, the fuel cost curve in Eq. (2.4) is 

not limited to be only a quadratic or linear function. 
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2.2.2 Equality Constraints 

The equality constraints in the OPF problem are network power balance equations at each 
node. The real and reactive power balance equations in polar form can be expressed as follows: 

 

 ∑
=

=+−−
N

j
jiijijjii YVVP

1
0)cos( δδθ  i=1, 2, …,N              (2.5) 

  ∑
=

=+−+
N

j
jiijijjii YVVQ

1

0)sin( δδθ  i=1, 2, …,N              (2.6) 

 
where 
Pi is the real power injection at bus i. 
Qi is the reactive power injection at bus i. 
Vi, Vj are the voltage magnitude of bus i and j. 
Yij is the magnitude of the ij-th element of bus admittance matrix. 
θij is the angle of the ij-th element of bus admittance matrix. 
δi, δj are the voltage angle of bus i and j. 
N is the number of buses. 

 
The power injection at each bus can be obtained by subtracting total power generation with 

total load. The equations for computing real and reactive power injection are expressed as: 
 

DiGii PPP −=                                                       (2.7) 
         DiGii QQQ −=                                                      (2.8) 

 
where 
PGi is the total real power generation at bus i. 
PDi is the total real power load at bus i. 
QGi is the total reactive power generation at bus i. 
QDi is the total reactive power load at bus i. 
 
2.2.3 Inequality Constraints 

The operation of power system network is constrained by limits of equipment loading and 
operating requirements. These operating limits and requirements cause inequality constraints 
imposed on the OPF problem, such as generation constraints, transformer constraints, security 
constraints, etc. The inequality constraints imposed on the OPF are listed as follows: 

 
 maxmin

GiGiGi PPP ≤≤  i = 1, 2,…, NG (2.9) 

 min max
i i iV V V≤ ≤  i = 1, 2,…, N (2.10) 

 maxmin
iii ttt ≤≤  i = 1, 2,…, NT (2.11) 
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 maxmin
GiGiGi QQQ ≤≤  i = 1, 2,…, NG (2.12) 

 max
LiLi SS ≤  i = 1, 2,…, NL (2.13) 

 
where, 
PGi is the real power generation at bus i. 

maxmin , GiGi PP  are the lower and upper limits of real power generation at bus i. 
Vi is the generator voltage magnitude at bus i. 

min max,i iV V  are the lower and upper limits of  voltage magnitude at bus i. 
ti is the transformer tap setting of the i-th transformer. 

maxmin , ii tt  are the lower and upper limits of the tap setting of the i-th transformer. 
QGi is the reactive power generation at bus i. 

min max,Gi GiQ Q  are the lower and upper limits of reactive power generation at bus i. 
|SLi| is the i-th line or transformer loading. 

max
LiS  is the i-th line or transformer loading limit. 

NT is the number of transformers. 
NL is the number of branches. 

 
2.2.4 OPF Problem Formulation 

In conclusion, the conventional OPF problem has now been formulated as follows: 
 
   Min Eq. (2.4) 
  Subject to    Eqs. (2.7) – (2.13)        (2.14) 
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2.3 Transient Stability Constrained OPF (TSCOPF) Problem 
 

The solution obtained from the conventional OPF, which considers only the static 
constraints, does not guarantee transient stability in the system when subject to possible 
contingencies such as line fault. Besides, a large amount of financial loss normally incurred by 
loss of synchronism in power system has been reported in many countries. As a result, a novel 
OPF is proposed by adding the transient stability constraints into the conventional OPF problem. 
It is so called transient stability constrained optimal power flow (TSCOPF) [3].  

The transient stability constraints consist of additional equality constraints i.e. a set of 
differential-algebraic equations (DAEs) that describes the dynamic behavior of rotor angle after 
undergoing severe disturbances and the additional inequality constraints i.e. stability criteria for 
indicating whether or not the system is stable after the contingency. The criterion widely used is 
maximum allowable deviation of rotor angle with respect to Center of Inertia (COI). To handle 
the transient stability equality constraints, in [3, 4] a set of DAEs is first converted into 
numerically equivalent algebraic equations using some numerical methods such as modified 
Euler’s method, and then step-by-step simulation (Time domain simulation) is performed to 
observe the rotor angle deviation.  

Some literatures try to tackle this problem. In [3] multi-contingency transient stability 
constraints are considered in TSCOPF and both binding and non-binding contingencies are 
elaborated. In [5], the transcription technique is proposed to handle transient stability constraints 
by converting TSCOPF that is a semi-infinite optimization problem into a finite optimization 
problem in Euclidean space. 

Inherently, TSCOPF problem is a non-linear, non-smooth, and multimodal optimization 
problem i.e. there exist more than one local optimum. Formerly, in order to obtain a solution of 
TSCOPF, conventional methods such as, primal-dual interior-point method [3] and linear 
programming (LP) [4] are applied. However, these methods have many drawbacks as mentioned 
earlier in Chapter 1. As a result, the TSCOPF problem is still a challenging problem and a 
powerful tool is needed for solving it. 

2.3.1 Transient Stability Constraints 

Transient stability [6] is the ability of a power system to maintain synchronism when 
subject to a severe transient disturbance such as a fault on the transmission network and loss of 
generator and load etc. After the disturbance, if the generator rotor angle separation between the 
machines in the system remains within the certain bounds (limits), it can be said that the system 
maintains synchronism.  

The transient stability constraints consist of equality constraint i.e. swing equations and 
inequality constraint i.e. transient stability limits. In this study, the classical model of 
synchronous generator is used. This model basically represents a synchronous machine by a 
constant voltage source behind a transient reactance and the mechanical power input remains 
constant during the transient period.   

The transient stability analysis of the i-th synchronous generator can be done by solving a 
set of DAEs (swing equation) that describes the motion of rotor angle as follows: 
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ωR, ωi   are rated rotor speed and rotor speed of the i-th generator. 
Pmi   is the mechanical input of the i-th generator. 
Pei   is the electrical output of the i-th generator. 
Ei, Ej   are constant voltages behind a transient reactance of the i- and j-th generators. 
Di   is the damping coefficient of the i-th generator. 

ijG′ , ijB′   are the real and imaginary parts of the ij-th element of reduced Ybus. 

iδ , jδ   are the rotor angles of the i- and j-th generators. 
Hi   is inertia constant of the i-th generator. 
 

The reduced Ybus can be obtained by eliminating all buses except for generator buses. All 
steps for building the reduced Ybus can be found in [7]. The value of Di in this paper is assumed to 
be zero (no damping).  

To include DAEs into TSCOPF problem, the DAEs in Eq. (2.15) are converted into 
numerically equivalent algebraic equations by using implicit trapezoidal rule as follows: 
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                             (2.16) 

 

where   2

1

sin( ) cos( )
NG

t t t t t t t t
ei i ii i j ij i j i j ij i j

j
j i

P E G E E B E E Gδ δ δ δ
=
≠

′ ′ ′⎡ ⎤= + − + −⎣ ⎦∑  

 
t
iδ , t

iω  are rotor angle and rotor speed of the i-th generator at time t. 
t

ijG′ , t
ijB′   are real and imaginary parts of the ij-th element of the reduced Ybus at time t. 

Δt  is integration step width. 
 T  is the maximum integration period. 

0t
iδ , 0t

iω   are rotor angle and rotor speed immediately before the fault occurs. 
 

The constant mechanical output Pmi that equals 0t
eiP , and Ei can be obtained from load flow 

solution. In Eq. (2.16), which forms equality constraints, the generator rotor angle of time t+Δt 
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can be calculated by using information at time t+Δt and time t. To solve this implicit function, 
numerical techniques can be applied. 

To determine whether the system is stable or not, the maximum allowable deviation of rotor 
angle with respect to COI is adopted. The position of COI at time t can be expressed as follows: 

  

1

1

NG
t

i i
t i
COI NG

i
i

H

H

δ
δ =

=

=
∑

∑
                                                           (2.17) 

             
The transient stability limit, which is inequality constraints, can be formulated as below: 
  

t t
i COI MAXδ δ δ− ≤   0 0, ,...,t t t t T= + Δ                         (2.18) 

 
where δMAX is the maximum allowable deviation of rotor angle with respect to COI. This stability 
limit is acceptable for utility engineers and is widely used [4]. In practical, the out-of-step relay 
can be set to a specific value in order to trip if the any generator rotor angle goes beyond the 
threshold when the fault occurs. 

2.3.2 TSCOPF Problem Formulation 

Finally, the TSCOPF problem has now been formulated as follows: 
 
  Min Eq. (2.4) 
  Subject to    Eqs. (2.7) – (2.13) 
   Eqs. (2.16) and (2.18)       (2.19) 

 
Similarly, multi-contingency transient stability constrained OPF (MC-TSCOPF) problem, 

which can guarantee the transient stability after multiple possible contingencies, can be 
formulated by adding transient stability limits of each considered contingency as the additional 
constraints into the formulation shown in Eq. (2.19).   
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2.4 OPF with Steady-State Voltage Stability Consideration 
  
In addition to transient stability mentioned in the previous session, voltage stability issue 

also play a crucial rule on the major blackouts around the world during the last decades. The 
voltage stability problems are reported in several countries, i.e. France, Belgium, Sweden 
Germany, Japan, USA [8, 9]. Consequently, the consideration of voltage stability in power 
system operation is essential and should be added into the conventional OPF in order to guarantee 
a sufficient stability margin for both normal and emergency operations.  

Voltage stability is associated with the ability of a power system to maintain acceptable 
voltages at all nodes in the system under normal condition and after being subject to a 
disturbance [6] such as load increase and transmission-line outage etc. Generally, voltage 
stability can be categorized into steady-state and dynamic analysis. Although the dynamic 
analysis is needed for deep understanding of this phenomenon, the steady-state provides a faster 
estimation how far the current system status is from the voltage collapse point. As a result, 
voltage stability indices are very important for voltage stability study. Among various voltage 
stability indices summarized in [10], the indicator L originally developed in [11] is selected for 
voltage stability estimation. The indicator L is widely used in many researches for steady-state 
voltage stability study. For example, in [12] the indicator L is employed for voltage stability 
consideration in composite power system reliability evaluation, in [13] the indicator L is used as 
a main criterion in OPF problem for load curtailment minimization. Moreover, in [14] the 
indicator L is treated as an additional constraint in the OPF problem. 

2.4.1 Indicator L 

The indicator L is a quantitative measure for estimating the voltage stability margin of the 
current operating point. It is derived from the solution of the power flow equations based on the 
fact that at the voltage collapse point, the Jacobian matrix of load flow becomes singular. The 
value of indicator L less than 1 can guarantee the voltage stability. To calculate the indicator, 
firstly the hybrid representation derived from the original admittance matrix (Ybus) is formulated 
as follows: 

 

  L LL LG L

G GL GG G

V Z F I
I K Y V
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                               (2.20) 

 
where  
VL, IL  are the voltage and current vectors at the load buses. 
VG, IG  are the voltage and current vectors at generator buses including slack bus. 
ZLL, FLG, KGL, YGG   are the sub-matrices of the hybrid matrix. 
  

The hybrid representation is obtained by a partial inversion, where the voltages at the load 
buses are exchanged against their currents. Through the utilization of this representation, the 
indicator L at load bus j can then be calculated as follows: 
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where  
Fji  is the ji-th element of sub-matrix FLG. 
Zjj  is the jj-th element of sub-matrix ZLL. 
Z*

jj, Z*
ji  are the conjugate of jj-th and ji-th elements of sub-matrix ZLL. 

Si  is the complex power demands at load bus i. 
Vj  is the voltage magnitude at bus j. 

iV , jV   are voltages at generator bus i and load bus j respectively. 
 

From Eq. (2.21), the indicator L at load bus j is a function of the term V0j or Sjcorr which is 
influenced by all generator voltages or all active and reactive load demands. The V0j physically 
indicates the equivalent voltage of all generator buses and Sjcorr represents equivalent complex 
power of all other load buses except bus j. The value of indicator L is in between 0 (no load) and 
1 (voltage collapse). The relationship between the value of indicator L and voltage level at a 
specific load bus when the loading factor is increased is depicted in Fig. 2.4. It can be seen that 
when the operating point is moving to the voltage collapse point, the value of indicator L 
increases rapidly approaching to the value of 1.  

 

                
Fig. 2.4 The relationship between the value of indicator L and voltage level 
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The advantages of indicator L are listed below: 
• It has a simple structure and can be handled easily. 
• There is no need of repetitive power flow solution (Fast Calculation). 
• The weakest bus (Max (Lj)) can be identified. 
• The accuracy in predicting is satisfactory. 

By considering the indicator L as a voltage stability degree, a new objective function of the 
OPF problem with voltage stability consideration is formulated. The objective function is the sum 
of the fuel cost of all generating units and the maximum value of indicator L among all load 
buses (indicator L at the weakest bus). The problem can be seen as a trade-off between the 
generator fuel cost minimization and the voltage stability margin maximization. 
 

 ( )
1

( ) ( )
NG

i Gi j
i

F F P Max Lα
=

= +∑                                              (2.23) 

        
where  
F  is the objective function of OPF with voltage stability consideration. 
α  is the scaling factor. 
Lj  is the value of indicator L at load bus j. 
NLB  is the number of load buses. 
 

2.4.2 Formulation of OPF with Steady-State Voltage Stability Consideration 

Finally, the problem has now been formulated as follows: 
 
  Min Eq. (2.23) 

Subject to     Eqs. (2.7) – (2.13)                                           (2.24) 
            

Please note that the scaling factor expressed in Eq. (2.23) is inserted to give the importance 
of voltage stability issue with respect to the fuel cost term. The higher the value of scaling factor 
is, the more the voltage stability issue is concerned. The selection of the value of scaling factor 
normally is based on the engineer experience and system status. The setting of this scaling factor 
in this dissertation will be presented and discussed later on. 
 
 
 
 
 
 
 
 
 
 



 

39 
 

2.5 OPF with Transient and Voltage Stability Considerations 
 

According to the previous sessions 2.3 and 2.4, the transient and voltage stabilities both are 
the important issues in power system operation, about which the system operator should concern. 
Therefore, the OPF problem considering these two vital transient and voltage stability issues is 
formulated in this session. The transient stability issue introduces the additional constraints, i.e. 
swing equation and transient stability limit into the conventional OPF problem whereas the 
voltage stability issue is regarded by inserting a voltage stability index (the indicator L) into the 
OPF objective function. 

2.5.1 Formulation of OPF with Transient and Voltage Stability Considerations 

Finally, the problem has now been formulated as follows: 
 
  Min Eq. (2.23) 
  Subject to    Eqs. (2.7) – (2.13) 

                         Eqs. (2.16) and (2.18)              (2.25)       
 
 

2.6 Constraint Handling Strategies 
 

Since the proposed EP methodology is stochastic search algorithm, it does not take the 
equality and inequality constraints into account. Therefore, the following section will be used to 
force both equality and inequality constraints in the OPF problems. 

For the equality constraints, power balance equations shown in Eqs. (2.7) and (2.8) are 
satisfied by power flow calculation (AC load flow) using Newton-Raphson method, and swing 
equations in Eq. (2.16) are met by time domain simulation.  

The inequality constraints expreesed in Eqs. (2.9)−(2.13) and (2.18) will be coped by a 
penalty function. The penalty function for any variable violating its limits can be expressed 
mathematically as follows: 
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                             (2.26)  

                  
 

where  
h(xi)  is the penalty function of variable xi 
xi,max , xi,min  are the upper and lower limits of the variable xi 
xi  is the variable shown in Eqs. (2.9)−(2.13) and (2.18). 
 

By doing so, the objective functions of OPF, TSCOPF, OPF considering steady-state 
voltage stability and OPF considering both transient and voltage stability problems are now 
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transformed to unconstrained ones by penalizing all conressponding inequality constraints. The 
extended objective functions for each OPF-based problem are formed as shown in Eqs. (2.27), 
(2.28), (2.29), and (2.30) respectively. 

 

[ ]
1 1 1 1

( ) ( ) ( ) ( ) ( )
NG NG NLB NL

ext i Gi p slack q Gi v Li s Li
i i i i

F F P K h P K h Q K h V K h S
= = = =

= + + + +∑ ∑ ∑ ∑               (2.27)           

[ ]
1 1 1 1 1

( ) ( ) ( ) ( ) ( )
NG NG NLB NL NK

ext i Gi p slack q Gi v Li s Li R
i i i i i

F F P K h P K h Q K h V K h S K
= = = = =

= + + + + +∑ ∑ ∑ ∑ ∑         (2.28)            

[ ]
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
NG NG NLB NL

ext i Gi j p slack q Gi v Li s Li
i i i i

F F P Max L K h P K h Q K h V K h Sα
= = = =

= + ⋅ + + + +∑ ∑ ∑ ∑    (2.29)         
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α
=

= = = =

= + ⋅ +

+ + + +

∑

∑ ∑ ∑ ∑
              (2.30) 

 
where, Kp, Kq, Kv, and Ks are penalty weights of active power output of slack bus ( slackP ), reactive 
power output of generator bus, load bus voltage magnitude, and line loading respectively; KR is a 
penalty constant for transient stability limit; h(Pslack), h(QG), h(VL), and h(SL) are the penalty 
terms of related variables; NK is the number of contingencies; NK will be 1 for the single-
contingency consideration. 
 

The active power generation limits of all generator buses except for slack bus, voltage 
limits of all generator buses, and transformer tap setting limits are not included in the extended 
objective functions, since these control variables are randomly created within their feasible limits 
during the process of the proposed methods. In conclusion, Eqs. (2.27), (2.28), (2.29), and (2.30) 
already considering all inequality constraints will be used as the new objective functions to be 
evaluated and minimized during the proposed methods. 
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2.7 Summary 
 

Since the fuel cost minimization is typically used as a main objective in the OPF problem, 
the input ($/hr)-output (MW) characteristic of a thermal generating unit is mentioned at the 
beginning of this chapter. Basically, the cost function of a generating unit can be approximated as 
the simple quadratic function. Nevertheless, when the valve-point loading effects normally 
occurring in a thermal unit and the combined-cycle nature are taken into consideration, the cost 
function cannot be simply represented by the quadratic curve anymore. Due to the limitation of 
the classical optimization techniques in such a way that they can handle only some specific types 
of cost function, the new types of cost curve need a powerful optimizer to deal with. The 
proposed EP-based methods can be an answer for this. 

After that, the basic concept of the conventional OPF problem is fully described and 
explained. The objective function and the corresponding constraints in the OPF problem used in 
this dissertation are formulated. Next, the additional constraints regarding the transient stability 
issue are mentioned and added into the conventional OPF problem to form the TSCOPF problem. 
The constraints generally consist of the swing equation and transient stability limit. Some 
literatures related to the TSCOPF problems are also given. After that, the topic of OPF with 
steady-state voltage stability consideration is explained. The indicator L, which is widely applied 
to estimate the voltage stability margin in many applications, is adopted to add the voltage 
stability issue into the conventional OPF problem. This creates the modified objective function, 
which is the trade-off between the economical issue and voltage stability issue. The technical 
meaning and mathematical calculation of indicator L are also expressed. Finally, the OPF with 
both transient and voltage stability considerations is formulated to make the OPF problem more 
practical and suitable to the present power system situation. 

To handle the constraints in the OPF problem, strategies applied are stated in the last 
session. For equality constraints, the full AC power flow is run to satisfy the power balance 
equation and time domain simulation is performed to cope with the swing equation. The penalty 
function, where its value grows with a quadratic form when the constraints are violated and is 0 
in the region where constraints are not violated, is employed to deal with all inequality 
constraints. Using the above-mentioned strategies, the extended objective functions that include 
the penalty terms of all inequality constraints are formed and they will be used to evaluate the 
optimality of each EP individual in the next chapter.  
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CHAPTER 3 

Evolutionary Programming (EP)-Based Methods 
    

3.1 Introduction 
 

This chapter will mainly explain all components and procedures of three versions of the 
proposed EP-based methods for the various types of the OPF problem earlier mentioned in 
Chapter 2. The proposed EP-based methods include the conventional EP, Improved EP (IEP), 
and Adaptive EP (AEP). The conventional EP is similar to the EP methods applied to solve the 
power system optimization problems as reviewed in Chapter 1. The IEP and AEP are developed 
to enhance the searching process of the conventional EP in terms of the quality of the solution 
and computational time. These three proposed algorithms are explained as follows: 
 

3.2 Conventional Evolutionary Programming (EP) 
 

EP [1] is an optimization technique in the field of evolutionary computation (EC) similar to 
Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). It is a stochastic method that 
searches for the optimal solution by evolving a population of candidate solutions over a number 
of iterations based on the natural evolution theory; namely mutation and natural selection. It 
emphasizes on the linkage between parent and its offspring rather than emulating some specific 
parts of parents as found in GA. The real-valued optimization problems in which the optimization 
surface possesses many locally optimal solutions are well suited for EP [2]. As revealed in [3], 
EP tends to provide a more robust method for solving the constrained optimization problems than 
does GA. 

The solution representation and main components of the conventional EP algorithm are 
stated as follows: 

3.2.1 Representation of Solution and Its Coding 

An individual in a population represents a candidate of the OPF solution. Each individual 
consists of OPF control variables coded by real number as shown in Fig. 3.1. The coded control 

 

           
Fig. 3.1 Real number coding solution (individual) 
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variables employed in the algorithm are real power generation outputs of all generator buses 
excluding slack bus, voltage magnitudes at all generator buses including slack bus, and tap 
settings of all variable-tap transformers. Since this real-value coded representation is totally 
different from that of GA, which treats the candidate solution as the binary code, the encoding 
and decoding processes usually found in GA are not necessary for the EP method leading to the 
computational time saving.  

The k-th individual in a population is represented by a trial solution vector Sk = 
[PG2,…,PGNG,VG1,…,VGNG,T1,…,TNT], where NG is the number of generators and NT is the 
number of variable-tap transformers. 

3.2.2 Initialization 

The initial population is randomly created using a set of uniform random number 
distribution ranging over the feasible limits of each control variable. Each element of the trial 
solution vector Sk, k = 1, 2, …, P, where P is the population size, is determined by the following 
equation: 

 
( ),min ,max ,mini i i ix x U x x= + ⋅ −                                        (3.1) 

 
where 
U is a uniform random number in the interval [0,1]. 

ix   is the i-th element of the individual in a population. 
,minix  is the lower limit of the i-th control variable of the individual.  
,maxix  is the upper limit of the i-th control variable of the individual. 

 
If the summation of the initialized active power output of all generators is less than the total 

active power demand, the initialization will be recalculated. 

3.2.3 Fitness Calculation 

EP is usually designed so as to maximize the fitness function, which is a measure of the 
quality of each candidate solution. The fitness of all individuals in a population will be calculated 
to determine their degree of optimality. In this thesis, the objective is to minimize the total fuel 
cost. Therefore, transformation is needed to convert the cost minimization objective function to 
an appropriate fitness function to be maximized by EP. A simple function for fitness calculation 
in the minimization problem is shown as follows: 
 

,

1
k

ext k

f
F

=                                                           (3.2) 

where  
fk  is the fitness value of the k-th individual. 
Fext,k  is the extended objective function of the k-th individual. 

 



 

 45

The following will explain how to calculate the extended objective function (Fext) of each 
EP individual for the different OPF problems. 

 
OPF Problem 

In order to calculate the fitness of each individual, the equality constraints, i.e. power 
balance equations, have to be forced. A power flow calculation is performed for each individual 
to come up with all dependent variables, x, i.e. generator reactive power, all load bus voltage 
magnitudes, all bus voltage angles except the angle of slack bus, generator real and reactive 
power of slack bus, and transmission line flow in each line. These dependent variables are 
delivered to calculate the penalty terms associated with all inequality constraints. Finally, the 
extended objective function shown in Eq. (2.27) can be calculated. This process for obtaining Fext 
can be depicted in Fig. 3.2. 

Newton-Raphson (NR) technique is used for obtaining power flow solution. If the power 
flow of any individual fails to converge, the individual will be removed and replaced by a new 
randomly created individual. 
 
TSCOPF Problem 

In this problem, the equality constraints i.e. power balance equations and swing equation 
are needed to be forced in the proposed searching process. The power flow calculation by 
Newton-Raphson method is performed for every individual to come up with all variables in the 
system. These variables will be sent to calculate the penalty function shown in Eq. (2.26). 

After this, the reduced Ybus (before, during, and after the considered contingency) and all 
necessary values for transient stability analysis can be obtained. Time domain simulation is 
performed to get the generator rotor angle curve when a fault occurs. In time domain simulation, 
Newton-Raphson method is applied to solve the implicit function based on Eq. (2.16). At each 
integration step, if any generator rotor angle with respect to COI is over the transient stability 
limit, time domain simulation is ended before the maximum simulation time is reached leading to 
computational time saving. After this, the transient stability status of the power system against 
the contingency can be known. For the multi-contingency TSCOPF problem (MC-TSCOPF), 

 

           

Fig. 3.2 Process for calculating the extended objective function of OPF problem 
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Fig. 3.4 Process for obtaining the extended objective function of OPF with voltage stability consideration 

time domain simulation will be performed for every contingency. This process for obtaining the 
extended objective function of TSCOPF problem can be depicted in Fig. 3.3. 
 

OPF with Steady-State Voltage Stability Consideration 

Similar to two previous problems, the power flow calculation by Newton-Raphson method 
is first performed for every individual to obtain all system variables. Then the indicator L of each 
load bus is computed based on the power flow solution. At this moment, the weakest bus (the 
maximum value of indicator L among all load buses) can be identified. This process for obtaining 
the extended objective function of OPF with steady-state voltage stability consideration can be 
illustrated in Fig. 3.4. 

 

 

           

Fig. 3.3 Process for obtaining the extended objective function of TSCOPF problem 
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OPF with Transient and Voltage Stability Considerations 

In the last OPF problem, the power flow calculation, time domain simulation, and indicator 
L calculation are implemented respectively to obtain the extended objective function shown in Eq. 
(2.30). The process for obtaining the extended objective function is depicted in Fig. 3.5. 

3.2.4 Mutation 

A new or offspring population is produced from the existing or parent population through 
the mutation operator on a one-by-one basis. Each control variable of the k-th offspring 
individual is computed as follows: 
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σ

σ

′ = +
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⎝ ⎠

                                 (3.3) 

 
where  

kix ′   is the value of the i-th control variable of the k-th offspring individual. 
kix   is the value of the i-th control variable of the k-th parent individual. 

N(0, 2
kiσ ) is a Gaussian random number with a mean of zero and standard deviation of kiσ . 

xki,max, xki,min  are the upper and lower limits of the i-th control variable of the k-th parent 
individual. 

fk  is the fitness value of the k-th individual. 
fmax  is the maximum fitness of the parent population. 
a  is a positive number constant slightly less than one.  
g  is the iteration counter. 

 

           

Fig. 3.5 Process for obtaining the extended objective function of OPF with transient and voltage stability 
considerations 
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If any control variable mutated by Eq. (3.3) exceeds its corresponding limits, or the 
summation of the mutated active power output of all generators is less than the total active power 
demand, the control variable will be recalculated by Eq. (3.3). 

The probability of the offspring individual to move far away from the parent individual 
depends upon the value of standard deviation,σ , or mutation step size. There are two factors that 
have effect on mutation step size. Firstly, the term ag  in Eq. (3.3) is used to reduce the mutation 
step size when the iteration counter increases. Consequently, the diversification of EP process 
will be introduced at the beginning and the intensification will then be introduced when the 
iteration counter is increased. Secondly, the fitness value of an individual also affects the 
mutation step size. It can be observed from Eq. (3.3) that an individual, which has a much lower 
fitness value than fmax, will have the higher value of mutation step size. Hence, it will be probably 
moved further to the better position. 

3.2.5  Selection  

In this process, the current parent and offspring populations are combined together making 
the combined population and the new parent population will be selected from this combined 
population. For optimization to occur or the movement to the global optimum, the fitter or more 
optimal solutions should have greater chance of selection. The selection technique used is a 
tournament scheme described in the following 

In tournament scheme, each individual in the combined population has to compete with Nt 
randomly selected individuals on a one-by-one basis. If the fitness value of the individual is 
greater than that of the selected opponent, the individual scores 1 or wins. Otherwise, it scores 0 
or loses. This rule is represented in Eq. (3.4). The total competition score of each individual, sk, is 
the summation of competition scores from Nt competitions as shown in Eq. (3.5). The new parent 
population will be selected based on this total competition score. 

  
1
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k r
t

f f
w

otherwise
>⎧
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                                                (3.4) 
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k t
t

s w
=

=∑                                                              (3.5) 

 
where 
fk is the fitness value of the k-th individual in the combined population. 
fr is the fitness value of the r-th opponent randomly selected from the combined 

population based on 2 1r P U= ⋅ ⋅ +⎢ ⎥⎣ ⎦ . 

⎣ ⎦x  is the greatest integer less than or equal to x. 
U is a uniform random number in the interval [0,1]. 
P is the population size. 
wt is the competition score.  
sk  is the total competition score of the k-th individual. 
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When all individuals in the combined population get their total competition scores, they will 
be ranked in descending order according to their score, sk. After this, the first P individuals with 
higher total competition score will be transcribed along with their fitness to form the parent 
population of the next generation. 

3.2.6 Termination Criterion 

The iteration process is terminated, if the maximum generation number (Gmax) is reached. 
Otherwise, the mutation, fitness calculation, and selection process will be performed until the 
criterion is satisfied. 

3.2.7 EP Procedure for Solving OPF Problems 

The procedure and flowchart of conventional EP algorithm for the OPF problems are 
described as follows: 

                           

Fig. 3.6 Flowchart of the conventional EP method 
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Step 1: Read system data and EP parameters.  
Step 2: Set g = 1. 
Step 3: Initialize all individuals in a population by Eq. (3.1). 
Step 4: Calculate fitness for all initial individuals by Eq. (3.2). 
Step 5: Set best solution (Sb) = the individual with the highest fitness value. 
Step 6: Create the offspring population through mutation process by Eq. (3.3).  
Step 7: Perform fitness calculation for all individuals in the offspring population.  
Step 8: If the fitness value of the fittest individual in the offspring population is greater than that 

of Sb, set Sb = the fittest individual in the offspring population. 
Step 9: Select the new parent population for the next iteration by the tournament scheme.  
Step10: If g < Gmax, set g = g + 1 and go back to Step 6. Otherwise, terminate the process and Sb 

is the solution of the OPF problem. 
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3.3 Improved Evolutionary Programming (IEP) 
 

As noticed from the previous session, the conventional EP generates the offspring by using 
only mutation process, which moves the control variables by disturbing their value using 
Gaussian distribution. As a result, the offspring generation can be upgraded in order to increase 
the chance to obtain the better individuals and reduce the computational time. 

The proposed Improved Evolutionary Programming (IEP) is the EP-based optimization 
algorithm with the addition of crossover techniques. It enhances the offspring generation process 
by using both the mutation in conventional EP and crossover techniques, normally found in Real 
Coded Genetic Algorithm (RCGA) [4, 5]. Different from the mutation, the crossover generates 
the offspring by exchanging some parts of candidate solution (individual) between two selected 
parents without perturbing their values. Through the processes of EP mutation and RCGA 
crossover, the offspring is generated either by perturbing its parent on a one-by-one basis or 
exchanging information between two selected parents. The utilization of the appropriate 
proportion between mutation and crossover can provide better probability of detecting an optimal 
solution. If a control variable in an IEP individual is regarded as one characteristic of the 
individual, the meaning of crossover in IEP can be defined as a process of exchanging 
characteristics of two individuals. 

The individual representation, fitness calculation, selection, and stopping criterion, which 
are mentioned in the conventional EP, are also applied here in the IEP method.  

3.3.1 Offspring Generation Process in IEP 

An offspring individual in a population is created by either mutation or crossover operator 
based on the crossover acceptance rate (M). If U[0,1] (uniform random number between 0 and 1) 
is higher than M, the offspring will be created by the mutation operator. Otherwise, it will be 
created by the crossover technique. The offspring generation diagram used in the IEP method can 
be simply depicted in Fig. 3.7. 

 

           

Fig. 3.7 Offspring generation diagram used in IEP 
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Mutation 

The mutation process explained in Chapter 3.2.4 is applied as one of the offspring 
generation processes. As mentioned, the offspring is produced from its corresponding parent on a 
one-by-one basis. The information exchange between two different parents cannot be seen from 
this operator. The mutation process is demonstrated in Fig. 3.8. 

Crossover 

In this dissertation, various types of crossover techniques shown in [4] are adopted as one 
of the offspring generation processes to generate new individuals. Suppose that ( )1 1

1 1 ,......, nC c c=  
and 2 2

2 1( ,......, )nC c c=  are two parent individuals that are randomly selected for crossover and n is 

0.70 0.90...0.930.65…

0.52 0.93...1.050.35…1C

1
1c 1

nc1
2c

2C

2
1c 2

nc2
2c

0.70 0.93...0.930.35…C ′
1c ′ nc ′2c ′

1st parent individual

2nd parent individual

Offspring individual

           

Fig. 3.9 Crossover process for offspring generation 

2(0, )kiN σ+

Fig. 3.8 Mutation process for offspring generation 
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the number of control variables. The offspring 1( ,......., )nC c c′ ′ ′=  is created as shown in Fig. 3.9. 
The crossover techniques used in the IEP method for the offspring generation are described as 
follows: 
 
(1) Flat Crossover: An offspring indiviudal is created as follows: 

 
1 2,i i ic U c c′ ⎡ ⎤= ⎣ ⎦                                                             (3.6) 

 
In this crossover, the control variable of the offspring individual is obtained from the uniform 
random number ranging between the corresponding control variables of two chosen parents. 
 
(2) Simple Crossover: A position { }1,2,...., 1i n∈ − is chosen randomly and the offspring are 
created as follows: 
 

( )1 1 1 2 2
1 2 1, ,..., , ,...,i i nC c c c c c+′ =                                                 (3.7) 

 
In the simple crossover, the offspring is obtained by connecting one part of the first parent with 
one part of the second parent at the position i.  
 
(3) Arithmetical Crossover: An offspring individal is created as follows: 
 

( )1 21i i ic c cλ λ′ = + −                                                           (3.8) 
 
where the value of λ  is a constant. In this dissertation,λ  is set to 0.5.  
 
In this arithmetical crossover, the control variable of the offspring individual is the middle 
position of two points, which are the corresponding control variables of the first and second 
parent individuals.  
 
(4) BLX-α Crossover: An offspring individal is created as follows: 
 

[ ]min max,ic U c I c Iα α′ = − ⋅ + ⋅                                                   (3.9)                   

( ) ( )1 2 1 2
max minmax , , min ,i i i ic c c c c c= =                                       (3.10)              

max minI c c= −                                                            (3.11)       
 
In this dissertation, BLX-0.25 is examined. In this crossover, the control variable of the offspring 
individual is obtained from the uniform random number ranging between the corresponding 
control variables of two chosen parents± I α⋅ . This crossover is similar to the flat crossover, but 
the range of the generated offspring is wider. 
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(5) Discrete Crossover: An offspring individual is created as folows: 
 

{ }1 2,i i ic c c′ ∈                                                             (3.12) 

 
In the discrete crossover, the control variable of the offspring individual is selected from the 
corresponding control variable of either the first parent or the second parent. This crossover is 
analogous to the simple crossover. The difference is that the simple crossover is one-point 
crossover, but the discrete crossover is multiple-point crossover. 
 
(6) Modified Discrete Crossover: An offspring individual is created as folows: 
 

[ ] ( )
[ ] ( )

1 1 1 2

2 1 1 2

0,1 /
0,1 /

i
i

i

c if U f f f
c

c if U f f f
⎧ ⎫≤ +⎪ ⎪′ = ⎨ ⎬> +⎪ ⎪⎩ ⎭

                                       (3.13) 

 
where f1 and f2 are the fitness values of the first and second parent individuals respectively. 
 

The modified discrete crossover introduces the fitness value of the parents in the discrete 
crossover in order to increase the chance to obtain the fitter offspring. The control variable of the 
parent with a higher fitness value will have more chance to be selected. 

 
Fig. 3.10 depicts the various types of crossover techniques used in IEP. In conclusion, EP 

employs only mutation to generate the offspring whereas IEP uses both mutation and crossover. 
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Fig. 3.10 Various types of crossover technique 
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IEP with both mutation and crossover offers the diversification of offspring generation. The 
offspring individual is generated not only by moving the control variables from a single parent, 
but also exchange the information from two parents. This will increase the chance of obtaining 
the optimal solution. In addition, sometimes the offspring generated from the mutation process is 
required to be re-mutated, because some control variables of that offspring may violate their 
limits. The recalculation of offspring can occur many times when the control variables of its 
parent are near their limits. Therefore, the less complicated process of the crossover techniques 
for offspring generation leads to the overall computational time saving. Table 3.1 shows the 
abbreviation of the proposed IEP with different crossover techniques. 

 
Based on the proposed IEP method, the differences between the RCGA and IEP are listed 

as follows: 
• In RCGA, the selection is performed first in order to select the good parents, and then 

crossover and mutation is applied respectively whereas in IEP the selection is performed 
after crossover and mutation. 

• In RCGA, both crossover and mutation are performed for an individual, but in the proposed 
IEP either crossover or mutation is applied depending on the parameter M. 

• In IEP, the mutation is applied by perturbing all control variables of a parent individual. On 
the other hand, in RCGA only some of control variables in a chromosome are mutated 
depending upon a mutation rate.  

3.3.2 IEP Procedure for Solving OPF Problems 

The procedure and flowchart of IEP algorithm for the OPF problems are described as 
follows: 
 
Step 1: Read system data and IEP parameters.  
Step 2: Set g = 1. 
Step 3: Initialize all individuals in a population by Eq. (3.1). 
Step 4: Calculate fitness for all initial individuals by Eq. (3.2). 
Step 5: Set best solution (Sb) = the individual with the highest fitness value. 
Step 6: Create the offspring population through mutation process by Eq. (3.3) or crossover 

technique based on the parameter M.  
Step 7: Perform fitness calculation for all individuals in the offspring population.  

Table 3.1 IEP methods with various crossover techniques 

Algorithms Crossover Technique 
IEP1 Flat crossover 
IEP2 Simple crossover 
IEP3 Arithmetical crossover 
IEP4 BLX-0.25 crossover 
IEP5 Discrete crossover 
IEP6 Modified Discrete crossover 
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Step 8: If the fitness value of the fittest individual in the offspring population is greater than that 
of Sb, set Sb = the fittest individual in the offspring population. 

Step 9: Select the new parent population for the next iteration by the tournament scheme.  
Step10: If g < Gmax, set g = g + 1 and go back to Step 6. Otherwise, terminate the process and Sb 

is the solution of the OPF problem. 
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Fig. 3.11 Flowchart of the IEP method 
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3.4 Adaptive Evolutionary Programming (AEP) 
 
Generally, to apply the Artificial Intelligence (AI)-based methods, main parameters in those 

methods, e.g. swarm size and inertia weight of PSO, population size, crossover and mutation 
rates of GA, population size of Differential Evolution (DE) [6] etc., are needed to be predefined. 
In case of the conventional EP, the main parameters, i.e. population size (P), decaying mutation 
rate (a), and maximum generation (Gmax) have to be predefined. Since the efficiency and 
execution time of the proposed EP method are strongly influenced by these parameters, 
especially P, the selection of the suitable population size in order to get the good result is a 
difficult task and relies on the time-consuming trials and errors with different parameter sets. 

3.4.1 Population Adaptation Rule 

In this dissertation, an adaptive evolutionary programming (AEP), which starts with a 
single-individual population and then changes the population size adaptively, is proposed. The 
population size of AEP is automatically adjusted based on the quality of the population (good or 
bad). The population adaptation rule is based on the idea of removing or adding a particle in 
TRIBES PSO [7].  

As shown in Fig. 3.12, the concept is that a population that has many good individuals 
(good population) can benefit from the removal of the weakest individual, since it already 
possesses many good candidate solutions. On the other hand, a population that has many bad 
individuals (bad population) can benefit from the addition of a new individual to increase the 
possibility of improvement. Please note that in the case of a single-individual population, even 
the population has a single good individual, the removal will be voided. An individual is said to 
be good, if it has the higher fitness than its parent, and vice versa. Let Pi and Gi be the population 
size and the number of good individuals of the i-th generation respectively. The adaptation rule 
for adding or removing an individual can be described as follows: 

[0, ]i iU P G<

[0, ]i iU P G>
 

Fig. 3.12 Definitions of quality of individual and population
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1
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+
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= ⎨ − <⎩

                                         (3.14) 

 

where  
1iP +  is the population size of the (i+1)-th generation. 

[0, ]iU P   is a uniform distribution ranging between 0 and iP . 
Gi is the number of good individuals of the i-th generation. 
 

The removal will be applied to the good population by taking out the individual having the 
lowest fitness among all individuals in the population. On the other hand, the addition will be 
applied to the bad population by adding a new randomly-created individual. The new individual 
will be generated using Eq. (3.1).  

The adaptation rule will not take place at every generation, since the individuals should be 
allowed to search the solution for some time. In this research, the population size will be 
modified after P generations. For example, if right now the population size is 4, this population 
will be allowed to search for the optimal solution for 4 generations and after that the adaptation 
rule will be performed. This means that the larger the population size is the longer the time 
between two adaptations will be. At the beginning, the population size will change quite 
frequently and when the population size becomes large, the adaptation rule will be rarely applied. 
Fig. 3.13 depicts the concept of adaptation process of population size in the AEP method. Note 
that R shown in Fig. 3.13 is the number of iterations since the last population’s adaptation and P 
is the dynamic population size of the g-th iteration (generation). 

The individual representation, fitness calculation, mutation, selection, and stopping criterion, 
which are mentioned in the conventional EP, are also applied here in the AEP method. 

Good Bad 

Individual
Population

Generation

R = 3 R = 4

P = 1 P = 3
P = 4

P = 3

 

Fig. 3.13 Adaptation process of population size in AEP 
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3.4.2 AEP Procedure for Solving OPF Problems 

The procedure and flowchart of AEP algorithm for the OPF problems can be summarized 
as follows: 

                                                            

Fig. 3.14 Flowchart of the AEP method 
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Step 1: Read system data and AEP parameters.  
Step 2: Set g and R = 1. 
Step 3: Initialize a SINGLE individual in a population by Eq. (3.1). 
Step 4: Calculate fitness for an initial individual by Eq. (3.2). 
Step 5: Set best solution (Sb) = the individual with the highest fitness value. 
Step 6: Create the offspring population through mutation process by Eq. (3.3).  
Step 7: Perform fitness calculation for all individuals in the offspring population.  
Step 8: If the fitness value of the fittest individual in the offspring population is greater than that 

of Sb, set Sb = the fittest individual in the offspring population. 
Step 9: Select the new parent population for the next iteration by the tournament scheme. 
Step 10: If R = Pg, modify the population size by Eq. (3.14) and set R = 0. Otherwise, the 

population size is the same. 
Step11: If g < Gmax, set g = g + 1, R = R + 1, and go back to Step 6. Otherwise, terminate the 

process and Sb is the solution of the OPF problem. 
 

Please note that Pg is the dynamic population size of the g-th generation. 
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3.5 Summary 
 

The process and procedure of the conventional EP method used to solve the various types 
of the OPF problems are firstly elaborated. The power flow calculation, time domain simulation, 
and indicator L calculation are respectively carried out in order to evaluate the fitness of each 
individual in the EP population. Only mutation process is performed to generate the offspring 
individuals. The tournament scheme which compares the fitness of individual with others in the 
combined population is adopted to select the promising individuals for the next generation. In the 
conventional EP, the presetting of three parameters, i.e. population size, decaying mutation rate 
and maximum generation is required. 

 To enhance the offspring generation process, six types of crossover techniques, flat 
crossover, simple crossover, arithmetical crossover, BLX- α crossover, discrete and modified 
discrete crossovers are introduced. These six crossover operators are borrowed from RCGA. Both 
mutation and crossover are applied to generate the offspring individuals based on the crossover 
acceptance rate (M). The mutation puts emphasis on perturbing the control variables of a parent 
individual whereas the crossover techniques focus on the information exchange between two 
parent individuals. The crossover provides the simpler operator for creating offspring and the 
diversification to the search template. In Addition, the differences between the proposed IEP 
method and RCGA are mentioned. In IEP, the presetting of four parameters, i.e. population size, 
decaying mutation rate, maximum generation, and crossover acceptance rate is needed. 

 The final version of the EP-based methods, AEP, is suggested to reduce the parameters 
required to pre-define when the EP method is selected to solve the OPF problem. The reduced 
parameter is the population size, which normally plays a crucial role on the quality of solution 
and execution time. In AEP, the presetting of only decaying mutation rate and maximum 
generation is necessary. The population size starts with one single individual at the beginning and 
then it will change adaptively according to the adaptation rule adopted from an idea in TRIBES 
PSO. The idea is that the population having a large amount of potential individuals will remove 
one weakest individual to save the computational time whereas the population having a small 
amount of potential individuals will add one new individual to increase the chance to find the 
optimal solution. The adaptation rule will be applied when the number of iterations since the last 
population’s adaptation is equal to the population size of that generation.       

These three proposed EP-based methods will be applied to solve the OPF problems earlier 
formulated in Chapter 2.  
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CHAPTER 4 

ARTIFICIAL NEURAL NETWORK (ANN) FOR 
TRANSIENT STABILITY ASSESSMENT 

 

4.1 Introduction 
 

To evaluate the transient stability of a power system, the several methods have been widely 
applied. The three main methods are time domain simulation [1], transient energy function (TEF) 
method [2], and artificial neural network. Even though time domain simulation of course 
provides the accurate results of transient stability assessment in which the detailed models of 
generator, loads, and relative controls can be included, it suffers from a great deal of 
computational time. The convergence property when solving for the controlling unstable 
equilibrium point and limitation in modeling capacity of power system components are major 
impediments for using TEF method. To alleviate the above problem, this dissertation proposes 
the combination of time domain simulation and neural network to evaluate the system transient 
stability. The examples of researches on transient stability assessment using a neural network can 
be found in [3, 4]. In [3], a selection method of input parameters and their sensitivity analysis for 
neural network application to transient stability assessment are presented. In [4], transmission 
power margin (TMAR) is proved to be a significant input parameter to reduce the error of the 
neural network output. This chapter will mainly show the proposed artificial neural network for 
transient stability assessment in the TSCOPF problem. 

The basic model of feed-forward neural network is shown in Fig. 4.1. The network consists 
of NR input neurons in the input layer, NO output neurons in the output layer, and NS neurons in 
one or more hidden layers. Once such network is trained with the prepared input and output 
vectors, it can estimate the unknown output from new input vector without the need of detailed 
analysis. With the help of the network, the transient stability degree can be roughly evaluated.  

              
           

Fig. 4.1 Three-layer feed-forward neural network 
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4.2 Proposed Artificial Neural Network  
 

Rather than using only time domain simulation to evaluate the transient stability in the 
TSCOPF problem as depicted in Fig. 3.3, the neural network, which is less time-consuming, is 
first used to classify the individual into three regions, namely stable, unstable, and critical 
regions using pre-set thresholds and then time domain simulation will be performed with only 
individual classified in the critical region. Instead of directly evaluating the system in terms of 
only stable and unstable regions, the thresholds are introduced in order to account for the 
inherent error of the neural network. 

The architecture, inputs and output of the proposed network are depicted in Fig. 4.2. The 
proposed feed-forward network consists of inputs, one or more hidden layers, and one output 
layer. The inputs are the EP individual and .slackP  The hidden layers consist of neurons with the 
tan-sigmoid transfer function whereas the output layer consists of a single neuron with the log-
sigmoid transfer function. A single output of the network signifies the stability degree of the 
individual. The stability degree is simply measured by the 0.05-gain sigmoid function 
[( ( )]Sigmf X of the difference between MAXδ and maximum rotor angle deviation among all 
generators ( )MAXdivδ as shown in Fig. 4.3. If MAXdivδ is lower than MAXδ , the value of X will be a 
positive number, and vice versa. The individual that leads to very high degree of stability (high 
positive X) or instability (high negative X) will have the output near 1 or 0 respectively. When 

MAXdivδ  is exactly equal to MAXδ , the output will assign the value of 0.5. The criterion to perform 
time domain simulation is determined by the output of the neural network. Namely, if the output 
is between the thresholds 1L  and 2L  (critical region), time domain simulation is performed for the 
individual to scrutinize the transient behavior. Otherwise, the transient stability is estimated 
without time domain simulation i.e. output < 1L  means unstable and output > 2L means stable.  

 

 
 

Fig. 4.2 Architecture of the proposed neural network 



 

 65

Fig. 4.4 illustrates the proposed strategy for dealing with multi-contingency constraints. The 
neural network is individually trained for each contingency and it will evaluate the transient 
stability of the individual against the corresponding contingency. The thresholds for each 
contingency may be different depending on the performance of the trained neural network.          
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Fig. 4.3 Output of the proposed neural network 

 
Fig. 4.4 Strategy for handling multi-contingency constraints 
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4.3 Study of Proposed Artificial Neural Network 
 

The IEEE 30-bus system consisting of 41 transmission lines, 6 generators, and 4 tap-
changing transformers is used as the test system. The single-line diagram of the system is 
depicted in Fig. 4.5. The bus and line data of the system can be found in [5]. The operating range 
of each transformer is set between 0.9 and 1.1. In this section, the results of the proposed neural 
network will be discussed. The inputs of the network illustrated in Fig. 4.2 contain 6 active power 
generations and 6 voltage magnitudes of all generator buses, as well as 4 transformer-tap settings, 
totally 16 inputs (NR = 16). The selection of critical inputs for the neural network is beyond the 
scope in this study, but it is important for a large power system where the number of generators 
and transformers is very high. A single output (NO = 1) is transient stability degree represented 
by the sigmoid function of X shown in Fig. 4.3. Six single contingencies at points A, B, C, D, E, 
and F shown in Fig. 4.5 are considered in the simulation. Each contingency is a three-phase 
grounding fault at t = 0 s and cleared by removing the line at t = 0.35 s. For time-domain 
simulation, the integration time step is 0.01 s, sT  is 1.5 s, and MAXδ is 120 degrees. 

Modified from Newton’s method, Levenberg-Marquardt algorithm is chosen to train the 
proposed network. The inputs are randomly generated within their feasible operating range. The 
maximum growth factor is set to 2. The performance of the trained network is measured by the 
mean sum squares of the network errors (MSE) as follows: 

 
Fig. 4.5 Single-line diagram of IEEE 30-bus system 
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= −∑                                                             (4.1)          

where  
ti  is the i-th actual output. 
ai  is the i-th output value from the neural network. 
N  is the total number of patterns in the corresponding sets (training or testing sets). 

 
One of the problems that occur during neural network training is so called overfitting. As 

known, even though the number of neurons in the hidden layer should be large enough to model 
the complex function, the too large number of neurons can cause overfitting leading to 
degradation of network generalization. Besides, the error on the training sets is driven to a very 
small value, but when new data is presented to the network, the error becomes very large. The 
network has memorized the training patterns, but it is not learned to generalize to the new 
patterns. To alleviate this problem, the early stopping [6] is adopted in the training process. In 
this technique, the available data is divided into two subsets. The first subset is the training set, 
which is used for computing the gradient and updating the weights and biases of the network. The 
second subset is the validation set. The error on the validation sets is monitored during the 
training process. The validation error normally decreases during the initial phase of training, as 
does the training set error. However, when the network begins to overfit the data, the error on the 
validation sets typically begins to rise. When the validation error increases for a specified number 
of iterations, the training is stopped, and the weights and biases at the minimum of the validation 
error are returned.  

The mechanism of the conventional training and the training with early stopping can be 
shown in Fig. 4.6. The following section will show the results of the proposed neural network 
based on the training process with and without the validation sets.   

 Fig. 4.6 Mechanism of the training with and without the validation sets 
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4.3.1 Single contingency 

Only contingency A at the end of line 2-5 is considered. The inertia constants (H) of all 
generators are set to 10 s for G1 and 13 s for G3 and 3 s for G2 and G4–G6.  

Training without validation sets 

The early stopping is not used in this section. The proposed network is trained with 3000 
training sets for the contingency A. After that, 1000 testing sets are used to evaluate the error of 
the trained network. The number of epochs is set to 1000. In this section, five different network 
architectures are trained to observe the performance of the neural network. The architecture 
16/25/1 means that there are 16 input neurons, 25 neurons in a hidden layer and one neuron of the 
output. Please note that in this training, a single hidden layer provides the better performance than 
two hidden layers.  

Table 4.1 shows the performance (MSE) of five different numbers of neurons. The MSE of 
the training sets drops when the number of neurons becomes larger. The lowest number of 
neurons of 25 has the highest error during training but has the moderate performance for testing 
sets.  On the contrary, the largest number of neurons of 45 provides the smallest MSE for training 
sets but the second worst for testing sets. These results indicate that too high number of neurons 
overfits the training sets and degrades the generalization of the network while too small number 
of neurons cannot model the difficult function. In addition, from the table the difference of SME 
of the training sets and testing sets is significant. Obviously, without the early stopping, the 
trained network has the overfitting problem as mentioned earlier. 

Table 4.1 Performance of the proposed network without validation sets 
 

MSE×10-3 
Architecture 

Training (3000 sets) Testing (1000 sets) 
16/25/1 0.0146 8.17 

16/30/1 0.0125 13.60 
16/35/1 0.00970 5.78 
16/40/1 0.00815 4.10 
16/45/1 0.00419 9.09 

Table 4.2 Performance of the proposed network with validation sets 
 

MSE×10-3 The number of MIs 
Architecture 

Training Validation Testing Without 
thresholds 

With 
thresholds 

16/20/5/1 0.303 1.440 1.619 61 9 
16/25/5/1 0.445 1.607 1.555 68 15 
16/30/5/1 0.095 1.470 1.550 31 6 
16/35/5/1 0.568 1.834 1.664 73 25 
16/40/5/1 0.435 1.448 1.619 57 19 
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Training with validation sets (Early stopping)  

The early stopping is used in this section to avoid the mentioned overfitting problem. 
Different from the previous section, in this training two hidden layers are selected in the 
architecture of the proposed neural network since the two hidden layers provide the better 
performance than a single hidden layer. 

Table 4.2 shows the MSE of the five different network architectures trained with 3000 
training and 1000 validation sets when the contingency A is considered. Moreover, the MSE of 
the independent 1000 testing sets, which are not used during the training process, is given to 
compare the performance of different architectures. Besides, out of 5000 sets (training + 
validation + testing), the number of misclassified individuals (MIs), i.e. the individual actually 
leads to stable case but the neural network classifies it into the unstable region, and vice versa, is 
given for both with and without the threshold cases. The thresholds 1L  and 2L are here set to 0.45 
and 0.55. The architecture 16/20/5/1 means that there are 16 input neurons, 20 neurons in the first 
hidden layer, 5 neurons in the second hidden layer, and one neuron of the output.  

From the table, the architecture 16/30/5/1, which offers the smallest MSE for both training 
and testing sets and the smallest number of MIs, is chosen to estimate the transient stability in the 
next session of TSCOPF results. Note that the 6 misclassified individuals are 0 from training sets, 
4 from validation sets and 2 from testing sets. The overall percentage of misclassification of the 
selected network is 0.12%. In addition, all 6 misclassifications are safe for system operator, since 
all of them are the case that the system is stable but the neural network classifies it into the 
unstable region. It is very harmful if the system is unstable but the neural network classifies it 
into the stable region. 

Comparing between Tables 4.1 and 4.2, the early stopping helps improving the performance 
of the proposed network (good network generalization). In the training process without validation 
sets, even though the SME of the training sets is driven to a very small value, but the SME of 
testing sets (new sets) is very high. On the other hand, in the training process with validation sets, 
the SME of the testing sets is quite low for all architectures. 

4.3.2 Multi-contingencies 

Six single contingencies at points A, B, C, D, E, and F shown in Fig. 4.5 are considered in 
the simulation. The inertia constants (H) are set to 4 s for G1 and 5.2 s for G3 and 1.2 s for G2 
and G4–G6. The early stopping is applied in the training process. 

Table 4.3 shows the MSEs of the 12 different network architectures trained with 6000 
training and 2000 validation sets when the contingency A is considered. Moreover, the MSEs of 
the independent 2000 testing sets, which are not used during the training process, are given to 
compare the performance of different architectures. From the table, although most of the 
architectures with two hidden layers provide the smaller MSE for the training sets than do ones 
with one hidden layer, they are not accurate for the testing sets. Here the architecture 16/25/1, 
which offers the smallest MSEs for both validation and testing sets, is chosen to estimate the 
transient stability for all contingencies.  
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Based on the chosen architecture, Table 4.4 gives MSEs of 6000 training, 2000 validation 
and 2000 testing sets for all contingencies after training. Out of 10000 individuals, the number of 
misclassified individuals (MIs) is also given for both with and without the threshold cases. The 
thresholds 1L and 2L  are set to 0.4 and 0.6 for contingency A and 0.45 and 0.55 for contingencies 
B–F. Obviously, the introduced thresholds can greatly decrease the number of MIs. Besides, the 
percentage of misclassification after setting the thresholds is less than 0.5% for all contingencies, 
e.g. 0.39% for the contingency A (39 out of 10000 individuals). The trained neural networks here 
will be used for the MC-TSCOPF problem. 
 
 
 
 
 
 

Table 4.3 Comparison of MSEs of 12 different architectures 
 

Architecture Training Validation Testing 
16/15/1 0.00156 0.00224 0.00267 

16/15/5/1 0.00124 0.00236 0.00247 
16/20/1 0.00131 0.00213 0.00263 

16/20/5/1 0.00118 0.00226 0.00258 
16/25/1 0.00145 0.00205 0.00196 

16/25/5/1 0.00108 0.00251 0.00336 
16/30/1 0.00142 0.00279 0.00270 

16/30/5/1 0.00183 0.00236 0.00298 
16/35/1 0.00139 0.00257 0.00258 

16/35/5/1 0.00192 0.00298 0.00361 
16/40/1 0.00145 0.00273 0.00299 

16/40/5/1 0.00126 0.00270 0.00352 
 

Table 4.4 MSEs and the number of MIs for all contingencies 
 

MSE The number of MIs 
Contingency Training Validation Testing Without 

thresholds 
With 

thresholds 
A 0.00145 0.00205 0.00196 117 39 
B 0.00072 0.00174 0.00183 68 34 
C 0.00020 0.00049 0.00076 38 7 
D 0.00024 0.00070 0.00042 53 4 
E 0.00016 0.00025 0.00020 29 1 
F 0.00015 0.00028 0.00031 48 0 
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4.4 EP-Based Methods & Proposed ANN for TSCOPF 
 
To calculate the fitness value of individual during the search process of the proposed EP 

methods for TSCOPF problem, each individual is needed to perform power flow calculation and 
transient stability assessment by time domain simulation as earlier described in Chapter 3.2.3. 
From Fig. 3.3, the more the number of contingencies is considered, the more frequent the time 
domain simulation is performed. It can be imagined how huge the computational load will be 
when the EP-based methods are applied to solve MC-TSCOPF problem.  

To alleviate the mentioned problem, the proposed neural network will be inserted into the 
fitness evaluation process of the EP-based methods to reduce the utilization of time domain 
simulation while the accuracy of transient stability evaluation is still maintained at an acceptable 
level. When the proposed neural network is incorporated into the EP-based methods, the transient 
stability assessment will change as shown in Fig. 4.7. First, the individual will be sent to perform 
AC power flow calculation to obtain all variables in the system including the active power 
generation at the slack bus (PG1). Please note that in IEEE 30-bus system, bus no. 1 is the slack 
bus. Next, each individual and its corresponding active power at slack bus will be used as the 
input of the proposed neural network already trained for each contingency. The output (stability 
degree) of the proposed neural network with the predefined thresholds 1L  and 2L  for each 

 

∞−∞

 
 
Fig. 4.7 The fitness evaluation process when the neural network is equipped into EP-based methods 
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contingency is then known. If the output is classified in stable or unstable region, the stability 
status is immediately identified without the help of time domain simulation. On the other hand, if 
the output is classified in critical region, time domain simulation is performed to trace the 
generator rotor angle because the stability degree is ambiguous.  

To calculate the fitness of the individual, In case of unstable evaluated by either the neural 
network or time domain simulation, since the transient stability limit is considered as the severe 
constraint, the objective function is penalized by the large number RK  as appeared in Eq. (2.28). 
Using different values of RK  for different contingencies can give a high or low priority to the 
particular contingency. 

Based on the proposed scheme for transient stability evaluation, it can be expected that the 
computational time of the EP-based methods for TSCOPF problem can be decreased. This is 
because even if the approximation time of the neural network is necessary, it is very small 
compared to the execution time of time domain simulation. In the next chapter, the contribution 
of the proposed neural network will be elaborated when the EP-based methods incorporating the 
neural network are applied to solve TSCOPF and MC-TSCOPF problems.  
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4.5 Summary 
 

This chapter mainly presents the proposed artificial neural network for transient stability 
assessment in the TSCOPF problem. The input of the network is the individual of the EP-based 
methods and the active power at the slack bus whereas the output is the stability degree 
determined by the difference between the maximum rotor angle deviation and transient stability 
limit. The neural network is combined with time domain simulation to assess whether the system 
is stable or not after the contingency. The thresholds are set to account for the inherent error of 
the neural network. Any individual falling into the thresholds (critical region) has to perform time 
domain simulation to clarify its transient stability status. The advent of the neural network will 
definitely reduce the computational time of the EP-based methods for TSCOPF, since most of the 
individuals will be evaluated their stability status immediately by the proposed neural network 
rather than the time-consuming time domain simulation.       

To avoid the overfitting problem normally found during the training process, the early 
stopping is adopted to terminate the training process when the error of validation sets begins to 
increase. The performance of the proposed network is tested on the IEEE 30-bus system. The 
results are categorized into two parts, i.e. training with validation sets (early stopping) and 
training without validation sets. The results without validation sets show that the more the 
number of the neurons is, the smaller the SME of the training sets will be. However, this can lead 
to the increase in the SME of the testing sets. This trend of the results can be regarded as the 
overfitting problem. On the other hand, the results with validation sets indicate that even though 
the error of the training sets is not as small as that obtained by training without validation sets, the 
error of the testing sets is acceptable. It can be said that the early stopping provides the better 
network generalization. In addition, the contribution of the thresholds is remarked. From the 
results, the thresholds can substantially decrease the number of the misclassified individuals. In 
other words, it can improve the performance of the neural network. 

Equipped with the EP-based methods, the trained neural network with the chosen 
architecture in this chapter will be used in the fitness calculation for the TSCOPF problem. The 
impacts of the neural network on the TSCOPF solution in terms of computational time and the 
quality of solution will be reported in the Chapter 5. 
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CHAPTER 5 

NUMERICAL RESULTS AND DISCUSSION 
   

5.1 Introduction 
 

Three proposed EP-based methods, i.e. the conventional EP, Improved EP (IEP) and 
Adaptive EP (AEP) explained in Chapter 3 are applied to solve the various types of OPF 
problems formulated in Chapter 2. The WSCC 9-bus system and IEEE 30-bus system are used as 
the test systems. The single-line diagrams of the WSCC 9-bus system and IEEE 30-bus system 
are depicted in Fig. 5.1 and Fig. 5.2. The bus data, line data, generator data, and cost coefficients 
of the two systems can be found in [1] and [2] respectively. The operating range of all 
transformers is set between 0.9 and 1.1. Moreover, to demonstrate the effectiveness of the 
algorithms, three different types of generator fuel cost curve i.e. quadratic cost curve (Fq), 
piecewise quadratic cost curve (Fp), and quadratic cost curve superimposed by sine component 
(Fs) are considered. All cost curves are mathematically expressed as follows: 

 
2( )qi Gi i i Gi i GiF P a b P c P= + +                                                  (5.1)                   

2
,min1 1 1

2
,max2 2 2

( ) Gi Gi Xii i Gi i Gi
pi Gi

Xi Gi Gii i Gi i Gi

if P P Pa b P c PF P
if P P Pa b P c P

≤ ≤⎧ + +
= ⎨ < ≤+ +⎩

                             (5.2)        

 2
,min( ) sin( ( ))si Gi i i Gi i Gi i i Gi GiF P a b P c P d e P P= + + + −                               (5.3) 

        
The generator data and cost coefficients represented by Eq. (5.1) of the WSCC 9-bus 

system can be found in Table 5.1. In this system, the 2-nd generator (G2) is also modeled by Eq. 
(5.2) and Eq. (5.3) to represent the combined-cycle unit and valve-point loading effects of the 

 

 
Fig. 5.1 Single-line diagram of WSCC 9-bus system 
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thermal unit respectively [3, 4]. The cost coefficients of the 2-nd generator when it is modeled by 
Eq. (5.2), i.e. a12, b12, c12, a22, b22, c22, and Px2 are 500, 1, 0.05, 2500, 1.1, 0.065, and 175 
respectively. The cost coefficients of the 2-nd generator when it is modeled by Eq. (5.3), i.e. a2, 
b2, c2, d2, and e2 are 500, 5, 0.05, 700, and 0.036 respectively. 

For the IEEE 30-bus system, the generator data and cost coefficients represented by Eq. 
(5.1) can be found in Table 5.2. In this system, the 2-nd and 3-rd generators (Bus no. 2 and 13) 
are also modeled by Eq. (5.2) and Eq. (5.3). The cost coefficients of the 2-nd and 3-rd generators 
when they are modeled by Eq. (5.2) are given in Table 5.3, and when they are modeled by Eq. 
(5.3) are given in Table 5.4. 

All of the penalty constants, i.e. Kp, Kq, Kv, Ks and KR which employ to force the related 
inequality constraints for both systems are set to 1000. The prototype program is developed on 
MATLAB environment and implemented on a personal computer with Intel Pentium IV 3.8-GHz 
processor and 512 MB memory. 

 
Fig. 5.2 Single-line diagram of IEEE 30-bus system 

 

Table 5.1 The generator data and cost coefficients of WSCC 9-bus system represented by quadratic curve 

Active power generation Cost coefficient Bus 
No. Min (MW) Max(MW) a 

($/hr) 
b 

($/MW/hr) 
c 

($/MW2/hr) 
1 10 250 150 5.0 0.1100 
2 10 300 600 1.2 0.0850 
3 10 270 335 1.0 0.1225 
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Table 5.3 Cost coefficients of 2-nd and 3-rd generators represented by piecewise quadratic curve 
 

Active power generation Cost coefficient Bus 
no. Min (MW) Max (MW) a 

($/hr) 
b 

($/MW/hr)
c 

($/MW2/hr) 
2 0 40 0 1.5 0.005 
 40 80 0 2 0.02 

13 0 20 0 2.0 0.01 
 20 40 0 3.5 0.03 

 

Table 5.2 The generator data and cost coefficients of IEEE 30-bus system by quadratic curve 

Active power generation Cost coefficient Bus 
No. Min (MW) Max (MW) a 

($/hr) 
b 

($/MW/hr) 
c 

($/MW2/hr) 
1 0 80 0 2.00 0.02000 
2 0 80 0 1.75 0.01750 
13 0 40 0 3.00 0.02500 
22 0 50 0 1.00 0.06250 
23 0 30 0 3.00 0.02500 
27 0 55 0 3.25 0.00834 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Table 5.4 Cost coefficients of 2-nd and 3-rd generators represented by quadratic curve with sine component 
 

Active power generation Cost coefficient Bus 
no. Min (MW) Max (MW) a b c d e 
2 0 80 0 2.5 0.01 35 0.118 
13 0 40 0 3.7 0.022 21 0.236 
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5.2 Study of Parameters Used in the EP-Based Method 
 

The IEP6 (mutation and modified discrete crossover) described in Chapter 3.3 is selected to 
investigate the sensitivity of the parameters of IEP method on the IEEE 30-bus system. The fuel 
cost function of all generators is represented by the quadratic curve as shown in Eq. (5.1). The 
generator data and cost coefficients can be found in Table 5.2. Three main parameters of the IEP 
algorithm, i.e. population size (P), crossover acceptance rate (M), and decaying mutation rate (a), 
are tuned when the conventional OPF problem is considered. The maximum generation number 
(Gmax) is fixed to 200. Table 5.5 shows the IEP6-based OPF results as the IEP6 parameters are 
varied. The results consist of best, average, worst costs, average run time and standard deviation 
of 20 independent runs. 

From the Table 5.5, It indicates that when the population size increases, the quality of the 
obtained solutions is improved i.e. lower fuel cost (the best, worst and average costs) and smaller 
standard deviation. When P increases beyond 4, both fuel cost and standard deviation are 
improved slightly whereas the computational time is increased considerably. It implies that the 
value of P equal to 4 is sufficient to get the acceptable solution for the problem. The increase in 
the computational time is observed to be linearly proportional to the enlargement of the 
population size. The optimal value of M is found to be 0.4. This number indicates the suitable 
proportion between mutation and crossover utilization against the OPF problem. The larger the 
value of M is, the shorter the computational time will be. This emphasizes that the proposed 
crossover technique takes less processing time than the mutation. Even if the high reliance on the 
crossover contributes to computational time saving, the solution is degraded (increases in the fuel 

 
Table 5.5 Study of tuning IEP parameters 

 

Parameter Best 
 cost ($/hr)

Avg. 
 cost ($/hr)

Worst 
 cost ($/hr)

Avg. 
 time (s) 

Standard  
deviation 

2 575.31 576.40 579.93 9.95 1.09 
4 574.77 575.35 575.81 19.92 0.25 
8 574.52 575.05 575.45 41.12 0.23 

P 
when 

(M = 0.4, 
a = 0.97, 

Gmax = 200) 12 574.45 574.96 575.31 83.47 0.20 
0.2 575.03 575.33 575.92 20.85 0.25 
0.4 574.77 575.35 575.81 19.92 0.25 
0.6 575.10 575.72 577.26 18.07 0.62 

M 
when 

(P = 4, 
a = 0.97, 

Gmax = 200) 0.8 576.02 577.24 579.93 16.05 1.30 
0.9 576.42 582.32 597.47 13.33 6.12 
0.94 576.04 578.22 590.43 16.51 2.99 
0.97 574.77 575.35 575.81 19.92 0.25 

a 
when  

(P = 4, 
M = 0.4, 

Gmax = 200) 0.99 576.16 581.65 587.08 23.45 3.13 
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cost and standard deviation) as shown in the table. Therefore, the value of M should be carefully 
selected in order to prevent too high reliance on the crossover technique. The suitable tuning of 
M can lead to better or almost the same quality of the solution as the conventional EP with less 
computational time. At the fixed value of Gmax, i.e. 200, the value of a, which provides the lowest 
fuel cost and smallest standard deviation is found to be 0.97. As appeared in Eq. (3.3), the value 
of a partially impacts the convergence rate of the proposed algorithm. At the specific value of 
Gmax, too small value of a leads to the premature of the solution because the distance that an 
offspring can be moved far away from its parent decreases too rapidly as iteration counter 
increases. On the other hand, too high value of a results in the slow convergence rate because the 
solution does not converge smoothly to the local or global optimum. Since the computational 
time is strongly related to the convergence rate, the high value of a is more time-consuming than 
the low one as shown in the table. Basically, the problem of too high value of a can be handled 
by appropriately tuning the value of Gmax to guarantee a proper convergence of the solution. In 
other words, Gmax should be increased to avoid the termination of the algorithm before the 
intensified search is implemented. However, with the increase of Gmax, longer computational time 
is required. 

In summary, the large value of P always provides the better quality of the solution in terms 
of the best, worst and average costs and standard deviation of the solution. Nevertheless, the 
longer computational time is unavoidable. For parameter M, the proper setting is necessary to 
reduce the simulation time while maintaining the quality of the solution. Lastly, the value of a 
should be tuned simultaneously with Gmax to introduce the diversification at the beginning and 
then the intensification when the iteration counter is increased.  

After the parameter tuning, for the IEEE 30-bus system, the IEP parameters are set as 
follows: the values of P, M, a, Gmax are 4, 0.4, 0.97, and 200 respectively. The conventional EP 
parameters are set as follows: the values of P, a, Gmax are 4, 0.97, and 200 respectively. The AEP 
parameters are set as follows: the values of a, Gmax are 0.97, and 200 respectively.  

To investigate the effectiveness of the proposed algorithm, Table 5.6 shows a comparison 
of OPF results solved by IEP and those solved by the conventional EP, Genetic Algorithm (GA) 
and Particle Swamp Optimization (PSO). The proposed algorithm can obtain the lower fuel cost 
than the others. Besides, the computational time of IEP is less than that of EP. Note that the 
results solved by GA and PSO are reported in [5] and for the reason that GA and PSO are run on 
the different CPU, the run time of those methods is not inserted in the table.        

 

Table 5.6 Comparison of OPF results among different algorithms 
 

Result IEP EP GA PSO 
Avg. cost ($/hr) 575.35 575.46 576.75 576.69 
Worst cost ($/hr) 575.81 575.89 576.91 576.87 
Best cost ($/hr) 574.77 575.02 576.64 576.63 
Avg. run time (s) 19.92 21.71 - - 
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5.3 Results of the Conventional OPF 
 
The EP-based algorithms are tested on the IEEE 30-bus system. The numerical examples 

are divided into three cases as follows: 
Case 1:  The cost curves of all generators in the IEEE 30-bus system are represented by Eq. (5.1). 

The generator data and cost coefficients can be found in Table 5.2. 
Case 2: The cost curves of 2-nd and 3-rd generators are replaced by Eq. (5.2). The cost 

coefficient of 2-nd and 3-rd generators can be found in Table 5.3. 
Case 3:  The cost curves of 2-nd and 3-rd generators are replaced by Eq. (5.3). The cost 

coefficient of 2-nd and 3-rd generators can be found in Table 5.4. 
 

The OPF results of Case 1 solved by the conventional EP, IEPs (referred to Table 3.1) and 
sequential quadratic programming (SQP) are tabulated in Table 5.7. They consist of the average, 
worst, best solutions in terms of the total generator fuel cost, standard deviation of cost and 
average computational time from 20 runs without any limit violation. The results show that the 
conventional EP and the IEP methods can obtain the better OPF solution (even the worst cost) 
than SQP, but as expected the EP and IEP methods require more computational time. Note that 
the solution of OPF problem by SQP is solved by MATPOWER software [2] which is capable of 
handling only the quadratic cost function. From the table, it is obvious that all IEP-based methods 
require less computational time than the conventional EP.  In term of the best cost, the total fuel 
costs of IEP1, IEP2, IEP4, IEP5, and IEP6 are slightly cheaper than EP where IEP6 provides the 
cheapest cost of 574.77 $/hr. Moreover, the IEP6 can obtain the better result than that of PSO and 
GA, both of which are also based on the evolutionary computation. The optimal solutions of 
576.63 and 576.64 $/hr solved by PSO and GA respectively are reported in [5]. The standard 
deviation and average cost of IEP6 are the lowest among all algorithms except for SQP. IEP3 is 
the fastest heuristic method, but it has the worst performance in obtaining the optimal solution.  

Table 5.8 shows the OPF results from 20 runs without any limit violation in Case 2. It is 
also evident that all IEP-based techniques are faster than the conventional EP similar to the 
results reported in Case 1. In terms of the best cost, the performances of all IEP methods are 
slightly better than EP. In Case 2, IEP5 can find the lowest fuel cost of 526.52 $/hr and has the 
best performance in terms of the average cost. IEP3 still becomes the fastest algorithm but it has 
the poorest quality of the solution among the IEP methods.  

 
Table 5.7 OPF results of IEEE 30-bus system with various methods in Case 1 

 

Results SQP EP IEP1 IEP2 IEP3 IEP4 IEP5 IEP6 
Avg. cost ($/hr) - 575.46 575.70 575.64 575.83 575.87 575.63 575.35
Worst cost ($/hr) - 575.89 576.59 576.63 576.39 576.65 576.36 575.81
Best cost ($/hr) 576.89 575.02 574.93 574.94 575.15 574.87 574.88 574.77

Standard deviation 0.00 0.27 0.40 0.37 0.35 0.48 0.42 0.25
Avg. run time (s) 3.73 21.71 19.77 19.88 19.42 19.93 20.01 19.92
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Table 5.9 shows the OPF results from 20 runs without any limit violation in Case 3. It is 

similar to Cases 1 and 2 that all IEP-based techniques are faster than the conventional EP. In 
terms of the best, averagre, and worst costs, the performances of all IEP methods except for IEP3 
are slightly better than EP. In Case 3, IEP4 can obtain the lowest fuel cost of 604.23 $/hr and has 
the best performance in terms of the average cost. IEP3 still has the poorest performance but it is 
the fastest algorithm among IEP methods.  

Based on the results in Tables 5.7, 5.8 and 5.9, it can conclude that almost all of the IEP-
based methods except for IEP3 (Arithmetical Crossover) outperform the conventional EP in 
terms of both computational time and the quality of the solution (the best cost) when applied to 
solve OPF with convex and non-convex objective functions. The reduction in calculation time of 
IEP algorithms comes from the fact that the crossover operators used to generate offspring are 
simpler than the mutation operator. The difference of computational time between EP and IEP 
will be significant when P and Gmax are increased, because the possibility of using crossover 
techniques instead of mutation operator is augmented. In IEP2, IEP5, and IEP6, the created 
offspring is the combination of control variables from two selected parents without moving their 
values whereas the crossovers used in IEP1, IEP3, IEP4 introduce more flexible search template 
in IEP i.e. sometimes the offspring is created without the guidance of parent fitness value and 
iteration counter. This can prevent the premature of the solutions and avoid to be trapped in to a 
local optimum. 

The optimal operating points of the best OPF solution solved by IEP6 in Case 1, IEP5 in 
Case 2, and IEP4 in Case 3 are shown in Table 5.10. 

 

Table 5.8 OPF results of IEEE 30-bus system with various methods in Case 2 
 

Results EP IEP1 IEP2 IEP3 IEP4 IEP5 IEP6 
Avg. cost ($/hr) 528.87 527.87 528.00 527.86 527.69 527.63 527.72
Worst cost ($/hr) 529.68 529.67 529.20 528.72 529.70 529.29 528.63
Best cost ($/hr) 527.91 526.67 526.95 527.01 526.68 526.52 526.96

Standard deviation 0.49 0.85 0.78 0.47 0.76 0.79 0.48
Avg. run time (s) 22.33 20.39 20.34 19.90 20.60 20.56 20.41

 

Table 5.9 OPF results of IEEE 30-bus system with various methods in Case 3 
 

Results EP IEP1 IEP2 IEP3 IEP4 IEP5 IEP6 
Avg. cost ($/hr) 606.89 606.48 606.33 606.87 606.05 606.48 606.38
Worst cost ($/hr) 609.90 609.01 609.00 609.29 609.69 609.07 608.86
Best cost ($/hr) 604.85 604.61 604.70 605.06 604.23 604.55 604.75

Standard deviation 1.45 1.06 1.29 1.06 1.45 1.18 1.17
Avg. run time (s) 22.23 19.89 20.00 19.53 20.05 20.14 20.18
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Next, the results of OPF solved by the conventional EP and AEP will be compared. Table 
5.11 shows the OPF results of 20 independent runs solved by AEP. Here, only results in Case 1 
and Case 3 are investigated. To show the effectiveness of AEP, the OPF results solved by the 
conventional EP with P = 8 are also given. The results show AEP can obtain the cheaper fuel cost 
and requires the shorter computational time than does EP in both cases. The reason why AEP 
spends less computational time than EP is because the average population size of AEP is smaller 
than that of EP.  

Table 5.10 Optimal operating points based on OPF results in all cases 
 

Case 1 (IEP6) Case 2 (IEP5) Case 3 (IEP4) 
PG1 (MW) 43.56 45.58 46.47 
PG2 (MW) 57.17 39.99 53.24 
PG3 (MW) 16.76 20.00 13.32 
PG4 (MW) 23.10 23.52 24.32 
PG5 (MW) 16.22 18.49 18.03 
PG6 (MW) 34.87 44.15 36.54 
VG1 (p.u.) 1.04 1.02 1.03 
VG2(p.u.) 1.04 1.01 1.02 
VG3 (p.u.) 1.06 1.08 1.05 
VG4 (p.u.) 1.02 1.03 1.04 
VG5 (p.u.) 1.03 1.04 1.05 
VG6(p.u.) 1.04 1.06 1.06 
T1 (bus 6-9) 1.01 0.93 0.96 
T2 (bus 6-10) 0.95 0.99 1.03 
T3 (bus 4-12) 1.00 1.02 1.04 
T4 (bus 28-27) 1.09 1.08 1.08 
Total fuel cost ($/hr) 574.77 526.52 604.23 

 

Table 5.11 Comparison of OPF results solved by AEP and EP 

Case 1 Case 3 Result 
AEP EP AEP EP 

Avg. cost ($/hr) 575.00 575.05 605.94 605.63 
Worst cost ($/hr) 575.28 575.45 607.58 608.63 
Best cost ($/hr) 574.41 574.52 603.92 604.33 
Standard deviation 0.22 0.23 0.93 1.13 
Avg. population size  5.43 8 6.10 8 
Avg. run time (s) 31.11 41.12 35.10 43.84 
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Based on the AEP and EP best solutions in Case 1, the population size and convergence are 
plotted in Fig. 5.3. From the figure, it can be observed that AEP converges to the optimal solution 
slower than EP, since the population size of AEP is much smaller than that of EP during the first 
100 generations. Nevertheless, after 200 generations, AEP can provide the lower fuel cost than 
does EP.  

 
From the OPF results based on the conventional EP, IEP, and AEP, It can be seen that the 

new versions of EP methods, AEP and IEP, outperform the conventional EP in both locating the 
optimal solution and saving the computational time, especially AEP where the population size 
does not have to predefine. In the following sections, the effectiveness of IEP and AEP will be 
clarified again by the more complicated optimization problems, i.e. TSCOPF. 
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Fig. 5.3  Population size and convergence of EP and AEP in Case 1 
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5.4 Results of Transient Stability Constrained OPF (TSCOPF) 
 
5.4.1 TSCOPF on WSCC 9-Bus System 

Firstly, the WSCC 9-Bus system depicted in Fig. 5.1 is used as the simple test system. The 
control variables for this system are active power generation outputs of all generator buses 
excluding slack bus (bus 1) and voltage magnitudes of all generator buses. The numerical 
examples are divided into three cases as follows: 
Case 1.1:  The cost curves of all generators in WSCC 9-bus system are represented by Eq. (5.1). 

The generator data and cost coefficients can be found in Table 5.1.  
Case 1.2: The cost curve of 2-nd generator is replaced by Eq. (5.2).  
Case 1.3:  The cost curve of 2-nd generator is replaced by Eq. (5.3).  
 

A single contingency with three-phase grounding fault near bus 7 at the end of the line 5-7 
at t = 0 s is considered. The fault is cleared at t = 0.27 s for Case 1.1, 0.19 s for Cases 1.2 and 
0.16 s for Case 1.3. To observe the rotor oscillation with two swings, the maximum integration 
period used is 2 s. The integration time step is 0.01 s and MAXδ is 100 degrees. For this system, 
the EP parameters are set as follows: P, a, Gmax are 4, 0.99, and 800 respectively. 

The conventional EP is applied to solve TSCOPF problem on this system. The EP-based 
OPF and TSCOPF results of all cases consisting of the average, worst, best solutions in terms of 
the total generator fuel cost, and average run time from 20 runs without any limit violation 
including stability limit are tabulated in Table 5.12. The control variables and cost differences 
based on the best solution between TSCOPF and OPF are also shown. Besides, the OPF results 
by a conventional method (SQP) are given to compare with EP-based OPF results in Case 1.1. 
From Table 5.12, the proposed EP algorithm can obtain the same the OPF solution (the best 
solution) as the conventional method, but as expected it requires longer computational time. The 

 
Table 5.12 EP-based TSCOPF and OPF results of WSCC 9-bus system in Cases 1.1–1.3 

 

Case 1.1 Case 1.2 Case 1.3  
SQP OPF TSCOPF OPF TSCOPF OPF TSCOPF

PG1 (MW) 89.80 89.80 96.06 68.62 73.91 63.80 73.81
PG2 (MW) 134.32 134.32 127.32 175.00 168.71 184.53 184.53
PG3 (MW) 94.19 94.19 94.76 75.57 76.36 71.20 61.15
VG1 (p.u.) 1.10 1.10 1.09 1.10 1.09 1.09 1.04
VG2 (p.u.) 1.10 1.10 1.10 1.10 1.10 1.09 1.10
VG3 (p.u.) 1.09 1.09 1.09 1.09 1.09 1.09 1.10
Avg. cost ($/hr) - 5297.00 5306.81 4328.47 4338.68 5072.54 5100.49
Worst cost ($/hr) - 5298.55 5307.99 4330.87 4339.67 5075.25 5103.76
Best cost ($/hr) 5296.69 5296.69 5305.82 4327.48 4337.88 5069.22 5097.68
Cost diff. ($/hr)  - - 9.13 - 10.39 -  28.46
Avg. run time (s) 1.77 9.04 429.03 9.25 465.03 9.21 466.07
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difference between the best and worst costs of both TSCOPF and OPF is significant in Case 1.3 
compared to Cases 1.1 and 1.2, because in Case 1.3 there are many local optimums in 
optimization problem introduced by the sine component whereas in Cases 1.1 and 1.2, the cost 
curve is smooth and convex. 

The rotor angles with respect to COI of all generators based on OPF and TSCOPF solutions 
in Case 1.1 are plotted in Figs. 5.4 and 5.5. It is obvious that the operating point from OPF can 
not maintain transient stability. In order to guarantee transient stability after the contingency, the 
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Fig. 5.4 Rotor angle curves based on OPF solution in Case 1.1 on WSCC 9-bus system 
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Fig. 5.5 Rotor angle curves based on TSCOPF solution in Case 1.1 on WSCC 9-bus system 
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Fig. 5.6 Convergence comparison of TSCOPF and OPF solutions in Case 1.1 
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operating points have to shift from OPF to TSCOPF solutions leading to the additional costs of 
9.13 $/hr, 10.39 $/hr, and 28.46 $/hr in Cases 1.1, 1.2, and 1.3 respectively. The computational 
times for TSCOPF highly increase from OPF, since the time domain simulation is performed for 
every individual during EP iterations. The rotor angles of all generators based on OPF and 
TSCOPF solutions in Cases 1.2 and 1.3, which are not shown here, behave the same as Case 1.1. 

The convergence characteristics of EP for Case 1.1 when it is applied to solve TSCOPF and 
OPF are shown in Fig. 5.6. From the figure, the convergence speed for TSCOPF is much slower 
than that for OPF. This comes from the transient stability constraints that introduce the 
complexity in the problem. 

 
5.4.2 TSCOPF on IEEE 30-Bus System 

The IEEE 30-bus system is used as the practical test system to test the proposed EP-based 
methods. The single-line diagram of the IEEE 30-bus system is depicted in Fig. 5.2. The control 
variables are active power generation outputs of all generator buses excluding slack bus (bus 1), 
voltage magnitudes of all generator buses, and tap setting of all transformers. The numerical 
examples for this system are divided into three cases as follows: 

Case 2.1:  The cost curves of all generators in the IEEE 30-bus system are represented by Eq. 
(5.1). The generator data and cost coefficients can be found in Table 5.2. 

Case 2.2: The cost curves of 2-nd and 3-rd generators are replaced by Eq. (5.2). The cost 
coefficient of 2-nd and 3-rd generators can be found in Table 5.3. 

Case 2.3:  The cost curves of 2-nd and 3-rd generators are replaced by Eq. (5.3). The cost 
coefficient of 2-nd and 3-rd generators can be found in Table 5.4. 

 
Single Contingency 

A single contingency (A) with three-phase grounding fault near bus 2 at the end of the line 
2-5 at t = 0 s is considered. The fault is cleared at t = 0.35 s for all cases. To observe the rotor 
oscillation with two swings, the maximum integration period is 1.5 s. The integration time step is 
0.01 s and MAXδ is 120 degrees. The inertia constants (H) of all generators are set to 10 s for G1 
and 13 s for G3 and 3 s for G2 and G4–G6.  

Firstly, the conventional EP is applied to solve TSCOPF problem on this system. Table 
5.13 shows the average, worst, best solutions in terms of the total generator fuel cost, and average 
run time from 20 runs without any limit violation. The control variables and cost differences 
based on the best solution between TSCOPF and OPF are also given. From this table, The EP 
algorithm can obtain the better OPF solution (Case 2.1) in terms of the total generator fuel cost 
than the conventional method (SQP). The trend of the solutions is quite similar with that of 
WSCC 9-bus test system. With the complicated cost curve (Case 2.3), the difference between the 
best and worse solutions for both OPF and TSCOPF is quite high. The increases of total 
generator fuel cost of 10.13 $/hr, 3.39 $/hr, and 20.49 $/hr in Cases 2.1, 2.2, and 2.3 respectively 
are needed in order to maintain the transient stability in the system after the contingency. The 
computational times of TSCOPF greatly rise up due to time domain simulation.  
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The rotor angles with respect to COI of only the generator with the largest swing (2-nd 

generator) in all cases based on TSCOPF and OPF solutions are plotted in Fig. 5.7. It is clear that 
the TSCOPF solution is indispensable. The convergence characteristics of EP based on the best 
solution for three cases when it is applied to solve both TSCOPF and OPF are plotted in Fig. 5.8. 
The convergence of EP for OPF is faster for all cases when compared to that of TSCOPF in 
which additional constraints related to the stability issue are included. 

Table 5.13 EP-based TSCOPF and OPF results of IEEE 30-bus system in Cases 2.1–2.3 
 

Case 2.1 Case 2.2 Case 2.3  
SQP OPF TSCOPF OPF TSCOPF OPF TSCOPF

PG1 (MW) 41.54 43.70 50.25 45.88 54.15 43.67 58.44
PG2 (MW) 55.40 57.28 38.86 39.97 38.49 53.26 26.69
PG3 (MW) 16.20 17.04 17.96 19.99 19.90 13.30 13.32
PG4 (MW) 22.74 23.16 27.33 22.63 22.11 24.32 28.56
PG5 (MW) 16.27 16.55 20.29 19.52 18.43 18.90 23.36
PG6 (MW) 39.91 34.01 37.25 44.07 38.89 38.57 41.58
T1 (bus 6-9) 1.00 0.93 1.02 1.07 1.00 0.92 0.98
T2 (bus 6-10) 1.00 1.03 0.99 0.94 1.00 0.92 0.98
T3 (bus 4-12) 1.00 1.02 0.97 0.93 1.02 0.97 0.95
T4 (bus 28-27) 1.00 1.06 1.04 1.10 1.04 1.09 1.05
Avg. cost ($/hr) - 575.46 585.83 528.87 532.41 606.89 628.45
Worst cost ($/hr) - 575.89 586.86 529.68 534.63 609.90 630.91
Best cost ($/hr) 576.89 575.02 585.15 527.91 531.30 604.85 625.34
Cost diff. ($/hr) - - 10.13 - 3.39 -  20.49
Avg. run time (s) 3.73 21.71 451.18 22.33 459.60 22.23 459.34

 

0 0.25 0.5 0.75 1 1.25 1.5
-120

-60
0

60
120
180
240
300
360
420

Time (s)

Ro
to

r a
ng

le
 -C

O
I (

de
g)

 

 
Case 2.1 (OPF)
Case 2.1 (TSCOPF)
Case 2.2 (OPF)
Case 2.2 (TSCOPF)
Case 2.3 (OPF)
Case 2.3 (TSCOPF)

 

Fig. 5.7 Rotor angle curves with the EP-based OPF and TSCOPF solutions of all cases for IEEE 30-bus system 
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Next, IEP with modified discrete crossover (IEP6) is applied to solve TSCOPF when 

contingency A is considered. The TSCOPF results solved by IEP are tabulated in Table 5.14. The 
results of EP are also provided in the same table for comparison. From the table, IEP can locate 
the lower objective function than EP for all cases. The standard deviation of IEP in Cases 1 and 2 
is almost the same as that of EP whereas the standard deviation of IEP in Case 3 is smaller than 
that of EP. This implies that IEP works well with the complicated objective function. In addition, 
IEP can find the optimal solution with shorter computational time than EP. 

Table 5.14 TSCOPF results of IEEE 30-bus system with three types of cost curves by EP and IEP 

Case 2.1 Case 2.2 Case 2.3  
EP IEP EP IEP EP IEP 

PG1 (MW) 50.25 48.27 54.15 52.39 58.44 57.46
PG2 (MW) 38.86 38.50 38.49 39.22 26.69 26.67
PG3 (MW) 17.96 19.72 19.90 19.95 13.32 13.45
PG4 (MW) 27.33 25.88 22.11 26.82 28.56 28.84
PG5 (MW) 20.29 20.39 18.43 14.97 23.36 23.61
PG6 (MW) 37.25 39.02 38.89 38.66 41.58 41.76
T1 (bus 6-9) 1.02 0.98 1.00 0.97 0.98 0.98
T2 (bus 6-10) 0.99 0.97 1.00 1.04 0.98 0.98
T3 (bus 4-12) 0.97 1.01 1.02 1.04 0.95 0.99
T4 (bus 28-27) 1.04 1.03 1.04 1.05 1.05 1.02
Avg. cost ($/hr) 585.83 584.90 532.41 531.79 628.45 628.01
Worst cost ($/hr) 586.86 586.11 534.63 533.95 630.91 629.78
Best cost ($/hr) 585.15 584.13 531.30 530.50 625.34 625.23
Standard deviation  0.50 0.52 0.99 0.94 1.85 1.23
Avg. run time (s) 451.18 445.20 459.60 450.24 459.34 452.29
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Fig. 5.8 EP convergence comparison of OPF and TSCOPF for all cases 
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The convergence speeds of EP and IEP for TSCOPF in all cases are drawn in Fig. 5.9. 
Evidently, IEP converges to the solution faster than EP in all cases. The fast convergence of IEP 
emphasizes the superiority of IEP over the conventional EP. 

From the results of IEP and EP, the quality of solution of TSCOPF in terms of the 
difference between the best and worst cost is slightly worse than that of OPF. Besides, the 
computational time of TSCOPF exponentially increases from that of OPF due to time domain 
simulation needed. The maximum integration periods for time domain simulation, which are 2 s 
in WSCC 9-bus system and 1.5 s in IEEE 30-bus system, play an important role on this issue. 
The implementation of the EP-based methods on parallel computers is a good option to alleviate 
the computation load in TSCOPF.  

The two main parameters i.e. Gmax and P have great effects on both the quality of solution 
and computational time. With high values of the parameters, although the quality is improved, 
the computational load is heavily augmented. The value of Gmax in the WSCC system (Gmax = 
800) is set higher than that in the IEEE system (Gmax = 200), due to the very large search space of 
control variables (Limits of active power generation output) in the WSCC system. The penalty 
constants i.e. Kp, Kq, Kv, Ks and KR for forcing all related inequality constraints to the objective 
function should be selected based on the value of the objective function. If the values of the 
penalty constants are too high, then the real objective function being minimized will be distorted. 
On the other hand, if the values are too low, then solutions with limit violations will occur.  

From the TSCOPF results in the previous session, the computational time for TSCOPF is 
quite high because time domain simulation is implemented to evaluate the transient stability 
status for each individual. To alleviate this computational load, the EP is equipped with the 
proposed artificial neural network explained in Chapter 4 to screen out some individuals, which 
have very high degrees of stability and instability. Only few individuals having unclear stability 
degree will be sent to perform time domain simulation. This method is so called Evolutionary 
Programming incorporating Neural Network (EPNN). When the contingency A is considered, the 
TSCOPF results in all cases solved by the proposed EPNN and the conventional EP without 
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Fig. 5.9 Convergence speed comparison of EP and IEP for TSCOPF problem 
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neural network (reported in Table 5.14) are tabulated in the Table 5.15. All results in the table 
have no any limit violation. 

Table 5.15 confirms that EPNN can lessen the computational burden in EP without loss of 
the ability to locate the optimum. The 51.20%, 42.22%, and 55.01% decreases of computational 
time in Cases 2.1, 2.2, and 2.3 can be gained when the neural network is incorporated into the 
conventional EP. Please note that the total number of individuals of both EP and EPNN is 800, 
since the population size and maximum generation of them are set to 4 and 200 respectively. 
From independent 20 runs, the average number of individuals that perform time domain 
simulation (classified in critical region) and do not perform time domain simulation (classified in 
stable or unstable region) is also given. The percentage of reduction in computational time 
directly depends on the number of individuals classified in stable or unstable region. The number 
of individuals classified in stable or unstable region can be increased by setting L1 and L2 near 
the value of 0.5 (Please referred to Chapter 4.2). However, by doing so the obtained solution may 
violate the transient stability constraint due to the inherent error of the artificial neural network. 

Next, to confirm again that the proposed neural network contributes the decrease in the 
computational time without degrading the quality of the solution, the TSCOPF results solved by 
AEP will be investigated in the following session. For Cases 2.1 and 2.3, the TSCOPF solutions 
of 20 independent runs solved by AEP with the neural network (AEPNN) and AEP without 
neural network are tabulated in Table 5.16. The percentage of utilization of time domain 
simulation (UTDS) for transient stability assessment and the average population size are also 
given. The more frequent the time domain simulation is run, the longer the computational time 
will be. With the help of the neural network, the computational time is decreased around 60 % in 
Case 2.1 and up to 89 % in Case 2.3 without degrading the quality of the solution. This confirms 

Table 5.15 Comparison of TSCOPF results solved by EP and EPNN 

Case 2.1 Case 2.2 Case 2.3  EP EPNN EP EPNN EP EPNN 
Avg. cost ($/hr) 585.83 585.84 532.41 533.12 628.45 628.80
Worst cost ($/hr) 586.86 586.73 534.63 534.39 630.91 630.93
Best cost ($/hr) 585.15 585.12 531.30 531.32 625.34 625.43
Avg. run time (s) 451.18 220.17 459.60 265.55 459.34 206.66
Avg. number  
of individuals  
classified in  
stable or unstable 

- 513 - 438 - 526

Avg. number  
of individuals  
classified in critical 

- 287 - 362 - 274

Total no. individuals  800 800 800 800 800 800
% Time reduction - 51.20 - 42.22 - 55.01
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that AEP with the neural network can greatly lessen the computational burden regarding the 
transient stability constraints without loss of the ability to locate the optimal solution. 

Based on the best TSCOPF solutions in Case 2.3, the population size and convergence of 
AEP with and without the neural network are plotted in Fig. 5.10. From the figure, the 
convergence speed of both cases is similar, because the population size of both methods is 
comparatively the same at the first 100 generations. 

After the contingency A, the rotor angles with respect to COI of the 2-nd generator (the 
largest swing) in Cases 2.1 and 2.3 based on the best AEP-based OPF solutions (Table 5.11) and 
AEPNN-based TSCOPF solutions (Table 5.16) are plotted in Fig. 5.11. It is clear that the neural 
network applied does not harm the transient stability of the obtained results. 

The proposed neural network proves that it can substantially reduce the computational load 
caused by the transient stability constraints. The EP-based algorithm with the proposed neural 

Table 5.16 Comparison of TSCOPF results solved by AEPNN and AEP 
 

Case 2.1 Case 2.3  
AEPNN AEP AEPNN AEP 

Avg. cost ($/hr) 585.00 585.15 625.54 625.76 
Worst cost ($/hr) 585.91 585.95 627.71 628.40 
Best cost ($/hr) 584.16 584.19 624.21 624.18 
Avg. population size  6.48 5.98 6.99 6.69 
% UTDS 38.65 100 3.28 100 
Avg. run time (s) 235.88 577.73 79.50 711.29 
% Time reduction 59.17 - 88.82 - 
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Fig. 5.10 Population size and convergence of AEP of TSCOPF results in Case 2.3 
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network is proved to be a promising method for TSCOPF problem. The following session will 
investigate the applicability of the proposed EP-based method incorporating the neural network 
for a multi-contingency TSCOPF (MC-TSCOPF) problem. 

 
Multi-Contingencies 

Six single contingencies at points A, B, C, D, E, and F shown in Fig. 5.2 are considered in 
the simulation. Each contingency is the three-phase grounding fault at t = 0 s and cleared at t = 
0.35 s. The maximum integration time is 1.5 s, and MAXδ is 120 degrees. Note that the inertia 
constants of all generators in the IEEE 30-bus system are modified. The inertia constants (H) are 
set to 4 s for G1 and 5.2 s for G3 and 1.2 s for G2 and G4–G6. Case 2.1 and Case 2.3 are 
considered to show the effectiveness of the proposed method in this session. 

The IEP6 (mutation and modified discrete crossover) incorporating the proposed neural 
network (IEPNN) is applied to obtain the MC-TSCOPF solutions. Table 5.17 tabulates the results 
of OPF, single-contingency TSCOPF, and MC-TSCOPF solved by the IEPNN method in Case 
2.1. The results consist of the average, worst, best solutions, average computational times from 
independent 20 runs, and the control variables of the best solution. Moreover, the average 
numbers of individuals that perform time domain simulation (classified in critical region) and do 
not perform time domain simulation (classified in stable or unstable region) against each 
contingency are given. Note that the column “A” in single contingency TSCOPF means the 
TSCOPF considering only contingency A and the column “A + C” in MC-TSCOPF means 
TSCOPF considering both the contingencies A and C. It can be observed that when more 
contingencies are included in TSCOPF, the fuel cost is increased. The active power output of the 
generator near the faulted line should be decreased to prevent the transient instability. For 
example, the active power output of G2 in case “A” drops from 57.17 MW of OPF case to 8.61 
MW of TSCOPF (A) case, since G2 at bus 2 is the closest generator to the contingency A. It is 
also found that the more the individuals are classified in stable or unstable region, the shorter the 
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Fig. 5.11 Rotor angle curves based on the best AEP-based OPF and AEPNN-based TSCOPF solutions 
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computational time is required. Since the parameters of the proposed method are kept the same 
for all simulations, the difference between the best and worst solutions in multi-contingency 
cases is more significant than that in single-contingency or OPF cases.   

To compare the performance in terms of computational time, the results of single-
contingency TSCOPF and MC-TSCOPF solved by IEP without the proposed neural network are 
provided in Table 5.18. From Tables 5.17 and 5.18, it is obvious that with the help of the neural 
network, the computational time is substantially decreased without the degradation of the quality 
of the solution (average, worst, and best solutions). This again confirms that IEPNN can lessen 
the computational burden regarding the transient stability constraints without loss of the ability to 
locate the optimal solution. 

Table 5.17 OPF, single-contingency TSCOPF, and MC-TSCOPF results by IEPNN for Case 2.1 
 

 OPF Single-contingency TSCOPF MC-TSCOPF 
  A B C D E F A+C A+C+F 

PG1 (p.u.) 43.56 71.00 56.32 44.58 43.31 45.07 44.22 72.08 76.58
PG2 (p.u.) 57.17 8.61 14.26 59.22 57.96 59.58 59.01 8.97 13.30
PG3 (p.u.) 16.76 29.24 30.16 18.18 17.35 17.65 18.41 29.64 34.43
PG4 (p.u.) 23.10 28.05 26.55 18.05 23.25 16.80 23.60 17.98 16.67
PG5 (p.u.) 16.22 13.11 18.52 16.99 13.94 17.87 11.99 19.39 12.27
PG6 (p.u.) 34.87 41.96 46.10 34.98 36.00 34.96 34.65 44.21 39.40
VG1 (p.u.) 1.04 1.00 0.99 1.00 1.01 1.01 1.00 1.00 0.98
VG2 (p.u.) 1.04 0.99 0.99 0.99 1.01 1.01 0.99 0.99 0.96
VG3 (p.u.) 1.06 1.07 1.04 1.09 1.08 1.08 1.07 1.07 1.06
VG4 (p.u.) 1.02 1.01 1.01 1.02 1.03 1.03 1.02 1.00 1.01
VG5 (p.u.) 1.03 1.03 1.03 1.04 1.04 1.04 1.02 1.02 0.99
VG6 (p.u.) 1.04 1.04 1.05 1.03 1.05 1.06 1.03 1.02 1.03
Avg. cost ($/hr) 575.35 641.25 621.66 577.87 575.79 578.73 576.44 643.82 649.74
Worst cost ($/hr) 575.81 642.98 622.91 578.97 576.25 579.69 577.39 645.88 652.96
Best cost ($/hr) 574.77 640.18 620.11 577.15 575.42 577.74 576.02 641.76 645.37
Avg. run time (s) 19.92 214.59 150.53 177.08 110.57 188.32 187.99 375.20 497.71
Avg. number  
of individuals  
classified in  
stable or 
unstable 

- 475.85 591.80 526.65 651.00 507.70 516.25 477.20(A) 
587.80(C) 

478.40 (A)
634.15 (C)
688.95 (F)

Avg. number  
of individuals  
classified in 
critical 

- 324.15 208.20 273.35 149.00 292.30 283.75 322.80(A) 
212.20(C) 

321.60 (A)
165.85 (C)
111.05 (F)
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Fig. 5.12 sketches the rotor angles with respect to COI based on the OPF solution after the 
contingencies A–F. The rotor angles plotted are only the generator with the largest swing when 
the corresponding contingencies occur. Fundamentally, the generator, which is closest to the 
contingency, will deviate from COI with the largest swing. For instance, since the contingency A 

Table 5.18 Single-contingency TSCOPF, and MC-TSCOPF results by IEP for Case 2.1 
 

Single-contingency TSCOPF MC-TSCOPF 
 A B C D E F A+C A+C+F 
Avg. cost ($/hr) 641.34 621.19 578.07 575.82 578.70 576.61 643.99 649.22
Worst cost ($/hr) 642.81 622.96 579.07 576.70 579.72 577.57 645.97 652.68
Best cost ($/hr) 640.10 620.23 577.05 575.48 577.88 576.01 641.53 645.03
Avg. run time (s) 456.62 414.51 423.57 453.43 415.34 435.71 883.31 1254.83
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Fig. 5.12 The rotor angle deviation based on OPF solution after the contingencies A–F 
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Fig. 5.13 The rotor angle deviation based on TSCOPF solution after the corresponding contingencies A–F 
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is close to generator no. 2 (G2), G2 will have the largest swing among all generators. It is 
comprehensible from this figure that transient stability after the contingencies cannot be expected 
from the OPF solution. Fig. 5.13 sketches the rotor angles of the largest swing generator with 
respect to COI based on the single-contingency TSCOPF solutions (cases A–F) after the 
corresponding contingency. It indicates that TSCOPF can guarantee the transient stability after 
the pre-considered contingency. 

Fig. 5.14 sketches the rotor angles with respect to COI of only the generator with the largest 
swing (G5) based on the MC-TSCOPF (A+C+F), MC-TSCOPF (A+C), TSCOPF (C) and OPF 
after the contingency F in Case 2.1. The figure shows that only MC-TSCOPF (A+C+F) can 
maintain the transient stability against the contingency F whereas others cannot. This is because 
the contingency F is not considered in MC-TSCOPF (A+C), TSCOPF (C) and OPF. 

Next, Table 5.19 gives the results of OPF, single-contingency TSCOPF, and MC-TSCOPF 
solved by IEPNN in Case 2.3. To compare the results, Table 5.20 gives the results of single-
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Fig. 5.14 The rotor angle deviation after contingency F in Case 2.1 

 

 
Table 5.19 OPF, single-contingency TSCOPF, and MC-TSCOPF results by IEPNN for Case 2.3 

TSCOPF MC-TSCOPF 
 

OPF 
A A+C A+C+F 

Avg. cost ($/hr) 606.38 671.91 679.69 700.32 
Worst cost ($/hr) 608.86 673.81 681.87 704.42 
Best cost ($/hr) 604.75 668.78 676.83 696.85 
Avg. run time (s) 20.18 159.06 286.19 391.25 
Avg. number of  
individuals classified  
in stable or unstable 

- 617.05 614.95(A)
580.85(C)

666.00(A) 
597.80(C) 
682.70(F) 

Avg. number of  
individuals classified  
in critical 

- 182.95 185.05(A)
219.15(C)

134.00(A) 
202.20(C) 
117.30(F) 
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Table 5.20 Single-contingency TSCOPF, and MC-TSCOPF results by IEP for Case 2.3 
 

 TSCOPF MC-TSCOPF 
 A A+C A+C+F 

Avg. cost ($/hr) 671.20 679.71 700.48 
Worst cost ($/hr) 672.78 682.66 704.81 
Best cost ($/hr) 668.96 676.17 696.58 
Avg. run time (s) 462.54 860.28 1273.42 

 

contingency TSCOPF and MC-TSCOPF solved by IEP without the neural network. Similar to 
Case 2.1, IEPNN can greatly reduce the computational time of TSCOPF problem. To give an 
example, IEPNN can decrease the simulation time from 1273.42 s to 391.25 s leading to 
approximately 70 % execution time saving for MC-TSCOPF (A+C+F). Besides, it can be noticed 
that the difference between the best and worst costs of OPF, TSCOPF and MC-TSCOPF is 
significant in Case 2.3 compared to Case 2.1, because in Case 2.3 there are many local optimums 
in optimization problem introduced by the sine component.  

In conclusion, the incorporation of the proposed neural network into IEP can enhance the 
search temple by cutting the unnecessary execution time of time domain simulation. Moreover, 
the results show the robustness of the proposed method for solving MC-TSCOPF problem with 
both smooth (Case 2.1) and non-smooth (Case 2.3) objective functions. 

Fig. 5.15 and Fig. 5.16 sketch the rotor angles with respect to COI of only the generator 
with the largest swing based on the MC-TSCOPF  (A+C+F), MC-TSCOPF  (A+C), TSCOPF (A) 
and OPF in Case 2.3 after the contingencies A and F respectively. When the contingency A 
occurs, almost all solutions except for OPF can maintain the transient stability. On the other 
hand, only MC-TSCOPF (A+C+F) solution can maintain the transient stability after the 
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Fig. 5.15 The rotor angle deviation after contingency A in Case 2.3
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contingency F. The results confirm that MC-TSCOPF is indispensable to guarantee the transient 
stability against the possible multi-contingencies that may happen in the system. 
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Fig. 5.16 The rotor angle deviation after contingency F in Case 2.3 
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5.5 Results of OPF with Steady-State Voltage Stability Consideration  
 

The EP-based algorithms are tested on the IEEE 30-bus system. The scaling factor (α ) 
used in Eq. (2.23) is set to 5000 in the simulation. The numerical examples are divided into four 
cases as follows: 
Case 1:  The cost curves of all generators in the IEEE 30-bus system are represented by Eq. 

(5.1). The generator data and cost coefficients can be found in Table 5.2. 
Case 2: The cost curves of 2-nd and 3-rd generators are replaced by Eq. (5.2). The cost 

coefficient of 2-nd and 3-rd generators can be found in Table 5.3. 
Case 3: The cost curves of 2-nd and 3-rd generators are replaced by Eq. (5.3). The cost 

coefficient of 2-nd and 3-rd generators can be found in Table 5.4. 
Case 4: The objective function shown in Eq. (2.23) is modified to minimize only the indicator L 

at the weakest bus regardless of the economic fuel cost term. 
 
Table 5.21 tabulates the results in all cases consisting of control variables, and their 

corresponding fuel cost, computational time, and indicator L at bus 8. It is important to note that 
bus 8 is the weakest bus in the test system owing to its largest load demand and the fuel cost of 
Case 4 is calculated based on the data of the cost function in Case 3. For Cases 1-3, the fuel costs 
of OPF with voltage stability consideration (α = 5000) slightly rise up from OPF (α = 0) 
problem. The additional costs of 1.13 $/hr, 1.61 $/hr, and 2.40 $/hr are required in Cases 1, 2 and 
3 respectively to increase the voltage stability degree, which is indicated by the lower value of 
indicator L. For example, in case 1 the value of indicator L decreases from 0.051 to 0.049 when 
the voltage stability issue is considered in the OPF problem. Because of indicator L’s calculation, 
the voltage stability-considered case consumes the run time slightly longer than OPF case does. 
Case 4 provides the smallest value of indicator L among all cases, implying that the operating 
point obtained by Case 4 possesses the largest voltage stability margin. However, at the same fuel 
cost data, the fuel cost of Case 4 is significantly more expensive than that of Case 3. This can be 
realized as the trade-off problem between the economic and system security points of view.  

The reason why the value of indicator L in Case 4 is not notably different from other cases 
can be explained as the following. Based on Eq. (2.21), to reduce the value of indicator L, the 
voltage magnitude of generator buses and transformer tap setting near the weakest bus should be 
lifted up since the indicator L is influenced by voltages (both magnitude and angle) at generator 
buses and sub-matrix FLG. In other words, if the voltages of generator buses are set higher and 
transformer-tap setting is adjusted properly, the value of indicator L will drop. This can be 
noticed in Table 5.21 that the voltage magnitudes of the cases with voltage stability consideration 
are set higher than those of the OPF cases. However, the over-increase in voltage magnitudes 
may cause line overloading and also bring out overvoltage at load buses. In addition, the 
adjusting of active power generation, which mainly changes the voltage angles of generator 
buses, has a minor impact on the value of indicator L. Therefore, it is quite difficult to improve 
the voltage stability by lowering indicator L when the operating point from the OPF has already 
set the voltage magnitudes of generator buses at a high value or near their upper limits.  
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The P-V curves at bus 8 based on solutions of Cases 3 and 4 with pre- and post-faults are 
sketched in Fig. 5.17. The fault is three-phase grounding at line 6-8 and it is cleared by opening 
the faulted line. From Fig. 5.17 and Table 5.21, the lower the value of indicator L is, the larger 

Table 5.21 OPF and OPF considering steady-state voltage stability results solved by IEP in all cases 
 

Case 1 Case 2 Case 3 
 

α = 0 α = 5000 α = 0 α = 5000 α = 0 α = 5000 
Case 4

PG1 (p.u.) 43.56 43.19 48.93 50.30 48.15 46.76 24.46
PG2 (p.u.) 57.17 56.60 40.00 39.95 53.26 53.29 35.51
PG3 (p.u.) 16.76 18.67 19.99 19.95 13.30 13.32 33.44
PG4 (p.u.) 23.10 22.83 22.99 26.56 24.93 27.75 30.41
PG5 (p.u.) 16.22 12.84 18.29 11.31 16.91 9.31 17.09
PG6 (p.u.) 34.87 37.70 41.68 43.67 35.46 41.41 50.47
VG1 (p.u.) 1.04 1.05 1.00 1.02 1.02 1.05 1.05
VG2 (p.u.) 1.04 1.05 1.00 1.02 1.02 1.05 1.05
VG3 (p.u.) 1.06 1.10 1.06 1.09 1.02 1.07 1.09
VG4 (p.u.) 1.02 1.06 0.99 1.05 1.01 1.04 1.06
VG5 (p.u.) 1.03 1.04 1.01 1.04 1.02 1.05 1.07
VG6 (p.u.) 1.04 1.05 1.02 1.06 1.02 1.07 1.05
Best cost ($/hr) 574.77 575.90 526.96 528.57 604.75 607.15 693.96
Run time (s) 19.92 21.91 20.41 21.86 20.18 21.39 20.75
Indicator L  
at bus 8 0.051 0.049 0.055 0.052 0.053 0.050 0.048
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Fig. 5.17 P-V curves in Case 3 and Case 4 
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maximum loading factor will be, and the removal of line 6-8 greatly degrades the system voltage 
stability. Compared to the OPF case (α = 0), the OPF with voltage stability consideration (α = 
5000) can increase the maximum loading factor of roughly 7.0 % under pre-fault and 6.7 % under 
post-fault. Even though, under pre-fault, the 10.5 % increase (from 7.781 to 8.601) of the 
maximum loading factor from the OPF case can be achieved in Case 4, this improvement leads to 
very expensive fuel cost as earlier shown in Table 5.21 (from 604.75 to 693.96). 

Fig. 5.18 shows the relationship between the voltage magnitude and indicator L at bus 8 
based on the solution of OPF considering voltage stability (α = 5000) in Case 3 under pre-fault 
condition. From the figure, with the increase in the loading factor, the voltage at bus 8 drops but 
the value of indicator L rises. As the voltage becomes collapse at the loading factor equal to 
8.324, the value of indicator L approaches 1. In addition, the value of indicator L increases 
exponentially at the proximity of the voltage collapse point.  

Table 5.22 shows an impact of the scaling factor (α ) on the fuel cost and indicator L’s 
value in Case 3. When the value of α  is beyond 5000, the fuel cost greatly rises up while the 
indicator L is slightly improved. This signifies that too large value of α  results in the 
unnecessary additional cost without the satisfactory increase in the voltage stability margin. The 
value of α  equal to 5000 seems to be the appropriate scaling factor for the IEEE 30-bus system. 
The appropriate scaling factor will be different from this number, if the system characteristic and 
generator data are modified. 

To emphasize the robustness of the proposed algorithm against the highly non-convex 
optimization problem, a comparison of the obtained results in Case 3 (α = 5000) between IEP 
and conventional EP algorithms is shown in Table 5.23. It is obvious that the proposed algorithm 
(IEP6) outperforms the conventional EP in both finding the optimal solution and saving the 
computational time. This again supports the idea that the combination of mutation and crossover 
can enhance the performance of the EP method. 
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Fig. 5.18 Voltage magnitude and indicator L at bus 8 
 



 

 101

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.22 Results of different values of α  in Case 3 
 

 Value of α  Fuel cost  
($/hr) 

Indicator L 
at bus 8 

Max. Loading  
Factor at bus 8 

0 604.75 0.0534 7.781 
500 605.40 0.0529 7.844 

2500 606.09 0.0510 8.149 
5000 607.15 0.0497 8.324 

50000 630.97 0.0495 8.426 
100000 658.03 0.0492 8.477 
Case 4 693.96 0.0485 8.601 

   

Table 5.23 Comparison between IEP and EP results in Case 3 
 

Result IEP EP 
Worst cost ($/hr) 611.51 627.64
Avg. cost ($/hr) 609.03 625.97
Best cost ($/hr) 607.15 624.48
Avg. run time (s) 21.39 24.66 
Indicator L at bus 8 0.050 0.050 
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5.6 Results of OPF with Transient and Voltage Stability Considerations 
 
The EP-based algorithm is tested on the IEEE 30-bus system as illustrated in Fig. 5.2. The 

scaling factor (α ) used in Eq. (2.23) is set to 5000 in the simulation. First, the cost curves of all 
generators in the IEEE 30-bus system are represented by quadratic curve expressed in Eq. (5.1). 
The generator data and cost coefficients can be found in Table 5.2. The numerical examples are 
divided into four cases as follows: 
Case 1a: The conventional OPF 
Case 1b: The OPF considering voltage stability 
Case 1c:  The OPF considering transient stability (TSCOPF) 
Case 1d: The OPF considering voltage and transient stabilities 
 

A single contingency (A) with three-phase grounding fault near bus 2 at the end of the line 
2-5 at t = 0 s is considered. The fault is cleared at t = 0.35 s. The maximum integration period is 
1.5 s. The integration time step is 0.01 s and MAXδ is 120 degrees. 

The conventional EP is applied to solve the problem. The results of Cases 1a-d using the 
proposed method are tabulated in Table 5.24. The results consist of the average, worst, best 
solutions in terms of the total generator fuel cost, cost differences with respect to Case 1a, 
average computational time from 20 runs, all control variables, indicator L and maximum loading 
factor at bus 8 based on the best cost. It is important to note that bus 8 is the weakest bus in the 
test system due to its heaviest load demand.  

From the Table 5.24, the fuel cost of Cases 1b–d, especially in Case 1d, increases from 
Case 1a due to the consideration of voltage and transient stability issues respectively. Case 1b 
provides the smallest value of indicator L among all cases, implying that the operating point 
obtained from Case 1b possesses the largest voltage stability margin, i.e. the obtained maximum 
loading factor of 8.28. It can be noticed that the voltage magnitudes of the cases that consider 
voltage stability (Case 1b and Case 1d) are set larger than those of the cases that do not consider 
voltage stability (Case 1a and Case 1c). This is because, based on Eq. (2.21), to reduce the value 
of indicator L, the voltage magnitudes of generator buses should be lifted up since the indicator L 
is mainly influenced by voltages at generator buses. From Cases 1a–d, when the transient 
stability constraints are included into the conventional OPF, it degrades the degree of steady-state 
voltage stability. For instance, the maximum loading factor of Case 1c (7.52) is smaller than that 
of Case 1a (8.06). Case 1d requires the longest computational time because both time domain 
simulation (to check the transient stability) and indicator L’s calculation (to estimate the voltage 
stability margin) are carried out during the EP search.  

The rotor angles with respect to COI of only the generator with the largest swing (2-nd 
generator) in Cases 1a-d after the contingency A are plotted in Fig. 5.19. It is obvious that the 
operating points obtained from Case 1c and Case 1d can maintain transient stability after the 
considered contingency whereas Case 1a and Case 1b cannot. Even though Case 1b offers the 
largest voltage stability margin, it cannot provide the transiently stable operating point. This 
emphasizes the importance of transient stability consideration. 
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Table 5.24 Results of the proposed method in Cases 1a–d 
 

  Case 1a Case 1b Case 1c Case 1d 

PG1 (p.u.) 43.70 43.19 50.25 53.86 
PG2 (p.u.) 57.28 53.92 38.86 38.04 
PG3 (p.u.) 17.04 15.14 17.96 17.08 
PG4 (p.u.) 23.16 23.52 27.33 28.08 
PG5 (p.u.) 16.55 18.25 20.29 10.29 
PG6 (p.u.) 34.01 37.82 37.25 44.53 
VG1 (p.u.) 1.04 1.04 0.99 1.02 
VG2 (p.u.) 1.03 1.04 0.99 1.02 
VG3 (p.u.) 1.04 1.09 1.02 1.09 
VG4 (p.u.) 1.03 1.05 0.99 1.04 
VG5 (p.u.) 1.04 1.04 1.01 1.03 
VG6 (p.u.) 1.06 1.06 1.04 1.06 
T1 (bus 6-9) 0.93 0.98 1.02 0.98 
T2 (bus 6-10) 1.03 0.97 0.99 0.97 
T3 (bus 4-12) 1.02 1.09 0.97 0.98 
T4 (bus 28-27) 1.06 1.07 1.04 1.04 
Avg. cost ($/hr) 575.46 576.46 585.83 589.92 
Worst cost ($/hr) 575.89 577.50 586.86 590.98 
Best cost ($/hr) 575.02 576.07 585.15 588.32 
Cost diff. ($/hr) - 1.05 10.13 13.30 
Indicator L at bus 8 0.051 0.050 0.055 0.052 
Max. loading factor 8.06 8.28 7.52 7.99 
Avg. run time (s) 21.71 22.72 451.18 458.62 
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Fig. 5.19 Rotor angle curves (2-nd generator) after contingency A of Cases 1a-d 
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The P-V curves at bus 8 based on the best solutions obtained from Cases 1a-d are depicted 
in Fig. 5.20. When the voltage stability issue is considered by adding the value of indicator L in 
the objective function, i.e. Case 1b and Case 1d, their degree of voltage stability increases 
compared with the cases where voltage stability issue is not regarded, i.e. Case 1a and Case 1c. 
The increase in voltage stability degree is expressed by the larger value of the maximum loading 
factor of those cases.  

Next, the cost curves of 2-nd and 3-rd generators (bus no. 2 and 13) of IEEE 30-bus system 
used in Cases 1a-d are replaced by quadratic function superimposed by sine component to model 
the effects of valve-point loading in a thermal unit. Similar to Cases 1a-d, the following four 
problems are formulated as follows: 
Case 2a: The conventional OPF 
Case 2b: The OPF considering voltage stability 
Case 2c:  The OPF considering transient stability (TSCOPF) 
Case 2d: The OPF considering voltage and transient stabilities 

 
The results of Cases 2a-d using the proposed EP method are tabulated in Table 5.25. 

Similar to Cases 1a-d, when the transient and voltage stabilities are considered into the 
conventional OPF, the additional cost and computational time are unavoidable, especially when 
transient stability is considered. In this type of cost curve, Case 2d provides the largest voltage 
stability margin signified by the largest maximum loading factor whereas Case 2a provides the 
smallest voltage stability margin among all cases. Besides, the computational burden is the 
heaviest in Case 2d. To alleviate the computational load, the implementation of EP on parallel 
computing can be a good option or the proposed neural network used in the previous session can 
be applied. The difference between the best and worst costs of Cases 2a-d is significant compared 
to Cases 1a-d. This is because in Cases 2a-d the optimization problem has many local optimums 
introduced by the sine component whereas in Cases 1a-d the problem is less complicated due to 
the smooth and convex objective function. In Cases 2a-d, when the transient stability constraints 
are included into the conventional OPF, it improves the degree of steady-state voltage stability. 
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Fig. 5.20 P-V curves at bus 8 of Cases 1a-d 
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Table 5.25 Results of the proposed method in Cases 2a–d 
 

  Case 2a Case 2b Case 2c Case 2d 

PG1 (p.u.) 43.67 58.01 58.44 48.08 
PG2 (p.u.) 53.26 26.69 26.69 26.63 
PG3 (p.u.) 13.30 13.33 13.32 26.61 
PG4 (p.u.) 24.32 28.57 28.56 26.40 
PG5 (p.u.) 18.90 23.25 23.36 14.49 
PG6 (p.u.) 38.57 41.90 41.58 49.58 
VG1 (p.u.) 0.99 1.05 1.02 1.05 
VG2 (p.u.) 0.99 1.04 1.02 1.04 
VG3 (p.u.) 1.06 1.09 1.07 1.08 
VG4 (p.u.) 1.01 1.05 1.03 1.05 
VG5 (p.u.) 1.03 1.06 1.04 1.03 
VG6 (p.u.) 1.02 1.06 1.06 1.06 
T1 (bus 6-9) 0.92 0.97 0.98 1.03 
T2 (bus 6-10) 0.92 1.02 0.98 0.93 
T3 (bus 4-12) 0.97 1.03 0.95 0.99 
T4 (bus 28-27) 1.09 1.05 1.05 1.05 
Avg. cost ($/hr) 606.89 625.97 628.45 631.80 
Worst cost ($/hr) 609.90 627.64 630.91 633.55 
Best cost ($/hr) 604.85 624.48 625.34 630.53 
Cost diff. ($/hr) - 19.63 20.49 25.68 
Indicator L at bus 8 0.056 0.050 0.052 0.050 
Max. loading factor 7.44 8.33 7.95 8.39 
Avg. run time (s) 22.23 24.66 459.34 479.57 
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Fig. 5.21 Rotor angle curves (2-nd generator) after contingency A of Cases 2a-d 
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The rotor angles with respect to COI of only the generator with the largest swing (2-nd 
generator) in Cases 2a-d after the contingency A are plotted in Fig. 5.21. From the figure, the 
operating points obtained from not only Case 2c and Case 2d but also Case 2b can guarantee the 
transient stability of the power system after the contingency A. In this case, it can be said that the 
voltage stability consideration does not harm the transient stability of the system. 

The P-V curves at bus 8 of Cases 2a-d are sketched in Fig. 5.22. Here, Case 2d provides the 
largest maximum loading factor, which is slightly higher than that of Case 2b. It is seemingly 
difficult to improve the voltage stability by lowering indicator L when the voltage magnitudes of 
generator buses are set at a high value or near their upper limits. Case 2a, which does not 
consider transient and voltage stability issues, has the lowest maximum loading factor and cannot 
guarantee the transient stability of the system after the contingency. The necessity of 
consideration of transient and voltage stabilities into the conventional OPF problem is manifested 
by the above-elaborated results.  
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Fig. 5.22 P-V curves at bus 8 of Cases 2a-d 
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5.7 Summary 
 

The effectiveness of three versions of the EP-based methods is demonstrated by the results 
of four OPF problems, i.e. conventional OPF, TSCOPF, OPF considering steady-state voltage 
stability, and OPF considering transient and voltage stabilities. The WSCC 9-bus system and 
IEEE-30 bus system are used as test platforms. Three types of cost functions are considered to 
represent the approximated cost model and detailed cost model of a thermal unit.  

First, the suitable parameters i.e. population size, decaying mutation rate, and crossover 
acceptance rate of IEP6 are selected based on the conducted experiment. The IEP6 with the 
selected parameters can obtain the better solution than SQP (one of the classical optimization 
techniques), the conventional EP, GA, and PSO. In addition, IEP requires the shorter 
computational time than does EP.  

The six different IEP methods (IEP1–IEP6) are used to solve the conventional OPF 
problem with three types of cost curves. All versions of IEP method except for IEP3 can obtain 
the lower fuel cost and require the shorter computational time than the conventional EP. After 
that, AEP is applied to solve the OPF problem. The results show that AEP also performs better 
than the conventional EP. The smaller average population size of AEP leads to the shorter 
required computational time than EP. Even though the convergence speed of AEP is slower than 
that of the conventional EP at the beginning, the final solution is satisfactory. The difference 
between the best and worst costs (the standard deviation) of the case, where the sine component 
is introduced to the quadratic curve, is significant compared to the case where the cost curve is 
smooth and convex. The explanation is that the sine component brings the non-convexity to the 
problem resulting in many local optimums. Due to the mentioned reason, AEP, which changes its 
population size adaptively according to the performance in each generation, needs a large 
population size to obtain the solution in the case of quadratic cost curve with sine component.   

The conventional EP, IEP and AEP are applied to obtain the solution of TSCOPF. It is 
shown that the performance of IEP and AEP is also superior to the conventional EP for this 
problem. The TSCOPF solution proves that it can guarantee the transient stability against the pre-
considered contingency at the expense of the increasing fuel cost. It is also found that the 
convergence speed of the TSCOPF is slower than that of the conventional OPF. Due to very huge 
computational time of TSCOPF, the proposed neural network is incorporated into the EP-based 
methods. The advent of the neural network improves the computational speed without 
degradation of the quality of solution. Next, IEP combined with the proposed neural network is 
applied to solve MC-TSCOPF problem. Without the neural network, the computational time of 
MC-TSCOPF is very extensive. This extensive computational time is alleviated by the proposed 
neural network. More than 50% of computational time saving in all cases can be witnessed from 
the simulation as the contribution of the neural network. The solution of MC-TSCOPF confirms 
that it can guarantee transient stability after all pre-considered contingencies whereas the 
conventional OPF and single-contingency TSCOPF cannot.  

Next, IEP is applied to obtain the solution of OPF with steady-state voltage stability 
consideration. The solution from this problem can increase the voltage stability margin compared 
to that from the conventional OPF. However, the significant increase in the stability margin 
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cannot be seen from the solution, since the solution of OPF already sets the voltage magnitudes 
of generator buses at a high value and there are the load-bus voltage limits involved. The impact 
of the scaling factor on the fuel cost term and indicator L term is discussed. Too high value of the 
scaling factor can cause the excessive rising of fuel cost with a small improvement in the stability 
margin. The results of IEP are also compared with those of EP in this problem. The superiority of 
IEP over the conventional EP is again demonstrated.         

Lastly, the EP method is applied to solve the OPF with transient and voltage stability 
considerations. The solution of this problem is compared with that of the conventional OPF, 
TSCOPF, and OPF with steady-state voltage stability consideration. The results indicate that the 
consideration of voltage stability alone cannot guarantee the transient stability even though it 
provides very large voltage stability margin. Likewise, the consideration of transient stability 
alone can result in a small voltage stability margin. Accordingly, the consideration of both 
transient and voltage stability issues is clearly necessary in the power system operation. 
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CHAPTER 6 

CONCLUSIONS 
 

 
This dissertation proposes an efficient method based on evolutionary programming (EP) for 

Optimal Power Flow (OPF) with transient and voltage stability considerations. The contribution 
of this dissertation can be categorized into three parts i.e. the formulation of OPF with transient 
and voltage stability considerations, the application of EP-based methods on various types of the 
OPF problems, and the development of the novel EP-based methods, i.e. Improved EP (IEP) and 
Adaptive EP (AEP). All of these three contributions and the conclusions of the obtained results 
will be described in the following paragraphs. 

The conventional OPF, which normally considers only statistic constraints, is firstly 
formulated. In the OPF problem, the objective function is to minimize the total generator fuel 
cost. After that the transient stability and voltage stability issues, which play an important role on 
blackouts in many countries around the world, are taken in considerations. In this dissertation, the 
transient stability issue is treated as the additional constraints of the conventional OPF. The 
additional constraints are the swing equation, which describes the transient behavior of a 
synchronous generator, and transient stability limit, which is used to evaluate the stability status 
of the system. This problem is called Transient Stability Constrained OPF (TSCOPF). The swing 
equation is quite difficult to handle, since it consists of a set of differential equations. Time 
domain simulation based on the trapezoidal rule is adopted to cope with this swing equation. 
When the number of the considered contingency is more than 1, the problem is called Multi-
Contingency TSCOPF (MC-TSCOPF). The voltage stability issue is considered by adding the 
value of indicator L into the objective function of the conventional OPF. The indicator L, which 
is widely used in many applications due to its simplicity of calculation and accuracy, is selected 
to estimate the voltage stability margin of the system. The larger the indicator L is, the closer the 
system is to the voltage collapse point. The indicator L at the weakest bus is used as the voltage 
stability indicator of the whole system. Therefore, the objective function now changes to 
minimize both indicator L of the weakest bus and the fuel cost simultaneously. The scaling factor 
is used to weight the importance of voltage stability issue and fuel cost term. This factor can be 
set according to the experience of the system operator. The modified objective function brings 
about the trade-off problem between the financial issue and system security issue. Finally, OPF 
with transient and voltage stability considerations is formulated by considering the transient 
stability issue as the additional constraints and voltage stability issue as one of the objective 
functions to be minimized apart from the fuel cost term. 

Since the objective function used in the OPF problem is the fuel cost minimization, the cost 
function of the thermal unit is needed to be accurately modeled in order to obtain the optimal or 
near optimal solutions of OPF. The approximated quadratic cost function normally found in the 
OPF problem may be not accurate enough. The models of a combined-cycle unit and a thermal 
unit with valve-point loading effect are therefore introduced in this dissertation. The model of the 
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combined-cycle unit is represented by the piecewise quadratic curve and the model of the thermal 
unit with valve-point loading effect is represented by the quadratic curve with sine component. 
Since these accurate models cannot be handled by the classical optimization techniques such as 
linear programming or quadratic programming, the EP method is proposed to solve the OPF 
problems with these types of cost function. 

The conventional EP is very popular for solving the optimization problems because of its 
simple algorithm, flexibility, and good convergence. However, the long execution time and pre-
setting of EP parameters (population size, decaying mutation rate, and maximum generation) are 
the main disadvantages of this technique. The first attempt to enhance the conventional EP is 
done by introducing the crossover techniques, generally found in Real Coded Genetic Algorithm 
(RCGA), to the offspring generation process. This new EP-based method is called Improve EP 
(IEP). IEP employs both mutation of the conventional EP and crossover of RCGA to generate the 
offspring individuals while other components of conventional EP are still used in IEP. The 
mutation is performed to perturb the control variables whereas the crossover is performed to 
exchange the control variables between two parents. The crossover acceptance rate is the 
criterion to choose either mutation or crossover for generating the offspring. This criterion results 
in an additional parameter needed to be defined before applying IEP. The second attempt is made 
by proposing Adaptive EP (AEP), which adjusts its population size adaptively according to the 
quality of population. The quality of population is determined by the idea that the population 
having many improved individuals can reduce its size whereas the population having few 
improved individuals should increase its size. From this idea, it can be realized that AEP reduces 
the number of parameters needed to pre-define, i.e. population size. 

It is found that the computational time required for TSCOPF problem is very extensive due 
to the execution of time domain simulation for transient stability assessment. To alleviate the 
problem, the neural network is proposed to handle the transient stability constraints. First, the 
output of the proposed neural network will classify the individuals into stable, unstable, and 
critical regions based on the preset thresholds. Only individuals classified in critical region will 
perform time domain simulation. Others classified in stable or unstable region will trust the 
output of the neural network. To train the neural network, the early stopping is adopted to avoid 
the overfitting problem. The result shows that the performance of the trained network against the 
new input is improved when the early stopping is used. The selection of a suitable architecture of 
the proposed neural network is studied. The selected architecture will be equipped into the fitness 
evaluation process of the EP-based methods to handle the transient stability constrains. 

The results of the EP-based methods on four types of OPF problems can be divided into 2 
issues, i.e. a comparison of solutions of the different OPF problems and a comparison of 
performance of the proposed EP-based methods. 

First the comparison of solutions of the different OPF problems will be discussed. The 
solution from the conventional OPF problem provides the cheapest operating point among all 
OPF problems. However, it cannot guarantee the transient stability after some possible 
contingencies and it provides a small margin of steady-state voltage stability. The computational 
time of the conventional OPF problem is very short compared to other OPF problems. On the 
other hand, the solution from TSCOPF can guarantee transient stability after a considered 



 

 112

contingency. Certainly, increases in fuel cost and computational time are unavoidable. Similarly, 
the solution from MC-TSCOPF can guarantee transient stability after the considered 
contingencies with the significant increases in fuel cost and computational time. Next, the 
solution from OPF considering voltage stability provides the larger voltage stability margin than 
that from the conventional OPF. The increase in stability margin is gained by setting the voltage 
magnitudes of generator buses at a high value. The computational time of this problem is not as 
long as that of TSCOPF. The reason is that the calculation time of indicator L is much shorter 
than time domain simulation. Lastly, the solution from OPF considering transient and voltage 
stabilities can provide both transiently-stable operating point and a satisfactory voltage stability 
margin. As expected, the fuel cost and computational time of this problem are the most 
significant among all OPF problems. 

Secondly, the comparison of performance of the proposed EP-based methods will be 
discussed. For almost all OPF problems, IEP and AEP can obtain the better solutions with the 
shorter computational time than the conventional EP. When the neural network is incorporated 
into the EP-based methods, the computational time of TSCOPF and MC-TSCOPF is dramatically 
reduced while the quality of solution (average, worst, best costs) is almost the same as the 
methods without the neural network. The neural network is here proved to be the potential tool to 
handle the transient stability constraints. When the EP-based methods are applied to solve the 
OPF problems with the more accurate models of cost function, the difference between the best 
and worst costs is large. This is because the more accurate models create many local optimums in 
the OPF problems. 

In the future, the formulated OPF problems can be added with other important topics, for 
example gas emission constraints etc., to make the problem more and more practical. It is 
important to note that in this dissertation the voltage stability issue is simply considered as one of 
the objective functions to be minimized, because the test system (IEEE 30-bus system) possesses 
very high degree of voltage stability. In other words, even the contingency, e.g. a line outage, 
occurs in the system, the OPF operating point can still maintain the voltage stability. For other 
systems, treating the voltage stability issue as an objective function may not be suitable. 
Considering the voltage stability issue as an additional constraint (Similar to transient stability 
issue) in the conventional OPF problem will be a better way. The constraint can formulate in such 
a way that if there is any contingency occurring, the solution from OPF considering voltage 
stability can still guarantee the voltage stability. 

Moreover, the proposed EP-based methods can be improved by adding some new operators 
for obtaining the better solution and reducing the computational time. Regarding the AEP method, 
the adaptation rules of not only population size but also the other parameters should be developed 
in order to enhance the flexibility of the algorithm.   
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APPENDIX  

DATA OF TEST SYSTEMS 
 

The data of the two test systems, WSCC 9-bus system and IEEE 30-bus system, are 
provided in the following 2 sections. 

1. Data of the WSCC 9-bus system  
2. Data of the IEEE 30-bus system 
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A.1 Data of WSCC 9-bus system 
 

 
 

 
Fig. A.1 WSCC 9-bus test system 
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Table A.1 Branch data of the WSCC 9-bus system  

 
Node Branch data (p.u.) Branch 

no. From To R X B Rating 
(MVA) 

1 1 4 0 0.0576 0 100 
2 2 7 0 0.0625 0 100 
3 3 9 0 0.0586 0 100 
4 4 5 0.0100 0.0850 0.1760 100 
5 4 6 0.0170 0.0920 0.1580 100 
6 5 7 0.0320 0.1610 0.3060 100 
7 6 9 0.0390 0.1700 0.3580 100 
8 7 8 0.0085 0.0720 0.1490 100 
9 8 9 0.0119 0.1008 0.2090 100 

 
 
 
 
 
 

Table A.2 Load data and bus voltage limit data of the WSCC 9-bus system 
 

Load data Bus voltage limits  
Bus 
No. 

PD 
(MW) 

QD 
(MVAR) Vmin (p.u.) Vmax (p.u.) 

1 0.0 0.0 0.95 1.05 
2 0.0 0.0 0.95 1.10 
3 0.0 0.0 0.95 1.05 
4 0.0 0.0 0.95 1.05 
5 125 50 0.95 1.10 
6 90 30 0.95 1.05 
7 0.0 0.0 0.95 1.05 
8 100 35 0.95 1.10 
9 0.0 0.0 0.95 1.05 
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Table A.3 The generator data and cost coefficients of the WSCC 9-bus system 

 
Active power 

generation 
Reactive power 

generation Cost coefficient 
Bus 
No. Min 

(MW) 
Max 

(MW) 
Min 

(MVAR) 
Max 

(MVAR) 
a 

($/hr) 
b 

($/MW/hr) 
c 

($/MW2/hr) 
1 10 250 -300 300 150 5.0 0.1100 
2 10 300 -300 300 600 1.2 0.0850 
3 10 270 -300 300 335 1.0 0.1225 

 
 
 
 
 

Table A.4 Generator parameters of the WSCC 9-bus system 
 

 G1 G2 G3 

dX ′  0.0608 0.1198 0.1813 
H (s) 23.64 6.4 3.01 
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A.2 Data of IEEE 30-Bus System 
 

 
 
 
 
 
 
 
 
 

 

 
 
Fig. A.2 IEEE 30-Bus test system 
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Table A.5 Branch data of the 30-bus IEEE test system 
 

Node Branch data (p.u.) Branch 
no. From To R X B Rating (MVA) 
1 1 2 0.02 0.06 0.03 130 
2 1 3 0.05 0.19 0.02 130 
3 2 4 0.06 0.17 0.02 65 
4 3 4 0.01 0.04 0 130 
5 2 5 0.05 0.2 0.02 130 
6 2 6 0.06 0.18 0.02 65 
7 4 6 0.01 0.04 0 90 
8 5 7 0.05 0.12 0.01 70 
9 6 7 0.03 0.08 0.01 130 

10 6 8 0.01 0.04 0 32 
11 6 9 0 0.21 0 65 
12 6 10 0 0.56 0 32 
13 9 11 0 0.21 0 65 
14 9 10 0 0.11 0 65 
15 4 12 0 0.26 0 65 
16 12 13 0 0.14 0 65 
17 12 14 0.12 0.26 0 32 
18 12 15 0.07 0.13 0 32 
19 12 16 0.09 0.2 0 32 
20 14 15 0.22 0.2 0 16 
21 16 17 0.08 0.19 0 16 
22 15 18 0.11 0.22 0 16 
23 18 19 0.06 0.13 0 16 
24 19 20 0.03 0.07 0 32 
25 10 20 0.09 0.21 0 32 
26 10 17 0.03 0.08 0 32 
27 10 21 0.03 0.07 0 32 
28 10 22 0.07 0.15 0 32 
29 21 22 0.01 0.02 0 32 
30 15 23 0.1 0.2 0 16 
31 22 24 0.12 0.18 0 16 
32 23 24 0.13 0.27 0 16 
33 24 25 0.19 0.33 0 16 
34 25 26 0.25 0.38 0 16 
35 25 27 0.11 0.21 0 16 
36 28 27 0 0.4 0 65 
37 27 29 0.22 0.42 0 16 
38 27 30 0.32 0.6 0 16 
39 29 30 0.24 0.45 0 16 
40 8 28 0.06 0.2 0.02 32 
41 6 28 0.02 0.06 0.01 32 

 



 

 119

 

 
Table A.6 Load data and bus voltage limit data of the 30-bus IEEE test system 

 
Load data Bus voltage limits  

Bus 
No. 

PD 
(MW) 

QD 
(MVAR) 

Vmin 
(p.u.) 

Vmax 
(p.u.) 

1 0 0 0.95 1.05 
2 21.7 12.7 0.95 1.1 
3 2.4 1.2 0.95 1.05 
4 7.6 1.6 0.95 1.05 
5 0 0 0.95 1.05 
6 0 0 0.95 1.05 
7 22.8 10.9 0.95 1.05 
8 30 30 0.95 1.05 
9 0 0 0.95 1.05 

10 5.8 2 0.95 1.05 
11 0 0 0.95 1.05 
12 11.2 7.5 0.95 1.05 
13 0 0 0.95 1.1 
14 6.2 1.6 0.95 1.05 
15 8.2 2.5 0.95 1.05 
16 3.5 1.8 0.95 1.05 
17 9 5.8 0.95 1.05 
18 3.2 0.9 0.95 1.05 
19 9.5 3.4 0.95 1.05 
20 2.2 0.7 0.95 1.05 
21 17.5 11.2 0.95 1.05 
22 0 0 0.95 1.1 
23 3.2 1.6 0.95 1.1 
24 8.7 6.7 0.95 1.05 
25 0 0 0.95 1.05 
26 3.5 2.3 0.95 1.05 
27 0 0 0.95 1.1 
28 0 0 0.95 1.05 
29 2.4 0.9 0.95 1.05 
30 10.6 1.9 0.95 1.05 
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Table A.7 The generator data and cost coefficients of the IEEE 30-bus system 

Active power 
generation 

Reactive power  
generation Cost coefficient Bus 

No. Min 
(MW) 

Max 
(MW) 

Min  
(MVAR)

Max 
(MVAR)

a 
($/hr) 

b 
($/MW/hr) 

c 
($/MW2/hr) 

1 0 80 -20 150 0 2.00 0.02000 
2 0 80 -20 60 0 1.75 0.01750 

13 0 40 -15 44.7 0 3.00 0.02500 
22 0 50 -15 62.5 0 1.00 0.06250 
23 0 30 -10 40 0 3.00 0.02500 
27 0 55 -15 48.7 0 3.25 0.00834 

 
 
 
 

Table A.8 Generator parameters of the IEEE 30-bus system 
 

 G1 G2 G3 G4 G5 G6 

dX ′  0.06 0.30 0.30 0.30 0.30 0.30 

H (s) 10 3 13 3 3 3 
 
 
 

Table A.9 Shunt data of the 30-bus IEEE test system 
 

Bus no. B (p.u.) 
5 0.19 
24 0.04 
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