

Parallel Iterative Linear Solvers
with Preconditioning for Large

Scale Problems

大規模問題のための前処理付き並列反復法

Dissertation
Presented to the Graduate School of

The University of Tokyo
in the Fulfillment of the Requirements

for the Degree of
Doctor of Engineering

Kengo NAKAJIMA, M.S.

中島 研吾

December 2002

iii

Parallel Iterative Solvers with Preconditioning for

Large Scale Problems

Kengo Nakajima
The University of Toyko, 2002.

Supervisor: Professor Genki Yagawa, Doctor of Engineering.

Computer simulations are essential for exploring new frontier in science and
engineering. Parallel computation is necessary for the numerical solution of various
types of large-scale and complicated computation. In many large-scale scientific
simulation codes using the finite-element method (FEM) and the finite-difference
method (FDM), almost computation is spent in solving linear equations with sparse
coefficient matrices. For this reason, much of the scalable algorithm research and
development is aimed at solving these large, sparse linear systems of equations on
parallel computers.
 Among the sparse linear solvers, iterative methods are memory scalable and
the only choice for large-scale simulations by massively parallel computers. The rate of
convergence of iterative methods depends strongly on the spectrum of the coefficient
matrix. Hence, iterative methods usually involve a second matrix that transforms the
coefficient matrix into a matrix with more favorable spectrum. The transformation
matrix is called a preconditioner. The use of a good preconditrioner improves the
convergence of the iterative methods.
 In this thesis, the following three types of preconditioners of parallel iterative
solvers for various types of applications on unstructured meshes were developed using
the GeoFEM platform for parallel finite-element methods:

I. Localized block ILU(0) preconditioning method for 3D solid
mechanics on SMP cluster type vector parallel computers, such as the
Earth Simulator (general preconditioners).

II. Parallel scalable multigrid preconditioning method for 3D Poisson
equations derived from incompressible Navier-Stokes solvers with
adaptive meshes (preconditioners for broad classes of underlying
problems).

iv

III. Selective blocking preconditioning method for 3D solid mechanics
with contact on SMP cluster type vector parallel computers
(preconditioners for specific problems).

 Adaptive methods in applications with unstructured meshes have evolved as
efficient tools for obtaining numerical solution without a priori knowledge of the details
of the nature of the underlying physics. However, these methods cause severe load
imbalance among processors in parallel computations. In the present study, a parallel
mesh adaptation method with dynamic load-balancing using DRAMA library has been
developed and implemented on a 3D compressible Navier-Stokes solver developed on
the GeoFEM platform. The extended data structure of GeoFEM with mesh adaptation
and multigrid procedure has been also proposed.
 All of the developed preconditioning methods on the GeoFEM platform for its
local data structure provide excellent parallel/vector performance up to > 1,000 PEs and
robustness for very ill-conditioned problems. The localized block ICCG(0) solver with
special reordering strategy for unstructured mesh attained 3.80 TFLOPS for simple 3D
linear elastic problem with 2.2×109 DOF on 176 SMP nodes (1,408 PEs) of the Earth
Simulator, corresponding to 33.7% of peak performance.
 Parallel CG solvers with selective blocking preconditioning and special reordering
developed in this study provided excellent performance on the Earth Simulator (29.1%
of peak performance) and robustness for ill-conditioned matrices which appear in
contact problems. Moreover, selective blocking preconditioning is memory efficient and
requires only 25% of ILU(2) and 50% of ILU(1).
 The parallel multigrid procedure with new local data structure provided excellent
parallel performance of greater than 95% on a Hitachi SR2201 with 128 PEs. The direct
jump method developed in this study for locally refined mesh is very simple, but was
found to be much more efficient than the existing level-by-level method described in for
deeper-level adaptation. The effect of the parallel multilevel ILU smoother for
ill-conditioned problems has been also evaluated.
 These methods and data structure are very useful for wide range of scientific
applications developed for SMP cluster type architecture which has become very
popular for massively parallel computers in recent days.

v

Acknowledgements

First of all, I would like to thank my advisor Professor Genki Yagawa, University of
Tokyo, for devoting a great deal of his time and efforts to this work. His advice always
helped me to get a new idea and I have really enjoyed my research work.
 Professor Hiroshi Okuda, University of Tokyo, is one of the thesis committee
members and always encouraged me to have finished work in recent five years. I greatly
appreciate his advice.
 I thank Professors Shinobu Yoshimura, Muneo Hori and Shao-Liang Zhang,
University of Tokyo for participating the thesis committee and for their valuable
suggestions.
 This work is performed as a part of GeoFEM project in RIST (Research
Organization for Information Science and Technology). I would like to thank all of the
current and former members of the GeoFEM developing team: Hisashi Nakamura
(RIST), Hiroshi Okuda (University of Tokyo), Issei Fujishiro (Ochanomizu University),
Mikio Iizuka (RIST), Kazuteru Garatani (CRC), Hide Sakaguchi (RIST), Mitsuko
Hama (RIST), Li Chen (RIST), Hiroaki Matsui (RIST), Jun Yin (RIST), Shin'ich Ezure
(RIST), Kazuaki Sakane (RIST), Aya Marumo (RIST), Daigo Sekita (Mitsubishi
Research Institute), Yoshitaka Wada (Tokyo University of Science, Suwa), Yuriko
Takeshima (Tohoku University), Osamu Hazama (CCSE/JAERI), Norihisa Anan
(Yokohama National University), Hiroko Nakamura (Ochanomizu University), Yasuko
Suzuki (Mitsubishi Electric), Masaki Nagata (Denso) and Noriyuki Kushida (University
of Tokyo).
 I would like to thank my academic advisors, Professor Kyohei Kondoh
(University of Tokyo, currently National Academy of Defense, Japan) and Professor
Yannis Kallinderis (University of Texas at Austin), who opened a door to the world of
research for me.
 I also would like to thank Professors Yasumasa Kanada (University of Tokyo),
Mitsuhiro Matsu'ura (University of Tokyo) and Takahiko Tanahashi (Keio University)
for their helpful suggestions.
 I started my career as an engineer at the Mitsubishi Research Institute, Inc. in 1985.
I had many valuable experiences through various kinds of projects. I would like to thank
all of my colleagues there: Hiroshi Saitoh, Kazuhiko Noguchi, Yasushi Kondoh,
Hirokazu Tsunoda, Reiji Mezaki, Kumiko Minami, Fumiya Shimizu, Hidenori Yasuda,
Takenori Mikasa, Yutaka Kohno, Shingo Ueno, Miyuki Maruyama, Naohiko Nakamura,

vi

Masaaki Matsumoto, Kiyoshi Akizuki (Akizuki Steel), Takashi Imai (ACE Insurance),
Hirohisa Noguchi (Keio University), Koichiro Hatanaka (Japan Nuclear Cycle
Development Institute), Toshio Nagashima (Sophia University) and Yasuji Fukahori
(Beta Engineering).
 I am happy to have many friends all over the world through my research works. I
really enjoyed interaction with them. I would like to appreciate many suggestions and
advice from: Achim Basermann (NEC Europe), Shun Doi (NEC), Jochen Fingberg
(NEC Europe), Takashi Furuumura (Earthquake Research Institute, University of
Tokyo), Mike Heroux (Sandia National Laboratories), Guy Lonsdale (NEC Europe),
Tomoshi Miyamura (Nihon University), Peter Mora (University of Queensland),
Esmond Ng (Lawrence Berkeley National Laboratory), Akira Nishida (University of
Tokyo), Sachio Ozaki (CRIEPI), Horst Simon (Lawrence Berkeley National
Laboratory), Klaus Stüben (SCAI/Fraunhofer), Keita Teranishi (Pennsylvania State
University), Takumi Washio (NEC), David Womble (Sandia National Laboratories),
Akira Yamaguchi (Japan Nuclear Cycle Development Institute), and Jun Zhang
(University of Kentucky).
 I also thank all of my family members who have supported me spiritually,
especially my parents, Masao and Kazuko.
 This study is a part of the Solid Earth Platform for Large-Scale Computation
project funded by the Ministry of Education, Culture, Sports, Science and Technology,
Japan through Special Promoting Funds of Science & Technology.
 Last, but certainly not least, I would like to thank my wonderful wife Reiko for
her support throughout this long and winding road.

December 2002.
Kengo Nakajima

vii

Contents

Abstract iii

Acknowledgements v

Chapter 1 Introduction 1

 1.1 Why Iterative Methods ? 2

 1.2 Why Preconditioning ? 3

 1.3 Preconditioned Conjugate Gradient Method 8

 1.4 Parallel Programming Models 11

 1.4.1 Overview 11

 1.4.2 Message Passing 11

 1.4.3 Shared Memory 11

 1.4.4 SMP Cluster Architectures and Hybrid Parallel

 Programming Model 12

 1.5 GeoFEM Project 13

 1.6 Present Work 15

 1.7 Overview of Thesis 17

 1.8 Environments for Parallel Computation 18

 1.8.1 Overview 18

 1.8.2 Hitachi SR2201 18

 1.8.3 Hitachi SR8000 20

 1.8.4 Earth Simulator 20

 1.8.5 Parallel Computers in this Thesis 21

viii

 Figures 23

Chapter 2 Parallel Iterative Solvers in GeoFEM 27

 2.1 Procedures of Parallel FEM 28

 2.2 Distributed Data Structure 29

 2.3 Localized Preconditioning 30

 2.4 Additive Schwartz Domain Decomposition 34

 2.5 Summary 35

 Figures and Tables 37

Chapter 3 Parallel Iterative Solvers for Unstructured Grids using Hybrid

 Programming Model on SMP Cluster Architectures 51

 3.1 Introduction 52

3.2 Reordering Methods for Parallel/Vector Performance Using SMP Nodes

 54

 3.2.1 Cyclic Multicolor-Reverse Cuthil McKee Reordering 54

 3.2.2 DJDS Reordering 55

 3.2.3 Distribution over SMP Nodes: Parallel DJDS Reordering 56

 3.2.4 Summary of Reordering Methods 56

3.3 Vector and Parallel Performance in Simple Geometries 57

3.4 Effect of Reordering 58

 3.4.1 Vector Performance 58

 3.4.2 SMP Parallel Performance by Hybrid Parallel

 Programming Model 58

ix

 3.4.3 Effect of Reordering Method 59

3.5 Performance Evaluation for Large Scale Problems 61

 3.6 Summary 62

 Figures and Tables 63

Chapter 4 Parallel Iterative Solvers with the Selective Blocking Preconditioning

 97

 4.1 Introduction 98

 4.2 Preconditioning Methods for Ill-Conditioned Problems 99

 4.2.1 Preliminary Results 99

 4.2.2 Blocking 99

 4.2.3 Deep Fill-in 100

 4.2.4 Selective Blocking 102

 4.2.5 Evaluation of Developed Methods 103

 4.3 Strategy for Parallel Performance 104

 4.4 Benchmarks 105

 4.4.1 Overview 105

 4.4.2 Benchmarks-1 (Simple Block Model) 106

 4.4.3 Benchmarks-2 (Southwest Japan Model) 107

 4.4.4 Large-Scale Computation by Flat MPI 108

 4.5 Optimization for the Earth Simulator 110

 4.5.1 Overview 110

 4.5.2 Reordering Methods for Parallel/Vector Performance on

 SMP Nodes 110

x

 4.5.3 Special Treatments for Selective Blocking 111

 4.5.4 Results 112

 4.6 Summary 113

 Figures and Tables 115

Chapter 5 Parallel Multilevel Iterative Linear Solvers with Unstructured

 Adaptive Grids 141

 5.1 Introduction 142

 5.2 Incompressible Navier-Stokes Method 143

 5.2.1 Background 143

 5.2.2 Governing Equations and Pressure Correction Scheme 143

 5.2.3 Finite-Volume Discretization 146

 5.2.4 Artificial Dissipation 148

 5.2.5 Time-Step Calculation 150

 5.2.6 Poisson Equation Treatment 151

 5.3 Multigrid Method 153

 5.3.1 Multigrid Procedure 153

 5.3.2 Multigrid as a Preconditioner 154

 5.3.3 Semi-Coarsening 154

 5.3.4 Geometric and Algebraic Multigrid 155

 5.3.5 Other Recent Studies in Multigrid 155

 5.4 Parallel Multigrid Preconditioned Iterative Solvers 156

 5.4.1 Problem Definitions 156

 5.4.2 Parallel MGCG Solvers for Poisson Equations 157

xi

 5.4.3 Grid Adaptation 161

 5.5 Examples (Poisson Equations) 162

 5.5.1 Outline 162

 5.5.2 Poisson-I (Uniform Mesh) 162

 5.5.3 Poisson-II (Locally Refined Mesh) 164

 5.6 Examples (Navier-Stokes Equations) 166

 5.7 Summary 167

 Figures and Tables 169

Chapter 6 Parallel 3D Adaptive Navier-Stokes Solver in GeoFEM with

 Dynamic Load-Balancing 213

 6.1 Introduction 214

 6.2 Parallel 3D Compressible Navier-Stokes Solver: epHYBRID 215

 6.2.1 Outline 215

 6.2.2 Governing Equations 215

 6.2.3 Spatial Discretization with Mixed Elements 216

 6.2.4 Upwind-like Artificial Dissipation 217

 6.2.5 Local Time Stepping 218

 6.3 Parallel Mesh Adaptation and Dynamic Load-Balancing Module:

 pADAPT/DRMA 220

 6.3.1 pADAPT 220

 6.3.2 DRAMA and Data Migration 223

 6.4 Distributed Data Structures for Parallel Mesh Adaptation 225

 6.5 Examples 226

 6.5.1 Parallel Performance of epHYBRID without Adaptation 226

xii

 6.5.2 Comparison of Repartitioning Methods (Tetrahedral Grids)

 227

 6.5.3 Comparison of Repartitioning Methods (Hybrid Grids) 227

 6.6 Summary 229

 Figures and Tables 231

Chapter 7 Concluding Remarks 253

 7.1 Summary of the Thesis 254

 7.2 Conclusions of the Thesis 258

 7.3 Further Study 261

 Figures 263

References 267

VITA 279

1

Chapter 1 Introduction

In this thesis, parallel iterative solvers with preconditioning for various types of
applications on unstructured grids and efficient distributed data structure for parallel
computation have been investigated and developed using the GeoFEM platform for
parallel finite-element methods. In this chapter, background of this work, especially
preconditioned iterative method and parallel programming models are briefly described.
The outline of the present work and structure of the thesis are also shown. Finally,
features of parallel computer systems used in this thesis are briefly described.

2

1.1 Why Iterative Methods ?

Computer simulations are essential for exploring new frontier in science and
engineering. Parallel computation is necessary for the numerical solution of various
types of large-scale and complicated computation. In many large-scale scientific
simulation codes using the finite-element method (FEM) and the finite-difference
method (FDM), most computation is spent for solving linear equations with sparse
coefficient matrices. For this reason, much of the scalable algorithm research and
development is aimed at solving these large, sparse linear systems of equations on
parallel computers. Sparse linear solvers can be broadly classified as being either direct
or iterative.
 Direct solvers such as Gaussian Elimination are based on a factorization of the
associated sparse matrix. They are extremely robust and would give the exact solution
of Ax=b after a finite number of steps without round-off errors. However, their memory
requirements grow as a nonlinear function of the matrix size because original zeroes fill
in during factorization.
 In contrast, iterative methods are memory scalable. Therefore iterative methods
are the only choice for large-scale simulations by massively parallel computers. In [7],
iterative methods are classified as being stationary or nonstationary. Stationary methods
are such as the Jacobi method, the Gauss-Seidel method and SOR (Successive
Over-relaxation) method. Nonstationary methods are the Krylov subspace methods such
as the Conjugate Gradient (CG) method, the Bi-Conjugate Gradient Stabilized
(BiCGSTAB) method, Generalized Product-type Bi-Conjugate Gradient (GPBiCG)
method and the Generalized Minimal Residual (GMRES) method [7,21,103,125].
 Nonstationary methods are usually more complicated but more robust than
stationary methods. Nonstationary methods differ from stationary methods in that the
computations involve information that changes at each iteration. Typically, constants are
computed by taking inner products of residuals, or other vectors arising from the
iterative method.
 In recent days, various libraries for parallel iterative solvers have been developed
and some of them, such as AZTEC [127] and PETSc [142] can be freely downloaded
from web-sites.

3

1.2 Why Preconditioning ?

Iterative methods are memory scalable but their convergence can be slow or they can
fail to converge. The rate of convergence of iterative methods depends strongly on the
spectrum of the coefficient matrix. Hence, iterative methods usually involve a second
matrix that transforms the coefficient matrix into a matrix with more favorable spectrum.
The transformation matrix is called a preconditioner. The use of a good preconditioner
improves the convergence of iterative methods, sufficiently to overcome the extra cost
of constructing and applying the preconditioner. Indeed, without a preconditioner the
iterative method may even fail to converge.
 In the preconditioned iterative methods, original linear equation:

 Ax = b (1.1)

is transformed into the following equation (1.2) using preconditioner M:

 A'x = b', A'= M-1 A, b'= M-1 b (1.2)

Equation (1.2) has same solution as (1.1), but the spectral properties of the coefficient
matrix A'=M-1A may be more favorable and convergence is faster.
 According to [29] preconditioners can be divided roughly into following three
categories:

I. Preconditioners designed for wide range of general classes of matrices.
Examples of such preconditioners are the Jacobi, Gauss-Seidel, SOR, IC/ILU,
and approximate inverse methods. Public libraries such as AZTEC [127] and
PETSc [142] usually provide preconditioners in this category.

II. Preconditioners designed for broad classes of underlying problems such as
elliptic partial differential equations. Multigrid and domain decomposition
preconditioners are classified into this category.

III. Preconditioners designed for a specific matrix or underlying problem.
Despite great studies in developing preconditioners for general linear
systems or for broad classes of underlying problems, it is still possible in
many situations to use physical intuition about a specific problem to develop
a more effective preconditioner.

4

 Various types preconditioning methods have been proposed, developed and used.
The simplest preconditioning is called diagonal scaling or point Jacobi method where M
is diagonal components of the original coefficient matrix A. Jacobi, Gauss-Seidel and
SOR type stationary iterative methods are also well-known as preconditioners.
Preconditioning methods using various types of polynomials have been also widely
used [7,21,103].
 The incomplete lower-upper (ILU) for non-symmetric matrices and incomplete
Cholesky (IC) factorization methods for symmetric matrices are the most popular
preconditioning techniques for accelerating the convergence of Krylov iterative
methods [7,21,103]. ILU/IC methods are based on LU/Cholesky factorization or
Gaussian elimination for direct solvers. Procedure of LU factorization or Gaussian
elimination is as follows [7,21,103]:

In this procedure, many fill-in occurs during factorization, therefore factorized matrix
could be dense even if original matrix is sparse [103]. ILU(n) or IC(n) are incomplete
factorization where n-level fill-in is allowed. Larger n provides more accurate
factorization and usually leads to robust preconditioning, but more expensive in both
memory and CPU time. In many engineering applications, ILU(0)/IC(0) is widely used
where there are no fill-in and non-zero pattern of factorized matrix is kept as original
coefficient matrix:

Gaussian Elimination
 do i= 2, n
 do k= 1, i-1
 ajk := ajk/akk
 do j= k+1, n
 aij := aij - aik*akj
 enddo
 enddo
 enddo

5

ILU(n)/IC(n) with n-level fill-in is described as follows:

ILU(n)/IC(n) ignore numerical values because elements that are dropped depend only
on the structure of the original coefficient matrix due to memory requirement. This may
cause some difficulties for realistic applications due to memory storage requirement.
One of the alternative methods is based on the dropping strategy according to the
magnitude of the elements rather than their locations. This type of ILU factorization is
generally called ILUT/ICT [82,98,103,115,123,124] where T denotes drop-threshold.

ILU(0)
 do i= 2, n
 do k= 1, i-1
 if ((i,k) ∈ NonZero(A)) then
 ajk := ajk/akk
 endif
 do j= k+1, n
 if ((i,j) ∈ NonZero(A)) then
 aij := aij - aik*akj

 endif
 enddo
 enddo
 enddo

ILU(n)
 LEVij=0 if ((i,j) ∈ NonZero(A)) otherwise LEVij= p+1
 do i= 2, n
 do k= 1, i-1
 if (LEVik ≤ p) then
 ajk := ajk/akk
 endif
 do j= k+1, n
 if (LEVij = min(LEVij,1+LEVik+ LEVkj) ≤ p) then
 aij := aij - aik*akj

 endif
 enddo
 enddo
 enddo

6

 Approximate inverse method [21,103,115,123] provides a direct approximation to
the inverse of original matrix A. This method is useful if the matrix is indefinite and
incomplete LU factorization is difficult or impossible. A simple technique for finding
approximate inverses of arbitrary sparse matrices is to attempt to find a sparse matrix
which minimizes the Frobenius norm of the residual matrix I-AM:

F

2AMI)M(F −= (1.3)

 Domain decomposition method is also a certain category of preconditioning
methods. The word "domain decomposition method" covers a wide range of techniques.
Basic idea of domain decomposition methods is that entire structure is divided into
small pieces (subdomains), problems are solved independently in each subdomain, then
results are pieced together in order to give the solution to the entire problem. Domain
decomposition methods are divided into two categories, those using overlapping
subdomains, such as additive and multiplicative Schwartz methods, and those using
nonoverlapping subdomains, which are sometimes called substructuring methods.
 For example, additive Schwartz method is considered to be preconditioner:

 () T
i

1
i

T
iii

J

1i
i

1 RRARRBBM
−

=

− =≡∑ , (1.4)

where Ri is the matrix for permutation index in i-th subdomain and J is the total
number of subdomains.
 Multigrid is an example of scalable linear solver technology. It uses a
relaxation method like Gauss-Seidel to efficiently damp high-frequency error, leaving
only low-frequency, or smooth, error. The multigrid idea is to recognize that this
low-frequency error can be accurately and efficiently solved for on a coarser (i.e.,
smaller) grid. Recursive application of this idea to each consecutive system of
coarse-grid equations leads to a multigrid V-cycle [11,110]. If the components of the
V-cycle are defined properly, the result is a method that uniformly damps all error
frequencies with a computational cost that depends only linearly on the problem size. In
other words, multigrid algorithms are scalable.

There are two basic multigrid approaches: geometric and algebraic. In
geometric multigrid, the geometry of the problem is used to define the various multigrid

7

components. In contrast, algebraic multigrid methods use only the information available
in the linear system of equations.

In order to enhance multigrid's robustness, it is often used as a preconditioner
for Krylov methods such as conjugate gradients. However, since multigrid algorithms
tend to be somewhat problem-specific.

8

1.3 Preconditioned Conjugate Gradient Method

The Conjugate Gradient (CG) method is one of the typical nonstationary method and
effective for symmetric positive definite systems. The method proceeds by generating
vector sequences of iterates (i.e., successive approximations to the solution), residuals
corresponding to the iterates, and search directions used in updating the iterates and
residuals. Although the length of these sequences can become large, only a small
number of vectors needs to be kept in memory. In every iteration of the method, two
inner products are performed in order to compute update scalars that are defined to
make the sequence satisfy certain orthogonality conditions. On a symmetric positive
definite linear system, these conditions imply that the distance to the true solution is
minimized in some norm.
 The iterates x(i) are updated in each iteration by a multiple (αi) of the search
direction vector p(i):

)i(
i

)1i()i(pxx α+= − (1.5)

Correspondingly the residuals)i()i(Axbr −= are updated as

)i(
i

)1i()i(qrr α−= − where)i()i(Apq = (1.6)

The choice of)qp/()rr()i(T)i()i(T)i(
i =α minimizes)i(1T)i(rAr − over all possible

choices for a in equation (1.6).
 The search directions are updated using the residuals

)1i(
i

)1i()i(prp −− β+= (1.7)

where the choice)rr/()rr()1i(T)1i()i(T)i(
i

−−=β ensures that p(i) and Ap(i-1) (or

equivalently, r(i) and r(i-1)) are orthogonal. In fact, one can show that this choice of
βi makes p(i) and r(i) orthogonal to all previous Ap(j) and r(j) respectively.
 The pseudo code for the preconditioned Conjugate Gradient Method is given in
Fig.1.1. It uses a preconditioner M ; for M=I one obtains the unpreconditioned version
of the Conjugate Gradient Algorithm. In that case the algorithm may be further

9

simplified by skipping "solve" line, and replacing z(i-1) by r(i-1) (and z(0) by
r(0)).
 The unpreconditioned conjugate gradient method construc the i-th iterate x(i) as

an element of }rA,...,Ar,r{spanx)0(1i)0()0()0(−+ so that)x̂x(A)x̂x()i(T)i(−−

is minimized where x̂ is the exact solution of Ax=b. This minimum is guaranteed to
exist in general only if A is symmetric positive definite. The preconditioned version of
the method uses a different subspace for constructing the iterates, but it satisfies the
same minimization property, although over this different subspace. It requires in
addition that the preconditioner M is symmetric positive definite.
 This minimization of the error is equivalent to the residuals)i()i(Axbr −=

being M-1 orthogonal (that is, jiif0rMr)j(1)i(≠=−). Since for symmetric A an

orthogonal basis for the Krylov subspace

}rA,...,Ar,r{span)r,A(K)0(1i)0()0()0(
i

−≡ can be constructed with only

three-term recurrences, such a recurrence also suffices for generating the residuals. In
the Conjugate Gradient method, two coupled two-term recurrences are used; one that
updates residuals using a search direction vector, and one updating the search direction
with a newly computed residual.
 Accurate predictions of the convergence of iterative methods are difficult to make,
but useful bounds can often be obtained. For the CG method, the error can be bounded
in terms of the spectral condition number κ of the matrix M-1A. If Emax and Emin are
the largest and smallest eigenvalues of a symmetric positive definite matrix B, then the
spectral condition number of B is κ(B)= Emax(B)/Emin(B). If x̂ is the exact
solution of the linear system Ax=b, with symmetric positive definite matrix A, then for
CG with symmetric positive definite preconditioner M, it can be shown that:

A

)i(

A

)i(x̂x2x̂x −α≤− where () ()1/1 +κ−κ=α (1.8)

From this relation, we can see that the number of iterations to reach a relative reduction
of ε in the error is proportional to κ .
 In some cases, practical application of this error bound is straightforward. For
example. Elliptic second order partial differential equations typically give rise to
coefficient matrices A with κ(A)=O(h-2) (where h is the discretization mesh width),

10

independent of the order of the finite elements or differences used, and of the number of
space dimensions of the problem. Thus, without preconditioning, we can expect a
number of iterations proportional to h-1 for the CG method.

11

1.4 Parallel Programming Models

1.4.1 Overview

Recently, different parallel architectures have emerged, each with its own set of
programming paradigms. These are classified into, message passing, shared-memory
directives and hybrids of the message passing and shared-memory directives. A brief
description of each model will be given in this section.

1.4.2 Message Passing

Parallel programming with message passing is the most common and mature approach
for parallel systems. On distributed memory architectures, each processor has its own
local memory that only it can access directly. In order to access the memory of another
processor, a copy of the desired data must be explicitly sent across the network using a
message-passing library such as MPI [139]. To run a code on such machines, the
programmer must decide how the data should be distributed and communicated among
the processors. This model requires a complex program structure, especially for
irregularly structured applications. But performance for coarse-grained communication
and implicit synchronization through blocking communication provide benefits.

1.4.3 Shared Memory

Using a shared-memory system can greatly reduce the number of programming tasks
compared to message-passing paradigm. In distributed shared-memory architectures,
each processor has a local memory as well as direct access to all of the memory in the
system. Parallel programs are relatively easy to implement since each processor has a
global view of the entire memory. Parallelism can be achieved by inserting compiler
directives into the code in order to distribute loop iterations among the processors.
However, performance may suffer from poor spatial locality if the parallelism is not
properly configured.
 OpenMP [14,141] is a specification for a set of compiler directives, library
routines, and environment variables that can be used to specify shared memory
parallelism in Fortran and C/C++ programs. OpenMP is designed for Fortran, C and
C++ to support the language that the underlying compiler supports. The fine-grain
parallelism is expressed by loop-level compiler directives. The syntax is similar to the
native pragma directives of many vendors.

12

1.4.4 SMP Cluster Architecture and Hybrid Parallel Programming Model

Recent technological advances have allowed increasing numbers of processors to have
access to a single memory space in a cost-effective manner. As a result, symmetric
multiprocessor (SMP) cluster architectures have become very popular as teraflop-scale
parallel computers, such as the Accelerated Strategic Computing Initiative (ASCI) [126]
machines and the Earth Simulator [130].

In order to achieve minimal parallelization overhead, a multi-level hybrid
programming model [13,20,23,86] is often employed for SMP cluster architectures
(Fig.1.2). The goal of this method is to combine coarse-grain and fine-grain parallelism.
Coarse-grain parallelism is achieved through domain decomposition by message
passing among SMP nodes using a scheme such as Message Passing Interface (MPI)
[139], and fine-grain parallelism is obtained by loop-level parallelism inside each SMP
node by compiler-based thread parallelization such as OpenMP [14,141].

Another commonly used programming model is the single-level flat MPI model
[13,20,23,86] (Fig.1.2), in which separate single-threaded MPI processes are executed
on each processing element (PE). The advantage of a hybrid programming model over
flat MPI is that there is no message-passing overhead in each SMP node. This is
achieved by allowing each thread to directly access data provided by other threads by
accessing the shared memory rather than by message passing. However, a hybrid
approach usually requires more complex programming.

Although a significant amount of research on this issue has been conducted in
recent years [13,23], most studies have focused on applications involving structured
grids such as the NAS Parallel Benchmarks (NPB) [140], with very few examples
treating unstructured grids [20,81,86]. Moreover, it remains unclear whether the
performance gains of this hybrid approach compensate for the increased programming
complexity. Several examples indicate that flat MPI is somewhat better, although the
efficiency depends on hardware performance (CPU speed, communication bandwidth,
and memory bandwidth), features of applications, and problem size [97].

13

1.5 GeoFEM Project

The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
has begun an Earth Simulator project from the fiscal year of 1997 for predicting various
Earth phenomena through the simulation of virtual Earth placed in a supercomputer,
called "Earth Simulator (40 Tflops/peak)". The Earth Simulator has shared memory
symmetric multiprocessor (SMP) cluster architecture and consists of 640 SMP nodes,
where each SMP node consists of 8 vector processors [130]. GeoFEM [131] was
developed as a parallel finite-element platform for solid earth simulation on the Earth
Simulator.
 GeoFEM challenges for long-term prediction of the activities of the plate and
mantle near the Japanese islands through the modeling and calculation of the solid earth
analysis, including the dynamics and heat transfer inside the Earth. GeoFEM is
composed of "analysis modules" for structural/electromagnetic thermal fluid / wave
propagation simulations and "platform" for parallel I/O / equation solvers / visualization
functions, as shown in Fig.1.3. System is designed to be pluggable such that each
analysis module is replaceable and that communications among PEs are done implicitly
in platform. Platform includes a "coupler", supporting communications among analysis
modules for multi-disciplinary computations. "Utilities" i.e. mesh partitioners and
pre/post viewer are also supplied. ICCG solver tuned for SMP parallel / vector hybrid
system is expected to attain over 10 Tflops on the Earth Simulator. In collaboration with
solid earth researchers, various modules are being developed in such fields as
earthquake cycle, faulting and propagation, mantle/core dynamics, seismic wave
propagation, GPS data assimilation etc.
 In GeoFEM, preconditioned iterative method is implemented in order to solve
large-scale problems with more than 108 DOF. GeoFEM solves both of symmetric and
un-symmetric matrices. Therefore CG (Conjugate Gradient) for symmetric matrices and
BiCGSTAB (Bi-Conjugate Gradient Stabilized) GPBiCG (Generalized Product-type
Bi-Conjugate Gradient) and GMRES (Generalized Minimal Residual) methods are
implemented [7,21,103,125]. GMRES is especially suitable for nonlinear problems.
Some of the applications in GeoFEM consist of highly nonlinear process such as contact
of fault zones for earthquake generation simulation. Usually, this type of application
provides very ill-conditioned matrices for linear equations and these are very difficult to
solve using iterative methods. In GeoFEM, various types of robust preconditioning
methods were developd. Some of them are general and applicable for wide range of

14

applications (e.g. ILU(1), ILU(2) etc.). Problem specific preconditioning methods (e.g.
selective blocking for contact problems) have been also developed.

15

1.6 Present Work

In the present work, parallel iterative solvers with preconditioning for various types of
applications on unstructured grids and efficient distributed data structure for parallel
computation have been investigated and developed using the GeoFEM platform for
parallel finite-element methods.
 The following three types of preconditioners for nonstationary (or Krylov
subspace) iterative solvers were developed each of which corresponds to each of the
three categories of preconditioners in Section 1.2 on the GeoFEM platform:

I. Localized block ILU(0) preconditioning method for 3D solid
mechanics on SMP cluster type vector parallel computers, such as the
Earth Simulator: 3-level hybrid parallel programming model with
inter/intra-SMP node communication and vectorization on individual PE
has been developed. This is a very general preconditioner which can be
applied to various types of applications.

II. Parallel scalable multigrid preconditioning method for 3D Poisson

equations derived from incompressible Navier-Stokes solvers with
adaptive meshes: Extended data structure for multilevel method has been
developed. Various smoothers for multigrid procedure have been
evaluated under various types of boundary conditions. This is a
preconditioner for broad class of underlying problems.

III. Selective blocking preconditioning method for 3D solid mechanics

with contact on SMP cluster type vector parallel computers: This
method was developed for contact simulations of earthquake generation at
fault zones. This is a problem specific preconditioner for very
ill-conditioned applications.

 In this work, symmetric positive definite matrices which satisfy

0u,u,0)u,Au(n ≠∈∀> R are mainly treated which are derived from

descritization of certain problems such as Poisson equations, linear elastic equations for
solid mechanics and linearized Newton-Raphson equations for contact problems

16

without friction. But the idea in this paper can be extended to other types of problems
such as equations with un-symmetric matrices. Therefore, the Conjugate Gradient (CG)
method is mainly used as iterative method [7]. Message passing type programming
model is adopted and the program is written in Fortran 90 with MPI [139].
 In I and III, preconditioning methods are optimized for SMP cluster architectures
with vector processors using hybrid programming model [75,77,79,81].
 As for the multigrid method in II, geometrical multigrid approach [74,78,80]
utilizing hierarchical data structure for adaptively generated meshes and local mesh
refinement were developed. Recently, many research on parallel mutigrid method has
been conducted and some of them are for problems with local mesh refinement for
adaptation. But most of the studies on parallel multigrid methods with mesh adaptation
have focused on block-structure type grids and there have been very few works on
unstructured meshes. In this work, a new algorithm for multigird procedure with local
mesh refinement has been developed.
 Adaptive methods in applications with unstructured meshes have evolved as
efficient tools for obtaining numerical solution without a priori knowledge of the details
of the nature of the underlying physics. But these methods cause severe load imbalance
among processors in parallel computations. In the present study, parallel mesh
adaptation method with dynamic load-balancing using DRAMA library [129] has been
developed and implemented into 3D compressible Navier-Stokes solver developed on
the GeoFEM platform. Extended data structure of GeoFEM with mesh adaptation has
been also proposed.

17

1.7 Overview of Thesis

The thesis presents and evaluates parallel iterative solvers with preconditioning for
various types of applications on unstructured grids and an efficient distributed data
structure for parallel computation that have been investigated and developed using the
GeoFEM platform for parallel finite-element methods.
 Chapter 2 presents an overview of GeoFEM's distributed data structure and
parallel iterative solvers for unstructured grids [71,72,73,79,81,84,131].
 Chapter 3 describes parallel iterative solvers using the localized block
ILU(0)/IC(0) preconditioning method for SMP cluster type vector parallel computers
and the results of 3D elastic problems with 2. 2 G DOF using 176 SMP nodes of the
Earth Simulator are presented [79,81]. The performance of the flat MPI and the hybrid
parallel programming model described in Section 1.4 is evaluated.
 In Chapter 4, the selective-blocking preconditioning method for contact problems
is described and large-scale problems are solved using a Hitachi SR2201 with a flat MPI
and the Earth Simulator with a hybrid parallel programming model.
 Chapter 5 presents the parallel multigrid preconditioning method for locally
refined unstructured meshes [74,78,80]. The developed method is evaluated on a
Hitachi SR2201 using a flat MPI parallel programming model.
 Chapter 6 shows the parallel mesh adaptation procedure with dynamic load
balancing on the GeoFEM platform. The extended distributed data structure is also
proposed [76]. Flat MPI is implemented on a PC cluster and a Hitachi SR2201.
 Finally, Chapter 7 presents the main conclusions of this thesis, as well as
recommendations for future work.

18

1.8 Environments for Parallel Computation

1.8.1 Overview

In the present study, following computers were used for serial and parallel computation:

• COMPAQ Alpha Cluster with Alpha21164 500/599 MHz, 16 PEs at RIST [131]
• LAMP Cluster with Pentium-Pro 200 MHz, 32 PEs at NEC Europe [137]
• Hitachi SR2201 with 1024 PEs at University of Tokyo [132]
• Hitachi SR8000/128 with 128 SMP nodes (1024 PEs) at University of Tokyo

[133]
• Earth Simulator with 640 SMP nodes (5120 PEs) [130]

In the following part of this subsection, features of Hitachi SR2201, Hitachi
SR8000/128 and the Earth Simulator will be briefly described.

1.8.2 Hitachi SR2201

In this study, a Hitachi SR2201 system at the Information Technology Center of the
University of Tokyo was employed. The system has 1,024 PEs, where each PE has 300
MFLOPS peak performance and 256 MB memory. The total system provides 300
GFLOPS of peak performance and 256 GB memory [135]. Hardware of a Hitachi
SR2201 system has the following features:

• Pseudo-vector processing function
• Three-dimensional crossbar switch network
• Partitioned operation

(1) Pseudo-vector processing function

High-speed numerical computations in the microprocessor are achieved by
pseudo-vectorization [132]. Each microprocessor in a node pipelines data from memory
without interrupting subsequent instructions. Therefore, high-speed large-scale
computing is possible by supplying a large amount of data to the computing element
from memory.
 Generally, a RISC microprocessor-based machine has a cache memory between
the processor and the main memory for high-speed data transmission to the processor,

19

thereby increasing performance. For numerical calculation programs such as
FORTRAN, however, the cache memory cannot be fully utilized because a large range
of array data is defined and referenced through loops, eventually lowering performance.
As a solution to this performance reduction, the SR2201 provides pseudo-vector
processing for high-speed transmission of data from the memory to the processor.
Pseudo-vector processing generates an object program that processes the data
referenced in a loop in one of the following ways.

• The data is loaded in advance in a floating-point register, and loading is
completed while the loop that references the data is performing calculations
from previous iterations. (preload optimizing)

• The data is transferred is advance into a memory cache, and the transfer is
completed while the loop that references the data is performing calculations
from previous iterations. (prefetch optimizing)

(2) Three-dimensional crossbar switch network

One of the key architectural considerations in ensuring an excellent cost/performance
ratio is the reduction of overhead associated with pre- and post-processing.
Three-dimensional crossbar switch of Hitachi SR2201 provides high-speed connection
among individual processing elements (PEs). With this switch, there are only three
output lines from any PE: one for each of the crossbars. This simple layout achieves
almost the same performance as the configuration which interconnects all the
processing elements directly, yet at a much lower cost. Features of the crossbar switch
are as follows:

• A crossbar switch consists of 3 crossbars, one for each axis (X, Y & Z), to
create a 2-dimensional or a 3-dimensional structure.

• An X-crossbar switch is capable of switching up to 8 x 8 connections. A
Y-crossbar switch and a Z-crossbar switch are capable of switching up to 16 x
16 connections.

• Data transfer rate: 300MB/s in each direction of the dual ports.

(3) Partitioned operation

To ensure flexibility in operation, the SR2201 series supports partitioned operation. The
entire system can be partitioned into a maximum of 8 groups (partitions), each of which

20

can execute its own job stream independently of the others.

1.8.3 Hitachi SR8000/128

The Hitachi SR8000 is a distributed-memory parallel system with 4 to 128 configurable
nodes. The nodes are connected by a high-speed multidimensional crossbar network and
each node consists of multiple (8) microprocessors (IPs). These IPs perform high-speed
operation simultaneously via the cooperative microprocessor (COMPAS) feature [133].
 In this study, a Hitachi SR8000/128 system at the Information Technology Center
of the University of Tokyo was employed. The system has 128 SMP nodes, where each
node has 8 PEs, 8GFLOPS peak performance and 8GB memory. The total system
provides 1.0 TFLOPS of peak performance and 1.0 TB memory [135].
 Cooperative microprocessors (COMPAS) [133] provides high-speed simultaneous
activation of multiple processors in a node. Each microprocessor in the node executes
one of the threads into which the original program is divided. The compiler
automatically performs parallelization in the node, allowing the user to code data
without being aware of hardware architecture. Parallelization of vector operations
simplifies conversion from the standard vector operations.
 Pseudo-vectorization is also available in SR8000 for high-speed numerical
computations.

1.8.4 Earth Simulator

The Earth Simulator is based on:

• 5,120 (640×8-way nodes) 500 MHz NEC CPUs
• 8 GFLOPS per CPU (40 TFLOPS total)
• 2 GB (4×512 MB FPLRAM modules) per CPU (10 TB total)
• 640×640 crossbar switch between the nodes
• 16 GB/s inter-node bandwidth
• 20 kVA power consumption per node

The vector CPU is made using 0.15 μm CMOS process, and is a descendant (same
speed, smaller process) of the NEC SX-5 CPU. The machine runs a version of the
Super-UX UNIX-based OS. OpenMP parallel directives are used within a node, and
MPI-2 or HPF must be used across multiple nodes, necessitating a dual-level parallel
implementation. In fact this can be considered a three-level parallel system, if
single-CPU vectorization is taken into account; however, vectorization is largely

21

automatic. Still, an optimized code will need to employ MPI-2 at the subdomain level,
OpenMP at the loop level, and vectorization directives at the instruction level all at
once.
 The CPUs are housed in 320 cabinets, 2×8-CPU nodes per cabinet. Figure 1.4
shows that the cabinets (purple) are organized in a ring around the interconnect, which
is housed in another 65 cabinets (blue). Another layer of the circle is formed by disk
array cabinets (white), as shown in Fig.1.4. The whole thing occupies a building 65 m
long and 50 m wide. Activity on the nodes is signaled by a green beacon at the top of
the cabinet, and if a fault occurs, a similar red light turns on. Switch cabinets also have
green and red signaling lights for various types of communication events.

1.8.5 Parallel Computers in this Thesis

Following table describes the computers and parallel programming models used in each
chapter of this thesis, with information for the category of the preconditioning methods.

Chap.2:
Test for parallel iterative solvers in
GeoFEM

Chap.3:
Localized BICCG(0) solvers for
SMP cluster architectures

Programming Model

Alpha
Cluster

LAMP
(Pentium-

Pro)
Cluster

Hitachi
SR2201

Hitachi
SR8000

Earth
Simulator

Serial Flat MPI Flat MPI Hybrid Flat MPI
Hybrid

Chap.4:
Selective blocking preconditioning
for contact problems

Chap.5:
Parallel multigrid preconditioning
for Poisson equations

Category
of

Precondi-
tioner

Chap.6:
Adaptive mesh refinement and
dynamic load-balancing

I ○

I ○
○

Flat MPI
Hybrid

III ○ ○
○

Hybrid
only

II ○

○ ○

Chap.2:
Test for parallel iterative solvers in
GeoFEM

Chap.3:
Localized BICCG(0) solvers for
SMP cluster architectures

Programming Model

Alpha
Cluster

LAMP
(Pentium-

Pro)
Cluster

Hitachi
SR2201

Hitachi
SR8000

Earth
Simulator

Serial Flat MPI Flat MPI Hybrid Flat MPI
Hybrid

Chap.4:
Selective blocking preconditioning
for contact problems

Chap.5:
Parallel multigrid preconditioning
for Poisson equations

Category
of

Precondi-
tioner

Chap.6:
Adaptive mesh refinement and
dynamic load-balancing

I ○

I ○
○

Flat MPI
Hybrid

III ○ ○
○

Hybrid
only

II ○

○ ○

22

23

Fig. 1.1 Procedure of Conjugate Gradient Method (CG) [7,21]

 compute r(0)= b – Ax(0) for some initial guess x(0)
 for i= 1,2,...
 solve M z(i-1)= r(i-1) (M: preconditioning matrix)
 ρi-1= r(i-1)T z(i-1)
 if i=1
 p(1)= z(0)
 else
 βi-1= ρi-1/ρi-2
 p(i)= z(i-1) + βi-1 p(i-1)
 endif
 q(i)= A p(i)
 αi= ρi-1/(p(i)T q(i))
 x(i)= x(i-1) + αi p(i)
 r(i)= r(i-1) - αi q(i)
 check convergence; continue if necessary
 end

24

Fig. 1.2 Parallel programming models for SMP cluster architectures [3,4,5,6,10]

P
E

P
E

P
E

P
E

Memory
P
E

P
E

P
E

P
E

Memory

Hybrid：Hierarchy

P
E

P
E

P
E

P
E

Memory
P
E

P
E

P
E

P
E

Memory

Hybrid：Hierarchy

P
E

P
E

P
E

P
E

Memory
P
E

P
E

P
E

P
E

Memory

Flat-MPI：Each PE -> Independent

P
E

P
E

P
E

P
E

Memory
P
E

P
E

P
E

P
E

Memory

Flat-MPI：Each PE -> Independent

Intra NODE Inter NODEEach PE

F90 + directives (OpenMP) MPI

MPIF90Flat-MPI

Hybrid

Intra NODE Inter NODEEach PE

F90 + directives (OpenMP) MPI

MPIF90Flat-MPI

Hybrid

25

Visualization dataGPPView

One-domain mesh

Utilities Pluggable Analysis Modules

PEs

Partitioner

Equation
solvers

VisualizerParallel
I/O

構造計算（Static linear）
構造計算（Dynamic
linear）構造計算（

Contact）

Partitioned mesh

PlatformSolver
I/F

Comm.
I/F

Vis.
I/F

Structure
Fluid

Wave

Visualization dataGPPView

One-domain mesh

Utilities Pluggable Analysis Modules

PEs

Partitioner

Equation
solvers

VisualizerParallel
I/O

構造計算（Static linear）
構造計算（Dynamic
linear）構造計算（

Contact）

Partitioned mesh

PlatformSolver
I/F

Comm.
I/F

Vis.
I/F

Structure
Fluid

Wave

Fig. 1.3 System Configuration of GeoFEM [84,131]

Fig. 1.4 Earth Simulator [130]

26

27

Chapter 2 Parallel Iterative Solvers in GeoFEM

In many large-scale scientific simulation codes using finite-element method (FEM) and
finite-difference method (FDM), almost computation is spent in a linear solver. For this
reason, much of the scalable algorithm research and development is aimed at solving
these large, sparse linear systems of equations on parallel computers.
 In GeoFEM, preconditioned iterative methods have been adopted. A proper
definition of the layout of the distributed data structures is very important for the
efficiency of parallel computations with unstructured meshes.
 In this chapter, outline of the local data structure and parallel iterative methods
with localized preconditioning in GeoFEM are described.

28

2.1 Procedure of Parallel FEM

In the simulations by finite-element method (FEM), users usually do computations
according to the following procedures (Fig.2.1):

• Pre-Processing (e.g. mesh generation etc.)
• Main Simulation (e.g. structural analysis, fluid analysis etc.)
• Post-Processing (e.g. visualization, data mining etc.)

In parallel computation, data size is potentially very large. Therefore, the entire data set
should be partitioned into small local data sets in order to perform efficient local
operations. Each domain (or partition) is assigned to each PE (processing element) of
the parallel computers. This type of parallel processing is very suitable for FEM due to
its locality of the procedures (Fig.2.2). Most of the computation time in FEM procedure
is spent for the following two processes:

• Assembling for coefficient matrix
• Solving linear equations

Matrix assembling part is conducted by purely element-by-element manner, therefore
this process can be parallelized perfectly and no communication among processors
occurs during this process. Communication occurs only in the linear solvers. Thus,
entire code developed for PC's with single processor can be ported to parallel computers
easily except linear solvers.

29

2.2 Distributed Data Structure

A proper definition of the layout of the distributed data structures is an important factor
determining the efficiency of parallel computations with unstructured meshes. The local
data structures in GeoFEM are node-based with overlapping elements, and as such are
appropriate for the preconditioned iterative solvers used in GeoFEM [131].
 In FEM, independent variables for linear equations (e.g., velocity, temperature
etc.) are defined on nodes. From the viewpoint of efficiency in parallel computation, the
number of the nodes should be balanced among the domains. Therefore, GeoFEM
adopts node-based partitioning method. In node-based manner for partitioning,
overlapping elements among the domains are required in order to element-by-element
operations in FEM procedure such as matrix assembling. Fig.2.3 shows the example of
overlapping elements. Each node requires information from all of the elements
surrounding the node. In Fig.2.3, elements in gray color is shared by more than two
domains and information of these elements are required in order to complete the process
for each node. Each domain must consist of information of overlapping elements in
order to conduct element-by-element procedure in purely parallel manner.
 Communication among processors occurs during computation. Subroutines for
communications in structured grids are provided by MPI. However, users are required
to design both the local data structure and communications for unstructured grids. In
GeoFEM, each domain contains the following local data:

• Nodes originally assigned to the domain
• Elements that include the assigned nodes
• All nodes that form elements but are from external domains
• A communication table for sending and receiving data
• Boundary conditions and material properties

Nodes are classified into the following 3 categories from the viewpoint of message
passing:

• Internal nodes (originally assigned to the domain)
• External nodes (forming the element in the domain but are from external

domains)
• Boundary nodes (external nodes of other domains)

30

Fig.2.4 shows the sample partitioning. If the PE #2 partition in Fig.2.4 and Fig.2.5 is
considered, nodes are classified as follows:

• Internal nodes {1,2,3,4,5,6}
• External nodes {7,8,9,10,11,12}
• Boundary nodes {1,2,5,6}

Communication tables between neighboring domains are also included in the local data.
Values on boundary nodes in the domains are sent to the neighboring domains and are
received as external nodes at the destination domain. This data structure, described in
Fig.2.4, and communication procedure described in Fig.2.5 provide excellent parallel
efficiency [28,71,72,73,79,81]. Fig.2.6 describes Fortran subroutine of communication
procedures in GeoFEM. In this figure, the arrays EXPORT_INDEX and
EXPORT_NODE correspond to communication table for send-phase and
IMPORT_INDEX and IMPORT_NODE correspond to receiving part of the
communication table.
 This type of communication occurs in the procedure for computing the
matrix-vector product of Krylov iterative solvers described in the next subsection. The
partitioning program in GeoFEM works on a single PE, and divides the initial entire
mesh into distributed local data.

31

2.3 Localized Preconditioning

The incomplete lower-upper (ILU) and incomplete Cholesky (IC) factorization methods
are the most popular preconditioning techniques for accelerating the convergence of
Krylov iterative methods.
 Of the range of ILU preconditioning methods, ILU(0), which does not allow fill-in
beyond the original non-zero pattern, is the most commonly used. Forward/backward
substitution (FBS) is repeated at each iteration. FBS requires global data dependency,
and this type of operation is not suitable for parallel processing in which locality is of
utmost importance. Most preconditioned iterative processes are a combination of the
following operations:

• Matrix-vector products
• Inner dot products
• DAXPY (αx+y) operations [21] and vector scaling
• Preconditioning operations

Figure 2.7 shows procedures of preconditioned CG iterative method [7,21]. According
to this figure, preconditioned CG process consists of:

• Matrix-vector products 1
• Inner dot products 2
• DAXPY 3
• Preconditioning operations 1

per each iteration cycle. The first 3 operations can be parallelized relatively easily.
Fig.2.8 shows these 3 procedures parallelized by FORTRAN with MPI. In matrix-vector
products, communication table defined in the previous subsection is utilized.
MPI_ALLREDUCE subroutine provided by MPI is useful for inner dot products. No
communication is required for DAXPY procedure.
 In general, preconditioning operations such as FBS represent almost 50 % of the
total computation if ILU(0) is implemented as the preconditioning method. Therefore, a
high degree of parallelization is essential for the FBS operation. But it is well-known
that FBS process is difficult to parallelize due to global data dependency, as shown in
the following equations:

32

 Forward Substitution N)2,(kyLby j

1k

1j
kjkk L=−= ∑

−

=

 Backward Substitution 1),1NN(kyUbDx j

N

1kj
kjkkk L−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∑

+=

,~

The localized ILU(0) used in GeoFEM is a pseudo ILU(0) preconditioning method that
is suitable for parallel processors. This method is not a global method, rather, it is a
local method on each processor or domain. The ILU(0) operation is performed locally
for a coefficient matrix assembled on each processor by zeroing out components located
outside the processor domain (Fig.2.9). This is equivalent to solving the problem within
each processor with zero Dirichlet boundary conditions during the preconditioning. This
localized ILU(0) provides data locality on each processor and good parallelization
because no inter-processor communications occur during ILU(0) operation. This idea is
originally from the incomplete block Jacobi preconditioning method [21,107]. Fig.2.10
shows the parallel CG iterative method using localized preconditioning.
Communication occurs only three times per each iteration cycle, where two of them are
only broadcasting of the scalar and one is for information exchange in overlapped
region using communication table.
 However, localized ILU(0) is not as powerful as the global preconditioning
method. Generally, the convergence rate degrades as the number of processors and
domains increases [28,71,72,73]. At the critical end, if the number of processors is equal
to the number of degrees of freedom (DOF), this method performs identically to
diagonal scaling. Table 2.1 shows the results of a homogeneous solid mechanics
example with 3 × 443 DOF solved by the conjugate gradient (CG) method with
localized IC(0) preconditioning. Computations were performed on the Hitachi SR2201
in the University of Tokyo. Although the number of iterations for convergence increases
according to the domain number, this increase is just 30% from one to 32 PEs.
 Evaluations for parallel performance were conducted also on the Hitachi SR2201
at the University of Tokyo. Figure 2.11 shows the work ratio (real computation
time/elapsed execution time including communication) for various problem sizes
[79,81] of simple 3D elastic problems with homogeneous boundary conditions. In these
computations, the problem size for 1 PE was fixed. The largest case was 196,608,000
DOF on 1,024 PEs. Figure 2.11 shows that the work ratio is higher than 95% if the

33

problem size for 1 PE is sufficiently large. In this case, code was vectorized and a
performance of 68.7 GFLOPS was achieved using 1,024 PEs. Peak performance of the
system was 300 GFLOPS with 1,024 PEs; 68.7 GFLOPS corresponds to 22.9% of the
peak performance [79,81]. This good parallel performance is attributed largely to the
reduced overhead provided by the use of communication tables as part of GeoFEM's
local data structure.
 Proper ordering and partitioning provides perfect global ILU/IC preconditioning
[103], but this is possible only when entire matrix has been obtained. Therefore this is
not applied to the present study where coefficient matrices are generated in each domain.
In [35], parallel global ILU(k) preconditioing procedure was developed. Robust
convergence has been provided but parallel efficiency was not good.

34

2.4 Additive Schwarz Domain Decomposition

In order to stabilize localized ILU(0) preconditioning, additive Schwarz domain
decomposition (ASDD) for overlapped regions [107] has been introduced. The
procedure is as follows :

（1） Global preconditioning rMz = is performed where M is a preconditioning
matrix and r and z are vectors.

（2） If the entire domain is divided into 2 domains Ω1 and Ω2 , such as in
Fig.2.12(a), the preconditioning matrix is solved locally via localized
preconditioning according to :

222111

11 , Ω
−
ΩΩΩ

−
ΩΩ == rMzrMz

（3） After the local preconditioned matrices are solved, the effects of
overlapping regions Γ1 and Γ2 are introduced by the following global
nesting correction (Fig.2.12(b)):

)(1111
11111111

−
ΓΓ

−
ΩΩΩ

−
Ω

−
ΩΩ −−+= nnnn zMzMrMzz

)(1111
22222222

−
ΓΓ

−
ΩΩΩ

−
Ω

−
ΩΩ −−+= nnnn zMzMrMzz

 where n denotes the number of cycles of the additive Schwarz domain
 decomposition.
（4） Repeat steps (2) and (3) until convergence

Table 2.2 shows the effect of ASDD for a solid mechanics example with 3×443 DOF.
Computations were performed on a Hitachi SR2201 at the University of Tokyo with 1
ASDD cycle per iteration. Without ASDD, the number of iterations for convergence
increases according to the number of partitions. In contrast, when ASDD is introduced,
the number of iterations until convergence remains constant, although the computation
time for a single iteration increases.

35

2.5 Summary

In this chapter, outline of local data structure and parallel iterative solvers with localized
preconditioning in GeoFEM was described. Well-designed local data structure with
communication tables and localized preconditioning method provide highly parallel
efficiency that is greater than 95 % for up to 1024 PEs on a Hitachi SR2201 in problems
with sufficiently large size data for each PE.
 Iteration number for convergence of the iterative solver with localized
preconditioning is increasing according to PE number. The localized preconditioning
method was shown to be stabilized ASDD (additive Schwarz domain decomposition).

36

37

Fig. 2.1 Parallel FEM Procedure

Initial Grid Data

Partitioning

Post Proc.

Data Input/Output

Domain Specific
Algorithms/Models

Matrix Assemble

Linear Solvers

Visualization

Pre-Processing

Main

Post-Processing

Initial Grid Data

Partitioning

Post Proc.

Data Input/Output

Domain Specific
Algorithms/Models

Matrix Assemble

Linear Solvers

Visualization

Pre-Processing

Main

Post-Processing

38

Fig. 2.2 Parallel FEM procedure and distributed local data sets in GeoFEM
[71,72,73]

Local
Data
#0

Local
Data
#1

Local
Data
#2

Local
Data

#(m-2)

Local
Data

#(m-1)

FEM
code

FEM
code

FEM
code

FEM
code

FEM
code

Iterative
Linear
Solver

Iterative
Linear
Solver

Iterative
Linear
Solver

Iterative
Linear
Solver

Iterative
Linear
Solver

Communication by MPI through Network

Local
Data
#0

Local
Data
#1

Local
Data
#2

Local
Data

#(m-2)

Local
Data

#(m-1)

FEM
code

FEM
code

FEM
code

FEM
code

FEM
code

Iterative
Linear
Solver

Iterative
Linear
Solver

Iterative
Linear
Solver

Iterative
Linear
Solver

Iterative
Linear
Solver

Communication by MPI through Network

39

Fig. 2.3 Element-by-element operations around node C. Gray meshes are
overlapped among domains.

CC

40

Fig. 2.4 Node-based partitioning into 4 PEs [71,72,73]

5

21 22 23 24 25

16 17 18 19 20

11 13 14 15

6
7 8 9

10

PE#0PE#1

PE#2PE#3

12

32 41 5

21 22 23 24 25

16 17 18 19 20

11 13 14 15

6
7 8 9

10

PE#0PE#1

PE#2PE#3

12

32 41

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

7 8 9 10

4 5 6 12

3 111 2

PE#1

7 1 2 3

10 9 11 12

5 68 4

PE#2

3 4 8

6 9

10 12

1 2

5

11

7
PE#3

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

7 8 9 10

4 5 6 12

3 111 2

PE#1

7 1 2 3

10 9 11 12

5 68 4

PE#2

3 4 8

6 9

10 12

1 2

5

11

7
PE#3

41

Fig. 2.5 Communication among processors [71,72,73]

(a) SEND phase

(b) RECEIVE phase

7 1 2 3

10 9 11 12

5
68

4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3
4

8

6
9

10 12

1 2

5

11

7

PE#3

7 1 2 3

10 9 11 12

5
68

4

PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3
4

8

6
9

10 12

1 2

5

11

7

PE#3

7 1 2 3

10 9 11 12

5
68

4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3
4

8

6
9

10 12

1 2

5

11

7

PE#3

7 1 2 3

10 9 11 12

5
68

4
PE#2

1 2 3

4 5

6 7

8 9 11

10

14 13

15

12

PE#0

3
4

8

6
9

10 12

1 2

5

11

7

PE#3

42

(a) Calling interface for communication among domains (1x1 scalar and 3x3 block)

(b) Subroutines for communication among domains
 - SEND phase

 - RECEIVE phase

Fig. 2.6 Communication procedures among domains in GeoFEM [71,72,73,79,81]

do neib= 1, NEIBPETOT
istart= EXPORT_INDEX(neib-1)
inum = EXPORT_INDEX(neib) - istart
do k= istart+1, istart+inum
WS(k)= X(EXPORT_NODE(k))

enddo
call MPI_ISEND

(WS(istart+1), inum, MPI_DOUBLE_PRECISION, &
NEIBPE(neib), 0, SOLVER_COMM, &
req1(neib), ierr)

enddo

do neib= 1, NEIBPETOT
istart= IMPORT_INDEX(neib-1)
inum = IMPORT_INDEX(neib) - istart
call MPI_IRECV

(WR(istart+1), inum, MPI_DOUBLE_PRECISION, &
NEIBPE(neib), 0, SOLVER_COMM, &
req2(neib), ierr)

enddo

call MPI_WAITALL (NEIBPETOT, req2, sta2, ierr)

do neib= 1, NEIBPETOT
istart= IMPORT_INDEX(neib-1)
inum = IMPORT_INDEX(neib) - istart
do k= istart+1, istart+inum

X(IMPORT_NODE(k))= WR(k)
enddo

enddo

call MPI_WAITALL (NEIBPETOT, req1, sta1, ierr)

1x1 Scalar
allocate (WS(NP), WR(NP), X(NP)
call SOLVER_SEND_RECV &

& (NP, NEIBPETOT, NEIBPE, IMPORT_INDEX, IMPORT_NODE, &
& EXPORT_INDEX, EXPORT_NODE, WS, WR, X , SOLVER_COMM, &
& my_rank)

3x3 Block
allocate (WS(3*NP), WR(3*NP), X(3*NP)
call SOLVER_SEND_RECV_3 &

& (NP, NEIBPETOT, NEIBPE, IMPORT_INDEX, IMPORT_NODE, &
& EXPORT_INDEX, EXPORT_NODE, WS, WR, X , SOLVER_COMM, &
& my_rank)

43

Fig. 2.7 Procedures in CG iterative method [7,21]

compute r(0)= b – Ax(0) for some initial guess x(0)

for i= 1,2,...

solve M z(i-1)= r(i-1) (M: preconditioning matrix)

ρi-1= r(i-1)T z(i-1)

if i=1

p(1)= z(0)

else

βi-1= ρi-1/ρi-2

p(i)= z(i-1) + βi-1 p(i-1)

endif

q(i)= A p(i)

αi= ρi-1/(p(i)T q(i))

x(i)= x(i-1) + αi p(i)

r(i)= r(i-1) - αi q(i)

check convergence; continue if necessary

end

Preconditioning

Dot Product (1)

DAXPY (1)

MATVEC

Dot Product (2)

DAXPY (2)

DAXPY (3)

compute r(0)= b – Ax(0) for some initial guess x(0)

for i= 1,2,...

solve M z(i-1)= r(i-1) (M: preconditioning matrix)

ρi-1= r(i-1)T z(i-1)

if i=1

p(1)= z(0)

else

βi-1= ρi-1/ρi-2

p(i)= z(i-1) + βi-1 p(i-1)

endif

q(i)= A p(i)

αi= ρi-1/(p(i)T q(i))

x(i)= x(i-1) + αi p(i)

r(i)= r(i-1) - αi q(i)

check convergence; continue if necessary

end

Preconditioning

Dot Product (1)

DAXPY (1)

MATVEC

Dot Product (2)

DAXPY (2)

DAXPY (3)

44

(a) Matrix-vector products

(b) Inner dot products

(c) DAXPY

Fig. 2.8 Parallelization of typical processes in iterative solvers in
FORTRAN with MPI [71,72,73,79,81]

RHO0= 0.0
do i= 1, N

RHO0= RHO0 + WW(i,R)*WW(i,Z)
enddo

call MPI_allREDUCE (RHO0, RHO, 1, MPI_DOUBLE_PRECISION, &
& MPI_SUM, SOLVER_COMM, ierr)

do i= 1, N
isL= INL(i-1) + 1
ieL= INL(i)
WVAL= WW(i,R)
do j= isL, ieL
inod = IAL(j)
WVAL= WVAL - AL(j) * WW(inod,Z)

enddo
WW(i,Z)= WVAL * DD(i)

enddo

do i= N, 1, -1
SW = 0.0d0
isU= INU(i-1) + 1
ieU= INU(i)
do j= isU, ieU
inod = IAU(j)
SW= SW + AU(j) * WW(inod,Z)

enddo
WW(i,Z)= WW(i,Z) - DD(i) * SW

enddo

do i= 1, N
X (i) = X (i) + ALPHA * WW(i,P)
WW(i,R)= WW(i,R) - ALPHA * WW(i,Q)

enddo

45

Fig.2.9 Localized ILU(0) Operation: Matrix components whose column numbers
are outside the processor are ignored (set equal to 0) at localized ILU(0) factorization.
For example the element A on PE#0 has 6 non-zero components but only 1,2,3 are
considered and 4,5,6 are ignored and set to 0 [71,72,73,79,81]

A1 2 3 4 5 6 PE
#0

PE
#1

PE
#2

PE
#3

A1 2 3 4 5 6 PE
#0

PE
#1

PE
#2

PE
#3

46

Fig. 2.10 Parallel CG iterative method by localized preconditioning in GeoFEM

compute r(0)= b – Ax(0) for some initial guess x(0)

for i= 1,2,...

solve M z(i-1)= r(i-1) (M: preconditioning matrix)

ρi-1= r(i-1)T z(i-1)

if i=1

p(1)= z(0)

else

βi-1= ρi-1/ρi-2

p(i)= z(i-1) + βi-1 p(i-1)

endif

q(i)= A p(i)

αi= ρi-1/(p(i)T q(i))

x(i)= x(i-1) + αi p(i)

r(i)= r(i-1) - αi q(i)

check convergence; continue if necessary

end

Preconditioning

Dot Product (1)

DAXPY (1)

MATVEC

Dot Product (2)

DAXPY (2)

DAXPY (3)

Comm.:Scalar

Comm.:Vector

Comm.:Scalar

compute r(0)= b – Ax(0) for some initial guess x(0)

for i= 1,2,...

solve M z(i-1)= r(i-1) (M: preconditioning matrix)

ρi-1= r(i-1)T z(i-1)

if i=1

p(1)= z(0)

else

βi-1= ρi-1/ρi-2

p(i)= z(i-1) + βi-1 p(i-1)

endif

q(i)= A p(i)

αi= ρi-1/(p(i)T q(i))

x(i)= x(i-1) + αi p(i)

r(i)= r(i-1) - αi q(i)

check convergence; continue if necessary

end

Preconditioning

Dot Product (1)

DAXPY (1)

MATVEC

Dot Product (2)

DAXPY (2)

DAXPY (3)

Comm.:Scalar

Comm.:Vector

Comm.:Scalar

Preconditioning

Dot Product (1)

DAXPY (1)

MATVEC

Dot Product (2)

DAXPY (2)

DAXPY (3)

Comm.:ScalarComm.:Scalar

Comm.:VectorComm.:Vector

Comm.:ScalarComm.:Scalar

47

Table 2.1 Homogeneous solid mechanics example with 3×443 DOF on Hitachi
SR2201 solved by CG method with localized IC(0) preconditioning (Convergence
Criteria ε=10-8).

PE # Iter. # sec. Speed Up
1 204 233.7 -
2 253 143.6 1.63

4 259 74.3 3.15

8 264 36.8 6.36

16 262 17.4 13.52

32 268 9.6 24.24

64 274 6.6 35.68

Fig. 2.11 Parallel performance for various problem sizes for simple 3D elastic solid
mechanics on Hitachi SR2201. Problem size/PE is fixed. Largest case is 196,608,000
DOF on 1024 PEs. (Circles: 3×163 (= 12,288) DOF/PE, Squares: 3×323 (= 98,304),
Triangles: 3×403 (= 192,000)).

70.0

75.0

80.0

85.0

90.0

95.0

100.0

0 128 256 384 512 640 768 896 1024

PE #

%

48

(a) Local operation

(b) Global nesting correction

Fig.2.12 Operations in ASDD for 2 domains [107]

Ω1 Ω2Ω1 Ω2

Ω1 Ω2

Γ1 Γ２

Overlapped
Regions

Ω1 Ω2

Γ1 Γ２

Overlapped
Regions

49

Table 2.2 Effect of ASDD for solid mechanics with 3×443 DOF on a Hitachi SR2201.

PE #

Iter. #

Sec.

Speedup

Iter.#

Sec.

Speedup
1 204 233.7 - 144 325.6 -
2 253 143.6 1.63 144 163.1 1.99

4 259 74.3 3.15 145 82.4 3.95

8 264 36.8 6.36 146 39.7 8.21

16 262 17.4 13.52 144 18.7 17.33

32 268 9.6 24.24 147 10.2 31.80

64 274 6.6 35.68 150 6.5 50.07

Number of ASDD cycle/iteration = 1, Convergence Criteria ε=10-8

NO Additive Schwarz WITH Additive Schwarz

50

51

Chapter 3 Parallel Iterative Solvers for

Unstructured Grids using Hybrid Programming

Model on SMP Cluster Architectures

An efficient parallel iterative method for unstructured grids has been developed on the
GeoFEM platform for symmetric multiprocessor (SMP) cluster architectures with
vector processors such as the Earth Simulator [130]. The method is based on a 3-level
hybrid parallel programming model, including message passing for inter-SMP node
communication, loop directives by OpenMP for intra-SMP node parallelization and
vectorization for each processing element. Simple 3D linear elastic problems with more
than 2.2×109 DOF have been solved using 3×3 block ICCG(0) method with additive
Schwarz domain decomposition and PDJDS/CM-RCM (parallel DJDS/Cyclic
Multicolor-Reverse Cuthil McKee) reordering on 176 nodes of the Earth Simulator,
achieving performance of 3.80 TFLOPS. The PDJDS/CM-RCM reordering method
provides excellent vector and parallel performance in SMP nodes. A three-level hybrid
parallel programming model outperforms flat MPI in the problems involving large
numbers of SMP nodes.

52

3.1 Introduction

In this chapter, parallel iterative methods have been developed for unstructured grids
using a three-level hybrid parallel programming model for the Earth Simulator [130] on
the GeoFEM platform. Individual PE of the Earth Simulator is a vector processor,
therefore third-level of parallelism for vector processing should be considered in
addition to the two levels in the hybrid parallel programming model, described in
Chapter 1 (Fig.3.1). Following three levels of parallelism are considered:

• Inter-SMP node MPI for communication
• Intra-SMP node OpenMP for parallelization
• Individual PE compiler directives for vectorization

In flat MPI approach, communication among PEs through MPI and vectorization for
individual PE have been considered for the Earth Simulator.

In the hybrid parallel programming model, the entire domain is partitioned into
distributed local data sets [28,72,73,81], and each partition is assigned to one SMP node
(Fig.3.2). On the contrast, each partition corresponds to each PE in the flat MPI.

In order to achieve efficient parallel/vector computation for applications with
unstructured grids, the following 3 issues are critical:

• Local operation and no global dependency
• Continuous memory access
• Sufficiently long loops

A special reordering technique proposed by Washio et. al. [118,119] has been integrated
with parallel iterative solvers with localized preconditioning developed in the GeoFEM
project [118,119] in order to attain local operation, no global dependency, continuous
memory access and sufficiently long loops.
 In the following part of this chapter, we give an overview of special reordering
techniques for parallel and vector computation on SMP nodes, and present the results
for an application to 3D solid mechanics on the Earth Simulator [130]. Developed
hybrid parallel programming model has been compared with the flat MPI programming
model in Fig.3.1. Some of the results are compared with those obtained by Hitachi
SR8000/128 at the University of Tokyo [133]. Hitachi SR8000 is also an SMP cluster

53

architecture. Each node consists of 8 PEs and provides 8 GFLOPS peak performance.

54

3.2 Reordering Methods for Parallel/Vector Performance on
SMP Nodes

As shown in Fig.3.2, the entire domain is partitioned into local data sets for hybrid
parallel programming model and each local data set is assigned to one SMP node.

3.2.1 Cyclic Multicolor – Reverse Cuthil McKee Reordering

In order to achieve efficient parallel/vector computation for applications with
unstructured grids, the following 3 issues are critical:

• Local operations and no global dependency
• Continuous memory access
• Sufficiently long loops

For unstructured grids, in which data and memory access patterns are very irregular,
reordering technique is very effective for achieving highly parallel and vector
performance. The popular reordering methods are hyperplane/reverse Cuthil-McKee
reordering and multicolor reordering [21,103]. The reverse Cuthil-McKee (RCM)
method is a typical level-set ordering method. In Cuthill-McKee reordering, the
elements of a level set are traversed from the nodes of lowest degree to those of highest
degree according to dependency relationships, where the degree refers to the number of
nodes connected to each node. In RCM, permutation arrays obtained in Cuthill-McKee
reordering are reversed. RCM results in much less fill-in for Gaussian elimination and is
suitable for iterative methods with IC or ILU preconditioning.
 Multicolor reordering (MC) is much simpler than RCM. MC is based on an idea
where no two adjacent nodes have the same color.
 In both methods, elements located on the same hyperplane (or classified in the
same color) are independent. Therefore, parallel operation is possible for the elements in
the same hyperplane/color and the number of elements in the same hyperplane/color
should be as large as possible in order to obtain high granularity for parallel
computation or sufficiently large loop length for vectorization.
 Hyperplane/RCM (Fig.3.3(a)) reordering provides fast convergence of
IC/ILU-preconditioned Krylov iterative solvers, yet with irregular hyperplane size. For
example in Fig.3.3(a), the 1st hyperplane is of size 1, while the 8th hyperplane is of size
8. In contrast, multicoloring provides a uniform element number in each color (Fig.

55

3.3(b)). However, it is widely known that the convergence of IC/ILU-preconditioned
Krylov iterative solvers with MC reordering is rather slow. Convergence can be
improved by increasing the number of colors, but this reduces the number of elements
in each color.
 The solution for this trade-off is cyclic multicolor reordering (CM) on
hyperplane/RCM [118,119]. In this method, the hyperplanes are renumbered in a cyclic
manner. Figure 3.3 (c) shows an example of CM-RCM reordering. In this case, there are
4 colors ; the 1st, 5th, 9th and 13th hyperplanes in Fig.3.3 (a) are classified into the 1st
color. There are 16 elements in each color. In CM-RCM, the number of colors should be
large enough to ensure that elements in the same color are independent.

In this study, implementation of MC is also considered and is compared with
CM-RCM.

3.2.2 DJDS Reordering

The compressed row storage (CRS) [7,103] matrix storage format originally used in
GeoFEM is highly memory-efficient, however the innermost loop is relatively short due
to matrix-vector operations as follows (Fig.3.4):

The following loop exchange is then effective for obtaining a sufficiently long
innermost loop (Fig.3.4):

Descending-order jagged diagonal storage (DJDS) [81,118,119] is suitable for this type
of operation and involves permuting rows into an order of decreasing number of
non-zeros, as shown in Fig.3.5 (a). As elements on the same hyperplane are independent,
performing this permutation inside a hyperplane does not affect results. Thus, a 1D
array of matrix coefficients with continuous memory access can be obtained, as shown
in Fig.3.5 (b).

do i= 1, N
do j= 1, NU(i)

k1= indexID(i,j); k2= itemID(k1)
F(i)= F(i) + A(k1)*X(k2)

enddo
enddo

do j= 1, NUmax
do i= 1, N

k1= indexID(i,j); k2= itemID(k1)
F(i)= F(i) + A(k1)*X(k2)

enddo
enddo

56

3.2.3 Distribution over SMP Nodes : Parallel DJDS Reordering

The 1D array of matrix coefficients with continuous memory access is suitable for both
parallel and vector computing. The loops for this type of array are easily distributed to
each PE in an SMP node via loop directives. In order to balance the computational load
across PEs in the SMP node, the DJDS array should be reordered again in cyclic manner.
The procedure for this reordering, called parallel DJDS (PDJDS) is described in Fig.3.6.

3.2.4 Summary of Reordering Methods

The reordering procedures for increasing parallel/vector performance of the SMP cluster
architecture described in this section are summarized as follows:

（1） RCM reordering on the original local matrix for independent sets.
（2） CM reordering to obtain loops whose length is sufficiently long and

uniform.
（3） DJDS reordering for efficient vector processing, producing 1D arrays of

coefficients with continuous memory access and long loops.
（4） Cyclic reordering for load-balancing among PEs on an SMP node.
（5） PDJDS/CM-RCM reordering is complete.

Figure 3.7 and 3.8 show the procedure for forward/backward substitution procedure
during ILU(0)/IC(0) preconditioning by PDJDS/CM-RCM reordering. In the flat MPI
programming model, PEsmpTOT in Fig.3.7 is set to 1 without any option of OpenMP
for compiler while PEsmpTOT is set to 8 in the hybrid programming model. Figure 3.9
shows the typical procedures of the iterative methods, such as matrix-vector products,
inner dot products and DAXPY, based on the OpenMP and vectorization directives on
the Earth Simulator.

57

3.3 Vector and Parallel Performance in Simple Geometries

The proposed methods were applied to 3D solid mechanics example cases, as described
in Fig.3.10, which represent linear elastic problems with homogeneous material
properties and boundary conditions. Each element is a tri-linear (1st-order) cubic
hexahedral element with unit edge length, and each node has 3 DOF, therefore there are
3×Nx×Ny×Nz DOF in total for the problem (Fig.3.10).
 For this problem, 3×3 Block ICCG(0) with PDJDS/CM-RCM reordering is
applied with full LU factorization for each 3×3 diagonal block. One ASDD operation is
applied to each iteration. In each case, the number of colors for CM reordering was set
to 99, corresponding to an average vector length of (total number of FEM nodes)/(99 ×
NPE), where NPE is the number of PEs on each SMP node (1 for flat MPI, and 8 for
hybrid programming model).
 The increase in speed for a fixed problem size (3×1283=6,291,456 DOF) using
between 1 and 8 SMP nodes was evaluated for the hybrid and flat MPI programming
models. Figure 3.11 shows the results. The number of iterations for convergence (ε=
10-8) was 333 (1-node), 337 (2-nodes), 338 (4-nodes), and 341 (8-nodes) for the hybrid
programming model, and 341(1-node), 344(2-nodes), 348(4-nodes), and 352(8-nodes)
for the flat MPI indicating that the number of iterations remains almost constant as the
number of nodes increases. This is due to the ASDD. The speedup rate for 8 SMP nodes
was 5.78 (hybrid) and 6.36 (flat MPI), which corresponds to 72.2% and 79.5% of the
linear (ideal) speedup. The speedup effect for many nodes is worse than the ideal
speedup due to the smaller problem size per node. The performance for 1 node (8 PEs)
were 21.9 GFLOPS (34.2% of peak performance of 64 GFLOPS) for the hybrid model
and 23.4 GFLOPS (36.6% of peak performance) for flat MPI. While both the hybrid
and flat MPI models provide good vector and parallel performance, the flat MPI gives
slightly better results.

58

3.4 Effect of Reordering

3.4.1 Vector Performance

The effect of PDJDS/CM-RCM reordering for the vector performance on the Earth
Simulator was evaluated. The performance of PDJDS/CM-RCM is compared with the
original block ICCG solver in GeoFEM [81,118,119], in which components of
coefficient matrices are stored in the CRS manner without reordering. Figure 3.12
shows the performance for a fixed problem size (3×643=786,432 DOF) using between 1
and 8 PEs was evaluated for the flat MPI programming models. The performance of the
ICCG solver is dramatically improved by PDJDS/CM-RCM reordering. Single PE
performance of the original ICCG solver is only 0.17 GFLOPS, corresponding to 2.13%
of the peak performance. PDJDS/CM-RCM reordering provides 3.22 GFLOPS (40.3%
of peak performance). Speed-up ratio for 8 PEs is 7.63 by original solver and 6.40 by
PDJDS/CM-RCM reordering. This is because the ratio of communication overhead to
the entire process increases due to the improvement of computation process by
PDJDS/CM-RCM reordering.

3.4.2 SMP Parallel Performance by Hybrid Parallel Programming Model

Figure 3.13 shows the results demonstrating the effect of PDJDS/CM-RCM reordering
for the hybrid programming model. In this case, the following 3 cases were compared
(Fig.3.14):

• PDJDS/CM-RCM reordering
• Parallel descending-order compressed row storage (PDCRS) /CM-RCM

reordering
• CRS without reordering

PDCRS/CM-RCM reordering is identical to PDJDS/CM-RCM except that the matrices
are stored in a CRS manner [7,103] after permutation of rows into the order of
decreasing number of non-zeros. The length of the innermost loop is shorter than that
for PDJDS. The elapsed execution time was measured for various problem sizes from
3×163 (12,288) DOF to 3×1283 (6,291,456) DOF on one SMP node of the Earth
Simulator (8 PEs, 64 GFLOPS peak performance, 16 GB memory) and Hitachi
SR8000/128 (8 PEs, 8 GFLOPS peak performance, 8 GB memory). The difference
between PDCRS and PDJDS for smaller problems is not significant, but PDJDS

59

outperforms PDCRS for larger problems due to longer vector length. On the Earth
Simulator, the PDCRS performs at a steady 1.5 GLOPS (2.3% of peak performance),
while the performance of PDJDS increases from 3.81 GFLOPS to 22.7 GFLOPS with
problem size. Results on the Hitachi SR8000/128 show similar feature due to
pseudo-vectorization of the compiler [133], but performance of PDCRS increases with
problem size on Hitachi SR8000/128.

The cases without reordering exhibit very poor performance of only 0.30
GFLOPS (Earth Simulator, 0.47% of peak performance) and 0.09 GFLOPS (Hitachi
SR8000, 1.13% of peak performance). Parallel computation is impossible for
forward/backward substitution (FBS) in the IC factorization process even in the simple
geometry examined in this study. This FBS process represents about 50% of the total
computation. If this process is not parallelized, the performance decreases significantly.

Figure 3.15 shows communication/synchronization overhead inside SMP node
for various problem sizes using one SMP node. Communication/synchronization
overhead occurs for parallel processing in each SMP node. The work ratio was
measured for various problem sizes from 3×163 (12,288) DOF to 3×1283 (6,291,456)
DOF on one SMP node on the Earth Simulator and Hitachi SR8000/128. Overhead for
intra-SMP node communication becomes small if the problem size is larger. Figure 3.15
shows speed-up ratio from one PE to one SMP node (8 PEs). Results for large problem
are 7.01 (Earth Simulator) and 7.40 (Hitachi SR8000/128), respectively.

3.4.3 Effect of Reordering Method

The block ICCG(0) solver with PDJDS/CM-RCM reordering exhibited excellent
performance on the Earth Simulator for the simple geometry and boundary conditions,
as shown in Fig.3.10. In complicated geometries for real-world applications, the number
of hyperplanes may be extremely large [81], making it very difficult to construct
independent sets with sufficient loop length by CM reordering. In this situation,
classical multicolor reordering (MC), as described in Fig.3.3 (b), is a reasonable
alternative. MC usually provides slower convergence than CM-RCM or RCM but
sufficient loop length is guaranteed when the number of colors is specified. In the tests
described in this section, the PDJDS/MC reordering method was applied to various
types of computations, and the obtained results are compared to those for
PDJDS/CM-RCM. In PDJDS/MC reordering, MC, rather than CM-RCM, is applied in
the 1st and 2nd stage of the reordering procedures. All of the computations in these tests
were performed on one SMP node of the Earth Simulator and a Hitachi SR8000/128
according to the hybrid parallel programming model.

60

 In the first example, 3D linear elastic problems in Fig.3.10 with 3×1283=6,291,456
DOF were solved. Figures 3.16-3.18 show the results obtained by Block ICCG(0) solver
using these two reordering methods (PDJDS/CM-RCM and PDJDS/MC).
PDJDS/CM-RCM generally exhibits better performance with regard to both CPU time
and GFLOPS rate. In cases with many colors, fewer iterations are required for
convergence, but the performance is worse due to the smaller loop length and greater
overhead. As shown in Fig.3.16, the number of iterations in PDJDS/MC does not
change with the number of colors if more than 500 are defined, whereas the CPU time
increases (Fig.3.17). Although the characteristics of the results obtained using the Earth
Simulator and those obtained using the Hitachi SR8000/128 appear similar, the Earth
Simulator is more sensitive to decrease in loop length. The performance of the Earth
Simulator is significantly degraded if the number of colors is more than 400, as shown
in Fig.3.18. This is because loop length is less than the size of vector register, which is
256.
 In the next example, the 3D linear elastic problem was solved for a complicated
geometry of a micro pin-grid array (PGA) model for mobile computers [143]. Figure
3.19 shows the mesh configuration for the problems solved in this section, having 61
pins, 956,128 elements and 1,012,354 nodes (3,037,062 DOF) [22]. The mesh is
generated according to the information in [143]. Figure 3.20 shows the stress intensity
distribution visualized by parallel volume rendering method in GeoFEM [15]. Table 3.1
and Fig.3.21-3.22 compares PDJDS/CM-RCM and PDJDS/MC. In this complicated
geometry, PDJDS/MC provides better performance in terms of CPU time and GFLOPS
rate than does PDJDS/CM-RCM. In PDJDS/CM-RCM, the number of colors for
independent sets is extremely large (more than 1,000 even after application of the
rooting method by Gibbs [83]). Therefore, more CPU time is required for convergence
due to the smaller loop length and higher overhead, even though the number of
iterations for convergence is smaller than PDJDS/MC. The Earth Simulator is also more
sensitive to decrease in loop length, as shown in Fig.3.22.

61

3.5 Performance Evaluation for Large Scale Problems

Figures 3.23-3.35 show the results for large-scale problems having simple geometries
and boundary conditions as in Fig.3.10 implemented on up to 176 SMP nodes of the
Earth Simulator (1,408 PEs, 11.26 TFLOPS peak performance, 2.8 TB memory). The
hybrid and flat MPI models were evaluated. The problem size for one SMP node was
fixed and the number of nodes was varied between 1 and 176. The largest problem size
was 176×3×128×128×256 (2,214,592,512) DOF, for which the performance was about
3.80 TFLOPS, corresponding to 33.7 % of the total peak performance of the 176 SMP
nodes. The parallel work ratio among SMP nodes for MPI is more than 90% if the
problem is sufficiently large. The PDJDS/CM-RCM reordering has been applied to all
cases.
 The performance of the hybrid model is competitive with that of the flat MPI
model, and both provide robust convergence and good parallel performance for a wide
range of problem sizes and SMP node numbers. Iterations for convergence in the hybrid
and flat MPI are almost equal, although the hybrid converges slightly faster, as shown in
Fig.3.28 (a) and Fig.3.34 (a). In general, flat MPI performs better for the hybrid model
for smaller numbers of SMP nodes, as shown in Fig.3.23-3.28, while the hybrid
outperforms flat MPI when a large number of SMP nodes are involved (Fig.3.29-3.35),
especially if the problem size per node is small, as shown in Fig.3.29, 3.30, 3.34 and
3.35. This is due to the increase in overhead for communications.

Figure 3.36 shows time spent for communication subroutines per iteration by the
flat MPI programming model on the Earth Simulator using between 8 and 176 SMP
nodes, where the problem size/SMP node is fixed as 6,291,456 DOF (3×1283). The
maximum elapsed time increases with SMP node number, although the data size of
communication for each PE and the number of neighboring PEs remain constant in this
type of homogeneous problem, as shown in Fig.3.10. This is mainly because of the
latency for MPI communication. According to the performance estimation for
finite-volume application code for CFD with local refinement in [45], a greater
percentage of time is required by the latency component on larger processor counts,
simply due to the available bandwidth being much larger (Fig.3.37). Flat MPI requires
eight times as many MPI processes as hybrid model. If the node number is large and
problem size is small, this effect is significant.

62

3.6 Summary

This chapter described an efficient parallel iterative method for unstructured grids
developed for the GeoFEM platform on SMP cluster architectures with vector
processors such as the Earth Simulator. The method employs a three-level hybrid
parallel programming model consisting of the following hierarchy:

• Inter-SMP node MPI
• Intra-SMP node OpenMP for parallelization
• Individual PE Compiler directives for vectorization

Simple 3D linear elastic problems with more than 2.2×109 DOF were solved by 3×3
block ICCG(0) with additive Schwarz domain decomposition and PDJDS/CM-RCM
reordering on 176 SMP nodes of the Earth Simulator, achieving a performance of 3.80
TFLOPS (33.7 % of peak performance). PDJDS/CM-RCM reordering provides
excellent vector and parallel performance on SMP nodes. Without reordering, parallel
processing of forward/backward substitution in IC/ILU factorization was impossible
due to global data dependencies even in the simple examples in this study. Although the
three-level hybrid and flat MPI parallel programming models offer similar performance,
the hybrid programming model outperforms flat MPI in problems with a large numbers
of SMP nodes.
 The performance of PDJDS/CM-RCM reordering was also compared with
PDJDS/MC. In a simple cubic geometry, PDJDS/CM-RCM usually converges faster
than PDJDS/MC. However, when complicated geometries are involved with a large
number of hyperplanes, in which case it is difficult to construct independent sets with
sufficient loop lengths by CM, PDJDS/MC provides better performance in terms of
GFLOPS rate and CPU time by guaranteeing sufficient loop length, even though
PDJDS/CM-RCM requires fewer iterations for convergence.
 The most appropriate reordering method should therefore be selected based on the
length of each hyperplane generated by RCM reordering.

63

Fig. 3.1 Parallel programming models for SMP cluster architectures
[13,20,23,81,86]

P
E

P
E

P
E

P
E

Memory
P
E

P
E

P
E

P
E

Memory

Hybrid：Hierarchy

P
E

P
E

P
E

P
E

Memory
P
E

P
E

P
E

P
E

Memory

Hybrid：Hierarchy

P
E

P
E

P
E

P
E

Memory
P
E

P
E

P
E

P
E

Memory

Flat-MPI：Each PE -> Independent

P
E

P
E

P
E

P
E

Memory
P
E

P
E

P
E

P
E

Memory

Flat-MPI：Each PE -> Independent

Intra NODE Inter NODEEach PE

F90 + directives (OpenMP) MPI

MPIF90Flat-MPI

Hybrid

Intra NODE Inter NODEEach PE

F90 + directives (OpenMP) MPI

MPIF90Flat-MPI

Hybrid

64

Fig. 3.2 Parallel FEM computation on SMP cluster architecture using hybrid parallel
programming model. Each partition corresponds to an SMP node [81]

Node-1

Node-3

Node-0

Node-2

Partitioning of analysis
domain

Node-1

Node-3

Node-0

Node-2

Partitioning of analysis
domain

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

Node-0 Node-1

Node-2 Node-3

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

PE
PE
PE
PE
PE
PE
PE
PE

M
e
m
o
r
y

Node-0 Node-1

Node-2 Node-3

65

(a) Hyperplane/RCM

(b) Multicoloring: 4 colors

(c) CM-RCM: 4 colors

Fig. 3.3 Example of hyperplane/RCM, multicoloring and CM-RCM reordering for
2D geometry [81]

1 2
2 3

3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
8 9 10 11 12 13
9 10 11 12 13 14

10 11 12 13 14 158 9
7 8
6 7
5 6
4 5
3 4

1 2
2 3

3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
8 9 10 11 12 13
9 10 11 12 13 14

10 11 12 13 14 158 9
7 8
6 7
5 6
4 5
3 4

1 2
2 3

3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
8 9 10 11 12 13
9 10 11 12 13 14

10 11 12 13 14 158 9
7 8
6 7
5 6
4 5
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
3 4

1 2
2 3

3 4 1 2 3 4
4 1 2 3 4 1
1 2 3 4 1 2
2 3 4 1 2 3
3 4 1 2 3 4
4 1 2 3 4 1
1 2 3 4 1 2
2 3 4 1 2 34 1

3 4
2 3
1 2
4 1
3 4

1 2
2 3

3 4 1 2 3 4
4 1 2 3 4 1
1 2 3 4 1 2
2 3 4 1 2 3
3 4 1 2 3 4
4 1 2 3 4 1
1 2 3 4 1 2
2 3 4 1 2 34 1

3 4
2 3
1 2
4 1
3 4

66

Fig. 3.4 1D and 2D storage of coefficient matrices for linear equations [81]

1D-Storage
memory saved, short vector length

2D-Storage w/Hyperplane/RCM
long vector length, many ZERO’s

67

Fig. 3.5 DJDS reordering for efficient vector/parallel processing [81,118,119]

(a) Permutation of rows into order of decreasing number of non-zeros

(b) 1D array of matrix coefficient

68

(a)

(b)

Fig. 3.6 PDJDS reordering for an SMP node : Example with 4 PEs per SMP node (a)
Cyclic reordering (b) 1D array assigned to each PE after reordering and load-balancing
[81,118,119]

PE#0

PE#0

PE#0

PE#0

PE#0

PE#0

PE#0

PE#0

69

Fig. 3.7 Forward/backward substitution procedure during ILU(0)/IC(0)
preconditioning by PDJDS/CM-RCM reordering (1) [81]

Fig. 3.8 Forward/backward substitution procedure during ILU(0)/IC(0)
preconditioning by PDJDS/CM-RCM reordering (2) [81]

SMP
parallel

do iv= 1, NCOLORS
!$omp parallel do private (iv0,j,iS,iE,i,k,kk etc.)
do ip= 1, PEsmpTOT
iv0= STACKmc(PEsmpTOT*(iv-1)+ip- 1)
do j= 1, NLhyp(iv)
iS= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip-1)
iE= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip)

!CDIR NODEP
do i= iv0+1, iv0+iE-iS
k= i+iS - iv0
kk= IAL(k)
(Important Computations)

enddo
enddo

enddo
enddo

Vectorized

1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8

iS+1

iE

iv0+1

1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8

1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8

iS+1

iE

iv0+1iv0+1 do iv= 1, NCOLORS
!$omp parallel do
do ip= 1, PEsmpTOT

iv0= STACKmc(PEsmpTOT*(iv-1)+ip- 1)
do j= 1, NLhyp(iv)
iS= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip-1)
iE= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip)

!CDIR NODEP
do i= iv0+1, iv0+iE-iS
k= i+iS - iv0
kk= IAL(k)
(Important Computations)

enddo
enddo

enddo
enddo

npLX1= NLmax * PEsmpTOT
INL(0:NLmax*PEsmpTOT*NCOLORS)

do iv= 1, NCOLORS
!$omp parallel do
do ip= 1, PEsmpTOT

iv0= STACKmc(PEsmpTOT*(iv-1)+ip- 1)
do j= 1, NLhyp(iv)
iS= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip-1)
iE= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip)

!CDIR NODEP
do i= iv0+1, iv0+iE-iS
k= i+iS - iv0
kk= IAL(k)
(Important Computations)

enddo
enddo

enddo
enddo

npLX1= NLmax * PEsmpTOT
INL(0:NLmax*PEsmpTOT*NCOLORS)

70

(a) Matrix-Vector Products

(b) Inner Dot Products

(c) DAXPY

Fig. 3.9 Typical procedures in iterative methods with OpenMP directives and
directives for vectorization of the Earth Simulator (a)Matrix-Vector Products, (b)Inner
Dot Products, (c)DAXPY [81]

!$omp parallel do
!CDIR NODEP

do i= 1, NP
W(3*i-2,1)= W(3*i-2,2) + ALPHA*W(3*i-2,3)
W(3*i-1,1)= W(3*i-1,2) + ALPHA*W(3*i-1,3)
W(3*i ,1)= W(3*i ,2) + ALPHA*W(3*i ,3)
....

enddo
!$omp end parallel do

!$omp parallel do private(iS,iE,i)
!$omp& reduction(+:RHO01,RHO02,RHO03)

do ip= 1, PEsmpTOT
iS= STACKmcG(ip-1) + 1
iE= STACKmcG(ip)

!CDIR NODEP
do i= iS, iE

RHO01= RHO01 + W(3*i-2,R)*W(3*i-2,Z)
RHO02= RHO02 + W(3*i-1,R)*W(3*i-1,Z)
RHO03= RHO03 + W(3*i ,R)*W(3*i ,Z)

enddo
enddo

!$omp end parallel do

!$omp parallel do private(iS,iE,i,Xm0,Xm1,Xm2)
do ip= 1, PEsmpTOT

iS= STACKmcG(ip-1) + 1
iE= STACKmcG(ip)

!CDIR NODEP
do i= iS, iE

Xm2= X(3*i-2)
Xm1= X(3*i-1)
Xm0= X(3*i)
W(3*i-2,R)= B(3*i-2)-D(9*i-8)*Xm2-D(9*i-7)*Xm1-D(9*i-6)*Xm0
W(3*i-1,R)= B(3*i-1)-D(9*i-5)*Xm2-D(9*i-4)*Xm1-D(9*i-3)*Xm0
W(3*i ,R)= B(3*i)-D(9*i-2)*Xm2-D(9*i-1)*Xm1-D(9*i)*Xm0

enddo
enddo

!$omp end parallel do

71

Fig. 3.10 Problem definition and boundary conditions for 3D solid mechanics
example cases.

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

72

(a) Elapsed Time

(b) Parallel Speed-Up Ratio

Fig. 3.11 Relationship between number of SMP nodes and the speedup for the 3D
linear elastic problem in Fig.3.10 on the Earth Simulator with PDJDS/CM-RCM
reordering. The total problem size is fixed at 3×1283 (6,291,456) DOF. Speedup rate
for 8 SMP nodes is is 6.36 (Flat MPI) and 5.78 (Hybrid). (BLACK Circles: Flat MPI,
WHITE Circles: Hybrid).

0.0
1.0
2.0

3.0
4.0
5.0
6.0

7.0
8.0
9.0

0 1 2 3 4 5 6 7 8 9

NODE#

Sp
ee

d
U

P

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 1 2 3 4 5 6 7 8 9

NODE#

se
c.

73

(a) Elapsed Time

(b) Parallel Speed-Up Ratio

(c) GLOPS Rate

Fig. 3.12 Relationship between number of PEs and the parallel performance for the
3D linear elastic problem in Fig.3.10 on the Earth Simulator. (a) Elapsed time, (b)
Parallel Speed –up ratio and (c) GFLOPS rate. The total problem size is fixed at 3×643
(786,432) DOF. (BLACK Circles: PDJDS/CM-RCM reordering, WHITE Triangles:
Original GeoFEM solver without optimization).

0.0
1.0

2.0
3.0
4.0

5.0
6.0
7.0

8.0
9.0

0 1 2 3 4 5 6 7 8 9

PE#

Sp
ee

d
U

P

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1 10
PE#

se
c.

0.1

1.0

10.0

100.0

1 10
PE#

G
FL

O
PS

74

(a) Earth Simulator

(b) Hitachi SR8000/128

Fig. 3.13 Effect of coefficient matrix storage method and reordering for the 3D
linear elastic problem in Fig.3.10 with various problem sizes on (a) Earth Simulaotr and
(b) Hitachi SR8000/128 with 1 SMP node. The performance of the solver without
reordering is very low due to synchronization overhead during forward/backward
substitution for the IC factorization (BLACK Circles: PDJDS/CM-RCM, WHITE
Circles: PDCRS/CM-RCM, BLACK Triangles: CRS no reordering).

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+04 1.E+05 1.E+06 1.E+07

DOF

G
FL

O
PS

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+04 1.E+05 1.E+06 1.E+07

DOF

G
FL

O
PS

75

Fig. 3.14 Three types of matrix storage methods [81]

Fig. 3.15 Speed-up ratio inside SMP node for the 3D linear elastic problem in
Fig.3.10 with various problem sizes on the Earth Simulator and the Hitachi
SR8000/MPP with 1 SMP node with PDJDS/CM-RCM reordering. (WHITE Circles:
Earth Simulator, BLACK Circles: Hitachi SR8000/128). Speed-up ratio for sufficiently
large problem is 7.01 (Earth Simulator) and 7.40 (Hitachi SR8000/128).

PDJDS/CM-RCM PDCRS/CM-RCM
shorter innermost loops

CRS no re-orderingPDJDS/CM-RCM PDCRS/CM-RCM
shorter innermost loops

CRS no re-ordering

0.00

2.00

4.00

6.00

8.00

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

DOF

Sp
ee

d
U

P

76

Fig. 3.16 Effect of reordering method and number of colors (Number of iterations
for convergence). 3D linear elastic problem in Fig.3.10 with 3×1283=6,291,456 DOF on
the Earth Simulator and Hitachi SR8000/128 with 1 SMP node. Number of iterations for
convergence. (BLACK Circles: PDJDS/CM-RCM, WHITE Circles: PDJDS/MC).
PDJDS/CM-RCM provides better performance. In many colors, number of iterations for
convergence is smaller but performance is worse due to smaller loop length and
overhead.

300

350

400

450

500

1 10 100 1000 10000

Colors

Ite
ra

tio
ns

PDJDS/MC

PDJDS/CM-RCM

77

(a) Earth Simulator

(b) SR8000/128

Fig. 3.17 Effect of reordering method and number of colors (CPU time, sec.). 3D
linear elastic problem in Fig.3.10 with 3×1283=6,291,456 DOF on (a) Earth Simulaotr
and (b) Hitachi SR8000/128 with 1 SMP node. CPU time. (BLACK Circles:
PDJDS/CM-RCM, WHITE Circles: PDJDS/MC). PDJDS/CM-RCM provides better
performance. In many colors, number of iterations for convergence is smaller but
performance is worse due to smaller loop length and overhead.

50

75

100

125

150

1 10 100 1000 10000

Colors

se
c.

PDJDS/MC

PDJDS/CM-RCM

600

700

800

900

1000

1100

1 10 100 1000 10000

Colors

se
c.

PDJDS/CM-RCM

PDJDS/MC

78

(a) Earth Simulator

(b) SR8000/128

Fig. 3.18 Effect of reordering method and number of colors (GFLOPS rate). 3D
linear elastic problem in Fig.3.10 with 3×1283=6,291,456 DOF on (a) Earth Simulaotr
and (b) Hitachi SR8000/128 with 1 SMP node. GFLOPS rate. (BLACK Circles:
PDJDS/CM-RCM, WHITE Circles: PDJDS/MC). PDJDS/CM-RCM provides better
performance. In many colors, number of iterations for convergence is smaller but
performance is worse due to smaller loop length and overhead.

0

5

10

15

20

25

30

1 10 100 1000 10000

Colors

G
FL

O
PS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 10 100 1000 10000

Colors

G
FL

O
PS

79

Fig. 3.19 Micro PGA model for 3D linear elastic analysis. 61 pins, 956,128
elements, 1,012,354 nodes (3,037,062 DOF) [143]

Fig. 3.20 Results of 3D linear elastic analysis in Micro PGA model. Stress intensity
distribution visualized by GeoFEM's volume rendering [15].

80

Table 3.1 Effect of reordering method and number of colors. 3D linear elastic analysis
of Micro PGA model (Fig.3.19) with 956,128 elements, 1,012,354 nodes and 3,037,062
DOF on the (a) Earth Simulator and (b)Hitachi SR8000/128 with 1 SMP node. Number
of iterations for convergence is smaller in PDJDS/CM-RCM but CPU time is longer
because the number of color is large and performance is worse due to smaller loop
length and overhead.

(a) Earth Simulator

METHOD MC MC MC MC MC CM-RCM(*1) CM-RCM(*2)

COLOR# 108 158 204 306 1012 2381 1773

Iterations 474 465 447 436 434 377 371

sec. 49.7 53.2 54.2 60.4 120.2 206.4 159.3

GFLOPS 18.7 17.2 16.2 14.2 7.09 3.59 4.14

Performance(*3) 29.3% 26.8% 25.3% 22.2% 11.1% 5.60% 7.14%

(b) Hitachi SR800/128

METHOD MC MC MC MC MC CM-RCM(*1) CM-RCM(*2)

COLOR# 108 158 204 306 1012 2381 1773

Iterations 474 465 447 436 434 377 371

sec. 493 495 480 490 676 996 644

GFLOPS 1.89 1.84 1.83 1.75 1.26 0.74 1.13

Performance(*4) 23.6% 23.0% 22.8% 21.8% 15.8% 9.3% 14.1%

(1*): No rooting method is applied.
(2*): Rooting method by Gibbs [81] is applied before RCM ordering
(3*): Performance compared to the peak performance (64GFLOPS/SMP node).
(4*): Performance compared to the peak performance (8GFLOPS/SMP node).

81

Fig. 3.21 Effect of reordering method and number of colors (Number of iterations
for convergence). 3D linear elastic analysis of Micro PGA model (Fig.3.19) with
956,128 elements, 1,012,354 nodes and 3,037,062 DOF on the Earth Simulator and
Hitachi SR8000/128 with 1 SMP node. Number of iterations with PDJDS/MC.

400

420

440

460

480

500

1 10 100 1000 10000

Colors

Ite
ra

tio
ns

82

(a) Elapsed Time

(b) GFLOPS Rate

Fig. 3.22 Effect of reordering method and number of colors (Number of iterations
for convergence). 3D linear elastic analysis of Micro PGA model (Fig.3.19) with
956,128 elements, 1,012,354 nodes and 3,037,062 DOF on the Earth Simulator and
Hitachi SR8000/128 with 1 SMP node. (a) Elapsed time and (b) GFLOPS rate with
PDJDS/MC. (WHITE Circles: Earth Simulator, BLACK Circles: Hitachi SR8000/128).

1.0E+01

1.0E+02

1.0E+03

1 10 100 1000 10000

Colors

se
c.

Earth Simulator

Hitachi SR8000/128

1.0E+00

1.0E+01

1.0E+02

1 10 100 1000 10000

Colors

G
FL

O
PS

Earth Simulator

Hitachi SR8000/128

83

Fig. 3.23 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 1 and 10 SMP nodes. (a)GFLOPS rate
and (b)Parallel work ratio. Problem size/SMP node is fixed as 786,432 DOF (3×643).
Largest case is 7,864,320 DOF on 10 SMP nodes (80 PEs). Maximum performance is
192 (Flat MPI) and 165 (Hybrid) GFLOPS (Peak performance= 640 GFLOPS).
(BLACK Circles: Flat MPI, WHITE Circles: Hybrid, BLACK Triangles: Hybrid/Flat
MPI Performance Ratio based on Elapsed Time of Flat MPI). PDJDS/CM-RCM
reordering.

0.0

50.0

100.0

150.0

200.0

250.0

0 1 2 3 4 5 6 7 8 9 10 11 12

NODE#

G
FL

O
PS

85.0

90.0

95.0

100.0

105.0

0 1 2 3 4 5 6 7 8 9 10 11 12

NODE#

%

(b) Parallel Work Ratio

(a) GFLOPS Rate

84

Fig. 3.24 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 between 1 and 10 SMP nodes. (a)GFLOPS rate and
(b)Parallel work ratio. Problem size/SMP node is fixed as 1,536,000 DOF (3×803).
Largest case is 15,360,000 DOF on 10 SMP nodes (80 PEs). Maximum performance is
206 (Flat MPI) and 176 (Hybrid) GFLOPS (Peak performance= 640 GFLOPS).
(BLACK Circles: Flat MPI, WHITE Circles: Hybrid, BLACK Triangles: Hybrid/Flat
MPI Performance Ratio based on Elapsed Time of Flat MPI). PDJDS/CM-RCM
reordering.

85.0

90.0

95.0

100.0

105.0

0 1 2 3 4 5 6 7 8 9 10 11 12

NODE#

%

0.0

50.0

100.0

150.0

200.0

250.0

0 1 2 3 4 5 6 7 8 9 10 11 12

NODE#

G
FL

O
PS

(b) Parallel Work Ratio

(a) GFLOPS Rate

85

Fig. 3.25 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 1 and 10 SMP nodes. (a)GFLOPS rate
and (b)Parallel work ratio. Problem size/SMP node is fixed as 3,000,000 DOF (3×1003).
Largest case is 30,000,000 DOF on 10 SMP nodes (80 PEs). Maximum performance is
219 (Flat MPI) and 196 (Hybrid) GFLOPS (Peak performance= 640 GFLOPS).
(BLACK Circles: Flat MPI, WHITE Circles: Hybrid, BLACK Triangles: Hybrid/Flat
MPI Performance Ratio based on Elapsed Time of Flat MPI). PDJDS/CM-RCM
reordering.

85.0

90.0

95.0

100.0

105.0

0 1 2 3 4 5 6 7 8 9 10 11 12

NODE#

%

0.0

50.0

100.0

150.0

200.0

250.0

0 1 2 3 4 5 6 7 8 9 10 11 12

NODE#

G
FL

O
PS

(b) Parallel Work Ratio

(a) GFLOPS Rate

86

Fig. 3.26 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 1 and 10 SMP nodes. (a)GFLOPS rate
and (b)Parallel work ratio. Problem size/SMP node is fixed as 6,291,456 DOF (3×1283).
Largest case is 62,914,560 DOF on 10 SMP nodes (80 PEs). Maximum performance is
227 (Flat MPI) and 213 (Hybrid) GFLOPS (Peak performance= 640 GFLOPS).
(BLACK Circles: Flat MPI, WHITE Circles: Hybrid, BLACK Triangles: Hybrid/Flat
MPI Performance Ratio based on Elapsed Time of Flat MPI). PDJDS/CM-RCM
reordering.

85.0

90.0

95.0

100.0

105.0

0 1 2 3 4 5 6 7 8 9 10 11 12

NODE#

%

0.0

50.0

100.0

150.0

200.0

250.0

0 1 2 3 4 5 6 7 8 9 10 11 12

NODE#

G
FL

O
PS

(b) Parallel Work Ratio

(a) GFLOPS Rate

87

Fig. 3.27 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 1 and 10 SMP nodes. (a)GFLOPS rate
and (b)Parallel work ratio. Problem size/SMP node is fixed as 12,582,912 DOF
(3×256×128×128). Largest case is 125,829,120 DOF on 10 SMP nodes (80 PEs).
Maximum performance is 233 (Flat MPI) and 224 (Hybrid) GFLOPS (Peak
performance= 640 GFLOPS). (BLACK Circles: Flat MPI, WHITE Circles: Hybrid,
BLACK Triangles: Hybrid/Flat MPI Performance Ratio based on Elapsed Time of Flat
MPI). PDJDS/CM-RCM reordering.

85.0

90.0

95.0

100.0

105.0

0 1 2 3 4 5 6 7 8 9 10 11 12

NODE#

%

0.0

50.0

100.0

150.0

200.0

250.0

0 1 2 3 4 5 6 7 8 9 10 11 12
NODE#

G
FL

O
PS

(b) Parallel Work Ratio

(a) GFLOPS Rate

88

(a) Iterations for Convergence

(b) Performance Ratio to the Peak

Fig. 3.28 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 1 and 10 SMP nodes. (a) Iterations for
convergence and (b) Performance ratio to the peak. Problem size/PE is fixed. (Circles:
3×643 DOF/SMP node, Triangles: 3×1003 DOF/SMP node, Squares: 3×256×128×128
DOF/SMP node). (BLACK: Flat MPI, WHITE: Hybrid). PDJDS/CM-RCM reordering.

0

200

400

600

800

1000

1200

1.E+05 1.E+06 1.E+07 1.E+08

FEM NODE#

Ite
ra

tio
ns

25

30

35

40

1.E+05 1.E+06 1.E+07 1.E+08

FEM NODE#

%

89

Fig. 3.29 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 8 and 160 SMP nodes. (a)GFLOPS rate
and (b)Parallel work ratio. Problem size/PE is fixed as 786,432 DOF (3×643). Largest
case is 125,829,120 DOF on 160 SMP nodes (1280 PEs). Maximum performance is
1.55 (Flat MPI) and 2.23 (Hybrid) TFLOPS (Peak performance= 10.24 TFLOPS).
(BLACK Circles: Flat MPI, WHITE Circles: Hybrid). PDJDS/CM-RCM reordering.

40

50

60

70

80

90

100

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

Pa
ra

lle
l W

or
k

R
at

io
: %

0

1000

2000

3000

4000

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

G
FL

O
PS

(b) Parallel Work Ratio

(a) GFLOPS Rate

90

Fig. 3.30 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 8 and 160 SMP nodes. (a)GFLOPS rate
and (b)Parallel work ratio. Problem size/SMP node is fixed as 1,536,000 DOF (3×803).
Largest case is 245,760,000 DOF on 160 SMP nodes (1280 PEs). Maximum
performance is 2.00 (Flat MPI) and 2.53 (Hybrid) TFLOPS (Peak performance= 10.24
TFLOPS). (BLACK Circles: Flat MPI, WHITE Circles: Hybrid). PDJDS/CM-RCM
reordering.

40

50

60

70

80

90

100

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

Pa
ra

lle
l W

or
k

R
at

io
: %

0

1000

2000

3000

4000

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

G
FL

O
PS

(b) Parallel Work Ratio

(a) GFLOPS Rate

91

Fig. 3.31 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 8 and 160 SMP nodes. (a)GFLOPS rate
and (b)Parallel work ratio. Problem size/SMP node is fixed as 3,000,000 DOF (3×1003).
Largest case is 480,000,000 DOF on 160 SMP nodes (1280 PEs). Maximum
performance is 2.63 (Flat MPI) and 2.92 (Hybrid) TFLOPS (Peak performance= 10.24
TFLOPS). (BLACK Circles: Flat MPI, WHITE Circles: Hybrid).PDJDS/CM-RCM
reordering.

40

50

60

70

80

90

100

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

Pa
ra

lle
l W

or
k

R
at

io
: %

0

1000

2000

3000

4000

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

G
FL

O
PS

(b) Parallel Work Ratio

(a) GFLOPS Rate

92

Fig. 3.32 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 8 and 176 SMP nodes. (a)GFLOPS rate
and (b)Parallel work ratio. Problem size/SMP node is fixed as 6,291,456 DOF (3×1283).
Largest case is 1,107,296,256 DOF on 176 SMP nodes (1408 PEs). Maximum
performance is 3.35 (Flat MPI) and 3.58 (Hybrid) TFLOPS (Peak performance= 11.26
TFLOPS). (BLACK Circles: Flat MPI, WHITE Circles: Hybrid). PDJDS/CM-RCM
reordering.

40

50

60

70

80

90

100

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

Pa
ra

lle
l W

or
k

R
at

io
: %

0

1000

2000

3000

4000

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

G
FL

O
PS

(b) Parallel Work Ratio

(a) GFLOPS Rate

93

Fig. 3.33 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 8 and 176 SMP nodes. (a)GFLOPS rate
and (b)Parallel work ratio. Problem size/SMP node is fixed as 12,582,912 DOF
(3×256×128×128). Largest case is 2,214,592,512 DOF on 176 SMP nodes (1408 PEs).
Maximum performance is 3.78 (Flat MPI) and 3.80 (Hybrid) TFLOPS (Peak
performance= 11.26 TFLOPS). (BLACK Circles: Flat MPI, WHITE Circles: Hybrid).
PDJDS/CM-RCM reordering.

40

50

60

70

80

90

100

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

Pa
ra

lle
l W

or
k

R
at

io
: %

0

1000

2000

3000

4000

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

G
FL

O
PS

 (b) Parallel Work Ratio

(a) GFLOPS Rate

94

(a) Iterations for Convergence

(b) Hybrid/Flat MPI Performance Ratio

Fig. 3.34 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 8 and 176 SMP nodes. (a) Iterations for
convergence and (b) Hybrid/Flat MPI performance ratio based on elapsed time of Flat
MPI. Problem size/SMP node is fixed (THICK lines: Flat MPI, DASHED lines: Hybrid
in (a)). PDJDS/CM-RCM reordering.

80

90

100

110

120

130

140

150

160

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

H
yb

rid
/F

la
t M

PI
: %

Prob Size/SMP node
= 3x64^3

3x100^3

3x256x128x128

0

500

1000

1500

2000

2500

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

DOF#

Ite
ra

tio
ns

95

(a) GFLOPS Rate

(b) Peak Performance Ratio

Fig. 3.35 Problem size and parallel performance on the Earth Simulator for the 3D
linear elastic problem in Fig.3.10 using between 8 and 176 SMP nodes. (a) GFLOPS
rate and (b) Ratio to the peak performance. Problem size/SMP node is fixed (THICK
lines: Flat MPI, DASHED lines: Hybrid). PDJDS/CM-RCM reordering.

1.E+02

1.E+03

1.E+04

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

DOF#

G
FL

O
PS

Prob Size/SMP node
 = 3x64^3

3x80^3

3x100^3

3x128

3x256x128x128

15

20

25

30

35

40

1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

DOF#

Pe
ak

 P
er

fo
rm

an
ce

 R
at

io
: %

Prob Size/SMP node
 = 3x64^3

3x80^3

3x100^33

3x128^33

3x256x128x128

96

Fig. 3.36 Time (sec.) spent for communication subroutine per one iteration by the
flat MPI programming model on the Earth Simulator for the 3D linear elastic problem
in Fig.3.10 using between 8 and 176 SMP nodes. Problem size/SMP node is fixed as
6,291,456 DOF (3×1283). (WHITE Circles: minimum, BLACK Circles: maximum,
BLACK Triangles: average).

Fig. 3.37 Performance estimation of a finite-volume application code for CFD with
local refinement on the Earth Simulator. Based on the results described in [45]. A
greater percentage of time is taken by the latency component on larger processor counts,
simply due to its much larger available bandwidth.

0.0E+00

2.5E-03

5.0E-03

7.5E-03

1.0E-02

0 16 32 48 64 80 96 112 128 144 160 176 192

NODE#

se
nd

-r
ec

v.
/it

er
at

io
n

Processors

Ti
m

e
(%

)

100

0
1 5120

computation/memory
comm. latency
comm. bandwidth

Processors

Ti
m

e
(%

)

100

0
1 5120

computation/memory
comm. latency
comm. bandwidth

computation/memory
comm. latency
comm. bandwidth

97

Chapter 4 Parallel Iterative Solvers with the

Selective Blocking Preconditioning

In nonlinear problems such as contact simulations for geophysics, the condition
numbers of the coefficient matrices are usually large due to special constraint conditions.
The result is slow convergence of the iterative solver. In this study, a new
preconditioning method, called selective blocking is developed along with a special
partitioning method for parallel finite-element simulations on the GeoFEM platform.
This newly developed method provides robust and smooth convergence and excellent
parallel performance in 3D solid mechanics simulations for geophysics with contact
conditions performed on a Hitachi SR2201 parallel computer with 128 processing
elements using flat MPI parallel programming model. Finally, the method is vectorized
and parallelized using OpenMP directives on one SMP node of the Earth Simulator.

98

4.1 Introduction

One of the most important applications of GeoFEM is simulation of ground motion.
Stress accumulation on plate boundaries (faults) is very important in estimating the
earthquake generation cycle (Fig.4.1).

In ground motion simulations, material, geometric and boundary nonlinearity
should be considered. Boundary nonlinearity due to fault-zone contact is the most
critical. In GeoFEM, the augmented Lagrange method (ALM) and penalty method are
implemented, and a large penalty number λ is introduced for constraint conditions
around faults [36]. The nonlinear process is solved iteratively by the Newton-Raphson
(NR) method. Figure 4.2 shows the relationship between λ and the number of
linear/nonlinear iterations [36]. In these cases, there is no friction on fault surfaces.
Therefore, the coefficient matrices are symmetric positive definite [36], and GeoFEM’s
conjugate gradient iterative solver preconditioned by incomplete Cholesky factorization
(ICCG) [21] was used for solving linear equations obtained at each Newton-Raphson
cycle. This ICCG solver is a scalar version, in which all degrees of freedom (DOF) are
treated independently. A large λ can provide an accurate solution and fast nonlinear
convergence for the Newton-Raphson method, but the condition number of the
coefficient matrices is large. Therefore, many iterations are required for convergence of
the ICCG solver. Actually, the solver does not converge at all if λ > 104. Therefore, a
more robust preconditioning method is essential for such ill-conditioned problems.
 In this chapter, selective blocking is implemented to block type Krylov iterative
solvers with ILU/IC preconditioning for fault-zone contact simulation. This method
provides robust and efficient convergence. Moreover, a special partitioning method for
parallel computation was developed in order to eliminate edge-cuts in contact groups.
Parallel performance of this method is demonstrated on a Hitachi SR2201 parallel
computer with up to 128 processing elements (PEs) using flat MPI parallel
programming model. Developed procedure has been also optimized for the Earth
Simulator using OpenMP and the results of this version are also presented. In this
chapter, we will provide a brief overview of the selective blocking along with special
partitioning, and show some examples.

99

4.2 Preconditioning Methods for Ill-Conditioned Problems

4.2.1 Preliminary Results

Linear equations derived from actual nonlinear contact problems were solved using the
CG method of GeoFEM with various types of preconditioners using a single processor
(COMPAQ Alpha 21164-600MHz). These equations were obtained at a certain
Newton-Raphson cycle in nonlinear contact problems for the finite element model, as
shown in Fig.4.1. λ is the normalized penalty number, say the penalty number divided
by Young's modulus (E). Coefficient matrices are symmetric positive definite for 3D
elastic contact problems if no friction exists on fault surfaces.
 The first two items of Table 4.1 show the results obtained using GeoFEM's
original scalar CG solver preconditioned by diagonal scaling and IC with no fill-in. In
GeoFEM's original scalar solver, all DOF are treated independently. In these cases, the
iterative solver converges fast if λ=100, but does not converge at all if λ=106.
 The typical remedies using an ILU/IC type of preconditioning method for
ill-conditioned matrices are as follows:

• Blocking
• Deep Fill-in
• Reordering.

4.2.2 Blocking

First of all, 3×3 block operation was introduced for 3D solid mechanics. In 3D solid
mechanics problems, three DOF exist on each finite-element node. Full LU
factorization is introduced in this 3×3 block. Thus, by using a block ILU/IC
preconditioning (BILU/BIC), three DOF on the same finite-element node can be treated
in a more simultaneous manner than by using the original scalar ILU/IC
preconditioning in GeoFEM. Figure 4.3 shows how the forward substitution procedure
of BILU/BIC, with no fill-in, can be written in FORTRAN.

100

4.2.3 Deep Fill-in

Another remedy for ill-conditioned matrices – deep fill-in – applies a level of fill-in to
block ILU/IC preconditioning (BILU(n)/BIC(n), where n is the level of fill-in).
Procedure of LU factorization or Gaussian elimination is as follows [7,21,103] :

In this procedure, many fill-in occurs during factorization, therefore factorized matrix
could be dense even if original matrix is sparse [103]. ILU(n) or IC(n) are incomplete
factorization where n-level fill-in is allowed. Larger n provides more accurate
factorization and usually leads to robust preconditioning, but more expensive in both
memory and CPU time. In many engineering applications, ILU(0)/IC(0) is widely used
where there are no fill-in and non-zero pattern of factorized matrix is kept as original
coefficient matrix:

Gaussian Elimination
 do i= 2, n
 do k= 1, i-1
 ajk := ajk/akk
 do j= k+1, n
 aij := aij - aik*akj
 enddo
 enddo
 enddo

ILU(0)
 do i= 2, n
 do k= 1, i-1
 if ((i,k) ∈ NonZero(A)) then
 ajk := ajk/akk
 endif
 do j= k+1, n
 if ((i,j) ∈ NonZero(A)) then
 aij := aij - aik*akj

 endif
 enddo
 enddo
 enddo

101

ILU(n)/IC(n) with n-level fill-in is described as follows:

ILU(n)
 LEVij=0 if ((i,j) ∈ NonZero(A)) otherwise LEVij= p+1
 do i= 2, n
 do k= 1, i-1
 if (LEVik ≤ p) then
 ajk := ajk/akk
 endif
 do j= k+1, n
 if (LEVij = min(LEVij,1+LEVik+ LEVkj) ≤ p) then
 aij := aij - aik*akj

 endif
 enddo
 enddo
 enddo

102

4.2.4 Selective Blocking

In addition to deep fill-in, a special method called selective blocking was also developed
for contact problems [75,77]. In the selective blocking method, strongly coupled
finite-element nodes in the same contact group [36] coupled through penalty constraints
are placed into the same large block (selective block or super node) and all of the nodes
involved are reordered according to this blocking information. Full LU factorization is
applied to each selective block where the size of the block is (3×NB) × (3×NB) in 3D
problems and NB is the number of finite-element nodes in the selective block, as shown
in Fig.4.4 and Fig.4.5. Thus, local equations for coupled finite-element nodes in contact
groups are solved by means of a direct method during preconditioning.
 This idea (selective blocking) is also related to the clustered element-by-element
method (CEBE) described in [18,50] or Blocked ICT preconditioning in [82], where the
elements are partitioned into clusters of elements, with a desired number of elements in
each cluster, and the iterations are performed in a cluster-by-cluster fashion. The method
is highly suitable for both vectorization and parallelization if used with proper
clustering and element grouping schemes. Any number of elements can be brought
together to form a cluster, and the number of elements should be viewed as an
optimization parameter to minimize computational cost. The CEBE method becomes
equivalent to the direct method when the cluster size is equal to the total number of
elements. Generally, larger clusters provide better convergence rates because a larger
number of fill-in elements are taken into account during factorization, but the cost per
iteration cycle increases according to the size of the cluster, as shown in Fig.4.6. The
trade-off between convergence and computational cost is not clear, but the results of
examples in [18,50,82] show that larger clusters provide better performance.
 In selective blocking, clusters are formed according to contact group information.
Usually, the size of each cluster is much smaller than that in a general CEBE method. If
a finite element node does not belong to any contact group, then the finite element node
forms a cluster of which the size is equal to that in selective blocking. Therefore,
computational cost for selective blocking during one iteration cycle is equivalent to that
of BILU(0)/BIC(0) if fill-in between clusters is not considered.

103

4.2.5 Evaluation of Developed Methods

By introducing the 3×3 block, the CG solver preconditioned by block IC with no fill-in
(BIC(0)) converges even when λ is as large as 106 (Table 4.1). Deep fill-in options
provide faster convergence but the SB-BIC(0) (BIC(0) preconditioning with the
selective blocking reordering) shows the best performance (Table 4.1).
 SB-BIC(0) usually requires a greater number of iterations for convergence
compared to BIC(1) and BIC(2) but the overall performance is better because the
computation time for each iteration is much shorter. Because no inter-block fill-in is
considered in SB-BIC(0), the memory requirement in this method is usually as small as
that in BIC(0) with no fill-in. Only the inter-node fill-in in each selective block is
considered in SB-BIC(0).
 Krylov iterative solver with selective blocking preconditioning can be considered to
be a hybrid of iterative and direct methods where local equations for coupled
finite-element nodes in contact groups are solved by means of a direct method during
preconditioning. This method combines the efficiency and the scalability of iterative
methods with the robustness of direct methods.

104

4.3 Strategy for Parallel Performance

Localized ILU/IC [72,73] is an efficient parallel preconditioning method, but it is not
robust for ill-conditioned problems. Table 4.2 shows the results by parallel CG solvers
with localized preconditioning on a 4 PE workstation cluster using distributed matrices
created by k-way METIS [138], for the problem described in Fig.4.1. According to the
results, the number of iterations for convergence increases by a factor of 10 in λ=106
cases. This is because the edge-cuts occur at inter-domain boundary edges that are
included in contact groups [72,73].
 In order to eliminate these edge-cuts, a partitioning technique has been developed
so that all nodes which belong to the same contact group are in the same domain.
Moreover, nodes are re-distributed so that load-balancing among domains should be
attained for efficient parallel computing (Fig. 4.7).
 In GeoFEM, there are several types of special elements for contact problems
(types 411, 412, 421, 422, 511, 512, 521 and 522) [131]. Nodes included in the same
elements of these types are connected through penalty constraints and form a contact
group. In the new partitioning method, the partitioning process is executed so that these
nodes in the same contact elements are on the same domain, or PE. These functions are
added to the original domain partitioner in GeoFEM.
 Table 4.3 shows the results obtained by this partitioning method. The number of
iterations for convergence has been dramatically reduced for each preconditioning
method although it is larger than that of the single PE cases, as shown in Table 4.1 due
to localization.

105

4.4 Benchmarks

4.4.1 Overview

The efficiency and robustness of the developed preconditioning and partitioning
methods for simulations of fault-zone contact were evaluated in two types of 3D
applications.
 Figure 4.8 shows the simple geometry and boundary conditions of an example
model for 3D linear elastic solid mechanics. In this example, linear multiple point
constraint (MPC) conditions were applied to the nodes of contact groups in the
following manner:

• The locations of nodes in each contact group are identical.
• All nodes in the contact groups are coupled tightly in any direction on the

surfaces.
• Infinitesimal linear elastic deformation theory in solid mechanics was applied.

Therefore nodes do not move, and the contact relationships have been kept
during the simulation.

• A penalty constraint is applied to the nodes in the contact groups. 111-type
element (Rod/Beam) in GeoFEM [131] is put in each contact group (Fig.4.9)
and very large stiffness corresponding to penalty is applied. Figure 4.10 shows
the matrix operation of nodes in a contact group. Three components in x, y, and
z directions are constrained through penalty.

A large penalty parameter provides a stronger constraint but the condition numbers of
the coefficient matrices are larger. Therefore, the convergence of iterative solvers is
usually slow if the penalty is large. The problem itself is linear elastic, but solving linear
equations by iterative methods is as difficult as solving equations in nonlinear contact
problems, such as those shown in previous sections. The definitions of the model and
boundary conditions are as follows:

• Three zones of uniform material property for which non-dimensional E
(Young's modulus)=1.0, ν (Poisson ratio)=0.30. Tri-linear (1st order) cubic
hexahedral elements are used for spatial discritization.

• Uniform MPC conditions were imposed on the nodes along the boundary

106

surfaces of the blocks. Therefore, the number of nodes in each contact group
can be different, as shown in Fig.4.8(b).

• Symmetry boundary conditions were applied at the x=0 and y=0 surfaces.
• Free boundary conditions were applied at the x=Xmax and y=Ymax surfaces.
• Dirichlet (fixed) boundary conditions were applied at the z=0 surface.
• A uniformly distributed load in the z-direction was applied at the z=Zmax

surface.
• If friction is not considered at fault surfaces, the coefficient matrix is

symmetric positive definite; therefore, the CG method was adopted.

All of the meshes in this example are uniform cubes.
 The second example, as shown in Fig.4.11, is a more complicated model for
earthquake simulation in the southwestern part of Japan [36]. This model consists of
crust (dark gray) and subduction plates (light gray). 27,195 nodes and 23,831 tri-linear
(1st-order) hexahedral elements are included. The same boundary conditions as those
used in the model of Fig.4.8 were applied here. In this Southwest Japan model, a body
force of -1.0 was applied in the z-direction rather than a surface force at the z=Zmax
surface, as in Fig.4.8, and no symmetry boundary conditions were applied in the x or y
directions. In this example, meshes are irregular, and some of the meshes are very
distorted. The material property is linear and homogeneous (E (Young's modulus)=1.0,
ν (Poisson ratio)=0.30).
 In the following part of this section, the results of benchmarks using two types of
models on a single processor (COMPAQ Alpha 21164-600 MHz) are shown, and then
the parallel performance of the method is described by large-scale computation on a
Hitachi SR2201 using flat MPI parallel programming model.

4.4.2 Benchmarks-1 (Simple Block Model)

(1) Benchmarks

First, benchmarks for the simple block model, as shown in Fig.4.8, have been conducted
for a wide range of penalty parameter values using various types of preconditioners on a
single processor (COMPAQ Alpha 21164-600MHz). In the benchmarks, the following
model is considered:

• NX1=20, NX2=20, NY =15, NZ1= 20, NZ2= 20 (Fig.4.8(a))
• Total Elements = 24,000, Total Nodes = 27,888, Total DOF = 83,664.

107

Table 4.4 shows the results for convergence. BIC(0) does not converge if λ is larger
than 104. BIC(1), BIC(2) and SB-BIC(0) provide robust convergence for a wide range
of λ values. SB-BIC(0) provides the most efficient performance although the iteration
number for convergence is larger than that for BIC(1) and BIC(2).

(2) Eigenvalue analysis

Next, the robustness of the preconditioning method was estimated according to the
eigenvalue distribution of the [M]-1[A] matrix by the method in [7,21], where [A] is the
original coefficient matrix and [M]-1 is the inverse of the preconditioning matrix.
 In a symmetric positive definite matrix, the spectral condition number κ is given
by κ=Emax/Emin where Emax and Emin are the largest and smallest eigenvalues,
respectively, of [M]-1[A] [7,21].
 Table 4.5 shows Emin, Emax and κ derived from each preconditioning method for a
range of penalty parameter values. According to Table 4.5, all of the eigenvalues are
approximately constant and close to 1.00 for a wide range of λ values except for BIC(0).
BIC(1) and BIC(2) provide a slightly smaller κ than SB-BIC(0).

4.4.3 Benchmarks-2 (Southwest Japan Model)

Benchmarks of the Southwest Japan model with complicated geometry, as shown in
Fig.4.11, have been conducted for a wide range of penalty parameter values using
various types of preconditioners on a single processor (COMPAQ Alpha 21164-600
MHz).
 Table 4.6 shows the results for convergence. BIC(0) does not converge if λ is
larger than 104. BIC(1), BIC(2) and SB-BIC(0) provide robust convergence for a wide
range of λ values but the iteration number for convergence increases in BIC(1) and
BIC(2) as λ changes from 102 to 104.(BIC(1) from 201 to 259, BIC(2) from 176 to 232).
SB-BIC(0) provides the most efficient performance although the iteration number for
convergence is larger than both BIC(1) and BIC(2).
 Table 4.7 shows Emin, Emax and κ derived from the eigenvalue analysis of [M]-1[A]
for each preconditioning method. In SB-BIC(0), Emin, Emax and κ remain constant for a
wide range of λ values but κ increases in BIC(1) and BIC(2) when λ changes from 102
to 104. This corresponds to the increase in the iteration number for convergence in
BIC(1) and BIC(2) between λ=102 and λ=104. In this example, the geometry is much
more complicated than in the previous simple block model. Moreover, meshes are not
uniform and some of the meshes are distorted. The distortion of an individual mesh
directly affects the components of the coefficient matrix [A] for linear equations and the

108

eigenvalue distribution of [M]-1[A]. SB-BIC(0) is robust under such conditions.
 In both models (simple block and Southwest Japan), the spectral condition number
of [M]-1[A] is a helpful parameter for the evaluation of the convergence of the
preconditioning methods. In the simple block model, the spectral condition number of
[M]-1[A] by BIC(1) and BIC(2) is usually smaller than that of SB-BIC(0) and the
iteration number for convergence is smaller (Tables 4.4 and 4.5). In contrast, the
Southwest Japan model provides a larger spectral condition number for BIC(1) and
BIC(2) than in SB-BIC(0) when λ is larger than 104, but the iteration number for the
convergence of BIC(1) and BIC(2) is smaller than that for SB-BIC(0) (Tables 4.6 and
4.7).

4.4.4 Large-Scale Computation by Flat MPI

(1) Simple Block Model

A large-scale computation was performed on the simple block model, as shown in
Fig.4.8. The following specific values describe the model:

• NX1=70, NX2=70, NY =40, NZ1= 70, NZ2= 70 (Fig.4.8(a))
• Total Elements= 784,000, Total Nodes= 823,813, Total DOF= 2,471,439.

This example problem was solved by parallel iterative solvers using various types of
preconditioning methods for various penalty numbers for the MPC conditions. Domains
are partitioned according to the contact group information described in the previous
chapter. Computations were performed using 16 to 128 PEs on a Hitachi SR2201 at the
University of Tokyo using flat MPI parallel programming model described in Chapter 1.
 Table 4.8 shows the results for various preconditionings. BIC(0) does not
converge if λ is larger than 104. BIC(1), BIC(2) and SB-BIC(0) provide robust
convergence for a wide range of λ values. SB-BIC(0) provides the most efficient
performance, although the iteration number for convergence is larger than BIC(1) and
BIC(2). Table 4.9 and Fig.4.12 show the parallel performance for the same problem
solved using 16 to 128 PEs of Hitachi SR2201. BIC(1) did not work if the PE number
was less than 64 and BIC(2) worked only for 128 PEs due to memory limitation. As
shown in Table 4.9 and Fig.4.12, the iteration number for convergence increases
according to PE number in BIC(0) and SB-BIC(0) due to the locality of the
preconditioning method, but this increase is very slight (only 11% increase from 16 PEs
to 128 PEs). The speed-up ratio based on elapsed execution time including
communication for 128 PEs, is more than 120, as extrapolated from the results obtained

109

using 16 PEs.
 The required memory size for each preconditioning method is compared in
Fig.4.13 for this problem. The memory size of each PE on the Hitachi SR2201 is 256
MB but only 224 MB of the memory is available for users. For example, BIC(2) does
not function on 64 PEs because the required memory size is 14.4 GB but only 14.3 GB
(224×64/1000=14.34) are available on 64 PEs. The required memory size for
SB-BIC(0) is competitive with that of BIC(0), is less than 50% of that of BIC(1), and
approximately 25% of BIC(2). The required memory size for SB-BIC(0) could change,
according to the number of contact groups and the size of the matrix blocks by selective
blocking, but the required memory size is much less than that of BIC(1) or BIC(2)
because block-to-block fill-in is not considered in SB-BIC(0).

(2) Southwest Japan Model

Finally, examples with a more complicated Southwest Japan model were solved by the
parallel iterative solvers preconditioned by SB-BIC(0) on a Hitachi SR2201 using 16 to
128 PEs. The model, as shown in Fig.4.11, has been globally refined and the final mesh
obtained has 997,422 nodes and 960,509 elements. The total number of DOF is
2,992,264.
 Table 4.10 and Fig.4.14 show the parallel performance for the same problem
solved using 16 to 128 PEs of Hitachi SR2201. The iteration number for convergence
increases according to the number of PE due to the locality of the preconditioning
method, but this increase is very slight (only 15% increase from 16 PEs to 128 PEs).
The speed-up ratio based on elapsed execution time including communication for 128
PEs is more than 107, as extrapolated from the results obtained using 16 PEs.

110

4.5. Optimization for the Earth Simulator

4.5.1 Overview

In this section, selective blocking is ported to SMP cluster architectures with vector
processors such as the Earth Simulator. Hybrid parallel programming model is adopted
with reordering methods for vector and parallel performance [72,73]. Parallel and vector
performance of this method is demonstrated on the Earth Simulator with a single SMP
node.

4.5.2 Reordering Methods for Parallel/Vector Performance on SMP Nodes

In order to achieve efficient parallel/vector computation for applications with
unstructured grids, the following 3 issues are critical:

• Local operations and no global dependency
• Continuous memory access
• Sufficiently long loops

For unstructured grids, in which data and memory access patterns are very irregular,
reordering technique is very effective for achieving highly parallel and vector
performance, as describe in Chapter 3. The same strategy as that in Chapter 3 is adopted
here.
 According to the results in Chapter 3, PDJDS/CM-RCM reordering, which is a
method combining cyclic multicoloring and RCM (Reverse Cuthil-Mckee) reordering,
provides fast and robust convergence for simple geometries; however, for complicated
geometries in real-world applications, the number of hyperplanes may be extremely
large [79,81], and constructing independent sets having a sufficiently large loop length
by cyclic multicoloring (CM) is usually very difficult. Under these circumstances,
classical multicoloring (MC) offers another option. Although MC usually provides
slower convergence than CM-RCM and RCM, a sufficiently large loop length is
guaranteed when a certain number of colors is specified. In this work, the PDJDS/MC
reordering method was adapted in order to achieve higher vector performance.

111

4.5.3 Special Treatments for Selective Blocking

In selective blocking preconditioning, individual selective blocks (or super nodes) are
computed independently, therefore dependency among selective blocks should be
considered at reordering for vector optimization. In this case, load imbalance may occur
because the size of each selective block differs according to the number of nodes in
each contact group. Ordinary nodes which do not belong to any contact group are
considered as a selective block of size one. Currently, no special treatment for
load-balancing is implemented.
 Another problem is that the number of off-diagonal components may not reduce
smoothly in DJDS reordering according to the size of the contact groups and the
number of connected nodes, as shown in Fig.4.15. In this case, dummy elements are
placed so as to maintain a smooth decrease in the number of off-diagonal components in
descending order. If several dummy elements exist, efficiency and load balancing may
be affected.
 Finally, block diagonal components for selective blocks are reordered according to
block size on each PE and for each color, as shown in Fig.4.16. Thus, if statements
according to block size are eliminated from the full LU factorization procedure for each
selective block during back/forward substitution.

112

4.5.4 Results

Figure 4.17 and 4.18 show the results for the simple block model and Southwest Japan
model, respectively. In the cases with many colors, fewer iterations are required for
convergence, but the performance is worse due to the smaller loop length and greater
overhead. In the Southwest Japan model, iterations for convergence is not affected by
number of colors. This is because there are many distorted elements in this model and
the coefficient matrices are ill-conditioned. Performance of 17.6 GFLOPS (27.5% of
peak performance, 64 GFLOPS) for the simple block model and 18.6 GFLOPS (29.1%
of peak performance) for the Southwest Japan has been obtained.
 Figure 4.19 compares the performance with results obtained by the method
without the reordering selective blocks according to block size, as shown in Fig.4.16.
Performance is about 60% if this reordering is not applied. Figure 4.20 shows
load-imbalance among PEs on the SMP node and ratio of dummy off-diagonal
components. Load-imbalance is computed by the following method:

 Load Imbalance (%) = 100 × (max. node # - min. node #) / average node #

Effect of load-imbalance and dummy elements are very small in both models and effect
is negligible in this computation.

113

4.6. Summary

In this chapter, robust preconditioning and partitioning methods were developed for the
simulation of fault-zone contact with penalty constraints using parallel iterative solvers.
For symmetric positive definite matrices, block incomplete Cholesky factorization
without inter-block fill-in, using selective blocking (SB-BIC(0)) has excellent
performance, memory efficiency and robustness for a wide range of penalty parameter
values even if meshes are distorted. Spectral condition number κ (κ=Emax/Emin where
Emax and Emin are the largest and smallest eigenvalues, respectively, of [M]-1[A]) is a
helpful parameter for the evaluation of convergence of the preconditioning methods.
Usually, BIC(1) and BIC(2) requires fewer iterations for convergence than SB-BIC(0).
However, the total computation time for SB-BIC(0) is lower as a result of the lower cost
per iteration.
 It is also shown that the partitioning method for elimination of edge-cuts in
contact groups with load-balancing improves the convergence of parallel iterative
solvers with localized preconditioning.
 Parallel performance of the CG method with SB-BIC(0) preconditioning was
evaluated using 16 to 128 PEs of a Hitachi SR2201 at the University of Tokyo using a
flat MPI parallel programming model. Although the iteration number for convergence
increases according to PE number due to locality of the preconditioner, this increase is
only 11% from 16 PEs to 128 PEs and the speed-up ratio based on elapsed execution
time including communication for 128 PEs, is higher than 120, as extrapolated from
results for 16 PEs.
 Furthermore, the developed method is vectorized and parallelized using OpenMP
directives on one SMP node of the Earth simulator, and provides robust and smooth
convergence and excellent parallel performance for both simple and complicated
geometries with contact conditions.
 The reordering method for SMP cluster architectures with vector processors
described in Chapter 3 has been implemented to the selective blocking preconditioning
using the MC reordering method. Special treatments for selective blocking, such as the
introduction of dummy elements and the reordering of selective blocks according to
block size, were implemented.
 In cases involving several colors, fewer iterations are required for convergence,
but the performance is worse due to the smaller loop length and greater overhead. In the
complicated Southwest Japan model, the number of iterations for convergence is not

114

affected by the number of colors because there are many distorted elements in this
model and the coefficient matrices are ill-conditioned.
 Performance of 17.6 GFLOPS (27.5% of peak performance) for the simple block
model and 18.6 GFLOPS (29.1% of peak performance) for the Southwest Japan has
been obtained. Performance is about 60% if the reordering of selective blocks is not
applied. The load-imbalance among PEs on the SMP node and the ratio of dummy
off-diagonal components are not significant.

115

Fig. 4.1 Plate boundaries (faults) around Japanese Islands and an example of the
finite element model (6,156 tri-linear (1st order) hexahedral elements, 7,220 nodes,
21,660 DOF, 840km×1020km×600km region) [36,131]

Eurasia

Philippine

PacificEurasia

Philippine

Pacific

116

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

Penalty Number
Ite

ra
tio

ns

Fig. 4.2 Typical λ (penalty number)-iterations relationship in fault-zone contact
computation without friction by ALM [36] (circle: Newton-Raphson (NR) iterations,
square: ICCG iterations per one NR iteration, triangle: Total ICCG iterations)

ICCG iterations per 1 Newton-Raphson (NR) iteration.

NR iterations for Entire Process.

Total ICCG Iterations.

ICCG iterations per 1 Newton-Raphson (NR) iteration.

NR iterations for Entire Process.

Total ICCG Iterations.

117

Table 4.1 Iterations/CPU time (includes factorization) for convergence (ε=10-8) on a
single PE of COMPAQ Alpha 21164/600MHz by preconditioned CG for the 3D elastic
fault-zone contact problem in Fig.4.1 (21,660 DOF).: BIC(n): Block IC with n-level
fill-in, SB-BIC(0): BIC(0) with the selective blocking reordering.

Preconditioning λ Iter # sec.
Diagonal 100 340 19.1
Scaling 106 No Conv. N/A
IC(0) 100 85 8.9
(Scalar Type) 106 No Conv. N/A
BIC(0) 100 82 8.8
 106 1,108 116.8
BIC(1) 100 44 9.4
 106 94 17.9
BIC(2) 100 32 12.2
 106 33 13.0
SB-BIC(0) 100 78 9.4
 106 77 9.4

118

Fig. 4.3 Procedure of the 3×3 block ILU(0) preconditioning: forward substitution
[75,77]

do i= 1, N
SW1= Z(3*i-2)
SW2= Z(3*i-1)
SW3= Z(3*i)
isL= INL(i-1)+1
ieL= INL(i)
do j= isL, ieL

k= IAL(j)
X1= Z(3*k-2,Z)
X2= Z3*k-1,Z)
X3= WW(3*k ,Z)
SW1= SW1 - AL(1,1,j)*X1 - AL(1,2,j)*X2 - AL(1,3,j)*X3
SW2= SW2 - AL(2,1,j)*X1 - AL(2,2,j)*X2 - AL(2,3,j)*X3
SW3= SW3 - AL(3,1,j)*X1 - AL(3,2,j)*X2 - AL(3,3,j)*X3

enddo

X1= SW1
X2= SW2
X3= SW3
X2= X2 - ALU(2,1,i)*X1
X3= X3 - ALU(3,1,i)*X1 - ALU(3,2,i)*X2
X3= ALU(3,3,i)* X3
X2= ALU(2,2,i)*(X2 - ALU(2,3,i)*X3)
X1= ALU(1,1,i)*(X1 - ALU(1,3,i)*X3 - ALU(1,2,i)*X2)
WW(3*i-2,Z)= X1
WW(3*i-1,Z)= X2
WW(3*i ,Z)= X3

enddo

Full LU factorization
for 3x3 block

WW (:,Z) : work vector
INL(:) : coefficient index of the lower triangular matrix (LTM)
IAL(:) : connected nodes of LTM

AL (3,3,:): 3x3 coefficient matrix component of the LTM
ALU(3,3,:): 3x3 LU factorization for each 'node'

do i= 1, N
SW1= Z(3*i-2)
SW2= Z(3*i-1)
SW3= Z(3*i)
isL= INL(i-1)+1
ieL= INL(i)
do j= isL, ieL

k= IAL(j)
X1= Z(3*k-2,Z)
X2= Z3*k-1,Z)
X3= WW(3*k ,Z)
SW1= SW1 - AL(1,1,j)*X1 - AL(1,2,j)*X2 - AL(1,3,j)*X3
SW2= SW2 - AL(2,1,j)*X1 - AL(2,2,j)*X2 - AL(2,3,j)*X3
SW3= SW3 - AL(3,1,j)*X1 - AL(3,2,j)*X2 - AL(3,3,j)*X3

enddo

X1= SW1
X2= SW2
X3= SW3
X2= X2 - ALU(2,1,i)*X1
X3= X3 - ALU(3,1,i)*X1 - ALU(3,2,i)*X2
X3= ALU(3,3,i)* X3
X2= ALU(2,2,i)*(X2 - ALU(2,3,i)*X3)
X1= ALU(1,1,i)*(X1 - ALU(1,3,i)*X3 - ALU(1,2,i)*X2)
WW(3*i-2,Z)= X1
WW(3*i-1,Z)= X2
WW(3*i ,Z)= X3

enddo

Full LU factorization
for 3x3 block

WW (:,Z) : work vector
INL(:) : coefficient index of the lower triangular matrix (LTM)
IAL(:) : connected nodes of LTM

AL (3,3,:): 3x3 coefficient matrix component of the LTM
ALU(3,3,:): 3x3 LU factorization for each 'node'

 Mp=q where M=(L+D)D-1(D+U)
 Forward Substitution
 (L+D)p= q : p= D-1(q-Lp)
 Backward Substitution
 (I+ D-1 U)pnew= pold : p= p – D-1 Up

119

Fig. 4.4 Procedure of the selective blocking : Strongly coupled elements are put into
the same selective block. (a) searching for strongly coupled components and (b)
reordering and selective blocking. Full LU factorization procedure is applied to each
selective block. Coupled finite-element nodes in contact groups can be solved in direct
method during preconditioning procedure. In SB-BIC(0) (BIC(0) preconditioning
combined with the selective blocking reordering), no inter-block fill-in is considered.
Only inter-node fill-in in each selective block is considered in SB-BIC(0) [75,77].

(a) Initial Coef. Matrix
finstrongly coupled groups
(each small square:3X3)

(b) Reordered/Blocked Matrix

(a) Initial Coef. Matrix
finstrongly coupled groups
(each small square:3X3)

(b) Reordered/Blocked Matrix

120

Fig. 4.5 Procedure of the selective blocking: Full LU factorization procedure for a
(3×NB) × (3×NB) size selective block. [75,77]

Fig. 4.6 Trade-off between convergence and computational cost per one iteration
cycle according to block size in CEBE type method. Based on [18,50,82].

do ib= 1, NBLOCKtot
NB0size= BLOCKstack(ib) - BLOCKstack(ib-1)

(FORWARD SUBSTITUTIONS)
do i= 1, NB0size

ii= i + iBS
WVAL1= 0.d0
WVAL2= 0.d0
WVAL3= 0.d0
do j= 1, NB0size
WR1= WKB(3*j-2)
WR2= WKB(3*j-1)
WR3= WKB(3*j)
WVAL1= WVAL1 + ALU(3*i-2,3*j-2,ib) * WR1 &

& + ALU(3*i-2,3*j-1,ib) * WR2 &
& + ALU(3*i-2,3*j ,ib) * WR3

WVAL2= WVAL2 + ALU(3*i-1,3*j-2,ib) * WR1 &
& + ALU(3*i-1,3*j-1,ib) * WR2 &
& + ALU(3*i-1,3*j ,ib) * WR3

WVAL3= WVAL3 + ALU(3*i ,3*j-2,ib) * WR1 &
& + ALU(3*i ,3*j-1,ib) * WR2 &
& + ALU(3*i ,3*j ,ib) * WR3

enddo
WW(3*ii-2,Z)= WVAL1
WW(3*ii-1,Z)= WVAL2
WW(3*ii ,Z)= WVAL3

enddo
enddo

Size of Block

Ti
m

e,
 It

er
at

io
ns

Iterations for
Convergence

Time for One Iteration
Cycle

Total Time for
Convergence ?

Size of Block

Ti
m

e,
 It

er
at

io
ns

Iterations for
Convergence

Time for One Iteration
Cycle

Total Time for
Convergence ?

121

Table 4.2 Iterations/CPU time (includes factorization) for convergence (ε=10-8) on a
4 PE COMPAQ Alpha 21164/600MHz cluster using CG with block preconditioning for
the 3D elastic fault-zone contact problem in Fig,4.1 (21,660 DOF). (ORIGINAL
partitioning)

Table 4.3 Iterations/CPU time (includes factorization) for convergence (ε=10-8) on a
4 PE COMPAQ Alpha 21164/600MHz cluster using CG with block preconditioning for
the 3D elastic fault-zone contact problem in Fig.4.1 (21,660 DOF). (IMPROVED
partitioning)

Preconditioning λ Iter # sec.
BIC(1) 100 90 4.1
 106 1,724 70.7
BIC(2) 100 86 6.6
 106 962 59.8
SB-BIC(0) 100 156 3.5
 106 1,598 33.9

Preconditioning λ Iter # sec.
BIC(1) 100 80 3.8
 106 167 7.4
BIC(2) 100 71 5.8
 106 74 5.9
SB-BIC(0) 100 126 2.9
 106 124 2.8

122

Fig. 4.7 Partitioning strategy for the nodes in contact groups [75,77]

BEFORE repartitioning

Nodes in contact pairs are on
separated domains.

AFTER repartitioning

Nodes in contact pairs are on
same domain but inter-domain
load is not balanced.

AFTER repartitioning &
load-balancing

Nodes in contact pairs are on
same domain and load is
balanced.

BEFORE repartitioning

Nodes in contact pairs are on
separated domains.

AFTER repartitioning

Nodes in contact pairs are on
same domain but inter-domain
load is not balanced.

AFTER repartitioning &
load-balancing

Nodes in contact pairs are on
same domain and load is
balanced.

123

1 2

5 6

9 10

13 14

17 18

25

29 30

26

21 22

1 2 3

10 11 12

19 20 21

28 29 30

37 38 39

46 47 48

55 56 57

64 65 66

73 74 75

82 83 84

91 92 93

Contact
Groups

1 2

5 6

9 10

13 14

17 18

25

29 30

26

21 22

1 2 3

10 11 12

19 20 21

28 29 30

37 38 39

46 47 48

55 56 57

64 65 66

73 74 75

82 83 84

91 92 93

Contact
Groups

(a) Model and boundary conditions

(b) Node, elements and contact groups

Fig. 4.8 Description of the simple block model [75,77]

NX1 NX2

N
Z1

N
Z2

N
Z1+N

Z2

x=
 0

x=
 N

X
1

x=
 N

X
1+

1

x=
 N

X
1+

N
X

2+
1

z= 0

z= NZ1

z= NZ1+1

z= NZ1+NZ2+1

x

y

z

• MPC at inter-zone boundaries
• Symmetric condition at the x=0 and y=0 surfaces
• Dirichlet fixed condition at the z=0 surface
• Uniform distributed load at the z= Zmax surface

124

Fig.4.9 111-type element (Rod/Beam) in GeoFEM is put in each contact group and
very large stiffness corresponding to penalty is applied [75,77]

put 111-type element with Large stiffness for contact pairs.put 111-type element with Large stiffness for contact pairs.

125

Fig.4.10 Matrix operation of nodes in a contact group [75,77]

2λux0= λux1 + λ ux2
2λuy0= λuy1 + λ uy2
2λuz0= λuz1 + λ uz2

λux0= λux1
λuy0= λuy1
λuz0= λuz1

0 1 2

0 1

3 nodes form
1 selective block.

2 nodes form
1 selective block.

2λux0= λux1 + λ ux2
2λuy0= λuy1 + λ uy2
2λuz0= λuz1 + λ uz2

λux0= λux1
λuy0= λuy1
λuz0= λuz1

0 1 2

0 1

2λux0= λux1 + λ ux2
2λuy0= λuy1 + λ uy2
2λuz0= λuz1 + λ uz2

λux0= λux1
λuy0= λuy1
λuz0= λuz1

0 1 2

0 1

3 nodes form
1 selective block.

2 nodes form
1 selective block.

126

Fig. 4.11 Description of the Southwest Japan model This model consists crust (dark
gray) and subduction plate (light gray). 27,195 nodes and 23,831 tri-linear (1st order)
hexahedral elements are included [131].

127

Table 4.4 Iterations/CPU time (includes factorization) for convergence (ε=10-8) on a
single PE of COMPAQ Alpha 21164/600MHz by preconditioned CG for the 3D elastic
contact problem for simple block model with MPC condition in Fig.4.8 (83,664DOF).:
BIC(n): Block IC with n-level fill-in, SB-BIC(0): BIC(0) with the selective blocking
reordering.

Table 4.5 Largest and smallest eigenvalues (Emin, Emax) and κ= Emax/Emin of [M]-1[A]
for a wide range of penalty parameter values: 3D elastic contact problem for simple
block model with MPC condition in Fig.4.8 (83,664DOF).

Preconditioning λ Iter # sec.
BIC(0) 102 388 202.
 104 No Conv. N/A
BIC(1) 102 77 89.
 106 77 89.
 1010 78 90.
BIC(2) 102 59 135.
 106 59 135.
 1010 60 137.
SB-BIC(0) 102 114 61.
 106 114 61.
 1010 114 61.

Preconditioning λ=102 λ=106 λ=1010
BIC(0) Emin 4.845568E-03 4.865363E-07 4.865374E-11

 Emax
 κ

1.975620E+00

4.077170E+02

1.999998E+00

4.110686E+06

2.000000E+00

4.110681E+10

BIC(1) Emin 8.901426E-01 8.890643E-01 8.890641E-01

 Emax
 κ

1.013930E+00

1.139065E+00

1.013863E+00

1.140371E+00

1.013863E+00

1.140371E+00

BIC(2) Emin 9.003662E-01 8.992896E-01 8.992895E-01

 Emax
 κ

1.020256E+00

1.133157E+00

1.020144E+00

1.134388E+00

1.020144E+00

1.134389E+00

SB-BIC(0) Emin 6.814392E-01 6.816873E-01 6.816873E-01

 Emax
 κ

1.005071E+00

1.474924E+00

1.005071E+00

1.474387E+00

1.005071E+00

1.474387E+00

128

Table 4.6 Iterations/CPU time (includes factorization) for convergence (ε=10-8) on a
single PE of COMPAQ Alpha 21164/600MHz by preconditioned CG for the 3D elastic
contact problem for Southwestern Japan model with MPC condition in Fig.4.11
(81,585DOF).: BIC(n): Block IC with n-level fill-in, SB-BIC(0): BIC(0) with the
selective blocking reordering.

Preconditioning λ Iter # sec.
BIC(0) 102 344 172.

 104 No Conv. N/A
BIC(1) 102 201 192.

 104 256 237.
 106 256 237.
 108 258 240.
 1010 259 241.

BIC(2) 102 176 288.
 104 229 360.
 106 230 361.
 108 230 361.
 1010 232 364.

SB-BIC(0) 102 297 149.
 104 295 148.
 106 295 148.
 108 295 148.
 1010 295 148.

129

Table 4.7 Largest and smallest eigenvalues (Emin, Emax) and κ= Emax/Emin of [M]-1[A]
for a wide range of penalty parameter values: 3D elastic contact problem for
Southwestern Japan model with MPC condition in Fig.4.11 (81,585DOF).

Table 4.8 Iterations/elapsed execution time (includes factorization, communication
overhead) for convergence (ε=10-8) on a Hitachi SR2201 with 128 PEs using
preconditioned CG for the 3D elastic contact problem for simple block model with
MPC condition in Fig.4.8 (2,471,439 DOF). Domains are partitioned according to the
contact group information.: BIC(n): Block IC with n-level fill-in, SB-BIC(0): BIC(0)
with the selective blocking reordering.

Preconditioning λ=102 λ=104 λ=106 λ=1010
BIC(0) Emin 1.970395E-02 1.999700E-04 1.999997E-06 2.000000E-10

 Emax
 κ

1.005194E+00

5.101486E+01

1.005194E+00

5.026725E+03

1.005194E+00

5.025979E+05

1.005194E+00

5.025971E+09

BIC(1) Emin 3.351178E-01 2.294832E-01 2.286390E-01 2.286306E-01

 Emax
 κ

1.142246E+00

3.408491E+00

1.142041E+00

4.976580E+00

1.142039E+00

4.994944E+00

1.142039E+00

4.995128E+00

BIC(2) Emin 3.558432E-01 2.364909E-01 2.346180E-01 2.345990E-01

 Emax
 κ

1.058883E+00

2.975702E+00

1.088397E+00

4.602277E+00

1.089189E+00

4.642391E+00

1.089196E+00

4.642800E+00

SB-BIC(0) Emin 2.380572E-01 2.506369E-01 2.507947E-01 2.507963E-01

 Emax
 κ

1.005194E+00

4.222491E+00

1.005455E+00

4.011600E+00

1.005465E+00

4.009117E+00

1.005466E+00

4.009092E+00

Preconditioning λ Iter # sec.
BIC(0) 102 998 118.

 104 No Conv. N/A
BIC(1) 102 419 98.

 106 419 98.
 1010 421 99.

BIC(2) 102 394 171.
 106 394 171.
 1010 396 172.

SB-BIC(0) 102 565 71.
 106 566 71.
 1010 567 72.

130

Table 4.9 Iterations/elapsed execution time (includes factorization, communication
overhead) for convergence (ε=10-8) on a Hitachi SR2201 with 16 to 128 PEs using
preconditioned CG for the 3D elastic contact problem for simple block model with
MPC condition in Fig.4.8 (2,471,439 DOF). Domains are partitioned according to the
contact group information.: BIC(n): Block IC with n-level fill-in, SB-BIC(0): BIC(0)
with the selective blocking reordering.

λ=102

λ=106

Preconditioning 16 PEs 32 PEs 64 PEs 128 PEs
BIC(0) iters
 sec.

956
919

975
469

986
236

998
118

 ratio 16.0 31.4 62.5 124.4
BIC(1) iters 396 419
 sec. N/A N/A 190 98
 ratio 64.0 124.3
BIC(2) iters 394
 sec. N/A N/A N/A 171
 ratio -
SB-BIC(0) iters 508 529 541 565
 sec. 540 282 144 71
 ratio. 16.0 30.7 60.2 120.7

Preconditioning 16 PEs 32 PEs 64 PEs 128 PEs
BIC(1) iters 395 419
 sec. N/A N/A 190 98
 ratio 64.0 124.2
BIC(2) iters 394
 sec. N/A N/A N/A 171
 ratio -
SB-BIC(0) iters 510 532 543 566
 sec. 542 283 144 71
 ratio 16.0 30.6 60.5 121.9

131

(a) Speed-up ratio

(b) Iteration number for convergence

Fig. 4.12 Parallel performance based on elapsed execution time including
communication and iterations for convergence (ε=10-8) on a Hitachi SR2201 with 16 to
128 PEs using preconditioned CG for the 3D elastic contact problem with MPC
condition (λ=102) in Fig.4.8 (2,471,439 DOF). Domains are partitioned according to the
contact group information. (White Circles: SB-BIC(0), Black-Circles: BIC(0)).

0

16

32

48

64

80

96

112

128

144

0 16 32 48 64 80 96 112 128 144

PE#

Sp
ee

d
U

p.

400

500

600

700

800

900

1000

1100

0 16 32 48 64 80 96 112 128 144

PE#

IT
ER

A
TI

O
N

S

132

Fig. 4.13 Required memory size of CG solvers with various types preconditioners
for the 3D elastic contact problem with MPC condition (λ=102) in Fig.4.8 (2,471,439
DOF) and available memory size on Hitachi SR2201 (Black-Circles: BIC(0),
White-Circles: BIC(1), Black-Squares: BIC(2), White Triangles: SB-BIC(0)).

Table 4.10 Iterations/elapsed execution time (including factorization,
communication overhead) for convergence (ε=10-8) on a Hitachi SR2201 with 16 to 128
PEs using SB-BIC(0) CG for the 3D elastic contact problem for Southwest Japan model
with MPC condition (λ=106) in Fig.4.11 (2,992,264 DOF). Domains are partitioned
according to the contact group information.

Preconditioning 16 PEs 32 PEs 64 PEs 128 PEs
SB-BIC(0) iters 1665 1686 1710 1912

 sec. 1901. 993. 506. 284.

 ratio 16.0 30.6 60.1 107.2

1

10

100

G
B

128 PEs: 28.7GB

64 PEs: 14.3GB

32 PEs: 7.17GB

16 PEs: 3.58GB

8 PEs: 1.79GB

BIC(2): 14.4GB

BIC(0): 3.10GB

SB-BIC(0): 3.52GB

BIC(1): 8.39GB

1

10

100

G
B

128 PEs: 28.7GB

64 PEs: 14.3GB

32 PEs: 7.17GB

16 PEs: 3.58GB

8 PEs: 1.79GB

BIC(2): 14.4GB

BIC(0): 3.10GB

SB-BIC(0): 3.52GB

BIC(1): 8.39GB

133

(a) Speed-up ratio

(b) Iteration number for convergence

Fig. 4.14 Parallel performance based on elapsed execution time including
communication and iterations for convergence (ε=10-8) on a Hitachi SR2201 with 16 to
128 PEs using SB-BIC(0) CG for the 3D elastic contact problem with MPC condition
(λ=106) in Fig.4.11 (2,992,266 DOF). Domains are partitioned according to the contact
group information.

0

16

32

48

64

80

96

112

128

144

0 16 32 48 64 80 96 112 128 144

PE#

Sp
ee

d
U

p.

1000

1500

2000

2500

0 16 32 48 64 80 96 112 128 144

PE#

IT
ER

A
TI

O
N

S

134

Fig. 4.15 Dummy elements to maintain a smooth decrease in the number of
off-diagonal components in descending order

(a) DJDS reordered
 elements

(b) Profile according to
 selective blocking

(c) Dummy components
 (shaded in gray color)

135

Fig. 4.16 Reordering of selective blocks (supernodes) according to block size.

136

(a) Iterations for convergence

(b) Elapsed time for the linear solver

(c) GFLOPS rate

Fig. 4.17 Performance on a single SMP node of the Earth Simulator (peak
performance = 64GFLOPS) using SB-BIC(0) CG for the 3D elastic contact problem
with MPC condition (λ=106) in Fig.4.8 (Simple Block Model). (a) Iterations for
convergence, (b) Elapsed time for the linear solver, and (c) GFLOPS rate.

400

425

450

475

500

525

550

1 10 100 1000

Colors

Ite
ra

tio
ns

20

25

30

35

40

1 10 100 1000

Colors

se
c.

5

10

15

20

25

1 10 100 1000

Colors

G
FL

O
PS

137

(a) Iterations for convergence

(b) Elapsed time for the linear solver

(c) GFLOPS rate

Fig. 4.18 Performance on a single SMP node of the Earth Simulator (peak
performance = 64GFLOPS) using SB-BIC(0) CG for the 3D elastic contact problem
with MPC condition (λ=106) in Fig.4.11 (Southwest Japan model). (a) Iterations for
convergence, (b) Elapsed time for the linear solver, and (c) GFLOPS rate.

1000

1050

1100

1150

1200

1250

1300

10 100 1000

Colors

Ite
ra

tio
ns

50

60

70

80

90

100

110

10 100 1000

Colors

se
c.

5

10

15

20

25

10 100 1000

Colors

G
FL

O
PS

138

(a) Simple Block

(b) Southwest Japan

Fig. 4.19 Effect of reordering of selective block on a single SMP node of the Earth
Simulator (peak performance = 64GFLOPS) using SB-BIC(0) CG for the 3D elastic
contact problem with MPC condition (λ=106). (a) Simple Block (b) Southwest Japan.
(BLACK Circles: WITH reordering, WHITE Circles: WITHOUT reordering).

5

10

15

20

25

1 10 100 1000

Colors

G
FL

O
PS

5

10

15

20

25

10 100 1000

Colors

G
FL

O
PS

139

(a) Simple Block

(b) Southwest Japan

Fig. 4.20 Load imbalance on a single SMP node for selective blocking
preconditioning. (a) Simple Block (b) Southwest Japan. (BLACK Circles:
Load-imbalance among PEs on the SMP node, WHITE Triangles: Ratio of dummy
off-diagonal components).

1.E-03

1.E-02

1.E-01

1.E+00

1 10 100 1000

Colors

M
A

X/
M

IN
 d

iff
, D

um
m

y
C

om
po

ne
ts

 (%
)

1.E-02

1.E-01

1.E+00

1.E+01

10 100 1000

Colors

M
A

X/
M

IN
 d

iff
, D

um
m

y
C

om
po

ne
ts

 (%
)

140

141

Chapter 5 Parallel Multilevel Iterative Linear

Solvers with Unstructured Adaptive Grids

A new multigrid-preconditioned conjugate gradient (MGCG) iterative method for
parallel computers is presented. Iterative solvers with preconditioning, such as the
incomplete Cholesky or incomplete LU factorization methods, represent some of the
most powerful tools for large-scale scientific computation. However, the number of
iterations required for convergence by these methods increases with the size of the
problem. In multigrid solvers, the rate of convergence is independent of problem size,
and the number of iterations remains fairly constant. Multigrid is also a good
preconditioning algorithm for Krylov iterative solvers. In this chapter, the MGCG
method is applied to Poisson equations in the region between 2 spherical surfaces on
semi-unstructured, adaptively generated prismatic grids, and to grids with local
refinement. Extended local data structure based on that of GeoFEM has been developed
for multilevel parallel procedure. Computations using this method on a Hitachi SR2201
with up to 128 processors by flat MPI parallel programming model demonstrated good
scalability.

142

5.1 Introduction

In many large-scale scientific simulation codes, the majority of computation is devoted
to linear solvers. Preconditioned Krylov iterative solver such as conjugate gradient
method with incomplete Cholesky factorization preconditioning (ICCG) [7] provides
robust convergence for a wide range of scientific applications. Incomplete Cholesky
(IC) and incomplete LU (ILU) factorizations involve globally dependent operations, yet
can be localized for parallel computation [71,72,73,79,81,84,131] and provide smooth
convergence. However, ICCG-based solvers are not scalable because the number of
iterations required for convergence increases with the size of the problem. This becomes
critical when solving problems with >109 degrees of freedom (DOF) on >104
processors.
 Multigrid [10,11,110] is a well-known scalable method for which the rate of
convergence is independent of problem size, and the number of iterations remains fairly
constant. Multigrid is also a good preconditioning algorithm for Krylov iterative solvers.
Multigrid solvers and preconditioners have been widely used in finite-difference
methods with structured grids since the mid 1980s, however multigrid is not popular for
finite-element methods involving unstructured grids. Recently, various multigrid
methods for unstructured grids have been developed [1,2,107,109,110,112,128], for
both parallel and serial computers.
 In this study, a multigrid-preconditioned conjugate gradient iterative method
(MGCG) on parallel computers was developed with local data structure for multilevel
parallel procedure based on that of GeoFEM and applied to Poisson equations in the
region between two spherical surfaces on adaptively generated semi-unstructured
prismatic grids based on the method in [42,76,89,91]. This procedure has also been
applied to grids with local refinement.

143

5.2 Incompressible Navier-Stokes Method

5.2.1 Background

In this chapter, the target application is 3D incompressible thermal convection in the
region between two spherical surfaces. This geometry appears often in simulations in
earth science for both fluid earth (atmosphere and ocean) and solid earth (mantle and
outer core). Entire regions is discretized by prismatic grids.
 Incompressible flows are frequently encountered in engineering applications.
During the past three decades a significant number of numerical algorithms have been
developed for solution of the incompressible Navier-Stokes equations [30,43,68,69,70].
The lack of pressure term in the continuity equation makes solution of the momentum
equations with the divergence-free constraint more difficult. In case of incompressible
flows, the conservation of mass acts as a constraint condition that the velocity field
needs to satisfy, while in compressible flows, the conservation of mass is given as a
partial differential equation for the temporal variation of density. The infinite speed of
sound in the incompressible case requires an implicit treatment for the pressure.
Furthermore, the incompressibility constraint may produce an oscillatory pressure field.
 In this work, pressure correction scheme with a special Poisson equation for the
pressure field [33,92,93,99] was adopted. The usual computational procedure is to
assume an initial pressure field, and then an iterative process is defined until the
continuity equation is satisfied.
 A major issue with pressure and velocity spatial discretization is oscillations in the
pressure field. In order to suppress these modes, staggered grids have been employed by
several of these algorithms. The pressure field is stored at different locations from the
velocity values [33,92,93]. On the other hand, employment of non-staggered grids
[27,32,43,49,55,56,57,68,69,70,94,101,108] requires dissipation in the algorithms.
Stability of both approaches with high Reynolds number flows is an important issue. In
this work, staggered cell was adopted. Pressure and potential for pressure correction are
defined at the cell centers, while the velocity components and temperature are defined at
cell corners (Fig.5.1).

5.2.2 Governing Equations and Pressure Correction Scheme

The non-dimensionalized Navier-Stokes equations of three-dimensional laminar
incompressible flow with thermal convection are presented. The pressure correction
formulation based on the SMAC scheme is also described. Boundary conditions for the

144

momentum equation and pressure correction equation are presented.
 The governing equations are the non-dimensionalized Navier-Stokes equations of
three-dimensional laminar incompressible flow with thermal convection:

 0=⋅∇ u (5.1)

 () 0T
Re
Gr

Re
1

p
t 2 =+Δ−∇+⋅∇+

∂
∂ guuuu (5.2)

 () QT
PrRe
1

T
t
T

=Δ−⋅∇+
∂
∂ u (5.3)

where:

 u velocity vector (= (u,v,w))
 p pressure
 T temperature

 Re Reynolds number (=
μ

ρUL , where ρ is reference velocity, U is reference

 velocity, L is reference length and μ is viscosity)

 Gr Grashof number (= 2

3TLg
μ
Δβ , where g is gravitational acceleration, β is

 coefficient of thermal expansion and ΔT is reference temperature
 difference)
 Pr Prandtl number (= ν/a, where n is kinematic viscosity (=μ/ρ) and a is
 thermal diffusivity)

Equation (5.1) is the continuity equation, (5.2) is the momentum equation and (5.3) is
the energy equation.
 An explicit/implicit scheme is adopted for integration in time of the above
equations. The velocity and temperature values are treated explicitly, while the pressure
values are treated implicitly in the momentum equations. The velocity and temperature
values are marched in time with a forward Euler scheme [33]. The continuity equation
is formulated implicitly with the velocity values considered at time level (n+1).
Specifically, the corresponding semi-discrete system is written as follows:

 0)n(=⋅∇ u (5.4)

145

 () 0T
Re
Gr

Re
1

p
t

)n(
2

)n()1n()n()n(
)n()1n(

=+Δ−∇+⋅∇+
Δ

− +
+

guuuuu (5.5)

 ())n()n()n()1n(
)n()1n(

QT
PrRe
1

T
t
TT

=Δ−⋅∇+
Δ

− +
+

u (5.6)

where the superscripts denote the time levels.
 The above equation cannot be solved directly due to the implicit treatment of the
pressure term. An auxiliary velocity vector u' is introduced, which satisfies the
following equation:

 () 0T
Re
Gr

Re
1

p
t

')n(
2

)n()n()n()n(
)n(

=+Δ−∇+⋅∇+
Δ
− guuuuu (5.7)

In this equation, the pressure term is treated explicitly and u' can be obtained directly.
However, the solution u' does not satisfy the continuity equation.
Subtracting equation (5.7) from (5.5), it is obtained:

 ()[] tpp')n()1n()n(Δ−∇−= +
− uu (5.8)

Introducing a scalar potential φ, such that

 φ−∇=− ')n(uu (5.9)

the following equation for pressure can be obtained:

 φ
Δ

=−+

t
1

pp)n()1n((5.10)

Finally, taking the divergence of each side of equation (5.9) and considering the
continuity equation (5.4), the following Poisson equation is obtained:

 'u⋅∇=φΔ (5.11)

This equation requires a linear solver. Using φ obtained by the above equation, we can

146

correct the velocity and pressure fields using equations (.9) and (.10) as follows:

 φ−∇= ')n(uu (5.12)

 φ
Δ

+=+

t
1

pp)n()1n((5.13)

The above solution procedure follows the SMAC method [46]. The overall solution
procedure corresponding to marching by one-time-step is summarized as follows:

（1） calculate the auxiliary velocity vector u' by (5.7) using u(n) and p(n)
values.

（2） solve (5.11) using u(n) by linear solver and obtain φ values.
（3） calculate u(n+1) and p(n+1) using (5.12) and (5.13).
（4） if ε<⋅∇ +)1n(u where ε is the tolerance for divergence, calculate the

temperature field by solving (5.6) explicitly using velocity field u(n+1) and
advance to next time step. if not, consider u(n+1) as u' and repeat step 2
and 3.

There are two types of boundary conditions employed for the velocity field. These
conditions on the two types boundaries, 1Ω∂ and 2Ω∂ are as follows:

 1on Ω∂ u= u0

 2on Ω∂ 0p =τ+− I (5.14)
 21 Ω∂∪Ω∂≡Ω∂
 where Ω∂ is the boundary of the entire domain Ω .

The boundary conditions for the pressure correction given by equation (5.11) are the
following:

 1on Ω∂ 0
n

=
∂

φ∂

 2on Ω∂ 0=φ (5.15)

5.2.3 Finite-Volume Discretization

The equations are discretized using the finite-volume approach with staggered grid

147

where velocity components and temperature are defined at cell vertices (corners) and
pressure and pressure correction variable are defined at cell centers in order to avoid
oscillation in pressure field due to decoupling (Fig.5.1).
 A compact scheme is described with all operations being restricted to within each
grid-cell, which makes the algorithm suitable for use of adaptive unstructured (locally
refined and triangular) grids. Artificial dissipation terms are added to both the
momentum and energy equations.

The normalized system of the three-dimensional incompressible Navier-Stokes
equations are given in integral form for a bounded domain V as follows:

 0dV
zyx

dV
dt
d

Vv
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+ ∫∫∫∫∫∫
HGFU (5.16)

where U is the state vector and F, G and H are the convective and viscous flux vectors
in the x, t, and z- directions respectively.
 Consider the typical prismatic grid-cell in Fig.5.1 which has two triangular and
three quadrilateral faces. The volume integral containing the spatial derivatives in
equation (5.16) is equivalent to a surface integral via the divergence theorem:

 ()∫∫∫∫ ∂
++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

VV
dSn̂k̂ĵîdV

zyx
HGFHGF (5.17)

where k̂,ĵ,î are the unit vectors in the x, y, z- directions, and n̂ is the unit vector
normal to the cell surface V∂ . This surface integral is discretized as:

 []
f

n

1f
zyx

f

SSS∑
=

++ HGF (5.18)

where the sumation is over the faces of prisms (nf=5) and Sx, Sy, Sz are the face-areas
projected on the yz, xz and xy-planes, respectively. The flux vectors are considered at
the face centers and their values are obtained by averaging the values at the face-nodes
or cell-centers.
 The viscous terms contain higher order spatial derivatives than the inviscid terms
of the Navier-Stokes equations. As a consequence, the required numerical molecule for
their treatment is usually larger. In the present work, a compact scheme is considered

148

that has the same numerical molecule as the inviscid terms. Stress terms are computed
at center of each cell using information of the velocity component on corner nodes, then
effect of viscous terms to corner nodes are computed using dual cells. Pressure terms in
Navier-Stokes equations are computed because pressure field is defined at cell center in
this formulation.

5.2.4 Artificial Dissipation

For high Reynolds number flows, the nonlinear convection terms are dominant. Central
space differencing schemes are susceptible to oscillatory solution modes. In the present
work, a fourth-order difference smoothing term is added explicitly to the momentum
and energy transport equations in order to suppress odd-even decoupling of the solution
[34,38,96].
 The smoothing operator is cast in a form suitable for adaptive unstructured grids.
All operations are split in such a way that no information is required from outside of
each cell. Each grid node receives contributions from each one of its surrounding cells.
The operator is formed in two steps. The second order difference operator is formed in
the first step. In Fig.5.2, There are 6 triangular faces named A, B, C, D, E, F and 7
corner nodes, 0, 1, 2, 3, 4, 5, 6. Two layers of prisms are generated and prism cells in the
first layer are A1, B1, C1, D1, E1, F1 and those in the second layers are A2, B2, C2, D2,
E2, F2. Nodes in the top surface of first layer are 10, 11, 12, 13, 14, 15, 16 and those in
the second layer are 20, 21, 22, 23, 24, 25, 26. The second order distributions for
variable φ (u,v,w and T) to cell-corner 10 in Fig.5.2 are as follows.

 10121110210
2

101A 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

 10131210320
2

101B 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

10141310430
2

101C 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

 10151410540
2

101D 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

 10161510650
2

101E 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

 10111610160
2

101F 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

 10222120121110
2

102A 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

149

 10232220131210
2

102B 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

 10242320141310
2

102C 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

 10252420151410
2

102D 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

 10262520161510
2

102E 6)(D φ−φ+φ+φ+φ+φ+φ=φ−

 10212620111610
2

102F 6)(D φ−φ+φ+φ+φ+φ+φ=φ− (5.19)

The second step duplicates the first, replacing state variables by second order
differences from the first step. The fourth order smoothing distributions are:

 2
10

2
12

2
11

2
10

2
2

2
1

2
0

4
101A D6DDDDDD)(D −+++++=φ−

 2
10

2
13

2
12

2
10

2
3

2
2

2
0

4
101B D6DDDDDD)(D −+++++=φ−

 2
10

2
14

2
13

2
10

2
4

2
3

2
0

4
101C D6DDDDDD)(D −+++++=φ−

 2
10

2
15

2
14

2
10

2
5

2
4

2
0

4
101D D6DDDDDD)(D −+++++=φ−

 2
10

2
16

2
15

2
10

2
6

2
5

2
0

4
101E D6DDDDDD)(D −+++++=φ−

 2
10

2
11

2
16

2
10

2
2

2
6

2
0

4
101F D6DDDDDD)(D −+++++=φ−

 2
10

2
22

2
21

2
20

2
12

2
11

2
10

4
102A D6DDDDDD)(D −+++++=φ−

 2
10

2
23

2
23

2
20

2
13

2
12

2
10

4
102B D6DDDDDD)(D −+++++=φ−

 2
10

2
24

2
23

2
20

2
14

2
13

2
10

4
102C D6DDDDDD)(D −+++++=φ−

 2
10

2
25

2
24

2
20

2
15

2
14

2
10

4
102D D6DDDDDD)(D −+++++=φ−

 2
10

2
26

2
25

2
20

2
16

2
15

2
10

4
102E D6DDDDDD)(D −+++++=φ−

150

 2
10

2
21

2
26

2
20

2
11

2
16

2
10

4
102F D6DDDDDD)(D −+++++=φ− (5.20)

The values of u', v' and w' are updated as follows:

 jj
)n(

j uu'u δ+=

 jj
)n(

j vv'v δ+=

 jj
)n(

j ww'w δ+= (5.21)

The fourth-order difference terms of u, v and w are added to stabilize the solution as
follows:

)u(D)u(uu'u j
)n(4

j4jj
)n(

j σ+δ+=

)v(D)v(vv'v j
)n(4

j4jj
)n(

j σ+δ+=

)w(D)w(ww'w j
)n(4

j4jj
)n(

j σ+δ+= (5.22)

where σ4 is an empirical coefficient. Criterion for the determination σ4 strictly depends
on grid size and Reynolds number. For higher Re number flow and coarser grid, σ4

should be larger. Large value of σ4 stabilizes the solution but sometimes destroys the
accuracy. Therefore, special care is required for choosing the value of σ4.

5.2.5 Time-Step Calculation

Using central space and forward time differencing, the stability limitation for the model
1-D convection equation:

 0cuu xt =+ (5.23)

is limited by CFL limitation:

151

 1
x
tc

≤
Δ
Δ (5.24)

The corresponding stability restriction for the 1-D model diffusion equation:

 0uu xxt =ν+ (5.25)

is:

2
1

x
t
2 ≤

Δ
Δν (5.26)

Comparing the two time step limitations, we obtain:

Re
xxc

2
1

t
t

inv

vis Δ
≈

ν
Δ

=
Δ
Δ (5.27)

Therefore it is apparent that in most common cases the CFL stability restriction is much
more severe than the viscous time step limitation. Only in cases of low Re, the viscous
limitation can be severe. In the present scheme, a combination of the two limitations is
employed. Specifically,

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

Δα
ν

+

Δ

Δα
ν

+

Δ

Δα
ν

+

Δ
ω=Δ

n
w

n
,

m
v

m
,

l
u

l
mint (5.28)

where n,m,l ΔΔΔ are the cell dimensions in the l, m, n cell directions, u, v, w

are the corresponding velocity components, ν is the kinematic viscosity coefficient, and
2/1=α is the diffusion stability limitation. Lastly, ω is a safety factor which is

usually less than 1.00.

5.2.6 Poisson Equation Treatment

After solving the momentum equations, the pressure and velocity fields should be
corrected so that they satisfy the continuity equation. This process is performed by
solving the Poisson equation for pressure correction. The Poisson equation (5.11) in

152

three-dimensional space can be written as follows:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂

φ∂
+

∂
φ∂

+
∂

φ∂
z
'w

y
'v

x
'u

zyx 2

2

2

2

2

2

 (5.29)

The velocity and pressure fields are corrected using equations (5.9), (5.10) and (5.29).

x

'uu)1n(

∂
φ∂

−=+

y

'vv)1n(

∂
φ∂

−=+

z

'ww)1n(

∂
φ∂

−=+

 φ
Δ

+=+

t
1

pp)n()1n((5.30)

The values for φ on the left hand side of (5.30) are treated implicitly, which requires
solution of a system. The matrix that requires inversion is a symmetric positive definite
matrix. The system is solved by the preconditioned CG (Conjugate Gradient) iterative
method.

153

5.3 Multigrid Method

5.3.1 Multigrid Procedure

Multigrid is a scalable method for solving linear equations. Relaxation methods such as
Gauss-Seidel efficiently damp high-frequency error but do not eliminate low-frequency
error. The multigrid approach was developed in recognition that this low-frequency
error can be accurately and efficiently solved on a coarser grid. This concept is
explained here in the following simple 2-level method, as described in [107]. If we have
obtained the following linear system on a fine grid :

 AF uF = f (5.31)

and AC as the discrete form of the operator on the coarse grid, a simple coarse grid
correction can be given by :

 uF

(i+1) = uF
(i) + RT AC

-1 R (f - AF uF
(i)) (5.32)

where RT is the matrix representation of linear interpolation from the coarse grid to the
fine grid (prolongation operator) and R is called the restriction operator. Thus, it is
possible to calculate the residual on the fine grid, solve the coarse grid problem, and
interpolate the coarse grid solution on the fine grid. This process can be described as
follows :

I. Relax the equations on the fine grid and obtain the result uF
(i) = SF (AF, f).

This operator SF (e.g., Gauss-Seidel) is called the smoothing operator.
II. Calculate the residual term on the fine grid by rF = f - AF uF

(i).
III. Restrict the residual term on to the coarse grid by rC = R rF.
IV. Solve the equation AC uC = rC on the coarse grid ; the accuracy of the

solution on the coarse grid affects the convergence of the entire multigrid
system [11,107,128].

V. Interpolate (or prolong) the coarse grid correction on the fine grid by ΔuC
(i) =

RT uC.
VI. Update the solution on the fine grid by uF

(i+1) = uF
(i) + ΔuC

(i).

Recursive application of this algorithm for 2-level procedure to consecutive systems of

154

coarse-grid equations gives a multigrid V-cycle [10,11,110] (Fig.5.3 and Fig.5.4). If the
components of the V-cycle are defined appropriately, the result is a method that
uniformly damps all frequencies of error with a computational cost that depends only
linearly on the problem size. In other words, multigrid algorithms are scalable.
 In the V-cycle, starting with the finest grid, all subsequent coarser grids are visited
only once. In the down-cycle, smoothers damp oscillatory error components at different
grid scales. In the up-cycle, the smooth error components remaining on each grid level
are corrected using the error approximations on the coarser grids [107]. Alternatively, in
a W-cycle [10,11,110] (Fig.5.3), the coarser grids are solved more rigorously in order to
reduce residuals as much as possible before going back to the more expensive finer
grids.
 In [48], various types of prolongation and restriction methods are compared on 2D
structured grids.

5.3.2 Multigrid as a Preconditioiner

Multigrid algorithms tend to be problem-specific solutions and less robust than
preconditioned Krylov iterative methods such as the IC/ILU methods. Fortunately, it is
easy to combine the best features of multigrid and Krylov iterative methods into one
algorithm ; multigrid-preconditioned Krylov iterative methods. The resulting algorithm
is robust, efficient and scalable [87,121].
 Mutigrid solvers and Krylov iterative solvers preconditioned by multigrid are
intrinsically suitable for parallel computing. In [4], MGCG and multigrid (MG) are
compared under various conditions for groundwater flow simulation using a
CRAY-T3D computer with 256 PEs. MG itself is competent with MGCG for small
problems, but slows down in large cases with more PEs. MG diverges for strongly
heterogeneous problems, while MGCG remains robust.

5.3.3 Semi-Coarsening

The convergence rate of standard multigrid methods degenerates on problems involving
anisotropic discrete operators, such as those that appear in very thin meshes near the
wall in Navier-Stokes computations. In these cases, the error becomes smooth in the
thin direction where the connection is strong, but it is not smooth in the direction where
the connection is weak. One popular approach adopted to deal with anisotropic
operators is the use of semi-coarsening, where multigrid coarsening is applied
adaptively in each coordinate direction. By coarsening the grid in a certain direction,
anisotropy on the coarser grid can be reduced [6,12,52,53,54,58,64,66,95,117].

155

5.3.4 Geometric and Algebraic Multigrid

One of the most important issues in multigrid is the construction of the coarse grids.
There are 2 basic multigrid approaches; geometric [1,2,23,90] and algebraic
[16,58,59,60,109,110,112]. In geometric multigrid, the geometry of the problem is used
to define the various multigrid components. In contrast, algebraic multigrid methods use
only the information available in the linear system of equations, such as matrix
connectivity. Algebraic multigrid method is suitable for applications with unstructured
grids. Many tools for both geometric and algebraic methods on unstructured grids have
been developed [1,2,3,67].
 Multigrid methods for locally refined grids have been also described in
[17,89,104,116,122]. They are mainly for block-structured grids and very few methods
for unstructured grids were developed [90].

5.3.5 Other Recent Studies in Multigrid

Recently, many examples have been presented for very large scale problems on
massively parallel computers, as shown in [1,2,3,4,5,23,60,61,62].
 Multigrid methods were originally developed for solving linear equations [10,11],
then applied to coupled linearlized equations, as shown in [49]. In recent years,
multigrid method has been applied to solving nonlinear systems. In Full Approximation
Scheme (FAS) [10,11], nonlinear Gauss-Seidel smoothing with multigrid is used for
solving nonlinear equations. In Newton-Klyrov method [47] for nonlinear applications,
inexact Newton nonlinear iterative method is applied using GMRES [7] solver with
multrigrid preconditioning.

156

5.4 Parallel Multigrid Preconditioned Iterative Solvers

5.4.1 Problem Definitions

In this work, the target application is 3D incompressible thermal convection in the
region between two spherical surfaces. This geometry appears often in simulations in
earth science for both fluid earth (atmosphere and ocean) and solid earth (mantle and
outer core). Here, a semi-implicit pressure-correction scheme described in 5.2 is applied,
in which momentum and energy equations are solved explicitly, and the
pressure-correction Poisson equation (5.11) is solved for an incompressibility constraint.
The Poisson equation solver is the most expensive process in this computation, and the
convergence acceleration of this process is critical for increasing the overall speed of
this method. In this study, the Poisson equation solver is the main consideration.
 Semi-unstructured prismatic grids generated from triangles on a spherical surface
are used (Fig.5.5). Meshes are initiated from an icosahedron and are globally refined
recursively as in Fig.5.6. The grid hierarchy defined by recursive refinement can be
utilized as coarse grid formation (Fig.5.7 and Fig.5.8). In the current application,
velocity components and temperature are defined at cell corners, and pressure and
potential for pressure correction are defined at cell centers, as shown in Fig. 5.1.
 The surface of the model is covered with triangles, which provide geometric
flexibility, while the structure of the mesh in the direction normal to the surface
provides thin prismatic elements suitable for the viscous region.

157

5.4.2 Parallel MGCG Solvers for Poisson Equations

(1) Basic Procedure

The parallel MGCG solver was implemented in Fortran 90 using flat MPI parallel
programming model. The features of the procedure are summarized as follows
[74,78,80]:

（1） V-cycle MGCG solver.
（2） Gauss-Seidel or ILU(0) smoothing.
（3） Semi-coarsening in lateral and normal-to-surface direction (Fig.5.9).
（4） Partition of entire region in radial (normal-to-surface) direction.
（5） Definition of multilevel communication tables at partition interfaces
（6） Includes consideration for the effect of local grid refinement

The Gauss-Seidel iterative method was adopted as the smoother, but ILU(0)
factorization [7] was also tested as a smoother for the preconditioning component of the
CG iterative method. ILU smoothers represent a class of smoothing procedures all of
which are based on an incomplete LU factorization of the matrix. A variety of such
smoothing procedures has been proposed and investigated [110]. According to [110],
certain versions of ILU type smoothing are regarded as particularly robust for
anisotropic 2D problems. However, robust ILU smoothers for general anisotropic
equations are more complicated and expensive for 3D problems.
 In the current work, localized ILU(0) procedure described in Chpter 2 has been
implemented recursively as a multi-level smoother [71,72,73,78,79,80,81,131].
 The computational procedure for the preconditioned CG method for solving Ax =
b is as follows [7] :

 Compute r(0)=b – A x(0) for some initial guess for x(0)
 for i= 1, 2, ...
 solve M z(i-1) = r(i-1) where M is the preconditioner
 ρ(i-1)= r(i-1)T z(i-1)
 if i= 1
 p(1)= z(0)
 else
 β(i-1)= ρ(i-1)/ ρ(i-2)
 p(i) = z(i-1) + β(i-1) p(i-1)
 endif
 q(i)= A p(i)

158

 α(i)= ρ(i-1)/(p(i) q(i))
 x(i)= x(i-1) + α(i) p(i)

 r(i)= r(i-1) - α(i) q(i)

 check convergence; continue if necessary.

 end

The multigrid procedure is applied to solve the preconditioning matrix Mz=r where M is
set identical to A in this study.
 The V-cycle method described in Fig.5.3 has been adopted. In each cycle, the
Gauss-Seidel procedure is repeated 5 times for both restriction (fine-to-coarse) and
prolongation (coarse-to-fine), or until convergence has stagnated, as shown in Fig.5.10.
In this procedure, direct injection method described in [48] is implemented for
restriction procedure due to its simplicity. The ILU(0) smoother has been implemented
with the additive Schwartz domain decomposition method [107] at each level. At each
multigrid level, 2 iterations (i.e., 1 smoothing + 1 domain decomposition + 1
smoothing) are applied.
 Semi-coarsening is applied in the lateral and normal-to-surface directions. In this
work, semi-coarsening in normal-to-surface directions are done successively, then
operations in lateral directions are done after that. In order to preserve the
semi-unstructured grid features in the normal-to-surface direction, the entire region is
partitioned in the radial direction.
 The parallel multigrid cycle for coarsening is executed until :

• Lateral direction : Initial icosahedron (20 triangles)
• Normal-to-surface direction : 1 layer

on each processing element (PE). The multigrid procedure is then continued on a single
PE until the number of layer is equal to 2 (Fig.5.11). The equation on the coarsest grid
(20×2=40 cells) is solved accurately by the Gauss-Seidel method. These single-PE
computations are very small and do not affect the parallel efficiency. As mentioned in
the previous section, the accuracy of the solution at the coarsest level strongly affects
the convergence of the entire multigrid system. If we choose deeper levels for the
multigrid, the size of the problem at the coarsest level is reduced and a convergent
solution can be obtained rapidly by Gauss-Seidel iterations. A very deep multigrid level
is chosen for this reason.

159

(2) Data Structure

Extended local data structure based on that of GeoFEM has developed for multilevel
parallel procedure was developed. In parallel computation with unstructured or
semi-unstructured grids using the message passing library, the communication tables for
partitions should be defined explicitly by the user [83,131]. In this work, 2 types of
communication tables are defined, as shown in Fig.5.12 and Fig.5.13. Staggered cell
was adopted in this work where velocity components and temperature are defined at cell
corners and pressure and pressure correction potential are defined at cell centers. Two
types of communication tables are for node-based and cell-based variables respectively.
Node-based variables appear only in the finest grids. But as for the cell-based variables,
multilevel communication tables were defined at each level according to the multigrid
procedure (Fig.5.14) [74,78,80].
 Node-based variables are computed through only explicit procedure, such as
explicit time-marching scheme for momentum and energy equations and update of
velocity field by pressure correction. In contrast, cell-centered variables require implicit
computation such as solving linear equations. Therefore, the entire region is partitioned
in a cell-based manner. Cells are classified into the following 3 categories from the
viewpoint of message passing:

• Internal cells (originally assigned cells)
• External cells (cells that form the matrix connectivity in the partition but are

located outside of the partition)
• Boundary cells (external cells of other partitions)

Values in boundary cells in the partitions are sent to the neighboring partitions and are
received as external cells at the destination partition. This type of communication is
very similar to that of interface nodes among processors in GeoFEM. This type of
communication table is defined at each grid level of refinement [74,78,80].

(3) Tested Patterns

Several patterns have been considered for the preconditioners and the combination of
smoothers on parallel and serial multigrid procedures as follows (Fig.5.15) [74,78,80] :

• ICCG
• ICCG/ASDD (ICCG with Additive Schwartz Domain Decomposition)
• MGCG/FGS (Full Gauss-Seidel)

160

• MGCG/GSp (Gauss-Seidel-Parallel)
• MGCG/ILU-GSp (ILU-Gauss-Seidel-Parallel)
• MGCG/ILU-GSs (ILU-Gauss-Seidel-Serial)

In MGCG/FGS, multi-level Gauss-Seidel smoother was applied to both parallel and
serial procedures for multigrid procedure in Fig.5.11. Effect of parameters for restriction
and prolongation were evaluated.
 In MGCG/GSp, multi-stage Gauss-Seidel smoother was applied to the parallel
procedure recursively but single-stage parallel Gauss-Seidel smoothing was applied to
the coarsest level of the grid instead of serial procedure. Effect of iteration number in
the parallel Gauss-Seidel procedure is a very important parameter, because the accuracy
of the solution on the coarse grid affects the convergence of the entire multigrid system
[11,107,128] but many Gauss-Seidel iterations require frequent communications.
Communication cost for this parallel Gauss-Seidel procedure is very expensive, because
only 20 cells are included in one PE/
 In MGCG/ILU-GSp, multi-stage ILU(0) smoothing is applied to parallel multigrid
procedure and single-stage parallel Gauss-Seidel smoothing was applied instead of
serial procedure. Effect of iteration number in the parallel Gauss-Seidel procedure is a
very important parameter as is in MGCG/GSp. In both MGCG/GSp and
MGCG/ILU-GSp, problem size for parallel Gaus-Seidel procedure, which depends on
total PE number, is 20 × PE#. Therefore parallel performance can be worse for the cases
with large PE number.
 Finally, in MGCG/ILU-GSs, parallel Gauss-Seidel is applied to the serial
procedure as in MGCG/ILU-GSp.

161

5.4.3 Grid Adaptation

Adaptive methods in applications involving unstructured meshes have evolved as
efficient tools for obtaining numerical solutions without prior knowledge of the details
of the underlying physics [76,89,91].
 Here, a dynamic adaptation algorithm developed by the author for 3D unstructured
meshes [76,89,91] is applied. The algorithm is capable of simultaneous refinement and
coarsening of the appropriate regions in the flow domain.
The adaptation algorithm is guided by a feature detector that senses regions with
significant changes in flow properties, such as shock waves, separations and wakes.
Velocity differences and gradients are used for feature detection, and threshold
parameters are set in order to identify the regions to be refined or coarsened. The details
of the method used for feature detection in this study are described in [76,89,91]. In the
present implementation, the feature detector marks edges.
 The prisms are then refined directionally in order to preserve the structure of the
mesh in the normal-to-surface direction. The prismatic mesh refinement proceeds by
dividing only the lateral edges and faces, which are then refined by either quadtree or
binary division. The resulting surface triangulation is replicated in each successive layer
of the prismatic mesh as illustrated in Fig.5.16 As is seen from this figure, the prismatic
mesh refinement preserves the structure of the initial mesh in the direction normal to the
surface.
 In order to avoid excessive mesh skewness, repeated binary divisions of prisms
are not allowed. Furthermore, in order to avoid sudden changes in mesh size, the mesh
refinement algorithm also limits the maximum difference in embedding level between
neighboring elements to less than 2 (Fig.5.17) [74,78,80,89,91].
 Recently, various multigrid methods for locally refined grids have been developed
for block-structured grids solved by finite-difference methods. The typical procedure
described in [11] is to utilize the grid hierarchy for an adapted grid and to apply a nested
multigrid procedure for each adaptation level. This approach (level-by-level method)
usually requires additional memory and computations for fine cells without adaptation
(white triangles in Fig.5.18). In this study, we applied the direct jump method, where the
solution starts from fine grid with full (deepest) adaptation level and then jumps back
directly to the 2nd globally finest grid level in the multigrid procedure as is described in
Fig. 5.18.

162

5.5 Examples (Poisson Equations)

5.5.1 Outline

The developed methods were tested on Poisson equations in the region between 2
spherical surfaces using a Hitachi SR2201 parallel computer at the University of Tokyo
[132,134] with up to 128 processors. Here, 2 problems were considered. In both
problems the following homogeneous Poisson equation was solved :

 1=φΔ

In this subsection, two types of meshes were considered. One is uniform surface grid
(Poisson-I) and the other is locally refined surface meshes (Poisson-II).

5.5.2 Poisson-I (Uniform Mesh)

In the 1st application (Poisson-I), the problem size for 1 processor was fixed at 320
triangles (level=2 in Fig.5.6) × 900 layers = 288,000 cells, and computations were
performed using 2 to 128 PEs, corresponding to 576,000 to 36,864,000 cells.
 The inner radius of the sphere is 0.50 units and the thickness of each layer was
fixed at 0.01. Two different boundary conditions were defined, as follows :

• Uniform : Dirichlet boundary condition (φ=0) for all triangles on the outermost
surface of the prisms.

• Single-patch : Dirichlet boundary condition (φ=0) for 1 triangle of the initial
icosahedron on the outermost surface of the prisms. The Dirichlet boundary
condition was applied to all children and grandchildren generated from this 1
triangle of the 20 ones that make up the initial icosahedron. This configuration
produces very ill-conditioned coefficient matrices compared to the uniform
cases.

Figures 5.19 and 5.20 compare the results (elapsed computation time including
communication and parallel performance) for ICCG, MGCG/FGS (Full-Gauss-Seidel)
and MGCG/ILU-GSp (ILU-Gauss-Seidel-Parallel) computations in Poisson-I for both
of uniform and single-patch boundary conditions. Parallel performance was computed
from the ratio of purely parallel computing time except communication overhead and
serial processes for solving linear equations and entire solver time. The computation

163

time for MGCG/FGS and MFCG/ILU-GSp remains almost constant when a limited
number of PEs are employed, but tends to increase with the number of PEs at higher
degrees of parallelization. This tendency is attributed to the localization of Gauss-Seidel
and ILU(0) smoothing [71,72,73,79,81], approaching Jacobi smoothing as the number
of PEs increases. However, even in the 128 PE cases, MGCG/FGS and
MFCG/ILU-GSp are much faster than ICCG. MGCG/ILU-GSp exhibits more robust
convergence than MGCG/FGS, particularly for the cases with the single-patch
boundary condition. Parallel performance of ICCG and MGCG/FGS is almost 100% but
that of MGCG/ILU-GS decreases as PE number increases. Performance is about 90%
with 128 PEs. This is due to the communication overhead for parallel Gauss-Seidel
procedure at the coarsest level of the grid. Fig.5.21 shows comparison between ICCG
and MGCG/FGS up to 16 PEs with single-patch boundary condition. MGCG/FGS
provides nice scalability.
 Figure 5.22 compares ICCG and ICCG/ASDD. Iteration number for convergence
of ICCG/ASDD is as half as that of ICCG but computation time is almost competitive.
 Figure 5.23 shows the number of multigrid cycle of MGCG/FGS for both uniform
and single-patch boundary conditions. Number of multigrid cycle increase according to
PE number, especially in the cases with single-patch boundary condition.
 Figures 5.24 and 5.25 compares MGCG/FGS and MGCG/GSp
(Gauss-Seidel-Parallel). These two methods are competitive from the view point of
computation time but parallel performance of MGCG/GSp is going down to 95% in the
cases with 128 PEs. MGCG/GSp does not converge in certain number of iterations with
one-patch boundary condition, if the number of PE is more than 64 (Fig.5.25).
 Figures 5.26 and 5.27 compares MGCG/ILU-GSp and MGCG/ILU-GSs
(Gauss-Seidel-Serial). These two methods are competitive, if the number of PE is less
than 64, but MGCG/ILU-GSp outperforms, if the number of PE is more than 64.
Parallel performance of MGCG/ILU-GSs remains almost 100%.
 Figure 5.28 shows effect of iteration number for parallel Gauss-Seidel process in
MGCG/ILU-GSp with 64 PEs. In cases with uniform B.C., iteration number around 100
provides good performance, but more iterations are required for cases with one-patch
B.C. This is because that equation with single-patch B.C. provides worse condition for
solving and requires more iterations for convergence. Thus, parallel performance in
MGCG/ILU-GS is worse for cases with one-patch B.C. (Fig. 5.19 and 5.20).
 Furthermore, effect of clustered grid spacing in radial direction was also evaluated.
In this case, grid spacing near the inner and outer walls are fixed as 0.01 and increases
as follows:

164

 10.0r,rrr,rr,01.0r i1
1i

1ii121 ≤ΔΔα=Δα=ΔΔα=Δ=Δ −
−

 ,rrr,rr,01.0r n
1i

1ininn1nn Δα=Δα=ΔΔα=Δ=Δ −
−−−−

 10.0r in ≤Δ −

Both uniform and one-patch boundary conditions are evaluated. Figures 5.29-5.32
compare the results for ICCG, MGCG/FGS, MGCG/GSp, MGCG/ILU-GSp and
MGCG/ILU-GSs using clustered mesh size in radial direction. In uniform boundary
condition, each method shows similar behavior, as shown in cases with uniformly
spaced meshes in radial direction. In one-patch boundary conditions, only
MGCG/ILU-GSp converges in reasonable computation time, if the number of PE is
more than 64.
 Figures 5.19-5.32 provides following remarks:

• MGCG/FGS is best for the cases up to 32 PEs
• for the cases with up to 128 PEs, MGCG/FGS is best in uniform B.C and

MGCG/ILU-GSp in single-patch B.C. MGCG/FGS does not converge for
clustered mesh size in radial direction with single-patch B.C. if the number of
PE is more than 64.

5.5.3 Poisson-II (Locally Refined Mesh)

In the 2nd application (Poisson-II), the effect of local grid refinement and the multgrid
strategy (direct jump and level-by-level) were evaluated. The inner radius of the sphere
is 0.50 units and the thickness of the each layer was fixed at 0.01. The 2 boundary
conditions used in the 1st application were also applied to this problem. The initial grid
was the level-2 grid (Fig.5.6) with 320 triangles. As shown in Fig.5.33, 3-level grid
adaptation was applied. At each adaptation level, the number of triangular facets varies
as follows (Fig.5.33):

• 1st level: 532 triangles
• 2nd level: 1,508 triangles
• 3rd level: 4,448 triangles

165

In the 2nd application, the number of layers on each PE was fixed at 50, and the Poisson
equation examined in the 1st application was solved by MGCG/FGS using between 2
and 32 PEs.
 Figure 5.34 shows a comparison between the direct jump and level-by-level
multigrid strategies for an adapted grid under the uniform boundary conditions with
MGCG/FGS method. Performance was evaluated by computation time normalized by
the number of cells (i.e., degrees of freedom) on each processor according to problem
size (i.e., PE number). If the adaptation level is shallow, the 2 methods are competitive,
however at deeper levels of adaptation, the direct jump method provides much higher
efficiency.
 Figures 5.35, 5.36 and 5.37 show performance by ICCG, ICCG/ASDD and
MGCG/FGS. MGCG/FGS provides much more scalable results than ICCG and
ICCG/ASDD although performance is worse in the cases with 3-level adapted meshes
in Fig.5.33. Performance for globally fine meshes and locally refined meshes are almost
equal for a wide range of problem size.
 Figures 5.38-5.43 compare results between the following two meshes:

• 3-level adapted mesh with 4,448 triangles
• globally-fine 4-level mesh with 5,120 triangles

under both uniform and single-patch boundary conditions. In cases with uniform
boundary conditions, MGCG/FGS and MGCG/GSp are the best but MGCG/GSp
provides better performance if the PE number is larger (Fig.5.39). In cases with
single-patch boundary conditions, MGCG/FGS provides best performance.

166

5.6 Examples (Navier-Stokes Equations)

Finally, developed multigrid procedure has been applied to 3D Navier-Stokes equations
with thermal convection in the region between two spherical surfaces. Very simple
boundary conditions were applied as follows:

• r = rmin (= 0.50): u = v = w = 0, T= Tinn (fixed).
• r = rmax (= 1.00): u = v= w = 0, T= Tout (fixed).
• No heat generation
• Uniform boundary conditions for Poisson equations on r = rmax surface.

Number of triangle surfaces is 5,120 (Fig.5.6), mesh size in radial direction is equally
set to 1.25×10-3 and number of the layers in radial direction is 400. Therefore, total cell
number is 2,048,000. In this computation, 16 PEs of the Hitachi SR2201 have been used.
Each PE has 128,000 cells.
 Table 5.1 shows elapsed computation time including communication overhead for
the beginning 40 steps of the thermal-convection simulation. Most of the simulation
process is spent for solving Poisson equations and updating velocity field. Therefore,
performance of the linear solver is very critical.
 In this case, MGCG/FGS and MGCG/ILU-GSp are much faster than ICCG.
Between the two methods wish multigrid preconditioning, MGCG/FGS is slightly
better.

167

5.7 Summary

A multigrid-preconditioned conjugate gradient iterative method for parallel computers
has been developed, in which a V-cycle and semi-coarsening approach is adopted for the
multigrid procedure. Extended local data structure based on that of GeoFEM has been
developed for the multilevel parallel procedure. Two types of communication tables,
one for node-based variables and the other for cell-based variables, have been defined.
Both Gauss-Seidel and ILU(0) with additive Schwartz domain decomposition
smoothers have been tested. Various combinations of parallel and serial smoothers have
been applied. The proposed procedure was applied to Poisson equations in the region
between two spherical surfaces on adaptively generated semi-unstructured prismatic
grids under various boundary conditions. Computational results obtained on a Hitachi
SR2201 parallel computer using up to 128 processors demonstrate the good scalability
of the method, as compared to ICCG solvers. Excellent parallel performance provided
by the developed data structure is also demonstrated.
 Among the tested methods, MGCG/FGS (Full-Gauss-Seidel) provides the best
performance up to 32 PEs, while MGCG/ILU-GSp (ILU-Gauss-Seidel-Parallel, parallel
Gauss-Seidel is applied for the coarsest level of the grid) is relatively robust for
computations across many PEs, although parallel performance is worse for cases
involving many PEs due to the communications overhead of the single-stage parallel
Gauss-Seidel procedure. In the cases with clustered mesh spacing in the radial direction,
MGCG/ILU-GSp provided more very convergence compared to other methods.
Generally, ILU-type smoothers provide more robust convergence than
Gauss-Seidel-type smoothers, especially for ill-conditioned problems.
 The proposed procedure was also applied to grids with local refinement, and 2
multigrid strategies (direct jump and level-by-level) were compared. The direct jump
method developed in this study was found to be much more efficient than the
level-by-level method described in [11] for deeper-level adaptation despite the simplicity
of the level-by-level method.
 Finally, the proposed method was applied to 3D Navier-Stokes equations with
thermal convection. CG solvers with multigrid preconditioning (MGCG/FGS and
MGCG/ILU-GSp) provided much better performance than ICCG.

168

169

Fig. 5.1 Hexahedral and prismatic staggered cell: velocity components and
temperature at corner nodes, pressure and pressure correction potential at cell center.

• Corner Nodes ●
– Velocity Components
– Temperature

• Cell Center ○
– Pressure
– Pressure Correction Potential
– Material Property

• Corner Nodes ●
– Velocity Components
– Temperature

• Cell Center ○
– Pressure
– Pressure Correction Potential
– Material Property

170

Fig. 5.2 2nd and 4th-order artificial dissipations for prismatic cells
[42,74,76,78,80,89,91]

A

B
C

D

E

F

0 1

2

12

0
1

2

3

4

5 6

20

22

21

10 11

cell- A1

cell- A2

A

B
C

D

E

F

0 1

2

12

0
1

2

3

4

5 6

20

22

21

10 11

cell- A1

cell- A2

171

Fig. 5.3 V- and W-cycle for multigrid operation [11]

fine

coarse

(a) V-Cycle

fine

coarse

(a) V-Cycle

(b) W-Cycle

fine

coarse

(b) W-Cycle

fine

coarse

172

Fig. 5.4 Detailed procedure of V-cycle multigrid operation [11]

fine

coarse

w1
k : Approx. Solution

vk : Correction
Ik

k-1 : Restriction Operator

Lk Wk = Fk (Linear Equation:
Fine Level)

Rk = Fk - Lk w1
k

vk = Wk - w1
k, Lk vk = Rk

Rk-1 = Ik
k-1 Rk

Lk-1 vk-1 = Rk-1 (Linear Equation:
Coarse Level)

vk = Ik-1
k vk-1

w2
k = w1

k + vk

fine

coarse

w1
k : Approx. Solution

vk : Correction
Ik

k-1 : Restriction Operator

Lk Wk = Fk (Linear Equation:
Fine Level)

Rk = Fk - Lk w1
k

vk = Wk - w1
k, Lk vk = Rk

Rk-1 = Ik
k-1 Rk

Lk-1 vk-1 = Rk-1 (Linear Equation:
Coarse Level)

vk = Ik-1
k vk-1

w2
k = w1

k + vk

fine

coarse

Lk Wk = Fk (Linear Equation:
Fine Level)

Rk = Fk - Lk w1
k

vk = Wk - w1
k, Lk vk = Rk

Rk-1 = Ik
k-1 Rk

Lk-1 vk-1 = Rk-1 (Linear Equation:
Coarse Level)

vk = Ik-1
k vk-1

w2
k = w1

k + vk

Ik-1
k : Prolongation Operator

w2
k : Approx. Solution by Multigrid

fine

coarse

Lk Wk = Fk (Linear Equation:
Fine Level)

Rk = Fk - Lk w1
k

vk = Wk - w1
k, Lk vk = Rk

Rk-1 = Ik
k-1 Rk

Lk-1 vk-1 = Rk-1 (Linear Equation:
Coarse Level)

vk = Ik-1
k vk-1

w2
k = w1

k + vk

Ik-1
k : Prolongation Operator

w2
k : Approx. Solution by Multigrid

173

F2

F3

F4
F5

F6

n1 n2

n3

j-th layer

n4 n5

n6

(j+1)-th layer

F1

b1 b2

b3
F2

F3

F4
F5

F6

n1 n2

n3

j-th layer

n4 n5

n6

(j+1)-th layer

F1

b1 b2

b3

Fig. 5.5 Prisms generated from triangular facets

174

Fig. 5.6 Surface triangle meshes generated from icosahedron
4 children generated from 1 parent triangle [74,78,80]

Level 4
2,562 nodes
5,120 triangles

Level 3
642 nodes

1,280 triangles

Level 0
12 nodes
20 triangles

Level 1
42 nodes
80 triangles

Level 2
162 nodes
320 triangles

175

Fig. 5.7 Parallel grid generation in recursive manner [22,74,78,80]

Partition

Local
Data

Local
Data

Local
Data

Local
Data

Initial Grid

Refine

Refine

Partition

Local
Data

Local
Data

Local
Data

Local
Data

Initial Grid

Refine

Refine

176

Fig. 5.8 Grid hierarchy from successive refinement [74,78,80]

Generate
Fine Grids

Coarsegrid
Info.

Generate
Fine Grids

Coarsegrid
Info.

177

Fig. 5.9 Semi-coarsening in the lateral and normal-to-surface directions. In this work,
semi-coarsening in normal-to-surface directions are done successively, then operations
in lateral directions are done after that. [74,78,80]

178

Fig. 5.10 Smoothing strategy at each restriction/prolongation stage [74,78,80]

if Ri > α Ri-1 switch to the next stage of
multigrid (α~0.80).

Iterations

R
es

id
ua

l

R1

R2

R3

R4
R5

Fine

Coarse

if Ri > α Ri-1 switch to the next stage of
multigrid (α~0.80).

Iterations

R
es

id
ua

l

R1

R2

R3

R4
R5

Iterations

R
es

id
ua

l

R1

R2

R3

R4
R5

Fine

Coarse

179

Fig. 5.11 Parallel and serial multigrid operations [74,78,80]

Parallel

Serial

Parallel

R
estriction

P
rolon

gation

Parallel

Serial

Parallel

R
estriction

P
rolon

gation

180

Fig. 5.12 Communication among domains (Momentum & Energy Equations)
[74,78,80]

PE#0 PE#1

(a) Interface nodes are physically same nodes

(b) Exchange information between interface nodes and
accumulate

PE#0 PE#1

PE#0 PE#1

(a) Interface nodes are physically same nodes

(b) Exchange information between interface nodes and
accumulate

PE#0 PE#1

181

Fig. 5.13 Communication among domains (Poisson Equations) [74,78,80]

PE#0 PE#1

(a) requires EXTERNAL information for coefficient matrix formation

(b) Partition includes EXTERNAL elements

PE#0 PE#1

PE#0 PE#1

(a) requires EXTERNAL information for coefficient matrix formation

(b) Partition includes EXTERNAL elements

PE#0 PE#1

182

Fig. 5.14 Multilevel communication table (Poisson Equations) [74,78,80]

PE#0 PE#1

LEVEL= i

LEVEL= I+1

PE#0 PE#1

PE#0 PE#1

LEVEL= i

LEVEL= I+1

PE#0 PE#1

183

Fig. 5.15 Various types of multigrid procedures for parallel/serial operations

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

Gauss-Seidel-Parallel
(GSp)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

Gauss-Seidel-Parallel
(GSp)

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

S
er

ia
l

Pa
ra

lle
l

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

184

Fig. 5.16 Directional refinement of prisms based on quadtree and binary
divisions of triangular faces [74,76,78,80,89,91]

○

×

×

1 edge cut

2 or 3 edge cuts

○

×

×

1 edge cut

2 or 3 edge cuts

Initial Grid Edge Cut
Embedded Grid obtained after
quadtree and binary divisions

of the triangular faces
Initial Grid Edge Cut

Embedded Grid obtained after
quadtree and binary divisions

of the triangular faces

185

Fig. 5.17 Procedure in for avoiding sudden changes in mesh size. The mesh
refinement algorithm limits the maximum difference in embedding level between
neighboring elements to less than 2. [74,76,78,80,89,91]

1st Level Refinement

2nd Level Refinement
before Adjustment
○：mid-edge points

2nd Level Refinement
after Adjustment

C

C

Initial Level

1st Level

2nd Level

C Initial Level
1st Level
2nd Level

1st Level Refinement

2nd Level Refinement
before Adjustment
○：mid-edge points

2nd Level Refinement
after Adjustment

C

C

Initial Level

1st Level

2nd Level

C Initial Level
1st Level
2nd Level

186

Fig. 5.18 Multigrid strategy for locally refined grids
Level-by-level and direct jump method [74,78,80]

Initial Fine Grid
(LEVEL=n)

2-level
Adapted

1-level
Adapted

Coarse Grid
(LEVEL=n-1)

Grid
Generation

+
Prolongation

Local
Refinement
Adaptation

+
Prolongation

Local
Refinement
Adaptation

+
Prolongation

Restriction

Restriction

Restriction

Initial Fine Grid
(LEVEL=n)

2-level
Adapted

1-level
Adapted

Coarse Grid
(LEVEL=n-1)

Grid
Generation

+
Prolongation

Local
Refinement
Adaptation

+
Prolongation

Local
Refinement
Adaptation

+
Prolongation

Restriction

Restriction

Restriction

187

Fig. 5.19 Results of Poisson-I. Computation time (including communication for
parallel computing) and parallel performance for fixed problem size on each processor
(320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000 cells). Uniform B.C.
(Black Circles: ICCG, White Circles: MGCG/FGS, Black Tri.: MGCG/ILU-GSp)

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

60

70

80

90

100

110

0 16 32 48 64 80 96 112 128

PE#

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

● ICCG
○ MGCG/FGS
▲ ILU-GSp

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

188

Fig. 5.20 Results of Poisson-I. Computation time (including communication for
parallel computing) and parallel performance for fixed problem size on each processor
(320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000 cells). Single-Patch
B.C. (Black Circles: ICCG, White Circles: MGCG/FGS, Black Tri.: MGCG/ILU-GSp)

0.00E+00

2.50E+03

5.00E+03

7.50E+03

1.00E+04

1.25E+04

1.50E+04

0 16 32 48 64 80 96 112 128

PE#

se
c.

60

70

80

90

100

110

0 16 32 48 64 80 96 112 128

PE#

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

● ICCG
○ MGCG/FGS
▲ ILU-GSp

189

Fig. 5.21 Results of Poisson-I. Computation time (including communication for
parallel computing) for fixed problem size on each processor (320×900=288,000
cells/PE) for 2 to 16 PEs (up to 4,608,000 cells). Single-Patch B.C. (Black Circles:
ICCG, White Circles: MGCG/FGS)

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

0 4 8 12 16

PE#

se
c.

ICCG MGCG/FGSICCG MGCG/FGS

Full-Gauss-Seidel
(FGS)

S
er

ia
l

Pa
ra

lle
l

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

Pa
ra

lle
l

S
er

ia
l

Pa
ra

lle
l

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

190

Fig. 5.22 Results of Poisson-I. Computation time (including communication for
parallel computing) and iterations for convergence for fixed problem size on each
processor (320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000 cells).
Comparison of ICCG and ICCG with Additive Schwartz Domain Decomposition
(ASDD) (Black Circles/Tri.: ICCG iterations/comp.time, White Circles/Tri.:
ICCG/ASDD iterations/comp.time)

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

0 16 32 48 64 80 96 112 128

PE#

Ite
ra

tio
ns

/s
ec

.

0.00E+00

2.50E+03

5.00E+03

7.50E+03

1.00E+04

1.25E+04

1.50E+04

0 16 32 48 64 80 96 112 128

PE#

Ite
ra

tio
ns

/s
ec

.
ICCG (iter's) ICCG/ASDD (iter's)
ICCG (sec.) ICCG/ASDD (sec.)

(a) Uniform B.C.

(b) Single-Patch B.C.

191

Fig. 5.23 Results of Poisson-I. Number of multigrid cycles for convergence for
fixed problem size on each processor (320×900=288,000 cells/PE) for 2 to 128 PEs (up
to 36,864,000 cells). Full Gauss Seidel Smoothing (FGS), (Black Circles: Uniform B.C.,
White Circles: One Patcch B.C.)

0

50

100

150

200

250

300

0 16 32 48 64 80 96 112 128

PE#

M
ul

tig
rid

 C
yc

le
s

Full-Gauss-Seidel
(FGS)

S
er

ia
l

Pa
ra

lle
l

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

Pa
ra

lle
l

S
er

ia
l

Pa
ra

lle
l

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

192

0.00E+00

2.50E+02

5.00E+02

7.50E+02

1.00E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

60

70

80

90

100

110

0 16 32 48 64 80 96 112 128

PE#

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Fig. 5.24 Results of Poisson-I. Computation time (including communication for
parallel computing) and parallel performance for fixed problem size on each processor
(320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000 cells). Uniform B.C.
(Black Circles: MGCG/FGS, White Circles: MGCG/GSp)

● MGCG/FGS
○ MGCG/GSp

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

Gauss-Seidel-Parallel
(GSp)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

Gauss-Seidel-Parallel
(GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

193

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

60

70

80

90

100

110

0 16 32 48 64 80 96 112 128

PE#

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Fig. 5.25 Results of Poisson-I. Computation time (including communication for
parallel computing) and parallel performance for fixed problem size on each processor
(320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000 cells). Single-Patch
B.C. (Black Cir.: MGCG/FGS, White Cir.: MGCG/GSp)

● MGCG/FGS
○ MGCG/GSp

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

Gauss-Seidel-Parallel
(GSp)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

Gauss-Seidel-Parallel
(GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

MGCG/GSp not

converged if PE# > 64.

MGCG/GSp not

converged if PE# > 64.

194

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

60

70

80

90

100

110

0 16 32 48 64 80 96 112 128

PE#

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Fig. 5.26 Results of Poisson-I. Computation time (including communication for
parallel computing) and parallel performance for fixed problem size on each processor
(320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000 cells). Uniform B.C.
(Black Circles: MGCG/ILU-GSp, White Circles: MGCG/ILU-GSs)

● MGCG/ILU-GSp
○ MGCG/ILU-GSs

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

S
er

ia
l

Pa
ra

lle
l

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

195

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

60

70

80

90

100

110

0 16 32 48 64 80 96 112 128

PE#

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Fig. 5.27 Results of Poisson-I. Computation time (including communication for
parallel computing) and parallel performance for fixed problem size on each processor
(320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000 cells). Single-Patch
B.C. (Black Cir.: MGCG/ILU-GSp, White Cir.: MGCG/ILU-GSs)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

S
er

ia
l

Pa
ra

lle
l

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

● MGCG/ILU-GSp
○ MGCG/ILU-GSs

196

Fig. 5.28 Results of Poisson-I. Computation time (including communication for
parallel computing), multigrid cycles and parallel performance for 64 PEs (18,432,000
cells). Effect of Gauss-Seidel iteration number of MGCG/ILU-GSp. (Black Circles:
Uniforma B.C., White Circles: Single-Patch B.C.)

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

10 100 1000 10000

Gauss-Seidel (Serial) Iterations

se
c.

0

100

200

300

400

10 100 1000 10000

Gauss-Seidel (Serial) Iterations

M
ul

tig
rid

 C
yc

le
s

60

70

80

90

100

110

10 100 1000 10000

Gauss-Seidel (Serial) Iterations

P
ar

al
le

l P
er

fo
rm

an
ce

 (%
)

Gauss-Seidel Iterations

Gauss-Seidel Iterations

Gauss-Seidel Iterations

S
er

ia
l

P
ar

al
le

l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

197

Fig. 5.29 Results of Poisson-I. for CLUSTERED mesh in radial direction.
Computation time (including communication for parallel computing) for fixed problem
size on each processor (320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000
cells). Uniform B.C. (Black Circles: ICCG, White Circles: MGCG/FGS, Black Tri.:
MGCG/ILU-GSp)

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

0.00E+00

2.00E+02

4.00E+02

6.00E+02

8.00E+02

1.00E+03

1.20E+03

0 8 16 24 32

PE#

se
c.

● ICCG
○ MGCG/FGS
▲ ILU-GSp

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

198

Fig. 5.30 Results of Poisson-I. for CLUSTERED mesh in radial direction.
Computation time (including communication for parallel computing) for fixed problem
size on each processor (320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000
cells). Single-Patch B.C. (Black Circles: ICCG, White Circles: MGCG/FGS, Black Tri.:
MGCG/ILU-GSp)

0.00E+00

2.50E+03

5.00E+03

7.50E+03

1.00E+04

1.25E+04

1.50E+04

0 16 32 48 64 80 96 112 128

PE#

se
c.

MGCG/FGS does not
converge if PE# > 64.

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

0 8 16 24 32

PE#

se
c.

● ICCG
○ MGCG/FGS
▲ ILU-GSp

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

199

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

not converged if PE# > 64.

Fig. 5.31 Results of Poisson-I. for CLUSTERED mesh in radial direction.
Computation time (including communication for parallel computing) for fixed problem
size on each processor (320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000
cells) (Black Circles: MGCG/FGS, White Circles: MGCG/GSp).

● MGCG/FGS
○ MGCG/GSp

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

Gauss-Seidel-Parallel
(GSp)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

Gauss-Seidel-Parallel
(GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

(a) Uniform B.C.

(b) One-Patch B.C.

200

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

0 16 32 48 64 80 96 112 128

PE#

se
c.

MGCG/ILU-GSs not
converged if PE# > 64.

Fig. 5.32 Results of Poisson-I. for CLUSTERED mesh in radial direction.
Computation time (including communication for parallel computing) for fixed problem
size on each processor (320×900=288,000 cells/PE) for 2 to 128 PEs (up to 36,864,000
cells) (Black Circles: MGCG/ILU-GSp, White Circles: MGCG/ILU-GSs).

● MGCG/ILU-GSp
○ MGCG/ILU-GSs

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

S
er

ia
l

Pa
ra

lle
l

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

(a) Uniform B.C.

(b) One-Patch B.C.

201

Fig. 5.33 Locally refined surface meshes

1-Level Adapted
267 nodes
532 triangles

2-Level Adapted
750 nodes

1,508 triangles

3-Level Adapted
2,226 nodes
4,448 triangles

Level 4
2,562 nodes
5,120 triangles

Level 3
642 nodes

1,280 triangles

Level 2
162 nodes
320 triangles

202

Fig. 5.34 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids using
MGCG/FGS, 50 layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Uniform B.C.
(Solid line: initial grid (320 triangles), circles: 1-level adapted, squares: 2-level adapted,
triangles: 3-level adapted.)

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

Direct-Jump
Level-by-Level

1-Level
2-Level
3-Level

203

Fig. 5.35 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids using
ICCG, 50 layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Uniform & Single-Patch
B.C., Direct Jump.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32

PE#

se
c.

/(P
E

#x
D

O
F)

(a) Uniform B.C.

(b) Single-Patch B.C.

● 1-Level Adapted (532 tri's)
■ 2-Level Adapted (1508)
▲ 3-Level Adapted (4448)
○ Globally Fine 2-Level (320)
□ Globally Fine 3-Level (1280)
△ Globally Fine 4-Level (5120)

204

Fig. 5.36 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids using
ICCG/ASDD, 50 layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Uniform &
Single-Patch B.C., Direct Jump.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32

PE#

se
c.

/(P
E

#x
D

O
F)

(a) Uniform B.C.

(b) Single-Patch B.C.

● 1-Level Adapted (532 tri's)
■ 2-Level Adapted (1508)
▲ 3-Level Adapted (4448)
○ Globally Fine 2-Level (320)
□ Globally Fine 3-Level (1280)
△ Globally Fine 4-Level (5120)

205

Fig. 5.37 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids using
MGCG/FGS, 50 layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Uniform &
Single-Patch B.C., Direct Jump.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32

PE#

se
c.

/(P
E

#x
D

O
F)

(a) Uniform B.C.

(b) Single-Patch B.C.

● 1-Level Adapted (532 tri's)
■ 2-Level Adapted (1508)
▲ 3-Level Adapted (4448)
○ Globally Fine 2-Level (320)
□ Globally Fine 3-Level (1280)
△ Globally Fine 4-Level (5120)

S
er

ia
l

Pa
ra

lle
l

S
er

ia
l

Pa
ra

lle
l

Full-Gauss-Seidel
(FGS)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

206

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

Fig. 5.38 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids, 50
layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Uniform B.C., Direct Jump.
(Black Circles: ICCG, White Circles: MGCG/FGS, Black Triangles: MGCG/ILU-GSp)

(a) 3-Level Adapted
(4,448 Tris)

(b) Globally Fine
4-Lev. (5,120 Tri's)

● ICCG
○ MGCG/FGS
▲ ILU-GSpFull-Gauss-Seidel

(FGS)

S
er

ia
l

P
ar

al
le

l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

207

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

Fig. 5.39 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids, 50
layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Uniform B.C., Direct Jump.
(Black: MGCG/FGS, White: MGCG/GSp)

(a) 3-Level Adapted
(4,448 Tris)

(b) Globally Fine
4-Lev. (5,120 Tri's)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

Gauss-Seidel-Parallel
(GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

Gauss-Seidel-Parallel
(GSp)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

Gauss-Seidel-Parallel
(GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

● MGCG/FGS
○ MGCG/GSp

208

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

Fig. 5.40 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids, 50
layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Uniform B.C., Direct Jump.
(Black: MGCG/ILU-GSp, White.: MGCG/ILU-GSs)

(a) 3-Level Adapted
(4,448 Tris)

(b) Globally Fine
4-Lev. (5,120 Tri's)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

S
er

ia
l

Pa
ra

lle
l

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

● MGCG/ILU-GSp
○ MGCG/ILU-GSs

209

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

Fig. 5.41 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids, 50
layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Single-Patch B.C., Direct Jump.
(Black Circles: ICCG, White Circles: MGCG/FGS, Black Triangles: MGCG/ILU-GSp)

(a) 3-Level Adapted
(4,448 Tris)

(b) Globally Fine
4-Lev. (5,120 Tri's)

● ICCG
○ MGCG/FGS
▲ ILU-GSpFull-Gauss-Seidel

(FGS)

S
er

ia
l

P
ar

al
le

l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

210

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

Fig. 5.42 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids, 50
layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Single-Patch B.C., Direct Jump.
(Black: MGCG/FGS, White: MGCG/GSp)

(a) 3-Level Adapted
(4,448 Tris)

(b) Globally Fine
4-Lev. (5,120 Tri's)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

Gauss-Seidel-Parallel
(GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l

Gauss-Seidel-Parallel
(GSp)

Full-Gauss-Seidel
(FGS)

S
er

ia
l

P
ar

al
le

l
S

er
ia

l
P

ar
al

le
l

Gauss-Seidel-Parallel
(GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

● MGCG/FGS
○ MGCG/GSp

211

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

4 8 12 16 20 24 28 32
PE#

se
c.

/(P
E

#x
D

O
F)

Fig. 5.43 Results of Poisson-II. Computation time (including communication,
normalized by cell number/PE for parallel computing) for locally refined grids, 50
layers/PE, for 4 to 32 PEs (up to 7,116,800 cells). Single-Patch B.C., Direct Jump.
(Black: MGCG/ILU-GSp, White: MGCG/ILU-GSs)

(a) 3-Level Adapted
(4,448 Tris)

(b) Globally Fine
4-Lev. (5,120 Tri's)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

S
er

ia
l

Pa
ra

lle
l

S
er

ia
l

Pa
ra

lle
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

ILU-Gauss-Seidel (MG)
(ILU-GSs)

● MGCG/ILU-GSp
○ MGCG/ILU-GSs

212

Table 5.1 Elapsed computation time including communication for 40 steps of
thermal-convection simulations using 16 PEs of Hitachi SR2201. 5,120×25×16=
2,048,000 cells. Uniform B.C., Δr= 1.25×10-3.

ICCG

MGCG/FGS

MGCG/ILU-GSp

Momentum Poisson+
Update Energy

176.6 sec.

176.6 sec.

176.6 sec.

4717.1 sec.

3130.6 sec.

3435.4 sec.

61.9 sec.

62.1 sec.

61.5 sec.

ICCG

MGCG/FGS

MGCG/ILU-GSp

Momentum Poisson+
Update Energy

176.6 sec.

176.6 sec.

176.6 sec.

4717.1 sec.

3130.6 sec.

3435.4 sec.

61.9 sec.

62.1 sec.

61.5 sec.

Full-Gauss-Seidel
(FGS)

Se
ria

l
P

ar
al

le
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

Full-Gauss-Seidel
(FGS)

Se
ria

l
P

ar
al

le
l

Se
ria

l
P

ar
al

le
l

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU-Gauss-Seidel (Parallel)
(ILU-GSp)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

ILU(0)
Gauss-Seidel (MG)
Gauss-Seidel (Parallel)

	Chap0.pdf
	Chap1
	Chap2
	Chap3
	Chap3fig
	Chap4
	Chap4fig
	Chap5
	Chap5fig
	Chap5fig2

