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1. Introduction

1-1. Alkaline basalt from back-arc region around the Sea of Japan

Several Cenozoic alkaline basalts associated tholeiitic basalts are widely distributed in
northeastern China and around the Sea of Japan (Fig. 1-1). In southwestern Japan, the
Cenozoic volcanism is most voluminous in northwestern Kyushu, which is nearly half
of all Cenozoic basalts hitherto erupted in Japan. Volcanism in arcs is generally
believed to have some relationship with the subduction. For example, the volcanism in
the northeastern Japan arc is considered to be caused by the subduction of the Pacific
plate and dehydration of the slab (Tatsumi et al., 1983; Tatsumi, 1989). However,
Cenozoic volcanism of the southwestern Japan arc including northwestern Kyushu is
quite distinct from that of the northeastern Japan arc. First, the former is characterized
by the extensive alkaline volcanism forming many monogenetic volcanic groups.
Second, the southwestern Japan arc lacks a deep trench and subcrustal earthquakes. The
Wadati-Benioff zones of both the Pacific and Philippine Sea plates are not observed
beneath the area (Fig. 1-1). Third, northwestern Kyushu is away from the volcanic front,
which across the central Kyushu, composed of active volcanoes such as Sakurajima,
Kirishima, Aso, and Kuju (Fig. 1-2). Since subduction edge of Philippine Sea plate is
considered to have not reached beneath the back-arc region of Japan when alkaline
volcanism was ongoing, the alkaline basaltic volcanism has directly nothing to do with
subduction processes but is considered to be intraplate volcanic activity.

The origin of alkaline basalt in southwestern Japan has been investigated by many
researchers. Nakamura et al. (1985; 1989) and Nakada and Kamata (1991) reported that
Cenozoic alkaline basalts from back-arc region of southwestern Japan show
geochemical signatures (major and trace element compositions) distinct from typical
island-arc volcanic rocks. For example, they are less depleted in Ta, Nb and Ti and less
enriched in K, Sr, Ba and Rb compared with volcanic rocks from northeastern Japan,
including alkaline basalts from Rishiri Island, back-arc region in northeastern Japan.
Their Nd and Sr isotopic data suggest that they are products of interaction between a

depleted mantle and an enriched mantle (Nakamura et al., 1990). From these features,



Nakamura et al. (1990) proposed a model that the alkaline basalt magma is mixture
formed by an enriched mantle plume from deeper in the mantle and a depleted
MORB-type upper mantle, which was weakly affected by metasomatism caused by
dehydration and/or partial melting of subducted Pacific plate. In other words, they
consider that alkaline volcanism in southwestern Japan was caused by similar process to
continental and oceanic alkaline basalt, that is “hotspot”. lwamori (1992) examined
Cenozoic basalts in southwestern Japan and proposed a model which included the
addition of fluid into the deep mantle, and melting and subsequent upwelling of the
deep mantle materials enriched in incompatible elements. Kakubuchi et al. (1995)
measured and compiled the trace element abundance pattern and Nd-Sr isotopic ratios
of Cenozoic alkaline basalts and associated tholeiitic basalts, and suggest that mantle
plumes which caused the alkaline volcanism in north Kyushu and Chugoku district are
different in geochemical characteristics. Figure 1-3 is the schematic diagram of the
mantle plume model from Kakubuchi et al. (1995). While mantle diapers rapidly rose
from an enriched mantle plume with an EMI signature ascended from deep in the
mantle in Chugoku district, mantle diapers characterized by an EMII signature rose
slowly and were entrained an overlying MORB-like depleted mantle.

However, the geochemical features of alkaline basalts in southwestern Japan can be
explained by passive upward injection of asthenosphere (depleted mantle) to sub
continental lithosphere (enriched mantle) associated with the opening of the Sea of
Japan, as in the case with volcanisms around the Japan Sea region, such as northeastern
Japan (Nohda et al., 1988; Ohki et al., 1994), Yamato Basin Ridge and Ulreung and
Dog islands in the Sea of Japan (Tatsumoto and Nakamura, 1991) and Shihote-Alin and
Sakhalin (Okamura et al., 1998). Figure 1-4 is a schematic model after Ohki et al.
(1994). In this model, passive upwelling and decompression melting of asthenosphere
induced by mantle convection accompanied with retreat of Japan Trench and down
going of the subducting Pacific plate play an important role in alkaline basalt
volcanism.

It is difficult to show clearly which model is the case from geochemical features
previously reported, because both mantle plume and sub-continental mantle are

considered to have the same isotopically enriched characteristics and the source of



enriched signature in the alkaline basalts can be attributed to either shallow

(sub-continental) and deep mantle (mantle plume).
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Fig. 1-1. Map showing the distribution of Cenozoic alkaline basalts and associated
tholeiitic basalts after Nakamura et al. (1989). Thick solid lines and solid

lines represent plate boundaries and Quaternary volcanic front,

respectively (after Aramaki and Ui, 1982). Dashed lines are contours

representing isobaths for deep seismic zones (Wadati-Benioff zones) after
Utsu (1974). Numbers are depths in kilometers as measured the center of

the seismic zone.
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Fig. 1-2. Distribution of the late Cenozoic basalts in southwestern Japan from
Kakubuch et al. (1995). The leading edge of the subducted Philippine Sea
plate is from Shiono (1974). Black and Hatched area shows Cenozoic
basalts and Quaternary volcanic rocks, respectively.
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Fig. 1-3. Schematic diagram showing the origin and genesis of the late Cenozoic basaltic

rocks in the southwestem Japan from Kakubuchi et al. (1995).
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Fig. 1-4. A schematic cross section for magma genesis in the northeastern Japan arc at
around 15 Ma after Ohki et al. (1994). Solid lines represent for basaltic rocks in
the transitional zone to back-arc side and andesitic rocks in the trench side,
respectively. EM, DM: isotopically enriched mantle, and depleted mantle. Dotted
area: increased geothermal gradient due to the rise of hot asthenosphere (depleted
mantle) into the overlying enriched sub-continental mantle.



1-2. Noble gas isotopes

Noble gases (He, Ne, Ar, Kr and Xe) are chemically inert resulting that their elemental
and isotopic abundances are affected by physical processes. Each element has stable
isotopes covering a wide mass range, so that in principle the noble gases can be
sensitive tracers of mass-dependent physical processes. In addition, because each noble
gas has three or more stable isotopes except for He, they are useful to identify mixing
processes among several sources. Noble gas isotopes are composed of several
components of different origins such as primordial, radiogenic (+ nucleogenic),
cosmogenic etc. The low concentrations of noble gas isotopes in the terrestrial materials
except for Ar often enable us to detect the slight addition of the isotopes produced by
nuclear processes. Since noble gas isotopic ratio show clear variations among different
parts of the Earth, they are quite useful to trace the processes of magma genesis in the
Earth. Figure1-5 is a schematic diagram of two-layered mantle model and *He/*He and
“Ar/*Ar ratios of each source and tectonic setting (modified after Kaneoka, 1995). For
example, He in mid-ocean ridge basalts (MORB) show worldwide uniform *He/*He
ratios of 8.18 + 0.73 Ra (Hilton et al., 1993), where Ra is the *He/*He ratio of the
atmosphere = 1.40x10® (Ozima and Podosek, 1983), while the *He/*He ratio of
volcanic rocks from hotspots such as Hawaii, Iceland and Reunion range up to 37 Ra
(e.g., Hilton et al., 1999), which indicates that hotspot volcanism taps deeper regions of
the mantle enriched in primordial *He relative to the MORB reservoir, which is
considered to be the upper mantle. On the other hand, some samples from continental
tectonic setting show low *He/*He ratios (~10"®) owing to accumulation of radiogenic
*He, produced as a. particles by radioactive decay of U and Th. The isotopic ratios of

the other noble gases, such as Ne, Ar, and Xe differ in each parts of the Earth.
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Fig. 1-5. Schematic diagram of two-layered mantle model and *He/*He and “Ar/*°*Ar
ratios of each source and tectonic setting (modified after Kaneoka, 1995).
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1-3. Noble gas analysis for rock samples

Mafic phenocryst (olivine and/or pyroxene) separated from igneous rocks and
mantle-derived xenoliths is generally used for noble gas analysis, because groundmass
lost most of the noble gases inherent from the source magma and was contaminated by
the atmospheric noble gases in many cases. Even in mafic phenocryst, isotopic
characteristics of noble gases dissolved in mineral lattice are changed by addition of
radiogenic and/or cosmogenic component with age. Since inherent noble gases are
preserved in fluid inclusions, in vacuo crushing method is effective to extract noble
gases selectively from fluid inclusions (e.g., Kurz, 1986, Stuart et al., 1994). However,
the concentration of He in mineral is generally very low. Especially the expected
amount of He extracted by in vacuo crushing is sometimes smaller than 10°cm®STP/g.
Therefore the previous noble gas data on volcanic rocks are limited for gas-rich and/or
high *He/*He samples except a few data (Hilton et al., 1992; 1999; Dodson et al., 1998;
Dodson and Brandon, 1999).

Consequently precise measurement of noble gas isotopes including He becomes more
important to investigate the source materials of volcanic rocks recently. Therefore, |
first improved a noble gas mass spectrometer equipped with a double collector system
for He isotopes for the purpose of determining noble gas isotopic composition with

extremely low concentration in terrestrial rock samples (in chapter 2).
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1-4. Aim of this study

There are no previous studies, which report noble gas data on Cenozoic alkaline basalts
from the southwestern Japan arc. Previous noble gas studies on xenoliths contained in
basalts from southwestern Japan are also very scarce. Only one study reported that
xenoliths from the Oki-Dogo region contain He with MORB-like *He/*He ratios (Nagao
and Takahashi, 1993), however, no noble gas data have been reported for northwestern
Kyushu, where Cenozoic basaltic volcanism was more widespread than in the
Oki-Dogo region.

As an origin of one of the geochemical endmembers observed in oceanic island basalts,
recycled material of continental origin such as subducted oceanic crust with sediments
is considered (Cohen and O’Nions, 1982; Hofmann, 1997). If the mantle plume origin
of the alkaline basalt is the case, the plume may be subducted material which had
subducted and reached to lower mantle and was recycled back to the surface of the
Earth. Alternatively, alkaline volcanism in back-arc region of subduction zone has a
potential for direct occurrence of global recycling of subducted materials.

Noble gases, especially He is a powerful tracer to reveal the source materials of alkaline
basalts. If higher *He/*He ratio than MORB value is observed in this region, it will
strongly support the mantle plume model. If asthenospheric upwelling is the case, each
source material originally existed in upper mantle, and *He/*He ratio will not exceed the
MORSB value.

Therefore, the aim of this study is that clarification of noble gas isotopic compositions
of Cenozoic alkaline basalts and mantle-derived xenoliths in back-arc region of
southwestern Japan, to investigate the origin of the alkaline basalt and the noble gas
characteristics of the sub continental mantle around this region with respect to mantle

dynamics related to subduction process.
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2. Modification of a system for noble gas isotope analysis

2-1. Systems for noble gas isotope analysis used in this study

In Laboratory for Earthquake Chemistry, the University of Tokyo, there are four mass
spectrometers for noble gas isotope analysis which are equipped with extraction
apparatus and purification/separation line. They are named MS—I, MS—I1, MS-Il1 and
MS-I1V, respectively. MS—I is the oldest mass spectrometer system in our laboratory,
which is specialized to He isotope measurement (Sano and Wakita, 1988). MS-II and
MS—I111 were moved from the Institute for Study of the Earth's Interior, Okayama
University to the Laboratory for Earthquake Chemistry in 1998. MS—II is the most
sensitive mass spectrometer which is applied for all noble gases in extraterrestrial
samples (Nagao and Abe, 1994; Nagao et al., 1999). MS-III is almost the same system
as MS-II, however, MS-I11 is improved in evacuation system to achieve extremely low
blank level and equipped with laser gas-extraction system, and only used for all noble
gases in terrestrial samples and micro-gram size sample such as micrometeorite (Osawa
et al., 2000; Aka et al., 2001). MS-I1V is originally designed for measurement of all
noble gases in gas samples, such as volcanic, hot spring and natural gases (Xu et al.,
1995; Nakai et al., 1997).

Two of four systems in the Laboratory for Earthquake Chemistry were used in this
study. One is MS-III. Details of the mass spectrometric techniques with MS—I11 are
described by Aka et al. (2001). The other is MS-1V, which was mainly used in this
study. A noble gas mass spectrometer in the system of MS-1V is equipped with a
double collector system for He isotopes, and was improved for the purpose of
determining noble gas isotopic composition with extremely low concentration in
terrestrial rock samples in this study.

In this chapter, the modification of the MS-IV and experimental procedure for mineral

samples are described.
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2-2. Modification of MS-IV

2—-2-1. Outline of MS-IV

MS~I1V consists of a sector-type mass spectrometer (VG5400, VG Isotech.) and a noble
gas purification and separation line for gas samples before modification. Details of the
system before modification are reported by Xu et al. (1995). Several improvements have
been made in this study, with an emphasis on the mass spectrometer in order to measure
quite-low amount of noble gases in rock samples. Hence it is called as
modified-VG5400 hereafter. A schematic drawing of the system after all modification
described in this thesis is shown in Fig. 2-1. The system consists of gas extraction part,
gas purification and separation part, and the modified-VG5400 mass spectrometer.
Since He permeates normal glass quickly, stainless steel is used for all parts of the line.
The ultra-high vacuum (10 to 10 Torr) in the system is kept by three turbo molecular
pumps and two ion pumps. Since the system is originally designed for noble gas
measurement of gas samples (Xu et al., 1995; Nakai et al., 1997), gas extraction
apparatuses for rock samples are newly established. In addition, several modifications
were made in purification and separation part, in order to achieve low blank level and

high performance of the measurement.
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Schematic diagram of noble gas analyzing system (MS-1V). Ta-oven: noble gas
extraction furnace using Ta-heater, Crushers: crusher to mechanically crush the
sample in vacuo, QMS: quadrupole mass spectrometer, Cryo trap: cold finger for
trapping and separating noble gases, Til and Ti2: Ti-Zr getter, CH1 and CH2:
charcoal trap, IG1-1G4 and 1G-MS: ionization gauge, PG1-PG3 and PG-MS:
pirani gauge, GP: getter pump (SORB-AC), TMP1, 2 and TMP-MS: turbo
molecular pump, IP and IP-MS: ion pump, RP1-RP4 and RP-MS: rotary pump,
DP: oil diffusion pump, CM: capacitance manometer, Valves: VUH-251C
(ULVAC Co.); CRD20R (VG Co.); SS-4H-TW (Nupro Co.).
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2—-2-2. Gas extraction

Two different extraction methods were used in this study; those are in vacuo heating
and in vacuo crushing. For heating experiment, extraction oven (Ta-oven) is almost the
same as that described in Nagao et al. (1996). MS—IIlI is originally equipped with
Ta-oven, however, a Ta-oven for MS-1V is newly established (TH-250, Horiguchi iron
factory). Figure 2-2 is a schematic drawing of Ta-oven. The samples weighing ca. 0.5 g
are wrapped in Al-foil 10 um in thickness and loaded in branches of a sample holder,
which is connected to the vacuum line at the extraction oven. The samples are dropped
into the heating furnace, and then the furnace is heated for about 20 to 40 minutes at
400°C to 2000°C depending on the purpose. The temperature of the furnace is
monitored via current applied to the Ta-heater, which is calibrated to temperature by
Pt—-Rh thermocouple and radiation thermometer. Total 20-50 samples can be analyzed
one after another without breaking vacuum condition.

At the beginning of this study, conventional sample holders made of Pyrex-glass or lead
glass were used. However, high blank level of He (3-4x10 and 3-7x10™"° cm3STP for
Pyrex-glass and lead glass, respectively) owing to permeation of atmospheric He trough
the glass wall of the holder was serious problem especially for gas-poor samples.
Therefore, a sample holder made of stainless steel except a small glass window to
observe sample in the furnace was newly designed (Fig. 2-3). The blank level of *He
with the new stainless-steel sample holder is approximately 1-2x10** cm®STP.
Dramatic decrease of blank level enables us to analyze for low amount of He, and is
essential for gas-poor samples or measurement with step heating extraction method.

For crushing experiment, two kinds of crusher with different crushing methods are
available in this study. One is the hydraulic-type crusher, which is newly designed by
me. Up to 3g of the sample whose grain size is larger than #60 (250um) is mechanically
crushed by hydraulic pressure up to 70 MPa applied by a hand pump (Fig. 2-4A).
50-60% of the sample is crushed into powder whose grain size is less than #100
(150um) after three times of press at 70MPa. The other is the solenoid-type crusher,
which is designed by Prof. K. Nagao and Dr. F. T. Aka and is almost the same as

described in Matsumoto et al. (1998), however, ours is simpler than that (Fig. 2-4B).
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Solenoid coils can be separated from main body of the crusher, i.e., stainless-steel tube
and nickel piston. Thus, we can connect three to six crushers to the line and prepare
several samples at the same time, resulting high performance of measurement. Up to 1g
of the sample can be loaded into the crushing chamber, and more than 70% of the
sample is crushed into less than #100 after 12000-2000 strokes. Blank levels of He are
approximately 1-2x10™cm®STP and 2x10™%cm®STP with hydraulic-type crusher and
solenoid-type crusher, respectively.

Extraction efficiency by the crushers was tested by stepwise crushing of a given sample
and heating experiment of powder after crushing (Fig. 2-5). *He/*He ratios of each steps
are equivalent within errors, hence there is no significant secondary effect by
cosmogenic and/or radiogenic component, which reside in mineral lattice. This indicates
that up to three times of press at 70MPa or up to 2000 strokes can be applied without
the risk of releasing He in matrix. *He/*He ratios obtained with heating experiment for
powder after crushing shows identical with that obtained with crushing method because
these samples are rich in fluid inclusions. However, *He/*He ratios obtained with
heating experiment are generally different from that obtained with crushing, indicating

post-eruptive addition of secondary component (see next chapter).
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Fig. 2-2. Sample holder and Ta-oven are shown. The sample holder made of
Pyrex-glass or lead glass is equipped with 10 or 4 branches,
respectively. 4-5 samples weighing ca. 0.5g each can be loaded in each
branch. Sample to be analyzed is dropped into the crucible by moving
iron piece using hand magnet from outside the glass wall. A shutter
prevents silicate from being deposited on the glass wall on the top of
the holder, in order to observe the sample in the furnace.
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Fig. 2-3. Sample holder made of stainless-steel is shown. The sample holder is
equipped with 10 branches, in which up to 3 samples weighing ca.
0.3g each can be loaded. Sample can be moved and dropped by
moving a steel ball using hand magnet from outside the chamber. A
shutter prevents silicate from being deposited on the glass window on
the top of the holder, in order to observe the sample in the furnace.
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Fig. 2-4. Crushing apparatus for noble gas extraction are shown. The crushers are
connected to the noble gas purification line with some valves. (A)
Hydraulic-type crusher. Up to 3g of the sample can be loaded into the
chamber. Crushing is performed by hydraulic pressure up to 70MPa applied
by a hand pump from outside the crusher. (B) Solenoid-type crusher. A
piston made from nickel is lifted upwards and accelerated downwards by an
external magnetic field generated by solenoid coils. Up to 1g of the sample
can be crushed after 1000-2000 strokes.
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2—-2-3. Modification of noble gas purification and separation line

The original design of gas purification and separation part of the system was for
measurement of gas samples. Thus, the several improvements were made to achieve the
ultra-high vacuum because low blank level is required for rock samples, and to increase
efficiency of measurement by reducing the time for each analysis. The improvements
were carried out by (1) addition of an evacuation system, including a turbo molecular
pump and a rotary pump (TMP2 and RP2 in Fig. 2-1), (2) addition of a SORB-AC
getter pump to further reduce background (GP in Fig. 2-1), (3) reduction of the volume
of line including changing Ti-Zr getters and charcoal traps to smaller ones to avoid
dilution of the noble gas with small abundance, and (4) installation of the Cryo trap
which can separate each noble gas effectively and can be heated more than 100°C to
release adsorbed gas. It takes about five hours for the full measurement of He, Ne, Ar,
Kr and Xe described below, whereas it needed ten hours before modification.

The purification system was originally equipped with a Cryo trap containing sintered
stainless filter element (Nupro Co.) connected to commercially manufactured
double-stage He expansion refrigerator (Model S030, Iwatani industrial gases Co.). The
old Cryo trap can be cooled down to 26K; sometimes it was inadequately cool to trap
Ne for separation from He. In addition, the old Cryo trap could not be heated over room
temperature, thus blank level was so high (>3x10°%cm®STP) that it was impossible to
measure Ne for mineral samples. Therefore, a new Cryo trap was made and used in this
study. The new one is almost the same equipped with MS—II and MS-I11 (Nagao et al.,
1999; Osawa et al., 2000; Aka et al., 2001), which consists of trap containing the same
material as old one, and high-performance double-stage He expansion refrigerator
(Model D510, Iwatani industrial gases Co.). The new Cryo trap can be routinely cooled
to a temperature around 13K. At this temperature all noble gases are adsorbed on the
trap. The temperature can be incrementally increased by the heater coil attached to the
trap, each of the five noble gases sequentially desorbed for analysis. Figure 2—6 shows
the relationship between noble gas release and trap temperature utilizing the mass
spectrometer for the measurements. Helium and Ne are effectively separated from Ne

and Ar at approximately 24K and 50K, respectively. For Ar, Kr, and Xe, there is
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overlap in the release. Partial separation temperatures for Kr from Ar and Xe from Kr
that are used are 100K and 130K, respectively. To release Xe, the trap is heated to 220K.
The trap can be heated up to 100°C for baking out, reducing blank level to <3x10*
cm®STP for Ne.
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o

Released noble gas (%)
S 2

N
o

0 50 100 150 200

Temperature of trap (K)

Fig. 2-6. Profiles of noble gas release from the Cryo trap.
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2—-2-4. Modification of the Mass spectrometer

The mass spectrometer is a catalogue model, VG5400 (VG Isotech), with split flight
tubes (Fig. 2—7) for simultaneous detection of *He and “He ion beams (Sano and Wakita,
1988). The VG5400 had initially two conventional Faraday-cup systems, namely
Axial-Faraday and High-Faraday, and one Daly multiplier collector consisting of a
Daly-knob, a scintillator and a photoelectron multiplier. The *He beam was measured
by the Daly multiplier collector, and the “He beam by the High-Faraday simultaneously.
In 1999, an ion-counting system was equipped after removing the Axial-Faraday system.
The ion-counting system consists of a SEM (secondary electron multiplier: SEV217,
Balzers Co.), a pre-amplifier, a discriminator and a counter (ORTEC Co.), and a high
voltage supply for SEM (HSX-3R5-5, Matsusada Precision Inc.). Since the noise level
was decreased dramatically and the detection limit was improved compared with those
of the Daly multiplier collector, which was the most sensitive among three collectors of
the original VG5400, *He beam is measured using the ion-counting system thereafter.
Exchange a photo multiplier to R1044 (Hamamatsu Photonics K. K.), an operational
amplifier to OPA104CM (Burr-Brown Co.) and a feedback register to RHA 2B
(Hydragin Co.) from original design of the Daly multiplier collector by VG Isotech
have also done after Nagao et al. (1996), and greatly reduced dark current and noise
levels. Overall multiplier gain of the Daly multiplier collector with operating the Daly
knob and the photo multiplier at -10kV and -600V is about 1,500 after modification.
Noise level of the ion-counting is less than 1x10%A corresponds to 6x10™*cps, and
those of the Daly multiplier collector and the High-Faraday are less than 4x10™A
(-600V) and 2x107°A, respectively, in the condition of usual *He/*He measurement.
The extremely low noise level of ion-counting achieves very low detection limit ca.
6x10°cm®STP or 1.6x10* atoms of He, which is two orders of magnitude lower than
that with Daly multiplier collector before modification, 4x10™cm®STP. In addition,
very low detection limit makes isotope analysis of Ne, Kr and Xe possible, which was
impossible before modification because of their low concentration in mineral samples.
The operational conditions of the mass spectrometer during this study are: acceleration

voltage of ion, 4.6kV; acceleration voltage of electron, 80V; repeller voltage, -14V
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relative to the source chamber; trap current, 800uA for all noble gases. Focusing and
beam centering voltages are tuned up to maximize beam intensity of “He. The resolving
power on the 5% level of peak height is higher than 550 for the ion-counting and the
Daly multiplier collector, 200 for the High-Faraday.

Sensitivity for each noble gas during this study is listed in Table 2-1. Correction factor
k(3/4) for ®He/*He ratio and mass discrimination factors for k(x/y) for *M/*M isotope
ratios of Ne, Ar, Kr and Xe are listed in Table 2-2. The correction factor for He
includes corrections for mass discrimination and for sensitivity ratio between the two
collectors. The sensitivities for all noble gases and the mass discrimination factors for
Ne, Ar, Kr and Xe are calibrated by the measurement of standard atmospheric gas. The
correction factor for He is obtained with analysis of He standard gas (*He/*He =
20.7740.24Rp). A detailed procedure of determination of *He/*He ratio of the standard
gas is described in the later section. Since correction factor for He and mass
discrimination factor for other noble gases depend on the collector and partial pressure
of noble gases, the amount of standard gas admitted to the mass spectrometer is reduced

to comparable amount to those of the sample runs.
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Table 2-1. Sensitivity of MS-IV for each noble gas.

Sensitivity
DATE Std. Air  “He “Ne “Ar ¥Kr B2xe
(10°A/Torr) (10°A/Torr) (10*A/Torr) (10*A/Torr) (10”A/Torr)
1999.7.7 A2-0 4.67 7.86 3.06 4.40 5.98

7.8 1 4.38 7.69 2.31 3.30 4.61
7.13 2 4.41 6.20 3.37 5.68 12.09
7.13 [lon source tuning]

7.16 3 5.21 7.17 3.38 4.68 6.36
7.17 [Electricity shutdown]
7.22 4 5.15 7.34 3.57 4.88 6.43
7.25 5 4.92 5.58 3.10 4.34 5.85
7.27 6 5.19 7.63 3.15 4.49 6.21
8.25 7 5.06 7.76 3.71 6.07 4.94
9.12 8 5.66 7.30 4.55 2.30 2.95
9.21 9 5.49 6.99 3.71 5.43 7.98
2000.2.22 10 5.58 6.91 2.61 2.77 7.14
2.26 [lon source tuning]
3.14 A3-1 4.00 4.29 2.24 2.71 9.09
4.10 2 3.99 4.43 2.23 2.50 7.85
4.15 3 3.34 3.18 181 2.42 6.65
4.17 4 3.55 3.29 1.93 2.43 6.30
4.20 5 3.26 3.78 1.73 2.29 5.77
4.26 6 3.59 4.43 2.08 2.40 5.61
4.28 [lon source tuning]

5.8 7 3.18 4.04 1.78 2.36 4.79
5.12 8 4.06 3.20 1.36 1.67 2.84
5.24 9 4.18 3.60 1.56 1.84 2.81

6.1 10 3.94 4.17 1.53 1.84 2.83
6.12 12 3.89 3.58 1.38 1.73 2.59

7.3 13 3.84 3.69 1.28 151 2.23
7.21 14 2.98 3.00 1.49 1.30 1.82
7.23 15 4.89 5.63 1.67 191 3.25

9.7 19 5.19 6.15 2.16 2.55 4.36
9.18 22 4.30 5.03 211 2.36 3.24

10.29 [Electricity shutdown]
11.1 23 4.97 7.51 2.99 3.88 9.94
11.2 24 4.85 7.05 2.76 3.23 4.32
11.24 29 5.67 8.55 3.29 4.07 6.64

* Sensitivity for High-Faraday.

27



‘Buiunos-uoi ;D 101981102 Jaljdninw Ajeq :INQ ‘SISAjeur 8N 10} pasn 10139]|0D ‘b
are( N /N, )Imea( ING N )=(A7X) X “Ex

80000 + ¥.90°T 22000+ T820T Ol 6100+ 966°0 0v00'0 + 98860 62 vZTT
80000 F S990T  2T000 F 6.20T Ol SGT00 F 8660 L2000 F 16860 12 zT
L0000 & S990T  2T000 F ¥€Z0T Ol 6200 F €860 €Y000 + ¥886'0 €2 TTI (€861 59SOPOd pue ewizQ) 901 X ¢'|
[umopinys A101119913] 62°0T = 01Je1 0LIBYASOWIE 8} 0} PZI[EULON 'Zx
60000 + /2/0T 81000+ 6620T Ol 9T00+ /860 ¥2000 + G960 <2 81’6 53 (aH, /oH,)/ " (8H, /oH,, )=(7/€) X T«
§0000 F L€.0T 02000 F 00£0T Ol 2200 F G660 €000 F L1860 6T L'6 0€0F 88¥%T 9 VTl
0T000 F §00T  LT000 & GOELOT Ol 8T00 & /860 0£000 F+ T¥860 ST €T, T€E0F 09T €9 AN
60000 + ¢T.0T  €T000 + T80T Ol 8200+ G860 6¥000 + 9v.60 VT 1TL [umopinus A1010815] 62 0T
60000 & €690T  STO00 & €0£0T Ol 2200 & €60 €S000 F €L.60 €T €L 120+ TEET 29 816
ZI1000 + 6690T 02000 F 9620T Ol 9T00 F 6860 62000 F €660 2T zr9 220F €LET 19 L6
60000 = 9€/0T  €0000 + 8620T INA 6000+ 0,60 0T000 + ¥¥e60 O T9 920+ 8EE€T 09 €zl
€0000 F 2E€L0T  ¥T000 F TIEOT NG 9000 F ¥.60 L0000 F 6¥260 6 vZ'S 620F TSET 6§ 7L
ZT000 + /690T  ¥T000 + 8E€0T Ol 2200 + /860 TS000 + 29960 8 s 0€0+ 8TET 85 €L
80000 = 0890T  2TO00 F+ 2L20T N 8000 F G/60 LT000 F 8EE60 L 8 €20F TTET LS ST'9
[Buuny sounos uol] 8z'y 020+ 9TET 95 T9
v0000 & 2990T 60000 F 9¥Z0T INA 8000 & €60 <¢T000 F €IE60 9 9Ty 6T0F GT'ET &S vZ'S
¥1000 + [990T  2I000 + 6SZ0T INA 9000 + G/60 61000 + O0EE60 G 0Ty 020F 66¢T 5 FANS
90000 = 8990T  €T000 F 0€20T NG L0000 F L60 T2000 F 90£60 ¥ LTy [Buium sounos uol] 8z'y
€0000 + T990T  ZT000 + ¥¥20T INA 6000 + .60 8I000 + 8EE60 € STy T20F G8YT €S 8Ty
80000 + 0.90T  €2000 F 6€20T INA 9T00 F 060 €E000 + 09€60 ¢ (1] 8% vZ0F LT¥T ¢S Ty
0T000 & 8990T  ZT000 & TIZ0T Ol ¥€00 + 200T 8r000 F+ 83960 TI-€V VI'€ v20F 0E€¥T 1§ STy
[Buiuny sounos uol] 9z'2 020+ 90T 0§ €Ty
0T000 + G€S0T 22000 & TSTOT O €100 & 0860 12000 F+ 69760 OT 22'2°0002 v€0F O06€T 6V Ty
GT000 + 86€0T  €2000 F €YIOT Ol GT0O0 + 1660 2000 + /80OT 6 126 ZE€0F TGET Ly €Te
TT000 = 96€0T  €T000 & 8€I0T INA 6100 & G600 L2000 F €.960 8 6 [Buuny sunos uol] 9z'z
02000 + GS€0T 80000 + /TTOT INA €T00F G.60 0€000 + €9S60 L CTA Z€0F 99T 9 92'2'0002
80000 + 09€0T 92000 + O0LI0OT INA 2200 + 8960 0E000 + 0SS60 9 121 920+ OTTT G&¥ €26
/0000 ¥ 00¥0T  TIO00 F 90T0T Ol TI00F 0660 +I000 F €9660 G Sl V0T YTTT vy 9T'6
0T000 + ¥OYOT  Zv00'0 + ¥STOT INd 0T00 + 060 GT000 + 02560 ¥ 2L G20+ €€TT Ty 9z'8
[umopinys Aowoa(3] LT°2 SC0F OrTT O 1zl
90000 + €0YOT 25000 + €0T0T Ol 2I00 + 9660 LE000 + 0S00T € 9T, [umopinus Anowes|a] T2
[Buiuny sounos uol] €1°2 20T €TTT 6€ 9T,
€000'0 + 98€0T 82000 + €LT0T Ol G200+ L1660 €E000 + 68660 ¢ €L [Burum saunosuoj] €12
€1000 = ¥SE0T  0€000 + €ZE0T INA 0£00 + €60 G2000 + 86S60 T gL €20F 980T 8¢ €TL
0T000 T 9€€0T _ ¥£000 & 20TOT INd €100 & /60 8T000 I 9/G6°0 0—2V__ L [L666L 610 F 6601 /E-Td 8/666T
(9g/07) ¥ (9e/8¢€) ¥ . 1100 (cz/12) A (¢z/02) ¥ NV'pS  8ed L8, (w/E))d  eH'PIS  &ed
g, 40108} UONRUILLISIP SSe|A 9H 40} 10108} UOI1231I0D

" AI-SIAl Buisn sisAjeue ado1osi sef a]qou 10} $10198} UOITRUILLIOSIP SSew pue SI10108) U0I193110D) "Z—Z d]qel

28



JR(IN /N, )/meI( IN /N )=(A1X) A T«

GI00F 8I00F 8I00F 9T00 ¥  6T00F 6I00F ¥S000 ¥  2L00 ¥ €£000 F LL000 F TE000 F 6S000 F 2200 F
120'T 800'T S00'T €00'T ¥00'T 9660 1660 660T TZIOT 29660  €£086°0 80,60 2560 62 AN
[umopinys A10110813] 62°0T
GT00 ¥ 9T00F  ¥I00 ¥ 0100 F  ¥I00F 6T00F €600 ¥  T600 ¥ SZ000 ¥ €9000 ¥ +6000 ¥ +0T0O0 F 9100 F
L10°T 600'T v10°'T 900'T 8660 986°0 666°0 9860 €500'T S8TOT 618670 18660 T1€0T 22 8T'6
TI00F /T00F TIOOF 8100 ¥  ZI00F 8000 F LS00 F  E€y00 F TE000 ¥ 62000 F 87000 F /Y000 F STO0 F
20T 610'T 900°'T €00'T G660 2660 €160 TOO'T  TOO0'T TI00OT  0S/6°0 £76°0 8660 6T L'6
€100 F $I00F 200 F 9100 ¥  GIO0F 9T00 F LS00 F 6900 F ¥E000 ¥ LE0O0 F +¥000 F 98000 F 9100 F
L10°T 10T 100'T 900'T 2660 G66°0 1960 600T 8/00T 06660  TI86°0 EEV6°0 G960 €T €L
000 ¥ ¥200F G200 ¥ 200 F  +¥200F 8Y00 F 8900 ¥  6TIT0F LE000 ¥ ¥9000 ¥ 65000 F T¥I0O0 F TEO0 F
GT0'T 1107 010°T 7660 ¥00'T 8860 1€6°0 ZS0T  6.00T 8660  68.60 6EY6°0 0960 T 219
T200F 9T00F 2200+ €200 F 200 F 1200 F €900 ¥ 9,00 F ¢v00'0 ¥ 1000 F TS000 ¥ €2I00F 2200 F
€e0'T LE0'T €10'T 900'T €00'T €00'T €660 ¥20T  TEO0T  9000T 261670 18160 8560 8 ZTs
[Buiuny 8ounos uoy] 8zZ'v
0T00 ¥ 9000 F 2000 F 9000 ¥ 000 F ZIOO0F 9800 ¥ 6500 ¥ £5000 ¥ GT000 ¥ €2000 ¥ /S000 F €I00 F
S00'T ¥00'T ¥00'T 000'T 1660 660 7860 800'T 6€£00T 8000T  T¥86°0 €676°0 G/60 T 0Ty
GTI00F 0T00F  S000F 8000 ¥ 8000 F CIOO0F Y700 ¥  0L000 ¥ 62000 ¥ L5000 ¥ TE000 F €8000 F ST00 F
800'T €00'T €00'T 000'T 1660 1860 6660 T00T  9€00T 6¥660  O¥86°0 0£V6'0 9,60 T-€V ¥T€
[Buiuny saunos uol] 92'2 0002
€100 ¥ ZI00F 0700 F GT00F  €T00F 200 F Z0T0F €800 F ¢€000 ¥ LE000 ¥ TEO00 ¥ OFVOO0 F €T00 F
6660 2660 T00T 000°T T00°T L00'T V0T 7160 €6660 96860  LE860 GEL60 660 6 126
ZI00F TIOOF 6000 F G000 ¥  PYIO0OF ZE00 F ¥80°0 F  Z€00 F 91000 F 69000 F 2S000 F 29000 F 9700 F
000°T £66°0 2660 2660 1660 €00°T G20'T 920T  ¥T00T  ¥/86°0  O¥86°0 Zr.L6°0 ¥96°0  L—2V  GZ'8'666T
(oeT/9eD) A (0ET/PED M (0ET/ZET) X (0ET/TED A (0€T/62T) A (0€T/82D) 1 (0€T/92D) N (0ET/vZD N (r8/¥8) X (v8/e8)d  (¥8/28)d  (78/08)%  (¥8/8/)¥ NIV 'PIS  8led

T

10108J UOITRUILLILIOSIP SSBIA]

(‘panunuod) 'z-z a|qelL

29



Noble gas inkt

He", ‘He'——>

lon source
l (Nier-type)

Pumps

Daly mutiplier
collector

Faraday cup
"High-Faraday"

Faraday cup
"Axial-Faraday"

SEMEion counting

Fig. 2-7. Schematic diagram of the mass spectrometer with split flight tube for
the measurement of ®He/*He isotope ratios. lon beams of ®He and *He
which are generated by Nier-type electron impact ion source are
measured at the same time with a Faraday cup (High-Faraday) and a
Daly multiplier collector for “He and *He, respectively. After 1999, an
ion-counting system equipped after removing the Axial-Faraday has
been used for *He measurement.
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2—-2-5. Procedure of noble gas measurement

After loading the samples into the extraction apparatuses, the extraction and purification
system are baked out over 250°C for more than one day to reduce atmospheric
contamination. Samples in the sample holder and the crushers are also heated to
150-200°C to desorb the atmospheric noble gases and other gases. After finishing the
baking out, noble gases in the sample are released by each extraction method, and then
admitted to the purification line. First, released noble gases are purified from other
major gas components by a hot Ti-Zr getter (Til, ~800°C). When occasion demands, an
aliquot of gas is admitted to a quadrupole mass spectrometer (QMG112, Balzers Co.) to
measure the major components before exposing to the Ti-Zr getter. Residual major
components are purified by Til, and then Ar, Kr and Xe are adsorbed on a charcoal trap
(CHZ1) cooled at the temperature of liquid nitrogen. Unadsorbed components including
He and Ne are purified by the second Ti-Zr getter (Ti2, ~800°C), the second charcoal
trap (CH2, liquid nitrogen temperature), and a SORB-AC getter pump (~200°C).
Finally, Ne is separated from He using the Cryo trap at 24K.

Each noble gas fraction thus separated is analyzed with the modified-VG5400
successively. After introducing the He fraction into the mass spectrometer,
measurement of He isotopic ratio is automatically performed by a computer controlled
by a program developed in our laboratory. Details of computer-controlled He isotopic
measurement are described in next section. After finishing measurement of He,
adsorbed Ne on the Cryo trap is released by raising the temperature to 50K, and then
admitted to the mass spectrometer and start analysis for Ne isotopes. A trap at the inlet
of the mass spectrometer, containing sintered stainless which is the same material in the
Cryo trap is cooled by liquid nitrogen during Ne analysis, in order to reduce
interferences with “°Ne and #Ne by double charges of “°Ar and CO, (M=44). **Ar and
CO,, and ?Ne-H peaks are monitored at the start and the end of each analysis.
Interference of “°Ne-H on #*Ne estimated from ’Ne-H is almost negligible. Although
using the trap in the mass spectrometer, the interferences of “°Ar** and CO,** cannot be
removed completely, and they are corrected using “°Ar**/*°Ar* and CO,**/CO,"

production ratios, which are measured during series of experiment. Ne analysis is
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usually carried out with the ion-counting system due to generally low concentration of
Ne in mineral samples. The remaining noble gases (Ar, Kr and Xe) are released from
CH1 at ~250°C and then purified again by two hot Ti-Zr getters. Kr and Xe are trapped
by the Cryo trap at 100K, and remaining Ar is admitted to the mass spectrometer for
isotope analysis. Detail of Ar isotopic measurement by the computer program is
described in Nagao et al. (1996). The Daly multiplier collector is used for Ar analysis.
Multiplier gain of the Daly multiplier collector is adjusted to suitable condition for
variable amounts of Ar admitted to the mass spectrometer by changing high voltage
applied to photo multiplier. Finally, both Kr and Xe are released from the trap at 220K,
and introduced to the mass spectrometer. Then Xe is measured first and secondly Kr,
because abundance of Xe is smaller than that of Kr and important information is
generally obtained with Xe in terrestrial samples. Kr and Xe analyses are usually

performed using the ion-counting system.
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2—-2—6. Helium analysis with the double collector system

As described above, the mass spectrometer has a sub flight tube aside from a main flight
tube, designed for simultaneous passing by ion beams of ®He and *He (Fig. 2-7). In
order to obtain coincidence of the two beams, the position of the High-Faraday is
adjustable by a manipulator. Magnet scan and data acquisition are automatically carried
out using HP-Basic for Windows and programs written in HP-Basic by us, which are
based on the program reported in Nagao et al. (1996).

Typical mass spectra of *He and “He before and after the modification are shown in Fig.
2-8. The program automatically assigns magnetic field for “He and displays the “Peak
center” assigned, and *He center estimated from mass difference between *He and
HD-Hj3 is also displayed as “3He center” by which an operator can confirm the
coincidence of the peaks. Owing to the mass resolution over 550, *He* and double peak
of HD*=H5" are clearly separated. Base line around *He* and HD*~Hs" peaks is
completely flat due to extremely low noise level of the ion-counting. Therefore, though
abundance of *He admitted to the mass spectrometer was an order of magnitude smaller
than in Fig. 2-8(A), the *He" peak is clearly recognized and separated from HD*-Hs" as
shown in Fig. 2-8(B). Figure 2-9 demonstrates that the errors for *He/*He
measurements after modification are smaller than before modification, especially when
He abundance introduced into mass spectrometer is small. For example, in contrast with
that the error surpass 10% with 3He partial pressure lower than 3x10™*® Torr (before
modification, the error seems to remain lower than 10% around 2x10™** Torr after
modification. Helium extracted from mineral samples by in vacuo crushing is often
lower than 3x10™** Torr in ®He pressure, therefore the improvement of precision has a
profound effect especially on terrestrial rock samples.

If abundance of He is very small and the program cannot assign a proper center of “He
as shown in Fig. 2-8(C), an operator can manually indicate a correct position of peak
center estimated from the center of HD*~H3". In this case, if peak coincidence of *He
and “He is not exact for some reason, it is not so critical because peak top of “He is
sufficiently flat and wide. Of course “He abundance extracted from the sample is not
enough to detect with High-Faraday, we can select conventional peak jJumping mode
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using the ion-counting as a single collector. The flexibility of the program allows us to
measure *He/*He ratio of gas-poor samples, whose He abundance is almost blank level
that is in the range of 10™ to 10%m3STP of “He.
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Fig. 2-8. Mass spectra of *He and “He from usual samples; (A) before modification:;
(B and C) after modification described in text. Samples are; (A) gas
sample from Iwo-jima, Japan whose *He/*He = 5.6Ra; (B) HESJ with
*He/*He = 20.8Ra; (C) HESJ reduced to 1/1200 of usual measurement.
“Peak Center” means the peak center of *He, and “3He Center” means the
peak center of *He estimated from the center of HD-Hs peak determined

by the computer program controlling the mass spectrometer.

35



Error on *He/*He (%)

@® lon Counting

I ! O Daly (800V, VG original)
rock sample
=
25 | - = -
i O gas sample i
i o ° -
20 O -
i O ]
i ® §
: ° o :
5 ¢ % ]
i o i
07 [ | [ | IR | | | \\\Hr
10 10 10" 102 10

*He Pressure (Torr)

Fig. 2-9. Errors on *He/*He ratio measurement are plotted against partial
pressure of *He in the mass spectrometer. The errors are 1o
concurrent with raw value of *He/*He ratio. The improved
precision by modification of mass spectrometer is more effective
when *He partial pressure is low. Arrows indicate the range of *He
pressure in usual measurement of gas and rock samples.
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2-3. Determination of *He/*He ratio of HESJ (HElium Standard of Japan)

Since atmospheric *He/*He ratio (=1.40x10°®) is globally constant (Mamyrin et al.,
1970), atmospheric He has been used as a primary standard of He isotopic ratio in most
laboratories in the world. However, because of a very low concentration of He
(=5.24ppm) in air (Ozima and Podosek, 1983), a lot of air is necessary to be admitted to
the purification line, and precise measurement of *He/*He is not easy due to low *He
intensity. Moreover, a large amount of air introduced into the purification line gives
damage to some extent to the Ti-Zr getters and ultrahigh-vacuum condition. Therefore
in some laboratories, He in volcanic gases or natural gases, whose *He/*He ratio is
several times of the atmospheric one and “He concentration is high, are used as a
secondary standard. However, there are no common secondary standard among the
laboratories, thus interlaboratory crosscheck in accuracy of *He/*He ratio determination
has not been carried out until now. A synthesized He gas with high *He/*He ratio, which
is named HESJ (HElium Standard of Japan), was selected as a working standard. The
HESJ is synthesized by Nihon Sanso Kogyo Co. at a request of five noble gas
laboratories in Japan, and is expected to be a common secondary standard. The HESJ
consists of 99.9% of He, and its noble gas abundances measured by Prof. K. Nagao
using MS-II1 is listed in Table 2-3.

Table 2-3. Noble gas composition of HESJ.
*He INe ®ar Oar 8Ky B2xe
=1 15x10° 7.7x107 2.3x10" 4.7x10® 4.7x10°
“OArPPAr = 296.0 is assumed.

Prior to using the HESJ as the working standard for He isotopic ratio, its *He/*He ratio
was determined using atmospheric He as a primary standard. An aliquot of HESJ was
stored in the well-evacuated metal reservoir (Fig. 2-1) from a distributed steel cylinder.
One pipette of HESJ from the reservoir was analyzed to determine *He/*He ratio. The
amount of HESJ analyzed in this work was varied by reduction using known volumes of

some parts of the purification line. Results of 17 analyses are listed in Table 2—4.
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Analyses were carried out in two periods when the condition of the mass spectrometer
was sufficiently stable. The error assigned to the observed *He/*He ratios is one
standard deviation, including a statistical error of an individual measurement of HESJ
and an error of k(3/4) factor determined by repeated analysis of atmospheric He using
almost constant amount (corresponds to 1-3x107° Torr of He). The sensitivity and k(3/4)
factor determined with atmospheric He is listed in Table 2-5. Trap current of ion source
was adjusted to 400uA during analysis of HESJ and atmospheric He standards, because

gas inlet was large enough to obtain precise data.

Table 2-4. Helium isotope ratio of HESJ.

Dinet “He (inlet) “He output *He/*He .
'pe (10"Torr) (V; High-Faraday) RIR,

1st. Period (May. 31 ~ Jun.07, 1999)

R1-21 1.28 0.031 21.15 +041 +1.9
R1-22 47.93 1.145 20.23 +0.23 -2.6
R1-23 1.26 0.030 2094 +0.36 +0.8
R1-24 22.97 0.549 20.36 +0.23 -1.9
R1-25 10.95 0.262 2052 +£024 -12
R1-27 5.20 0.124 20.77 +0.26 +0.0
R1-28 0.61 0.015 21.16 +049 +1.9
R1-29 1.23 0.029 21.01 +£0.36 +1.2
2nd. Period (Jun. 11 ~ Jul. 01, 1999)

R1-30 1.16 0.038 2045 +0.33 -15
R1-31 0.60 0.020 2068 +0.36 -04
R1-32 0.75 0.025 20.87 +045 +05
R1-33 2.38 0.078 2064 +0.32 -0.6
R1-34 2.91 0.095 20.73 +0.30 -0.2
R1-35 16.97 0.555 2069 +0.26 -04
R1-36 4.49 0.147 20.78 +0.29 +0.1
Average (except R1-22) 20.77 £ 0.24
MS-III

RJ-1 0.065 2066  0.11

RJ-2 0.068 2061  0.16
Average 20.64 0.04

* Normalized to the atmospheric ratio = 1.4x10° (Ozima and Podosek, 1983)
**5={ (*He/*He)measured/(*He/*He)average-1} x 100
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Table 2-5. Correction factors for measurement of HESJ using MS-IV.
Sensitivity *Hel'He k (3/4)"
(10°A/Torr) (raw) (RIRY)™

1st. Period (May. 31 ~ Jun.07, 1999)
Jun. 01,1999 1.28 0.0968 +0.0016 10.34

Date

Jun. 04 1.40 0.0987 #+0.0017  10.13
Jun. 07 1.33 0.0986 =+ 0.0012 10.15
Average 1.34 0.0980 *=0.0011 10.21 =0.23

2nd. Period (Jun. 11 ~ Jul. 01, 1999)
Jun. 11,1999 1.72 0.0904 +0.0001 11.06

Jun. 14 1.75 0.0909 £0.0011 11.00
Jun. 24 1.78 0.0928 +0.0024 10.77
Jun. 28 2.06 0.0901 £0.0021 11.10
Jun. 29 1.84 0.0900 +=0.0020 11.11
Jul. 01 1.85 0.0915 £0.0019 10.93
Average 1.83 0.0910 =0.0011 10.99 =0.25

"k (3/4)=(He/*He), .,/ CHe/*He),;,
** Normalized to the atmospheric ratio = 1.4x10° (Ozima and Podosek, 1983).

Since the dependence of mass discrimination on gas pressure in the mass spectrometer
is reported (Sano and Wakita, 1988; Honda et al., 1993), we measured *He/*He ratio of
HESJ with varying the amount of He admitted into the mass spectrometer. The pressure
effects more than 5% of the *He/*He ratio were reported at the pressure higher than
1.5x10°Torr (Sano and Wakita, 1988) and 5x10Torr (Honda et al., 1993). Figure 2-10
demonstrates the relationship of *He/*He of HESJ with He pressure in the mass
spectrometer. Observed *He/*He ratios in our study seem to decrease down to 2.4% at
the highest pressure of 4.8x10°Torr. If the decrease of *He/*He ratio is result from
decrease of *He sensitivity of ion-counting caused by dead time of SEM, the dead time
is calculated to be 2.40x10sec for counting rate of 1.42x10%ps, which is much larger
than 8.0x10®sec estimated from sensitivity of ion-counting calibrated by known amount
of atmospheric noble gases. Thus, the observed trend of *He/*He ratio with partial
pressure of He is caused by pressure effect on mass discrimination showed by previous
studies (Sano and Wakita, 1988, Honda et al., 1993). Because Ne was completely
separated from He by the Cryo-trap, Ne interference with the He isotopic ratio pointed

out by Sano and Wakita (1988) is left out of consideration. In spite of the highest
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pressure in our data surpass the critical pressures in previous cases, the pressure effect
on discrimination is much smaller, only —2.4% at the highest pressure, than the
previously reported ones. Therefore, although the pressure effect is also observed, it is
not so prominent in the case of MS-IV.

An average value of *He/*He ratios of HESJ is 20.77 + 0.24 Ra or (2.908 + 0.034) x
10°°, excluding R1-22 (Table 2-3) whose ®He/*He ratio is significantly lower than the
others beyond the analytical error due to the pressure effect. *He/*He ratios of HESJ
analyzed by Prof. K. Nagao using MS—II1 is also listed in Table 2-3. In the case of
MS-II1, correction factor k(3/4) was calibrated by analysis of synthesized He standard
prepared by Prof. K. Nagao. The *He/*He ratio of the standard is 1.71x10™, 120 times
enriched in *He than atmospheric He, thus the errors for *He/*He ratios of HESJ are
smaller than those obtained with MS—IV. However, the determined *He/*He ratios with
the two mass spectrometers show very good agreement within experimental errors.
Therefore, the value of 20.77 + 0.24 Ra is currently used for the *He/*He ratio of HESJ,
which is used as working standard to determine *He/*He ratio with MS-1V.
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Fig. 2-10. A plot of measured *He/*He ratio of HESJ against partial pressure of helium
in the mass spectrometer.  8={(*He/*He)measured/(CHe/*He)ayerage-1}x100.
Averaged value is 20.77 £ 0.24 Rp, excluding one data point at the highest
pressure (R1-22).
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2-4. Accuracy in He isotopic ratio measurements

2—-4-1. Intralaboratory crosscheck using Natural samples

To confirm the accuracy in He isotope ratio measurement with MS-1V, the *He/*He
ratios of four hot-spring and one volcanic gases collected in Izu Peninsula and Iwo-jima,
Japan are measured using MS-IV, MS-I11 and MS-I. In addition, replicate analysis
with MS-1V is also done to confirm reproducibility. Gas samples are suitable for testing
accuracy and reproducibility in the measurements of *He/*He ratio, because rock
samples often show noble gas heterogeneity even in the in vacuo crushing extraction
method (e.g., Hilton et al., 1993; Sumino et al., 2000; Trieloff et al., 2000).

The results are listed in Table 2—6. The He isotope standards used for the mass
spectrometers MS—IV, MS—I11, and MS—I are HESJ, synthesized He gas (*He/*He =
1.71x10™), and atmospheric He, respectively. Some of the data are measured by Prof. K.
Nagao and Dr. P. A. Hernandez. Because the errors for *He/*He ratios measured by
MS-IV include the uncertainty in *He/*He determination of HESJ (=1.3%), whereas
*He/*He ratios by other two systems do not take uncertainties of *He/*He standards into
consideration, the errors with MS—IV seem to be larger than those with other two
systems. The results obtained with MS—1V and MS~I111 show good agreement. The
results obtained with MS-I are slightly higher than those with MS—-1V and MS-III
except one sample, however, the differences are at most 5% and within the experimental
errors (1o). Only one exception is the sample Izu-E. This may be due to the pressure
effect in analysis of standard gas in measurement with MS-I, because constant amount
of atmospheric He was used as He standard irrespective of He pressure of the sample.
The results of replicate analyses with MS—IV assure an adequate reproducibility in
*He/*He determination. These show that any systematic errors would not occur in our
modified noble gas analysis system, MS—IV.
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Table 2-6. Replicate analysis and comparison of He/*He ratio
among MS-1V, MS-IIl and MS-I.

Sample MS *Hel'He
(Locality) (RIRA)™
Izu Peninsula, Japan

Izu-A v 6.32 *= 0.16
(Hirono) v 6.33 £ 0.12

IV 6.35 + 0.13
m? 6.31 = 0.05

| 6.52 + 0.15
Izu-B vV 716 £ 0.19
(Aakazawa) v 7.15 = 0.13
m? 717 =+ 0.06
| 7.34 + 0.17
Izu-C V' 798 £ 0.21
(Atagawa) v 7.82 £ 0.15
2 774 +0.04
Izu-D V' 613 £ 0.16
(Hirono) v 6.30 £ 0.14
I®  6.63 = 0.14
Izu-E V' 502 £ 0.37
(Atami) IV 494 =+ 0.39

I 404 + 0.26

Iwo-jima, Japan
Iwo-A IV 1229 == 0.048
(Suribachiyama) | 1.280 = 0.025

*1. Normalized to the atmospheric ratio = 1.4x10° (Ozima and Podosek, 1983).
*2. Measured by Prof. K. Nagao.
*3. Measured by Dr. P. A. Hernandez.
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2—-4-2. Interlaboratory crosscheck using HESJ

The HESJ is expected to be interlaboratory standard for He isotopic analysis, and
distributed to five noble gas laboratories in Japan; Osaka Univ., Hiroshima Univ., the
Institute for Study of the Earth's Interior, Okayama Univ., Earthquake Research Institute,
Univ. of Tokyo, and Laboratory for Earthquake Chemistry, the Univ. of Tokyo. *He/*He
ratio of HESJ obtained by Osaka Univ. and Earthquake Research Institute are listed in
Table 2—7 with our data (Matsuda, personal communication; Yamamoto, personal
communication). The two values obtained by both two laboratories are determined
using atmospheric He as a primary standard, as well as the value obtained with MS-IV.
The all values show good agreement within analytical errors, indicating that there is no
systematic error in *He/*He ratio determination among three laboratories. Weighted
average in proportion to the inverse number of the square of each error is calculated to
be 20.66 + 0.19 Ra, except the data obtained with MS-I11 from the calculation because
it is determined using the other synthesized high *He/*He gas as a primary standard. The
true *He/*He ratio of the HESJ is not known, however, accumulation and compilation of
data obtained by several laboratories are needed to determine the recommended value of
He/*He ratio of HESJ, which will be used as an interlaboratory standard of *He/*He

ratio in the future.

Table 2-7. ®He/*He ratio of HESJ determined by several laboratories.

Laboratory 3He/4Hg
(R/Rp)
Osaka Univ. 2044 £ 0.35
Earthquake Research Institute, Univ. of Tokyo 20.63 £ 0.70
Laboratory for Earthquake Chemistry, Univ. of Tokyo (MS-IV) 20.77 £ 0.24
(MS-I11I) 20.64 + 0.04
Weighted average 20.66 + 0.19

* Normalized to the atmospheric ratio = 1.4x10° (Ozima and Podosek, 1983).
** Average weighted in proportion to 1/(error)2 except data obtained with MS-III.
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3. Noble gas in alkaline basalt from northwestern Kyushu

3-1. Geological and geochemical background

A back arc volcanic belt produced by Miocene to Pleistocene basaltic volcanism
extends from northwest Kyushu to Chugoku district along the Sea of Japan coast of
southwest Japan (Fig. 1-2). The basalt province in northwestern Kyushu consists of two
discrete areas, the Higashi-matsuura and Kita-matsuura districts. The geological history
of volcanic activity and related events in northwestern Kyushu is reviewed in Yanagi
and Maeda (1998). Figure 3-1 is a compilation map on eruption age of volcanic rocks
in northwestern Kyushu after Yanagi and Maeda (1998). The volcanic activity in
northwestern Kyushu was preceded by the formation of shallow-water sedimentary
basin in Oligocene to Miocene. Sedimentation started about 44My ago with the
subsidence of the basement Cretaceous metamorphic rocks and granitic plutons. The
basalt volcanism started at 11Ma immediately after the 33 My-long sedimentation. At
this time, the basin had continued the gentle uplift that started at about 30Ma. Eruption
of the basalt started at ca. 11Ma, and continued intermittently until 1Ma (Yanagi et al.,
1992). The total volume of basalt exceed more than 200km?, though many of alkaline
basalts erupted in northwestern Kyushu were eroded away and are distributed under the
sea (Nakada and Kamata, 1991). The most extensive activity occurred in Kita-matsuura
of 49km? in total volume, which is nearly half of Cenozoic basalts presently observable
in southwestern Japan (Kurasawa, 1967). The volcanic activity started first in the central
part of the Kita-matsuura district at about 11Ma and continued until 6Ma. Most of
basaltic magma erupted to the surface to form a thick accumulation of lava flows, 350m
thick at maximum. The sites of basaltic eruption shifted to the northwest
(Higashi-matsuura) and south (Tara-dake) from 4 to 1Ma. The recent activity was
observed in Ojika-jima and Fukue-jima of Goto Islands, which lies to the northwest of
Kyushu, and is considered to still continue. The basaltic volcanism in the
Higashi-matsuura district is continued a very short period around 3Ma (Nakamura et al.,
1986). The early alkaline basalts in the Higashi-matsuura district contain mantle-derived

ultramafic xenoliths ranging from 1cm to 30cm in diameter and megacrysts (e.g., Kuno,
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1964; Ishibashi, 1970; Kobayashi and Arai, 1981), providing evidence of direct mantle
derivation. Yanagi and Maeda (1998) considered that formation of the sedimentary
basin was related to the lower crust erosion by mantle upwelling, which produces basalt
magma by decompression melting. And the uplifting which started at about 30Ma
suggests the accumulation of basaltic magma in the magma chamber beneath the
sedimentary basin. However, they did not mention what caused the mantle upwelling.
The mechanism of mantle upwelling is still under discussion (Chapter 1). The alkaline
basalts from southwestern Japan have trace element and Nd-Sr isotopic characteristics
similar to those of oceanic island basalts. For that reason, some researchers proposed a
hotspot model that the volcanism of this area was triggered by a deep mantle plume
which raised from the source of intraplate volcanism, that is probably core-mantle
boundary or upper-lower mantle boundary (e.g., Nakamura et al., 1985, 1989, 1990;
Nakada and Kamata, 1991; Kakubuchi et al., 1995). On the contrary, such geochemical
features can be explained by upward injection of asthenosphere (depleted mantle) to sub
continental lithosphere (enriched mantle) associated with the opening of back-arc basin.
This asthenospheric injection model has been proposed to explain the origin of
volcanisms around the Sea of Japan, such as northeastern Japan (Nohda et al., 1988;
Tatsumoto and Nakamura, 1991; Ohki et al., 1994), and Shihote-Alin and Sakhalin
(Okamura et al., 1998).

Since geochemical features previously reported cannot determine which model is the
case, upwelling of enriched mantle plume or injection of depleted asthenosphere. Noble
gas isotopic compositions of Cenozoic alkaline basalts from northwestern Kyushu are
measured and discussed in this chapter, because they are expected to provide some
constraints on the source of the alkaline basalts.
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3-2. Samples and experiments

3-2-1. Samples

Samples used in this study were collected from both Higashi-matsuura and
Kita-matsuura districts in northwestern Kyushu during three filed seasons, August 1997,
October 1998 (Higashi-matsuura), and March—April 2000 (Kita-matsuura). The samples
are listed in Table 3-1 and sampling localities are shown on Fig. 3-2. All samples are
lava chunks collected from road cut or quarry, except samples from two localities;
Takashima and Oshima were collected as boulder stone. The basalt from Takashima
contains large phenocrystic pyroxene (augite and bronzite) up to 3cm across. They have
crystallized from the alkaline basalt magma at a pressure higher than that of the ordinary
phenocryst formation, corresponding the depth little below the Moho discontinuity or
near the base of the crust (Kuno, 1964; Ishibashi, 1970). An augitic megacryst was also
collected and measured (TKA0940).
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Table 3-1. List of samples from northwestern Kyushu

Locality name

)
) ., Sample name  Sampling date ~ Sub-sample phase ™ Noble gas analysis K-Ar XRF
(Location No.) st cr
Higashi-matsuura
Keya FUK9716 1997. 8. 30 FUK97160l ol O O
(1) FUK9716px  cpx O O
FUK9716B wr O
FUK9716K gm O
Takashima TKB0001 2000. 4. 3 TKB0001ol ol O O
2 TKBO0001px  cpx O O
TKB0001B wr O
TKB0001K gm O
TKB0002 2000. 4.3 TKB0002o0l ol O
TKB0002px  cpx O
TKB0002B wr O
TKB0002K gm O
TKB0003 2000.4.3 TKBO0003K gm O
TKA0940™  1997.8.29 TKA0940px  cpx O
Ohshima 0OSM9801 1998.10.12  OSM9801o0l ol O
(3) 0OsSM9801B wr O
OSM9801K gm O
Karatsu KR8404 1998.10.12  KR8404ol ol O O
4) KR8404px cpX O O
KR8404B wr O
KR8404K gm O
Karatsu KAR9803 1998.10.12  KAR9803ol ol O O
(5) KAR9803px  cpx O O
KAR9803B wr O
KAR9803K gm O
Nanatsugama KAR9801 1998. 10. 12 KAR9801ol ol O
(6) KAR9803B wr O
KAR9803K gm O
Kita-matsuura
Myokanji SSB0001 2000. 4.2 SSB0001ol ol O O
€)] SSB0001px CcpX O
SSB0001B wr O
SSB0001K gm O
Yoshii SSB0002 2000. 4.2 SSB0002o0l ol O O
@ SSB0002px Ccpx O
SSB0002B wr O
SSB0002K gm O
Hirado HRD0001 2000. 4.2 HRDO0001ol ol O
9) HRDO0001B wr O
HRDO0001K gm O
HRDO0002 2000. 4.2 HRDO0002K gm O
Doinohana KKZz0003 2000.4.1 KKZ0003px CcpX O
(10) KKZ0003B wr O
KKZ0003K gm O
Kokuzo KKZ0001 2000.4.1 KKZ0001px  cpx O
(11) KKZ0001B wr O
KKZ0001K gm O

*1. corresponds to No. in Fig. 3-2
*2. ol: olivine, cpx: clinopyroxene, wr: whole rock, gm: groundmass

*3. st: step heating, tf: total fusion, cr: crushing
*4, clinopyroxene megacryst
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(Kurasawa, 1967, Yanagi and Maeda, 1998).
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3-2-2. Mineral separation

The olivine and clinopyroxene phenocrysts separated from collected basaltic rocks were
used for noble gas analysis. Since the basalt from this region generally contains
ultramafic xenoliths, the careful separation was necessary to avoid contamination of
xenolithic fragments.

Basaltic rock (3—-10kg, depending on the abundance of phenocrysts) was sliced using a
diamond saw and cm-sized xenolithic fragments were removed. Then each sample was
crushed to a diameter of less than 2cm by a jaw crusher and then fragments of xenolith
were removed again. And then, basalt chips without xenolith are crushed into less than
2mm. An aliquot (ca. 30g) was further crushed by a steel mortar into powder < 0.1mm,
which was used for determination of major and trace element compositions. Olivine
and clinopyroxene phenocryst (0.25-2mm in diameter, depending on the sample) were
separated using a magnetic separator (Frantz isodynamic separator in Earthquake
Research Institute of the University of Tokyo), followed by handpicking under a
binocular microscope. The remaining groundmass after removal of phenocrysts such as
olivine, clinopyroxene, magnetite and plagioclase, etc. is used for K-Ar age
determination. The 0.25-0.5mm fraction of groundmass was used for Ar analysis, and
an aliquot of this fraction were further crushed into powder, and then used for K content

determination.

3-2-3. Major and trace element composition

Major and trace element concentrations were determined by X-ray fluorescence
spectroscopy (XRF) at the Earthquake Research Institute of the University of Tokyo.
Ten major and fifteen trace elements were measured with a technique described by
Tanaka and Orihashi (1997). Fused glass beads were prepared from mixture of 1.8g of
rock powder (< 0.1mm), 3.6g of lithium metaborate/tetraborate flux, and 0.54g of
lithium nitrate. XRF analysis was carried out using a Philips PW2400 spectrometer,
with a Rh anode X-ray tube. International silicate rock and mineral reference materials
provided by the Geological Survey of Japan (JA-1, JA-2, JA-3, JB-1a, JB-2, JG-1a,

51



JG-2, JG-3, JGb-1, JP-1, JR-1, JR-2, JF-1) and the United States Geological Survey
(BIR-1, DNC-1, DTS-1, QLO-1, RGM-1, STM-1, W-2) were used to set up the
calibration lines.

In order to check reproducibility, replicate analyses for two samples (JB-2 and JR-1)
were carried out for each six glass beads prepared from aliquots of the same powder. A
standard sample provided by the Geological Survey of Japan (JB-1a), which is basalt
collected from almost the same locality of SSB0001 (Myokaniji), is also analyzed to

confirm accuracy of analysis.

3—-2-4. Noble gas analysis

Separated olivine and clinopyroxene phenocrysts were used for noble gas analysis.
After careful removal of altered mineral under a binocular, mineral samples were
leached with 2N-HNOj3 in an ultrasonic bath for 1 hour, in order to remove possible
contamination by groundmass which contains more abundant atmospheric noble gases
than olivine and clinopyroxene. HNO3 was used in place of HCI because H**Cl and
H*CI might superimpose the peaks of **Ar and *®Ar in isotopic measurement of Ar, and
it is difficult to eliminate them completely once they contaminated the mass
spectrometer. The loss of weight of olivine and clinopyroxene samples by acid leaching
treatment was usually less than 5% of the original weight.

Noble gas analyses were carried out with MS—IV. In vacuo crushing with a
solenoid-type crusher and step heating or single step heating (total fusion) were applied
for gas extraction. Details of noble gas measurement were already described in chapter
2. Concentrations of all noble gases and isotopic ratios of He, Ne and Ar were measured
for all samples. Kr and Xe isotope analysis were carried out for gas rich samples or high
temperature fraction of 2-step heating, because atmospheric component is dominant in
low temperature fraction. Hot blanks and crushing blanks were measured in the same

way as sample runs.
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3-2-5. K-Ar age determination

The groundmass of the samples (0.25-0.5mm fraction) were washed in an ultrasonic
bath with acetone, ethanol and distilled water. An aliquot of them were crushed into
powder (<0.1mm) by a steel mortar and used for K concentrations by a XRF. Since K is
major component in alkaline basalt, more diluted fused glass beads method (sample:
flux =1: 5 by weight) was used to reduce the time for preparation. Other procedures
were the same for major and trace element measurement. Errors on determination of K
content are 2%. Ar was extracted from ca. 0.5g of remaining groundmass at 1800°C and
analyzed with MS-1V following the same procedure as outlined above.
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3-3. Results

3-3-1. Major and trace element compositions

Major and trace element compositions of the samples are listed in Table 3-2. Errors
accompanied with analysis of major and trace elements are lower than 0.4% and 4ppm,
respectively, estimated from the replicate analyses of JB-2 and JR-1. The results of
JB-1a show a good agreement with recommended values (Imai et al., 1995) within
analytical errors. SSB0001 and JB-1a are collected from almost the same lava flow,
showing approximately consistent composition except Pb.

The samples show a continuous compositional spectrum from low alkaline tholeiitic
basalt to alkaline olivine basalt across the alkaline-sub alkaline discrimination line
(Miyashiro, 1978) on the Na,O+K,0 vs. SiO, diagram (Fig. 3-3) and SiO; vs.
FeO*/MgO diagram (Fig. 3—4). While all the samples from Higashi-matsuura are in the
alkaline olivine basalt field, the samples from Kita-matsuura distribute across the
discrimination line in Fig. 3-3. This indicates that basalts from Higashi-matsuura are
derived from homogeneous magma; whereas the compositions of magmas erupted in
Kita-matsuura vary due to magma mixing or fractional crystallization of magma.
Yanagi and Maeda (1998) suggested that Kita-matsuura basalts are mixing products of
magmas with different degrees of fractionation from a uniform primitive magma. Figure
3-5 shows SiO,—MgO compositional distribution of basalts with data from
northwestern Kyushu basalts (Yanagi and Maeda, 1998). The basalts show a crescent
form of distribution. From observation of petrographic textures and chemical
composition, basalts in trend of fractional crystallization make a line bottom of the
crescent, and basalts plotted inside the crescent form represent compositions formed by
magma mixing (Yanagi and Maeda, 1998). Basalts from Higashi-matsuura analyzed in
this study are plotted on the fractionation trend near the high-MgO end, showing that
they are relatively primitive. Most of the samples from Kita-matsuura lie on an upper
base of the crescent form except one sample (SSB0002), indicating that they are mixing

products between almost primitive magma and highly fractionated magma.

54



Figure 3-6 is a so-called spider diagram of incompatible elements, in which these
elements are arranged in an order of increasing incompatibility and the abundances of
each element is normalized to that of N-MORB (Pearce, 1982). The alkaline basalts
from northwestern Kyushu show features that they are highly enriched in incompatible
elements comparable to ocean-island alkaline basalt, and lack Nb-depletion which is
characteristic in island-arc tholeiitic basalt. The patterns are uniform among two
districts and lack time-space variation. Such characteristics of incompatible elements
are almost the same as those from previous studies (Nakamura et al., 1985; 1989;
Nakada and Kamata, 1991), which was consider to be an evidence that the origin of
alkaline basalt volcanism in this region is not subduction-related magmatism but mantle

plume as well as intraplate volcanism.
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Fig. 3-3. Alkali-subalkali discrimination diagram. The discrimination line is
from Miyashiro (1978). Open circles are basalts from northwestern
Kyushu from Yanagi and Maeda (1998).
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Fig. 3-4. Diagram showing relationship between SiO2 and FeO*/MgO. FeO* is total
iron content assuming the composition of FeO. Dashed line is a
discrimination line for classification of volcanic rocks into calc-alkalic
series (CA) and tholeiitic series (TH) by differentiation trends of magma
(Mivashiro, 1974).
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Fig.3-6. Spider diagrams of incompatible elements for basalts from northwestern
Kyushu. Abundances of n-MORB are: Rb = 2.0ppm, Ba = 20ppm, Th =
0.2ppm, K0 = 0.15%, Nb = 3.5ppm, Sr = 120ppm, P,Os = 0.12%, Zr =
90ppm, TiO, = 1.5%, Y = 30ppm (Pearce, 1982). For comparison, the
patterns of an ocean-island alkalic basalt (OIB) and an island-arc tholeiitic
basalt (IAB) (Pearce, 1982) are shown.
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3-3-2. K-Ar ages

Obtained K-Ar ages are listed in Table 3-3. K-Ar ages were calculated using a
non-spike sensitivity method including mass fractionation correction procedure after
Nagao et al. (1996). Errors on concentration of *°Ar are 5%, estimated from the
reproducibility of several measurements of the standard air. Errors with isotopic ratios
in Table 3-3 are 1o, including errors in blank correction and mass discrimination. K-Ar
ages reported in this study were evaluated using two standard reference samples. One is
YZ1, a Quaternary basalt from Zao volcano, Japan, whose reference age obtained with
isotope dilution method is 0.227+0.009Ma, and the other is Baba tuff (biotite) with a
reference age of 11.81+0.10Ma (Nagao et al., 1996). Two splits of YZ1 and three splits
of Baba tuff were analyzed. Results listed in Table 3-3 are in good agreement with
previous referenced value.

The samples from Higashi-matsuura show uniform K-Ar age, 3.04+£0.13Ma. The result
Is in good agreement with previously reported K-Ar age (2.98+0.03Ma) of
Higashi-matsuura basalt (Nakamura et al., 1986). The excellent age agreement of the
samples provides strong evidence that the monogenetic alkaline basalt volcanism
occurred for an extremely short period in the Higashi-matsuura district. It is consistent
with major element composition of the basalts suggesting that they are derived from a
uniform magma and little fractionated. Most of the samples from Kita-matsuura district
show older ages than from Higashi-matsuura district, which range from 6.1 to 7.3Ma.
Only one sample (KKZ0001) has exceptionally younger age, 2.99+0.05Ma, which is
almost the same period eruption in Higashi-matsuura took place. Since the volcanic
activity in Kita-matsuura started at about 11Ma and continued until 6Ma (Yanagi and
Maeda, 1998), the samples from Kita-matsuura analyzed in this study were erupted at

the latest stage of volcanism in this region.
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Table 3-3. Results of K-Ar analysis

H 36 40 .
Sample K Weight -10[ A;r] B Ar TN £ A3r],ad Air-f K-Ar age
(Wt%)  (9) (10" cm’STP/g) (10°cm’STP/g) (%) (Ma)
Higashi-matsuura
FUK9716 1.312 0.5319 18.0 0.18817 + 0.00048 381.19 + 0.77 15.4 77.6 3.01 £0.18
0.5547 15.6 0.18841 + 0.00045 400.69 * 0.91 16.3 73.9 3.20 £ 0.19
Average 15.8 3.11 £ 0.13
TKB0002 1.584 0.4285 5.32 0.18815 + 0.00075  651.3 * 6.2 18.9 454 3.07 £0.20
0.4679 5.14 0.1879 + 0.0010 665.2 + 9.8 19.0 44.5 3.09 *0.22
Average 18.9 3.08 = 0.01
TKB0001 1.398 0.5451 5.37 0.18790 + 0.00087  616.1 * 6.9 17.2 48.0 3.17 £0.22
0.3815 5.35 0.18808 + 0.00073 615 + 10 17.1 48.1 3.15 £ 0.24
Average 17.1 3.16 = 0.02
TKB0003 1.593 0.5935 2.33 0.18817 + 0.00074 11208 * 7.4 19.2 26.4 3.10 £0.20
0.7933 1.81 0.18790 + 0.00086 1386.3 * 9.6 19.7 21.4 3.18 * 0.20
Average 19.4 3.14 + 0.06
KR8404  1.626 0.7467 6.87 0.18788 + 0.00051  553.3 * 3.2 17.7 53.5 2.80 £ 0.17
0.4060 7.62 0.18827 + 0.00054 5425 * 5.1 18.8 54.6 2.98 * 0.20
Average 18.2 2.89 +0.13
KAR9801 0.960 0.4068 3.04 0.1875 + 0.0010 644.1 + 3.5 10.6 46.0 2.84 +0.18
0.4224 2.92 0.1878 * 0.0012 681.7 + 4.0 11.3 43.4 3.02 +0.19
Average 10.9 2.93 +0.13
KAR9803 1.400 0.5710 5.34 0.18828 + 0.00067 5852 * 6.1 155 50.6 284 £0.19
0.5247 4.28 0.18791 + 0.00063 681 + 11 16.5 43.4 3.03 * 0.22
Average 16.0 294 +0.13
OSM9801 1.053 0.4342 471 0.18795 + 0.00067 5555 * 1.8 12.2 53.3 299 *0.18
0.4052 3.90 0.1880 + 0.0011 632.6 + 2.9 13.1 46.8 3.21 £0.20
Average 12.7 3.10 +0.16
Average (Higashi-matsuura) 3.04 +0.12
Kita-matsuura
SSB0001  1.131 0.4272 8.22 0.18799 + 0.00046 6734 * 6.9 31.0 44.0 7.05 £ 0.46
0.4974 8.60 0.18853 + 0.00061  680.2 * 5.7 32.9 435 7.51 * 048
Average 32.0 7.28 + 0.33
SSB0002 1.330 0.5736 5.96 0.18778 = 0.00034 897 + 11 35.8 33.0 6.93 + 0.46
0.6535 5.24 0.18808 + 0.00055 1039 * 14 38.9 28.5 7.52 + 049
Average 37.4 7.22 +0.42
HRD0001 1.434 0.5020 2.76 0.18898 + 0.00074 1645 * 13 37.3 18.0 6.69 * 0.42
0.4142 1.83 0.1877 + 0.0016 2516 + 38 40.6 11.8 7.28 * 0.50
Average 38.9 6.98 + 0.42
HRD0002 1.116 0.5322 11.6 0.18841 + 0.00056 520.42 * 0.68 26.0 56.9 6.00 £ 0.35
0.4537 12.5 0.18857 + 0.00048 5334 + 1.4 29.6 55.5 6.81 + 0.40
Average 27.8 6.41 + 0.57
KKZz0001 0.857 0.4097 3.14 0.1876 + 0.0010 609.1 * 3.0 9.8 48.6 296 *0.19
0.6043 2.42 0.18824 + 0.00080 7126 * 3.7 10.1 415 3.03 £0.19
Average 10.0 2.99 £ 0.05
KKZ0003 0.650 0.4151 2.35 0.18717 + 0.00083 9453 * 8.2 15.3 313 6.05 * 0.39
0.4841 2.36 0.18715 + 0.00091  967.9 + 7.6 15.8 30.6 6.26 + 0.40
Average 15.6 6.15 £+ 0.15
Standard samples
Baba tuff 6.560 0.2081 9.45 0.18819 =+ 0.00066 3373 + 117 291 8.8 11.38 + 0.86
0.0592 11.2 0.1883 * 0.0014 3090 =* 58 312 9.6 12.23 +0.82
0.6513 10.1 0.18832 + 0.00081 3176 + 39 292 9.3 11.43 + 0.64
Average 298 11.68 + 0.48
Reference values (Nagao et al., 1996) 296 11.81 +0.10
YZ1 1.410 0.6390 5.42 0.1814 + 0.0022 3207 £ 13 1.34 923 0.244 £ 0.024
0.3836 2.81 0.1866 * 0.0015 3402 £ 1.1 1.24 87.0 0.227 +0.015
Average 1.29 0.236 + 0.012
Reference values (Nagao et al., 1996) 1.240 0.227 + 0.009

Errors on K and *Ar concentration are 2% and 5%, respectively. Errors with isotopic ratios are 1c.
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3-3-3. Noble gas isotopes

Results of noble gas analysis are summarized with conditions of gas extraction in
Tables 3—4 and 3-5. Hot blanks and crushing blanks are listed in Table 3—6. Correction
of blanks were carried out for all data of sample runs, however, isotopic ratios of Ne
with blank which exceed 50% of total Ne, and all the isotopic ratios of Kr and Xe were
not corrected because of the quite low amounts of released gases. Errors on isotopic
ratios are one standard deviation, including errors with blank correction and mass
discrimination. Experimental uncertainties in the concentration of each noble gas were
estimated to be about 5% for He and Ar, 10% for Ne, Kr and Xe, respectively, based on

the reproducibility of measurements of the standard gas.
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Stepwise heating

The stepwise heating is a conventional method for extracting gases from rock samples.
Adsorbed atmospheric, especially heavier noble gases on sample surface would not be
completely removed even by heating at about 200°C in vacuum condition. The
appropriate choice of stepwise temperature would make it possible to separate inherent
gases of magmatic origin from gases of secondary component, such as atmospheric,
radiogenic and cosmogenic. In the low temperature fraction, adsorbed gases would be
removed from the sample surface while magmatic gases trapped in the matrix and/or
fluid inclusions would be retained. Then, they would be degassed from the samples and
analyzed at high temperature.

It is appropriate to apply multi-stage step heating method for all the samples in principle,
however 2-step heating method is practicable due to limited amount of the sample
available, with low noble gas concentration. Contamination by adsorbed atmospheric
component is a serious problem for heavier noble gases. In this section, gas release
pattern as a function of heating temperature was investigated for olivine to determine
appropriate temperature, at which magmatic component will be separated from
adsorptive component.

FUK9716 olivine was selected for the stepwise heating test. The noble gas elemental
abundances, and He, Ne and Ar isotopic ratios were measured at each temperature step
(600, 800, 1000, 1200, 1400, 1600 and 1800°C). Results are listed in Table 3-7 and
shown in Fig. 3-7. No significant variations were observed for Ne isotopic ratios and
BAr/Ar ratios. At 600—-1000°C, low *He/*He ratios (~1RA) and “°Ar/*®Ar ratios with
almost atmospheric value were observed. Ar released at these fractions are dominant in
atmospheric component. *°Ar release shows two peaks at 600°C and 1000°C, the former
represents the atmospheric component adsorbed on the sample surface and the latter
may be strongly adsorbed atmospheric Ar in micro cracks or altered phase. Low
He/*He ratios at these low temperature is explained by mixing between trapped He and
radiogenic “He both of which degassed from matrix via volume diffusion, because
adsorbed He on the sample surface could be removed by preheating under vacuum

condition.
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At 1400°C, high ®He/*He and *°Ar/*®Ar ratio were observed. The ®He/*He ratio of this
fraction is similar to that obtained with crushing, therefore fluid inclusion might be
decrepitated around this temperature. The “°Ar/*°Ar ratio is the highest among all
fractions, reflecting magmatic origin. On the contrary to He, “’Ar/*®Ar ratio obtained
with crushing is significantly lower than the highest value with step heating, probably
due to adsorbed atmospheric Ar. Therefore, at least two-step heating is necessary to
estimate “°Ar/**Ar ratio of magma. Thereafter in this experiment, the heating
temperature in the low temperature fraction was chosen to be 1000°C for olivine to
remove secondary noble gases completely. The high temperature fraction was set at
1800°C to guarantee complete melting and degassing from the sample. Since it is
reported that magmatic noble gases in clinopyroxene were degassed at lower
temperature than that of olivine (Hanyu et al., 1999), clinopyroxene samples were
degassed at 800°C and 1800°C in this study.
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Fig. 3-7. Noble gas release pattern with stepwise heating method for the sample
FUK9716 olivine. Dashed lines on He and Ar isotopic ratios represent
the values obtained with crushing method.
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Post-eruptive Radiogenic and Cosmogenic He

Figure 3-8 shows a comparison of the *He/*He ratio obtained with crushing and step
heating for the same sample. For the samples whose amount is limited and could not
separately used for crushing and step heating, powdered sample after crushing
experiment were used for heating experiment.
Most samples show lower *He/*He ratios with heating than that with crushing. It is
caused by post-eruptive addition of radiogenic “He except olivine and clinopyroxene
separated from KAR9803. The contribution of radiogenic He is significant in low
temperature fraction, because “He produced by radioactive decay of U and Th in matrix
are extracted via volume diffusion, while fluid inclusions which contain magmatic He is
not decrepitated at this temperature. Radiogenic *He concentration ([*He]ragio)mess in
phenocryst can be calculated as follows. Assuming that *He/*He ratio obtained with
crushing (®He/*He)cwsh is original isotopic ratio of magma, *He/*He ratio measured by
heating method is
3 3
e e e
_ (CHe/*He) gy [*Hel,,,, +(CHel*He)
[*Hel,,, +[*He]

radio

radio

4
radio [ He] radio

radio

where [*Helusp and [*Helyp are trapped concentrations of *He and “He, respectively.
(®*He/*He)radio is production ratio of radiogenic component of *He from °Li and “He from
U and Th. Assuming the Li and U contents in the phenocryst of 0.5ppm and 2ppb for
olivine and 5ppm and 30ppb for clinopyroxene, respectively, and Th/U ratio of 3,
(®*He/*He)radio are estimated to be lower than 0.001Ra both for olivine and clinopyroxene
(Andrews, 1985), thus negligible. Total “He concentration [*He]nea totally released by
heating is

[4 He]heat :[4 He]trap -l_[4 He]

radio

Thus, [*He]yadio is calculated from

(3 He/4He)crush _(3 He/4He) heat ]

*Hel . =[*He
[ ]radlo [ ]heatx( (3He/4He)

crush
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Obtained [*He]ragio and [*He]wap for each sample except KAR9803 are shown in Table
3-8.

On the other hand, the amount of accumulated radiogenic “He depends on
concentrations of U and Th, and age of eruption. Therefore, the amount of radiogenic
*He can be estimated from U and Th concentrations of the host basalt. Partition
coefficients of U between phenocryst and matrix are 0.0025 and 0.04 for olivine and
clinopyroxene, respectively (Henderson, 1982). Th/U ratio is assumed to be 4.9 from
Kurasawa (1968). Production rates of radiogenic *He from 1g of U and Th are
1.15x107cm®STP and 2.87x10%cm®STP per year (Ozima and Podosek, 1983).
Estimated concentrations of radiogenic “He are listed in Table 3-8. While the measured
concentrations of radiogenic “He for clinopyroxene show good agreement with those
calculated ones within an order of magnitude, those for olivine are almost an order of
magnitude higher than calculated value. This discrepancy might be caused by
uncertainties of partition coefficient of U for olivine, and/or relatively large contribution
of a-particle implantation from matrix around phenocryst. The range of a typical
a-particle in basaltic lava is approximately 20-40um. U and Th contents in basalt
matrix are 400 times of those in olivine, thus surrounding matrix 20um in thickness of
1mm spherical olivine can produce two orders magnitude more abundant radiogenic
*He (1-3x10cm>STP), and can cover the excess radiogenic “He observed
(2-8x10™°%cm>3STP in 1mm olivine). Depletion of radiogenic “He of groundmass
(KR8404K) is probably due to diffusive loss of He, because diffusivity of He in
groundmass may be three to four orders of magnitude higher than that of olivine and
clinopyroxene, respectively (Trull and Kurz, 1993).

Samples of olivine and clinopyroxene separated from KAR9803 basalt show higher
He/*He ratios at high temperature fraction of step heating than those with crushing
(Table 3-3 and Fig. 3-8), indicating cosmogenic *He addition. This basalt was collected
along a thin road cut on a hill with possible exposure to cosmic ray. Total He
concentration and *He/*He ratio with crushing are low in this sample. Therefore,
cosmogenic component can be conspicuous compared to other samples. Assuming that
concentration of radiogenic He at high temperature fraction is equal to that at low

temperature fraction, excess *He at high temperature fraction in olivine and
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clinopyroxene are 5.0x10™*cm®STP/g and 2.9x10™“cm®STP/g, respectively. >*Ne/*’Ne
ratios of these samples (0.0348 and 0.0299 for olivine and clinopyroxene, Table 3-3)
are also higher than atmospheric ratio (0.0290), indicating cosmogenic **Ne addition. If
all excess *!Ne is cosmogenic origin, *He/**Ne ratios of olivine and clinopyroxene are
estimated to be 4.2 and 7.4, showing good agreement with the value of 3.5 for mafic
phenocryst by Staudacher and Allegre (1993) considering relatively large uncertainties
in 2!Ne/*’Ne ratios of the samples.

Cosmogenic *He in other sample may be negligible, because most of the samples are
collected from bottom of lava flow with ca. 20m in thickness and the *He production
will decrease by 90% with 1m of shielding by rock of 3g/cm?® (Lal, 1987). For boulder
stone samples from Takashima and Ohshima, contribution of cosmogenic He is less
than 5% of total He in heating experiments, estimated from their 2:Ne/*’Ne ratio
assuming all excess *!Ne relative to atmospheric composition is cosmogenic origin and
cosmogenic *He/*!Ne is 3.5 (Staudacher and Allégre, 1993).
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Fig. 3-8. Comparison of ®He/*He ratios obtained with crushing and heating for
the same samples. The dashed line gives the 1:1 correlation line. Most
samples are plotted below the line, indicating post-eruptive addition of
radiogenic “He. Two exceptions are KAR9803 olivine and
clinopyroxene, containing cosmogenic *He.
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He in coexisting pairs of olivine and clinopyroxene

As described above, radiogenic and cosmogenic He would make it difficult to identify
the trapped He. In vacuo crushing is one of the effective methods to obtain the
magmatic information avoiding secondary components (e. g., Kurz, 1986; Stuart et al.,
1994). Thus, data obtained by crushing are used in the following discussion on He
isotopic ratio. Figure 3-9 is a comparison of ®He/*He ratios in the clinopyroxene with
those of the coexisting olivine. Although samples with high *He/*He ratios in also
olivine show similar *He/*He ratios in coexisting clinopyroxene, samples with low
He/*He ratios in olivine show significantly lower *He/*He ratios in coexisting
clinopyroxene. This indicates addition of radiogenic He (not post-eruptive additional
origin) after crystallization of olivine and clinopyroxene in host magma before eruption.
The source material of the contaminant He with low isotopic ratio (<0.2Ra, estimated

from lowest *He/*He ratio) will be discussed later.
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Ne, Kr and Xe isotopes

Ne three-isotope plot is shown in Fig. 3-10. Most of data obtained with both crushing
and heating indicate that Ne isotope ratios are not distinct from atmospheric values.
They may originally have trapped gases with atmospheric composition or they might
have been contaminated by atmospheric gas due to scarcity of Ne in samples. Only five
data seem to have distinguishable Ne isotopic ratios from the atmospheric values. These
data are plotted on a MORB correlation line of Sarda et al. (1988), indicating the
existence of Ne derived from upper mantle in the samples. Only one data seems to plot
on a Loihi-Kilauea line defined by Honda et al. (1991), which is considered to be a
signature of lower mantle Ne. However, large uncertainties due to scarcity of Ne in the
sample preclude further discussion of Ne data. In addition, KAR9803 might shift from
atmospheric ratios due to cosmogenic **Ne addition as revealed by presence of
cosmogenic *He.

Kr and Xe isotopes were measured for most of the samples and shown in Table 3-4. In
all cases, observed Kr and Xe isotopic ratios are indistinguishable from atmospheric
composition within 1o uncertainty, which would be due to small amounts of Kr and Xe

in extracted gases, and to small anomalies in their isotopic ratios.
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He-Ar systematics

The 3He/*He=*"Ar/*®Ar diagram is shown in Fig. 3-11. “°Ar/**Ar ratios of the samples
are obtained at high temperature with two-step heating or the highest ratio with
multi-stage step heating to minimize contamination by adsorbed atmospheric Ar.
He/*He ratios are obtained with crushing to remove post eruptive radiogenic and/or
cosmogenic components. Arrows link olivine and clinopyroxene separated from the
same host basalt. Clinopyroxene has “°Ar/**Ar ratio comparable with or lower than that
of olivines as well as the case of *He/*He ratio described before. Original isotopic
characteristic of alkaline basalt magma is inferred from basalt without isotopic
discrepancy between olivine and clinopyroxene, and with high *He/*He and “°Ar/**Ar
ratios. Based on the data for the samples, estimated *He/*He and “°Ar/*®Ar ratios of
alkaline basalt magma are about 7Ra and more than 800, respectively. These ratios are
distinct from MORB (®He/*He ~ 8Ra, “°Ar/**Ar < 28000) and hotspot (*He/*He > 8Ra
for “high-*He hotspot”), which will be discussed later.

The discrepancy between olivine and clinopyroxene in the same basalt seems to be
significant for the samples from Kita-matsuura. Generally, such a discrepancy is
explained by contamination of atmospheric noble gases or crustal fluids containing
radiogenic “He at shallower depth (Hilton et al., 1995; Marty et al., 1994). Since this
trend is apart from mixing line between the two components for magma and air, the
discrepancy cannot be explained by simple contamination of atmospheric noble gases
(Fig. 3-11). Diffusivity of He is so high at the magma temperature of alkaline basalt
around 1300°C that He equilibrium between mm-sized phenocryst and magma is
achieved during less than one month (Trull and Kurz, 1993). Therefore, the
contamination by an unknown material whose *He/*He ratio is less than 0.2Ra and
OAr/®Ar ranges from 300 to 500 occurred just before an eruption. Since *He/*He ratio
of this components is lower than atmospheric value as well as that of crustal materials
(<0.02Rp, Itoh, 1998) but “°Ar/*°*Ar ratio is distinct from that of crustal materials, this
component is called sub-crustal He hereafter for convenience. Further discussion on the

origin of the sub-crustal component will be later.
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hereafter.
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Abundance pattern

Figure 3—12 shows the noble gas elemental abundance pattern of the samples. Relative
noble gas abundances are expressed by F-values;
F(m)=("X/**Ar)sample/(™X/**Ar)air

where ™X corresponds to “He, ®Ne, #Kr and **?Xe, respectively. Atmospheric ™X/*°Ar
values are from Ozima and Podosek (1983). Results with heating extraction in Fig. 3-12
include noble gases extracted by crushing experiment when powdered sample after
crushing is used. Heavy noble gases (Ar, Kr and Xe) in low temperature fractions of
step heating in are subtracted in order to exclude atmospheric contamination.

It is noteworthy that all the samples are depleted in Ne and enriched in heavy noble
gases. This feature is distinct from abundance patterns of MORB (Staudacher et al.,
1989; Hiyagon et al., 1992) and Loihi samples (Kaneoka et al., 1983), which are
representative of upper and lower mantle, respectively. In addition, the samples are less
enriched in He compared to other mantle derived materials. These suggest that either
noble gases of the sample do not originate from normal upper and lower mantle material
or some processes to transport and extrude alkaline basalt magmas might have caused
fractionation of noble gas composition. The abundance patterns of alkaline basalt are
similar to the patterns of deep-sea water (Allégre et al., 1986/87), old oceanic crusts and
oceanic sediments (e.g., Matsuda and Nagao, 1986; Staudacher and Allégre, 1988).
Since heavy noble gases in low temperature fractions of step heating are subtracted as
noted above, the enrichment in heavy noble gases may not be caused by artificial
fractionation such as adsorption of atmospheric noble gases on the sample surface. On
the other hand, relatively low enrichment in heavy noble gases and wide scattering of
the enrichments with crushing may be result from adsorption of sample-derived heavy
noble gases on the fresh surface of the sample. Clear systematics among F(20), F(84)

and F(132) are found for alkaline basalt, which will be discussed later.
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3-4. Discussion

3-4-1. Constraint on origin of alkaline basalt magma in northwestern Kyushu

As described above, the He and Ar in alkaline basalt magma in northwestern Kyushu is
characterized by *He/*He ratios slightly lower than MORB and “°Ar/*®Ar ratio much
lower than MORB. Since Nd-Sr isotopic ratios observed in Higashi-matsuura and
Kita-matsuura (listed in Table 3-9, data from Nakamura et al., 1990; Notsu et al., 1991;
Kakubuchi et al., 1995; Imai et al., 1995) are plotted near the depleted end of the trend
composed by alkaline basalts from northwestern Kyushu (Fig. 3-13), the depleted
endmember in the alkaline basalts has MORB-like but slightly modified noble gas
isotopic composition. An exception is HRD0001, which is plotted near the enriched end
of the trend.

The noble gas characteristics of the basalts analyzed in this study and literature data of
Nd-Sr isotopic composition for the basalts are consistent with both models on the origin
of alkaline volcanism previously proposed, one is a mantle plume model (e.g.,
Nakamura et al., 1985; Nakada and Kamata, 1991; Kakubuchi et al., 1995) and the other
is MORB-Ilike asthenospheric injection model (e.g., Nohda et al., 1988; Ohki et al.,
1994; Okamura et al., 1998). In the mantle plume model, the depleted endmember in the
alkaline basalts are considered to be derived from heated depleted material which
surround a enriched mantle plume (Nakamura et al., 1990). Since Nd-Sr isotopes of the
basalts used in this study show most depleted characteristics among the alkaline basalts
from northwestern Kyushu, there is no contradiction between mantle plume model and
lack of high *He/*He ratio in the basalts analyzed in this study. On the other hand, if the
alkaline basalts analyzed in this study are derived from injecting MORB-like
asthenosphere, noble gas features of alkaline basalts support the idea that passive
upwelling and decompression melting of asthenosphere induced by mantle convection
accompanied with down going of the subducting slab (Nohda et al., 1988; Ohki et al.,
1994).

There is no evidence that the source material of the alkaline basalt analyzed in this study

is @ mantle plume as well as in the case of Hawaii. Since *He/*He ratio of the only one
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sample (HRDO0001) with enriched characteristics in Nd-Sr isotopes is 9.9+5.8Ra with

large uncertainty due to low He concentration in the sample, He isotopic ratio of the

enriched endmember is not constrained by the data obtained in this study. Thus, noble

gas features of alkaline basalts cannot give constraints by itself which model is

favorable. Further discussion will be later accompanying with noble gas data obtained

for mantle-derived xenoliths from the back-arc region of southwestern Japan.

Table 3-9. Nd and Sr isotopic compositions of basalts from northwestern Kyushu.

Locality Sample correspond ~ Sr(ppm)”*  ¥'Sr/®®Sr €Nd™  Data source
Higashi-matsuura
Keya FUK9716 480.19 0.704097 1.93 Kakubuchi et al., 1995
Takashima TKB0001 678.26 0.70426 1.6 Nakamuraetal., 1990
TKB0002 559.65
Karatsu KR8404 573.21 0.70417 2.2 Nakamura et al., 1990
KAR9803 535.58
Ohshima OSM901 514.94 0.703775 1.97 Kakubuchi et al., 1995
Kita-matsuura
Myokaniji SSB0001 460.2 0.704126 2.53 Imaietal., 1995
Yoshii SSB0002 484.83 0.70399 3.8 Nakamura et al., 1990
Hirado HRDO0001 558.71 0.704915 1.07 Kakubuchi et al., 1995
Kokuzo KKZ0001 368.13  0.70492-6 Notsu et al., 1991
Crustal materials
Ganite 186 0.70561 0.2  Kagami et al., 1993; Imai et al., 1995
Gabbro 330 0.70640 1.0  Kagamietal., 1993; Imai et al., 1995

*1: Measured by XRF (Table 3-2).

*2: €N = [(“*NA/*Nd)gampie/ (“*Nd/ **Nd) cur—1]%10", where CHUR is chondritic uniform reservoir.
*3: Isotopic ratios are data for granitic and gabbroic xenoliths from Takashima (Kagami et al., 1993). Sr
contents are data for typical granite (JG-1) and gabbro (JGb-1), respectively (Imai et al., 1995).
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3—-4-2. Origin of the sub-crustal component

The suggestion that low *He/*He ratios in some samples result from late-stage addition
of low *He/*He He is supported by the observation that clinopyroxenes have
systematically lower *He/*He ratios than coexisting olivine (Fig. 3-9). Similar isotopic
disequilibrium was observed in arc samples from Etna by Marty et al. (1994), from
Papua New Guinea by Patterson et al. (1997), and in oceanic intraplate basalts from
Heard Island by Hilton et al. (1995). As shown in Fig. 3-9, the data obtained from
alkaline basalts from northwestern Kyushu are consistent with these earlier results, and
are interpreted to reflect a time dependent decrease in the He isotopic ratio of the
parental magma resulting from addition of a low ®He/*He component, which is called
sub-crustal component in this thesis.

Petrographic textures and major element composition of the basalts from Kita-matsuura,
where the isotopic disequilibrium is more significant than that in Higashi-matsuura,
indicate that olivine crystallized within magma before or at the same time of
clinopyroxene crystallization (Yanagi and Maeda, 1998). In addition, since He
diffusivity in clinopyroxene is higher than that in olivine (Trull and Kurz, 1993), He in
clinopyroxene would be more affected by radiogenic He at a lower temperature when
olivine has become closed in effect (Hilton et al., 1995; Marty et al., 1994). These are
consistent with that clinopyroxene trapped He from a parental magma with a decreasing
*He/*He ratio.

Three possible sources proposed as the low ®He/*He component in previous studies
which report isotopic discrepancy between olivine and clinopyroxene are; addition of
atmospheric He, addition of radiogenic He from crustal materials, and evolution of

*He/*He ratio of magma (Patterson et al., 1997 and references therein).

Atmospheric contamination and diffusive loss

Because of the low He concentration in the atmosphere, addition of atmospheric He into
the sample is negligible. The facts that He/Ne ratios (60-200) of low ®He/*He samples
are significantly higher than atmospheric ratio (0.318) and that the data plot aside from
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mixing line between magma and air in Fig. 3-11 are support negligible contamination
of atmospheric He.

Helium isotope ratios could theoretically be affected by post- or syn-eruptive diffusive
loss of He. Trull and Kurz (1993) experimentally determined the isotopic diffusivity
ratio (D*He/D*He) for helium in olivine and clinopyroxene to be almost one and
concluded that isotopic fractionation of residual He is unlikely to occur. Taking the
value for the diffusivity ratio in clinopyroxene of 1.04 (Trull and Kurz, 1993) and
assuming a Rayleigh fractionation process, a 3 order of magnitude decrease in He
abundance will result in only a 24% decrease in the ®He/*He ratio. Such diffusive loss
would lower the ®He/*He ratio from 7Ra to 5.3Ra, much higher than the lowest
observed value of about 0.3Ra. In addition, the He abundances in clinopyroxene
samples with low *He/*He ratios are comparable with or only an order of magnitude
smaller than those of other samples, indicating that significant diffusive loss of He is

unlikely.

Crustal fluids

Contamination by crustal fluids containing radiogenic “He at shallower depth was
proposed as a candidate for the low *He/*He contaminant (Hilton et al., 1995). Since
Oligocene to Miocene shallow-water sedimentary basin is well developed in
northwestern Kyushu (YYanagi and Maeda, 1998), fossil water, which had filtered into
crust enriched in radiogenic He with 0.014Ra (JG-1 granite Miura and Nagao, 1991),
and have atmospheric Ar isotopic ratio due to its meteoric origin, can be considered as a
carrier of radiogenic He and atmospheric Ar. Assuming that He concentration in
groundwater is 1x10°cm>STP/g (Ozima and Podosek, 1983), initial *He/*He ratio of
magma is 7Ra, and partition coefficient between olivine and melt is 0.07 (Hiyagon and
Ozima, 1986), required amount of water contaminated into 1g of magma to explain He
data of SSB0001 olivine and clinopyroxene is 0.31g. The 8 Sr/*°Sr ratio of crustal fluids
Is unknown. However, the ratio of fossil shells from Tertiary to Quaternary sediment in
Cheju Island ranges from 0.7088 to 0.7091 (Kim et al., 1999). If crustal fluids in
sedimentary basin in northwestern Kyushu have similar Sr isotopic ratio to those of
Cheju Island, quite large amount of fossil water required to decrease *He/*He ratio will

cause drastic increase of ®’Sr/%Sr ratio of magma. In addition, since a magma chamber
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of alkaline basalt from northwestern Kyushu is 70km deep in the mantle (Kuno, 1964)
and alkaline basalt usually erupted directly from the chamber in a few days (Kushiro et
al, 1976), interaction with crustal fluids (groundwater for example) as in the case of

acidic magma (Hanyu, 1995) is unlikely to occur. After all, the idea that contamination

of fossil water caused lowering of *He/*He ratio of magma is precluded.

Evolution of *He/*He ratio of magma

Considering diffusivity of He in olivine and clinopyroxene under temperature of
alkaline basalt magma at around 1300°C (Trull and Kurz, 1993), isotopic equilibrium
between mm-sized phenocryst and host magma would have achieved over 10-100 years
(Marty et al., 1994; Hilton et al., 1995). Therefore it is unlikely that He isotopic
disequilibrium between olivine and clinopyroxene could reflect the relatively slow
isotopic response to magma aging except in the case of extremely high (U+Th)/He
ratios. Given the He concentration in SSB0001 magma of 2.4x10cm®STP/g estimated
from [4He]trap = 1.7x10"cm’STP/g and partition coefficient of 0.07 (Hiyagon and
Ozima, 1986), Th content of SSB0001 basalt of 8.48ppm, and Th/U=5.75 (JB-1a, Imai
et al., 1995), the ®He/*He ratio of magma decrease at only 0.02% during 100 years.
Therefore, evolution of ®He/*He ratio of magma with age cannot explain isotopic

disequilibrium between olivine and clinopyroxene.

Crustal rocks

It is possible that decrease of *He/*He ratio is caused by assimilation of continental
crustal rocks. Similar interaction with crust has been argued for a number of cases
including subduction related volcanic rocks (Patterson et al., 1997 and references
therein), as well as in intraplate samples from Heard Island (Hilton et al., 1995).
Therefore, assimilation of lower crustal rocks during accumulation probably account for
the low *He/*He component. In Fig. 3-15, the results of mixing calculations are shown,
with which the effects of crustal assimilation on the He isotopes can be compared with
other chemical parameters. In the mixing calculation, concentration of He and *He/*He
ratio of crustal material are 2.9x10°cm®STP/g and 0.012R,, data for granodiorite
xenolith from Takashima (Itoh, 1998), respectively, and SiO, content and K,O/P,0s are
72.3% and 40, data for typical granodiorite (JG-1, standard rock of Geological Survey
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of Japan; Imai et al., 1995), respectively. In each figure, the He concentration of the
alkaline basalt magma is allowed to vary from 10 to 10° cm®STP/g. In order to explain
low *He/*He ratios of clinopyroxenes in Kita-matsuura basalts, He concentration of the
magma of 10® cm®STP/g is required for the magma. Since distribution coefficient of He
between olivine and basaltic melt experimentally determined is lower than 0.07
(Hiyagon and Ozima, 1986), the required He concentration of magma, which is
comparable to that of concentration of trapped He in olivines and clinopyroxene
(0.8-3.9x10°cm?STP/g from Table 3-8), is too low and thus improbable.

In addition, crustal materials are expected to have higher “’Ar/*Ar ratios than 500 as a
result from accumulation of “°Ar produced from “°K. Figure 3-17 is He—Ar isotopic
diagram for the samples and crustal xenoliths observed in northwestern Kyushu (Itoh,
1998). As representative crustal materials, the data for JG-1 (granodiorite) and JGb-1
(gabbro) are also shown in the figure (Miura and Nagao, 1995). As shown in Fig. 3-16,
the trend of the sample cannot be explained by three components mixing; atmospheric
component, alkaline basalt magma, and crustal materials. In conclusion, the possibility
of assimilation of granotoid rocks at shallow depth is precluded, because their He—Ar
isotope ratios are far away from isotopic composition of the sub-crustal component and

there is no other chemical evidence of assimilation of crustal rocks.
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Accumulated magma beneath Kita-matsuura

Yanagi and Maeda (1998) show that alkaline basalts from Kita-matsuura is mixing
product between primitive magma and highly fractionated magma (Fig. 3-5). The
highly fractionated magma seems to have accumulated in the eroded portion of the
lower crust since 30Ma. The source material of accumulated magma is almost the same
composition with the source of alkaline basalt erupted in northwestern Kyushu, because
the fractional crystallization trends in MgO-SiO, diagram (Fig. 3—6) made by basalts
from Higashi-matsuura and Kita-matsuura start from the same point, suggesting that the
evolution of all magma in this region starts from common primitive magma
composition. This is supported by the fact that Nd and Sr isotopic compositions of
basalts from Higashi-matsuura and Kita-matsuura are explained in terms of an identical
mixing trend (Kakubuchi et al., 1995). Therefore, the accumulated magma beneath
lower crust might have characteristics of the sub-crustal component. The possible
mechanisms to decrease *He/*He ratio of accumulated magma are, (1) assimilation of
lower crustal material directly above the magma chamber, (2) evolution of *He/*He ratio
of the accumulated magma since 30Ma, and (3) assimilation of uppermost mantle

surrounding the magma chamber.

Lower crustal material

Lower crust beneath northwestern Kyushu is composed of gabbro, which is found as
xenolith in Takashima alkaline basalts (Kobayashi and Arai, 1981). There is no noble
gas data on gabbroic xenoliths from this region, thus noble gas data of gabbro (JGb-1:
standard rock of Geological Survey of Japan) from Utsushigatake, Fukushima
Prefecture, Japan (Miura and Nagao, 1995) is used for mixing calculation. To reduce
*He/*He ratio from 7Ra to 0.2Ra, over 90% of gabbro is required. However, the amount
of crustal assimilation is limited by Sr isotopic ratio. Given Sr concentration of magma
(100ppm) estimated by Kakubuchi et al. (1995) and & Sr/®Sr isotopic ratios of the
northwest Kyushu basalts ranging from 0.7037 to 0.7050 (Kakubuchi et al., 1995; Notsu
etal., 1991; Imai et al., 1995), degree of assimilation greater than 10% by weight of
gabbro with Sr content of 330ppm and &’Sr/%Sr ratio of 0.70524 (Imai et al., 1995) into
the magma is highly unlikely. In addition, “°Ar/*°Ar ratio of JGb-1 is 1280, which is a
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lower limit because the ratio was obtained with single step heating probably containing
contamination of adsorbed air (Miura and Nagao, 1995), but still much higher than the
ratio of the contaminant. Therefore, it is difficult to explain the sample trend by three
component mixing between air, alkaline basalt magma, and gabbro (JGb-1), otherwise
lower crustal material beneath Kyushu have already been contaminated by atmospheric
Ar (Fig. 3-16). One possible mechanism for atmospheric contamination is dragging
seawater or sediment into the mantle wedge. However, the gabbro is considered to have
formed in Cretaceous-Paleogene (Kagami et al., 1992) almost the same period when
JGb-1 was formed in northeast Japan (103Ma, Imai et al., 1995). Thus, it is unlikely that
source material of gabbroic xenolith only beneath northwestern Kyushu was
contaminated by atmospheric Ar and that “°Ar/*®Ar ratio has not evolved with the age. It
IS possible that extraction of He from a volume of crustal rocks larger than that directly
assimilated will take place (so-called decoupling of noble gases and other geochemical
tracers), invalidating a simple bulk-mixing model. However, selective He extraction in
order to explain *He/*He ratios and ®’Sr/*°Sr ratios of the samples required He/Sr atomic
ratio should be 0.248, that is 700 times of that of JGb-1, thus it is not a case.

Evolution of *He/*He ratio in the accumulated magma

Evolution of ®He/*He ratio in the accumulated magma since 30 Ma, which is the age to
start to accumulate the magma beneath lower crust (Yanagi and Maeda, 1998) to 7Ma
(eruption age of SSB0001 basalt) is another possible explanation for the low *He/*He of
the accumulated magma. Given the same He and U concentration in the magma
estimated above, and initial *He/*He ratio of 7R as in the case of alkaline basalt magma
in Higashi-matsuura, *He/*He ratio of the magma will reduce to 0.17Ra, which agrees
well with required *He/*He ratio of the contaminant. However, “°Ar/*°Ar ratio of magma
increases concurrently with evolution of *He/*He ratio, because “°Ar produced by
electron capture decay of “°K accumulates in magma as well as “He. Thus, “°Ar/*Ar
ratio of accumulated magma should be higher than that of the original alkaline basalt
magma, because source material of accumulated magma and that of relatively primitive
basalt (in Higashi-matsuura) are the same in composition. Therefore, evolution of
*He/*He ratio contradicts with the low “°Ar/**Ar ratio of the accumulated magma by
itself.
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Uppermost mantle beneath northwestern Kyushu

Another proposed explanation to decrease *He/*He and “°Ar/*°Ar ratio of the
accumulated magma is that uppermost mantle beneath northwestern Kyushu contains
noble gas with sub-crustal He and Ar. The uppermost mantle material beneath
Shihote-Alin, Siberia, where subduction was active from Late Cretaceous to Late
Oligocene, has similarly low isotopic compositions (Yamamoto et al., 2001). The low
*He/*He and “°Ar/*®Ar ratios in the mantle of this region are explained by radioactive
decay, with large-scale contamination of parental nuclides such as U, Th and K into the
mantle by subducted crustal materials, and contamination by atmospheric component,
which is much effective to Ar.  Subduction of the Izanagi plate and the Pacific plate
was active in northwestern Kyushu from Triassic to Cretaceous (Maruyama et al., 1997),
as well as Shihote-Alin. Therefore, there is possibility that the uppermost mantle
beneath Kyushu have noble gas isotopic features similar to Shihote-Alin. Alternatively,
the uppermost mantle beneath Kyushu might have been metasomatized by ancient
subduction processes, and retain vestige of the metasomatism as radiogenic He and
atmospheric Ar isotopic ratios. The idea of metasomatized uppermost mantle beneath
Kita-matsuura is supported by the noble gas elemental ratio (F-value), which will be
discussed later combined with the results of mantle-derived xenoliths.

In conclusion, mixing with accumulated magma contaminated by metasomatized mantle
during ancient subduction are plausible candidates for the sub-crustal component
observed in Kita-matsuura basalts. Alternatively, the uppermost mantle beneath Kyushu
might be contaminated with U, Th and atmospheric Ar from ancient subduction

materials.
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4. Noble gases in mantle xenoliths around the Sea of Japan
4-1. Geological and geochemical background

4-1-1. Mantle-derived xenolith around the Sea of Japan

The upper mantle materials can be sampled as massive peridotite that have been
tectonically exposed to the Earth’s surface, or as peridotite xenoliths entrained in
alkaline magma. In the latter case, rapid transportation, probably in less than a few tens
of hours, prevents the re-equilibration of mantle materials to lower pressure and
temperature (Kushiro et al., 1976). Therefore, ultramafic xenoliths are believed to be
fragments of the most pristine mantle. They offer a potentially important source of
information about the physical and chemical properties of upper mantle and its chemical
and isotopic evolution. Therefore, ultramafic xenoliths have been an important material
for many mineralogical, petrological, geochemical and geothermal investigations.
Peridotite xenoliths are usually brought up by alkaline basalts of intraplate type or
kimberlites and related magmas and, therefore, represent the upper mantle beneath
hotspots, continental rifts and continental cratons. Ultramafic xenoliths included within
arc-related magmas may give us direct information of the mantle wedge. Arc magmas
carrying mantle xenoliths are, however, very rare on Earth.

The back-arc side of the Southwest Japan has been a locus of intraplate volcanism
activity since late Miocene (chapter 1). Several tens of volcanic centers are known to
yield mantle-derived xenoliths, some of which have been studied by a number of
researchers. Representative localities of mantle-derived xenoliths are shown in Fig. 4-1.
(Umino and Yoshizawa, 1996; Hee, 1998). Previous studies indicate regional
heterogeneity of the upper mantle chemistry and mineralogy beneath back-arc side of
Japan. The upper mantle beneath Takashima and Oki-Dogo is dominated by thick
cumulus mantle (Kobayashi and Arai, 1981; Takahashi, 1978), while On-yama, Kurose
and Fukue-jima are underlain by residual peridotite (Arai and Muraoka, 1992; Arai and
Abe, 1994; Umino and Yoshizawa, 1996). Beneath Aratoyama and Shingu both residual

and cumulus peridotites are severely metasomatized through melt migration and
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associated with later magmatism (Goto and Arai, 1987). Such heterogeneity is a
manifestation of complex processes affecting the back-arc upper mantle, among which
probably the most important is the opening of the Japan Sea. The remnant of this
tectonic event is at present observed as anomalies of high heat flow and geotherm in and
around the Japan Sea (Jessop, 1990; Yoshii, 1979; Umino and Yoshizawa, 1996). These
features are considered to be caused by injection of the hot-asthenosphere and/or
post-rifting uprise of mantle diapers which produced alkaline basalt magma in this
region (Umino and Yoshizawa, 1996).
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Fig. 4-1. Location map of the samples studied in this work (underlined). Other
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4-1-2. Noble gases in mantle derived xenoliths from subduction zone

Since peridotite xenoliths from arc regions are believed to represent part of the mantle
wedge above the subducting slab, analysis of them may offer an important insight into
the noble gas transfer from subducting material to the overlying mantle wedge. Noble
gas isotopic compositions in a wedge mantle at a subduction zone indicate heavy
contamination by atmospheric component probably introduced by the subducting
seawater except He, which shows little difference from that in the asthenospheric
mantle as represented by MORB (Miura and Nagao, 1991; Porcelli, et al., 1992; Nagao
and Takahashi, 1993) in spite of He in oceanic crust dominated by radiogenic
component (Staudacher and Allegre, 1988). Since He has strong preference for the fluid
phase (Trull and Kurz, 1993), the lack of a distinctive He isotopic composition in
subduction-derived samples is thought to indicate that He in the subducting slab is lost
early in the subduction process probably with fluids, which is derived from the
dehydration of subducting materials and are thought to play an important role in the
generation of arc magmas (Tatsumi, 1989; Stolper and Newman, 1994), not reaching
beneath mantle wedge where mantle-derived xenolith originally existed (Patterson et al.,
1997). One more explanation is that the volumetric contribution from the slab-derived
fluid or melt is extremely small (Eiler et al., 1998). However, Dodson and Brandon
(1999) suggested that radiogenic *He-rich fluid or melt from metasomatized mantle
directory above the slab has ascended and modified quite small portion of mantle
represented by a few xenoliths from Simcoe, back-arc region of Cascade volcanic arc.
Therefore, further investigation on noble gases in mantle-derived xenoliths from arc
tectonic settings are needed.

Since minerals in mantle xenoliths such as olivine, clinopyroxene and orthopyroxene
have higher retentivities of noble gas than other minerals and groundmass in volcanic
rocks (Harts, 1984; Trull and Kurz, 1993), mantle xenoliths are ideal for noble gas
studies. However, a key issue in interpreting noble gases especially He isotope results in
xenoliths is whether the measured value reflect the nature of the mantle where xenolith
originally existed, or has been overprinted by noble gases introduced from host magma.
It has been reported that He in the xenoliths from Hawaii and Samoa is distinct from
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host basalts, indicating that the host basalts are not a primary source of He trapped in
the xenoliths (Kaneoka and Takaoka, 1978; Poreda and Farley, 1992). On the other
hand, He in some parts of Hawaiian xenoliths has revealed exchange with that in the
host basalt magma (Rocholl et al., 1996). Kaneoka et al. (1983) revealed that Ar in
xenoliths and host basalts from Loihi Seamount, Hawaii have not reached isotopic
equilibrium but He have, reflecting higher mobility of He than Ar. Dodson and Brandon,
(1999) has also reported that only core part of large (ca. 10cm in diameter) xenoliths
retain original He isotopic ratio, while He in other smaller xenoliths have been
overprinted by He in the host basalt magma.

I measured noble gas isotopic compositions of mantle-derived xenoliths in Cenozoic
alkaline basalt from northwestern Kyushu and Cheju Island, to investigate the noble gas
characteristics of the sub-continental mantle around this region, together with the origin

of alkaline volcanism in southwestern Japan.
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4-2. Samples and experiments

4-2-1. Sample Localities

Several Cenozoic basalts containing mantle-derived xenoliths are distributed in
northeastern China and around the Sea of Japan (e.g., Ishibashi, 1970; Takahashi, 1978;
Umino and Yoshizawa, 1996; Hee, 1998). Thirty-two xenoliths from three Cenozoic
volcanoes were collected for analysis, as shown in locality map (Fig. 4-1). Two of the
volcanoes are Takashima and Kurose, monogenetic alkaline basalt volcanoes in
northwestern Kyushu, and the other is Cheju Island, a shied volcanic island located in
Korean straight to the southwest of the Korean Peninsula. Details of analyzed samples
are listed in Table 4-1.

Takashima and Kurose

Takashima (33°28°25”N, 129°59°26°’E) is a small island in Karatsu Bay, Saga
Prefecture, with about 3km in circumference. The island composed by pre-Tertiary
granodiorite, granite and Pleistocene alkaline basalt flows covering the granitic rocks.
The basalt flows commonly contain mantle-derived xenoliths, with diameters up to
20-30cm, gabbroic xenoliths of possible lower crustal origin, and also xenoliths of the
basement rock (Kuno, 1964; Ishibashi, 1970; Kobayashi and Arai, 1981). The eruption
age of the alkaline basalt is 3.00+0.04Ma (Nakamura et al., 1986). The rock type of
mantle-derived xenoliths are dunite, wehrlite and pyroxenite, which were considered to
be derived from cumulus mantle between mantle peridotite and Moho, through which
Takashima alkaline basalt erupted, and dunite constitutes the deepest layer of the
cumulus mantle (Ishibashi, 1970; Kobayashi and Arai, 1981). Residual mantle
peridotites (harzburgite/ lherzolite) are almost absent in the Takashima xenolith suite;
only one Iherzolite xenolith has been found (Arai and Kobayashi, 1984). 14
mantle-derived xenoliths (14 dunites and 1 clinopyroxenite) were sampled from boulder
stone, which have fallen down from cliff of lava flow to the east-north-west coast of the
island (Table 4-1) in Aug-Sep and December 1997 and October 1998.

Kurose (33°41°42”E, 130°13°58"E), located near the Genkai-jima in the Hakata Bay,

Fukuoka Prefecture, is composed of several small rocks of alkaline basalts. Uto et al.
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(1993) reported the K-Ar ages for two blocks of alkaline basalts from Kurose to be
1.14+0.12 and 1.10£0.22 Ma. The activity of the Kurose is younger than other volcanics
in Southwestern Japan arc which contain ultramafic xenoliths. Harzburgite and
clinopyroxene-poor lherzolite are dominant among the Kurose peridotite (Arai and Abe,
1994). The xenoliths derived from the so-called cumulus mantle (Takahashi, 1978) are
much less abundant (less than one twentieth in volume) than those of the residual

mantle peridotite, possibly implying the very thin cumulus mantle (Arai and Abe, 1994).

Eight xenoliths (lherzolite and dunite) were collected in October 1998.

Cheju Island

Cheju Island, which rises to an elevation of 1950m above sea level, is situated about
90km south of the Korean Peninsula. This island is a shield volcano formed by central
eruptions in the vicinity of Mount Halla (1950m), where eruptions occurred from the
upper Pliocene to the lower Pleistocene, and eruptive activity have been continuing to
historical time (Lee, 1982). The island consists mainly of basaltic lava flows with minor
pyroclastic rocks corresponding petorographically to the alkaline olivine basalt-trachyte
association (Lee, 1982). Ultramafic xenoliths are observed in lava flow of Quaternary
alkaline basalt from eastern part of the island (Yun et al., 1998, Hee, 1998). Spinel
Iherzolites are the major constituent of ultramafic xenoliths, and clinopyroxenite,
wehrlite and websterite are also observed. All the ultramafic xenoliths are thought to be
derived from the lithospheric upper mantle (Yun et al., 1998; Hee, 1998). Two spinel
Iherzolites were collected at Sinasanri (Yun et al., 1998; Hee, 1998) in May 1999 for
this study.
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Table 4-1. List of xenolith samples from back-arc reg_:Jion of southwestern Japan.
Noble gas analysis*3

*1 *2
Sample Rock type = Sub-sample Phase - 7 ~z
Takashima (northwestern Kyushu)
TKS01 dun TKSO01ol ol O O O
TKYO01 dun TKYO0lol ol O O
TKD1350 dun TKD13500l ol O O
TKD1550 dun TKD15500l ol O O
TKD1250 dun TKD12500l ol O O
TKD1120 dun TKD11200l ol O O
TKD0900 dun TKD0900ol ol O
TKD1000 dun TKD1000ol ol O
TKD1340 dun TKD13400l ol O O
TKD1610 dun TKD16100l ol O O
TKC1212 dun TKC12120l ol O O
TKC1422 dun TKC14220l ol O O
TKC0222 dun TKC02220l ol @ O
TKC014™ dun  TKCO14Aol ol O O
TKCO014Bol ol O O
TKC014Col ol O O
TKP1040 cpx TKP1040px cpx O
Kurose (northwestern Kyushu)
KRS9803 Ihz KRS9803o0l ol O
KRS98030px opx O
KRS9806 dun KRS98060l ol O
KRS9814 Ihz KRS98140l ol O
KRS9810 Ihz KRS9810wr wr O
KRS9811 Ihz KRS9811wr wr O
KRS9805 Ihz KRS9805wr wr O
KRS9801 Ihz KRS9801wr wr O
KRS9807 Ihz KRS9807wr wr O
Cheju Island
CHJ9901 Ihz CHJ99010l ol O
CHJ99010px opx O
CHJ9902 Ihz CHJ99020l ol O
CHJ99020px opx O

*1. dun: dunite, cpx: clinopyroxenite, Ihz: Iherzolite
*2. ol: olivine, cpx: clinopyroxene, opx: orthopyroxene, wr: whole rock

*3. Noble gas analysis with cr: crushing, tf: total fusion, st ht: stepwise heating, respectively.
*4. Core sample (see text).
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4-2-2. Sampling and treatment

Most samples have been exposed on the fresh surface of host alkaline basalt, and
collected by chiseling. One of the sample (TKC014) was a drill core sample which was
collected using a water cooled, diamond-tip rock drill (Natsuhara Giken Co. Ltd.,

Model N-3). The obtained drill core, which was 1 inch in diameter and 6¢cm in length,
was separated to three parts (Fig. 4-2), in order to assess atmospheric contamination
with weathering and to check heterogeneity in an individual xenolith. Collected xenolith
samples were hand-crumbled into discrete minerals using a steel mortar. For noble gas
analyses, olivine, clinopyroxene, and/or orthopyroxene were carefully separated under a
binocular microscope, and then altered parts and impurities were carefully excluded,
because secondary and atmospheric noble gas might concentrate in them. Then, samples
were leached using 2N-HNOg in an ultrasonic bath for 1 hour, in order to remove
secondary noble gases possibly adsorbed on the mineral surface or grain boundary.
After washing with distilled water in ultrasonic bath, dried sample were weighed and

used for noble gas analysis.

107



dunite

alkaline basalt

core sample
(TKCO014)
basalt dunite atomosphere
6cm
| |
cC | B | A [ |¢lnch
| |
| |
lcm 2cm 1.5cm lcm

/
!

C B A

TKC014C TKC014B TKCO014A

Fig. 4-2. Sampling of core sample (TKC014). TKCO014 is a one of the core samples
collected from dunite using a diamond-tip rock drill. The core was 1 inch
in diameter and 6¢cm in length, and was separated into three parts
(TKC014A-C). Note that TKC014A was exposed to atmosphere and that
TKCO014C was in contact with host basalt.
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4-2-3. Major element composition

Major element compositions of olivine, pyroxene and spinel phenocrysts separated from
Takashima xenolith were determined using a scanning electron microprobe equipped
with energy dispersive spectrometer (SEM-EDS; JEOL JSM-5310 with Oxford ISIS
EDS) at Department of Earth and Planetary Science of the Graduate School of Science,
the University of Tokyo. Analyses were carried out with an accelerating voltage of
20kV and a beam current of 53uA. Integrated time for 1 spot with 50-100um in
diameter was 100 seconds. In order to remove the influences by the metasomatism
caused by the host magma, electron beam was irradiated in the core part of each mineral
grain. Intergrain heterogeneity in a single mineral was checked by analyzing several
points in the core of each grain.

4-2-4. Noble gas analysis

Noble gas analyses were carried out with MS—1V before and after modification
described in chapter 2, and partly with MS~III. In vacuo crushing with solenoid-type
and hydraulic-type crushers, and step heating or single step heating (total fusion) were
applied for gas extraction. Details of noble gas measurement were already described in
chapter 2.

Concentrations of all noble gases and isotopic ratios of He, Ne and Ar were measured
for all samples. However, the abundance and isotopic ratios of Ne could not be
measured due to high blank level derived from an unbakable Cryo trap with MS-IV
before modification. Kr and Xe isotope analyses were carried out for gas rich samples
or high temperatures fraction of 2-step heating samples because atmospheric component
is dominant in low temperature fraction. Hot blanks and crushing blanks were measured

in the same way as sample runs.

109



4-3. Results

4-3-1. Major element composition

Results of major element composition determined by SEM-EDS for mineral separates
from Takashima xenoliths are listed in Table 4-1. Data with error, which is standard
deviation including reproducibility of the measurement and intergrain heterogeneity, is
an average of analyses for several points in single mineral grain. Other data are results
of single measurement for each mineral grain. Errors on X-ray counting with single spot
analysis are approximately 1%. Fo (=Mg/(Mg+Fe)x100) of olivine within each grain of
most samples are homogeneous within the statistical error with one measurement (<1%),
indicating homogeneous chemical composition in olivine separated from an individual
xenolith. Cr# (=Cr/(Cr+Al)) of spinels in dunites shows relatively variable values
ranging from 0.56 to 0.81, while Fo of olivines are relatively uniform ranging from 86.9
to 91.5. Plots of the Cr# of spinel against Fo of coexisting olivine are plotted in Fig. 4-3.
In this figure, OSMA (Olivine Spinel Mantle Array) defined by Arai (1994) is also
shown, in which mantle-derived spinel peridotites are plotted. Whereas the xenoliths
from Kurose make a trend coincident with OSMA (data from Arai 1994), the dunites
from Takashima analyzed in this study are plotted off the OSMA. This shows definitely
that the dunites are mostly not mantle restites but could be cumulates formed by
fractional crystallization of relatively primitive magma. At this moment, it is uncertain
that what kind of magma from which dunites are cumulated. Kagami et al. (1993)
showed that pyroxenite xenoliths from Takashima have distinctive Nd-Sr isotopic
characteristics from their host basalts, and suggested their cumulative origin from arc
magmatism which formed granite long before alkaline volcanism, because Tertiary
granite and the xenoliths have common Nd-Sr ratios with age back to 93Ma. On the
other hand, Yanagi and Maeda (1998) suggested that cumulate formed by the
crystallization deposits on the floor of the chamber of accumulated magma of alkaline
basalts and then removed by the mantle convection. Some of alkaline basalts from
northwestern Kyushu show comparable Nd-Sr ratios with those of ultramafic xenoliths

(Kakubuchi et al., 1995), allowing cognate origin of xenoliths with the alkaline basalts.
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Therefore, Takashima xenoliths might be cumulates from alkaline basalt magma

preceding that erupted at Takashima.

111



TFHI0MI0 =350 s

001 =(8 J+5PDERL = 0 £

STSATRUR JO JAQUINLE] 7oy ‘auaTe W papt(a am ‘[awds (ds ‘auaxciAdotma xdo ‘awmane Jo [,

a4 ame ssATee 1ods a(Burs YA sIoLrT UTRIE (SRS yaea JoJ sasAER Jo safelasr am epeT

120F 1683 CO0F LFP0L 8ZTF 0CGr  OL1F 8lRr dFenaay
........................................... gges 7T T ov0F 010l 8 1F 892F G lF ggee | & 1@
1088 8LOF 1901 052F LL9F 60TF LZ6E £ Io
9588 IE0F 0L0L  BFZF SF9F 1£1F FO6L £ 1o 0CZITAL
PLOOF TRLO CLOF 801 GCLOF 956 | L60F 0561 S80F £301 aBerany
................. ogLo. . coge  oge | ozsl | ssol 1 ds
PLLD ¢Lo ¢z 06 £8°6 £8°61 9901 I ds
LELD 62°0C 898 ce'gl 666 ! ds
£9LD 11s b 01 £9°02 z0zl ! ds
PLOF 9681 BZ0F 601 | OFOF B0Z | 9Z0F 62€  O0LF B899l £81F 06y sferay
............................................................. 1Z0F 6F81 ELOF vL0 | GLOF 602  610F 85€  ¢gO0F £2Ll peOF 800¢ g xdh
IZ0F IF8L SI0F 11T | LIOF 162 6LOF &P Z20F PL9L PEOF ££06 £ xdo
1IZ0F #9981 £I0F 221 | SLOF 612 | SLOF SI'E  0Z0F S2%l FEOF 959F z zdo
IZ0F 1L81 €l0F 001 | GLOF 961 | 6L0F 108 220F &FLl  PEOF PTOS 4 zda
PLOOF 28L0 ZEO0F p682  100F LIO ZZOF 9L6  EFOF S0P RLOF BL9C  dFenay
............................................ gres T g dgvy wpes 1 @
Li'8g a1’ 8001 6l zese I 1o
£0'68 L1 £L6 28 bl P29 ! 1
£1°68 656 £1 bl 6 9¢ ! 1 0ZILAHL
L - L U SRR SUOOORN B SO A 1BOF 6bbe | 990F PE® | OLOF 18€C | £8OF OLIL L Gwemay
#08D 76'¢S 08'8 CEFT 8911 I ds
#2380 90°CE L8°L L2637 1601 I ds
950 F 563 BLOF 846 I£2F 104F  $9'1F £age  dfenny
............................................ oeg | TTTTTTCO0F 196 eS 0F 6LLb 2p0F 9968 & 0
0068 I£0F 96  OLOF 60Lb OL0F €68 £ 1
088 6E0F 666  IFOF pREr SLOF 8r e £ Io
9868 766 1£ 6 92 0F ! o 000LTHIL
000°0F TTLO GOTF 690 BZOF 1£71 | LZ0F 2212 300F 9801 aperany
................. gedo 7 lepsy | igel | 1ste ool 1 ds
Z2L0 990F £69F | EIOF ZITL | FOOT £112 100F 1601 z ds
LEOF 6683 E20F 806  08'1F SChp PLLF 969c  fenay
T e 0 F pee | 800F 096k DOOF 2188 | & | I
9%'€8 S00F P56 E00F SFCE LEOF 01°8E z 1o
£4°88 ZE0F 1101 S60F £9Fr 2P OF 1ZL€ z 1
£9'88 LI0F 256 £92F £L1v GRIF Prbe z 1° 00600
pEmA D (Fmane) o (oL0 HORD SO 03 DI Bong P LT Feeud dureg

BUNYSENR], Wl SYNoUax W s[eIatmy Jo [94) Bemsodme juatala oy 7—f a[qeL,

112



TF-HIDIAD =310 bx 001 <(3I+BPOEF = 0 Ca "SISATETR 30 ISQUINRT "7y amago ur papryam ou ‘[amds ds ‘auszoiddotmya xda “aumgo o 1,
04 ame stsATeUR jods A[Sms Yl SI0LK] TMRLS a[BUls Jea Jo] sasATEe Jo safelaar am epe(]

LZ00F 990 £8CF LPES | OLLF £601  B6CF L6l | I6TF 8611 sgeanyy
.................. eeLo T Tgews sgol | sedl | sgel 1 &
£6L0 910 LGS 9L'6 PG Ll P21 1 ds
96L°0 s 0£'11 L161 0F'2l 1 ds
£2L0 91 6k 297l 2L9e 198 1 ds
BLLO LPOF 2665 690F 6901  STTF 0841 SIOF 99721 Z ds
COTF GLEL 9L0F S0  £22F 80¢  BLO0F SPZ  LL0F 6291 pp1F Clgp  S8emay
.......................................................................... 6L0z 40 ol lege | e89l eley | 1 xd
0L81 91l 9 99°C 1F Sl gty 1 zdo
CLEI 150 e £9°91 €Sy 1 zdo
820 F &F16 0S0F L18  0S0F 9T6F SPOF Z00p  aFesmsy
............................................ (Gre T T 0F 128 [20F 0006 6L0F 990F £ B
92186 6L0F 98  ZEOF 668F £LO0F 166f £ 1o
92186 6L0F 828  9C0F ZL6y 11 OF b6 et £ 1o
c818 LSO0F £LL | ESOF 168F 620F 8C6L £ o 05GIdHL
ZE00F 1690 C81F 666Gk PBTT LBEl | LEOF WLl ZEOF THOI adesaay
................. geLo| T Tz F 82k £10F 9811 Le0F 0081 8p0F LO0L g dsT
590 69 bt 8851 Ll LLG 1 ds
90TF B90T £ZO0F bO'T IE0F 82€ | LEOF 9E91 LLOF ZL6k
. 69 LI 011 et 29t 08| 0F 6%
€22 080 =43 PLCT 005
1F12 £e'l 98'E £0°91 096t
LY90F 611T SEOF ZE0 LPOF 882  ECOF L8CL 100F ST
£EL0F 9F88 I00F LLOL ZCOF ££9F 0S0F OL6E
............................................ (s R 0F 9401 0T F LLGF PBOF £FeE £ 0
zZE'88 6L0F 8401 8ELF 9LCF 0B0F 298¢
0588 LUOF 9401 9LU0F SF9r ZEOTF CL'6L 05E1THL
9BL0 66 6 g £L61 1£°01
LBOF bLOG . . | TTOF TLL | I6CF 9T 06TF LEFE .
116 09'L 91'Ly ze'8E 1 10
£0'08 LE'L LEOF FLEE 1 10 OPEITIUL
plamds) g0 (3Wano) 0 OB SO0 gely 03 OB foK PPN eseud ardureg

(patumus ) 7 9L

113



T =#5D bae

001 =(2+ERDERT = 0 'S

SISATEWE 1O JAQUILET 7

awmate W paptas o Tawds s ‘anazesddotma mda famane 1o 1.,

‘04 A stsATee jods A[SWS Y SICAF] TMRIS A[SWS I¥a 10 S3sATRUR Jo sabelask ale BR(]

000 F ££4°0 621F PS8F  PCOF GEIL  SEOF WERT | EE0F STII aBeiany
................. opLo [ BOOF &bk S00F L9101 PEOF 66¥C  9LO0F spll | | g [ s
L2L0 LSOF T9LP 1E0F T0TL SE0F OLFT 9E0F 10711 £ ds
£C°0F 6006 PLOF L8676 10T BELY OLTF 606 aderay
............................................ os0s 7 y0O0F #F6 CC9F 6606 SbF 65l | 2 | 0
Ct68 PLOF 9¥'6  CLTF 66bF PCTF 0fLE ¥ 1o
T 06 PFOF 026  8C0F 99iF  ETO0F L86 £ o ZIZIDAL
BOOF G688 £00F 120 1Z0F 986  690F 95 PP | 290F Corf dbemay
............................................ 8688  ROOF 610 1 Gl0F p66 O F L0GF ZZIF 99 | £ | O
L858 ZE0F 2001 ISTF 06'FF  E8°0F 1188 3 10
2068 O00F £20 1Z0F 296  CL1F 9Lek | (P 1F 88°9¢ 3 o ZZZ007EL
0L00F 85570 CLOF OFSE  LPOT 9607  IBO0F 30027 9P 0F 00°Cl ageiany
.................. gg0 T T RI0F [06s | IL0F el [00F 866l veOF e8¢l 7 | &
0550 0S0F 268 8Y0F ¥E1Z LZ0F 9981 8TOF 1G¢El 4 ds
6950 BPIF 920r O0CO0F vP0Z  LI0F 20T 810F 59721 4 ds
PETF OL6L COOF 3T ZIZF FIE  980F £6C  ZZ20F PL'GL 090F 058F oFemny
N IZ0F cLi1 GLOF $81  6L0F P9F  CCOF £5F  220F 6291 PEOF 08y | ¢ | (Gwsdd
LF0Z 60 91 ZEE B6C1 268k 1 zd
ELOF TELB COTF PEIT 860F 909F ITTF pree  aderay
............................................ grge T ZZoF 1801 L£0F 200k £E0F 968 £ P
BOLE  FOOF K20 190F 1221 6L'1F 619F 6L1F 186¢ £ 1o
£L98 ZPOF 0871 TE0F 969F SIOF FEOR £ 1o 10AHL
620F £168  TOOF 610 6Z0F 2001 LTF FLOF PETF 6£8¢ aFeray
............................................ pz68  LOOF 8O 1 §LOF 9:0l [PeF 028F 9ceF L00¢ | & | o
0888  [00F 120 LIOF 986  65CF PREP 06'1F ZP9E Z 1o
CE68  FOOF BLO £Z0F 986  LOTF 6E9F  190F 198 z 10 1053L
P1O0F £0470 L81F 616k O0TF 86C1  SEOF 20T ZETF 6271 aBeiasy
.................. leeo, T elos eeel | g0lz sl 1 ds
00£0 19 ceel P16 £e0l 1 ds
00£0 koS Bk b1 8207 66C1 1 ds
.................. B89 0 BLEY L EVELWEMET o PEEL L EVO L%
0g'81 £9'1 £8'l 1L gLel FO'ER I (mzda
290 F 1£68 ZZOF IG01  ICEF [0S 9LTF 05 [f adesay
............................................ 1) O 15 1 7 S S
90°63 L 01 £0°6h 2L Ok I 1o
8006 BZ'0 £ 01 11°es B6'Er 1 10
2868 6£01 PG B0t I 10
0063 920 9% 01 05 Lb 0F 6€ 1 ° 0I91TEL
el g1y (Fmane) o OED FOMD SOV oLk} OFJ Rol p FRL g apdueeg

(panumue D) 7t A9ET

114



TR0 = #90 bae 001 (=2 HEPDEF = 0T Sx FBATETRE JO JAQUALN] T

AW W papnpow o fEwmds ds fauaxosidomma xda fawmano o 1.

‘0] ame stsATete jods afEwis s sI0I3 UMEAS A[BUIs YJva 1o] sasATeUR Jo saBelaar am (]

£PL0 881G 107zl BFL1 BLZ1 120 1 (omds
120 F #9006 II0F 298 BLTF £8'9F  pPIF 1p8C  aBesasy
............................................ 0906 TOOF gl0 T 600F 958 900F ST9F 0£0F S8l T 10
Cr06 CZTOF Co8  L80F Tror 9P OF pElE T 10
L806 CLOF o438 L31F ¢88k 9ST1F POOP ¢ 1© DPLODHL
CLOOF GLLO 1ZTF 6bpe  E1TF L9010 IC0F GBIL  GSCTF 071 aBesaLy
.................. 1BLO T U pl0F €8es LZ1F RLOL £60F 1691 [60F L9107 A
0LLO BEOF 06FC  0TO0F 0601 SLOF LZLL CLOTF L6721 3 ds
16470 LUTF SpE6  LIOF 056 300F 2191 £00F 2001 Z ds
LELO L00F 61795 6T0F £1T1  BFOF 01L1  0T0F (6] Z ds
COLLF TOO0L GEOF b BOOF 9p1  ¥E1F $TF  CLILF L£6T OLCF TLel  adesany
............................................................. 2C0F 9281 GLOF LT | GL0F OPT | 6L0F p6C  CC0F 80L1 pEOF 1105 ¢ | (omxd
OLOF 84T  £10F 9LT  LIOF IST  £20F $6C  [Z0F 99¢€L BEOF zeig ¢ (awedd gploD3L
SL0F 0506 OLOF P06 ZCOF 828F 0C0F [L6e  afesasy
........................................... ggos T T TII0F 206 0TO0F LEBF | 46 0F BEEe £ | 10
2£'06 9C0F P16 BITF 63'LF LLTF BEHE £ 10
GG 06 600F b68  [T1F 08¢ CITF Gi8e ¢ 1© dpL0DHAL
.............................. B9 O 0908 | e FOOF TOB | OUEF 6L9Y| BCTF CTBE ey
0£'06 CTOF L98  TTLF 9Tor B0TF Ivie T 1o
AR ZEOF 198 0FEF C0bE EPTF €198 T 10
BE'16 LC0F 658 TEOF L01S PEOF 2llP T 1© ¥PLODHL
0190 BYOF 26Tk CTI0OF 1281  SL0F 9222 600F LCT10 ROOF BLO Z ds
£0T1F £8'98 880F PIZ1 980F 60°Cr 9POF g aBessy
............................................ pLGE | TOOF LI0 T URIOF ROl FCOF 00FF ZPOF 1ZBE 2 10
¥G 98 CLOF €pZ1 8I0F £8'vk €90F 688 T 10
1048 TPOF PITL SLOF 190k PCOF 918E T 1o
02 88 CTOF 9601 LFOF £8°Cr TPOF 0Z88 T SOCA fop:n
P JFEAS) g1 | (mato) o oD HORD SO 034 O oIS AL R s

(patumuon) 7 A19ET,

115



1.0 , _
i [0 Takashima
0.9 | ® Kurose (Arai, 1994)
0.8 | .
0.7 | .
~ i i
2 0.6 | %E .
2 | N
< o5 | . o
H* i Fractional crystallization |
© o4l ~
0.3 | =
0.2 | =
0.1 | |
0 ] ]
96 92 88 84

Fo (olivine)

Fig. 4-3. Relationships between Fo ( = Mg/(Mg+Fe)x100) content of olivine and
Cr# ( = Cr/(Cr+Al)) of spinel in dunite xenoliths from Takashima.
Dash-outlined area represents the OSMA, olivine-spinel mantle array,
which was proposed by Arai (1994) as a trend of upper-mantle derived
peridotites. The data for lherzolite from Kurose (Arai, 1994) are plotted for
comparison.
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4-3-2. Noble gas isotopes

Results of noble gas analysis are summarized with conditions of gas extraction in Table
4-4 and 4-4. Hot blanks and crushing blanks have been already listed in Table 3-6.
Correction of blanks were carried out for all data of sample runs, however, isotopic
ratios of Ne with blank exceeding 50% of total Ne, and all the isotopic ratios of Kr and
Xe were not corrected because of quite low amount of released these noble gases from
the samples. Errors on isotopic ratio are one standard deviation, including errors with
blank correction and mass discrimination. Experimental uncertainties in the
concentration of each noble gas were estimated to be about 5% for He and Ar, 10% for
Ne, Kr and Xe, respectively, based on the reproducibility of measurements of the

standard gas.
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Helium

Figure 4—4 displays *He/*He ratios versus “He concentrations of minerals separated
from xenoliths. Previous data on mantle xenoliths from Oki-Dogo and Ichinomegata, in
the back-arc region of Japan (Fig. 4-1) are also plotted for comparison (Porcelli et al.,
1992; Nagao and Takahashi, 1993). Some samples from Takashima were analyzed
several times to check their homogeneity of He distribution using different aliquots of
olivine separated from the same xenolith, and the results of replicate analyses are also
listed in Table 4-3 and Fig. 4-4. In addition, analyzed noble gases of some samples
were extracted using both crushing and heating methods.

Helium concentrations vary by about three orders of magnitude among the samples
from Takashima and Cheju Island. The xenolith from Kurose contains very small
amount of He, precluding further discussion on *He/*He ratios obtained with crushing
due to too large uncertainty. The most interesting result in Fig. 4-4 is that, although
most samples contain He with *He/*He ratios similar to MORB-value (8.18 + 0.73 Rx;
Hilton et al., 1993) as well as xenoliths from Ichinomegata (Porcelli, et al., 1992; Nagao
and Takahashi, 1993), some samples from Takashima show significantly higher
He/*He ratios than that of MORB. Some ®He/*He ratios obtained from Kurose
xenoliths using heating method is also higher than MORB-value. This is the first case
that ®He/*He ratios higher than MORB-value are observed in a subduction zone. The
remarkably low *He/*He ratio of TKP1040, which is only one clinopyroxenite xenolith
among all samples, is probably caused by post-eruptive accumulation of radiogenic He
as in the case with Oki-Dogo xenoliths (Nagao and Takahashi, 1993). In contrast with
Takashima xenoliths, the samples from Cheju Island show relatively uniform *He/*He
ratios which are slightly lower than that of MORB.

Figure 4-5 shows dispersion of He abundance in replicate analysis of some samples
from Takashima. The facts that the He concentration is not uniform even in an
individual xenolith, and that extraction by crushing shows He concentrations
comparable to those by heating in spite of low extraction efficiency of crushing method,
indicate that the noble gases are heterogeneously trapped mostly in fluid inclusions.
Replicate analyses indicate that the *He/*He ratio is not also uniform even in an

individual xenolith, particularly in gas-poor one (Fig. 4-6). These suggest that fluid
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inclusions with different *He/*He components are contained in xenoliths from

Takashima.
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Fig. 4-4.

*He concentration (10°cm3STP/g)

He isotopic ratios (relative to air) and “He abundances for xenoliths from
(A) Takashima and (B) Kurose and Cheju Island. Errors are 1c. The
results obtained with heating method are high temperature fraction when
two-step heating was applied. Previous data on mantle xenoliths from
back-arc region of Japan (Porcelli et al., 1992; Nagao and Takahashi,
1993) are also shown for comparison. Hatched area indicates the range of
*He/*He ratio of MORB (8.18+0.73Ra; Hilton et al., 1993).
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crushing and hating extraction method, respectively.
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Cosmogenic and radiogenic He

The *He/*He ratios higher than MORB-value strongly support the presence of lower
mantle component, however, the possibility that these high *He/*He ratios are due to
addition of in-situ produced *He must be considered. Since it has been revealed that the
crushing method can selectively extract noble gases from fluid inclusions which are
enriched in volatiles, possibility of contribution of cosmogenic *He to high *He/*He
ratio obtained with crushing can be excluded (e.g., Kurz et al., 1986; Stuart et al., 1994).
However, contribution of matrix-supported component including cosmogenic *He is
significant in He extracted by heating method as well as magmatic component. On the
other hand, radiogenic He is also produced in matrix with age and will reduce *He/*He
ratio of He extracted by heating. Therefore it is necessary to evaluate the contribution of
in-situ produced cosmogenic and radiogenic He to the *He/*He ratios obtained with
heating method.

The curve in solid line shown in Fig. 47 indicate the change of *He/*He ratio assuming
that only production of cosmogenic *He is influencing the assumed original *He/*He
ratio of MORB value (8.18R,), with the production rate of 4.1x10™® cm®STP/g/year on
the surface (Nagao and Takahashi, 1993). The production rate is not corrected for the
effects of overburden shielding, and should be regarded as the maximum possible value,
as the ®He production will decrease by 90% with 1m of shielding by rock of 3g/cm?® (Lal,
1987). Numbers of the curves represent the assumed duration of the exposure to cosmic
rays. Some high *He/*He ratios observed in samples from Takashima and all of those
from Kurose in the gas released by heating methods plot within the field where the
effect of cosmogenic *He production during 500-10000 years of exposure becomes
significant, suggesting high *He/*He ratios than MORB can be attributed to addition of
cosmic-ray produced *He in them. Meanwhile, to explain the highest *He/*He ratio
(16.6+1.4RA) of all results, which was obtained from sample TKD1550 by the heating
extraction method, the exposure age is estimated to be 0.1Ma, which is smaller than
eruption age of host basalt (Table 3-3). This age is the minimum possible value, as the
cosmogenic *He production will decrease by an order of magnitude at the depth of 1m
from the surface. Judging from field occurrence of the samples in alkaline basalts,
which was fallen down from the cliff probably in recent 10-100 years, they has been
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buried by host basalt layer for a long time. Moreover, the *Ne/?’Ne ratio of the sample
(0.033+0.005) was almost atmospheric (0.0290), indicating negligible contribution of
cosmogenic “Ne. If all excess *Ne in this sample is cosmogenic origin, assuming a
cosmogenic *He/*Ne ratio of 3.5 (Staudacher and Allégre, 1993), the cosmogenic *He
concentration is calculated to be 5.5x10™> cm®STP/g in maximum, which constitutes
less than 1% of total *He measured in the high->He/*He results of TKD1550, indicating
that it is negligible. Another possible in-situ component is nucleogenic *He produced
from the reaction of °Li(n, o) T(B")*He. Assuming the Li and U contents in the dunites
are 0.5ppm and 2ppb respectively and Th/U=3, nucleogenic *He concentration
accumulated during 3.0Ma is estimated to be 1.3x10™*® cm®STP/g (Andrews, 1985),
which shows negligible contribution of nucleogenic *He.

The changes of *He/*He ratios of the sample caused by addition of radiogenic “He are
also shown in Fig. 4-7 as the dashed lines A, B and C. The production rate of “He is
1.41x10°cm®STP/g from 1g of U assuming Th/U=4 (Ozima and Podosek, 1983). Given
that U concentrations of dunites from Takashima and Iherzolites from Kurose are 5ppb
and 40ppb, respectively, calculated changes of *He/*He ratios agree with the data lower
than MORB value, with the eruption ages of 3.1Ma for Takashima (average of K-Ar age
of basalts from Takashima, Table 3-3) and 1.1Ma for Kurose (Uto et al., 1993),
respectively. TKP1040 is an only one clinopyroxenite xenolith from Takashima, and
has low ®He/*He ratio indicating significant contribution of radiogenic component than
in the case with dunite xenoliths. The estimated U content in the clinopyroxenite of
3ppm (Fig. 4-7) is 600 times that in dunite, which is consistent with that partition
coefficient of U in clinopyroxene is larger than that in olivine (Henderson, 1982), and
cumulative origin of these xenoliths from the same magmatism (Kobayashi and Arali,
1981; Kagami et al., 1993).
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Fig. 4-7. *He/*He ratios vs. *He concentration of xenoliths from Takashima and Kurose

obtained with heating extraction method. The curves shown in solid indicate the
change of the *He/*He ratios by addition of cosmogenic *He, with the production
rate of 4.1x10%cm®STP/g/yr (Nagao and Takahashi, 1993). Numbers on the
curves represents the assumed duration of the exposure to cosmic rays. The
changes of 3He/*He ratios of the sample caused by post-eruptive addition of
radiogenic “He is also shown as the dashed lines (A) for Takashima dunites with
U = 5ppb, (B) for Kurose lherzolites with U=40ppb, and (C) for Takashima
pyroxenite with 3ppm, respectively. Eruption age are 3.1 Ma for Takashima
(Table 3-3) and 1.1 Ma for Kurose (Uto et al., 1993).
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Ne, Kr and Xe isotopes

Figure 4-8 presents the Ne isotopic ratios except the data including more than 50% of
blank in total Ne extracted from the sample. All data obtained with MS-IV before
modification are not presented due to extremely high blank level of Ne. In case that the
stepwise heating was applied for gas extraction, the data with high temperature fraction
are used for discussion because adsorbed atmospheric Ne might be dominant in low
temperature fraction. The samples from Takashima cluster around atmospheric ratio
independent of gas extraction method. Because the Ne isotope ratios with high
temperature fraction of step heating eliminating contamination of adsorbed atmospheric
component also show the atmospheric ratio, the samples from Takashima may contain
Ne with similar atmospheric isotopic ratios. Some exceptional data are plotted near the
MORB-line, indicating presence of mantle-derived Ne in the samples. The xenoliths
from Kurose and Cheju Island are enriched in ®Ne and #*Ne with respect to atmospheric
isotopic composition. Since *®Ar/*°Ar ratios of the samples are identical with
atmospheric ratio within analytical error (Table 4-3), the deviation of Ne isotope ratios
from atmospheric value is not caused by mass fractionation. Whether the data plot on
MORSB line (Sarda et al., 1988) or Loihi-Kilauea line (Honda et al., 1991) is not clear
due to large uncertainties resulting from quite low amount of extracted Ne. Therefore, it
is only mentioned that Ne in upper mantle beneath Kurose and Cheju Island may
contain mantle Ne, as well as other tectonic settings such as mid-ocean ridge or hotspot,
whereas Ne in upper mantle beneath Takashima probably have atmospheric isotopic
ratio. It may suggest that mantle beneath northwestern Kyushu have been contaminated
by atmospheric Ne probably brought by ancient subduction (will be discussed later).

Kr and Xe isotopes were measured for most of the samples and shown in Table 4-4. In
all cases, observed Kr and Xe isotopic ratios are indistinguishable from atmospheric

composition within 1o uncertainty due to less amounts of Kr and Xe in extracted gases.
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Fig. 4-8. Ne three isotope plot of xenoliths from (A) Takashima, (B) Kurose and Cheju
Island The correlation lines defined by MORB samples (MORB line; Sarda et al.,
1988), Loihi-Kilauea line (L-K line; Honda et al.,1991), and mass fractionation
line (m. f. 1.) are shown for comparison.
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He-Ar systematics

The 3He/*He=*Ar/*®Ar diagram is shown in Fig. 4-9. When the stepwise heating
method was applied for the samples, “°Ar/**Ar ratios obtained with high temperature
fraction of two-step heating or the highest ratio with multi-stage step heating are used
for discussion to minimize contamination by adsorbed atmospheric Ar. *He/*He ratios
are total isotopic ratio in case of two-step heating. The data, whose *He/*He ratios are
obtained with heating and apparently disturbed by cosmogenic or radiogenic He judging
from Fig. 4-7, are excluded. In addition, the data obtained with crushing experiment for
Kurose xenoliths are not used because of large uncertainties with *He/*He ratios owing
to extremely low concentration of He in the samples. He and Ar in xenoliths from Cheju
Island can be explained by two components mixing between atmosphere and upper
mantle beneath Cheju Island. Meantime, He—Ar isotopic compositions of xenoliths from
Takashima can be explained as products of three components mixing among the
atmospheric component and other two components. One of the two components is
characterized by MORB-like (or slightly lower) *He/*He ratio and “°Ar/*®Ar ratio over
1500, which is called MORB-type component in this thesis. The other component has
higher *He/*He ratio than 17Ra and relatively low “°Ar/*®Ar ratio ca. 400. Higher
He/*He ratios than MORB-values are observed in tectonic settings related to mantle
plume, such as hotspots, hence the latter is called plume-type component hereafter.
Using isotopic parameters in Table 4-5, all the samples from Takashima plot in the field
defined by mixing lines among the three components in Fig. 4-9. *“He/*°Ar ratios of
these endmembers are unable to be determined uniquely, thus the highest value among
all samples (1700 and 4800 for Takashima and Cheju, respectively) can be assumed for
MORB-type component, and “He/*°Ar ratio for plume-type component is estimated to
accord with distribution of the samples. The MORB-type component in Takashima
xenoliths is almost similar to mantle beneath Cheju Island in *He/*He ratio, however
“OAr/*Ar ratio of 2000 is lower than that of Cheju mantle (up to 3000 with crushing)
despite not yet to apply step heating for Cheju samples.
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Fig. 4-9. Diagram of *He/*He vs. “Ar/*®Ar ratios. The solid lines are mixing
line among atmosphere and each endmembers in Table 4-5.

Table 4-5. He and Ar isotopic parameters for mixing calculation.

Plume-type MORB-type

(Takashima) Cheju mantle  Atmasphere”
SHel'He (R/R,) 16.6 7.0 6.5 1
OArAr 400 2000 5000 295.5
"He/*Ar 1400 1700 4800 0.165

*Data from Ozima and Podosek (1983).
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Abundance pattern

Figure 4-10 shows the noble gas abundance patterns of the xenoliths. The definition of
F-values has already described in chapter 3. The patterns obtained with high
temperature fraction of step heating show the relatively uniform feature of depletion in
light noble gases and enrichment in heavy noble gases, however, those with crushing
vary widely in feature. When noble gases are extracted with crushing method, the
heavier noble gases may adsorb on the fresh surface of crushed minerals, resulting
F-value are shifted upward in light noble gases and downward in heavy noble gases.
Therefore, the original patterns similar to those with heating are changed by artifact in
crushing experiment despite heating the crusher during analysis to avoid adsorption of
heavy noble gases. The abundance patterns obtained with heating for Takashima and
Kurose xenoliths are distinct from mantle-derived materials such as MORB and mantle
xenoliths from hotspot region, and similar to the patterns of deep-seawater (Allégre et
al., 1986/87), old oceanic crust and oceanic sediments (Matsuda and Nagao, 1986;
Staudacher and Allegre, 1988). This feature suggests that the upper mantle beneath
northwest Kyushu contains noble gases probably released from the subducting slab. It is
coincident with that “°Ar/*°Ar ratios of all the samples show heavy contamination by
atmospheric component in spite of their mantle origin. Further discussion will be later

accompanied with the results on alkaline basalts from northwestern Kyushu.

134



(A) 10 Crushing
. - MORB 1
10 ® Takahima E
. B = Kurose .
10 F BE
s ¢ Cheju Island e
— - 1
E 102t 5
L i ]
10 ;
10" E DA . 1
- ./ /Old oceanic crust & E
- oceanic sediments 1

10-2 ] 1 ] 1

4He ZONe 36'0\r 84Kr 132Xe
(B) 10° f e e
- eatin 7
L MORB —ealing g
10 E
& O Takashima E
103 o Kurose 5
, | ]
~ 107 E =
£ F -
L B ]
10 ¢ g
10" F— A/ : -
g \\v//Old oceanic crust & E
02 L \7/ qceanic sediments ]

‘He ®Ne *Ar 8K 182y

Fig. 4-10. Noble gas abundance patterns for xenoliths obtained with (A) crushing
and (B) heating. Low temperature fraction of step heating in heavy
noble gases (Ar, Kr and Xe) are subtracted in order to exclude
atmospheric contamination on the sample surface. Typical abundance
patterns of deep-sea water (Allegre et al, 1986/87), MORB (Staudacher
et al., 1989; Hiyagon et al., 1992), Loihi (Kaneoka et al., 1983), and old
oceanic crust and sediment (Matsuda and Nagao, 1986, Staudacher and
Allegre, 1988) are shown by hatches.
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4-4. Discussion

4-4-1. Origin of two kinds of noble gases in xenolith from Takashima

Stepwise heating and crushing

As mentioned above, some *He/*He ratios of Takashima xenoliths obtained with both
crushing and heating show the presence of plume-type He certainly. However,
plume-type He distribute in the samples heterogeneously, and concurrently with
MORB-type He, because results of replicate analyses of the sample TKD1550 show
both plume-type and MORB-type *He/*He ratios with He concentration varying by an
order of magnitude.

To assess the He heterogeneity in individual xenoliths, stepwise heating and crushing
were applied for two characteristic samples, TKS01 and TKD1120. Both samples show
relatively constant ®He/*He ratio and He concentration irrespective of extraction method,
indicating rich in fluid inclusions. While TKS01 shows higher *He/*He ratio ranging
from 8.92 to 9.93Ra, replicate analyses for TKD1120 give slightly lower *He/*He ratio
of 7.02 Ra in average.

The results obtained with stepwise heating are listed in Table 4—-6 and He isotopic
compositions at each temperature are shown in Fig. 4-11. Stepwise heating was also
applied to TKY01 and TKD1550, and results are also listed in Table 4-6 too. TKS01
shows extremely high ®He/*He ratio at 600°C fraction, while the other samples show
lower *He/*He ratios than that obtained with crushing method due to relatively large
contribution of He radiogenically produced in mineral lattice. Such a high ®He/*He ratio
(72+18R,) can be caused by addition of cosmogenic ®He, however, *Ne/*Ne ratio
(0.0281+0.0030) of this fraction is almost atmospheric, rejecting possibility of their
cosmogenic origin. Because the amount of He extracted at this temperature is only 0.1%
of total He in the sample, the high *He/*He ratio is probably resulted from fractionation
due to higher mobility of *He than that of “He. Even if difference in permeability of He
and Ne cause decoupling of release temperature, *Ne/*’Ne ratio obtained with next
heating step was also atmospheric, suggesting negligible contribution of cosmogenic

component. Comparing “He release pattern of TKSO01 and the other three samples, while
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He in TKSO1 concentrated in high temperature (1400-1800°C) fractions, He in the
other samples start to release at low temperature, at around 1000°C. This indicate that
He in TKSO1 are trapped in hardier cite than that in the other samples. It suggests that
low *He/*He component is trapped in a weak structure, such as micro fracture or healed
crack.

The procedure of the stepwise crushing was the same as described in chapter 2. In case
that hydraulic-type crusher was used, with increasing pressure by 10MPa step and each
pressure was kept for 1 minute, the noble gases released at each pressure were analyzed
separately. The results are listed in Table 4—7. Figure 4-12 shows the amount and the
isotopic ratio of He released at each crushing step with hydraulic-type crusher. While
TKD1120 shows constant *He/*He ratio equivalent to average of replicate analysis
independent of proceeding of crushing, ®He/*He ratios of TKSO01 observed in different
steps are variable. The highest amount of He is released in the second crushing step
with the lowest *He/*He ratio of 8.5+0.3Ra, which is in the range of MORB-He.
Amounts of He released in subsequent crushing steps decreased but the *He/*He ratios
were variable. If in-situ produced components were released in our crushing experiment,
the contribution of such components would become larger at higher-pressure steps as
was observed by Stuart et al. (1994). However, no relationship between the *He/*He
ratio and the pressure was observed. Thus it is unlikely that our crushing technique
released considerable amounts of in-situ produced components which reside in the
mineral lattice, and the variation may result from isotopic heterogeneity in fluid
inclusions in the olivines. Such variable *He/*He ratios are not observed when crushing
using a solenoid-type crusher was applied for the sample TKS01, probably due to
wildly crushing and well mixing of the sample during crushing in the chamber. The
results suggest that whereas TKD1120 contain low *He/*He component (MORB-type),
several or at least two types of fluid inclusions different in *He/*He ratio are trapped in
TKSO1.

Another important point is that the *He/*He ratio (11.8+0.7R,) obtained at the fourth
step is the highest among *He/*He ratios with crushing method and significantly higher
than MORB-value, certainly indicating that He derived from lower mantle is contained
in TKSO1 xenolith.
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Fig. 4-11. Results of stepwise heating tests for selected xenoliths from Takashima. *He
release patterns (A) and *He/*He ratios (B) in each temperature step are shown.
Extraction ratio means a proportion of *He released at the temperature step
compared to the total released “He. TKSO1 is tested twice in different division
of steps.
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Fig. 4-12. Results of stepwise crushing test for TKSO1 and TKD1120 xenoliths from
Takashima. “Crushing pressure” means progressive crushing indicated as
hydraulic pressure. Extraction ratio means a proportion of *He released at the
temperature step compared to the total released “He. The *He/*He ratios of
endmembers in Takashima xenoliths are shown for comparison. Hatched area
indicates the range of ®He/*He ratio of MORB (8.18+0.73Ra; Hilton et al.,
1993).
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Noble gas profile in a drill-core sample

In order to study the distribution of the different noble gas components present in
xenoliths from Takashima, profile analysis of a drill-core sample, (TKC014: see Fig.
4-2) was performed. The results of noble gas analysis of separated sample with both
crushing and stepwise heating method are listed in Table 4-8. Although *He/*He ratios
are uniform within analytical error, systematic variation with depth in “*Ar/**Ar and
*He/**Ar ratios are found in the results obtained with crushing (Fig. 4-13). “Ar/**Ar
ratio increase from 600 to 1100 with depth as well as “He/**Ar ratio from 10 to 40.
Since TKCO014A was exposed to atmosphere, one possible explanation of these trends is
atmospheric contamination via diffusion or weathering. When the diffusive exchange
between Ar trapped in fluid inclusion and in atmosphere occurred, “He/*°Ar ratios will
decrease due to higher diffusivity of He than that of Ar and/or depletion of He relative
to Ar in the atmosphere. And “°Ar/*°Ar ratio will decrease drastically in spite of
retention of high *He/*He ratio. Such prospective changes of isotopic composition of
noble gases agree with the observation. However, this is not the case. According to He
diffusivity experimentally determined in olivine (Hart, 1984; Trull and Kurz, 1993), He
in fluid inclusion will be reserved during long time such as 0.1 million years and not
exchange with those in the atmosphere. Diffusivity of Ar in olivine is larger than that of
He apparently, therefore, contamination of Ar from atmosphere is improbable.

Another possible mechanism is adsorption of atmospheric Ar in altered part of mineral.
Although altered olivines observable via binocular microscope were removed and
samples were leached by acid prior to noble gas analysis, atmospheric noble gases
might be adsorbed in fine structure, such as micro cracks. Since the atmospheric Ar
intruding in micro cracks would be weakly held compared to magmatic Ar trapped in
fluid inclusions, it will be released at lower temperature in step heating. However, the
highest “°Ar/*®Ar ratios observed in step heating analysis are almost in the same order of
those with crushing (Fig. 4-14), indicating that the trend is feature of Ar trapped in fluid
inclusions. In “°Ar/*®Ar vs. 1/°*°Ar diagram (Fig. 4-15), a suite of samples having an
originally constant “°Ar/*®Ar component and becoming contaminated with variable
amounts of atmospheric Ar will form a positive correlation (e.g., Fisher, 1986;
Staudacher et al., 1989; Farley and Craig, 1994). However, this is not the case with
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TKCO014 because the separated parts are arranged along to a hypothetical contamination
trend, i.e. the data cannot be explained by simple addition of atmospheric Ar via
contamination.

The trend in Fig. 4-15 rather seems to indicate mixing between two different
mantle-derived noble gas components. As shown above, the noble gases in Takashima
xenoliths can be explained by mixing among atmospheric and two mantle-derived
components. Judging from “°Ar/**Ar and *He/**Ar ratios of each endmember, the noble
gas profile observed in TKC014 is produced by mixing between MORB-type
component (TKC014C) and plume-type component (TKC014A), though clear variation
in *He/*He ratio is not observed due to large analytical errors. The facts that TKC014C
contacts with host basalt and that TKCO014A seems to be core part considering the shape
of xenoliths, strongly support assign of MORB-type component to noble gases in host

alkaline basalt magma.
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Fig. 4-13. Noble gas profile in the core sample TKCO014. The isotopic compositions (Table
4-5) of each endmember observed in xenoliths from Takashima are indicated as
thick dashed lines (plume-type), thick solid lines (MORB-type) and thin dotted
lines (atmosphere), respectively.
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thin dotted lines (atmosphere), respectively.
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for comparison. Data for different sample splits are anti-correlated,
indicating that atmospheric contamination is insignificant.
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Microscopic observation of fluid inclusions

To clarify how and when the two (or more) kinds of noble gases are trapped in an
individual xenolith deduced from above discussions, fluid inclusions in TKSO1 and
TKD1120 olivines are observed with a microscope, because stepwise crushing
experiments showed that both endmember of noble gases (Fig. 4-9) are likely to be
trapped in fluid inclusions. Figure 4-16 and Fig. 4-17 are photomicrographs of fluid
inclusions in TKD1120 and TKSO01, respectively.

Fluid inclusions which are aligned along planes of healed fractures across grain
boundaries with various shapes are observed in TKD1120. Sometimes they are
associated with melt inclusions. The shapes are spherical with a diameter of 5pum or
elongated tubular with a diameter of 5um and sometimes reaching to 50um in the length.
Tube-shaped inclusions are thought to change into small spherical inclusions when
fractures coalesce (Wanamaker and Evans, 1989). These morphologies suggest
secondary origin, which was formed during volatile penetration after accumulation of
olivine in dunite xenoliths. Thus this kind of inclusions is called secondary fluid
inclusion.

On the other hand, not only secondary fluid inclusions but also the other type of fluid
inclusions are observed in TKSO0L1. This type of inclusions is large (typically 20-50um
in diameter) spherical or occasionally as negative crystal, sometimes separate into
two-phase (liquid and vapor), and scatter randomly. These fluid inclusions might be
formed at the same time of crystallization or remelting of host olivine. Thus this kind of
inclusions is called primary fluid inclusions.

Mid-infrared spectra were obtained by micro FT-IR (Fourier transform infrared)
spectroscopy in order to what volatiles are dominant in primary and secondary fluid
inclusions. Infrared spectra were recorded using a Perkin Elmer Spectra 2000 FT-IR
spectrometer equipped with an IR microscope (Kagi and Takahashi, 1998). The samples
are doubly polished thin sections with a thickness ca 500um. The beam size of the IR
incident light was 100um and irradiated at the point indicated in Fig. 4-16 and Fig.
4-17, respectively. Obtained Mid-IR spectra are shown in Fig. 4-18. A doublet of C=0
stretching of CO; is observed around 2350cm™. Any adsorption of other volatiles such

as H,0 around 3400cm™ was not observed in all spectra. It is difficult to quantitatively
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estimate the amount of CO, and lower limit of CO,/H,0 at present, it is revealed that at
least CO;, is trapped in both primary and secondary fluid inclusions and may be
dominant.

Considering that TKD1120 indicate MORB-type ®He/*He ratio constantly and
secondary fluids inclusions are dominant in it, MORB-type noble gas is trapped in
secondary fluid inclusions. On the other hand, since TKS01 show both low *He/*He
ratio and high *He/*He ratio heterogeneously and contains both primary and secondary
fluid inclusions, plume-type component is trapped in primary fluid inclusions. This
interpretation is consistent with that He in TKD1120 is released at relatively low
temperature with step heating, because secondary inclusions may easily decreptate

along healed cracks.
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Fig. 4-16. A photomicrograph of secondary fluid inclusions in olivine in TKD1120
xenolith from Takashima, showing planar arrays of fluid inclusions across
grain boundaries of olivines. Tube-shaped secondary inclusions elongated
along the plane of the fracture are also shown. “A” and “B” are beam spot of
micro FT-IR corresponding to spectra in Fig. 4-18. Relatively large melt
inclusions associating with secondary fluid inclusions are indicated by arrows.
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100um

Fig. 4-16. (Continued)
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I 50 um I

Fig. 4-17. A photomicrograph of primary fluid inclusions in TKS01 xenoliths from
Takashima. Numerous two-phase spherical inclusions are arrowed and
two-phase negative crystal inclusion marked (N), with indicating liquid (I) and
vapor (v) phase. “C” is a beam spot of micro FT-IR corresponding to spectrum
in Fig. 4-18.

152



Absorbance

0.52

0.5

0.48

0.46

0.44

0.38

0.34

0.3

0.26 |-

0.42-(8)' |

14

1.2

0.8

CO, stretching

4000

3500 3000 2500 2000

Wavenumber (cm™)

Fig. 4-18. Mid-IR absorption spectra of (A) spherical secondary fluid inclusions,

and (B) tubular secondary fluid inclusions in TKD1120, and (C)
primary inclusions in TKSO1. Although CO, stretching absorption
are clearly observed, H,O which should be observed around
3400cm™ with broad band, is not observed. Note that other structure
in spectra are absorption of host olivine.
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The origin of cognate and accidental noble gases

It is revealed that some xenolith from Takashima contain two kinds of noble gases, one
is trapped in primary fluid inclusions suggesting its cognate origin with xenoliths, and
the other is trapped accidentally and concurrently with formation of secondary fluid
inclusions. According to Arai and Abe (1994), the last equilibration of Takashima
xenoliths took place at temperatures between 1000 and 1100°C, and depths of 40-80km
estimated from geotherm of xenoliths from Fukue-jima, northwestern Kyushu (Umino
and Yoshizawa, 1996). At these temperatures, diffusion coefficients for He diffusion in
olivine are about 3.2x10™cm?%s (Trull and Kurz, 1993) and intermineral isotopic
equilibrium between mm-sized mantle phase should be achieved in less than 10 years.
Since there is clear evidence for He isotopic disequilibrium in some xenoliths from
Takashima, the metasomatic overprint must have occurred shortly before or
concurrently with the eruption of host magma. Considering the fact that isotopic
compositions of the MORB-type endmember resemble closely to that of alkaline basalt
magma erupted around Takashima (*He/*He~7Ra, “°Ar/*Ar>800), it is concluded that
MORB-type noble gas in xenoliths resulted from exchange with that in host magma. It
is consistent with the noble gas profile in the core sample TKCO014, suggesting
interaction of noble gases in the xenolith with those of host basalt magma.
Alternatively, plume-type He has been trapped in cumulate beneath northwestern
Kyushu, before ascending the alkaline basalt magma erupted in Takashima. This
suggests that volcanism triggered by mantle plume had occurred before 7Ma, which is
the eruption age the oldest basalt among those analyzed in this study. The origin of
plume-type He will be further discussed in next chapter.
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5. Implication for mantle dynamics deduced from noble
gas isotope systematics in alkaline basalt and

mantle-derived xenolith

5-1. Geochemical nature of sub-continental mantle beneath back-arc region

of southwestern Japan

5-1-1. Noble gas characteristics of sub-continental mantle

Noble gas nature of sub-continental mantle beneath back-arc region of southwestern
Japan is inferred from the xenoliths from Cheju Island. The noble gas in alkaline basalt
magma erupted in Higashi-matsuura also represents the isotopic composition of
sub-continental mantle because their noble gases and Nd-Sr isotopes lack plume-like
signature (see chapter 3). Although noble gas in Takashima xenoliths have complicated
characteristics resulting from interaction with host alkaline basalt magma, MORB-type
endmember gives information of sub continental mantle because it is considered to be
inherited from host alkaline basalt magma (chapter 4). The inferred features of noble
gas isotopic composition of the sub-continental mantle are (1) lower ®He/*He ratios
(6.5-7.0R4) than that of MORB (8.18+0.73Rp), “°Ar/*°Ar ratio up to 4400, which is
distinctly lower than those of MORB (>28000), (3) F-values depleted in light noble
gases and enriched in heavy noble gases, which is similar to the pattern of air-saturated

sea water, old oceanic crust, and oceanic sediments.

5-1-2. Atmospheric Ar in the sub-continental mantle

Lower “°Ar/*°Ar ratio of the sub-continental mantle than that of the MORB-source
upper mantle suggests that atmospheric Ar was brought into the mantle wedge beneath
northwestern Kyushu and Cheju Island by subduction process. Assuming the initial
OAr/*Ar ratio of 28000 similar to MORB-source mantle, contributions of the
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subducted Ar can be estimated. The contributions of atmospheric component are
calculated to be 91% and 85% of the total *°Ar for the least contaminated samples from
northwestern Kyushu (1800°C fraction of TKSO01ol heating) and Cheju Island
(CHJ99010l crushing), respectively. If the atmospheric Ar is derived from deep-sea
water with *°Ar concentration of 1.27x10°cm®STP/g (Allégre et al., 1986/87), the
amount of water required for the mantle beneath northwestern Kyushu and Cheju Island
are 2.8 and 1.6mg for 1g xenolith, assuming *Ar concentration of upper mantle of
3.5x10%m3STP/g (Staudacher and Allégre, 1988) for xenoliths. If oceanic sediments
are the source of atmospheric Ar, required amounts of sediments are more than the
deep-sea water because of the lower concentrations (2.7x10%cm>STP/g) of **Ar and
nearly atmospheric or higher “°Ar/*®Ar ratio in the sediments (Matsuda and Nagao,
1986; Staudacher and Alleégre, 1988). Although the atmospheric Ar in CHJ99010l may
include adsorbed Ar on the surface of the sample, the contribution of atmospheric
component is smaller than that in least contaminated sample from northwestern Kyushu.
Therefore, degree of atmospheric contamination by subducting slab in the mantle
beneath Cheju Island is smaller than that in the mantle beneath northwestern Kyushu.
Nakamura et al. (1989) compared composition of major and trace element in alkaline
basalt from southwestern Japan, Cheju Island and northeastern China, and considered
that although upper mantle beneath southwestern Japan has been weakly affected by
metasomatism caused by fluid derived from the subducted Pacific plate (not the
Philippine Sea plate), the metasomatism has not affected the mantle beneath Cheju
Island and northeastern China. Highly contaminated signature of the mantle beneath
southwestern Japan in Ar isotopes compared to those beneath Cheju Island is consistent
with the conclusion of Nakamura et al. (1989). Different degree of the contamination
and the metasomatism may be due to difference in distance from trench between
northwestern Kyushu and Cheju Island. The slab-derived Ar observed in
sub-continental mantle beneath Cheju Island, which little metasomatized in major and
trace element, may reflect higher diffusivity of noble gas in the mantle than those of the
elements mentioned in Nakamura et al. (1989), because they do not chemically interact

with mantle materials.
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In addition, according to the petrological and geochemical observations, the mantle
xenoliths from Kurose and Cheju Island have been polluted by metasomatism (Abe et
al., 1998, Hee, 1998). It is reasonable that the metasomatic agent was fluid released
from the subducting slab and possibly brought atmospheric Ar to the mantle beneath

these regions.

5-1-3. Elemental ratio indicating slab-derived component

The idea of metasomatized sub-continental mantle by subduction-derived fluids is
supported by noble gas abundance ratio (F-value). The relationships F(20) vs. F(84) and
F(20) vs. F(132) are shown in Fig. 5-1. Since the results obtained with crushing seems
to be disturbed by experimental effect such as contamination by adsorbed atmospheric
components and adsorption of released noble gases (see 3—3 and 4-3), the data obtained
with high temperature fraction of step heating and total fusion are discussed here. Noble
gas compositions of the atmosphere, deep-sea water (Allegre et al., 1986/87), magma
equilibrated with seawater (Patterson et al., 1990), and old oceanic crusts and sediments
(Matsuda and Nagao, 1986; Staudacher and Allégre, 1988) are also shown in Fig. 5-1
for comparison.

Although the results for basalt from northwestern Kyushu are scattered, a negative
correlation can be recognized. There are two possible processes to form the trends of
olivines and clinopyroxenes. One is the two-component mixing and the other is the
fractionation by dynamic processes in magma, such as melting, crystallization and
degassing. The former requires two components. Noble gas in MORB-like upper mantle,
atmosphere or magma equilibrated with seawater is one of the endmembers and the
other is characterized by very low F(20) (<0.2), and very high F(84) (>3.5) and F(132)
(>30), which is similar to noble gas compositions of old oceanic crust and oceanic
sediments. Even if the latter accounts for the negative correlation, the compositional
change starts from the source material with low F(20) and high F(84) and F(132),
because prospective changes caused by the processes in the magma such as melting,
crystallization and degassing are in the same direction as indicated in Fig. 5-1. In either
case, noble gas elemental ratios of basalts from northwestern Kyushu suggest the
existence of slab-derived component. Since some data for basalts from
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Higashi-matsuura are plotted near the low-F(20) end of the trend, contribution of
slab-derived material is not limited in Kita-matsuura basalt, which was affected by
sub-crustal component (see section 3—4), and is the feature of source mantle of alkaline
basalt which is probably sub-continental mantle beneath northwestern Kyushu.

The data for mantle-derived xenoliths from Takashima and Kurose can be explained by
two component mixing between MORB-like mantle and slab-derived materials (old
oceanic crust and oceanic sediments). As demonstrated in chapter 4, the noble gases in
xenoliths from Takashima were contaminated by those in host basalt magma suggesting
that slab-derived component is inherited from host alkaline basalt magma. However, the
sample most enriched in Xe has higher F(132) value than maximum value observed in
basalts, and the second enriched sample in heavy noble gases has plume-like *He/*He
ratio, contradicting contamination by host basalt.

In conclusion, existence of slab-derived component in the mantle beneath northwest
Kyushu is supported by noble gas elemental ratio, as well as by much lower “°Ar/*°Ar

ratio than MORB source mantle.
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Fig. 5-1. (A) F(84) vs. F(20) and (B) F(132) vs. F(20) plot for the xenoliths from
Takashima and Kurose, and basalts from Higashi-matsuura (H-matsuura)
and Kita-matsuura (K-matsuura) in northwestern Kyushu. Open symbols
are basalts, filled symbols are xenoliths, respectively. “h-t” and “tf” are
data obtained with high temperature fraction of step heating and total
fusion, respectively. The marks of “Air”, “DSW” and “M-SW” indicated
the compositions of atmosphere, deep-sea water (Allegre et al., 1986/87)
and magma equilibrated with seawater calculated as Patterson et al. (1990)
using solubility data of alkaline olivine basalt (Lux, 1987). The range of
MORB glasses (Staudacher et al, 1989; Hiyagon et al., 1992) and old
oceanic crust and oceanic sediments (Matsuda and Nagao, 1986,
Staudacher and Allegre, 1988) are shown. Changes of F-values by
crystallization, degassing and melting are schematically illustrated by
arrows.
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5-1-4. Sources of radiogenic He in the sub-continental mantle

Low *He/*He ratio observed in back-arc region of southwestern Japan

Ar isotopic ratio and noble gas elemental ratio of sub-continental mantle beneath
back-arc region of Japan strongly suggest presence of slab-derived noble gas in the
mantle wedge. Similar possibility of subduction-related metasomatism in noble gas
discussed above has been argued by Nagao and Takahashi (1993) for xenolith from
Ichinomegata and Oki-Dogo. However, the *He/*He feature in the samples from
Ichinomegata and Oki-Dogo is different from that observed in northwestern Kyushu in
this study. In the previous study, while “’Ar/*®Ar ratio and elemental ratio of noble
gases indicate their subducted slab origin, *He/*He ratio is almost the same with
MORB-value, including only helium is not altered by subduction processes. Nagao and
Takahashi (1993) suggested that helium originally trapped in the mantle wedge was lost
by degassing, and continuous supply of helium from deeper mantle recovers helium
isotopic ratio to MORB-like ratio. On the other hand in northwestern Kyushu,
uppermost mantle remain helium isotopic ratio altered by radiogenic helium from slab
or, enriched in U and Th resulting lowering of *He/*He ratio. This difference might be
related to different tectonic settings. Ichinomegata and Oki-Dogo are located close to
the Sea of Japan, where asthenosphere upwelling concurrent with opening of the
back-arc basin have occurred extensively and caused a lateral injection of
asthenospheric materials into mantle wedge (Tatsumi and Kimura, 1991). In the
meantime, the opening of back-arc basin did not occurred around northwest Kyushu. In
addition, southwestern Japan arc rotated clockwise through 54° in association with
opening the Sea of Japan, and the axis of rotation was on southwestern margin of the
Sea of Japan (Otofuji and Matsuda, 1983). Therefore, although the region around the
Sea of Japan was in a extensive field, northwestern Kyushu might be governed by
compressive stress field, preventing asthenospheric upwelling in mantle beneath this
region. In consequence, replacement of helium suffered from metasomatism did not
progressed efficiently compared to around Ichinomegata and Oki-Dogo. This

explanation is consistent with that relationship between contents of incompatible
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elements and Nd-Sr isotopes in basalts from northwestern Kyushu indicates relatively
slow uprising of mantle diapirs with mixing with surrounding mantle, although lack of
such relationship in basalts from Chugoku district is considered to be resulted from
quick uprise of the diapirs from the mantle plume (Kakubuchi et al., 1995).

He released directly from subducting materials

The lower *He/*He ratio than MORB can be produced by two mechanisms. One is
contamination of atmospheric or radiogenic He released by subducting materials, and
the other is production of radiogenic “He in the mantle wedge.

Because of the low He concentration in deep-sea water, 5.1mg of sea water for 1g
xenoliths is required to decrease *He/*He ratio with lowest He concentration among all
the samples. However, required seawater for typical low *He/*He-sample (TKD1120)
with relatively high concentration of He is ca. 15% by weight. Of course, such a high
concentration of water in peridotites is unrealistic. In addition, hydrous mineral is not
observed in xenoliths from southwestern Japan (Takahashi, 1978). Therefore,
atmospheric He derived from subducted deep-sea water cannot explain low He isotopic
ratios of the samples by itself.

Since the subducting oceanic crust has a relatively high He concentration and low
*He/*He ratio (Staudacher and Allégre, 1988), it could supply radiogenic “He to the
mantle wedge, resulting in a decrease of *He/*He ratios. Although the behavior of He in
the subduction environment is not well understood, much fluids is probably lost from
the slab at shallow depth (Liu et al., 1996) and, since He is partitioned into fluid, almost
all of He returns back into the atmosphere through subduction volcanism, limiting the
ability of a slab-derived component in significant modification of the He isotopic

composition of the mantle wedge.

In-situ decay of U and Th in sub-continental mantle

If the present-day *He/*He ratio of sub-continental mantle is due to retention of
radiogenic He produced by decay of U and Th in the mantle wedge, then the
(U+Th)/He ratio of the sub-continental mantle beneath back-arc region of southwestern
Japan can be estimated. Comparison of this value with that of MORB allows us to

evaluate the effect of metasomatism. The *He/*He ratio values of the sub-continental
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mantle of 6.5-7.0Rx today is determined by ®He/*He ratio at the time when the
sub-continental mantle is isolated from the convecting mantle, and the (U+Th)/*He ratio,
and any gain or loss of ®He and “He during this time. Despite it is not well understood
when arc-magmatism in the Eurasian continental margin started, Proto-Japan was
located in the eastern Part of Yangtze Craton in Triassic, ca. 300Ma and the subduction
of an unnamed oceanic plate, the Farallon, Izanagi or Pacific plate have continued until
recently (Maruyama et al., 1997). On the other hand, 2.0Ga is the oldest geological
record in Japan reported for Precambrian metamorphic rock (Shibata and Adachi, 1974),
suggesting that the basement rock of the southwestern Japan had already formed at
2.0Ga and the sub-continental mantle was isolated before the time. A closed system
evolution for U and He is modeled in Fig. 5-2. Initial *He/*He ratio of the mantle at the
time of isolation of sub-continental mantle is estimated using closed-system evolution
from a primordial value of 100RA at 4.5Ga to 8.18Rx today, as Reid and Graham (1996)
did, resulting the initial *He/*He ratio would higher than present MORB-value. The
dashed lines indicate the range of U/*He ratios required to produce the appropriate He
isotopic compositions in the sub-continental mantle beneath the back-arc region of
southwestern Japan over the time since isolation from the convecting mantle at 300Ma
or 2.0Ga. The U/*He ratios necessary for the sub-continental mantle are roughly four
times that of MORB-source mantle today with the age of isolation of 300Ma. On the
other hand, U/®He ratio required producing low *He/*He ratio during 2.0 giga-years of
isolation is about 1.5 times that of the MORB-source mantle, indicating that slightly
enrichment of U relative to *He can account for low *He/*He ratio.

In any case, high U/°He ratios can be produced by enrichment in U derived from
subducted slab and/or effective degassing of He through arc volcanism. U concentration
of sub-continental mantle beneath this region is not well constrained, however, the
He/*He ratio suggesting U enrichment relative to MORB-source mantle is consistent
with that Nd-Sr ratios of xenoliths from Kurose and Cheju Island show enriched
signature in incompatible element compared to MORB (Kagami et al., 1993; Hee, 1998).
In addition, source mantle of basalts from northwestern Kyushu show 8-30 times rich in
large ion lithophile elements (such as K, Rb, Sr and Ba with which U and Th behave
together in mantle chemistry) normalized to normal-MORB source mantle (Kakubuchi

et al., 1995) even of basalts with most depleted characteristics. The composition of
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metasomatic agent is still unknown, however, the sub-continental mantle beneath
back-arc region of southwestern Japan is likely to be enriched in U and Th, supporting
in-situ radiogenic origin of observed low *He/*He ratio lower than MORB-value.

It is suggested that uppermost mantle beneath northwestern Kyushu contain sub-crustal
He with ®He/*He ratio lower than 0.2Ra (chapter 3). To produce such low *He/*He ratio
with the closed-system evolution model, extremely high initial U/*He ratio of 5x10° and
7x10° are required for the lithospheric age of 300Ma and 2Ga, respectively. Such high
U/*He ratios (up to 100 times that of present MORB) are incredible to result from high
U concentration in the mantle by itself, suggesting effective degassing of He. If U
concentration is uniform in entirely sub-continental mantle, 98.3-99.2% of He in the
uppermost mantle are degassed probably though volcanism.
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5-2. Origin of the plume source

5-2-1. Temporal change in isotopic composition of melt generated from mantle plume

As discussed in previous section (4-4-2), plume-type He had been trapped in
sub-continental mantle beneath northwestern Kyushu before ascending of alkaline
basalt magma analyzed in this study. This suggest that volcanism triggered by mantle
plume which contained He derived from lower mantle was occurred in this region.
Since arc volcanism had been active taken place by subduction of the Izanagi plate or
Pacific plate before the beginning of subduction of the Philippine Sea plate at 40Ma
(Maruyama et al., 1997) over several hundreds of million years, even if some plumes
ascended from lower mantle, they might be arrested by the subduction of the 1zanagi or
Pacific plate. After the Philippine Sea plate began to subduct, sedimentary basin
induced by mantle upwelling had been formed and melt produced by decompression
melting had accumulated at crust-mantle boundary until alkaline basaltic volcanism
came into active (Yanagi and Maeda, 1998). Therefore, it is probable that the mantle
upwelling was plume containing lower mantle He, and produced early alkaline basaltic
magma erupted in northwestern Kyushu before at least 7 million years ago, which is the
oldest age of the sample analyzed in this study. The cumulative xenoliths observed in
this region can be cumulates of the early alkaline basaltic magma and form layer of
cumulus mantle beneath this region (YYanagi and Maeda, 1998). If this is the case,
plume-type He in xenolith from Takashima was inherited from the early alkaline basalt
magma preceding the alkaline basalts currently observable and analyzed in this study.
Since the alkaline basalts erupted in recent 7 million years contain MORB-type He, the
He/*He ratios of source material of alkaline basalt magma might change from
plume-type to MORB-type with the time. The basalts analyzed in this study contain
MORB-type He and show depleted Nd-Sr isotopic compositions, thus Nd-Sr isotopic
ratios of the source material of alkaline basalts have shifted to depleted end of the trend
of alkaline basalts in this region (Fig. 3-13).

A similar temporal change of noble gas and lithophile isotopic composition was

observed in volcanic rocks from Hawaii, and a model to explain this variation was
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proposed by Valbracht et al. (1996). According to the model, incipient CO,-dominated
melts, carrying noble gases with plume-like signature preceded the main body of plume
and generated the initial stage of alkaline basalts in Hawaii. When the main plume,
carrying the enriched lithophile signature rose and reached to partial melt zone, the main
activity of alkaline tholeiites occurred. The melt of a late stage shows lower *He/*He
ratios owing to dilution by MORB-type He accompanied with entrainment by depleted
mantle materials surrounding the plume.

When the model is applied to the case of northwestern Kyushu, schematic temporal
change of noble gas beneath this region is illustrated in Fig. 5-3 and 5-4. First, volatiles
with plume-type feature in noble gases (*He/*He > 17Ra, “°Ar/*°Ar > 400) separated
from the plume body as the plume ascending, and generate volatile-rich silicate melt by
lowering melting point of the sub-continental mantle above the plume. The early
alkaline basalt melt might inherited plume-type noble gases. lwamori (1992) suggested
that alkaline volcanism in southwest Japan was caused with a plume with abundant
volatile and incompatible elements rather than a plume of anomalously high
temperature, supporting the existence of silicate melt which was rich in volatiles derived
from the plume. Since most volume of alkaline basalts erupted in northwestern Kyushu
is considered to be eroded away and distribute under the sea (Nakada and Kamata,
1991), the lost basalts may accompany with high ®He/*He ratio, or the earliest basalts
observable in Kita-matsuura with age around 11Ma may have plume-like signature. If
the cumulative xenoliths observed in this region are cumulate from arc volcanism, not
alkaline volcanism (Kagami et al., 1993, Arai, 1994), thus the cumulates originally
contained He with similar *He/*He ratio to that of MORB or with lower ratio, probably
sub-crustal type He inferred from the basalts from Kita-matsuura. When the early
alkaline magma enriched in volatile passed through, a portion of cumulates are
metasomatized by infiltration of fluids or melt. Since the cumulus mantle with
sub-crustal type He is depleted in He due to effective degassing through arc volcanism,
isotopic compositions of noble gases in the cumulate was overprinted by the plume-type
component trapped in primary inclusions. If mantle-derived xenoliths from this region
are cumulates from the early alkaline basaltic magma (Yanagi and Maeda, 1998),
plume-type He was trapped in primary fluid inclusions coevally with formation of

cumulates.
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During ascending, the mantle plume was entrained by surrounding sub-continental
mantle as described in Nakamura et al. (1990). When both enriched material originally
contained in the plume and depleted material entrained from surrounding mantle
partially melt, the migrating melts would mix in the partial melt zone. Since the volatile
originally contained in the plume had fractionated into the early CO,-dominated melt,
the noble gas from depleted material is dominant in the mixed melt. The surrounding
sub-continental mantle has low ®He/*He ratio (ca. 7Ra or lower) and “°Ar/*®Ar ratio
higher than that in the plume but significantly lower than that of MORB-source mantle.
As a result of effective degassing of volatile from the enriched material and entrainment
and concurrently melting of surrounding depleted material with enriched material, the
noble gas isotopic composition of the melt separated from the plume varied from
plume-type to MORB-type. Since the basalts analyzed in this study were derived from
the melt in which depleted material is dominant as indicated from their depleted Nd-Sr
characteristics, they show noble gas signature almost the same that of sub-continental
mantle. Finding of high *He/*He ratio in alkaline basalts which erupted in early stage of
alkaline volcanism in this region strongly support the model, thus it is issue of the

prospective work.
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Fig. 5-3. Schematic diagram of the proposed model after retreat of Japan trench at
approximately 40Ma. Volatile degassed from plume body interact with
sub-continental mantle which contains MORB-type noble gases (*He/*He<7Ra,
OArPAr > 2600) and generate early alkaline basaltic melt which contain
plume-type noble gases (*He/*He > 17Ra, “*Ar/®Ar > 400). The heated depleted
material surrounding entrain into the plume according to the entrainment mixing
model of Nakamura et al. (1990). Volatile-rich early alkaline basaltic melt
metasomatise a portion of cumulus mantle, probably has sub-crustal type noble

gases (*He/*He <0.2Ra, “Ar*°Ar < 500).

169



Okm —
Crust

cumulus mantle AL Primary fluid inclusion
(Plume-type)
Sub-continental mantle Secondary fluid inclusion
(MORB-type) (MORB-type)
Depleted material
Later alkaline basalt magma
(MORB-type)
70~ _ //////// »— Partial melt zone
100 [ Depleted material //

Enriched material

Plume ascending

Fig. 5-4. Schematic diagram of the proposed model after 7Ma. Later alkaline basaltic melt,
which is admixture of melts from enriched material and depleted material
entrained into the plume, contains MORB-type noble gas. The metasomatized
cumulous mantle which includes primary fluid inclusions containing plume-type
noble gases, are trapped into later alkaline basalt magma, and partly exchange the
noble gases with host magma as in secondary fluid inclusions.
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5-2-2. Origin of the plume: recycling of subducted material

It is revealed that a mantle plume with high *He/*He ratio indicating its origin of lower
mantle have ascended to the mantle beneath the back-arc region of southwestern Japan.
Combining plume models previously reported (Nakamura et al., 1990, Kakubuchi et al.,
1995), the plume is considered to have EMII signature in Nd-Sr isotopes. Recycled
material of continental origin such as subducted oceanic crust with sediments is
considered to be responsible for the origin of EMII endmember in oceanic island basalts
(Cohen and O’Nions, 1982; Hofmann, 1997). If the EMII characteristics of the plume is
derived from subducted oceanic crust and sediments, the He evidence of lower mantle
component suggest that the plume is subducted material which had subducted and
reached to lower mantle and was recycled back to the surface of the Earth.

There is no subducted oceanic plate beneath the back-arc region of southwestern Japan
above 600km in depth, revealed by the center of deep-focus earthquakes (Fig. 1-1). It is
resulted from retreat of Japan Trench after opening of the Japan Sea and short space of
time after beginning of the subduction of Philippine Sea plate. However, the seismic
tomographic image has revealed a cold region formed at the base of the upper mantle,
possibly indicating the ancient subducted slab (van der Hilst et al., 1991; Fukao et al.,
1992). If this is the case, any plume ascend from deeper region such as core-mantle
boundary could not go through the stagnant slab and reach to the surface of the Earth
because they might be arrested by the slab. Therefore, there is a possibility that stagnant
subducted materials is the origin of EMII and ascended as the plume observed in the
back-arc region of southwestern Japan. The mechanism of tapping of subducted
material as a plume is not clear at present, however, a speculative scenario of plume
generation can be proposed (Fig. 5-5). A localized thermal anomaly, possibly generated
at the core-mantle boundary, arises through the lower mantle until it reaches the 670km
discontinuity. Heat transfer across the 670km boundary layer initiates upwelling of parts
of stagnant slab, and only limited amount of lower mantle material including He with
high ®He/*He ratio is transferred upward with recycled materials.

Alkaline volcanism in back-arc region which yield the basalts with geochemical

features similar to those of volcanic rocks from hotspot are recognized in other
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subduction zones such as New Zealand (Tatsumi and Tsunakawa, 1992), southern
Andes (Stern et al., 1990) and Cascade arc (Fitton et al., 1991; Huang et al., 2000).
Since there are no direct evidence that subducted materials are stored in some parts in
Earth’s interior and ascend as mantle plume, if such volcanisms in back-arc region of
subduction zone are triggered by a mantle plume as well as that in southwestern Japan,
the recycle of subducted material at back-arc region of subduction zone will be an

important subject to understand mantle dynamics in the future.
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Fig. 5-5. A speculative model showing recycling of ancient subducted materials
stagnant in the mantle transition zone (670km discontinuity) beneath
Japan. Schematic cross section of the mantle along the profile A-B in
map above is shown below. The shape of the subducted slab of the
Pacific Sea Plate and the Philippine Sea Plate are modified from seismic
tomographic image after Fukao et al. (1992). A localized thermal
anomaly allows uprising of subducted materials and of intermixed or
entrained upper mantle material. The mass contribution of the lower
mantle is extremely limited, thus observable only in He isotopic ratio.
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6. Summary

Noble gas isotopic composition of Cenozoic alkaline basalts and mantle-derived
xenoliths from back-arc region of southwestern Japan were measured in order to
investigate the origin of the alkaline basalt with respect to mantle dynamics related to
subduction process. The main results are as follows.

(1) A noble gas mass spectrometer was improved in order to determine noble gas
isotopic composition with extremely low concentration in the samples. As the result of
modification, *He/*He ratio can be determined with a precision of +10% for quite small
amount of He, which corresponds to 10™®mol of *He. Highly improved detection limit
which is 1-2 orders of magnitude lower than that before modification enables us to
measure other noble gas isotopes whose abundance are generally low in mineral
samples, such as Ne, Kr and Xe with the mass spectrometer specialized to He.

(2) Noble gas isotopic composition of alkaline basalt magma which erupted in
northwestern Kyushu after 7Ma is characterized by *He/*He ratio slightly lower than
MORB-value and low “°Ar/**Ar ratio as mantle-derived materials. Some clinopyroxenes
separated from the alkaline basalts from northwestern Kyushu show lower *He/*He and
Ar/*Ar ratios than coexisting olivines. This discrepancy is considered to be caused by
shallow-level contamination by crustal fluids enriched in radiogenic He, and/or mixing
with accumulated magma contaminated by metasomatized mantle during ancient
subduction.

(3) Mantle-derived xenoliths from Takashima contain two types of noble gas which are
distinguished from each other in view of He and Ar isotopes. One is plume-type
component, with significantly higher *He/*He ratio than that of MORB and relatively
low “°Ar/*®Ar ratio, and the other is MORB-type component, with slightly lower
He/*He ratio than the MORB value and relatively high, but distinctly lower “°Ar/*°Ar
ratio than that of MORB.

(4) Microscopic observation of fluid inclusions in the xenoliths and noble gas analysis
using stepwise heating and crushing extraction methods revealed that MORB-type
component is trapped in secondary fluid inclusions. The fact that He and Ar isotopic
ratios of MORB-like component is almost identical to that of host alkaline basalt
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magma and noble gas profile observed in a core sample strongly suggests that the
MORB-type noble gas in xenoliths is result from exchange with that in host magma,
forming the secondary fluid inclusions.

(5) Distinctively lower “°Ar/**Ar ratios of alkaline basalt magma and xenoliths from
northwestern Kyushu and Cheju Island than that of MORB suggest that atmospheric Ar
derived from subducting the Pacific plate (not the Philippine Sea plate) contaminated
the mantle wedge beneath these regions. Noble gas abundance patterns of these samples
suggest that subducted old oceanic crust and/or oceanic sediments play an important
role in recycling of atmospheric component back into the mantle wedge. Considering a
closed-system evolution model of He in the sub-continental mantle, observed *He/*He
ratios lower than that of MORB source upper mantle can be explained in terms of U
enrichment in metasomatized mantle by slab-derived fluids.

(6) The plume-type component trapped in primary fluid inclusions in Takashima
xenolith is a clear evidence of existence of a mantle plume ascended from upper/lower
mantle boundary or deeper part of the Earth. Considering that subduction had continued
and blocked ascending of any mantle plume over hundreds of million years until
beginning of alkaline basalt volcanism, mantle upwelling which generated alkaline
basalt magma was probably the mantle plume. To explain the temporal change of He
and Nd-Sr isotopes in the source material of the alkaline basalt, | propose a model that
effective degassing of He from the plume took place, and followed by sequential
overprint by He in surrounding sub-continental mantle.

(7) The evidence of the mantle plume containing lower mantle He and tomographic
images which show the stagnant slab at the upper/lower mantle boundary suggest that
ancient subducted material is recycled back to the surface of the Earth as the mantle
plume. It may be a direct observation of mantle dynamics that subducted materials are
stored in Earth’s interior and ascend as a mantle plume, which is the source of EMII
hotspot. If this is the case, alkaline volcanism in back-arc region of subduction zone

may play an important role in circulation of the material in the Earth.
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