
Abstract

With the size increase of VLSI, current designs are firstly written in high-levels,

such as system-level, behavioral level, or register transfer level (RTL). High-level

designs are typically verified by simulation. However, since simulation can only

check patterns being input, some design bugs in corner cases may not be detected

with it. Then, formal verification is used as a complement of simulation for such a

case.

Currently, two problems can be considered on formal verification of high-level

design. One is about performances of verification methods and tools. The other

is the high-barrier to apply formal verification methods to actual designs. In this

thesis, four methods are proposed for these problems. The first two methods im-

prove verification performances, and the other two methods related to interfaces or

preprocesses of formal verification methods. The first two methods are based on

an approach which separates control and data portions in designs. Then, control

portions and data portions can be analyzed separately, and word-level methods such

as symbolic simulation can be applied effectively.

The first proposed method improves bounded model checking by decomposing

one large bounded model checking into small pieces. It is very difficult for traditional

bounded model checking methods which can only be verified with short bounds to

detect deep bugs. In the proposed method, since the bound of each decomposed

bounded model checking is small, the computation amount can be dramatically

reduced in successful cases. In addition, symbolic simulation is applied to a control

path of each counter example to support the connections between those decomposed

bounded model checkings. When a connection fails, the former bounded model

checking is retried after refining the condition not to get similar counter examples.

i



Experimental results showed that the proposed method can improve the performance

of bounded model checking even with the simplest two-level method.

The second method proposed in this thesis improves equivalence checking be-

tween designs before and after behavioral optimization or high-level synthesis. The

proposed method applies a preprocess that makes the data portions of the target

designs identical. This is performed by tentatively synthesizing behavioral designs

into virtual controllers and virtual datapaths. When the target designs are designs

before and after high-level synthesis, the virtual datapath is identical to the dat-

apath of the RTL design. When datapaths of two designs are identical, the same

control signals are guaranteed to be equivalent in bit-level. Then such control signals

can be replaced with uninterpreted functions, and word-level equivalence checking

techniques can be applied with bit-level accuracy. In addition, a word-level rule-

based equivalence checking method is proposed. The method uses pre-defined rules

of equivalence to propagate input equivalences which are given by users to outputs.

Since the rule based approach topologically traverses control FSMs, designs which

include many conditional branches and loops can be verified faster than symbolic

simulation based methods.

The third method proposed in this thesis is a preprocess for hardware/software

co-design to solve the three problems in formal verification of hardware/software co-

design in lower level than system-level, such as their size, the difference of hardware

and software representations, and the interactions between hardware and software

portions. The proposed method translates both hardware and software portions

into a set of concurrent Finite State Machine with Datapaths (FSMDs). After the

translation, the interactions between hardware and software portions are abstracted.

Then, a sequentialization method which converts concurrent FSMDs into a single

sequential FSMD and handles interruptions is applied. After the sequentialization,

control states which do not have data dependences each other are merged. The ex-

perimental results showed that the proposed method could make formal verification

more than 20 times faster than existing methods.

The last method proposed in this thesis is an useful intermediate representa-

tion of high-level designs for verification. In the proposed intermediate representa-

tion ExSDG, complicated syntax elements and structures are removed in preprocess

ii



steps. Since ExSDG has different representation levels correspond to untimed be-

havioral level, timed behavioral level, and register transfer level, respectively, various

existing design representations in high-level can be directly translated into ExSDG.

Therefore, verification tool developers only have to deal with ExSDG to support

those representations. In addition, System Dependence Graph (SDG) and Control

Flow Graph are integrated with Abstracted Syntax Tree (AST) in ExSDG, and users

can directly access such information from the AST tree. An SDG edge shows a de-

pendency relation between two portions of a design. Many researches use ExSDG as

a tool implementation environment, and this fact shows the effectiveness of ExSDG.

With the four methods proposed in this thesis, formal verification in high-level

can achieve more performances, wider range of designs can be verified with them,

and tool implementations of them will be easier.

iii


