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Abstract

With the size increase of VLSI, current designs are firstly written in high-levels,

such as system-level, behavioral level, or register transfer level (RTL). High-level

designs are typically verified by simulation. However, since simulation can only

check patterns being input, some design bugs in corner cases may not be detected

with it. Then, formal verification is used as a complement of simulation for such a

case.

Currently, two problems can be considered on formal verification of high-level

design. One is about performances of verification methods and tools. The other

is the high-barrier to apply formal verification methods to actual designs. In this

thesis, four methods are proposed for these problems. The first two methods im-

prove verification performances, and the other two methods related to interfaces or

preprocesses of formal verification methods. The first two methods are based on

an approach which separates control and data portions in designs. Then, control

portions and data portions can be analyzed separately, and word-level methods such

as symbolic simulation can be applied effectively.

The first proposed method improves bounded model checking by decomposing

one large bounded model checking into small pieces. It is very difficult for traditional

bounded model checking methods which can only be verified with short bounds to

detect deep bugs. In the proposed method, since the bound of each decomposed

bounded model checking is small, the computation amount can be dramatically

reduced in successful cases. In addition, symbolic simulation is applied to a control

path of each counter example to support the connections between those decomposed

bounded model checkings. When a connection fails, the former bounded model

checking is retried after refining the condition not to get similar counter examples.
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Experimental results showed that the proposed method can improve the performance

of bounded model checking even with the simplest two-level method.

The second method proposed in this thesis improves equivalence checking be-

tween designs before and after behavioral optimization or high-level synthesis. The

proposed method applies a preprocess that makes the data portions of the target

designs identical. This is performed by tentatively synthesizing behavioral designs

into virtual controllers and virtual datapaths. When the target designs are designs

before and after high-level synthesis, the virtual datapath is identical to the dat-

apath of the RTL design. When datapaths of two designs are identical, the same

control signals are guaranteed to be equivalent in bit-level. Then such control signals

can be replaced with uninterpreted functions, and word-level equivalence checking

techniques can be applied with bit-level accuracy. In addition, a word-level rule-

based equivalence checking method is proposed. The method uses pre-defined rules

of equivalence to propagate input equivalences which are given by users to outputs.

Since the rule based approach topologically traverses control FSMs, designs which

include many conditional branches and loops can be verified faster than symbolic

simulation based methods.

The third method proposed in this thesis is a preprocess for hardware/software

co-design to solve the three problems in formal verification of hardware/software co-

design in lower level than system-level, such as their size, the difference of hardware

and software representations, and the interactions between hardware and software

portions. The proposed method translates both hardware and software portions

into a set of concurrent Finite State Machine with Datapaths (FSMDs). After the

translation, the interactions between hardware and software portions are abstracted.

Then, a sequentialization method which converts concurrent FSMDs into a single

sequential FSMD and handles interruptions is applied. After the sequentialization,

control states which do not have data dependences each other are merged. The ex-

perimental results showed that the proposed method could make formal verification

more than 20 times faster than existing methods.

The last method proposed in this thesis is an useful intermediate representa-

tion of high-level designs for verification. In the proposed intermediate representa-

tion ExSDG, complicated syntax elements and structures are removed in preprocess
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steps. Since ExSDG has different representation levels correspond to untimed be-

havioral level, timed behavioral level, and register transfer level, respectively, various

existing design representations in high-level can be directly translated into ExSDG.

Therefore, verification tool developers only have to deal with ExSDG to support

those representations. In addition, System Dependence Graph (SDG) and Control

Flow Graph are integrated with Abstracted Syntax Tree (AST) in ExSDG, and users

can directly access such information from the AST tree. An SDG edge shows a de-

pendency relation between two portions of a design. Many researches use ExSDG as

a tool implementation environment, and this fact shows the effectiveness of ExSDG.

With the four methods proposed in this thesis, formal verification in high-level

can achieve more performances, wider range of designs can be verified with them,

and tool implementations of them will be easier.
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1.1 High-Level Design and Representations

With the size increase on VLSI, said as Moore’s Law, the standard starting stages

of VLSI designs has been moving from low level design stages, where designs are

precisely described, to high-level design stages where designs are written in more

abstract form, such as register transfer level (RTL), behavioral level, and system

level.

RTL is a design stage that computations performed at each clock cycle are de-

fined typically in bit-level. Here, bit-level means that bit-widths of registers and

computation units are decided and described exactly. In RTL design, usually com-

putation resources (Number of computation units and registers, bus structures) are

fixed. RTL designs are written in Hardware Description Languages (HDLs), such

as Verilog-HDL and VHDL.

Behavioral level is another design stage more abstract than RTL where only

behaviors of designs are defined and neither execution timing nor clock cycle is con-

sidered. Behavioral descriptions look like software program codes, and typically C-

based languages, such as SystemC[160], SpecC[54], SystemVerilog[82], BachC[177],

BDL[172], and CataplutC[28] are used to describe them. In behavioral level designs,

behaviors can be defined both in word-level and bit-level. Here, word-level means

that bit-widths of variables and operators are not precisely considered or ignored.

For example, if a designer writes a 4-bit multiplication in C code, the designer has

to write is as an 8-bit multiplication since only 8, 16 or 32 are available bit-widths

in C. Then, such descriptions include unnecessary bit computations. Therefore,

word-level descriptions may not exactly describe hardware behaviors.

In system level, hardware and software are not separated, and written in a

same language, typically C-based languages like behavioral level. Then, hard-

ware/software partitioning can be flexibly explored. The difference from behavioral

level is only the concept that system level descriptions include both hardware and

software portions, and the abstraction level of behaviors is same.

Figure 1.1 shows the typical design flow of hardware/software co-designs from

system-level. Firstly, designs are written in system level without separating hard-

ware and software portions. After architecture exploration, designs are separated to
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Figure 1.1: Design flow from system level

hardware and software portions, and software portions are converted step by step

down to load modules which can be directly run on processors. Hardware portions

are also converted to layouts through high-level synthesis, logic synthesis, and place

and route.

Currently, the design flow of hardware/software co-design shown in Figure 1.1

is still in a research stage, and most practical designs are started from the stages

after hardware/software partitioning, such as program code/behavioral level de-

scription or program code/RTL code. Hardware portions of such design stages are

called “high-level”, and then those design stages are defined as “high-level” of hard-

ware/software co-design in this thesis.

This thesis focuses on verification of such high-level hardware/software co-designs.

1.2 Requirement of Formal Verification

Design verification which is a process that finds and fixes design bugs is important

since more than 80% of the whole design period is said to be used for the verification

process[43]. Therefore, if the verification period is shorten, it also contribute to

shorten the whole design period.
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For that purpose, it is important to find and fix design bugs exhaustively in

high-level since finding and fixing design bugs are performed easier in more abstract

stages. Costs to go back to the earlier design stages when bugs are found are also

smaller.

Most parts of current design verification are performed by simulation. Here,

simulation is defined as a process that runs a design with a given input sequence and

compares its output with a reference. Simulation is fast, but only one input sequence

can be checked per one execution. In current practical designs, it is quite difficult

to simulate all possible input sequences exhaustively, since numbers of considerable

inputs are huge in most designs because of large design sizes.

Formal verification is a strong technique to verify designs exhaustively. In for-

mal verification, designs are analyzed with mathematical techniques. Since results

of formal verification is valid for all input sequences (details of current formal verifi-

cation techniques are introduced in Section 2.1), formal verification techniques have

been used in the verification process as an important step. However, the compu-

tation amounts of formal verification methods typically increase exponentially with

design sizes. Therefore, it is strongly required to improve the performance of formal

verification techniques.

Formal verification techniques can be classified into two categories, model check-

ing and equivalence checking. Model checking decides whether a given specification

of a design (called property) is satisfied on the design. Equivalence checking decides

whether two given designs are equivalent on a given criterion. In this thesis, both

model checking and equivalence checking methods are investigated.

1.3 Control/Data Separated Formal Verification

To improve the performance of formal verification techniques, this thesis focuses on

control and data portions of designs. A control portion is the flow of the behaviors

of a design, and a data portion is the set of actual computations executed at the

control steps. For example, in an RTL design control portions are control Finite

State Machines (FSMs), and the data portion is a datapath including computation

units as shown in Figure 1.2. In a behavioral design or a software program code,
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expr1;
if(expr2)

expr3;
else

expr4;
if(expr5)

expr6;

reg

+

expr1: a = a + 1
expr2: a > 0
expr3:b = a + 2
expr4:b = a – 2
expr5: b == 0
expr6:c = a * b

Control Data

Figure 1.2: Control and data portions in RTL/behavioral level design and program
Code

control is a control flow with conditional branches and loops, and data is a set of

expressions executed at the control steps which mean the points in the control flow.

The formal definition and details about control and data portions of designs are

explained in Section 2.2.

The main idea of this thesis is to separate control and data portions in designs.

When control paths of different executions are same, computed formulae on those

executions are identical, and the difference is the used data for the computations.

Such a feature can be utilized on formal verification, and two formal verification

methods are mainly proposed in this thesis.

One of the proposed methods in Chapter 3 is a model checking method that con-

catenates multiple bounded model checking results as shown in Figure 1.3. Bounded

model checking[22] is a model checking method that restricts the state space to be

verified with a given number of transitions from the initial states, called bound.

Since it does not handle infinite state space, the problem can be translated into sat-

isfiability (SAT) problem, and efficient SAT solvers can be used to solve it. However,

since its computation amount increases exponentially with the bound, it is difficult

to detect the bugs at states far from the initial states. To deal with the problem,

the proposed method concatenates multiple results of such bounded model check-

ings so that some states far from the initial states may be reached. The notion of

control and data is utilized to concatenate multiple bounded model checking results
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Figure 1.3: Multi-level bounded model checking

efficiently. On model checking, a set of error states derived from a property tend

to be at a same or similar control sequences. Then, if we find a counter example

for a property, there can be other counter examples on the control sequence of the

first counter example. With symbolic simulation techniques introduced in Section

2.4, multiple counter examples on a same control sequence can be gathered. This

counter example set corresponds to a set of states in the state space. Therefore,

with using a set of states instead of a single state, bounded model checking results

can be connected much more efficiently.

Another formal verification proposed in this thesis is an equivalence checking

method with translating two designs into models which have an identical datapath

as shown in Figure 1.4. Since computations are executed by computation units in

hardwares, when the set of computation units and their connections (bus structures)

are identical in two designs, the results of same computations must be exactly equiv-

alent in bit-level. In addition, on such a case, if two designs are equivalent, their

control flows must be equivalent or at least similar. These features make equiva-

lence checking with symbolic techniques much easier. Therefore, such a translation

is applied as a pre-process of symbolic equivalence checking methods. A symbolic

equivalence checking method with rule-based approach is also proposed, and its

result is compared with that of symbolic simulation method.

1.4 Formal Verification of Hardware/Software Co-

Design

Additional difficulties to apply formal verification exist when target designs are

hardware/software co-designs. One is the increase of total sizes of designs since
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Figure 1.4: Translation into models having identical datapaths

both hardware and software portions are handled at once. In addition, since hard-

ware and software portions interact with each other through memory mapped I/Os

and interruptions, the interface parts between hardware and software must be han-

dled. Such interface ports include processor memory addresses, processor buses, bus

controllers, and bus interface modules. The other is the difference of abstract level

and design languages between hardware and software portions. For example, in a

typical case, a software portion is written in program code which corresponds to

behavioral level in hardware designs, and a hardware part is written in RTL with a

hardware description language, such as Verilog-HDL or VHDL.

Since the above two difficulties prevent practical applications of formal verifi-

cation to hardware/software co-designs, current hardware and software are verified

separately with formal verification in most cases. To apply the two formal verifica-

tion methods in this thesis to hardware/software co-designs, a preprocess method

to convert hardware/software co-designs into simpler forms is proposed in Chapter

5.
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1.5 Efficient Implementation of Formal Verifica-

tion Methods for High-Level Designs

One critical problem to implement formal verification methods for high-level designs

is the diverseness of design descriptions in multiple abstraction levels. As men-

tioned in Section 1.1, many C-based languages, such as SystemC[160], SpecC[54],

SystemVerilog[82], BachC[177], BDL[172], and CataplutC[28] exist in behavioral

level and system level. In RTL, Verilog-HDL and VHDL are the main design lan-

guages. Since there are such many languages, it is redundant to implement a tool

for each language.

A simple solution for the problem is to specify an intermediate representation,

and implement tools for that representation. Then, only a translator must be imple-

mented to handle designs in a new language. Actually net-list based representations,

such as And-Inverter Graph (AIG)[120] are used for low level designs. Formal verifi-

cation methods can be implemented on such net-list based representations efficiently

since the handled design sizes can be reduced by extracting only the portions re-

lating to the problem. For example, on model checking, if the design portions only

relating to a verified property are extracted, the verification complexity can be re-

duced. Such an extraction can be done by tracing wires in the net-list from the

signals in the property.

Meanwhile, for high-level designs, such a standard representation does not yet

exist. Therefore, an unified representation for high-level designs based on System

Dependence Graph (SDG)[75] is proposed in Chapter 6.

1.6 Overall Flow of the Proposed Methods

Figure 1.5 is a verification flow using the proposed methods in this thesis, and shows

the position of each method proposed in each section.
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The inputs can be classified into four types. The first and the second ones are

hardware/software co-designs. The first one is written in RTL description and pro-

gram code, and the second one is written in system-level description. The third and

the last ones are hardware designs, and written in behavioral level and RTL, respec-

tively. Firstly, interactions between hardware and software in hardware/software

co-designs are abstracted by the method proposed in Chapter 5. Secondly, all de-

signs can be translated into an intermediate representation ExSDG proposed in

Chapter 6. This step is only for efficient implementations and the translation itself

is not necessary. In the case of equivalence checking, given two designs are trans-

lated into models which have an identical datapath. This preprocess is proposed

in Chapter 4. Then, all designs are translated into FSMDs and state reduction

techniques are applied to concurrent designs. This step is explained in Chapter 5.

Finally, multi-level bounded model checking proposed in Chapter 3 or a symbolic

equivalence checking techniques proposed in Chapter 4 is applied.

1.7 Organization

The organization of this thesis is as follows.

In Chapter 2, some preliminaries and basic notions for the methods proposed

in this thesis are introduced. In Chapter 3, an efficient model checking method by

concatenating multiple bounded model checkings with focusing on the control of a

design is proposed. It has briefly been introduced in Section 1.3. In Chapter 4,

an equivalence checking methods with separating verifications of control and data

portions of designs is proposed. It has also briefly been introduced in Section 1.3.

To extend the target of the method proposed in Chapter 3 and Chapter 4, a prepro-

cessing technique to apply such formal verification methods to hardware/software

co-designs is proposed in Chapter 5. For efficient implementations of such formal

verification methods, an intermediate representation for high-level designs is intro-

duced in Chapter 6. Finally, this thesis is concluded in Chapter 7 with some possible

future works.
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Chapter 2

Preliminaries and Basic Notions
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In this chapter, some preliminaries and basic notions for the methods proposed

in this thesis are introduced.

Firstly in Section 2.1, existing formal verification methods including model check-

ing and equivalence checking methods are introduced.

Next, what are control and data portions in high-level designs are defined in

Section 2.2 since the notion of control and data is a key element in this thesis.

Some representations in which control and data portions are written separately,

such as Finite State Machine with Datapath (FSMD)[53] and System Dependence

Graph(SDG)[75] are introduced in Section 2.3. These representations are used as a

basis or an intermediate representation in the proposed methods.

Finally, symbolic simulation is introduced in Section 2.4, and this technique is

applied in both the verification methods proposed in Chapter 3 and Chapter 4.

2.1 Formal Verification Techniques

Formal verification methods are mathematical methods that can verify designs ex-

haustively without considering their input sequences. Formal verification methods

can be classified into model checking and equivalence checking methods. In this sec-

tion, existing model checking and and equivalence checking methods are introduced

in Section 2.1.1 and Section 2.1.2, respectively.

2.1.1 Model Checking

Model checking[34] is a method which checks that a design satisfies a specification

given as a property, and it is also called “property checking”.

A typical model checking flow is shown in Figure 2.1. Inputs are a design rep-

resented in Finite State Machine (FSM), and a property represented in temporal

logic[45]. Temporal logics are formulae which can represent conditions over multiple

states and time steps. There are many temporal logic representations. The basic

ones are Computation Tree Logic (CTL)[34], Linear Temporal Logic (LTL)[127],

CTL*[88] which is a super-set of CTL and LTL. In practical cases in the industry,

Property Specification Language (PSL)[83] and System Verilog Assertion (SVA)[82]

are widely used.

12
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Figure 2.1: Basic model checking flow

Then, model checking decides whether the FSM satisfies the property. When it is

proved that the property is not violated in all of the reachable states from the initial

states, the design is guaranteed to be correct for the property. Otherwise, a sequence

of state transitions from an initial state which violates the property is generated as

a counter example. Basically, the worst case complexity of model checking increases

exponentially with a number of state variables.

Model checking methods can be classified into the following two types.

• Explicit method

13



• Implicit method

The former is the fundamental method, and evaluate the property formula by

explicitly tracing each state transition in the FSM[34]. Since the straight forward

approach directly traverses each state, it can handle up to about 20 state variables

(220 states). Then, state reduction techniques, such as symmetry reduction[105] and

partial order reduction[55, 166] are applied to improve the performance. Symmetry

reduction generates only one state for each set of symmetric states, and partial

order reduction reduces the number of execution orders to be considered by ignoring

execution orders among concurrent processes where no interactions occur to each

other. Spin[73] is a major public tool implements such a explicit approach, and suits

to verify concurrent designs.

The latter one is called symbolic model checking[117]. State transitions in the

FSM are represented in a single logical formula, and its conjunction with the formula

of the property is evaluated. Though the number of states to be traversed can

increase exponentially with the length of sequence of state transitions from the initial

states in the explicit methods, the state transitions are represented in a single logical

formula in symbolic model checking. Therefore, a same FSM can be represented

with less information in symbolic model checking than that of the explicit methods.

Evaluation of the formula is performed by Binary Decision Diagram (BDD). BDD

is an acyclic graph which has a single departure node as shown in Figure 2.2. Two

square nodes are termination nodes and the other nodes are decision nodes. Decision

nodes in the same row correspond to a single Boolean variable. Each decision node

has two sub nodes and connected with a 0-edge and a 1-edge, respectively. They

represent the values of the corresponding Boolean variable. In Figure 2.2, 1-edges are

represented by solid arrows, and 0-edges are represented by dashed arrows. The BDD

in Figure 2.2 represents NAND logic. Since typical logical formulae can be compactly

stored in BDD, relatively large designs which have about 100 state variables can

be verified. SMV[117] is a major public tool which implements symbolic model

checking.

Bounded model checking[22] is an extended version of the above model checking

methods which restricts the maximum length of sequences of state transitions from

the initial states. The maximum length is called “bound”, and a bound is given

14
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Figure 2.2: Binary Decision Diagram

as a number of cycles. Since the worst case complexities of model checking meth-

ods increase exponentially with bounds[31], bounded model checking can control its

complexity. If a bound is set as a small number, large designs can be handled. On

the other hand, bounded model checking cannot verify with large bounds. Although

bounded model checking can be applied to both the explicit and implicit methods,

typically it is applied to the implicit methods. In that case, the formula is converted

to a satisfiability (SAT) problem. SAT problem is a decision problem to decide

whether a set of Boolean variable assignments which makes a given conjunctive nor-

mal form (CNF) logical formula true exists. Since the performances of SAT solvers

have been advancing dramatically in this century, they contribute the performance

of bounded model checking. NuSMV[29] is a major public tool which implements

bounded model checking.

To accelerate such model checking methods, several abstraction methods, such

as predicate abstraction[58, 16, 106] which abstracts expressions in a description

with focusing on some predicates, lazy abstraction[69] which applies predicate ab-

straction locally, and datapath abstraction[7, 5] which replaces computation units

in a datapath with uninterpreted functions, are proposed. With those abstraction

methods, counter example guided abstraction refinement (CEGAR) approach[30]

which refines the abstraction model when a counter example found in the model

is actually not a counter example in the original design. Though the worst case

complexity cannot be reduced with such abstraction methods, typical designs can

be verified faster.

Many applications of such model checking methods to the design flow shown

in Figure 1.1 have been reported. Here, some of them are shown as follows. [144,

15



123, 59, 60] target on system level and behavioral level designs. [144, 123] focus

on properties about synchronization, such as deadlock and race condition, and tar-

get on SpecC and SystemC descriptions, respectively. [59, 60] target on SystemC

descriptions and verify general properties written in temporal logics. [176, 109] tar-

get on hardware/software co-designs composed of RTL codes and program codes,

and abstract interactions between hardware and software portions before translating

hardware and software portions into a same representation.

Model checking of program code is one of the main research topics in the model

checking field, and a number of researches have been reported. A model checker

Spin[73] introduced above is mainly targeting on concurrent software programs, and

various translators to its input language Promela, such as Feaver[74] which is an

ANSI-C front-end, Bandera[39] which is a Java front-end, exist. VeriSoft[56] is

the first model checker for ANSI-C program which handles program code directly.

Predicate abstraction based model checker SLAM[16, 15, 17] is also practically used

to model check software drivers for Windows written in ANSI-C. Lazy abstraction

is implemented in BLAST tool[21]. Java PathFinder[171, 108] is a model checker

for Java programs, which is originally a translator from Java into Promela which is

the input language of Spin, and currently symbolic techniques[95, 130] and heuristic

search algorithms[61, 62] are implemented on it. SAT based bounded model checking

method for ANSI-C program is proposed in [102] and implemented in a tool CBMC.

Basic model checking methods introduced above[34, 117, 22] are originally pro-

posed for hardware in RTL or lower abstraction levels, and a large number of ex-

tended methods have been proposed that cannot be introduced here. Although those

methods target on FSM verification, there are some methods which directly target

on hardware design[7, 5, 6, 85, 86]. [7, 5, 6] propose a datapath abstraction method

for hardware designs and apply CEGAR method with it. [85, 86] propose a method

to apply predicate abstraction and also CEGAR to RTL Verilog-HDL codes.

In this thesis, a new extension of bounded model checking, multi-level bounded

model checking method, is proposed in Chapter 3.
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2.1.2 Equivalence Checking

Equivalence checking is the method which decides the equivalence of two given

designs, and mainly researched in the hardware verification field.

Details of the flow in Figure 1.1 is shown in Figure 2.3. In each design stage,

designs are refined from an initial design (called golden design) step by step with

inserting more precise descriptions, modifications and optimizations. A synthesis

process, such as high-level synthesis, logic synthesis, or place and route, may also

be applied at each stage. As mentioned in Section 1.2, it is important to find and

fix design bugs exhaustively in early design stages. Formal equivalence checking

is a strong technique for that purpose. If two designs between a single refinement

step or synthesis step are compared and proved to be equivalent, then it is guaran-

teed that no additional bugs were inserted during the refinement or synthesis step.

Therefore, if the golden design can be proved not to have any bugs by simulation or

model checking, then further bug insertions can be avoided with equivalence check-

ing. Because of such backgrounds, equivalence checking methods have been actively

researched in hardware verification field from lower abstraction levels.

Combinational Equivalence Checking

Equivalence checking method for combinational circuits is called combinational

equivalence checking, and based on miter-circuit[25] shown in Figure 2.4. In a

miter-circuit, each corresponding pair of inputs and outputs of two combinational

circuits to be compared are connected, and an XNOR gate is inserted for each out-

put pair. If all the XNOR gate values are always true for all input patterns, the two
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circuits are proved to be equivalent. This evaluation is performed by BDD based

approach[20, 27, 135, 116], SAT based approach[57, 42, 9], or their combination[134].

With cut-point(equivalent nets in a circuit) techniques[116, 93, 103], currently cir-

cuits contain millions of gates can be verified, and practically used in the industry.

Sequential Equivalence Checking and Equivalence Checking of RTL De-
signs

Although combinational equivalence checking methods can efficiently verify large

circuits, most of practical circuits are sequential ones which include flip-flops. Since

combinational equivalence checking cannot be applied directly to such circuits, a

simple method compares sequential circuits as combinational ones. Firstly, a miter

circuit of sequential circuits is created as shown in Figure 2.5 just same as that of

combinational circuits. The difference from the combinational one is the existence

of flip-flops. Secondly, the sequential miter circuit is converted into a combinational

one as shown in Figure 2.6. The inputs of the flip-flops are treated as primary

outputs, and the outputs of the flip-flops are treated as primary inputs. Here, this

miter circuit can be verified with combinational equivalence checking techniques

which have already been introduced in the previous section. However, to apply

above conversion, the correspondences of flip-flops between two circuits must be

known by applying register correspondence algorithms, such as introduced in [103].

Moreover, the flip-flops must be corresponding one by one between the two designs.

This is a strong restriction in sequential equivalence checking.

A more general approach which can be applied to any sequential circuits is state
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traversal based approach. With regarding flip-flops as state variables, sequential

miter circuit as shown in Figure 2.5 can be translated into finite state machine

(FSM). Then model checking techniques[34, 117, 22] are used to check the property

that the miter outputs never be 1. If the model checking formally proves this prop-

erty, then the two sequential circuits in the miter circuit are proved to be equivalent.

This method can be applied to any sequential circuits, but its computation amount

is large since all states in the FSM are considered. Usually, the number of states

grows exponentially with the number of flip-flops in a circuit (when all states are

reachable from the initial states).

The above two approaches have defects in generality and complexity, respectively.

Therefore, there are mainly two approaches to improve the general performance

under a restriction of generality.

One is a conservative approach which allows false-negatives (there can be some

cases that even given two circuits are equivalent, their equivalence is not proved),

but it can prove equivalence quickly. Efficient combinational equivalence checking
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based methods are proposed in [133, 92]. Reachability analysis methods specific for

FSMs translated from sequential circuits has been proposed in [111, 64]. To avoid

full state space traversal in reachability analysis, induction based methods have been

proposed in [167, 168, 23, 79, 87, 157, 158]. Divide and conquer approach can also

be used for equivalence checking to reduce the complexity[94, 122, 121]. Sequential

equivalence checking methods using sequential ATPG techniques were proposed in

[78, 76, 77]. In those methods, ATPG generates an input sequence which can detect

stuck-at-0 of a miter output. If it cannot generate such an input sequence, then two

circuits in the miter circuit is proved to be equivalent.

The other approach keeps completion and does not allow false-negatives. How-

ever, it restricts applied sequential transformations between compared two designs.

[10, 110] focus on distinguishability of states by an input sequence of a finite length,

and they can completely verify retiming and resynthesis transformations.

Though most commercial tools, such as Formality[47], are based on combina-

tional equivalence checking methods, it can handle typical sequential circuits (with-

out feedback loops) with moving positions of flip-flops or removing them.
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In RTL and higher abstraction levels, some word-level methods are used. Word-

level methods verify designs without extracting multi-bit variables (flip-flops and

nets) into Boolean logics, and just treat them as words, then it can reduce the

complexities dramatically from the bit-level methods which have already been in-

troduced. [137] applies symbolic simulation which is a word-level method introduced

in Section 2.4, and verifies RTL hardware designs. A commercial equivalence checker

for sequential circuit, SLEC RTL[155] also uses this technique.

Equivalence checking between Designs before and after High-Level Syn-
thesis

Equivalence checking between designs before and after high-level synthesis is also a

major topic. [150] translates behavioral level designs into RTL and applies sequen-

tial equivalence checking, but the performance depends on the back-end sequential

equivalence checking methods. [33] converts both two designs into Boolean logic for-

mulae, and applies bounded model checking method to check that the two Boolean

logic formulae are equivalent. Since this method is a bit-level method, large designs

cannot be handled.

[11, 112, 90, 91] use symbolic simulation techniques to compare two designs in

word-level. [11, 90, 91] also use divide and conquer approach to handle larger designs.

However, since [11] uses information from synthesis tools, they can only been applied

to automatic high-level synthesis results. In [90, 91], equivalences of paths between

conditional branches are checked, and the results are gathered to prove the entire

equivalence. To apply this method, correspondences of input/output signals and

flip-flops must be known. Therefore, they do not applicable for designs before and

after complete high-level synthesis (Actually, [90, 91] target on designs before and

after scheduling). SLEC SYSTEM[156] is a commercial equivalence checking tool

which uses symbolic simulation technique.

[50, 48, 49] propose another approach to compare designs before and after high-

level synthesis that maps behavioral designs into a virtual controller and a virtual

datapath, and compares the controllers and the datapaths separately. The proposed

method in Chapter 4 is based on this approach.
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Equivalence Checking of System Level Designs and Behavioral Level De-
signs

Since system level designs are written in behavioral level, the same framework is

used for equivalence checking of both behavioral level and system level designs.

[143] proposes a method which compares two C-based designs with symbolic

simulation. However, since symbolic simulation can handle only a single control

sequence at once, the computation amount is doubled per each conditional branch.

Descriptions which contain loops also cannot be handled without unrolling them

for fixed numbers of iterations. Then, large designs are difficult to be directly

handled. [113] proposes a method only handle the different portions between the

two designs to solve that problem. When the differences between two designs are

small, even large designs can be handled. The problem that loops must be unrolled as

a preprocess is solved by [115, 152]. In these methods, array indices are symbolically

represented and symbolic simulation is iteratively applied to the inside of the loops

until the equivalence is inductively proved.

[145] proposes a method to handle C-based descriptions include concurrencies.

Model checking with synchronization property, such as no deadlock or race condition

exists, is applied as a pre-process, and it guarantees that the concurrent description

can be equivalently translated into a sequential description.

[52, 151] proposes a rule based bottom-up approach to check the equivalence. If

the differences between two designs are in the ruled cases, the equivalence can be

proved quickly. [1] also proposes a graph based approach and graphs generated from

designs are converted to a canonical form with a pre-defined rules.

2.2 Control and Data in High-Level Design

In this section, the details and definitions of control and data in high-level designs

are explained.

As briefly explained in Section 1.3, control is the flow of the behavior of a design,

and data is the set of actual computations executed at the control steps. Firstly,

control and data in each design stage are defined as follows.
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1 int main(int a){

2 int b;

3 if(a == 2) //(1)

4 b = 1; //(2)

5 else

6 b = 2; //(3)

7 b = b + a; //(4)

8 return b; (5)

9 }

Figure 2.7: Example C code to show the design element classification

Control and data of system-level design, behavioral hardware design, and
software program code

System-level design, behavioral hardware design, and software program code are

described in programming languages or their extensions. Since such languages are

typically functional languages, only functional languages are focused on here. In

functional languages, functional design components can be briefly classified into

functions, statements, and expressions. A function is a unit of a behavior flow

in a design, and composed of a sequence of statements. A statement is a control

point in a design, such as conditional branch, loop entry, expression execution like

assignment. In a statement, executed expressions, next statements to transit, and

transition conditions are defined. An expression is a actual computation, such as

addition, multiplication, and comparison. In the example ANCI-C code shown in

Figure 2.7, main is a function. Each line with a commented number shows a

statement, such as an if statement, assignment statements, and a return statement.

Each element under the statements is an expression, such as an equal expression,

assignment expressions, an addition expression, variable expressions, and constant

expressions.

In such a design written in a functional programming language, its control is

defined as follows.

Definition 1 (Control of Functional Programming Language). The control portion

of a design written in a functional programming language is a tuple CONTROL =
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a == 2 a != 2

Figure 2.8: Control of the example in Figure 2.7

(S, T ), where S is a set of statements. T is a transition function defined as

T : S × E → S

where E is a set of expressions. T returns the next statement when a current

statement and a conditional expression which suppose to be true are given.

For example, the control of the code in Figure 2.7 can be represented by a directed

graph shown in Figure 2.8. A number of each node represents a statement ID which

is a commented number in Figure 2.7, and edges represent statement transitions

with conditional expressions. Edges without conditional expressions show that their

transition conditions are true.

The data of a design written in a functional programming language is also defined

as follows.

Definition 2 (Data of Functional Programming Language). The data portion of a

design written in a functional programming language is a tuple DATA = (E, R),

where E is a set of expressions and R is a function that returns an expression

executed in a given statement defined as follows.

R : S → E

For example, the data of the code in Figure 2.7 can be represented by a table

shown in Table 2.1.

From the above two definitions, a design written in a functional programming

language can be defined as a tuple (CONTROL, DATA).
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Table 2.1: Data of the example in Figure 2.7
Statement ID Executed Expression

1 –
2 b = 1
3 b = 2
4 b = b + a
5 return b

reg

+

Controller Datapath

Control Signal

Status
Signal

Figure 2.9: Controller and datapath

Control and data of RTL hardware design

It is impossible to generally define the control and data of RTL hardware designs

without any assumptions, since a hardware design is just a circuit and it can be

designed without the notion of control and data. For example, combinational circuits

do not have a notion of control. As mentioned in the sequential equivalence checking

part in Section 2.1.2, most of practical designs are sequential circuits. To design

sequential circuits, designers usually consider flows of computations which directly

relate to the notion of control and data. Then, here hardware designs are assumed

to be sequential circuits which are composed of controllers and datapaths as shown

in Figure 2.9.

A controller is a control FSM which represents a set of control points in a design

and transitions among them. A controller has state registers (flip-flops) and their

values correspond to the states. A datapath is composed of computation units and
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Figure 2.10: Behavioral flow of controller and datapath

their connections, and represents computations actually performed at those control

points. A controller and a datapath are executed parallely as the flow shown in

Figure 2.10. At each clock cycle, first, the controller sends control signals to the

datapath depending on the current state. Next, the datapath executes computations

based on the control signals. Finally, the datapath returns status signals to the

controller, and the controller determines the next state.

The structure of a controller and a datapath is directly represented by Finite

State Machine with Datapath (FSMD)[53] introduced in Section 2.3. The precise

definitions of controller and datapath can be found in the definition of FSMD.

Control/Data Separation

As introduced in Section 2.1, most of the formal verification methods target on FSMs

which is Kripke structures or Deterministic FSMs (DFSMs) defined as follows.

Definition 3 (Finite State Machine (FSM)). An FSM is a Kripke Structure which

is a tuple

MFSM = (S, S0, R, L)

where S is a set of states, S0 ⊆ S is the set of initial states. R is a transition relation

defined as follows.

R ⊆ S × S
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It represents the existence of the transition between each pair of states. L is a

labeling function defined as

L : S → 2AP

where, AP is a set of atomic propositions.

Definition 4 (Deterministic Finite State Machine (DFSM)). A DFSM is a tuple

MDFSM = (S, α, IV , T, L)

where S is a set of states, α is the initial state, and IV is a set of input values. T is

a transition function defined as follows.

T : S × IV → S

T returns the next state from a current state and a current input value. L is a

labeling function defined as

L : S → 2AP

where, AP is a set of atomic propositions.

Since next states are deterministic in DFSM, only deterministic designs can be

represented. Therefore, concurrent models cannot be described with DFSM.

Since states are not weighted nor biased in the definition of FSM nor DFSM,

all states in them are treated equally in the most of formal verification methods.

However, in practical designs, usually there is a bias among the states, since those

designs have the notion of control and data in most cases. In a design written

in functional programming language, a state corresponds to a pair (s, V al), where

s ∈ S is a current control point (executed statement) and V al is a set of the current

variable values. Also in an RTL hardware design, a state corresponds to a list of

the current values of control and data registers. The list of control register values

corresponds to a control point. In those states, states at a same control point can

be considered to be in a same group. Then, sequences of state transitions of a same

control path correspond to a same sequence of state groups. Since corresponding

control paths are same, those sequences can have some same features. For example,

they may tend to violate a same property. In this thesis, that feature is utilized by
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treating multiple sequences belong to a same group at once with symbolic simulation

introduced in Section 2.4. Since symbolic simulation treats variables and operators

as symbols, it can handle multiple sequences corresponds to a same control path at

once. Therefore, the control and data of a design can be analyzed separately. In

the multi-level bounded model checking method proposed in Chapter 3, symbolic

simulation is applied to connect multiple counter examples efficiently. With grouping

counter examples with the symbolic method, the connection points of those counter

examples are expanded to a set of states instead of just a single state. This makes

the verification much more efficient.

In addition, the notion of control/data separation can also help equivalence

checking since if the data portions of two designs are identical, the comparison

of control portions becomes much easier. Symbolic methods can be applied without

any restrictions since computations performed at corresponding control points are

identical. Control portions also become equivalent or at least more similar in equiva-

lent designs. In the method proposed in Chapter 4, the data portions of two designs

are forcibly made identical, and symbolic techniques including symbolic simulation

are effectively applied.

To apply such symbolic techniques, representations whose control and data

can be separated are required. Therefore, Finite State Machine with Datapath

(FSMD)[53] is used as the common intermediate representation in this thesis. The

details of FSMD is introduced in Section 2.3.1.

The notion of control and data dependencies are also utilized in the methods

proposed in Chapters 5 and 6 to merge FSMD states without any dependencies

each other and make verification tool implementation easier, respectively. Control

dependence is a directed relation between two control points that one determines the

execution of the other, such as between an if statement and a statement under that if

statement. Data dependence is also a directed relation between two expressions that

the data of one expression affect the other, such as between the left hand side and

the right hand side of a same assignment, and between the left hand side variable of

an assignment and the next expression which uses the value of the variable. These

dependencies are expressed as edges in System Dependence Graph introduced in

Section 2.3.3.
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2.3 Control/Data Separated Design Representa-

tions

In this section, two representations, Finite State Machine with Datapath (FSMD)

and System Dependence Graph (SDG), are introduced as control/data separated

representations. These representations are used as intermediate representations in

the proposed methods in this thesis.

2.3.1 Finite State Machine with Datapath

General FSMD FSMD[53] is a specification description for sequential RTL de-

signs. Actually, it is standardized by Accellera as a specification description for

RTL design[63]. In an FSMD, control and data portions of a design can be specified

separately. The basic definition of FSMD is as follows.

Definition 5 (Finite State Machine with Datapath). FSMD is a tuple

MFSMD = (S, α, IV , VV , β, OV , fs, fv, fo)

where S is a set of control states, α ∈ S is the initial state, IV is a set of input

values, VV is a set of data register values, β ∈ VV is an initial data register value,

and OV is a set of output values. fs is a transition function which returns the next

state from a current state, a current data register value, and an input value defined

as follows.

fs : S × IV × VV → S

fv is a next register value function which returns the next register value from a

current state, a current register value, and a current input value defined as follows.

fv : S × IV × VV → VV

fo is an output function which returns the current output value from a current state,

a current register value, and a current input value defined as follows.

fo : S × IV × VV → OV
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In Definition 5, it can be considered that fs represents a controller FSM, and

fv and fo represents a datapath in a typical RTL design shown in Figure 2.9 since

fs defines the structure of control state transitions, and fv and fo define the com-

putations which determine the values of data registers and outputs, respectively.

It is clear that FSMD is equivalent to DFSM. Compared to DFSM, control

states and data states (values of data registers) are separated in FSMD. Particularly,

S × VV in Definition 5 corresponds to S in Definition 4. Then, if S is considered as

a set of control points, then the control/data separation methods which have been

introduced in Section 2.2 can be applied.

Also, since FSMD corresponds to DFSM and three functions fs, fv, and fo

are deterministic, it cannot represent non-deterministic designs, such as designs

having concurrency. However, it can represent any designs representable in DFSM,

including software programs, behavioral hardware designs, and RTL designs.

FSMD with Symbols and Expressions Though Definition 5 is simple and

easy to understand, it does not directly correspond to actual design descriptions

having symbols and expressions. Actually, there are many other definitions of

FSMD[53, 63, 90, 147, 91], having the notion of symbols and expressions. However,

since none of them directly corresponds to the general FSMD definition (Definition

5) nor the DFSM definition (Definition 4), it is difficult to know their representabil-

ities. Therefore, FSMD is re-defined in an original style that directly corresponds

to Definition 5 in this thesis by extending the general FSMD definition.

Firstly, the notion of symbols is introduced as follows. IV , VV , and OV in Defi-

nition 5 can be decomposed as

IV = IV 1 × IV 2 × · · · × IV l

VV = VV 1 × VV 2 × · · · × VV m

OV = OV 1 × OV 2 × · · · ×OV n

where, IV j , VV j, and OV j represent sets of values of the jth input, data register,

and output respectively. Let I, V , O denotes symbol sets of inputs, data registers,

and outputs, respectively. Then, a function σ is defined as follows.

σ : I ∪ V ∪O → {IV 1, IV 2, · · ·IV l, VV 1, VV 2, · · ·VV m, OV 1, OV 2, · · ·OV n}
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It returns the set of possible values taken by a given input, data register, or output

symbol. For example, σ(ij) = IV i, where ij ∈ I is the symbol of the jth input.

Secondly, the notion of assignments is introduced as follows. Let A = AV ∪ AO

denote a set of assignments where AV and AO are sets of assignments to data registers

and outputs, respectively. Each assignment is a function defined as follows.

av : IV × VV → σ(v) | av ∈ AV , v ∈ V

ao : IV × VV → σ(o) | ao ∈ AO, o ∈ O

An assignment returns the next value of a data register or the current value of

an output, and the value is defined with the current input values and data register

values. Let P denote a relation that defines a assignment set belongs to each control

state defined as follows.

P ⊆ S × A

In each state, for every data register and for every output, there must be only one

assignment to v. Therefore, the following condition must be true.

∀s ∈ S, ∀x ∈ V ∪ O, ∀i ∈ IV , ∀v ∈ VV , ∃1a ∈ A, ((s, a) ∈ P ∧ a(i, v) ∈ σ(x)) (2.1)

Since a set of assignments determines the next data register values and the current

output values from a current input values and data register values. It must be

equivalent to fv and fo in Definition 5 when representing an identical design. Then,

a set of assignments A = AV ∪ AO and fv and fo in Definition 5 must satisfy the

following equation.

∀s ∈ S, ∀i ∈ IV , ∀v ∈ VV ,⎛
⎝fv(s, i, v) =

∏
av | av∈AV ,(s,av)∈P

av(i, v)

⎞
⎠ ∧

⎛
⎝fo(s, i, v) =

∏
ao | ao∈AO,(s,ao)∈P

ao(i, v)

⎞
⎠

The notion of transition conditions is also introduced as follows. Let G denote

a set of conditions. Each condition is defined as follows.

g : IV × VV | g ∈ G

A condition returns 0(false) or 1(true) for a given input value and a data register

value. Let R denote a set of state transitions defined as

R = {(s, fs(i, v)) | s ∈ S, i ∈ IV , v ∈ VV } ⊆ S × S
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Let Q denote a function returns a condition belongs to a state transition defined as

follows.

Q : R→ G

Note that an executed transition from a state must be determined with a given

condition, which means that transition conditions of all the transitions from a state

are exclusive, and the disjunction of all the transition conditions from a state is true.

Then the following equation must be true.

∀s ∈ S, ∀i ∈ IV , ∀v ∈ VV , ∃1s′ ∈ S, ((s, s′) ∈ R ∧ (i, v) ∈ Q((s, s′)))

Since the next states are determined by transition conditions, they must be equiv-

alent to fs in Definition 5 when representing an identical design. Then, R, Q and

fs in Definition 5 must satisfy the following equation.

fs(s, i, v) = s′ ↔ (s, s′) ∈ R ∧ (i, v) ∈ Q((s, s′)) | s, s′ ∈ S, i ∈ IV , v ∈ VV

Next, the notion of expression is introduced. An expression is a symbolic label

of computations on an assignment or a transition condition. Computations are

described with Fcall which is a set of function calls defined as follows.

Fcall = {(f, e1, e2, ..., en) | f ∈ F, e1, e2, ..., en ∈ E}

where f is an operator as a function label, e1, e2, ..., en are arguments, n is the

number of arguments. E is a set of expressions defined as follows.

E = I ∪ V ∪ O ∪K ∪ Fcall

Each assignment or condition is labeled with an expression, and the following label-

ing functions are defined.

LA : A→ (V ∪O)×E

LG : G→ E

Finally with the above definitions, the FSMD used in this thesis is defined as

follows.
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Definition 6 (FSMD with Symbol and Expression). An FSMD is defined as a tuple

MFSMD = (D, C), where D is a datapath with data registers and operators, and C

is a controller FSM.

A datapath is defined as a tuple:

D = (I, O, V, β, σ, K, F, Fcall, A, G, LA, LG)

where I is a set of input symbols, O is a set of output symbols, V is a set of data

register symbols. β ∈ ∏
v∈V σ(v) is an initial data register value. σ is a function

which returns a set of possible values of a symbol, K is a set of constants, F is a set

of operators, Fcall is a set of function calls, A = AV ∪AO is a set of assignments, G

is a set of conditions, LA is a labeling function for assignments, and LG is a labeling

function for conditions. All of them have already been defined.

A controller is defined as a tuple:

C = (D, S, α, R, P, Q)

where D is a datapath defined above, S is a set of control states, α ∈ S is the

initial state, R is a transition relation, P represents a relation between states and

assignments executed at the states, and Q is a function which returns the condition

that a transition is performed. All of them have also been already defined.

The features of this definition are as follows:

• Design descriptions in RTL, behavioral level, and program code can be simply

mapped to FSMDs, since the notion of symbols and expressions are introduced.

• Representable design types of this definition and Definition 5 are equivalent,

since no restrictions are assumed in the above definition process.

• Control and data portions of a design can be easily separated, since the con-

troller C and the datapath D directly represent them, respectively.

In this thesis, this definition is referred as the definition of FSMD, and the FSMD

is used as an intermediate representation as shown in Figure 1.5.
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Figure 2.11: An example of FSMD with Definition 6

Example

Figure 2.11 shows an example of FSMD. It repeats doubling an input in ∈ I while it

is smaller than 10. If it becomes equivalent to or greater than 10, then the number

is assigned to an output out ∈ O. The FSMD has four states (S = {s0, ..., s3}), and

s0 = α is the initial state. The other symbols in the FSMD are I = {in, start},
V = {x}, O = {out, done}, K = {0, 1, 2, 10}, and F = {×,¬, <}. A left arrow

(←) represents an assignment which is included in A = AV ∪ AO. Particularly,

assignments to x are included in AV and assignments to done and out are included

in AO. They define next values of x and current values of done and out, respectively.

When a state transition is performed, all assignments of the departure state are

executed simultaneously. Function calls are written in a Lisp-like style, which means

the first symbol in a parentheses is an operator, and the other symbols are argument

expressions.

The expression described on each state transition represents its transition con-

dition, and transition conditions which are 1(true) are omitted in this figure.

2.3.2 Definition of Other Notions Related to FSMD

For the FSMD defined in Definition 6, the following notions are also defined for the

following chapters.
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Sequence of State Transitions Let T denote a set of sequence of state transi-

tions, defined as follows.

T = {t = (s0, s1, · · ·sn)|t ∈ Sn+1, ∀j, (0 ≤ j ≤ n− 1)→ (sj, sj+1) ∈ R, 1 ≤ n}

where n is the length of the sequence of state transitions.

Symbolic Value A symbolic value represents a set of all possible values of an ex-

pression. A condition or equation with the symbolic values of expressions represents

a relationship which must be satisfied among those expressions. For example, let

a, b, and c are symbolic values, and an equation a+b = c with them are given. When

concrete values (assignments of concrete numbers) of them, such as a = 1, b = 2,

and c = 3, are considered, they must satisfy the equation. Therefore, a condition or

equation with symbolic values can be considered as a condition or equation which

must be satisfied when those symbolic values are treated as variables.

For the FSMD definition in Definition 6, I, V, O, K, Fcall, and E can be treated

as sets of symbolic values, since they are sets of symbols. These symbolic values are

used to analyze FSMD symbolically.

2.3.3 System Dependence Graph

System dependence graph for software program

Dependency between program portions is mainly researched in the software field for

the purpose of program slicing. Program slicing[173, 174] is a technique which ex-

tracts program portions relating to a given portion of a program. A set of extracted

portions is guaranteed to be a complete program code that can be compiled and

run.

For graph based program slicing approach, dependence graph[128] of a program

is proposed. Dependence graph is a graph where each node represents a statement

and each edge represents dependence. Those edges are mainly classified into three

types, data dependence edges, control dependence edges, and declaration depen-

dence edges.

Data dependence is a directed relation between nodes which has a direct relation

in the data flow, and represented by a data dependence edge. A data dependence
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1 int i;

2 int a;

3 int b;

4 i = 1;

5 a = 0;

6 b = 0;

7 a = a + i;

8 if(a == 1)

9 b = a++;

Figure 2.12: Example program for dependence graph

edge is a directed edge drawn from an assignment node n1 to another node n2 if the

assigned variable at n1 can be used at n2.

Control dependence is a directed relation between nodes which has a direct re-

lation in the control flow, and represented by a control dependence edge. A control

dependence edge is a directed edge drawn from a control point node n1 to another

node n2 if the execution of n2 is controlled by n1 (e.g. conditional branch). De-

pendence graph can represent dependencies in a program without the notion of

function.

Declaration dependence is a directed relation between a variable declaration

and a portion it is referred, and represented by a declaration dependence edge. A

declaration dependence edge is a directed edge drawn from a variable declaration

node to another node where the variable is used.

An example program code and its dependence graph is shown in Figure 2.12

and Figure 2.13. Each node represents a program portion. Heavy edges are data

dependence edges, dashed edges are control dependence edges, and solid edges are

declaration dependence edges. Program slicing can be applied with traversing those

dependence edges and extracting reached portions. Such a reachability analysis

finishes within linear time with the design size. If the edges are traversed backwardly

from the node b = a++; corresponds to line 9 in Figure 2.12, the portions which

affect line 9 are extracted. This process is called backward slicing and lines except

line 6 (b = 0;) are extracted in this example.
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b = 0;

a = a + i;

if(a==1)

b = a++;

a++;

i = 1;

int i int bint a

Control dependence
Data dependence
Declaration dependence

a = 0;

Figure 2.13: Dependence graph of the code in Figure 2.12

To handle programs include multiple procedures, such as functions, System De-

pendence Graph (SDG)[75] is proposed. SDG is an extension of the dependence

graph[128], which contains multiple Procedure Dependence Graphs (PDGs), and

expresses dependences among those procedures. Each PDG corresponds to a sin-

gle procedure. To describe dependences between procedures, additional nodes and

edges, such as call-site nodes, formal-in/out nodes, actual-in/out nodes, call edges,

parameter-in/out edges, and interprocedural dependence edges (summary edges) are

introduced.

A call-cite node represents a procedure call, formal-in and formal-out nodes

represent arguments and return values of a procedure, respectively, actual-in and

actual out nodes represent a given argument and taken return value of a procedure

call, respectively. A call edge is drawn from an expression node which represents

a function call expression to the corresponding call-site node, and it represents

the control dependence of the procedure call. A parameter in edge is drawn from

an actual-in node to the corresponding formal-in node, and it represents the data

dependence through the argument. A parameter out edge is drawn from a formal-

37



out node to an actual-out node, and it represents the data dependence through

the return value. Only with those edges, because of the lack of the information

about correspondences between arguments and return values of a same procedure

call, program slicing is inaccurate when one procedure is called from multiple places

(False data dependence among those places exist). Interprocedural dependence edge,

also called summary edge, is proposed to solve the problem. A summary edge is

drawn from an actual-in node to an actual-out node for a same procedure call,

and it represents the data dependence from an argument to a return value of the

same procedure call. Such SDG and interprocedural program slicing methods are

implemented in a commercial program slicing tool Codesurfer[37].

An SDG of the example code in Figure 2.14 is shown in Figure 2.15. In Figure

2.15, pentagon nodes are call-site nodes, and ellipse nodes are formal-in/out and

actual-in/out nodes. Since a call edge represents control dependence and parameter-

in/out edges represent data dependence, they are shown in the same types of arrows

as control dependence edge and data dependence edge, respectively. If the data-

dependence and parameter-in/out edges are backwardly traversed from the node d

= sub(b); which corresponds to line 13 in Figure 2.14, the node a = 0; which

corresponds to line 10 is reached. However, there is no data dependence between

them. This is an example of false data dependence mentioned above.

Then, interprocedural dependence edges represented by heavy dashed edges are

inserted, and a two level slicing method is applied to make slicing results more

accurate. In the first step, edges except parameter-out edges are traversed. In the

second step, edges except parameter-in edges and call edges are traversed. In this

approach, since both parameter-in and parameter-out edges are not traversed at

once, the problem of false-data dependence can be avoided.

In [101], program slicing method for concurrent program is proposed with in-

troducing three additional types of edges, such as parallel edge, communication

dependence edge, and interference dependence edge. Parallel edge represents de-

pendence about starting concurrent executions. A parallel edge is drawn from a

node which starts concurrent executions to the first node of a concurrent process.

Communication dependence edge represents synchronization. A communication de-

pendence edge is drawn to a node which stops the process until a corresponding
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1 int sub(int in){

2 return in;

3 }

4

5 main(){

6 int a;

7 int b;

8 int c;

9 int d;

10 a = 0;

11 b = 0;

12 c = sub(a);

13 d = sub(b);

14 }

Figure 2.14: Example program for SDG

signal is sent as a trigger from a node which sends the signal. Those nodes must be

in different concurrent processes. Interference dependence edge represents data de-

pendence between concurrent processes. An interference dependence edge is drawn

from an assignment node n1 to another node n2 if the assigned variable at n1 can

be used at n2 and those nodes are in different concurrent processes.

Figure 2.17 is an SDG of the concurrent code in Figure 2.16. Declaration nodes

and declaration dependence edges are abbreviated in Figure 2.17. In Figure 2.16,

par statement in line 7 executes concurrent processes under the statement. In this

code, two processes, proc1 and proc2 are executed concurrently. In proc2, a

wait statement in line 14 stops the process execution until receiving the argument

trigger event signal e. In proc1, notify statement in line 11, sends the argument

trigger event signal e. Parallel dependence edges are drawn from the par node to

the concurrent process nodes in Figure 2.17. A communication dependence edge is

also drawn from the notify node to the wait node. Interference dependence edges

are drawn from the assignment nodes corresponds to line 10 and line 15 to the

assignment node corresponds to line 15 and line 9, respectively, since they are in

the different concurrent processes, and they have data dependence of the variable a
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sub

in

return

return in;

int in

Control dependence, call

Data dependence, parameter-in/out

Declaration dependence

main

int a int c

int d
a = 0;

b = 0;

c = sub(a);
d = sub(b);

a b sub(a)
sub(b)

int b

sub(a) sub(b)

Interprocedural dependence

Figure 2.15: SDG of the code in Figure 2.14

and b, respectively.

When applying straightforward slicing approach to concurrent program, false

data dependences among different concurrent processes are detected. For example,

in Figure 2.17, when the program backwardly sliced from the node c = b; which

corresponds to line 9 in Figure 2.16, the node a = 1; which corresponds to line 10

is reached. However, since a = 1; is always executed only after c = b; in Figure

2.16, this result is not accurate. Therefore, the slicing method proposed in [101]

uses Control Flow Graph (CFG) as well as SDG to consider the execution order in

each concurrent process. The computation amount of this algorithm is linear to the

product of the number of nodes and the number of concurrent processes.
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1 int a;

2 int b;

3 int c;

4 event e;

5 a = 0;

6 b = 0;

7 par{

8 proc1{

9 c = b;

10 a = 1;

11 notify(e);

12 }

13 proc2{

14 wait(e);

15 b = a;

16 }

17 }

Figure 2.16: Example concurrent program for SDG

par

a = 0;

wait(e)notify(e)

proc1 proc2

a = 1; b = a;

Control dependence

Data dependence

Parallel

Communication dependence

Interference dependence

b = 0;c = b;

Figure 2.17: SDG of the code in Figure 2.16

System dependence graph for hardware design

Program slicing of Hardware Description Language (HDL) is firstly discussed in

[124, 84]. They mentioned that the differences from software program slicing are
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infinite control loops, parallel executions, the notion of time including delay, and

synthesizability. Infinite control loop is introduced by hardware modules run per-

manently. Then, hardware processes must be treated as blocks in infinite loops

like while(true) in software program code. Parallel execution means all modules in a

hardware design are executed parallely and parallel issues must be introduced to the

dependence graph. The notion of time means that execution time or delay can be

written in HDL code, and such statements cannot be ignored to trace dependence.

Synthesizability means that although a sliced code is complete, there can be a case

that it is not synthesizable. They proposed a program slicing method of VHDL

in [81, 80] as the result of such a discussion. Each hardware module (process) is

described as a process dependence graph. They introduced signal dependence which

represents data dependence between parallel hardware processes through a shared

signal.

Another program slicing method for VHDL is proposed in [35, 36]. Instead

of creating dependence graphs directly represent VHDL codes, [35, 36] generate a

program code whose dependencies among code portions are equivalent as that of an

original VHDL circuit structure as a preprocess, and use software program slicing

technique as the back-end.

In the above slicing methods, CFG is not required as the concurrent software

slicing method proposed in [101], since hardware modules run iteratively, and do

not have the problem about the false data dependences as shown with Figure 2.17.

System dependence graph for system level design

For system level design, SDG for SpecC description is proposed in [162, 161]. Here,

SpecC language is introduced before the SDG.

SpecC[54] is a system level language which extends ANSI-C to describe hardware

elements, such as hierarchical structures, concurrencies, synchronizations, bit-level

variables, signals, registers, the notion of execution time.

SpecC has three types of classes, behavior, channel, and interface. Behavior is

a unit of a behavioral procedure which corresponds to a class in software program or

a functional module in hardware. Behavior has ports which represents a connection

with other behaviors. Instead of ports, interfaces can be used as connections with
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other behaviors. interface is an interface class which declares the functionality of

an interface portion of a design, and a channel implements an interface. Interface

portions in a design can be encapsulated with channels and interfaces.

Concurrency is represented by par statement. Processes under a par statement

are executed concurrently. Those processes start at the same timing and also end

at the same timing (co-start and co-end).

Synchronization is represented by wait statement, notify statement, and event

variable. A wait statement stops the process execution until receiving a trigger of an

argument event variable. A notify statement triggers an argument event variable.

Figure 2.18 shows an example SpecC code including hierarchical structure, con-

currency, and synchronization. It has two interfaces Receiver and Sender, a chan-

nel Ch which implements those interfaces, and three behaviors Sub1, Sub2, and

Main. As shown in Figure 2.19, Sub1 and Sub2 are connected with Ch through

Sender and Receiver. Variables a and b are connected to the ports i and o in

Sub1 and Sub2, respectively. Main functions of Sub1 and Sub2 are executed

concurrently with the par statement in Main behavior. Those main functions call

the member functions of Ch, and wait and notify statements are executed in those

functions for synchronization. After executing this example code, the value of vari-

able b becomes equivalent to that of variable a.

In SpecC, bit-level variables, signal variables, and register variables are repre-

sented by bit, signal, and buffered declarator, respectively. The notion of time is

also introduced with waitfor statements that put the time forward for the argument

amounts of unit times.

In [162, 161], a C++ code whose dependency among code portions are equivalent

to that of the original SpecC code is generated in a preprocess, and an ANSI-C/C++

program slicer CodeSurfer[37] is used as the back-end. In the generated SpecC SDG,

control dependence edges are drawn from each par node to all process entries under

the par node, from each notify node to corresponding wait nodes. Data depen-

dence edges are also drawn for interprocedural data accesses. Those edges can be

considered as call edges, communication dependence edges, and interference depen-

dence edges in [101]. However, SDGs directly generated from Codesurfer are not

accurate, since dependencies of concurrent codes cannot be represented equivalently
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interface Receiver{

int receive();

};

interface Sender{

void send(int x);

};

channel Ch implements

Receiver,Sender{

event e;

int data;

int receive(){

wait(e);

return data;

}

int send(int x){

data = x;

notify(e);

}

};

behavior Sub1(

in int i, Sender s){

void main(){

s.send(i);

}

};

behavior Sub2(

out int o, Receiver r){

void main(){

o = r.receive();

}

};

behavior Main(){

Ch ch;

int a, b;

Sub1 sub1(a, ch);

Sub2 sub2(b, ch);

int main(){

a = 1;

par{

sub1.main();

sub2.main();

}

}

};

Figure 2.18: Example SpecC code

with sequential codes. Then, [162, 161] apply modifications after generating SDGs

with Codesurfer. However, since data dependence edges among concurrent processes

which correspond to interference dependence edges must be re-drawn, it is not effi-

cient to use CodeSurfer as the back-end, and the method for concurrent programs

proposed in [101] is better for this purpose.

In this thesis, an unified SDG for system level, behavioral level, and RTL code

is proposed in Chapter 6 which is based on the method proposed in [101].
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eceiver
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Ch

R
eceiver
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i o

Main

s.send(i) o = r.receive()

Figure 2.19: Structure of the code in Figure 2.18

2.4 Symbolic Simulation

Symbolic simulation[96] is a simulation where values of variables and meanings of

operations are not interpreted. Then, exhaustive analyses can be performed, since

one symbol can express all values of a variable.

Basic symbolic simulation process is performed by iteratively replacing each vari-

able in expressions with an equivalent expression derived from previously executed

assignments. The result of symbolic simulation is a set of equations each of which

represents a relation between latest value of a variable and primary inputs. Since

symbolic simulation is applied to FSMD in this thesis, the basic symbolic simulation

method is introduced with FSMD.

Symbolic simulation for FSMD is performed for a sequence of state transitions

from the first state at cycle 0. Let (s0 · ·sk) ∈ T be a sequence of state transitions,

where sj represents a state at cycle j, and k is the length of the sequence. For

each symbolic simulation cycle, conditions among multiple cycles are generated. To

express such conditions, the notion of timed symbolic value is required.

Although symbolic value has been introduced in Section 2.3.2, it is not enough

for symbolic simulation, since symbolic simulation of FSMD has the notion of cycles.

A same symbolic value can represent different values among multiple cycles. Then,

symbolic value for each cycle, timed symbolic value, is introduced. Let Ij , Vj, and

Oj denote set of timed symbolic values at cycle j of inputs, data registers, and

outputs, respectively. Those timed symbolic values are defined for each cycle. Set
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of all timed symbolic values are denoted by IT , VT , OT , respectively, and defined as

follows.

IT =
⋃

j|j≥0

Ij

VT =
⋃

j|j≥0

Vj

OT =
⋃

j|j≥0

Oj

Since K is a set of constants and they does not change over cycles, K can also be

considered as timed symbolic values. Then, a set of function calls represent timed

symbolic values is defined as follows.

FcallT = {(f, e1, e2, ..., en) | f ∈ F, e1, e2, ..., en ∈ ET}

where ET = IT ∪VT ∪OT ∪K∪FcallT is a set of expressions represent timed symbolic

values.

Then, symbolic simulation at cycle j, where 0 ≤ j ≤ k, generates the following

equation.

NDj =

⎛
⎝ ∧

v∈V,av∈AV ,e∈E | LA(av)=(v,e),(sj ,av)∈P

vj+1 = ej

⎞
⎠ ∧

⎛
⎝ ∧

o∈O,ao∈AO,e∈E | LA(ao)=(o,e),(sj ,ao)∈P

oj = ej

⎞
⎠ (2.2)

where, ej ∈ Ej vj ∈ Vj , and oj ∈ Oj represent the timed symbolic values of e, v,

and o at cycle j, respectively. The first term of Equation 2.2 shows that the next

value of the data register in the left hand side of an assignment is equivalent to the

current value of the right hand side expression. The second term shows that the

current value of the output in the left hand side of an assignment is equivalent to the

current value of the right hand side expression. The conjunction of the generated

equations is called data condition in this thesis since it is derived from the datapath

assignments. Let ND : T → ET denote a function which returns the data condition

of a given sequence of state transitions, where the returned expression is as follows.

∧
j|0≤j≤k

NDj
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The following equation can also be generated from the symbolic simulation at cycle

j.

NCj = LG(Q((sj , sj+1)))

This equation simply represents that the transition condition of a transition on

the sequence must be true. The conjunction of these generated equations is called

control condition in this thesis since it is derived from the controller state transition

conditions. Let NC : T → ET denote a function which returns the control condition

of a given sequence of state transitions, where the returned expression is as follows.

∧
j|0≤j≤k−1

NCj

Figure 2.20 shows the equations generated with symbolic simulation for the

sequence of state transitions (s0, s1, s2, s1) ∈ T in Figure 2.11. All equations in

the figure must be true when the FSMD is assumed to transit through the path

s0 → s1 → s2 → s1. From these equations, the symbolic value of arbitrary ex-

pression at arbitrary cycle which is represented only with primary inputs can be

generated. For example, the symbolic value of x at cycle 3 can be calculated as

follows.

x3 = x2 × 10

= x1 × 10

= in0

Such symbolic simulation techniques are widely used in the verification field.

[13, 14] apply symbolic simulation to check pre-defined assertions statically which

can also be used for model checking. In their methods, an efficient data struc-

ture to contain symbolic expressions, Maximally-Shared Graph which is originally

proposed in [97], is used. In Maximally-Shared Graph, common sub-expressions

are shared. [71] uses symbolic simulation with random simulation and bounded

model checking to search state space efficiently by switching those engines with

the conditions about state coverage and execution time. [90, 91] apply symbolic

simulation for equivalence checking between two FSMDs. Symbolic simulation is

performed for each path between conditional branches in the FSMDs, and result
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Figure 2.20: Symbolic simulation result for the path s0 → s1 → s2 → s1 in Figure
2.11

symbolic expressions of corresponding paths are compared to prove the equivalence.

In [139, 140, 137, 138, 143, 113], equivalence class based equivalence checking meth-

ods are proposed. Equivalence class is a set where all member expressions are

equivalent, and equivalence class based symbolic simulation is performed by itera-

tively allocating new expressions to equivalence classes. [139, 140, 137, 138] target

on hardware designs in RTL and gate level, and designs are unrolled for a given

number of cycles as a preprocess.

[143, 113] target on ANSI-C based system-level and behavioral level designs.

Since the equivalence checking method used in Chapter 4 is similar to their meth-

ods, details of them are introduced here. Before the verification, all loops must be

unrolled. First, each pair of corresponding inputs is assigned to a same equivalence

class. Verification is performed for each execution path based on the equivalences of

inputs. For each assignment on the path, since its left hand side and right hand side

are equivalent, those expressions are assigned to a same equivalence class. Finally,

if every pair of corresponding outputs is in a same equivalence class, the two designs

are proved to be equivalent.
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In this thesis, symbolic simulation is used as a verification engine in equivalence

checking, or a method to generate formulae which corresponds to a set of states at

the boundary of bounded model checking results.
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Chapter 3

Multi-Level Bounded Model
Checking
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3.1 Introduction

As discussed in Section 2.1.1, although bounded model checking[22] is a strong

technique to model check large designs, it is difficult to verify long bounds since

the worst complexity increases exponentially with the bound[32]. Finite bounds

also mean that the results are not complete since counter examples can be found

with longer bounds. Therefore, there are researches which prove the completeness

of model checking with the result of a finite bound. [32] mentions completeness

threshold which is the minimum bound that completeness of the model checking

can be proved when no counter-examples are found by bounded model checking.

That threshold can be considered as a minimum fixed point. However, since the

threshold increases exponentially with the number of state variables, computation

amount of complete bounded model checking is doubly exponential to the verified

design size. [32, 12] calculates such completeness thresholds using Büchi automata.

Induction is also used to prove the completeness[153, 41, 8].

On the other hand, though BDD based symbolic model checking can verify in-

finite bounds, it can verify only much smaller designs compared to bounded model

checking. Then, [65] uses SAT instead of BDD for image computation. [118] also

eliminates universal quantifiers from the Boolean formula so that it can be solved

by SAT solvers. Their experimental results showed that SAT and BDD can be com-

plementary relation since SAT is better for some examples and BDD is better for

the others.

Though those methods try to verify model checking problems without any bound,

it cannot reduce the computation amount itself. Then methods which can improve

the model checking performance are strongly required.

Incremental SAT solving method[182, 159, 175, 89, 18, 19] is one of them. It

learns clauses from the previous related problems, and can improve the solution

time for the next problem. Since bounded model checking instances of bounds k

and k + 1 are similar, it is a good application of incremental SAT solving. [44, 68]

combine incremental SAT solving with the induction based method.

[119] proposes a method which uses interpolants from unsatisfiability proof of

counter examples to over-approximate reachability. The result of this method is
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Figure 3.1: Multi-Level Bounded Model Checking

also complete, and it can improve bounded model checking performance as the

other heuristics.

Abstraction (and refinement) methods which have been introduced in Section

2.1.1 can also used as heuristics to improve the performance of bounded model

checking.

In this section, a new heuristic for bounded model checking which concatenates

multiple bounded model checking results by inductive approach and symbolic simu-

lation is proposed. During the verification flow, verification is decomposed to divide

one long counter example into multiple ones as shown in Figure 3.1.

The basic flow of the proposed method is as follows. The first decomposed

bounded model checking checks the original property without considering the initial

states (all states are assumed as initial states). If the property is proved to be correct,

then the verification ends since those assumed initial states include the original

initial states. Otherwise, a counter example is generated. The second bounded
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model checking checks the reachability from the initial states to the first state of

the counter example with the property that “The first state of the counter example

is an error state”. If this property fails and another counter example is generated,

then the first counter example is guaranteed to be correct, and the original property

is proved not to be satisfied. A complete counter example can be generated by

concatenating those two counter examples. The second bounded model checking

can also be recursively decomposed by the same way.

Obviously, verification bounds of the decomposed bounded model checking can

be smaller than that of the original bounded model checking. The computation

amount of each decomposed bounded model checking is expected to be much smaller

than that of the original one since the computation amount is exponent with the

bound. Then, the method can handle larger bounds when all decomposed bounded

model checking generates counter examples. However, if a bounded model checking

does not generate a counter example, the bounded model checking one step earlier

must be retried with a refined initial state condition not to generate the same counter

example again.

In the proposed method, symbolic simulation is used to expand each connection

state (the first state of the counter example) to a set of states by generating a

more general condition. Each bounded model checking is also accelerated with this

technique. When applying symbolic simulation, control of the design is considered.

Though the proposed method is a heuristic, since it does not modify the bounded

model checking algorithm itself, it can be applied with other methods together, such

as incremental SAT solving, interpolation based methods, and abstraction/refinement

methods which have already been introduced in this section.

The target designs are FSMDs which have been introduced in Section 2.3.1.

The organization of this section is as follows. Section 3.2 introduces definition

of bounded model checking used in this section. Section 3.3 proposes a simple

algorithm to concatenate two bounded model checking result, and that is the basic

idea of the two level bounded model checking method proposed in Section 3.4.

Section 3.5 extends this approach to multi level more than two. Experimental results

with a couple of examples are reported in Section 3.6. In Section 3.7, this section is

concluded with future directions.
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3.2 Basic Bounded Model Checking Algorithm

General bounded model checking[22] is performed for an FSM by translating the

model checking problem into satisfiability problem. For that purpose, the FSM is

unfolded from the initial states for a given bound as follows. Let MFSM |=k ϕ, where

MFSM is an FSM, k is a positive integer number, and ϕ is a property, denote MFSM

satisfies ϕ within k bounds from the initial states. Such the relation is represented

by the following formula.

MFSM |=k ϕ⇐⇒ ∀s0 ∈ S, ∀s1 ∈ S, · · ·, ∀sk ∈ S,

Condinit ∧ Condtrans → Condprop (3.1)

where

Condinit := s0 ∈ S0

Condtrans :=
k−1∧
j=0

R(sj , sj+1)

Condprop :=
k∧

j=0

Pϕ(sj) (3.2)

Here, Condinit is the condition of the initial states, Condtrans shows the unfolding

of the transition relation, and Condprop represents the condition that the property

is satisfied in every sequence. To check this formula, the following formula is trans-

lated into conjunctive normal form (CNF), and solved by SAT solvers with treating

s0, s1, · · ·, sk ∈ S as variables.

Condinit ∧ Condtrans ∧ ¬Condprop (3.3)

When a positive number n is given as a bound, Formula 3.3 is iteratively checked

with incrementing k from 0 to n−1. When there is no set of s0, s1, · · ·, sk ∈ S which

makes Formula 3.3 true for all 0 ≤ k ≤ n − 1, the property is satisfied within the

bound n. On the other hand, there is a set of s0, s1, · · ·, sk ∈ S which makes Formula

3.3 true with a number k, which is a counter example. Then, a counter example of

FSM CEFSM is defined as follows.

CEFSM = (s0, s1, · · ·, sk) ∈ Sk+1 |
k−1∧
j=0

R(sj , sj+1)
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where k is the length of the counter example. Such counter examples do not satisfy

the property.

Similarly, bounded model checking formula for DFSM is defined as follows.

MDFSM |=k ϕ⇐⇒
∀s0 ∈ S, ∀s1 ∈ S, · · ·, ∀sk ∈ S, ∀i0 ∈ IV , ∀i1 ∈ IV , · · ·, ∀ik−1 ∈ IV

Condinit ∧ Condtrans → Condprop (3.4)

where

Condinit := s0 = α

Condtrans :=
k−1∧
j=0

sj+1 = T (sj, ij)

Condprop :=
k∧

j=0

Pϕ(sj) (3.5)

The differences from Formula 3.1 and Formula 3.4 are as follows.

• Not only states but also inputs are considered with the universal quantifiers.

• The initial state is fixed since an FSMD has only one initial state.

• Transition function is used instead of transition relation.

To check Formula 3.4, Formula 3.3 is translated into CNF with Condinit, Condtrans,

and Condprop defined in Formula 3.5, and s0, s1, · · ·, sk ∈ S, i0, i1, · · ·, ik−1 ∈ IV are

treated as variables. A counter example of DFSM CEDFSM is defined as follows.

CEDFSM = ((s0, s1, · · ·sk) ∈ Sk+1, (i0, i1, · · ·, ik−1) ∈ IV
k) |

k−1∧
j=0

sj+1 = T (sj, ij)

Note that the minimum information required to specify the counter example is

only the input sequence (i0, ii, ..., ik−1) since sequence of states can be obtained by

executing the DFSM with the input sequence.

Bounded model checking formula for FSMD in Definition 5 is also defined as

follows.

MFSMD |=k ϕ⇐⇒
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∀s0 ∈ S, ∀s1 ∈ S, · · ·, ∀sk ∈ S, ∀i0 ∈ IV , ∀i1 ∈ IV , · · ·, ∀ik ∈ IV ,

∀v0 ∈ VV , ∀v1 ∈ VV , · · ·, ∀vk ∈ VV , ∀o0 ∈ OV , ∀o1 ∈ OV , · · ·, ∀ok ∈ OV ,

Condinit ∧ Condtrans → Condprop (3.6)

where

Condinit := s0 = α ∧ v0 = β

Condtrans :=
k−1∧
j=0

(sj+1 = fs(sj, ij , vj)) ∧
k−1∧
j=0

(vj+1 = fv(sj, ij , vj)) ∧
k∧

j=0

oj = fo(sj, ij , vj))

Condprop :=
k∧

j=0

Pϕ(sj, vj, oj) (3.7)

Additional elements from Formula 3.4 and Formula 3.5 are as follows.

• Not only states and inputs, but also data registers and outputs are considered

with the universal quantifiers.

• The initial state condition is separated into the initial control state condition

and initial data register value condition.

• Not only transition function but also next register value function and output

function are used.

• Property is evaluated with states, register values, and outputs, instead of only

states.

To check Formula 3.6, Formula 3.3 is translated into CNF with Condinit, Condtrans,

and Condprop defined in Formula 3.7, and s0, s1, · · ·, sk ∈ S, i0, i1, ..., ik ∈ IV , v0, v1, · ·
·, vk ∈ VV , o0, o1, · · ·, ok ∈ OV are treated as variables. A counter example is defined

with the following formula.

CEFSMD = ((s0, s1, · · ·, sk) ∈ Sk+1, (i0, i1, · · ·, ik) ∈ IV
k+1,

(v0, v1, · · ·, vk) ∈ VV
k+1, (o0, o1, · · ·, ok) ∈ OV

k+1))

|
k−1∧
j=0

sj+1 = fs(sj, ij),
k−1∧
j=0

vj+1 = fv(vj, ij),
k∧

j=0

oj = fo(sj, ij) (3.8)
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The minimum information to specify the counter example is the first state s0 and

data register value v0 and an input sequence (i0, i1, · · ·ik) since other parameters can

be obtained by executing the FSMD with the input sequence.

Formula 3.7 can be replaced with the following formula for Definition 6.

Condinit := s0 = α ∧ v0 = β

Condtrans :=
k−1∧
j=0

((sj, sj+1) ∈ R ∧ (ij , vj) ∈ Q((sj, sj+1))) ∧

k−1∧
j=0

⎛
⎝vj+1 =

∏
av | av∈AV ,(sj ,av)∈P

av(ij, vj)

⎞
⎠ ∧

k∧
j=0

⎛
⎝oj =

∏
ao | ao∈AO,(sj ,ao)∈P

ao(ij , vj)

⎞
⎠

Condprop :=
k∧

j=1

((sj, vj , oj) ∈ P ) (3.9)

where

IV =
∏

i | i∈I

σ(i)

OV =
∏

o | o∈O

σ(o)

VV =
∏

v | v∈V

σ(v)

The notions of symbol, assignment, transition condition are additionally introduced

in Formula 3.9. The counter example definition is also modified from Formula 3.8

as follows.

CEFSMD = ((s0, s1, · · ·, sk) ∈ Sk+1, (i0, i1, · · ·, ik) ∈ IV
k+1,

(v0, v1, · · ·vk) ∈ VV
k+1, (o0, o1, · · ·, ok) ∈ OV

k+1))

|
k−1∧
j=0

⎛
⎝(ij , vj) ∈ Q((sj , sj+1)) ∧ vj+1 =

∏
av∈AV | (sj ,av)∈P

av(ij , vj)

⎞
⎠ ,

k∧
j=0

⎛
⎝oj =

∏
ao∈AO | (sj ,ao)∈P

ao(ij, vj)

⎞
⎠ (3.10)
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In this thesis, the bounded model checking definition for FSMD, Formula 3.6

and Formula 3.3 with Formula 3.9, are used since the method proposed in this

chapter targets on FSMD defined in Definition 6. Formula 3.10 is also used as the

definition of counter example. However, similar methods can be applied to other

representations if they can be translated to FSM or DFSM, since Condinit, Condtrans,

and Condprop in all of the above four definitions corresponding to each other.

3.3 Concatenation of Two Bounded Model Check-

ing Results

Since computation amount of bounded model checking increases exponentially with

the given bound, one simple idea to model check with a large bound is to separate

the bound into two shorter bounds, and model check with each bound separately. If

the given bound is assumed to be n and both the separated shorter bounds are n/2.

The complexity can be considered to be refined from O(en) to O(2en/2). Then the

complexity becomes 2/en/2 in successful cases. Figure 3.2 shows the flow of such a

concatenation of two bounded model checking results.

The inputs of this flow are an FSMD design which is the verification target and

a property to be checked. The property can be in any representation while it can

be translated to the property condition formula Condprop in Formula 3.3. This flow

can be divided to the following two steps.

• Bounded model checking without the initial state condition

• Reachability analysis to the first state of the counter example, and initial

condition refinement

Bounds for both steps (bounded model checkings) are given by users. Details of

those steps are explained in the following sections.

3.3.1 Bounded Model Checking without the Initial State

Condition

The first step is simply performed by replacing the term of the initial state condition

in Formula 3.3 with true. The formula to be checked with SAT solvers becomes as
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Figure 3.2: Concatenation of two bounded model checking results

follows.

true ∧ Condtrans ∧ ¬Condprop (3.11)

In Formula 3.11, Condinit in Formula 3.9 defining the initial state and initial data

register value are ignored. This corresponds to treating all states in S×VV as initial

states.

Formula 3.11 is checked with the number of unfolding steps k incremented from

0 to a given bound as follows.

• When there are no variable assignments which make Formula 3.11 true with

k = 0, there are no states which violate the property. Then Formula 3.3 also

cannot be true. In the case, the result is decided without the second step.

• When there is a variable assignment which makes Formula 3.11 true with k = j,

where j is less than the bound, there is a counter example which violates the
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property, such as

CEFSMD1 = ((s0, ··, sj), (i0, ··, ij), (v0, ··, vj), (o0, ··, oj))

It can be generated from the result of SAT solvers. In this case, k is incre-

mented to find a longer counter example which can step closer to the initial

state.

• When there is a variable assignment which makes Formula 3.11 true with

k = j − 1 and not with k = j, the maximum k which make Formula 3.11 true

is guaranteed to be j−1. It is also valid for Formula 3.3 since any assignments

(counter examples) which make Formula 3.3 true also make Formula 3.11 true.

Therefore, basic bounded model checking with Formula 3.3 can be applied with

the bound j − 1. If no counter examples are found with Formula 3.3 and the

bound j − 1, the property is proved to be true for any bounds.

• When k becomes equal to the given bound, this step is finished and the next

step is applied.

The first step is introduced more intuitively with Figure 3.3. In the figure, the

state space corresponds to S×VV , and assume that the distance between two states

represents minimum number of state transitions required to move between those two

states.

Firstly, the property is checked without considering the initial state by checking

Formula 3.11 with k = 0 as shown in Figure 3.3 (a). Here, all states in the state

space is searched without considering the reachability from the initial state. When

no counter examples are found, it means that there are no states which violate the

property in the state space. Then, the original bounded model checking problem

in Formula 3.3 also succeeds with any bounds. On the other hand, when there is a

state which violates the property (bad state), k is incremented and Formula 3.11 is

checked again to find a path to the bad state.

The picture of checking Formula 3.11 with k = j is shown in Figure 3.3 (b).

The area in the dotted circle with radius j is the searched area with the check. If a

counter example is found, its length must be j as shown in the figure. If no counter
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Figure 3.3: State space image of the first step of two bounded model checking results
concatenation

examples are found, it means that there are no states on the circumference of the

circle. While counter examples whose length is k exist, the check is continued with

incrementing k until it becomes equal to the given bound. The reason to increment

k is to find a longer feasible path which reaches a bad state. The first state of a long

counter example path can be closer to the initial state than bad states as shown in

Figure 3.3 (b). In such a case, reachability analysis to the state can be easier than
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that to the bad states.

Let’s consider the case that a counter example is found with k = j − 1 but not

with k = j. This situation guarantees that the maximum path length to reach bad

states is j−1. Then the area includes states reachable to a bad state is in the circle

with radius j − 1 whose center is the bad state as shown in Figure 3.3 (c) and (d).

Then, what should be checked is that the initial state is within the area. The result

is identical to that of the basic bounded model checking from the initial state with

Formula 3.3 and bound j−1 since the only difference is the directions of reachability

analyses as shown in Figure 3.3 (c) and (d). If no counter examples from the initial

state are found as shown in Figure 3.3 (c), it means that the distances between the

initial state and bad states are more than j − 1. Since there are no paths reach

the bad states whose lengths are more than j − 1, the bad states are absolutely

unreachable from the initial state, and the property is proved to be true. On the

other hand, if a counter example is found as shown in Figure 3.3(a), that counter

example is a complete counter example from the initial state to one of the bad states

which violates the property. Therefore, a complete result can be got without the

second step.

The only case the second step is applied is when k becomes equal to the given

bound.

3.3.2 Reachability Analysis to the Counter Example

When k becomes equal to a given bound k1 in the first step, there must be a counter

example which makes the formula true, such as

CEFSMD1 = ((s1
0, ··, s1

k1
), (i10, ··, i1k1

), (v1
0, ··, v1

k1
), (o1

0, ··, o1
k1

))

The next step is to check the reachability to the counter example by checking the

reachability to the first state of the counter example. The first state is a pair (s1
0, v

1
0).

The other information, such as remaining states and data register values and input

sequence, is not used since the counter example sequence can be specified only by

(s1
0, v

1
0) and the input sequence.

The reachability analysis is performed as a bounded model checking with re-

placing the negation of the property condition in Formula 3.3 with a reachability
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condition, such that

Condreach := sk = s1
0 ∧ vk = v1

0

Then, the formula to be checked becomes

Condinit ∧ Condtrans ∧ Condreach (3.12)

In this second step, k is incremented from 0 to a given bound as the original bounded

model checking.

If there is an assignment which makes Formula 3.12 true with k = k2, a counter

example which makes Formula 3.12 true, such as

CEFSMD2 = ((s2
0, ··, s2

k2
), (i20, ··, i2k2

), (v2
0, ··, v2

k2
), (o1

0, ··, o2
k2

))

, can be generated.

Then, a complete counter example from the initial state to a bad state is gener-

ated by concatenating those two counter examples as follows.

CEFSMD12 = (s2
0, ··, s2

k2
= s1

0, ··, s1
k1

) ∈ Sk1+k2+1,

(i20, ··, i2k2−1, i
1
0, · · i1k1

) ∈ IV
k1+k2+1,

(v2
0 , ··, v2

k2
= v1

0, · · v1
k1

) ∈ VV
k1+k2+1,

(o2
0, ··, o2

k2−1, o
1
0, · · o1

k1
) ∈ OV

k1+k2+1)

On the other hand, when there are no assignments which make the formula true,

the state (s1
0, v

1
0) is unreachable from the initial state within the given bound. In

this case, the two steps are retried from the first step. The initial state condition is

refined per each trial as follows to avoid generating same counter examples.

Cond′
init := Cond′

init ∧ ¬Condreach

where, the initial Cond′
init is true. Then the following formula is checked as the first

step of the next trial instead of Formula 3.11.

Cond′
init ∧ Condtrans ∧ ¬Condprop (3.13)

The same counter examples cannot be generated with Formula 3.13 since the initial

state condition Cond′
init excludes counter examples from the state (s1

0, v
1
0) which is
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Figure 3.4: State space image of the second step of two bounded model checking
results concatenation

the first state of the previous counter example. Such the refinement is repeated until

a complete counter example is found or the refined initial state condition Cond′
init

becomes (α, β) which means all states except the original initial state are excluded.

After at least one refinement, note that the property is guaranteed to be true

only within the sum of the given bounds k1+k2 when no counter examples are found

with k = i where 0 ≤ i ≤ k1 at the first step. It is because there can be counter

examples through excluded states at the refinements which can be found with larger

k2.

Here, the second step is also introduced more intuitively with the state space

images in Figure 3.4. Let’s assume that a bound given for the first step is k1, and

a counter example is found in k = k1. In such a case, the length of the counter

example is k1. The first states of such counter examples are on the circumference of

the circle representing the search area of the first step bounded model checking in

Figure 3.4 (a) and (b).

In the second step, reachability from the initial state to such a state is checked

with Formula 3.12. Let’s assume that a given bound of this step is k2. The search

area of this step is shown in the circle whose center is the initial state and radius is

k2 as shown in Figure 3.4 (a) and (b).
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When the first state of the counter example is in the area, a counter example

from the initial state to the state is found as shown in Figure 3.4 (a). In such a case,

a complete counter example is generated by concatenating the two counter examples

from the first step and the second step. Such a complete counter example is from

the initial state to the bad state, and it is a proof of the property violation.

On the other hand, when the first state of the counter example is not in the area

as shown in Figure 3.4 (b). The second step fails. In such a case, the first state

of the counter example is excluded from the initial state condition Cond′
init which

initially includes all states not to generate the same counter example again. Then,

the verification is retried from the first step with the refined initial state condition.

3.3.3 Algorithm

In this section, the algorithm which formally defines the method explained in this

section is shown.

Algorithms of the first step and the second step are shown in Algorithm 1 and

Algorithm 2, respectively. The main algorithm is defined in Algorithm 3, and it uses

both Algorithm 1 and Algorithm 2 as subroutines.

Note that Algorithm 3 is clearly not efficient since the number of refinements

can be huge. In the best case, no refinements are required. However, in the other

cases, refinements must be applied iteratively while counter examples are not found,

and only a single state (s, v) ∈ S × VV is excluded from the initial state space per

each refinement. In the worst case, it is continued until all states except the original

initial state (α, β) are excluded. Then, when the number of states are n and the

number of data register values are m, the maximum number of refinements can be

m × n − 1. This number is huge since n and m increase exponentially with the

design size. A refined method which overcomes the problem is proposed in the next

section.

3.3.4 Example

Figure 3.5 shows a simple example and a property for the method proposed in this

section. sa, sb, · · ·, sf ∈ S are states where α = sa. in ∈ I is an input where IV =
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Algorithm 1 FirstStep: Bounded model checking without initial state condition

Require: condprop, cond′
init {given initial state condition}, k1 ≥ 0 {bound of the

first step}
1: for k = 0 to k1 do
2: ce1 ← BMC(cond′

init,¬condprop, k) {Apply bounded model checking to
FSMD with cond′

init, ¬condprop, and unfolding step k. It returns a counter
example or NULL when no counter example is found}

3: if ce1 = NULL then
4: if k = 0 then
5: return NULL {Property is true within the bound}
6: else
7: condinit ← ((s0, v0) = (α, β)) {General initial state condition}
8: ce ← BMC(condinit,¬condprop, k) {Apply basic bounded model check-

ing}
9: if ce = NULL then

10: return NULL {Property is true within the bound}
11: else
12: return ce {Property is violated with ce}
13: end if
14: end if
15: end if
16: end for
17: return ce {Go to the second step}

Algorithm 2 SecondStep: Reachability analysis from the initial state

Require: condreach {reachability condition}, k2 ≥ 0 {bound for the second step}
1: condinit ← ((s0, v0) = (α, β)) {General initial state condition}
2: for k = 0 to k2 do
3: ce2 ← BMC(condinit, condreach, k) {Apply bounded model checking}
4: if ce2 �= NULL then
5: return ce2 {A counter example from the initial state which makes condreach

true}
6: end if
7: end for
8: return NULL {condreach cannot be true within the bound k}
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Algorithm 3 Concatenating two bounded model checking results
Require: condprop, k1 ≥ 0 {bound for the first step}, k2 ≥ 0 {bound for the second step}
1: cond′init ← true {Initialization of initial state condition}
2: loop
3: ce1 ← FirstStep(condprop, cond′init, k1) {Algorithm in Figure 1 is applied}
4: if ce1 = NULL then
5: return true {Property is true within the bound}
6: else if ce1 = (α, β) then
7: return ce1 {Counter example is generated without the second step}
8: else
9: condreach ← ((s0, v0) = GetF irstState(ce1)) {Get first state condition}

10: ce2 ← SecondStep(condreach, k2) {Algorithm in Figure 2 is applied}
11: end if
12: if ce2 �= NULL then
13: return (ce1, ce2) {Counter example is the concatenation of ce1 and ce2}
14: end if
15: cond′init ← cond′init ∧ (s0, w0) �= GetF irstState(ce1) {Initial state condition refine-

ment}
16: if cond′init = (α, β) then
17: return true {Property is true within the bound}
18: end if
19: end loop
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Figure 3.5: Toy FSMD example and property

(σ(in)) = ({0, · · ·, 7}). x ∈ V is a data register where VV = (σ(x)) = ({0, · · ·, 31})
and β = (0). out ∈ O is an output where OV = σ(out) = ({0, · · ·, 31}). The property

is written in LTL, and it means out < 28 is globally true.

The shortest counter example from the initial state is as follows.

((sa, sb, sc, se, sf) ∈ S5, (7, 7, 7, 7, ∗) ∈ IV
5,

(0, 7, 14, 21, 28) ∈ VV
5, (0, 0, 0, 0, 28) ∈ OV

5)

where ∗ represents don’t-care. As shown in the counter example, the property is

violated only when 7 is input at the first four cycles. To find such a counter example

with basic bounded model checking, the bound must be at least 4.

Let’s consider to apply the proposed method with k1 = 2 and k2 = 2.

As the begging of the first step, Formula 3.11 is checked with k = 0. A counter

example whose length is 0, such as ((sf), (0), (28), (28)), is generated. Then k is

incremented and checked again with k = 1 and also k = 2. Finally, a counter

example whose length is 2 is generated. Here, assume that the following counter

example is generated.

((sf , sf , sf), (0, 0, 0), (28, 28, 28), (28, 28, 28))
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In the second step, the reachability from the initial state to the first state of the

counter example, (sf , 28) ∈ S × VV , is checked with Formula 3.12. However, since

the minimum bounds required to reach s5 is 4, the second step fails with the bound

2. Then, the state (sf , 28) is excluded from the initial state condition. Then the

initial state condition Cond′
Init becomes as follows.

Cond′
init = (s0 �= sf ∧ v0 �= 28) (3.14)

Then the first step is applied with the refined formula shown in Formula 3.13.

Similarly to the previous trial, k is incremented to k1 = 2, and assume that the

following counter example is generated.

((sc, se, sf), (7, 7, 0), (14, 21, 28), (0, 0, 28))

In the second step, the reachability from the initial state to the state (sc, 14) is

checked with Formula 3.12. In this case, there is a counter example from the initial

state to the state (sc, 14) within length 2, such as

((sa, sb, sc), (7, 7, 7), (0, 7, 14), (0, 0, 0))

Then a complete counter example can be obtained by concatenating the two

counter example as follows.

((sa, sb, sc, se, sf), (7, 7, 7, 7, 0), (0, 7, 14, 21, 28), (0, 0, 0, 0, 28))

This counter example is included in the shortest counter example shown at the

beginning of this paragraph.

Here, the number of maximum refinements of this example is counted to show

that the inefficiency of this method. Possible first states for each counter example

state transition path are as follows.

• (s0, s1, s2) = (sf , sf , sf) : Possible v0 is 28, 29, 30, 31.

• (s0, s1, s2) = (sc, se, sf) : Possible v0 is 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.

• (s0, s1, s2) = (sc, sd, sf) : Possible v0 is 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.

Since the first state of the second and third paths are same, overlapping v0 value

represents the same state. Then the number of possible first states are 4 + 11 = 15.

Then the maximum number of refinements is 15− 1 = 14.

69



3.4 Two Level Bounded Model Checking

To refine the method proposed in Section 3.3, symbolic technique is applied. The

main idea of this method is to gather multiple counter examples at the first bounded

model checking step instead of just one counter example. Then the following ad-

vantages can be obtained.

• Since reachability to the set of multiple counter examples instead of a sin-

gle counter example is checked at the second bounded model checking step,

counter example paths from the initial state can be found easier in the second

step.

• Because of the first item, shorter counter-examples may be found.

• Since multiple states instead of a single state are excluded from the initial state

space per each refinement, the number of refinements become much smaller.

Figure 3.6 is the entire flow of the two level bounded checking proposed in this

section. The difference from Figure 3.2 is the insertion of symbolic simulation step.

Figure 3.7 shows an image of the method in the state space. As already explained

above, the main feature is to handle multiple counter examples at once. As shown

in Figure 3.7(a), the second step reachability analysis becomes much easier since

it checks reachability to multiple states instead of a single state. Also multiple

states can be removed at the initial condition update at once when the second step

reachability analysis fails.

3.4.1 Generation of Condition to Enter Counter Example
Path and Violate Property

As explained in Section 2.4, symbolic simulation is a technique that generates a

condition satisfied when passing through a given control path. In the proposed

method, symbolic simulation is applied to the control path of a counter example

generated at the first step of the method explained in Section 3.3. From the symbolic

simulation result and the property condition, the condition which is possible to pass

through the control path same as the counter example and violate the property is
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Figure 3.6: Two level bounded model checking flow

generated. The condition corresponds to the set of multiple counter examples since

the condition includes all counter examples pass through the control path. The

advantage of this generation method is that it can generate such a set of multiple

counter examples quite easily.

Symbolic simulation of a control path generates two conditions such as data

condition and control condition as explained in Section 2.4. Let Cond′
prop ∈ E

denote a property represented by symbols. Then, when

CEFSMD1 = ((s1
0, ··, s1

k1
), (i10, ··, i1k1

), (v1
0, ··, v1

k1
), (o1

0, ··, o1
k1

))
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is the counter example generated by the first step of the method presented in Section

2.4, the necessary condition to pass through the control path same as the counter

example and violate the property is as follows.

(s = s1
0) ∧NC(t1) ∧ ¬Cond′

prop (3.15)

where s represents the current state, t1 = (s1
0, ··, s1

k1
). Let Condpath denote this

condition. The first term represents the condition of the first state of the counter

example, the second term expresses the control condition to pass through the counter

example path, and the last term shows the condition to violate the property.

3.4.2 Replacement of Timed Symbolic Values

Although Condpath includes timed symbolic values at the cycles from 0 to k1, only

data register values at cycle 0 is required since the second step checks the reachability

to the first states of the counter example set, and such first states are determined

only with the control state and data register values at cycle 0. Then, timed symbolic

values included in I0, I1, · · ·, Ik1, V1, V2, · · ·, Vk1, O0, O1, · · ·, Ok1 are not required, and

only timed symbolic values in V0 are necessary. The timed symbolic values not

required are replaced or removed from Condpath by the following procedure.

To remove the symbolic values in V1, V2, · · ·, Vk1, and O0, O1, · · ·, Ok1, the symbolic

simulation result such that ND(t1) can be used. As shown in Equation 2.2, ND(t1)
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is a conjunction of multiple equations derived from assignments. Right hand sides

of the equations are symbolic values at previous cycles of the left hand side symbolic

values. Then timed symbolic values in Condpath which are included in the left hand

side of the equations are replaced with the right hand side symbolic values. Since

the left hand sides cover all timed symbolic values in V1, V2, · · ·, Vk1, and O0, O1, · ·
·, Ok1, all of those symbolic values can be removed by applying such replacements

incrementally. Here, that conversion is represented by a function ReplaceD : ET →
ET .

Another conversion is applied to remove I0, I1, · · ·, Ik1. Those timed symbolic

values are not necessary since conditions of them are for after entering the counter

example paths. Those timed symbolic values can be considered to take arbitrary

values when checking the reachability to the set of the first state of the counter

example paths. Then, each iT ∈ IT in Condpath can be removed by assigning ade-

quate value which satisfies necessary condition to keep Condpath true. Expressions

including iT which can also take arbitrary values with the values of iT can be re-

placed with adequate values which satisfies necessary condition to make Condpath

true. For example when i3 < 5 must be true if Condpath is true and i3 ∈ IT , then

i3 can be replaced with 2. Also, whole the expression can be replaced with true,

since it can take both true and false value by assigning values less than 5 and equal

to or more than 5, respectively. Here, that conversion is represented by a function

ReplaceI : ET → ET

With applying the above two conversions, Condpath is expressed only with timed

symbolic values in V0, FcallT , K, and the condition of the control state such that s =

s0. Here, since no timed symbolic values are at cycles more than 0, all timed symbolic

values can be treated as symbolic values. Therefore, the condition Condreach =

ReplaceI(ReplaceD(Condpath)) is the condition that reachability to it is checked at

the second step.

Since this condition represents the set of the first states of counter examples which

pass through the same control path with the first counter example and violate the

property. Then, when no counter example is found in the second step, the refinement

of initial state condition is as follows.

Cond′
init := Cond′

init ∧ ¬Condreach

73



Since this refinement removes multiple states from the initial state condition at once,

the number of refinement times can be dramatically reduced.

3.4.3 Construction of Complete Counter Example

In the case that a counter example is found in the second step which reaches to the

condition generated in the previous section, a complete counter example is generated

from the initial state which violates the property. It cannot directly be accomplished

by concatenating two counter examples since the second step checked the reachabil-

ity to the set of counter examples instead of the single counter example generated

in the first step. The last state of the second counter example can be different from

the first state of the first counter example. A complete counter example is generated

with the following procedure.

To determine a counter example which can be concatenated with the second

counter example, an input sequence must be determined. An additional counter

example can be generated by running simulation from the last state of the second

counter example with the input sequence. Then, if there is a sufficient condition of

inputs to violate the property, a counter example which violates the property can

be generated with an input sequence satisfying the condition.

The input condition to violate the property is generated from Condpath shown in

Formula 3.15. Let CEFSMD2 denote the counter example generated in the second

step.

CEFSMD2 = ((s2
0, ··, s2

k2
), (i20, ··, i2k2

), (v2
0, ··, v2

k2
), (o2

0, ··, o2
k2

))

Since the subsequent counter example must start from the last state of CEFSMD2,

s must be s2
k2

and values of V0 must be v2
k2

in Condpath. Then, the first term

of Condpath, s = s0, becomes true since s0 must be s2
k2

, and it can be removed.

Concrete values are also assigned to the timed symbolic values in V0. Here, this

conversion is represented by a function Replace0.

Replace0(Condpath) includes timed symbolic values in I0, I1, ···, Ik1, V1, V2, ···, Vk1,

and O0, O1, · · ·, Ok1 some of which are removed with the conversions introduced in

the previous section. Here, since the input condition is required, only V1, V2, · ·
·, Vk1 and O0, O1, · · ·, Ok1 should be removed. This removal can be performed with
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applying the function ReplaceD which is introduced in the previous section. Then,

ReplaceD(Repalce0(Condpath)) is the condition expressed only with I0, I1, · · ·, Ik1,

and a sufficient condition to violate the property.

There can be multiple input sequences which satisfy ReplaceD(Repalce0(Condpath)),

and any of them is a counter example which violates the property and which can

be concatenated with the second counter example CEFSMD2. One of such input

sequences can be found by generating assignments to timed input symbolic values in

ReplaceD(Repalce0(Condpath)) by decision procedure. For example, SMT(Satisfiability

Modulo Theories) solvers such as CVC3[40] and Boolector[24] can be used. Then, a

complete counter example is generated by concatenating the second counter example

and the generated assignment by decision procedure.

3.4.4 Algorithm

By applying the symbolic simulation method, algorithm shown in Algorithm 3 is

modified to Algorithm 4.

Modified portions from Algorithm 3 are Line 9, 10, 14, 17. Line 9 shows the

method explained in Section 3.4.1. Line 10 and 17 represents the method explained

in Section 3.4.2. Line 14 corresponds to the method explained in Section 3.4.3.

3.4.5 Example

In this section, the effect of the application of symbolic simulation introduced in

this section is shown with the example in Figure 3.5.

Let’s consider applying the proposed method with k1 = 2 and k2 = 2. Assume

that the following counter example is generated by the first step which is the same

as that of Section 3.3.4.

((sf , sf , sf), (0, 0, 0), (28, 28, 28), (28, 28, 28))

The sequence of state transitions of this counter example is t1 = (sf , sf , sf), and the

symbolic simulation result on the path is shown in Figure 3.8.

Firstly, the condition to pass through t1 and violates the property is generated

as explained in Section 3.4.1 as follows.

Condpath : (s = sf ) ∧ true ∧ ¬(out0 < 28 ∧ out1 < 28 ∧ out2 < 28)
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Algorithm 4 Two level bounded model checking
Require: condprop, k1 ≥ 0 {bound of the first step}, k2 ≥ 0 {bound for the second step}
1: cond′init ← true {Initialization of initial state condition}
2: loop
3: ce1 ← FirstStep(condprop, cond′init, k1) {Algorithm in Figure 1 is applied}
4: if ce1 = NULL then
5: return true {Property is true within the bound}
6: else if GetF irstState(ce1) = (α, β) then
7: return ce1 {Counter example is generated without the second step}
8: else
9: condpath ← GetControlCondition(ce1) ∧ ¬condprop {Get the condition to pass

through the control path of the counter example and violate the property}
10: condreach ← ReplaceI(ReplaceD(condpath)) {Remove timed symbolic variables

not necessary}
11: ce2 ← SecondStep(condreach, k2) {Algorithm in Figure 2 is applied }
12: end if
13: if ce2 �= NULL then
14: ce′1 ← Solve(ReplaceD(ReplaceO(condpath, ce2))) {Get the input sequence which

violates the property and can be concatenated with ce2}
15: return Concatenate(ce′1, ce2)
16: end if
17: cond′init ← cond′init ∧ ¬condreach {Refine the initial state condition}
18: if cond′init = (α, β) then
19: return true {Property is true within the bound}
20: end if
21: end loop
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Figure 3.8: Symbolic simulation result on the path sf → sf → sf at the design in
Figure 3.5

where outj represents timed symbolic values of out at cycle j. The control condition

of the sequence of state transitions, NC(t1), is true, since there are no conditional

branches. Property condition is simply the negation of the property G(out < 28)

extracted for all cycles.

Secondly, timed symbolic variables out0, out1, out2 are removed from Condpath

with the data condition shown in Figure 3.8 as explained in Section 3.4.2. Data

condition ND(t1) is as follows.

(x1 = x0 ∧ out0 = x0) ∧ (x2 = x1 ∧ out1 = x1) ∧ (out2 = x2)

With assuming this condition true, out0, out1, out2 in Condpath is transformed as

follows.

out2 = x2 = x1 = x0

out1 = x1 = x0

out0 = x0

Then Condpath is transformed as follows.

(s = sf ) ∧ ¬(x0 < 28)

Then, reachability is checked to the above condition in the second step. However,

no counter examples from the initial state to the condition exist. The condition is
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added to the initial state condition as follows.

Cond′
init = (s0 �= sf ∧ ¬(v0 = 28 ∨ v0 = 29 ∨ v0 = 30 ∨ v0 = 31))

Here, the condition with symbolic values has been converted into the condition with

concrete values. Though Condition 3.14 excludes only one state, the above condition

excludes 4 states,

In the second trial, assume that the first step generates the following counter

example.

((sc, se, sf), (7, 7, 0), (14, 21, 28), (0, 0, 28))

Here, t′1 = (sc, se, sf) denotes the sequence of state transitions of the counter exam-

ple, and the symbolic simulation result on the path is shown in Figure 3.9.

Since NC(t′1) is in0 = 7, the condition to transit through t′1 is as follows.

Cond′
path = (s = sc) ∧ (in0 = 7) ∧ ¬(out0 < 28 ∧ out1 < 28 ∧ out2 < 28)

Data condition ND(t′1) is as follows.

(x1 = x0 + in0 ∧ out0 = 0) ∧ (x2 = x1 + in1 ∧ out1 = 0) ∧ (out2 = x2)

With assuming ND(t′1) = true, out0, out1, and out2 can be transformed as follows.

out2 = x2 = x1 + in1 = x0 + in0 + in1
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out1 = 0

out0 = 0

Then, Cond′
path is transformed as follows after meaningless portions are removed.

(s = sc) ∧ (in0 = 7) ∧ ¬(x0 + in0 + in1 < 28)

Next, the timed symbolic input values are removed. To make the condition true,

in0 must be 7. To also make the last term true, in1 = 7 is most sufficient. Then,

Cond′
path is updated as follows.

(s = sc) ∧ ¬(x0 < 14)

Since this condition includes more than one state such that (sc, 14), (sc, 15), · ·
·(sc, 31), it is more general than just one state (sc, 14).

The second step reachability analysis is applied to the condition Cond′
path, and

it generates the following counter example.

((sa, sb, sc), (7, 7, 7), (0, 7, 14), (0, 0, 0))

To generate an additional counter example to the above one, s = sc and out0, out1, out2

are removed from the original Cond′
path with ND(t′1), and the last state of the second

counter example such that (sc, 14). Then, Cond′
path is updated as follows.

Cond′
path = (in0 = 7) ∧ ¬(14 + in0 + in1 < 28)

Decision procedures can generate assignments to in0 and in1 which makes the above

condition true, such that in0 = 7 and in1 = 7. With this input sequence, the

following complete counter example is generated.

((sa, sb, sc, se, sf), (7, 7, 7, 7, 0), (0, 7, 14, 21, 28), (0, 0, 0, 0, 28))

The maximum number of refinements is 2 since there are only 3 control paths

which reach sf . This is much smaller than 14 which is the maximum number of

refinements by the method explained in Section 3.3.
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3.5 Multi-Level Bounded Model Checking

In this section, multi-level (more than three level) bounded model checking is pro-

posed. This method is an extension of the two-level bounded model checking pro-

posed in the previous section.

To extend the two-level one into the multi-level one, The two-level bounded

model checking is recursively applied in the reachability analysis step which has

been introduced in Section 3.3.2. Since the reachability analysis is a bounded model

checking, it can be performed with two-level method.

Since the extension can be recursively applied for any number of times, the

method can be extended to any level.

3.5.1 Division of the Second Step

The second step which is introduced in Section 3.3.2 checks the reachability from

the initial state to the first state of the first counter example (without symbolic

simulation, Section 3.3.1) or a state in a set of first states of counter examples

(with symbolic simulation, Section 3.4). In both cases, a condition Condreach whose

reachability is checked is generated. Then, the bounded model checking formula

whose satisfiability is checked is as shown in Formula 3.12.

By comparing Formula 3.12 with Formula 3.3, it is clear that the second step

is also a bounded model checking, and its property corresponds to ¬Condreach.

Therefore, if Condprop is considered to be ¬Condreach and the two-level bounded

model checking is applied, a single bounded model checking is divided to three,

and it can be called three-level bounded model checking. Further division can be

recursively applied, and a single bounded model checking can be divided into an

arbitrary number of bounded model checkings, as the state space image shown in

Figure 3.10.

The algorithm of the method is shown in Algorithm 5. A function MultiLevel

represents this algorithm itself, so that this is a recursive algorithm. Only the

difference from the two level method shown in Algorithm 4 is line 11 ∼ 15 where the

second step reachability analysis is performed by the multi-level method recursively.
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Algorithm 5 MultiLevel:Multi-level bounded model checking
Require: condprop, n {level}, k1..kn ≥ 0 {bounds}
1: cond′init ← true {Initialization of initial state condition}
2: loop
3: ce1 ← FirstStep(condprop, cond′init, kn)
4: if ce1 = NULL then
5: return NULL {Property is true within the bound}
6: else if GetF irstState(ce1) = (α, β) then
7: return ce1 {Property is violated with ce1}
8: else
9: condpath ← GetControlCondition(ce1) ∧ ¬condprop

10: condreach ← ReplaceI(ReplaceD(condpath))
11: if n > 2 then
12: ce2 ←MultiLevel(¬condreach, n− 1, k1..kn−1) {recursive call}
13: else
14: ce2 ← SecondStep(condreach, kn−1) {Algorithm in Figure 2 is applied}
15: end if
16: end if
17: if ce2 �= NULL then
18: ce′1 ← Solve(ReplaceD(ReplaceO(condpath, ce2)))
19: return Concatenate(ce′1, ce2)
20: end if
21: cond′init ← cond′init ∧ (s0, w0) �= GetF irstState(ce1)
22: if cond′init = true then
23: return NULL
24: end if
25: end loop
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Figure 3.10: State space image of the multi-level bounded model checking (four
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3.5.2 Deciding Levels and Bounds

When Algorithm 5 is applied, number of levels and bound of each level must be

specified. Both of them increase the complexity exponentially when they increase.

It is very difficult to find the best specification of them since it depends on the

distances between the initial state and bad states. However, one possible strategy

to specify them is shown as follows.

Verification time of a bounded model checking is greatly depends on the bound.

There is a threshold of the bound that user can bear the verification time which

depends on the user. Here, the bound is denoted by kmax, and used for each level

in multi-level bounded model checking to make the verification time of each level

acceptable and keep the search space large. Once the bounds are fixed, the multi-

level method can be applied by incrementing the number of levels from two until

a bad state is reached (the property is violated). The algorithm of this strategy is

shown in Algorithm 6.

3.5.3 Combination with Simulation

In this chapter, reachability from the initial state is checked number of times. How-

ever, the same reachability can also be checked from some reachable states whose
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Algorithm 6 Fixed bound approach on multi-level bounded model checking
Require: condprop, kmax {Maximum bound that user can bear}
1: for l← 2 to ∞ do
2: ce←MultiLevel(condprop, l, kmax, kmax, ...)
3: if ce �= NULL then
4: return ce {Property is violated with ce}
5: end if
6: end for

paths from the initial state are already known. Then, results of (random) simulations

can be used by gathering all reached states during the simulations and regarding

them as the initial states. The advantages of this method are as follows.

• Total verification time is not affected much by applying simulation since sim-

ulation finishes in much shorter time than model checking.

• Relatively far bad states can be reached since simulations can reach to states

far from the initial states, and multi-level bounded model checking can be

started from such states.

• Possibility to prove reachability becomes higher since this method checks

reachability to multiple initial states instead of the original single state.

3.6 Experimental Results

To confirm the effectiveness of the proposed method, the experiments for two exam-

ples were conducted with the two-level approach proposed in Section 3.4. NuSMV[29]

is used as a bounded model checker for both the bounded model checking and the

reachability analysis. Symbolic simulations were performed with an original tool

written in C++. NuSMV was also used for the comparative experiments with the

standard way of bounded model checking from the initial states. These experiments

were carried out on a Linux PC with 3.0GHz Core2Duo processor and 4GB memory.

3.6.1 Examples

The experiments were conducted for two examples, Double Counter and Vending

Machine Controller. Both examples are designed in FSMD, and the sizes of the
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Table 3.1: Size of the examples
Num. of FSMD states Num. of state variables

Double Counter 2 14
Vending Machine 12 33

Table 3.2: Verified properties
Example Property Contents

Double Counter p1 Second counter never overflows
Vending Machine p2 If no input is given, it eventually

goes to the state “Waiting inputs”

examples are shown in Table 3.1.

3.6.2 Results

The property for each example is shown in Table 3.2. Both of them are unbounded

properties. Each example has a bug that violates the property.

Verification time spent in each property by the proposed method is shown in

Table 3.3. The column “BMC” shows the verification times of the bounded model

checking performed in the first step. The bounds of this step are shown in the

seventh column. The column “SS” shows the run times of symbolic simulation.

The column “RA” shows the verification times of the reachability analysis from the

initial state, and the bounds of this step are shown in the eighth column. The

column “Sum” shows the total verification times of the proposed method. The

column “Num of Trial” shows the numbers of trials of the reachability analyses

from the initial state. The column “Simple BMC” shows the verification times of

the original bounded model checking from the initial state. In the original bounded

model checking, bounds were set to the sum of the seventh and eighth columns. All

bugs were detected with both methods.

In the results, the proposed method could find the bugs in shorter time than

the simple method in both cases. Two reasons can be found to explain that the

improvement in the result of p1 was better than that of p2. One reason is that
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Table 3.3: Results of the proposed method and simple bounded model checking
BMC SS RA Sum Num of Bound of Bound of Simple

Trial BMC RA BMC
p1 52s 1s 27s 80s 99 101 cycles 100 cycles 303s
p2 2s 1s 201s 204s 1 9 cycles 24 cycles 341s

the number of the total bound in the verification of p1 is larger than that of p2 so

that the effect of division was more strong. The other reason is that the bounds

of the initial bounded model checking and the reachability analysis of p1 are same.

Equivalent bounds assignment is preferred since a step with larger bound is mostly

dominant. This result supports the Algorithm 6 where the bounds are equal in all

stages.

3.7 Conclusion

This chapter presented a method to extend the verification bounds of bounded model

checking. It was achieved by the decompositions of a single bounded model checking

and the analysis of counter-examples by symbolic simulation. Improvement of the

verification performance was confirmed in the experimental results.

One problem in the multi-level method is that this method can generate a com-

plete counter example only when all intermediate points are reachable from the

initial states. Then, the number of refinement times increases dramatically with

the number of levels since number of verification failures increases. Therefore, it is

very important to select good intermediate states. This problem, finding good in-

termediate points, is also a common problem in the general state space reachability

problem.
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Chapter 4

Equivalence Checking with
Synthesizing Designs onto
Identical Datapath
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4.1 Introduction

As mentioned in Section 2.1.2, equivalence checking is a powerful method to guar-

antee no bugs are inserted during a refinement or synthesis step.

One of the simplest equivalence checking methods is proposed in [33]. It trans-

lates designs into Boolean formulae, and checks the equivalence of those formulas

with BDD or SAT. However, large designs cannot be verified, since the complexity

of such a bit-level analysis increases exponentially with the size of designs.

To avoid bit-level analysis as much as possible, word-level symbolic simulation[143,

113, 90, 91] which treats each variable or operator as a symbol is applied. However,

since the complexity of symbolic simulation is doubled for each conditional branch,

it is still not applicable to entire designs. Loops are also not acceptable, and they

must be unrolled in advance.

To solve this problem, only textually different portions of two designs are com-

pared in [113]. This method can handle large designs when compared designs are

similar. Also in [90, 91], equivalences of paths between conditional branches are

checked, and the results are gathered to prove the entire equivalence. To apply this

divide-and-conquer approach, correspondences of intermediate variables or registers

between two designs must be known or given by users (e.g. Names of variables or

registers in two designs are same).

However, in practical refinement steps, it is usual that the entire structure of

a design is changed or correspondences of intermediate variables or registers are

unknown (e.g. between two designs before and after automated high-level synthesis).

Since bit-width or sign are not taken into account in symbolic simulation, bit-level

accuracy is not considered in [143, 113, 90].

Based on the arguments above, in this chapter, a new equivalence checking

method between two models before and after a refinement step, such as high-level

synthesis or behavioral optimization, is proposed. This method focuses on a feature

that designs after automated high-level synthesis are usually composed of controllers

and datapaths. In such a design, computations of the design are executed at the dat-

apath, and the controller determines computations executed at each clock cycle. In

the proposed method, two designs are converted into RTL models which have same
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datapaths. Because of the advantages of abstracting computations of the datapaths,

the verification can concentrate on the equivalence of the controllers. Concretely,

since the datapaths are identical, the functional units in those RTL models become

same. Since same control signals from the controllers represent same behaviors,

the behaviors are equivalent in bit-level accuracy. Therefore, existing word-level

methods, such as symbolic simulation, can be easily applied in bit-level accuracy.

However, since correspondences of intermediate variables or registers are not

given in most cases, entire designs must be compared in such cases. As discussed

above, symbolic simulation cannot handle designs which include large numbers of

conditional branches or loops whose numbers of iterations are dependent to input

values or infinite. Therefore, a new word-level method which propagates equivalences

of inputs to those of outputs with pre-defined rules is proposed. Since the rules are

proposed to handle conditional branches and loops, the proposed rule-based method

can be used as a complement of symbolic simulation based methods.

The remainder of this chapter is organized as follows: Section 4.2 explains ex-

isting techniques used in the proposed method. Section 4.3 describes the proposed

verification flows. In Section 4.4, the proposed verification algorithms used in the

flows are explained. Some experimental results with realistic examples are reported

in Section 4.5. In Section 4.6, a conclusion of this work is given and its future

directions are shown.

4.2 Basic Notions

4.2.1 Separation of Designs’ Equivalence to that of Con-
trollers and Datapaths

The basic idea of the proposed method is proposed in [50, 48, 49]. An RTL design

generated by high-level synthesis is usually composed of a controller and a datapath

as shown in Figure 2.9. At each clock cycle, first, the controller sends control signals

to the datapath, depending on the current state. Next, the datapath executes

operations based on the control signals. Finally, the datapath returns status signals

to the controller, and the controller determines the next state. Then, in [50, 48, 49],

a behavioral design is mapped to a virtual controller and a virtual datapath so that
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1 /* Behavior descriptions */

2 Input In;

3 Output A, B;

4 Variable X, Y;

5 X = Get(In);

6 Y = Get(In);

7 A = 0;

8 B = X;

9 While(B >= Y){

10 B = B - Y;

11 A = A + 1;

12 }

Figure 4.1: An example of behavioral description [50]

the equivalence can be separated into the equivalences of the (virtual) datapaths

and the (virtual) controllers.

Here an example of this mapping is shown. Figure 4.1 is a behavioral descrip-

tion before high-level synthesis, and Figure 4.2 is an RTL description generated by

high-level synthesis. These descriptions are written in a simple form to be able to

understand intuitively. These descriptions are designs which execute division. The

value assigned to X is divided by the value assigned to Y . The values of variables A

and B after the loops show the quotient and the residual, respectively. The descrip-

tion in Figure 4.2 is scheduled and each Waitfor(CL) in the description represents

that the clock proceeds for one cycle.

Figure 4.3 shows the structure of the RTL design in Figure 4.2. Since it is a

design after high-level synthesis, it is composed of a controller and a datapath. The

controller is a control FSM. It decides the next state with the received status signal

(dc1), and sends the control signals (cd1− cd6) correspond to a current state. The

datapath is composed of data registers (x, y, a, b), multiplexers (mux1 − mux4),

a computation unit which increments its input (inc1), a subtracter (sub1), and a

comparator (comp1). The datapath performs different computations which depend

on the value of control signals (cd1 − cd6), updates register values, and returns a

89



1 /* Scheduled (RTL) descriptions*/

2 Input In;

3 Output A, B;

4 Clock CL;

5 Variable X, Y;

6 Waitfor(CL);

7 X = Get(In);

8 Waitfor(CL);

9 Y = Get(In);

10 Waitfor(CL);

11 A = 0;

12 B = X;

13 Waitfor(CL);

14 While(B >= Y){

15 B = B - Y;

16 A = A + 1;

17 Waitfor(CL);

18 }

Figure 4.2: An example of RTL description [50]

status signal (dc1) to the controller.

In [50], the design in Figure 4.1 is tentatively scheduled as Figure 4.2 so that

the design in Figure 4.1 can be virtually mapped to the controller and the datapath

shown in Figure 4.3. In this case, the mapped controller and datapath become same

as that of the synthesized RTL description. Since a number of each computation

units and scheduling are not decided in behavioral design, it can be mapped to the

same datapath as that of the compared RTL design by applying adequate scheduling

and allocation of computation units.

When the two datapaths are same, only the two controllers have to be compared.

On the comparison, only the control signals from those controllers are compared

without understanding the behaviors of the datapaths. Large designs can be handled

by this method since the computation units and the registers in the datapath is not

taken into account.
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Figure 4.3: An example of controller and datapath [50]

On the other hand, when the two datapaths are not same, both of the controllers

and the datapaths must be compared. The equivalence of the datapath operations

must be checked under each pair of the control signals which is a candidate to be

equivalent. This step might be time consuming since usually the correspondences

of the control signals nor the status signals between the two datapaths are not

known. If the two datapaths are same, the datapaths do not have to be compared.

In addition, two controllers generated from equivalent designs can be similar since

they are for the identical datapath. Then, an equivalence checking method based

on the difference of controllers which is similar to [113] can be applied so that large

designs can be verified.

The proposed method extends this approach, by forcibly making the datapaths

of two designs same by generating controller(s) for an identical datapath which are

equivalent to the original design(s). This method is described in Section 4.3. Since
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Figure 4.4: Comparison between RISC and NISC architectures [136]

only a brief approach to compare the controllers is shown in [50, 48, 49], a concrete

method is also given in Section 4.4.

4.2.2 NISC(No Instruction Set Computer) Compiler

NISC[136] is a computer architecture which is composed of an arbitrary datapath

and its controller. Different from the other computer architectures, NISC has no

instruction sets, and a set of control signals is directly stored in a control memory

instead of a set of instructions as shown in Figure 4.4. Those control signals are

called “control words”, and they include not only the signals which control the

operations of the datapath but also the next values of the program counter. This

structure enables designers to use an arbitrary datapath, since an instruction set for

it does not have to be newly defined. Designers can give suitable datapaths for their

requirements by specifying their structures (i.e. numbers of various computation

units, registers, data memories, bus-widths, and their connections). NISC compiler

can generate a set of control words for any given datapath from an ANSI-C code, if

the datapath has sufficient resources to execute the code. Thus, NISC architecture

can achieve both the high-performance of custom hardware and the flexibility of

software.
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The aim of NISC compiler is same as that of the proposed method in the point

that it generates a control portion for a given datapath. In NISC compiler, this

process is performed by the following steps. First, a Data Flow Graph (DFG) is

created from an input ANSI-C code. Next, the DFG is traversed backwardly from

the outputs, and each operation is assigned to a functional unit at a cycle in the

datapath with an ALAP like scheduling. Multiple operations can be mapped to a

single cycle while resources (functional units and lines of buses) are enough. At this

step, delays of the functional units are considered. This avoids creating long paths

of the functional units for a single cycle. Finally, control words to be stored in the

control memory are generated. The control words include:

• Signals to the multiplexers in the datapath which correspond to the values of

the program counter

• Next values of the program counter which can be considered as next states

• Constants used in the operations at the datapath

The above method is quite simple and reasonable. Since this chapter is focusing

on verification and does not have to consider the performance, a similar (or simpler)

solution can be used. The method is discussed in Section 4.3.2.

4.3 Generation of RTL Designs with Identical Dat-

apath

4.3.1 Verification Flow

Based on the argument in Section 4.2.1, in the proposed method, the datapaths of

two designs are forcibly made identical. If they are identical, the following advan-

tages can be obtained.

• Same control signals represent that behaviors are equivalent in bit-level accu-

racy

• Controllers generated from equivalent designs tend to be similar since they are

generated for an identical datapath.
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Figure 4.5: Proposed equivalence checking flow between a behavioral level design
and an RTL design

Figure 4.5 shows the verification flow to check the equivalence between designs

before and after high-level synthesis. One design is a behavioral design and the other

is an RTL design. It is assumed that the RTL design is composed of a controller

and a datapath, and easily separated into them. As mentioned in Section 4.2.1,

results of high-level synthesis usually satisfy the assumption. If the assumption is

not satisfied, they have to be separated by determining its state variables. Next,

a controller for the datapath in the RTL design is generated from the behavioral

design. The generated controller is written in RTL, and it must represent the same

behavior as the behavioral design. Details of this step are described in Section

4.3.2. Then, two controllers for an identical datapath can be obtained. Comparison

methods for those designs are described in Section 4.4.

A similar method can be also applied to check the equivalence between two

designs before and after behavioral optimization, and its flow is shown in Figure

4.6. Input designs are both in behavioral level. The difference from the previous

flow is that a new datapath has to be given to generate controllers for the datapath

since neither of the input designs are RTL. The datapath should be as simple as

possible since same arithmetic operations in the designs should be executed by a

same set of functional units in the datapath. If same operations are executed by

different sets of functional units, the equivalence between those sets must be checked
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Figure 4.6: Proposed equivalence checking flow between two behavioral level designs

in bit-level.

4.3.2 Generation of a Controller for a Given Datapath

As mentioned in Section 4.2.2, a similar method to NISC compiler can be used

to generate a controller for a given datapath. With the following limitations, the

scheduling method of NISC compiler can be directly applied.

• Buses can only be used to transmit inputs, outputs, and status signals to the

controller

• Use of datapath memories is prohibited (since it cannot be represented by

FSMD)

• Delay of functional units can be neglected (since we do not have to consider

the performance)

As the next step, each of generated control words is divided into signals to mul-

tiplexers and next values of the program counter. The signals to the multiplexers

correspond to the control signals in Figure 3, and the next values of the program

counter corresponds to the next states of the controller. Therefore, an RTL con-

troller without control memory can be easily generated from them.

However, the above method fails in the following cases.
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• Optimizations with limitations of input values, such as bit-width reduction

and table-lookup division, are applied

• Precisions of variables or operations are different in two designs, such as float-

ing value and fixed-point value.

• Operations of corresponding computations are different in two designs, such

as constant multiplication, and bit-shift with addition

Since two designs are not logically equivalent in the first two cases, the proposed

method cannot handle them.

For the last case, the controller generation method can be extended by giving

information about equivalences of operations. When such information is appended,

the correctness in bit-level must be guaranteed since it affects the accuracy of equiv-

alence. The correctness can be checked with decision procedure (SMT solver), such

as CVC3[40]. However, this solution is difficult to be applied when an external

tool such as NISC compiler is used since the information about equivalences of op-

erations must be given internally. For such a case, some circuits which perform

the lacking computations to the datapath can be added, and a controller for the

modified datapath is re-generated.

4.4 Equivalence Checking of RTL models which

have same datapaths

4.4.1 Equivalence Checking in Bit-Level Accuracy

As shown in Figure 4.5 and Figure 4.6, inputs of the final step of the verification flows

are RTL models which have identical datapaths. Since the datapaths are identical,

any two same control signals represent a same behavior executed by a same set of

functional units. Since operations executed by those control signals are equivalent

in bit-level, word-level equivalence checking methods such as symbolic simulation

can be applied with bit-level accuracy guaranteed.

However, this bit-level accuracy may be too limited to verify various designs. In

such a case, equivalences among operations executed by different sets of functional
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units can be checked. Some candidates to be checked are listed below. All operations

are written in Lisp-like style.

• Commutative law

e.g. (+ a b) ≡ (+ b a)

• Scalar multiplication executed by addition ×n

e.g. (∗ a 2) ≡ (+ a a)

• Scalar multiplication executed by shift + addition

e.g. (∗ a 5) ≡ (+ (<< a 2) a), where << represents a shifter-left operation.

Such equations can be checked by equivalence checkers for combinational circuits.

Operations of a datapath are fixed with a given control signals, and the equivalence

between circuit portions which are related to the operations corresponding to an

equation can be checked. These portions must be combinational circuits. The

details of this method is explained in Section 4.4.2.

As described in Section 4.3.2, equivalence of operations is considered in both the

controller generation stage and this equivalence checking stage. If much equivalence

is considered in one stage, the effort of the other stage is reduced. However this stage

is required when there are multiple ways to perform an operation in a datapath (e.g.

both a multiplier and a shifter exist in the datapath for constant multiplication) since

the operation can be mapped differently in two designs with the method in Section

4.3.2. In such a case, verification with the method described in this section can be

performed.

4.4.2 Equivalence Checking of Different Control Signals

As explained in Section 4.4.1, bit-level analysis is required to prove equivalences

among different sets of control signals. Here, such equivalences are checked with

existing combinational equivalence checking technique.

A control signal determines the behavior executed in a datapath at a single cycle.

A behavior at a single cycle can be considered as signal transitions from the outputs

of data registers to the inputs of the registers. No other registers exist between
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the outputs and the inputs, and the circuit portion between them is a combina-

tional circuit. Then, comparison between computations of two control signals can

be performed by combinational equivalence checking techniques. Though such com-

binational equivalence checkings are performed in bit-level accuracy, state-of-the-art

combination equivalence checkers can handle large circuits more than million gates.

Therefore, this method can also handle large datapath circuits. Even in a case that

a single control signal corresponds to a sequence of control signals, this method can

be applied by unrolling the circuit for the number of control signals in the sequence.

This method is composed of the following four steps.

1. The datapath circuit is unrolled for the length of each control signal sequence.

2. The multiplexer connections in the unrolled circuits are fixed with the control

signals, and portions where signals are not transmitted are removed.

3. Registers are removed from the circuits to be combinational circuits.

4. The equivalences between those unrolled circuits are checked by existing com-

binational equivalence checkers.

Since this method based on signal transitions among registers which is the basic no-

tion of sequential circuit, it can handle pipe-line circuits and multi-cycle operations.

Example An example of the equivalence checking between different control signals

is shown with the design whose datapath is shown in Figure 4.7. a[8], b[8], c[8] are

8-bit registers, mult1[8], add1[8], shiftl1[8] are multiplier, adder, and left shifter

whose inputs and outputs are 8-bit. mux1[8] − 3[8] are three 8-bit multiplexers,

and cd1 − 4 are control signals for them from a controller. When values of some

control signals are 1, the corresponding multiplexer lines are connected, and signals

are transmitted.

In this circuit, an expression a[8] × 8′h05 where a is an integer number, can be

performed by two ways of computations such that

mult1[8](a, 5)

add1[8](a, shiftl1[8](a, 8′h02))
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Figure 4.7: An example of datapath for bit-level analysis

This is included in the listed equivalence candidates in Section 4.4.1. The sequence

of control signal values to execute each computation is shown as follows.

• mult1[8](a[8], 8′h05) : (cd1, cd2, cd3, cd4) = (0, 0, 1, 0)

• add1[8](a[8], shiftl1[8](a[8], 8′h05)) : (cd1, cd2, cd3, cd4) = (0, 1, 0, 0), (0, 1, 0, 0)

The first computation takes one cycle, and the second computation takes two cy-

cles. The equivalence checking method explained in this section is applied to those

sequences of control signal values.

Figure 4.8 shows the flow to convert the first sequence of control signal values

into a combinational circuit. Since the first sequence only includes one control signal

value, the datapath does not have to be unrolled. The multiplexers in Figure 4.7 are

connected as the control signal values shown at the left hand side in Figure 4.8. The

portions where signals are not transmitted are removed from the circuit as shown in

the upper circuit of Figure 4.8. Registers are removed from the circuit, and finally

the lower circuit in Figure 4.8 is generated.

Similarly, the second sequence of control signal values are converted into a com-

binational circuit as shown in Figure 4.9. Since the sequence takes two cycles, the

datapath is unrolled for two cycles. For each cycle, multiplexers in Figure 4.7 are

connected as the control signal value shown at the left hand side in Figure 4.9. Af-

ter removing the portions where signals are not transmitted, the upper two circuits
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Control signals at cycle 1
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Figure 4.8: A set of control signals and the generated combinational circuit

in Figure 4.9 are generated. Those circuits are connected, and the registers are

removed. Finally, the lower circuit in Figure 4.9 is generated.

As the final step, those generated two combinational circuits are compared by

existing combinational equivalence checkers. This equivalence checking is performed

in bit-level accuracy.

4.4.3 Input of Equivalence Checking

Two RTL models which are inputs of the equivalence checking stage are represented

by FSMDs. Since the RTL models have already been separated to controllers and

datapaths, they can easily be described in FSMDs. For instance, an RTL design

shown in Figure 4.2 having a datapath shown in Figure 4.3 can be described with

an FSMD shown in Figure 4.10. A behavioral description in Figure 4.1 can be also

converted to an RTL model by synthesizing the description by NISC compiler for

the datapath shown in Figure 4.3. NISC compiler generates a set of control signals

for the datapath whose behavior is equivalent to the behavioral description. An

example of the generated control signals are shown at the upper side in Figure 4.11.

This control signal set can also be represented by FSMD as shown at the lower side

in Figure 4.11.
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Figure 4.9: The other set of control signals and the generated combinational circuits
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Figure 4.10: The FSMD of the design in Figure 4.2

In those FSMDs, functional units in the RTL datapaths are represented by op-

erators in F . Some functions can be considered as identical functions if they are

proved to be equivalent by the process described in Section 4.4.2. It is also as-
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Figure 4.11: An output of NISC compiler and the corresponding FSMD

sumed that correspondences of inputs and outputs between two FSMDs are known.

These correspondences are required to define the equivalence of two designs. In the

proposed method, these correspondences must be given by users.

4.4.4 Definition of Equivalence

In this section, some notations and equivalences are defined. Also, equivalences of

inputs and outputs which must be given by users are explained.

From this section, a symbol X1 denotes a symbol X of the first design, and a

symbol X2 denotes a symbol X of the second design. Two FSMDs M1 and M2 are

compared. Since the datapaths of M1 and M2 are same, the equivalence of the two

designs’ functions, F1 = F2, can be assumed and they can be described with F .

First, symbolic values of expressions are defined.
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Definition 7 (Symbolic value at state). Let

ZS ⊆ (E1 × S1) ∪ (E2 × S2)

denote a set of symbolic values at states, and (e, s) ∈ ZS denote the symbolic value

of an expression e at a state s. Since (e, s) is symbolic, it represents all values of e

at s. Concrete values and a number of arrival times are abstracted.

(e1, s1) ∈ ZS and (e2, s2) ∈ ZS are equivalent when the following conditions are

satisfied.

• Conditions to reach s1 and s2 from the initial states for the same number of

times are equivalent.

• Values of e1 and e2 are always equivalent when the FSMD(s) arrives at s1 and

s2 for the same number of times, respectively.

This equivalence is denoted by an operator “≡” as

(e1, s1) ≡ (e2, s2)

For example, in Figure 4.12, (a, s2) ≡ (b, sb) is true when the inputs in1 and

in2 are corresponding. Here, the values of in1 and in2 at k-th cycle are represented

by ink
1 and ink

2 , respectively. The conditions to reach s2 and sb for n times are as

follows.

n−1∧
i=1

ini
1

n−1∧
i=1

ini
2

Thus, the first condition of the definition is satisfied. The values of a and b on nth

arrivals at s2 and sb, respectively, are both n. Therefore, the second condition is

satisfied, and the equivalence is valid.

Definition 8 (Symbolic value on transition). Let

ZT ⊆ (E1 × T1) ∪ (E2 × T2)
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Figure 4.12: Example for Equivalence Definitions

denote a set of symbolic values on sequences of state transitions, and a pair (e, t) ∈
ZT denote the symbolic value of an expression e on a sequence of state transition

t = (s0, s1, · · ·, sn). Since (e, t) is symbolic, it represents all values of e at sn ∈ S

when M1 or M2 transits through t. Concrete values and a number of transition

times are abstracted.

(e1, t1) ∈ ZT and (e2, t2) ∈ ZT are equivalent when the following conditions are

satisfied.

• Conditions to transit through t1 and t2 from the initial states for the same

number of times are equivalent.

• If t1 = (s10, s11, · · ·, s1n) and t2 = (s20, s21, · · ·, s2m) are true, then the values

of e1 and e2 are always equal when arriving at s1n, s2m for the same number

of times, respectively.

This equivalence is denoted by an operator “≡” as

(e1, t1) ≡ (e2, t2)

For example, in Figure 4.12, (a, (s2, s2)) ≡ (b, (sb, sb)) is true when in1 and in2

are corresponding. Conditions to transit through the transitions (s2, s2) and (sb, sb)

for n times are as follows.
n∧

i=1

ini
1

n∧
i=1

ini
2
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Then the first condition of the definition is satisfied. The values of a and b on nth

arrivals at s2 and sb, respectively, are both n. Therefore, the second condition is

satisfied, and the equivalence is valid.

Any function can be applied to those symbolic expressions, (e1, s1) ∈ ZS and

(e, t) ∈ ZT . If all argument expressions of a function are at a same state or on a

same transition, such a function can be considered as a function at the state or on

the transition. This can be represented by the next equations.

(f (e1, s) (e2, s) · ··) ≡ ((f e1 e2 · ··), s)
(f (e1, t) (e2, t) · ··) ≡ ((f e1 e2 · ··), t)

where f ∈ F , e1, e2, ... ∈ E, s ∈ S, t ∈ T , and functions are represented by a

Lisp-like style.

In addition, when two symbolic values z1, z2 ∈ ZS ∪ZT are equivalent and a part

of a symbolic value z3 ∈ ZS ∪ ZT corresponds to z1, the part can be substituted as

the substitution of z1 with z2. z3s before and after the substitution are equivalent.

For example, when (e1, s1) ≡ (e2, s2) is true, ((f e1), s1) ≡ ((f e2), s2), where f ∈ F ,

is clearly proved to be true by substituting e1 at s1 with e2 at s2.

Next, two types of equivalence classes each of which represents a set of equivalent

symbolic values are defined.

Definition 9 (Equivalence class). Equivalence class of states is a set ZS1 ⊆ ZS

that all contained elements are equivalent. Similarly, equivalence class of sequences

of state transitions is a set ZT 1 ⊆ ZT where all contained elements are equivalent. If

same elements are contained in more than one equivalence classes, those equivalence

classes can be merged to a single equivalence class.

With those equivalence classes, correspondences of inputs and outputs which are

given by users are described as follows.

{{(in1i, s1ini
), (in2i, s2ini

)}|1 ≤ i, in1i ∈ I1, in2i ∈ I2, s1ini
∈ S1, s2ini

∈ S2}
{{(out1i, s1outi), (out2i, s2outi)}|1 ≤ i, out1i ∈ O1, out2i ∈ O2, s1outi ∈ S1, s2outi ∈ S2}

s1ini
and s2ini

are states where the ith inputs are valid, respectively. s1outi and s2outi

are states where the ith outputs are valid, respectively.

Finally, the equivalence of two designs (FSMDs) is defined as follows.
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Definition 10 (Equivalence of FSMDs). Two FSMDs M1 and M2 are equivalent

when the next equation is true.

∧
i

((in1i, s1ini
) ≡ (in2i, s2ini

)) =⇒∧
i

((out1i, s1outi) ≡ (out2i, s2outi))

where in1i ∈ I1 and out1i ∈ O1 are the i th input and output of M1, respectively,

and in2i ∈ I2 and out2i ∈ O2 are the i th input and output of M2, respectively.

Therefore, in the proposed method, equivalences between all corresponding out-

puts of two designs are checked under an assumption that all corresponding inputs

of the two designs are equivalent.

4.4.5 Equivalence Checking of Symbolic Expressions

To apply the equivalence checking method explained in the latter two sections,

equivalences of the symbolic expressions are checked. This section explains a method

to check the equivalence of the symbolic expressions for states or sequences of state

transitions defined in the previous section.

A symbolic expression consists of an expression (e ∈ E), and a state(s ∈ S) or a

sequence of state transition (t ∈ T ), and an expression consists of a combination of

variables, inputs, outputs, function calls, and sub expressions.

With the relation described in the previous section, a function at a state or on

a sequence of state transitions, such as ((f e1 e2 · ··), s) or ((f e1 e2 · ··), t), where

f ∈ F , e1, e2, · · · ∈ E, s ∈ S, t ∈ T , can be converted into (f (e1, s) (e2, s) · ··) or

(f (e1, t) (e2, t) · ··), respectively. This conversion is repeatedly applied to symbolic

expressions while it can be applied.

Then, the expressions are represented only by variables at states, variables on

sequences of state transitions (they are denoted as symbolic variables), and functions

which are applied to those symbolic variables. Here, a symbolic variable is treated

as a unit, and same symbolic variables (same variables at same states or on same

sequences of state transitions) are equivalent.

With a conversion of each unit into a variable and each function into an Uninter-

preted Function(UF), decision procedures for a Logic of Equality with Uninterpreted

Function(EUF)[26] can be applied to check the equivalence. If an EUF formula that
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says two symbolic expressions are equivalent is valid, the two symbolic expressions

are proved to be equivalent.

Here, it is important to make as much functions as possible same UFs to improve

the possibility to prove such equivalences. As explained in Section 4.3, computations

with same control signals from controllers can be converted into same UFs after

the conversion which makes two designs have identical datapaths. In addition,

expressions which are proved to be equivalent in Section 4.4.1 can be converted into

the same UFs.

Symbolic expressions in an equivalence class are also assumed to be equivalent

when the validities of the EUF formulas are checked. Practically, this step is per-

formed with decision procedures (SMT solvers) which can handle EUF, such as

CVC3[40].

4.4.6 Equivalence Checking of FSMDs by Symbolic Simu-
lation

In this section, the method to apply equivalence class based symbolic simulation

is explained. It has been introduced in Section 2.4, but modified to check the

equivalence of FSMDs defined in Section 4.4.4.

Before the verification, all loops must be unrolled since symbolic simulation

cannot handle them. The verification is performed by the following steps.

1. From the initial states, transitions are traversed forwardly with getting equiv-

alences of left-hand sides and right-hand sides of assignments. The left-hand

side data register value at the next state is equivalent to the right-hand side

expression value at the current state. The left-hand side output value at the

current state is equivalent to the right-hand side expression value at the current

state.

2. When there are more than one next states, the current checking process forks.

3. FSMDs are equivalent when the equivalence of FSMDs (Definition 10) is sat-

isfied in all checking processes.
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Figure 4.13: Example 1

An example of the verification is shown with the two FSMDs in Figure 4.13.

s1, s2, s3 ∈ S1 and sa, sb, sc ∈ S2 are states, x ∈ V1 and y ∈ V2 are data registers,

in1 ∈ I1 and in2 ∈ I2 are corresponding inputs, out1 ∈ O1 and out2 ∈ O2 are

corresponding outputs, 0, 1, 2 ∈ K1∩K2 are constants, and +,× ∈ F denote addition

and multiplication, respectively. The given initial equivalence class is

{(in1, s1), (in2, sa)}

The output equivalence to be proved is

(out1, s3) ≡ (out2, sc)

First, from the assignments in s1 and sa, the following equations are proved to

be true.

(x, s2) ≡ ((× in1 2), s1)

(out1, s1) ≡ 0

(y, sb) ≡ (in2, sa)

(out2, sa) ≡ 0

Then, with substitutions, the equivalence classes become as follows.

{(in1, s1), (in2, sa), (y, sb)}
{(x, s2), ((× in1 2), s1), ((× y 2), sb)}}
{(out1, s1), (out2, sa), 0}
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Next, from the assignments in s2 and sb, the following equations can be obtained.

(x, s3) ≡ ((+ x 1), s2)

(y, sc) ≡ ((+ (× y 2) 1), sb)

(out1, s2) ≡ 0

(out2, sb) ≡ 0

Then, with substitutions, the equivalence classes become as follows.

{(in1, s1), (in2, sa), (y, sb)},
{(x, s2), ((× in1 2), s1), ((× y 2), sb)},
{(x, s3), ((+ x 1), s2), ((+ (× y 2) 1), sb)},
{(y, sc), ((+ (× y 2) 1), sb)}}
{(out1, s1), (out2, sa), (out1, s2), (out2, sb), 0}

Since the third and forth equivalence classes include the same entry, those can be

merged.

From the assignment in s3 and sc, the following equations are generated.

(out1, s3) ≡ (x, s3)

(out2, sc) ≡ (y, sc)

Then, with substitutions, the equivalence classes becomes as follows.

{(in1, s1), (in2, sa), (y, sb)},
{(x, s2), ((× in1 2), s1), ((× y 2), sb)},
{(x, s3), ((× x 1), s2), ((+ (× y 2) 1), sb), (y, sc), (out1, s3), (out2, sc)}
{(out1, s1), (out2, sa), (out1, s2), (out2, sb), 0}

Since the third equivalence class includes both (out1, s3) and (out2, sc), M1 and M2

are proved to be equivalent for the given equivalence specification.

As mentioned in Section 4.1, this method is fast and reasonable when there are a

small number of control branches and loops whose numbers of iterations are small.

In addition, if there are infinite loops, the correctness of the results is guaranteed

only up to the unrolling number can be got. For such cases, a rule-based method is

proposed in the next section.
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4.4.7 Rule-Based Equivalence Propagation

In this section, a rule-based equivalence checking method is proposed. This method

can be applied to FSMDs directly, and five rules explained below propagate the

equivalences of inputs to those of outputs.

Rule for Output Assignments

Rule 1. Let s ∈ S be a state, and a ∈ AO be an assignment to an output at the

state which satisfies (s, a) ∈ P . Next, let o ∈ O be an output, and e ∈ E be an

expression which satisfy (o, e) = LA(a). Then the next equation is true.

(o, s) ≡ (e, s)

Proof. Since an assignment to an output at a state is always performed when the

FSMD reaches the state, and the output value is updated immediately. Therefore,

the left-hand side and the right-hand side of the assignment must be identical value

at the state.

This rule simply expresses the relationship between left-hand sides and right

hand sides of assignments to outputs. Since the value of the left-hand side outputs

are updated immediately to the value of the right-hand side expressions when states

include those assignments are reached.

In the example FSMDs in Figure 4.13 which were used to explain the symbolic

simulation based method, outputs are out1 and out2. From this rule, the following

equations are generated for those outputs.

(out1, s1) ≡ 0

(out1, s2) ≡ 0

(out1, s3) ≡ (x, s3)

(out2, sa) ≡ 0

(out2, sb) ≡ 0

(out2, sc) ≡ (y, sc)

Those equations are generated from the assignments at s1, s2, s3, sa, sb, sc, respec-

tively.
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Rule for Data Register Assignments

Rule 2. If r = (s1, s2) ∈ R satisfies the following equation

{∀sa ∈ S, (sa �= s2)→ ((s1, sa) /∈ R)} ∧ {∀sb ∈ S, (sb �= s1)→ ((sb, s2) /∈ R))}

then the next equation is true.

∀a ∈ AV , ∀v ∈ V, ∀e ∈ E, {((s1, a) ∈ P ∧ a = (v, e))→ ((v, s2) ≡ (e, s1))}

Proof. r is the only transition from s1, and it is also the only transition to s2.

Therefore, when M1 or M2 reaches to s1, it always reaches to s2 after the next

transition. Then, the transition condition to reach s1 and s2 for the same number

of times from the initial state must be equivalent. Also, the values of the data

registers at the left-hand sides of the assignments are always updated to the values

of the right-hand sides after the transition. Therefore, the value of v at s2 is always

equivalent to that of e at s1 when the FSMD arrives at s1 and s2 for the same

number of times, respectively. Since the two conditions in Definition 8 are satisfied,

(v, s2) ≡ (e, s1) are true.

From the FSMDs in Figure 4.13, this rule generates the following equations.

(x, s2) ≡ ((× in1 2), s1)

(x, s3) ≡ ((+ x 1), s2)

(y, sb) ≡ (in2, sa)

(y, sc) ≡ ((+ (× y 2) 1), sb)

This rule and Rule 1 correspond to symbolic simulation applied in the previous

section. Therefore, the combination of above equations and those of Rule 1’s example

return the same results.

Combination of Rule 1 and Rule 2 returns the same results as that of symbolic

simulation as introduced in the previous section, unless conditional branches exist

in FSMDs.
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Rule for Sequence of State Transitions

Rule 3. Let t1 and t2 be sequences of state transitions such that:

t1 = (s10, s11, · · ·s1m) ∈ T1

t2 = (s20, s21, · · ·s2n) ∈ T2

Let c1i and c2i be transition conditions for each transitions in t1 and t2, respectively,

such that

c1i = Q((s1i, s1i+1)) ∈ E2|0 ≤ i ≤ m− 1

c2i = Q((s2i, s2i+1)) ∈ E2|0 ≤ i ≤ n− 1

When t1 and t2 are assumed to be executed, Rule 2 can be applied for all states

in them since there are no joins and branches. Rule 1 can also be applied for all

states. Under the assumption, for each (e1, e2) ∈ E1 ×E2, if the following equation

is true,

⎧⎨
⎩

∧
0≤i≤m−1

((c1i, s1i)) ≡
∧

0≤i≤n−1

((c2i, s2i))

⎫⎬
⎭ ∧ ((e1, s1m) ≡ (e2, s2n))

then (e1, t1) ≡ (e2, t2) is satisfied, where
∧

represents AND.

Proof. If the second half part of the equation is true, transition conditions to reach

the last states in t1 and t2 for the same number of times from the initial states must

be equivalent from Definition 7. From this part, the second condition in Definition

8 is also satisfied. In addition, transition conditions between t1 and t2 are equivalent

from the first half part of the equation. Then, with taking conjunction of those

transition conditions, respectively, the conditions to transit t1 and t2 for the same

number of times from the initial states become equivalent. Then, the first condition

in Definition 8 is satisfied. Since the two conditions in Definition 8 are satisfied,

(e1, t1) ≡ (e2, t2) is proved to be true.

Figure 4.14 shows an example where Rule 3 can be applied. s1, s2 ∈ S1 and

sa, sb, sc ∈ S2 are states. a, x ∈ V1 and y, b ∈ V2 are data registers. +, >∈ F denote
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addition and greater than operation, respectively. 1 ∈ K1 ∩K2 is a constant. An

initial equivalence class is given as follows:

{(x, s1), (y, sa)}

First, let’s assume that M1 transits through t1 = (s1, s2), and M2 transits through

t2 = (sa, sb, sb, sc). Then, with applying Rule 1, the following equivalence classes

can be obtained.

{(x, s1), (y, sa), (b, sb)}
{(a, s2), ((+ x 1), s1)}
{(b, sc), ((+ b 1), sb)}

Since ((> x 1), s1) ≡ ((> y 1), sa) becomes true from the first equivalence

class, the transition conditions are equivalent. From a substitution and a merger,

he following equivalence class is also generated.

{(a, s2), ((+ x 1), s1), (b, sc), ((+ b 1), sb)}

Therefore, (a, s2) ≡ (b, sc) is true. Finally, (a, t1) ≡ (b, t2) is proved by Rule 3.

Rule for State

Rule 4. Let Ta ⊆ T be a set of sequences of state transitions, STa ⊆ S be a set of

states included in the transitions of Ta, and s ∈ S be a state. If there is no sequence
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of state transitions t ∈ T whose first state is s and the states in t are not included

in STa , Ta covers all paths to s.

Let Ta1 and Ta2 denote sets of sequence of states transitions such that

Ta1 = {t1i|0 ≤ i ≤ m− 1, t1i ∈ T1}
Ta2 = {t2i|0 ≤ i ≤ n− 1, t1i ∈ T2}

which reach states s1 ∈ S1 and s2 ∈ S2 with covering all paths to s1 and s2,

respectively.

Then the next formula is true.{
(m = n) ∧

m−1∧
i=0

((e1, t1i) ≡ (e2, t2i))

}
→ (e1, s1) ≡ (e2, s2)

where e1 ∈ E1 and e2 ∈ E2.

This rule shows that if all paths to s1 and s2 have corresponding paths where e1

and e2 are equivalent, then the values of e1 at s1 and e2 at s2 are always equivalent.

In this rule, the number of corresponding paths in the two FSMDs must be same. It

means FSMDs which have the same structures of conditional branches can be verified

with this rule. This limitation is also valid in Rule 4, since Rule 3 is performed to

apply Rule 4.

Proof. Each equivalence of corresponding sequences of state transitions shows that

the transition conditions to transit through those transitions from the initial states

are equivalent, respectively. Therefore, the orders to reach s1 and s2 among those

corresponding transitions are fixed, and completely equivalent in each pair of cor-

responding transitions. Then, the first condition in Definition 8 is satisfied. The

second condition in Definition 8 is also clearly satisfied by the equivalences of e1 and

e2 on corresponding sequences of state transitions. Therefore, both the conditions

in Definition 7 are satisfied, and (e1, s1) ≡ (e2, s2) is proved to be true.

Figure 4.15 shows an example where Rule 4 can be applied. s1, s2, s3,∈ S1 and

sa, sb, sc ∈ S2 are states, and a ∈ V1 and b ∈ V2 are data registers. t1 = (s1, s3),

t2 = (s2, s3), ta = (sa, sc), and tb = (sb, sc) are sequences of state transitions. Here,
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Ta1 = {t1, t2} and Ta2 = {ta, tb} cover all paths to s3 and sc, respectively. Assume

that the following equivalence classes have already been proved.

{(a, t1), (b, ta)}
{(a, t2), (b, tb)}
{(a, t3), (b, tc)}

Then, all the paths to s3 and sc have corresponding paths where a and b are equiv-

alent. From Rule 4, (a, s3) ≡ (b, sc) is true.

Rule for Loop The last rule is for FSMDs which have loops such as M1 and M2

in Figure 4.16. The equivalence of such FSMDs cannot be proved only with Rule

1∼4 since previous results of the computation are used in each iteration. The next

rule can be applied in such cases.
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Rule 5. Let s1 ∈ S1 and s2 ∈ S2 denote one of the states in different loops,

respectively. Let T11 = {t1i |1 ≤ i ≤ l, t1i ∈ T1} and T12 = {t2i |1 ≤ i ≤ m, t2i ∈ T2}
denote sets of sequences of state transitions reaching s1 and s2 which cover all paths

from the inside of the loops to s1 and s2, respectively. Let T13 = {t3i |1 ≤ i ≤
n, t3i ∈ T1} and T14 = {t4i |1 ≤ i ≤ k, t4i ∈ T2} also denote sets of sequences of state

transitions reaching s1 and s2 which cover all paths from the outside of the loops to

s1 and s2, respectively.

Then, (e1, s1) ≡ (e2, s2) where e1 ∈ E1, e2 ∈ E2 is true when the following two

conditions are satisfied.

• The next equation is true

(n = k) ∧
n∧

i=1

((e1, t
3
i ) ≡ (e2, t

4
i ))

• Under an assumption that (e1, s1) ≡ (e2, s2) is true, the next equation is true

with Rule 1∼4.

(l = m) ∧
l∧

i=1

(e1, t
1
i ) ≡ (e2, t

2
i ))

Proof. This rule is proved with unrolling the loops as shown in Figure 4.17 and the

following induction. Let is1,
i s2 denote ith s1 and s2 after the loops are unrolled,

respectively. Let it1j ,
i t2j also denote ith t1j and t2j . The first condition in Rule 5 is the

basic case which proves (e1,
1 s1) ≡ (e2,

1 s2) by Rule 4. The second condition is the

inductive step which proves (e1,
i+1 s1) ≡ (e2,

i+1 s2) by Rule 4 under the assumption

(e1,
i s1) ≡ (e2,

i s2). Therefore, the next equation is inductively proved.

∞∧
i=1

(e1,
i s1) ≡ (e2,

i s2)

This is equivalent to (e1, s1) ≡ (e2, s2).

As written in the proof, equivalences are propagated from the assumption to

apply Rule 4 for the state s1 and s2 in the inductive step. This propagation is

performed by applying Rule 1∼4 multiple times. Here, only the assumption has to

be finally proved, and the way to apply Rule 1∼4 does not have to be considered.

Then, only the final step where Rule 4 is applied is defined in the rule. Therefore,
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Figure 4.17: Loop unrolling for the proof of Rule 5

the first states of t1i and t2i in the rule can be arbitrary states in the insides of the

loops.

With this rule, the equivalence of M1 and M2 in Figure 4.16 can be proved.

s1, s2, s3 ∈ S1 and sa, sb, sc ∈ S2 are states. in1 ∈ I1 and in2 ∈ I2 are corresponding

inputs. out1 ∈ O1 and out2 ∈ O2 are corresponding outputs. a ∈ V1 and b ∈
V2 are data registers. 0, 2 ∈ K1 ∩ K2 are constants. +, ∗ ∈ F are addition and

multiplication, where (+ x x) = (∗ x 2) for x ∈ V has already been proved to be

equivalent.

Initial equivalence class is

{(in1, s1) ≡ (in2, sa)}

The goal is to prove (out1, s3) ≡ (out2, sc).

First, the following equation is proved with Rule 3.

(a, (s1, s2, s3) ≡ (b, (sa, sb, sc)) (4.1)

Next, Rule 5 is applied to prove the next equation

(a, s3) ≡ (b, sc) (4.2)

Basic Case 　

Equation 4.1 satisfies the first condition of Rule 5.
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Inductive Step 　

Equation 4.2 is assumed. Under the assumption, the next equation is proved

with Rule 3.

(a, (s3, s2, s3)) ≡ (b, (sc, sb, sc)) (4.3)

With Equation 4.3, the second condition of Rule 5 is satisfied.

Then, Equation 4.2 is proved by Rule 5 so that Equation 4.3 is also satisfied.

Next, the following equations are proved on states s3 and sc, respectively, from

Rule 1.

(out1, s3) ≡ (a, s3) (4.4)

(out2, sc) ≡ (b, sc) (4.5)

Then, (out1, s3) ≡ (out2, sc) is proved by Equation 4.2, Equation 4.4, and Equation

4.5.

Now, the equivalence of outputs is proved and M1 and M2 are proved to be

equivalent.

This rule can handle nested loops by recursively applying the rule to inner loops

under the assumption of the inductive step.

Algorithm to Apply the Rules In this section, an algorithm to apply the pro-

posed five rules to designs is discussed. Types of designs which can be verified by

this rule-based method are also discussed.

Algorithm 7, Algorithm 8, and Algorithm 9 show a simple algorithm to apply the

proposed five rules. Algorithm 7 and Algorithm 8 are subroutines used in Algorithm

9.

This algorithms consist of the following four steps:

1. Equivalences of inputs given by users are added to the equivalence classes.

2. Rule 1 and Rule 2 are applied to all transitions (Algorithm 9).

3. Rule 3 and 4 are applied to each state (Algorithm 7).

4. Rule 5 is applied to prove the equivalence of loops (Algorithm 8).
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Algorithm 7 Sub1: Subroutine to apply Rule 3 and Rule 4
Require: zs ⊆ ZS {A set of existing equivalence classes for states}, zt ⊆ ZT {A set of

existing equivalence classes for sequence of state transitions}
1: loop
2: z′s ← ∅ ⊆ ZS {An local set of equivalence classes for states}
3: z′t ← ∅ ⊆ ZT {An local set of equivalence classes for sequence of state transitions}
4: for each (s1, s2) ∈ S1 × S2 do
5: t1 ← {t | t ∈ T1, Size(t) ≤ L,LastState(t) = s1} {Collect sequences of state

transitions reach s1 whose length is equal to or less than L}
6: t2 ← {t | t ∈ T2, Size(t) ≤ L,LastState(t) = s2} {Collect sequences of state

transitions reach s2 whose length is equal to or less than L}
7: for each (e2, e2) ∈ E1 × E2 | {(e1, s1), (e2, s2)} /∈ zs ∪ z′s do
8: for each (ta, tb) ∈ T1 × T2 | (e1, t1), (e2, t2)} /∈ zt ∪ z′t do
9: if Rule3(zs ∪ z′s, (e1, ta), (e2, tb)) =true then

10: z′t ← z′t ∪ {(e1, ta), (e2, tb)} {When equivalence is proved, an equivalence
class is added to the local set}

11: end if
12: end for
13: if zt ∪ z′t �= ∅ then
14: if Rule4(zt ∪ z′t, (e1, s1), (e2, s2)) = true then
15: z′s ← z′s ∪ {(e1, s1), (e2, s2)} {When equivalence is proved, an equivalence

class is added to the local set}
16: end if
17: end if
18: end for
19: end for
20: if z′s = ∅ then
21: return (z′s, z′t) {When no additional equivalence class is added, newly generated

equivalence classes are returned, and this routine finishes}
22: end if
23: end loop
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Algorithm 8 Sub2: Subroutine to apply Rule 5
Require: zs ⊆ ZS {Set of existing equivalence classes for states}, zt ⊆ ZT {Set of existing

equivalence classes for sequence of state transitions}, loop ∈ Loop {Current loop}
1: Loopsub ← getInnerLoops(loop) {Get the set of loops which are one level inner from

loop when it is not NULL. Otherwise, get the most outside loops}
2: loop
3: z′s ← ∅ ∈ ZS {An local set of equivalence classes for states}
4: z′t ← ∅ ∈ ZT {An local set of equivalence classes for sequences of state transitions}
5: for each loopsub ∈ Loopsub do
6: for each (s1, s2) ∈ loopsub do
7: t1 ← {t | t ∈ T1, Size(t) ≤ L,LastState(t) = s1, F irstState(t) /∈ loopsub}

{Collect sequences of state transitions reach s1 whose length is equal to or less
than L and first state is out of the loop}

8: t2 ← {t | t ∈ T2, Size(t) ≤ L,LastState(t) = s2, F irstState(t) /∈ loopsub}
{Collect sequences of state transitions reach s2 whose length is equal to or less
than L and first state is out of the loop}

9: for each (e2, e2) ∈ E1 × E2 | {(e1, s1), (e2, s2)} /∈ zs ∪ z′s do
10: for each (ta, tb) ∈ T1 × T2 | (e1, t1), (e2, t2)} /∈ zt ∪ z′t do
11: if Rule3(zs ∪ z′s, (e1, ta), (e2, tb)) =true then
12: z′t ← z′t∪{(e1, ta), (e2, tb)} {When equivalence is proved, an equivalence

class is added to the local set}
13: end if
14: end for
15: if zt ∪ z′t �= ∅ then
16: if Rule4(zt ∪ z′t, (e1, s1), (e2, s2)) = true then
17: zassumed ← {(e1, s1), (e2, s2)} ⊆ ZS {Basic case is proved, and an as-

sumption is made to prove inductive case}
18: (z′′s , z′′t ) ← Sub1(zs ∪ z′s ∪ zassumed) {Rule 3 and Rule 4 are applied to

prove inductive case}
19: if zassumed /∈ z′′s then
20: z′′s ∈ Sub2(zs ∪ z′s ∪ z′′s , zt ∪ z′t ∪ z′′t , loopsub) {If the assumption is not

proved, Rule 5 is incrementally applied to the inner loops}
21: end if
22: if zassumed ∈ z′′s then
23: z′s ← z′′s {If the assumption is proved, local equivalence classes are

updated}
24: z′t ← z′′t
25: end if
26: end if
27: end if
28: end for
29: end for
30: end for
31: end loop
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Algorithm 9 Algorithm to apply the rules
1: zs = ∅ ⊆ ZS {A set of equivalence classes for states}
2: zt = ∅ ⊆ ZT {A set of equivalence classes for sequences of state transitions}
3: zs ∈ GetInputEquivalenceClasses() {Add initial input equivalence classes given by

users}
4: for each (s, a) ∈ (S1 ×A2) ∪ (S2 ×A2) do
5: zs ∈ zs ∪Rule1(s, a) {Rule 1 is applied to check the equivalence of outputs for each

state}
6: zs ∈ zs ∪ Rule2(s, a) {Rule 2 is applied to check the equivalence of data registers

for each state}
7: if GetOutputEquvalenceClasses() ⊆ zs then
8: return true {Case that output equivalence could be proved only by Rule 1 and

Rule 2}
9: end if

10: (z′s, z′t)← Sub1(zs, zt) {Rule 3 and Rule 4 are applied by Algorithm 7}
11: zs ← zs ∪ z′s
12: zt ← zt ∪ z′t
13: if GetOutputEquvalenceClasses() ⊆ zs then
14: return true {Case that output equivalence could be proved without Rule 5}
15: end if
16: (z′s, z′t)← Sub2(zs, zt) {Rule 5 is applied by Algorithm 8}
17: zs ← zs ∪ z′s
18: zt ← zt ∪ z′t
19: if GetOutputEquvalenceClasses() ⊆ zs then
20: return true
21: else
22: return false
23: end if
24: end for
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Rule 5 is recursively applied to handle nested loops. Assumptions of the second

step of Rule 5 are incrementally made from outer loops to inner loops, and those

assumptions are guaranteed from that of the inner loops to that of the outer loops.

L is a parameter which defines the maximum length of sequences of state transitions

when Rule 3 is applied. If L becomes larger, the number of target sequences of state

transitions also becomes large, and the complexity becomes higher. Then, L should

be started from 1 and incremented until the equivalence is proved.

The termination of this algorithm is proved as follows. There are two infinite

loops at line 1 in Algorithm 7 and line 2 in Algorithm 8. Both of them break when

no more equivalence classes are generated in the loops. The number of equivalence

classes is finite since the number of equivalence candidates is finite. Also, the re-

cursive call of Sub2 eventually stops since the levels of multiple loops are finite.

Therefore, this algorithm must terminate.

Limitations Here, it must be mentioned that the proposed rule-based verifica-

tion method (including the five rules and the algorithm) is not complete. It just

says “equivalent” in particular cases when the rules can prove equivalences. In

other cases, the proposed method just says “indeterminable”. However, the propose

method is fast, and when a result is equivalent the result is guaranteed to be true.

By the proposed five rules to propagate equivalences, as mentioned in the expla-

nation of Rule 4, FSMDs which have same structures of conditional branches can be

verified. Note that lengths of transitions can be different between two FSMDs under

verification unless there are no branches in the transitions. Outsides and insides of

corresponding loops in two FSMDs must be also equivalent, respectively. Therefore,

the method can verify designs before and after scheduling, retiming, or some op-

timizations like common sub-expression elimination, unless such optimizations are

applied beyond loops.

4.5 Experimental Results

The verification flows shown in Section 4.3.1 was applied to realistic examples.
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4.5.1 Tool Implementations

To generate a controller for a given datapath (explained in Section 4.3.2), an on-line

NISC complier demo[163] was used. The separation of controllers and datapaths

of the designs, and the translation from RTL description into FSMD were done by

hand.

Two tools to check the equivalence of FSMDs had been implemented with C and

C++. One is a symbolic simulator in which the method described in Section 4.4.6

is implemented. The other is a rule-based verifier in which the method explained in

Section 4.4.7 is implemented. Both tools run on a PC with a 3GHz processor (dual

core) and 1GB memory.

4.5.2 Examples

Three examples, DCT (Discrete Cosine Transform), IDCT (Inverse Discrete Cosine

Transform), and Ellip (Elliptical Filter) were used. All examples are originally

written in C, and the details are in Table 4.1.

Optimizations and high-level syntheses were applied to those examples by hand.

Therefore, there are three versions for each example such as, (1) original design,

(2) design after behavioral optimization, (3) design after high-level synthesis. The

optimizations were removal of temporal variables, refinement of operations, and

others. All synthesized designs use the same datapath which is about 1000 lines in

Verilog, and those designs are pipelined. In all examples, variable names are not

corresponding. The numbers of states, inputs, outputs, and variables in translated

FSMDs are also shown in Table 4.1.
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4.5.3 Verification Results

For each example, it took about 10 seconds to synthesize each controller by NISC

compiler.

The verification time of equivalence checking between the FSMDs are shown in

Table 4.2. All results were equivalent, and they were correct. Since all examples

include loops, symbolic simulation could be applied only after unrolling the loops.

Since Ellip examples include infinite loops, they were unrolled for only 1-iteration.

Then the results are not complete. Rule-based verification could be successfully

applied to all examples directly. In these experiments, the parameter L in Algorithm

7 and Algorithm 8 was set to 1. Since the methods explained in Section 4.4.1 and

Section 4.4.5 were not implemented, equivalences of symbolic expressions were also

checked only with simple replacements of equivalent expressions in equivalent classes.

The results show that symbolic simulation could verify the DCT and Ellip exam-

ples faster since there are no conditional branches. Rule-based verification checks all

candidates of equivalence exhaustively. Moreover, when an equivalence of a candi-

date is proved, all other candidates are checked again since their equivalences can be

proved with the information of the newly proved equivalence. Then, each candidate

of equivalence may be checked multiple times. However, since symbolic simulation

checks the equivalences of expressions at states from the initial state only once for

each execution path, it is basically faster to verify designs without many conditional

branches than rule-based verification. In addition, if there are loops in target de-

signs, Rule 4 is applied for “number of states in loops× number of expressions”

times in the worst case. Then rule-based verification becomes much slower. How-

ever, even there are a lot of conditional branches in the IDCT examples, rule-based

verification could verify them within relatively short times which are not so differ-

ent from the other examples. Symbolic simulation could not verify them within

24 hours. This is because the complexity is square to the number of conditional

branches in rule-based verification, and exponential in symbolic simulation.

From these experimental results, the following facts could be confirmed.

• The overall proposed method can successfully applied to real designs.

• Verification time of rule-based verification is not strongly affected by the num-
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Table 4.2: Verification time of rule-based equivalence propagation

Example Target Symbolic Symbolic simu- Rule-based
simula- lation with verifi-

tion loop unrolling cation
DCT (1) vs (2) - < 1s 2.4s

(2) vs (3) - < 1s 3.1s
IDCT (1) vs (2) - > 24h 24.3s

(2) vs (3) - > 24h 30.8s
Ellip (1) vs (2) - < 1s 7.5s

(2) vs (3) - < 1s 7.9s

bers of conditional branches

• Rule-based verification can directly verify designs which include loops without

unrolling the loops.

4.6 Conclusion

In this chapter, a word-level equivalence checking method in bit-level accuracy with

synthesizing two designs with a same datapath was proposed. A new word-level rule-

based comparison method was also proposed, and the experimental results showed

that the proposed method is fast and it can verify some designs which cannot be

verified by symbolic simulation. Since the proposed method is a rule-based method

the range of verifiable designs can be expanded by introducing additional rules.
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Chapter 5

Formal Verification of
Hardware/Software Co-Design
with Translation into FSMD
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Figure 5.1: Typical hardware/software co-design implementation

5.1 Introduction

As mentioned in Section 1.1, currently one of the standard starting points of the

flow shown in Figure 1.1 is the design stages that software is written as a program

code and hardware is written as an HDL code in RTL. In such the design stages,

hardware and software portions are verified together to check the whole functionality

after verifying each part independently. Such the verification is more difficult than

the independent verifications because of the following two difficulties.

One is the communication between hardware and software parts. To verify the

whole functionality, models of the interface parts between hardware and software

must be created. Figure 5.1 shows a typical implementation of hardware/software

co-design. The hardware part is implemented as a specialized hardware module and

connected to a bus through an interface module. The software part is stored in a

memory to be executed by the processor. The hardware and software parts interact

through the bus interface using memory mapped I/O or interruption. On the precise

interface part model, the functionality of the processor, the bus controller, and the

interface module must be described.

The other is the differences of languages and abstraction levels between hardware

and software parts. For example, a program code written in ANSI-C does not have

the notion of time since only the order of execution is defined in program code. On

the other hand, a behavior at each clock cycle is written with HDL in RTL.
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Figure 5.2: Hardware/software co-simulation

In hardware/software co-simulation, a widely used technology for hardware/software

co-verification, those problems are solved with the simulation environment as shown

in Figure 5.2. In such a simulation environment, independent simulation environ-

ments of software and hardware are connected and co-executed through a communi-

cation model. Software part is executed on a debugger or Instruction Set Simulator

(ISS) after compilation and linking so that the precise behavior on the processor can

be simulated. Hardware part is executed on an HDL simulator which can simulate

the behavior after syntheses. Interface parts in Figure 5.1 are also used together

to simulate whole the behavior. There are many commercial products for hard-

ware/software co-simulation, such as Seamless[148] from Mentor Graphics.

One critical problem on hardware/software co-simulation is the simulation speed

which is usually much (about 10000 times) slower than that of actual chips. Though

acceleration methods [183, 141, 149, 72] have been widely researched, it is still

impossible to simulate all possible input sequences exhaustively. Therefore, corner-

case problem is also critical like verification of hardware or software.

As mentioned in Section 1.2, formal verification is a strong technique to apply

exhaustive analysis independent from input sequences. However, it is not widely

used for hardware/software co-designs because of the problems not only the two

mentioned above but also their computation amount. Since hardware/software co-

design includes hardware, software, and interface parts, its design size become mach

larger than each part. Since the computation amount of formal method increases

exponentially with design size, this problem is critical.

There are some existing works[176, 109] which try to solve those three problems.

In [176], both hardware and software parts are translated into a common representa-
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tion (S/N, the input language of a model checker COSPAN[67]). The interface part

between hardware and software parts is represented by an abstract model where soft-

ware and hardware portions are modeled as concurrent processes, memory-mapped

I/O is modeled as accesses to shared variables, and interruption is modeled with

an interruption controller model. In COSPAN, partial order reduction [166, 55]

technique is used to accelerate the verification. In [109], abstraction-refinement

framework for hardware-software co-design with assume-guarantee reasoning is also

proposed. However, those methods cannot solve the above three problems com-

pletely since the verification performance is still not enough even using those meth-

ods. In addition, those methods target on program code written in Executable UML

(xUML)[142] and it is not popular, and they also do not give detailed translation

methods.

The biggest problem among three is the computation amount. One reason except

design size is because the verification model is a concurrent model. Not only the

hardware and software parts are modeled as different processes, each interruption

sequence becomes additional process in [176, 109]. Then state explosion problem

may be caused since execution orders among those processes must be considered.

Partial order reduction can reduce the number of such states, but it is not effective

when interactions between hardware and software occur frequently.

Based on the above discussion, a framework to apply formal verification to hard-

ware/software co-design written in program code and HDL code in RTL is proposed

in this chapter.

In the proposed framework, both hardware and software parts are translated

into FSMD as the common representation. Since program code is much different

from FSMD, the translation from program code to FSMD is explained in detail.

During the translation into FSMD, interaction between hardware and software is

also modeled with a minimal model. Memory mapped I/O is modeled as accesses

to shared variables. The hardware part, the software part, and the interruption

sequences are translated to different concurrent processes.

After the translation, a sophisticated state reduction technique is applied to re-

duce the number of execution orders among the concurrent processes which must

be considered. First, synchronization points which restrict the execution order are
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detected. Such detection is performed with focusing on specific kinds of hardware-

software interaction processes, such as polling loop and interruption. Then, con-

ditions for the execution orders are generated from those synchronization points

and solved with an extension of the approach proposed in [144] using a Satisfia-

bility Modulo Theories (SMT) instead of Integer Linear Programming (ILP). This

sequentialization step exhaustively generates sequential processes each of which is

functionally equivalent to the set of original concurrent processes and satisfies the

conditions. Finally, a state merging technique with data dependence analysis is

applied to each of the generated sequential processes. The proposed methods are

preprocesses before applying formal verification. Then, the proposed framework can

use arbitrary back-end formal verification engines.

The differences from the existing works[176, 109] are as follows.

• The proposed method can handle designs whose software portion is written in

a C-based languages.

• Details of the translation and modeling processes are explained. Then the

proposed method can be directly applied to practical designs.

• The proposed state reduction technique works much better than existing meth-

ods, such as partial order reduction.

The organization of this chapter is as follows. First, in Section 5.2, existing

techniques used in the proposed method are introduced as basic notions. Second,

in Section 5.3, the proposed translation and state reduction methods are explained.

Then in Section 5.4, some experimental results with practical examples are presented

to show the effectiveness of the proposed method. Finally in Section 5.5, this chapter

is concluded.
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Figure 5.3: Memory Mapped I/O

5.2 Basic Notions

5.2.1 Modeling of Connection between Hardware and Soft-
ware

The interactions between hardware and software on hardware/software co-design

can be classified into memory mapped I/O and interruption.

As shown in Figure 5.3, in memory mapped I/O, some hardware resources are

assigned to the address space of a processor, and data transmission is performed

through the access to the addresses. Such functionality of memory mapped I/O

can be modeled as accesses to shared variables by treating each hardware resource

and corresponding assigned address as an identical resource[176]. Information of the

correspondences between hardware resources and assigned addresses are required to

apply such modeling. Since the actual components between hardware and software,

such as processor and bus, are not included in the model, unnecessary size increase

of the model can be avoided.

Figure 5.4 shows the functionality of interruption. When a interruption signal of

a processor is triggered by a hardware, the processor stops the execution of software

part, and runs a pre-defined interruption sequence. After the termination of the

interruption sequence, the software part execution is resumed. The occurrences of

interruptions can be controlled with masking specific processor registers or executing
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Figure 5.4: Interruption Driven I/O

interruption enabling/disabling functions. While interruption is disabled with such

a way, interruption does not occur even if the interruption signal is triggered. In

[176], each interruption sequence is modeled as an independent concurrent process,

and interruption signals are modeled as shared variables. An interruption scheduler

process is added to control the executions of software and interruption processes,

since software processes must be stopped while interruption processes are running.

In the proposed method, a similar modeling method is applied, but the additional

scheduler for interruption is not inserted since the scheduling is considered at the

sequentialization step. Since such a scheduler includes many dynamic behaviors,

such as priority control of interruptions, it does not suit to formal verification. The

proposed method handles those dynamic behaviors by converting them into static

ones through the execution order reduction technique so that formal verifiers do not

have to handle such dynamic issues.

5.2.2 Sequentialization of Concurrent Processes with Race
Condition Verification

Race condition is a situation that the result of an access to a shared resource can be

changed by the execution order of concurrent processes. Figure 5.5 shows a SpecC
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1 int main(){

2 int a = 0, b;

3 par{

4 a = 1;

5 b = a;

6 }

7 return b;

8 }

Figure 5.5: Example SpecC code having race condition

code which has a race condition since the return value of main function can be

changed with the execution order of two statements a = 1 and b = a under a par

statement which are executed concurrently.

In [114, 145], an equivalence checking method for designs which have concur-

rency is proposed. In their method, concurrent processes in a design are translated

into a single sequential process as a pre-process of the equivalence checking with

symbolic simulation. At the sequentialization step, synchronization verification in-

cluding deadlock and race condition validation proposed in [144] is applied. The

race condition validation checks the uniqueness of the execution order of each pair

of basic blocks (sequence of statements which does not include conditional branch

and synchronization) which access to a same shared resource. They check write/read

and write/write accesses, and does not check read/read accesses since the value of

the shared variable cannot be changed only with read accesses. The details of the

race condition validation are as follows.

Let B denote a set of basic blocks in a design, W denote a set of wait statements,

N denote a set of notify statements, and Sync ⊆ W × N denote synchronization

relation which defines pairs of corresponding wait and notify statements. T : W ∪
N → Z, where Z is a set of integers, is a function which returns an execution time

of a wait or notify statement. Tb : B → Z and Te : B → Z are functions return

the beginning time and the ending time of an argument basic block execution.

With the above definitions, formulae about execution timings are generated from

design descriptions. For an arbitrary basic block b ∈ B, the next condition is true
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since the beginning time of a basic block must be earlier than the ending time of

the basic block.

Tb(b) < Te(b)

For two basic blocks b1, b2 ∈ B which are executed sequentially, the next condition

is true since the execution of the second basic block starts after the execution of the

first basic block.

Te(b1) < Tb(b2)

Similarly, if a wait or notify statement s ∈W ∪N and a basic block b are executed

sequentially in the order s→ b, the next condition is true.

T (s) < Tb(b)

In the case that the execution order of the wait or notify statement and a basic

block is b→ s, the next condition is true.

Te(b) < T (s)

Since the execution timing of a wait statement is later than that of the corresponding

notify statement, the next equation must be true.

∀ < w, n >∈ Sync, T (w) > T (n)

With assuming all the above formulae are true, the satisfiabilities of the following

two conditions are checked for each pair of basic blocks < b1, b2|b1, b2 ∈ B > accessing

to a same shared variable to check the uniqueness of the execution order of them.

Tb(b1) > Te(b2)

Te(b1) < Tb(b2)

The first condition represents that the beginning time of b1 is later than the ending

time of b2, in other words, b1 is executed after the execution of b2 finished. The

second condition also represents that the ending time of b1 is earlier than beginning

time of b2, in other words, b1 execution always finishes before executing b2. This

process can be performed with Integer Linear Programming (ILP) solvers. In the
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case that one of the two conditions is satisfiable and the other is not, the execution

order of those two basic blocks is proved to be unique. When both the conditions

are satisfiable, the execution order is not unique and race condition occurs. The

case that both of them are unsatisfiable cannot happen. When the execution order

of all basic blocks in a concurrent design are proved to be unique, by sorting those

basic block in the order, we can sequentialize the design into a single process without

changing its functionality.

An example of sequentialization is shown with the code in Figure 5.6. This

example has two concurrent behaviors A and B which are synchronized with a pair

of wait and notify statements. Though these behaviors access to a same shared

variable x, the synchronization avoids race condition. From the code, the following

formulae are generated with the method explained above.

Tb(b0) < Te(b0)

Tb(b1) < Te(b1)

Tb(b2) < Te(b2)

Te(b0) < T (w1)

Te(b0) < Tb(b2)

T (w1) < Tb(b1)

Te(b2) < T (n1)

T (n1) < T (w1)

With assuming those formulae are true, the following two conditions are checked

since b1 and b2 access to a same shared variable x.

Tb(b1) > Te(b2)

Te(b1) < Tb(b2)

In this case, only the first condition is satisfiable. Therefore a sequentialized code

shown in Figure 5.7 is generated.

In the proposed method, this sequentialization is applied after detecting syn-

chronization points with using the information of those points. However, the above

method cannot be directly applied for the purpose since designs to be sequentialized
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1 main() {

2 x = 0; // b0

3 par {

4 A.main();

5 B.main();

6 }

7 }

8 behavior A {

9 main(){

10 wait(e); //w1

11 a = x + 10; // b1

12 }

13 }

14 behavior B {

15 main() {

16 x = 20; // b2

17 notify(e); //n1

18 }

19 }

Figure 5.6: Example SpecC code for sequentialization

1 main() {

2 x = 0; // b0

3 x = 20; // b2

4 a = x + 10; // b1

5 }

Figure 5.7: Sequentialized code from Figure 5.6

may include interruptions. Then the above method is extended to take interruption

priorities into account. Since the extended method uses logic of integer theory, Sat-

isfiability Modulo Theories (SMT) solvers are used instead of ILP solvers. In the

proposed method, the existing sequentialization method is also modified to generate

all possible execution orders giving different functional results, instead of giving up

sequentialization.
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5.3 Formal Verification Method Based on Trans-

lation into FSMD

Figure 5.8 shows the proposed verification flow. Inputs of the flow are a hardware

part and a software part of a hardware/software co-design which are written in

program code and RTL code, respectively.

First, the communication between hardware and software is abstracted with a

method similar to the one introduced in Section 5.2.1, and then the both parts are

translated into FSMDs. Next, synchronization points in the design are detected

among those FSMDs. With the information, a sequentialization method is applied,

and a set of sequential FSMDs is generated. Finally, a state merging technique based

on data dependency analysis is applied to reduce the number of states in the FSMD

set. Existing formal verification methods, such as model checking and equivalence

checking, can be directly applied to the FSMD set.

In this section, the details of each step of the flow in Figure 5.8 are explained.

In addition, the proposed method is compared with partial order reduction, and the

restriction on applying the proposed method is discussed. In the following sections,

it is assumed that the software program code is written in ANSI-C. However, the

same method can be also applied to other programming languages since the proposed

method does not have language specific.
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Table 5.1: Memory map for the design in Figure 5.9
Address HW resource name

0x2000000 in1
0x2000010 in2
0x2000020 out
0x2000030 str

5.3.1 Abstraction of Communication between Hardware and
Software

As the first step, the communication between hardware and software parts is ab-

stracted by a method similar to [176] introduced in Section 5.2.1.

In the proposed method, correspondences between addresses and assigned hard-

ware resources are described as a memory map. A memory map is a table shows

the correspondences. Such a memory map must be given by a user, but it is easy

since such correspondences are usually obvious. For example, in an example software

ANSI-C code shown in Figure 5.9, four addresses are assigned to hardware resources

and the accesses to those addresses are mapped to the virtual symbols HW IN1,

HW IN2, HW OUT, HW STR with define statements. This software code

communicates with an example hardware Verilog-HDL code shown in Figure 5.10.

Each of the virtual symbols in the software code has a corresponding hardware port.

This relation is represented in the memory map shown in Table 5.1.

With a memory map, the accesses to the addresses can be easily replaced with

symbols corresponding to hardware resources. As a result, the accesses to the ad-

dresses are represented by with the accesses to shared variables. In the 5.9, following

variable replacements are applied.

HW IN1→ in1

HW IN2→ in2

HW OUT → out

HW STR→ str

Then the software code in Figure 5.9 is modified to the code shown in Figure 5.11.
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1 #define HW_IN1 ((volatile char*)(0x20000000))

2 #define HW_IN2 ((volatile char*)(0x20000010))

3 #define HW_OUT ((volatile char*)(0x20000020))

4 #define HW_STR ((volatile char*)(0x20000030))

5 char i1, i2, i3, i4, o1, o2, done;

6 char proc(){

7 local_irq_disble();

8 HW_IN1 = i3;

9 HW_IN2 = i4;

10 done = 0;

11 STR = 1;

12 local_irq_enable();

13 o1 = i1 * i2;

14 o1 = o1 + 1;

15 while(!done);

16 return o1 + o2;

17 }

18 void handler(){

19 o2 = HW_OUT;

20 done = 1;

21 }

Figure 5.9: Example Software code in C

In the proposed method, interruption sequences are treated as independent pro-

cesses. Here, the number that each interruption occurs must be given by users,

and each process is duplicated for the number of times for static analysis. In the

code in Figure 5.9, a function handler is an interruption sequence. In the following

sections, the maximum number of interruption occurrences of handler is assumed

to be 1.

5.3.2 Translation into FSMD

After the communication abstraction explained in the previous section, both soft-

ware and hardware parts are translated into FSMDs.

In the translation of the software part, syntax elements which cannot directly

be translated into FSMD are removed beforehand. They include pointers, recursive
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1 module multi(in1, in2, out, str, nirq, clk, rst);

2 input [7:0] in1, in2;

3 output [7:0] out;

4 input str, clk, rst;

5 output nirq;

6 reg state;

7 assign out = (state == 0) ? 0 : in1 * in2;

8 assign nirq = (state == 0) ? 1 : 0;

9 always@(posedge clk)begin

10 if(rst)

11 state <= 0;

12 else case(state)

13 0: if(str)

14 state <= 1;

15 1: state <= 0;

16 endcase

17 end

18 endmodule

Figure 5.10: Example hardware code in Verilog-HDL

function calls, and dynamic memory allocations. Pointers are removed with point-to

analysis[70] which analyzes the pointed resources as shown in Figure 5.12.

The translation step is performed by translating one statement in a program

code into one state in FSMD. Each variable and conditional branch in the code

are translated into a data variable and a set of multiple state transitions from a

same state, respectively. Executions of interruption control functions are removed,

but the original executed places are memorized to utilize in the synchronization

point detection step. Each interruption sequence is translated into multiple identical

concurrent FSMDs, and its number of copies is specified by users as the number of

interruption occurrences.

For example, the code in Figure 5.11 is translated into the FSMDs in Figure

5.13 (a) and (b). Figure 5.13 (a) corresponds to proc, and (b) corresponds to

handler. proc is the main function and handler is an interruption sequence.

local irq disable and local irq enable are interruption control functions which
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1 char i1, i2, i3, i4, o1, o2, done;

2 char proc(){

3 local_irq_disble();

4 in1 = i3;

5 in2 = i4;

6 done = 0;

7 str = 1;

8 local_irq_enable();

9 o1 = i1 * i2;

10 o1 = o1 + 1;

11 while(!done);

12 return o1 + o2;

13 }

14 void handler(){

15 o2 = out;

16 done = 1;

17 }

Figure 5.11: Software code after memory map replacement from Figure 5.9

int a, b, *p, x;
if(x) p = &a;
else p = &b;
x = 1;
*p = 1;

c0 = x;
p --> (c0? a:b)

int a, b, x;
bool c0;
c0 = x ? true: false;
x = 1;
x = 1;
if(c0) a = 1;
else b = 1;

point-to
Analysis Translate

Figure 5.12: Pointer removal with point-to analysis

enable and disable interruption, respectively. The area surrounded by the dashed

lines shows the portion where an interruption may occur.

Hardware parts are also translated into FSMD. As mentioned in Section 2.3.1,

since FSMD is in the same abstraction level as RTL design, it is easy to translate to

each other. Figure 5.13 (c) shows an example hardware FSMD translated from the

Verilog-HDL code in Figure 5.10. The original HDL code has two states, and they
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s0i3in1←

s1

s2

i4in2 ←

s31str ←

s4

s5
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0done ←

s6 s71)  o1  (o1 +←

done¬

( )o2  o1  ret +←

s9outo2 ←

s10

s11

1done ←

(b) FSMD of  Interruption
Sequence

(a) SW FSMD

s13

str)  (¬

( )
0nirq

in2  in1  out
←

×←

(c) HW FSMD

s8

s121nirq
0out

←
←

Figure 5.13: Example FSMDs of HW/SW Co-Design

are directly converted to the states in FSMD. Here, nIRQ is an interruption signal.

Before applying the later steps, FSMDs must be unrolled since the proposed

sequentialization method cannot handle loops. This unrolling is applied to loops

which are not polling loops. A polling loop detection method is described in the

next section.

5.3.3 Definition of Synchronization Point and Its Detection

Synchronization point is a pair of states (s1, s2|s1, s2 ∈ S) where s2 is reached only

after s1 is executed. This relation between two states corresponds to that of wait

and notify statements in SpecC, SystemC, and Java.

Since the sequentialization technique[145] introduced in Section 5.2.2 targets on

wait and notify statements in SpecC, a similar method can be used for FSMD with

introducing synchronization points.

In the translated FSMDs, synchronization points can be detected as the following

four types of pairs.
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• The state (s2) after a polling loop, and a state (s1) which triggers the signal

waited in the polling loop

• The first state (s2) of an interruption process, and a state (s1) which triggers

the interruption signal.

• The first state (s2) of an interruption process, and the last state (s1) of an

interruption disabled area,

• The first state (s2) of an interruption process copy, and the last state (s1) of

the previous interruption copy.

The first type corresponds to synchronization by polling. The second type represents

the relation that an interruption sequence starts when the corresponding interrup-

tion signal is triggered. The third type represents the relation that an interruption

only happens when it is enabled. Since other synchronization methods, such as

hand-shaking, are combinations of polling, they correspond to a set of the first type

pairs. The last type represents that the FSMDs representing a same interruption

process are not executed simultaneously.

To determine synchronization points automatically, polling loop is defined as

follows.

Definition 11 (Polling loop). Assume that there is a looped transition r1 = (s1, s1) ∈
R to a state s1 ∈ S, and its transition condition Q(r1) is an expression e =

LG(Q(r1)) ∈ E. Let EP ⊆ E denote a set of symbols or a negation of a sym-

bol such that

EP = I ∪ V ∪O ∪ {fcall = (¬, e1)|fcall ∈ Fcall, e1 ∈ I ∪ V ∪O}

Let AP = {a|a ∈ A, LA(a) = (e1, e2), e1 = e2} also denote a set of assignments each

of which maintains the same value.

Then, when all assignments to data registers on s1 are included in AP such that

∀a ∈ AV , ((s1, a) ∈ P )→ (a ∈ AP )

and e ∈ EP , then the state s1 is in a polling loop,
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The set of states Snext ⊆ S such that

Snext = {s|(s1, s) ∈ R, s ∈ S, s1 �= s}

is the set of the state after the polling loop.

When there is an assignment which assigns a value to make e true in another

concurrent FSMD, it triggers the polling.

In the proposed method, polling loops are detected with this definition. Ob-

viously, only polling loops in the simplest form that only wait for a single signal

can be detected, and no operations are performed while the loop. However, this

restriction is enough, since the sequentialization method can handle only when each

synchronizing pair is one-to-one relation.

Correspondence between interruption trigger signals and interruption sequences,

and functions that control interruptions are specified by users. Then, synchroniza-

tion points related to them are automatically detected by finding assignments which

trigger the signals and function calls of interruption controlling functions.

Synchronization points of the FSMDs in Figure 5.13 are shown in Figure 5.14.

Dotted arrows show synchronization points. There are four synchronization points,

two from polling loops, one from interruption, and one from interruption enabled

area. Since the number of interruption occurrences is one, there are no synchroniza-

tion points which are classified to the fourth type.

Since the data transportation behavior of the design in Figure 5.14 may not

be practical, an example design using a commonly used hardware protocol, Open

Core Protocol(OCP)[125], for data transportation is shown in Figure 5.15. This

design transfers a data (MY DATA) from the master to the slave with using OCP

write protocol. MCmd and MAddr are connected to the bus command lines and

address lines, respectively, which are outputs from the master module. MY ADDR

is the address of the slave module. MData is connected to the bus data lines.

SCmdAccept is connected to a bus line which represents the acceptance signal

from slave modules. Reg is a data resister in the slave module and data received

from the master module is stored. The two dotted arrows show synchronization

points, and both of them are from polling loops. This example shows that the

proposed method can be applied to practical protocols.
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Figure 5.14: Synchronization Points on the FSMDs in Figure 5.13
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1SCmdAccept ←
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Figure 5.15: Design using OCP and its synchronization points

5.3.4 Applying Sequentialization

With the synchronization points detected in the previous section, sequentialization[114,

145] which has introduced in Section 5.2.2 can be applied to FSMD. Since a synchro-

nization point corresponds to a pair of corresponding wait and notify statements

in SpecC, a similar method can be applied. However, the original sequentialization
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method[114, 145] cannot be applied directly since it cannot handle interruptions.

In addition, since the original method is for equivalence checking of SpecC designs,

it does not suit to general formal verification of FSMDs. Therefore, the original

method is modified in the following points.

• In the formulation, a single execution time is assigned to each sequential por-

tion (basic block) instead of a beginning time and an ending time.

• Additional conditions defining the behaviors of interruptions are added to the

formula to be solved. Since the added conditions include logical operators, the

updated formula is solved by SMT solvers.

• Though [114, 145] check each race condition candidate separately, the proposed

method checks all race condition candidates at once.

• Though [114, 145] stop the generation of a sequentialized process when race

conditions are detected, the proposed method generates all sequential processes

which have different execution results in such cases.

Removal of Synchronization Related Portions Before applying the sequen-

tialization, synchronization related portions, such as polling loops, and accesses to

waited variables and interruption signals are removed. Since the information of

synchronization is already known in this stage, such portions are redundant for the

verification.

Figure 5.16 shows an example after this step is applied. Polling loops at s6 and

s12, assignments to the waiting signal of the polling loops and interruption signals

in s2, s3, s10, s13 are removed from Figure 5.13.

Generation of Timing Conditions To apply sequentialization, race conditions

among concurrent FSMDs must be checked. As shown in Section 5.2.2, it is per-

formed by generating and checking conditions of execution timings and orders. Be-

fore generating conditions, two functions represent an execution timing of a sequence

of states and an execution order of two sequences of states, respectively, are intro-

duced.
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Figure 5.16: Synchronization related portion removal from Figure 5.13

First, Let time : T → Z, where Z denote a set of integers, denote a function

which returns the execution timing of a given sequence of states. The argument

sequences of states cannot have accesses to shared symbols or synchronization points

with other FSMDs more than once. This corresponds to Basic block (BB) in [145].

In the conditions to be generated, such sequences of states are treated as units. From

the idea of partial order reduction[166, 55], executions only using local symbols do

not affect executions of other concurrent processes. For example, in Figure 5.16,

(s1, s2) is a sequence of states which accesses to a shared symbol (in2) only once,

and an executions of s2 does not affect other FSMDs’ execution results. In the

proposed method, since the accurate execution timing is not necessary, execution

time of each sequence of states is fixed to 1 to give the condition of execution timing

easily.

Second, let order : T × T → {true, false} denote an execution order of two

sequences of states. The return value is true when the first argument sequence of

states is executed before the second argument sequence of states, and otherwise it

is false. For example, when (s0) is executed before (s1, s2), order((s0), (s1, s2)) is
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true.

In this method, the following five types of conditions are generated.

• Range of execution timing and exclusiveness of those timings

• Relation between execution timings and execution orders

• Local execution order in each FSMD

• Synchronization

• Priorities of interruptions

The first condition represents the range of execution timings. Since an execution

time of each sequence of states is 1, all the execution timings are between 0 and n−1

when the number of sequences of states is n. For example, the following condition

is generated from the design in Figure 5.16.

(0 ≤ time((s0)) ≤ 7) ∧
(0 ≤ time((s1, s2)) ≤ 7) ∧
(0 ≤ time((s3, s4, s5, s6)) ≤ 7) ∧
(0 ≤ time((s7, s8)) ≤ 7) ∧
(0 ≤ time((s9)) ≤ 7) ∧
(0 ≤ time((s10, s11)) ≤ 7) ∧
(0 ≤ time((s12)) ≤ 7) ∧
(0 ≤ time((s13)) ≤ 7)

Since all concurrent FSMDs are executed concurrently, two sequences of state cannot

be executed at a same timing. Then execution timings must be exclusive. For

example, the following condition is generated from the design in Figure 5.16.

time((s0)) �= time((s1, s2)) �= time((s3, s4, s5, s6)) �=
time((s7, s8)) �= time((s9)) �= time((s10, s11)) �=
time((s12)) �= time((s13))
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The second condition represents the relation between execution timings and ex-

ecution orders. When the execution timing of one sequence of states is earlier

than the execution timing of another sequence of states, the execution order of the

first sequence of states is also earlier than the second sequence of states. Same as

the method in [145], only the execution orders of portions accessing same shared

resources which are candidates of race conditions have to be considered. Execu-

tion orders of the other portions are not related to the execution results of the

design. For example, since shared variables are in1, in2, out in the FSMDs in Fig-

ure 5.16, orders have to be considered are order((s0), (s13)), order((s1, s2), (s13)),

order((s7, s8), (s9)), order((s9), (s12)), order((s9), (s13)). Then the following condi-

tions can be generated.

(time((s0)) < time((s13)))↔ order((s0), (s13)) ∧
(time((s1, s2)) < time((s13)))↔ order((s1, s2), (s13)) ∧
(time((s7, s8)) < time((s9)))↔ order((s7, s8), (s9)) ∧
(time((s9)) < time((s12)))↔ order((s9), (s12)) ∧
(time((s9)) < time((s13)))↔ order((s9), (s13))

The third type of the condition just shows that states in a sequence of states

in an FSMD are executed sequentially. For a sequence of state transitions t =

(s0, s1, · · ·, sn) ∈ T , the following condition is generated.

n−1∧
j=0

(time((sj)) < time((sj+1)))

When some of them are grouped as explained above, such a sequence is treated as

a single state in the above condition. The same condition can be generated for a

sequence of sequences of state transitions, instead of a sequence of state transitions.

For example, from the design in Figure 5.16, the following condition is generated.

time((s0)) < time((s1, s2)) ∧ time((s1, s2)) < time((s3, s4, s5, s6)) ∧
time((s3, s4, s5, s6)) < time((s7, s8)) ∧
time((s9)) < time((s10, s11)) ∧
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time((s12)) < time((s13))

The fourth type of the condition shows the relation in synchronization points.

Since the execution order between the two states in each synchronization point is

fixed, the following condition is generated from each synchronization point (s1, s2) ∈
S2.

time((s2)) < time((s1))

When such a synchronizing state is included in a sequence, then, timing of the

state is replaced with that of the sequence. For example, the following condition is

generated from Figure 5.16.

time((s3, s4, s5, s6)) < time((s9)) ∧
time((s3, s4, s5, s6)) < time((s13)) ∧
time((s10, s11)) < time((s7, s8)) ∧
time((s13)) < time((s9))

The last type of condition represents the specification of interruption. As ex-

plained in Section 5.2.1, when interruption occurs, the current execution of software

or interruption sequence suspends and another interruption sequence starts. After

the interruption sequence finishes, the previous sequence is restarted from the sus-

pended point. A priority is assigned to each interruption, and only interruptions

having equal or higher priorities can occur when another interruption sequence is ex-

ecuted. In addition, the portions where interruptions can occur can be controlled by

interruption enable/disable functions and register maskings. Let (s11, s12, ···s1m) ∈ S

be a sequence of states in a software or interruption sequence where interruption is

enabled. Let (s21, s22, · · ·s2n) ∈ S be a sequence of states in another interruption

sequence which has equal or higher priority than the previous one. Assume that

all states are in the different groups. When execution of the later sequence starts,

the former sequence must stop until the execution finishes. Then, the following

condition is generated.

n−1∧
j=0

(time((s21)) < time(s1j))→ (time((s2n)) < time(s1j))
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This condition shows that when the first state of an interruption sequence is executed

before a state of a lower priority sequence, then the last state of the interruption

sequence must be executed before the state of the lower priority sequence. This

condition is generated for each pair of FSMDs where interruptions between them

can occur. For example, the following condition is generated from Figure 5.16.

(time((s9)) < time((s3, s4, s5, s6)))→ (time((s10, s11)) < time((s3, s4, s5, s6))) ∧
(time((s9)) < time((s7, s8)))→ (time((s10, s11)) < time((s7, s8)))

Generation of Sequential Description with Sequentialization Satisfiability

of the conjunction of the generated conditions is checked with an SMT solver with

treating function calls of time and order as variables. When the result is unsatis-

fiable, there are no execution orders which satisfy the synchronization conditions.

It means that the design has deadlocks. On the other hand, when the result is

satisfiable, there is at least one execution order which satisfies the synchronization

conditions so that the design can be sequentialized. Some SMT solvers, such as

Yices[179], can generate a set of assignments to variables which satisfies the con-

ditions. The assigned values to the function order show the execution orders to

be considered, and the assigned values to the function time show a set of concrete

execution timings after sequentialization. Then, a set of function time values repre-

sents an example of sequentialized execution order which satisfies the values of the

function order. For example, the conditions generated from the design in Figure

5.16 is satisfied with the following variable assignments.

time((s0)) = 1

time((s1, s2)) = 2

time((s3, s4, s5, s6)) = 3

time((s7, s8)) = 7

time((s9)) = 5

time((s10, s11)) = 6

time((s12)) = 0

time((s13)) = 4
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Figure 5.17: Sequentialization Result of the FSMDs in Figure 5.13

order((s0), (s13)) = true

order((s1, s2), (s13)) = true

order((s7, s8), (s9)) = false

order((s9), (s12)) = false

order((s9), (s13)) = false

Figure 5.17 shows the FSMD after sequentialization with this result.

Figure 5.18 (a) also shows the result of sequentialization for the design using

OCP shown in Figure 5.15.

Generating all sequential designs having different execution results When

there are race conditions in a design, the design behavior may change with the ex-

ecution orders of accesses to shared variables. The proposed method generates all

sequential designs giving different execution results in such cases. Execution orders

of the accesses to shared variables are shown by function order values. Different

combinations of function order values show execution orders which may give dif-

ferent execution results. Therefore, when a set of assignments to function order is

generated by an SMT solver, a new set of assignments giving a different execution

result can be generated by adding a constraint not to generate the same set of as-

signments to function order. When another set of assignments is obtained, there

is a race condition in the design, and a different execution result can be obtained
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Figure 5.18: Sequentialization and State Merging Results of the Design using OCP
in Figure 5.15

with the set of assignments to order. By applying this condition refinement itera-

tively until no additional set of assignments is generated, all execution orders giving

different execution results can be obtained.

For example, in the case of the design in Figure 5.16, the following condition

is added to the generated conditions, and satisfiability of the updated condition is

checked.

¬( order((s0), (s13)) ∧
order((s1, s2), (s13)) ∧
¬order((s7, s8), (s9)) ∧
¬order((s9), (s12)) ∧
¬order((s9), (s13)))

Since the updated condition is unsatisfiable, the design in Figure 5.16 does not have

any race conditions, and only one sequential design is generated.

5.3.5 State Merging with Data Dependence Analysis

Since one state transition in FSMD corresponds to one clock cycle, computation

amounts of formal verification methods generally increase exponentially with the
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Figure 5.19: Data Dependences of the FSMD in Figure 5.20

number of states in FSMD. Then, the computation amount can be reduced dramat-

ically by merging multiple states to a single one. This step can be applied only to a

sequential FSMD since executions of other FSMDs’ states can be inserted between

the executions of two consecutive states in an FSMD in concurrent FSMDs.

To keep the execution results same, only states without data dependence can be

merged. This data dependence is the same notion as data dependence edge in SDG

introduce in Section 2.3.3, such as the value of a variable using at a state can be

assigned at the other state. Then for each data register or output symbol in left

sides of assignments, a data dependence edge is drawn to the state from states where

value can be assigned to the symbol. For example, data dependence in the FSMD

shown in Figure 5.17 is as shown in Figure 5.19.

Two states which are the source and the destination of a data dependence edge

cannot be merged, since those states have accesses to a same symbol. On the

other hand, other states can be merged. The state merging can be applied not only

between two states but also among more than two states. For example, in the FSMD

shown in Figure 5.19, s12, s0, s1, s2, s3, and s4 can be merged. But s5 cannot be

merged with s3 since there is a data dependence edge from s3 to s5. Figure 5.20

shows a result of the state merging step applied to the FSMD shown in Figure 5.17.

The number of ways of state merging is not just one. This example merged states
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Figure 5.20: State Merging Result of the FSMD in Figure 5.17

from the initial state. Merged states are as follows.

{s12, s0, s2, s3, s4} → sa

{s5, s6, s13} → sb

{s9, s10, s11} → sc

Figure 5.18 (b) also shows a result of the state merging for the design using OCP

shown in Figure 5.18 (a).

5.3.6 Comparison with Partial Order Reduction

Partial order reduction[166, 55] is a state reduction technique for concurrent pro-

cesses, and also used in the formal verification for hardware/software co-design[176].

Though partial order reduction is originally for the explicit method[34] which has

been introduced in Section 2.1.1, an application for symbolic model checking[117]

is also proposed in [107]. Static approach which is applied as a preprocess is also

proposed in [104].

In concurrent processes, the execution order between portions only accessing to

local variables is guaranteed not to affect to the execution result. Partial order

reduction does not generate states correspond to another execution order. Then,

partial order reduction can be effectively applied when the design accesses to shared
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variables infrequently. However, if the number of such interactions increases, its

efficiency decreases.

On the other hand, the proposed sequentialization based method can be effec-

tively applied even if the number of accesses to shared variables are large since

the efficiency of the method depends on the number of possible execution orders.

Since the number of synchronization points can be considered as propositional to

the number of interactions, the number of possible execution order decreases if the

number of interactions increases. Even in the case that number of interaction is

small, same as partial order reduction, the proposed method is effective since the

execution orders between basic blocks which access only to local variables are not

considered.

For example, when applying partial order reduction to the FSMDs shown in

Figure 5.13. Shared variables are i3, i4, done, str, and o2. Numbers of portions

separated by accesses to shared variables in the software FSMD, in the interrup-

tion sequence FSMD, and in the hardware FSMD are, 6 ({s0}, {s1}, {s2}, {s3},
{s4, s5, s6}, {s7, s8}), 2 ({s9}, {s10, s11}), 2 ({s12}, {s13}), respectively. Then the

number of execution orders considered in partial order reduction is as follows.

(6 + 2 + 2)!

6!× 2!× 2!
= 1260

On the other hand, only one execution order must be considered in the proposed

method as shown in Figure 5.17. In addition, number of states can be reduced more

with the state merging, and the FSMD finally generated has only 5 states as shown

in Figure 5.20.

5.3.7 Limitation

There are some limitations in the proposed method.

First, the proposed method assumes that interruptions occur only between the

executions of consecutive statements of program codes. However, since a single

statement can be compiled into multiple orders of a processor, interruptions can

happen during the execution of a single statement. Moreover, interruptions can

occur even during a single order of a processor, it is quite difficult to handle such

interruptions completely. Therefore, to guarantee the verification correctness, users
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must guarantee that all execution results with such interruptions are included in the

execution results of the generated sequential designs. This limitation must be also

common in all methods which can handle interruptions.

Second, numbers of interruption are limited in the proposed method since inter-

ruption sequences must be duplicated for the numbers of interruption occurrences.

The proposed method also becomes inefficient when the number of interruption

increases, since interruption sequences are duplicated for the number of times.

Third, when synchronization points are under complex control flow, such as

many conditional branches, sequentialization[145, 114] cannot be applied. In the

proposed method, those synchronization points are ignored. Then, some accesses to

a shared variable are not proved to be race condition free. Therefore, the numbers

of generated sequential FSMD will increase in such cases.

Forth, the proposed method cannot verify some types of properties. In model

checking with partial order reduction, only local variables can be used in properties.

In addition, X operator in Linear Temporal Logic (LTL) cannot be used. The

proposed method also has some limitations about property as follows.

• Properties must not include the notion of constant cycles (ex. X operator in

LTL).

• Properties must not include multiple variables.

• Properties must not include symbols related to synchronization (symbols re-

moved in Section 5.3.4)

For example, both LTL formulae a = 1 → X(a) = 2 and F (a ∧ b), where a, b ∈
I ∪ V ∪ O, cannot be verified correctly by the proposed method since the first for-

mula includes X operator which represents “one cycle later”, and the latter formula

includes two variables a and b. AG and AF in CTL can be verified since they do

not have the notion of constant cycles. To guarantee the correctness of verifications

with properties satisfying the above conditions, a proof of the following theorem is

shown.

Theorem 1. Sequential FSMDs after the sequentialization and state merging con-

tain all possible value update sequences for all symbols which are not related to syn-
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chronizations in the original concurrent FSMDs.

A value update sequence represents an ordered set of value updates for a single

symbol (variable).

Proof. Value update sequences of shared symbols are not changed nor removed in

the sequentialization since it checks race conditions between each access to each

symbol and generates all possible cases when race conditions exist. Value update

sequences of local symbols are not changed nor removed in the sequentialization

since the sequentialization does not touch the value update sequences of local sym-

bols. Though their value depends on shared symbol values, all possible cases of

shared symbol values should be included in sequential FSMDs generated by the se-

quentialization. State merging does not change nor remove value update sequences

of symbols since it does not merge states which have data dependence to each other.

Then, there cannot be multiple assignments for a same variable in a state, and data

sequences are unchanged. Since neither the sequentialization nor the state merging

changes value update sequences of symbols, and the sequentialization generates all

possible value update sequences in the original design, sequential FSMDs after the

sequentialization and the state merging contain all possible value update sequences

for all symbols which are not related to synchronizations in the original concurrent

FSMDs.

In equivalence checking, since the execution timings are changed by the sequen-

tialization and the state merging, the timings when output values should be equiv-

alent must be specified by users after them.

5.4 Experimental Results

To show the effectiveness of the proposed method, experiments were performed with

practical designs.

Examples Two hardware/software co-designs which implement Inverse Discrete

Cosine Transformation (IDCT) and Discrete Cosine Transformation (DCT), respec-

tively, were used in the experiments. In these designs, the hardware parts execute
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Table 5.2: Examples
Design #lines #states in FSMD

SW HW SW Int. HW

DCT 364 166 353 3 11
IDCT 369 249 352 3 18

low and column transformations, and the software parts manage vectors and con-

trol the hardware parts. Memory mapped I/O, hand-shaking, and interruption are

used in those designs. Table 5.2 shows the details of the designs. The second and

third columns shows numbers of lines in software part (ANSI-C) and hardware part

(Verilog-HDL), respectively. The third and later columns show the information of

generated FSMDs by the method proposed in Section 5.3.2. The third, fourth, and

fifth columns show numbers of states in software FSMDs, interruption sequence

FSMDs, and hardware FSMDs, respectively.

Sequentialization Results First, the proposed sequentialization method was ap-

plied to those examples. Before applying sequentialization, those examples were un-

rolled as explained in Section 5.3.2. Both hardware portions and software portions

of DCT and IDCT examples have large loops. The software and hardware portions

of DCT are unrolled for 16 times. The software and hardware portions of IDCT are

unrolled for 8 times since IDCT uses two different hardware modules for the column

computation and the row computation, respectively.

The sequentialization was performed on a Linux workstation with Intel Core2Duo

3.16GHz processor and 4GB memory. An SMT solver Yices[179] was used as the

engine.

Table 5.3 shows the result of the sequentialization. The second column shows

the number of sequences of states. The third column shows the number of detected

synchronization points. The fourth column shows the number of race condition

candidates. The fifth column shows the number of generated sequential designs. The

sixth column shows the maximum size of used memory. The seventh column shows

the computation time. The computation time includes all executions of satisfiability

checking until the result become unsatisfiable.
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Table 5.3: Result of Sequentialization
Design #seq. of #sync #race #generated memory comp.

states points cands seq. designs usage time

DCT 400 80 8192 1 1.3GB 691.08s
IDCT 400 80 6144 1 1.6GB 988.71s

The results show that even such the complicated examples having more than

6000 race condition candidates can be sequentialized within the realistic execution

times.

Formal Verification Results Second, model checking was applied to the gen-

erated sequential designs by the sequentialization method. Before applying model

checking, an abstraction was applied to the designs where 54 of 64 inputs in total

were fixed to 0, and the other input took only 0 or 1 since the designs were too large.

Model checking was performed by a model checker Spin[73] which implements

partial order reduction. The verified property was “Computation eventually termi-

nates”. This property should be satisfied even the designs are abstracted since the

property does not depends on bit-widths of the inputs. Model checking is executed

on the same Linux workstation having Intel Core2Duo 3.16GHz processor and 4GB

memory.

Table 5.4 shows the experimental results with Spin model checker. Five types of

verification methods were applied, such that standard model checking without par-

tial order reduction, standard model checking with partial order reduction, standard

model checking with synchronization points but without partial order reduction,

standard model checking with synchronization points and partial order reduction,

and the proposed method. Results of them are shown in the first, second, third,

fourth, fifth lines of each example, respectively. The first column shows the names

of verified designs. The second column shows the types of the applied methods, the

third column shows the numbers of FSM states generated during the verification,

the forth column shows the verification times, and the fifth column shows the used

memory sizes. Verifications of DCT without synchronization points resulted in out

of memories regardless of the use of partial order reduction.
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Table 5.4: Results of Model Checking with SPIN
Design Method #states time[s] memory[MB]

Without POR 5746678 279.89 1205.701
With POR 1534966 77.36 329.904

DCT With Sync. Points 3911672 240.69 910.233
With Sync. Points & POR 1305592 58.74 308.787

Proposed Method 383990 19.74 82.029
Without POR 3227342 214.38 689.435

With POR 473559 19.58 102.970
IDCT With Sync. Points 2334360 118.79 587.722

With Sync. Points & POR 396165 15.09 101.254
Proposed Method 92724 3.00 18.747

The results in Table 5.4 show that both the synchronization point detection and

the sequentialization improved the performances in both the examples. With the

combination of synchronization point detection and sequentialization, verification

can become more than 3 times faster. Therefore, the proposed method can be much

more efficient than existing methods, such as partial order reduction.

5.5 Conclusion and Future Work

In this chapter, a framework to verify hardware/software co-designs written in pro-

gram code and RTL was proposed. The proposed method can handle general types of

interactions between hardware and software, such as memory mapped I/O and inter-

ruption with priority. Compared to the method proposed in [176], the strong state re-

duction techniques which extends the existing sequentialization techniques[145, 114]

and state merging can reduce the number of states dramatically. Then, more prac-

tical and larger designs can be handled.
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Chapter 6

ExSDG: Design Representation
for Efficient High-Level Design
Verification
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6.1 Introduction

As mentioned in Section 1.1, C-based designs have become important in the system

LSI (or SoC) design flow. C-based design languages are used in system level, behav-

ioral level, and program code to describe behaviors of the designs. In such abstracted

design levels, designers can write designs without considering hardware/software

partitioning. Although most designs are still started in program code and RTL, it

is expected that the initial design stage will shift to more abstracted levels in the

future. To support the design stage shift, efficient verification methods and tools for

C-based designs are strongly required.

One problem in C-based design verification is the high complexity of some lan-

guages. For example, SystemC and SpecC have channels and interfaces to describe

communications separately from behaviors. However, these new notions require

modifications or complete re-development of existing sophisticated hardware and

software verification methods and tools. Pointer is also a difficult syntax element to

handle in verification or analysis. Typically, verifications and analyses mainly tar-

get on design behaviors, and communication portions tend to be verified separately.

Then such difficult syntax elements should be removed at a preprocess step before

applying verification or analysis methods.

Another problem in C-based design verification is the existence of a number

of C-based design languages, such as SystemC[160], SpecC[54], SystemVerilog[82],

BachC[177], BDL[172], and CataplutC[28], and for that reason there are no common

intermediate design representations for verification. Then verification tools must be

developed for each language, and this situation is very inefficient and time consuming

for verification software development. For RTL and gate-level designs, net-list based

representations, such as Verific HDL Component Software[169] and And-Inverter

Graph (AIG) based internal representations[120, 126], are widely used as standard

intermediate representations for verification and design analysis in both industrial

and academic fields. These net-list based representations can theoretically handle

both Verilog-HDL and VHDL by translating them with tentative syntheses and elab-

orations. In the software field, intermediate representations in compiler frameworks,

such as Low Level Virtual Machine (LLVM)[164], SUIF[165], and COINS[38], are
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also commonly used for verification or software analysis. Intermediate representa-

tions in these compiler frameworks can be generated from arbitrary software codes

if front-ends for them have been developed. Such intermediate representations for

RTL and software are sufficiently simple and easy to handle in verification or anal-

ysis tools. Although there are some existing frameworks providing intermediate

representations for C-based designs, such as Pinapa[132] and SpecC Intermediate

Representation/Syntax Independent Representation (SIR)[54, 170], they were not

originally developed for multiple languages and includes many complex elements

which do not suit to verification nor analysis.

Based on the above discussion, a new intermediate representation for high-level

design verification and analysis is proposed in this chapter. Although there are many

different C-based design languages, they are quite similar in the sense of language

design perspectives. SystemC and SpecC are two major C-based design languages,

and they are based on C++ and C, respectively. Although they can be syntactically

very different, the ways to describe system LSI design in higher abstracted levels

are quite similar, or it can be simply said that they are the same. The notions of

modules and structural hierarchy, introduction of concurrent executions and their

synchronization mechanisms, and various ways to control software and hardware

interactions are the same in the two languages. Moreover, other C-based languages

are sharing the same concepts as these with their own syntax. Therefore, it is

very natural to believe that a common design representation can be defined to

which various C-based design descriptions can be converted. In this chapter, a

representation for SystemC, SpecC, and other various C-based design languages as

well as RTL design descriptions in Verilog and VHDL is defined, and how widely

used C-based design descriptions can be converted into them are presented.

The proposed representation is based on System Dependence Graph (SDG)[75]

introduced in Section 2.3.3 which has been used in program slicing tools in software

fields. SDG can be generated from program descriptions where each sentence in

the program corresponds to one node in SDG, and edges in SDG show various

kinds of dependency, such as data, control, declaration, and others. Those edges in

SDG give the similar functions to net-lists of gate-level designs. For example, by

analyzing net-lists, logic cones of influence can be identified. It enables to reduce the
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number of gates to be analyzed. With SDGs, the similar reduction can be realized

by program slicing which is an operation to extract all relevant nodes to a specified

node. Debugging using this technique is called algorithm debugging. By Data Flow

Graphs (DFGs), data dependencies can also be traced. However, it can be said

that analysis with SDG is more efficient than those with DFG since the nodes in

SDGs represent statements and expressions while the nodes in DFGs are usually

variables and operators. Therefore, SDG can be considered one of the most effective

and efficient representations of word-level designs for CAD tools. In addition, the

proposed representation integrates Abstract Syntax Tree (AST) and Control Flow

Graph (CFG) as well as SDG since AST is also necessary to analyze designs in syntax

level, and control flow information is useful to analyze exact design behaviors. The

representation is named “Extended System Dependence Graph (ExSDG)”, and it

has the following advantages.

• The syntax of the AST in ExSDG is simple enough to verify, but also extended

ANSI-C enough to describe hardware designs in both behavioral level and RTL.

The syntax is free from language particular problems.

• AST, CFG, and SDG are tightly integrated in ExSDG. Actually, edges of SDG

and CFG are drawn directly to some AST nodes. It enables verification tool

developers to analyze designs easily.

• The numbers of nodes and edges are less than that of existing SDGs since

the SDG in ExSDG is highly optimized for the limited syntax. Then, the

verification time of methods using SDG is expected to be shorter.

A verification framework with ExSDG is also proposed in this chapter. In the

proposed framework, design descriptions in C-based languages or HDL in RTL are

automatically converted into ExSDG, and various verification methods using SDG

can be applied. This framework enables users to verify various designs easily and

efficiently.

The remainder of this chapter is organized as follows: Section 6.2 explains the

proposed verification framework with ExSDG. Section 6.3 describes the overview of

the AST in ExSDG and shows how to translate from designs written in existing
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languages. In Section 6.4, ExSDG and its structure are explained. Preliminary

experimental results of the comparison between ExSDG and an existing SDG are

also given in this section. In Section 6.5, a survey of existing verification methods

using SDG is given. Some of them have already been implemented using ExSDG.

Finally, Section 6.6 gives a conclusion of this work.

6.2 Verification Framework

Figure 6.1 shows the verification flow of the proposed framework.

At the first step, all designs are translated into the ASTs. In this work, the

AST is not defined as a concrete language in text but as a data structure of nodes

and edges. Developers do not have to look into the locations of portions of codes

after the translation since each node in the AST has an unique ID number. The

proposed AST has three different styles to represent different abstraction levels,

such as untimed level, timed level and register transfer level. The details of the

AST syntax is shown in Section 6.3, and how to translate existing languages into

AST is described in Section 6.3.3.

At the next step, a simplification is applied to the generated AST as a preprocess

step to remove some syntax elements which make verification and analysis more dif-

ficult. That simplification includes channel/interface elimination, pointer analysis,

transformation to single value update model, and for/switch elimination. The ASTs

after the simplification are simple enough to easily handle in the later verification

and analysis steps.

Then, those simplified ASTs are analyzed and converted into ExSDGs by the

dependency and control flow analysis. In the ExSDGs, some nodes, various depen-

dence edges and control flow edges are added to the ASTs. The dependence edges

and control flow edges are drawn directly between nodes in the ASTs. Then, de-

velopers can get dependency information from the nodes of the ASTs directly. The

details of ExSDG are described in Section 6.4.

At the last step, various verification and analysis methods are applied to the

ExSDGs. Some methods using other existing SDGs have already been proposed

[4, 146, 144, 113, 52], and some of them have been re-implemented with ExSDG.
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Figure 6.1: Proposed Verification flow

They are briefly introduced in Section 6.5. FSMDs can be directly generated from

ExSDG by the method explained in Section 5.3.2, and the multi-level bounded model

checking proposed in Chapter 3 and the word-level equivalence checking method

explained in Chapter 4 can be applied to the generated FSMDs.
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6.3 Language of the AST in ExSDG

6.3.1 Basic Syntax

The syntax of ExSDG AST extends that of ANSI-C to describe hardware and RTL

designs. The extension list is as follows.

• Concurrency : A par statement represents concurrent execution of statements

under it. Those statements start simultaneously as concurrent threads, and

end in the same timing. In other words, starts and ends of those threads are

synchronized.

• Synchronization : Synchronizations are represented by event variables, wait

statements, and notify statements. An execution of a wait statement stops

the thread until the execution of a notify statement whose parameter is the

same event variable.

• Bit-vector : bit type is introduced to represent bit-vectors. Widths can be

specified on bit variables. With bit type, bit-level operators, such as bit-slice

[left-bit:right-bit] and concatenation @, are introduced.

• Timed behavior : To represent timed behavior, waitfor statement which

pushes one time unit forward is introduced. A buffered declarator speci-

fies that the variable is a register, and its value is not updated until the time

is forwarded for one time unit. A wire declarator specifies that the variable

is a wire, and its value is update immediately when the value of the assigned

expression is updated. Therefore, only one assignment is allowed for each wire

variable.

• Hierarchical structure : A module statement represents a structural unit, and

a port statement represents a port of a module for communications with the

other modules. Sub-modules can be represented by creating their instances

inside a module. A channel is an unit where communication related portions

are encapsulated, and an interface is a pure abstract class which is an interface

of channels.
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6.3.2 Three Representations in Different Levels

The AST of ExSDG has three different levels to translate directly from other rep-

resentations in different abstraction levels, such as system-level, behavior level, and

register transfer level.

Meanwhile, the language of the AST do not have notations in text since it is only

defined as an AST. Therefore, the descriptions in this section which is written in

the language of the AST is just an example with a compatible notation for helping

readers’ understandings.

Untimed Behavior Level (UBL) Untimed behavior level (UBL) does not have

the notion of time, and just the execution order of operations is fixed. In UBL,

use of timed behavior syntax, such as waitfor statement, and buffered and wire

declarators, is not allowed. This level corresponds to program code, such as ANSI-

C and Java, behavioral level language, such as BachC, BDL, and CataplutC, and

system level languages, such as SystemC and SpecC where timing statements are

not used. Since UBL does not have the notion of time, it is assumed that the main

function of a top level module specified by users or global main function is executed

once for each time unit.

Figure 6.2 shows an example UBL code. This example receives three input values

for each of five time units (15 values in total), and returns the maximum value among

them. There are two modules, and the top level module is Max35. Then the main

function of Max35 is executed for each time unit.

Timed Behavior Level (TBL) In Timed Behavior Level (TBL), the notion

of time is added to UBL. In particular, waitfor statement can be used in TBL.

buffered and wire declarators are still prohibited. Clearly, UBL is a subset of

TBL. TBL corresponds to System Level language, such as SystemC and SpecC. In

TBL, the main function of a top level module specified by users is just executed

once at the beginning.

Figure 6.3 shows an example code of TBL. This code is equivalent with Figure

6.2, but written in TBL. In this example, an infinite loop is used in the main function

since the main function is executed only once. A waitfor statement is also inserted
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1 module Max(in int in1, in int in2, out int out1){
2 void main(){
3 out1 = (in1 > in2) ? in1 : in2;
4 }
5 };
6 module Max35(in int in1, in int in2, in int in3, out int out1, in bool rst){
7 event e1;
8 int current, i, tmp1, tmp2;
9 Max m1(in1, in2, tmp1), m2(in3, current, tmp2), m3(tmp1, tmp2, current);

10 void main(){
11 if(rst){
12 i = 0;
13 current = 0;
14 out1 = 0;
15 }
16 else{
17 par{
18 { m1.main();
19 wait(e1);
20 m3.main(); }
21 { m2.main();
22 notify(e1); }
23 }
24 if(i == 4){
25 out1 = current;
26 current = 0;
27 i = 0;
28 }
29 else{
30 out1 = 0;
31 i++;
32 }
33 }
34 }
35 };

Figure 6.2: Example code in untimed behavior level

to proceed the time for one time unit.

Register Transfer Level (RTL) In register transfer level (RTL), the notions

of clock cycle, register, and wire are used. In addition, waitfor statement whose

argument is 1 (waitfor(1)) can be used. buffered and wire declarators can also
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1 module Max(in int in1, in int in2, out int out1){
2 void main(){
3 out1 = (in1 > in2) ? in1 : in2;
4 }
5 };
6 module Max35(in int in1, in int in2, in int in3, out int out1, in bool rst){
7 event e1;
8 int current, i, tmp1, tmp2;
9 Max m1(in1, in2, tmp1), m2(in3, current, tmp2), m3(tmp1, tmp2, current);

10 void main(){
11 while(1){
12 if(rst){
13 i = 0;
14 current = 0;
15 out1 = 0;
16 }else{
17 par{
18 { m1.main();
19 wait(e1);
20 m3.main(); }
21 { m2.main();
22 notify(e1); }
23 }
24 if(i == 4){
25 out1 = current;
26 current = 0;
27 i = 0;
28 }else{
29 out1 = 0;
30 i++;
31 }
32 }
33 waitfor(1);
34 }
35 }
36 };

Figure 6.3: Example code in timed behavior level

be used to represent registers and wires respectively. On the other hand, there are

the following restrictions.

• Synchronization related syntaxes, such as wait and notify statements and

event variable are prohibited.
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• Normal variables without buffered nor wire declarator cannot be used.

• Use of channel and interface is prohibited.

• Ports must be wire variables.

In RTL, two special member functions such that init and run one cycle func-

tions are included in each module.

• init function: It describes wire connections in a module. Then all included as-

signments must be to wire variables, and an assignment to each wire variable

can only be written once. The value of a wire variable is immediately updated

when any variable in the right hand side of the assignment to the wire variable

is updated. This corresponds to assign statement in Verilog-HDL.

• run one cycle function: It describes the behavior of each clock cycle. Then

this function is executed for each clock cycle. Only assignments to buffered

variables are allowed in this function. The values of those buffered variables are

updated at the beginning of the next clock cycle. This function corresponds

to always statement describes sequential behavior in Verilog-HDL.

Each of these two functions can be omitted if designers like. The above restrictions

and these two special functions are for the compatibility with RTL designs in HDLs.

Then run one cycle functions in all module instances are parallely executed for

each clock cycle.

Figure 6.4 shows an RTL design equivalent to Figure 6.2 and Figure 6.3 but in

RTL.

6.3.3 Translation from Other Languages

In this section, the way of translations from four languages, ANSI-C, SpecC, Sys-

temC, and Verilog-HDL is discussed.

Translation from ANSI-C Since ANSI-C is a subset of the ExSDG syntax,

ANSI-C codes are untimed behavioral level descriptions without any modifications.
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1 module Max(in wire int in1, in wire int in2, out wire int out1){
2 void init(){
3 out1 = (in1 > in2) ? in1 : in2;
4 }
5 };
6 module Max35(in wire int in1, in wire int in2, in wire int in3,
7 out wire int out1, in wire bool rst){
8 wire int tmp1, tmp2, current_i, current_o;
9 buffered int i, current;

10 Max m1(in1, in2, tmp1), m2(in3, current_i, tmp2), m3(tmp1, tmp2, current_o);
11 void init(){
12 out1 = (i == 4) ? current : 0;
13 current_i = current;
14 }
15 void run_one_cycle(){
16 if(rst){
17 i = 0;
18 current = 0;
19 }
20 else{
21 current = current_o;
22 if(i == 4){
23 i = 0;
24 }
25 else{
26 i++;
27 }
28 }
29 }
30 };

Figure 6.4: Example code in register transfer level

Translation from SpecC Most of the ExSDG syntax elements come from SpecC.

Then, only small modifications are required. What only have to be done is to

interprete behavior as module. A SpecC code is translated either into an UBL

or TBL description, and it depends on the use of waitfor statement. If there are

no waitfor statements, then the translated description is in UBL, otherwise it is in

TBL.

However, the following syntaxes cannot be handled since those are not included

in the syntax of ExSDG.
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• pipe, piped, fsm, fsmd

• notifyone

• try, trap, interrupt

• do-timing

• buffered, signal

Translation from SystemC Since SystemC is based on C++, most operators

and data types are same. Table 6.1 shows the main additional syntax elements

in SystemC and their corresponding syntax elements in ExSDG. Most part of the

translation can be performed by just following the table. However, the ways to

represent concurrency are different in SystemC and ExSDG. Figure 6.5 shows the

difference. In ExSDG, statements just under a par statement are executed con-

currently. On the other hand in SystemC, SC CTORs in all SC MODULEs

are executed concurrently at the beginning of a simulation, and those SC CTORs

execute processes with SC MODULE, SC THREAD, and SC CTHREAD.

Therefore, in the translation, a global main function is added, and a par statement

which executes all top-level instances is inserted to the main function. A SystemC

code is translated into TBL if wait(sc time) or wait() in SC CTHREAD is

used, otherwise it is translated into UBL.

Figure 6.6 shows an example SystemC code and Figure 6.7 shows its translation

to ExSDG. Two modules Sender and Receiver are executed concurrently. Those

modules in SystemC are implicitly executed concurrently. On the other hand, those

modules are explicitly executed concurrently by a par statement in SpecC. Since

wait(sc time) is not used in the design, the generated ExSDG description is in

UBL.

Translation from Verilog-HDL A Verilog-HDL description can be translated

into an RTL ExSDG code. Their syntax correspondence is shown in Table 6.3.3.

The syntax elements listed in the table can be translated into an RTL ExSDG code

by replacing those syntax elements with the corresponding ones in ExSDG. For
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Table 6.1: Syntax correspondence between SystemC and ExSDG

SystemC ExSDG
SC MODULE module
sc in input port (in declarator)
sc out output port (out declarator)
initialization in SC CTOR top of a main function
sc int<int> bit[int]
sc time int
sc event event
wait(sc time) waitfor(int)
wait(sc event) wait(event)
notify(sc event) notify(event)
notify(sc event, sc time) waitfor(int); notify(event);
wait() in SC CTHREAD waitfor(1)

m0

m1 m2

main()

main() main()

par

m0

m1 m2

proc()

proc()

SC_CTOR

proc()

SC_CTOR

SC_CTOR

ExSDG SystemC

Global main()

Figure 6.5: Difference of concurrent process execution in ExSDG and SystemC

example, assign statements are translated into assignments in an init function. In

this translation, only single clock designs can be handled.

Figure 6.8 shows an example Verilog-HDL design equivalent to the design in

Figure 6.4. Therefore, this design is translated to the design in Figure 6.4. As you

can see from those designs, the translation is almost one by one replacement since

the syntax of ExSDG RTL is close to that of Verilog-HDL.
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1 class ReadInterface : public sc_interface{
2 public:
3 virtual int read() = 0; };
4 class WriteInterface : public sc_interface{
5 public:
6 virtual void write(const int) = 0; };
7 class MyChannel : public sc_channel, public ReadInterface, public WriteInterface{
8 int data; sc_event e;
9 public:

10 MyChannel(sc_module_name name) : sc_channel(name){}
11 int read(){ wait(e); return data; }
12 void write(const int x){ data = x; e.notify(SC_ZERO_TIME); }
13 };
14 SC_MODULE(Sender){
15 public:
16 sc_port<WriteInterface> wi;
17 void main(void){ wi->write(5); }
18 SC_CTOR(Sender){ SC_THREAD(main); }
19 };
20 SC_MODULE(Receiver){
21 public:
22 sc_port<ReadInterface> ri;
23 void main(void){ int tmp = ri->read(); }
24 SC_CTOR(Receiver){ SC_THREAD(main); }
25 };
26 int sc_main(int argc, char** argv){
27 MyChannel mc("my_channel");
28 Sender s("sender"); s.wi(mc);
29 Receiver r("receiver"); r.ri(mc);
30 sc_start();
31 }

Figure 6.6: Example code in SystemC

6.3.4 AST Simplification

In the framework shown in Figure 6.1, translated ExSDG description is simplified

by removing some syntax elements which are difficult to handle in verification or

dependency analysis. The removed syntax elements are as follows.

• channel/interface

• pointer
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1 interface ReadInterface{ int read() = 0; };
2 interface WriteInterface : public sc_interface{ void write(const int) = 0; };
3 channel MyChannel : ReadInterface, WriteInterface{
4 int data; event e;
5 int read(){ wait(e); return data; }
6 void write(const int x){ data = x; notify(e); }
7 };
8 module Sender(WriteInterface wi){
9 void main(void){ wi.write(5); }

10 };
11 module Receiver(ReadInterface ri){
12 void main(void){ int tmp = ri.read(); }
13 };
14 int Main(int argc, char** argv){
15 MyChannel mc;
16 Sender s(mc); Receiver r(mc);
17 par{s.main(); r.main()}
18 }

Figure 6.7: ExSDG code translated from Figure 6.6

Table 6.2: Syntax correspondence between Verilog-HDL and ExSDG
Verilog-HDL ExSDG

module module
port(input/output/inout) port(in/out/inout)

wire wire variable
reg buffered variable

sub modules sub modules
assign statement assignment in init function
always statement statement in run one cycle function

blocking assignment assignment
if-else if-else
case switch-case

• multiple value updates (assignments) in a single statement

• for/switch
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1 module Max(in1, in2, out1);
2 input [31:0] in1, in2;
3 output [31:0] out1;
4 assign out1 = (in1 > in2) ? in1 : in2;
5 endmodule
6

7 module Max35(in1, in2, in3, out1, rst, clk);
8 input [31:0] in1, in2, in3;
9 output [31:0] out1;

10 input rst, clk;
11 wire [31:0] tmp1, tmp2, current_i, current_o;
12 reg [31:0] i, current;
13 Max m1(in1, in2, tmp1); m2(in3, current_i, tmp2); m3(tmp1, tmp2, current_o);
14 assign out1 = (i == 4) ? current : 0;
15 assign current_i = current;
16 always @(posedge clk) begin
17 if(rst) begin
18 i <= 0;
19 current <= 0;
20 end
21 else begin
22 current <= current_o;
23 if(i == 4)
24 i = 0;
25 else
26 i++;
27 end
28 end
29 endmodule

Figure 6.8: Example code in Verilog-HDL equivalent to Figure 6.4

Removing Channels and Interfaces Channels and interfaces represent com-

munications between modules executed concurrently. However, this structure is too

complex to verify the behaviors. Actually, a more simple structure of communication

is composed of shared variables and wait/notify statements, and many verification

methods including ones proposed in this thesis target on that structure. Therefore,

channels and interfaces are removed from designs by translating them into accesses

to global variables with synchronizations by wait/notify statements.

This translation is performed as shown in Figure 6.9. Since a channel is just

a capsule of shared variables and methods accessing to those variables, they can
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variables

global
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call
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call

global
function

Figure 6.9: Conversion from channels and interfaces

be translated into global variables and functions, respectively. Function calls of

interface methods are also replaced with function calls of those global functions.

Note that this extraction must be performed for each channel instance. Therefore,

when there are multiple instances for a single channel, one set of global variables

and functions must be added for each instance.

Figure 6.10 shows an example description after this translation applied to the

design in Figure 6.7.

Removing Pointers Since resources pointed by pointers change dynamically, it

is very difficult to statically verify designs including pointers. Therefore, in most

verification methods, pointers are removed from designs in the preprocess stage

by applying point-to analysis[70] as introduced in Section 5.3.2. Pointers are also

removed in the same way in ExSDG.
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1 int MyChannel_mc_data;
2 event MyChannel_mc_e;
3 MyChannel_mc_send(int x) { MyChannel_mc_data = x; notify(MyChannel_mc_e); }
4 int MyChannel_mc_receive() { wait(MyChannel_mc_e); return MyChannel_mc_data; }
5 module Sender() {
6 void main() { MyChannel_mc_send(5); }
7 };
8 module Receiver() {
9 void main() { int tmp = MyChannel_mc_receive(); }

10 };
11 module Main {
12 Sender s; Receiver r;
13 int main(int argc, char** argv) {
14 par { s.main(); r.main(); }
15 }
16 };

Figure 6.10: ExSDG code translated from Figure 6.6

Removing multiple value updates in a single statement In most depen-

dency analysis techniques, dependence among expressions is analyzed. Here, an

expression is a smallest element having values in statements. For example, in a

statement a = b + c;, there are five expressions, such as a, b, c, b + c, a =

b + c. Analyses must be performed on this granularity to handle multiple value

updates in a single statement, such as a = b++;. In this statement, the values

of two variables, a and b are updated. Because of the granularity, the number of

nodes in dependence graphs tends to be large. Since the number of nodes can be

considered as the design size in verification, it is better if number of nodes can be

reduced. Therefore, multiple value updates are removed from ExSDG by splitting

such statements, and dependency analyses are performed not for expressions but

for statements in ExSDG. For example, a statement a = b++; is split into two

statements, b++; and a = b; This technique can greatly reduce the number of

nodes in dependence graphs.

Removing for/switch Statements for and switch statements represent iter-

ative execution and conditional branch, respectively. However, those can also be
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for(i = 0; i < 5; i++){
・・・

}

i = 0;
while(i < 5){
・・・

i++;
}

for(i = 0;; i++){
・・・

}

i = 0;
while(1){
・・・

i++;
}

Figure 6.11: Replacement of for statement with while statement

written with while and if-else statements. Therefore, tool implementations which

handle both of those pairs have redundancy. To avoid such implementation redun-

dancy, for and switch statements are replaced with while and if-else statements

in ExSDG.

The replacement of a for statement with a while statement is simply performed

by decomposing three expressions in the for statement as shown in Figure 6.11. The

first expression is moved to the position before the while statement. The second

expression is used as an expression in while statement. When the second expression

is empty, the while statement is an infinite loop. The third expression is placed at

the end of the iteration.

A switch-case statement is replaced with multiple nested if-else statements

as shown in Figure 6.12. The top-level if-else statements in the design after the

translation corresponds to the blocks separated by break statements in the original

description. If there are multiple case or default labels in a single block, additional

if-else statements are inserted to distinguish statements in different positions with

those labels.
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switch(a){
case 1:

/* 1 */
break;
case 2:
case 3:

/* 2 */
break;
default:

/* 3 */
case 4:

/* 4 */
}

if(a == 1){
/* 1 */

}
else if(a == 2 || a == 3){

if(a == 2){
}
/* 2 */

}
else if(a != 1 && a != 2 &&

a != 3 && a != 4 ||
a == 4){

if(a != 1 && a != 2 &&
a != 3 && a != 4){

/* 3 */
}
/* 4 */

}

Figure 6.12: Replacement of switch statement with if-else statement

6.4 Extended System Dependence Graph

6.4.1 Nodes in ExSDG

As mentioned in Section 6.1, ExSDG is a hybrid graph of AST and SDG, and

some nodes are shared in the both. In this section, types of nodes in ExSDG are

introduced.

The types of AST nodes are shown in Table 6.3. Nodes whose types are Func-

tion, Variable, and Statement are shared with SDG. The structure of an AST

with those nodes are also shown in Figure 6.13. Edges in this tree show a relation

between super-nodes and sub-nodes. For example, a Design node has Module

nodes as its sub-nodes.

The types of SDG nodes are shown in Table 6.4. The first three types are

shared with AST. The other five types are originally proposed in [75] to describe

inter-procedural dependence. Nodes in those five types are added to an AST before

applying dependency analysis.
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Table 6.3: Node types in the AST

Name Explanation
Design Top node of a design
Module Declaration of a module
Struct Declaration of a structure
Scope Scope of declarations
Label Label used in a design
Port Declaration of a port of a module

Function Declaration of a function
Variable Declaration of a variable

Argument An argument of a function
Type A type of variables or expressions

Statement A statement in a function
Expression An expression in a statement
Constant A constant value in an expression

Design

Module

PortFunction

VariableArgument

VariableExpression

Variable

Statement

Expression TypeConstant Struct

Statement

Scope

Scope

Type

Scope

Type

Label

Design

Module

PortFunction

VariableArgument

VariableExpression

Variable

Statement

Expression TypeConstant Struct

Statement

Scope

Scope

Type

Scope

Type

Label

Figure 6.13: AST structure of ExSDG

6.4.2 Edges in ExSDG

Table 6.5 shows the types of SDG edges in ExSDG. Call edge, parameter-in edge,

parameter-out edge, and inter-procedural dependence edge are the edges to describe

the dependence related to function calls proposed in [75]. Communication depen-
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Table 6.4: Node types in the SDG

Name Explanation
Function Entry point of a function (procedure)
Variable Declaration of a variable

Statement A statement in a procedure
End Ending point of a function or a control statement
Call A function call in a statement

Formal In An argument in a function declaration
Formal Out Return value in a function declaration
Actual In An argument in a function calls

Actual Out Return value in a function call

Table 6.5: Types of edges in SDG

Name Meaning
Control dependence edge A control dependence in a function
Data dependence edge A data dependence in a function

Declaration dependence edge Dependence between a variable declaration and a state
Call edge Represent a function call

Parameter-in edge An inter-procedural data dependence through an argument
Parameter-out edge An inter-procedural control dependence thorough a return value

Interprocedural dependence edge A data dependence between an argument and a return value
Interference dependence edge A data dependence between concurrent threads

Communication dependence edge A control dependence by synchronization
Control flow edge Represent an execution order of statements

dence edge and interference edge are the edges to describe the dependence between

concurrent threads proposed in [101]. Those edges are required since ExSDG can

describe both function calls and concurrent threads. Control flow edges are also

drawn to help control flow analysis.

In ExSDG, SDG edges are drawn only between AST nodes in selected types,

such that Function, Statement, and Variable. Since the granularity is coarser

than existing dependence graphs, numbers of edges and nodes in ExSDG are small.

This makes verifications and analyses in the later step easier.
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1 module Ex1(in bit [7:0] in1){
2 bit [7:0] a;
3 void main(){
4 a = in1;
5 a = a + 1;
6 }
7 };

Figure 6.14: Example design

Table 6.6: Experimental results in SDG generation of IDCT

# of nodes # of edges generation
time [sec]

ExSDG 453 2061 8.5
SDG in [4] 6380 48073 19.3

6.4.3 Example of ExSDG

Figure 6.15 shows an ExSDG of the description shown in Figure 6.14. The shadow

nodes are shared nodes between the AST and the SDG, and the other nodes are

AST nodes. As shown in the figure, AST and SDG are tightly integrated in ExSDG.

Then, users can easily access dependence edges from AST nodes, and also get the

syntactical information of the nodes during dependency analysis.

6.4.4 Experimental Result

A prototype of dependence analysis tool which generates ExSDGs has been imple-

mented. With that tool, an experiment was performed on the IDCT example in

[4]. This experiment was carried out on a PC with Xeon 3.2 GHz CPU and 2GB

memory, which is the same as that in [4].

Table 6.6 shows the result. The second line is the result from [4]. Since the SDG

in [4] was generated by a commercial program slicer, CodeSurfer[37], it is expected

to be similar to that in [162].

This experimental result shows that the numbers of nodes and edges are reduced
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Figure 6.15: ExSDG of the design in Figure 6.14

dramatically in ExSDG so that the generation time also became shorter. This is

because the granularity of ExSDG is coarser than that of the SDG of CodeSurfer.

6.5 Verification methods using SDG

In this section, several types of verification methods using SDG are introduced.

Some of those methods have been implemented with ExSDG. Those methods utilize

dependency information effectively to verify designs.

6.5.1 Design Error Detection

In [146, 4], static program checkers using SDG are proposed. Those program checkers

can detect typical design errors, such as uninitialized variables, unused portions, nil-
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pointer dereferences, out-of-bound array indexes, race conditions, and deadlocks.

Since those program checkers just traverse SDG to detect those design errors, they

can detect those errors quickly. For example, the detection of uninitialized variables

took only 0.5 seconds for the libj2k example which has 2500 lines in [146]. However,

since the detection is not complete, those program checkers should be used before

applying precise checking.

6.5.2 Synchronization Verification

In [144], a property checking method for synchronization properties is proposed.

Counterexample-Guided Abstraction Refinement (CEGAR) is used in the method,

and it can be applied to large designs, such as an MPEG4 decoder. The existence

of deadlocks and race conditions can be checked by the method. Different from the

methods in [4], this method can check those properties completely. However the

verification time becomes longer. It took 9.7 seconds to verify the mpeg4 example

which has 48000 lines. SDG is used at the refinement process in the CEGAR to

discover new predicates.

6.5.3 Equivalence Checking

In [113, 112, 115], an symbolic equivalence checking method between two designs

written in ANSI-C is proposed. In the method, only different portions of two designs

are compared and verification speed improves dramatically from the full comparison.

This method can check the equivalence of two designs exhaustively since symbolic

simulation is used as the verification engine. SDG is used in the extensions of

verification areas to get related portions to different portions. By this method, the

equivalence of the two portions (1160 lines) of an mpeg2 design was proved within

1.8 seconds.

In [114, 145], combination between the synchronization verification method in

[144] and the equivalence checking method in [113] are proposed to check the equiv-

alence between concurrent designs. In their experiments, IDCT and Vocoder exam-

ples were verified within 5 hours and 1 second respectively.

In [52, 151, 180, 181], rule-based formal equivalence checking methods are also
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proposed. In the methods, equivalences are established in a bottom-up fashion from

textual equivalences by applying pre-defined rules based on the structure of the

program. SDG with Control Flow Graph is the intermediate representation of the

method used to analyze the structure. Since the verification is executed only by

traversing the edges of the intermediate representation, it can check the equivalence

of large designs quickly. For example, the equivalence of IDCT descriptions written

in SpecC was proved within 3 seconds.

6.6 Conclusion

In this chapter, an SDG based intermediate representation ExSDG was proposed.

A verification framework using ExSDG was also proposed. In the verification frame-

work, designs written in various design language in system level, behavioral level,

and RTL are translated into ExSDG. Then, dependency analyses are applied, and

various verification methods using SDG can be applied. In addition, since ExSDG

is optimized for verification, those verification methods can be easily and efficiently

applied and implemented. Several types of verification methods using SDG were

also introduced.

ExSDG is used as the intermediate representation of a verification framework

FLEC[100], and many verification and analysis methods[51, 2, 99, 3, 98, 180, 181, 66]

have been implemented on it.
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Chapter 7

Conclusion and Future Work
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7.1 Conclusion

In this thesis, the following four methods with focusing on the separation of control

and data portions in high level design were proposed. Those methods use Finite

State Machine with Datapath (FSMD) which can describe control and data portions

of a design separately as an intermediate representation.

In Chapter 3, a model checking heuristic which concatenates multiple bounded

model checking results was proposed. The first bounded model checking is per-

formed without initial state condition, and the second bounded model checking

checks the reachability from the initial state to the generated counter example by

the first bounded model checking. When the second bounded model checking failed,

the initial state condition is refined not to generate the same counter example as

generated by the first. The second bounded model checking can be recursively sep-

arated by the same way so that an arbitrary number of separation can be applied.

Symbolic simulation technique generates a set of multiple counter examples on the

same control path with the original counter example. It makes connection of sepa-

rated bounded model checkings much more efficient. A strategy how to separate a

large bound into small pieces was also proposed, and it enables large bound verifica-

tion. Experimental results showed that the proposed method can actually accelerate

verification with bounded model checking.

In Chapter 4, an equivalence checking method which separates control and data

portions in designs as preprocess was proposed. In the proposed method, data

portions of two designs are forcibly synthesized to be identical. Therefore the equiv-

alence checkings of data portions and control portions can be completely separated,

and the effort of the equivalence checking of data portions can be dramatically

reduced. The separation also enables word-level equivalence checking of the con-

trol portions in bit-level accuracy. Existing symbolic simulation based equivalence

checking methods can be used for the word-level equivalence checking of the control

portions. A rule-based symbolic equivalence checking method for FSMD was also

proposed as a complement of symbolic simulation based methods, and experimen-

tal results showed that the proposed method could actually verify designs having

complicated control flows faster than a symbolic simulation based method.
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In Chapter 5, a method to apply formal verification efficiently to hardware/software

co-design written in program code and RTL code was proposed. Formal verification

methods including two verification methods proposed in Chapter 3 and Chapter 4

can be directly applied to system-level design, software program code, behavioral

hardware code, or RTL hardware code. In addition to those designs, the proposed

method enables to apply such formal verification methods to hardware/software co-

designs. In the proposed method, communications between hardware and software

portions by memory mapped I/O are abstracted to accesses to shared variables and

polling loops. Communications through interruption are also modeled by generat-

ing an additional concurrent process for each interruption sequence. Then, hardware

portions, software portions, and interruption sequences are translated into FSMDs

that run in parallel. Since FSMD is in the same level as RTL, many formal verifi-

cation methods for RTL designs can be applied directly. In addition, the method

applies a strong reduction technique based on sequentialization to the generated FS-

MDs. The sequentialization method generates conditions about execution timings

and orders, and SMT solvers check the satisfiability of those conditions. Different

from the existing sequentialization methods, the proposed method can check all race

condition candidates at once, and generate all execution orders potentially giving

different execution results. The numbers of states in the sequentialized designs can

be reduced by applying state merging technique with dependence analysis. With

the methods, much larger designs can be verified, and it was confirmed by the ex-

periments.

In Chapter 6, ExSDG, a system dependence graph based intermediate repre-

sentation for high-level designs, including system-level, behavioral level, RTL, and

program code was proposed. It can avoid much effort to implement verification and

analysis tools for multiple design languages by translating designs into ExSDGs.

Then, those tools need to be developed only for ExSDG designs. In ExSDG, syntax

tree and some graphs, such as control flow graph and system dependence graph,

are integrated to a simple structure, and user can directly and easily access to the

design information. Especially, system dependence graph can be used to make back-

end algorithms more efficient, since only problem relevant portions can be extracted

from input designs. Preprocess for ExSDG also performs a code simplification which
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removes some syntax elements which are redundant or difficult to be verified, such

as pointers. Then dependency information in ExSDG becomes much simpler than

existing ones, and it makes tools using system dependence graph faster. In addition

back-end tools only have to handle the simplified designs which results in that makes

tool developments much easier. This intermediate representation ExSDG is used as

the front-end of a verification and debugging environment FLEC. Many methods

have been implemented in the environment, and ExSDG have been contributing to

the development of FLEC.

It is highly expected that the verification environment of both hardware and

software are much improved by the proposed methods, and it can greatly contribute

to the further improvement of embedded system verification.

7.2 Future Work

In this section, possible future works for further improvement from the proposed

methods in this thesis are discussed.

• Finding good intermediate point in reachability analysis. As discussed

in Section 3.7, it is very important to find good intermediate states which are

probably reachable from the initial state in the multi-level bounded model

checking method. One possible approach is to ask users the way to go. This

idea assumes that users know the design under verification well, and they

can give good suggestions on reachability analysis. [98] proposes a framework

that users can give suggestions for reachability analysis with conditions to

switch searching methods. The initial brief search is performed by random

simulation, and if the given condition is satisfied, the searching method is

switched to bounded model checking. This method assumes that users know

buggy portions or situations of designs under verification. Another approach

is to use distance metrics to guide state space search. [154] proposes a method

to guide simulation by means of a distance function derived from the circuit

structure. Abstraction guided simulation[178, 131, 129] is a similar approach

that compute distances on abstracted pre-images instead of actual designs. It
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may be a good idea to guide the proposed multi-level bounded model checking

by these methods to reach good intermediate points.

• Additional rules for complicated control flow on the rule-based equiv-

alence checking. Although the rule-based symbolic equivalence checking

method proposed in Section 4.4.7 can compare designs including many control

branches and loops faster than symbolic simulation based methods, it cannot

verify designs having much different control structures. This can be solved by

introduction of new rules for typical control structure differences. Since the

method is rule-based, adding new rules is easy, and additional rules only make

the performance better.

• Optimization of the rule based equivalence checking. The proposed

rule-based equivalence checking method in Section 4.4.7 has a room to opti-

mize. First, in the current algorithm shown in Algorithm 9, the explorations

of the five rules are done exhaustively. If potentially equivalent states or se-

quences of state transitions can be determined by some sort of simulations,

then the search domains can be reduced drastically since the rules will be tried

only to potential equivalence candidates. Second, utilizing internal equivalent

points can improve the verification speed. In [46], a cut-point insertion method

for equivalence checking between designs before and after high-level synthesis

is proposed. Such kind of techniques can be utilized to reduce the search space

of equivalent candidates.

• Handling synchronizations under control branch on sequentializa-

tion. As discussed in Section 5.3.7, the proposed sequentialization cannot

handle synchronization points under control branches. Model checking method

is required to completely detect such synchronization points, which needs a lot

of computation time if synchronization structures are complicated. Therefore

a tradeoff between the variety of detectable synchronization points and accept-

able computation time should be considered. Utilizing such synchronization

points in sequentialization is also not easy since the conditions to synchronize

on those synchronization points must be included in the condition whose sat-

isfiability is going to be checked. This is another tradeoff between the number
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of synchronization points under consideration and the satisfiability checking

time.

• Support of general RTL designs in ExSDG. The current ExSDG syntax

has some limitations on translating RTL designs. For example, it cannot han-

dle multiple clocks, don’t cares, high-impedance values. Therefore, to modify

the RTL syntax of ExSDG and consider how to translate such RTL designs

into TBL can be a good future work of the research. Here some directions to

handle them are shown. To translate RTL designs having multi clock domains

into TBL, the least common multiple of the clock periods can be considered

as a true period. Since even TBL does not have a notion of don’t care values,

it may be required to add don’t care to TBL syntax. In this case, back-end

verification tools must also support don’t cares. High-impedances can be con-

sidered as explicit expressions representing that other parallel modules assign

values to the variables to which the high-impedances are assigned. Therefore,

they must be checked in advance at a step which eliminates high-impedances

in the translation from RTL to TBL.
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