
213

Chapter 6 Parallel 3D Adaptive Navier-Stokes

Solver in GeoFEM with Dynamic Load-Balancing

Grid adaptation is a very useful method for applications with unstructured meshes but
requires dynamic load-balancing for efficient parallel computation. In this chapter, a
parallel 3D compressible Navier-Stokes code with adaptive hybrid meshes
(epHYBRID) and parallel adaptation procedure (pADAPT) have been developed on the
GeoFEM parallel platform. The DRAMA library has been integrated into the pADAPT
module to solve the load-balancing problem. The entire code system has been evaluated
under various types of conditions on Pentium clusters and Hitachi SR2201. Results
show that DRAMA library provides accurate load-balancing for parallel mesh
adaptation in pADAPT and excellent parallel efficiency in the Navier-Stokes
computations in epHYBRID.

214

6.1 Introduction

Adaptive methods in applications with unstructured meshes have evolved as efficient
tools for obtaining numerical solution without a priori knowledge of the details of the
nature of the underlying physics. But these methods cause severe load imbalance among
processors in parallel computations. Recently, various types of methods for dynamic
load-balancing in parallel mesh adaptation have been developed [9,85,105,114].
 In this chapter, a parallel 3D compressible Navier-Stokes code with adaptive
hybrid meshes (epHYBRID) and parallel mesh adaptation module (pADAPT) have
been developed on the GeoFEM parallel platform. A repartitioning tool based on the
DRAMA library [129] that provides dynamic load-balancing and complete data
migration has been integrated into the pADAPT module. In the following section of this
chapter, we outline the numerical method used in epHYBRID, and the parallel
adaptation and load-balancing algorithm in pADAPT/DRAMA. Finally, the extended
the GeoFEM data structures for parallel mesh adaptation are described.
 The entire code system (Fig.6.1) has been tested with the simulation of the
supersonic flow around a spherical body on Pentium cluster and Hitachi SR2201.
Various types of repartitioning methods in the DRAMA library have been evaluated.

215

6.2 Parallel 3D Compressible Navier-Stokes Solver :
epHYBRID

6.2.1 Outline

The epHYBRID code for parallel 3D compressible Navier-Stokes simulation is based
on a sequential version of program which was originally developed for single CPU
workstations by the author [89,91] for the simulation of the external flow around
airplanes. An edge-based finite-volume method with unstructured prismatic/tetrahedral
hybrid meshes suitable for complicated geometry is applied. The solution is marched in
time using a Taylor series expansion following the Lax-Wendroff approach. Although
the original program was written in Fortran 77, the newly developed parallel version is
written in Fortran 90 to exploit its dynamic memory management features and uses the
message passing interface (MPI) for communication.
 In the hybrid mesh system, the surface of the model is covered with triangles,
which provide geometric flexibility, while the structure of the mesh in the direction
normal to the surface provides thin prismatic elements suitable for the viscous region
(Fig.6.2 and Fig.6.3). The outermost layer of the prismatic mesh is then used as the
inner boundary surface for a tetrahedral mesh (Fig.6.3), which covers the rest of the
computational domain. Tetrahedral meshes are also suitable for connecting different
prismatic regions. Figure 6.4 shows an example of the hybrid meshes around a sphere.

6.2.2 Governing Equations

The Navier-Stokes equations for viscous fluid flow are written in the differential form
as follows:

 RF ⋅∇=⋅∇+
∂
∂
t
U (6.1)

where U is the state vector; F comprises the convective flux vector components F, G
and H in x, y, z- directions respectively; R comprises the viscous flux vector
components R, S and T in x, y, z- directions respectively. The state vector and the
convective and viscous flux vectors are defined in terms of primitive variables.
 The solution at any node N, at time level n+1 can be expressed in terms of the
solution at time level n using a Taylor series expansion:

216

)n(
N

)n(
N

)1n(
N UUU δ+=+

 ()32
)n(

N
2

2)n(

N

)n(
N

)1n(
N

)n(
N tOt

t
t

t
Δ+Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+Δ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=−=δ + UUUUU (6.2)

The temporal derivatives in the preceding expression are evaluated in terms of spatial
derivatives using the governing equations according to the Lax-Wendroff approach. The
finite-volume method evaluates the integral averages of the temporal derivative terms in
equation (6.2) over the control volume ΩN associated with node N.

6.2.3 Spatial Discretization with Mixed Elements

The spatial discretization proceeds by constructing a dual cell around each node N that
represents the control volume over which the integral averages of the temporal
derivatives are evaluated. The two-dimensional analogy of defining dual cells for
different configurations in a triangular-quadrilateral hybrid mesh is illustrated in Fig.6.5.
The duals are defined by connecting the midpoints of the edges and centroids of the
triangular and/or quadrilateral faces that share the node. Dual cells for a
three-dimensional hybrid grid are constructed along similar lines using the centroids of
faces and cells with which each node is associated.
 The integral average of the first-order temporal derivatives associated with the
node N is written in discrete form following the governing equation (6.1):

 () ff
f

f
NN

S
1

t
nU ˆRF ⋅−

Ω
−=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ ∑ (6.3)

where the summation f is over all of the discrete faces of the dual mesh that constitute

NΩ∂ . It is shown in [41,91] that the summation in equation (6.3) can be alternatively
computed on an edgewise basis as:

 () ee
e

e
NN

S
1

t
nU ˆRF ⋅−

Ω
−=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ ∑ (6.4)

where the summation e is over all of the edges that share the node N. The term Se
represents the dual-face area associated with each edge, and en̂ is the unit normal
vector of the dual-face area Se. The are Se are computed using the dual mesh

217

construction of Fig.6.5 and Fig.6.6, by accumulating the areas of each dual-mesh face
that shares the edge. The finite volume scheme then proceeds by computing δUs at the
nodes by a global sweep over the edges and is thus, transparent to whether a node lies in
the tetrahedral region, in the prismatic region, or at the interfaces.
 The second-order temporal derivatives are evaluated along similar lines. The
expression for the second-order derivatives at node N is given from [41,91] as follows:

 () dS
t

nnn
1

t N
zyx

NN
2

2

∂
∂

++
Ω

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∫ Ω∂
UCBAU ~~~ (6.5)

where
U
GC

U
FB

U
EA

∂
∂

=
∂
∂

=
∂
∂

= ~,~,~ are the Jacobians of convective flux vectors. The

Jacobians of flux vectors need to be computed to evaluate the second-order derivatives.
However, only the convective flux vectors are considered in this step as the Jacobians of
viscous flux vectors are too expensive to compute. Therefore, discretization of the
viscous terms is first-order accurate in time and second-order accurate in space.

6.2.4 Upwind-like Artificial Dissipation

The dissipation modeling in this work is formulated in such a manner as to simulate the
implicit dissipation terms of the upwinding schemes without increasing the computation
cost of the algorithm [41,89,91].
 The numerical formula for the flux vector at any intermediate state I between two
end states L and R can be expressed as:

 () ()LRrRLI 2
1 UUAFFF −−−= ~ (6.6)

where rA~ is Roe's matrix [41,89,91]. The dissipation terms are modeled so as to be

similar to the second term of the above equation as this corresponds to the implicit
smoothing term of the upwinding scheme. A simplified form of Roe's matrix [41,89,91]

is obtained by replacing rA~ with () cur +=ρ A~ , the maximum eigenvalue of Roe's

matrix. This ensures that the dissipation terms do not dwindle down to zero near the
stagnation or the sonic points.

218

 To extend this concept to 3D, edge-based operations are adopted for calculation of

the artificial dissipation term. The contribution () 2sn
0Uδ of shock smoothing terms to

the change n
0Uδ at the node 0 is given as follows:

 () ()() ()0N(e)

Ne

1e
e

0
2s

n
0 ScSf

t UUuU −+
Ω
Δ

=δ ∑
=

,

 () zyx SwSvSuSf ++=,u

 21
e

2
z

2
y

2
xe SSSS /++= (6.7)

where e denotes the connected edge. The shock smoothing term is evaluated similar to
the viscous fluxes on an edge-wise basis. The fourth order smoothing contribution

() 4sn
0Uδ is computed in a similar fashion. Instead of the first difference of state vectors

as used in equation (6.7), a difference of the accumulated first difference over the edges
sharing a node is used for background smoothing in the flow high Reynolds number.

 The change ()sn
0Uδ at the node 0 due to second and fourth order smoothing is

given by:

 () () () () () 4sn
042s

n
02s

n
0 P1P UUU δΔ−σ+δΔσ=δ (6.8)

The pressure switch PΔ is used to turn the shock smoothing and the background
smoothing on at the appropriate regions. The coefficients σ2, σ4 are empirical
parameters that control the amount of shock and background smoothing. Their values
are the smallest possible for which the method converges.

219

6.2.5 Local Time Stepping

The solution at each node is advanced in time using local time steps. A combination of
the CFL and diffusion stability limitations is employed. The viscous-like smoothing
term can have appreciable magnitude at shock regions, and therefore it is included in the
diffusion limitation. The time-step restriction for the 1-D wave equation is

c)(|u|xt +Δ≤Δ / , while the restriction for the 1-D diffusion equation is
)x()2/1(t 2 νΔ≤Δ // , where in this case P2Δσ+ρμ=ν / .

220

6.3 Parallel Mesh Adaptation and Dynamic Load-Balancing
Module: pADAPT/DRAMA

6.3.1 pADAPT

(1) Feature Detector

A dynamic adaptation algorithm developed for 3D unstructured meshes [41,89,90,91]
has been parallelized on the GeoFEM parallel platform. The algorithm is capable of
simultaneous refinement and coarsening of the appropriate regions in the flow domain.
 The adaptation algorithm is guided by a feature detector that senses regions with
significant changes in flow properties, such as shock waves, separations and wakes.
Velocity differences and gradients across the edges are used for feature detection and
threshold parameters are set in order to identify the regions to be refined or coarsened
[39,40]. This edge-based treatment is applied for both prisms and tetrahedra. The
threshold values for the parameters are set based on the distribution of the parameters
which is characterized by the average Save and the standard deviation Ssd of the
respective parameters, where S is the detection parameter [39,40]. The following
relations are used to set the threshold values for refinement.

 Sth = Save + α Ssd (6.9)

The average and the standard deviation are defined as:

 ∑
=

=
edgesN

1e
e

edge
ave S

N
1

S

 ()∑
=

−=
edgesN

1e

2
avee

edge
d SS

N
1

S (6.10)

The value of the parameter α is chosen empirically. The edges that have a detection
parameter value greater than the threshold value are flagged to be refined. If very big
value of α is chosen, the grid may not be adapted at all. On the contrary, the grid can be
refined through the entire domain for very small α.

221

(2) Prisms

A special type of adaptive refinement of prisms is applied in the present work in order
to preserve structure of the mesh along the normal-to-surface direction. The detected
triangular faces on the surface are divided, as shown in Fig.6.7. Then all prisms above
these faces are directionally divided along the lateral directions. The cells are not
divided along the third direction that is normal to the surface. In this way, grid interfaces
within the prisms region are avoided and the structure of the grid along the
normal-to-surface direction is preserved. Furthermore, such a division is not needed,
since the points are distributed along that direction in a way that the viscous stresses are
resolved [42]. Therefore, adaptation of the prisms reduces to adaptation of the triangular
grid on the surface. The resulting surface triangulation is replicated in each successive
layer of the prismatic mesh as illustrated in Fig.6.7. This results in a simpler and less
expensive algorithm in terms of storage and CPU time compared to a 3-D adaptation
algorithm.
 Two types of division are applied. The first divides the triangular faces of the
prisms into four smaller triangles (quadtree), while the second type divides them into
two (binary), as shown in Fig.6.7. In the first case, the parent triangle is divided into 4
children, while it is divided into 2 children in the second case. If two edges of the
triangle are to be refined, the third is also refined automatically to avoid stretching.
Division of cells is also employed to divide transition cells at the interface between
different embedded regions that contain hanging nodes in the middle of some of their
edges due to refinement of neighboring cells. Furthermore the position of newly created
surface nodes is corrected so that the original geometry of the surface should be kept. In
addition, coarsening of the adapted prismatic grid is applied over regions where the
embedded cells are no longer needed.
 If grids are adapted at multi levels, there could be very stretched meshes. To avoid
these situations, some rules are defined as follows:

• Only one level refinement/coarsening is allowed at one adaptation stage.
• If the parent cell is refined by binary division, all three edges should be divided

at next refinement (Fig.6.7).
• If the maximum adaptation level difference of neighboring surface triangles

around a node is more than 1, the coarser triangles will be refined by three-edge
division, as shown in Fig.6.8. In this figure, the maximum adaptation level
difference around node C is 2 following the second refinement and the
adaptation level difference is reduced by refining the coarsest triangle.

222

• Grid coarsening is conducted in same manner. If the refinment and coarsening
occur in same triangle (different edges), refinment procedure works over
coarsening (refinement is always stronger than coarsening).

Also, adaptation may yield embedded regions that are slightly smaller than the features
which are detected, which results in interfaces being located within or very close to the
regions of relatively large gradients. In order to avoid such situations, the algorithm
places extra rows (typically two) of embedded cells surrounding the detected regions.
This extension of the embedded region is performed as follows:

（1） All edges with large gradient and/or difference are refined.
（2） Sweep through all the active (not parent) triangles and flag three edges of each

triangle if at least one edge is refined at the current stage of adaptation.
（3） Refine all the flagged edges.
（4） Repeat Steps (2) and (3) number of specified times (typically two) to get

sufficiently large embedded region.

To satisfy all of the above rules for grid smoothing, some iterations are required.
Usually the number of iteration is less than 5.

(3) Tetrahedra

The tetrahedral elements constitute the area of mesh dominated by inviscid flow
features which do not exhibit the directionality as is generally seen in the viscous region.
Hence, the tetrahedral meshes are refined isotropically.

The adaptation procedure for tetrahedra is very similar to that of prisms. The feature
detector flags edges to be refined/coarsened. Figure 6.9 shows the following three types
of tetrahedral cell division:

• One edge is refined. 2 children, binary.
• Three edges on the same face are refined. 4 children, quadtree.
• All six edges are refined. 8 children, octree.

After all edges are flagged, each tetrahedral cell is visited and the flagged edges are
counted. Then, the cell is flagged for division according to the above three types. In all
cases that are different from the three cases above, the cell is divided according to the

223

third type of division. If two edges on the same face are refined, the third on the surface
is refined according to the second type of division.
 To avoid stretched mesh, similar rules with prisms are applied. In order to avoid
excessive mesh skewness, repeated binary and quadtree divisions of tetrahedra are not
allowed. Furthermore, in order to avoid sudden changes in mesh size, the mesh
refinement algorithm also limits the maximum difference in embedding level between
neighboring elements less than two.

(4) Prisms/Tetrahedra Interfaces Treatment

The adaptation processes for prisms and tetrahedra are coupled through the outermost
triangle surfaces of the prismatic grids, which coincide with tetrahedral triangular
faces, as shown in Fig.6.10. The pairs of interface cells (between prisms and tetrahedra)
are divided if one or both cells are flagged for division. In this way, additional mid-edge
nodes are avoided. The procedure is as follows:

（1） Visit all edges in prismatic region and flag edges to be refined/coarsened.
（2） Visit all edges in tetrahedra region and flag refined/coarsened edges.
（3） Visit the interface pairs of prisms/tetrahedra and flag both cells if at least

one of them is flagged for division.
（4） Repeat steps (1)-(3) if required.

Figure 6.11 shows the outline of the parallel mesh adaptation algorithm in pADAPT.
Underlined functions use the DRAMA library and its data migration capability
developed for this work.

224

6.3.2 DRAMA and Data Migration

The DRAMA library, originally developed within the European Commission funded
project with the same name, supports dynamic load-balancing for parallel message
passing, mesh-based applications. For a general overview see [8]. The library was
evaluated with industrial FE codes and is further developed in ongoing research
collaborations.

The core library functions perform a parallel computation of a mesh re-allocation
that will re-balance the costs of the application code based on an adjustable, rich cost
model. The DRAMA library contains geometric (RCB: Recursive Coordinate Bisection),
topological (graph) and local improvement (direct mesh migration) methods and allows
to use leading parallel graph partitioning packages such as METIS [138] and JOSTLE
[136] through internal interfaces. DRAMA is open source, which is freely downloadable
from the web-site in [129].

The DRAMA internal data structures have been designed to be suitable for
adaptive applications (i.e. double numbering). The DRAMA library is a load-balancing
tool that performs data migration for elements and nodes as described by the DRAMA
mesh structure. It supports the application to complete the data migration by old/new
and new/old element/node numbering relations. Especially for adaptive codes this is a
considerable task involving the reconstruction of the entire grid hierarchy. Routines for
mesh conversion and data migration have been developed to integrate the DRAMA
library in the pADAPT module of the adaptive GeoFEM environment. The resulting
code structure is shown in Fig.6.1

225

6.4 Distributed Data Structures for Parallel Mesh Adaptation

A proper definition of the layout of the distributed data structures is very important for
the efficiency of parallel computations with unstructured meshes. Although the
epHYBRID code adopts an edge-based formulation, the GeoFEM local data structures
described in Chapter 2 which are node-based with overlapping elements
[71,72,73,79,81,84,131] has been adopted here. This data structure with
internal/external/boundary nodes and communication tables provides excellent parallel
efficiency [28,79,81].
 Some additional information for mesh adaptation and grid hierarchy has been
added to the original static GeoFEM data structure. In order to conform with the
DRAMA library interface and the data migration procedure, double-numbering of nodes,
elements and edges has been implemented where items are identified by 2 types of ID
(original partition and local ID) [129], instead of single-numbering where global ID for
nodes and elements are used. Internal array for element connectivity is changed from
2D type to 1D compressed array with index array because both of prisms and tetrahedra
appear in this work and 2D type array is not memory efficient.
 Figures 6.12 and 6.13 show the examples of old and new data structure [76].

226

6.5 Examples

Numerical simulations of the supersonic flow (M=1.40, Re=106) around a sphere have
been conducted under various types of configurations. In Fig.6.14, a spherical bow
shock can be observed upstream the body. It shows the Mach number distribution in
very coarse initial meshes, 1-level and 2-level adapted meshes. The shock is very
sharply captured by 2-level adapted meshes. Computations are executed on the
32-processor LAMP Pentium cluster [137] operated by NEC-Europe and the
1024-processor Hitachi SR2201 computer at the University of Tokyo, Japan.
 In these examples, grid adaptation is required only several times during entire
computations. Therefore, computation time for grid adaptation and dynamic
load-balancing is almost negligible compared to time for Navier-Stokes simulation.
Computational and parallel efficiency of the grid adaptation, dynamic load-balancing
and data migration have not been evaluated here.

6.5.1 Parallel Performance of epHYBRID without Adaptation

Parallel performance of epHYBRID code was evaluated using globally fine prismatic
meshes without adaptation using 2 to 256 processors on both the LAMP cluster and the
SR2201 computer. In these computations, the problem size for each processor was
approximately kept fixed up to the 48 PE case. Ranging from 48 to 256 PEs, the entire
problem size was held constant. GeoFEM’s RCB method and METIS have been applied
as initial static partitioning method.
 The results are summarized in Table 6.1. The unit elapsed user execution time
(including both computation and communication time) for each iteration stays almost
constant up to 256 processor case and parallel efficiency of the epHYBRID is almost
perfect.

6.5.2 Comparison of Repartitioning Methods (Tetrahedral Grids)

As is described in 6.3, the DRAMA library offers various types of repartitioning
methods (for instance : graph-based (PARMETIS or PJOSTLE) and geometry-based
(RCB)). Here, we compare the effect of different repartitioning methods on the
computational efficiency of the resulting meshes. The following repartitioning methods
in the DRAMA library have been considered:

• No Repartitioning

227

• PJOSTLE
• PARMETIS k-way
• RCB Simple
• RCB Bucket (edgecut reduced)

The same problem described in 6.5.1 has been solved on 8 or 16 processors with purely
tetrahedral meshes. The DRAMA options were set so that the partitioner would balance
the number of internal nodes in each partition. Table 6.2.-6.4. show the resulting
distributions and the corresponding elapsed time for epHYBRID (averaged for 1,000
steps). Fig.6.15 shows the partitioning after 2-level adaptation for the 8 processor case
displayed by the parallel version of GPPView [124] tool developed within the GeoFEM
project. Without repartitioning, load imbalance among the processors is severe
especially after 2-level adaptation. Among the 4 repartitioning methods, PJOSTLE
provided the best quality from the viewpoint of the performance of the epHYBRID code
because resulting edge-cuts and edges in each partition are the fewest.

6.5.3 Comparison of Repartitioning Methods (Hybrid Grids)

Several cases were computed using hybrid grids on LAMP cluster. Description of the
initial grid is as follows (Fig.6.16):

• 1,280 triangles, 642 nodes on the sphere surfaces
• 24 layers. Inner (closer to the sphere surface) 6 layers are for prisms and outer

18 layers are for tetrahedra, totally 76,800 cells (7,680 prisms and 69,120
tetrahedra) and 16,050 nodes.

• Divided into 16 regions by RCB (Recursive Coordinate Bisection).

We compare the effect of different repartitioning methods on the computational
efficiency of the resulting meshes. The following repartitioning methods in the DRAMA
library have been considered:

• No Repartitioning
• PJOSTLE
• RCB Simple
• RCB Bucket (edgecut reduced)

The DRAMA options were set so that the partitioner would balance the number of

228

internal nodes in each partition. Table 6.5. show the resulting distributions and the
corresponding elapsed time for epHYBRID (averaged for 1,000 steps). Figures
6.17-6.19 show the partitioning after 1-level adaptation for the 16 processor case
displayed by the parallel version of GPPView tool. Without repartitioning, load
imbalance among the processors is severe after adaptation. Among the 3 repartitioning
methods, PJOSTLE provided the best quality from the viewpoint of the performance of
the epHYBRID code because resulting edge-cuts and edges in each partition are the
fewest.

229

6.6 Summary

In this chapter, a parallel 3D compressible Navier-Stokes code with adaptive hybrid
meshes (epHYBRID) and parallel mesh adaptation module (pADAPT) have been
developed on the GeoFEM parallel platform with an extended data structure for grid
adaptation and dynamic load-balancing.
 The DRAMA library has been integrated in the pADAPT module and the data
migration procedure has been added. The entire code system has been tested with the
simulation of the supersonic flow around a spherical body on a Pentium cluster and a
Hitachi SR2201 computer. We found that the epHYBRID code with extended the
GeoFEM data structure showed excellent parallel efficiency with dynamic
load-balancing. Various types of repartitioning methods in the DRAMA library have
been evaluated on both purely tetrahedral and hybrid meshes. Among these methods,
PJOSTLE provided the best mesh partitioning quality from the viewpoint of the
efficiency of the epHYBRID code.
 Developed data structure with double-numbering proved to very flexible and
efficient for processing distributed local data sets with parallel mesh adaptation and
dynamic load balancing.

230

231

Fig. 6.1 epHYBRID and pADAPT/DRAMA coupled system [76]

ResultsGrid

ResultsGrid

Control
Data

epHYBRID

pADAPT

DRAMA

ResultsGrid

ResultsGrid

Control
Data

epHYBRID

pADAPT

DRAMA

232

Fig. 6.2 Prismatic meshes generated from surface triangles in the normal-to-surface
direction [42,76,89,91]

233

(a) Prism

(b) Tetrahedron

Fig. 6.3 Prismatic and tetrahedral meshes and dual-cells [42,76,89,91]

1

2 3

4

0

1

2 3

4

0 00

4

1

2

3

5

6

0

4

1

2

3

5

6

0
00

234

Fig. 6.4 Example of the prismatic/tetrahedral hybrid meshes [76]

235

Fig. 6.5 Dual volume constructions for mixed-element topology. Two-dimensional
analogies for dual mesh around a node in the (a) prismatic region, (b)
tetrahedral-prismatic interface and (c) tetrahedral region [91]

N

N

N

(a) Prismatic Region

(b) Tetrahedral/Prismatic
Interface

(c) Tetrahedral Region

236

Fig. 6.6 Edge-dual volume defined around the edges for computing the gradients of
primitive variables at the edge centers [76,91]

E1

E2

C

E1

E2

C

E1

E2

C

E1

E2

C

237

Fig. 6.7 Directional refinement of prisms based on quadtree and
binary divisions of the triangular faces on the wall [76,89]

○

×

×

1 edge cut

2 or 3 edge cuts

○

×

×

1 edge cut

2 or 3 edge cuts

Initial Grid Edge Cut
Embedded Grid obtained after
quadtree and binary divisions

of the triangular faces

238

Fig. 6.8 Procedure in for avoiding sudden changes in mesh size. The mesh
refinement algorithm limits the maximum difference in embedding level between
neighboring elements to less than 2 [76,89]

1st Level Refinement

2nd Level Refinement
before Adjustment
○：mid-edge points

2nd Level Refinement
after Adjustment

C

C

Initial Level

1st Level

2nd Level

C Initial Level
1st Level
2nd Level

1st Level Refinement

2nd Level Refinement
before Adjustment
○：mid-edge points

2nd Level Refinement
after Adjustment

C

C

Initial Level

1st Level

2nd Level

C Initial Level
1st Level
2nd Level

239

Fig. 6. 9 Refinement strategies for a tetrahedron (binary, quadtree and octree) [76,89]

2 edges on
a same

surface are
marked

4 children
(Quadtree)

8 children
(Octree)

more than
2 edges on

different
surfaces are

marked

more than
4 edges are

marked

3rd edge is
automatically

marked

6 edges are
automatically

marked

1 edge
marked

2 children
(Binary)

3 edges on
a same

surface are
marked

2 edges on
a same

surface are
marked

4 children
(Quadtree)

8 children
(Octree)

more than
2 edges on

different
surfaces are

marked

more than
4 edges are

marked

3rd edge is
automatically

marked

6 edges are
automatically

marked

1 edge
marked

2 children
(Binary)

3 edges on
a same

surface are
marked

240

(a) Propagation from prismatic region to tetrahedral region

(b) Propagation from tetrahedral region to prismatic region

Fig. 6.10 Coupling of prismatic-tetrahedral adaptation at the interface [76,89]

Initial Grid Edge Cut Refinement
Propagation

Initial Grid Edge Cut Refinement
Propagation

Initial Grid Edge Cut Refinement
Propagation

Initial Grid Edge Cut Refinement
Propagation

241

Fig. 6.11 Parallel mesh adaptation/dynamic load-balancing/data migration procedure
in pADAPT/DRAMA coupled system (underlined items are added to the pADAPT
module) [76]

(1) Pre-Processing
- reads original grid and result files
- creates edges
- defines INTERNAL edges and cells *
- creates edge/cell communication tables*

(2) Feature Detection
- computes Velocity gradient/difference across the edges
- computes average and standard deviation*
- MARKs edges which satisfy criterion

(3) Extend Embedded Zones*
(4) Grid Smoothing*

- proper embedding patterns
- adjusts cell embedding level around each node

(5) New Pointers*
(6) New Communication Table*
(7) Load Balancing/Repartitioning by DRAMA Library
(8) Data Migration
(9) Output

242

(a) Original data structure of GeoFEM with global node/element ID and 2D array for
 element connectivity

(b) Extended data structure of GeoFEM with double-numbering for node/element and
 compressed 1D array for element connectivity.

Fig.6.12 Original and extended data structure of GeoFEM [76,131]

type local_mesh
integer n_node total node #
real(kind=kreal),pointer:: node(:,:) node coordinates
integer n_elem total element #
integer,pointer:: elem_type(:) element type
integer,pointer:: elem(:,:) element connectivity
integer n_internal internal node #
integer,pointer:: global_node_id(:) global node ID
integer,pointer:: global_elem_id(:) global element ID

end type local_mesh

type local_mesh_new
integer n_node total node #
real(kind=kreal),pointer:: node(:,:) node coordinates
integer n_elem total element #
integer,pointer:: elem_type(:) element type
integer,pointer:: index_elem(:) 1D index for elem. connectivity
integer,pointer:: ptr_elem(:) 1D array for elem. connectivity
integer n_internal internal node #
integer nelem_internal internal elem.#（homeground）
integer,pointer::elem_internal_list(:) internal element list (local ID)
integer,pointer::node_ID (:,2) home PE & local ID of nodes
integer,pointer::elem_ID (:,2) home PE & local ID of elem.
integer,pointer::CoarseGridLevels how many coarsegrid level
integer,pointer::HOWmanyADAPTATIONs how many adaptations
integer,pointer::WhenIwasRefinedN(:) refinement history for node
integer,pointer::WhenIwasRefinedE(:) refinement history for elem.
integer,pointer::adapt_type(:) elem. refinement pattern
integer,pointer::adapt_level(:) elem. refinement level
integer,pointer::adapt_parent(:,2) parent elem.: home PE & local ID

=(-1,0) if coarsest level
integer,pointer::adapt_parent_type(:) elem. refinement pattern of parent
integer,pointer::adapt_child (:,2) child elem.: home PE and local ID
integer,pointer::index_child(:) index for children

end type local_mesh_new

243

Fig.6.13 Original and extended data structure of GeoFEM (Example) [76,131]

OLD Data Structure
elem_type(1~2)= 221
elem(1,1~4) = 1,4,5,2
elem(2,1~4) = 2,5,6,3

elem_type(3~6)= 211
elem(3,1~3) = 4,7,8
elem(4,1~3) = 4,8,5
elem(5,1~3) = 5,8,9
elem(6,1~3) = 5,9,6

NEW Data Structure
elem_type(1~2)= 221
index_elem(1)=4, ptr_elem(1~4)= 1,4,5,2
index_elem(2)=8, ptr_elem(5~8)= 2,5,6,3

elem_type(3~6)= 211
index_elem(3)=11, ptr_elem(9~11)= 4,7,8
index_elem(4)=14, ptr_elem(12~14)= 4,8,5
index_elem(5)=17, ptr_elem(15~17)= 5,8,9
index_elem(6)=20, ptr_elem(18~20)= 5,9,6

1 2

1 2 3

3 5

4 6
4 5 6

7 8 9

OLD Data Structure
elem_type(1~2)= 221
elem(1,1~4) = 1,4,5,2
elem(2,1~4) = 2,5,6,3

elem_type(3~6)= 211
elem(3,1~3) = 4,7,8
elem(4,1~3) = 4,8,5
elem(5,1~3) = 5,8,9
elem(6,1~3) = 5,9,6

NEW Data Structure
elem_type(1~2)= 221
index_elem(1)=4, ptr_elem(1~4)= 1,4,5,2
index_elem(2)=8, ptr_elem(5~8)= 2,5,6,3

elem_type(3~6)= 211
index_elem(3)=11, ptr_elem(9~11)= 4,7,8
index_elem(4)=14, ptr_elem(12~14)= 4,8,5
index_elem(5)=17, ptr_elem(15~17)= 5,8,9
index_elem(6)=20, ptr_elem(18~20)= 5,9,6

1 2

1 2 3

3 5

4 6
4 5 6

7 8 9

1 2

1 2 3

3 5

4 6
4 5 6

7 8 9

244

Fig. 6.14 Supersonic flow around a spherical body (M=1.40, Re=106). Mach number
distribution and meshes (a) Initial mesh (546 nodes, 2,880 tetrahedra), (b) 1-level
adapted mesh (2,614 nodes, 16,628 tetrahedra), (c) 2-level adapted mesh (10,240 nodes,
69,462 tetrahedra) [76]

245

Table 6.1 Hypersonic flow around a spherical body, 2-256 PE cases with globally fine
prismatic meshes on the LAMP cluster system and Hitachi SR2201

PE # Total
Node

P.M.

(1*)

Total
Edge
Cut #

Max.
Internal
Node #

Max.
Edge #

LAMP
Time(2*)

(μsec.)
(Node/Edge)

SR2201
Time(2*)

(μsec.)
(Node/Edge)

2 33,306 R 2,518 16,653 66,553 144.7/36.21 95.48/23.89
4 64,050 R 9,585 16,013 65,799 144.9/35.26 118.0/28.72
8 133,146 R 15,347 16,644 67,268 150.2/37.16 135.8/33.59
16 256,050 R 52,904 16,004 67,048 171.8/41.02 108.7/25.95
32 532,505 R 136,975 16,641 71,306 - 123.2/28.75
48 778,278 M 110,106 16,700 68,399 - 124.6/30.41
64 778,278 M 127,621 12,525 51,735 - 135.7/32.86
80 778,278 M 142,461 10,021 41,765 - 158.7/38.12
128 778,278 M 179,060 6,262 26,251 - 127.8/30.48
256 778,278 M 247,155 3,131 13,458 - 130.9/30.47

(1*) : Initial partitioning method : R-RCB, M-METIS

(2*) : Elapsed execution time / step / (internal node or edge)

Table 6.2 Hypersonic flow around a spherical body, 8 PE cases with 2-level adapted
meshes (total : 10,240 nodes, 69,462 tetrahedra) on LAMP cluster system (initial mesh :
546 nodes, 2,880 tetrahedra)

Repartitioning
Methods

Internal Node
Number

(min/max)

Total
Edge Cut

Edge Number
(min/max)

Time(1*)
(sec.)

No Repartition 561/2,335 11,224 4,918/17,639 619
PJOSTLE 1,274/1,286 7,293 9,248/9,883 354
PARMETIS k-way 1,267/1,293 7,679 9,258/10,222 363
RCB Simple 1,280/1,280 12,106 10,426/10,605 389
RCB Bucket 1,280/1,280 11,603 10,479/10,971 399

(1*) : Elapsed execution time for 1,000 time steps (averaged)

246

Table 6.3 Hypersonic flow around a spherical body, 16 PE cases with 1-level adapted
meshes (total : 47,074 nodes, 306,236 tetrahedra) on LAMP cluster system (initial
mesh : 16,050 nodes, 92,160 tetrahedra)

Repartitioning
Methods

Internal Node
Number

(min/max)

Total
Edge Cut

Edge Number
(min/max)

Time(1*)
(sec.)

No Repartition 1,343/6,351 39,888 10,576/48,495 1,683
PJOSTLE 2,929/2,961 25,085 21,089/22,233 874

PARMETIS k-way 2,905/2,984 26,274 21,201/22,630 880
RCB Simple 2,942/2,943 41,980 22,520/23,090 899
RCB Bucket 2,942/2,943 37,192 21,231/23,269 926

(1*) : Elapsed execution time for 1,000 time steps (averaged)

Table 6.4 Hypersonic flow around a spherical body, 16 PE cases with 2-level adapted
meshes (total : 163,537 nodes, 1,116,700 tetrahedra) on LAMP cluster system (initial
mesh : 16,050 nodes, 92,160 tetrahedra)

Repartitioning
Methods

Internal Node
Number

(min/max)

Total
Edge Cut

Edge Number
(min/max)

Time(1*)
(sec.)

No Repartition 6,621/20,842 101,178 50,386/152,059 5,384
PJOSTLE 10,195/10,260 55,663 73,262/ 75,540 2,982
RCB Bucket 10,221/10,222 100,462 82,799/ 85,819 3,227

(1*) : Elapsed execution time for 1,000 time steps (averaged)

247

 (a) PJOSTLE (b) PARMETIS k-way

 (c) RCB Bucket (d) No Repartitioning

Fig. 6.15 Repartitioned domains after 2-level adaptation with 8 processors (total :
10,240 nodes, 69,462 tetrahedra) displayed by GPPView [131] (a)PJOSTLE (b)
PARMETIS k-way (c)RCB Bucket and (d) No Repartitioning (each partition is
separately shown)

248

Fig. 6.16 Initial hybrid gird with 16 partitions. 1,280 triangles, 642 nodes on the
sphere surfaces. 24 layers, inner (closer to the sphere surface) 6 layers are for prisms
and outer 18 layers are for tetrahedra, totally 76,800 cells (7,680 prisms and 69,120
tetrahedra) and 16,050 nodes.

249

Table 6.5 Hypersonic flow around a spherical body, 16 PE cases with 1-level adapted
meshes (total : 60,575 nodes, 336,660 cells) on LAMP cluster system (initial mesh :
16,050 nodes, 76,800 cells)

Repartitioning
Methods

Internal Node
Number

(min/max)

Total
Edge Cut

Edge Number
(min/max)

Time(1*)
(sec.)

No Repartition 1,992/6,029 42,601 15,612/37,922 1,396
PJOSTLE 3,772/3,810 31,439 20,297/28,418 992
RCB Simple 3,785/3,786 43,191 23,405/28,249 1,030
RCB Bucket 3,785/3,786 39,030 21,609/29,552 1,080

(1*) : Elapsed execution time for 1,000 time steps (averaged)

250

Fig. 6.17 Repartitioned domains after 1-level adaptation with 16 processors by
PJOSTLE (total : 60,575 nodes, 336,660 cells) displayed by GPPView [131] (each
partition is separately shown)

251

Fig. 6.18 Repartitioned domains after 1-level adaptation with 16 processors by RCB
simple (total : 60,575 nodes, 336,660 cells) displayed by GPPView [131] (each partition
is separately shown)

252

Fig. 6.19 Repartitioned domains after 1-level adaptation with 16 processors by RCB
bucket (total : 60,575 nodes, 336,660 cells) displayed by GPPView [131] (each partition
is separately shown)

253

Chapter 7 Concluding Remarks

This chapter presents summary and the main conclusions of the thesis, as well as
recommendations for future work.

254

7.1 Summary of the Thesis

Chapter 2

In Chapter 2, outline of local data structure according to node-based partitioning and
parallel iterative solvers with localized preconditioning in GeoFEM was described.
Well-designed local data structures with communication tables provide highly parallel
efficiency that is greater than 95% for up to 1024 PEs on a Hitachi SR2201. The
localized preconditioning method was shown to be stabilized by ASDD (additive
Schwarz domain decomposition).

Chapter 3

Chapter 3 describes general preconditioning methods, corresponding to category (I) in
Section 1.2. In this chapter, an efficient parallel iterative method for unstructured grids
was developed for the GeoFEM platform on SMP cluster architectures with vector
processors such as the Earth Simulator. The method employs a three-level hybrid
parallel programming model consisting of the three level hierarchy, MPI for Inter-SMP
node, OpenMP for Intra-SMP node and vectorization for individual PE.
 Simple 3D linear elastic problems with more than 2.2×109 DOF were solved by
3×3 block ICCG(0) with additive Schwarz domain decomposition and
PDJDS/CM-RCM reordering on 176 SMP nodes of the Earth Simulator, achieving a
performance of 3.80 TFLOPS (33.7% of peak performance). PDJDS/CM-RCM
reordering provides excellent vector and parallel performance on SMP nodes. Without
reordering, parallel processing of forward/backward substitution in IC/ILU factorization
was impossible due to global data dependencies even in the simple examples in this
study. Altough the three-level hybrid and flat MPI parallel programming models offer
similar performance, the hybrid programming model outperforms flat MPI in problems
with a large number of SMP nodes.
 The performance of PDJDS/CM-RCM reordering was also compared with
PDJDS/MC. In a simple cubic geometry, PDJDS/CM-RCM usually converges faster
than PDJDS/MC. However, when complicated geometries are involved with a large
number of hyperplanes, in which case it is difficult to construct independent sets with
sufficient loop lengths by CM, PDJDS/MC provides better performance in terms of
GFLOPS rate and CPU time by guaranteeing sufficient loop length, even though
PDJDS/CM-RCM requires fewer iterations for convergence.
 The most appropriate reordering method should therefore be selected based on the

255

length of each hyperplane generated by RCM reordering.

Chapter 4

Chapter 4 describes a problem-specific preconditioning method, corresponding to
category (III) in Section 1.2. In this chapter, robust preconditioning and partitioning
methods were developed for the simulation of fault-zone contact with penalty
constraints using parallel computers. For symmetric positive definite matrices, block
incomplete Cholesky factorization without inter-block fill-in, using selective blocking
(SB-BIC(0)) has excellent performance, memory efficiency and robustness for a wide
range of penalty parameter values even if meshes are distorted. Spectral condition
number κ (κ=Emax/Emin where Emax and Emin are the largest and smallest eigenvalues,
respectively, of [M]-1[A]) is a helpful parameter for the evaluation of convergence of the
preconditioning methods. Usually, BIC(1) and BIC(2) requires fewer iterations for
convergence than SB-BIC(0). However, the total computation time for SB-BIC(0) is
lower as a result of the lower cost per iteration.
 It is also shown that the partitioning method for elimination of edge-cuts in
contact groups with load-balancing improves the convergence of parallel iterative
solvers with localized preconditioning.
 Parallel performance of the CG method with SB-BIC(0) preconditioning was
evaluated using 16 to 128 PEs of a Hitachi SR2201 at the University of Tokyo using a
flat MPI parallel programming model. Although the iteration number for convergence
increases according to PE number due to locality of the preconditioner, this increase is
only 11% from 16 PEs to 128 PEs and the speed-up ratio based on elapsed execution
time including communication for 128 PEs, is higher than 120, as extrapolated from
results for 16 PEs.
 Furthermore, the developed method is vectorized and parallelized using OpenMP
directives on one SMP node of the Earth simulator, and provides robust and smooth
convergence and excellent parallel performance for both simple and complicated
geometries with contact conditions.
 The reordering method for SMP cluster architectures with vector processors
described in Chapter 3 has been implemented to the selective blocking preconditioning
using the MC reordering method. Special treatments for selective blocking, such as the
introduction of dummy elements and the reordering of selective blocks according to
block size, were implemented.
 In cases involving several colors, fewer iterations are required for convergence,
but the performance is worse due to the smaller loop length and greater overhead. In the

256

complicated Southwest Japan model, the number of iterations for convergence is not
affected by the number of colors because there are many distorted elements in this
model and the coefficient matrices are ill-conditioned.
 Performance of 17.6 GFLOPS (27.5% of peak performance) for the simple block
model and 18.6 GFLOPS (29.1% of peak performance) for the Southwest Japan has
been obtained. Performance is about 60% if the reordering of selective blocks is not
applied. The load-imbalance among PEs on the SMP node and the ratio of dummy
off-diagonal components are not significant.

Chapter 5

Chapter 5 describes multigrid preconditioner for Poisson equations, corresponding to
category (II) in Section 1.2. A multigrid-preconditioned conjugate gradient iterative
method for parallel computers has been developed, in which a V-cycle and
semi-coarsening approach is adopted for the multigrid procedure. Extended local data
structure based on that of GeoFEM has been developed for the multilevel parallel
procedure. Two types of communication tables, one for node-based variables and the
other for cell-based variables, have been defined. Both Gauss-Seidel and ILU(0) with
additive Schwartz domain decomposition smoothers have been tested. Various
combinations of parallel and serial smoothers have been applied. The proposed
procedure was applied to Poisson equations in the region between two spherical
surfaces on adaptively generated semi-unstructured prismatic grids under various
boundary conditions. Computational results obtained on a Hitachi SR2201 parallel
computer using up to 128 processors demonstrate the good scalability of the method, as
compared to ICCG solvers. Excellent parallel performance provided by the developed
data structure is also demonstrated.
 Among the tested methods, MGCG/FGS (Full-Gauss-Seidel) provides the best
performance up to 32 PEs, while MGCG/ILU-GSp (ILU-Gauss-Seidel-Parallel, parallel
Gauss-Seidel is applied for the coarsest level of the grid) is relatively robust for
computations across many PEs, although parallel performance is worse for cases
involving many PEs due to the communications overhead of the single-stage parallel
Gauss-Seidel procedure. In the cases with clustered mesh spacing in the radial direction,
MGCG/ILU-GSp provided more very convergence compared to other methods.
Generally, ILU-type smoothers provide more robust convergence than
Gauss-Seidel-type smoothers, especially for ill-conditioned problems.
 The proposed procedure was also applied to grids with local refinement, and 2
multigrid strategies (direct jump and level-by-level) were compared. The direct jump

257

method developed in this study was found to be much more efficient than the
level-by-level method described in [11] for deeper-level adaptation despite the simplicity
of the level-by-level method.
 Finally, the proposed method was applied to 3D Navier-Stokes equations with
thermal convection. CG solvers with multigrid preconditioning (MGCG/FGS and
MGCG/ILU-GSp) provided much better performance than ICCG.

Chapter 6

In Chapter 6, a parallel 3D compressible Navier-Stokes code with adaptive hybrid
meshes (epHYBRID) and parallel mesh adaptation module (pADAPT) have been
developed on the GeoFEM parallel platform with an extended data structure for grid
adaptation and dynamic load-balancing. This data structure with double-numbering
proved to very flexible and efficient for processing distributed local data sets with
parallel mesh adaptation and dynamic load balancing.
 The DRAMA library has been integrated in the pADAPT module and the data
migration procedure has been added. The entire code system has been tested with the
simulation of the supersonic flow around a spherical body on a Pentium cluster and a
Hitachi SR2201 computer. We found that the epHYBRID code with extended GeoFEM
data structure showed excellent parallel efficiency with dynamic load-balancing.
Various types of repartitioning methods in the DRAMA library have been evaluated on
both purely tetrahedral and hybrid meshes. Among these methods, PJOSTLE provided
the best mesh partitioning quality from the viewpoint of the efficiency of the
epHYBRID code.

258

7.2 Conclusions of the Thesis

In many large-scale scientific simulation codes using the finite-element method (FEM)
and the finite-difference method (FDM), most computation is spent in solving linear
equations with sparse coefficient matrices. For this reason, much of the scalable
algorithm research and development is aimed at solving these large, sparse linear
systems of equations on parallel computers. Sparse linear solvers can be broadly
classified as either direct or iterative. Iterative methods are much more memory scalable
than direct methods and are more suitable for parallel computing. But their convergence
can be slow or they can fail to converge. The rate of convergence of iterative methods
depends strongly on the spectrum of the coefficient matrix. Hence, iterative methods
usually involve a second matrix that transforms the coefficient matrix into a matrix with
more favorable spectrum. The transformation matrix is called a preconditioner. The use
of a good preconditioner improves the convergence of the iterative methods, sufficiently
to overcome the extra cost of constructing and applying the preconditioner. Indeed,
without a preconditioner the iterative method may even fail to converge.
 In this thesis, the following three types of preconditioners of parallel iterative
solvers for various types of applications on unstructured meshes using the GeoFEM
platform for parallel finite-element methods:

(I) Localized block ILU(0) preconditioning method for 3D solid
mechanics on SMP cluster type vector parallel computers, such as the
Earth Simulator (Category I in Section 1.2, general preconditioners).

(II) Parallel scalable multigrid preconditioning method for 3D Poisson
equations derived from incompressible Navier-Stokes solvers with
adaptive meshes (Category II in Section 1.2, preconditioners for
broad classes of underlying problems).

(III) Selective blocking preconditioning method for 3D solid mechanics
with contact on SMP cluster type vector parallel computers (Category
III in Section 1.2, preconditioners for specific problems).

A proper definition of the layout of the distributed data structures is very important for
the efficiency of parallel computations with unstructured meshes. Local distributed data
structure of GeoFEM provides excellent parallel performance over 95%, even if the
number of processors is over 1,000.

259

 In order to achieve efficient parallel/vector computation for applications with
unstructured grids, the following three matters are critical:

• Local operations and no global dependency
• Continuous memory access
• Sufficiently long loops

For unstructured grids, in which data and memory access patterns are very irregular, the
reordering technique is very effective for achieving highly parallel performance and
vector performance. In this study, various ordering methods have been tested for both
simple and complicated geometries. Simple multicolor ordering usually provides
sufficiently long loops for vector performance, although it usually requires more
iterations for convergence than more sophisticated RCM ordering.
 All of the developed preconditioning methods on the GeoFEM platform for its
local data structure provide excellent parallel/vector performance up to > 1,000 PEs and
robustness for very ill-conditioned problems. The localized block ICCG(0) solver with
special reordering strategy for unstructured mesh attained 3.80 TFLOPS for simple 3D
linear elastic problem with 2.2×109 DOF on 176 SMP nodes (1,408 PEs) of the Earth
Simulator, corresponding to 33.7% of peak performance.
 Parallel CG solvers with selective blocking preconditioning and special reordering
developed in this study provided excellent performance on the Earth Simulator (29.1%
of peak performance) and robustness for ill-conditioned matrices which appear in
contact problems. Moreover, selective blocking preconditioning is memory efficient and
requires only 25% of ILU(2) and 50% of ILU(1).
 The parallel multigrid procedure with new local data structure provided excellent
scalability and parallel performance of greater than 95% on a Hitachi SR2201 with 128
PEs. The direct jump method developed in this study for locally refined mesh is very
simple, but was found to be much more efficient than the existing level-by-level method
described in [11] for deeper-level adaptation. The effect of the parallel multilevel ILU
smoother for ill-conditioned problems has been also evaluated.
 These methods are very useful for wide range of scientific applications developed
for SMP cluster type architecture which has become very popular for massively parallel
computers in recent days.
 Adaptive methods in applications with unstructured meshes have evolved as
efficient tools for obtaining numerical solutions without a priori knowledge of the
details of the nature of the underlying physics. However, these methods cause severe

260

load imbalance among processors in parallel computations. In this thesis, a parallel
mesh adaptation method with dynamic load-balancing using DRAMA library [129] has
been developed and implemented on a 3D compressible Navier-Stokes solver developed
on the GeoFEM platform. The extended data structure of GeoFEM with mesh
adaptation has been also proposed. This data structure with double-numbering proved to
very flexible and efficient for processing distributed local data sets with parallel mesh
adaptation and dynamic load balancing.

261

7.3 Future Study

In this study, three categories of parallel preconditioning method for large-scale
problems have been developed on the GeoFEM platform. Moreover, an extended data
structure for new methods has been proposed. Each of the developed methods
demonstrated excellent performance and robustness for various types of complicated
large-scale problems on massively parallel computers.
 In the future, we will also examine:

• Large-scale applications with complicated geometry and physics on massively

parallel computers such as the Earth Simulator will be performed using the newly
developed method along with the GeoFEM platform.

• The current local data structure in GeoFEM is very simple but is not suitable for a

wide range of applications and procedures. The newly developed data structure for
mesh adaptation and multigrid provide the GeoFEM platform with flexibility for
various types of applications.

• In this study, primarily ILU/IC and related preconditioning methods have been

treated. Recently, the sparse approximate inverse method (SAI) [21,103,115,123] for
preconditioning is expected to be applied as a global preconditioner in parallel
computing. In the contact problems described in Chapter 4, infinitesimal and linear
elastic deformation theory was assumed, although large slip and large deformation
have to be considered in real simulations, where node location and the connectivity
of contact groups can change dynamically. More robust preconditioning method and
dynamic load-balancing methods will have to be developed for parallel computing
in these types of models. According to [115], SAI is feasible for this type of problem
and no contact information or repartitioning are required. Further study on the SAI
method is required.

• Integration of the three categories of the preconditioning methods described in

Section 1.2 is needed. Multigrid-based methods are scalable for large-scale
problems but are not necessarily robust for problems with local constraints such as
the contact simulations described in Chapter 4. An integrated method of multigrid
and selective-blocking will provide both scalability and robustness for large-scale

262

ill-conditioned problems.

• AMG (Algebraic Multigrid Method) is another expected method, but a number of

AMG approaches suffer from parallelization problems. Hybrid algebraic-geometric
multigrid methods have been successful. Proper data definition, including coarse
mesh and a multilevel communication table, is required for this area of study.
Moreover, very short loops in multigrid procedures at coarser levels of the grid
reduce performance on vector processors. This problem is also solved by proper
data definition.

• In this study, developed methods have been optimized primarily for vector

processors, such as the Earth Simulator, or RISC processors with pseudo vector
capability, such as the Hitachi SR2201 or SR8000. It is well-known that optimized
code for vector processor is not necessarily optimum for RISC processors. Figure
7.1 shows an example. A block ICCG(0) solver with special ordering strategy,
described in Chapter 3 optimized for vector processors were applied to a RISC
processor. On vector processors, the differences among these three methods were
significant, but it is very slight on a RISC processor. Moreover, performance
decreases suddenly for larger problems due to cache overflow. This is a great
disadvantage with respect to portability of the simulation codes for the
high-performance computing environment. Recently, a project for HPC middleware
(HPC-MW) [134] has started. HPC-MW is an infrastructure for developing
optimized and reliable scientific simulation codes efficiently. In order to develop
this HPC-MW, various types of scientific simulation methods such as FEM, FDM,
FVM, BEM, Spectral Methods, MD and Particle Methods, should be investigated,
and typical and common patterns for operations are extracted and each procedure
will be optimized for various types of computes including vector/RISC processors,
SMP parallel architectures and PC clusters. Source code developed on
single-processor PCs is easily optimized on massively parallel computers by
plugging-in the source code to the HPC-MW installed on the target computer
(Fig.7.2). This HPC-MW will provide dramatic efficiency, portability and reliability
in the development of scientific simulation codes. For example, the line number of
the source codes is expected to be less than 1,000, and the duration of the
development is expected to be 10% of previous development time. Moreover, under
GRID environment where various types of computers are connected through
networks, a virtual petaflops environment can be attained using a global operating

263

system and HPC-MW which is optimized for each hardware. Thus very large-scale
simulation using world-wide resources (computer hardware, code,
observed/computed data sets, etc.) is possible.

264

265

(a) Earth Simulator

(b) COMPAQ Alpha 21164/599 MHz

Fig.7.1 Effect of coefficient matrix storage method and reordering for the 3D linear
elastic problem in Fig.3.10 with various problem sizes on (a) Earth Simulator (1 SMP
node) and (b) COMPAQ Alpha 21164/599 MHz (Single PE). (BLACK Circles:
PDJDS/CM-RCM, WHITE Circles: PDCRS/CM-RCM, BLACK Triangles: CRS no
reordering).

0

100

200

300

400

1.E+03 1.E+04 1.E+05 1.E+06

DOF #

M
FL

O
PS

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+04 1.E+05 1.E+06 1.E+07

DOF

G
FL

O
PS

266

Fig.7.2 HPC-Middleware (HPC-MW) for Finite Element Method [134].

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Xeon Cluster

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Earth Simulator

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Hitachi SR8000

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Itanium2

FEM code developed on PC
I/F for
Vis.

I/F for
Solvers

I/F for
Mat.Ass.

I/F for
I/O

Optimized Parallel Code on the Earth Simulator

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Xeon Cluster

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Xeon Cluster

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Earth Simulator

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Earth Simulator

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Hitachi SR8000

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Hitachi SR8000

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Itanium2

Vis.Linear
Solver

Matrix
AssembleI/O

HPC-MW for Itanium2

FEM code developed on PC
I/F for
Vis.

I/F for
Solvers

I/F for
Mat.Ass.

I/F for
I/O

FEM code developed on PC
I/F for
Vis.

I/F for
Solvers

I/F for
Mat.Ass.

I/F for
I/O

I/F for
Vis.

I/F for
Solvers

I/F for
Mat.Ass.

I/F for
I/O

Optimized Parallel Code on the Earth Simulator

267

References

（1） M.F. Adams: Multigrid Equation Solvers for Large Scale Nonlinear Finite

Element Simulations, UCB/CSD-99-1033, Ph.D. Thesis for University of
California at Berkeley, 1999.

（2） M.F. Adams and J.W. Demmel: Parallel Multigrid Solver for 3D Unstructured
Finite Element Problems, SC99 Proceedings, Portland, Oregon, USA, 1999.

（3） M.F. Adams: A Distributed Memory Unstructured Gauss-Seidel Algorithm for
Multigrid Smoothers, SC 2001 Proceedings, Denver, Colorado, USA, 2001.

（4） S.F. Ashby and R.D. Falgout: A Parallel Multigrid Preconditioned Conjugate
Gradient Algorithm for Groundwater Flow Simulation, Nuclear Science and
Engineering, Vol.124, pp.145-159, 1996.

（5） V.A. Bandy, J.E. Dendy Jr. and W.H. Spangenberg: Some Multigrid Algorithms
for Elliptic Problems on Data Parallel Machines, SIAM Journal of Scientific
Computing, Vol.19, No.1, pp.74-86, 1998.

（6） R.E. Bank and J. Xu: The Hierarchical Basis Multigrid Method and
Incomplete LU Decomposition, Seventh International Symposium on Domain
Decomposition Methods for Partial Differential Equations (D. Keyes and J. Xu,
eds.), AMS, Providence, Rhode Island, USA, pp.163-173, 1994.

（7） R. Barrett, M. Berry, T.F. Chan, J.W. Demmel, J. Donato, J.J. Dongarra, V.
Eijkhout, R. Pozo, C. Romine and H. van der Horst: Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994.

（8） A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet, R.
Ducloux, J.M. Gratien, U. Hartmann, G. Lonsdale, B. Maerten, D. Roose, C.
Walshaw,: Dynamic load balancing of finite element applications with the
DRAMA library, Applied Mathematics Modelling, Vol.25, pp.83-98, 2000.

（9） R. Biswas and R. Strawn: A New Procedure for Dynamic Adaptation of
Three-Dimensional Unstructured Grids, AIAA 93-0672, 1993.

（10） D. Braess: Finite Elements : Theory, fast solvers and applications in solid
mechanics, Cambridge University Press, 1997.

（11） W.L. Briggs, V.E. Henson and S.F. McCormick: A Multigrid Tutorial Second
Edition, SIAM, 2000.

（12） P.N. Brown, R.D. Falgout, and J.E. Jones: Semicoarsening Multigrid on
Distributed Memory Machines, Lawrence Livermore National Laboratory

268

Technical Report UCRL-JC-130720, 1998.
（13） F. Cappelo, and D. Etiemble: MPI versus MPI+OpenMP on the IBM SP for

the NAS Benchmarks, SC2000 Technical Paper, Dallas, Texas, 2000.
（14） R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald and R. Menon:

Parallel Programming in OpenMP, Morgan Kaufmann Publishers, USA,
2001.

（15） L. Chen, I. Fujishiro, and K. Nakajima: Parallel performance optimization of
large-scale unstructured data visualization for the Earth Simulator,
Eurographics Workshop on Parallel Visualization and Graphics 2002,
Blaubeuren, Germany, pp.133-140, 2002.

（16） A.J. Cleary, R.D. Falgout, V.E. Henson and J.E. Jones: Coarse-Grid Selection
for Parallel Algebraic Multigrid, Lawrence Livermore National Laboratory
Technical Report UCRL-JC-130893, 1998.

（17） W. Dahmen, S. Muller and T. Schlinkmann: On an adaptive multigrid solver
for convection-dominated problems, SIAM Journal of Scientific Computing,
Vol.23, No.3, pp.781-804, 2001.

（18） M.J. Dayde, J-Y. L'excellent and N.I.M. Gould: Element-by-Element
Preconditioners for Large Partially Separable Optimization Problems, SIAM
Journal of Scientific Computing, Vol.18, No.6, pp.1767-1787, 1997.

（19） J.W. Demmel: Applied Numerical Algebra, SIAM, 1997.
（20） M.J. Djomehri and H.H. Jin: Hybrid MPI+OpenMP Programming of an

Overset CFD Solver and Performance Investigations, NASA/NAS Technical
Report (NASA Ames Research Center), NAS-02-002, 2002.

（21） J.J. Dongarra, I. Duff, D.C. Sorensen and H.A. van der Vorst: Numerical
Linear Algebra for High-Performance Computers, SIAM, 1998.

（22） S. Ezure, H. Okuda and K. Nakajima: Parallel Mesh Relocation, Parallel
Finite Element Analysis, Large-Scale Simulation, RIST/Tokyo GeoFEM
Report 2002-012, 2002.

（23） R.D. Falgout and J.E. Jones: Multigrid on Massively Parallel Architectures,
Sixth European Multigrid Conference, Ghent, Belgium, 1999.

（24） C. Farhat and M. Lesoinne: Automatic Partitioning of Unstructured Meshes
for the Parallel Solution of Problems in Computational Mechanics,
International Journal for Numerical Methods in Engineering, Vol.36,
pp.745-764, 1993.

（25） C.A.G. Fletcher: Computational Galerkin Method, Springer-Verlag, 1984.

269

（26） C.A.G. Fletcher: Computational Techniques for Fluid Dynamics 1,
Springer-Verlag, 1988.

（27） L.P. Franca, S.L. Frey and T.J.R. Hughes: Stabilized finite element methods: II.
The incompressible Navier-Stokes equations, Computer Methods in Applied
Mechanics and Engineering, Vol.99, pp.209-233, 1992.

（28） K. Garatani, H. Nakamura, H. Okuda and G. Yagawa: GeoFEM: High
Performance Parallel FEM for Solid Earth, Lecture Notes in Computer
Science No.1593, pp.132-140, 1999.

（29） A.Greenbaum: Iterative Methods for Solving Linear Systems, SIAM, 1997.
（30） P.M. Gresho: Some current CFD issues relevant to the incompressible

Navier-Stokes equations, Computer Methods in Applied Mechanics and
Engineering, Vol.87, pp.201-252, 1991.

（31） W. Gropp, E. Lusk and A. Skjellum: Using MPI, Portable Parallel
Programming with the Message-Passing Interface, MIT Press, 1994.

（32） M. Hafez and M. Soliman: Numerical Solution of the Incompressible
Navier-Stokes Equations in Primitive Variables on Unstaggered Grids, AIAA
Paper 91-1561 CP, 1991.

（33） F.H. Harlow and J.E. Welch: Numerical Calculation of Time-Dependent
Viscous Incompressible Flow with Free Surface, Physics of Fluids, Vol.8,
pp.2182-2189, 1965.

（34） D.G. Holmes and S.D. Connel: Solution of the 2D Navier-Stokes Equations on
Unstructured Adaptive Grids, AIAA Paper 89-1932 CP, 1989.

（35） D. Hysom and A. Pothen: Efficient Parallel Computaion of ILU(k)
Preconditioners, NASA/CR-2000-210210, ICASE Report No.2000-23, 2000.

（36） M. Iizuka, H. Okuda and G. Yagawa: Nonlinear Structural Subsystem of
GeoFEM for Fault Zone Analysis, Pure and Applied Geophysics, Vol.157,
pp.2105-2124, 2000.

（37） O-P. Jacquotte: Grid Optimization Methods for Quality Improvement and
Adaptation, Handbook of Grid Generation, pp.33-1 - 33-33, CRC Press, 1999.

（38） A. Jameson, W. Schmidt and E. Turkel: Numerical Solutions of the Euler
Equations by Finite-Volume Methods Using Runge-Kutta Time-Stepping
Schemes, AIAA Paper 81-1259, 1981.

（39） Y. Kallinderis: Adaptation Methods for Viscous Flows, Ph.D. Thesis,
CFDL-TR-89-5, Dept. Aeronautics and Astronautics, MIT, May 1989.

（40） Y. Kallinderis and J.R. Baron: Adaptation Methods for a New Navier-Stokes
Algorithm, AIAA Journal, Vol.27, pp.37-43, 1989.

270

（41） Y. Kallinderis and V. Parthasarathy: An Adaptive Refinement Coarsening
Scheme for 3-D Unstructured Meshes, AIAA Journal, Vol 31, pp 1440-1447,
1993.

（42） Y. Kallinderis and S. Ward: Prismatic Grid Generation for 3-D Complex
Geometries, AIAA Journal, Vol. 31, pp.1850-1856, 1993.

（43） Y. Kallinderis and K. Nakajima: Finite Element Method for Incompressible
Viscous Flows with Adaptive Hybrid Grids, AIAA Journal, Vol.32, No.8,
pp.1617-1625,1994.

（44） V. Karlo and T. Tezduyar: Parallel 3D Computation of Unsteady Flow around
Circular Cylinders, AHPCRC Preprint 96-074, Army High Performance
Computing Research Center, 1996.

（45） D.J. Kerbyson, A. Hoisie and H. Wasserman, A Comparison Between the
Earth Simulator and AlphaServer Systems using Predictive Application
Performance Models, LA-UR-02-5222, Los Alamos National Laboratory,
USA, 2002.

（46） S.W. Kim and T.J. Benson: Comparison of the SMAC, PISO and
Iterative-Advancing Schemes for Unsteady Flows, Computers & Fluids, Vol.21,
pp.435-454, 1992.

（47） D.A. Knoll and W.J. Rider: A Multigrid Preconditioned Newton-Krylov
Method, SIAM Journal of Scientific Computing, Vol.21, No.2, pp.691-710,
1999.

（48） D.Y. Kwak: V-cylcle Multigrid for Cell-Centered Finite Differences, SIAM
Journal of Scientific Computing, Vol.21, No.2, pp.552-564, 1999.

（49） J. Linden, G. Lonsdale, B. Steckel and K. Stüben: Multigrid for the
Steady-State Incompressible Navier-Stokes Equations: a Survey, International
Conference on Numerical Methods in Fluid Mechanics, Williamsburg, VA,
1988.

（50） J. Liou and T.E. Tezduyar: Clustered Element-by-Element Computations for
Fluid Flow, Parallel Computational Fluid Dynamics (Implementations and
Results), edited by H.D.Simon, The MIT Press, 1992. pp.167-187.

（51） F. Liu, S. Ji and G. Liao: An adaptive Grid Method and Its Application to
Steady Euler Flow Calculations, SIAM Journal of Scientific Computing,
Vol.20, No.3, pp.811-825, 1998.

（52） I.M. Llorente and N.D.Melson: Robust Multigrid Smoothers for Three
Dimensional Elliptic Equations with Strong Anisotropies,
NASA/CR-1998-208700, ICASE Report No.98-37, 1998.

271

（53） I.M. Llorente, B. Diskin and N.D.Melson: Plane Smoothers for Multiblock
Grids : Computational Aspects, NASA/CR-1999-209331, ICASE Report
No.99-17, 1999.

（54） I.M. Llorente, B. Diskin and N.D.Melson: Alternating Plane Smoothers For
Multiblock Grids, SIAM Journal on Scientific Computing Volume 22, Number
1, 2000.

（55） R. Löhner: The Efficient Simulation of Strongly Unsteady Flows by the
Finite-Element Method, AIAA Paper 87-0555, 1987.

（56） R. Löhner: A Fast Finite Element Solver for Incompressible Flows, AIAA
Paper 90-0398, 1990.

（57） R. Löhner: An Implicit Linelet-Based Solver For Incompressible Flows, AIAA
Paper 92-0668, 1992.

（58） D.J. Mavriplis: Multigrid Strategies for Viscous Flow Solvers on Anisotropic
Unstructured Meshes, NASA CR-1998-206910, ICASE Report No.98-6, 1998.

（59） D.J. Mavriplis: Directional Agglomeration Multigrid Techniques for
High-Reynolds Number Viscous Flows, NASA CR-1998-206911, ICASE
Report No.98-7, 1998.

（60） D.J. Mavriplis: Large-scale Parallel Viscous Flow Computations Using an
Unstructured Multigrid Algorithm, NASA CR-1999-209724, ICASE Report
No.99-44, 1999.

（61） D.J. Mavriplis: Parallel Performance Investigations of an unstructured mesh
Navier-Stokes Solver, NASA/CR-2000-210088, ICASE Report No.2000-13,
2000.

（62） D.J. Mavriplis: An Assessment of Linear Versus Non-linear Multigrid Methods
for Unstructured Mesh Solvers, NASA/CR-2001-210870, ICASE Report
No.2001-12, 2001.

（63） D.S. McRae and K.R. Laflin: Dynamic Grid Adaptation and Grid Quality,
Handbook of Grid Generation, pp.34-1 - 34-33, CRC Press, 1999.

（64） R.S. Montero, I.M. Llorente and M.D. Salas: Semicoarsening and Implicit
Smoothers for the Simulation of a Flat Plate at Yaw, NASA/CR-2001-210871,
ICASE Report No.2001-13, 2001.

（65） P. de Montleau, J.M. Cela, S.M. Mpong and A. Godinass: A Parallel
Computing Mode for the Acceleration of a Finite Element Software,
International Workshop on OpenMP: Experiences and Implementations
(WOMPEI 2002), Kyoto, Japan, Lecture Notes in Computer Science 2327,
p.449-456, Springer, 2002.

272

（66） E. Morano, D.J. Mavriplis and V. Venkatakrishnan: Coarsening Strategies for
Unstrcutured Multigrid Techniques with Application to Anisotropic Problems,
SIAM Journal of Scientific Computing, Vol.20, No.2, pp.395-415, 1998.

（67） I. Moulitsas and G. Karyois: Multilevel Algorithms for Generating Coarse
Grids for Multigrid Methods, SC 2001 Proceedings, Denver, Colorado, USA,
2001.

（68） K. Nakajima: Incompressible Navier-Stokes Methods with Hybrid Adaptive
Grids, M.S. Thesis, University of Texas at Austin, 1993.

（69） K. Nakajima, Y. Kallinderis, I.A. Sibetheros, R.W. Miksad and K.F.
Lambrakos: A Numerical Study of the Hydrodynamics of Reversing Flows
around a Cylinder, Transaction of the ASME Journal of Offshore Mechanics
and Arctic Engineering, Vol.116, No.4, pp.202-208, 1994.

（70） K. Nakajima and Y. Kallinderis: Comparison of Finite Element and Finite
Volume Methods for Incompressible Viscous Flows, AIAA Journal, Vol.32,
No.8, pp.1090-1093.,1994.

（71） K. Nakajima, H. Nakamura and T. Tanahashi: Parallel Iterative Solvers with
Localized ILU Preconditioning, Lecture Notes in Computer Science 1225,
pp.342-350, 1997.

（72） K. Nakajima and H. Okuda: Parallel Iterative Solvers with Localized ILU
Preconditioning for Unstructured Grids, IMACS Series in Computational and
Applied Mathematics Volume 5: Iterative Methods in Scientific Computation
IV, p.85-98, 1999.

（73） K. Nakajima and H. Okuda: Parallel Iterative Solvers with Localized ILU
Preconditioning for Unstructured Grids on Workstation Cluster, International
Journal for Computational Fluid Dynamics, Vol.12, pp.315-322, 1999.

（74） K. Nakajima: Parallel Multilevel Iterative Solvers for 3D Incompressible
Navier-Stokes Equations, FEF 2000 (Finite Elements in Flow Problems),
Austin, Texas, April, 2000.

（75） K. Nakajima and H. Okuda: Parallel Iterative Solvers for Simulations of Fault
Zone Contact using Selective Blocking Reordering, 2001 International
Conference on Preconditioning Techniques for Large Sparse Matrix Problems
in Industrial Applications (Preconditioning 2001), Tahoe City, CA, USA, 2001
(submitted to Journal of Numerical Algebra with Applications (in press)).

（76） K. Nakajima, J. Fingberg and H. Okuda: Parallel 3D Adaptive Compressible
Navier-Stokes Solver in GeoFEM with Dynamic Load-Balancing by DRAMA
Library, HPCN Europe 2001, Amsterdam, Netherlands，Lecture Notes in

273

Computer Science 2110, p.183-193, Springer, 2001.
（77） K. Nakajima and H. Okuda: Parallel Iterative Solvers with the Selective

Blocking Preconditioning for Simulations of Fault-Zone Contact, GeoFEM
2001-010, RIST/Tokyo, 2001.

（78） K. Nakajima: Parallel Multilevel Iterative Linear Solvers with Unstructured
Adaptive Grids for Simulations in Earth Science, SSS2001 (Workshop on
Scalable Solver Software: Multiscale Coupling and Computational Earth
Science), Tokyo, 2001.

（79） K. Nakajima and H. Okuda: Parallel Iterative Solvers for Unstructured Grids
using Directive/MPI Hybrid Programming Model for GeoFEM Platform on
SMP Cluster Architectures, Concurrency and Computation: Practice and
Experience. pp.411-429, Vol.14, No.6-7, 2002.

（80） K. Nakajima: Parallel Multilevel Iterative Linear Solvers with Unstructured
Adaptive Grids for Simulations in Earth Science, Concurrency and
Computation: Practice and Experience. pp.484-498, Vol.14, No.6-7, 2002.

（81） K. Nakajima and H. Okuda: Parallel Iterative Solvers for Unstructured Grids
using an OpenMP/MPI Hybrid Programming Model for the GeoFEM
Platform on SMP Cluster Architectures, International Workshop on OpenMP:
Experiences and Implementations (WOMPEI 2002), Kyoto, Japan, Lecture
Notes in Computer Science 2327, p.437-448, Springer, 2002.

（82） E.G. Ng, B.W. Peyton and P. Raghavan: A Blocked Incomplete Cholesky
Preconditioner for Hierarchical-Memory Computers, IMACS Series in
Computational and Applied Mathematics Volume 5: Iterative Methods in
Scientific Computation IV, p.211-221, 1999.

（83） T. Oguni, T. Murata, T. Miyoshi, J.J. Dongarra and H.Hasegawa: Matrix
Computation Softwares (in Japanese), Maruzen, 1991.

（84） H.Okuda, G.Yagawa, K.Nakajima and H.Nakamura; Parallel Finite Element
Solid Earth Simulator: GeoFEM, WCCM V (Fifth World Congress on
Computational Mechanics), Vienna, Austria, 2002.

（85） L. Oliker and R. Biswas: Parallelization of a Dynamic Unstructured
Application using Three Leading Paradigms, SC99 Proceedings, Portland,
Oregon, USA, 1999.

（86） L. Oliker, X. Li, P. Husbands and R. Biswas : Effects of Ordering Strategies
and Programming Paradigms on Sparse Matrix Computations, SIAM Review,
Vol.44, No. 3(2002), pp.373-393.

（87） C.W. Oosterlee and T. Washio: An Evaluation of Parallel Multigrid as a Solver

274

and a Preconditioner for Singularly Perturbed Problems, SIAM Journal of
Scientific Computing, Vol.19, No.1, pp.87-110, 1998.

（88） R.L. Panton: Incompressible Flow, John Wiley & Sons, 1984.
（89） V. Parthasarathy, Y. Kallinderis and K. Nakajima: A Navier-Stokes Method

with Adaptive Hybrid Prismatic/Tetrahedral Grids, AIAA Paper 95-0670,
1995.

（90） V. Parthasarathy and Y. Kallinderis: Directional Visous Multigrid Using
Adaptive Prismatic Meshes, AIAA Journal, Vol.33, No.1. pp.69-78, 1995.

（91） V. Parthasarathy and Y.Kallinderis: Adaptive Prismatic-Tetrahedral Grid
Refinement and Redistribution for Viscous Flows, AIAA Journal, Volume 34,
No.4. pp.707-716, 1996.

（92） S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980.
（93） S. Patankar and D. Spalding: A Calculation Procedure for Heat, Mass and

Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat and
Mass Transfer, Vol.15, pp.1787-1806, 1972.

（94） R.M. Peric, G. Kessler and G. Scheuerer: Comparison of Finite-Volume
Numerical Methods with Staggered and Collocated Grids, Computers &
Fluids, Vol.16, pp.389-403, 1988.

（95） M.P. Prieto, R.S. Montero and I.M. Llorente: A Parallel Multigrid Solver for
Viscous Flows on Anisotropic Structured Grids, NASA/CR-2001-211238,
ICASE Report No.2001-34, 2001.

（96） T.H. Pulliam: Artificial Dissipation Models for the Euler Equations, AIAA
Paper 85-0438, 1985.

（97） R. Rabenseifner: Communication Bandwidth of Parallel Programming Models
on Hybrid Architectures, International Workshop on OpenMP: Experiences
and Implementa-tions (WOMPEI 2002), Lecture Notes in Computer Science
2327, pp.437-448, 2002.

（98） P. Raghavan, K. Teranishi and E.G. Ng: Towards Scalable Preconditioning
using Incomplete Cholesky Factorization, 2001 International Conference on
Preconditioning Techniques for Large Sparse Matrix Problems in Industrial
Applications (Preconditioning 2001), Tahoe City, CA, USA, 2001.

（99） G.D. Raithby and G.E. Schneider: Numerical Solution of Problems in
Incompressible Fluid Flow: Treatment of the Velocity-Pressure Coupling,
Numerical Heat Transfer, Vol.2, pp.417-440, 1979.

（100） M. Raw: Robustness of coupled algebraic multigrid for the Navier-Stokes
equations, AIAA paper 96-0297, 1996.

275

（101） C.M. Rhie: A Pressure Based Navier-Stokes Solver Using the Multigrid
Method, AIAA Paper 86-0207, 1986.

（102） T. Sarpkaya and M. Issacson: Mechanics of Wave Forces on Offshore
Structures, Van Nostrand Reinhold Company, 1981.

（103） Y. Saad: Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996.

（104） Y. Shapira: Multigrid for Locally Refined Meshes, SIAM Journal of Scientific
Computing, Vol.21, No.3, pp.1168-1190, 1999.

（105） M.S. Shepard, J.E. Flaherty, C.L. Bottasso, H.L. de Cougny, C. Ozturan and
M.L. Simone: Parallel automatic adaptive analysis, Parallel Computing, Vol.
23, pp.1327-1347, 1997.

（106） H.D. Simon: Partitioning of unstructured problems for parallel processing,
Computing Systems in Engineering, Vol.2, pp.135-148, 1991.

（107） B. Smith, P. Bjφrstad and W. Gropp: Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations, Cambridge
University Press, 1996.

（108） F. Sotiropoulos and S. Abdallah: The Discrete Continuity Equation in
Primitive Variable Solutions of Incompressible Flow, Journal of
Computational Physics, Vol.95, pp.212-227, 1991.

（109） K. Stüben: Algebraic Multigrid (AMG) : An Introduction with Applications,
GMD Report 53, GMD-Forschungstentrum Informationstechnik GmbH, 1999.

（110） U. Tottemberg, C.Oosterlee, A.Schüller: Multigrid, Academic Press, 2001.
（111） R.S. Tuminaro, J.N. Shadid and S.A. Hutchinson: Parallel Sparse Matrix

Vector Multiply Software for Matrices with Data Locality, Sandia National
Laboratories Technical Report SAND 95-1540J, 1995.

（112） R.S. Tuminaro and C. Tong: Parallel Smoothed Aggregation Multigrid :
Aggregation Strategies on Massively Parallel Machines, SC 2000 Proceedings,
Dallas, Texas, USA, 2000.

（113） V. Venkatakrsihnan: Parallel Implicit Methods for Aerodynamic Applications
on Unstructured Grids, Domain-Based Parallelism and Problem
Decomposition Methods in Computational Science and Engineering, pp.57-74,
SIAM, 1994.

（114） A. Vidwans, Y. Kallinderis and V. Venkatakrishnan: Parallel Dynamic
Load-Balancing Algorithm for Three-Dimensional Adaptive Unstructured
Grids, AIAA Journal, Vol.32, No.3, pp.497-505, 1995.

（115） K. Wang, S-B. Kim, J. Zhang, K. Nakajima and H. Okuda: Global and

276

localized parallel preconditioning techniques for large scale solid Earth
simulations, Technical Report No. 345-02, Department of Computer Science,
University of Kentucky, 2002.

（116） Z.J. Wang: A fast nested multi-grid viscous flow solver adaptive
Cartesian/Quad grids, International Journal for Numerical Methods in Fluids,
Vol.33, pp.657-680, 2000.

（117） T. Washio and C.W. Oosterlee: Flexible Multiple Semicoarsening for
Three-Dimensional Singulary Perturbed Problems, SIAM Journal of Scientific
Computing, Vol.19, No.5, pp.1646-1666, 1998.

（118） T. Washio, K. Maruyama, T. Osoda, F. Shimizu, and S. Doi: Blocking and
reordering to achieve highly parallel robust ILU preconditioners, RIKEN
Symposium on Linear Algebra and its Applications, The Institute of Physical
and Chemical Research, pp.42-49, 1999.

（119） T. Washio, K. Maruyama, T. Osoda, F. Shimizu, and S. Doi: Efficient
implementations of block sparse matrix operations on shared memory vector
machines, SNA2000 : The Fourth International Conference on
Supercomputing in Nuclear Applications, Tokyo, Japan, 2000.

（120） J.M. Weiss, J.P. Maruszewski and W.A. Smith: Implicit Solution of
Preconditioned Navier-Stokes Equations Using Algebraic Multigrid, AIAA
Journal, Vol.37, No.1, pp.29-36, 1999.

（121） R.Wienands, C.W.Oosterlee and T.Washio: Fourier Analysis of GMRES(m)
Preconditioned by Multigrid, SIAM Journal of Scientific Computing, Vol.22,
No.2, pp.582-603, 2001.

（122） A.M. Wissink, R.D. Hornung, S.R. Kohn, S.S. Smith and N.Elliott: Large
Scale Parallel Structured AMR Calculations Using the SAMRAI Framework,
SC 2001 Proceedings, Denver, Colorado, USA, 2001.

（123） J. Zhang: Sparse approximate inverse and multilevel block ILU
preconditioning techniques for general sparse matrices, Applied Numerical
Mathematics, Vol.35, pp.67-86, 2000.

（124） J. Zhang: Preconditioned Klyrov subspace methods for solving nonsymmetric
matrices from CFD applications, Computer Methods in Applied Mechanics
and Engineering, Vol.189, pp.825-840, 2000.

（125） S.L. Zhang: GPBi-CG: Generalized Product-type methods based on Bi-CG for
solving nonsymmetric linear systems, SIAM Journal of Scientific Computing,
Vol.18, No.2, pp.537-551, 1997.

（126） Accelerated Strategic Computing Initiative (ASCI) Web Site:

277

http://www.llnl.gov/asci/
（127） AZTEC Web Site: http://www.cs.sandia.gov/CRF/aztec1.html/
（128） CASC (Center for Applied Scientific Computing, Lawrence Livermore

National Laboratory) Web Site: http://www.llnl.gov/CASC/linear_solvers/
（129） DRAMA Web Site:

http://www.ccrl-nece.technopark.gmd.de/~drama/drama.html/
（130） Earth Simulator Center Web Site: http://www.es.jamstec.go.jp/
（131） GeoFEM Web Site: http://geofem.tokyo.rist.or.jp/
（132） Hitachi SR2201 Web Site:

http://www.hitachi.co.jp/Prod/comp/hpc/jpn/sr2.html
（133） Hitachi SR8000 Web Site:

http://www.hitachi.co.jp/Prod/comp/hpc/foruser/sr8000/
（134） HPC Middleware Web Site (Frontier Simulation Software for Industrial

Science, Institute of Industrial Science, The University of Tokyo):
http://www.fsis.iis.u-tokyo.ac.jp/hpc/index_e.html

（135） Information Technology Center, The University of Tokyo Web Site:
http://www.cc.u-tokyo.ac.jp/

（136） JOSTLE Web Site: http://www.gre.ac.uk/jostle/
（137） LAMP Web Site:

http://www.ccrl-nece.technopark.gmd.de/~maciej/LAMP/LAMP.html
（138） METIS Web Site: http://www-users.cs.umn.edu/~karypis/metis/
（139） MPI (Message Passing Interface) Forum Web Site:

http://www.mpi-forum.org/
（140） NPB (NAS Parallel Benchmarks) Web Site:

http://www.nas.nasa.gov/Research/Software/swdescription.html#NPB
（141） OpenMP Web Site: http://www.openmp.org/
（142） PETSc Web Site: http://www-fp.mcs.anl.gov/petsc/
（143） http://www6.tomshardware.com/cpu/00q4/001107/mobilecpu-19.html/

278

279

VITA

Kengo Nakajima was born in Okayama, Japan, on September 14, 1962, the son of
Masao and Kazuko Nakajima. He graduated from the University of Tsukuba High
School at Komaba, Japan in March 1981. He received a Bachelor of Engineering degree
in Aeronautics from the University of Tokyo, Japan in March 1985. His thesis title is
"Active Flutter Suppression Method for a Cantilevered CFRP Wing'' supervised by
Professor Kyohei Kondoh, Dr.Eng.
 He worked for the Mitsubishi Research Institute, Inc. (MRI), Japan as a research
engineer in the area of nuclear engineering and computational science from April 1985
to June 1999.
 While working for MRI, he entered the Graduate School of the University of Texas
at Austin in the Fall of 1991. He received a Master of Science degree in Engineering at
the Department of Aerospace Engineering and Engineering Mechanics in May 1993.
His thesis title is "Incompressible Navier-Stokes Methods with Hybrid Adaptive Grids"
supervised by Professor John Kallinderis, Ph.D. He worked as a research associate in
TICOM (Texas Institute for Computational Mechanics) from June 1993 to January
1994.
 He entered the Research Organization for Information Science and Technology
(RIST), Japan in July 1999. Since then he has been working for GeoFEM project and
developing parallel programming models, parallel iterative linear solvers with
preconditioning methods, mesh adaptation procedure with dynamic load balancing and
various types of finite-element applications, such as 3D compressible/incompressible
Navier-Stokes simulations, 3D groundwater flow and transport with convection and
diffusion and unsteady tsunami simulations.

	Chap6.pdf
	Chap6fig
	Chap7
	Chap8

