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Chapter 6   Parallel 3D Adaptive Navier-Stokes 

Solver in GeoFEM with Dynamic Load-Balancing 

 
 
Grid adaptation is a very useful method for applications with unstructured meshes but 
requires dynamic load-balancing for efficient parallel computation. In this chapter, a 
parallel 3D compressible Navier-Stokes code with adaptive hybrid meshes 
(epHYBRID) and parallel adaptation procedure (pADAPT) have been developed on the 
GeoFEM parallel platform. The DRAMA library has been integrated into the pADAPT 
module to solve the load-balancing problem. The entire code system has been evaluated 
under various types of conditions on Pentium clusters and Hitachi SR2201. Results 
show that DRAMA library provides accurate load-balancing for parallel mesh 
adaptation in pADAPT and excellent parallel efficiency in the Navier-Stokes 
computations in epHYBRID. 
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6.1  Introduction 

Adaptive methods in applications with unstructured meshes have evolved as efficient 
tools for obtaining numerical solution without a priori knowledge of the details of the 
nature of the underlying physics. But these methods cause severe load imbalance among 
processors in parallel computations. Recently, various types of methods for dynamic 
load-balancing in parallel mesh adaptation have been developed [9,85,105,114]. 
 In this chapter, a parallel 3D compressible Navier-Stokes code with adaptive 
hybrid meshes (epHYBRID) and parallel mesh adaptation module (pADAPT) have 
been developed on the GeoFEM parallel platform. A repartitioning tool based on the 
DRAMA library [129] that provides dynamic load-balancing and complete data 
migration has been integrated into the pADAPT module. In the following section of this 
chapter, we outline the numerical method used in epHYBRID, and the parallel 
adaptation and load-balancing algorithm in pADAPT/DRAMA. Finally, the extended 
the GeoFEM data structures for parallel mesh adaptation are described. 
 The entire code system (Fig.6.1) has been tested with the simulation of the 
supersonic flow around a spherical body on Pentium cluster and Hitachi SR2201. 
Various types of repartitioning methods in the DRAMA library have been evaluated. 
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6.2  Parallel 3D Compressible Navier-Stokes Solver : 
epHYBRID 

6.2.1  Outline 

The epHYBRID code for parallel 3D compressible Navier-Stokes simulation is based 
on a sequential version of program which was originally developed for single CPU 
workstations by the author [89,91] for the simulation of the external flow around 
airplanes. An edge-based finite-volume method with unstructured prismatic/tetrahedral 
hybrid meshes suitable for complicated geometry is applied. The solution is marched in 
time using a Taylor series expansion following the Lax-Wendroff approach. Although 
the original program was written in Fortran 77, the newly developed parallel version is 
written in Fortran 90 to exploit its dynamic memory management features and uses the 
message passing interface (MPI) for communication.  
 In the hybrid mesh system, the surface of the model is covered with triangles, 
which provide geometric flexibility, while the structure of the mesh in the direction 
normal to the surface provides thin prismatic elements suitable for the viscous region 
(Fig.6.2 and Fig.6.3). The outermost layer of the prismatic mesh is then used as the 
inner boundary surface for a tetrahedral mesh (Fig.6.3), which covers the rest of the 
computational domain. Tetrahedral meshes are also suitable for connecting different 
prismatic regions. Figure 6.4 shows an example of the hybrid meshes around a sphere. 

6.2.2  Governing Equations 

The Navier-Stokes equations for viscous fluid flow are written in the differential form 
as follows: 
 

 RF ⋅∇=⋅∇+
∂
∂
t
U  (6.1) 

 
where U is the state vector; F comprises the convective flux vector components F, G 
and H in x, y, z- directions respectively; R comprises the viscous flux vector 
components R, S and T in x, y, z- directions respectively. The state vector and the 
convective and viscous flux vectors are defined in terms of primitive variables. 
 The solution at any node N, at time level n+1 can be expressed in terms of the 
solution at time level n using a Taylor series expansion: 
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The temporal derivatives in the preceding expression are evaluated in terms of spatial 
derivatives using the governing equations according to the Lax-Wendroff approach. The 
finite-volume method evaluates the integral averages of the temporal derivative terms in 
equation (6.2) over the control volume ΩN associated with node N. 

6.2.3  Spatial Discretization with Mixed Elements 

The spatial discretization proceeds by constructing a dual cell around each node N that 
represents the control volume over which the integral averages of the temporal 
derivatives are evaluated. The two-dimensional analogy of defining dual cells for 
different configurations in a triangular-quadrilateral hybrid mesh is illustrated in Fig.6.5. 
The duals are defined by connecting the midpoints of the edges and centroids of the 
triangular and/or quadrilateral faces that share the node. Dual cells for a 
three-dimensional hybrid grid are constructed along similar lines using the centroids of 
faces and cells with which each node is associated. 
 The integral average of the first-order temporal derivatives associated with the 
node N is written in discrete form following the governing equation (6.1): 
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where the summation f is over all of the discrete faces of the dual mesh that constitute 

NΩ∂ . It is shown in [41,91] that the summation in equation (6.3) can be alternatively 
computed on an edgewise basis as: 
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where the summation e is over all of the edges that share the node N. The term Se 
represents the dual-face area associated with each edge, and en̂  is the unit normal 
vector of the dual-face area Se. The are Se are computed using the dual mesh 
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construction of Fig.6.5 and Fig.6.6, by accumulating the areas of each dual-mesh face 
that shares the edge. The finite volume scheme then proceeds by computing δUs at the 
nodes by a global sweep over the edges and is thus, transparent to whether a node lies in 
the tetrahedral region, in the prismatic region, or at the interfaces. 
 The second-order temporal derivatives are evaluated along similar lines. The 
expression for the second-order derivatives at node N is given from [41,91] as follows: 
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= ~,~,~  are the Jacobians of convective flux vectors. The 

Jacobians of flux vectors need to be computed to evaluate the second-order derivatives. 
However, only the convective flux vectors are considered in this step as the Jacobians of 
viscous flux vectors are too expensive to compute. Therefore, discretization of the 
viscous terms is first-order accurate in time and second-order accurate in space. 

6.2.4  Upwind-like Artificial Dissipation 

The dissipation modeling in this work is formulated in such a manner as to simulate the 
implicit dissipation terms of the upwinding schemes without increasing the computation 
cost of the algorithm [41,89,91]. 
 The numerical formula for the flux vector at any intermediate state I between two 
end states L and R can be expressed as: 
 

 ( ) ( )LRrRLI 2
1 UUAFFF −−−= ~  (6.6) 

 

where rA~  is Roe's matrix [41,89,91]. The dissipation terms are modeled so as to be 

similar to the second term of the above equation as this corresponds to the implicit 
smoothing term of the upwinding scheme. A simplified form of Roe's matrix [41,89,91] 

is obtained by replacing rA~  with ( ) cur +=ρ A~ , the maximum eigenvalue of Roe's 

matrix. This ensures that the dissipation terms do not dwindle down to zero near the 
stagnation or the sonic points. 
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 To extend this concept to 3D, edge-based operations are adopted for calculation of 

the artificial dissipation term. The contribution ( ) 2sn
0Uδ  of shock smoothing terms to 

the change n
0Uδ  at the node 0 is given as follows: 
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where e denotes the connected edge. The shock smoothing term is evaluated similar to 
the viscous fluxes on an edge-wise basis. The fourth order smoothing contribution 

( ) 4sn
0Uδ  is computed in a similar fashion. Instead of the first difference of state vectors 

as used in equation (6.7), a difference of the accumulated first difference over the edges 
sharing a node is used for background smoothing in the flow high Reynolds number. 

 The change ( )sn
0Uδ  at the node 0 due to second and fourth order smoothing is 

given by: 
  

 ( ) ( ) ( ) ( ) ( ) 4sn
042s

n
02s

n
0 P1P UUU δΔ−σ+δΔσ=δ  (6.8) 

  
The pressure switch PΔ  is used to turn the shock smoothing and the background 
smoothing on at the appropriate regions. The coefficients σ2, σ4 are empirical 
parameters that control the amount of shock and background smoothing. Their values 
are the smallest possible for which the method converges. 
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6.2.5  Local Time Stepping 

The solution at each node is advanced in time using local time steps. A combination of 
the CFL and diffusion stability limitations is employed. The viscous-like smoothing 
term can have appreciable magnitude at shock regions, and therefore it is included in the 
diffusion limitation. The time-step restriction for the 1-D wave equation is 

c)(|u|xt +Δ≤Δ / , while the restriction for the 1-D diffusion equation is 
)x()2/1(t 2 νΔ≤Δ // , where in this case P2Δσ+ρμ=ν / . 
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6.3  Parallel Mesh Adaptation and Dynamic Load-Balancing 
Module: pADAPT/DRAMA 

6.3.1  pADAPT 

(1) Feature Detector 

A dynamic adaptation algorithm developed for 3D unstructured meshes [41,89,90,91] 
has been parallelized on the GeoFEM parallel platform. The algorithm is capable of 
simultaneous refinement and coarsening of the appropriate regions in the flow domain. 
 The adaptation algorithm is guided by a feature detector that senses regions with 
significant changes in flow properties, such as shock waves, separations and wakes. 
Velocity differences and gradients across the edges are used for feature detection and 
threshold parameters are set in order to identify the regions to be refined or coarsened 
[39,40]. This edge-based treatment is applied for both prisms and tetrahedra. The 
threshold values for the parameters are set based on the distribution of the parameters 
which is characterized by the average Save and the standard deviation Ssd of the 
respective parameters, where S is the detection parameter [39,40]. The following 
relations are used to set the threshold values for refinement. 
 
 Sth = Save + α Ssd (6.9) 
 
The average and the standard deviation are defined as: 
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The value of the parameter α is chosen empirically. The edges that have a detection 
parameter value greater than the threshold value are flagged to be refined. If very big 
value of α is chosen, the grid may not be adapted at all. On the contrary, the grid can be 
refined through the entire domain for very small α. 
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(2) Prisms 

A special type of adaptive refinement of prisms is applied in the present work in order 
to preserve structure of the mesh along the normal-to-surface direction. The detected 
triangular faces on the surface are divided, as shown in Fig.6.7. Then all prisms above 
these faces are directionally divided along the lateral directions. The cells are not 
divided along the third direction that is normal to the surface. In this way, grid interfaces 
within the prisms region are avoided and the structure of the grid along the 
normal-to-surface direction is preserved. Furthermore, such a division is not needed, 
since the points are distributed along that direction in a way that the viscous stresses are 
resolved [42]. Therefore, adaptation of the prisms reduces to adaptation of the triangular 
grid on the surface. The resulting surface triangulation is replicated in each successive 
layer of the prismatic mesh as illustrated in Fig.6.7. This results in a simpler and less 
expensive algorithm in terms of storage and CPU time compared to a 3-D adaptation 
algorithm. 
 Two types of division are applied. The first divides the triangular faces of the 
prisms into four smaller triangles (quadtree), while the second type divides them into 
two (binary), as shown in Fig.6.7. In the first case, the parent triangle is divided into 4 
children, while it is divided into 2 children in the second case. If two edges of the 
triangle are to be refined, the third is also refined automatically to avoid stretching. 
Division of cells is also employed to divide transition cells at the interface between 
different embedded regions that contain hanging nodes in the middle of some of their 
edges due to refinement of neighboring cells. Furthermore the position of newly created 
surface nodes is corrected so that the original geometry of the surface should be kept. In 
addition, coarsening of the adapted prismatic grid is applied over regions where the 
embedded cells are no longer needed. 
 If grids are adapted at multi levels, there could be very stretched meshes. To avoid 
these situations, some rules are defined as follows: 
 

• Only one level refinement/coarsening is allowed at one adaptation stage. 
• If the parent cell is refined by binary division, all three edges should be divided 

at next refinement (Fig.6.7). 
• If the maximum adaptation level difference of neighboring surface triangles 

around a node is more than 1, the coarser triangles will be refined by three-edge 
division, as shown in Fig.6.8. In this figure, the maximum adaptation level 
difference around node C is 2 following the second refinement and the 
adaptation level difference is reduced by refining the coarsest triangle. 
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• Grid coarsening is conducted in same manner. If the refinment and coarsening 
occur in same triangle (different edges), refinment procedure works over 
coarsening (refinement is always stronger than coarsening). 

 
Also, adaptation may yield embedded regions that are slightly smaller than the features 
which are detected, which results in interfaces being located within or very close to the 
regions of relatively large gradients. In order to avoid such situations, the algorithm 
places extra rows (typically two) of embedded cells surrounding the detected regions. 
This extension of the embedded region is performed as follows: 
 
（1） All edges with large gradient and/or difference are refined. 
（2） Sweep through all the active (not parent) triangles and flag three edges of each 

triangle if at least one edge is refined at the current stage of adaptation. 
（3） Refine all the flagged edges. 
（4） Repeat Steps (2) and (3) number of specified times (typically two) to get 

sufficiently large embedded region. 
 
To satisfy all of the above rules for grid smoothing, some iterations are required. 
Usually the number of iteration is less than 5. 

(3) Tetrahedra 

The tetrahedral elements constitute the area of mesh dominated by inviscid flow 
features which do not exhibit the directionality as is generally seen in the viscous region. 
Hence, the tetrahedral meshes are refined isotropically.  
  
The adaptation procedure for tetrahedra is very similar to that of prisms. The feature 
detector flags edges to be refined/coarsened. Figure 6.9 shows the following three types 
of tetrahedral cell division: 
 

• One edge is refined. 2 children, binary. 
• Three edges on the same face are refined. 4 children, quadtree. 
• All six edges are refined. 8 children, octree. 

 
After all edges are flagged, each tetrahedral cell is visited and the flagged edges are 
counted. Then, the cell is flagged for division according to the above three types. In all 
cases that are different from the three cases above, the cell is divided according to the 
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third type of division. If two edges on the same face are refined, the third on the surface 
is refined according to the second type of division. 
 To avoid stretched mesh, similar rules with prisms are applied. In order to avoid 
excessive mesh skewness, repeated binary and quadtree divisions of tetrahedra are not 
allowed. Furthermore, in order to avoid sudden changes in mesh size, the mesh 
refinement algorithm also limits the maximum difference in embedding level between 
neighboring elements less than two. 

(4) Prisms/Tetrahedra Interfaces Treatment 

The adaptation processes for prisms and tetrahedra are coupled through the outermost 
triangle surfaces of the prismatic grids, which  coincide with tetrahedral triangular 
faces, as shown in Fig.6.10. The pairs of interface cells (between prisms and tetrahedra) 
are divided if one or both cells are flagged for division. In this way, additional mid-edge 
nodes are avoided. The procedure is as follows: 
 

（1） Visit all edges in prismatic region and flag edges to be refined/coarsened. 
（2） Visit all edges in tetrahedra region and flag refined/coarsened edges. 
（3） Visit the interface pairs of prisms/tetrahedra and flag both cells if at least 

one of them is flagged for division. 
（4） Repeat steps (1)-(3) if required. 

 
Figure 6.11 shows the outline of the parallel mesh adaptation algorithm in pADAPT. 
Underlined functions use the DRAMA library and its data migration capability 
developed for this work.  
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6.3.2  DRAMA and Data Migration 

The DRAMA library, originally developed within the European Commission funded 
project with the same name, supports dynamic load-balancing for parallel message 
passing, mesh-based applications. For a general overview see [8]. The library was 
evaluated with industrial FE codes and is further developed in ongoing research 
collaborations.  

The core library functions perform a parallel computation of a mesh re-allocation 
that will re-balance the costs of the application code based on an adjustable, rich cost 
model. The DRAMA library contains geometric (RCB: Recursive Coordinate Bisection), 
topological (graph) and local improvement (direct mesh migration) methods and allows 
to use leading parallel graph partitioning packages such as METIS [138] and JOSTLE 
[136] through internal interfaces. DRAMA is open source, which is freely downloadable 
from the web-site in [129]. 

The DRAMA internal data structures have been designed to be suitable for 
adaptive applications (i.e. double numbering). The DRAMA library is a load-balancing 
tool that performs data migration for elements and nodes as described by the DRAMA 
mesh structure. It supports the application to complete the data migration by old/new 
and new/old element/node numbering relations. Especially for adaptive codes this is a 
considerable task involving the reconstruction of the entire grid hierarchy. Routines for 
mesh conversion and data migration have been developed to integrate the DRAMA 
library in the pADAPT module of the adaptive GeoFEM environment. The resulting 
code structure is shown in Fig.6.1 
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6.4  Distributed Data Structures for Parallel Mesh Adaptation 

A proper definition of the layout of the distributed data structures is very important for 
the efficiency of parallel computations with unstructured meshes. Although the 
epHYBRID code adopts an edge-based formulation, the GeoFEM local data structures 
described in Chapter 2 which are node-based with overlapping elements 
[71,72,73,79,81,84,131] has been adopted here. This data structure with 
internal/external/boundary nodes and communication tables provides excellent parallel 
efficiency [28,79,81]. 
 Some additional information for mesh adaptation and grid hierarchy has been 
added to the original static GeoFEM data structure. In order to conform with the 
DRAMA library interface and the data migration procedure, double-numbering of nodes, 
elements and edges has been implemented where items are identified by 2 types of ID 
(original partition and local ID) [129], instead of single-numbering where global ID for 
nodes and elements are used. Internal array for element connectivity is changed from 
2D type to 1D compressed array with index array because both of prisms and tetrahedra 
appear in this work and 2D type array is not memory efficient.  
 Figures 6.12 and 6.13 show the examples of old and new data structure [76]. 
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6.5  Examples 

Numerical simulations of the supersonic flow (M=1.40, Re=106) around a sphere have 
been conducted under various types of configurations. In Fig.6.14, a spherical bow 
shock can be observed upstream the body. It shows the Mach number distribution in 
very coarse initial meshes, 1-level and 2-level adapted meshes. The shock is very 
sharply captured by 2-level adapted meshes. Computations are executed on the 
32-processor LAMP Pentium cluster [137] operated by NEC-Europe and the 
1024-processor Hitachi SR2201 computer at the University of Tokyo, Japan. 
 In these examples, grid adaptation is required only several times during entire 
computations. Therefore, computation time for grid adaptation and dynamic 
load-balancing is almost negligible compared to time for Navier-Stokes simulation. 
Computational and parallel efficiency of the grid adaptation, dynamic load-balancing 
and data migration have not been evaluated here. 

6.5.1  Parallel Performance of epHYBRID without Adaptation 

Parallel performance of epHYBRID code was evaluated using globally fine prismatic 
meshes without adaptation using 2 to 256 processors on both the LAMP cluster and the 
SR2201 computer. In these computations, the problem size for each processor was 
approximately kept fixed up to the 48 PE case. Ranging from 48 to 256 PEs, the entire 
problem size was held constant. GeoFEM’s RCB method and METIS have been applied 
as initial static partitioning method. 
 The results are summarized in Table 6.1. The unit elapsed user execution time 
(including both computation and communication time) for each iteration stays almost 
constant up to 256 processor case and parallel efficiency of the epHYBRID is almost 
perfect. 

6.5.2  Comparison of Repartitioning Methods (Tetrahedral Grids) 

As is described in 6.3, the DRAMA library offers various types of repartitioning 
methods (for instance : graph-based (PARMETIS or PJOSTLE) and geometry-based 
(RCB)). Here, we compare the effect of different repartitioning methods on the 
computational efficiency of the resulting meshes. The following repartitioning methods 
in the DRAMA library have been considered: 
  

• No Repartitioning 
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• PJOSTLE 
• PARMETIS k-way 
• RCB Simple 
• RCB Bucket (edgecut reduced) 

  
The same problem described in 6.5.1 has been solved on 8 or 16 processors with purely 
tetrahedral meshes. The DRAMA options were set so that the partitioner would balance 
the number of internal nodes in each partition. Table 6.2.-6.4. show the resulting 
distributions and the corresponding elapsed time for epHYBRID (averaged for 1,000 
steps). Fig.6.15 shows the partitioning after 2-level adaptation for the 8 processor case 
displayed by the parallel version of GPPView [124] tool developed within the GeoFEM 
project. Without repartitioning, load imbalance among the processors is severe 
especially after 2-level adaptation. Among the 4 repartitioning methods, PJOSTLE 
provided the best quality from the viewpoint of the performance of the epHYBRID code 
because resulting edge-cuts and edges in each partition are the fewest. 

6.5.3  Comparison of Repartitioning Methods (Hybrid Grids) 

Several cases were computed using hybrid grids on LAMP cluster. Description of the 
initial grid is as follows (Fig.6.16): 
  

• 1,280 triangles, 642 nodes on the sphere surfaces 
• 24 layers. Inner (closer to the sphere surface) 6 layers are for prisms and outer 

18 layers are for tetrahedra, totally 76,800 cells (7,680 prisms and 69,120 
tetrahedra) and 16,050 nodes. 

• Divided into 16 regions by RCB (Recursive Coordinate Bisection). 
  
We compare the effect of different repartitioning methods on the computational 
efficiency of the resulting meshes. The following repartitioning methods in the DRAMA 
library have been considered: 
  

• No Repartitioning 
• PJOSTLE 
• RCB Simple 
• RCB Bucket (edgecut reduced) 

  
The DRAMA options were set so that the partitioner would balance the number of 
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internal nodes in each partition. Table 6.5. show the resulting distributions and the 
corresponding elapsed time for epHYBRID (averaged for 1,000 steps). Figures 
6.17-6.19 show the partitioning after 1-level adaptation for the 16 processor case 
displayed by the parallel version of GPPView tool. Without repartitioning, load 
imbalance among the processors is severe after adaptation. Among the 3 repartitioning 
methods, PJOSTLE provided the best quality from the viewpoint of the performance of 
the epHYBRID code because resulting edge-cuts and edges in each partition are the 
fewest. 
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6.6  Summary 

In this chapter, a parallel 3D compressible Navier-Stokes code with adaptive hybrid 
meshes (epHYBRID) and parallel mesh adaptation module (pADAPT) have been 
developed on the GeoFEM parallel platform with an extended data structure for grid 
adaptation and dynamic load-balancing.  
 The DRAMA library has been integrated in the pADAPT module and the data 
migration procedure has been added. The entire code system has been tested with the 
simulation of the supersonic flow around a spherical body on a Pentium cluster and a 
Hitachi SR2201 computer. We found that the epHYBRID code with extended the 
GeoFEM data structure showed excellent parallel efficiency with dynamic 
load-balancing. Various types of repartitioning methods in the DRAMA library have 
been evaluated on both purely tetrahedral and hybrid meshes. Among these methods, 
PJOSTLE provided the best mesh partitioning quality from the viewpoint of the 
efficiency of the epHYBRID code.  
 Developed data structure with double-numbering proved to very flexible and 
efficient for processing distributed local data sets with parallel mesh adaptation and 
dynamic load balancing. 
  



230 

 



231 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 6.1    epHYBRID and pADAPT/DRAMA coupled system [76] 
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Fig. 6.2   Prismatic meshes generated from surface triangles in the normal-to-surface 
direction [42,76,89,91] 
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(b) Tetrahedron 
 

 
Fig. 6.3   Prismatic and tetrahedral meshes and dual-cells [42,76,89,91] 
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Fig. 6.4   Example of the prismatic/tetrahedral hybrid meshes [76] 
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Fig. 6.5  Dual volume constructions for mixed-element topology. Two-dimensional 
analogies for dual mesh around a node in the (a) prismatic region, (b) 
tetrahedral-prismatic interface and (c) tetrahedral region [91] 
 

N

N

N

(a) Prismatic Region

(b) Tetrahedral/Prismatic
Interface

(c) Tetrahedral Region



236 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6   Edge-dual volume defined around the edges for computing the gradients of 
primitive variables at the edge centers [76,91] 
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Fig. 6.7  Directional refinement of prisms based on quadtree and 
binary divisions of the triangular faces on the wall [76,89] 
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Fig. 6.8     Procedure in for avoiding sudden changes in mesh size. The mesh 
refinement algorithm limits the maximum difference in embedding level between 
neighboring elements to less than 2 [76,89] 
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Fig. 6. 9  Refinement strategies for a tetrahedron (binary, quadtree and octree) [76,89] 
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(a) Propagation from prismatic region to tetrahedral region 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Propagation from tetrahedral region to prismatic region 
 

Fig. 6.10   Coupling of prismatic-tetrahedral adaptation at the interface [76,89] 
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Fig. 6.11   Parallel mesh adaptation/dynamic load-balancing/data migration procedure 
in pADAPT/DRAMA coupled system (underlined items are added to the pADAPT 
module) [76] 

(1) Pre-Processing
- reads original grid and result files
- creates edges 
- defines INTERNAL edges and cells *
- creates edge/cell communication tables*

(2) Feature Detection
- computes Velocity gradient/difference across the edges
- computes average and standard deviation*
- MARKs edges which satisfy criterion

(3) Extend Embedded Zones*
(4) Grid Smoothing*

- proper embedding patterns
- adjusts cell embedding level around each node

(5) New Pointers*
(6) New Communication Table*
(7) Load Balancing/Repartitioning by DRAMA Library
(8) Data Migration
(9) Output
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(a) Original data structure of GeoFEM with global node/element ID and 2D array for  
 element connectivity 

 

 

 

 

 

 

 

 

 

(b) Extended data structure of GeoFEM with double-numbering for node/element and  
 compressed 1D array for element connectivity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6.12    Original and extended data structure of GeoFEM [76,131] 

type local_mesh
integer n_node total node #
real(kind=kreal),pointer:: node(:,:)   node coordinates
integer n_elem total element #
integer,pointer:: elem_type(:)         element type
integer,pointer:: elem(:,:)            element connectivity
integer           n_internal internal node #
integer,pointer:: global_node_id(:)    global node ID
integer,pointer:: global_elem_id(:)    global element ID

end type local_mesh

type local_mesh_new
integer n_node total node #
real(kind=kreal),pointer:: node(:,:)   node coordinates
integer n_elem total element #
integer,pointer:: elem_type(:)         element type
integer,pointer:: index_elem(:)        1D index for elem. connectivity
integer,pointer:: ptr_elem(:)          1D array for elem. connectivity
integer           n_internal internal node #
integer nelem_internal internal elem.#（homeground）
integer,pointer::elem_internal_list(:) internal element list (local ID)
integer,pointer::node_ID (:,2)         home PE & local ID of nodes
integer,pointer::elem_ID (:,2)         home PE & local ID of elem.
integer,pointer::CoarseGridLevels how many coarsegrid level
integer,pointer::HOWmanyADAPTATIONs how many adaptations 
integer,pointer::WhenIwasRefinedN(:)   refinement history for node
integer,pointer::WhenIwasRefinedE(:)   refinement history for elem.
integer,pointer::adapt_type(:)         elem. refinement pattern
integer,pointer::adapt_level(:)        elem. refinement level
integer,pointer::adapt_parent(:,2)     parent elem.: home PE & local ID

=(-1,0) if coarsest level
integer,pointer::adapt_parent_type(:)  elem. refinement pattern of parent
integer,pointer::adapt_child (:,2)     child elem.: home PE and local ID
integer,pointer::index_child(:)        index for children

end type local_mesh_new
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Fig.6.13    Original and extended data structure of GeoFEM (Example) [76,131] 

OLD Data Structure
elem_type(1~2)= 221
elem(1,1~4) = 1,4,5,2
elem(2,1~4) = 2,5,6,3

elem_type(3~6)= 211
elem(3,1~3) = 4,7,8
elem(4,1~3) = 4,8,5
elem(5,1~3) = 5,8,9
elem(6,1~3) = 5,9,6

NEW Data Structure
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Fig. 6.14   Supersonic flow around a spherical body (M=1.40, Re=106). Mach number 
distribution and meshes (a) Initial mesh (546 nodes, 2,880 tetrahedra), (b) 1-level 
adapted mesh (2,614 nodes, 16,628 tetrahedra), (c) 2-level adapted mesh (10,240 nodes, 
69,462 tetrahedra) [76] 
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Table 6.1 Hypersonic flow around a spherical body, 2-256 PE cases with globally fine 
prismatic meshes on the LAMP cluster system and Hitachi SR2201 
 

PE # Total 
Node 

# 

 
P.M.

(1*) 

Total 
Edge 
Cut # 

Max. 
Internal
Node #

Max. 
Edge #

LAMP 
Time(2*) 

(μsec.) 
(Node/Edge) 

SR2201 
Time(2*) 

(μsec.) 
(Node/Edge)

2 33,306 R 2,518 16,653 66,553 144.7/36.21 95.48/23.89
4 64,050 R 9,585 16,013 65,799 144.9/35.26 118.0/28.72 
8 133,146 R 15,347 16,644 67,268 150.2/37.16 135.8/33.59
16 256,050 R 52,904 16,004 67,048 171.8/41.02 108.7/25.95
32 532,505 R 136,975 16,641 71,306 - 123.2/28.75
48 778,278 M 110,106 16,700 68,399 - 124.6/30.41
64 778,278 M 127,621 12,525 51,735 - 135.7/32.86
80 778,278 M 142,461 10,021 41,765 - 158.7/38.12
128 778,278 M 179,060 6,262 26,251 - 127.8/30.48
256 778,278 M 247,155 3,131 13,458 - 130.9/30.47

 
(1*) : Initial partitioning method : R-RCB, M-METIS 

(2*) : Elapsed execution time / step / (internal node or edge) 
 
 
Table 6.2 Hypersonic flow around a spherical body, 8 PE cases with 2-level adapted 
meshes (total : 10,240 nodes, 69,462 tetrahedra) on LAMP cluster system (initial mesh : 
546 nodes, 2,880 tetrahedra) 
 

Repartitioning 
Methods 

Internal Node 
Number 

(min/max) 

Total 
Edge Cut

Edge Number 
(min/max) 

Time(1*) 
(sec.) 

No Repartition 561/2,335 11,224 4,918/17,639 619 
PJOSTLE 1,274/1,286 7,293 9,248/9,883 354 
PARMETIS k-way 1,267/1,293 7,679 9,258/10,222 363 
RCB Simple 1,280/1,280 12,106 10,426/10,605 389 
RCB Bucket 1,280/1,280 11,603 10,479/10,971 399 

 
(1*) : Elapsed execution time for 1,000 time steps (averaged) 
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Table 6.3 Hypersonic flow around a spherical body, 16 PE cases with 1-level adapted 
meshes (total : 47,074 nodes, 306,236 tetrahedra) on LAMP cluster system (initial 
mesh : 16,050 nodes, 92,160 tetrahedra) 
 

Repartitioning 
Methods 

Internal Node 
Number 

(min/max) 

Total 
Edge Cut

Edge Number 
(min/max) 

Time(1*) 
(sec.) 

No Repartition 1,343/6,351 39,888 10,576/48,495 1,683 
PJOSTLE 2,929/2,961 25,085 21,089/22,233 874 

PARMETIS k-way 2,905/2,984 26,274 21,201/22,630 880 
RCB Simple 2,942/2,943 41,980 22,520/23,090 899 
RCB Bucket 2,942/2,943 37,192 21,231/23,269 926 

 
(1*) : Elapsed execution time for 1,000 time steps (averaged) 

  
   

 

Table 6.4 Hypersonic flow around a spherical body, 16 PE cases with 2-level adapted 
meshes (total : 163,537 nodes, 1,116,700 tetrahedra) on LAMP cluster system (initial 
mesh : 16,050 nodes, 92,160 tetrahedra) 

 

Repartitioning 
Methods 

Internal Node 
Number 

(min/max) 

Total 
Edge Cut

Edge Number 
(min/max) 

Time(1*) 
(sec.) 

No Repartition 6,621/20,842 101,178 50,386/152,059 5,384
PJOSTLE 10,195/10,260 55,663 73,262/  75,540 2,982
RCB Bucket 10,221/10,222 100,462 82,799/  85,819 3,227

 
(1*) : Elapsed execution time for 1,000 time steps (averaged) 
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              (a) PJOSTLE                     (b) PARMETIS k-way 
 

           

  

  

  

  

  

  

  

  

 

 

 

 

 

            (c) RCB Bucket                    (d) No Repartitioning 
 

 

 

 

Fig. 6.15   Repartitioned domains after 2-level adaptation with 8 processors (total : 
10,240 nodes, 69,462 tetrahedra) displayed by GPPView [131] (a)PJOSTLE (b) 
PARMETIS k-way (c)RCB Bucket and (d) No Repartitioning (each partition is 
separately shown) 
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Fig. 6.16   Initial hybrid gird with 16 partitions. 1,280 triangles, 642 nodes on the 
sphere surfaces. 24 layers, inner (closer to the sphere surface) 6 layers are for prisms 
and outer 18 layers are for tetrahedra, totally 76,800 cells (7,680 prisms and 69,120 
tetrahedra) and 16,050 nodes. 
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Table 6.5 Hypersonic flow around a spherical body, 16 PE cases with 1-level adapted 
meshes (total : 60,575 nodes, 336,660 cells) on LAMP cluster system (initial mesh : 
16,050 nodes, 76,800 cells) 

 

Repartitioning 
Methods 

Internal Node 
Number 

(min/max) 

Total 
Edge Cut

Edge Number 
(min/max) 

Time(1*) 
(sec.) 

No Repartition 1,992/6,029 42,601 15,612/37,922 1,396
PJOSTLE 3,772/3,810 31,439 20,297/28,418 992
RCB Simple 3,785/3,786 43,191 23,405/28,249 1,030
RCB Bucket 3,785/3,786 39,030 21,609/29,552 1,080

 
(1*) : Elapsed execution time for 1,000 time steps (averaged) 
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Fig. 6.17  Repartitioned domains after 1-level adaptation with 16 processors by 
PJOSTLE (total : 60,575 nodes, 336,660 cells) displayed by GPPView [131] (each 
partition is separately shown) 
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Fig. 6.18  Repartitioned domains after 1-level adaptation with 16 processors by RCB 
simple (total : 60,575 nodes, 336,660 cells) displayed by GPPView [131] (each partition 
is separately shown) 
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Fig. 6.19  Repartitioned domains after 1-level adaptation with 16 processors by RCB 
bucket (total : 60,575 nodes, 336,660 cells) displayed by GPPView [131] (each partition 
is separately shown) 
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Chapter 7   Concluding Remarks 

 
 
This chapter presents summary and the main conclusions of the thesis, as well as 
recommendations for future work. 
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7.1  Summary of the Thesis 

Chapter 2 

In Chapter 2, outline of local data structure according to node-based partitioning and 
parallel iterative solvers with localized preconditioning in GeoFEM was described. 
Well-designed local data structures with communication tables provide highly parallel 
efficiency that is greater than 95% for up to 1024 PEs on a Hitachi SR2201. The 
localized preconditioning method was shown to be stabilized by ASDD (additive 
Schwarz domain decomposition). 

Chapter 3 

Chapter 3 describes general preconditioning methods, corresponding to category (I) in 
Section 1.2. In this chapter, an efficient parallel iterative method for unstructured grids 
was developed for the GeoFEM platform on SMP cluster architectures with vector 
processors such as the Earth Simulator. The method employs a three-level hybrid 
parallel programming model consisting of the three level hierarchy, MPI for Inter-SMP 
node, OpenMP for Intra-SMP node and vectorization for individual PE. 
 Simple 3D linear elastic problems with more than 2.2×109 DOF were solved by 
3×3 block ICCG(0) with additive Schwarz domain decomposition and 
PDJDS/CM-RCM reordering on 176 SMP nodes of the Earth Simulator, achieving a 
performance of 3.80 TFLOPS (33.7% of peak performance). PDJDS/CM-RCM 
reordering provides excellent vector and parallel performance on SMP nodes. Without 
reordering, parallel processing of forward/backward substitution in IC/ILU factorization 
was impossible due to global data dependencies even in the simple examples in this 
study. Altough the three-level hybrid and flat MPI parallel programming models offer 
similar performance, the hybrid programming model outperforms flat MPI in problems 
with a large number of SMP nodes. 
 The performance of PDJDS/CM-RCM reordering was also compared with 
PDJDS/MC. In a simple cubic geometry, PDJDS/CM-RCM usually converges faster 
than PDJDS/MC. However, when complicated geometries are involved with a large 
number of hyperplanes, in which case it is difficult to construct independent sets with 
sufficient loop lengths by CM, PDJDS/MC provides better performance in terms of 
GFLOPS rate and CPU time by guaranteeing sufficient loop length, even though 
PDJDS/CM-RCM requires fewer iterations for convergence.  
 The most appropriate reordering method should therefore be selected based on the 
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length of each hyperplane generated by RCM reordering. 

Chapter 4 

Chapter 4 describes a problem-specific preconditioning method, corresponding to 
category (III) in Section 1.2. In this chapter, robust preconditioning and partitioning 
methods were developed for the simulation of fault-zone contact with penalty 
constraints using parallel computers. For symmetric positive definite matrices, block 
incomplete Cholesky factorization without inter-block fill-in, using selective blocking 
(SB-BIC(0)) has excellent performance, memory efficiency and robustness for a wide 
range of penalty parameter values even if meshes are distorted. Spectral condition 
number κ (κ=Emax/Emin where Emax and Emin are the largest and smallest eigenvalues, 
respectively, of [M]-1[A]) is a helpful parameter for the evaluation of convergence of the 
preconditioning methods. Usually, BIC(1) and BIC(2) requires fewer iterations for 
convergence than SB-BIC(0). However, the total computation time for SB-BIC(0) is 
lower as a result of the lower cost per iteration. 
 It is also shown that the partitioning method for elimination of edge-cuts in 
contact groups with load-balancing improves the convergence of parallel iterative 
solvers with localized preconditioning. 
 Parallel performance of the CG method with SB-BIC(0) preconditioning was 
evaluated using 16 to 128 PEs of a Hitachi SR2201 at the University of Tokyo using a 
flat MPI parallel programming model. Although the iteration number for convergence 
increases according to PE number due to locality of the preconditioner, this increase is 
only 11% from 16 PEs to 128 PEs and the speed-up ratio based on elapsed execution 
time including communication for 128 PEs, is higher than 120, as extrapolated from 
results for 16 PEs. 
 Furthermore, the developed method is vectorized and parallelized using OpenMP 
directives on one SMP node of the Earth simulator, and provides robust and smooth 
convergence and excellent parallel performance for both simple and complicated 
geometries with contact conditions. 
 The reordering method for SMP cluster architectures with vector processors 
described in Chapter 3 has been implemented to the selective blocking preconditioning 
using the MC reordering method. Special treatments for selective blocking, such as the 
introduction of dummy elements and the reordering of selective blocks according to 
block size, were implemented. 
 In cases involving several colors, fewer iterations are required for convergence, 
but the performance is worse due to the smaller loop length and greater overhead. In the 
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complicated Southwest Japan model, the number of iterations for convergence is not 
affected by the number of colors because there are many distorted elements in this 
model and the coefficient matrices are ill-conditioned. 
 Performance of 17.6 GFLOPS (27.5% of peak performance) for the simple block 
model and 18.6 GFLOPS (29.1% of peak performance) for the Southwest Japan has 
been obtained. Performance is about 60% if the reordering of selective blocks is not 
applied. The load-imbalance among PEs on the SMP node and the ratio of dummy 
off-diagonal components are not significant. 

Chapter 5 

Chapter 5 describes multigrid preconditioner for Poisson equations, corresponding to 
category (II) in Section 1.2. A multigrid-preconditioned conjugate gradient iterative 
method for parallel computers has been developed, in which a V-cycle and 
semi-coarsening approach is adopted for the multigrid procedure. Extended local data 
structure based on that of GeoFEM has been developed for the multilevel parallel 
procedure. Two types of communication tables, one for node-based variables and the 
other for cell-based variables, have been defined. Both Gauss-Seidel and ILU(0) with 
additive Schwartz domain decomposition smoothers have been tested. Various 
combinations of parallel and serial smoothers have been applied. The proposed 
procedure was applied to Poisson equations in the region between two spherical 
surfaces on adaptively generated semi-unstructured prismatic grids under various 
boundary conditions. Computational results obtained on a Hitachi SR2201 parallel 
computer using up to 128 processors demonstrate the good scalability of the method, as 
compared to ICCG solvers. Excellent parallel performance provided by the developed 
data structure is also demonstrated.  
 Among the tested methods, MGCG/FGS (Full-Gauss-Seidel) provides the best 
performance up to 32 PEs, while MGCG/ILU-GSp (ILU-Gauss-Seidel-Parallel, parallel 
Gauss-Seidel is applied for the coarsest level of the grid) is relatively robust for 
computations across many PEs, although parallel performance is worse for cases 
involving many PEs due to the communications overhead of the single-stage parallel 
Gauss-Seidel procedure. In the cases with clustered mesh spacing in the radial direction, 
MGCG/ILU-GSp provided more very convergence compared to other methods. 
Generally, ILU-type smoothers provide more robust convergence than 
Gauss-Seidel-type smoothers, especially for ill-conditioned problems. 
 The proposed procedure was also applied to grids with local refinement, and 2 
multigrid strategies (direct jump and level-by-level) were compared. The direct jump 
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method developed in this study was found to be much more efficient than the 
level-by-level method described in [11] for deeper-level adaptation despite the simplicity 
of the level-by-level method. 
 Finally, the proposed method was applied to 3D Navier-Stokes equations with 
thermal convection. CG solvers with multigrid preconditioning (MGCG/FGS and 
MGCG/ILU-GSp) provided much better performance than ICCG. 

Chapter 6 

In Chapter 6, a parallel 3D compressible Navier-Stokes code with adaptive hybrid 
meshes (epHYBRID) and parallel mesh adaptation module (pADAPT) have been 
developed on the GeoFEM parallel platform with an extended data structure for grid 
adaptation and dynamic load-balancing. This data structure with double-numbering 
proved to very flexible and efficient for processing distributed local data sets with 
parallel mesh adaptation and dynamic load balancing. 
 The DRAMA library has been integrated in the pADAPT module and the data 
migration procedure has been added. The entire code system has been tested with the 
simulation of the supersonic flow around a spherical body on a Pentium cluster and a 
Hitachi SR2201 computer. We found that the epHYBRID code with extended GeoFEM 
data structure showed excellent parallel efficiency with dynamic load-balancing. 
Various types of repartitioning methods in the DRAMA library have been evaluated on 
both purely tetrahedral and hybrid meshes. Among these methods, PJOSTLE provided 
the best mesh partitioning quality from the viewpoint of the efficiency of the 
epHYBRID code. 
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7.2  Conclusions of the Thesis 

In many large-scale scientific simulation codes using the finite-element method (FEM) 
and the finite-difference method (FDM), most computation is spent in solving linear 
equations with sparse coefficient matrices. For this reason, much of the scalable 
algorithm research and development is aimed at solving these large, sparse linear 
systems of equations on parallel computers. Sparse linear solvers can be broadly 
classified as either direct or iterative. Iterative methods are much more memory scalable 
than direct methods and are more suitable for parallel computing. But their convergence 
can be slow or they can fail to converge. The rate of convergence of iterative methods 
depends strongly on the spectrum of the coefficient matrix. Hence, iterative methods 
usually involve a second matrix that transforms the coefficient matrix into a matrix with 
more favorable spectrum. The transformation matrix is called a preconditioner. The use 
of a good preconditioner improves the convergence of the iterative methods, sufficiently 
to overcome the extra cost of constructing and applying the preconditioner. Indeed, 
without a preconditioner the iterative method may even fail to converge. 
 In this thesis, the following three types of preconditioners of parallel iterative 
solvers for various types of applications on unstructured meshes using the GeoFEM 
platform for parallel finite-element methods: 
  

(I) Localized block ILU(0) preconditioning method for 3D solid 
mechanics on SMP cluster type vector parallel computers, such as the 
Earth Simulator (Category I in Section 1.2, general preconditioners). 

(II) Parallel scalable multigrid preconditioning method for 3D Poisson 
equations derived from incompressible Navier-Stokes solvers with 
adaptive meshes (Category II in Section 1.2, preconditioners for 
broad classes of underlying problems). 

(III) Selective blocking preconditioning method for 3D solid mechanics 
with contact on SMP cluster type vector parallel computers (Category 
III in Section 1.2, preconditioners for specific problems). 

  
A proper definition of the layout of the distributed data structures is very important for 
the efficiency of parallel computations with unstructured meshes. Local distributed data 
structure of GeoFEM provides excellent parallel performance over 95%, even if the 
number of processors is over 1,000. 
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 In order to achieve efficient parallel/vector computation for applications with 
unstructured grids, the following three matters are critical: 
  

• Local operations and no global dependency 
• Continuous memory access 
• Sufficiently long loops 

  
For unstructured grids, in which data and memory access patterns are very irregular, the 
reordering technique is very effective for achieving highly parallel performance and 
vector performance. In this study, various ordering methods have been tested for both 
simple and complicated geometries. Simple multicolor ordering usually provides 
sufficiently long loops for vector performance, although it usually requires more 
iterations for convergence than more sophisticated RCM ordering. 
 All of the developed preconditioning methods on the GeoFEM platform for its 
local data structure provide excellent parallel/vector performance up to > 1,000 PEs and 
robustness for very ill-conditioned problems. The localized block ICCG(0) solver with 
special reordering strategy for unstructured mesh attained 3.80 TFLOPS for simple 3D 
linear elastic problem with 2.2×109 DOF on 176 SMP nodes (1,408 PEs) of the Earth 
Simulator, corresponding to 33.7% of peak performance.  
 Parallel CG solvers with selective blocking preconditioning and special reordering 
developed in this study provided excellent performance on the Earth Simulator (29.1% 
of peak performance) and robustness for ill-conditioned matrices which appear in 
contact problems. Moreover, selective blocking preconditioning is memory efficient and 
requires only 25% of ILU(2) and 50% of ILU(1).  
 The parallel multigrid procedure with new local data structure provided excellent 
scalability and parallel performance of greater than 95% on a Hitachi SR2201 with 128 
PEs. The direct jump method developed in this study for locally refined mesh is very 
simple, but was found to be much more efficient than the existing level-by-level method 
described in [11] for deeper-level adaptation. The effect of the parallel multilevel ILU 
smoother for ill-conditioned problems has been also evaluated. 
 These methods are very useful for wide range of scientific applications developed 
for SMP cluster type architecture which has become very popular for massively parallel 
computers in recent days. 
 Adaptive methods in applications with unstructured meshes have evolved as 
efficient tools for obtaining numerical solutions without a priori knowledge of the 
details of the nature of the underlying physics. However, these methods cause severe 
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load imbalance among processors in parallel computations. In this thesis, a parallel 
mesh adaptation method with dynamic load-balancing using DRAMA library [129] has 
been developed and implemented on a 3D compressible Navier-Stokes solver developed 
on the GeoFEM platform. The extended data structure of GeoFEM with mesh 
adaptation has been also proposed. This data structure with double-numbering proved to 
very flexible and efficient for processing distributed local data sets with parallel mesh 
adaptation and dynamic load balancing. 
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7.3  Future Study 

In this study, three categories of parallel preconditioning method for large-scale 
problems have been developed on the GeoFEM platform. Moreover, an extended data 
structure for new methods has been proposed. Each of the developed methods 
demonstrated excellent performance and robustness for various types of complicated 
large-scale problems on massively parallel computers. 
 In the future, we will also examine:  
 
• Large-scale applications with complicated geometry and physics on massively 

parallel computers such as the Earth Simulator will be performed using the newly 
developed method along with the GeoFEM platform. 

 
• The current local data structure in GeoFEM is very simple but is not suitable for a 

wide range of applications and procedures. The newly developed data structure for 
mesh adaptation and multigrid provide the GeoFEM platform with flexibility for 
various types of applications. 

 
• In this study, primarily ILU/IC and related preconditioning methods have been 

treated. Recently, the sparse approximate inverse method (SAI) [21,103,115,123] for 
preconditioning is expected to be applied as a global preconditioner in parallel 
computing. In the contact problems described in Chapter 4, infinitesimal and linear 
elastic deformation theory was assumed, although large slip and large deformation 
have to be considered in real simulations, where node location and the connectivity 
of contact groups can change dynamically. More robust preconditioning method and 
dynamic load-balancing methods will have to be developed for parallel computing 
in these types of models. According to [115], SAI is feasible for this type of problem 
and no contact information or repartitioning are required. Further study on the SAI 
method is required. 

 
• Integration of the three categories of the preconditioning methods described in 

Section 1.2 is needed. Multigrid-based methods are scalable for large-scale 
problems but are not necessarily robust for problems with local constraints such as 
the contact simulations described in Chapter 4. An integrated method of multigrid 
and selective-blocking will provide both scalability and robustness for large-scale 
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ill-conditioned problems. 
 
• AMG (Algebraic Multigrid Method) is another expected method, but a number of 

AMG approaches suffer from parallelization problems. Hybrid algebraic-geometric 
multigrid methods have been successful. Proper data definition, including coarse 
mesh and a multilevel communication table, is required for this area of study. 
Moreover, very short loops in multigrid procedures at coarser levels of the grid 
reduce performance on vector processors. This problem is also solved by proper 
data definition. 

 
• In this study, developed methods have been optimized primarily for vector 

processors, such as the Earth Simulator, or RISC processors with pseudo vector 
capability, such as the Hitachi SR2201 or SR8000. It is well-known that optimized 
code for vector processor is not necessarily optimum for RISC processors. Figure 
7.1 shows an example. A block ICCG(0) solver with special ordering strategy, 
described in Chapter 3 optimized for vector processors were applied to a RISC 
processor. On vector processors, the differences among these three methods were 
significant, but it is very slight on a RISC processor. Moreover, performance 
decreases suddenly for larger problems due to cache overflow. This is a great 
disadvantage with respect to portability of the simulation codes for the 
high-performance computing environment. Recently, a project for HPC middleware 
(HPC-MW) [134] has started. HPC-MW is an infrastructure for developing 
optimized and reliable scientific simulation codes efficiently. In order to develop 
this HPC-MW, various types of scientific simulation methods such as FEM, FDM, 
FVM, BEM, Spectral Methods, MD and Particle Methods, should be investigated, 
and typical and common patterns for operations are extracted and each procedure 
will be optimized for various types of computes including vector/RISC processors, 
SMP parallel architectures and PC clusters. Source code developed on 
single-processor PCs is easily optimized on massively parallel computers by 
plugging-in the source code to the HPC-MW installed on the target computer 
(Fig.7.2). This HPC-MW will provide dramatic efficiency, portability and reliability 
in the development of scientific simulation codes. For example, the line number of 
the source codes is expected to be less than 1,000, and the duration of the 
development is expected to be 10% of previous development time. Moreover, under 
GRID environment where various types of computers are connected through 
networks, a virtual petaflops environment can be attained using a global operating 



263 

system and HPC-MW which is optimized for each hardware. Thus very large-scale 
simulation using world-wide resources (computer hardware, code, 
observed/computed data sets, etc.) is possible. 
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(a) Earth Simulator 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
(b) COMPAQ Alpha 21164/599 MHz   
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Fig.7.1    Effect of coefficient matrix storage method and reordering for the 3D linear 
elastic problem in Fig.3.10 with various problem sizes on (a) Earth Simulator (1 SMP 
node) and (b) COMPAQ Alpha 21164/599 MHz (Single PE). (BLACK Circles: 
PDJDS/CM-RCM, WHITE Circles: PDCRS/CM-RCM, BLACK Triangles: CRS no 
reordering). 
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Fig.7.2     HPC-Middleware (HPC-MW) for Finite Element Method [134]. 
  
  

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Xeon Cluster

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Earth Simulator

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Hitachi SR8000

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Itanium2

FEM code developed on PC
I/F for
Vis.

I/F for
Solvers

I/F for
Mat.Ass.

I/F for
I/O

Optimized Parallel Code on the Earth Simulator

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Xeon Cluster

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Xeon Cluster

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Earth Simulator

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Earth Simulator

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Hitachi SR8000

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Hitachi SR8000

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Itanium2

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Itanium2

FEM code developed on PC
I/F for
Vis.

I/F for
Solvers

I/F for
Mat.Ass.

I/F for
I/O

FEM code developed on PC
I/F for
Vis.

I/F for
Solvers

I/F for
Mat.Ass.

I/F for
I/O

I/F for
Vis.

I/F for
Solvers

I/F for
Mat.Ass.

I/F for
I/O

Optimized Parallel Code on the Earth Simulator



267 

References 
 
 
（1） M.F. Adams: Multigrid Equation Solvers for Large Scale Nonlinear Finite 

Element Simulations, UCB/CSD-99-1033, Ph.D. Thesis for University of 
California at Berkeley, 1999. 

（2） M.F. Adams and J.W. Demmel: Parallel Multigrid Solver for 3D Unstructured 
Finite Element Problems, SC99 Proceedings, Portland, Oregon, USA, 1999. 

（3） M.F. Adams: A Distributed Memory Unstructured Gauss-Seidel Algorithm for 
Multigrid Smoothers, SC 2001 Proceedings, Denver, Colorado, USA, 2001. 

（4） S.F. Ashby and R.D. Falgout: A Parallel Multigrid Preconditioned Conjugate 
Gradient Algorithm for Groundwater Flow Simulation, Nuclear Science and 
Engineering, Vol.124, pp.145-159, 1996. 

（5） V.A. Bandy, J.E. Dendy Jr. and W.H. Spangenberg: Some Multigrid Algorithms 
for Elliptic Problems on Data Parallel Machines, SIAM Journal of Scientific 
Computing, Vol.19, No.1, pp.74-86, 1998.  

（6） R.E. Bank and J. Xu: The Hierarchical Basis Multigrid Method and 
Incomplete LU Decomposition, Seventh International Symposium on Domain 
Decomposition Methods for Partial Differential Equations (D. Keyes and J. Xu, 
eds.), AMS, Providence, Rhode Island, USA, pp.163-173, 1994.  

（7） R. Barrett, M. Berry, T.F. Chan, J.W. Demmel, J. Donato, J.J. Dongarra, V. 
Eijkhout, R. Pozo, C. Romine and H. van der Horst: Templates for the Solution 
of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994.  

（8） A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet, R. 
Ducloux, J.M. Gratien, U. Hartmann, G. Lonsdale, B. Maerten, D. Roose, C. 
Walshaw,: Dynamic load balancing of finite element applications with the 
DRAMA library, Applied Mathematics Modelling, Vol.25, pp.83-98, 2000.  

（9） R. Biswas and R. Strawn: A New Procedure for Dynamic Adaptation of 
Three-Dimensional Unstructured Grids, AIAA 93-0672, 1993.  

（10） D. Braess: Finite Elements : Theory, fast solvers and applications in solid 
mechanics, Cambridge University Press, 1997.  

（11） W.L. Briggs, V.E. Henson and S.F. McCormick: A Multigrid Tutorial Second 
Edition, SIAM, 2000.  

（12） P.N. Brown, R.D. Falgout, and J.E. Jones: Semicoarsening Multigrid on 
Distributed Memory Machines, Lawrence Livermore National Laboratory 



268 

Technical Report UCRL-JC-130720, 1998. 
（13） F. Cappelo, and D. Etiemble: MPI versus MPI+OpenMP on the IBM SP for 

the NAS Benchmarks, SC2000 Technical Paper, Dallas, Texas, 2000. 
（14） R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald and R. Menon: 

Parallel Programming in OpenMP, Morgan Kaufmann Publishers, USA, 
2001. 

（15） L. Chen, I. Fujishiro, and K. Nakajima: Parallel performance optimization of 
large-scale unstructured data visualization for the Earth Simulator, 
Eurographics Workshop on Parallel Visualization and Graphics 2002, 
Blaubeuren, Germany, pp.133-140, 2002. 

（16） A.J. Cleary, R.D. Falgout, V.E. Henson and J.E. Jones: Coarse-Grid Selection 
for Parallel Algebraic Multigrid, Lawrence Livermore National Laboratory 
Technical Report UCRL-JC-130893, 1998.  

（17） W. Dahmen, S. Muller and T. Schlinkmann: On an adaptive multigrid solver 
for convection-dominated problems, SIAM Journal of Scientific Computing, 
Vol.23, No.3, pp.781-804, 2001. 

（18） M.J. Dayde, J-Y. L'excellent and N.I.M. Gould: Element-by-Element 
Preconditioners for Large Partially Separable Optimization Problems, SIAM 
Journal of Scientific Computing, Vol.18, No.6, pp.1767-1787, 1997. 

（19） J.W. Demmel: Applied Numerical Algebra, SIAM, 1997.  
（20） M.J. Djomehri and H.H. Jin: Hybrid MPI+OpenMP Programming of an 

Overset CFD Solver and Performance Investigations, NASA/NAS Technical 
Report (NASA Ames Research Center), NAS-02-002, 2002. 

（21） J.J. Dongarra, I. Duff, D.C. Sorensen and H.A. van der Vorst: Numerical 
Linear Algebra for High-Performance Computers, SIAM, 1998.  

（22） S. Ezure, H. Okuda and K. Nakajima: Parallel Mesh Relocation, Parallel 
Finite Element Analysis, Large-Scale Simulation, RIST/Tokyo GeoFEM 
Report 2002-012, 2002. 

（23） R.D. Falgout and J.E. Jones: Multigrid on Massively Parallel Architectures, 
Sixth European Multigrid Conference, Ghent, Belgium, 1999.  

（24） C. Farhat and M. Lesoinne: Automatic Partitioning of Unstructured Meshes 
for the Parallel Solution of Problems in Computational Mechanics, 
International Journal for Numerical Methods in Engineering, Vol.36, 
pp.745-764, 1993.  

（25） C.A.G. Fletcher: Computational Galerkin Method, Springer-Verlag, 1984. 
  



269 

（26） C.A.G. Fletcher: Computational Techniques for Fluid Dynamics 1, 
Springer-Verlag, 1988. 

（27） L.P. Franca, S.L. Frey and T.J.R. Hughes: Stabilized finite element methods: II. 
The incompressible Navier-Stokes equations, Computer Methods in Applied 
Mechanics and Engineering, Vol.99, pp.209-233, 1992. 

（28） K. Garatani, H. Nakamura, H. Okuda and G. Yagawa: GeoFEM: High 
Performance Parallel FEM for Solid Earth, Lecture Notes in Computer 
Science No.1593, pp.132-140, 1999.  

（29） A.Greenbaum: Iterative Methods for Solving Linear Systems, SIAM, 1997.  
（30） P.M. Gresho: Some current CFD issues relevant to the incompressible 

Navier-Stokes equations, Computer Methods in Applied Mechanics and 
Engineering, Vol.87, pp.201-252, 1991. 

（31） W. Gropp, E. Lusk and A. Skjellum: Using MPI, Portable Parallel 
Programming with the Message-Passing Interface, MIT Press, 1994.  

（32） M. Hafez and M. Soliman: Numerical Solution of the Incompressible 
Navier-Stokes Equations in Primitive Variables on Unstaggered Grids, AIAA 
Paper 91-1561 CP, 1991. 

（33） F.H. Harlow and J.E. Welch: Numerical Calculation of Time-Dependent 
Viscous Incompressible Flow with Free Surface, Physics of Fluids, Vol.8, 
pp.2182-2189, 1965.  

（34） D.G. Holmes and S.D. Connel: Solution of the 2D Navier-Stokes Equations on 
Unstructured Adaptive Grids, AIAA Paper 89-1932 CP, 1989. 

（35） D. Hysom and A. Pothen: Efficient Parallel Computaion of ILU(k) 
Preconditioners, NASA/CR-2000-210210, ICASE Report No.2000-23, 2000. 

（36） M. Iizuka, H. Okuda and G. Yagawa: Nonlinear Structural Subsystem of 
GeoFEM for Fault Zone Analysis, Pure and Applied Geophysics, Vol.157, 
pp.2105-2124, 2000. 

（37） O-P. Jacquotte: Grid Optimization Methods for Quality Improvement and 
Adaptation, Handbook of Grid Generation, pp.33-1 - 33-33, CRC Press, 1999. 

（38） A. Jameson, W. Schmidt and E. Turkel: Numerical Solutions of the Euler 
Equations by Finite-Volume Methods Using Runge-Kutta Time-Stepping 
Schemes, AIAA Paper 81-1259, 1981. 

（39） Y. Kallinderis: Adaptation Methods for Viscous Flows, Ph.D. Thesis, 
CFDL-TR-89-5, Dept. Aeronautics and Astronautics, MIT, May 1989. 

（40） Y. Kallinderis and J.R. Baron: Adaptation Methods for a New Navier-Stokes 
Algorithm, AIAA Journal, Vol.27, pp.37-43, 1989. 



270 

（41） Y. Kallinderis and V. Parthasarathy: An Adaptive Refinement Coarsening 
Scheme for 3-D Unstructured Meshes, AIAA Journal, Vol 31, pp 1440-1447, 
1993. 

（42） Y. Kallinderis and S. Ward: Prismatic Grid Generation for 3-D Complex 
Geometries, AIAA Journal, Vol. 31, pp.1850-1856, 1993. 

（43） Y. Kallinderis and K. Nakajima: Finite Element Method for Incompressible 
Viscous Flows with Adaptive Hybrid Grids, AIAA Journal, Vol.32, No.8, 
pp.1617-1625,1994. 

（44） V. Karlo and T. Tezduyar: Parallel 3D Computation of Unsteady Flow around 
Circular Cylinders, AHPCRC Preprint 96-074, Army High Performance 
Computing Research Center, 1996. 

（45） D.J. Kerbyson, A. Hoisie and H. Wasserman, A Comparison Between the 
Earth Simulator and AlphaServer Systems using Predictive Application 
Performance Models, LA-UR-02-5222, Los Alamos National Laboratory, 
USA, 2002. 

（46） S.W. Kim and T.J. Benson: Comparison of the SMAC, PISO and 
Iterative-Advancing Schemes for Unsteady Flows, Computers & Fluids, Vol.21, 
pp.435-454, 1992. 

（47） D.A. Knoll and W.J. Rider: A Multigrid Preconditioned Newton-Krylov 
Method, SIAM Journal of Scientific Computing, Vol.21, No.2, pp.691-710, 
1999. 

（48） D.Y. Kwak: V-cylcle Multigrid for Cell-Centered Finite Differences, SIAM 
Journal of Scientific Computing, Vol.21, No.2, pp.552-564, 1999. 

（49） J. Linden, G. Lonsdale, B. Steckel and K. Stüben: Multigrid for the 
Steady-State Incompressible Navier-Stokes Equations: a Survey, International 
Conference on Numerical Methods in Fluid Mechanics, Williamsburg, VA, 
1988. 

（50） J. Liou and T.E. Tezduyar: Clustered Element-by-Element Computations for 
Fluid Flow, Parallel Computational Fluid Dynamics (Implementations and 
Results), edited by H.D.Simon, The MIT Press, 1992. pp.167-187. 

（51） F. Liu, S. Ji and G. Liao: An adaptive Grid Method and Its Application to 
Steady Euler Flow Calculations, SIAM Journal of Scientific Computing, 
Vol.20, No.3, pp.811-825, 1998. 

（52） I.M. Llorente and N.D.Melson: Robust Multigrid Smoothers for Three 
Dimensional Elliptic Equations with Strong Anisotropies, 
NASA/CR-1998-208700, ICASE Report No.98-37, 1998.  



271 

（53） I.M. Llorente, B. Diskin and N.D.Melson: Plane Smoothers for Multiblock 
Grids : Computational Aspects, NASA/CR-1999-209331, ICASE Report 
No.99-17, 1999.  

（54） I.M. Llorente, B. Diskin and N.D.Melson: Alternating Plane Smoothers For 
Multiblock Grids, SIAM Journal on Scientific Computing Volume 22, Number 
1, 2000.  

（55） R. Löhner: The Efficient Simulation of Strongly Unsteady Flows by the 
Finite-Element Method, AIAA Paper 87-0555, 1987.  

（56） R. Löhner: A Fast Finite Element Solver for Incompressible Flows, AIAA 
Paper 90-0398, 1990.  

（57） R. Löhner: An Implicit Linelet-Based Solver For Incompressible Flows, AIAA 
Paper 92-0668, 1992.  

（58） D.J. Mavriplis: Multigrid Strategies for Viscous Flow Solvers on Anisotropic 
Unstructured Meshes, NASA CR-1998-206910, ICASE Report No.98-6, 1998.  

（59） D.J. Mavriplis: Directional Agglomeration Multigrid Techniques for 
High-Reynolds Number Viscous Flows, NASA CR-1998-206911, ICASE 
Report No.98-7, 1998.  

（60） D.J. Mavriplis: Large-scale Parallel Viscous Flow Computations Using an 
Unstructured Multigrid Algorithm, NASA CR-1999-209724, ICASE Report 
No.99-44, 1999.  

（61） D.J. Mavriplis: Parallel Performance Investigations of an unstructured mesh 
Navier-Stokes Solver, NASA/CR-2000-210088, ICASE Report No.2000-13, 
2000.  

（62） D.J. Mavriplis: An Assessment of Linear Versus Non-linear Multigrid Methods 
for Unstructured Mesh Solvers, NASA/CR-2001-210870, ICASE Report 
No.2001-12, 2001.  

（63） D.S. McRae and K.R. Laflin: Dynamic Grid Adaptation and Grid Quality, 
Handbook of Grid Generation, pp.34-1 - 34-33, CRC Press, 1999.  

（64） R.S. Montero, I.M. Llorente and M.D. Salas: Semicoarsening and Implicit 
Smoothers for the Simulation of a Flat Plate at Yaw, NASA/CR-2001-210871, 
ICASE Report No.2001-13, 2001. 

（65） P. de Montleau, J.M. Cela, S.M. Mpong and A. Godinass: A Parallel 
Computing Mode for the Acceleration of a Finite Element Software, 
International Workshop on OpenMP: Experiences and Implementations 
(WOMPEI 2002), Kyoto, Japan, Lecture Notes in Computer Science 2327, 
p.449-456, Springer, 2002. 



272 

（66） E. Morano, D.J. Mavriplis and V. Venkatakrishnan: Coarsening Strategies for 
Unstrcutured Multigrid Techniques with Application to Anisotropic Problems, 
SIAM Journal of Scientific Computing, Vol.20, No.2, pp.395-415, 1998. 

（67） I. Moulitsas and G. Karyois: Multilevel Algorithms for Generating Coarse 
Grids for Multigrid Methods, SC 2001 Proceedings, Denver, Colorado, USA, 
2001.  

（68） K. Nakajima: Incompressible Navier-Stokes Methods with Hybrid Adaptive 
Grids, M.S. Thesis, University of Texas at Austin, 1993. 

（69） K. Nakajima, Y. Kallinderis, I.A. Sibetheros, R.W. Miksad and K.F. 
Lambrakos: A Numerical Study of the Hydrodynamics of Reversing Flows 
around a Cylinder, Transaction of the ASME Journal of Offshore Mechanics 
and Arctic Engineering, Vol.116, No.4, pp.202-208, 1994. 

（70） K. Nakajima and Y. Kallinderis: Comparison of Finite Element and Finite 
Volume Methods for Incompressible Viscous Flows, AIAA Journal, Vol.32, 
No.8, pp.1090-1093.,1994. 

（71） K. Nakajima, H. Nakamura and T. Tanahashi: Parallel Iterative Solvers with 
Localized ILU Preconditioning, Lecture Notes in Computer Science 1225, 
pp.342-350, 1997. 

（72） K. Nakajima and H. Okuda: Parallel Iterative Solvers with Localized ILU 
Preconditioning for Unstructured Grids, IMACS Series in Computational and 
Applied Mathematics Volume 5: Iterative Methods in Scientific Computation 
IV, p.85-98, 1999. 

（73） K. Nakajima and H. Okuda: Parallel Iterative Solvers with Localized ILU 
Preconditioning for Unstructured Grids on Workstation Cluster, International 
Journal for Computational Fluid Dynamics, Vol.12, pp.315-322, 1999. 

（74） K. Nakajima: Parallel Multilevel Iterative Solvers for 3D Incompressible 
Navier-Stokes Equations, FEF 2000 (Finite Elements in Flow Problems), 
Austin, Texas, April, 2000. 

（75） K. Nakajima and H. Okuda: Parallel Iterative Solvers for Simulations of Fault 
Zone Contact using Selective Blocking Reordering, 2001 International 
Conference on Preconditioning Techniques for Large Sparse Matrix Problems 
in Industrial Applications (Preconditioning 2001), Tahoe City, CA, USA, 2001 
(submitted to Journal of Numerical Algebra with Applications (in press)). 

（76） K. Nakajima, J. Fingberg and H. Okuda: Parallel 3D Adaptive Compressible 
Navier-Stokes Solver in GeoFEM with Dynamic Load-Balancing by DRAMA 
Library, HPCN Europe 2001, Amsterdam, Netherlands，Lecture Notes in 



273 

Computer Science 2110, p.183-193, Springer, 2001. 
（77） K. Nakajima and H. Okuda: Parallel Iterative Solvers with the Selective 

Blocking Preconditioning for Simulations of Fault-Zone Contact, GeoFEM 
2001-010, RIST/Tokyo, 2001. 

（78） K. Nakajima: Parallel Multilevel Iterative Linear Solvers with Unstructured 
Adaptive Grids for Simulations in Earth Science, SSS2001 (Workshop on 
Scalable Solver Software: Multiscale Coupling and Computational Earth 
Science), Tokyo, 2001. 

（79） K. Nakajima and H. Okuda: Parallel Iterative Solvers for Unstructured Grids 
using Directive/MPI Hybrid Programming Model for GeoFEM Platform on 
SMP Cluster Architectures, Concurrency and Computation: Practice and 
Experience. pp.411-429, Vol.14, No.6-7, 2002. 

（80） K. Nakajima: Parallel Multilevel Iterative Linear Solvers with Unstructured 
Adaptive Grids for Simulations in Earth Science, Concurrency and 
Computation: Practice and Experience. pp.484-498, Vol.14, No.6-7, 2002. 

（81） K. Nakajima and H. Okuda: Parallel Iterative Solvers for Unstructured Grids 
using an OpenMP/MPI Hybrid Programming Model for the GeoFEM 
Platform on SMP Cluster Architectures, International Workshop on OpenMP: 
Experiences and Implementations (WOMPEI 2002), Kyoto, Japan, Lecture 
Notes in Computer Science 2327, p.437-448, Springer, 2002. 

（82） E.G. Ng, B.W. Peyton and P. Raghavan: A Blocked Incomplete Cholesky 
Preconditioner for Hierarchical-Memory Computers, IMACS Series in 
Computational and Applied Mathematics Volume 5: Iterative Methods in 
Scientific Computation IV, p.211-221, 1999. 

（83） T. Oguni, T. Murata, T. Miyoshi, J.J. Dongarra and H.Hasegawa: Matrix 
Computation Softwares (in Japanese), Maruzen, 1991. 

（84） H.Okuda, G.Yagawa, K.Nakajima and H.Nakamura; Parallel Finite Element 
Solid Earth Simulator: GeoFEM, WCCM V (Fifth World Congress on 
Computational Mechanics), Vienna, Austria, 2002. 

（85） L. Oliker and R. Biswas: Parallelization of a Dynamic Unstructured 
Application using Three Leading Paradigms, SC99 Proceedings, Portland, 
Oregon, USA, 1999. 

（86） L. Oliker, X. Li, P. Husbands and R. Biswas : Effects of Ordering Strategies 
and Programming Paradigms on Sparse Matrix Computations, SIAM Review, 
Vol.44, No. 3(2002), pp.373-393. 

（87） C.W. Oosterlee and T. Washio: An Evaluation of Parallel Multigrid as a Solver 



274 

and a Preconditioner for Singularly Perturbed Problems, SIAM Journal of 
Scientific Computing, Vol.19, No.1, pp.87-110, 1998. 

（88） R.L. Panton: Incompressible Flow, John Wiley & Sons, 1984. 
（89） V. Parthasarathy, Y. Kallinderis and K. Nakajima: A Navier-Stokes Method 

with Adaptive Hybrid Prismatic/Tetrahedral Grids, AIAA Paper 95-0670, 
1995.  

（90） V. Parthasarathy and Y. Kallinderis: Directional Visous Multigrid Using 
Adaptive Prismatic Meshes, AIAA Journal, Vol.33, No.1. pp.69-78, 1995. 

（91） V. Parthasarathy and Y.Kallinderis: Adaptive Prismatic-Tetrahedral Grid 
Refinement and Redistribution for Viscous Flows, AIAA Journal, Volume 34, 
No.4. pp.707-716, 1996. 

（92） S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980.  
（93） S. Patankar and D. Spalding: A Calculation Procedure for Heat, Mass and 

Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat and 
Mass Transfer, Vol.15, pp.1787-1806, 1972. 

（94） R.M. Peric, G. Kessler and G. Scheuerer: Comparison of Finite-Volume 
Numerical Methods with Staggered and Collocated Grids, Computers & 
Fluids, Vol.16, pp.389-403, 1988. 

（95） M.P. Prieto, R.S. Montero and I.M. Llorente: A Parallel Multigrid Solver for 
Viscous Flows on Anisotropic Structured Grids, NASA/CR-2001-211238, 
ICASE Report No.2001-34, 2001. 

（96） T.H. Pulliam: Artificial Dissipation Models for the Euler Equations, AIAA 
Paper 85-0438, 1985.  

（97） R. Rabenseifner: Communication Bandwidth of Parallel Programming Models 
on Hybrid Architectures, International Workshop on OpenMP: Experiences 
and Implementa-tions (WOMPEI 2002), Lecture Notes in Computer Science 
2327, pp.437-448, 2002. 

（98） P. Raghavan, K. Teranishi and E.G. Ng: Towards Scalable Preconditioning 
using Incomplete Cholesky Factorization, 2001 International Conference on 
Preconditioning Techniques for Large Sparse Matrix Problems in Industrial 
Applications (Preconditioning 2001), Tahoe City, CA, USA, 2001. 

（99） G.D. Raithby and G.E. Schneider: Numerical Solution of Problems in 
Incompressible Fluid Flow: Treatment of the Velocity-Pressure Coupling, 
Numerical Heat Transfer, Vol.2, pp.417-440, 1979. 

（100） M. Raw: Robustness of coupled algebraic multigrid for the Navier-Stokes 
equations, AIAA paper 96-0297, 1996. 



275 

（101） C.M. Rhie: A Pressure Based Navier-Stokes Solver Using the Multigrid 
Method, AIAA Paper 86-0207, 1986. 

（102） T. Sarpkaya and M. Issacson: Mechanics of Wave Forces on Offshore 
Structures, Van Nostrand Reinhold Company, 1981. 

（103） Y. Saad: Iterative Methods for Sparse Linear Systems, PWS Publishing 
Company, 1996. 

（104） Y. Shapira: Multigrid for Locally Refined Meshes, SIAM Journal of Scientific 
Computing, Vol.21, No.3, pp.1168-1190, 1999. 

（105） M.S. Shepard, J.E. Flaherty, C.L. Bottasso, H.L. de Cougny, C. Ozturan and 
M.L. Simone: Parallel automatic adaptive analysis, Parallel Computing, Vol. 
23, pp.1327-1347, 1997. 

（106） H.D. Simon: Partitioning of unstructured problems for parallel processing, 
Computing Systems in Engineering, Vol.2, pp.135-148, 1991. 

（107） B. Smith, P. Bjφrstad and W. Gropp: Domain Decomposition: Parallel 
Multilevel Methods for Elliptic Partial Differential Equations, Cambridge 
University Press, 1996. 

（108） F. Sotiropoulos and S. Abdallah: The Discrete Continuity Equation in 
Primitive Variable Solutions of Incompressible Flow, Journal of 
Computational Physics, Vol.95, pp.212-227, 1991. 

（109） K. Stüben: Algebraic Multigrid (AMG) : An Introduction with Applications, 
GMD Report 53, GMD-Forschungstentrum Informationstechnik GmbH, 1999. 

（110） U. Tottemberg, C.Oosterlee, A.Schüller: Multigrid, Academic Press, 2001. 
（111） R.S. Tuminaro, J.N. Shadid and S.A. Hutchinson: Parallel Sparse Matrix 

Vector Multiply Software for Matrices with Data Locality, Sandia National 
Laboratories Technical Report SAND 95-1540J, 1995. 

（112） R.S. Tuminaro and C. Tong: Parallel Smoothed Aggregation Multigrid : 
Aggregation Strategies on Massively Parallel Machines, SC 2000 Proceedings, 
Dallas, Texas, USA, 2000.  

（113） V. Venkatakrsihnan: Parallel Implicit Methods for Aerodynamic Applications 
on Unstructured Grids, Domain-Based Parallelism and Problem 
Decomposition Methods in Computational Science and Engineering, pp.57-74, 
SIAM, 1994. 

（114） A. Vidwans, Y. Kallinderis and V. Venkatakrishnan: Parallel Dynamic 
Load-Balancing Algorithm for Three-Dimensional Adaptive Unstructured 
Grids, AIAA Journal, Vol.32, No.3, pp.497-505, 1995. 

（115） K. Wang, S-B. Kim, J. Zhang, K. Nakajima and H. Okuda: Global and 



276 

localized parallel preconditioning techniques for large scale solid Earth 
simulations, Technical Report No. 345-02, Department of Computer Science, 
University of Kentucky, 2002. 

（116） Z.J. Wang: A fast nested multi-grid viscous flow solver adaptive 
Cartesian/Quad grids, International Journal for Numerical Methods in Fluids, 
Vol.33, pp.657-680, 2000.  

（117） T. Washio and C.W. Oosterlee: Flexible Multiple Semicoarsening for 
Three-Dimensional Singulary Perturbed Problems, SIAM Journal of Scientific 
Computing, Vol.19, No.5, pp.1646-1666, 1998. 

（118） T. Washio, K. Maruyama, T. Osoda, F. Shimizu, and S. Doi: Blocking and 
reordering to achieve highly parallel robust ILU preconditioners, RIKEN 
Symposium on Linear Algebra and its Applications, The Institute of Physical 
and Chemical Research, pp.42-49, 1999. 

（119） T. Washio, K. Maruyama, T. Osoda, F. Shimizu, and S. Doi: Efficient 
implementations of block sparse matrix operations on shared memory vector 
machines, SNA2000 : The Fourth International Conference on 
Supercomputing in Nuclear Applications, Tokyo, Japan, 2000. 

（120） J.M. Weiss, J.P. Maruszewski and W.A. Smith: Implicit Solution of 
Preconditioned Navier-Stokes Equations Using Algebraic Multigrid, AIAA 
Journal, Vol.37, No.1, pp.29-36, 1999. 

（121） R.Wienands, C.W.Oosterlee and T.Washio: Fourier Analysis of GMRES(m) 
Preconditioned by Multigrid, SIAM Journal of Scientific Computing, Vol.22, 
No.2, pp.582-603, 2001. 

（122） A.M. Wissink, R.D. Hornung, S.R. Kohn, S.S. Smith and N.Elliott: Large 
Scale Parallel Structured AMR Calculations Using the SAMRAI Framework, 
SC 2001 Proceedings, Denver, Colorado, USA, 2001. 

（123） J. Zhang: Sparse approximate inverse and multilevel block ILU 
preconditioning techniques for general sparse matrices, Applied Numerical 
Mathematics, Vol.35, pp.67-86, 2000. 

（124） J. Zhang: Preconditioned Klyrov subspace methods for solving nonsymmetric 
matrices from CFD applications, Computer Methods in Applied Mechanics 
and Engineering, Vol.189, pp.825-840, 2000. 

（125） S.L. Zhang: GPBi-CG: Generalized Product-type methods based on Bi-CG for 
solving nonsymmetric linear systems, SIAM Journal of Scientific Computing, 
Vol.18, No.2, pp.537-551, 1997. 

（126） Accelerated Strategic Computing Initiative (ASCI) Web Site: 



277 

http://www.llnl.gov/asci/ 
（127） AZTEC Web Site: http://www.cs.sandia.gov/CRF/aztec1.html/ 
（128） CASC (Center for Applied Scientific Computing, Lawrence Livermore 

National Laboratory) Web Site: http://www.llnl.gov/CASC/linear_solvers/ 
（129） DRAMA Web Site: 

http://www.ccrl-nece.technopark.gmd.de/~drama/drama.html/ 
（130） Earth Simulator Center Web Site: http://www.es.jamstec.go.jp/ 
（131） GeoFEM Web Site: http://geofem.tokyo.rist.or.jp/ 
（132） Hitachi SR2201 Web Site: 

http://www.hitachi.co.jp/Prod/comp/hpc/jpn/sr2.html 
（133） Hitachi SR8000 Web Site: 

http://www.hitachi.co.jp/Prod/comp/hpc/foruser/sr8000/ 
（134） HPC Middleware Web Site (Frontier Simulation Software for Industrial 

Science, Institute of Industrial Science, The University of Tokyo): 
http://www.fsis.iis.u-tokyo.ac.jp/hpc/index_e.html 

（135） Information Technology Center, The University of Tokyo Web Site: 
http://www.cc.u-tokyo.ac.jp/ 

（136） JOSTLE Web Site: http://www.gre.ac.uk/jostle/ 
（137） LAMP Web Site: 

http://www.ccrl-nece.technopark.gmd.de/~maciej/LAMP/LAMP.html 
（138） METIS Web Site: http://www-users.cs.umn.edu/~karypis/metis/ 
（139） MPI (Message Passing Interface) Forum Web Site: 

http://www.mpi-forum.org/ 
（140） NPB (NAS Parallel Benchmarks) Web Site: 

http://www.nas.nasa.gov/Research/Software/swdescription.html#NPB 
（141） OpenMP Web Site: http://www.openmp.org/ 
（142） PETSc Web Site: http://www-fp.mcs.anl.gov/petsc/ 
（143） http://www6.tomshardware.com/cpu/00q4/001107/mobilecpu-19.html/ 



278 

  



279 

VITA 
 

Kengo Nakajima was born in Okayama, Japan, on September 14, 1962, the son of 
Masao and Kazuko Nakajima. He graduated from the University of Tsukuba High 
School at Komaba, Japan in March 1981. He received a Bachelor of Engineering degree 
in Aeronautics from the University of Tokyo, Japan in March 1985. His thesis title is 
"Active Flutter Suppression Method for a Cantilevered CFRP Wing'' supervised by 
Professor Kyohei Kondoh, Dr.Eng. 
 He worked for the Mitsubishi Research Institute, Inc. (MRI), Japan as a research 
engineer in the area of nuclear engineering and computational science from April 1985 
to June 1999. 
 While working for MRI, he entered the Graduate School of the University of Texas 
at Austin in the Fall of 1991. He received a Master of Science degree in Engineering at 
the Department of Aerospace Engineering and Engineering Mechanics in May 1993. 
His thesis title is "Incompressible Navier-Stokes Methods with Hybrid Adaptive Grids" 
supervised by Professor John Kallinderis, Ph.D. He worked as a research associate in 
TICOM (Texas Institute for Computational Mechanics) from June 1993 to January 
1994. 
 He entered the Research Organization for Information Science and Technology 
(RIST), Japan in July 1999. Since then he has been working for GeoFEM project and 
developing parallel programming models, parallel iterative linear solvers with 
preconditioning methods, mesh adaptation procedure with dynamic load balancing and 
various types of finite-element applications, such as 3D compressible/incompressible 
Navier-Stokes simulations, 3D groundwater flow and transport with convection and 
diffusion and unsteady tsunami simulations. 


	Chap6.pdf
	Chap6fig
	Chap7
	Chap8

