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Abstract

Head pose and gaze direction play significant roles in inferring

the focus of attention, and they also help us to design more human-

centered computer systems. The use of camera-based techniques for

remote sensing of head pose and gaze should lead to a wide range of

applications. However, although many methods have been proposed,

there are technical limitations in the estimation techniques. Accurate

estimation using only a monocular camera is still a difficult task, and

existing methods often require calibration prior to estimation. The

goal of this thesis is developing a head pose and gaze estimation system

with minimal requirements; the methods used in the developed system

do not need active calibration or equipment other than a camera.

The first part of this thesis describes a monocular method of track-

ing 3D head poses and facial actions. Using a multilinear face model

that treats interpersonal and intrapersonal shape variations separately,

this method estimates the parameters in real time by integrating two

frameworks: particle filter-based tracking for time-dependent poses

and facial action estimation and incremental bundle adjustment for

person-dependent shape estimation. The use of this unique combina-

tion in conjunction with the multilinear face model enables tracking of

faces and facial actions in real time without having to use pre-learned

individual face models.

In the second part of this thesis, an unconstrained gaze estimation

method is presented that uses an online learning algorithm and that

allows free head movement by the user in a casual desktop environ-

ment. The key assumption is that the user gazes at the cursor position

whenever s/he presses the mouse button. The user’s eye images and

3D head poses are continuously captured on the basis of the head pose

estimation method described in the first part of the thesis. By using

clicked positions as exemplars of gaze positions, our system collects

learning samples for estimating gazes while the user uses the PC, un-
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aware of the system’s activities. The samples are adaptively clustered

in accordance with the head pose, and the estimation parameters are

incrementally updated. In this way, our method avoids the lengthy

calibration stage prior to using the gaze estimator.

One of the drawbacks of our method is that it cannot be applied

to passive displays without user interaction. To solve this problem,

we developed a calibration-free gaze sensing framework, and it is pre-

sented in the last part of this thesis. It uses visual saliency maps of

video frames that are computed in a bottom-up manner. By relat-

ing the saliency maps with the appearances of the eyes of the per-

son watching the video frames, our method automatically constructs

a gaze estimator. In order to identify gaze points efficiently from

saliency maps, saliency maps are aggregated to generate probability

distributions of gaze points. Mapping between the eye images and

gaze points is then established by Gaussian process regression. This

results in a gaze estimator that frees users from active calibration and

that can be applied to any type of display device.

Using the methods proposed in this thesis will make head pose and

gaze estimation substantially more practical by reducing installation

and setup costs. They can be used with commonly available cameras,

and estimation procedures without manual initialization can be seam-

lessly integrated into daily computer interactions. This will enhance

the potential for future investigation of attention-based application

systems that will enrich our daily lives with ubiquitous computing

devices.
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Chapter 1

Introduction

1.1 Background

A major goal of many researchers over the last several decades has been to

develop a flexible computer system in which the states of the user are taken

into account. Based on the physical and mental states of the user, computers

can provide richer information adapted for the user, and system developers

can design better human-computer interactions. This will enable a user to

interact naturally with the computer without having to express his/her states

explicitly. The need for such human-centric systems is becoming more and

more urgent in this age of ubiquitous computing with the increasing number

of applications and devices [PPNH06].

One of the most important factors in sensing a person’s states is the

information that can be obtained from the person’s face. Head pose and gaze

direction are particularly important cues for inferring the focus of attention.

By determining the object or area at which the user is looking, a computer

system can help the user deal with the large amount of information that

surrounds him or her. It can be argued that there are two kinds of benefits

of inferring the focus of attention, diagnostic and interactive [Duc02].

1
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The focus of attention gives useful insight into a person’s behavior in

various types of environment. For example, many studies on estimating a

driver’s head pose and gaze direction have been conducted [JY02, SSdVL03]

as part of efforts to develop safe and intelligent driving systems. The inten-

tion is to monitor the driver’s focus of attention, level of concentration, and

degree of fatigue. Gaze tracking studies in the area of marketing and advertis-

ing [Loh97, RRS+01], which have been conducted over a long period if time,

have focused on investigating information layouts that attract more atten-

tion. Designers and advertisers then use the findings to present information

efficiently. Similar diagnostic studies have more recently been conducted for

computer-related applications, including graphical user interfaces [BADM99],

websites [JH02], and Internet search engines [GJG04, LHB+08].

Another possible application of sensing the focus of attention is as in-

put for interactive systems. The proposed interactive applications include

text input [MR02, WM02], zooming/scrolling [SB90, KSK01], and user in-

terface enhancement [AOS05, KPW07]. In these applications, head pose and

gaze direction are used as gesture input for personal computers. As an ad-

vanced concept, Attentive User Interface (AUI) [HKPH03, VSCM06] that

uses knowledge about user’ attention as an indirect input have been advo-

cated in recent years. Although there is a lot of information with which a

user can interact, the number of objects to which a user can pay attention

is limited. It is thus important to design interfaces that do not interrupt the

user’s attention and that augment the user’s limited resources.

These ideas can be applied to a wide variety of environments, from real

world to cyberspace, in a small display. Hence, low-cost and convenient

methods for sensing head pose and gaze point are needed to maximize the

application of these ideas.
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1.2 Related works

One way to measure head pose and gaze point is using contact sensors. Mag-

netic [RBSJ79] and inertial [Fox96] sensors can be used to track the head

pose – signal sources or sensor devices are attached directly to the user’s

head. Contact lenses, scleral coils, and electrooculography (EOG) sensors

are often used for gaze tracking [Duc07], and camera-based head-mounted

systems [BP04, LBP06] are a potent solution in some cases. Though such

intrusive sensing methods have advantages like higher accuracy, they force

the user to wear special equipment, and they can be used only in specific

environments. Compared to these methods, camera-based remote sensing

of head pose and gaze point has a great advantage – it can easily be used

in casual environments without restricting the user’s freedom of movement.

However, although many such methods have been proposed [MCT08a, HJ09],

remote sensing techniques still have technical limitations.

For real-time head pose estimation, it is still not easy to estimate non-

rigid head motion accurately with only a monocular camera. With a stereo

camera [MZ00, YZ02, MRCD02, OS05, ZCSC07], 3D head position can be

estimated directly from depth cues. In contrast, there is ambiguity between

shape and motion in the monocular cases, so some sort of prior knowl-

edge is needed to resolve the ambiguity. Three-dimensional deformable fa-

cial shape models are often used to achieve monocular head pose estima-

tion [GBG01, MBB05, XBMK04, ZJ06]. When this approach is applied to a

generic, person-independent case, the models need to be built so that they

can describe any facial shape [GMB05, ZHL06, ZWT08]. Since there is in-

evitably ambiguous deformations like scale change, 3D pose estimation is

negatively affected. Most previous work was unable to handle this ambiguity

without preliminary customization of the model.

Building a convenient gaze estimator that uses only a monocular cam-
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era is even more challenging. The most common approach to gaze esti-

mation is using explicit geometric 3D models of the eyeball. Pupil-glint

vectors [HWJM+89, Jac90] are often used in this approach to estimate the

gaze direction. With a monocular camera [IBMK04, YUYA08], however,

such detailed features are hard to extract without additional light sources.

Another possible approach to gaze estimation is using eye images as direct

features [BP94, XMS98, TKA02, WBC06]. Eye images are easier to cap-

ture with only a monocular camera, and gaze points can be estimated using

non-linear regression methods. However, a lot of calibration data is needed

to learn the mapping between the eye images and gaze points. Especially

when there are changes in the head pose, this results in an unrealistically

long calibration time.

The most important advantage of a monocular sensing system is that it

can be used with existing cameras, like desktop webcams. Cameras to cap-

ture the user’s face are being attached to more and more devices to meet

the increasing demand for video chat systems, for example. Using such com-

monly available devices will help avoid creating a new digital divide caused

by the use of expensive hardware. More importantly, it will become easier to

provide attention-based application systems via the Internet. As summarized

under the term cloud computing [Hay08], the dominant software platform is

beginning to shift from local PCs to the Internet, and hardware dependency

is a severe disadvantage under this condition.

1.3 Overview

In this thesis, we focused on developing a head pose and gaze estimation

system that has minimal requirements for use. More specifically, our goal

was an accurate estimation system that requires the use of only a monocular

camera and that does not require customized setup or calibration.
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In Chapter 2, we describe a method for estimating head pose in real time.

A monocular method is proposed for tracking the user’s face and facial actions

using a multilinear face model that treats interpersonal and intrapersonal

shape variations separately. This method integrates two frameworks: particle

filter-based tracking for time-dependent facial action and pose estimation and

incremental bundle adjustment for person-dependent shape estimation. Use

of this unique combination in conjunction with the multilinear face model is

the key to tracking the face and facial actions of an arbitrary person in real

time without having to use a pre-learned individual face model.

Chapter 3 describes a method for estimating gaze in real time using the

head pose estimator described in Chapter 2. Unconstrained gaze estimation

is done using an online learning algorithm that allows free head movement

in a casual desktop environment. The key assumption is that a user gazes

at the cursor position whenever s/he presses the mouse button. The user’s

eye images and 3D head poses are continuously captured with a monocular

camera. By using the clicked positions as exemplars of gaze positions, the

system collects learning samples for estimating gazes while the user uses the

PC, unaware of the system’s activities. The samples are adaptively clustered

in accordance with the head pose, and the estimated parameters are incre-

mentally updated. In this way, our method avoids lengthy calibration prior

to use of the gaze estimator.

One of the drawbacks of the above approach is that it cannot be applied

to cases without user interaction. In Chapter 4, a gaze estimation approach

that overcomes this drawback is described. We use a calibration-free gaze

sensing method that uses visual saliency maps of video frames computed in

a bottom-up manner. By relating the saliency maps to the appearances of

the eyes of a person watching the video frames, our method automatically

constructs a gaze estimator. For efficient identification of the gaze point,

we aggregate the maps to build a probability distribution of the points. A
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mapping is established between the eye images and gaze points by Gaussian

process regression.

Using these methods will make head pose and gaze estimation substan-

tially more practical by reducing installation and setup costs. Chapter 5

concludes the thesis and describes possible future directions.



Chapter 2

Person-Independent Monocular

Head Pose Estimation

Direction of the human head tells us a rough, but meaningful information

about what and where the person is looking at. Also, accurate 3D head po-

sition is usually required for gaze point estimation. Since there often happen

changes in facial shapes, it is required to deal with facial actions for robust

3D head pose tracking.

This chapter presents a monocular method of tracking faces and facial

actions using a multilinear face model that treats two components of facial

shape variations separately: shape variation between people and variation

caused by different facial actions such as facial expressions. The proposed

method is created by integrating two different frameworks: particle filter-

based tracking for time-dependent facial action and pose estimation and in-

cremental bundle adjustment for person-dependent shape estimation. This

unique combination together with multilinear face models is the key to track-

ing faces and facial actions of arbitrary people in real time with no pre-learned

individual face models.

7



CHAPTER 2. MONOCULAR HEAD POSE ESTIMATION 8

2.1 Introduction

Real-time face and facial action tracking is a key component of applications

in various fields including human-computer interactions, video surveillance,

and intelligent transport systems. Techniques suited to such applications

must be able to estimate 3D face poses and facial actions correctly using

a single camera even when large facial shape deformations due to different

facial expressions are present. To be used practically, the techniques must

be able to work with arbitrary people without preliminary preparations, e.g.,

building a face model for each person. The aim of this study is to develop a

novel tracking technique that satisfies these two requirements. Therefore, we

have developed a person-independent monocular tracking technique for face

and facial actions.

Head pose estimation methods can be roughly categorized into two cate-

gories: appearance-based and model-based. AAM (Active Appearance Model

[CET01]) is a typical example of appearance-based methods that use facial

textures as features. In AAMs, 2D facial shapes and textures are described

as linear combinations of basis vectors. Matthews et al . [MB04] employed

AAMs for real-time estimation of facial orientations. For 3D head pose esti-

mation, there have been proposed some appearance-based methods combined

with simple shape models such as ellipsoid [BEP96], 2D planar[HB98] and

cylinder [LCS99]. Although appearance-based methods have the advantage

that they are relatively more robust to image noise, accurate 3D head poses

and facial shapes cannot be achieved only with simple appearance models.

In contrast, model-based methods that use geometric facial shape model

have a potential for accurate 3D estimation. Some methods simply use

rigid facial shape models [GC96, VLF04, THT06, MCT08b, Gri09], how-

ever, rigid models cannot handle changes in facial shapes. Hence, many

deformable model-based methods have been proposed for face and facial
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action tracking. Using a linear face model typically obtained by princi-

pal component analysis (PCA), these methods estimate the pose and co-

efficients of deformation bases of a face. However, most previous meth-

ods [GBG01, MBB05, XBMK04, ZJ06] used face models that were specially

created for each person before estimation. Requiring preparation of person-

specific face models is often too restrictive for practical applications. In order

to use person-specific models without preliminary model preparation, Oka et

al .proposed a multi-view method for simultaneously modeling faces and es-

timating motion [OS05]. However, their method was still too costly in terms

of system installation, using multiple cameras that need to be accurately

calibrated beforehand.

Meanwhile, another approach can be taken using a generic face model that

represents facial shape deformation across multiple people with one param-

eter set [GMB05, ZHL06, ZWT08]. Zhu et al . [ZHL06] used an AAM-based

generic face model to estimate 3D head pose and facial actions in real time.

Zhang et al. [ZWT08] also used a 3D generic face model built from 3D face

database and synthetic face samples. However, in their work, experimental

evaluation were done only on fitting accuracy, i.e., how well the models fit

the faces in image sequences on 2D image coordinates. No quantitative eval-

uation was performed on their 3D head pose estimation results. Especially

in the case of 3D models, generic models inescapably contain a deformation

factor that normally does not happen for a single person, such as scaling.

These factors are hard to distinguish from the head pose, thus decreasing

the tracking accuracy. Gross et al . presented an interesting empirical study

on performance comparison between generic and person-specific models that

were not 3D models but 2D active appearance models [GMB05]. It was re-

ported that the use of generic models often resulted in a much worse rate of

convergence in model parameter estimation.

To cope with this problem, some methods used 3D face models with two
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separate sets of parameters (a set of shape parameters for interpersonal defor-

mation and a set of action parameters for intrapersonal deformation). The

use of such models limits the required number of parameters for each set

without degrading the expressiveness of the model. In addition, these two

sets of parameters with different behavior can be treated separately. Dor-

naika et al .used a model with separate sets of parameters in real-time face

tracking [DD06]. Their method estimates time-dependent action parameters

sequentially. However, shape parameters for person-dependent facial shape

variations are set manually, and their method does not adjust shape param-

eters during the tracking process. Using a similar linear model, DeCarlo et

al . [DM02] used tracking residuals from model-based optical flow to adjust

all of the parameters, including shape parameters. Their method was compu-

tationally too costly to be executed in real time and, moreover, their method

does not have global optimization scheme for shape parameters. Wang et

al . [WL08] used a similar model whose action parameters are modeled by

locally linear embedding. Since it was meant to be applied to a single image,

their method cannot be executed in real time and also does not have the

perspective of using multiple frames. Vlasic et al . [VBPP05] used a multilin-

ear face model that describes interpersonal and intrapersonal deformations

separately. They estimate shape parameters in a global way using multiple

frames. However, the purpose of their method was to capture facial expres-

sion from a full video segment, so it is not clear how their method can be

incrementalized and extended to real-time estimation.

As stated above, there is no method which is capable of estimating both

shape and action parameters in real-time. In contrast, our method executes

shape adjustment simultaneously with real-time non-rigid head pose track-

ing, by using a model-based bundle adjustment with a multilinear face model.

As shown in Figure 2.1, our method consists of two steps. The first step,

called the Estimation Step, estimates action parameters, i.e., intrapersonal
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Figure 2.1: System overview. The Estimation Step estimates action parame-

ters, i.e., intrapersonal deformation, as well as the person’s 3D head pose for

each input frame by using a particle filter. The Modeling Step incrementally

refines shape parameters, i.e., interpersonal deformation, by model-based

bundle adjustment based on 2D facial feature positions obtained from the

Estimation Step.
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deformation, as well as the person’s 3D head pose for each input frame by

using a particle filter. It also finds correct 2D positions of facial feature points

in the image. This step enables a head pose and facial action tracking that

is robust to partial occlusion or depth-directional movement.

The second step, called theModeling Step, incrementally refines shape pa-

rameters, i.e., interpersonal deformation, by model-based bundle adjustment

based on 2D facial feature positions obtained from the Estimation Step. This

step enables a stable adjustment of shape parameters that includes factors

indistinguishable from head pose. Updated shape parameters are then used

in the succeeding Estimation Step. In this way, our method enables progres-

sive refinement of the estimation accuracy and personal customization of the

face model.

This unique combination of particle filter-based tracking and incremen-

tal bundle adjustment enables monocular estimation of non-rigid 3D facial

motion without preliminary learning of face models tailored for each person.

As far as we know, this is the first research to propose a method using this

approach.

The rest of this chapter is organized as follows. In Section 2.2, we begin

by describing how multi-linear facial models with separate parameter sets

are constructed prior to tracking. Then we describe the two steps in our

method; the Modeling Step in Section 3 and the Estimation Step in Section

4. We present our experimental results in Section 2.5. Finally, we present

concluding remarks in Section 2.6.
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2.2 Preliminary construction of multilinear

face models

In this section, we describe how a multilinear face model with shape and

action parameters is prepared by using N-mode singular value decomposition

(SVD) [VBPP05] prior to tracking.

A person’s face is represented in terms of its shape and appearance. More

specifically, the face’s shape is represented as a 3K-dimensional shape vector

M composed of 3D coordinates of K feature points 1. These are defined in

the local coordinate system fixed to the person’s head. The appearance of

the face is modeled as appearances of the feature points, which are registered

as image templates automatically at the beginning of each tracking.

A multilinear face model that represents facial shapes is built from a data

tensor T that varies with people’s identity and facial expressions (Figure

2.2). The first mode (noted as feature points in the figure) corresponds

to each shape vector M , while the second (shape) and the third (action)

modes correspond to identity and facial expression, respectively. The data

is arranged so that shape vectors of the same person making different facial

expressions are aligned in a slice along the second mode, and shape vectors

of different persons making the same expressions are aligned in a slice along

the third mode.

Based on N-mode SVD [DLDMV00], the data tensor T can be expressed

as a mode product of an orthonormal matrix Ui of the ith mode and a core

tensor C :

T = C ×feature Ufeature ×shape Ushape ×action Uaction

= M ×shape Ushape ×action Uaction. (2.1)

1In this study, K is set to 10. Those feature points are the inner and outer corners of

both eyes, both corners of the mouth, both nostrils, and the inner corner of both brows

(indicated with plus signs in Figure 2.3).
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Figure 2.2: Data tensor that varies with people’s identity and facial expres-

sions. The first mode (noted as feature points in the figure) corresponds

to each shape vector M , while the second (shape) and the third (action)

modes correspond to identity and facial expression, respectively. The data

is arranged so that shape vectors of the same person making different facial

expressions are aligned in a slice along the second mode, and shape vectors

of different persons making the same expressions are aligned in a slice along

the third mode.
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Figure 2.3: Example of facial deformation. To construct the data tensor T ,

S people were asked to move their faces in 2 different ways: horizontally move

the corners of their mouth, and vertically move their mouths and eyebrows.

Plus signs indicate feature points used in our facial shape model.

where the notation ×i indicates a mode-i product between a tensor and a

matrix, which multiplies every mode-i vector of the tensor by the matrix.

Columns of each Ui correspond to orthonormal basis of the mode-i space,

and thus the model tensor M contains basis vectors of the 3K-dimensional

face vector space.

Moreover, an approximated representation of T is obtained with the

truncated basis of action and shape spaces:

T ≈ M̌ ×shape Ǔshape ×action Ǔaction. (2.2)

Using this approximated model tensor, we can generate an arbitrary face

vector M using shape and action parameters defined as coefficient vectors

of M̌ .

To construct the data tensor T , we first need to prepare shape vectors for

different persons moving their faces in different ways. In this study, we used

a multiview-based face and facial action tracking technique [OS05] to obtain
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shape vectors. While K facial features were being automatically tracked, S

people were asked to move their faces in 2 different ways: horizontally move

the corners of their mouth, and vertically move their mouths and eyebrows

(Figure 2.3). Then, 5 intermediate facial shapes were chosen for each facial

action (from beginning to completion of the action) for a total of A = 10

shape vectors for each person.

This gives us S × A samples of face shape. After calculating and sub-

tracting mean shape M̄ , we construct a data tensor T ∈ R
3K×S×A. By

calculating the model tensor M̌ with approximated shape (S → S ′) and ac-

tion (A → A′) spaces as Eq. (2.2), we can describe an arbitrary face vector

M using a shape parameter s ∈ R
S′
, an action parameter a ∈ R

A′
and the

mean shape M̄ :

M = M̄ + M̌ ×shape s
T ×action a

T. (2.3)

Here, each row of Ǔshape = (š1, . . . , šS)
T and Ǔaction = (ǎ1, . . . , ǎA)

T in

Eq. (2.2) is a parameter vector corresponding to each of the A × S data.

We calculate the mean vector s̄ and the vector σs composed of standard

deviations of elements of {ši}, and the mean vector ā and the vector σa

composed of standard deviations of elements of {ǎi}. These four vectors are
later used to determine the constraint of a bundle adjustment (Section 2.3),

and the diffusion and weighting process of a particle filter (Section 2.4).

This model enables us to describe any facial state of any person with a

person-dependent shape vector s, a time-dependent action vector a and a

head pose vector p defined as a translation and a rotation from the world

coordinate system to the model coordinate system. In the following sections,

we explain the details of our real-time face and facial action tracking method

using this face model.
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2.3 Modeling step: estimation of interper-

sonal shape variations

In this section, we describe the Modeling Step of our method of incrementally

adjusting shape parameter vector s, which represents interpersonal facial

shape variation, using model-based bundle adjustment.

Bundle adjustment is a maximum likelihood estimation method that op-

timizes parameters in 3D space by minimizing the 2D reprojection error in

multiple images. In the context of facial shape estimation, it is used to model

rigid faces [XWT+05], estimate rigid head motions in real time [VLF04], and

adjust the shapes of deformable face models acquired from a non-rigid fac-

torization method [DBSAM04].

In this research, we used model-based bundle adjustment to incremen-

tally adjust the shape parameter vector s of a multilinear face model. We

introduce two modifications to stabilize estimation of shape parameters. One

is an incremental construction of an adjustment frame set based on the result

from the Estimation Step with a particle filter. The other is the use of pa-

rameter constraints determined on the basis of the distribution of the shape

parameter and estimated pose and action parameters. We first explain how

to choose a set of observation frames and then explain model-based bundle

adjustment with parameter constraints.

2.3.1 Incremental construction of the adjustment frame

set

Using the face model presented in Section 2.2, the bundle adjustment problem

is formulated as follows. First, we calculate the face shape vector Mt from

Eq. (2.3). Then K feature points in shape vector Mt are projected onto the
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Figure 2.4: Flow of incremental bundle adjustment. Our method generates

the frames of this frame set ft one at a time, by replacing one frame of the

previous set ft−1 with a new frame.

image plane as:

mt = P(pt,Mt(at, s)), (2.4)

where P is a projection function given by camera parameters that are ob-

tained prior to tracking, and mt is a 2K-dimensional vector that consists of

2D coordinates of K projected feature points.

Let m̂t be a vector that represents the true 2D coordinates of K feature

points. This 2K-dimensional vector m̂t is obtained in the Estimation Step

as explained later in Section 2.4.2. Finally, we can define an error function

for the sum of the reprojection errors over a set of observation frames as:

Ft =
∑
i∈ft

D(m̂i,mi(pi,ai, s))
2, (2.5)

where ft means a set of n observation frames used in the bundle adjustment

at time t, as illustrated in Figure 2.4.

Our method generates the frames of this frame set ft one at a time, by

replacing one frame of the previous set ft−1 with a new frame. For the new

frame t, pose p′
t and action a′

t estimated in the Estimation Step are assigned

as initial values for the minimization of Ft. Meanwhile, selected n−1 frames
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are initialized from previous minimization results of Ft−1 and adjusted on an

ongoing basis.

Zhang et al . [ZS03] used a similar approach of updating a set of ob-

servation frames by replacing the oldest frame with a new incoming frame.

However, it is often the case in real-time tracking that object appearances

do not change much between consecutive frames, and, as a result, depth am-

biguities cannot be resolved reliably with bundle adjustment. This problem

is avoided in our method by maximizing the variation of poses in the adjust-

ment frame set. More specifically, we choose the frame set with the widest

pose variance at the initial state of the minimization, from among all n frame

combinations possible at the time. By repeating this selection scheme, the

pose variation in the frame set increases as the tracking proceeds.

2.3.2 Error minimization with parameter constraints

Next, we describe in detail the minimization procedure of Ft (Eq. (2.5)) with

parameter constraints, which is meant to stabilize the adjustment process.

Ft is minimized using a Levenberg-Marquardt method under the parameter

constraints [Lou]:

min
{pi},{ai},s

Ft , pi ∈ Cpi , ai ∈ Cai , s ∈ Cs, (2.6)

where Cpi , Cai and Cs denotes the constraints on each parameter.

As mentioned above, initial pose p̂t and action parameter ât for the min-

imization are estimated almost exactly, based on the value obtained in the

Estimation Step. Accordingly, tight constraints Cpi and Cai are imposed

such that only small changes are allowed in each iteration:

Cpi = {pi | p̂i − λp ≤ pi ≤ p̂i + λp}, (2.7)

where λp is a constant vector that denotes the adjustment range. The action

constraint, Cai , is set in the same way. Currently, λa and λp are determined
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empirically.

In contrast, a relatively weak constraint is imposed on shape parameter

s based on the vector of standard deviations σs from Section 2.2:

Cs = {s | s̄− 2σs ≤ s ≤ s̄+ 2σs}. (2.8)

This allows shape parameters to be adjusted to the shape of the person’s face

smoothly while excessive shape deformations are prohibited.

Finally, the shape parameter s(t) for the next Estimation Step is calculated

as the mean of the estimation results up to the present time:

s(t) =
t− 1

t
s(t−1) +

1

t
s′, (2.9)

where s′ denotes the result of estimation at time t, calculated from the process

mentioned above. Eq. (2.9) reduces the influence of short-term fluctuation

in the adjustment.

2.4 Estimation step: estimation of head pose

and facial actions

In this section we describe the Estimation Step (Figure 2.1). It is important

to note that time-varying action and pose parameters cannot be estimated

properly with the model-based bundle adjustment process of the Modeling

Step for several reasons. First, the estimation result tends to jitter, especially

in the depth direction. Second, 2D positions of feature points required for

the bundle adjustment cannot be obtained stably with simple 2D tracking or

detection. Last, if some of the feature points are not observed, the pose and

action parameters cannot be estimated correctly. To solve these problems,

we use a particle filter to estimate pose and action parameters based on a

3D model-based motion prediction.
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As shown in Figure 2.1, the Estimation Step consists of two components:

the Pose estimation step, which estimates pose pt and action at, and the

Feature-point finding step, which calculates the true 2D positions of feature

points m̂t which are used as the observation vector in Eq. (2.5) in the

Modeling Step. In the following sections, we first explain the Pose estimation

step, and then explain the Feature-point finding step.

2.4.1 Head pose estimation using particle filter

To estimate facial action, the multilinear model in Eq. (2.3) is rewritten as a

linear deformation model with the shape parameter s(t−1) calculated in the

previous frame:

Mt = M̄ +Mtat (Mt = M̌ ×shape s
T
(t−1)). (2.10)

Using this model, we estimate a (6 + A′) dimensional state vector xt =

(pT
t ,a

T
t )

T at frame t. The sample set {(u(i)
t ; π

(i)
t )} for the particle filter in

our method consists of N discrete samples u
(i)
t in the (6 + A′) dimensional

state space and of associated weights π
(i)
t .

To generate N new samples at each time t, we define a uniform linear

motion model as follows:

u
(i)
t = u′

t−1 + τvt−1 + ω, (2.11)

where u′
t−1 is a chosen sample from the previous sample set, τ is the interval

between frames, and vt−1 is the velocity of the state vector x calculated at

the previous frame t − 1. Note that the elements of vt−1 corresponding to

the action parameter at are set to 0, because at does not always match the

assumption of uniform linear motion.

ω is a system noise that affects the diffusion property, and each element of

ω is a Gaussian noise with a zero mean and a uniquely defined variance. The

elements corresponding to the head pose are adaptively controlled depending
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on velocity [OS05]. Meanwhile, the standard deviation of the Gaussian noise

for the other elements corresponding to the action parameter is set to κσa

based on the parameter distribution calculated in Section 2.2. Here, κ is

empirically set to 0.2.

Weight π
(i)
t of each sample u

(i)
t is calculated as:

π
(i)
t ∝ exp

(
−
(
K −N (u

(i)
t )
)2

2σ2

)
· exp

(
−1

2

A′∑
b=1

(
a
(i)
t,b − āb
ςb

)2)
,(2.12)

where N (u
(i)
t ) is a sum of the normalized correlation score for all K feature

points based on template image T , which has a value between −K and K.

The first term of Eq. (2.12) is a Gaussian function evaluating N (u
(i)
t ), and

the standard deviation σ is set to 1.0. The second term is an evaluation func-

tion for the action parameter a
(i)
t , which prevents excessive face deformation.

Here, a
(i)
t,b, āb and ςb is the b-th element of a

(i)
t , ā and σa, respectively.

After the calculation, each weight π
(i)
t is normalized so that the sum is

equal to 1. Eventually, the current state vector xt is computed as a weighted

average of all samples.

Note that the initial state vector x0 is calculated from the bundle adjust-

ment. After a person’s face and K feature points are automatically detected

over n frames (using OKAO Vision library developed by OMRON Corpora-

tion), all parameters are initialized by minimizing Eq. (2.6). In this case, we

use predefined values as the start point of the iteration: a head pose facing

the center of the camera and mean parameters ā and s̄.

2.4.2 Finding true feature positions in images

Next, we describe the Feature-point finding step in detail. The 2D positions

m′
t of the estimated feature points can be calculated from the estimated state

vector xt and the projection function P (Eq. 2.4). However, if the adjustment

of the shape parameter is not done properly, the estimated positions do not
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Figure 2.5: Finding true feature points. We find the true 2D positions m̂t

around the estimated positions m′
t.

always correspond with the true positions (as shown in Figure 2.5). In this

step, we find the true 2D positions m̂t around the estimated positions m′
t.

We define the following energy function Et similar to the one used in

Gokturk et al . [GBG01], and calculate the difference dm̂ = m̂t − m̂t−1 by

successively minimizing it.

Et =
∑
ROI

{
ρ||It(m̂t)− It−1(m̂t−1)||2 + ||It(m̂t)− I1(m̂1)||2

}
(2.13)

+ε||m̂t −m′
t||2.

The first term of Eq. (2.14) denotes the difference between the appearances

of regions of interest (ROIs) around the feature points. It(m̂t) ∈ R
K is an

intensity vector corresponding to m̂t, whose kth element is the intensity of

the input image at the kth 2D position of m̂t. We use both the difference from

the previous image and the difference from the first image, which [GBG01]

also uses. This avoids the problem of drift of the calculated feature points. ρ

is empirically set to 4, and the size of ROI is 16×16. In contrast, the second

term denotes the geometric difference between m′
t and m̂t. Using this term,

we find the true positions m̂t in the neighboring region of estimated positions

m′
t. ε is empirically set to 4000.

By approximating Ît using Taylor expansion, Eq. (2.14) can be written

as a function of dm̂ as

Et =
∑
ROI

{
ρ||K̂tdm̂+ΔI||2 + ||K̂tdm̂+ΔI0||2

}
(2.14)

+ε||dm̂+ m̂t−1 −m′
t||2,
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where

K̂t =
∂It
∂m̂t

∣∣∣∣
m̂t−1

, (2.15)

ΔI = It(m̂t−1)− It−1(m̂t−1) (2.16)

ΔI0 = It(m̂t−1)− I1(m̂1) (2.17)

It(m̂t−1) is an intensity vector corresponding to m̂t−1 in It. By setting

∂Et

∂dm̂
= 0, dm̂ that minimizes Et can be derived as

dm̂ = −D−1d, (2.18)

where

D =
∑
ROI

{
2(ρ+ 1)K̂T

t K̂t

}
+ εE2K×2K , (2.19)

d =
∑
ROI

{
2K̂T

t (ρΔI +ΔI0)
}
+ ε(m̂t−1 −m′

t). (2.20)

m̂t is successively updated until dm̂ given by Eq. (2.18) converges.

2.5 Experimental results

We have conducted a number of experiments to evaluate the performance

of our method. First, we compared our method with the multiview-based

tracking method [OS05]. In addition, to evaluate the effect of the use of the

multilinear model and the bundle adjustment, we made another comparison

with the particle filter-based estimation result using a generic PCA model

with one parameter set.

The face model was built from S = 26 persons × A = 10 actions, and the

resulting model had S ′ = 15 shape parameters and A′ = 5 action parameters.

The generic model was also built from the same data set using PCA, and had

20 deformation parameters. Note that the target person in the experiment

was not included among the 26 persons.
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Our tracking system consisted of a Windows-based PC with Intel Core

2 Duo E6700. We captured 60-second long (1800 frames) video sequences

from two calibrated BW cameras via IEEE-1394. The image resolution was

640 × 480, the size of image templates T was set to 16 × 16. A set of 1000

samples was used for particle filtering. n = 7 frames were used for the bundle

adjustment. The initialization step, with 10 iterations of LM minimization,

took approximately 90 [ms], and the overall tracking process, with 5 iterations

per frame, took approximately 32 [ms/frame].

Table 2.1 shows the estimation error of our method and the generic model-

based method. x, y, and z are the horizontal, vertical, and depth-directional

translation, and roll, pitch, and yaw are the rotation around the z, y, and

x axes, respectively. Additionally, Figure 2.6 shows the detailed estimation

results and the facial shape estimation error in the model coordinate system.

The difference between two monocular estimation methods is evident here. In

Figure 2.7, the right and center columns show actual images of the estimation

results, and the left column shows these results rendered from a different

viewpoint. The whole sequences can be seen on our website 2. These results

demonstrate that our method is more accurate than the method using the

generic PCA model, and favorably compares with stereo estimation.

2.6 Conclusions

In this work, we presented a person-independent monocular method for real-

time 3D face and facial action tracking. The key idea of our method is

a unique combination of i) particle filter-based tracking for time-dependent

pose and facial action estimation and ii) incremental model-based bundle ad-

justment for person-dependent shape estimation, together with multilinear

face models. To our knowledge, this is the first work to achieve fully auto-

2http://www.hci.iis.u-tokyo.ac.jp/˜sugano/research/3d-face-tracking/
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Figure 2.6: Estimation results: x, y, and z are the horizontal, vertical,

and depth-directional translation, and roll, pitch, and yaw are the rota-

tion around the z, y, and x axes, respectively. The bottom graph shows the

facial shape estimation error in the model coordinate system.
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Figure 2.7: Result images: the right column shows actual estimation results

of our method using the multilinear model, and the center column shows

results of the generic model-based method. The left column shows these

results rendered from a different viewpoint.
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Table 2.1: Comparison of estimation errors. x, y, and z are the horizontal,

vertical, and depth-directional translation, and roll, pitch, and yaw are the

rotation around the z, y, and x axes, respectively.

[mm] x y z [deg.] roll pitch yaw

Particle filter-based estimation using the generic PCA model

Mean 6.14 4.71 51.32 Mean 0.34 6.54 3.34

Std. Dev. 4.88 4.09 38.29 Std. Dev. 0.29 4.71 2.73

Our method using the multilinear model

Mean 3.26 4.37 20.18 Mean 0.41 3.12 2.33

Std. Dev. 2.62 2.83 11.18 Std. Dev. 0.27 2.49 1.98

matic 3D tracking of face and facial actions without preliminary training of

person-specific face models. Our experimental results demonstrate that our

method performs significantly better than monocular tracking with a generic

face model, confirming the effectiveness of our real-time tracking method

based on a multilinear face models. In our future work, we are planning to

use our tracking method for real-time facial expression analysis.



Chapter 3

Incremental Learning for Gaze

Estimation

Although head pose can be a cue for inferring human attention, it is not

enough to specify an actual point at which the person is looking. Obviously,

information about gaze point is needed to determine focus of attention in a

small region.

This chapter presents an unconstrained gaze estimation method using an

online learning algorithm. Based on the head pose estimation method de-

scribed in the previous chapter, it allows free head movement in a casual

desktop environment. The key assumption is that a user gazes at a cursor

position when the user clicks. The user’s eye images and 3D head poses are

continuously captured by a monocular camera. By using clicked positions as

exemplars of gaze positions, our system collects learning samples for estimat-

ing gazes while a user is unconscious of the system while using a PC. The

samples are adaptively clustered according to the head pose and estimation

parameters are incrementally updated. In this way, our method avoids the

lengthy calibration stage prior to using the gaze estimator.

29



CHAPTER 3. INCREMENTAL LEARNING FOR GAZE ESTIMATION30

3.1 Introduction

Gaze estimation is a process of detecting what position the eyes are looking

at. Because gaze is a key factor in estimating a person’s attention, tech-

niques of estimating gazes have been an active research topic in computer

vision. Also, a wide range of applications has been proposed in various fields

(see [Duc07] for a recent survey). For example, gaze trackers are used to

measure people’s eye movements in fields such as neuroscience and psychol-

ogy. In terms of marketing, it can also play a significant role in capturing

user’s interests on Websites and in advertising media. More importantly,

many applications have been proposed in the field of human-computer inter-

actions, including gaze-controlled or gaze-assisted interfaces and information-

presentation techniques that take user attention into consideration.

However, despite considerable advances in recent research, current tech-

niques of estimating gazes still suffer from many limitations. Creating an

accurate gaze estimator that uses simple and low-cost equipment while al-

lowing users to move their heads freely still remains an open challenge.

Our goal is to make a completely passive, non-contact, single-camera sys-

tem for estimating gazes that has no calibration stage yet still allows changes

in head poses. To achieve this goal, we develop a new appearance-based

system of estimating gazes based on an online-learning approach. Our sys-

tem incorporates recent advances in robust, single-camera, three-dimensional

(3D) estimates of head poses to continuously capture users’ head poses and

eye images. We assume a desktop environment with a personal-computer

(PC) camera mounted on a monitor, and that the user is looking at the

mouse cursor when he or she is clicking. By using the clicked coordinates as

gaze labels, the system automatically acquires learning samples while users

are operating the PC, and it can learn mapping between the eye and gaze

adaptively during operation, without the need for long preliminary calibra-
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tions.

Prior methods have either been model-based or appearance-based. First,

we will describe the advantages and drawbacks of these two approaches.

3.1.1 Model-based methods

Model-based approaches use an explicit geometric model of an eye and esti-

mate the eye’s gaze direction using geometric eye features. One of the most

well-known features is the pupil-glint vector [HWJM+89, Jac90], which en-

codes the offset between the pupil’s center and the specular reflection from

a light source. While model-based approaches can be precise, they typically

require accurate localization of geometric features in high-resolution images

of the eye. Moreover, they often require additional hardware such as light

sources. This often results in large systems with special equipment that are

difficult to implement with only an ordinary camera.

Of the model-based methods, one popular approach that handles head

movements involves using multiple light sources and camera(s) to accurately

locate 3D eye features. Shih and Liu use both multiple cameras and multiple

lights for 3D estimates of gaze [SL04]. Zhu et al . use a stereo-camera setup

with one light source to locate the 3D position of the eye. They estimate 2D

gaze points by learning a mapping function of the pupil-glint vector and the

eye position [ZJ05, ZJB06]. Morimoto et al . propose a method of using a

single camera with at least two lights, but they only present their simulation

results [MAF02]. Hennessey et al . develop a similar system with multiple

light sources to locate the 3D center of the cornea by triangulation. Their

method computes the gaze point as a 3D intersection of the monitor’s surface

and the optical axis of the eye [HNL06]. Yoo and Chung use a structured

rectangular light pattern and estimate the gaze point from the pupil’s po-

sition relative to the light pattern [YC05]. Coutinho and Morimoto later
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extend this method with a more precise eye model [CM06].

In addition to eye features, there are methods that also use information

from 3D head poses. Beymer and Flickner, for example, use a pair of stereo

systems [BF03]. Their first stereo system computes the 3D head pose, which

guides the second, high-resolution stereo system that tracks the eye region.

Matsumoto et al .’s method uses a single stereo system to compute the 3D

head pose and estimate the 3D position of the eyeball [MOZ00]. A similar

approach is also taken by Wang and Sung [WS02] by using iris edges as

features. While successful, these approaches all require special equipment,

preventing their use with a monocular camera.

Some methods in recent years try to remove such restrictions on the

model-based methods. Ishikawa et al .’s method [IBMK04] uses an active

appearance model [CET01] to extract eye features and head poses and it

enables monocular gaze estimation. Yamazoe et al . ’s method [YUYA08]

estimates gaze direction by fitting a 3D eye model to 2D eye images. An

ordinary low-resolution camera is used in these methods. For this reason,

their methods are limited to only computing coarse features, such as the

edge of the iris and the corners of the eyes. This results in poor accuracy

and reduces the advantages of model-based methods.

3.1.2 Appearance-based methods

Appearance-based approaches directly compute features from eye images,

and estimate gaze points by learning mapping from image features. Com-

pared to model-based methods, they can make systems less restrictive, more

robust, and accurate, even when used with relatively low-resolution cameras.

Baluja and Pomerleau use a neural network to learn the mapping func-

tion between eye images and gaze points in display coordinates using 2, 000

training samples [BP94]. Xu et al . propose a similar neural-network-based
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Figure 3.1: Learning and prediction flow for proposed framework.

approach [XMS98] that uses more training samples, i.e., about 3, 000. Tan et

al . use a local interpolation approach to estimate unknown gaze points from

relatively sparse (252) samples [TKA02]. More recently, Williams et al . pro-

pose a novel regression method called S3GP (Sparse, Semi-Supervised Gaus-

sian Process), and apply it to a gaze estimation task with partially labeled

(16 out of 80) training samples [WBC06].

Of the appearance-based approaches, few studies have been dedicated to

dealing with changes in head pose. Baluja et al .’s method [BP94] allows some

head movements using training samples from different head poses, but the

range of movements is limited. They describe two major difficulties. The first

is that the appearance of an eye gazing at the same point drastically varies

with head motion. Therefore, additional information about the head pose is

needed to solve this problem. The second difficulty is that the training sam-

ples has to be collected across the pose space to account for head movements.

This results in a large number of training samples and an unrealistically long

calibration stage.
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3.1.3 Our approach

As described above, both model-based and appearance-based methods have

some drawbacks. Model-based methods require more than a normal cam-

era to achieve sufficient accuracy. Appearance-based methods need longer

periods of calibration to handle head-pose variations.

We use an appearance-based approach to build a casual gaze estima-

tor using an ordinary desktop camera. To overcome the drawbacks with

appearance-based methods, we propose an incremental framework to collect

learning samples from typical PC operations. Learning samples are collected

under the assumption that the user is looking at a mouse cursor when the

mouse is being clicked. In this way, our method continuously accumulates

more learning samples as the user continues to click. As the learning and

estimates can be implemented as a background process, the user can avoid a

long calibration stage.

We use an approach of locally interpolating the learnt gaze points for the

estimation. To efficiently create the appearance manifold in a sample space

with varying poses, we propose a method using sample clusters associated

with similar head poses. A local appearance manifold is independently built

in each cluster, and is used to appropriately select the samples for interpola-

tion. In addition, we avoid the effect of human errors included in the clicked

coordinates by using a framework to refine the learning labels.

This work makes two main contributions.

• Incremental learning framework: To eliminate the lengthy cali-

bration stages required for appearance-based gaze estimators with free

head movements, we employ an incremental learning framework that

only requires normal operations by a user on a PC.

• Adaptive clustering: We extended the appearance-based framework

for gaze estimation by adaptively clustering learning samples to handle
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large variations in head poses. In addition, we used a framework to

refine the learning labels to handle human errors.

The rest of the chapter is organized as follows. Section 3.2 describes the

architecture of our system. Section 3.3 explains our incremental-learning

algorithm. The details on implementing the head tracker and our eye-image

cropping are subsequently described in Section 3.4. We explain how we tested

the proposed method to verify its effectiveness in Section 3.5. Section 3.6

closes with a discussion on potential applications of our method and future

research directions.

3.2 Overview

This section first describes an overview of our method. The process flow for

the system is summarized in Figure 3.1.

The input to the system is a continuous video stream from the camera.

The 3D model-based head tracker [SS07] keeps running during the entire

process to estimate the head pose, p, and to crop the eye image, x.

We assume that the user’s gaze is directed at the mouse cursor on the

monitor when he or she is clicking the mouse. Using this assumption, we

collect learning samples by capturing eye images and cursor positions for all

mouse clicks. We create a training sample at each mouse click using the

mouse position in the screen coordinates as the gaze label, g, associated

with the features (head-pose p and eye-image x). Our system incrementally

updates the mapping function between appearance-based features and the

gaze by using this labeled sample.

Incremental learning is done in a reduced PCA subspace to decrease the

computational cost of dealing with multi-dimensional image features. The

samples are adaptively clustered according to their head poses, and the local

appearance manifold is updated in each cluster.
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When the new training samples are not given to the system, the system

runs in a prediction loop, and the gaze is estimated using the updated state

of clusters and local manifolds.

3.3 Algorithm

The goal of our gaze estimator is to learn the mapping between features

{x,p} and the gaze label, g. We use a local linear interpolation method that

is similar to [RS00, TKA02]. Given unlabeled features {x,p}, we predict the
unknown label, ǧ, by choosing k nearest neighbors from the labeled samples

and interpolating their labels using distance-based weights.

It is critical to choose neighbors from a manifold that models changes

in appearance for different gaze directions in the appearance space for our

application. Tan et al . [TKA02] use 2D topological information about the

coordinates of the gaze labels as a constraint. Two points are assumed to

be neighbors on the manifold in their method if they also have similar gaze

directions, not only similar appearances. However, this assumption does not

always hold if the head pose changes; two different gaze directions lead to a

similar appearance, or conversely similar gaze directions lead to very different

appearances.

To overcome this problem, we compute sample clusters with similar head

poses and create a local manifold for each sample cluster. This model is in-

spired by the locally weighted projection regression (LWPR) algorithm [VDS05].

Local linear regressors are adaptively created and learned in LWPR according

to the input feature distance itself. We employ a similar adaptive architecture

to create pose-dependent clusters of eye images.

The similarity measure of the cluster, i.e., how close the head pose and

the cluster are, is defined as a product of the Gaussian functions of head

translation and rotation. Given a pose, pi, specified by translation ti and
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rotation ri in 3D, the similarity of the pose to a certain cluster is computed

as

sk(pi) =
1√

2πκtσ2
t

exp

(
−||ti − t̄||2

2κtσ2
t

)
1√

2πκrσ2
r

exp

(
−||ri − r̄||2

2κrσ2
r

)
, (3.1)

where t̄ and σ2
t are the average and variance of head translation calculated

from the samples contained in the cluster. Likewise, r̄ and σ2
r are the av-

erage and variance in head rotation. The constant weights, κt and κr, are

empirically set.

The Euclidean distance measure is used in Eq. (3.1) for both translation

and rotation vectors. Of these, the rotation vector can be described with

a quaternion. Strictly speaking, the distance between two quaternions has

to be measured with an angular distance, ωd, i.e., the angle of rotation

from one quaternion to the other. However, we employed the Euclidean

distance for the following reasons. In our incremental case, calculating the

average, r̄, was computationally expensive in the angular-distance measure.

In contrast, the average orientation in the Euclidean-distance measure could

easily be obtained as an arithmetic average of the quaternions [HGME96].

The Euclidean distance, ||r − r̄||2 = ||I − r̄r−1||2 = 4 sin2(ωd/4), can also

be a good approximation of the angular distance when the two rotations are

close.

Given a labeled sample, the image, xt, is first used to update the PCA

subspace of the eye images. After updating the subspace, the sample is added

to all clusters whose similarity s(pt) is higher than the predefined threshold,

τx. The learning algorithm is outlined in Algorithm 1, where K is the total

number of clusters created by the time t − 1. If no suitable clusters are

found, a new cluster is created to only contain the new sample. Given an

unlabeled feature, the output gaze, ġ, is computed as a weighted sum of
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Figure 3.2: Example of gaze triangulation shown in screen coordinates. Each

eye image (flipped horizontally to clarify presentation) is located at the cor-

responding gaze point, and the lines indicate Delaunay edges between these

gaze points.

candidate predictions from different clusters in the prediction stage. The

following sections, 3.3.1 and 3.3.2, describe further details on prediction and

learning methods.

3.3.1 Prediction

When unlabeled data, {x,p}, are given, the system predicts the estimated

gaze, ǧ, from the learnt data. First, the eye image, x, is projected into the

current PCA subspace computed from all i learning samples as

x ≈ x̄(i) +U (i)a, (3.2)

using the mean eye image, x̄(i), and the matrix, U (i), whose columns are

composed of the first N eigenvectors. a is an N -dimensional vector of PCA

coefficients.

An intermediate gaze estimate is first computed in each cluster from the

input PCA coefficients, a, by local interpolation of neighbors. The neighbor-

ing samples of a are selected based on the manifold, and the gaze labels of
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Algorithm 1 Adaptive clustering framework

Prediction: Given unlabeled features {x,p}
Project image x into the current subspace: a = U (t)T (x− x̄(t))

for k = 1 to K do

Calculate the interpolated gaze ǧk and prediction confidence ck (Sec-

tion 3.3.1).

end for

Compute final prediction as a weighted sum: ǧ =
∑

k ckǧk/
∑

k ck.

Learning: Given the i-th learning sample {xi,pi} associated with the gaze

label gi

Update image subspace using incremental PCA: mean x̄(i), eigenvectors

U (i), eigenvalues λ(i), coefficients {a1 . . .ai}. xi can be approximated as

xi ≈ x̄(i) +U (i)ai.

for k = 1 to K (with respect to each of all K clusters) do

if gk(pi) > τx then

Add sample to the cluster and update its local manifold (Sec-

tion 3.3.2).

end if

end for

if No gk(pi) is above the threshold τx then

Create new (K + 1)-th cluster and add the sample.

K ← K + 1.

end if
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the neighbors are interpolated to determine the intermediate gaze estimate

in the cluster.

As done by Tan et al . [TKA02], we use Delaunay triangulation of the gaze

label as the manifold model. Figure 3.2 shows an example of the computed

triangulation. By selecting neighboring samples that are located along the

triangle, the sample set for interpolation are constrained to have a limited

range of gaze variations. Our algorithm finds a set of neighboring triangles

by measuring the average distance from a to the samples (vertices) of each

triangle. The sample points adjacent to this triangle are also selected as

neighbors. To ensure computational efficiency, the process for selecting tri-

angles is performed using the Ns closest samples in the cluster. If triangles

are not found by parameter Ns, size Ns is increased by ns, and the selection

process is iterated until a triangle set is found.

Using selected-set Np, interpolation-weights,

w = (w1, w2, · · · , w|Np|), (3.3)

are computed by minimizing the reconstruction error as

w = argmin
w

(a−
∑
i∈Np

wiai)
2, (3.4)

subject to ∑
i∈Np

wi = 1, (3.5)

where wi denotes the weight of the i-th neighbor’s appearance, ai. Finally,

assuming local linearity, the intermediate gaze estimate, gk, from the k-th

cluster is computed as

ǧk =
∑
i∈Np

wigi. (3.6)

To reject outliers from the clusters that do not contain a sufficient number

of samples, we define an interpolation-reliability measure that represents how
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well the input, a, can be described by the selected neighbors as

rk(a) = exp

(
−(a−∑i∈Np

wiai)
2

2ς2r

)
. (3.7)

Eq. (3.7) evaluates the reconstruction error in the appearance, a. The factor,

ςr, is empirically set. We define the prediction confidence, ck, as a product

of the reliability, r(a), and the pose similarity, s(p), as

ck = sk(p)rk(a). (3.8)

The final prediction result, ǧ, is computed as a weighted sum of ǧk based on

ck by deriving

ǧ =

∑
k ckǧk∑
k ck

. (3.9)

We also compute a weighted average of r(a) between all clusters as

r̄(p,a) =

∑
k sk(p)rk(a)∑

k sk(p)
, (3.10)

to assess the overall reliability of the gaze estimate. Figure 3.3 shows the

angular error plotted against reliability r̄. The larger rectangles indicate

windowed averages of angular error with a window width of 0.1 in reliability.

The plot shows that the accuracy of estimation increases as the reliability

measure increases. Therefore, gaze-estimate ǧ can be stabilized by taking a

temporal weighted average based on r̄. The effect of averaging is discussed

in more detail in Section 3.5.

3.3.2 Learning

Given the i-th learning sample, {xi,pi, gi}, we first update the appearance

subspace using Skocaj et al . [SL03]’s incremental PCA. x̄(i) and U (i) in

Eq. (3.2), and all stored coefficients {a1 . . .ai−1} are updated at a time.

After that, a reduced learning sample, {ai,pi, gi}, is added to a pose

cluster only when its pose pi is sufficiently close to the cluster’s center. With
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Figure 3.3: Angular error against prediction reliability. The graph has a scat-

ter plot of the estimation error versus the reliability we defined in Eq. (3.7)

and Eq. (3.10). Larger rectangles indicate partial averages with a window

width of 0.1 in reliability.
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Target gaze

Interpolated gaze      from the triangle 1

Figure 3.4: Process to refine gaze labels. The gaze label of target-sample g

is refined as a weighted sum of interpolated-labels ǧ from enclosing triangles

within distance-threshold τg.

this approach, every cluster is guaranteed to contain samples with similar

head poses. Tan et al . [TKA02] use a topological manifold model in similar

settings. However, the gaze label, g, in their method is treated as a static

quantity without any error. In reality, humans cannot gaze at a point with

pixel-level accuracy. Even when a user is looking at a target carefully, a cer-

tain level of fixational eye movement occurs. It has been reported that about

1 degree of microsaccades occur during fixation [MCMH04]. In our case,

since the user is not forced to look carefully at the mouse cursor when click-

ing, larger errors can be included in the gaze label, g. Moreover, there could

be meaningless samples due to random mouse clicks without due attention.

For these reasons, we avoid directly using the clicked coordinates, gc, as

a gaze label, g. Instead, we estimate the probable gaze label, g, constrained

by gc using a refining approach starting with gc as an initial value for g. To

refine the gaze label, g, of a sample, we first select all existing samples whose

distance to the incoming sample’s click point gc are under a threshold, τg,

in the gaze space. Using these existing samples and incoming-sample g, the

set of all combinations of three samples that enclose incoming-sample g can
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be computed (see Figure 3.4). Using the method described in the previous

section, interpolated gaze-label ǧ can be calculated from each triangle. All

interpolated labels are aggregated as a Gaussian-weighted sum around gc as

g =
gc +

∑
i riqiǧi

1 +
∑

i riqi
, (3.11)

where

qi = exp

(
−||gi − gc||2

2ς2q

)
. (3.12)

Here, i is the triangle index, and ri is the reliability measure calculated in

the same way as Eq. (3.7). The factor, ςq, is empirically set. The clicked

point, gc, is added with full-weight 1.

Treatment of learning data As mentioned earlier, there are incoming samples

that are not useful as learning samples, e.g ., clicks without due attention.

These samples do not capture the correlation between the appearance and

gaze label (clicked point). To avoid such outliers, we assess the data through

cross validation. In parallel with computing the interpolated gaze label, g,

we can compute pure interpolation without the constraint of gc as

ġ =

∑
i riǧi∑
i ri

. (3.13)

Compared to Eq. (3.11), Eq. (3.13) indicates a weighted average of inter-

polated gaze labels regardless of the clicked point, gc. If the distance,

dg = ||ġ − gc||2, is too long, i.e., interpolated-gaze ġ is too far from the

clicked point, gc, the sample can be considered as an outlier. In that case,

we delete the sample from the cluster instead of refining its gaze label.

In addition, since the sample distribution in the learnt gaze space does

not have to be too dense, we introduce another method of pruning learning

samples. If there is more than one sample around the new position of gaze-

label g, we keep the sample with the lowest dg and delete the others. We use

a threshold, τr, to control the sample density. The threshold value should be

set with respect to both the size of the display area and memory capacity.
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For example, Tan et al . [TKA02] used one sample per 2.76 [cm2]. Whenever

a new incoming sample is provided, the data treatment processes described

above are executed for every sample in the clusters.

Once a sample is added to the cluster, we update cluster-mean t̄k and the

variance, σ2
t,k, of Eq. (3.1) incrementally as

t̄new =
nt̄old + ti
n+ 1

, (3.14)

σ2
t,new =

nσ2
t,old + (ti − t̄new)(ti − t̄old)

n+ 1
,

where n denotes the total number of samples in the cluster before updating,

and ti represents the translation vector of the new incoming sample. The

same goes for updating r̄ and σ2
r . Delaunay triangulation in the gaze-label

coordinates is consequently recomputed.

3.4 Implementation

This section describes the details on implementing our system. We partic-

ularly describe methods of obtaining input features (head-pose p and eye-

image x). We also introduce a method of detecting blinks to improve the

accuracy of gaze estimates.

3.4.1 Head tracking and eye capturing

The system captures head-pose p and eye-image x from a sequence of gray-

scale input images for both learning and prediction.

Our method uses the head-tracking method [SS07] based on a multilin-

ear model, which separately represents facial-shape variations due to two

factors: different people and different facial expressions. Since facial defor-

mations did not need to be captured in our case, a linear model that only
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Figure 3.5: Results for head tracking and eye capturing. (a) Results for

estimating head poses. (b) Results for cropping around predefined eye region

on facial mesh (rectangle in (a)). (c) Eye-alignment and image-preprocessing

results (image feature used in our gaze estimator.)

describes shape variations for different people is used. The face is repre-

sented as the appearance and 3D positions of 10 feature points defined in

a local-coordinate system fixed to the user’s head (Figure 3.5 (a)). In this

work, a 30-dimensional facial-shape vector is described as a weighted sum of

eigenshapes that are precomputed by PCA. Details on the computation of

the facial shape vector can be found in [SS07]. Using the model, our system

simultaneously tracks the 3D head pose using a particle filter [IB98] and es-

timates the facial shape based on bundle adjustment [TMHF99]. As a result,

the tracker outputs the user’s 3D head pose, p = {t, r}, where t = t(x, y, z)

is a 3D translation and r = t(q1, q2, q3, q4) is a 4D rotation vector defined by

four quaternions. Figure 3.5 (a) shows an example of head-pose tracking.

The crosses indicate the positions of the feature points, and the long lines

indicate the head pose.

Once the head pose is estimated, the system crops the eye image. Us-
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ing the estimated head position, it first extracts a rough eye region from

the input image. Based on the distance between eye-corners in the image

coordinates, a rectangle region with a fixed aspect ratio (the rectangle in

Figure 3.5 (a)) is cropped. The rectangle is then transformed to a W1 ×H1

image I1 (Figure 3.5 (b)). We further apply histogram equalization to the

image, I1, to normalize its brightness.

While head-pose tracking is robust, there is a small amount of error when

cropping eye images. This appears as a small amount of jitter in eye images

when viewed in sequence. Because our method evaluates the distance be-

tween images, the accuracy of estimated gazes is dependent on the distance

measure. For that reason, we applied a method of subspace alignment, which

is described below, to avoid letting jitter error from adversely affecting esti-

mates.

Subimage I2 of size W2 ×H2 (Figure 3.5 (c)) is first cropped from larger

image I1 of size W1 × H1 with a top-left margin, d = t(x, y), in our eye-

cropping method. As described in Section 3.3, the PCA subspace used in the

learning algorithm is updated incrementally using labeled samples. Basically,

we chose I2 that maximizes correlation with a reconstructed image, Í2. It

is calculated in the form of a raster-scanned vector, x́2 = x̄ +U tU (x2 − x̄,

where x̄ andU are mean and eigenvectors of the PCA subspace. We calculate

(W1 −W2 + 1)× (H1 −H2 + 1) correlation-map C first. The value at (x, y)

corresponds to the correlation between I2 and Í2 with an offset, d = t(x, y).

The offset at the pixel level is acquired as a maximal point, (dx, dy), of the

map, C. To ensure sub-pixel accuracy, we furthermore calculate the sub-pixel

differences, (δx, δy), by using simple 2D parabola fitting described as⎡
⎣ ∂C

∂x
(dx + δx, dy + δy)

∂C
∂y

(dx + δx, dy + δy)

⎤
⎦ = 0. (3.15)
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Eq. (3.15) can be expanded as a Taylor expansion around (dx, dy) as⎡
⎣ C ′

x

C ′
y

⎤
⎦+

⎡
⎣ C ′′

xx C ′′
xy

C ′′
xy C ′′

yy

⎤
⎦
⎡
⎣ δx

δy

⎤
⎦ = 0, (3.16)

and the difference, (δx, δy), can be calculated as⎧⎨
⎩

δx =
C′

yC
′′
xy−C′

xC
′′
yy

C′′
xxC

′′
yy−(C′′

xy)
2

δy =
C′

xC
′′
xy−C′

yC
′′
xx

C′′
xxC

′′
yy−(C′′

xy)
2

. (3.17)

Here, C ′ and C ′′ correspond to the 1st and 2nd order derivatives at (dx, dy).

Finally, I2 is cropped with the offset, (dx+δx, dy+δy), and raster-scanned

to create an image vector, x. In our experiment, the size of the final image

was set toW2 = 70×H2 = 30 pixels, so x was 2100-dimensional. As a result,

we acquire eye-image x and head-pose p.

3.4.2 Blink detection

If a user blinks when clicking, the data becomes an inappropriate sample for

the learning process. To reject such samples, we detect blinks by using the

maximum correlation. As described earlier, the eye images were cropped in

a way where the correlation with the reconstructed image was maximized.

However, if the input eye image was dissimilar to all samples that span the

subspace, the maximum correlation becomes relatively small. For this reason,

the eye images with blinking can be found by evaluating the correlation, as

shown in Figure 3.6.

The system ignores the input if the correlation is lower than threshold

τb. Blinks usually last for about 150ms, which is long enough to appear

in multiple video frames as illustrated in Figure 3.6. Therefore, we discard

neighboring frames of obvious blinks that are observed within a certain time

range.
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Figure 3.6: Blink detection. The graph shows the correlation between the

resulting image for eye-cropping I2 and reconstructed-image Í2. Each image

in the figure corresponds to I2. As correlation drops to a lower value when

the user blinks, input can be rejected by giving the correlation a threshold.

3.5 Experiments

We evaluated the proposed method with two different setups. The first was

with a simulation experiment (Section 3.5.1) where a click target was explic-

itly shown to a user. The second evaluation was carried out in a real sce-

nario where a user operated a PC for Internet Web browsing (Section 3.5.2).

Throughout the experiments, we used the following parameters: N = 30,

κt = κr = 2.0, τx = 0.001, Ns = 30, ns = 10, ς2r = 25000, ς2q = 2500, τg = 100

[px], τr = 30 [px], and τb = 0.99.

Our system consisted of a VGA resolution camera (PointGrey Flea) and

a Windows PC with a 2.67 GHz dual core CPU and 3 GB of RAM. The

whole process including display rendering ran at about 20 fps in our research

implementation without any optimization.
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Figure 3.7: System settings for simulation experiments. The figure at left is

a screen-shot of the full-screen window shown to the user. That at right is a

photograph of the actual experimental setup.

3.5.1 Simulation experiments

We will first present the results obtained in a simulation environment to

evaluate the performance of our method. We used a full-screen window in this

experiment and randomly displayed a clicking target to a user. To simulate

a typical target like a button or an icon, the target was rendered as a circle

64 pixels in diameter (Figure 3.7). Ten users were asked to click the target

about 1200 times (about a 20-minute operation). During this operation, the

users were allowed to freely move their heads. The target for clicking was

only used to prompt the users to click it, and our method acquired the actual

click position as a learning label.

Whenever a new labeled sample was given, the prediction was performed

prior to the learning. The estimation error was evaluated as the distance

between the clicked position, gt, and the estimated gaze position, ǧt. The

angular error, θ, is computed as

θt = tan−1

(
Dm(gt, ǧt)

zt − dcam

)
, (3.18)

where Dm measures the distance between two points in a metric system, zt
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is the depth of the estimated head pose at time t in a camera-coordinate

system, and dcam is the pre-defined distance between the camera and the

display. The dcam was 100 [mm] in the experiments. We used a 17-inch

display with a resolution of 1280× 1024 pixels (96 dpi) for this experiment.

Table 3.1 summarizes the results obtained from the experiment. From

left to right in the table, we can see the angular and pixel errors (denoted

as average ± standard deviation), numbers of clicks, numbers of clusters,

and ranges of head-pose movements. For the head-pose movements, x, y,

and z correspond to horizontal, vertical, and depth-directional translation,

and φ, θ, ψ correspond to rotations around the z, x, and y axes. “Normal”

error corresponds to the raw output, ǧ, of the system, and “weighted” error

indicates the results with the temporal weighted average (taking the past 5

frames in the experiments) based on the weight, r̄, in Eq. (3.10). “Used”

clicks denote the number of clicks that were not rejected as blinking by the

rejection process described in Section 3.4.2.

The angular error is consistently low (around 3 degrees), and it demon-

strated better performance when the temporal weighted average was used.

The range of head-pose movements in the experiment was 23 × 7 × 35 cm

and 15 × 32 × 24 degrees on average. This is not the theoretical limit for

permissible head-pose movements, and it is dependent on the angle of view

and the resolution of the camera.

Figure 3.8 shows the cumulative average of weighted angular error against

the number of clicks. While there are some variations across users, the errors

consistently converge to certain ranges after 600 clicks. In the early stages

of learning, e.g ., less than 400 clicks, the learning samples are sparsely dis-

tributed. The accuracy of prediction then has large variance. When there are

enough samples for interpolation, it yields good estimates. However, if there

are not enough samples, it may yield large errors. Due to this instability, the

cumulative average occasionally increases in the early stages.
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Angular error [degree]

Number of clicks10002000 400 600 800
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Person

Figure 3.8: Cumulative average angular error in simulation experiments.

The graphs indicate the cumulative average of weighted angular error in the

simulation experiments against the number of clicks. Each line corresponds

to each user in Table 3.1.

To assess the effectiveness of our clustering-based approach, we compared

the results with and without the clustering method. Figure 3.9 shows one of

the results from comparison. The plots indicate cumulative average errors for

the gaze estimates for User A. The middle and the bottom lines correspond to

the normal and weighted output, and the top line corresponds to a normal

output without clustering, i.e., all samples are added to a single cluster.

By comparing the middle and bottom lines, we can see that the error in

estimation was greatly reduced by taking the temporal weighted average.

The percentage of reduced error was about 85% on average for all users.

Additionally, our clustering method consistently performed better (bottom

two lines with clustering and top one without). We observed that, without

clustering, the error gradually increased after a while and did not converge

to a certain error.
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Angular error [degree]

Number of clicks2000 400 600 800

Raw output
Temporal weighted average

Output without clustering

Figure 3.9: Comparison of error in simulation experiments. The graph plots

the cumulative average errors of User A. The red and blue lines correspond

to normal and weighted output, and the green line corresponds to normal

output without clustering.

3.5.2 Evaluation in real environments

Next, we will present the results in a more realistic scenario. Unlike the

previous simulation setting, we used users’ natural operations on a PC in

this experiment. We asked five users to operate a PC to browse the Web for

about 30 minutes, so as to make the total number of clicks about 600. To

capture mouse-click events and positions, we implemented a global system

hook that ran as a background process. Also, the system captured the user’s

head poses and eye images in the background. We created a natural desktop

environment with these implementations. We evaluated how accurately it

performed in the same way as in the simulation experiment.

Table 3.2 lists the results of the experiment. Just as in Table 3.1, we can

see angular and pixel errors, the numbers of clicks, numbers of clusters, and
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Figure 3.10: Cumulative average angular error in real environments as in

Figure 3.8. Each line corresponds to each user in Table 3.2.

ranges of head-pose movements. The user IDs (A-E) correspond to the IDs in

the simulation experiment. The accuracy of estimating gazes was as good as

in the simulation experiment, i.e., 2.6 degrees on average. Figure 3.10 shows

the cumulative average of weighted angular error, similar to Figure 3.8. We

observed that error converged similarly to that in the simulation results.

One of the most important factors in this experimental setting was the

biased distribution of the click positions. Figure 3.11 shows the actual dis-

tribution of the positions clicked by User A. As in this example, there is a

certain bias in the distribution of clicked positions. For example, we can see

more clicks on menu buttons and at the top of the desktop. The distribution

of click points in the real-world scenario is always biased as in this example.

Figure 3.12 shows a comparison between distributions of clicked points

and average errors. Left image shows the spatial histogram of the clicked

points in the experiments. Higher intensity corresponds to larger counts of
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0 1280
0

1024

x

y

Figure 3.11: Distribution of points clicked by User A, during experiments in

real environment. Each point indicates the coordinates of the clicked points

in the 1280× 1024 desktop region.



CHAPTER 3. INCREMENTAL LEARNING FOR GAZE ESTIMATION58

Distribution of clicks Error [degree]
13.3

0.7

Figure 3.12: Comparison between click distribution and average error. Left

image shows the spatial histogram of the clicked points in the experiments.

Higher intensity corresponds to larger counts of clicks. Right image shows

the spatial distribution of estimation errors in the display coordinate. Lower

intensity corresponds to the lower estimation error as illustrated in the right

bar.

clicks. Right image shows the spatial distribution of estimation errors in the

display coordinate. Lower intensity corresponds to the lower estimation error

as illustrated in the right bar. As can be seen, it is certainly hard to achieve

good estimates at a screen point where only a few samples are available.

This can be considered as a prior for gaze estimates, as this describes the

statistics of clicked points. However, at the same time, we did not expect

users to click such locations based on the prior. One interesting observation

is that the distribution varies with the tasks and application scenarios. Our

method can naturally stay updated with changes in the distribution because

of the incremental learning scheme.

We also present additional results to validate the above results that used

clicked positions as ground truths. It can be argued that clicked positions do

not exactly correspond to true gaze positions. Since it is almost impossible to

acquire ground-truth gaze points across every head pose, we have conducted
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Table 3.3: Results of experiments in real environment with ground-truth gaze

points. Shown are the angular and pixel errors, numbers of clicks.

Person Angular error [deg] Pixel error [px] Num. used clicks

a 2.3 ± 1.4 90 ± 56 181

b 3.1 ± 1.9 124 ± 76 162

c 4.7 ± 2.6 187 ± 104 152

Average 3.4 ± 2.0 133 ± 79

Distribution of clicks Error [degree]
9.0

1.1

Figure 3.13: Comparison between click distribution and average error. Right

image shows average estimation errors of reference data. Each grid corre-

sponds to displayed positions of the reference points. Left image shows the

spatial histogram of the clicked points as in Figure 3.12.
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experiments under a fixed head pose. Three persons were asked to browse

the Web for about 10 minutes with a chin rest to fix their head. Afterward,

equally spaced 10× 8 reference points (32 pixels in diameter) were shown to

them. When they click the reference points, actual positions of the displayed

points were recorded instead of clicked positions. Learned gaze estimators

were evaluated using these 80 input data with ground-truth gaze points.

Table 3.3 lists the results of the experiment. From left to right in the

table, angular and pixel errors of the raw output without temporal averaging,

and numbers of used clicks are shown. In Figure 3.13, right image shows

average estimation errors at each position of reference points. Lower intensity

corresponds to the lower estimation error as illustrated in the right bar. Left

image shows the spatial histogram of the clicked points during experiments as

in Figure 3.12. Compared to Table 3.2 and Figure 3.12, errors in these cases

are not significantly different from the previous results. Although these are

simpler cases with a fixed head pose, it ensures the evaluation with clicked

positions as ground truths.

3.6 Conclusions

We proposed an appearance-based gaze estimation method based on an

incremental-learning approach. To avoid the lengthy calibration stage, we

couple the learning and prediction stages to continuously refine the mapping

function that is related to appearance and the gaze direction. The proposed

approach is implemented in a desktop scenario, where a user clicks a mouse

in casual PC operations. The clicked position is used as a gaze label, and

the head pose and appearance of the eye are recorded with a PC camera.

To handle free-head movement, we use 3D head-pose tracking and proposed

a clustering-based method of interpolating appearance. The interpolation is

done by clustering learning samples with similar head poses and creating a
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local manifold in a cluster. We further introduced a method of refining labels

to impose local smoothness on the manifold.

We use a PCA-based distance measure in our implementation to achieve

computational efficiency and simplify implementation. However, it can be-

come sensitive to variations in appearance that are unrelated to gaze, e.g .,

small shifts and rotations in image cropping. To avoid this, we carry out

subspace-based eye alignment after cropping as described in Section 3.4.1.

The effectiveness of the method we propose was demonstrated through ex-

periments conducted in both simulation and real environments. Our method

achieved an estimation accuracy of 2.6 degrees. It was less accurate than

state-of-the-art products for estimating gazes that achieve an accuracy of

less than 1 degree (e.g ., Tobii eye trackers [Tob]). However, the new method

has immense advantages in that, unlike these approaches, it works with a

minimal amount of equipment, i.e., a single PC camera without any special

hardware. Moreover, Our system achieved higher accuracy than the previ-

ously proposed monocular methods [IBMK04, YUYA08]. We believe that

the proposed approach has considerable potential for developing an practical

gaze estimator without a laborious calibration stage. With more advanced

algorithms like [WBC06] to solve the regression problem in each cluster, we

expect that the accuracy of estimation with the system will be further im-

proved.



Chapter 4

Calibration-free Gaze Sensing

using Saliency Maps

The previous chapter described a gaze estimation method that employs

mouse operations on PCs as a key for the calibration. However, the method

has a significant drawback that it cannot be applied to cases without user

interaction. Finding more universal information about where a person is

looking at, will extend the idea of unconscious calibration from human be-

havior to passive environments without user interactions.

In this chapter, we propose a novel, calibration-free gaze sensing method

using visual saliency maps. Our method uses visual saliency maps of video

frames that are computed in a bottom-up manner. By relating the saliency

maps with appearances of eyes of a person watching video frames, our method

automatically constructs a gaze estimator. To efficiently identify gaze points

from saliency maps, we aggregate saliency maps to build a probability dis-

tribution of gaze points. We establish mapping between eye images to gaze

points by Gaussian process regression.

62
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4.1 Introduction

Gaze estimation is important for predicting human attention, and therefore

can be used for various interactive systems. There are a wide range of ap-

plications of gaze estimation including marketing analysis of online content

and digital signage, gaze-driven interactive displays, and many other human-

machine interfaces.

In general, gaze estimation is achieved by analyzing a person’s eyes with

an image sensor. Exact gaze points can be determined by directly ana-

lyzing gaze directions from observations of eyes. Many implementations of

camera-based gaze estimator have been proposed including commercial prod-

ucts (see [HJ09] for a recent survey). One of the limitations of camera-based

gaze estimators is explicit calibration for learning person-dependent parame-

ters. Although the number of reference points for calibration can be reduced

using multiple light sources [VC08], or stereo cameras [NKIT08], it still re-

quires a user to actively participate in the calibration task. In some practical

scenarios, the active calibration is too restrictive because it interrupts natural

interactions and makes the unnoticeable gaze estimation impossible.

To avoid active calibration, Yamazoe et al .used a simple eyeball model for

gaze estimation and performed automatic calibration by fitting the model to

appearance of a user’s eye [YUYA08]. Sugano et al .proposed a method using

input from a user’s mouse as exemplar data for calibration [SMSK08]. How-

ever, these approaches are restricted to specific scenarios. Yamazoe et al .’s

approach relies on a specific geometric model, and Sugano et al .’s approach

can only be applied to interactive environments with user inputs.

Apart from these gaze estimation studies, computational models of vi-

sual saliency have been studied to analyze visual attention on an image.

While gaze estimation approaches aim at determining where people’s eyes

actually look at, the visual saliency give us information about which im-
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Figure 4.1: Illustration of our method. Our method uses saliency maps com-

puted from video frames in bottom-up manner for automatically constructing

a gaze estimator.

age region attracts more attention, as illustrated in Figure 4.1. Biologically,

humans tend to gaze at an image region with high saliency, i.e., a region

containing more unique and distinctive visual features compared with the

surrounding regions. Hence, by knowing the visual saliency map of an im-

age, the gaze point of a person looking at an image can be predicted. After

Koch and Ullman proposed the original concept [KU85] of visual saliency,

many bottom-up computational models of visual saliency maps have been

proposed [IKN98, PS00, IB06, HKP07, BT09]. It is experimentally shown

that there indeed exists a correlation between bottom-up visual saliency and

fixation locations [PLN02].

Gaze estimation and visual saliency models are closely related; nonethe-

less, not many previous studies relate these two. Kienzle et al . [KWSF06,

KSWF07] proposed a method for learning computational models of bottom-

up visual saliency using gaze estimation data. Judd et al . [JEDT09] followed

the approach with more features and a larger database. These approaches

learn accurate saliency models using gaze points. In contrast to these meth-

ods, our goal is to construct a gaze estimator from saliency maps. To our

knowledge, this is the first work to use visual saliency as prior information

for gaze estimation.
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We propose a novel calibration-free gaze sensing method using computa-

tional visual saliency. The key idea of our method is generating a probability

distribution of gaze points using saliency maps. From eye images of a user

watching a video clip, we acquire learning datasets that consists of saliency

maps and eye images under a fixed head position. Gaze probability maps

are generated by aggregating the saliency maps based on the similarity of

eye appearances. Once the gaze probability maps are obtained, our method

learns the relationship between the gaze probability maps and eye images.

As a result, this leads to a completely ambient gaze estimator that exempts

users from active calibration.

4.2 Gaze estimation from saliency maps

Our goal is to construct a gaze estimator without any explicit calibration

stages. The inputs for our system are N video frames {I1, . . . , IN} and asso-

ciated eye images {e1, . . . , eN} of a person watching a video clip under a fixed

head position. In our setting, eye images and video frames are synchronized;

eye image ei is captured at the same time when frame Ii is shown to the

person. Using this dataset {(I1, e1), . . . , (IN , eN)}, our goal is to construct

a gaze estimator for estimating an unknown gaze point g from an eye image

e.

Our method consists of three steps; saliency extraction, saliency aggrega-

tion, and estimator construction as shown in Figure 4.2. Saliency extraction,

is the step in which saliency maps from an input video are calculated. From

the video clips, a visual saliency map that represents distinctive visual fea-

tures is extracted from each frame. Saliency aggregation combines all saliency

maps to obtain a gaze probability map that has a peak around the true gaze

point. This step produces pairs of the average eye image and gaze proba-

bility map. The third step is the estimator construction. Using the gaze
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probability maps and associated eye images, the estimator construction step

learns the mapping from an eye image to a gaze point. The resulting gaze

estimator outputs gaze points for any eye image from the person. Details of

each step are described in the following sections.

4.2.1 Saliency extraction

This step extracts visual saliency maps {s1, . . . , sN} from input video frames

{I1, . . . , IN}. The flow of the extraction scheme is summarized in Figure 4.3.

The basic concept of bottom-up saliency map is evaluating unusual regions in

these feature maps. If some locations in the feature maps have unique values

compared to its neighbors, they are thought to be more salient for humans.

We use graph-based visual saliency (GBVS) [HKP07] as a base saliency model

and add a higher level saliency model based on face detection.

First, low-level feature maps are extracted from the input video frame.

We employ commonly used feature channels, i.e., color, intensity and ori-

entation as static features, and flicker and motion are used as dynamic fea-

tures [IDP03]. Color indicates red/green and blue/yellow differences, inten-

sity indicates a grayscale luminance, and orientation indicates responses of

2D Gabor filters with orientation at 0◦, 45◦, 90◦ and 135◦, flicker indicates an

absolute intensity difference from the previous frame and motion indicates

spatially-shifted differences between Gabor responces. Each feature channel

is extracted at different 2 levels of a image pyramid with 1/2 and 1/4 scaling.

Hence a total of 24 maps are extracted.

Next, Activation map A is computed from each feature map F . In the

GBVS algorithm, this process is done in a form of steady-state analysis of

a Markov chain GA. Each state of GA corresponds to a pixel in A and a

transition probability ωa between states (i, j) and (p, q) is defined based on
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a dissimilarity between two corresponding pixels in F as

ωa((i, j), (p, q)) � ωd|F (i, j)− F (p, q)|, (4.1)

where ωd indicates a Gaussian weight evaluating Euclidean distance between

(i, j) and (p, q). In this way, pixels with higher dissimilarity with their sur-

roundings have higher value in an equilibrium distribution of GA.

Resulting activation maps are then normalized. A Markov chain GN is

defined in a similar way with a transition probability:

ωn((i, j), (p, q)) � ωd|A(p, q)|. (4.2)

In an equilibrium distribution of GN , maps are concentrated so that they

have fewer important peaks. Normalized maps are averaged within each

channel and all channel maps are finally combined with a same weight to

form a low-level saliency map sl.

On top of the low-level saliency, we use a higher level saliency model.

Humans tend to fixate on faces, especially the eyes, which are highly salient

for humans. Cerf et al . [CHEK08] proposed a face channel-based saliency

model using a face detector. We follow this approach to produce reliable

saliency maps using a facial feature detector (OKAO Vision library developed

by OMRON Corporation). The face channel saliency map sf is modeled as

2-D Gaussian circles with a fixed variance at the detected positions of the

center between two eyes. When the detector detects only a face, e.g ., when

the face region is small, the facial saliency is defined at the center of the

facial region.

We combine the low-level saliency sl and face channel saliency sf after

normalizing them to span in the same range. We also take the temporal

average of the aggregated saliency maps to compute the final saliency map

s as

si =
1

2(ns + 1)

i∑
j=i−ns

(slj + sfj ), (4.3)
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where ns is the number of frames used for temporal smoothing. Since humans

cannot instantly follow rapid scene changes, only past frames are used for the

smoothing to account for latency. As a result, synchronized pairs of saliency

maps and eye images Ds = {(s1, e1), . . . , (sN , eN)} are produced.

Figure 4.4 shows examples of the computed saliency maps. From top to

bottom are input images I, low-level saliency sl, face channel saliency sf ,

and combined saliency maps s.

4.2.2 Saliency aggregation

Although saliency maps extracted in the previous step accurately predict gaze

points, the accuracy is still not good enough to determine exact locations of

gaze points.

The saliency maps s encode distinctive visual features in a video frame.

While a saliency map does not provide exact gaze points, highly salient re-

gions in a saliency map are likely to coincide with the true gaze point. Sup-

pose we have a set of saliency maps that statistically have high saliency scores

around the true gaze point, with random saliency scores at other regions. By

aggregating the saliency maps, it is expected that the image region around

the true gaze point has a vivid peak of saliency. The map can be used as the

probability distribution of the gaze point. This step aims at producing such

probability maps using the associated eye images.

Our basic idea is to use a similarity of eye images for the aggregation.

The similarity measure ws is defined as

ws(ei, ej) = exp(−κs||ei − ej||2). (4.4)

When the gaze points of eye images ei and ej are close, the appearances are

similar and ws becomes high.

In this step, we first eliminate unreliable eye images, e.g ., images during

blinking, from the learning set. Eye images recorded during fixation are



CHAPTER 4. GAZE SENSING USING SALIENCY MAPS 71

Figure 4.4: Examples of computed saliency maps. First row shows input

images I, second row shows corresponding low-level saliency sl, third row

corresponds to face channel saliency sf , and the bottom row shows combined

saliency maps s.
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useful as a learning data. To identify such eye images, we use a fixation

measure of an eye image e defined as

wf (ei) = exp(−κfVar(ei)), (4.5)

where Var(ei) denotes the variance of eye images {ei−nf
, . . . , ei+nf

} averaged
over pixels. Since appearances of the eye images change rapidly during fast

movement, wf becomes lower when ei is captured during eye movement or

blinking. A subset Ds′ = {(s1, e1), . . . , (sN ′ , eN ′)} is created from Ds by

removing eye images where wf scores are lower than a predefined threshold

τf .

Since variation in the gaze points is limited in Ds′ , and there can be many

samples that share almost the same gaze point, eye images are clustered

according to similarity wf to reduce redundancy and computational cost.

Each eye image e is sequentially added to the cluster whose average eye

image ē is the most similar to e. A new cluster is adaptively created if the

highest similarity among all existing clusters is lower than the threshold τs.

Finally,M clusters and their average eye images {ē1, . . . , ēM} are calculated.
After these steps, we compute the gaze probability map ēi as

p̄i =

∑N ′
j ws(ēi, ej)(sj − s̄all)∑N ′

j ws(ēi, ej)
, (4.6)

where s̄all is the average of saliency maps in Ds′ . Man-made pictures usually

have higher saliency at the center of the image, Hence, without normalization,

the gaze probability map p̄i tends to have higher value at the center regardless

of ēi. The average saliency map s̄all is used to eliminate this centering bias

in the gaze probability map. Each gaze probability map p̄i is normalized to

a fixed range. Finally, we obtain a dataset Dp = {(p̄1, ē1), . . . , (p̄M , ēM )}.
Figure 4.5 shows examples of the obtained gaze probability maps. The

eye images shown at the top-left indicate corresponding average eye images

ē. The six images are some examples taken from six different people. The
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Figure 4.5: Examples of gaze probability maps p̄ and corresponding average

eye images ē. Overlaid circles depict true gaze points of ē to illustrate the

correspondence between a gaze point and the peak in the gaze probability.

The true gaze points are obtained using a calibration-based gaze estimator,

and our method does not know the true gaze points.
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Figure 4.6: ROC curves of raw saliency maps and gaze probability maps.

Horizontal axis indicates the false positive rate, i.e., pixel rate above a thresh-

old. Vertical axis indicates the true positive rate, i.e., rate of frames which

have a higher saliency value than a threshold at the true gaze point. Thin

line (AUC = 0.73) indicates raw saliency maps extracted through process

described in Section 4.2.1. Bold line (AUC = 0.90) corresponds to the gaze

probability maps described in Section 4.2.2.

overlaid circles indicate true gaze points of ē. The true gaze points are

unknown in our method, and these are obtained using a calibration-based

gaze estimator and placed as a reference. Although the gaze probability maps

p̄i are generated without knowing true gaze points, these highly correspond

to the true gaze points.

Figure 4.6 shows the improvement of the correlation between the true gaze

point and saliency maps by this aggregation step. The curves are drawn

by changing saliency threshold values from minimum to maximum. The

horizontal axis indicates a false positive rate, i.e., rate of pixels in a map
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above a threshold. The vertical axis indicates a true positive rate, i.e., rate

of frames whose saliency value at the true gaze point is higher than the

threshold. This plot is obtained using all data used in our experiment. The

thin line shows the average receiver operating characteristic (ROC) curve

(area under the curve (AUC) = 0.73) of the extracted saliency maps before

aggregation. After aggregation, the accuracy is improved as shown by the

bold line in Figure 4.6, which shows the average ROC curve (AUC = 0.90)

of all the gaze probability maps.

4.2.3 Estimator construction

In the previous step, the average eye images {ē1, . . . , ēM} and corresponding

gaze probability maps {p̄1, . . . , p̄M} are produced.

In a standard Gaussian process regression, a model can be built to esti-

mate the probability distribution P (g∗|e∗,Dg) of an unknown gaze point g∗

of an eye image e∗, given labeled data points Dg = {(g1, ē1), . . . , (gM , ēM )}.
However in our case, we only know Dp = {(p̄1, ē1), . . . , (p̄M , ēM)} where p̄i

can be treated as a probability map of gi.

Therefore, we re-formulate Gaussian process regression using the proba-

bility maps as follows. By normalizing the gaze probability maps, we define

probability distributions as

P (g|p̄) = p̄(g)∑
x

∑
y p̄

, (4.7)

where p̄(g) indicates the value of p̄ at the gaze point g, and
∑

x

∑
y p̄ in-

dicates overall summation of p̄. Given Eq. (4.7), the target distribution

P (g∗|e∗,Dp) can be obtained by marginalizing over all possible gaze points
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{g1, . . . , gM} 1 as

P (g∗|e∗,Dp) =
∑
g1

· · ·
∑
gM

P (g∗|e∗,Dg)P (Dg|Dp), (4.8)

where

P (Dg|Dp) =
M∏
i

P (gi|p̄i). (4.9)

In Eq. (4.8), g∗ indicates the unknown gaze point of the eye image e∗, and

gi is the gaze point corresponding to p̄i.

Because the integral (summation) of Eq. (4.8) is computationally ex-

pensive, we solve Eq. (4.8) by Monte Carlo approximation. We randomly

produce ng sets of samples D(l)
g = {(g(l)1 , ē1), . . . , (g

(l)
M , ēM )}ng

l=1 according to

the probability distribution defined by Eq. (4.7). Namely, g
(l)
i in the l-th set

is generated according to the distribution P (gi|p̄i) defined by the i-th prob-

ability map. Because the gaze probability maps accurately predict true gaze

points as shown in Figure 4.6 (85% of the true gaze points were included

within the top 20% of the aggregated saliency scores), we cut off the low

saliency values from the gaze probability maps. To reduce the number of

samples in the approximation, we use a threshold τs to set the probability to

zero if p̄(x, y) is lower than the threshold. Using these sets, Eq. (4.8) can be

approximated as

P (g∗|e∗,Dp) =
1

ng

ng∑
l=1

P (g∗|e∗,D(l)
g ). (4.10)

Finally, each P (g∗|e∗,D(l)
g ) can be estimated based on a Gaussian process

regression [RW06].

1Here, we describe a one-dimensional case to simplify the notation; however, two re-

gressors are independently built for each X- and Y-direction.
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Gaussian process regression We assume a noisy observation model gi =

f(ei) + εi, i.e., a gaze point gi is given as a function of eiwith the data-

dependent noise term εi = N (0, ς2i ). In standard methods, the noise variance

ς2 is treated as an unknown parameter that takes a constant value across all

data. This assumption does not always hold in practice, and there have been

proposed some methods [GWB98, KPPB07] to learn an input-dependent

noise variance function. In our case, because the sample distribution is

known, the noise variance ς2i can be set to an actual variance of generated

samples {g(1)i , . . . , g
(ng)
i }. It explicitly assigns a higher noise variance for sam-

ples from ambiguous saliency maps with several peaks. f(ei) is assumed to

be a zero-mean Gaussian process with a covariance function k:

k(ei, ej) = α exp(−β||ei − ej||2), (4.11)

with parameters α and β. With this assumption, P (g∗|e∗,D(l)
g ) is calcurated

as a Gaussian distribution N (μl, σ
2
l ) with

μl = K∗(K + S)−1G(l), (4.12)

and

σ2
l = k(e∗, e∗)−K∗(K + S)−1tK∗, (4.13)

where Kij = k(ēi, ēj), K
∗
i = k(ēi, e

∗), Sij = ς2i δij and G
(l)
i = g

(l)
i

2 [Bis06].

As a result, the distribution P (g∗|e∗,Dp) can be derived as a Gaussian dis-

tribution N (μ, σ2) with

μ =
1

ng

ng∑
l=1

μl, σ2 =
1

ng

ng∑
l=1

σ2
l = σ2

1. (4.14)

The variance σ2 equals to σ2
1, because σ

2
l of Eq. (4.13) is independent of the

index l. Therefore, σ2 can be calculated by taking σ2
1.

2K ∈ R
M×M , K∗ ∈ R

1×M , S ∈ R
M×M and G(l) ∈ R

1×M



CHAPTER 4. GAZE SENSING USING SALIENCY MAPS 78

4.2.4 Gaze estimation

Once we have matrices K, S and {G(1), . . . ,G(ng)} in Eqs. (4.12) and (4.13),

a gaze point can be estimated by taking any eye image e as input. The

estimated distributions for each X- and Y-direction,N (μx, σ
2
x) andN (μy, σ

2
y),

are converted to the display coordinates N (μ̂x, σ̂
2
x) and N (μ̂y, σ̂

2
y) as

μ̂x = xo +
WI

Ws

μx, μ̂y = yo +
HI

Hs

μy, (4.15)

and

σ̂2
x =

WI

Ws

σ2
x, σ̂2

y =
HI

Hs

σ2
y , (4.16)

where Ws, Hs indicates the width and height of the saliency maps, WI , HI

indicates the actual width and height of the displayed images {I1, . . . , IN},
and (xo, yo) indicates the display origin of the images. The average (μ̂x, μ̂y)

corresponds to the estimated gaze point g.

4.3 Experimental results

In this section, we show experimental results to evaluate our method. In

the experiments, we used four video clips from four films: A) 2001: A

Space Odyssey, Stanley Kubrick, 1968, B) Dreams, Akira Kurosawa, 1990, C)

Nuovo Cinema Paradiso, Giuseppe Tornatore, 1988 and D) Forrest Gump,

Robert Zemeckis, 1994. It is known that human gaze control is also strongly

influenced by contexts and plots of films, however, such high-level attentions

are not modeled by the bottom-up saliency model we employed. Hence, each

film was shortened to a 10-minute video clip without audio signal by ex-

tracting 2-second sequences at regular intervals to remove these effects. The

video clips were resized to a fixed dimension of 720 × 405, and the display

resolution was set to WI = 1920 and HI = 1080. The video clips were shown
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Figure 4.7: Experimental setup. A chin rest is used to fix their head positions,

and a 22.0-inches WUXGA (473.8× 296.1 mm) display was placed 400 mm

in front of the subject when video clips were shown. The red circle indicates

the position of the camera.

Table 4.1: Combinations of video clips A to D and test subjects s1 to s6;

e.g ., person s1 watched clips A and B.

Test

Source A B C D

A s1 s2 s3

B s1 s4 s5

C s2 s4 s6

D s3 s5 s6
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at 15 fps; therefore, N = 9000 in the experiments. The saliency maps were

calculated at a smaller resolution, Ws = 32 and Hs = 18.

Six novice test subjects s1 . . . s6 were asked to watch two video clips. The

combinations of video clips and test subjects are defined so that every clip

was tested as learning data against three different subject persons as listed

in Table 4.1. A chin rest is used to fix their head positions, and a 22.0-inches

WUXGA (473.8 × 296.1 mm) display was placed 400 mm in front of the

subject when video clips were shown. Figure 4.7 shows the actual setup.

The red circle indicates the position of the camera. While the subjects were

watching the clips, their eyes were automatically detected and captured using

OMRON OKAO Vision library.

The ground truth calibration data were collected for each user by showing

reference points in a separate stage. For this, 16 × 9 points were shown at

120×120-pixel intervals and eye images were captured in the same way. The

ground truth was used to quantitatively assess our method in comparison

with the gaze estimation method that involves an explicit calibration stage.

Throughout the experiment, the parameters were set as follows; ns = 5,

κs = 7.8× 10−7, τs = 0.4, nf = 5, κf = 0.02, ng = 50, α = 50, β = 5.0× 10−9,

and τs was adaptively set to keep the top 20% of pixels and set remaining

80% to zero in each map. These parameter settings are empirically obtained

from our experiment.

4.3.1 Gaze estimation results

Using the two clips × six subject people, we tested our method in two sce-

narios. In Scenario 1, we assessed our method using the learning dataset as

a test dataset. Because the true gaze points are not known in the learning

dataset, this experiment was designed to verify the performance of the algo-

rithm. In Scenario 2, evaluations were performed using another dataset from
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the user as a test dataset to confirm the applicability of the trained gaze

estimator to other datasets.

The ground truth gaze points of the datasets were obtained using a

calibration-based gaze estimator. It was achieved by a standard Gaussian

process regression method with a labeled data set. Namely, pairs of the

ground-truth gaze points and eye images were explicitly given to learn the

relationship between gaze points and eye images. The same covariance func-

tion (Eq. (4.11)) was used. α and β were set to be the same values as our

estimator, and the noise variance ς2 was set to zero.

Figure 4.8 and Figure 4.9 shows examples of the estimation results. Out-

puts of the estimators are rendered as 2-D Gaussian circles centered at

(μ̂x, μ̂y) with variance (σ̂2
x, σ̂

2
y) given by Eq. (4.14). The center coordinate

(μ̂x, μ̂y) corresponds to the estimated gaze point. The eye images shown

at the top-left corner show input eye images for estimation, and the over-

laid circles represent true gaze points obtained from the calibration-based

estimator.

Table 4.2 summarizes the estimation results for each video clips. Each row

corresponds to the average of three subjects’ results where the corresponding

video clip is used as the training dataset (see Table 4.1). First two columns

indicate AUCs of average ROC curves of the raw saliency maps s and gaze

probability maps p̄. The rest of the columns indicate estimation errors in

distance and angle represented as average ± standard deviation. Distance

errors are evaluated as the Euclidean distance between the estimated and

ground-truth gaze points, and angular errors are calculated using the distance

between eyes and the display.

From these results, it is observed that the gaze estimation accuracy de-

pends on the accuracy of the gaze probability maps. When the AUC of the

gaze probability maps p̄ is lower, the estimation error tends to become larger.

Table 4.3 lists the estimation error of each subject person. Each row
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Figure 4.8: Estimation results of subjects s1 . . . s3. The estimation results

are rendered as 2-D Gaussian circles. The corresponding input eye images

are shown at the top-left corner. Overlaid circles are the ground truth gaze

points obtained from a calibration-based gaze estimator.
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Figure 4.9: Estimation results of subjects s4 . . . s6. The estimation results

are rendered as 2-D Gaussian circles as in Figure 4.8.
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Table 4.2: Average error for each video clip. Two AUC columns indicates

AUCs of the average ROC curves of raw saliency maps s and gaze probability

maps p̄. The rest of columns indicates distance and angular estimation errors

(average ± standard deviation) in two estimation scenarios.

s p̄ Scenario 1 Scenario 2

Clip AUC AUC error [mm] error [deg.] error [mm] error [deg.]

A 0.75 0.90 38 ± 26 5.3 ± 3.6 45 ± 28 6.3 ± 3.8

B 0.71 0.87 60 ± 32 8.3 ± 4.4 56 ± 32 7.9 ± 4.3

C 0.74 0.92 31 ± 20 4.3 ± 2.7 36 ± 19 5.0 ± 2.5

D 0.70 0.89 36 ± 23 5.0 ± 3.1 42 ± 25 5.9 ± 3.4

Average 0.73 0.90 41 ± 25 5.7 ± 3.5 45 ± 26 6.3 ± 3.5

Table 4.3: Average error for each subject person. Columns indicate AUCs of

the average ROC curves and estimation errors as in Table 4.2.

s p̄ Scenario 1 Scenario 2

Subject AUC AUC error [mm] error [deg.] error [mm] error [deg.]

s1 0.74 0.90 48 ± 35 6.8 ± 4.8 48 ± 36 6.7 ± 5.0

s2 0.75 0.93 30 ± 20 4.1 ± 2.7 30 ± 19 4.2 ± 2.6

s3 0.72 0.87 42 ± 27 5.9 ± 3.6 58 ± 27 8.1 ± 3.7

s4 0.71 0.87 43 ± 26 6.0 ± 3.5 48 ± 27 6.7 ± 3.6

s5 0.71 0.89 51 ± 26 7.1 ± 3.6 52 ± 28 7.2 ± 3.8

s6 0.74 0.92 33 ± 18 4.6 ± 2.5 34 ± 18 4.8 ± 2.4



CHAPTER 4. GAZE SENSING USING SALIENCY MAPS 85

Figure 4.10: Spatial distribution of estimation errors in the display coordi-

nate. Lower intensity corresponds to the lower estimation error as illustrated

in the right bar.

corresponds to average of results of the corresponding test subject with two

different training datasets. The columns show AUCs and estimation errors

in the similar manner as in Table 4.2. In contrast to Table 4.2, subject

dependency of our method is not clearly observed.

The accuracy of our method has dependency on the distribution of learn-

ing samples. Figure 4.10 shows the spatial distribution of average estimation

errors. Each grid corresponds to a reference point that is used to capture

the calibration data when producing the ground truth data. Using eye im-

ages obtained from the ground truth dataset as input to our method, we

compute the errors of our method. Lower intensity corresponds to the lower

estimation error. From this, the larger errors can be observed at edges of the

display. Figure 4.11 shows the average saliency map and spatial histogram

of gaze points. The left image shows the average of all raw saliency maps

extracted from the four video clips used in our experiment. The right image

shows the spatial histogram of ground-truth gaze points obtained from the

experiment dataset. Higher intensity corresponds to larger amount of gaze

points given at the grid. Usually salient objects are located at the center of
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Figure 4.11: Average saliency map and spatial histogram of gaze points.

Left image shows the average of all raw saliency maps extracted from four

video clips used in the experiment. Right image shows the spatial histogram

of the ground-truth gaze points of experimental dataset. Higher intensity

corresponds to larger counts of gaze points.

video frames, and the gaze point also tends to concentrate at the center of

the display. Because of these reasons, the number of learning samples at the

display edges are limited, and these cause the bias of the estimation accuracy

shown in Figure 4.10.

4.4 Conclusions

We proposed a novel calibration-free gaze estimation framework using saliency

maps. By only using a synchronized set of eye images and video frames, a

gaze estimator can be constructed by treating saliency maps as probabilistic

distributions of gaze points. To the best of our knowledge, this is the first

work to use saliency maps as the key for gaze estimation. Our method nat-

urally avoids an explicit and noticeable gaze calibration step that is often

demanding for users. In our experimental setting with fixed head positions,

our method achieves the accuracy of about 6-degree error.

One the most important future tasks is dealing with changes in head
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poses. Although this might be solved by an adaptive clustering like [SMSK08],

it is still an open problem to find more sophisticated algorithms for han-

dling head poses in appearance-based gaze estimation. Making the learning

algorithm incremental and real-time is also an important task. Adoption

of fast incremental regression algorithms like sparse on-line Gaussian pro-

cesses [CO02] is thought to be a help to accomplish it.

The estimation accuracy of our method depends on the raw saliency maps

extracted from input video clips. The mechanism of human gaze control has

not been completely investigated, and there is a wide range of possibilities of

more advanced saliency models for accurately predicting gaze. Our method

can benefit from the further investigation of more accurate saliency models.



Chapter 5

Conclusions

5.1 Summary

Head pose and gaze estimation techniques play significant roles in inferring

the focus of attention. Determining the object or area on which a user is

focusing will enable the design of more efficient interactions and of computer

systems that can adapt to the user’s states. This thesis presented several

methods that enable estimation of head pose and gaze with minimal require-

ments.

In Chapter 2, a monocular 3D head pose estimation method was pre-

sented. It uses a multilinear facial shape model with separate parameters for

interpersonal and intrapersonal facial deformations and combines two esti-

mation frameworks. Particle filter-based tracking is used to efficiently track

head poses and facial actions, and model-based bundle adjustment is used

to adjust the facial shape model to the target person. In this way, accurate

estimations of head pose and facial action are achieved in real time without

preliminary model customization for each person.

A real-time gaze estimation method based on the head tracker was pre-

sented in Chapter 3. The key is the assumption that the user gazes at the

88
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cursor position whenever s/he clicks the mouse button. Calibration examples

are automatically collected from the user’s daily mouse operations, to learn

mapping function between the eye images and gaze points. The examples

are adaptively clustered in accordance with the estimated head poses, and

local models of gaze estimation are incrementally built. This results in a

monocular gaze estimator that requires no additional light sources and does

not restrict the user’s head movements.

In addition to the above method, a novel gaze estimation method was

presented in Chapter 4. The inputs are video frames and associated eye

images captured from a person watching the video frames. Bottom-up visual

saliency maps are extracted from the video frames and used as probabilistic

supervisors. Probability maps of the gaze points for the eye images are

generated by aggregating the saliency maps and are used to construct a

gaze estimator that uses a Gaussian process regression framework. Hence,

completely calibration-free gaze estimation is enabled by using only data

captured while the user watches video clips.

Using these methods will make head pose and gaze estimation noticeably

more convenient by reducing installation and setup costs. This will enhance

the potential for future investigation of techniques for sensing the focus of

attention and for development of attention-based application systems.

5.2 Contributions

The main contributions of this thesis are summarized as follows.

Accurate monocular head pose estimation

The use of the unique combination of particle filter-based tracking and model-

based bundle adjustment in conjunction with a multilinear facial shape model

for monocular 3D head pose estimation is the first main contribution. The
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generic multilinear face model is gradually adapted to the target person,

while temporal actions are robustly tracked. This results in an accurate

estimation of head pose and facial action without manual initialization of

the shape model.

Automatic calibration of gaze estimators

The calibration of the gaze estimator on the basis of the user’s natural be-

haviors is the second main contribution. Under the assumption that the user

gazes at the cursor position whenever s/he presses the mouse button, we

proposed a fully incremental learning algorithm for appearance-based gaze

estimation. This enables background learning of a gaze estimator during

daily PC usage. This is also the first work to extend an appearance-based

algorithm to the case of various head poses. The estimation results are more

accurate than those of previous monocular methods.

Saliency-driven learning of gaze estimators

The framework for gaze estimation using visual saliency maps is the third

main contribution. Treating visual saliency maps as probability distributions

of gaze points enables fully automatic learning of a gaze estimator without

explicit calibration. To our knowledge, this is the first application of visual

saliency as prior information to gaze estimation.

5.3 Future Directions

Practical head pose and gaze estimation methods

Monocular 3D head pose estimation techniques are becoming good enough

for practical use. One of the remaining challenges is achieving more accurate

facial action estimation for advanced tasks like facial expression recognition.



CHAPTER 5. CONCLUSIONS 91

In contrast, monocular gaze estimation techniques still have problems to

be solved, and constructing practical and accurate estimation systems is still

a challenging task for researchers. For example, reducing the time needed

for calibration is one of the keys to practical use. We assumed a scenario

of personal customization in which a gaze estimator is learned during some

period of observation, without forcing the user to engage in active calibration.

Reducing the time needed for customization will enable the estimator to also

be used quickly by various applications.

Another key is developing an advanced algorithm for compensating for

the changes in head pose for appearance-based gaze estimation. The ability

to use a calibration result for a certain head pose for gaze estimation under

different head poses will drastically improve the capabilities of the estimation

system.

Mechanisms of human attention

In Chapter 4, we described the use of a bottom-up computational model of

visual attention. Despite the many studies in the field of cognitive science,

the mechanism of human gaze control is still not completely understood. It

is well-known that gaze control is affected by top-down knowledge [Hen03]

as well as by low-level visual stimuli. Hence, if the viewing behavior is under

the influence of a certain task, a bottom-up computational model cannot

predict the gaze points particularly well [PI08]. Although some proposed

computational models incorporate scene context [TOCH06], there are many

open problems that computer systems cannot deal with.

Regarding the detection of the focus of attention, investigating the mech-

anisms of attention is also a significant research task. To better estimate

the focus of attention, computer systems might have to consider the circum-

stances and environment in addition to the user’s states.



CHAPTER 5. CONCLUSIONS 92

Attention-based interactive systems

The availability of practical head pose and gaze estimation systems will en-

able the development of more attention-based application systems. It is also

important for developers of sensing techniques to explore the possibility of

head pose and gaze-based applications and future AUI directions.

In this thesis, we focused on the use of only computer-vision-based tech-

niques to estimate the focus of the user’s attention. However, the estimated

focus can be used to analyze the viewed image. For instance, some proposed

interactive algorithms use gaze estimation for image manipulation such as

abstraction [DS02] and cropping [SAD+06].

We believe that more sophisticated methods, like the one described in

Chapter 4, can be built by observing both viewers and images, instead of

by using separate techniques for estimating the focus of attention and for

analyzing images. That is, computer vision and related techniques will play

a key role in designing rich interactions between humans and digital contents

by analyzing both factors together.
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