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ABSTRACT

As biological sequence data such as DNA, RNA and protein sequences are increasing with an accelerated pace
by the recent epoch-making innovation of sequencing technology, many problems in molecular biology require
fast algorithms that enable efficient processing of such large data sets. Sequence comparison and indexing
techniques, such as sequence alignment algorithms, similarity search algorithms for sequence databases and
motif discovery algorithms are very important and fundamental techniques for solving the problems in the
field. These techniques are also called pattern matching techniques. In this thesis, we propose various fast
algorithms for sequence comparison and indexing so that we can solve very important problems in molecular
biology. Moreover, we also examine the property and efficiency of these algorithms through experiments
using actual large sequence data sets for most of the problems.

First, we deal with the multiple alignment problem, which is one of the most frequently-used and impor-
tant sequence comparison techniques in molecular biology. According to biologists, the optimal alignment
based on a computational model is not always the biologically most significant alignment. To solve this
problem, we propose two flexible and efficient approaches. One possible approach is to provide many subop-
timal alignments as alternatives for the optimal one, but there are so many similar suboptimal solutions and
it is difficult to find a desired solution among them. Hence we discuss what kind of suboptimal alignment
is unnecessary to enumerate, and propose a new fast algorithm to reduce them. Biologists also often say
that the obtained optimal solution with fixed parameters is not always the biologically best alignment. We
also discuss a technique called parametric multiple alignment as the second approach, which can enumerate
efficiently all the solutions as some parameter varies in a parametric space.

We next deal with a clustering problem in which we cluster sequences of a full-length ¢cDNA library
into groups of alternative splice form candidates, using a variant of alignment technique called a spliced
alignment. This is a very important problem because its results are very useful for the biological study of
splice sites or alternative splicing, which is one of the hottest topics in molecular biology of today. We can
also use the obtained clusters as the training set for gene finding which is the next subject of this thesis.
We propose a fast and accurate algorithm for this problem, and examine its efficiency and property through
experiments using FANTOM, a large mouse cDNA library.

We then deal with the gene finding problem which is one of the most important problems in molecular
biology. There have been many methods proposed for solving this problem, which can be categorized into
two groups, statistical methods and similarity search-based methods. We propose a new gene identification
scheme that combines the best characteristics of these two groups. Our method determines gene candidates
by using the statistical behavior of matching patterns of a large pattern database called the Bio-Dictionary.
For this problem, we propose an efficient pattern indexing scheme for matching patterns of the database, with
which we succeeded in achieving the competitive speed against the statistical methods. We also demonstrate
the performance of our algorithm through experiments using genomes of many prokaryotic organisms.

RNA structures are known to play a very important role in the determination of their properties. We
then discuss efficient techniques for finding frequent secondary structures from a set of RNA sequences or a
set of RNA structures by generalizing a data structure called a suffix tree. The suffix tree is a very useful

and important indexing data structure for searching for substrings or finding frequent substring patterns of



texts. We first discuss what kind of RNA’s substrings can have the same 3-D structure, and then generalize
suffix trees to discover such patterns. We also propose an on-line algorithm for constructing the generalized
data structure. It is known that RNA secondary structures can be represented by tree structures. Suffix
trees can be generalized also for discovering patterns from such tree structures. We also propose a new
algorithm for constructing the generalized suffix trees for trees, whose computation time bound is better
than the best-known algorithm.

Through all these topics, we show that pattern matching techniques of sequence comparison and indexing

play an important role in the problems of computational molecular biology and efficiently solve them.
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Chapter 1

Introduction

1.1 Background

1.1.1 Pattern Matching Algorithms in Molecular Biology

The innovation of experimental techniques of molecular biology in these days have lead to the breathtaking
increase in the sizes of various biological databases, and how we can manage to deal with such large data
sets efficiently is one of the greatest issues that both computer scientists and molecular biologists are faced
with. Matching and searching on discrete structures including simple text strings have been very important
and pervasive issues in computer science. As biological sequences like DNA and protein, that are the most
important elements in molecular biology, are known to be represented by simple strings of nucleic acids or
amino acids, it is very reasonable that such pattern matching researches are highlighted in this field. Hence
this thesis focuses on the development of pattern matching-based fast techniques for solving several very
important biological problems.

There are two very important main categories of matching problems in computational molecular biology:
sequence comparison and indexing. If we have two or more relevant biological sequences, we need to compare
them to see what kind of relevance there is among them, which is the former problem. There are tremendously
many methods for such purpose, among which the most important and fundamental technique is the sequence
alignment [73, 110, 160]. For the sequence alignment problem, a dynamic programming (DP) algorithm that
searches for the shortest path in a grid-like graph is the most fundamental algorithm. There are also other
important comparison problems, such as discovery of frequent patterns from a set of sequences for which the
suffix tree [50, 102, 155, 163] and the suffix array [100] are very important and fundamental data structures.

The latter category includes various database search problems. If we have newly sequenced data of
DNA or protein, the first thing we do is searching for similar sequences or substrings in existing databases,
or searching for known motifs (sequence patterns). The problem is how to preprocess the database so as
to search such matching database entries fast. The most famous tools for similarity search on sequence
databases are the FASTA [114] and the BLAST [8] algorithms. The suffix tree and the suffix array are very
important and fundamental data structures for indexing too.

This thesis deeply deals with pattern matching algorithms in both of the two categories. Figure 1.1 shows

the algorithmic categories and relations between the chapters of this thesis. In Chapter 3, we work on how
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Figure 1.1: Algorithmic topics of this thesis.

to find effectively a good solution from a large set of possible solutions on the multiple sequence alignment
problem. In Chapter 4, we deal with a clustering problem of biological sequences based on both accurate
sequence comparison and sequence indexing. In Chapter 5, we present a new method for finding genes from a
given large DNA genomic sequence using a large-scale pattern matching technique. In Chapter 6, we present
new techniques to mine hidden frequent RNA structures from a set of sequences or RNA structures based
on suffix trees.

We deal with alignment algorithms and several other sequence comparison techniques in Chapters 3, 4
and 5. As for indexing algorithms, we study a variant of similarity search problem in Chapter 4, propose a
new pattern indexing algorithm in Chapter 5, and generalize suffix trees for the use of structural analysis
of biological sequences in Chapter 6. Other than these matching algorithms, graph algorithms like shortest
path algorithms and tree pattern matching algorithms take an important role in this thesis as shown in the

figure.

1.1.2 Molecular Biology Topics in this Thesis

The most important backbone concept in molecular biology is the central dogma. It states that DNA carries
the genetic information which is transcribed to RNA and subsequently translated to protein. How this
mechanism works is the most important research issue in this field.

The regions of a DNA sequence that are transcribed to RNAs are called genes. It is very difficult to

find such regions correctly without any wet experiments, which is one of the most challenging data mining
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Figure 1.2: Biological topics of this thesis.

subjects in the computational molecular biology. The RNAs are known to be spliced before translation to
proteins in eukaryotic genomes. It is also a very important problem to analyze how they are spliced. Due to
this splicing mechanism, the variety of proteins is much larger than the number of genes in human genome.
The 3-D (or lower-level) structures of these biological sequences (especially proteins and RNAs) are also very
important research issues, because such structures are said to determine their functions.

Figure 1.2 is a simple picture that describes the central dogma and relations of the topics in this thesis
to the dogma. In Chapter 5, we deal with the gene identification problem stated above. In Chapter 4,
we present work on clustering cDNA sequences (that are DNA sequences artificially translated from mRNA
sequences), which can contribute to the research on splicing mechanisms. We also present methods to analyze
or mine RNA structures in Chapter 6. The alignment algorithms presented in Chapter 3 can be used for

analyzing any of these sequences.

1.2 Owur Contribution

In this section, we briefly describe the four main topics of this thesis. All the four topics utilize pattern match-
ing techniques and apply them to very important problems in molecular biology. All in all, we contribute
not only to the research of algorithms in computer science but also to the genomic research in molecular

biology.

1.2.1 Efficient Enumeration of Alternative Multiple Sequence Alignments

The multiple sequence alignment problem is applicable and important in various fields in molecular biology
such as the prediction of three dimensional structures of proteins and the inference of phylogenetic tree.
However, the optimal alignment based on the scoring criterion is not always the biologically most significant
alignment. In Chapter 3, we propose two flexible and efficient approaches to solve this problem. One
approach is to provide many suboptimal alignments as alternatives for the optimal one. Although this
problem is well-studied for the alignment of two sequences, it has been considered impossible to investigate

such suboptimal alignments of more than two sequences because of the enormous difficulty of the problem.



We propose algorithms for enumeration of suboptimal alignments based on Eppstein’s algorithm. We also
discuss what kind of suboptimal alignment is unnecessary to enumerate and propose an efficient enumeration
algorithm to enumerate only necessary alignments. The other approach is parametric analysis. The obtained
optimal solution with fixed parameters such as gap penalties is not always the biologically best alignment.
Thus, it is required to vary parameters and check how the optimal alignments change. The way to vary
parameters has been studied well on the problem of two sequences, but not in the multiple alignment problem
because of the difficulty of computing the optimal solution. We present techniques for the parametric multiple
alignment problem and examine the features of obtained alignments by various parametric analyses. For both
approaches, this thesis performs experiments on various groups of actual protein sequences and examines
the efficiency of these algorithms and property of sequence groups.

These results appeared primarily in [141]. Note that there are several related conference papers [137,
138, 139, 140]. As for related work, we also applied variants of these algorithms to geographic databases,
whose results appeared primarily in [136, 142, 143]. In these papers, we utilize the A* algorithm, to which
our work [131, 134] is related. Note also that we published another paper [133] on a variant of sequence

alignment problem.

1.2.2 Accurate cDNA Clustering based on Spliced Alignment

c¢DNA library is a database of cDNAs (i.e. DNA sequences translated from mRNAs) expressed in some
organism. An alternative splice form is a group of mRNAs (or cDNAs) that are transcribed from the same
gene region. A problem of finding alternative splice forms from a ¢cDNA library is very important not only
for the analyses of the splicing mechanism but also for reducing the costs of cDNA-related experiments
including the construction of ¢cDNA libraries. Current clustering algorithms for cDNAs tend to produce
too many incorrect clusters containing splice form candidates. In Chapter 4, we develop a new efficient and
accurate algorithm to cluster sequences of a full-length cDNA library such as FANTOM into alternative splice
form candidates. Our algorithm is based on a spliced sequence alignment algorithm, which is a variant of an
ordinary dynamic programming algorithm for aligning a sequence with its spliced more mature sequence. It
requires O(nm) time for checking a pair of sequences where n and m are the lengths of the two sequences.
Since the time bound is too large to perform all-pair comparison for a large set of sequences, we developed
a new technique that reduces the computation time without decreasing the accuracy of the output clusters.
Our algorithm was applied to 21,076 mouse cDNA sequences of the FANTOM1.10 database to examine its
performance and accuracy. In these experiments, we achieved about 4,000 to 20,000-fold speedup against
a naive all-pairs comparison algorithm. Moreover, without using any information of the mouse genome
sequence data or any gene data in public databases, we succeeded in listing 87-89% of all the clusters that
biologists have annotated manually.

This result appeared primarily in [145].

1.2.3 Dictionary-driven Prokaryotic Gene Finding

Gene identification, also known as gene finding or gene recognition, is among the important problems of

molecular biology that has been receiving increasing attention with the advent of large scale sequencing



projects. Previous strategies for solving this problem can be categorized into essentially two schools of
thought: one school employs sequence composition statistics, whereas the other relies on database similarity
searches. In Chapter 5, we propose a new gene identification scheme that combines the best characteristics
from each of these two schools based on a very fast new pattern indexing algorithm. In particular, our
method determines gene candidates among the ORFs that can be identified in a given DNA strand through
the use of the Bio-Dictionary, a database of patterns that covers essentially all of the currently available
sample of the natural protein sequence space. Our approach relies entirely on the use of redundant patterns
as the agents on which the presence or absence of genes is predicated and does not employ any additional
evidence, e.g. ribosome-binding site signals. BDGF (for Bio-Dictionary Gene Finder), the algorithm’s
implementation, is a single computational engine able to handle the gene identification task across distinct
archaeal and bacterial genomes. The engine exhibits performance that is characterized by simultaneous very
high values of sensitivity and specificity, and a high percentage of correctly predicted start sites. Using
a collection of patterns derived from an old (June 2000) release of the SwissProt/TrEMBL database that
contained 451,602 proteins and fragments, we demonstrate our method’s generality and capabilities through
an extensive analysis of 17 complete archaeal and bacterial genomes.

This result appeared primarily in [144]. Note that we also published another related paper on pattern

indexing algorithms based on the compressed suffix array data structure [124].

1.2.4 Suffix Tree Data Structures for RNA Structure Analyses

In molecular biology, it is said that two biological sequences tend to have similar properties if they have
similar 3-D structures. Hence, it is very important to find not only similar sequences in the string sense, but
also structurally similar sequences from databases. In Chapter 6, we discuss several data structures based
on suffix trees for the analyses of RNA structural patterns.

We first propose a new data structure that is a generalization of a parameterized suffix tree (p-suffix tree
for short) introduced by Baker. The new data structure can be used for finding structurally related patterns
of RNA or single-stranded DNA. Furthermore, we propose an O(n(log|X| + log|II|)) on-line algorithm for
constructing it, where n is the sequence length, |X| is the size of the normal alphabet, and |II| is that of

" which is related to the structure of the sequence. Our algorithm achieves

the alphabet called “parameter,’
optimal linear time when it is used to analyze RNA and DNA sequences. Furthermore, as an algorithm for
constructing the p-suffix tree, it is the first on-line algorithm, though the computing bound of our algorithm
is same as that of Kosaraju’s best-known algorithm. The results of computational experiments using actual
RNA and DNA sequences are also given to demonstrate our algorithm’s practicality.

RNA structures can be represented by tree data structures. The suffix tree of a tree is a generalization
of the suffix tree of a string for the analysis of tree structures. The best-known algorithm for constructing
it is an O(nlog|X|) time algorithm where n is the size of the target tree and |X| is the alphabet size, which
requires O(nlogn) time if |X| is large. We improve this bound by giving an optimal linear-time algorithm
for integer alphabets. We also propose another new data structure called the Bsuffix tree, which can also be

used for some tree pattern matching problems, and we propose an optimal O(n) algorithm for constructing

it.



The first part of this work appeared primarily in [135]. The second part of this work appeared primarily

in [132]. Note that the implemented tools in this work were used in our work [154].

1.3 Organization of This Thesis

The rest of this thesis is organized as follows. In Chapter 2, we describe several basic notations, definitions
and problems that relates to this thesis overall. In Chapter 3, we discuss efficient enumeration algorithms
for alternative solutions of multiple sequence alignment problems. In Chapter 4, we propose an accurate
clustering algorithm for cDNA library based on a variant of alignment algorithm called the spliced alignment.
In Chapter 5, we demonstrate the power of pattern matching algorithms for a gene identification problem
which is one of the most important problem in molecular biology today. In Chapter 6, we show three pattern
matching data structures and algorithms for them based on suffix trees, that can be used for RNA structure

analyses. In Chapter 7, we summarize the results of this thesis.



Chapter 2

Preliminaries

In this chapter, we first describe the sequence alignment problem in section 2.1. We survey the exact
algorithms for it. We then describe the suffix tree data structure in section 2.2. We also describe two famous
algorithms for constructing the data structure. Both techniques are very fundamental in the research areas

of string pattern matching and important in the rest of this thesis.

2.1 Sequence Alignment Problem

In this section, we introduce the alignment problem and algorithms for computing the optimal solution.

2.1.1 Problem Definition

In this section, we describe what the multiple sequence alignment problem is. Before explaining the problem
definition, let us describe some of the notations we use. Let ¥ be a fixed set of alphabets that represent
residues. The size of X is 20 in the case of protein sequences, and it is 4 in the case of DNA sequences. Let
¥ = YU, where - denotes a gap, and consider a score function between its members s : ¥/ x ¥/ — R.
The score function is usually given by a score table. Table 2.1 shows a famous and widely-used score table
called PAM-250 [4, 44].

Each member in ¥’ except for a gap is called a character, and a finite string of characters is called a
sequence. On the other hand, a finite string of members in ¥/ is called a padded sequence. Then the set
of the ith elements of two or more padded sequences is called the ith column of the set of the sequences.
Furthermore, a set of consecutive columns is called a region. A set of padded sequences (S}, S5,...,S)) is
called a d-alignment or simply an alignment of (S1,Ss,...,54) if and only if all of the padded sequences
have same length [, the ith column contains at least one character for any i(1 <i <), and (57,55,...,S5%)
becomes (S1,S2,...,S4) if all gaps are deleted. Furthermore, the (pairwise) projection A;; of an alignment
A = (51,85,...,5;) is defined as the alignment obtained from (S}, S}) by removing columns without any
characters.

The score of a 2-alignment is defined as the summation of scores of all columns obtained directly with
the score function. The score of a d-alignment is defined as the summation of the scores of all the pairwise

projections of the d-alignment. Finally, we can define the problem: the alignment problem is a problem of



Table 2.1: PAM-250 score matrix.

c| 12

S 0 2

T| -2 1 3

P| -3 1 0 6

Al -2 1 1 1 2

G|-3 1 0-1 1 5

N| -4 1 0-1 0 0 2

D|-5 0 0-1 0 1 2 4

E|-5 0 0-1 0 0 1 3 4

Q|-5-1-1 0 0-1 1 2 2 4

H| -3 -1-1 -1-2 2 1 1 3 6

R| -4 0-1 0-2-3 0-1-1 1 2 6

K- 0 0-1-1-2 1 0 0 1 0 3 5

M|{-5-2-1-2-1-3-2-3-2-1-2 0 0 6

I,-2-1 0-2-1-3-2-2-2-2-2-2-2 2 5

L -6-3-2-3-2-4-3-4-3-2-2-3-3 4 2 6

v, -2-1 0-1 0-1-2-2-2-2-2-2-2 2 4 2 4

F|-4-3-3-5-4-5-4-6-5-5-2-4-5 01 2-1 9

Y 0-3-3-5-3-5-2-4-4-4 0-4-4-2-1-1-2 710

w| -8-2-5-6-6-7-4-7-7-5-3 2-3-4-5-2-6 0 017
c s T p A G N D E Q H R K M I L V F Y W

finding the alignment of given sequences with the largest score.

In this definition of the problem, the gap penalty is not influenced by whether two gaps are consecutive
or not. This kind of gap penalty is called the linear gap penalty. If there is starting gap penalty which is
costed only to the beginning of consecutive gaps, it is called the affine gap penalty. In this thesis, we mainly
deal with the linear gap penalty.

The weighted sum-of-pairs multiple alignment problem [5, 69] is a generalization of the simple sum-
of-pairs multiple alignment problem described above. This version of the problem is often used when the
phylogenetic tree is given. In this problem, we optimize the sum of weighted scores of each pairwise sequences
alignment: we multiply the score of the alignment of the ith and the jth sequence by w;;. We call (w;;) a
weight matrix. Note that w;; is always 0 for any 1.

The multiple alignment problem can be easily transformed to the shortest path problem on a grid-like
directed acyclic graph with no negative edges as follows. Let Si be the kth sequence of d sequences to be
aligned, and ny = O(n) be the length of S;. Then suppose a directed acyclic graph G = (V, E) such that
V={(z1,...,za)|zi = 0,1,...,n;} and E = {(v,v +e)|v € V,e € [0,1]¢,e # 0}. In this graph, a path from
s=1(0,...,0) tot = (n1,...,n4) corresponds to an alignment of the sequences.

In the alignment problem of two sequences, the length of an edge is defined from the score table between
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Figure 2.1: The graph for the alignment of two sequences ATGC and ACT. The s-t path in the bald line
represents the alignment of ATGC- and A--CT.

characters, and the length of a path from s to ¢ equals the score of the corresponding alignment. Figure 2.1
shows an example of it. In the graph, each diagonal edge corresponds to the match of characters, and each
horizontal or vertical edges corresponds to the inserted gaps. In the multiple alignment problem, the sum of
all the scores for alignments of pairwise sequences is generally used as the score. This score of the alignment
equals the length of the corresponding path, if we define the length of each edge as the sum of the lengths of
the corresponding edges in the pairwise projections of the alignment. In this way, the longest path problem
from s to ¢ in this graph is equivalent to the original alignment problem. This longest path problem can be
easily transformed to the shortest path problem by reversing the signs of the lengths [72, 85, 87]. Thus we

can use shortest path algorithms for graphs to compute the optimal alignment of given sequences.

2.1.2 Exact Algorithms for Sequence Alignment
Dynamic Programming

The alignment graph presented in the section 2.1.1 is a layered graph and we can easily use the dynamic
programming (DP) technique to obtain the shortest path [44, 67, 73, 129, 150, 160] in time linear to the size
of the graph size.

Algorithm 1 (Dynamic Programming) Let [(u,v) be the length of edge (u,v) in the alignment graph, s

be the source (0,0,...,0) and t be the destination (ny,na,...,ng).
1. Let p(s) be 0.

2. Fori=1toi= Z n; do the following:
1<j<d
For all v = (%o, x1,-..,2q) such that Z xx = 1, compute the following value p(v), and let
1<k<d
previous(v) be v — e which satisfies this equation (2.1). Note that this p(v) equals the shortest path



length from s to v.

p)= _min (pv—e) +1(v - .v)) (2.1)

3. We can obtain the shortest path by tracing back previous(v) from the destination t.

But the DP requires O(n%) memory space where n is the length of the longest sequence and d is the
number of sequences, because it needs to store all vertices of the graph in memory. Thus the DP requires
too much memory in the case of large d, and the DP can only deal with alignment of 2 or 3 sequences in
ordinary case of aligning actual protein sequences. Note that there is an algorithm based on a divide and

conquer technique that reduces the space to O(n?~!), but it requires about twice computation time [129].

Dijkstra Algorithm

The Dijkstra method [48] is the most famous algorithm for the shortest path problem on graphs without

negative edges. The outline of this algorithm is as follows:

Algorithm 2 (Dijkstra Method) Let the graph in assumption be G = (V, E), l(v,w) be the length of edge

(v, w) which is always non-negative, s be the source and t be the destination.

1. Let p(v) be the potential of a vertex v, which is initialized with +o00 except for the source s whose

potential is zero, and S be an empty set.
2. Add to S the vertex vy which has the minimum potential in V — S. Then, stop if vg is t.

3. For all edges (vo,v) in E, if p(vo) + l(vo,v) is smaller than p(v), replace p(v) with p(vo) + I(ve,v) and
replace the path kept in v with the shortest path from s to vo added with the edge (vg,v).

4. Go to step 2.

This algorithm requires O(m + nlogn) time where m is the number of the edges and n is the number of the
vertices in the graph, which is worse than DP, and this algorithm itself is not so useful for the alignment

problem.

A* Algorithm

The Dijkstra method will be remarkably more efficient if it is extended to the A* algorithm [21, 45, 64, 78,
112, 113, 134, 146] as follows. The A* algorithm will not search the whole graph in finding the shortest path
if a good estimate for the shortest path length from each vertex to the destination ¢ can be used.

The basic algorithm for the A* algorithm is like following;:

Algorithm 3 (A* Algorithm) Let the graph in assumption be G = (V, E), l(v,w) be the length of the
edge (v, w) which is always non-negative, s and t be the source and the destination, and h(v) be heuristic

estimate for the length of the shortest path to t which is not longer than the actual one.

1. Let p(v) be the potential of a vertex v, which is initialized with +o00 except for the source s whose

potential is zero, and S be an empty set.

10



2. Add to S the vertex vy, whose value of p(v) + h(v) is smallest in V — S. Then, stop if vy is t.

3. For all edges (vg,v) in E, if p(vo) + l(vo,v) is smaller than p(v), replace p(v) with p(vo) + l(vg,v) and
replace the path kept in v with the shortest path from s to vo added with the edge (vo,v). Ifv is in S,

remove it from S.
4. Go to step 2.

In this algorithm, p(v) for vertex v in S is also the length of the shortest path from s to v. p(v) + h(v)
is the estimate for the shortest path from s to ¢ via v. The searched vertices by the A* algorithm is always
within searched vertices by the Dijkstra method. In this way, the A* algorithm can get the shortest path
more effectively. If the estimate h(v) equals the actual shortest path length from v to t, this algorithm
searches only on the shortest path.

The estimate h(v) must not be longer than the shortest path length from v to ¢, because the final obtained
path must not be longer than the other paths. In case some of the estimate h(v) is longer than the actual
shortest path, this algorithm is called the A algorithm, and is often used as a heuristic algorithm for the
shortest path problem.

In the A* algorithm, the shortest path from s may not appear first, and a shorter path may be found in
the future search, which is the reason of the removal of vertices from S in step 3. It makes this algorithm
rather inefficient. This can be avoided if the estimator is dual feasible. The definition of ‘dual feasible’ is as

follows:

Definition 1 The estimator h for the shortest path to t is called dual feasible if and only if h satisfies the

following constraint, which is called monotone restriction:
Y(u,v) € E l(u,v) + h(v) > h(u) (2.2)

If the estimator is dual feasible, the A* algorithm can be easily translated to the Dijkstra method by
modifying the length of the edges [81, 85, 87, 131]:

Theorem 1 (Ikeda Hsu et al.) Let h be a dual feasible estimator for s. The Dijkstra method on a graph
in which the length of edge (u,v) or l(u,v) is replaced by l'(u,v) as follows is equivalent to the A* algorithm
on the original graph.

U'(u,v) = l(u,v) + h(v) — h(u) (2.3)

Proof: ['(u,v) is non-negative because of dual feasibility of h. Thus, the shortest path can be searched
with the Dijkstra method in the modified graph. Let p be the shortest path from s to v. Then the potential

of v used in searching with the Dijkstra method on the modified graph is described as follows:

Z '(u,v)

(u,v)€p

> I(u,v) + h(v) — h(s)

(u,v)€p

p(v)

This means the Dijkstra method on the new graph is equivalent to the A* algorithm on the original graph,

because h(s) is constant. O

11



Tkeda and Imai [87] show the following estimator is very useful for the alignment problem in case d > 2.
Let G;; be the corresponding graph to the alignment of S; and S;, v;; be the corresponding vertex in Gj;
to v in G, and L*(u,v) be the shortest path length from u to v. Then h(v) =3, <, ;<4 L*(uij, vij) can be
used as a powerful estimator for the multiple alignment problem. This estimator is easily be shown to be

dual feasible, i.e. I(u,v) + h(v) > h(u). Hence the A* algorithm can be applied as following.
Algorithm 4 (A* algorithm for the Alignment Problem)

1. For each of i and j (1 < i < j < d), apply DP to the graph G;; from t;; to calculate L*(v;j,t:;) for
each v;j in Vij. Then let h(v) be 30, ;g L™ (uij. vij).

2. Modify the length of edge (u,v) in G using h(v) as follows, and compute the shortest path with the
Digkstra method.
U(u,v) = l(u,v) + h(v) — h(u) (2.4)

Note that the time and space used for the DP in the step 1 is negligible, if d is large. This A* algorithm can
deal with the alignment problem of 5 to 6 normal sequences in reasonable time.

A vertex in the graph for the multiple alignment has 2¢ — 1 edges going out from it, and the A* algorithm
examines all the descendant vertices and keeps in a heap the information about all of them. If an upper bound
L+ (s,t) for the s-t shortest path, which corresponds to the lower bound of the score of the alignment, is given,
the necessary space for the heap can be reduced [87]: we can ignore w such that L*(s,v) +1(v,w) > L*(s,t),
when we examine the descendant vertices of v. If the necessary space for the heap is reduced, the computing
time of the A* algorithm will also be reduced. This is called the enhanced A* algorithm.

Note that the branch-and-bound techniques implemented in MSA program [72] is equivalent to this en-
hanced A* algorithm, and Araki et al. [10] showed that the estimated score computed directly by the score

matrix is useful for the 2-alignment problem.

2.1.3 Spliced Sequence Alignment

There are many variations of alignments [73], and we here introduce one of them, the spliced sequence
alignment, or the spliced alignment for short, which is designed for aligning a pair of sequences called a
splicing pair. As we described in chapter 1, an mRNA sequence will be spliced after the transcription from
the DNA sequence. A splicing pair is a pair of sequences one of which is derived from the other by the
splicing mechanism. Figure 2.2 shows a picture of the mechanism. The standard alignment tools for the
above problem are not suitable for aligning a splicing pair, because they do not take the splicing mechanism
into account.

There are long gaps in the spliced sequence when we align a splicing pair. Regions of the template
sequence that correspond to long gaps are called splice sites. The aligned regions of both sequences have
very high similarity, say 95% to 99.9%, and therefore no long gaps will be inserted into the template sequence.
Note that the errors (normally less than 5%) between the aligned regions are due to sequencing errors. The
error rates due to transcription are known to be very low. Thus the minimum similarities between the

aligned regions can be estimated while doing sequencing experiments for cDNA library construction. The 5’
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Figure 2.2: The Splicing Mechanism.

end and the 3’ end of a splice site are called the donor site and the acceptor site, respectively. It is known
that most of the splice sites start with GT and end with AG. We must consider all of these facts when we
align two sequences to determine whether they form a splicing pair or not.

There are several algorithms [59, 63, 82, 84, 105, 107, 151, 156] for the spliced alignment problem.
Among them, Mott’s algorithm [107] is a very reasonable modification of the ordinary dynamic programming
alignment algorithm to align a splicing pair. If there is a set of consecutive gaps in the alignment that could
be considered as a splice site candidate, Mott’s algorithm gives an appropriate splice site penalty (decided
by the signals found in the splice site candidate) to the set of consecutive gaps regardless of its length of
the region, instead of the ordinary gap score given by the score function given above. His algorithm runs in
O(nm) time where n and m are the lengths of the two sequences, which is the same as the Smith-Waterman

algorithm. See [107] for more detail. A modified version of his algorithm is used in chapter 4.

2.2 Suffix Trees

In this section, we introduce the suffix tree data structure and describe the algorithms for constructing it.

We also introduce several variants of suffix trees.

2.2.1 Suffix Tree Data Structure

The suffix tree [50, 73, 102, 155, 163] of a string S € X" is the compacted trie of all the suffixes of ST = S$
where § is a character such that § ¢ ¥. Figure 2.3 shows an example of this data structure. It shows the
suffix tree data structure of a string ‘mississippi’. This data structure is very useful for various problems in
sequence pattern matching. Using it, we can query a substring of length m in O(mlog|X|) time, we can find
frequently appearing substrings in a given sequence in linear time, we can find a common substring of many

sequences, also in linear time, and so on [73].
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Figure 2.3: The suffix tree of a string ‘mississippi.’

The tree has n + 1 leaves, and each internal node has more than one child. Each edge is labeled with
a non-empty substring of ST, and no two edges out of a node can have labels that start with the same
character. Each node is labeled with the concatenated string of edge labels on the path from the root to the
node, and each leaf has a label that is a different suffix of ST. Because each edge label is represented by
the first and the last indices of the corresponding substring in ST, the data structure can be stored in O(n)
space.

This data structure was first proposed by Weiner [163], who gave an O(n|X|) algorithm for constructing
it, where n is the string length and |X| is the size of the alphabet. McCreight [102] improved it by giving
an O(nlog|X|) algorithm. After that, Ukkonen [155] proposed an on-line O(nlog|X|) algorithm, which
processes a string character by character from left to right. Then Farach [50] proposed an O(n) algorithm
for an integer alphabet {1,...,n}.

In this thesis, we use the following definitions. In a suffix tree, let parent(u) be the parent node of node
u, let o, be the string label of node u, and let node(a) be node u in the tree such that o, = « if it exists.
The suffix link of u is a link to a node with label a if 4 has a label of ca, where ¢ is any single character. It
is known that a suffix link always exists for any u except for the root in a suffix tree [73, 102, 155]. If w is

the root we let its suffix link be w itself. Let sl(u) be the suffix link of u.

Ukkonen’s Algorithm

In this subsection, we introduce the Ukkonen’s algorithm that enables us to construct the suffix tree on-line

in O(nlog|X|) time:

Theorem 2 (Ukkonen [155]) The suffiz tree of a sequence (€ X™) can be constructed on-line in
O(nlog|X]|) time.

From now on, we describe the algorithm briefly. The implicit suffix tree of S is the compacted trie of

all the suffixes of S, and a label for an edge that ends at a leaf is represented by only the first index of the
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label. Let T; (1 <1 < n+ 1) denote the implicit suffix tree of S[1..i], where n = |S|. Ukkonen’s algorithm
consists of n + 1 phases, and we construct the implicit suffix tree T; from T;_; in the ith phase.

In the ith phase, we construct a new node u = node(S™[j..i]) for all 1 < j < in this order if there is no
locus for S*[j..i] in the tree. When we must construct such new node u, if there is no node with a label of
S*[j..i — 1], we must also construct a new internal node at the locus of ST[j..i — 1], and let it be the parent
of u. We call this procedure for single j the jth extension of the ith phase.

Notice that we do not have to construct node u = node(S*[j..i]) if v = node(S*[j..i — 1]) was a leaf in
the previous phase, because of the definition of the implicit suffix tree: o, is ST[4..i] in this phase. Thus,
if there is a leaf for each of node(S™[j..i — 1]) for all j < k in phase i — 1, we can begin by constructing
node(S*[j + 1..i]) in this phase. Furthermore, if there is a locus for ST[j..i] for some j, it is easy to see that
there already exist loci for S*[k..i] (k > j) too, and that there is no need to construct nodes for them in
this phase.

Ukkonen’s algorithm, like McCreight’s algorithm, maintains at each node u of the suffix tree a suffix link
sl(u). In any phase, we construct nodes u; = node(S™ [j..i]) for several consecutive j’s and u; =node(S*[j..i—
1]) if necessary, in the manner described above. Notice that w;i1 = sl(u;) and u}, ; = sl(u}) if they exists.
For the last u; to be constructed in this phase, we will check the locus for ST[j + 1..i], which is sl(u;) in
the next extension according to the algorithm. Thus we will know within the phase the suffix links of all the
constructed nodes in the same phase. In this way, we can maintain the suffix links.

Using the suffix links, we can construct node u; = node(S*[j..i]) faster: It is easy to see that
sl(parent(uj_1)) must be an ancestor of u;, and we can find the locus of ST[j..i — 1] by tracing edges
from sl(parent(uj_1)). We call tracing from the suffix link to the target locus “scanning.”

In this way, the algorithm achieves an O(nlog|X|) time complexity. For more details of the algorithm

and the analysis of the computing time bound, see [73] or [155].

Farach’s Algorithm

Alphabet {1,...,n} is called an integer alphabet. Ukkonen’s algorithm requires O(nlogn) time for comput-
ing the suffix trees with the integer alphabet. There is another algorithm for constructing the suffix trees
with integer alphabets by Farach [50] that is theoretically faster than Ukkonen’s algorithm in the case of
integer alphabet:

Theorem 3 (Farach [50]) The suffiz tree of a string S € {1,...,n}" can be constructed in O(n) time.

For the details of this algorithm, see [50]. What we must note is that Farach’s suffix tree construction

algorithm and our algorithms to be presented in chapter 6 use the following theorem:

Theorem 4 (Harel and Tarjan [76]) For any tree with n nodes, we can find the lowest common ancestor
(LCA) of any two nodes in a constant time after O(n) preprocessing if the following values can be obtained
in a constant time: bitwise AND, OR, and XOR of two binary numbers, and the positions of the leftmost

and rightmost 1-bit in a binary number.

This algorithm is described in detail in [73, 76]. Note that Bender and Farach [25] proposed recently a
simpler algorithm with the same time bound for the LCA query problem. This theorem indicates that the
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longest common prefix (LCP) of any two suffixes can be obtained from the suffix tree in a constant time

after linear-time preprocessing.

2.2.2 p-Suffix Trees

A parameterized string [16, 18, 19], or a p-string for short, is a string over two alphabets ¥ and II, where
Y is an ordinary alphabet and II is a set of parameters. Two p-strings are said to match if they are same
except for a one-to-one correspondence between the characters in II occurring in them. For example, two
p-strings ACzBCyzyAzxC and ACyBCzxzAzyC match (¥ = {A,B,C} and II = {z,y, z}).

As in [18], we define prev(S) for any p-string S as follows:

Definition 2 Let N be the set of nonnegative integers. Consider a string S[1..n] € (X UI)*. If S[i] € 11,
let ¢; be the index of the nearest same parameter in II to the left, i.e., ¢; < i, S[c;] = S[i] and S[k] # S|i] for
any k such that ¢; < k < i. If such ¢; does not ezist, let ¢; = i. Now, replace S[i] with i —c¢; € N if S[i] € I,
for all i: We let the obtained string in (XU N)* be prev(S).

For example, prev(ACxBCyzyAzxzC) = ACOBC002A38C. Let S[i] denote the ith character of S, and S[i..j]
denote a substring of S that starts at position ¢ and ends at position j. Note that S = S[1..|S|]. The p-suffix
tree of a p-string S is the compacted trie of all the prev-encoded suffixes, i.e., prev(S*[i.n + 1]) for all
positions i, where ST = S$ and $ is a character in neither ¥ nor II. We here consider $ as an ordinary
alphabet, not as a parameter. Baker [16, 18, 19] proposed this data structure and showed that it can be
constructed in O(n(|II| +log |X|)) time. Kosaraju [95] improved the time by giving an O(n(log |II| +1log |X|))
algorithm. Note that both of the algorithms are based on McCreight’s suffix tree construction algorithm
[102] and that neither supports on-line computation. In chapter 6, we will give an on-line algorithm for the

same task based on Ukkonen’s algorithm [155].

2.2.3 The Suffix Tree of a Tree

A set of strings {S1,..., Sk}, such that no string is a suffix of another, can be represented by a common

suffix tree [32, 94] (CS-tree for short), which is defined as follows:

Definition 3 (CS-tree) In the CS-tree of a set of strings {S1,...,Sr}, each edge is labeled with a single
character, and each node is labeled with the concatenated string of edge labels on the path from the node to
the root. In the tree, no two edges out of a node can have the same label. Furthermore, the tree has k leaves,

each of which has a different label that is one of the strings, S;.

Figure 2.4 shows an example of a CS-tree. The number of nodes in the CS-tree is equal to the number
of different suffixes of strings. Thus, the size of a CS-tree is not larger than the sum of the lengths of the
strings represented by the CS-tree. Note that the CS-tree can be constructed easily from strings in a time
linear to the sum of the lengths of the strings.

The generalized suffix tree of a set of strings {Si,..., Sk} is the compacted trie of all the suffixes of all
the strings in the set. As mentioned in [94], the suffix tree of a CS-tree is the same as the generalized suffix

tree of the strings represented by the CS-tree. Furthermore, the size of the generalized suffix tree is linear
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Figure 2.4: CS-tree of the strings 1413$, 5413$, 913%, 56213$, 3213$, 5213%, and 83$.

to that of the CS-tree, because the number of leaves of the suffix tree is equal to the number of edges in the
CS-tree. Note that an edge label of the suffix tree of a CS-tree corresponds to a path in the CS-tree, and it
can be represented by the pointers to the first edge (nearest to the leaves) and the path length.

Let n; be the length of S;, and let N = ). n;. Let n be the number of nodes in the CS-tree of the
strings. The generalized suffix tree can be obtained in O(N) time in the case of integer alphabets (i.e.,
S; € {1,...,n}"™) as follows. First, we construct the suffix tree of a concatenated string of S;1$52%--- $5;
using Farach’s suffix tree construction algorithm. Then, we obtain the generalized suffix tree by cutting away
the unwanted edges and nodes. But IV is sometimes much larger than the size n of the CS-tree. There exists
a tree for which NV is ©(n?) for example. This means that the O(IV)-time suffix tree construction algorithm
given above is not at all a linear time algorithm. The best-known O(nlog|X|) algorithm [32] for this problem
is based on Weiner’s suffix tree construction algorithm [163]. In chapter 6, we will improve it in the case of

integer alphabets by giving a new algorithm based on Farach’s linear-time suffix tree construction algorithm.
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Chapter 3

Efficient Enumeration of Alternative Multiple

Sequence Alignments

Aligning two or more biological sequences to compare them is the most fundamental routine work for almost
all the molecular biologists who deal with sequence data. In many algorithms, an alignment is often obtained
by the alignment with the best score on some given scoring criterion between characters. But it is also known
that the obtained alignment is not always the biologically best alignment. Thus a more flexible way of aligning
sequences is desired. In this chapter, we propose two efficient approaches that enable us to align sequences
in a very flexible way. One approach is by enumerating suboptimal solutions and the other is by doing
parametric analysis.

A suboptimal alignment is an alignment whose score is close to the optimal one. In case of aligning two
sequences, the suboptimal alignment enumeration problem is well-studied [37, 108, 130, 166] and used for
many applications such as predicting protein structure and so on [127, 128, 161]. In the multiple alignment
problem, we can see suboptimal alignments of each pair of sequences with these methods for only two
sequences as in [166], but these are not the accurate suboptimal alignments of all the sequences.

Enumeration of the suboptimal alignments had not been considered as very practical even in the case of
aligning two sequences [108, 166]. But such enumeration has become easier because a new efficient algorithm
for the k shortest paths problem was proposed by Eppstein [49]. This algorithm enumerates the lengths of
the k shortest paths in O(k + n + m) time and space if we are given the shortest path tree from the source
or to the destination for any graph with non-negative m edges and n vertices. Even if we have to output the
paths themselves, this algorithm requires only time linear to the output size, add to the time given above.
Note that the shortest path tree can be constructed with DP or the A* algorithm.

For this approach, we first discuss the method to obtain Ea, which can be done with some extension of
the A* algorithm. Ea represents all aligned groups of residues in optimal and suboptimal alignments which
are at most A worse than the optimal. Furthermore, based on this extended A* algorithm and the Eppstein
algorithm, we go on to discuss the methods for the enumeration problem.

The number of suboptimal solutions is very large, and we should restrict the outputs to important
solutions if we know what kind of solution is important. Hence we discuss what kind of suboptimal alignment

is unnecessary to enumerate, and propose an efficient technique to enumerate only necessary alignments. This
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technique is so splendid that it remains output size sensitive even though we restricted solutions only to the
necessary alignments in our concept.

For the other approach of parametric analysis, we first review the basic techniques for parametric anal-
ysis [74, 83, 157, 159, 162, 165], and propose new techniques for multiple alignments. As for the techniques,
we use the Eppstein algorithm to examine all the optimal solutions for one fixed parameter, and upper
bounding technique for the parametric alignment. In the most of previous work, they computed only one
optimal solution for one fixed parameter in parametric analysis, while we examine all optimal solutions using
the Eppstein algorithm.

We do a parametric study on gap penalties, score tables and weight matrices. Related with the weight
matrices, we show the (enhanced) A* algorithm is applicable for the weighted multiple alignment problem.
The weighted problem is considered only when the phylogenetic tree is given, but our approach enables more
flexible study of the weighted multiple alignment problem. This technique may also be useful in constructing
or tuning phylogenetic trees.

In this chapter, section 3.1 describes the first approach by enumerating suboptimal solutions, while

section 3.2 describes the second approach by parametric analysis.

3.1 Enumeration of Suboptimal Alignments of Multiple Sequences

In this section, we deal with the first approach to the flexible alignment, that is the enumeration of suboptimal
solutions. At first, we introduce the Eppstein algorithm [49] which is very efficient for enumerating suboptimal
paths in ordinary graphs. We then consider how to obtain Ex efficiently for the multiple alignment problem.
Furthermore, we also discuss how to enumerate the suboptimal solutions, introducing the new notation of

classes of suboptimal solutions.

3.1.1 Eppstein Algorithm

Eppstein [49] proposed an algorithm which finds implicitly the &k shortest paths for the graph G with non-
negative m edges and n vertices regardless of cycles, in O(m + n + k) time after the shortest path tree
is constructed. He also proposed an easier algorithm of O(m + nlogn + k) time. Note that before the
proposition of Eppstein, the best algorithm for the problem was O(k(m + nlogn)).

In the algorithm, we use d(u,v) for the edge (u,v) as in equation (3.2). This d(u,v) denotes how much
longer the path will be using the edge (u,v) than the optimal path by way of v, and therefore this value is
always non-negative.

If an edge (u,v) is on the shortest path tree, d(u,v) is zero, otherwise, it is called a sidetrack and d(u,v)
may not be zero. If we go along an s-t path p other than the shortest path, there must be one or more
sidetracks on p, and we define sidetrack(p) as the nearest sidetrack from s within them.

Let (tail(p), head(p)) be sidetrack(p). Then we can suppose a heap, in which the parent of a path p is
a path which is same as p from head(p) to t, but goes along the shortest path from s to head(p) instead
of using sidetrack(p). We define parent(p) as the parent of p and we call p a child of parent(p). The root
of the heap is the shortest path, and all the paths from s to ¢ appear in the heap once. In this heap, p
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Figure 3.1: The path heap of the alignment graph of two sequences KN and QK.

is d(sidetrack(p)) longer than parent(p). Figure 3.1 shows the path heap of the alignment graph of two

sequences KN and QK.

We call a heap an i-heap if the node of the heap has only 4 children at most (it is not required to be
balanced). The basic concept of the Eppstein algorithm is to modify this path heap to a 4-heap, sharing
as many nodes as possible. Figure 3.2 shows an example of this compact version of the path heap of the

same alignment graph in Figure 3.1, in which some of the nodes are shared and the number of nodes in it is

reduced.
From this heap, we can obtain the k shortest paths in O(k) time [60] or O(klogk) time in sorted form.

The following is the outline of this algorithm:
Algorithm 5 (Eppstein)
1. Construct the shortest path tree from s to all the other vertices.

2. For each vertex v, construct Hg(v), a 3-heap of sidetracks (u',u) such that u is on the shortest path
from s to v, ordered by 6(u',u). Let the length from the root of Hg(v) to a node x be d(u,v) if x

represents sidetrack (u,v).

(a) For each vertex v, construct Hyui(v), a 2-heap of sidetracks (v',v) ordered by §(v',v) in which the

root has only one child.
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Figure 3.2: The compact path heap of the alignment graph of two sequences KN and QK. Some of the nodes

are shared, and the number of nodes in it is reduced.

(b) For each vertex v, construct Hy(v), a 2-heap of vertices on the shortest path from s to v ordered

by the value § of the root of the heap made in step 2-(a).

(¢) Merge H,u:(v) and Hrp(v) to make Hg(v). Then let the length of the edge from node x1 to node
X2 in this heap be §(x2) — 6(x1)-

3. For each v in G, make an edge from each node in Hg(v) which represents a sidetrack (u',u) to the

root of Hg(u'), and let the length of this new edge be the value of the root.

4. Make a new node for each v in G, and make an edge from this node to the root of Hg(v). Let the
length of this edge be § of the root. Let this new graph be P(G).

Then we can find a heap H,(G) in P(G) for any v, considering the root as the node made in step 4 for
v, and the value of a node as the length from the root to the node. There is a one-to-one correspondence
between the nodes in H,(G) and the paths from v to ¢ in G, and the k smallest nodes in this virtual heap
H,(G) correspond to the k shortest paths. Moreover, we can easily restore the path from the node of the
heap, which can be done in O(n') time where n' is the size of the output alignment.

Note that the shortest path tree in step 1 is constructed generally by the Dijkstra method, but for
problems such as the alignment problem, we can also use DP. Eppstein showed the step 2 can be done
in O(n + m) time with a very complicated algorithm, but we use a far more easier and practically faster
algorithm of O(nlogn + m) time, which is also proposed by Eppstein [49]: we make Hg(v) one by one from

s to the other vertices along the shortest path tree, sharing as many nodes as possible.
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3.1.2 Upper Bounding Technique for Computing Fa

E is a set of vertices which are used by the s-t paths whose lengths are at most A longer than the shortest
path, and it corresponds to all aligned groups of residues in optimal and suboptimal alignments in original
problem. The problem to compute it is well-studied [85, 108, 130, 166]. Here we show how to compute this set
Ea with the A* algorithm [85]. For any path p from s to t, the modified path length by the expression (2.4)
is only h(t) — h(s) longer than the original length. This value is not relevant to p, thus Ea on the modified

graph is same as the original one.

Theorem 5 Any paths from s to t on the graph in which the length of edge (u,v) or l(u,v) is replaced by

U'(u,v) as in (2.4) are a constant shorter than those on the original graph.

Proof: Let p be a path from s to ¢, and h be a dual feasible estimator for the shortest path length to t.
Then the length of a path p or length'(p) in the new graph is described by the length of p or length(p) in

the original graph as follows:

length'(p) = Z I'(u,v)
(u,v)Ep
= Y l(u,v)+ h(t) — h(s)
(u,v)Ep
= length(p) + h(t) — h(s) (3.1)

According to this, all the paths on the new graph from s to ¢ are h(s) — h(t), which is constant, shorter than
those on the original graph. O

Note that the following corollaries can be easily derived from Theorem 5.

Corollary 1 Ea related to the paths from s to t on a graph in which the length of edge (u,v) or l(u,v) is

replaced by I'(u,v) as in (2.4) are same as that on the original graph.

Corollary 2 The k shortest paths from s to t on a graph in which the length of edge (u,v) or l(u,v) is

replaced by I'(u,v) as in (2.4) are same as those on the original graph.

Hence, first we modify the edge lengths with some dual feasible estimator, and then we can obtain Ea

with the Dijkstra method as follows [85] on this modified graph.
Algorithm 6 (Ea)
1. Search from s by the Dijkstra method until the shortest path from s to t is discovered.

2. Search successively until a vertex v, to which the shortest path from s is more than A longer than the

s-t shortest path, is discovered.

3. Modify the length of each edge (u,v) to §(u,v) as follows:

0(u,v) = l(u,v) + L*(s,u) — L*(s,v) (3.2)
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Figure 3.3: Ea is a set of vertices which are used by the s-¢ paths whose lengths are at most A longer than

the shortest path.

4. Apply the Dijkstra method from t until a vertex from which the shortest path to t is longer than A is

discovered in the modified graph. Ea is the set of vertices searched in this step.

A vertex in the graph for the multiple alignment has 2¢ — 1 edges going out from it, and the Dijkstra
algorithm examines all the descendant vertices and keeps the information about all of them. If an upper
bound L7 (s,t) for the s-t shortest path is given, we can also decrease the heap size for searching as in
the case of computing the optimal solution with the enhanced A* algorithm: we can ignore w such that
L*(s,v) +l(v,w) > L*(s,t) + A, when we examine the descendant vertices of v.

In general, such kind of an upper bound is difficult to obtain. However, we can use the actual shortest
path length obtained in step 1 for the upper bound in step 2: we can ignore w such that L*(s,v) + (v, w) >
L*(s,t) + A. Note that if we are given some upper bound of the solution before computing the optimal one,

we can of course use it too.

3.1.3 Extending Eppstein Algorithm to Reduce Memory Space

In this subsection, we discuss how to enumerate efficiently all the suboptimal alignments whose scores are at
most A lower than the optimal one. The original Eppstein algorithm requires searching all over the graph,
and requires much memory. But it is evident that we only have to apply the Eppstein algorithm in the
subset Ea after computing Ea as in the previous section, and then search the Eppstein’s heap structure
with the depth first method.

Moreover, if we use the easier O(nlogn+m) algorithm in step 2 (b) of Eppstein algorithm (Algorithm 5),
we do not have to compute Ex additionally. First, we must take the step 1 and 2 in the Algorithm 6, using
the upper bounding technique. These procedures cannot be skipped. After these procedures, we implement

the Eppstein algorithm as follows:
Algorithm 7 (Eppstein algorithm with A*)

1. Construct the Eppstein’s heap structure only on the shortest path.
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2. Search for suboptimal solutions which are at most A worse than the optimal (root) from the root of
H(G) with the depth first search method. If we encounter Hg(v) which has not been constructed yet,
we construct the heap structures of vertices on the shortest path from s to v for which we have not

constructed heaps yet.

When we finish enumerating all the suboptimal alignments with this method, the set of vertices for which

we constructed the Eppstein heap is also Fa.

Theorem 6 The set of vertices S for which the Eppstein’s heap structures are computed in the algorithm 7

18 EA.

Proof: We construct Hg(v) for all the vertices in Ea in the algorithm 7. Thus we can easily see that
Ex € S. A newly encountered vertex v for which Hg(v) has not constructed is in Ea, because we only
search suboptimal paths which are A longer than the shortest path at most. Add to that, to obtain Hg(v)
for some vertex v, we only have to compute H¢(u) for each vertex u on the shortest path from the source
s to v in the easier method of the step 2(b) in algorithm 5, which is also trivially in Ex. Thus, we do not
construct Eppstein’s heap structures for vertices outside of Fa. Hence, we conclude that S = Fa. O

Thus we do not have to compute Ea additionally. Notice that this technique can be also used in general

graphs other than the graphs for alignments.

3.1.4 Classification of Suboptimal Alignments

In this subsection, we classify suboptimal alignments. We introduce a notion of alignment class D; as follows:

Definition 4 D; is a class of alignments which have i regions different from the optimal alignment, which

is in Dy.

Figure 3.4 shows some examples of suboptimal multiple alignments of protein fragments. (a) is the
optimal alignment, and (b), (c¢) and (d) are suboptimal alignments. The regions bounded by boxes are the
regions that are different from the optimal alignment. (b) and (c) have only one such region. On the other
hand, (d) has two, both of which appear also in (b) or (c). According to our notion of classification, the
optimal alignment (a) is in the class Dy (and none of the others are in this class), suboptimal alignments
(b) and (c) are in the class D1, and suboptimal alignment (d) is in the class D-.

Considering the fact that we can easily reconstruct (d) from (b) and (c), (d) is not so important as (b) nor
(c) and is sometimes unnecessary to enumerate. Thus, it will be a good news if we can efficiently enumerate

only the alignments in the classes Dy and D;.

3.1.5 Avoiding Unnecessary Alignments

The paths to which the alignments in the class D; correspond branch off i times from the shortest path to
which the alignment in the class Dy corresponds. Hence, we can consider a very easy branch-and-bound
technique to avoid such alignments in D; (i > 2) in enumeration of suboptimal alignments: when we search

the Eppstein’s heap structure, if head(p) of s-t path p is on the s-t shortest path and parent(p) is not the
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REAFSQAIWRATFAQVPESRSLFKR==
ADFLV-ALF-EKFPDSANFFADFKGKS
KNG-S-LLFGLLFKTYPDTKKHFKHFD
LAAVF-TAYPDIQARFPQFAGK-DVAS
GSGVE-ILY-FFLNKFPGNFPMFKKLG

(a) The optimal alignment

REA | FSQ | AIWRATFAQVPESRSLFKR== REAFSQAIWRATFAQVPESRS |LF | KR==
ADF | LV- | ALF-EKFPDSANFFADFKGKS ADFLV-ALF-EKFPDSANFFA | DF | KGKS
KNG | -S- | LLFGLLFKTYPDTKKHFKHFD KNG-S-LLFGLLFKTYPDTKK |HF | KHFD
LAA | -VF | TAYPDIQARFPQFAGK-DVAS LAAVF-TAYPDIQARFPQFAG | -K | DVAS
GSG | -VE | ILY-FFLNKFPGNFPMFKKLG GSGVE-ILY-FFLNKFPGNFP | MF | KKLG

(b) A suboptimal alignment (¢) Another suboptimal alignment

REA | FSQ | AIWRATFAQVPESRS | LF | KR==
ADF | LV- | ALF-EKFPDSANFFA | DF | KGKS
KNG | -S—- | LLFGLLFKTYPDTKK | HF | KHFD
LAA | -VF | TAYPDIQARFPQFAG | -K | DVAS
GSG | -VE | ILY-FFLNKFPGNFP | MF | KKLG

(d) Unnecessary alignment to check
Figure 3.4: Examples of suboptimal alignments of multiple protein sequences.

shortest path, ignore p and its all conceptual children (defined in subsection 3.1.1). Figure 3.5 shows the
concept of this technique.

Recall that one of the good features of the Eppstein algorithm is that we can obtain the solutions in
the time linear to the output size after having constructed the Eppstein heap. But the above technique is
not output sensitive, because it requires checking some of the nodes which are in the class D,. If there are
many such solutions, the computing time becomes rather large. Thus we modified the Eppstein algorithm
to overcome this problem. Here we show how to construct a heap structure whose nodes represent only

alignments in classes Dqg (the root or the optimal solution) and D;:
Algorithm 8 (Modified Eppstein Algorithm)
1. Construct the shortest path tree from s to all the other vertices.

2. For each vertex v, construct Hg(v), a 8-heap of sidetracks (u',u) ordered by 6(u',u) as follows. Let

the length from the oot of Hg(v) to a node x be §(u,v) if x represents sidetrack (u,v).
(a) For each vertex v, construct Hyyi(v), a 2-heap of sidetracks (v',v) ordered by §(v',v) in which the
root has only one child.

(b) For each vertex v that is not on the s-t shortest path, construct Hr(v), a 2-heap of vertices on
the s-v shortest path but not on the s-t shortest path ordered by the value & of the root of the heap
made in step 2-(a).

25



root = the optimal alignment

Conceptual path heap

all of these alignments have
two or more regions different
from the optimal alignment

NN N TN

Figure 3.5: An example of a conceptual path heap. We can easily construct a heap which does not contain

unnecessary alignments such as ¢ and its all descendants.

(¢) For each vertex v on the s-t shortest path, construct Hr(v), a 2-heap of vertices on the s-v shortest

path ordered by the value § of the root of the heap made in step 2-(a).

(d) Merge H,ut(v) and Hyp(v) to make Hg(v). Then let the length of the edge from node x1 to node
X2 in this heap be §(x2) — 6(x1)-

3. For each v on the s-t shortest path, make a node N,.

4. For each v in G, make an edge from each node in Hg(v) which represents a sidetrack (u',u) to the
root of Hg(u') if u' is not on the s-t shortest path, and let the length of this new edge be the value of

the root. Otherwise, make an edge from the node to N, .

5. Make a mew node for each v in G, and make an edge from this node to the root of Ha(v). Let the
length of this edge be § of the root. Let this new graph be P(G).

Once the heap was constructed, what we should do next is same as in the original Eppstein algorithm:
we only have to search from the root of the virtual heap. Accordingly, we can efficiently enumerate only
the alignments in class Dy, and apparently it is output sensitive algorithm once the heap is given. This
algorithm can be also used with the A* algorithm using the techniques in subsection 3.1.3.

We can also extend this algorithm for enumeration of alignments in class D; (i < ¢) for any ¢ in the same

way, though the algorithm becomes much more complicated:

Algorithm 9

1. Construct the shortest path tree from s to all the other vertices.
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2. For each vertex v, construct heaps Hg) (v) (0 < i < ¢ for the vertices on the s-t shortest path, and
0 < i < ¢ for the others), that are 3-heaps of sidetracks (u',u) as follows. Let the length from the root

of H(Gi) (v) to a node x be d(u,v) if x represents sidetrack (u,v).

(a) For each vertex v, construct H(()L)t

0 < i < ¢ for the others), that are 2-heaps of sidetracks (v',v) ordered by 6(v',v) in which the root

(v) (0 < i < c for the vertices on the s-t shortest path, and

has only one child.

(b) For each vertex v that is not on the s-t shortest path, construct ¢ — 2 heaps Héj) (wv) 0<i<c),
all of which are 2-heaps of vertices on the s-v shortest path ordered by the value & of the root of
the heap made in step 2-(a).

(¢) For each vertex v that is not on the s-t shortest path, construct heap Héf) (v), a 2-heap of vertices
on the s-v shortest path but not on the s-t shortest path, ordered by the value § of the root of the
heap made in step 2-(a).

(d) For each vertex v on the s-t shortest path, construct heaps H;j) (v) (0 <i<c), that are 2-heaps of
vertices on the s-v shortest path ordered by the value & of the root of the heap made in step 2-(a).

(e) For each i and v, merge ng)t(v) and H;j) (v) to make Hg) (v). Then let the length of the edge

from node z, to node x5 in these heaps be §(x2) — 6(x1).

3. For each v on the s-t shortest path, make a node N,.

4. For each v in G, make an edge from each node in H(Gi) (v) which represents a sidetrack (u',u) to the
root of Hg) (u') if u' is not on the s-t shortest path, and let the length of this new edge be the value of
the root. If u' is on the s-t shortest path, make an edge to the root of Hgﬂ)(u') ifi+1<ec, orto Ny

ifi+1=c.

5. Make a new node for each v on the s-t shortest path, and make an edge from this node to the root of

H(GO) (v). Let the length of this edge be 6 of the root. Let this new graph be P(G).

This algorithm requires O(c(n + m)) time to construct the heap structure. In contrast, the branch-and-

bound technique we mentioned at first in this subsection can deal with this kind of problem easily: we

only have to remember how many branches from the s-t shortest path the parent path has, in searching

suboptimal paths in the Eppstein heap structure. Thus, when ¢ is large, which technique is more efficient

may depend on cases. But, note that the problem whose ¢ is large is not so important as that whose c is

small, i.e. 1 or 2.

3.1.6 Extracting Knowledge from Eppstein Heap

As mentioned by Eppstein [49], the Eppstein heap has a good feature: some of numerical values for each

suboptimal solution can be obtained in O(1) time with some simple pre-process of O(|Ea|) time. In the case

of the multiple alignment problem, these can be obtained in such an efficient way for example: the number

of aligned groups in which all residues are same, the number of gaps, the score computed with another score
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Table 3.1: Sequences of EF-TU and EF-1a to be aligned and their scores of pairwise sequence alignments.

We use the top d sequences in this table in the experiments.

Sequences Pairwise Scores
Species Protein | Length Met Tha Thc Sul Ent Pla Sty
Halobacterium marismortui (Hal)| EF-TU 421 1329 1314 1221 1109 1099 1000 971
Methanococcus vannielii (Met)] EF-TU 428 1336 1247 1150 1176 1087 1045
Thermoplasma acidophilum(Tha) EF-la 424 1311 1261 1233 1063 1072
Thermococcus celer  (Thc) EF-la 428 1132 1130 1049 991
Sulfolobus acidocaldarius (Sul)| EF-la 435 1192 1131 1099
Entamoeba histolytica (Ent)| EF-la 430 1584 1551
Plasmodium falciparum (Pla)| EF-la 443 1636
Stylonychia lemnae (Sty)| EF-la 446

table, the length of the alignment, and so on. Our algorithm in the subsection 3.1.5 which enumerates only
alignments in the class D; have the same feature too.
Let us consider the case of computing the number of gaps in each obtained suboptimal solution. Let the

number of gaps p we want to know be gaps(p). Then the algorithm will be like this:
Algorithm 10

1. For each vertex v in V', compute the number of gaps contained in the part of the s-v shortest path.
This can be done in O(n) time, by the depth first search on the shortest path tree to t. Then let this
value be g(v).

2. For each sidetrack (u,v), compute following §'(u,v):
&' (u,v) = g(u) — g(v) (3.3)

3. When we obtained a path p (which represents some alignment), we compute the gaps(p) as follows from

the value of gaps(parent(p)).
gaps(p) = gaps(parent(p)) + &' (sidetrack(p)) (3.4)

In the same way, we can get many kinds of values for each solution. But note that there are some values that
cannot be obtained in O(1) time. For example, affine gap cost is one of them, though it is a very important

value.

3.1.7 Experimental Results

In this subsection, we examine the efficiency of our approach and investigate the properties of suboptimal
alignments through experiments. In the experiment, we used the PAM-250 matrix, and linear gap penalty
bx where z is the gap length and b is the minimum value in the PAM-250 matrix, —8. All the experiments

are done on a Sun Ultra 1 workstation with 128 megabyte memory.
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Table 3.2: Searching time (sec) by the A* algorithm in the experiment on the d sequences of EF-TU and
EF-la. In case d = 8, the enhanced A* utilizing the optimal score is used. Note that only DP is used in

case d = 2.

\ Hd=2 d=3 d=4 d=5 d=6 d=7 d=8

best score 1329 3970 7709 12314 18101 24912 33129
Pre-process DP 0.32 1.00 4.30 7.23 11.1 16.0 20.5
Search (optimal) - 0.18 0.52 3.35 19.6 426 5427
Search (A = 10) - 0.18 0.60 3.63 20.9 439 5686
Search (A = 20) - 0.22 0.73 4.17 23.1 462 6735
Search (A = 30) - 0.27 0.93 5.00 26.9 498 8027
Search (A = 40) - 0.33 1.23 6.22 3L.5 552 9623

Case with High Similarity

We first did experiments on a group of 8 sequences with high similarity in Table 3.1. According to it, the
average scores per amino pair of these pairwise alignments are about 2.5 to 4. Add to this, the optimal
score of the multiple alignment of all these 8 sequences is 33129 and its length is 456, thus the average score

456-(5
experiment. Figure 3.6 shows one of the optimal alignments of all the 8 sequences in Table 3.1. You can

per amino pair of this alignment is Lﬁé’) ~ 2.59 (Table 3.1). These are higher than those in the next

easily recognize the high similarity.

As for computing alignments of less than 8 sequences, we could apply the simple A* algorithm. However,
for alignment of the 8 sequences, we used the upper bounding technique (enhanced A*) because 128 megabyte
memory is not enough for computing with the simple A* algorithm: we used in the experiment the optimal
solution as the upper bound to see the best efficiency of this enhanced algorithm. In any case, we used the
upper bounding technique after the optimal solution is obtained.

According to Table 3.2, the DP takes a lot of time compared with the A* algorithm when d is small,
but it is negligible when d is large. This table also shows that, the additional searching time required for
computing suboptimal solutions is not so large as long as A is not much larger than in these experiments:
it requires at most twice the time in total as in the case of computing only the optimal alignment in these
experiments if A < 40.

Figure 3.7, Table 3.3 and Table 3.4 show the results of enumerating the suboptimal alignments. Fig-
ure 3.7(a) shows that there are enormous number of suboptimal alignments, and the number increases
exponentially as A increases. However, in Figure 3.7(b), we can see the number of suboptimal solutions is
dramatically reduced by ignoring alignments in class D; (i > 2). The number of the alignments enumerated
in this way is only 0.0003% (d = 4) to 0.4% (d = 8) of all the alignments in case A = 30 (see Table 3.4): it
seems difficult to check significance of all the suboptimal alignments at most 10 worse than the optimal, but
in our method, we can do it. Accordingly, the enumeration time is also reduced drastically(see Table 3.4).

Figure 3.9 shows an example of suboptimal alignments. The score of it is 33139, which is only 10 worse

than the optimal. In this figure, * in the first line indicates the regions different from the optimal alignment
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Table 3.3: Size of EA and Eppstein’s heap structure in the experiments on d sequences of EF-TU and EF-1a.
The heap size in the table does not include the number of nodes made in step 4 of the Eppstein algorithm,

which is same as |Ea].

| A | a=2 d=3 d=4 d=5 d=6 d=7 d=38
0 | 1Bl 503 485 513 553 534 579 540
heap size 437 277 411 503 454 674 404

2 | |Exl 1101 595 609 689 691 799 784
heap size | 7184 1010 1266 1701 1750 2604 2672

s | Bl 1447 046 817 901 864 1246 1316
heap size | 12983 4949 3417 3997 3504 7552 8539

w0 | Bl 2011 2528 1170 1249 1156 1973 2254
heap size || 17934 25861 8648 10036 7785 18407 23973

Table 3.4: Enumerating time (sec) when A = 30 in the experiment on the d sequences EF-TU and EF-1a.
(a) is the case enumerating all the suboptimal alignments, and (b) is the case enumerating alignments in
class Dy (optimal) and D;. The time of constructing the Eppstein’s heap structure is included in the time

below.

| | a=2 a=3 d=4 d=5 d=6 d=7 d=38

() Falignments || 38047513 8804702 327522816 85923864 20689104 49633652 13857237
time (sec) 152.87 54.98 1830.18 510.63 124.55 292.50 109.00
(b) F#alignments 6968 1695 1117 2176 1659 41791 60589
time (sec) 0.23 0.13 0.32 0.95 2.10 9.83  29.62

in Figure 3.6. This alignment has 5 such regions, which means this alignment is in the class Ds. The
existence of such alignments makes enumeration of suboptimal alignments more difficult. It is the reason
that our enumeration approach which avoids enumerating such alignments is very efficient.

Observing Figure 3.7(a), the number of the suboptimal alignments seems to be similar and irrelevant to
d. It is an interesting fact, but this comparison is unfair. The number must be compared between the cases
which have same value of 4-: we must consider A per amino pair. For example, it is all right to compare
the case A =28 (d = 8) an(i the case A =10 (d = 5). In this case, the number of suboptimal alignments in
the former case is 7288718 ~ 444.9 times as that of the latter case.

16112
According to Table 3.3, | Ea| and the size of the Eppstein heap for this size of A is not so large. Thus, the

enumeration time in Table 3.4(b) is small, though it includes time for constructing the heap. In Figure 3.7(b),
the number of suboptimal alignments in class D increases much when d = 2,7, 8 compared with other cases.
The reason of this is seen in Table 3.3. The |Ea| in cases d = 2, 7,8 is larger than the others: there may be
many alignments which have a large region different from the optimal. On the other hand, in Figure 3.7(a),

the number of the alignments in case d = 4 is large compared with others, but many of these must be
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Table 3.5: Globin sequences to be aligned and their scores of pairwise sequence alignments.

globin Length || Apl Bus Ct7 Ct3

Lumbricus terrestris - AIII (Lum) 157 29 15 35 41

Aplysia limacina (Apl) 146 126 177 140

Busycon canaliculatum (Bus) 147 111 64

Chironomus thummi thummi - VIIA ~ (Ct7) 145 191
Chironomus thummi thummi - IITa  (Ct3) 151

combinations of small number of ‘necessary’ alignments.

Case with Low Similarity

We next did experiments on 5 globin sequences listed in Table 3.5. According to it, the average scores per
amino acid pair of pairwise alignments of them are about 0.2 to 1.3. The score of the optimal multiple
alignment of these 5 sequences is 543 and its length is 165, thus the average score per amid acid pair of this
% ~ 0.33, which is lower than the previous case. Figure 3.10 shows the optimal alignment
of the sequences in Table 3.5. It shows the dissimilarity compared with the case of the previous experiments.

alignment is

Figure 3.8 and Table 3.6 show the result of the experiments. According to Table 3.6, the searching time
by the simple A* algorithm is far longer than in the previous experiments for same d, though the length is
short. It is because the estimator of the A* algorithm is not so powerful in case with low similarity.

According to Figure 3.8, the number of alignments in this experiment is also drastically reduced as in
the previous experiments by ignoring alignments in class D; (i > 2): the number of alignments in D; is only
0.004% of that of all the suboptimal alignments in case d = 5 and A = 20.

As mentioned by Zuker [166], the alignments with low scores are not always insignificant. In general, if
the lengths of sequences to be aligned are short, the size of Ea will be small. However, the size of Ea is
larger than in the previous experiments for same d and A. Hence we can estimate that sequences we use in
this experiment is not so significant as in the previous experiment. In this way, we can use the size of Ea as

a factor of the significance of the alignment.
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1 80
Hal MS-DEQHQNLAIIGHVDHGKSTLVGRLLYETGSVPEHVIEQHKEEAEEKGKGGFEFAYVMDNLAEERERGVTIDIAHQEF
Met MAKTKPILNVAFIGHVDAGKSTTVGRLLLDGGAIDPQLIVRLRKEAEEKGKAGFEFAYVMDGLKEERERGVTIDVAHKKF
Tha MASQKPHLNLITIGHVDHGKSTLVGRLLYEHGEIPAHIIEEYRKEAEQKGKATFEFAWVMDRFKEERERGVTIDLAHRKF
Thc MAKEKPHINIVFIGHVDHGKSTTIGRLLFDTANIPENIIKKFE-EMGEKGK-SFKFAWVMDRLKEERERGITIDVAHTKF
Sul MS-QKPHLNLIVIGHVDHGKSTLIGRLLMDRGFIDEKTVKEAEEAAKKLGKDSEKYAFLMDRLKEERERGVTINLSFMRF
Ent MPKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDQRTIEKFEKESAEMGKGSFKYAWVLDNLKAERERGITIDISLWKF
Pla MGKEKTHINLVVIGHVDSGKSTTTGHIIYKLGGIDRRTIEKFEKESAEMGKGSFKYAWVLDKLKAERERGITIDIALWKF
Sty MPKEKNHLNLVVIGHVDSGKSTSTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVLDKLKAERERGITIDIALWNF
81 160
Hal STDTYDFTIVDCPGHRDFVKNMITGASQADNAVLVVAA-D---D-GV-QP-QTQEHVFLARTLGIGELIVAVNKMD-L-V
Met PTAKYEVTIVDCPGHRDFIKNMITGASQADAAVLVVNVDDA--KSGI-QP-QTREHVFLIRTLGVRQLAVAVNKMD-T-V
Tha ETDKYYFTLIDAPGHRDFVKNMITGTSQADAAILVISARDG--E-GV-ME-QTREHAFLARTLGVPQMVVAINKMDATSP
Thc ETPHRYITIIDAPGHRDFVKNMITGASQADAAVLVVAV-T---D-GV-MP-QTKEHAFLARTLGINNILVAVNKMD-M-V
Sul ETRKYFFTVIDAPGHRDFVKNMITGASQADAAILVVSAKKGEYEAGMSAEGQTREHIILSKTMGINQVIVAINKMDLADT
Ent ETSKYYFTIIDAPGHRDFIKNMITGTSQADVAILIVAAGTGEFEAGISKNGQTREHILLSYTLGVKQMIVGVNKMD-A-I
Pla ETPRYFFTVIDAPGHKDFIKNMITGTSQADVALLVVPADVGGFDGAFSKEGQTKEHVLLAFTLGVKQIVVGVNKMD-T-V
Sty ETAKSVFTIIDAPGHRDFIKNMITGTSQADAAILIIASGQGEFEAGISKEGQTREHALLAFTMGVKQMIVAVNKMDDKSV
161 240
Hal DYGESEYKQVVEEV-KDLLTQVRFDSENAKFIPVSAFEGDNIAEESEHTGWYDGEILLEALNELPAPEPPTDAPLRLPIQ
Met NFSEADYNELKKMIGDQLLKMIGFNPEQINFVPVASLHGDNVFKKSERNPWYKGPTIAEVIDGFQPPEKPTNLPLRLPIQ
Tha PYSEKRYNEVKADA-EKLLRSIGFK-D-ISFVPISGYKGDNVTKPSPNMPWYKGPTLLQALDAFKVPEKPINKPLRIPVE
Thc NYDEKKFKAVAEQV-KKLLMMLGYK-N-FPIIPISAWEGDNVVKKSDKMPWYNGPTLIEALDQMPEPPKPTDKPLRIPIQ
Sul PYDEKRFKEIVDTV-SKFMKSFGFDMNKVKFVPVVAPDGDNVTHKSTKMPWYNGPTLEELLDQLEIPPKPVDKPLRIPIQ
Ent QYKQERYEEIKKEI-SAFLKKTGYNPDKIPFVPISGFQGDNMIEPSTNMPWYKGPTLIGALDSVTPPERPVDKPLRLPLQ
Pla KYSEDRYEEIKKEV-KDYLKKVGYQADKVDFIPISGFEGDNLIEKSDKTPWYKGRTLIEALDTMQPPKRPYDKPLRIPLQ
Sty NWDQGRFIEIKKEL-SDYLKKIWLQPRQDPFIPISGWHGDNMLEKSPNMPWFTGSTLIDALDALDQPKRPKDKPLRLPLQ
241 320
Hal DVYTISGIGTVPVGRVETGILNTGDNVSFQPSD-V----S-GEVKTVEMHHEEVPKAEPGDNVGFNVRGVGKDDIRRGDV
Met DVYTITGVGTVPVGRVETGIIKPGDKVVFEPAG-A----I-GEIKTVEMHHEQLPSAEPGDNIGFNVRGVGKKDIKRGDV
Tha DVYSITGIGTVPVGRVETGVLKPGDKVIFLPAD-K----Q-GDVKSIEMHHEPLQQAEPGDNIGFNVRGIAKNDIKRGDV
Thc DVYSIKGVGTVPVGRVETGVLRVGDVVIFEPASTIFHKPIQGEVKSIEMHHEPMQEALPGDNIGFNVRGVGKNDIKRGDV
Sul EVYSISGVGVVPVGRIESGVLKVGDKIVFMPVG-K----I-GEVRSIETHHTKIDKAEPGDNIGFNVRGVEKKDVKRGDV
Ent DVYKISGIGTVPVGRVETGILKPGTIVQFAPSG-V----S-SECKSIEMHHTALAQAIPGDNVGFNVRNLTVKDIKRGNV
Pla GVYKIGGIGTVPVGRVETGILKAGMVLNFAPSA-V----V-SECKSVEMHKEVLEEARPGDNIGFNVKNVSVKEIKRGYV
Sty DVYKIGGIGTVPVGRVETGLLKPGMVLTFAPMN-I----T-TECKSVEMHHESLTEAEPGDNVGFTVKNLSVKDLRRGYV
321 400
Hal CGPADDPPSVA--ET-FQAQIVVMQHPSVITEGYTPVFHAHTAQVACTVESIDKKIDPSSGEVAE-ENPDFIQNGDAAVV
Met LGHTTNPPTVA--TD-FTAQIVVLQHPSVLTDGYTPVFHTHTAQIACTFAEIQKKLNPATGEVLE-ENPDFLKAGDAAIV
Tha CGHLDTPPTVV--KA-FTAQIIVLNHPSVIAPGYKPVFHVHTAQVACRIDEIVKTLNPKDGTTLK-EKPDFIKNGDVAIV
Thc AGHTNNPPTVVRPKDTFKAQIIVLNHPTAITVGYTPVLHAHTLQVAVRFEQLLAKLDPRTGNIVE-ENPQFIKTGDSAIV
Sul AGSVQNPPTVA--DE-FTAQVIVIWHPTAVGVGYTPVLHVHTASIACRVSEITSRIDPKTGKEAE-KNPQFIKAGDSAIV
Ent ASDAKNQPAVG-CED-FTAQVIVMNHPGQIRKGYTPVLDCHTSHIACKFEELLSKIDRRTGKSMEGGEPEYIKNGDSALV
Pla ASDTKNEPAKG-CSK-FTAQVIILNHPGEIKNGYTPLLDCHTSHISCKFLNIDSKIDKRSGKVVE-ENPKAIKSGDSALV
Sty ASDSKNDPAKD-TTN-FLAQVIVLNHPGQIQKGYAPVLDCHTAHIACKFDEIESKVDRRSGKVLE-EEPKFIKSGEAALV
401 456
Hal TVRPQKPLSIEPSSEIPELGSFAIRDMGQTIAAGKV--L---G---V-NE-—---| R
Met KLIPTKPMVIESVKEIPQLGRFAIRDMGMTVAAGMA--I---Q---VTAKN----K
Tha KVIPDKPLVIEKVSEIPQLGRFAVLDMGQTVAAGQC--I---D---L-EK-----R
Thc VLRPTKPMVIEPVKEIPQMGRFAIRDMGQTVAAGMV--I---S---I-QKA----E
Sul KFKPIKELVAEKFREFPALGRFAMRDMGKTVGVGVI--I---D---VKPRKVE-VK
Ent KIVPTKPLCVEEFAKFPPLGRFAVRDMKQTVAVGVV--K---A---V-T------P
Pla SLEPKKPMVVETFTEYPPLGRFAIRDMRQTIAVGIINQLKRKNLGAVTAKAPA-KK
Sty RMVPQKPMCVEAFNQYPPLGRFAVRDMKQTVAVGVIKEVVKKEQKGMVTKAAQKKK

Figure 3.6: The optimal alignment of the 8 EF-TU and EF-1a sequences.

Table 3.6: The best score, searching time (sec) by the simple A* algorithm and the size of Ea in the

experiment on the d globin sequences.
(1) (2)

| la=2 d=3 d=4 a=5]

best score 29 103 354 543 ‘ H d— d—3 d—4 d=5

Pre-Process DP 0.05 0.27 0.52 0.83
- |E1ol 357 508 380 554

Search (optimal) - 0.73 7.40 837
| E2ol 776 1184 866 1159

Search (A = 10) - 0.85 8.13 865
| E30l 1149 2403 1575 2448

Search (A = 20) - 0.93 9.43 909
| E40| 1544 3839 2669 4569

Search (A = 30) - 122 11.22 964

Search (A = 40) - 1.63 14.13 1080
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Figure 3.7: Number of the suboptimal alignments of d sequences of EF-TU and EF-1a whose scores are at
most A worse than the optimal. (a) is the case enumerating all the alignments. (0 < A < 30) (b) is the case

enumerating alignments in classes Dy and D;. (0 < A < 40)
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Figure 3.8: Number of the suboptimal alignments of d globin sequences whose scores are at most A worse
than the optimal alignment. (a) is the case enumerating all the alignments. (0 < A < 20) (b) is the case

enumerating alignments in classes Dy and D;. (0 < A < 40)
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1 skkkk 80
Hal MSDEQ-HQNLAIIGHVDHGKSTLVGRLLYETGSVPEHVIEQHKEEAEEKGKGGFEFAYVMDNLAEERERGVTIDIAHQEF
Met MAKTKPILNVAFIGHVDAGKSTTVGRLLLDGGAIDPQLIVRLRKEAEEKGKAGFEFAYVMDGLKEERERGVTIDVAHKKF
Tha MASQKPHLNLITIGHVDHGKSTLVGRLLYEHGEIPAHIIEEYRKEAEQKGKATFEFAWVMDRFKEERERGVTIDLAHRKF
Thc MAKEKPHINIVFIGHVDHGKSTTIGRLLFDTANIPENIIKKFE-EMGEKGK-SFKFAWVMDRLKEERERGITIDVAHTKF
Sul MS-QKPHLNLIVIGHVDHGKSTLIGRLLMDRGFIDEKTVKEAEEAAKKLGKDSEKYAFLMDRLKEERERGVTINLSFMRF
Ent MPKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDQRTIEKFEKESAEMGKGSFKYAWVLDNLKAERERGITIDISLWKF
Pla MGKEKTHINLVVIGHVDSGKSTTTGHIIYKLGGIDRRTIEKFEKESAEMGKGSFKYAWVLDKLKAERERGITIDIALWKF
Sty MPKEKNHLNLVVIGHVDSGKSTSTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVLDKLKAERERGITIDIALWNF

81 *k *k
Hal STDTYDFTIVDCPGHRDFVKNMITGASQADNAVLVVAAD----D-GV-QP-QTQEHVFLARTLGIGELIVAVNKMD--LV
Met PTAKYEVTIVDCPGHRDFIKNMITGASQADAAVLVVNVDDA--KSGI-QP-QTREHVFLIRTLGVRQLAVAVNKMD--TV
Tha ETDKYYFTLIDAPGHRDFVKNMITGTSQADAAILVISARDG--E-GV-ME-QTREHAFLARTLGVPQMVVAINKMDATSP
Thc ETPHRYITIIDAPGHRDFVKNMITGASQADAAVLVVAVT----D-GV-MP-QTKEHAFLARTLGINNILVAVNKMD--MV
Sul ETRKYFFTVIDAPGHRDFVKNMITGASQADAAILVVSAKKGEYEAGMSAEGQTREHIILSKTMGINQVIVAINKMDLADT
Ent ETSKYYFTIIDAPGHRDFIKNMITGTSQADVAILIVAAGTGEFEAGISKNGQTREHILLSYTLGVKQMIVGVNKMD--AT
Pla ETPRYFFTVIDAPGHKDFIKNMITGTSQADVALLVVPADVGGFDGAFSKEGQTKEHVLLAFTLGVKQIVVGVNKMD--TV
Sty ETAKSVFTIIDAPGHRDFIKNMITGTSQADAAILIIASGQGEFEAGISKEGQTREHALLAFTMGVKQMIVAVNKMDDKSV

161 240
Hal DYGESEYKQVVEEV-KDLLTQVRFDSENAKFIPVSAFEGDNIAEESEHTGWYDGEILLEALNELPAPEPPTDAPLRLPIQ
Met NFSEADYNELKKMIGDQLLKMIGFNPEQINFVPVASLHGDNVFKKSERNPWYKGPTIAEVIDGFQPPEKPTNLPLRLPIQ
Tha PYSEKRYNEVKADA-EKLLRSIGFK-D-ISFVPISGYKGDNVTKPSPNMPWYKGPTLLQALDAFKVPEKPINKPLRIPVE
Thc NYDEKKFKAVAEQV-KKLLMMLGYK-N-FPIIPISAWEGDNVVKKSDKMPWYNGPTLIEALDQMPEPPKPTDKPLRIPIQ
Sul PYDEKRFKEIVDTV-SKFMKSFGFDMNKVKFVPVVAPDGDNVTHKSTKMPWYNGPTLEELLDQLEIPPKPVDKPLRIPIQ
Ent QYKQERYEEIKKEI-SAFLKKTGYNPDKIPFVPISGFQGDNMIEPSTNMPWYKGPTLIGALDSVTPPERPVDKPLRLPLQ
Pla KYSEDRYEEIKKEV-KDYLKKVGYQADKVDFIPISGFEGDNLIEKSDKTPWYKGRTLIEALDTMQPPKRPYDKPLRIPLQ
Sty NWDQGRFIEIKKEL-SDYLKKIWLQPRQDPFIPISGWHGDNMLEKSPNMPWFTGSTLIDALDALDQPKRPKDKPLRLPLQ

241 320
Hal DVYTISGIGTVPVGRVETGILNTGDNVSFQPSD-V----S-GEVKTVEMHHEEVPKAEPGDNVGFNVRGVGKDDIRRGDV
Met DVYTITGVGTVPVGRVETGIIKPGDKVVFEPAG-A----I-GEIKTVEMHHEQLPSAEPGDNIGFNVRGVGKKDIKRGDV
Tha DVYSITGIGTVPVGRVETGVLKPGDKVIFLPAD-K----Q-GDVKSIEMHHEPLQQAEPGDNIGFNVRGIAKNDIKRGDV
Thc DVYSIKGVGTVPVGRVETGVLRVGDVVIFEPASTIFHKPIQGEVKSIEMHHEPMQEALPGDNIGFNVRGVGKNDIKRGDV
Sul EVYSISGVGVVPVGRIESGVLKVGDKIVFMPVG-K----I-GEVRSIETHHTKIDKAEPGDNIGFNVRGVEKKDVKRGDV
Ent DVYKISGIGTVPVGRVETGILKPGTIVQFAPSG-V----S-SECKSIEMHHTALAQAIPGDNVGFNVRNLTVKDIKRGNV
Pla GVYKIGGIGTVPVGRVETGILKAGMVLNFAPSA-V----V-SECKSVEMHKEVLEEARPGDNIGFNVKNVSVKEIKRGYV
Sty DVYKIGGIGTVPVGRVETGLLKPGMVLTFAPMN-I----T-TECKSVEMHHESLTEAEPGDNVGFTVKNLSVKDLRRGYV

321 *k 400
Hal CGPADDPPSVA--ET-FQAQIVVMQHPSVITEGYTPVFHAHTAQVACTVESIDKKIDPSSGEVAEE-NPDFIQNGDAAVV
Met LGHTTNPPTVA--TD-FTAQIVVLQHPSVLTDGYTPVFHTHTAQIACTFAEIQKKLNPATGEVLEE-NPDFLKAGDAAIV
Tha CGHLDTPPTVV--KA-FTAQIIVLNHPSVIAPGYKPVFHVHTAQVACRIDEIVKTLNPKDGTTLKE-KPDFIKNGDVAIV
Thc AGHTNNPPTVVRPKDTFKAQIIVLNHPTAITVGYTPVLHAHTLQVAVRFEQLLAKLDPRTGNIVEE-NPQFIKTGDSAIV
Sul AGSVQNPPTVA--DE-FTAQVIVIWHPTAVGVGYTPVLHVHTASIACRVSEITSRIDPKTGKEAEK-NPQFIKAGDSAIV
Ent ASDAKNQPAVG-CED-FTAQVIVMNHPGQIRKGYTPVLDCHTSHIACKFEELLSKIDRRTGKSMEGGEPEYIKNGDSALV
Pla ASDTKNEPAKG-CSK-FTAQVIILNHPGEIKNGYTPLLDCHTSHISCKFLNIDSKIDKRSGKVVEE-NPKAIKSGDSALV
Sty ASDSKNDPAKD-TTN-FLAQVIVLNHPGQIQKGYAPVLDCHTAHIACKFDEIESKVDRRSGKVLEE-EPKFIKSGEAALV

401 sk ok ok K
Hal TVRPQKPLSIEPSSEIPELGSFAIRDMGQTIAAGKV--L------ GV-NE-----] R
Met KLIPTKPMVIESVKEIPQLGRFAIRDMGMTVAAGMA--I---—--— QVTAKN----K
Tha KVIPDKPLVIEKVSEIPQLGRFAVLDMGQTVAAGQC--I- --DL-EK-----R
Thc VLRPTKPMVIEPVKEIPQMGRFAIRDMGQTVAAGMV--I- --SI-QKA----E
Sul KFKPIKELVAEKFREFPALGRFAMRDMGKTVGVGVI--I------ DVKPRKVE-VK

Ent KIVPTKPLCVEEFAKFPPLGRFAVRDMKQTVAVGVV--K------ AV-TP======
Pla SLEPKKPMVVETFTEYPPLGRFAIRDMRQTIAVGIINQLKRKNLGAVTAKAPA-KK
Sty RMVPQKPMCVEAFNQYPPLGRFAVRDMKQTVAVGVIKEVVKKEQKGMVTKAAQKKK

Figure 3.9: An example of suboptimal alignments of the 8 EF-TU and EF-1a sequences.

1 83
Lum KKQCGVLEGLKVKSEWGRAYGSGHDREAFSQAIWRATFAQVPESRSLFKRVHGDH-TS--DPA-FIAHAERVLGGLDIAISTL
Apl S-LSAAEADL-AGKSWAPVFAN-KN--ANGADFLVALFEKFPDSANFFADFKGKSVADIKASPKLRDVSSRIFTRLNEFVNNA
Bus G-LDGAQKTA-LKESWKVLGADGPTMMKNGSLLFGLLFKTYPDTKKHFKHFDDATFAAMDTTGVGKAHGVAVFSGLGSMICSI
Ct7 APLSADQASL-VKSTWAQV----RN--S-EVEILAAVFTAYPDIQARFPQFAGKDVASIKDTGAFATHAGRIVGFVSEIIALI
Ct3 V-ATPAMPSM-TDAQVAAVKGDWEKIKGSGVEILYFFLNKFPGNFPMFKKL-GNDLAAAKGTAEFKDQADKIIAFLQGVIEKL

84 165
Lum DQP--A-TLKEELDHLQVQHEGRKIPDNYFDAFKTAILHVVAAQLGERCYSNNEEI-HDAIACDGFARVLPQVLERGIKGHH
Apl ANA--G-KMSAMLSQFAKEHVGFGVGSAQFENVRSMFPGFVAS-VA----APPAGA-DAAWT-KLFGLII-DAL---KAAGA
Bus DDD--D-CVBGLAKKLSRNHLARGVSAADFKLLEAVFKZFLDE--A----TQRKAT-DAQKD-AD-GALL-TML---IKAHV
Ct7 GNESNAPAVQTLVGQLAASHKARGISQAQFNEFRAGLVSYVSS-NV----AWNAAA-ESAWT-AGLDNIF-GLL---FAA-L
Ct3 GSDM-G-GAKALLNQLGTSHKAMGITKDQFDQFRQALTELLGN-LG---FGGNIGAWNATVD-LMFHVIF-NAL---DGTPV

Figure 3.10: One of the optimal alignments of the 5 globin sequences.
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3.2 Parametric Analysis of Multiple Sequence Alignment

In this section, we describe the techniques for parametric analysis of the multiple sequence alignment problem.

3.2.1 Basic Techniques

In this subsection, we describe basic methods to check how the optimal solution varies as the parameters
such as gap penalties change. The easiest approach for this kind of problem is to change the parameter little
by little and check the optimal solution, but we cannot know how little we should change the parameter.
Recently the techniques for parametric analysis were developed [74, 83, 157, 159, 160, 162, 165]. Some of
them did parametric analysis on more than one parameter, but algorithms for it are not so efficient as those
for the one-parameter problems. Hence we deal with only one parameter at one time in this thesis. We

consider the case in which the score of some alignment A; is expressed with parameter p as follows:
si(p) = a(A;) +b(Ai) - p (3.5)

Gap penalty satisfies this expression for example.

From now on, we explain how to divide 1-parameter (1-dimensional) space to regions in which the optimal
alignments are always same. Let a; be a(4;) and b; be b(4;). Let p; and p; be the values of the parameter
which satisfies p; < p; and have different optimal solutions. Let the alignment A; be the alignment with the
smallest value of b among the optimal alignments at p = p; and A; be the alignment with the largest value

of b among the optimal alignments at p = p;. Then these two alignments A; and A; have the same score
a; — aj
bi —b;
between p; and p;. Otherwise, we can apply the same technique recursively (i.e. apply between p; and p;;

at p = pij = . If the optimal score at p = p;; equals s;(pi;) = s;(pi;j), there are only two regions
and between p;; and p;) to obtain such division. Figure 3.11 shows an example of this procedure. Letting
n be the number of regions which we want to obtain, we only have to compute the optimal solutions 2n — 1
times. Thus we can efficiently do parametric analysis in the case of one parameter.

In the algorithm, the alignments with the largest or smallest value of b among the optimal alignments
at some fixed parameter are required. These can be easily obtained by some lexicographical extension of
DP [157, 159, 160, 162]. This technique can be applied also to the (enhanced) A* algorithm. But the aim
of the parametric analysis is to examine all the optimal solutions, and it is not preferable to ignore most
optimal solutions if there are many. Thus, for this purpose, we enumerate the optimal solutions by the

Eppstein algorithm in the subsection 3.1.1 and pick up the solutions with the largest or smallest value of b.

3.2.2 Upper Bounding Technique for Parametric Alignment

As we stated in the subsection 2.1.2, the A* algorithm will be more efficient if some upper bounding value for
the optimal solution is given (it is called the enhanced A* algorithm). In the parametric alignment problem,
si(pij) = sj(pij) in the subsection 3.2.1 is a lower bound of the score of the optimal alignment at p = p;;.
Thus it can be used as the upper bounding value for computing the optimal alignments at p = p;; with the
A* algorithm. Note that the enhanced A* algorithm will show the best performance if the s;(p;;) = s;(pij)

is the optimal score at p = p;;, which always happens at the final stage of the parametric analysis.
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Score

Figure 3.11: An example of division of 1-parameter space. In this case, there are 4 regions between p; and

p2-

3.2.3 Experimental Results

In this subsection, we do parametric analysis on groups of actual protein sequences. We use the PAM-250
matrix as the score matrix in the following experiments except for the experiments on the parametric weight
matrix. The experiments on the parametric gap penalty and the parametric score matrix are done on a Sun
Ultra 1 workstation with 128 megabyte memory, while the experiments on the parametric weight matrix are

done on a Sun Ultra 1 workstation with 256 megabyte memory.

Parametric Gap Penalty

Previous work on parametric analysis mainly dealt with gap penalty, because it is a very important factor
of the alignment problem [74, 83, 157, 159, 162]. But the previous work dealt only with the 2-alignment
problem. We did parametric analysis of gap penalty using the top d sequences (d < 7) in Table 3.1. In
general, the most popular gap penalty is the minimum value in the score matrix, which is —8 in this PAM-250
case. We did parametric analysis for d-sequence alignment (2 < d < 6) with the gap penalty between —2
and —16.

Table 3.7 shows the result of the experiment. In Table 3.7, the first row of each entry of d shows the
boundaries of the regions, but several of the ends are not the boundaries: the ends with — in #Max and #Min
entry are not boundaries. The second row shows the numbers of the optimal solutions at the value. The last
two rows show the numbers of optimal solutions with the largest/smallest value of b in the subsection 3.2.1.
Thus, these values equal the number of the optimal solutions between the boundaries.

According to the table, it is observed that the intervals of the regions become smaller (i.e. the optimal
solution is not stable), as the penalty increases regardless of d. It also shows that there are not so much
difference between different d’s, which means we can do parametric analysis as easily as in the 2-alignment

case. The table also shows that there are more than 1 optimal solution in all cases in the experiments.
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Table 3.7: The result of the experiment on parametric gap penalty using EF-1a sequences.

Gap penalty —16 -5 -3 —-2.5 -2
d=2 #Solutions 4 12 24 192 576
#Max - 8 16 8 32
#Min - 4 8 16 8
Gap penalty —-16 =3.5 -3 —2.75 —-2.5 —2.2 -2
d=3 #Solutions 8 16 24 32 72 48 256
#Max - 8 16 16 16 32 96
#Min - 8 8 16 16 16 32
Gap penalty —16 —8 —3.83 —3.5 —2.5 —2.33  —2.25 —2
d=4 #Solutions 16 32 32 32 32 48 160 4608
#Max - 16 16 16 16 32 128 384
#Min - 16 16 16 16 16 32 128
Gap penalty —-16 —-7.5 —4 —-3.38 —3.17 -3 —2.88 —2.75 =25
d=5 #Solutions 2 4 4 4 4 4 12 8 24
#Max - 2 2 2 2 2 4 4
#Min - 2 2 2 2 2 2 4
Gap penalty —-16 —6.5 —4.5 —4 —-3.5
d=6 #Solutions 4 16 8 8 4
#Max - 4 4 4 -
#Min - 4 4 4 -

Figure 3.12 shows the number of visited nodes by the A* algorithm in computing all the optimal align-
ments under various gap penalties. According to this figure, the number of the visited nodes increases
drastically as the gap penalty increases especially when gap penalty is larger than —4. This is the reason
why we analyzed gap penalty only up to —2.5 or —3.5 when d > 5: the required space was too large to
compute when the gap penalty is around —2. We suppose this increase of the search space is caused by the
instability of the optimal solution. In general, it is known that the required space for the A* algorithm is
large if the similarity among the group is low, probably for the same origin.

We also did experiments on 10 TNF-a sequences in Table 3.8, which are very similar to each other.
Table 3.10 shows the result of it. In the experiments, we examined between gap penalties —16 and —2.5, for
d=2,4,6,8,10 sequences. It is between —16 and —4.5 in case of d = 10, because of computational difficulty
of obtaining the optimal solution with gap penalties near to 0. There are fewer regions than the EF-1a case,

whose reason may be the high similarity among this group.
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Figure 3.12: Number of visited nodes by the A* algorithm for various gap penalties.

Table 3.8: TNF-a sequences used in the experiment.

Species Protein Length
Homo sapiens (HSp) tumor necrosis factor a (TNF-a) precursor 233
Mus musculus (MM) tumor necrosis factor a (TNF-a) precursor 235
Sus scrofa (SS) tumor necrosis factor a (TNF-a) precursor 232
Ovis orientalis aries (OOAp) | tumor necrosis factor a (TNF-a) precursor 234
Bos primigenius taurus (BPT) | tumor necrosis factor @ (TNF-a) inhibitor 233
Equus caballus (EC) tumor necrosis factor @ (TNF-a) precursor 234
Oryctolagus cuniculus (OC) tumor necrosis factor @ (TNF-a) precursor 234
Rattus norvegicus (RN) tumor necrosis factor @ (TNF-a) precursor 235
Homo sapiens (HSi) tumor necrosis factor @ (TNF-«) inhibitor 233
Ovis orientalis aries (OOA1) tumor necrosis factor @ (TNF-«) inhibitor 233
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Table 3.9: Scores of pairwise alignments of TNF-a sequences.

MM SS OOAp BPT EC OC RN HSi OOAi

HSp 955 990 924 935 1013 949 943 1041 932
MM 919 872 872 945 952 1124 952 866
SS 980 990 982 906 912 974 988
OOAp 1059 916 840 856 915 1145
BPT 933 865 854 926 1067
EC 962 931 1013 906
ocC 946 961 845
RN 940 850
HSi 922

Table 3.10: The result of the experiment on parametric gap penalty using TNF-a.

Gap penalty -16 -2.5
d=29 #Solutions 6 18
# Max - 12
# Min - 6
Gap penalty -16  -6.67 -3.75 -2.88 -2.67 -2.5
d=4 #Solutions 12 24 24 24 24 36
# Max - 12 12 12 12 24
# Min - 12 12 12 12 12
Gap penalty -16  -4.95 -3.3 -2.75 -2.5
d=6 #Solutions 6 12 18 24 36
# Max - 12 12 24
# Min - 6 12 12
Gap penalty -16  -5.57 -4.5 -3.36  -2.92 -2.75 -25
d=8 #Solutions 1 2 2 3 4 2
# Max - 1 1 2 2 -
# Min - 1 1 1 2 -
Gap penalty -16  -5.28 -4.5
d=10 #Solutions 1 2 1
# Max - 1 -
# Min - 1 -
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Parametric Score Matrix

We next deal with the parametric analysis of a score matrix. A score matrix is a set of very important
parameters and it deeply affects the quality of the output alignment. Thus parametric analysis of it is very

important and requires much care to deal with.

(n+2)(n-1)
2

we can do is very limited simple analysis. In previous work, Vingron et al. [157] analyzed the varying solutions

There are parameters in the score matrix where n is the number of characters, thus what
as they added some constant (which is the parameter to change) to each element in the score matrix. But
it is not so interesting because those constants do not have much meaning. We should do analysis in more
practical and interesting way.

We implemented a program to analyze how the optimal solutions will change as the score matrix changes
linearly between two score matrices (sgjl)) and (sgf.)): we used (p- sg) +(1-p) sg)) as the score matrix and
considered p as the parameter to be changed. Note that our program can of course deal with the analysis
what Vingron et al. did [157].

At first, we did experiments on 8 sequences (fragments) of the rhodopsin superfamily shown in Table 3.11.
Figure 3.13 shows the optimal alignment of 5 sequences taken from Table 3.11. But, in the biologists’ view,
it is not the best alignment [29, 77]. According to them, the K’s (lysine) which are marked with * at the first
line in Figure 3.13 must be aligned.

There must be various methods to cope with this kind of problems, but one of the simplest methods is
to check the optimal alignment obtained with a score table whose score for K-K is large. But, too large score
for K-K makes irrelevant K’s aligned and the alignment will be unnatural. Thus, we should choose as small
score as possible in the constraint that we can obtain a biologically good solution. In this way, we can align
reasonably these K’s. In this point of view, we did parametric analysis on these sequences, letting the score
for K-K be the parameter to change. In the experiment, we let the scores other than it are the same as those
in the PAM-250 score matrix in Table 2.1. In the PAM-250 score matrix, the score for K-K is 5, hence we
only examined in the region where its score is larger than 5.

Table 3.13 shows the result of this experiment. The first row of each entry shows the score for K-K which
is a boundary of regions except for several ends with - in #Max and #Min entries. The second row shows the
number of the optimal solutions and the other two rows show the number of the optimal solutions with the
largest/smallest b in the subsection 3.2.1. In the table, * denotes the smallest score for K-K which induces the
optimal alignment whose K’s are aligned desirably. Figure 3.14 shows the alignment of 5 sequences obtained
with the smallest score for K-K such that K’s are aligned desirably. This alignment is biologically much better
than that obtained with the ordinary PAM-250 score matrix.

Figure 3.15 shows how the number of visited nodes by the A* algorithm changes as the score for K-K
changes. This figure shows the case of 4 and 5 sequences. In this figure, we can easily see that the number
is large where the boundary in the parametric analysis exists. Thus we can estimate that computing the
optimal solution will be more difficult if the solution is instable.

It is also interesting that in the case of the alignment of 4 rhodopsin sequences, the number of visited
nodes is fixed when the score for K-K is larger than 84. It is because all the possible K’s are aligned and thus

letting the score larger makes no difference.
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Table 3.11: Sequences of the Rhodopsin Superfamily used in the experiments.

Species Protein Length

Halobacterium sp. (Hal) Halorhodopsin precursor 39
Homo Sapiens (HSg) | Green-sensitive opsin 48
Homo Sapiens (HSr) | Red-sensitive opsin 48
Gallus gallus (GGd) | Rhodopsin 55
Homo Sapiens (HSb) | Blue-sensitive opsin 54
Homo Sapiens (HSd) | Rhodopsin 55
Drosophila melanogaster  (DM3) | Opsin RH3 53
Drosophila melanogaster  (DM4) | Opsin RH4 53

Table 3.12: Scores of pairwise sequences of the Rhodopsin Superfamily.

HSg HSr GGd HSb HSd DM3 DM4
Hal =35 -32 -79 -61 -83 -31 -26
HSg 256 108 100 111 2 -10
HSr 107 100 110 7 -5
GGd 147 275 30 18
HSb 150 34 35
HSd 33 21
DM3 277

PAM-t score table is computed based on the evolutionary permutation probability of amid acids per
period proportional to ¢ [44], and we can consider various PAM score tables such as PAM-120, PAM-250
and so on. As Altschul [4] suggested that it is better to align sequences with two or three different PAM
scores based on statistical analysis, parametric analysis on ¢ is very useful. Because PAM-t converges into
some matrix as t becomes larger, parametric analysis on ¢ can be approximated by the linear parametric
analysis between PAM matrices if ¢ is large enough. Note that the exact parametric analysis on ¢ is difficult
and remains as one of future tasks.

Table 3.14 shows the result of the experiment using 6 TNF-a sequences in Table 3.8. The first row of

1 * * 55
Hal ==GLALVQSVGVTSWAYS-VLDVF-AK-YVF---AF-I-LLR-WV-ANN---ER=
HSg NPGYPFHPLMAALPAFFAKSATIYNPVIYVFMNRQFRNCILQ-LF-GKK----V=
HSr NPGYAFHPLMAALPAYFAKSATIYNPVIYVFMNRQFRNCILQ-LF-GKK----V=
GGd NQGSDFGPIFMTIPAFFAKSSATIYNPVIYIVMNKQFRNCMITTLCCGKNPLGDED
HSb NRNHGLDLRLVTIPSFFSKSACIYNPIIYCFMNKQFQACIMK-MVCGKAMTDESD

Figure 3.13: The optimal alignment of 5 rhodopsin sequences based on PAM-250.
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1 * 60

GGd N----QGSDFGPIFMTIPAFFAKSSATIYNPVIYIVMNKQFRNCMITTLCCGKNPLGDE-D
HSb N----RNHGLDLRLVTIPSFFSKSACIYNPIIYCFMNKQFQAC-IMKMVCGKA-MTDESD

Figure 3.14: The optimal alignment of 5 rhodopsin sequences when the score for K-K is between 89 and 124.

Table 3.13: The result of the experiment on parametric score matrices using rhodopsin sequences. * denotes

the smallest score for K-K which induces the optimal alignment whose K’s are aligned desirably.

Score of K-K || 5  53%* 128 Score of K-K || 5 20  109.5* 128
d=9 #Solutions 1 6 5 d=6 #Solutions || 24 28 6 2
#Max - 1 - #Max - 4 2 -
#Min -5 - #Min DY 4 -
Score of K-K 5 555 128 Score of X-K 5 16 33.33 64
d=3 #Solutions 2 7 5 d="7 #Solutions 4 8 6 2
#Max - 2 - #Max - 4 2 -
#Min - 5 - #Min - 4 4 -
Score of K-K 5 38  58.5% 128 Score of X-K 5 16.5 32
d =4 | #Solutions 4 36 48 12 d =g | #Solutions 8 16 8
#Max - 32 12 - #Max -8 -
#Min - 4 32 - #Min - 8 -
Score of K-K 5 24 89* 124 128
d=5 #Solutions || 24 32 20 28 16
#Max -8 12 16 -
#Min - 24 8 12 -

each entry shows the value p of (p - 35]1) +(1—p)- 35]1)) which is a boundary of regions except for several

ends with - in #Max and #Min entries, where (s(1)) is the PAM-250 score matrix and (s(?)) is the PAM-320
matrix. The second row shows the number of the optimal solutions and the other two rows show the number
of the optimal solutions with the largest/smallest b in the subsection 3.2.1. Notice that there are no other
optimal solutions other than those at both ends between the PAM-250 score matrix and the PAM-320 score

matrix.

Parametric Weight Matrix

We next deal with a weighted version of the multiple alignment problem. Computing the optimal solution of
this problem by the (enhanced) A* algorithm is rather easy: all we have to do is using h(v) = 32, ;<4 Wij -
L*(ujj,vi;) as the estimator. Thus we can use the same techniques as in the previous experiments.

A weight matrix for aligning sequences whose phylogenetic tree is known can be made if divergence

between sequences are given [5]. But what should we do if the divergence are ambiguous? In such a case,

42



#Visited Nodes #Visited Nodes

5000 100000

A~
4500 90000

LRy N \\ ;

60000

\/ { 50000

2000 40000 /
1500 30000

1000| 20000

500 10000

o o
Scorefor K-K Scorefor K-K
0.00 2000  40.00  60.00  80.00 100.00  120.00 0.00 2000 40.00 60.00 80.00 100.00 120.00

(a) Case of the alignment of 4 rhodopsin sequences (a) Case of the alignment of 5 rhodopsin sequences

Figure 3.15: Number of visited nodes by the A* algorithm for various scores for K-K. The dotted lines denote

the boundaries of the regions where the optimal solution is same.

Table 3.14: The result of the linear parametric analysis between PAM-250 and PAM-320 using 6 TNF-«

sequences.
p 0 05 1
d=6 #Solutions || 6 12 9
#Max - 3
#Min - 6

parametric analysis between reasonable two weight matrices helps. Thus, parametric analysis on weight

matrices may help tuning parameters of a phylogenetic tree.

(d—2)(d+1)
2

simple analysis. We implemented a program to analyze how the optimal solutions change as the weight

There are parameters to change in the weight matrix, thus what we can do is very limited

matrix changes linearly between two weight matrices.

We did experiments between following two weight matrices of (w;;) and (wgﬁ’n)):

0 i=7
w;j = o (3.6)

1 P F ]

Wi i=norj=n
WP = P wij _ J (3.7)
Wi otherwise

In this equation, (w;;) corresponds to the simple sum-of-pairs multiple alignment, and wz(.f ™) increases

the importance of nth sequence to p times as the simple sum-of-pairs multiple alignment. If biologically
good alignment is discovered in the experiment, we can estimate the importance of the sequence which was

increased.
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Table 3.15: The result of the experiment on parametric weight matrices using EF-1a sequences.

Weight 1 133 3 317 45 475 5 6.57 16
Hal #Solutions || 4 16 16 12 8 8 48 16 8
#Max -4 8 4 4 4 8 8 -
#Min - 4 4 8 4 4 4 8 -
Weight 1 225 3 4.2 44 4.5 12 14.5 16
Met #Solutions || 4 12 16 16 16 16 16 24
#Max - 8 8 8 8 8 8 16
#Min - 4 4 8 8 8 8 8 8
Weight 1 233 3 55  T7.67 8 16
Tha #Solutions || 4 8 8 8 16 4
#Max - 4 4 4 4 -
#Min - 4 4 4 4 4 -
Weight 1 1.8 3 4 5 5.33 6 10.33 12 14.44 16
The #Solutions || 4 8 8 12 12 8 8 8 8 8 12
#Max - 4 4 2 4 4 4 4 8
#Min - 4 4 4 2 4 4 4 4 4 4
Weight 2 3 3.75 5 6 6.43 8 10.25 14 16
Qul | #Solutions || 4 12 8 8 12 16 16 16 16 16 8
#Max - 4 4 4 8 8 8 8 -
#Min - 4 4 4 4 8 8 8 -
Weight 1 133 1.5 3 3.66 5 6 10.33 13 16
Ent #Solutions || 4 8 8 8 8 8 8 12 24 16
#Max - 4 4 4 4 4 4 8 16 -
#Min - 4 4 4 4 4 4 4 8 -

Table 3.15 shows experimental results using the top 6 EF-1a sequences in Table 3.1. The first column

is the name of the sequence whose importance was increased. The first row of each entry shows the value

of p of wl(.f ) which is a boundary of regions except for several ends with - in #Max and #Min entries.
The second row shows the number of the optimal solutions and the other two rows show the number of the
optimal solutions with the largest/smallest b in the subsection 3.2.1.

In this experiment, we notice that the optimal solutions will change even when only p = 1.33 in some of
the cases (cases of Tha and Ent). It means we should take more care of the weight matrix. This experiment
also show that there are more than 1 optimal solution in all the cases in this experiment. In the experiment,
the numbers of the regions are not too large to deal with (6 to 10 in this experiment), which means this
approach is very reasonable.

We also did experiments on 5 EF-2 sequences in Table 3.16, which are very similar to each other and very
(16,n)

long. The experiments are done also between weight matrices of (w;;) and (w;;

;). In the experiments, we

increased importance of one of the sequences. Table 3.17 shows the results.
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Table 3.16: EF-2 (translation elongation factor eEF-2) sequences to be aligned and their pairwise scores.

Sequences Pairwise Scores
Species Protein | Length || CGS DM DD SC
Homo sapiens (HS) eEF-2 858 4216 3409 2463 2941
Cricetinae gen. sp. (CGS) eEF-2 858 3392 2456 2931
Drosophila melanogaster (DM) | eEF-2 844 2416 2959
Dictyostelium discoideum (DD) | eEF-2 830 2446
Saccharomyces cerevisiae (SC) eEF-2 842

Table 3.17: The result of the experiment on parametric weight matrices using EF-2.

Weight 1 133 2 3 314 6 9 16
HS | #Solutions || 16 32 32 16 16 16 24 24
#Max - 16 8 8 8 8§ 16 -
#Min - 16 16 8 8 8 8 -

3.3 Summary

In the multiple alignment problem, it is often said that the optimal solution obtained with only the scoring
criteria is not always the biologically best one. Thus, in this chapter, we took two flexible approaches to
overcome this problem. One approach is by suboptimal analysis and the other is by parametric analysis.

We first investigated methods for enumerating suboptimal alignments of multiple sequences. We discussed
a method to reduce the memory size for the Eppstein algorithm, an algorithm for enumerating suboptimal
shortest paths. We then classified the suboptimal alignments into classes D; based on the number of the
different regions from the optimal solution. We showed that the suboptimal alignments in classes D; (i > 2)
can be easily constructed from the alignments in the class Dq (the optimal solution) and the class D;, and
suggested that the alignments in the classes D; (i > 2) is not necessary to enumerate. We proposed an
algorithm to enumerate only the suboptimal alignments in the class D;. Furthermore, we did experiments
using actual protein sequences to see the efficiency and the property of our algorithms.

Next, we investigated parametric optimization of the multiple alignment problem. We discussed how
to use an upper bounding technique of the enhanced A* algorithm in the parametric analysis. We did
parametric experiments on various parameters and examined the property of the multiple alignments in the

view of parametric optimization.
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Chapter 4

Accurate cDNA Clustering based on Spliced
Alignment

Full-length cDNA library collections are biologically important data sources because they represent the tran-
scriptome of an organism. High-throughput sequencing, sequence clustering, and analyses enable the rapid,
computational assignment of gene names and inference of functions. Yet, the detection of alternative splice
candidates is not straightforward and depends on the accuracy of sequence clustering and manual inspec-
tion. Recent EST-based analyses by [89] and [106] estimate that 42%-55% of human genes are alternatively
spliced. Bioinformatics-driven studies of alternative splicing is very important for a number of reasons such
as frequently detected single-base substitutions in human mRNA splice junctions and the association with 1
out of 6 genetic diseases [96]. Therefore effective and accurate methods for clustering cDNA sequences into
alternative splice form candidates are highly desired, which is the aim of the algorithms presented in this
chapter.

Before proceeding, we introduce several basic terms. A pair of sequences is called a splicing pair if one
sequence is produced from the other by the splicing mechanism. The sequence of the splicing pair that is
spliced in the alignment to produce the other sequence is designated the template sequence, while the other
sequence is called the spliced sequence. An alternative splice form is a group of cDNA sequences that are
transcribed from the same gene region of the genomic DNA sequence.

There have been several reports on cDNA sequence clustering algorithms [30, 34, 36, 93, 104, 116]. How-
ever all of these methods are based on ordinary similarity measures and do not take the splicing mechanism
into account. As a result, these methods often cluster non-splicing pairs of sequences into one group merely
because they are similar. Clustering of non-splicing sequences has been frequently observed among repeat
elements of eukaryotic genomes. Although heuristic filters such as the RepeatMasker [148] remove false
positives, they may also filter out actual splicing pairs. The method described here takes into account the
splicing mechanism and yields more accurate clusters. To do so, we use an alignment technique called the
spliced sequence alignment algorithm or more conveniently the spliced alignment algorithm. There is no
previous work on cDNA clustering that uses the spliced alignment algorithm.

Our clustering strategy is simple. First, candidate splicing pairs are detected by very accurate pairwise

comparison with the spliced alignment algorithm. As an algorithm for the spliced alignment, we used
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Mott’s algorithm [107] to which we made a slight modification to meet our demand. As it requires excessive
computation time to perform a brute-force all-pairs comparison of all the sequences of a standard cDNA
library, we proposed two techniques to reduce the computation time. These techniques reduce the number of
pairs of cDNA sequences to check without missing any important pairs and enables significant reduction of
the total computation time without decreasing the accuracy. These algorithms are described in section 4.1.
The combination of two techniques reduced the candidates to between 1/4,000 and 1/20,000 of the candidate
pairs (depending on the parameters) according to the experiments in section 4.2 that use a large library of
mouse full-length ¢cDNA sequences, FANTOM 1.10 [90].

We also examined in section 4.2 the efficiency and the accuracy of our algorithms using the FANTOM
cDNA library. According to the FANTOM paper [90], 21,076 cDNA sequences were manually clustered
into 15,295 groups of unique genes. The clusters are called MGI clusters as they are confirmed in the MGI
(Mouse Genome Informatics) database [28]. To assess the performance of our algorithm, we compared the
MGI clusters against our clusters. The experiments revealed that 87-89% of the annotated MGI clusters
were identical to the clusters obtained by our algorithm, although we did not use the MGI or any other
database to facilitate clustering.

In the rest of this chapter, we explain about the algorithm in section 4.1 and demonstrate the experimental

results in section 4.2.

4.1 Clustering Algorithm for cDNA libraries

In this section, we describe our strategy for clustering cDNA sequences in detail. First, we describe the
outline of our algorithm in subsection 4.1.1. Our spliced alignment algorithm which our clustering algorithm
uses is described in subsection 4.1.2. Our clustering scheme is then described in subsection 4.1.3. After that,
two new techniques to reduce the total time for clustering is described in subsections 4.1.4 and 4.1.5. Finally,

we add some discussions on these algorithms in subsection 4.1.6.

4.1.1 Algorithm Outline

Our basic clustering strategy is as follows (see also Figure 4.1). First, pairs of sequences that have pos-
sibilities to be candidate splicing pairs are selected by two independent filtering algorithms described in
subsections 4.1.4 and 4.1.5. Then the selected pairs are checked by very accurate pairwise comparison based
on a spliced alignment algorithm described in subsection 4.1.2. This spliced alignment algorithm can check
whether or not a given pair of sequence is a splicing pair or not in O(nm) time where n and m are the
lengths of the two sequences. Clusters are then constructed by collecting the detected candidate splicing
pairs based on the simple strategy described in subsection 4.1.3.

As stated above, we propose two independent filtering methods to reduce the candidates to be checked
by the spliced alignment so as to reduce the total computation time. These two filters do not throw away
any important pairs that will be determined as candidate splicing pairs by the spliced alignment algorithm.
Therefore there is theoretically no decrease of accuracy caused by the use of these two filtering algorithms.

The first filtering method described in subsection 4.1.4 utilizes local similarities among the sequences in
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Figure 4.1: Algorithm outline.

an alternative splicing form. Note that methods similar to the first filtering algorithm are used in various
applications, but it is the first case that this filtering strategy is applied to this problem. The second filtering
method described in subsection 4.1.5 is a totally new filtering strategy for which we propose a new efficient
longest common subsequence algorithm. It utilizes global similarities among the sequences in an alternative
splicing form. Since the two filtering algorithms use different, independent information, the combination of
both algorithms can dramatically reduce the number of pairs to be checked precisely by the spliced alignment
algorithm and significantly reduce the total computation time, that is about 4,000 to 20,000-fold speedup.
In our algorithm, the local similarity filter is used before the second global similarity filter because the global
similarity filter takes much more time than the local similarity filter. Add to these, we also propose a much

faster heuristic clustering algorithm by changing intentionally the parameters of these filtering algorithms.

4.1.2 Modified Spliced Alignment Algorithm

Our aim of the spliced alignment is to determine whether or not a pair of sequences is a splicing pair. Mott’s
algorithm is not suitable for this purpose though it can align sequences reasonably, because the alignment
score obtained by his algorithm is strongly influenced by the number of splicing sites. It uses a rather large
splice site penalty, i.e., about 20 times to 40 times as large as the score for one mismatch, depending on the
bases around the acceptor sites and the donor sites, to avoid an increase in the number of very short splice
sites. This will cause difficulty in determining whether a pair is a splicing pair or not by its score, because
a splicing pair with many splice sites will have a very bad score using his algorithm.

To avoid these drawbacks, we introduce a new problem formulation which we call the spliced alignment
problem with a minimum splice site length (SAPMSSL). In the SAPMSSL, we set a minimum splice site
length when we align the sequences, so that we do not have to worry about the splice site length even if we
use a very small splice site penalty.

The SAPMSSL is formalized as follows. Let P[1..n] € " be the template sequence and C[l..m] € ¥™

be the spliced sequence to be aligned, and consider an alignment (P’',C") of P and C. To define the score
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of an alignment, we use the following functions and parameters. Note that we consider a region in C' of

consecutive internal gaps with lengths larger than ¢ described below is a splice site candidate.

e match(a,b): The score function that outputs the score for matching bases a € ¥ and b € X. These

scores are usually given in a table.

e gt;, gt.: The gap scores assigned to an internal and an external gap inserted into the template sequence,
respectively. Note that the external gaps are the gaps located before the first base or after the last

base of the sequence, and the internal gaps are all the other gaps.
® gsi, gs.: The gap scores assigned to the internal and external gaps in the spliced sequence.
e t: The minimum length of the splice site candidates.
e s: The score added to a splice site candidate that is independent from its length.

e donor(A,i): The score function that outputs the score we add when a donor site begins at the position

1 of the sequence A.

e acceptor(A,i): The score function that outputs the score we add when an acceptor site ends at the

position 7 of the sequence A.

We assume that we can compute donor(A,i) or acceptor(A,i) in O(1) time. We then define a score s; for
the i-th column of the alignment (P’,C"). If neither P’'[i] nor C'[i] is a gap, s; = match(P'[i],C'[{]). If
P'[i] is an internal gap character (‘-’) or an external gap character, s; = gt; or s; = gt., respectively. If
C'[i] is the first gap character of a splice site candidate, the last gap character of a splice site candidate,
another gap character of a splice site candidate, another internal gap character, or an external gap character,
s; = s+ donor(P,1), s; = acceptor(P,i), s; = 0, s; = gs;, Or §; = gse, respectively. Finally, the SAPMSSL is
defined as a problem of finding the alignment of P and C' that have the minimum score S(P,C) = 3", ., Si.
Note that we can translate this problem into the problem of finding the alignment with the maximum score
by changing the signs of all the scores. The largest difference with the Mott’s algorithm is the existence of
t, the minimum length of a splice site candidate.

We describe an algorithm for solving the SAPMSSL in Figure 4.2. In the figure, IV; ; denotes the optimal
score for the spliced alignment of P[1..i] and C[1..j], which we compute by dynamic programming. The
computation time of this algorithm is O(nm), which is same as Mott’s algorithm, and the required memory
size is O(n + m - t). Note that it is easy to extend it to output the alignment result, but we do not show it
here. We do not use an opening gap penalty [67], which is also easy to incorporate.

Using the above algorithm, we determine that the two sequences form a splicing pair if the obtained
score is below some threshold hg. Reasonably, the threshold should be proportional to the spliced sequence
length. Let 79 be the ratio of the threshold over the spliced sequence length m, i.e., 19 = hg/m. Using
information about the lower bound of similarities in the aligned regions (i.e., regions except for splice sites
and external gaps), we can estimate the appropriate 7o value and consequently we can compute hg. Note
that two very similar sequences without any splice sites might also have a score below the threshold, and

therefore will be determined as a splicing pair. There are many such examples in the experiment we will

49



for (1 =0;4<m;i++4) Nio=1-gte;

for (j =05 j <m;j++) Noj =j-gse;

for i=1;i<mi++){

for (j=1;7<m;j++){
if (i <n) gremplate = gti; €lse Gremplate = gte;
if (j < m) gspliced = gsi; €lse Gsplicea = gSe;
Nij = min{N;—1,j + gspliced; Ni,j—1 + Gtemplate, Ni—1,j—1 + match(P[d], C[4]),
Si—t,j + acceptor(P,1)}; // Let Sj» = +o0if 1 <0

S;,; = min{N; ; + s + donor(P,i+1),S;_1,;};

}

Output N,, ., as the optimal alignment score.

Figure 4.2: Algorithm for the spliced alignment problem with a minimum splice site length.

describe in Section 4.2, but this does not matter because they can be considered to be variants of a sequence
due to sequencing errors.

Given a threshold, we can reduce the computation time. We do not have to compute values of N,/ ; and
Sy .; when v' > v if all of the N, js and S, ;s are not small enough to achieve a score within the threshold.
Moreover, if the gap penalties for the template sequences have positive values and all of the other parameters
(match scores, gap scores, splice site scores, donor site scores, and acceptor site scores) have non-negative
values, we can reduce the time further. In such cases, we can see that the number of gaps in the spliced
sequence is at most w = hg/ min{gt;, gt.}. Hence we do not have to compute the values of N; ; and S, ; of
the algorithm in Figure 4.2 when j —¢ > w or i — j > n — m + w. This will effectively reduce computation
time if w is small and n is close to m.

Figure 4.3 shows an example of this spliced alignment. This is the optimal alignment of two mouse cDNA
sequences that encode Plp2 (proteolipid protein 2) and a potential isoform. The template Plp2 sequence has
the DDBJ accession number of AK012816 while the potentially spliced sequence has the accession number
AKO003522. In the alignment, ‘=’ means a normal gap and ‘=" means a splice site. In this alignment example,
we set the score for an exact match to 0, a mismatch to 1, a gap in the template sequence to 1, an internal
gap in the spliced sequence to 1, an external gap in the spliced sequence to 0, the minimum splice site length
to 40, and the splice site score to 2. Note that we gave a non-GT donor site and a non-AG acceptor site an

additional penalty of 1 each while computing, but they do not appear in this alignment.

4.1.3 Simple Clustering Scheme

Now we have a tool to determine whether or not a given pair of sequences is a splicing pair. It will induce a
directed graph in which a node represents a sequence and an edge represents the relationship of the template
sequence and the spliced sequence. As the above spliced alignment algorithm can detect splicing pairs very

accurately, we can construct alternative splice forms by just clustering into transitive closures as follows. If
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TGGATTCATTCCCTCCTTTGCCCGGGGGGCCCCTTCCCGGCCAGACGGCGGGACAGACGGCTGGGTGTGCAGCGACCTCGAACCCGTGAGCCAGAAAGCA 100
GC-AGACGGCGGGACAGACGGCTGGGTGTGCAGCGACCTCGAACCCGTGAGCCAGAAAGCA 60

GAGCTTCTGCGTCCCAGGGACTCCAGTACACCACCATGGCGGATTCTGAGCGTCTCTCGGCCCCCGGCTGCTGGTTAGCCTGCACCAGCTTCTCGCGCAC 200
GAGCTTCTGCGTCCCAGGGACTCCAGTACACCACCATGGCGGATTCTGAGCGTCTCTCGGCCCCCGGCTGCTGGTTAGCCTGCACCAGCTTCTCGCGCAC 160

CAAAAAGGGAATTCTCCTGTTTGCTGAGATTATACTGTGCCTGGTGATCTTGATTTGCTTCAGTGCATCTACAACATCGGCCTACTCCTCCCTGTCGGTG 300
CAAAAAGGGAATTCTCCTGTTTGCTGAGATTATACTGTGCCTGGTGATCTTGATTTGCTTCAGTGCATCTACAACATCGGCCTACTCCTCCCTGTCGGTG 260

ATTGAGATGATCTGTGCTGCTGTCTTACTTGTCTTCTACACGTGTGACCTGCACTCCAAGATATCATTCATCAACTGGCCTTGGACTGTGAGAAAGGGGC 400
ATTGAGATGATCTGTGCTGCTGTCTTACTTGTCTTCTACACGTGTGACCTGCACTCCAAGATATCATTCATCAACTGGCCTTGGACT============= 347

CGGCAGTGCCGGGGCTGGGCAGGGGTTGGGACGTTGGAATGGTCTGCAGCTCTCACCTTTTTCTTGGCCCACTTCGCAGGACTTCTTCAGATCCCTCATA 500
GACTTCTTCAGATCCCTCATA 368

GCAACCATCCTGTACCTGATCACCTCCATTGTTGTCCTTGTAGAAGGAAGAGGCAGCTCCAGAGTTGTCGCTGGGATACTGGGCTTACTTGCTACGTTGC 600
GCAACCATCCTGTACCTGATCACCTCCATTGTTGTCCTTGTAGAAGGAAGAGGCAGCTCCAGAGTTGTCGCTGGGATACTGGGCTTACTTGCTACGTTGC — 468

TCTTTGGCTACGATGCATACATCACCTTCCCTCTAAAGCAGCAAAGACATACAGCAGCTCCCACTGACCCCACTGATGGCCCGTGATCGTCTTTCAGCTG 700
TCTTTGGCTACGATGCATACATCACCTTCCCTCTAAAGCAGCAAAGACATACAGCAGCTCCCACTGACCCCACTGATGGCCCGTGATCGTCTTTCAGCTG 568

TCTCTGCTACCTGTCAATAGCTCCTCCATCAAAAACTTTCCTCCTGTCGGGCGGTGGTGGTGCTCGCCTTTCCTCCAAGCTCTCAGGAGGCAGAGGCAGG 800
TCTCTGCTACCTGTCAATAGCTCCTCCATCAAAAACTTTCCTCCTGTCGGGCGGTGGTGGTGCTCGCCTTTCCTCCAAGCTCTCAGGAGGCAGAGGCAGG — 668

TGGATCCCTGTGAGTTTGAGGCCAGGGCTACACAGTGAGATCCTGTCTCTAAAACAATTCCTTCTCCGGTTTCCACAACACTCCAGCCAATTCTCTGACC 900
TGGATCCCTGTGAGTTTGAGGCCAGGGCTACACAGTGAGATCCTGTCTCTAAAACAATTCCTTCTCCGGTTTCCACAACACTCCAGCCAATTCTCTGACC 768

CCATTGAAAGTGCTTATGGTACAAGAGATTGAACCTAGAGCCGTGTGCATACTAGGCAAGTATTCTCCACTGAGCTACATCCCTGTAAAAGTGCCTTTAT 1000
CCATTGAAAGTGCTTATGGTACAAGAGATTGAACCTAGAGCCGTGTGCATACTAGGCAAGTATTCTCCACTGAGCTACATCCCTGTAAAAGTGCCTTTAT 868

TGGGAGTTTTGTCTTCCAGCCTGCCAATCAACCCATCTGGGTGTGGCCACCTTTATGGGTGTGCCTAGATTCCCCTTTGCTCTGCAGTACCAGCAGCCGA 1100
TGGGAGTTTTGTCTTCCAGCCTGCCAATCAACCCATCTGGGTGTGGCCACCTTTATGGGTGTGCCTAGATTCCCCTTTGCTCTGCAGTACCAGCAGCCGA 968

CATCAGTTCTGCTTGAACCATATCCCCACATAAGCTACAAAATGAGTGACCCACTACAAATAACCTTTTTCTCTGTGTGGGGTGAGCTGTGAAGGGCTAA 1200
CATCAGTTCTGCTTGAACCATATCCCCACATAAGCTACAAAATGAGTGACCCACTACAAATAACCTTTTTCTCTGTGTGGGGTGAGCTGTGAAGGGCTAA 1068

ATAAACAATAAAA-—-—- GT--—-—-—- 1215
ATAAACAATAAAAATAATGTTTAAGTCC 1096

Figure 4.3: An example of the spliced alignment.

we determine the sequences A and B form a candidate splicing pair, then we combine them into one group.
If another sequence C forms a candidate splicing pair with any sequence in the group (i.e., A or B in this
case), add C to this group, and do the same for all the other sequences. This can be done in a linear time
to the size of the graph.

This simple strategy is possible because we compute the alignment accurately taking the splicing mech-
anism into account. But it will take a large computation time to use this strategy if we do the all-pairs
comparisons naively. In the next two subsections, we will discuss how to effectively reduce the total compu-

tation time.

4.1.4 Filtering based on Local Similarity

Except for splice sites, the members of a splicing pair of sequences are very similar to each other, and there
are many common substrings between the two sequences. Thus we can reduce the number of candidate pairs
which do not have any common substrings that are long enough before examining the candidates with the
spliced alignment algorithm in section 4.1.2. Similar techniques are used in the previous work of [156], who
searched for regions with common substrings of a fixed length before doing spliced alignments, though their
setting of the length has no theoretical justification. A similar technique has also been used for approximate

string matching problems [109, 124], but not for the spliced alignment problem.
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Without loss of generality, we can assume that the score for exactly matching bases is 0. Consider
the minimum value among the scores for mismatching bases, scores for splice sites, and gap scores for the
template sequence. Let this be p;. We assume that p; is a positive value, which is true in most cases. Let
hy = r1 - m be the threshold of the alignment score for examination where m is the spliced sequence length,
and ¢ = |14 h1/p1]. Then divide the spliced sequence C' into g or more substrings. Let them be Cy,Cs,. . ..
It is clear that one of them must exactly match some substring of the template sequence; otherwise the
alignment score of the pair exceeds the threshold h;. Therefore we can use this information for filtering
candidates: We do not have to check a candidate pair of sequences if there are no such exactly matching
substrings. As we mentioned in the last subsection, the threshold h; is proportional to the spliced sequence
length m. Therefore, if we divide the sequence into ¢ substrings with roughly equal lengths, the lengths of
the substrings are about the same regardless of any pairs.

To find sequences with substrings that exactly match one of these divided substrings, some indexing
structure is needed. Several known indexing structures are suitable for this purpose. The simplest structure
is a hash table. A hash table that stores all the substrings of length ! in a cDNA database of size N (i.e.,
the sum of the lengths of all the sequences) can be built in O(N) to O(IN) time (depending on hashing
algorithms), and the query time is O(l). The suffix array [100] is another candidate indexing structure. In
general, we can construct this structure in O(N log N) time. The query time is O(l/log N) time. Note that
we can reduce the query time bound to O(l + log N) time or O(l) time if we can use an additional data
structure. The advantage of this data structure over the hash table is that this structure can deal with
various substring lengths, while a hash table can deal with only a fixed substring length. Note that there
are also compressed versions of suffix arrays [53, 71, 123, 124], but they need more construction time and
query time. The suffix tree [50, 73, 102, 155, 163] is another candidate for indexing. It requires O(NN) time
to construct, and the query can be done in O(l) time, but this data structure requires much larger memory
space. We should use the most appropriate data structure for our purpose. In previous work, [156] used
suffix arrays, [109] used suffix trees, and [124] used compressed suffix arrays. Considering the advantages and
drawbacks of these indexing structures as stated above, we will use a simple hash table in the experiment
section to reduce the computation time and conserve memory space at the same time. Note that the suffix
array would also be a good choice.

The value r; should be the same as the value of rg in Section 4.1.2, because we will miss some of the
actual splicing pairs if r; < ro. However, we can reduce the number of splicing pair candidates by using a
smaller r; value, and consequently reduce the total computation time. Thus a smaller r; value can be used
as a setting for a heuristic clustering algorithm. We will examine the performance of this heuristic approach
in the experiment section.

According to the experiments in the next section, this filtering technique is very effective, but the com-
putation time is still too large for practical use. In the next subsection, we will describe another filtering

algorithm to further reduce the number of candidates.
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4.1.5 Filtering by Simplified Spliced Alignment

When we align a splicing pair, we can easily see that there are many fragments of the spliced sequence
in the template sequence in the same order. We can use this fact to further filter out hopeless candidate
pairs. As in the previous subsection, we can assume that the score for exactly matching bases is 0 without
loss of generality. Let p» be the minimum value among the scores for mismatching bases and gap scores
for the template sequence, m be the spliced sequence length and hy = ro - m be the threshold of the score
to distinguish splicing pairs. We can easily see that at least m — hy/ps bases of the spliced sequences
appear in the template sequence in the same order; otherwise the alignment score of the pair will exceed
the threshold. Let k = ha/p2. The sequence of bases that appears in a given sequence in the same order
is called a subsequence of that given sequence. We can eliminate the candidate pairs before examining
them with the time-consuming spliced alignment algorithm if the length of the longest common subsequence
(LCS) of the pair is smaller than m — k. Note that we can align two sequences so that their LCSs are
aligned. Figure 4.4 shows an alignment that corresponds to the LCS of two example sequences being
CGCGCATGAACAAACGCTGGAGCTCAGGATTCATCTCGGA and GCTGAGAAGAGGTTTCATCT. Therefore computation of the
LCS can be considered to be a simplified spliced alignment algorithm. Note also that this alignment is far
from a biologically correct alignment, though we can use it for filtering as we described.

The LCS of a pair of sequences is known to be computable in O(nm) time [73, 79], where n and m are
the lengths of the two sequences. However, this time bound is the same as that of the spliced alignment
algorithm, and it is not effective to use such slow algorithms for filtering. Therefore, we propose an algorithm
for examining whether or not the LCS of the pair is longer than m — k, which runs in time O(n + k - m)
and space O(k + n + m). This algorithm is much faster than the ordinary LCS algorithms if k is small
enough. Figure 4.5 shows the algorithm. In the figure, P[1..n] and C[1..m] are the sequences to examine.
The function next_char_position(P,i,c) returns the first position of the base ¢ in P after the position i,
which can be computed in a constant time if the alphabet size is constant, as is the case for DNA sequences.
In this algorithm, we compute positions[i] that stores the smallest d such that the LCS length of P[1..d] and
C[1..j] is j — 1, using a dynamic programming technique.

In contrast to the filtering algorithm based on local similarity, the algorithm in this subsection utilizes
global similarity. The two filtering algorithms use totally different information, and the set of candidate
pairs that can be filtered out by the algorithm in this subsection is different from those filtered out by the
algorithm in the last subsection. Thus we expect that we can filter out candidate pairs very effectively if we
use both of these filtering algorithms simultaneously. As the filtering method based on the local similarity

is faster than the method based on simplified spliced alignment, we should use the local similarity algorithm

Template sequence candidate: CGCGCATGAACAAACGCTGGAGCTCAGGATT-CATCTCGGA
Spliced sequence candidate: -GC---TGA-GAA--G----AG----G--TTTCATCT----

Longest common subsequence: GC TGA AA G AG G TT CATCT

Figure 4.4: An example of the longest common subsequence.
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for (i = 0; i < k; i + +) positions[i] = 0;
kmin = 0;
for (j =1; j <m; j++) {
kmaz = min{k, j};
for (i = kmaz; © > kmin; 1 — —) {
if (1==0) {
positions[i] = next_char_position(P, positions[i] + 1, C[j]);
} else {
positions[i] = min{next_char_position(P, positions[i] + 1, C[j]),

positions[i — 1]}

}
if (positions[i] > n) kmin =1+ 1;
}
if (kmin > k) { return(“LCS length is smaller than m — k.”); }
}

return( “LCS length is m — Kumin, which is not smaller than m — k.”);

Figure 4.5: An algorithm for longest common subsequence problem.

first and then use the other algorithm afterwards. In the next section, we will show how effectively we can
reduce splicing pair candidates using these algorithms.

We should set the ry value to the same value as 7y, because otherwise we might miss some of the actual
splicing pairs through filtering if ro < rg. Similar to the heuristic scheme we described in the previous
subsection, we can use a smaller 75 value as a setting in a heuristic version of the clustering algorithm. We

will also examine the performance of this heuristic scheme.

4.1.6 Discussions on Our Algorithm

The algorithm proposed in this section is not for clustering ESTs (expressed sequence tags). ESTs are
substrings of the full-length cDNAs, and two ESTs that overlaps each other in the genomic template is not
always detected as a splicing pairs by our algorithms. The easiest way to deal with ESTs is to add the
genomic templates to the set of ESTs as previous methods do in previous work [30, 34]. Then we can easily
deal with the ESTs.

In the previous work of ¢cDNA clustering, tools for masking low-complexity regions like Repeat-
Masker [148] is often used before clustering. It is because general sequence comparison tools like BLAST that
they use are not good at distinguishing splicing pairs with repetitive similar patterns, and consequently they
cannot detect splicing pairs accurately. We don’t apply RepeatMasker to filter out repeats before applying
our algorithm because it can detect splicing pairs accurately. However we use RepeatMasker to visualize

repeat elements by small letters in the splicing pairs to facilitate better biological interpretation.
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4.2 Computational Experiments

In this section, we demonstrate the performance of our clustering algorithms through experiments using
sequences of the mouse cDNA library FANTOM1.10 [90], which can be obtained from the RIKEN ftp site
(ftp://fantom.gsc.riken.go.jp/fantom/1.10/fantom1.10.seq.gz). Note that an updated version FANTOM 1.20
has been released recently at the ftp site (ftp://fantom.gsc.riken.go.jp/fantom/current). This library contains
21,076 sequences. Thus there are 21,076 x 21,075 = 444,176, 700 pairs to check, because we must distinguish
the template sequence with the spliced sequence when we compute the alignment score. All of the experiments
were done on a single IBM RS64I11 processor with a clock speed of 450MHz.

In our experiments we set the score for an exact match to 0, a mismatch to 1, a gap in the template
sequence to 1, an internal gap in the spliced sequence to 1, and an external gap in the spliced sequence to 0.
We let the minimum splice site length be 40. We set the splice site score to 2 and we gave non-GT donor sites
and non-AG acceptor sites an additional penalty of 1 each. These are the same settings used in Section 4.1.2

for computing the spliced alignment example.

4.2.1 Performance of the Filtering Algorithms

Table 4.1 shows the performance of our algorithm with the settings above. In the table, the ratio column
shows the ratio of the threshold over the spliced sequence length, i.e., rg = 71 = ro = ratio. (See Section 4.1
for the definition of r;’s.) We did experiments based on 5 different ratios. The average accuracy of sequences
in FANTOM 1.10 is 99.1% according to the report [90]. Thus we estimate that the average ratio of the
spliced alignment score over the spliced sequence length for an actual splicing pair is around 0.01. Therefore
we believe that reasonable ratio values are around 0.02 or 0.03. The N column indicates the number of
candidate splicing pairs detected with the setting of the corresponding ratio. The Ng column shows the
number of candidate splicing pairs that have apparent splice sites, i.e., internal gaps whose lengths are
larger than 40. Note that here we do not count shorter gaps as splice sites, though such splice sites exist.
The T}otqr column shows the total computation time in seconds, including the filtering stage, the alignment
stage, and the clustering stage. The T}, 75 and 75 columns show the computation time in seconds for the
filtering algorithm based on the local similarity, that for the filtering algorithm based on the simplified spliced
alignment, and that for the spliced alignment algorithm, respectively. The N7 column shows the number of
remaining candidates to check after doing the first filter based on the local similarity, and the N> column
shows the number of those that passed through both of the filters.

According to the table, the time for the filtering stages can be ignored, and the total computation time
is essentially determined by the number of splicing candidates that passed through both of the filters. We
can also see that, if we let ratio be larger, the number of candidate splicing pairs in the output will increase
and it will be difficult to filter out candidates, which makes the computation time longer. The computation
time of the first filtering stage will decrease as the ratio increases, because the window size of the hash will
become smaller. The number of candidate pairs to check using the spliced alignment algorithm is only about
1/4,000 to 1/20,000 (depending on the setting of the ratios) of all the 444,176,700 candidate pairs, which

means a 4,000 to 20,000-fold speedup against a very naive brute-force algorithm.
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Table 4.1: Performance on FANTOM 1.10 with various thresholds.
ratio N NS Ttotal T1 T2 T3 N1 N2

r=0.01 || 12,676 | 205 46177.65 | 294.83 65.07 45137.20 40,135 23,514
r=10.02 || 15,713 | 432 54530.04 | 254.55 257.60 53330.12 68,335 27,521
r=20.03 || 17,237 | 574 73771.73 | 233.84 994.07 71840.75 165,727 35,444
r=10.04 || 18,300 | 684 89184.62 | 227.53 2061.80 86211.47 244,814 41,834
r=20.05 || 19,123 | 814 | 285925.44 | 222.50 15897.57 269146.94 | 1,451,698 119,993

4.2.2 Comparison with MGI Clusters

Table 4.2 shows the numbers of clusters of various sizes in the output of our algorithm and in the set of
the MGI clusters. The ratio column shows the ratio of the threshold over the spliced sequence length, as
in Table 4.1, except for the ‘MGI’ row that shows the numbers of the MGI clusters. Notice that about
2/3 of the cDNA sequences in the library do not form any candidate splicing pairs with other sequences.
The ‘Comparison (total)’ columns show the comparisons of our clusters with the MGI clusters including
singleton clusters. The ‘Comparison (size> 2)’ columns show the comparisons of our clusters to the MGI
clusters without including singleton clusters. The ID, CB, SP, and OV columns indicate the numbers of
our clusters that are identical to the MGI clusters, those that are combined with others to form the MGI
clusters (over-split), those that are split in the MGI cluster set (over-clustered), and those that overlap
with some of the MGI clusters, respectively. According to these numbers, most of our clusters are identical
to the MGI clusters. The identical clusters are about 87.5% (13,384/15,295 when ratio = 0.01) to 89%
(13,625/15,295 when ratio = 0.05) of the MGI clusters (that are 77% to 86% of our output). Within these,
69% (ratio = 0.01) to 75% (ratio = 0.05) of the MGI clusters with more than 1 sequence are identical to
our results according to the table. Note that many of non-identical clusters are partially identical to the
MGI clusters. When ratio = 0.05, about 12% of our clusters are over-split clusters compared to the MGI
clusters. There are only a small number of over-clustered clusters and overlapping clusters in our results.
This is because we do not consult either the template mouse genome sequences or any known genes in public
databases, and alternative splicing sequences without their common template sequence in the cDNA library
cannot be clustered with our algorithm. Even if we do not have reference information (e.g., genomic sequences
or pre-existing clusters), our clustering algorithm mis-clusters only 11 out of 100 human-annotated clusters.
This performance can significantly enhance the expert annotation or sequence analysis of large sequence sets.

Let us look in detail at two of the MGI clusters that were annotated by human experts. There is a cluster
of 4 cDNA sequences that were annotated as Plp2 (proteolipid protein 2) [103]. The spliced alignment of two
of them appears in Figure 4.3. Three of the sequences have the accession numbers AK003522, AK(011282,
and AK012816. The remaining 1 sequence (2810425P20) has not been submitted to DDBJ yet but was
designated by MGI as Plp2 marker. We succeeded in clustering these sequences correctly, regardless of the
ratio settings in Table 4.1. Note that the common template of this cluster seems to be the Plp2 sequence
AKO012816, according to our results. Another cluster is known to be related to a gene called Tez9 (testis

expressed gene 9), which contains 3 ¢cDNA sequences [38] with the DDBJ accession numbers AK018568,
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Table 4.2: Clustering results for FANTOM 1.10 with various thresholds.

Cluster size Comparison (total) Comparison (size> 2)
1 2 3 4 5 >6 1D CB SpP OV 1D CB SpP OV
0.01 15,213 1,371 441 158 62 91 13,384 3,851 80 21 | 1,472 550 80 21
0.02 14,046 1,580 545 209 88 | 102 13,636 2,728 182 24 | 1,881 437 182 24
0.03 13,569 1,670 593 225 100 | 106 13,680 2,311 249 23 | 2,038 384 249 23
0.04 13,246 1,743 627 234 105 | 108 13,687 2,050 301 25 | 2,131 360 301 25
0.05 13,028 1,781 639 243 114 | 111 13,625 1,903 360 28 | 2,161 339 360 28

MGI 12,064 1,986 702 287 138 | 118 - -

ratio

Table 4.3: Heuristic clustering results.
Algorithm | N [ N | T T T T N N

r1 = 0.01 19,118 | 814 53959.52 | 299.90 443.73 52500.42 40,135 27,875
r1 = 0.02 19,121 | 814 60617.79 | 253.25 760.48 58929.68 68,335 30,485
r1 =0.03 19,123 | 814 81240.73 | 231.97 1823.75 78510.80 165,727 38,450
r1 = 0.04 19,123 | 814 94833.48 | 231.22 2695.67 91224.10 244,814 43,889
r2 = 0.01 14,175 | 550 | 150229.89 | 222.50 2573.08 146777.86 | 1,451,698 72,971
r2 = 0.02 16,552 | 682 | 184948.25 | 222.50 5476.10  178609.89 | 1,451,698 85,990
r2 = 0.03 17,803 | 757 | 218017.16 | 222.50 8681.78  208474.89 | 1,451,698 97,483
r2 = 0.04 18,608 | 800 | 251564.05 | 222.50 12166.08 238538.28 | 1,451,698 108,670

Exact 19,123 | 814 | 285925.44 | 222.50 15897.57 269146.94 | 1,451,698 119,993

AKO012189, and AK008505. Our algorithm clustered these 3 sequences into 2 clusters regardless of the ratio
settings. One cluster contains only AK018568 while the other contains AK012189 and AKO008505. The
reason why our result is different from the MGI cluster of Tez9 is that the FANTOM library does not
contain any common template sequence of these 3 sequences: Our algorithm would cluster the 3 sequences

into one cluster if a common template sequence was present.

4.2.3 Performance of the Heuristic Scheme

Next, we clustered the sequences using the heuristic version of our algorithm. We varied the r; and rs
values used in the filtering stages while we did not change the ¢ value used in the final spliced alignment
dynamic programming algorithm. Table 4.3 shows the results. In all the experiments in this table, we fixed
the rg value at 0.05. An r; = z row indicates that we used the threshold that corresponds to ry = x as
the threshold for the filtering algorithm based on local similarity. In these experiments, we fixed ro at 0.05.
Similarly, an 7o = z row indicates that we used the threshold that corresponds to ro = z as the threshold
for filtering algorithm based on simplified spliced alignment, while r; was fixed at 0.05 at the first filtering
stage. The ‘Exact’ row is the same experiment as the ratio = 0.05 row in Table 4.1.

The results listed in the above table demonstrate that varying the thresholds of the local similarity filter
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is very effective. The accuracy does not decrease significantly, even if we set 7y = 0.01. Only five splicing pair
candidates were missed with this setting. The algorithm with the setting vy = 0.01 is about 5 times faster
than the exact algorithm. Thus, we can effectively reduce the computation time by changing the threshold
of the local similarity filter with only a very small loss of accuracy. On the other hand, varying the threshold

of the simplified spliced alignment filter negatively affects the accuracy.

4.3 Summary

We have described a new efficient and accurate method to cluster sequences of full-length ¢cDNA libraries
based on an accurate spliced alignment algorithm. To decrease the computational time of the algorithm,
we proposed two methods to filter out candidates that do not meet the threshold settings before applying
the time-consuming spliced alignment algorithm. With these techniques we achieved 4,000 to 20,000-fold
speed-ups without a loss of accuracy compared to a naive brute-force approach. Most of our clusters turned
out to be identical to the annotated clusters. We also developed an effective heuristic algorithm that is
several times faster than the exact algorithm. The accuracy of the heuristic algorithm is very close to the
exact algorithm.

Alternative splice form detection, mutation analyses or DNA motif analyses from huge cDNA-derived
data sets are dependent on the clustering methods. Therefore, both fast and accurate algorithms are required
to support efficiently biological evaluation and interpretation. Future tasks include the parallelization of the
algorithm to enhance the computation speed and the construction a secondary databases of splice site motifs

derived from the FANTOM1.10 sequences to improve the specificity of potential splice candidate detection.
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Chapter 5

Dictionary-driven Prokaryotic Gene Finding

As a testimony to the accelerated pace of genome sequencing projects, almost eighty complete genomes have
been deposited in the public databases to date, whereas many more genomes are currently at various stages
of sequencing. Consequently, the automated identification of the protein coding regions in a newly sequenced
genome is attracting increasing attention.

Accurate gene prediction is of relevance to many biological applications. For example, the predicted
coding regions can be used to generate probes for a DNA microarray; they can form the basis for knockout
experiments; the candidate proteins corresponding to these predicted genes might be used as new drug
targets, etc. In this chapter, we focus on the prokaryotic gene identification problem. Gene identification
is also known as ‘gene discovery’, ‘gene recognition’ or ‘gene finding’ — the latter is the term we use in this
discussion.

With the exception of a handful of reported instances in archaeal organisms, splicing does not generally
occur in prokaryotes. Thus, the problem of gene identification in these organisms is generally considered
to be simpler than its eukaryotic counterpart. The schemes which have been proposed over the years have
permitted great advances in the in silico prediction of genes in prokaryotic genomes but, arguably, have
shortcomings. As such, the demand for increasingly accurate prediction schemes continues.

Over the years, a large number of methods have been proposed that address the gene finding problem.
These methods can be largely divided into two categories. The methods in the first category make use of the
statistics of DNA sequences to determine the location of genes. In fact, it was observed very early that the
statistical properties of nucleotide usage differs inside DNA regions which code for genes and outside those
regions: the concept of the CpG island [27] is a demonstration of such a difference in statistical behavior.
Among the gene identification methods which make use of this observation those which are based on Markov
models are the most popular to date [31, 46, 98, 125].

The second category comprises methods that are based on similarity search in large databases of genomic
information [13, 14, 62, 63, 66, 122]. These methods carry out database searches in an effort to determine
DNA regions (resp. amino acid sequences) that share similarities with the DNA regions (resp. amino acid
translations) of open reading frames from the genome under consideration. For details on such techniques,
the reader is referred to one of the many review papers on the topic; several of these papers also address the

gene identification problem in eukaryotic organisms [33, 35, 40, 41, 54, 55].
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Despite the notable success of the methods that have been developed over the years, each of these two
basic strategies has its own shortcomings. Statistical methods such as those based on Markov models can
identify coding regions whose statistical behavior is similar to that of the used training set. If no appropriate
training set is available, one resorts to using sets derived from database searches, or simply assumes that
very long open reading frames do code for genes. The statistics of coding regions often differ from organism
to organism and, ideally, if one wishes to achieve high prediction ratios using such approaches then one
ought to employ models with organism-dependent parameters. Essentially, a different Markov model must
be built for each targeted genome. Moreover, short genes (e.g. fewer than 60-80 a.a.) cannot be predicted
reliably using statistical methods. Finally, genes that are statistically distinct from other genes of the same
organism, e.g. genes that are the result of horizontal transfer [91, 111] typically represent challenges for
methods based on statistical schemes.

Unlike statistical methods, similarity-based approaches are more effective in finding short genes or genes
that are statistically distinct from the majority of the genes in the organism being studied. The implicit
assumption here is that similar genes or similar proteins are already present in the databases that are
searched. Clearly, there is no dependence on training sets since no such sets are needed. Problems can
arise if the shared similarity between a candidate gene and its database counterpart is very low and not
detectable. In general, similarity-based methods have an improved ability to determine the correct location
of genes over statistical methods, a very desirable property for gene finding tools.

Given that the best characteristics of these two categories complement one another, genome sequencing
projects typically use representative methods from both categories to generate results [57].

In what follows, we present a new method which borrows the best attributes from similarity searches
while at the same time relying on implicit sequence statistics as in the case of Markov models. Our method
builds on a new paradigm that describes amino acid sequences with the help of patterns that are present in
these sequences. The patterns are derived by processing very large public databases of amino acid sequences
with the help of an unsupervised discovery algorithm. It is worth noting that our method does not make any
use of additional evidence, e.g. ribosome-binding sites, in order to decide the presence, absence and location
of genes. Clearly, incorporating such information provides additional constraints that can further increase
the quality and accuracy of the results generated by a gene finding algorithm. Nonetheless, in this first
installment of our approach, we have decided against incorporating such modules. We made this decision
because of our desire to present a clear assessment of our method’s potential as a generic, alternative scheme
to gene finding. We plan to incorporate such additional modules in follow-up work.

In section 5.1 we describe our approach in detail. Section 5.2 contains details on the experimental
setup as well as a presentation and analysis of the results obtained from applying BDGF, our algorithm’s

implementation, to 17 archaeal and bacterial genomes.

5.1 Methods and Algorithms

In this section, we present methodological details and give information on the algorithms which we have

employed.
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5.1.1 Notation and Definitions

Let ¥ denote the alphabet of all 20 amino acids. When processing an input dataset containing a collection
of strings from X7 with the Teiresias algorithm [117, 118], we can succinctly capture the patterns that can
be discovered with the regular expression A(AU{‘.’})*A where A = (SU[XX*X]), and ‘.’ is a “don’t care”
character which stands for any character in 3. In other words, the generated patterns can either be a single
alphabet symbol, or strings that begin and end with a symbol or a bracket with two or more characters, and
contain an arbitrary combination of zero or more residues, brackets with at least two alphabet characters,
and don’t care characters. A bracket denotes a “one of” choice; i.e. [CPM] denotes exactly one of C, P or M.
Also, a bracket can have a minimum of 2 (two) alphabet characters but obviously not more than || — 1.
A pattern t is called an < L,W > pattern (with L < W) if every substring of ¢ of length W which begins
and ends with a literal comprises L or more positions that are occupied by literals. The smallest length of an
< L,W > pattern is obviously equal to L whereas its maximum length is unbounded. Any given choice for
the parameters L and W has direct bearing on the degree of remaining similarity among the instances of the
sequence fragments that the pattern captures: the smaller the value of the ratio L/W, the lower the degree
of local similarity. Also associated with each pattern ¢ is its support which is equal to the number of ¢’s
instances in the processed input database. Finally, K denotes the minimum required support and represents

the minimum number of instances that a pattern ¢ must have before it can be reported.

5.1.2 Bio-Dictionary

The concept of the Bio-Dictionary is introduced in detail in previous work [119, 120, 121]. The Bio-Dictionary
is a collection of patterns that we refer to as seqlets (for ‘small sequences’) and which completely describes
and accounts for the sequence space of natural proteins at the amino-acid level. The seqlets are derived by
processing a large public database of proteins and fragments, using the Teiresias algorithm [117, 118] and for
an appropriate choice of L, W and K. In [119], the computation of the Bio-Dictionary from the GenPept
release from February 10, 1999 using L = 6, W = 15 and K = 2 is described. The processed input contained
~387,000 sequences amounting to a grand total of ~120M amino acids. The computation resulted in a Bio-
Dictionary that at the time comprised ~26M seqlets and accounted for (i.e. covered) 98.12% of the amino
acid positions in the processed input. The reader is referred to that publication for details regarding the
computation, example seqlets with discussion, and an extensive description of possible applications. Indeed,
the availability of such a complete collection of seqlets permits one to effectively and successfully tackle a
number of tasks that among other include similarity searching [58], functional annotation [121], phylogenetic

domain analysis [120], gene identification, and other. Below, we describe gene identification in detail.

5.1.3 The Key Idea Behind Dictionary-driven Gene Finding

As mentioned already, the Bio-Dictionary concept seeks to substitute a given database of proteins and
fragments such as GenPept or SwissProt/TrEMBL [15] by an equivalent collection of regular expressions
(=seqglets) each of which represents combinations of amino acids that appear two or more times in the pro-

cessed input. To the extent that the input sequences in such a public database correspond to a representative
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sampling of the sequence space of natural proteins, the seqlets of the Bio-Dictionary represent an exhaustive
collection of intra- and inter-family signals that are discovered in an unsupervised and exhaustive manner.
Our computation of intra- and inter-family signals becomes possible due to the fact that during processing
we consider all publicly available sequences without any of the filtering that one encounters in databases
such as PROSITE [80], Pfam [22] or PRINTS [11], and which is based on the sequences’ known functional
behavior. The properties of the Teiresias algorithm guarantee that all < L, W > patterns will be discovered
and that they have the maximum possible extent and specificity.

Two requirements need to be fulfilled for the Bio-Dictionary approach to be successful in tackling the
kinds of problems in which we are interested. First and foremost, the input to be processed should be a
large and diverse collection of proteins and fragments (see [120] for details), a condition that can be satisfied
given the large number of completed and ongoing genome sequencing projects which contribute to the public
databases. Second, the pattern discovery process should be able to generate patterns that are specific enough,
not accidental, and account for as much of the processed input as possible. As we have demonstrated in
[119] this is indeed possible, thus the second requirement is satisfied as well.

Given this description, our strategy for gene finding should now be evident. First, we compute all possible
ORFs in each of the three reading frames and for both the forward and reverse strands of the given DNA
sequence. Clearly, the number of true coding regions will be a proper subset of this collection of ORFs. Then,
for each ORF we generate its amino acid translation: if the ORF under consideration is indeed a coding
one, then we should be able to locate instances of many of the Bio-Dictionary’s seqlets across the span of
the ORF’s translation, and vice versa. If the number of seqlets that we can locate exceeds a predetermined
threshold, we report the ORF as a putative gene. We discuss the details of thresholding below; as a rule of
thumb, the higher the number of Bio-Dictionary seqlets that can be found in a given ORF, the more likely
it is that the ORF is coding for a gene.

5.1.4 Fast Seqlet Search Scheme for Bio-Dictionary

The Bio-Dictionary we use in our experiments contains approximately 30 million seqlets (see the following
section for more details). All of these seqlets need to be checked against a large number of amino acid
translations from all ORFs on both strands of a given complete genome. It is thus important that this
operation be carried out as efficiently as possible so as to reduce the overall computational requirements
of our method. There exist many efficient linear-time algorithms for searching exact strings [73], but since
seqglets include don’t care characters these algorithms are not applicable here. We can address the problem
of determining whether a seqlet matches a given amino acid sequence in one of two generic ways: we can
either preprocess the amino acid sequence, or we can preprocess the Bio-Dictionary seqlets with which we
will be searching.

Most of the work that has appeared in the literature revolved around the preprocessing of the sequence
which is assumed to be fixed [73]. Moreover, the number of patterns whose instances were sought in the
sequence was substantially smaller than the collection of patterns we are interested in. The suffix tree
[50, 73, 102, 155, 163], which is the compacted trie of all the suffixes of a given string, is a very efficient and

useful data structure for handling this task. When using a suffix tree, the query time is not linear in the
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size of the problem, but the approach affords rather efficient searches. The disadvantage of the suffix tree is
its large size compared to the size of the string. Note that if the number of characters in ¥ is very small,
there exist other methods like fast Fourier transform [52, 56] and the shift-and method [24, 73], but when
|X| = 20 as in our case, these methods are not appropriate.

Note that in our work, the set of seqlets is fixed, known in advance, and very large. On the other hand,
the amino acid sequences that we need to examine are numerous and not known in advance. Moreover, the
average length of such a query sequence is just several hundred amino acids. It thus appears more effective
to preprocess the contents of the Bio-Dictionary. One approach would be to build hash indices out of seqlets
so as to reduce the number of seqlets that need to be examined at each position of the amino acid sequence;
however, it is not immediately clear how to build such indices for patterns that have variable numbers of
don’t care characters as is the case of the seqlets.

Similarly to what is done in traditional dictionary searches without don’t care characters, we can build
the index with the help of the first few characters of a seqlet. For example, the seqlet G..G.GK[ST]TL could
be indexed through G. .G if we consider indices that are built using the first 4 characters of the seqlet. If
one of the positions used to build the index is occupied by a bracket expression like [ST] it is much simpler
to replace the contents of that position by a don’t care character. This method is rather effective and can
in fact be improved further. In the case of G..G.GK[ST]TL, it would seem more appropriate to use one of
GK.T or K.TL as the seqlet’s 4-character-induced index instead of the first characters G..G. Since GK.T and
K.TL contain fewer don’t care characters, they should generally appear fewer times than G. .G in an arbitrary
protein.

Keeping these observations in mind, we next propose a novel effective scheme for generating indices out
of seglets. Let us define an (I, w) subpattern of a seqlet ¢ as follows: first, we replace all brackets in the seqlet
by don’t care characters and let ¢’ denote the modified seqlet. The (I, w) subpattern is a minimal substring
of t' such that its length is less than w and it contains ! characters that are not don’t care characters. Notice
that we cannot always find such (I, w) subpatterns; if one such subpattern exists, we select it and form the
index for ¢. If such a subpattern does not exist we find the largest value I’ such that an (I',w) subpattern
exists in ¢’ and use this subpattern to form the seqlet’s index: for example, GK.T is a (3,4) subpattern of
G..G.GK[ST]TL.

If a seqlet ¢ is indexed by an (I,w) subpattern, we have to check this seqlet approximately n/|X|" times
when we consider a random protein of length n that has uniform amino acid bias. We can of course reduce
searching time by setting [ to a large value. But, at each position, we must examine patterns that are indexed
by any of (Z) possible (I',w) subpatterns for all I’ < [. The total number of subpatterns to be checked at
any one position is thus O(2Y); if we set w and [ to large values, the search will be slow. In section 5.2.2
we will describe how to choose appropriate values for [ and w. Note that if there exist seqlets without any
fixed character (e.g. [LK]..[ST][GKT]..[AERST] [ELK]..[AVL]) we must check them at each position in
addition to the seqlets hashed by subpatterns as above.

If we know the frequency of appearance of individual amino acids in query sequences, we can use it to
estimate the probability of appearance for each subpattern. In our case, we can use it to further improve

the performance. For example, in the case of G..G.GK[ST]TL, if we know that the amino acid G appears
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less frequently than the amino acid L, we can assume that GK.T is also rarer than K.TL, and thus we should
hash the seqlet with the help of GK.T. There can be cases where some (I, w) subpattern is estimated to be
less frequent than an (I, w) subpattern although I’ < I. In such cases, we should use the former, more rare
subpattern. We can easily search for such a subpattern in time that is linear to the size of the seqlet. In
the experiments below, and for given values of | and w, we use as a hash index the least frequent (I’,w)

subpattern, with I’ <1, as can be estimated from a given known amino acid bias.

5.1.5 Incorporating A Weighting Scheme

The basic strategy for gene identification which we just described is straightforward. It is easy to see that in
addition to the number of seqlets that can be located within the translation of an ORF, the very composition
of these seqlets can have an impact when deciding whether the ORF codes for a gene. In general, any two
Bio-Dictionary seqlets that match an amino acid translation affect this final decision differently. One can
think of each seqlet being associated with a specific score: by summing up the scores of the individual seqlets
that match an ORF, we can compute a quality measure that will allow us to determine whether to report the
ORF as a putative gene or to discard it. Next, we examine how to appropriately weigh each of the seqlets.

Let T' = {t1,t2,...,t,} be the complete collection of seglets in a given Bio-Dictionary. Let us consider the
amino acid translation s of an ORF from a given DNA sequence and let [ be the length of s. We say that a
seqlet matches at position j of the amino acid sequence s if an instance of the seqlet can be found beginning at
the j-th location of s. For example, G. .G.GK[ST]TL matches the sequence MTHVLIKGAGGSGKSTLAFW beginning
at position 8 of the sequence. Let T, denote the set of those seqlets that match beginning at position j of
s, and let T, be the set T\Ts;. Also let Ts = {ty,,tu,, ..., %u,, } denote the concatenated list of 7, ’s for all
j (1 <j <1). Similarly, let T, denote the concatenated list of T ’s for all j (1 < j <1). Note that T},’s for
different j’s can contain the same seqlet, thus T is in general a multiset. Similarly, T can also be a multiset.

Let p; be the probability that seqlet ¢; matches a database protein or fragment at a fixed location, and g;
be the probability that ¢; matches the amino acid translation of a non-coding ORF at a fixed location. If all
the seqlets in the Bio-Dictionary are assumed to be statistically independent then the probability that a given
ORF corresponds to an actual gene will be equal to rPs /(rPs + (1—7)Q;) where Py = II7L p,, T (1= pa,),
Qs = 11" qu, -Hlﬁll(l —qu; ), and r is the ratio of ORFs within the given ORF set that correspond to actual
genes.

Let us examine this independence assumption a little further by considering two specific seqlets that
contain don’t care characters and have several instances in the database from which they were derived.
It is easy to see that because of the don’t care characters the seqlets can be overlapping and matching
the sequence under consideration (the ‘query’) even though they are derived from two distinct groups of
unrelated sequences — in such a case, the seqlets cannot really be considered dependent. Of course, it can
also happen that the seqlets are overlapping and matching the query and they are also derived from related
groups of sequences in the processed database — in this case, the two seqlets would be dependent. Frequently
though, two seqlets would be dependent only as a result of a small subset of sequences that is shared by the
two groups of input sequences that gave rise to the two seqlets in the first place. It is conceivable that one

could keep track of such situations for all groups of seqlets whose instances overlap within some sequences of
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the database. Something like this would of course require exceptionally demanding bookkeeping (in terms
of required space and time) and would make the application of our approach prohibitive for problems of
practical size. It should be clear that the combinations of seqlets that ought to be considered dependent
due to overlaps of some of their database instances are substantially fewer than the combinations of seqlets
that are independent. Moreover, a given amino acid position of the query is typically ‘covered’ by 5-10
seqlets, a small number compared to the total number of seqlets that will match somewhere within it. Thus,
any seqlet dependence that manifests itself in the outlined gene finding process will involve only a small
number of seqlets each time and only because of a small fraction of the total number of their instances in
the database from which they were originally derived. Consequently, the assumption of independence is a
reasonable simplifying approximation that also allows for speedy computations and, as evidenced by the
results we present in the next section, does not have any noticeable adverse impact on our results.

We can use the ratio Ry = P;/Qs to compare the relative likelihood that two candidate ORFs correspond
to genes. Note that the probability will be larger than 0.5 if Ry > 1 and » = 0.5. Let N = II? , (1 — p;)
and N’ =TI, (1 — ¢;). N denotes the probability that no seqlet matches at a fixed position of an actual
protein, and N’ the probability that no seqlet matches at a fixed position of the amino acid translation
derived from a non-coding ORF. Recall that the Bio-Dictionary is derived from a database of proteins and
fragments, thus N is smaller than N’ in most cases. Considering that the number of seqlets that match at
a given position is much smaller than the number of seqlets not matching at the same position, and that
the p;’s and ¢;’s are very small numbers, we can approximate the terms ;7;'1(1 — pu,;) and H?il(l — qu;) by
N! and N respectively. Thus we can use R, = (P!/Q") - (N/N')! instead of Rs, where P! = I | p,, and
Q! =TI, q,;. Note that, if N ~ N’, we can use R = P!/Q", instead of R..

By definition, ORF's do not contain any stop codons internally, and consequently long ORF-like stretches
are not likely to be random. Let L denote the probability that a stop codon is observed at a fixed position of
a random DNA sequence. Since there exist 3 stop codons among the 64 possible codons and assuming that
all 4 possible nucleotides appear with equal probability in the random sequence, then L is equal to 3/64.
With this in mind, we can use R)" = R'/(1 — L)! = (P!/Q") - M' where M = N/N'- (1 — L) instead of R,.
If M ~ 1, we can use R = P!/Q", instead of R.".

Let w; = logp; — log q; be the weight associated with seqlet #;. Let us also consider the sum of weights
of the seqlets matching anywhere in the translation s of an ORF as the measure W that is characteristic of
the coding quality of the ORF under consideration. It is easy to see that we can write the following equation
for the coding quality measure of an ORF: W! = W, + 1 -log M = log R!". If M cannot be ignored, we can
instead use the following expression W! = W +1-log M = log R.' to define the coding quality of an ORF. In
actuality, the value of [log M is far smaller than the value of Wy, and we can safely ignore the term during
the actual computations.

At times, we are faced with a situation where we have multiple start codons matching the same stop
codon and must decide which start/stop pair to report. Our solution amounts to picking the start codon
which will result in the highest value for the coding quality measure. Due to the fact that seqlets can also
have negative associated weights, and even if we ignore the log M term, it should be evident that selecting

the start codon in such a way will not necessarily result in the reporting of the longest ORF as coding.
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On a related note, ATG is the most frequently used start codon but it is not the only one. Consequently,
it is inappropriate to treat the different start codons in a uniform manner. Let {c1,¢a,..., ¢} denote the
set of possible start codons. Let f; be the probability that ¢; is the start codon of a randomly chosen coding
region, f! be the probability that ¢; is observed in non-coding regions, and g; be log f; —log f/. We can then
use Wy + g; instead of Wy as the measure of coding quality for the amino acid translation s of an ORF that
is initiated by the start codon ¢;.

In order to compute the coding quality measure, we need the values for p;’s and ¢;’s. The most natural
way to obtain these values is to compute them with the help of actual genes and non-coding ORFs. We
can calculate the actual seqlet occurrences in the regions annotated as coding in a given training set and
derive the needed p; values; we can then compute each seqlet’s occurrences in ORF's that are not designated
as coding in a training set and derive the ¢; values. The values for the f;’s and f/’s can be computed in a
similar manner.

But how can these values be obtained in the absence of a training set? For the p;’s we can use the
probabilities computed with the help of the protein database from which the Bio-Dictionary is derived.
Alternatively, we can compute them using very long ORF's instead of actual coding regions. For the g;’s we
can use non-ORF regions, or we can estimate the probability of random occurrence based on an appropriately
chosen amino acid bias.

Once we have attached a corresponding coding-quality measure to each ORF we can decide which ORFs
correspond to putative genes by appropriately setting a threshold value. The higher the value of the measure

we associate with a given ORF the more likely it is that the ORF is a coding one.

5.1.6 Removing Encapsulated Genes Coded in Different Frames

Sometimes one encounters ORFs whose span completely encapsulates other ORFs in one or more of the
remaining five reading frames. Occasionally, our method will give comparable, high scores to a pair of ORFs
where one of the ORFs completely includes the other. It is believed that not both members of such pairs of
coding regions can correspond to actual genes. In these situations, we use the ORF score to sub-select, and
report the one with the higher score. Note that most of the time, the ORF's selected and reported in this

manner correspond to the longer member of the pair. A similar approach is also employed by Glimmer [46].

5.2 Experimental Details and Results

In this section, we describe and report on the results we obtained with BDGF, the implementation of our
gene-finding algorithm. BDGF was applied to several complete archaeal and bacterial genomes. We begin
by describing the building of the Bio-Dictionary that we use and the parameter choices for our search scheme

that determines possible matches of a given seqlet in the amino acid translation of an ORF.

5.2.1 Generation of the Bio-Dictionary

With the help of the Teiresias algorithm [117, 118], we computed an instance of the Bio-Dictionary for the
June 12, 2000 release of the SwissProt/TrEMBL [15] database. The processing was carried in the manner
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Table 5.1: Statistics for the seqlet-derived pattern collections used in our experiments.

Pattern Collection | #Patterns Average on CDS  Average on non-CDS
BD-2 3,951 2,478.23 1,965.55
BD-3 309,478 151.62 104.01
BD-4 5,726,316 13.62 8.25
BD-5 17,509,665 1.98 1.02
BD-6 22,523,439 0.39 0.14

that is outlined in [119]. As a matter of fact, we used Teiresias with a setting of L =6, W =15 and K = 2.
The justification for this choice of values for L and W is the result of earlier extensive analysis and was
described in [58]. The Bio-Dictionary that resulted from this processing contained 29,397,880 seqlets. The
instances of these seqlets accounted for 98.10% of the amino acid positions in the processed database. It is
this collection that we used in our experiments.

Some of the seqlets in the employed Bio-Dictionary have rather long spans. These are typically impor-
tant patterns, generated by putative proteins that are coded by genes in distinct genomes from the same
phylogenetic domain. Because these patterns appear infrequently, it is difficult to compute their weights
in the absence of an extraordinarily large training set. For our experiments, we handle this situation as
follows: we replace seqlets that have k fixed characters by k& — s + 1 seqlets each of which contained s
fixed characters, for some choice of the value s (see below). Let S{i..j} denote a subpattern of a seqlet S
that starts at the i-th fixed character and ends at the j-th fixed character. We replace S by subpatterns
S{1..s},5{2..(s+ 1)},...,S{(k — s + 1)..k}. Any duplicate seqlets that appear in the resulting collection
are removed before further processing. Heretofore, and for simplicity purposes, we will use the shorthand
notation BD-i to refer to the derived pattern collections that are constructed as above by setting s to i. The
collections that we used in our experiments were BD-4 and BD-6.

Table 5.1 shows statistics for collections BD-i with ¢ assuming values between 2 and 6 inclusive. In
particular, for each BD-i the table lists the following items: a) the number of seqlet-derived patterns contained
in BD-i - as expected, and because identical patterns are removed after splitting, the number is small for small
values of i; and, b) the average numbers of instances of a derived pattern per 1M amino acids, computed from
experiments against coding sequences (column 3) and non-coding sequences (column 4) from the seventeen
genomes we used for our experiments - as expected, the number of instances is much higher in coding
sequences than in non-coding ones.

The total lengths for the coding and non-coding sequence sets for the seventeen genomes that we used in
our experiments are ~30Mbp and ~94Mbp respectively. Note that the seemingly large sizes of these datasets
are due to the existence of 6 reading frames. If we make use of all seventeen organisms for training, the
corresponding coding and non-coding sequence sets have sufficiently large sizes to permit the computation
of representative weights, even for the patterns in the BD-6 collection. On the other hand, if only one or a
handful of genomes are available, the corresponding sizes for these two sets are not substantial to permit the

generation of representative weights for the BD-5 and BD-6 collections. Thus, a given choice for the training
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Table 5.2: Actual query time (in seconds) using (I, w)-subpattern-based indexing.

=2 =3 =4 l=5 l=6 =7 =38 =9 =10
w=2 | 10297.62

w=3 7538.57  4716.27

w=4 7688.03 2248.43 2242.25

w=>5 7730.57  1037.28 840.77 887.23

w =6 7905.72 760.68 465.05 414.75 433.82

w="7 7892.13 757.52 307.85 25897 265.95 265.90

w =238 7921.85 750.30 172.25 148.58 154.12 153.68 153.20

w=29 7887.63 755.35 121.23 93.10 100.70 103.12 106.92 106.88

w =10 7778.68 769.63 100.92 73.25 86.15 95.50 105.55 103.28 103.82
w=11 7971.78 758.70 98.90 68.13 96.98  129.92 143.38 146.43 152.45
w =12 8189.87 760.25 111.12 79.83 141.28 201.75 243.38 267.60 274.33
w =13 7901.72 758.78 114.60 100.78 213.30 328.28 450.63 522.22 556.00
w =14 7903.68 759.87 130.92 137.07 320.48 547.75 815.77 1002.45 1152.20
w =15 7889.48 764.33 140.85 184.83 465.45 914.70 1407.35 1846.40 2193.10

set indirectly dictates which collections BD-i can be used to carry out any planned gene finding experiments.

5.2.2 Performance of the Seqlet Search Scheme

As we have already mentioned, it is important that we be able to quickly determine which of the seqlets
of the Bio-Dictionary are contained in the amino acid translation of a given ORF. To this end, we present
experimental results on the performance of the search scheme that we described in the previous section, and
for different combinations of the parameters | and w.

For the purposes of benchmarking the method’s performance, we used the a) original unmodified Bio-
Dictionary that contained 29,397,880 patterns and b) 100 proteins from E. coli as queries. The average span
of the seqlets in this Bio-Dictionary is 13.15 positions whereas the average number of fixed characters in
these seqlets is 7.41. The average length of the 100 query proteins is 340.61 with the shortest and longest
sequences having lengths of 21 and 1,073 amino acids respectively. The goal of the experiment is to find all
the Bio-Dictionary seqlets that have instances in the 100 query proteins. As it turns out, a total of 302,349
Bio-Dictionary seglets appear in the cumulative collection of 100 proteins, with each amino acid position
participating in the instances of 8.88 distinct seqlets, on average.

Table 5.2 shows the computation time required to determine all these matches and for the parameters I
and w assuming values in the range 2 <1< 10,2 < w < 15 (I < w). All of the experiments are carried out
on a single IBM RS64III processor with a clock speed of 450MHz. For these experiments, we constructed
a hash index assuming an amino acid bias that results from a uniformly distributed random sequence of
nucleotides. The best performance is obtained when [ = 5 and w = 11: with these settings, we can process
a 500 amino acid query and determine the subset of the Bio-Dictionary’s approximately 30 million seqlets
that have instances in the query in approximately 1 second.

Table 5.3 shows the average number of seqlets that are examined for instances in the query sequence.
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Table 5.3: Average number of seqlets that need to be examined per query unit length.

=2 =3 =4 l=5 =6 =7 =8 =9 1=10
w=2 | 201782.33

w=3 | 124952.44 76371.22

w=4 | 121615.54 36029.50 34732.23

w=>5 | 120480.81 15522.02 12612.06 12566.68

w=6 | 119775.41 10576.61 5730.41 5649.36  5647.23

w=7 | 119441.63 10036.59 3442.44 3295.59 3293.04 329291

w=38 | 119260.62 9909.72 2037.39 1791.63 1788.00 1787.88 1787.85

w=29 | 119187.04 9836.12 1321.24 954.16 948.41 948.29 948.26  948.34

w =10 | 119162.34 9797.54 1004.48 510.67 501.35 501.22 501.20 501.27 501.26
w =11 | 119158.53 9783.17 883.61 273.85 259.01 258.88 258.86  258.93 258.92
w =12 | 119158.53 9779.73 850.41 152.38 129.47 129.34 129.31 12939 129.38

w =13 | 119158.53 9779.73 844.78 95.72 61.46 61.34 61.31 61.38 61.38
w =14 | 119158.53 9779.73 844.78 79.28 30.18 30.05 30.03 30.10 30.09
w =15 | 119158.53 9779.73 844.78 79.28 10.97 10.84 10.81 10.89 10.88

Note that only a subset of the Bio-Dictionary’s seqlets will actually match somewhere in the query. As
anticipated, the number of seqlets that need to be examined decreases as I and w grow larger, an expected
result. Also, the search time does not decrease when [ > 5 or w > 11. The explanation can be found in
Table 5.4 where we show the maximum number of subpatterns that need to be checked at each position of
a given protein: this number increases as [ and w increase. As a matter of fact, the actual search times are
roughly proportional to 1.6 X z 4y, where z is the number of the checked subpatterns at each position and y
is the average number of the actually checked seqlets at each position. Note that x is sometimes larger than
y because subpatterns exist that must be checked but for which no seqlet has been hashed. We can easily
compute the expected number of checked seqlets against random sequences with a given amino acid bias,
and thus can estimate appropriate values for [ and w in this manner. Table 5.5 shows the estimated average
number of seqlets that would be examined for instances in a random protein sequence of 1Mbp length with
a uniform amino acid bias. The numbers in this table are much smaller than those in Table 5.3 because the
sequences used in Table 5.3 are actual protein sequences (not random ones) and there should be much more
occurrences of seqlets than estimated (see also Table 5.1). But we can use the estimated values in Table 5.5
because they are roughly proportional to those in Table 5.3. The graph of Figure 5.1 shows relationship
between the search time and 0.4 x x + y where gy denotes the estimated number of checked seqlets at each
position in Table 5.5. We can predict the optimal / and w in this manner.

For completeness purposes, we also carried out experiments where we searched using hash keys derived
from the prefixes of seqlets. The results are shown in Table 5.6 for various values of the prefix length. This
scheme does not perform as well as our (I, w)-based hashing scheme and the best result of 237 seconds that

is obtained for a prefix length of 11 is far too slow to be useful; thus, we abandoned this prefix scheme idea.
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Table 5.4: Maximum number of subpatterns to be checked at each position.

=2 [=3 [=4 1l=5 1l=6 1[1=7 [=8 1=9 =10
w=2 2
w = 3
w=4 4 8
w=25 5 11 15 16
w==6 6 16 26 31 32
w=7 7 22 42 57 63 64
w = 8 29 64 99 120 127 128
w = 9 37 93 163 219 247 255 256
w =10 10 46 130 256 382 466 502 511 512
w =11 11 56 176 386 638 848 968 1,013 1,023
w =12 12 67 232 562 1,024 1,486 1,816 1,981 2,036
w=13 13 79 299 794 1,586 2,510 3,302 3,797 4,017
w=14 14 92 378 1,003 2,380 4,096 5,812 7,099 7,814
w =15 15 106 470 1,471 3,473 6476 9,908 12,911 14,913

5.2.3 Gene Finding Results on Archaeal and Bacterial Genomes

In this section, we outline and discuss the capabilities of our gene-finding method by reporting the results

we obtain from processing seventeen complete genomes with BDGF.

Genome Identities

Of the seventeen genomes we used in our experiments, 4 were archaeal (A. fulgidus, M. jannaschii, M.
thermoautotrophicum, P. abyssi) whereas the remaining thirteen were bacterial. Table 5.7 shows relevant
information for these genomes including the genome length in nucleotides, the number of all identifiable ORF's
that are longer than eighteen nucleotides (i.e. 6 amino acids), and the number of annotated coding regions
that have been reported in the public databases for each genome. We should mention at this point that
each of these genomes may contain additional actual coding regions that to date have remained unreported.
Also, one should not loose sight of the fact that the annotated (= reported) coding regions are for the most

part putative and have typically been reported without verification via wet laboratory experiments.

Quantifying the Quality of our Predictions

There exist several ways in which one can evaluate the performance of a gene finding algorithm. But the
algorithm’s sensitivity and specificity remain the most important measures. Sensitivity, often referred to
as the prediction rate, is defined as the ratio of the number of genes predicted by the algorithm over the
number of genes that has been reported in the public databases. Specificity is defined as the ratio of the
number of predicted genes that are also reported in the public databases over the number of all genes that
the algorithm has predicted.

Clearly, one can generate very appealing, large values for the sensitivity of the algorithm simply by
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Table 5.5: Estimated average number of seqlets that need to be examined per query unit length.

=2 =3 =4 l=5 =6 =7 =38 =9 1=10
w=2 | 134198.37
w = 73494.70  38788.61

w =4 73494.70  17347.44 16506.10

w=25 73494.70 6334.03 4905.88  4876.20

w =6 73494.70 3846.45 1744.38 1705.71 1704.36

w="7 73494.70 3674.74 974.07 920.29 918.85 918.81

w= 73494.70 3674.74 537.83 463.00 461.37 461.32 461.32

w = 73494.70 3674.74 319.13 219.56 217.58 217.54 217.54 217.54

w =10 73494.70 3674.74 226.35 101.89 99.39 99.35 99.35 99.35  99.35
w =11 73494.70 3674.74 193.16 46.67 43.45 43.41 43.41 43.41 4341
w =12 73494.70 3674.74 184.85 22.11 17.94 17.90 17.90 17.90  17.90

w =13 73494.70 3674.74 183.74 11.94 6.54 6.50 6.50 6.50 6.50
w=14 73494.70 3674.74 183.74 9.19 2.29 2.25 2.25 2.25 2.25
w =15 73494.70 3674.74 183.74 9.19 0.46 0.42 0.41 0.41 0.41

Table 5.6: Searching time (in seconds) when seqlets are hashed with prefixes of various lengths.

Prefix length 2 3 4 5 6 7
Search time 50539.95 | 31194.35 | 19217.67 | 11505.07 | 6492.57 | 3374.05

Prefix length 8 9 10 11 12 13
Search time 1646.15 755.43 359.83 236.75 305.20 559.95

lowering the employed decision thresholds. But this is typically done at the expense of introducing false
positives in the output which will in turn lead to decreased values for specificity. The opposite situation is
also possible: one can choose thresholds in a way that will result in high specificity values at the expense of
sensitivity; i.e. many actual genes will not be reported. Sensitivity and specificity are competing goals and,
ideally, any proposed algorithm must aim at achieving simultaneous high values for both of these measures.

In addition to an algorithm’s specificity and sensitivity, also of interest is the cardinality of the collection

of genes that have been predicted by the algorithm and satisfy the following two conditions:
1. the predicted genes are not among the genes that have been reported in the public databases; and,

2. the predicted genes have substantial similarity to one or more protein/cDNA sequences contained in

the public repositories.

Naturally, this collection forms a subset of the results that would otherwise be characterized as “false
positives.”

The existence of genes in several distinct genomes that also exhibit similarity to a gene predicted by a
given algorithm adds support to the hypothesis that this gene is indeed correctly predicted. In what follows

we use the term ‘hits’ to refer to the members of the special subset of predicted genes that also satisfy
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Figure 5.1: Estimation of seqlet search speed of various (I, w)-subpattern-based indexing.

conditions 1 and 2 above. In our experiments, we determined whether a predicted gene satisfied condition 2
by using both the FASTA [114] and the BLAST [8] algorithms: with default threshold and matrix settings
we carried our similarity searches against the release of SwissProt/TrEMBL [15] from September 21, 2001.
A query was considered to generate a hit in the searched database if one or more of the reported results had
associated E(.) values that were 1.0e-4 for FASTA and 1.0e-3 for BLASTP. In addition to running FASTA
and BLAST, we carried out a CD search for conserved domains using rpsblast and the Conserved Domain
Database from Feb 28, 2002 [101]: the E(.) value threshold we used here was equal to 1.0e-4.

In all cases that are described below, we quantified the performance of our approach by simultaneously

reporting the values of the following three measures: ‘sensitivity,” ‘specificity’ and ‘hits.’

How we Built and Used our Training and Test Sets

As we explained previously, an appropriate training set is needed in order to compute weights for all the
seqlets in the Bio-Dictionary. The experiments that we carried out were meant to mimic the very wide
spectrum of situations that a researcher may encounter in a real-world setting.

First, we divided each genome into two equal-length parts: we used the second half of the genome as
a training set and the first half as a test set (Case 1). In spirit, this is a test similar to what has been
previously reported in the literature [46, 98]. However, it should be stressed that what we use in this case
to derive weights for our seqlets is a mere 50% of a genome whereas we test our prediction capability on the
remaining 50% of it. The size of the training set we use in this set of experiments is much smaller than what
has been typically employed to train previously reported methods. This was as intentional decision meant
to showcase our system’s capabilities.

We also carried out experiments without using any a priori knowledge for the training sets. This is

discussed in detail in case 2 below. The purpose of these experiments was to determine how well our
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Table 5.7: Details on seventeen genomes used in our experiments.

Type # Organism Abbr. Length #ORF #CDS

Total | <300nt

1. Archaeoglobus fulgidus DSM4304 AF 2,178,400 73,238 | 2,407 319

Archaeal 2. Methanococcus jannaschii DSM2661 MJ 1,664,970 74,456 | 1,715 174
genomes 3. Methanobacterium thermoautotrophicum delta H MT 1,751,377 64,726 | 1,869 223
4. Pyrococcus abyssi GE5 PA 1,765,118 64,436 | 1,765 72

5. Aquifez aeolicus VF5 AA 1,551,335 50,591 | 1,523 33

6. Borrelia burgdorferi B31 BB 910,724 40,403 850 78

7. Bacillus subtilis 168 BS 4,214,814 | 167,735 | 4,101 471

8. Campuylobacter jejuni NCTC11168 CJ 1,641,481 72,016 | 1,635 149

9. Chlamydia pneumoniae CWL029 CPc 1,230,230 50,872 | 1,052 84

Bacterial | 10.  Chlamydia pneumoniae AR39 CPa 1,229,853 50,840 | 1,110 146
genomes | 11.  Chlamydia trachomatis serovar D CT 1,042,519 42,338 894 61
12.  Escherichia coli K12-MG1655 EC 4,639,221 | 163,600 | 4,285 376

13.  Haemophilus influenzae KW20 HI 1,830,138 83,944 | 1,709 161

14.  Helicobacter pylori 26695 HP 1,667,867 67,227 | 1,567 174

15.  Rickettsia prowazekii Madrid E RP 1,111,523 53,656 835 61

16.  Synechocystis sp. PCC6803 SS 3,573,470 | 141,204 | 3,169 257

17.  Thermotoga maritima MSB8 ™™ 1,860,725 57,5684 | 1,846 160

algorithm works in the absence of such information.

The next group of experiments (Cases 3a and 3b) was designed to examine the performance of our method
in the case where the seqlets’ weights were not genome-specific. For each test genome, we derived weights
for the seqlets by training with a collection of several complete genomes that did not include the genome
under consideration; we then applied our method on this test genome. These jack-knifing experiments are
typically too severe for statistical methods such as those based on Markov models. It is for this reason that
many web implementations of previously reported, statistics-based methods often provide several parameter
settings derived from training on various genomes: users are asked to select the appropriate settings to be
used by the algorithm. The experiments for cases 3a and 3b were carried out using BD-4; i.e. the derived
pattern collection was constructed by setting the parameter s to 4 (see discussion in subsection 5.2.1).

In order to determine the impact of the different pattern collections on the results, we repeated the
experiments of cases 3a and 3b using BD-6, i.e. the collection constructed by setting the parameter s to
6. Cases 4a and 4b correspond to this set of experiments and are the counterparts of cases 3a and 3b
respectively.

Finally, for our last group of experiments (Case 5) we used all seventeen genomes to assign weights to
the seqlets, then tested the resulting non-genome-specific system by processing each of the genomes in turn.

As we noted in the introduction, in this first incarnation of our system we do not make use of any
additional information (for example: promoter information that can either be computed or retrieved from
the public databases) to constrain the discovery of genes and start sites. Nonetheless, as evidenced by the
results that we report in cases 4 and 5, our start site prediction rates are comparable in quality, and at

times superior to those that have been previously reported in the literature [61, 75, 98, 147]. What is more,
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our results are achieved using a system that is generic and not genome specific. We will revisit the topic of

start-site prediction at the end of this section.

Format of the Reported Results

In the tables that follow, and for each processed genome, we report the total number of genes predicted by
our algorithm in column 2; we also indicate how many of these genes are shorter than 300 nucleotides in
column 3. In our studies, we threshold at that score value for which the number predicted genes is equal
to the number of annotated genes in the public databases — clearly this threshold value is different for each
genome. Note that in this case, the exhibited sensitivity and specificity are equal; this common value is
shown in column 4. For a subset of the genes that are predicted by our algorithm there is no corresponding
database entry characterizing them as such. Column 5 shows how many of the predicted genes fall in this
category, whereas column 6 indicates how many of these genes are shorter than 300 nucleotides. With the
help of FASTA, BLAST and CD-search we report how many of these genes are in fact hits in columns 7,
9 and 11 respectively; the number of hits which correspond to gene predictions that are shorter than 300
nucleotides is listed in columns 8, 10 and 12 respectively. Finally, in each of the result tables we also report
on our ability to correctly predict the start sites for the reported genes through comparison with the existing
database annotations. In column 13, we show the number of genes whose start site is correctly predicted;

and, in column 14 we list the same figure as a percentage of reported genes.

Prediction Results on the Various Genomes

We now report on the results of our method in five experimental settings. The experiments were designed
so as to mimic the type of situations that a real-world researcher is likely to encounter, and showcase the
performance of our approach across a wide spectrum of settings.

Case 1 (BD-4 & Weights Derived From The 2nd Half Of Each Genome Only.) BD-4 was
used in this case. For each genome, the seqlets’ weights were obtained by training on the second half
of the genome. Gene prediction was carried out on the first half. Table 5.8 shows the results for this
experiment: in all seventeen cases, the sensitivity/specificity value ranged between 90.1% and 95.1%. Also,
approximately 33% of the additional putative genes reported by our method corresponded to hits, i.e. we
could find statistically significant similarities with proteins in the September 21, 2001 installment of the
SwissProt/TrEMBL database. The implication of this is that the actual gene prediction rate is likely to be
even higher than what we report here. With respect to the start site prediction rate, the rates of correctly
predicted start sites in this case range from 55.6 to 84.2%. Recall that we currently make no use of any
promoter information.

Case 2 (BD-4 & Weights Derived From Using Long ORFs Only.) The previous experiment
assumes the availability of annotations for at least some of the actual coding genes of a target genome. But
what if such information is not available? In such a situation the only recourse is to derive the seqlet weights
by restricting ourselves to the very long ORFs that can be identified in the genome which is being processed;
the implicit assumption here is that long ORFs are more likely than short ORFs to be coding for genes and

can thus be used as training sets. Similar heuristics have been employed by other groups as well [12, 46].
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Table 5.8: Gene Prediction Results for Case 1.

#Reported Sns. Additional Genes Start Site

Abbr. Genes = # FASTA BLAST CD Search

Exact | Ratio
Total <300 Spc. Total <300 Total <300 Total <300 Total <300

AF 1,113 121 92.9 85 39 41 14 42 15 26 6 805 72.3
MJ 866 92 | 93.7 58 37 21 8 24 9 8 0 711 82.1
MT 886 80 93.7 60 23 4 3 5 4 1 0 746 84.2
PA 857 30 94.7 48 41 12 10 11 9 1 1 579 67.6
AA 712 11 | 93.0 54 37 18 15 23 17 16 12 578 81.3
BB 398 21 | 91.7 36 34 6 4 6 4 1 0 240 60.3
BS 1,831 143 94.7 102 80 33 25 38 27 9 6 1017 55.6
CJ 769 60 94.2 47 36 16 9 19 12 10 7 529 68.8
CPc 473 16 | 92.0 41 20 23 6 23 6 12 2 332 70.2
CPa 511 30 | 90.1 56 40 14 3 14 0 362 71.0
CT 430 20 94.1 27 22 4 3 4 0 270 62.8
EC 2,048 139 94.2 127 53 30 17 32 18 2 1406 68.7
HI 802 46 95.1 41 17 27 5 26 4 17 1 572 71.3
HP 708 62 | 924 58 43 23 10 23 10 0 435 61.5
RP 403 22 | 929 31 24 5 0 7 1 0 283 70.2
SS 1,544 98 95.0 82 64 14 10 15 11 3 984 63.7
™™ 847 28 95.0 45 6 18 3 21 5 16 4 571 67.4

In this case, we used as a training set for the coding regions all the ORFs which were longer than 600
nucleotides and which were not included within other longer ORFs. As a training set for the non-coding
regions we used all the ORFs that were shorter than 200 nucleotides and which occasionally (and incorrectly)
include bona fide coding ORFs. We again used BD-4 as the collection of patterns for which to derive weights.
As will become evident after we have described our complete set of experiments, it is not necessary to carry
out this kind of training when dealing with a new genome — we have simply included case 2 for the purpose
of completeness of description.

Table 5.9 shows the results for this experiment. In this case, the sensitivity and specificity value ranged
from 89.9% to 95.6%. Similarly to case 1, approximately 32% of the additional predicted genes, have
significant similarities with other database entries. It is notable that despite the fact that the amount
of information we used for training purposes was substantially less than the one we used in case 1, the
performance levels remained essentially unchanged.

Case 3a (Leave-Many-Out: BD-4 & Weights Derived From Fixed 4 Of 17 Genomes.) Another
realistic situation is the one where users will carry out gene prediction on newly sequenced genomes for which
little or no information is yet available. The situation can be facilitated if a phylogenetically similar genome
already exists in the public databases but this is not always going to be the case. This particular experiment
is meant to simulate the situation where the genomes that are already available in the public databases are
few and rather distant from the ones that are being examined. To this end, we used the union of the full
CDS lists that were reported for Bacillus subtilis, Campylobacter jejuni, Helicobacter pylori, and Rickettsia
prowazekii to derive the weights for BD-4’s patterns and subsequently tested our method by predicting genes

for the remaining thirteen genomes of our genome collection.
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Table 5.9: Gene Prediction Results for Case 2.

#Reported Sns. Additional Genes Start Site

Abbr. Genes = # FASTA BLAST CD Search

Exact | Ratio
Total <300 Spc. Total <300 Total <300 Total <300 Total <300

AF 2,239 200 | 93.0 168 47 66 17 69 18 43 7 1641 73.3
MJ 1,636 145 | 954 79 47 35 11 38 11 18 1 1295 79.2
MT 1,761 130 94.2 108 30 7 4 7 5 1 0 1492 84.7
PA 1,674 56 94.8 91 75 21 17 23 19 5 4 1130 67.5
AA 1,425 18 | 93.6 98 60 28 20 38 26 21 16 1148 80.6
BB 792 49 93.2 58 52 4 2 5 2 1 0 482 60.9
BS 3,897 321 95.0 204 158 74 55 85 62 16 11 2134 54.8
CJ 1,567 122 95.8 68 48 28 13 29 14 12 7 1126 71.9
CPc 984 51 | 93.5 68 42 30 11 31 11 14 2 692 70.3
CPa 998 67 | 89.9 112 83 29 8 30 8 16 1 711 71.3
CT 854 49 95.6 39 29 6 5 8 5 0 0 585 68.5
EC 3,974 182 92.7 311 64 58 24 61 23 16 5 2707 68.1
HI 1,621 108 94.9 88 36 56 10 55 9 32 2 1171 72.2
HP 1,465 130 93.5 102 72 48 21 49 21 20 3 872 59.6
RP 795 48 | 95.3 39 22 14 4 16 5 12 4 595 74.8
SS 3,017 184 95.2 152 119 24 19 27 23 6 6 1945 64.5
™™ 1,726 70 93.5 120 8 44 3 46 5 32 3 1119 64.8

Case 3b (Jack-knifing or Leave-One-Out: BD-4 & Weights Derived From 16 Of 17
Genomes.) Here we study the jack-knife variation of case 3a: prior to carrying out gene prediction for
each of the seventeen genomes of the collection, we used the union of the full CDS lists from the remaining
sixteen genomes to derive the weights for BD-4’s patterns.

Tables 5.10 and 5.11 show the results for cases 3a and 3b. As one would intuitively expect, the weights
that are derived from 16 genomes are more representative (case 3b). Consequently, the prediction rates
reported in Table 5.10 are superior to those reported in Table 5.11. The sensitivity /specificity value was in
the range of 86.3% to 94.7%, exceeding the 90% mark for the majority of the genomes. Approximately 23%
of the additional putative genes reported by our algorithm correspond to hits.

This set of experiments (i.e. cases 3a and 3b) is particularly interesting in light of observations made
previously in the literature according to which the performance of statistical methods typically deteriorates
if the method is used with parameters derived from a phylogenetically distant genome. This deterioration
reflects merely the overall difference in the statistical properties of the respective genomes.

Unlike statistical approaches, our method depends largely on the statistical properties of verified and
putative proteins and exhibits resilience to statistical variability. Thus, the conclusion of this set of exper-
iments is that if the weights of the seqlets have been appropriately derived we expect to be able to reach
very high prediction levels in a manner that will be relatively independent of the studied organism. This is
indeed corroborated by the results shown in Tables 5.10 and 5.11.

Case 4a (Leave-Many-Out: BD-6 & Weights Derived From Fixed 4 Of 17 Genomes.) In this
experiment, we repeat the experiment of case 3a but now using the BD-6 collection. In general, with smaller

values for s one expects that the derived collection of patterns will be more sensitive but will capture less
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Table 5.10: Gene Prediction Results for Case 3a.

#Reported Sns. Additional Genes Start Site
Abbr. Genes = # FASTA BLAST CD Search
Exact | Ratio
Total <300 Spc. Total <300 Total <300 Total <300 Total <300
AF 2,210 202 91.8 197 71 66 16 70 18 42 6 1528 69.1
MJ 1,636 135 | 954 79 57 28 9 28 7 18 1 1297 79.3
MT 1,713 124 91.7 156 76 6 3 7 5 1 0 1291 75.4
PA 1,669 51 94.6 96 ud 24 19 27 22 6 5 1075 64.4
AA 1,414 18 92.8 109 69 29 21 39 27 22 17 1105 78.2
BB 779 47 | 91.6 71 66 4 2 6 2 1 0 474 60.8
CJ 1,565 114 95.7 70 48 25 9 26 10 13 8 1123 71.8
CPc 951 50 90.4 101 78 30 11 30 11 12 1 542 57.0
CPa 968 64 87.2 142 118 23 4 23 4 14 1 567 58.6
EC 3,941 212 92.0 344 127 53 27 54 26 16 5 2352 59.7
HI 1,601 100 93.7 108 59 58 12 58 12 32 3 1116 69.7
SS 2,889 149 91.2 280 208 16 12 19 14 3 3 1685 58.3
™™ 1,696 78 91.9 150 25 40 4 44 7 32 4 933 55.0

‘structure.” On the other hand, larger s values will give rise to a situation where potentially fewer seqlets
match the putative amino acid translations and there is an associated increased difficulty to appropriately
compute the seqlets’ weights. Table 5.12 shows the results of this experiment.

Case 4b (Jack-knifing or Leave-One-Out: BD-6 & Weights Derived From 16 Of 17
Genomes.) Here we repeat the experiment of case 3b but this time using the seqlets from the BD-6
collection; results are shown in Table 5.13.

When we compare the results from cases 3a/3b with those from cases 4a/4b we conclude that for most
of the genomes in our collection, and for the training carried out as described above, the BD-4 collection
will result in better performance; a notable exception is represented by the Chlamydophila and Chlamydia
species for which BD-6 gives better results.

An additional observation is that the number of genomes for which BD-6 performs better than BD-4
increases as the size of the training set increases. The very important ramification of this is that, if we have
access to a rather large training set, our method will exhibit better prediction performance when used in
conjunction with BD-s sets corresponding to larger s values.

Case 5 (BD-6 & Weights Derived From All 17 Genomes.) The four experimental cases above

provided sufficient information that permitted us to generate optimal results with our method. In particular,

e we should use the BD-6 collection since it is bound to perform better than BD-4 as more and more

information is deposited in the public databases; and,

e during training, the weights should be derived from all of the previously published coding/non-coding

information for all available genomes.

With these two observations at hand, we carry out this last set of experiments noting that it is indicative of
the levels of prediction quality we can expect when we use a good training set, i.e. one derived from many

complete genomes.
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Table 5.11: Gene Prediction Results for Case 3b.

#Reported Sns. Additional Genes Start Site

Abbr. Genes = # FASTA BLAST CD Search

Exact | Ratio
Total <300 Spc. Total <300 Total <300 Total <300 Total <300

AF 2,225 212 92.4 182 69 66 19 70 21 42 7 1571 70.6
MJ 1,642 135 | 95.7 73 53 27 9 27 7 17 1 1362 82.9
MT 1,724 144 92.2 145 ud 6 4 7 6 1 0 1312 76.1
PA 1,671 51 94.7 94 78 21 17 23 19 5 5 1113 66.6
AA 1,415 17 92.9 108 69 30 22 41 28 24 18 1115 78.9
BB T 48 | 91.4 73 68 4 2 6 2 1 0 495 63.7
BS 3,837 331 93.6 264 222 70 50 83 59 15 11 1995 52.0
CJ 1,570 115 96.0 65 45 22 8 22 8 11 7 1131 72.1
CPc 936 47 | 89.0 116 99 25 10 25 10 10 1 520 55.6
CPa 958 64 | 86.3 152 135 19 4 19 4 11 1 544 56.8
CT 805 53 90.1 88 ud 5 4 5 4 0 0 413 51.3
EC 3,898 218 91.0 387 144 58 30 57 28 15 4 2281 58.5
HI 1,596 98 93.4 113 63 57 10 59 12 32 3 1091 68.4
HP 1,455 113 92.9 112 79 46 19 46 18 19 2 904 62.2
RP 772 43 | 92.6 62 48 13 4 17 7 11 4 537 69.6
SS 2,875 168 90.7 294 238 20 16 21 17 4 4 1572 54.7
™™ 1,696 81 91.9 150 26 41 5 44 8 32 4 951 56.1

The results for this experiment are shown on Table 5.14: the achieved sensitivity/specificity value is in
the 93.9% to 97.0% range with most of the genomes exceeding the 95% mark. Invariably, and similarly to all
of the above experiments, a substantial percentage of the additional putative genes that our method reports
correspond to hits, i.e. they can be corroborated with the help of sequence similarities to entries in the
public databases.

Another very notable result that is reported in Table 5.14 has to do with our ability to correctly predict
the start sites of genes. As can be seen, the ratio of correctly predicted start sites ranges between 80% and
90% across almost all studied genomes. More importantly, this ratio is achieved simultaneously with very
high specificity and sensitivity values and without making use of any promoter information.

We conclude by stressing a very important point: our method derives and uses a single set of weights for

the seqlets in the Bio-Dictionary and these weights are not genome-specific.

On the Prediction of Start Sites

As we mentioned already, the accurate prediction of start codon sites is a notoriously difficult problem.
To derive the various ratios for our experiments, we made use of the gene starts that are reported in the
annotated database entries for each processed genome. Although this kind of information is generally correct,
errors are known to exist. Thus, we also carried out a verification step of our start site prediction rates using
experimentally validated genes. In particular, we focused on the 1,248 experimentally validated genes from
B. subtilis [75] and computed the ratio of start sites that were correctly predicted by our algorithm when
using the pattern collections and weights described in cases 4b and 5 above. Of the 1,248 genes, we correctly

determined the start sites for 797 (case 4b) and 898 genes (case 5) respectively, or 63.9% and 72.0% of
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Table 5.12: Gene Prediction Results for Case 4a.

#Reported Sns. Additional Genes Start Site
Abbr. Genes = # FASTA BLAST CD Search
Exact | Ratio
Total <300 Spc. Total <300 Total <300 Total <300 Total <300
AF 2,159 164 89.7 248 140 58 13 61 12 33 1 1617 76.1
MJ 1,598 108 | 93.2 117 113 33 10 35 9 18 1 1268 80.6
MT 1,686 113 90.2 183 129 14 7 16 9 1 0 1227 73.4
PA 1,630 39 92.4 135 114 31 21 33 23 5 4 1163 71.6
AA 1,414 13 92.8 109 79 24 19 32 23 19 15 1171 83.6
BB 759 31 | 89.3 91 84 5 3 6 3 1 0 558 73.5
CJ 1,539 91 94.1 96 92 24 10 23 9 9 6 1252 82.4
CPc 967 40 91.9 85 76 28 13 28 13 12 2 701 73.3
CPa 985 54 | 88.7 125 105 24 8 24 8 13 1 726 74.0
EC 3,867 150 | 90.2 418 326 81 43 84 46 16 6 2754 73.0
HI 1,588 75 92.9 121 109 59 15 55 11 32 2 1222 78.9
SS 2,851 117 90.0 318 314 21 18 24 19 3 3 2032 72.6
™™ 1,694 76 91.8 152 50 39 5 43 8 30 5 1154 68.1

the processed set respectively. These numbers closely match the corresponding entries for the entire B.
subtilisgenome in Tables 6 (case 4b) and 7 (case 5) respectively; in fact, they are slightly higher than what
is listed in these Tables. This verification lends more support to the correctness of our start site predictions.

We conclude the discussion on start sites by noting that our gene prediction algorithm can also be used
for start site localization. In Figure 5.2 we show a graph that depicts for each position 4 in the neighborhood
of an E. coli coding sequence the local sum of the weights for the seqlets that match starting at position .
To obtain the cumulative score corresponding to position i, the local sums from i through the stop codon
position need to be added together. The seqlet weights used here are the ones from case 5 above and
correspond to what we consider to be an optimal setting. The true start site of the coding region as well as
alternative start sites are shown in this plot. Note how the cumulative score that our method computes is
very low just prior to the true start codon then jumps abruptly to a much higher value immediately after it.
These score jumps can be exploited to predict the start sites of predicted genes. And as the results for case
5 have showed, we can achieve high ratios of correct start site prediction simultaneously with high levels of
specificity and sensitivity. We are in the process of incorporating information from promoter regions to our

system and expect that the overall prediction capability of our method will improve further.

Web Server for this Gene Finding Algorithm

BDGF, the implementation of our gene finding algorithm has been made available via the World Wide
Web. The implementation uses the patterns of the BD-6 collection and optimal weight settings derived from
seventeen genomes. The server can be accessed by visiting the BDGF web site [23] and is operational around
the clock; the server runs on a single IBM RS64III processor with a 450 MHz clock, and can process 250,000
nucleotides in all 6 reading frames in a little over 60 seconds. Upon completion of the computation, the
results are presented to the user via a graphical user interface an instance of which is shown in Figure 5.3.

The predicted genes are color-coded depending on the score they have been assigned. The interface allows
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Table 5.13: Gene Prediction Results for Case 4b.

#Reported Sns. Additional Genes Start Site

Abbr. Genes = # FASTA BLAST CD Search

Exact | Ratio
Total <300 Spc. Total <300 Total <300 Total <300 Total <300

AF 2,181 178 90.6 226 124 60 15 62 14 35 2 1652 76.7
MJ 1,612 113 94.0 103 98 31 9 32 8 18 1 1341 84.3
MT 1,713 129 91.7 156 108 12 8 14 10 1 0 1299 76.1
PA 1,640 41 92.9 125 104 29 20 31 22 5 4 1177 71.9
AA 1,419 12 93.2 104 76 23 18 32 23 19 15 1165 82.8
BB 758 34 | 89.2 92 83 7 5 8 5 1 0 552 72.6
BS 3,738 238 91.1 364 360 51 36 58 40 12 8 2217 60.0
CJ 1,539 93 94.1 96 95 23 11 21 9 6 1228 80.6
CPc 997 45 | 94.8 55 46 25 14 25 14 1 et 78.2
CPa 1,017 67 | 91.6 93 78 20 9 20 9 1 804 79.1
CT 821 46 91.9 72 75 8 7 8 7 0 536 66.5
EC 3,891 160 90.8 394 299 74 40 79 43 16 6 2647 69.8
HI 1,599 82 93.6 110 87 54 10 52 8 32 2 1228 78.2
HP 1,435 91 91.6 132 130 42 14 42 14 21 3 1038 73.9
RP s 32 | 93.2 57 66 12 3 15 5 8 1 592 78.3
SS 2,862 132 90.3 307 310 23 20 25 21 4 1940 69.0
™™ 1,706 82 92.4 140 48 38 5 41 8 31 5 1137 66.5

the user to navigate around the processed DNA sequence and to zoom in/out of the regions of interest. Once
an ORF has been selected with the help of the mouse, its location on the processed sequence is reported
together with its nucleotide composition, length and amino acid translation. The amino acid translation of
a selected ORF can be annotated interactively. Also, the minimum length of an ORF that will be reported
is controlled by the user: its default value is 50 amino acids (i.e. 150 nucleotides). The complete list of
ORFs that have been predicted by BDGF together with their position, length and associated score can also

be downloaded from the same page.

5.3 Summary

In this chapter, we described a new method for solving the gene identification problem. Our method begins
with the Bio-Dictionary, a collection of patterns that is generated from processing very large public databases
with the help of the Teiresias algorithm. The collection accounts completely for the processed input, and
discovers genes by making use of this set of patterns alone. The method is augmented by associating each
of the used patterns with automatically-derived weights. These weights are genome-independent and thus
remain fixed across genomes.

Through a series of carefully designed experiments we extensively explored various settings that mimicked
real-world situations, and determined the optimal settings for our gene finding approach. As evidenced by
reported experimental results from seventeen archaeal and bacterial genomes, our method can predict genes
very accurately. The method achieves sensitivity and specificity values that are simultaneously very high

while at the same time achieving a high rate of correctly predicted start sites. Notably, no promoter or other
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Table 5.14: Gene Prediction Results for Case 5.

#Reported Sns. Additional Genes Start Site

Abbr. Genes = # FASTA BLAST CD Search

Exact | Ratio
Total <300 Spc. Total <300 Total <300 Total <300 Total <300

AF 2,294 209 95.3 113 76 52 10 54 11 34 2 1835 81.5
MJ 1,662 127 | 96.9 53 52 23 5 24 4 17 1 1476 89.9
MT 1,809 160 96.8 60 50 5 3 6 5 1 0 1499 83.9
PA 1,693 41 95.9 72 72 16 13 17 14 2 1 1306 uové
AA 1,457 11 | 95.7 66 48 18 15 23 18 15 12 1279 88.3
BB 799 43 | 94.0 51 42 4 3 5 3 1 0 672 83.7
BS 3,955 305 96.4 147 175 36 24 42 29 10 7 2643 67.8
CJ 1,585 110 96.9 50 42 21 10 18 7 5 1375 87.2
CPc 1,020 51 | 97.0 32 32 23 14 23 14 1 838 83.0
CPa 1,042 82 | 93.9 68 58 15 7 15 7 1 888 85.2
CT 865 43 96.9 28 29 5 4 5 4 0 662 76.9
EC 4,157 214 97.0 128 120 45 23 45 22 16 6 3256 80.2
HI 1,655 95 96.8 54 38 45 6 44 5 27 1 1384 84.9
HP 1,503 110 | 96.0 63 53 35 9 35 9 18 1 1222 82.2
RP 808 41 | 96.9 26 22 9 2 11 1 688 85.7
SS 3,063 159 96.7 106 140 12 9 16 12 2 2423 80.5
™™ 1,770 96 95.9 76 30 35 6 38 9 29 6 1300 73.9

information is brought to bear during our determination of the genes and/or start sites.

We demonstrated the capabilities of our method to extrapolate by intentionally relying upon a Bio-
Dictionary that was built from the June 12, 2000 release of SwissProt/TrEMBL, i.e. a public collection of
sequences that is by now more than a year and a half old. We nonetheless applied the resulting system to
genomes whose ORF translations were included in SwissProt/TrEMBL either only in part or not at all, with
exceptional results.

We should note that in addition to correctly discovering and reporting those ORFs that have already
been listed in the public databases as putative genes, our method determines additional candidate genes in
essentially all of the genomes that were used in the experiments: for a substantial fraction of these previously
unreported genes, and with the help of FASTA, BLAST and CD-search, we determined similarities with
amino acid sequences contained in a very recent release of SwissProt/TrEMBL. Such similarities further
support the hypothesis that these ORFs ought to have been reported as putative genes in the first place.

We are currently in the process of pursuing several related topics that include: the determination of
the performance impact from using Bio-Dictionaries built from selected collections of proteins and not from
full-size datasets; the determination of a compact collection of seqlets for the express purpose of efficient

gene identification; extending our strategy to the case of eukaryotic genomes, etc.
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Figure 5.2: Example of start site prediction using a coding sequence E. coli.
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Chapter 6

Suffix Tree Data Structures for RNA Structure

Analyses

The 3-D structure of a biological sequence plays a major role in determining its functions and properties,
and sequences that have similar structures often have similar functions, even if the sequences themselves are
not similar. But it is very difficult to predict and/or analyze the structure of a given sequence correctly
and efficiently. Hence it seems to be still harder to find structurally similar regions among several biological
sequences or to find a set of frequently appearing and structurally similar regions in a given sequence. Thus
molecular biologists often search for only similar, or highly conserved regions from DNA, RNA or protein
sequences to find regions with similar functions, because similar sequences have tendency of having the same
structure. Though many such methods are very fast, they do not detect regions that are structurally similar
to each other but not similar in the string sense.

Our data structure and our algorithm described in section 6.1 enables mining unknown important RNA
structures from a large set of sequences efficiently in a linear time, by generalizing the p-suffix trees [16, 18, 19]
into what we call the s-suffix trees. Furthermore, we propose an O(n(log |X|+ log|II|)) on-line algorithm for
constructing the s-suffix tree where n is the sequence length, || is the size of the normal alphabet, and |TI|
is that of the alphabet called “parameter,” which is related to the structure of the sequence. Our algorithm
achieves a linear time when it is used to analyze RNA and DNA sequences. Furthermore, as an algorithm for
constructing the p-suffix trees, it is the first on-line algorithm, though the computing bound of our algorithm
is same as that of Kosaraju’s best-known algorithm [95], and moreover it is much simpler than Kosaraju’s
algorithm. The results of computational experiments using actual RNA and DNA sequences are also given
to demonstrate our algorithm’s practicality.

It is known that an RNA secondary structure can be described with a tree data structure [160]. Thus
finding frequent patterns from a set of trees is an important issue in the analyses of RNAs. The suffix
tree of a CS-tree we introduced in subsection 2.2.3 is a very useful data structure for such work. This
can also be used for tasks such as minimizing sequential transducers of deterministic finite automata [32]
and tree pattern matching [94]. Kosaraju [94] mentioned that the generalized suffix tree of a CS-tree can
be constructed in O(nlogn) time where n is the size of the CS-tree. Breslauer [32] improved this bound

by giving an O(nlog|X|) algorithm. Note that both of the algorithms were based on Weiner’s suffix tree
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construction algorithm [163]. But this algorithm becomes O(nlogn) when ¥ is large. In section 6.2, we
improve their bound by giving an optimal O(n) algorithm for integer alphabets.

In section 6.3, we deal with a new data structure called a Bsuffix tree, which is a generalization of the
suffix tree of a string. Using the suffix tree of a CS-tree, we can find a given path in a tree very efficiently.
The Bsuffix tree is a data structure that enables us to query any given completely balanced k-ary tree pattern
from a k-ary tree or forest very efficiently. It also enables finding patterns from trees, and is very useful for
RNA structural studies. Note that the concept of a Bsuffix tree is very similar to that of an Lsuffix tree
[9, 65, 92], which enables us to query any square submatrix of a square matrix efficiently. We will show
that this data structure can be built in O(n) time for integer alphabets. Bsuffix trees have many useful
features in common with ordinary suffix trees. For example, using this data structure, we can find a pattern
(a completely balanced k-ary tree) efficiently in a text k-ary tree. Moreover, we can enumerate common
completely balanced k-ary subtrees in a linear time. Considering that general tree pattern matching requires

an O(nlog® n) time [43], these results mean that a Bsuffix tree is a very useful data structure.

6.1 Generalization of a Suffix Tree for RNA Structural Pattern Matching

In this section, we propose a new data structure called an s-suffix tree by generalizing the p-suffix tree.
We also discuss how to describe structural patterns of RNA or DNA here. Using the s-suffix tree, we
can efficiently find some set of substrings in some given sequence(s) that might be structurally similar,
query substrings that might be structurally similar to another given string, and so on. We also propose an
efficient on-line algorithm for constructing an s-suffix tree based on Ukkonen’s algorithm. Finally, we give
the results of simple computational experiments using several HIV RNA complete sequences and very large

DNA sequences of E. coli (Escherichia coli).

6.1.1 RNA Structural Matching

RNA sequences consist of four kinds of bases: A (adenine), U (uracil), C (cytosine), and G (guanine). Note
that in DNA, T (thymine) is present instead of U. A and U (T for DNA) are said to be complements of each
other, and C and G are also complementary bases. RNA and single-stranded DNA sequences often form
some structures by combining two complementary base pairs. These combining pair of bases are called
Watson-Crick pairs. It is known that double-stranded DNA sequences sometimes form such structures by
becoming single-stranded locally. Note that a base sometimes combines with more than one complementary
base: The triplex structure is the famous example. Many computational studies have been done to predict
RNA structures, comparing a new sequence with a known RNA structure, searching a known RNA or
DNA structures from large databases, and so on [2, 73, 97, 99, 129, 153, 158, 160]. But there has been no
appropriate method that can mine an unknown important RNA structure from a large data set efficiently
in a linear time, which is the aim of the algorithm presented in this section.

Let us consider the two RNA sequences in Figure 6.1 (1). The two sequences are not at all similar to
each other: there are no identical bases in identical positions. In sequence 1, A’s are located at the 1st, 3rd,

8th, and 15th positions. In sequence 2, C’s are located at the same position as A’s in sequence 1. Similarly,
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Sequence 1: AUAUCGUAUGGCCGAGCC
Sequence 2: CGCGUAGCGAAUUACAUU

(1) Example sequences

complementary base pair

(2) Candidate structure

Figure 6.1: Examples of sequences that have high possibility to have a same structure.

A’s, U’s, and G’s in sequence 2 are located at the same positions as G’s, C’s, and U’s in sequence 1, respectively.
Recall that A and U can combine with each other, and that C and G can also combine with each other. We
then notice the following fact: If two bases in one of these sequences can combine with each other, then in
the other sequence, two bases at same two positions are also able to combine with each other. This implies
that a structure that can be formed by one of the sequences can also be formed by the other sequence. Thus
there is a strong possibility that these two sequences have the same structure, and consequently may have
similar properties. For example, Figure 6.1 (2) shows one of the structures that can be formed by sequence
1. Tt is easy to see that it can also be formed by sequence 2. The algorithm we propose from now on enables

us to find such a set of substrings from a given sequence.

6.1.2 s-Strings and s-Suffix Trees

In this section we define s-strings and s-suffix trees, which are generalizations of p-strings and p-suffix trees.

Definition 5 Let ¥ and 11 be disjoint finite alphabets. We call the characters in ¥ the “fived symbols”
and those in I the “parameters.” Some of the characters in Il have one-to-one correspondences to other
characters in I, and two characters that correspond to each other are called complementary characters or
complements of the other. No two characters can be complements of one same character. A string in (SUI)*
1s called a structural string, or s-string for short. Two s-strings S and S’ are said to s-match if they satisfy
the following two conditions: (1) there exists a one-to-one mapping from Il to Il such that S becomes S' as
a result of applying it, and (2) if © is mapped to y in the mapping, then the complement of x is also mapped
to the complement of y in the mapping.

For example, if ¥ = {AB}, Il = {z,y, 2,w}, and z and y are complements of z and w, respectively, then
ABzByAzwz and ABwBzAyzy s-match, but ABxByAzwz and ABwBzAzyz do not. Note that if there are no

complementary pairs in II, an s-string is the same as a p-string. Note also that the complement of a given
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character can be accessed in O(log |II|) time if the information is stored in a balanced tree data structure,
which can be constructed in O(|II|log|II|) time. If II can be used as an index to a table, the complement
can be obtained in O(1) time.

The problem of the RNA (or DNA) structural matching described in section 6.1.1 is the problem of s-
matching in the following situation: ¥ = ¢, Il = {A, U, C, G}, and A and C are complementary characters
of U and G, respectively. If two RNA sequences s-match with each other, it can be said that there is a high
possibility that the two sequences have the same structure and that they may have similar properties as a
result. For example, the two sequences in Figure 6.1 (1) s-match.

The following two encodings are useful for determining s-matching of two sequences. One is prev(S) that

is already defined in Definition 2. The other is compl(S) defined as follows:

Definition 6 Let N be the set of nonnegative integers (N ¢ ¥ UTII). Consider a string S[1..n] € (X UII)*.
If S[i] € 0, let ¢; be the index of the nearest complementary parameter in Il to the left, i.e., ¢; < i, S[c;] = x;
and S[k] # x; for any k such that ¢; < k < i, where z; is the complement of S[i]. If such ¢; does not ezist,
let ¢; = i. Now, replace S[i] with i —c; € N if S[i] € I, for all i: We let the obtained string in (X U N)* be
compl(S ).

For example, compl(ABzByAzwz) = ABOB0A436 if ¥ = {A,B}, Il = {z,y,2,w}, and = and y are comple-
ments of z and w, respectively. Notice that this definition is very similar to that of prev encoding. We can
compute prev and compl encodings for string S of size n in O(n - min(logn,log |II|)) time and O(n) space
by means of a balanced tree structure, which can be computed on-line. If IT is known and can be used as an
index to a table of |II|, it is easy to see that these encodings can be computed in O(n + |II]) time and space.

These two encodings are related to finding s-matches as follows: s-strings S and S’ are an s-match if and
only if prev(S) = prev(S’) and compl(S) = compl(S’). Furthermore, it is easy to see the following lemma.

Let prev(S)[¢] and compl(S)[¢] denote the ith characters of prev(S) and compl(S) respectively.

Lemma 1 Consider a situation in which S[1..i] and S'[1..i] are an s-match. In this situation, if prev(S)[i+1]
= prev(S")[i + 1] # 0, compl(S)[i + 1] = compl(S")[i + 1]. Similarly, if compl(S)[i + 1] = compl(S’)[i + 1]
# 0, prev(S)[i + 1] = prev(S")[i + 1].

This means that, when we check s-matches of strings, we do not have to see the other encoding if one
of the encodings encodes a character as a non-zero number. Using this lemma, we can check s-matching by

using the following s-encoding;:

Definition 7 For a given string S, compute prev(S) and compl(S). If prev(S)[i] = 0, replace it with
—compl(S)[i], which is a nonpositive value. We call this new encoded string in (¥ U I)* (I: integer) as

a structural encoding of S, or an s-encoding for short.

The structural suffix tree of string S, or the s-suffix tree of S for short, is the compacted trie of the
s-encoded strings of all the suffixes of ST = S$, where § is a character that is in neither ¥ nor II. We here
consider $ as an ordinary alphabet, not as a parameter, as in the case of a p-suffix tree. Let sencode(S)
denote the s-encoding of S. The s-strings S and S’ are an s-match if and only if sencode(S) = sencode(S’).
Let ssuffix;(S) = sencode(S[i..n]), and let ssuffix;(S)[j] be the jth character of ssuffix;(S). Notice that

86



/[ 0022003% ]

0111014$
[ 002003$
011014$
[ 00003%
01014%
[ 0003$ mﬂmmmb
0010$
[ 000$
010$
00$
[ 00% 2003%
0% 1014$
\ [ 0$ } |:003$
AN S 014$
s-Encoded suffixes

Figure 6.2: The s-Suffix Tree for RNA sequence ‘AUAUCGU.’

ssufix;(S)[j] is sometimes different from sencode(S)[i + j — 1]: if |sencode(S)[i + j — 1]| > j, ssuffix;(S)[j]
= 0 # |sencode(S)[i + j — 1]| > j. Notice also that, if we have prev(S) and compl(S), we can obtain the
value of ssuffix;(S)[j] for any ¢ and j in a constant time.

Figure 6.2 shows an example of a s-suffix tree in the case of RNA structural matching. Using the s-suffix
tree, we can find some set of substrings in some given sequence that s-match each other in O(n) time or
query a substring that matches another given string in O(nlog(|X| + |II])) time. We can also find common

s-substrings of given two sequences in a linear time.

6.1.3 Algorithm for Constructing s-Suffix Trees

We first describe a basic method for constructing the s-suffix tree based on Ukkonen’s algorithm.

The implicit s-suffix tree of S is the compacted trie of all the s-encoded suffixes of S, and a label for an
edge that ends at a leaf is represented by only the first index of the label in it. Let 7; denote the implicit
s-suffix tree of ST[1..7] for an integer i (0 < i < |S|+1). Let node(S) denote the node with label of s-encoded
string of S in this section. Like Ukkonen’s algorithm, our basic algorithm consists of n + 1 phases, and in
the ith phase, we construct an implicit s-suffix tree T; from T; 1.

Asin Ukkonen’s algorithm, we construct a new node u = node(S[j..i]) for all 1 < j <4 in this order if there
is no locus for S[j..7] in the tree in the ith phase. We call this procedure for single j the jth extension as in
the description of Ukkonen’s algorithm. Ukkonen’s algorithm speeds up each phase by ignoring unnecessary
extensions. In this s-suffix tree case, the unnecessary extensions are all the same as Ukkonen’s case.

The major problem in constructing s-suffix trees by applying Ukkonen’s algorithm is that, as in Baker’s
p-suffix tree construction algorithm, a node of an s-suffix tree does not always have explicit suffix links to
another node. Consider a node v = node(ca) in an s-suffix tree, where c is a single parameter in II and « is
some s-string. It is possible that the locus for a is not a node but a point on an edge. In this case, we let
u’s suffix link sl(u) be this edge and call such a link an implicit suffix link.

The implicit suffix links cause two problems. Omne is how to keep these implicit suffix links correct
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thorough the algorithm: the implicit suffix links must be updated if the corresponding edge is split. The
other is how to analyze the number of scanned nodes in the algorithm. First, we deal with the former
problem, and after that we discuss the latter problem.

It is easy to see the following lemma related to implicit suffix links:

Lemma 2 Let u be a node with an implicit suffiz link and d = |oy|. Then the first s-encoded character
of the label of any of the outgoing edges from u must be one of d, 0, and —d. Furthermore, if it is d, its

corresponding compl value must be 0.

We use the term ‘zero-node’ for a node with more than one outgoing edge that has a label starting with
either of d, 0, or —d, where d is the label length of the node, regardless of whether its suffix link is implicit or
not. We also call edges the first s-encoded character of whose labels are d, 0 and —d, a “positive zero-edge”,

)

a “normal zero-edge” and a “negative zero-edge,” respectively.

The following lemmas related to zero-nodes and zero-edges can be easily seen:

Lemma 3 A positive zero-edge cannot be an ancestor of another positive zero-edge. Similarly, a negative
zero-edge cannot be an ancestor of another negative zero-edge. There are at most |II| normal zero-edges on

a path from the root to a leaf.
Lemma 4 On a path from the root to a leaf, there are at most |II| + 1 zero-nodes.

It is easy to find the implicit suffix links of newly constructed nodes in the algorithm, as in Ukkonen’s
algorithm. Consider the situation in the jth extension of the ith phase of the algorithm, when u; =
node(S*[j..i]) is constructed. Note that u} = node(ST[j..i — 1]) may be constructed at the same time if
necessary. As in the case of constructing an ordinary suffix tree, we will check the locus of ST[j + 1..i — 1]
in the next extension in the same phase, so we will soon find the suffix links of u; and u;-. Hence we can
conclude that every node other than the last leaf inserted and its parent has either an ordinary suffix link
or an implicit suffix link. The problem is how to maintain these implicit suffix links. In the algorithm, we
often split edges to add a new node. Thus we have to update each implicit link if the edge it links to is split
into two edges by inserting a new node. We call a set of nodes a zero-chain if the nodes form a chain on a
path from the root to a leaf in the tree and all the edges between them are same kind zero-edges, (i.e., if
one edge is a normal zero-edge, then the others are also normal zero-edges, for example).

We obtain the following theorem related to implicit suffix links:

Theorem 7 For any edge e, the set of nodes having implicit suffix links to e forms at most 2|I1| zero-chains

in the tree. Furthermore, the length of each zero-chain is at most |II|.

Proof: Let v and v' be two nodes with implicit suffix links to the same edge. If v is an ancestor of v" and
there is a node u between v and v’, it is obvious that si(u) is also between sl(v) and sl(v').

If neither of these two nodes is an ancestor of the other, let w be the lowest common ancestor of v and
v’ in the suffix tree. Note that w is not the root, because both of the first s-encoded characters of the labels

of v and v’ must be 0. Let suffix;(S) denote S[i..|S|]. Since one of the s-encoded strings of suffixs(o,) and
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suffixs (0, ) must be a prefix of the other, the outgoing edges to v and v' must be zero-edges. Thus w must
be a zero-node.

Lemma 3 implies that, under the negative or positive zero-edge out of w, there is only one zero-chain
formed by the set of nodes having implicit suffix links to e. Furthermore, there are at most |II| normal
zero-edges on a path to a leaf from the root, according to Lemma 3. One zero-node can have three outgoing
zero-edges at most. Two of the edges can have only one such zero-chain under each edge, and the other node
have at most |II| — 1 zero-node under the edge. This means that there are at most 2|II| such zero-chains.
Also according to Lemma 4, it is obvious that the lengths of the zero-chains are at most |II|. O

Note that, in the case of the p-suffix tree (i.e., when there are no complementary character pairs), such
nodes form only one zero-chain. According to this theorem, there are at most 2|II|? implicit suffix links to
one edge. Hence when we split an edge, it takes O(|II|?) time to update all the corresponding implicit suffix
links if we do it naively, which causes a problem if [II] is large. From now on, we consider how to reduce the
updating time to O(log |II|).

Consider O(n) sets of nodes which are empty at first. We maintain nodes which have implicit suffix links
to a same edge in a same set. We perform two types of procedures for the sets. One is inserting a node
into one of the sets, and the other is splitting one of the sets into two sets according to the label lengths
of the nodes in the set, as follows: One of the two sets newly constructed by splitting is the set of nodes
whose label lengths are larger than a specified length, and the other is the set of nodes whose label lengths
are smaller than the same specified length. The upper bound of the size of a set is p = O(|II|?), and that
the total number of nodes inserted is O(n). Using balanced tree structures like concatenable queues [1], or

c-queues for short, we can achieve the following time bounds for these two procedures:
1. A new item can be inserted into a set in O(logp) time.

2. S can be split into two sets as above in a time linear to the size of the smaller set of them. More
precisely, it takes O(log p) time to split the c-queue, and requires a time linear to the size of the smaller

set of them to update their implicit suffix links.

It is easy to see that the total time taken by procedure 1 is O(nlogp), and that the total time taken by
procedure 2 is also O(nlog p). Thus we can maintain the implicit suffix links by this procedure in O(n log |TI|)
time, because p = O(|II|?).

From now on, we discuss the number of nodes scanned in the algorithm. Note that it is O(n) in Ukkonen’s
algorithm [73, 155]. Note also that the analysis for it is almost the same as that of the number of rescanned

nodes in Baker’s algorithm for p-suffix trees [18, 19].
Theorem 8 The number of scanned edges that are not normal zero-edges is at most n.

Proof: In constructing the s-suffix tree of a string S, consider that an edge (u,v) (u = parent(v)) that
is not a normal zero-edge is scanned when we search for the locus of S*[j..i] in the jth extension of the
(i + 1)th phase. Let u = node(S™[j..k — 1]).

Consider the locus of ST[j'..k — 1] for any j' < j. Note that we do not perform the j”th (" > j)

extension in the i'th phase (i’ < i) of the algorithm. If there exists a node (w) for the locus, then it must
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have an explicit suffix link to some node, because ssuffix; (S*[1..k])[k — j' + 1] is not 0. This means that
w cannot be scanned in the algorithm. Accordingly, we conclude that the total number of such edges is at
most n. O

According to Lemma 4, the number of normal zero-edges that are scanned in a single phase is at most
[II|. Thus the total number of nodes that have implicit suffix links and are scanned in the algorithm is at
most n|II|. Note that the outgoing normal zero-edge from a node can be accessed in O(1) time. Thus the
total scanning time will be O(n(|II| + log |X])).

Thus we conclude that the total computing time of our algorithm is O(n(|1| + log|X|)). If || and |X|
are constant, it is O(n). In fact, in the problem of RNA/DNA structural matching (|X| = 0 and |II| = 4),
this basic algorithm is efficient enough.

Finally, we improve the algorithm to O(n(log|II| + log|X|)). Note that our algorithm is simpler than
Kosaraju’s best-known algorithm [95]. A maximal zero-chains is a set of nodes in the zero-chain will not
be a zero-chain, if we add any other node in the tree. We maintain all the normal maximal zero-chains
in the tree using c-queues. Let li(e) be the label length of the node at the end of the edge e. For each
normal zero-chain, we maintain a c-queue using ll(e) as the key of each edge e. This structure can be split
in O(log |IT]) time when a new node is inserted among the chain, and a new zero-edge can be inserted into
a chain in also O(log|II|) time. Furthermore, there are O(n) normal zero-chains at most. Hence total time
for maintaining them is O(n log|II]).

Consider the situation that we have just constructed a new node by splitting an edge (u,v) (u =
parent(v)) by inserting a node ¢. In the next extension, we will scan a path from sl(u) to sl(v) to find
the locus of sl(t). Note that, in Ukkonen’s algorithm, we do not have to maintain suffix links of leaves, but
we maintain these suffix links of leaves to know sl(v) even if v is a leaf. Thus we already have both suffix
links sl(u) and sl(v) in any case. Now let e be a zero-edge encountered in scanning from sl(u) to si(v). Let
C be the set of zero-edges in the zero-chain which includes e. We can find the zero-edge e’ in C' nearest to
a leaf such that ll(e') is not larger than the label length of si(t) in O(log|II|) time, using the above c-queue.
According to [42], we can compute the lowest common ancestor (LCA) of two nodes of a suffix tree in a
constant time even while we are constructing the tree. Thus we can find the LCA w of the edge ¢’ and the
node sl(v) in a constant time. Then what we have to do is to start scanning from w, because w must be an
ancestor of sl(t) or sl(t) itself.

We can easily obtain the following theorem from Theorem 8:
Theorem 9 The number of encountered maximal normal zero-chains in scanning is at most n + 1.

Proof: There must be at least one edge that is not a normal zero-edge between two maximal normal
zero-chains encountered in scanning, due to the definition of maximal zero-chains. Moreover, the number of
scanned edges that are not normal zero-edges is at most n, according to Theorem 8. Thus we can conclude
that the number of encountered normal zero-chains in scanning is at most n + 1. O

Thus the total time for scanning zero-edges is O(n log |II|). Now, we conclude that the total computing

time of our algorithm is O(n(log |II| + log |X|)).
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Table 6.1: Number of nodes in suffix trees and s-suffix trees.

Sequence A B  (© (D) (E) (F) (Q)
Length 9719 9748 8981 1000000 1000000 1000000 1000000
Suffix Tree | 16135 16217 14710 1640492 1635995 1638043 1638008
s-Suffix Tree | 16033 16132 14666 1631525 1628821 1630104 1628923

6.1.4 Computational Experiments

Using the s-suffix tree of a string we can perform tasks such as the following:

¢ Given a long sequence of length n and some constant / and r, we can find a set of more than r substrings
that s-match with each other and are longer than [ in an O(n(log |X| + log |II|) + Toutput) time, where

Toutput is the output size.

e Given more than one sequence, we can find the longest common s-encoded pattern of these sequences
in O(n(log |Z|+1og|I1|) + Toutput) time, where Tyytpur is the output size and n is the sum of the lengths

of the input sequences.

Note that, if the size of the alphabet is constant, both of these tasks can be completed in a linear time. In
this section, we describe experiments on RNA and DNA sequences, in which we constructed the s-suffix tree
of DNA sequences, where ¥ = ¢, IT = {A,U,G,C}, A is the complement of U and G is the complement of C. (In
DNA sequences, T is present instead of U.)

We conducted experiments on three HIV (human immunodeficiency virus) RNA complete sequences: (A)
a sequence of length 9719 (accession number: K03455), (B) a sequence of length 9748 (accession number:
X01762) and (C) a sequence of length 8981 (accession number: AF067156). We also use four very long
DNA sequences of E. coli, each of which has the same length, 1 Mbp = 1,000,000 bp. The length of the
full genome sequence of E. coli is about 4.64 Mbp, and these four sequences are the following regions of the
sequence: (D) 1 bp-1,000,000 bp, (E) 1,000,001 bp—2, 000,000 bp (F) 2,000,001 bp-3, 000,000 bp, and (G)
3,000,001 bp—4, 000, 000 bp.

First, we compare the size of the s-suffix tree with that of the normal suffix tree of the same sequences.
Table 6.1 shows the numbers of nodes in the suffix trees and the s-suffix trees of the seven sequences.
According to the table, the sizes of the s-suffix trees are slightly smaller than those of the normal suffix trees
in all cases, but the numbers of nodes in them are almost the same regardless of the length of the sequence.
For any sequence, both the number of nodes in the suffix tree and that of the s-suffix tree are about 1.6 to
1.7 times the length of the sequence. Thus we can say that the s-suffix trees are very compact and that it is
as reasonable to build them as to build the normal suffix trees.

Consider that a structural pattern « of length [ appears r times, but any pattern that is constructed
by extending it to the right, such as ac (¢ € (X UII)) appears less than r times. We call such a pattern a
a “maximal structural pattern.” We now give the experimental results of an experiment to find maximal

structural patterns which are longer than [ and repeated more than r times for some given [ and r. Table 6.2
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Table 6.2: Examples of maximal structural pattern.

(1) (2)
Position Sequence
646095 | CCCGCTTCGGCTTCA Position Sequence
703617 GGGCGTTGCCGTTGA 371484 ACTGCGCCATGAAGATGAC
779110 TTTATGGTAATGGTC 884639 GACTATAAGCTGGTGCTGA
888469 TTTATCCTAATCCTG

Table 6.3: Number of structural/normal patterns.

(1) HIV RNA sequences (2) E. coli sequences

l Pattern (A) (B) (©) l Pattern (D) (E) (F) (G)
>5 Structural | 5329 5061 4887 > 10 Structural | 495371 499205 498728 497701
Normal 1381 1147 1000 Normal 90968 85899 88681 90298

> 10 Structural | 670 451 282 > 15 Structural 4723 4140 4466 4529
Normal 479 363 126 Normal 2402 1728 2095 2147

> 15 Structural | 336 123 4 > 20 Structural 330 106 192 192
Normal 336 123 3 Normal 330 103 192 190

shows two examples of maximal structural patterns found in E. coli sequence (D): (1) is a set of patterns
of length 15 that appears four times, and (2) is a set of patterns of length 19 that appears 2 times in the
sequence. Every sequence is different from the others, but these sequences s-match with each other.

Table 6.3 shows the number of maximal patterns whose lengths (I’s) are larger than some given length.
In the table, a “normal pattern” means an ordinary string pattern that can be found with an ordinary suffix
tree. Notice that the structural patterns include the normal patterns. According to the table, the proportion

of normal patterns increases with the lengths of the patterns.

6.2 The Suffix Tree of a CS-Tree with a Large Alphabet

In this section, we describe a new algorithm for computing the suffix tree of a CS-tree which is useful for

tree pattern matching.

6.2.1 Tree Representation of RNA Secondary Structures

A secondary structure of an RNA sequence S[1..n] is a structure that satisfies the following condition: if S[i]
makes a Watson-Crick pair with S[j] and S[k] makes a pair with S[I] with ¢ < k < j, then i < I < j also.
Note that the graph that represents the sequence and the Watson-Crick pairs of a secondary structure can

be displayed as a planar graph. Note that the structure shown in Figure 6.1 (2) is not a secondary structure
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(1) A secondary structure. (2) Tree representation.

Figure 6.3: An Example of Tree Representation of an RNA Secondary Structure.

because it does not satisfy the condition above. It is known that a secondary structure can be represented
by a tree data structure [160]. In the tree representation, each node of the tree represents a Watson-Crick
pair, except for its root. If Watson-Crick pair a is between pair b, then we let a be a descendant of b. If
there is no pair that includes pair a, then we let a be a child of the root. Figure 6.3 shows an example of
an RNA secondary structure and its tree representation. Hence analyses of patterns of a tree structure are
very important for analyzing mRNA structures. In the rest of this section and in the next section, we will
deal with suffix tree-based data structures that are useful for tree pattern matching, e.g. we can efficiently

find frequent patterns in a set of trees.

6.2.2 Algorithm Outline and Preliminaries

Our approach to constructing the suffix tree of a CS-tree is based on Farach’s suffix tree construction
algorithm [50]. Farach’s algorithm has three steps. First, it constructs a tree called an odd tree recursively.
Next, it constructs another tree called an even tree by using the odd tree. Finally it constructs the suffix tree
by merging these two trees. Note that the odd tree is a trie of suffixes S[2i — 1]...S[n]$, and the even tree
is a trie of suffixes S[2i]...S[n]$. This algorithm achieves an O(n) computation time for integer alphabets.

We later also define the odd and even trees for the suffix tree of a CS-tree, and our algorithm also has
three following similar steps. First we build the odd tree or the even tree recursively, then we construct the
even or odd tree by using the odd or even tree, respectively, and finally we merge them to construct the
suffix tree.

In our algorithm, we use the following theorem by Dietz and several others [3, 26, 47]:

Theorem 10 In any tree with n nodes, for any node v in the tree and any integer d > 0 that is smaller than

the depth of v, we can find the ancestor of v whose depth is d in constant time after O(n) preprocessing.

Let us now define several notations. Let {Si, ..., S} be the strings represented by a given CS-tree. Let n;

be the length of S; and let S; = S;[n;] ... S;[1]. Note that the indices are arranged in reverse order. The above
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theorem 10 indicates that, for any ¢ and j, we can access S;[j] in constant time after O(n) preprocessing.
Let S;(m) be S;’s suffix of length m, i.e., S;[m]...S;[1]. Let lep(S,S') and les(S,S’) be the lengths of the
longest common prefix and suffix of strings .S and S’, respectively. Let parenty (v) be the parent node of v
in the CS-tree U if v is not the root node ¢; otherwise, let it be #: i.e., parenty (vij) = Vimax(0,j—1), Where
v;,; denotes the ancestor of v; whose depth is j. Let label(e) be the label given to edge e in the CS-tree. Let
Ty be the suffix tree of the CS-tree U.

6.2.3 Building a Half of the Suffix Tree Recursively

All nodes in the CS-tree U = (V, E) have either odd or even label length. Let V,4q and Veyen be the nodes
with odd label lengths and those with even label lengths, respectively. If |Voaa| > [Vevenl, 16t Vamani = Veven
and Vigrge = Voaa; otherwise, let Vimanu = Voaa and Vigrge = Veven. We can obtain |Vogq| and |Veyen| in O(n)
time by the ordinary depth-first search on the CS-tree. Therefore, we can determine in a linear time which
node set is Ve - In this subsection, we will recursively construct the compacted trie T4y of all the labels
of nodes in Vgpqu- Note that the technique for constructing Tsq is very similar to that for constructing
the odd tree in Farach’s algorithm.

Consider a new CS-tree U' = (Vsmait, Esmait), where Egpan = {(v, parenty: = parenty (parenty (v)))|v €
Vsmai,v # t} and the edge labels are determined as follows. Radix sort the label pairs pair(v) =
(label((v, parenty (v))), label((parenty(v), parenty (parenty(v))))) for all v € Vipan\t and remove dupli-
cates, where label(e) denotes the label of an edge e in the original CS-tree U. Let rank(v) be the rank
of pair(v) in the sorted list, which belongs to an integer alphabet [1,n/2] because the size of the new tree
U’ is not larger than half of that of the original CS-tree U. Let orig_pair(i) be a label pair pair(v) such
that rank(v) = i. Let the label of an edge (v, parenty: (v)) € Egman be rank(v). Notice that all of these
procedures can be performed in a linear time.

We then construct the suffix tree Ty» of U’ by using our algorithm recursively. After that, we construct
Tsmau from Ty as follows. We can consider a tree T' whose edge labels of Ty are modified to the original
labels in U: for example, if the label of an edge in Ty is ijk, the label of the corresponding edge in T" is
orig_pair (i), orig_pair(j),orig_pair(k). Notice that this modification can be performed by making only a
minor modification of the edge label representation and that it takes only linear time.

We can construct Tgmqy from T very easily. T' contains all the labels of nodes in Vypap, but is not the
compacted trie: the first characters of labels of outgoing edges from the same node may be the same. But
the second character is different, and the edges are sorted lexicographically. Thus we can change 7" to Tsman
by making only a minor adjustment: we merge such edges and make a node, and if all the first characters of
all the labels of edges are the same, we delete the original node.

In this way, we can construct Tspm,qu in a T'(n/2) + O(n) time, where T'(n) is the time our algorithm takes

to build the suffix tree of a CS-tree of size n.

6.2.4 Building the Other Half of the Tree

In this section, we show how to construct the compacted trie Tj,y4c of all the labels of nodes in Vjgrg4e from

Tsmau in a linear time. The technique is a slightly modified form of the second step of Farach’s algorithm,
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which constructs the even tree from the odd tree.

If we are given an lexicographic traverse of the leaves of the compacted trie (which is called lex-ordering
in [50]), and the length of the longest common prefix of adjacent leaves, we can reconstruct the trie [50, 51].
We will obtain these two parts of Tjqyge from Tspmqi, and construct Tjqrge in the same way. This method can
obtain the label length from the leaf or root for each node of the compacted trie. We can obtain that node
from its specified depth and its some descendant leaf in constant time according to Theorem 10. Hence the
total time required by this procedure is O(n).

Any leaf in Tj4rge, except for those with labels of only one character, has a label consisting of a single
character followed by the label of some corresponding leaf in T,,,;;- We can obtain the lex-ordering of the
labels of leaves in T4 by an in-order traverse of T4, which takes only a linear time. Thus we can obtain
the lex-ordering of the labels of leaves (S;(m)) in Tjqrge by using the radix sorting technique, because we
have S;[m] and the lexicographically sorted list of S;(m — 1).

The longest common prefix length of adjacent leaves of Tj4,4. can also be obtained easily by using Tspqu-
Let S;(m) and S;j(n) be the labels of two adjacent leaves in Tjarge. If Siim] # Sj[n], the longest common
prefix length is 0. Otherwise, it is 1 + Iep(Si;(m — 1), S;(n — 1)) which can be obtained in a constant time
from Tpq after linear-time preprocessing on Tspqn (see Theorem 4). In this way, we can construct Tjgrge

from Tspman in O(n).

6.2.5 Merging the Trees

Now we have two compacted tries T,qq and Teyepn. In this subsection, we merge T,4q and Ty, to construct
the target suffix tree Tyy. We call the compacted trie of odd/even-length suffixes of strings the generalized
odd/even tree of the strings. The odd/even tree of a CS-tree is also the generalized odd/even tree of the
strings represented by the CS-tree. Farach’s algorithm merges the odd and even trees in a time linear to the
sum of the sizes of odd and even trees. It can be applied also to our problem of merging generalized odd
and even trees and we can also achieve O(n) time in our case. The outline of the algorithm is as follows.

First, we merge the even and odd trees as following by treating one of two edge labels as a prefix of the
other label if the first characters of labels of two edges are the same. Let edges e; = (v,v1) and es = (v, v2)
be the edges which start from the same node v and have the same first character. Let [, and [> be the label
lengths of e; and e, respectively. Without loss of generality, we let Iy > l;. Then we construct a internal
node v] between v and vy if I; > I, otherwise let v{ be v;. In case that I; > I5, let the label of edge (v, v})
be the first lo characters of the label of original edge (v,v;) and let the label of edge (v},v;) be the last
I1 — I characters of the label of original edge (v,v1). Then we merge two edges (v,v]) and e;. Note that
this merging requires only constant time because we can find the node of the CS-tree which corresponds to
the first character of new edge (v{,v1) in a constant time. We merge recursively all over the two trees by
the normal coupled depth first search. Thus the total computing time required for the merging is also O(n).

Next, we unmerge the edges with different labels because we have merged edges too far. Farach showed
that we can unmerge correctly in a linear time [50] for the problem of strings, which is also the case for our
problem.

Consider a node u in the merged tree M, and let v' € T,qq and w' € Teyen, be some nodes that become
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w’s descendants, v and w respectively, in M. Let L(u) be the length of the label of u, and L(u) be the
longest common prefix length of the labels of v and w. We can see that u is merged too far if L(u) > L(u).
L(u) can be consulted in T,4q or Teyen, and f,(u) can be computed for all the nodes in O(n) time by the
Farach’s technique which uses a data structure called d-links. We call u a border node if f,(u) < L(u) and
L(p) = L(p) where p is the parent of u. All the border nodes can be found in a linear time. We can correct
M by only unmerging the border nodes. For each unmerged edge, we must find the node of the CS-tree that
corresponds to the first character of its label, which requires only a constant time according to Theorem 10.
Thus the total computing time for unmerging is O(n).

Hence the step of our algorithm for merging trees takes a total of O(n) time. Thus we obtain an equation
T(n) = T(n/2) + O(n), where T'(n) is the time needed to construct the suffix tree of a CS-tree of size n.
Therefore, our algorithm achieves the optimal T'(n) = O(n) computing time for general CS-trees with integer

alphabets.

6.3 The BSuffix Tree

In this section, we propose a new data structure, the Bsuffix tree, which enables efficient queries of completely
balanced binary trees from any binary forest (including a single tree). It can also be used for querying
completely balanced k-ary subtrees from any k-ary forest (k need not be constant in this case), but we will
deal with binary trees at first. The Bsuffix tree is a data structure for matching of nodes, but it can be also

used for matching of edges (see subsection 6.3.3).

6.3.1 Definition of the BSuffix Tree

Consider a completely balanced binary tree P of height h. Let p1,po, ..., por_; be the nodes of P in breadth-
first order, and let ¢; € {1,...,n} be the alphabet given for node p;. Note that p|;/,| is the parent of p; in
this order. We call ¢icy - - - con_y the label of P. We call substring cs: - - - coi+1_; of this label a Bcharacter.
Furthermore, we call a string of Bcharacters a Bstring. For Bstring b0y . .. b, we call bibs...b,(m < n) a
Bprefix of the Bstring. Note that cjcy -« - con_y is a Bstring of length h. For two Bcharacters b; and bs, we
let by > b if by is lexicographically larger than by in the normal string representation. Note that Bcharacter
b = c9:i - - - c9i+1_1 can be represented by node p,: € P and integer i.

Consider a binary forest U of size n whose nodes are labeled with a character of an integer alphabet
{1,...,n}. Let v1,v2,...,v, be the concatenated list of the breadth-first-ordered node lists of all the binary
trees in forest U, and let a; € {1,...,n} be the label of node v;. Let L; be the label of the largest completely
balanced binary subtree of U whose root is node v;. We call L; followed by $; ¢ {1,...,n} (8; # §;) the
Blabel of node v;. If the roots of two completely balanced binary subtrees P; and P of U are the same node
and P, includes P», the label of P, is a Bprefix of the label of P;. The Bsuffix tree of U is the compacted
trie T' of the Blabels of all the nodes in U in the Bstring sense, i.e., the outgoing edges from some node in
the suffix tree have a label of different Bcharacter. Figure 6.4 shows an example of a Bsuffix tree. By using
T, we can very easily query any completely balanced binary subtree of U.

Edge labels of T' can be represented by the first node in U and the depths of the first and the last nodes
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Figure 6.4: An example of the Bsuffix tree.
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Figure 6.5: Recursive construction of new binary trees in computing Bsuffix tree.

in the corresponding subtree pattern. Therefore T' can be stored in O(n) space. Note that we can access any
member of the edge label of T in a constant time if we have both the breadth-first list and the depth-first
list of the nodes of each tree in forest U.

In a Bsuffix tree, to enable fast access to a node’s outgoing edge whose first Bcharacter of its label is
given, two simple preprocessing can be considered. One simple method is constructing a hash table for it,
which enables linear time query in average. The data structure for it can be built in linear time. The other
method is constructing a prefix tree to represent all of the first Bcharacters of edge labels, which enables
deterministic O(mlog |X|) query time for a query of size m, where || denotes the size of the alphabet. This

data structure can also be built in linear time.

6.3.2 Construction of the BSuffix Tree

In this subsection, we describe the O(n) algorithm for constructing the Bsuffix tree T' of U.
If forest U consists of only nodes with less than two children, it is obvious that we can construct the

Bsuffix tree of U in O(n) time. Otherwise, we first construct a new binary forest U’ as follows: For every node
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v; with two children v;,v;41, construct a node of U’ (let it be w;). If v; and/or vj41 have two children, let
w; be the parent of w; and/or w;; in forest U’. Radix sort the label pairs (aj, a;+1) and remove duplicates.
Let the label @) of w; be the rank of the label pair (a;,a;+1) in the sorted list. Notice that the number of
nodes in U’ is not larger than n/2. We construct the Bsuffix tree 7" of U’ by using our algorithm recursively.
Figure 6.5 shows an example of this recursive construction of new binary forests (trees in this case). Next,
we construct 7 from 7.

If we are given the lexicographically sorted list of the Blabels of all the nodes in U and the length (i.e.,
number of Bcharacters) of the longest common Bprefix of adjacent Blabels in this list, we can construct
Bsuffix tree T in a linear time. We obtain these two pieces of information from 7".

Notice that the in-order traverse of leaves of T’ corresponds to a lexicographically sorted list of all the
first-character-deleted Blabels of nodes that have two children in U. Thus we can obtain the lexicographically
sorted list of all the node Blabels of U by radix sorting the concatenated list of the in-order traverse of leaves
of T" and the Blabels of nodes with no or only one child.

The longest common Bprefix length | of adjacent Blabels can also be obtained from 7". If the first
characters of two adjacent Blabels are different, [ = 0. Otherwise, if one of the adjacent Blabels consists of
only one character, the depth is [ = 1. Otherwise, we compute the depth as follows. Let v; and v; be the
adjacent nodes. Notice that we can obtain the longest common Bprefix length I’ of Blabels of w; and w; in
U’ in a constant time (see Theorem 4). Then it is clear that [ =1 + 1.

In this way we can construct T from 7" in a linear time. We obtain T'(n) = T'(n/2) + O(n), where T'(n)
denotes the time taken to compute the Bsuffix tree of a binary tree of size n. Therefore we conclude that

our algorithm runs in O(n) time.

6.3.3 Discussions on the Bsuffix Tree

Bsuffix trees are very similar to normal suffix trees. It enables efficient query for a completely balanced
binary tree pattern. It can also be used for finding (largest) common completely balanced binary subtrees
of two binary trees in linear time. We can also enumerate frequent patterns of completely balanced binary
trees in linear time by using this data structure.

The data structure and our algorithm assume that the labels are given to nodes, but they can very easily
be modified to deal with edge-matching problems as follows: Let the label of any node except for the root be
the label of the incoming edge from its parent. Then T in the above algorithm can be used as the compacted
trie for edge matching.

Bsuffix trees can also be used for querying completely balanced k-ary trees from any k-ary forest U. First,
if a node has less than k children, remove the edges between it and its children. Otherwise, we reconstruct
each node that has k children as a completely balanced binary tree of depth [log, k] and move each child
to its leaf. For each inside node and leaf to which no node was mapped, give as its label a new character
that is not in use but is same for all such nodes. Notice that the size of the reconstructed forest is at most
twice as that of the original one. Then construct the Bsuffix tree for this reconstructed binary tree. It can

obviously used for querying completely balanced k-ary trees.
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6.4 Summary

We have proposed a new data structure called the structural suffix tree, or s-suffix tree for short. We also
proposed an on-line O(n(log|X| + log|II|)) algorithm for constructing it, where ¥ is an alphabet of fixed
symbols and II is an alphabet of parameters. This data structure enables an efficient search for frequent
patterns of structures of RNA sequences or single-stranded DNA sequences. It also enables a common
structure pattern to be efficiently found in more than one sequence. We also showed the practicality of our
data structure and our algorithm by reporting computational experiments for finding structural patterns
from RNA sequences of HIV and DNA sequences of E. coli using the s-suffix tree.

We also have described an optimal O(n) algorithm for constructing the suffix tree of a common suffix
tree (CS-tree). In addition, we proposed a new data structure called a Bsuffix tree, that enables efficient
query for completely balanced subtrees.

Several tasks remain for the future. Two RNA sequences can have the same structure even if they do not
have the same s-encoded string patterns. Furthermore, it is difficult to apply our algorithm to the problem
of proteins, where the combinations are far more complicated. Thus we should strive to create more general
data structures and algorithms for structural pattern matching of biological sequences. Recently, Farach [50]
introduced a deterministic linear-time suffix tree construction algorithm for strings of an integer alphabet
{1,...,n}. It is an open problem whether or not such a linear time algorithm exists for constructing s-suffix
trees or p-suffix trees. The existence of more useful suffix trees that allow querying more general and flexible

patterns than paths or completely balanced trees remains as another open question.
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Chapter 7

Concluding Remarks

In this thesis, we have shown that efficient pattern matching or indexing techniques are very important in
many applications of molecular biology by demonstrating various useful pattern matching-based algorithms.
First, we dealt with the multiple alignment problem. We proposed two flexible and efficient approaches for
providing alternative solutions to the computationally optimal solution of the alignment problem: One is an
efficient method for enumerating suboptimal solutions, and the other is parametric analysis of the problem.
For the first approach, we discussed what kind of suboptimal alignment is unnecessary to enumerate and
proposed an efficient algorithm that enumerates only the necessary alignments based on Eppstein’s algorithm.
For the other approach, we proposed several techniques for searching the parametric space of the problem to
find desired solutions. For both approaches, this thesis performed experiments on various groups of actual
protein sequences and examined the efficiency of these algorithms and property of sequence groups.

Next, we dealt with the problem of cDNA clustering. We proposed efficient techniques that enables
accurate querying and clustering for cDNA sequences, considering splicing mechanisms. Our algorithm is
based on all-pairs comparison by a variant of Mott’s spliced alignment algorithm, but it takes too much
time if we apply it naively. Thus we proposed several techniques for reducing the total computation time.
According to the experiments, we achieved about 4,000 to 20,000-fold speedup against a naive algorithm.
Moreover, heuristic version of our algorithm is much faster though the accuracy is almost the same as our
exact algorithm.

We next dealt with prokaryotic gene finding problem, one of the most important data mining problems
in computational molecular biology. Our algorithm is based on large-scale pattern matching using a large
pattern database called the Bio-Dictionary. We developed a very efficient pattern indexing algorithm for the
Bio-Dictionary. We then proposed a scoring scheme that uses matching patterns discovered from the Bio-
Dictionary for ranking gene candidates to identify genes. We demonstrated our algorithm through a series
of carefully designed experiments over many organisms to show the very high accuracy of our approach.

Finally, we proposed several useful data structures and algorithms for RNA structural analyses. In this
work, we dealt with three kinds of generalization of suffix trees, two of which we proposed. We first proposed
a generalization of a parameterized suffix tree (p-suffix tree for short) and an on-line algorithm for building
it. It is also the first on-line algorithm for building the p-suffix tree, though the time complexity is same as

the best-known algorithm that is not on-line. We can find efficiently a common structural pattern of given
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RNA sequences with this data structure. We next proposed a new algorithm for constructing the suffix
tree of a common suffix tree, which is useful for data mining from a set of tree structures. Considering that
mRNA secondary structures can be described with trees, we can use this algorithm for the analyses of mRNA
structures. Our algorithm improves the previous best-known time bound. In addition, we proposed a new
data structure called the Bsuffix tree that is also useful for data mining from a set of trees, and proposed an
optimal construction algorithm for it.

Through all these researches, we have shown that sequence comparison and indexing techniques play a
very important role in the problems of computational molecular biology. Several tasks remain for the future.
For many of the problems that we dealt with, we should develop much more flexible methods as we proposed
in Chapter 3. The gene finding technique developed in Chapter 5 should be extended for analyzing eukaryotic
genomes, for which the algorithms of Chapter 4 must be very useful for collecting training sets for learning
the splicing mechanism. It is said that the RNA structures play some role in the splicing mechanism, and
it is also very interesting if the algorithms in Chapter 6 could be used to improve a gene finding system for

eukaryotic genomes.
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