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Chapter 1

Introduction

Biological systems have fascinated scientists over many years. Their complexity
has attracted not only biologists but also many physicists and mathematicians.

In the last decade, new attempts to understand biological systems have emerged.
By combining experimental data and computational and theoretical analysis, sci-
entists are trying to understand the system-level properties of biological systems.
Through these attempts, several concepts have been proposed regarding the char-
acteristics of biological systems. Among these is the concept of “robustness”
[10,94,193] (basic concept dating back to [192]). The basic idea of the robustness
can be summarized as follows:

• Neutrality of the phenotype against genotypic change

• Structural stability of dynamical systems

The meaning of “genotype” here depends on the subjects. They may correspond
to the amino-acid (or DNA) sequence for protein folding or the architecture of
molecular networks for signal transduction, pattern formation in development,
etc. Structural stability is a property of dynamical systems, such as population dy-
namics of ecological systems and chemical oscillation, where they qualitatively
show the same behavior against some parameter changes. The above two catego-
rizations are not completely independent; they are both related to the insensitivity
of the system against disturbances. These aspects of robustness discussed thus far
are from a static point of view.

Among a variety of phenomena in the biological systems, multicellular devel-
opment is a fascinating process where a fertilized egg gives rise to a complex　
organism. How can we understand the robust properties of this elaborate process?
This is the underlying theme of this thesis.
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Compared to the properties of unicellular organisms, additional new aspects
arise for developmental systems. Developmental systems organize the sophisti-
cated multicellular structures though pattern formation, growth-and-differentiation,
and morphogenesis. For pattern formation and differentiation, cells have to coor-
dinate their behaviors (cellular decisions) with other constituent cells. Hence,
intercellular interactions should be incorporated in addition to intra-cellular dy-
namics governed by gene regulation networks. Moreover for morphogenetic pro-
cesses, the dynamics and collective behaviors of cells are important and should
be considered. Since morphogenesis is a highly dynamic process in space and
time, to understand robust development, we need to go further from the static
view of robustness to discuss its dynamical mechanisms via mutual interactions
and dynamic and collective behaviors of cells and tissues.

Organization of this thesis

This thesis is organized as follows: We begin by studying the temporal expression
patterning of neural stem cells in Drosophila neurogenesis (chapter 2). Similar to
the formation of static spatial patterns, the study of robustness based on networks
is necessary to understand the dynamic temporal patterning process in develop-
ment. Here we show that the network architecture of the Drosophila temporal
patterning network is organized to be optimal for the temporal sequential expres-
sion to be robust. From this study, we shown that the statistical view of robustness
can be applied to this dynamical expression patterning in development.

In chapters 3 and 4, we go further from the static view of robustness to a
more dynamic-based approach: in chapter 3, we study the robust differentiation
strategy via intercellular signaling and in chapter 4, we raise the possibility of
the importance of collective cellular motion in robust development. We selected
a simple system, cell sorting process, which is considered as a basic mechanism
employed in cells, for instance, in tissue boundary formation and segregation of
different types of cells. By analyzing the kinetics of the cell-sorting process, we
suggest the importance of a collective cellular movement for fast and robust cell
segregation. We conclude the thesis by providing a brief summary of the results
in Chapter 5.
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Chapter 2

Robust temporal expression in
Drosophila neurogenesis

2.1 Introduction

2.1.1 Temporal gene expression of Drosophila neuroblasts
Precise coordination of cell fate decisions is crucial in the development of mul-
ticellular organisms. In the developmental processes, where a series of events
occurs at a specific place and time, gene regulatory networks are responsible
for implementing the reliable biological functions [5, 102]. In order to obtain
the system-level understanding of the processes, it is necessary to integrate the
molecular machinery of each regulation with the architecture and dynamics at
the regulatory network level. Biological functions achieved by gene networks
are generally expected to possess robustness, i.e., insensitivity of system prop-
erties against a variety of perturbations that may be originated from fluctuations
during development and mutations through evolution. Recent investigations have
addressed the questions on how robust functions in gene or signaling networks
are achieved through underlying network architecture and its dynamical proper-
ties [10, 29, 86, 103, 193]. An illustrative example in developmental systems on
this subject is segmentation of Drosophila melanogaster, which has been studied
both experimentally and theoretically [2, 142, 164]. The requisite regulations or
architecture of this system have been discussed from the point of network level
description [46, 76, 80, 142, 179], and it is suggested that the underlying gene net-
work is designed to perform the process in a robust manner [74, 113, 191].

Besides spatial patterning, temporal patterning also plays important roles in
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various developmental processes [22, 140, 183]. One of the most studied systems
is the development of the Drosophila central nervous system (CNS), in which
the sequential expression of genes coordinates cell-fate decisions. The neural
stem cells called neuroblasts (NBs) express a series of transcription factors in a
definite order: Hunchback (Hb), Krüppel (Kr), Pdm1/Pdm2 (Pdm), and Castor
(Cas) [57, 79, 83, 134] (Fig. 2.1A to C). In addition, the fifth factor Seven-up
(Svp) is expressed in the time window between Hb and Kr expression [84]. In
association with this sequential expression, NBs divide asymmetrically to bud
off a series of ganglion mother cells (GMCs). Each GMC undergoes an additional
division to generate typically two postmitotic neurons. The sequentially expressed
transcription factors in NBs control temporal specification of cell fate of neurons,
thereby establishing the diversity of cell types in the Drosophila CNS.

Isolated NBs exhibit sequential expression in vitro and differentiate into var-
ious neurons in the same manner as in vivo [19, 56]. Hb expression is switched
off by Svp in a mitosis-dependent manner, while the subsequent expression of
Kr, Pdm and Cas proceeds in a mitosis-independent manner [84, 119]. These
observations suggest that sequential expression of the genes is regulated cell-
autonomously and occurs through mutual interactions among the factors.

In this study, we addressed the robustness of the gene network for sequential
expression in the Drosophila CNS. One of the promising approaches to character-
ize robustness of biological systems is to compare the actual network with other
possible network architectures with respect to function and robustness. Wagner
considered how network architecture and robustness are related by studying cir-
cadian oscillation networks [193], although these networks lack the direct biologi-
cal counterpart. Ma et al. studied the architecture of the Drosophila segmentation
network [109], in which they had to arbitrarily eliminate components to reduce
the size of the entire network. From theoretical and computational points of view,
one advantage of studying temporal patterning in the Drosophila CNS is that the
number of system components is so small that we can perform a comprehensive
analysis of network architecture without any loss of biological relevance.

First, we explored the conditions necessary for gene regulatory networks to re-
produce the observed expression patterns in both wild type (WT) and mutants. We
did not confine ourselves to only known regulations for sequential expression, but
rather searched all possible networks that could reproduce the observed expres-
sion patterns. Studying the common structure of the specified genetic networks,
we detect requisite regulations and predict an unknown factor to reproduce known
expression profiles. Second, we compared these functional networks with the ac-
tual Drosophila network in terms of network architecture and robustness of the
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Figure 2.1: Sequential expression of temporal transcription factors within neu-
roblasts in the Drosophila CNS. (A) The relative position of neuroblasts (NBs)
in Drosophila embryo. The picture is the ventral view of NBs and shows Cas
expression in the NBs at developmental stage 12. The bracket indicates a single
segment. Dashed line corresponds midline. Scale bar: 40µm. (B) The expression
levels of Hb, Kr, Pdm, and Cas in a single NB (NB 2-4 lineage) are shown from
the developmental stage 10 to 12: early stage 10 (st. 10); early stage 11 (e11);
mid stage 11 (11); late stage 11 (l11); mid stage 12 (12); late stage 12 (l12). (C)
Schematic representation of the change of the expression pattern in a single NB. A
part of the pictures in (B) are reprinted from [79]. The Other pictures are courtesy
of Dr. Isshiki.
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expression pattern. We found that the Drosophila network is highly robust and
stable among possible functional networks. We discuss how the architecture of
the Drosophila network implements robustness of sequential expression against
both cell-to-cell variations and intracellular fluctuations.

2.2 Network architecture necessary for temporal pat-
terning

2.2.1 Temporal patterning network of Drosophila neuroblasts
Experimentally reported expression profiles of the temporal transcription factors
are summarized in Figure 2.2A for WT, loss-of-function, and overexpression em-
bryos [30, 56, 57, 79, 84, 185]. These sequential expressions are considered to
be produced (or at least modulated) by mutual regulations among the temporal
transcription factors [79, 83]. We reconstructed the gene network for sequential
expression in Drosophila NBs from the literature as shown in Figure 2.2B and C
(for references, see Table 2.1).

2.2.2 Modeling gene network dynamics by Boolean description
First, we considered the necessary conditions for the network architecture to re-
produce the sequential expression patterns of both WT and mutants. To inves-
tigate gene expression dynamics, we adopted a Boolean-type model [103] (see
Appendix for details of the model and the following analysis),

X t+1
i = fi({X t

j}) =


1 (

∑
j JijX

t
j > 0)

0 (
∑

j JijX
t
j < 0)

θi (
∑

j JijX
t
j = 0)

, (2.1)

where represents the expression state of gene i ( i ∈ hb, Kr, pdm, cas ) at the t-th
time step and takes either 1 (ON) or 0 (OFF). Regulation from gene j to gene i is
either positive (Jij > 0), negative (Jij < 0), or zero (Jij = 0), which corresponds
to activation, repression, or absence of regulation, respectively. The state of gene
i at the next step (X t+1

i ) is 1 when the sum of the regulatory inputs is positive
(
∑

j JijX
t
j > 0) or 0 when the sum is negative (

∑
j JijX

t
j < 0). When the sum

equals zero (
∑

j JijX
t
j = 0), X t+1

i takes the default expression state of the gene
θi: θi ∈ {0, 1}. In this study, the value of Jij is supposed to take one of the discrete
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Figure 2.2: Sequential expression of temporal transcription factors within neurob-
lasts in the Drosophila CNS. (A) The expression profiles of WT, loss-of-function
and overexpression mutants of the genes observed in the experiments (for refer-
ences, see Table 2.2). (B) Reconstructed genetic network for sequential expression
in Drosophila NBs. Repression from hb to cas (dashed line) was suggested to ex-
ist [57], although there is no direct verification. When the Drosophila network is
invoked in this article, this regulation is also included. (C) Matrix representation
of the Drosophila network.
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Regulation References
Activation hb → Kr [79]

Kr → pdm [79]
pdm → cas [57]

Repression hb → pdm [79, 83]
hb → cas [57]
Kr → cas [79]
pdm → Kr [57]
cas → pdm [57, 83]
svp → hb [84, 119]

Table 2.1: List of the regulatory interactions of the genes in the NB temporal
patterning network

Genotype References
wt [79, 84]
hb− [56, 79]
Kr− [79]
pdm− [57, 185]
cas− [57, 185]
hb o.e.1 [79]
Kr o.e. [30, 79]
pdm o.e. [57, 185]
cas o.e. [57, 185]
1. o.e.: over expression

Table 2.2: List of references for the sequential expression pattern in the wild type
and mutants of the genes in the NB temporal patterning network
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values Jij ∈ {1, 0,−5}. A large negative value of Jij signifies that the expression
of a gene is completely shut off in the presence of a repressor. Initial states of the
genes are set to 0 except for Hb, which emulates the expression state of NBs in the
first stage of the sequential expression [79,83]. Thus far, the only known function
of Svp during the early stage is downregulation of Hb. There is no evidence that
Svp regulates or is regulated by other temporal transcription factors during the
expression series: Kr → Pdm → Cas [84]. In addition, Hb is only regulated by
Svp and not by the other three factors (Kr, Pdm, and Cas). Thus, in the model,
we assumed a pulsed expression of Svp as an input to the system, resulting in
downregulation of Hb at the next time step. The temporal expression dynamics of
Kr, Pdm, and Cas follow Eq. (2.1) with assigned values of Jij (Fig. 2.2C).

2.2.3 Search of temporal patterning networks
The regulatory networks of known factors do not reproduce the experiments

Based on above formulation, we investigated whether the reconstructed Drosophila
gene network (Fig. 2.2B and C) is enough to reproduce the sequential expression
observed in WT, as well as all of the known single loss-of-function and overex-
pression mutants: hb−, Kr−, pdm−, cas−, hb++, Kr++, pdm++, and cas++ (here,
“++” means overexpression of the gene) (Fig. 2.2A, Table 2.2). At the moment,
we cannot specify the values of the parameters θKr , θpdm , and θcas from empiri-
cal data, thus each value could be arbitrarily chosen from θi ∈ {0, 1} (i ∈ {Kr,
pdm, cas}). We studied all 23 combinations of {θi} and found that the dynamics
coincide with the expression profile in WT, but do not in some of the mutants for
each choice of the parameters (examples shown in Fig. 2.3). Depending on the
parameter values, the expression dynamics changed to some extent, but none of
the possible combinations reproduced the expression profiles of all of the mutants.
For example, in the case of θKr = 0, θpdm = 0, and θcas = 1, the dynamics of the
network for hb− and Kr− did not agree with the experiments (Fig. 2.3A), while in
the case of θKr = 1, θpdm = 1, and θcas = 1, the dynamics of hb− and pdm− did
not (Fig. 2.3C).

We then investigated whether other networks than the Drosophila network can
reproduce the observed expression profiles by checking all the 312 (= 531, 441)
combinations of Jij values. The dynamics agreed with the expression sequence
in WT for a large number of networks (39, 391 out of 531, 441), but any networks
composed of hb, Kr, pdm, cas, and svp did not reproduce the expression in both
WT and mutants.
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Figure 2.3: The reconstructed Drosophila network cannot reproduce the exper-
imentally reported expression profiles. Sequential gene expression of recon-
structed Drosophila network is simulated using Boolean model. The grids filled
with colors represent ON states of the genes. The dynamics could be different
depending on the choice of the default expression states . (A) θKr = 0, θpdm = 0,
and θcas = 1, (B) θKr = 0, θpdm = 1, and θcas = 1, and (C) θKr = 1, θpdm = 1,
and θcas = 1.
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Introduction of a presumptive factor is sufficient to reproduce the expression
profiles

Preceding results indicate the difficulty of reproducing the observed expression
patterns only with known constituents. We therefore introduced an additional
presumptive regulator (x). The expression state of x was assumed to start in the
ON state and change into OFF, or vice versa at t = τswitch (0 ≤ τswitch ≤ τend)
(see Appendix). Including this assumption we reinvestigated the dynamics of all
315 (= 14, 348, 907) possible regulatory networks with all the possible switching
timing of x. In the case that the expression of x switches OFF to ON, none of the
networks conformed to the expected expression profiles. On the other hand, in
the case that the expression of x switches ON to OFF, we found that 384 networks
(< 0.003%) reproduced the expression profiles of both WT and mutants. We refer
to the detected networks as “the functional networks” in the rest of this study.

We compared the network architectures and found that the regulations shared
among all the functional networks are coincident with experimentally verified reg-
ulations (colored as black in Fig. 2.4A). In addition, activation of Kr and repres-
sion of cas by a presumptive factor x appear in all of the functional networks
(colored as brown in Fig. 2.4A). Therefore, we conclude that the genetic network
composed of these common regulations is a minimum network that is necessary
and sufficient to reproduce the expression profiles of WT and mutants.

To quantify the similarity among the functional networks, we measured the
distances of the 384 functional networks from the actual Drosophila network
(Fig. 2.5); The distances are defined by the number of different regulations (see
Appendix). As a reference, we also performed the same analyses of distance
measurement for all possible networks and the networks that are randomly recon-
nected from functional networks (see Appendix). For all possible networks, the
frequency distribution of the distances shows that the network architectures are
different from the actual Drosophila network by 7.8 ± 1.5 regulations. The re-
connected networks yield similar results albeit with slightly decreased distances
(7.0 ± 1.7 regulations). In contrast, the architectures of the functional networks
differ by only 2.4 ± 1.1 regulations. The architectures of the functional networks
resemble that of the actual Drosophila network. These indicate the gene networks
that reproduce the known sequential expression patterns are highly constrained in
their topologies.
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of the functional networks reproducing the gene expression sequences observed
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Figure 2.5: Frequency distributions of the distances of networks from the
Drosophila network. The distributions are drawn from the functional networks
(N = 384; magenta), all the possible networks (N = 14, 348, 907; blue), and the
networks randomly reconnected from the functional ones (N = 38, 400; yellow).
From each of the functional networks, 100 reconnected networks were generated.
The regulatory interactions from x and positive self-feedbacks are neglected in
counting the number of different regulations.
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2.3 Robustness of the temporal patterning networks

2.3.1 Robustness of the Drosophila network
Since there are multiple network architectures that explain the observed expres-
sion profiles as shown above, we then ask the characteristics of the actual Drosophila
network among the functional networks. From the biological point of view, the
sequential expression in NBs should proceed reliably despite developmental dis-
turbances such as cell-to-cell variation and intracellular fluctuations. We thus
evaluated the stability of sequential expression for each of the detected functional
networks and compared the properties of the actual Drosophila network to those
of the other networks. To address the problem quantitatively, we extended the pre-
vious Boolean-model into a model of ordinary differential equations with fluctua-
tions in gene expression, where the concentrations of mRNAs Mi(t) and proteins
Pi(t) obey the following equations [116, 170] (see Appendix for the details of the
model and the following analysis):

dMi(t)

dt
= γM [Fi({Pj(t)}) −Mj(t)] + ξi(t), (2.2)

dPi(t)

dt
= γP [Mi(t) − Pi(t)] . (2.3)

Here i refers to one of each gene: i ∈ {hb, Kr, pdm, cas, x}. The variables {Mi(t)}
and {Pi(t)} take continuous values, unlike the previous Boolean description. The
precise function form of promoter activities Fi(Pj(t)) is dependent on the regula-
tory interactions of the genetic networks {J̃ij} and the default promoter activities
{Si}, corresponding to the Boolean model. The time-dependent variables {ξi(t)}
represent the noise in promoter activities with intensity σ.

Typical dynamics of the Drosophila network are shown in Figure 2.6, where
sequential expression of WT is reproduced. The dynamics of the model are largely
dependent on the parameter values and the noise intensities, and coincide with
the experimental observations only under appropriate conditions. Therefore, such
sensitivity to parameter variation is important for the development to proceed un-
der environmental and individual fluctuations.

To characterize sensitivity, we measured the fraction of successes, that is the
fraction of the parameter sets that can reproduce the expression profile of WT
among all the trials of random parameter assignments [109,191]. To obtain the ef-
fect of parameter variation, we carried out the simulation without stochastic terms
in Eq. 2.2 (i.e., σ = 0). In each network, we repeated the simulations with ran-
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Figure 2.6: Temporal dynamics of the Drosophila network in the continuous
model. The dynamics of expression levels of proteins {Pi(t)} with different pa-
rameter values (upper) and discretized representation of a typical temporal dy-
namics (lower). In addition to the known components of the sequential expres-
sion, the presumptive factor x is also incorporated. The expression level of X
changes from high level to low as in the previous model. Each gene is considered
to be in the ON state when the expression level of the gene is larger than a thresh-
old Pth. The parameter values of {J̃ij} and {Si} are randomly selected from the
following ranges: |J̃ij| ∈ [10−1, 100] for J̃ij > 0, |J̃ij| ∈ [100, 101] for J̃ij < 0,
Shb , SKr , Sx ∈ [10−2, 100], and Spdm , Scas ∈ [10−1, 100]. Noise intensity is set
as σ = 0.05. The other parameter values are set as shown in Table 2.4.
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dom assignment of parameter values and calculated the fraction of successes (Fig.
2.7). The Drosophila network scored the highest fraction of successes among the
functional networks, and the networks closer to the Drosophila network tended to
have higher scores.

We also investigated the dynamical stability of the gene networks against fluc-
tuations. In this case, we performed the stochastic simulations in Eq. 2.2 with
finite σ. To evaluate stability against noise, we chose the parameter values with
which the expression sequence is reproduced in the absence of noise. We then
measured the relative fraction of successes under fluctuation. As is shown in
Figure 2.8, the fraction of successes under expression noise increased with the
similarity to the actual Drosophila network as the fraction of successes under
parameter variations. Thus, the Drosophila network lies at the top level of the
functional networks in terms of robustness against these perturbations.

2.3.2 Regulations that heighten functional stability
Because the Drosophila network has several additional regulations further to the
minimum functional network (gray arrows in Fig. 2.4A), these regulations may be
responsible for the robustness shown above. We compared the robustness among
the networks with or without the additional regulations. The fraction of successes
against parameter variations for these networks are plotted in Figure 2.9A. The
minimum network reproduces the sequential expression under the appropriate pa-
rameters, but the robustness is much lower than that of the Drosophila network.
The scores of networks that lack one of the regulations fall between the minimum
and the Drosophila network. Stability to expression noise was also evaluated by
changing noise intensity, and similar results were obtained (Fig. 2.9B). The frac-
tion of successes decreases as the noise intensities get larger, but the effect of noise
on the Drosophila network is less severe than that on the minimum network. Thus
each of these regulations contributes to robustness of the system.

To elucidate the roles of these regulations, we tried 5, 000 random parameter
assignments for each of these networks and sampled successful parameter sets
that reproduce WT sequential expression profile (Fig. 2.10). In the Drosophila
network (Fig. 2.10A), wide ranges of parameter values are allowed, indicating
that this network reproduces the required profile without quantitative tuning of
parameters and thus shows high robustness. For the other networks (Fig. 2.10B
to E), the ranges are narrower for some parameters (as clearly seen in Spdm and
Scas), and the numbers of successful parameter sets are less than those for the
Drosophila network.
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works. The fraction of the trials that reproduce the experimental expression pro-
files against random assignments of parameters. The values of the parameters
{J̃ij}, {Si}, and τx,off are randomly chosen within the ranges shown in Table 2.4.
The other fixed parameter values are also listed in Table 2.4. Neglecting the posi-
tive self-feedback regulations in the 384 functional networks, 120 networks were
chosen and investigated (Appendix). The dynamics were checked for 50, 000 tri-
als in each network. The networks were sorted based on the distance from the
Drosophila network. Because there are a few possible regulations from the un-
known factor x, the networks with Nd = 0 exist more than one.
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Figure 2.8: The robustness of the gene expression profiles in the functional net-
works. The fractions of the trials that reproduce the experimental expression se-
quence under expression noise (vertical axis) are plotted against the fraction of
successes against the random parameter assignments. To analyze the stability
against the noise in each of the 120 functional networks, we used 1000 different
parameter sets with which the expression sequence is reproduced in the absence
of noise. The dynamics were checked for 50 trials for each parameter set. Noise
intensity is set as σ = 0.05.
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Figure 2.9: Role of the actual regulations for robustness. (A) The fraction of the
trials that reproduce the experimental WT expression against parameter variations.
The data of Figure 2.7 are replotted for the Drosophila network, the networks
lacking the indicated regulation (one of the gray arrows in Fig. 2.4A), and the
minimum network (black and brown arrows in Fig. 2.4A). (B) The fractions of
the trials that reproduce the experimental profile under the gene expression noise
with various intensities. We used 5, 000 different parameter sets with which the
expression sequence is reproduced in the absence of noise. The dynamics are
checked for 50 trials for each parameter set.

How is the robust nature of the Drosophila network implemented by these reg-
ulations? As seen above, the parameter values of Spdm and Scas (default promoter
activities of pdm and cas) are most influenced by the loss of these regulations. Be-
cause expression of a gene is induced by either the default promoter activity or the
activators (see Appendix), additional regulations in the Drosophila network (gray
arrows in Fig. 2.4A) may compensate for the loss of default activities. To verify
this possibility, we measured the dependence of the fraction of successes on the
strength of regulations ( J̃pdm,Kr , J̃cas,pdm , and J̃cas,pdm ) and of default promoter
activities (Spdm and Scas) (Fig. 2.11).

Fig. 2.11A shows the fraction of successes for random assignments of pa-
rameter values under given strengths of J̃pdm,Kr and Spdm . To score high repro-
ducibility, Spdm must be large for small J̃pdm,Kr , but need not for sufficiently large
J̃pdm,Kr . This indicates that activation of pdm expression by Kr indeed compen-
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Figure 2.10: Graphical representation of parameter sets with which the WT se-
quential expression profile is reproduced for (A) the Drosophila network, the net-
works lacking (B) activation from Kr to pdm, (C) activation from pdm to cas,
(D) repression from hb to cas, and (E) the minimum network. The parameters
involved in minimum network are shown. Each spoke represents a value of indi-
cated parameter between the range used for random parameter assignment (Table
2.4). The value of τx,off , is shown by normal scale and those of the other parame-
ters are shown by log scale. Each polygon indicates one parameter set. Solid and
broken lines indicate mean and s.d. of obtained parameters. The data are drawn
from 5, 000 trials of the random assignment of parameter values.23



C

-0.01 -10.0-0.1 -1.0
0.01

0.1

1.0

10.0

Strength of repression

from hb to cas

A

0.3

0.15

0.00.01

0.1

1.0

0.01 10.00.1 1.0
Strength of activation

from Kr to pdm

S
tr

e
n

g
th

 o
f 
d

e
fa

u
lt
 p

ro
m

o
te

r

 a
c
ti
v
it
y
 o

f 
p
d
m

B

Strength of activation

from pdm to cas

S
tr

e
n

g
th

 o
f 
d

e
fa

u
lt
 p

ro
m

o
te

r

 a
c
ti
v
it
y
 o

f 
c
a
s

0.01

0.1

1.0

0.01 10.00.1 1.0

Figure 2.11: The fractions of successes for random assignment of parameter val-
ues are plotted under the different strengths of regulations ( J̃pdm,Kr , J̃cas,pdm , and
J̃cas,hb) and default promoter activities (Spdm and Scas). Dependencies of robust-
ness to (A) J̃pdm,Kr (strength of activation from Kr to pdm) and Spdm , (B) J̃cas,pdm

(strength of activation from pdm to cas) and Scas , and (C) J̃cas,hb (strength of the
repression from hb to cas) and Scas . The other parameters are set as in Table 2.4.
The temporal dynamics were checked for 50, 000 trials.

sates for the loss of default promotor activity of pdm. Thus, for the network lack-
ing this regulation, the default promoter activity is necessary because inductions
from other factors are absent. A similar relationship is found between J̃cas,pdm and
Scas (Fig. 2.11B).

As for repression of cas by hb, the role for robustness seems to be different
from the above two. When the absolute value of J̃cas,hb is small, Scas must be
small to achieve a high fraction of successes (Fig. 2.11C). As |J̃cas,hb| becomes
larger, a higher value of Scas is allowed. This is because the repression from hb to
cas reduces the expression of cas in the early stage of sequential expression. Thus
the existence of this regulation contributes to the robustness against the parameter
variation of Scas . Experimental observation by Grosskortenhaus et al. suggested
the direct repression from hb to cas [57], although there is no confirmative evi-
dence to our knowledge. If any, this regulation would contribute to the robustness
of the system.

2.4 Discussion
Through the present analyses, we obtained 384 functional networks that repro-
duce the sequential expression of both WT and mutants. The detected functional
networks exhibit high similarity in regulatory interactions among the transcrip-
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tion factors (Fig. 2.4 and 2.5). This exemplifies the importance of the regulations
in the minimum network for the sequential expression. In addition, the actual
Drosophila network scores quite high on reproducibility of the WT sequential ex-
pression among all the functional networks (Fig. 2.7 and 2.8). Below, we discuss
the biological implications of the temporal patterning of Drosophila NBs drawn
from our numerical analyses.

Two regulatory interactions from a presumptive factor are necessary and suf-
ficient to reproduce the expression patterns of WT and mutants. In this study, we
introduced an additional presumptive factor x to obtain the networks that repro-
duce the expression sequences of both WT and mutants. As x is hypothetical, we
discuss its validity here.

Since the loss-of-function mutant of any one gene has only minor effects on
the expression sequence (Fig. 2.2A), several previous reports suggested the exis-
tence of either unknown regulators or an additional clock mechanism for driving
the sequential expression [57, 79]. Our assumption is feasible one for explaining
experimental results in that it does not need any clock mechanism or superfluous
multiple regulators. It is notable that our analysis indicates that the possible regu-
lations of the presumptive factor are highly restricted; the expression of x switches
ON state to OFF (Fig. 2.6), and all the functional networks have activation of Kr
and repression of cas by x (Fig. 2.4A). Thus, our assumption is testable in future
experiments in vivo.

We should note that although regulator x is necessary to explain the mutant
profiles, the mutual regulations of known factors are sufficient to reproduce the
WT sequential expression (Fig. 2.3). Therefore, the regulations among hb, Kr,
pdm and cas would play a primary role as discussed below.

2.4.1 Minimum network for the sequential expression
An effective way to capture network function is to focus on the specific substruc-
tures (network motifs or modules) [5,46,74,76,77,109]. Comparing all the func-
tional networks, we detected the minimum structure for the sequential expression,
which contains two successive regulatory loops (Fig. 2.4A and 2.12A); one is
composed of hb, Kr, and pdm, and the other of Kr, pdm, and cas. In each loop,
one gene represses previous and second next factor. The repressions of the second
next factors (hb to pdm and Kr to cas) define the induction timing of the regulated
factors, since they are kept repressed until the regulators are switched off. The
feedback repression of the previous factors (pdm to Kr and cas to pdm) ensures
their downregulation, which promotes the progress of the sequential expression.
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These coincide with the observation by Kambadur et al., who showed experimen-
tally that the repressions from hb and cas define the temporal window of Pdm [83].
These repressive regulations and the activation from hb to Kr compose the mini-
mum network for sequential expression (Fig. 2.12A). Although they are enough
to reproduce the sequential expression under appropriate conditions, the expres-
sion profiles could be easily perturbed by the parameter variations or the increase
of noise (Fig. 2.9 and 2.12A).

2.4.2 Mechanism generating the precise sequential expression
In the two loops of the Drosophila network, the activations from one gene to the
next (Kr to pdm and pdm to cas) exist in addition to the repressive regulations.
Other functional networks do not necessarily have these activations, but the acti-
vations can compensate for the loss of default promoter activities (Fig. 2.11A and
B). These regulations achieve precise expression by enhancing the correlations
among the factors and heightening the stability against fluctuations (Fig. 2.7, 2.8
and 2.9). From these results, we conclude that three different kinds of regulations
(the activation of next factor, feedback repression, and repression of second next
one) compose a regulatory module for precise temporal expression as summarized
in Figure 2.12B. The feature of this network module embodies the robustness of
the Drosophila network.

Do above discussions have any implications on other developmental processes?
In the studies of spatial patterning in Drosophila segmentation, it was claimed that
the frequent substructure feed forward loop (FFL) can set the positions of expres-
sion domains [76], and mutual feedback repressions between the gap genes also
have a pivotal role for the formation of expression domains with steep bound-
aries [77, 80]. In the case of the Drosophila network for sequential expression,
preceding genes activate the next ones, while these genes repress the preceding
ones. Similar regulatory interactions are reported in the yeast cell cycle by Lau et
al. [101]. Thus, such asymmetric mutual regulations would be a general mecha-
nism that serves as precise switches in the process of temporal patterning.

2.4.3 Role of the robustness in Drosophila neurogenesis
We showed that the Drosophila network contains not only the regulations nec-
essary for generating sequential expression, but also additional ones to achieve
higher precision in the expression. In each hemisegment of Drosophila embryo,
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Figure 2.12: Regulatory module for the precise sequential expression. The regu-
latory interactions and schematic expression profiles of the networks. (A) Regu-
latory interactions of the minimum network for sequential expression (left). This
network reproduces the sequential expression under appropriate conditions (mid-
dle). However the parameter variations from the appropriate values and the in-
crease of noise could easily alter the expression profiles (right). (B) Regulatory
interactions of the Drosophila network (left). Three different kinds of regulations
in this network enable the temporal expression in the precise order.
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30 different NBs are generated through spatial heterogeneity [181]. To guaran-
tee Drosophila NBs sequentially express common temporal transcription factors
despite their differences, the robustness of the system may become important.

The robust nature of the Drosophila network could be the consequence of
evolutionary optimization in the reproducibility of the sequential expression un-
der functional constraint. In future, we expect that experimental manipulation of
corresponding enhancers will be able to clarify the relevance of each regulation to
the temporal patterning and stability.

2.4.4 Biological relevance of unknown factor
We now discuss expression properties and possible roles of the unknown factor x.
Since the regulatory interactions and expression timing of x are similar to those
of hb (as we have seen in Fig. 2.4 and 2.6), the existence of x might provide a
backup for hb. In addition, the downregulation of x may also be regulated by svp
in the same way as the expression switch from hb to Kr regulated by svp.

Although the regulator x is needed to explain the mutant profiles under our
modeling assumptions, the Drosophila temporal network without x reproduces the
sequential expression in the case of WT. Then, what is the biological function of
x? The existence of x might guarantee the use of the common temporal patterning
mechanism over different NBs. Indeed, it is known that some of NBs do not
express all of the temporal transcription factors. For example, NB3-3 (number
means a specific NB lineage) begins the sequential expression with Kr, not hb,
and thus the expression profile is same as the hb− embryo in Figure 2.2A. In
such case, x is necessary to generate the temporal expression, as for the temporal
expression of mutants.

2.4.5 The architecture of temporal networks in insects
It is known that the spatio-temporal expression patterns in the neurogenesis is
similar between Drosophila and many other insects [176]. For example, it is
known that hb expression of NBs is highly conserved in various insects [145],
such as grasshoppers Locusta migratoria and Scistocerca Americana [139], and
flour beetle Tribolium [195]. Kr and pdm (or nubbin) are also expressed in the
CNS of several insects [23, 104, 106]. As our results have shown that the net-
works reproducing the temporal expressions have many regulations in common,
it is possible that Drosophila and other insects have similar network architecture
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for the temporal gene expression. To verify this possibility, further studies on the
NB temporal specification process in insects other than Drosophila are necessary.

2.5 Appendix: Materials and methods

2.5.1 Analysis of temporal dynamics with the Boolean model
Here we describe the details of the Boolean model (Eq. 2.1). The expressions of
svp and x occur as inputs to the system. A pulse of svp expression always occur
at t = 1. Expression of x switches either from ON to OFF state, or from OFF to
ON at t = τswitch (0 ≤ τswitch ≤ τend). Once we assigned the switching time of
x expression (τswitch), its value had been fixed through the analysis of expression
patterns for all the genotypes. Because the autonomous pulsed expression of svp
results in hb downregulation, we set Jhb,svp = −5, Jhb,j = 0 ( j = hb, Kr, pdm,
cas, or x), and Jk,svp = 0 (k = Kr, pdm, or cas) throughout this study. The time
step at which we finish the simulation (τend ) was set as tauend = 12.

We thus investigated the behaviors of the remaining three factors (Kr, pdm, and
cas) under the given regulatory interactions Jij . The total number of combinations
of the parameters is 3M × 23 (the number of possible network architecture {Jij}
multiplied by the number of default expression states 23), where M is the number
of regulations. To simulate the dynamics for mutants, we always set the expression
state of the corresponding gene to 0 (OFF) for loss-of-function or 1 (ON) for
overexpression. We then examined whether the temporal dynamics of the genetic
networks are coincident with the expression profiles of each mutant (Fig. 2.2A
and Table 2.3).

2.5.2 Analysis of network statistics
In order to measure the similarity between the functional networks and the actual
Drosophila network, we used two types of network ensembles as references. One
is the ensemble of the possible network architectures. The other is a set of re-
connected networks generated from the functional networks by iterative random
reconnections of the matrix elements (1000 iterations). The numbers of positive
and negative regulations are preserved in the iterations.

To count the number of different regulations between functional networks and
the actual Drosophila network, we neglected the regulations from x, and positive
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Genotype Criteria for the expression profile

wt
τhb,on(off) ≤ τKr ,on(off) ≤ τpdm,on(off) ≤ τcas,on(off),
(τi,on 6= τj,on) ∪ (τi,off 6= τj,off)

hb− τKr ,on(off) ≤ τpdm,on(off) ≤ τcas,on(off),
(τi,on 6= τj,on) ∪ (τi,off 6= τj,off)

Kr−
τhb,on(off) ≤ τpdm,on(off) ≤ τcas,on(off),
(τi,on 6= τj,on) ∪ (τi,off 6= τj,off)

pdm− τhb,on(off) ≤ τKr ,on(off) ≤ τcas,on(off),
(τi,on 6= τj,on) ∪ (τi,off 6= τj,off)

cas−
τhb,on(off) ≤ τKr ,on(off) ≤ τpdm,on(off),
(τi,on 6= τj,on) ∪ (τi,off 6= τj,off)

hb o.e.
τhb,on(off) ≤ τKr ,on(off),
(τi,on 6= τj,on) ∪ (τi,off 6= τj,off), X t

pdm = X t
cas = 0

Kr o.e.
τhb,on(off) ≤ τKr ,on(off) ≤ τpdm,on(off),
(τi,on 6= τj,on) ∪ (τi,off 6= τj,off), X t

cas = 0

pdm o.e.
τhb,on(off) ≤ τpdm,on(off) ≤ τcas,on(off),
(τi,on 6= τj,on) ∪ (τi,off 6= τj,off), X t

Kr = 0

cas o.e.
τhb,on(off) ≤ τKr ,on(off),
(τi,on 6= τj,on) ∪ (τi,off 6= τj,off), X t

pdm = 0

Table 2.3: Criterion for expression profile in each genotype
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self-feedbacks because the existence of those is uncertain from the experimental
data.

2.5.3 Continuous model of the expression dynamics
We introduced the continuous model with stochasticity as shown in Equation 2.2.
The promoter activity of gene i (i = hb, Kr, pdm, cas, or x) is described as follows,

Fi(Pj(t)) =

[
g(Si +

∑
j J̃ijPj)

]α

Kα
M +

[
g(Si +

∑
j J̃ijPj)

]α (2.4)

Regulatory interactions {J̃ij} are continuous equivalents of {Jij} in the Boolean
model, and g(x) is a piece-wise linear function such that g(x) = x for x > 0,
and g(x) = 0 for x < 0. The parameters {Si} are the default activities of the
promoters. Transcription of a gene is induced when the total regulatory inputs
become positive (Si +

∑
j J̃ijPj > 0), and is suppressed when they become neg-

ative (Si +
∑

j J̃ijPj < 0). In order to consider the effect of fluctuations on
the expression dynamics, we introduced additive white Gaussian noise {ξi(t)}:
〈ξi(t)ξj(t′)〉 = σ2

i δijδ(t− t′) (Eq 2.2), where σi is the noise intensity of gene i.
The expressions of hb and x are induced only by the default promoter activities

because all the regulations are absent for these two ({J̃hb,i} = {J̃x,i} = 0). To
describe the expression change of hb and x, the promoter activities of these two
are set as Shb > 0 for t < τhb,off (Sx > 0 for t < τx,off), and Shb = 0 for t > τhb,off

(Sx = 0 for t > τx,off). The promoter activities of the others are always assumed
to exist (SKr , Spdm , and Scas > 0). The noise intensities are also set as σi = σ
(> 0) for t < τi,off and σi = 0 for t > taui,off (i = hb, x). Those of the other
genes are σj = σ (> 0) (j = Kr, pdm, cas), Here we simply assume that the noise
intensities of the genes take the same value σ.

2.5.4 Analysis of the robustness of the networks
For the continuous model, we considered two different types of robustness: the
reproducibility of the sequential expression against parameter variations and dy-
namical stability against temporal fluctuations. To analyze the former, the default
promoter activities {Si} were assigned randomly within the defined ranges. The
values of the matrix {J̃ij} were set to 0 when the corresponding regulations were
absent (The corresponding element of the Boolean model takes as Jij = 0) or
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assigned randomly when they are present (Jij 6= 0). In order to confine our at-
tention to the properties of network architectures, the other parameters (γM , γP ,
KM , and α) were fixed throughout the analysis. The ranges and the fixed values
of the parameters are listed in Table 2.4. Robustness against temporal fluctuations
is measured as explained in the main text.

To judge whether the dynamics coincide with the expression profile in Drosophila
NBs, the dynamics of the protein concentrations {Pi} were discretized to 1 (0) for
Pi > Pth ( Pi < Pth). The threshold Pth was set as Pth = 0.2. The temporal
dynamics of a network were accepted when the discretized dynamics satisfied the
condition for WT in Table 2.3.

In the simulations, we found that the existence of positive self-regulation en-
hanced the fraction of successes in many cases, but hardly affected the sequential
expression. To focus on the contributions of mutual regulations of genes to robust-
ness, we neglected the positive self-feedback regulations and confined the analysis
to 120 out of 384 functional networks.
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Parameter Biological meaning Value

γM Degradation rate of mRNAs 1.0

γP Degradation rate of proteins 0.2

τhb,off
Time for promoter activity of hb

10.0
switched off

τx ,off
Time for promoter activity of x

[0.5τhb,off , 2.0τhb,off ]
switched off

KM
Michaelis constant for the promoter

0.1
functions

α
Hill coefficient for the promoter

2.0
functions

J̃ij
Strength of regulation from gene j |J̃ij| ∈ [10−1, 101]to gene i

Si Default promoter activity of gene i
Si(6=hb) ∈ [10−3, 101]
Shb ∈ [2 × 10−1, 101]

Table 2.4: Parameter values used for continuous dynamics of the genetic networks
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Chapter 3

Regulative differentiation as
bifurcation of interacting cell
population

In developmental processes, it is often observed that initially homogeneous cells
differentiate into a set of distinct types, while the population size of cells and
number ratio of cells of different types are often regulated. For such behavior,
intercellular interactions are, in many cases, inevitable. We propose a regulatory
mechanism of such differentiation, by using a coupled cell model consisting of
simple gene expression dynamics. The proposed mechanism is based on self-
consistent determination of signal concentration, which works as a bifurcation
parameter for differentiation. We show that this consistency between cell and
population level leads to robust cell-type determination.

3.1 Introduction
Complex gene and other molecular networks are responsible for determining cel-
lular behaviors. The function of such networks has recently been discussed in the
light of specific network structures called network motifs [121,122,166]. Besides
such motifs, several simple network modules are also considered to operate to give
specific dynamical properties such as bistability, adaptation, or oscillatory behav-
ior [39, 165, 187]. Recent experimental results also suggest that such modules
provide a basis for cell differentiation, as studied in competence state in Bacillus
subtilis [110, 177].
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In multicellular organisms, several cell states coexist. Morphogenesis with
differentiation into distinct cell types, however, is not an event of independent
single-cellular dynamics, but occurs as a result of an ensemble of interacting
cells. For determining each cell type, cell-cell interactions are often essential
besides intra-cellular dynamics by functional modules at a single cell level. In
fact, gene regulatory networks responsible for the early developmental process or
the cell specification process of several kinds of organisms include many intercel-
lular interactions [32,34,73,107,178]. Phenomenologically, cell-population level
behaviors such as the community effect [58] and differentiation from equivalent
groups of cells [55] exemplify the importance of cell-cell interactions to robust
developmental processes.

When considering the development of a multi-cellular organism, not only a
set of cell types, but also the number distribution of each of the cell types, has
to be suitably determined and robust against perturbations during the course of
development. For example, the proportion of the body plan in planarian and in
the slug of Dictyostelium discoideum is preserved over a wide range of body
sizes [136, 149]. In the D. discoideum slug, the number ratio of two cell types
is kept almost constant. In addition, a removal of either of the cell types leads to
compensatory transdifferentiation from one cell type to the other (shown in Fig.
3.1). In the hematopoietic system of mammals, approximately ten different cell

Before cut

After cut

0 h

3 h

6 h

9 h

12 h

18 h

Figure 3.1: Regeneration of Dictyostelium slug after removal of posterior region.
Anterior (left, black color): prespore cells. Posterior (right, red color): prestalk
cells. Scale bar: 0.2mm. Transdifferentiation from prespore to prestalk cells are
observed after the removal. Images are reproduced from [149].
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Figure 3.2: Various blood cells in the hematopoietic system. Image is reproduced
from [3].

types are generated from a hematopoietic stem cell as shown in Figure 3.2. Their
growth and differentiation are regulated to keep the number distribution of each
cell type to achieve homeostasis of the hematopoietic system. In this case, in
addition to the proportion regulation, the absolute size of stem cell population is
also important because all the hematopoietic cells will ultimately die out without
their existence. Indeed, regulation of the numbers of cells of each type is rather
common in multicellular organisms. As the distribution of cells of each type is a
property of an ensemble of cells, cell-cell interactions should be essential for such
regulation.

There are several theoretical studies discussing the importance of cell-cell in-
teractions. By considering an ensemble of cells with intra-cellular genetic (or
chemical) networks and intercellular interactions, synchronization of oscillation
[51, 117] or dynamical clusterings [49, 87, 88, 95, 123, 188] are observed. Cell
states distinguishable from those of a single-cellular dynamics are generated, pro-
viding a basis for functional differentiation for multicellularity. The preservation
of the proportion of different cell types is realized by taking advantage of Turing
instability [123], while the robustness in the number distribution of different cell
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types is discovered in reaction network models [49, 87, 89]. Nevertheless, regula-
tory mechanisms for cell type populations are not elucidated in terms of dynamical
systems because of the high dimensionality of the models.

In this chapter, we propose a regulatory mechanism of cell differentiation
based on dynamical systems theory by taking simple cell models with gene regu-
lation dynamics. Specifically, we study how cell states are differentiated with the
change in the total cell number following cell-cell interactions. By incorporating
different interaction kinetics, we show how a simple functional module generates
specific cellular behaviors such as a cell fate switching, population size regulation
of a specific cell type, and preservation of the number ratio of cells of each type.

3.2 Framework of the model
Here we introduce a basic framework of our model of interacting cells with in-
tracellular gene expression dynamics. Consider N cells interacting through a
common medium (Fig. 3.3B). The internal state of i-th cell is represented by
the expression pattern of m genes, as ~ui = (u1

i , . . . , u
m
i )T . The medium under

which cells are placed is represented by concentrations of n diffuse signals given
by ~v = (v1, . . . , vn)T . As the simplest case, we discard the spatial configuration of
cells, thus each cell interacts with all the other cells via common signal chemicals
~v. Gene-expression states of cells are modulated by these signal molecules, which
give interactions with other cells.

For the sake of simplicity, we examine the dynamics of single gene expression,
in which the state of the i-th cell is expressed by only one variable, ui, and the
intercellular interaction is mediated by only one global diffusive signal, v. As
a biologically applicable system, we use a most simple network motif positive-
feedback as intracellular gene network of ui. Considering an inhibitory effect of
the intercellular interaction, ui and v obey the following equation,

dui(t)

dt
= f(ui, v) =

1

τ

(
uα

i (t)

Kα
u + vα(t) + uα

i (t)
− ui(t) + Au

)
(3.1)

dv(t)

dt
= g({ui}, v), (3.2)

where the subscript refers to the cell index. Gene ui activates its own expression
through a feedback process, while the signal v has an inhibitory effect on the
expression of the gene ui as shown Figure 3.3A. Although we adopt competitive
inhibition here, the results to be discussed are qualitatively same even if other
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Figure 3.3: Schematic representation of the model. (A) Regulatory interactions
between ui and v. Regulation of v from ui (broken line) depends on the details of
the model. (B) Schematic image of cellular interactions.

inhibitory kinetics, such as anticompetitive or noncompetitive forms, are chosen.
Generally, the signal v is released by each cell depending on its gene expression
level and the signal abundances at that moment. We adopt Hill-type kinetics for
self activation of the gene ui. The parameter α denotes the Hill coefficient, i.e.,
the cooperativity of its kinetics, while Ku is the threshold for the activation of
gene ui in the absence of the signal v, and Au is the activation rate of ui by
other molecules in the cell. The parameter τ is a time constant of the expression
dynamics of ui normalized by that of the signal v. Here we focus on the role
of intercellular interaction on differentiation of cells in a population, so that the
timescale of ui is chosen to be much slower than that of v. This assumption on
the time scale is rather natural biologically, as the gene expression occurs in a
slower time scale. In the present model we study here, attractors of the system
are always fixed points. Neither oscillatory nor more complex attractors exist.
For numerical simulations, we use the following parameter values; Ku = 0.1,
Au = 0.04, α = 2.0, τ = 10.0. Note that the following results are qualitatively
invariant as long as the Hill-coefficient α is larger than unity.

Before studying the dynamics of a population of interacting cells, we first sur-
vey the single intracellular dynamics Eq. (3.1) with v given as a constant control
parameter. As is shown straightforwardly, the equation has a fixed point solution
which exhibits two saddle-node bifurcations with the change in v (Fig. 3.4). We
denote these bifurcation points as v = v∗1 and v = v∗2 , and call the upper branch of
the stable state as u(1) (or cell state 1) that is stable at v ≤ v∗2 , and the other lower
branch as u(2) (or cell state 2) that is stable at v ≥ v∗1 . In the parameter region
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Figure 3.4: The value u of the fixed point solution as a function of the signal
concentration v in our model. Solid line indicates the stable solution, while the
dotted line indicates the unstable one.

v∗1 < v < v∗2 , the bistability of u(1) and u(2) is observed.
As shown in Fig. 3.4, the only possible stationary states of each cell are ui =

u(1) or ui = u(2). Depending on the value of v and also on the initial condition of
ui, each of the two solutions are selected. The question we address is as follows:
how is one of these bistable states selected what determines a possible range in
the number distribution of the two states when intercellular interactions through v
are taken into account. In the followings, we analyze three models with different
types of the function g(u1, . . . , uN , v) to study how the differences in the kinetics
of v lead to different types of regulation in the number distribution of cell types.

3.3 Model I: Cell fate determination by total cell
number

As a first example of interacting cells, we adopt a model in which each cell sim-
ply emits the signal v with the same rate. The kinetics of v obeys the following
equation (also see Fig. 3.5),
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Figure 3.5: Dependence of v regulation on the expression state of ui in model I.
High ui expression state (left), low ui expression state (right). Signal v is consti-
tutively generated by each cell (independent of the expression level of ui).

model I

dv(t)

dt
= g1({ui}, v) =

N∑
i=1

ci − v(t) = c1N − v(t), (3.3)

while the kinetics of {ui} obey Eq. (3.1). We are interested in the behavior of
the stationary state as a function of the total cell number N . The stationary state
solution of an ensemble of cells is generally obtained by the following procedure.
First, we regard the signal v as a fixed parameter, not a variable, and obtain the
solution ui as a function of v, as already described. Next, we write down v as a
function of N and {ui} so that the self-consistent solution of the coupled equation
is obtained, from which we analyze the dependence of the solution on the total
cell number.

The stationary state is simply obtained by dui/dt = 0 and dv/dt = 0. In the
present case, the solution v is independent of {ui}, and depends only on N , which
leads to

f(ui, v) = 0, v = c1N. (3.4)

The solution curve f(ui, v(N)) = 0 is shown in Fig. 3.6, and the numerical result
of the ratio of the number of each cell type to the total cell number is shown in Fig.
3.7. Here we define a single-cluster of an ensemble of cells as a state in which all
the cells take the same stationary states, i.e.,

ui = u(k) (k = 1, or 2), (3.5)

and a two-cluster state as that in which two cell types with u = u(1) and u = u(2)
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Figure 3.6: The stationary states of ui in model I are plotted against the total cell
number N . At the interval N∗

1 ≤ N ≤ N∗
2 , two different cell states coexist. The

parameter value c1 is set at 0.005.

coexist, so that

ui =

{
u(1) for i = 1, . . . , N(1),

u(2) for i = (N(1) + 1), . . . , (N(1) +N(2)),
(3.6)

whereN(1)+N(2) = N . N(1) andN(2) denote the number of the cells with u = u(1)

and u = u(2), respectively.
When the cell number N is lower than a threshold N∗

1 (= v∗1/c1), the single-
cluster state of u(1) is realized, while for N larger than a threshold N∗

2 (= v∗2/c1),
the single-cluster state of u(2) is realized, irrespectively of the initial cell state.
Only within the range of N∗

1 ≤ N ≤ N∗
2 are two-cluster states of u(1) and u(2)

possible, where any population ratio of the cell types with u(1) to u(2) can be
realized depending on the initial condition. Cell types switch between u(1) and
u(2) simply by the total cell number, and the signal v works as a population size
detector.
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Figure 3.7: The ratio of the number of each cell type (× for N(1) and � for N(2))
plotted against the total cell number N , for model I. The initial values of ui are
chosen randomly from the interval of ui ∈ [0, 1]. The parameter value is c1 =
0.005.

3.4 Model II: Diversification from single state, and
population size regulation of specific cell type

Next, we consider the case in which the signal induction depends on the expres-
sion level of ui. We will show that the cells are differentiated into two types over a
wide range of the total cell number N , and that the number of type 1 cells remains
at a same level herein.

The kinetics of the signal v in model II is represented as follows (also see Fig.
3.8),

model II

dv(t)

dt
= g2({ui}, v) = c2

N∑
i=1

uβ
i (t)

Kβ
v + uβ

i (t)
− v(t). (3.7)

We here adopt Hill-type kinetics for the induction of the signal v by ui, where
β is the Hill coefficient, representing the cooperativity in the induction, and Kv

42



ui

v

ui

v

Figure 3.8: Dependence of v regulation on the expression state of ui in model II.
High ui expression state (left), low ui expression state (right). Signal v is mainly
generated by ui high-expression cells.

denotes the threshold value for the signal induction. The parameter c2 gives the
maximum release rate of v from each cell.

Dependence of the stationary states on the total cell number is shown in Fig.
3.9. For a small N , all the cells always fall on a single-cluster state of u(1). As N

Figure 3.9: The fixed point values of ui in model II are plotted against the total cell
number N . At each N , 100 initial conditions are chosen. The expression levels of
ui for a single cluster (+) and two-cluster solutions (◦) are plotted as a function of
N . The value for two-cluster solutions is the average over initial conditions. The
parameter values are set at Kv = 2.0, β = 2.0, c2 = 0.1.
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gets larger, the bifurcation to a two-cluster state occurs, where the cells take either
u(1) or u(2). Here, the single-cluster state of u(1) (u(2)) is realized only at a small
(large) number of cells, respectively, so that there is a gap in the total number of
cells between the two single-cluster states. The two-cluster state exists within this
gap.

To understand the observed dependence of the clustering behavior on the cell
number, we first consider the stability of a single-cluster state. From dui/dt = 0,
dv/dt = 0, and ui = u(k) (k = 1, or 2) for i = 1, . . . , N , we get

f(u(k), v) = 0, v = c2N
uβ

(k)

Kβ
v + uβ

(k)

. (3.8)

By solving the above equations self-consistently, the solution curve of u is ob-
tained as a function of the total cell number N (Fig. 3.10). For N < Ñ∗

1 , a
single-cluster state of u(1) is always stable. When the cell number increases be-
yond Ñ∗

1 , this single-cluster state becomes unstable, while for much largerN such
that N > Ñ∗

2 , the single-cluster state becomes stable again, where the cell state
is u(2) (Fig. 3.10) . The threshold Ñ∗

1 and Ñ∗
2 are given by Ñ∗

1 = v∗2(K
β
v +

Figure 3.10: The stationary state of a single-cluster solution for model II. Solid
line indicates ui of the stable fixed solution, while the broken line denotes that of
the unstable one. The parameters are Kv = 2.0, β = 2.0, c2 = 0.1.
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uβ
(1)(v

∗
2))/(c2u

β
(1)(v

∗
2)) ' 92 and Ñ∗

2 = v∗1(K
β
v + uβ

(2)(v
∗
1))/(c2u

β
(2)(v

∗
1)) ' 2200,

respectively.
Next, consider the condition for the existence of a two-cluster state. Because

the stability of a cell state is determined by the amount of v, the condition for the
existence of a two-cluster state is given by v∗1 < v < v∗2 . Accordingly, considering
v as a function of N(1) and N , a two-cluster state is possible if N(1) satisfies
v∗1 < v(N(1), N) < v∗2 . Note that v satisfies ∂v(N(1), N)/∂N(1) > 0. Thus,
the range of the cell number N in which a two-cluster state exists is given by
N∗

1 < N < N∗
2 , where N∗

1 = v∗1(K
β
v + uβ

(1)(v
∗
1))/(c2u

β
(1)(v

∗
1)) ' 24 and N∗

2 =

v∗2(K
β
v +uβ

(2)(v
∗
2))/(c2u

β
(2)(v

∗
2)) ' 9400, respectively. These threshold sizes satisfy

N∗
1 < Ñ∗

1 and Ñ∗
2 < N∗

2 , so that only two-cluster states are stable for N satisfying
Ñ∗

1 < N < Ñ∗
2 . In the region satisfying N∗

1 < N < Ñ∗
1 and Ñ∗

2 < N < N∗
2 ,

single-cluster and two-cluster states coexist, which is demonstrated in Fig. 3.9. In
this case, either a single-cluster or two-cluster state is realized depending on the
initial condition.

Because the number of each cell type in these two-cluster states has to satisfy
the above condition, the range of possible numbers of two cell types is limited,
depending on the total number of cells. The number of cell type 1 (N(1)) from a
variety of initial conditions is plotted as a function of N in Fig. 3.11. As N is
increased beyond N∗

1 , N(1) decreases linearly with N , with a rather small slope,
over a wide range of N , up to N∗

2 . Within this range the value of N1 does not
change so much.

To understand this behavior we obtain the dependency ofN(1) on v andN . In a
two-cluster state (N(1), N(2)(= N−N(1))), v is expressed by the contribution from
the cell types 1 (u(1)(v)) and types 2 (u(2)(v)). By setting dui/dt = 0, dv/dt = 0,
and solving Eq. (3.7) for N(1), the number of type 1 cells N(1) is written as a
function of N , given by

N(1)(N, v) = −A(v)N +B(v), (3.9)

with

A(v) =
uβ

(2)(v)/(K
β
v + uβ

(2)(v))

uβ
(1)(v)/(K

β
v + uβ

(1)(v)) − uβ
(2)(v)/(K

β
v + uβ

(2)(v))
, (3.10)

B(v) =
v

c2{uβ
(1)(v)/(K

β
v + uβ

(1)(v)) − uβ
(2)(v)/(K

β
v + uβ

(2)(v))}
. (3.11)

Here, we note that u(1) and u(2) are determined self-consistently as functions of v,
and that A(v) > 0 and B(v) > 0. For the existence of a two-cluster state, v has
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Figure 3.11: The number of cell type 1 (×) is plotted against the total cell number
in model II. The initial condition of ui is chosen randomly from the interval ui ∈
[0, 1]. Solid and broken lines indicate N(1)(N, v

∗
1) = −A(v∗1)N + B(v∗1) and

N(1)(N, v
∗
2) = −A(v∗2)N + B(v∗2), respectively, where A(v∗1) = 0.011, B(v∗1) =

24, A(v∗2) = 0.0099, and B(v∗2) = 93. The threshold values N∗
1 , Ñ∗

1 , Ñ∗
2 are

indicated (N∗
2 is out of the range of this figure). The parameters are Kv = 2.0,

β = 2.0, c2 = 0.1.

to satisfy v∗1 < v < v∗2 , that is, N(1)(N, v
∗
1) < N(1)(N, v) < N(1)(N, v

∗
2) for each

N . By inserting Eq. (3.9) into this expression, it is shown that N(1)(N, v
∗
1) and

N(1)(N, v
∗
2), i.e., the lower and upper bounds of N(1), decay linearly with N , with

the slope of A(v∗1) and A(v∗2). In fact, a linear decrease in N(1) with the increase
in N is clearly discernible in Fig. 3.11.

Next, we evaluate the value of the slope A(v). Eq. (3.9) is written as A(v) =
{(u(2)/Kv)

β +(u(2)/u(1))
β}/{1−(u(2)/u(1))

β}. If u(2) � u(1) and u(2) � Kv are
satisfied, that is the case for the parameters used in Fig. 3.11,A(v) is much smaller
than unity. As a result, the decrease in N(1) with N is slow, and N(1) is sustained
at a same level over a wide range of N , satisfying N(1)(v

∗
1) < N(1)(v) < N(1)(v

∗
2)

(Fig. 3.11).
By increasing the Hill-coefficient β, A(v) becomes much smaller than unity

which asymptotically go to zero, even if the value of u(2) is the same level as
u(1) or Kv as is shown in Fig. 3.12. Note that the conditions u(2) < u(1) and
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u(2) < Kv have to be satisfied. The value of the slope A(v) shows an exponential
decrease with β. A(v)−1 gives a measure for the range in which two-cluster states
exist. Hence, N(1) is sustained at an almost constant level and the population size
regulation of cell type 1 is realized with a sufficiently large β.

Figure 3.12: The slope A(β; v) is plotted as a function of β. Here, A(β; v) for two
different values of v, i.e., v∗1 and v∗2 are plotted, which agree within the resolution
of the plot in the figure. The parameter values are Kv = 2.0, c2 = 0.1.

3.5 Model III: Proportion preservation of two cell
types

For precise body plan or for tissue homeostasis, proportion regulation of the num-
ber of each cell type is required. The fraction of each cell type has to be sustained
at a certain range, against the change in the total number of cells. Here we modify
the kinetics of v in the previous model II to seek for the possibility of the propor-
tion regulation. With this modification, we will show that the population fraction
of the two types of cells is kept at a certain level against the change of N .

Here, the kinetics of v is modified as follows,
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Figure 3.13: Dependence of v regulation on the expression state of ui in model
III. High ui expression state (left), low ui expression state (right). Signal v is
generated by ui high-expression cells, and degraded by ui low-expression cells.

model III

dv(t)

dt
= g3({ui}, v)

= cv1

N∑
i=1

uβ
i (t)

K̃β
v + uβ

i (t)
− cv2v(t)

N∑
i′=1

K̃β
v

K̃β
v + uβ

i′(t)
− v(t) (3.12)

The modification to model II is just an addition of the second term in Eq. (3.12).
In other words, each cell in this model also contributes to the degradation of the
signal v (Fig. 3.13).

As in the previous model, the cellular states fall on stationary states, and the
bifurcation of the stationary state from a single-cluster to two-cluster states are
observed with the increase in N (Fig. 3.14). Here, we first note that the two-
cluster state remains stable over a wide range of N . Indeed, non-zero N(1) exists
so that v∗1 < v(N(1), N) < v∗2 is satisfied even for sufficiently large N .

Next, we study the population distribution of two cell types. As shown in Fig.
3.15, the ratio N(1)/N stays at a constant level against the change of N . In the
same way as in the previous section, the dependency of N(1) on v and N for a
two-cluster state is written as,

N(1)(N, v)

N
= Ã(v) +

B̃(v)

N
, (3.13)

Ã(v) =

[
1+

 

cv1u
β
(1)

(v)−cv2K̃
β
v v

cv2K̃
β
v v−cv1u

β
(2)

(v)

! 

K̃
β
v +u

β
(2)

(v)

K̃
β
v +u

β
(1)

(v)

!

]−1

, (3.14)

B̃(v) = v

[
cv1

(

u
β
(1)

(v)

K̃
β
v +u

β
(1)

(v)
−

u
β
(2)

(v)

K̃
β
v +u

β
(2)

(v)

)

+cv2K̃β
v v

(

1

K̃
β
v +u

β
(2)

(v)
− 1

K̃
β
v +u

β
(1)

(v)

)

]−1

. (3.15)
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Figure 3.14: The fixed point solutions of model III plotted against the total cell
number N . At each N , 100 initial conditions are chosen. The expression levels of
ui for a single cluster (+) and two-cluster solutions (◦) are plotted as a function of
N . The value for two-cluster solutions is the average over initial conditions. The
parameter values are K̃v = 0.2, β = 2.0, cv1 = cv2 = 0.005.

Here, B̃(v) > 0 is always satisfied. Because v satisfies v∗1 < v < v∗2 for the
existence of a two-cluster state, N(1)/N is within the range (Ã(v∗

1)+B̃(v∗
1)/N) <

N(1)(N,v)

N
< (Ã(v∗

2)+B̃(v∗
2)/N) for each N . As a result, when N is sufficiently large,

the possible range of N(1)/N is given by

Ã(v∗1) <
N(1)

N
< Ã(v∗2). (3.16)

From the above expression of Ã(v), if the condition (v∗2/u
β
(1)(v

∗
2)) < cv1/(cv2K

β
v ) <

(v∗1/u
β
(2)(v

∗
1)) is satisfied, Ã(v) is within 0 < Ã(v) < 1. This is the case for the

parameter values in Fig. 3.15. Thus, the cell type ratio of a two-cluster state has
to be within the range given by Eq. (3.16), so that its ratio is insensitive to the
change of the total number of cells. In addition, by increasing the Hill-coefficient
β, the range given by Eq. (3.16) gets narrower. Thus, the ratio N(1)/N is more
accurately regulated. As β goes to infinity the range approaches its minimum,
where the boundary is given by Ã∞(v) = v/(cv1/cv2 + v).

Note that Ã(v) here is positive and is not necessarily small, in contrast to A(v)
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Figure 3.15: The ratio of the number cell type 1 N(1) to the total cell number N
is plotted against N for model III. The initial condition of ui is chosen randomly
from the interval of ui ∈ [0, 1]. Solid and broken lines indicate N(1)(N, v

∗
1)/N =

Ã(v∗1) + B̃(v∗1)/N and N(1)(N, v
∗
2)/N = Ã(v∗2) + B̃(v∗2)/N , respectively, where

Ã(v∗1) = 0.16, B̃(v∗1) = 69, Ã(v∗2) = 0.36, and B̃(v∗2) = 86. The parameter
values are K̃v = 0.2, β = 2.0, cv1 = cv2 = 0.005.

in Eq. (3.9) for the model II. Inclusion of the second term in Eq. (3.12) allows for
this behavior, and the proportion regulation of cell types is achieved over a wide
range of cells.

3.6 Discussion
Through the analysis of several models, we see, i) a switch of cell types via an
increase of the total cell number, and ii) diversification to two cell types. In ad-
dition, when the cells differentiate to two types, population size preservation of a
specific cell type or proportion preservation of two cell types appears, depending
on the interaction form with other cells. These behaviors are explained as a bi-
furcation of cell states via the intercellular interactions. First, possible cell types
u(1) and u(2) are generated by a single positive feedback loop, which works as
a module for bistability. Secondly, intercellular signal v works as a bifurcation
parameter, whose abundances determine the actual cell types. This bifurcation
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parameter is a function of the number of each cell type, depending on the intercel-
lular interactions. Then, the resulting bifurcation parameter has to be determined
self-consistently. This constraint restricts the number distribution of the cell types,
which gives a mechanism of the regulation of the cell differentiation.

In model I, because the total cell number simply corresponds to the bifurca-
tion parameter of cell states, the switch of the cell types by the total cell number is
straightforward. In model II and III, since intercellular couplings change the bifur-
cation parameter, the transition from the single-cluster state of u(1) to a two-cluster
state occurs by the increase in the total cell number. In model II, the cell-type 2
contributes only weakly to the increase of v, compared with the cell-type 1. Thus,
the amount of v mainly depends on the number of the cell-type 1. In contrast, in
model III, the cell-type 2 degrades v. As a result, the amount of v depends on the
number ratio of two cell-types.

If a gene expression network shows bistability with a bifurcation structure as
in Fig. 3.4, cell differentiation is a general consequence when cell-cell couplings
are introduced. An important point here is that the same intracellular module can
be used in several different biological contexts by modifying only the intercellular
interaction. This is quite useful in an evolutionary perspective because new bio-
logical functions can be added by incorporating new interactions while preserving
the intracellular core module.

Although we confine our analysis to a system with only fixed point solutions,
oscillatory and other dynamical behaviors are often observed in biological sys-
tems. The analysis we introduced here is also applicable to such cases, as long as
there are bifurcations of attractors with the change in relevant chemical concen-
trations that are influenced by cell-cell interactions. On the other hand, oscillatory
behaviors may bring about richer bifurcations, as well as clustering of cells with
regards to the oscillation phase or amplitude, as has been discussed in models
with intra-cellular oscillatory dynamics and cell-cell interactions [87,88,95,188].
The study of possible forms on differentiations and regulations in such dynami-
cal systems will be important in future. In multicellular systems, cells behave in
coordination by taking advantage of communication with other cells. Such collec-
tive behavior is a result of interacting systems with intra-cellular gene expression
dynamics. The present self-consistent determination of bifurcation parameters
through cell-cell interactions will be essential to understand organization in mul-
ticellularity.
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Possible biological counterparts of the studied models

Here, we discuss several phenomena in development that may be described by our
models.

model l

• Community effect
The community effect was discovered in muscle formation in reaggregated
cells of the Xenopus embryo [58]. Only when the number of cells is suffi-
ciently large (i.e., more than one hundred), the cells differentiate to muscle.
Cell-cell interaction, thus, is important for the differentiation, which is me-
diated by the diffusive factor eFGF, generated by each muscle progenitor
cell [40, 171]. The amount of eFGF increases with the total cell number,
just like the signal v in the model I. The precursor cells differentiate to non-
muscle cells (correspond to cell-type 1) if they are surrounded only by a
small number of cells, while they differentiate to muscle cells (correspond
to cell-type 2) if they are surrounded by a large number of cells. The pos-
sible targets of the inhibition activity of eFGF are the transcription factors
GATA-1 and GATA-2, the regulators of the erythropoiesis [75, 198]. In ad-
dition, eFGF can induce a transcription factor MyoD, the master regulator
of myogenesis [40, 171]. Thus, the differentiation decision between ery-
thropoiesis and myogenesis by eFGF is dependent on the cell number, as in
our model I.

• Mid-blastula transtion
Another example of the model I may be given by mid-blastula transition.
In the cell cycle machinery in Xenopus, the phosphorylation states of the
cyclin dependent kinase Cdc2 have a fundamental role in the entry into mi-
tosis [60, 131]. Cdc2 positively regulates its own active state via an activa-
tion of the phosphatase Cdc25 and via an inhibition of the kinase Wee1. As
opposed to the positive feedback of Cdc2, the kinase Chk1 inhibits Cdc25
and activates Wee1, and thus inactivates Cdc2. Hence it is possible that the
amount of active Cdc2 shows bistability depending on the amount of active
Chk1 [132]. Here, DNA accelerates the phosphorylation of Chk1 and ac-
tivates Chk1. Thus, the increase in DNA amount via cleavage in the early
embryo can induce a transition from the active to inactive state of Cdc2.
This transition is considered to trigger the mid-blastula transition in Xeno-
pus [132, 141, 167]. This induced change can fit well with the transition
observed in model I, in the sense that the system parameter (the concentra-
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tion of the signal v in our model or the amount of active Chk1 in the mid-
blastula transition) changes as a function of the cell number, which induces
a transition of the cell state. To be precise, the bifurcation parameter in the
mid-blastura transition refers to the DNA content instead of the cell num-
ber. Also, we should mention that mid-blastula transition involves many
other factors such as the change in cell motility and the initiation of zygotic
gene transcriptions [200], which are not included in the present study. Still,
the core part of the transition could be described by our mechanism.

It is known that mid-blastula transition occurs when the ratio of DNA to cy-
toplasm in each individual cell is increased beyond a threshold [129, 130].
In our model I, the transition threshold is v∗2 , which is equal to cN∗

2 . The
parameter c corresponds to the inverse of the amount of a cytoplasmic fac-
tor which has an inhibitory effect to Chk1 or has a competitive effect on
DNA. Then, addition (depletion) of cytosol to an egg in the experiment cor-
responds to decrease (increase) in the parameter value of c in the model.
Thus, also in the model I, the threshold for the transition is determined by
the ratio of the DNA amount N to a cytoplasmic factor c−1. T he total
amount of cytoplasm is almost constant during the initial stage of embryo-
genesis. Thus, the DNA amount works as the bifurcation parameter for the
mid-blastula transition.

model II

• Hematopoietic stem cell
As for model II, consider the maintenance of the hematopoietic stem cells in
mammals. Here the transcription factor GATA-2 is known to play an essen-
tial role for the maintenance of hematopoietic stem cell and hematopoietic
progenitors [21, 178]. GATA-2 expression is active in hematopoietic stem
cell, while during erythropoiesis, it is switched off, and is replaced by the
active expression of the transcription factor GATA-1. GATA-2 activates it-
self and maintains its expression once activated, while GATA-1 suppresses
GATA-2 transcription with FOG-1.

Generally, an environment called stem cell niche is needed for the mainte-
nance of the stem cell population. In a hematopoietic system, osteoblasts
are known to work as such stem cell niche [20]. The stem cells compete for
some chemical factors derived from this niche, and the cells which cannot
take the factors differentiate to specific hematopoietic lineages. Indeed, the
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competition for these factors has been discussed to be essential to the reg-
ulation of the stem cell population size, while competence for these factors
decrease through the differentiation process [148]. In fact, several factors
such as Angiopoietin-1, Wnt, Notch-ligand Jagged1 are identified as medi-
ators for this niche-stem interaction [1, 8, 151]. For example, Notch signals
inhibit the erythroid differentiation by suppressing GATA-1 activity through
Hes1 [78, 98]. Hence, it is possible that GATA-2/GATA-1 transition is reg-
ulated by the degree of the GATA-1 mediated repression of GATA-2 which
is modulated by Notch [178]. Once several cells of the stem cell population
differentiate, the differentiated cells cannot respond to Jagged1 because of
the decrease in the expression of Notch [148]. The competition for the niche
is then relaxed, so that a certain fraction of undifferentiated cells remained
as stem cells stably.

To sum up, the strength of GATA-2 repression increases with the increase
of the number of hematopoietic stem cells. Through this change, the ery-
throid differentiation is induced and the number of stem cells is maintained
at a certain level. Following this discussion, we propose that this process is
described by assigning GATA-2 and Notch-ligand Jagged1 as the chemical
ui and v in our model II respectively. If this assignment is correct, GATA-
2 expression is expected to show bistability for a certain range of Jagged1
stimulation. By examining this theoretical prediction experimentally, it will
be possible to confirm the validity of the application of our model to the
hematopoietic stem cell system. Here we should mention that, the above
example for Notch often assumes the spatial heterogeneity implicitly. Even
though the spatial heterogeneity was not included in our model here, exten-
sion to include it is rather straightforward, which does not alter the conclu-
sion here. Recently, it is shown that Wnt uses the same signaling pathway
as Notch for the maintenance of hematopoietic stem cells and that Wnt sig-
nal upregulates Hes1 [35, 36]. Hence it is possible that GATA-2/GATA-1
transition is also regulated via Wnt signal.

model III

• Dictyostelium slug
Thirdly, our model III may be applied to the proportion regulation of prestalk-
cell types and prespore-cell types in the Dictyostelium slug. Differentiation
to prespore cells is induced by cAMP, and the cell state is maintained by a
positive-feedback loop of prespore cell specific adenylyl cyclase G activity
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[6, 70, 194]. On the other hand, differentiation-inducing factor-1 (DIF-1)
is necessary for the differentiation from a prespore-cell to a prestalk-cell
(at least for the differentiation to pstO, which is a subtype of the prestalk-
cell) [90, 194]. As an intercellular interaction, this DIF-1 is produced by
prespore-cells, and is degraded by prestalk-cells. This cell-type specific in-
duction/destruction of DIF-1 is responsible for the proportion preservation
as studied in model III.

Evolution of differentiation mechanism

Of course, the present multicellular organisms also adopt other mechanisms of dif-
ferentiation such as morphogen gradient [45, 180], besides the intra-inter-cellular
dynamical mechanism discussed here. How the both mechanisms are used coop-
eratively will be important for understanding the development of present multicel-
lular organisms. On the other hand, since the mechanism discussed here requires
neither external morphogen gradient nor detailed gene expression network with
finely tuned parameters, it is natural to expect that it worked at an evolutionarily
ancient stage in multicellular development, whereas sophisticated mechanisms as
in the present organisms are evolved later [42]. The intra-inter-cellular dynami-
cal mechanism here requires just a few chemicals, and is easily accessible. More
sophisticated mechanisms of differentiation, using prepattern of morphogen gradi-
ent and/or using well designed genetic network, could be evolved later to achieve
more complex architecture of body plan with robust and fast developmental pro-
cess.

Based on our model, we can consider a possible scenario for evolution of cell
differentiation in multicellular organisms. Since bistability can provide a memory
in a cell system, it would also be beneficial to unicellular organisms as a pheno-
typic switch to respond environmental stimulus. Hence, unicellular systems might
attain bistability before evolution to multicellularity. When these cells emit some
chemical factors to which they respond and communicate, interacting cells begin
to show some kind of differentiation as shown in this chapter. Indeed bacteria
in a biofilm take different cell states from a free living cell, which may repre-
sent ancient type of cell differentiation [33]. It is interesting to seek the origin of
multicellularity along this line [50] both theoretically and experimentally.
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Chapter 4

Relaxation kinetics of cell sorting

In the previous chapter, we showed that intercellular interactions give rise to reg-
ulative behaviors of cell population. We further investigate the importance of
intercellular interactions in development, especially in relation to tissue morpho-
genesis.

One of the most important cellular machineries for morphogenesis is cell-
cell adhesion. Cellular adhesion not only makes a number of cells functional
tissue, but also makes possible to sort out of different type of cells; This is called
cell sorting in which the intermixed cells of different types sort out to domains
of homogeneous cells. Sorting out of cells via differential adhesive property is
utilized for morphogenetic processes such as formation of a tissue boundary.

For the developmental processes to proceed successfully, not only the pre-
cise stationary pattern, but also the time schedule of the developmental events is
important. In this chapter, we investigate the kinetics of cell sorting, that is the
growth of the size of cellular domains. Although the cellular aggregates some-
times show similar properties as fluid, the behavior of a well-accepted theoretical
model of cell sorting, Cellular Potts Model (CPM), is quite different from fluid.
In fact, the behavior of CPM reported so far does not agree with the experimental
observations of cell sorting process. Through numerical analysis of the original
and extended CPM, we propose importance of the collective motion of cells for
the cell sorting process.
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4.1 Introduction

4.1.1 Differential adhesion and cell sorting
Different types of animals cells, when dissociated from the tissues and inter-
mixed, sort out to domains of homogeneous cells [67, 186]. This phenomenon
is called cell sorting. The sorting behavior of cells is involved in multiple mor-
phogenetic events [172], such as in the regeneration of hydra from the aggregates
of dissociated cells [182], the formation of germ layers in the early zebrafish em-
bryo [97,163], and tissue boundary formation in various organisms [99,128]. The
typical sorting experiment is shown in Figure 4.1. At first intermixed cells are
dispersed in the culture medium (left in Fig. 4.1B). The cells begin to form ag-
gregates via adhesion among cells (middle). Several hours later, intermixed cells
eventually sort out to the domains of homogeneous cells in an aggregate (right).

0h 8h 17h

Donor 1

Donor 2

Δt

A

B

Figure 4.1: Sorting process of zebrafish early embryonic cells. (A) experimental
procedure, (B) time coarse of the cell soritng process. Red: ectodermal cells;
Green: mesodermal cells. Figures are partially modified from [97].
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Differential adhesion hypothesis

Since the spatial configuration of different cell types in sorting aggregates mimics
that of tissues and early embryos, this sorting behavior has been assumed as one
mechanism driving tissue organization. In order to explain the cell sorting, Stein-
berg proposed the Differential Adhesion Hypothesis (DAH) [173–175]. Similar
to the phase separation process, the DAH postulates that the surface tension of
tissues arise from adhesion among cells and that the sorting is driven by the mini-
mization of surface energy. Thus the engulfing configuration such as in Figure 4.1
is assumed to arise as a result of differences in their surface tensions.

The propositions of the DAH has been verified by various experiments. The
cells with higher surface tension enveloped by the ones with lower surface ten-
sion in the sorting experiments of chick [43, 44] and zebrafish [163], as expected
from the DAH. The endodermal cells are enveloped by the ectodermal cells in
the sorting experiments of hydra, and the estimated adhesive forces between the
endodermal cells were larger than that of ectodermal cells [160]. An example of
such experiments is shown in Figure 4.2. The estimated surface tension and the
cellular geometries in aggregates are in good agreement with that expected from
the DAH.

Tissue Equilibrium Configulation

Limb bud

Pigm. Epith.

Heart

Liver

N. Retina

Surface Tension
(dyne/cm)

20.1 (Green)

12.6 (Red)

8.5 (Yellow)

4.6 (Blue)

1.6 (Orange)

Figure 4.2: Images are reproduced from [44]
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4.1.2 The Cellular Potts Model
Basic formalism of the Cellular Potts Model

Based on the DAH, several theoretical models have been proposed and have suc-
ceeded in reproducing the eventual configurations of cells in sorting experiments
[9, 54, 111, 114, 124, 137]. Among these, the Cellular Potts Model (CPM), also
called as Glazier-Graner-Hogeweg (GGH) model, is one of the most accepted
models and has been utilized for the analyses of various morphogenetic pro-
cesses [64, 82, 115, 118, 161, 201].

The CPM is a kind of Potts model with modification to account for biophysical
properties of cells such as the volume and deformation of cells. In the model, each
cell is represented as a set of sites on a lattice, and each site is labeled by the index
of the occupying cell. The dynamics of the CPM is based on the minimization
process of the effective energy of the model. The effective energy is written as
follows [53, 54, 114],

HCPM =
∑
〈ii′〉

Jττ ′(1 − δσσ′) + λV

∑
σ

(Vσ − V0)
2

+λL

∑
σ

(Lσ − L0)
2. (4.1)

Cells are indexed by Potts spin σ, and the cell type of σ-th cell is denoted as τ . Vσ

and Lσ is the volume and the surface area (peripheral length in two-dimensions) of
the σ-th cell, respectively. In the first term, (1− δσσ′) assures that the neighboring
sites belonging to the same cell do not contribute to the energy of the system,
and the interaction energies act only between neighboring cells. Thus the first
term can be assumed as adhesive interactions between neighboring cells. The
second term of Equation 4.1 represents the energy cost for a cell to deviate from

σ

σ’

Figure 4.3: Cellular configurations in the two-dimensional Cellular Potts Model.
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the preferred volume V0, and the third term represents the cost to deviate from the
preferred length L0. Thus the relative intensity of these terms gives the degree of
cell deformability. We have shown cell configurations of two-dimensional CPM
on a square lattice in Figure 4.3. Each polygon corresponds to a cell in the system,
and the sites of surrounded regions (belonging to the same cell) have the same
index.

The time evolution of the model is obtained by the Monte Carlo simulation
with Metropolis algorithm: First as a trial, the state of one of the neighboring sites
is copied to a randomly chosen site. The energy difference of before and after
the trial, ∆H ≡ Hafter − Hbefore, is compared, and then the new configuration is
accepted with a probability which is given as,

Pσ→σ′ =

{
1 if ∆H < 0,
exp(−β∆H) if ∆H > 0.

(4.2)

Here, β is the inverse of the effective temperature of the system. In the CPM,
the temperature (=β−1) are related to the activity of the random ruffling of cell
membranes. High (low) temperature corresponds to the active (less active) cell
motion.

Cell sorting of the CPM

Now we discuss the sorting condition of the CPM. Here we focus on the sorting
of two cell types, where two types are denoted as τ and τ ′. In the above formalism
of the CPM, the DAH is implemented by assigning different interaction strengths
of J , depending the interacting pair. The possible interactions between cells are
Jττ , Jτ ′τ ′ , and Jττ ′ . In addition we also consider a medium surrounding the cell
aggregates, thus the interactions between the cells and medium also exist. These
are denoted as Jτm and Jτ ′m. Surface tensions are defined as [53],

γττ ′ = Jττ ′ − Jττ + Jτ ′τ ′

2
,

γτm = Jτm − Jττ

2
, (4.3)

γτ ′m = Jτ ′m − Jτ ′τ ′

2
,

where the subscripts indicate the corresponding interfaces. To obtain the stable
assembly of cells, the surface tensions should be,

γττ ′ , γτm, γτ ′m > 0. (4.4)
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In the typical sorting experiment, cells of one type are surrounded or engulfed by
those of the other (see Fig. 4.1). For such a configuration of cells, the surface
tensions should also satisfy the following inequality,

γτm > γττ ′ + γτ ′m, (4.5)

where we assume τ as internal cells and τ ′ as external ones. Under the conditions
of (4.4) and (4.5), the energy-minimum state corresponds to the cellular config-
uration in which cells of type τ is surrounded by cells of type τ ′. Figure 4.4 is
an example of sorting of the CPM. It is shown that the initially intermixed cells
have segregated to homogeneous cell domains after sufficient time steps. For the
parameters used, the surface tensions satisfy the relation, γrm > γrg +γgm (for the
notations of cell types, see the figure caption). As we see, the final configuration
of cells obeys this sorting condition.

Figure 4.4: Cell sorting of the two-dimensional CPM. Left: initial configuration.
Right: stationary configuration. The parameters are set as γrg = 2, γrm = 15,
and γgm = 8, where cell types are denoted as r for internal (red) cells and g for
external (green) ones.

Relaionship between the CPM and biophysical properties of cells

The Hamiltonians of other multicellular models such as the Vertex model, which
is another well-utilized model, have basically the same structures to Equation (4.1)
[37, 68, 69, 99]: interfacial interactions between neighboring cells, constraints of
cell volume and surface area. The Hamiltonian of the CPM in the original papers
has only the former two terms of Equation (4.1) [53, 54], and the third term is
added in the later works to describe that cells take a given magnitude of surface
area [82, 135]. Only with the former two terms, the parameter values of Jττ ′ is
necessary to be positive to keep the integrity of cells. Otherwise, each cell is
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disintegrated into small pieces. Such situations are biologically implausible. In
contrast, by incorporating the third term, the value of Jττ ′ can be either positive
or negative, depending on the biological situations of interest. In addition, this
modification permits to change the tensile force of cellular surface, independently
of the adhesive interactions. Thus the formalism of the Hamiltonian (4.1) could
be regarded as incorporating the minimal requirements of cellular properties.

Two cellular machineries contribute to physical properties of cells and tissues.
One of them is the cell-cell adhesion, where cadherins, one of the major classes of
cell adhesion molecules, play a major role. The other is an actomyosin network
in the subcortical region of a cell, which gives rise to the cell-cortical tension.
Figure 4.5 shows the localizations of these molecules in an epithelial tissue. Both
cadherin and actin are seen to be localized at the cell-cell interfaces.

Ecad-GFP
Phalloidin

Figure 4.5: Epithelial tissue of Drosophila melanogaster. Adhesion and contrac-
tility at the cell-cell interface. Left: E-cadherin. Right: cortical actin. Images are
reproduced from [37].

The strength of interfacial tension at the contact region of neighboring cells
is modulated by the localization level of these molecules. This is illustrated in
Figure 4.6. As in Figure 4.6A, cadherins and actins are localized at cell-cell inter-
faces. If the localization of cadherins increases, or that of actomyosins decreases,
at the interface of neighboring cells, these work to expand the adhesion area as
in Figure 4.6B. This corresponds to the decrease of the interfacial tension. On
the other hand, if the localization of cadherins decreases, or that of actomyosins
increases, the adhesion area shrinks. In this case, the corresponding interfacial
tension increases.

These biophysical properties of cells can be connected to the Hamiltonian
(4.1). The first term of (4.1) is interfacial interactions of neighboring cells, to
which interface dependent localization of both cadherins and actomyosin net-
works should contribute. The third term, quadratic function of L, is related to
the cellular cortical elasticity, which is determined by cortical actin network. To
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A B
Cadherin ↑

Actin ↓

Cadherin ↓
Actin ↑

Cortical actin

Cadherin

Figure 4.6: Contribution of cellular machineries to interfacial tension. (A) Lo-
calization of cadherin and cortical actin. (B) Relationship between the interfacial
tension and the localization level of these molecules.

see these relationships, we define the interfacial tension of neighboring cells [97],
Γσσ′ , as follows,

Γσσ′ ≡ δHCPM

δLσσ′
,

= Jττ ′ + 2λL(Lσ − L0) + 2λL(Lσ′ − L0), (4.6)

where Lσσ′ is the length (area in the three-dimensions) of the interface between
the cell σ and σ′. Note that the defined interfacial tension, Γ, is different from the
tissue surface tension, γ, defined by Equation (4.3). Considering the contributions
of cadherin and actin to the interfacial interaction, Jσσ′ could be resolved to two
terms as, Jσσ′ = J cad

σσ′ + J act
σσ′ . J cad

σσ′ is related to the contribution of cadherin and
J act

σσ′ to actin at the interface. From the previous discussion (Fig. 4.6), it is usually
assumed that J cad

σσ′ and J act
σσ′ take negative and positive values, respectively. Using

these notations, we can decompose the contributions of the two molecules to the
interfacial tension as,

Γσσ′ = Γcad
σσ′ + Γact

σσ′ , (4.7)

where Γcad
σσ′ = J cad

σσ′ and Γact
σσ′ = J act

σσ′ + 2λL(Lσ − L0) + 2λL(Lσ′ − L0). Γcad
σσ′ and

Γact
σσ′ is a contribution of cadherin and actin, respectively. Thus, the localization of

cadherin and actin contributes to the strength of interfacial tension. The former
decreases Γcad

σσ′ , and the latter increases Γact
σσ′ , respectively.

Relative contributions to the interfacial tension could be deduced by measur-
ing the mechanical properties of cells: cell-cell adhesion and cell-cortical tension.
The former is related to the first term of Equation (4.7), and the latter to the sec-
ond term of (4.7). Various assays have been developed to measure these cellular
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properties [138]. Two techniques to measure cell-cell adhesion and cell-cortical
tension are shown in Figure 4.7. One is the micropipette aspiration [28, 65] (Fig.
4.7A), and the other is atomic force microscope [13,63] (Fig. 4.7B). To detect the
cell-cell adhesion force by micropipette (the upper of Fig. 4.7A), two cells trapped
by micropipettes are attached together. The pipettes are then pulled apart until the
cells are separated. The adhesion force is measured by the pressure in the mi-
cropipettes. In the case of atomic force microscope (the bottom of Fig. 4.7A), one
cell is attached to the cantilever while the other is attached to the substrate. The
force is deduced by measuring the bending deflection of the cantilever when two
adhering cells are separated. To estimate the cell-cortical tension by micropipette
aspiration technique (the upper of Fig. 4.7B), the tension is calculated from the
deformation of cell surface to the aspiration. In the case of the atomic force mi-
croscope (the bottom of Fig. 4.7B), the tension is estimated from the deformation
of a cell against the indentation by a bead attached in the cantilever.

cell-cell adhesion cell-cortical tension
Dual micropipette aspiration

Atomic force microscope
cantilever

micropipette aspiration

Atomic force microscope

bead
cell

A B

Figure 4.7: Methods for measuring the mechanical properties of single cells. Im-
ages are from [28]

Recently, Krieg and coworkers studied relative contribution of cell-cell ad-
hesion and cell-cortical tension to the cell sorting behavior of zebrafish embry-
onic cells [97]. They calculated the adhesion force and the cell-cortical tension
of different pairs of cell types by the atomic force microscope technique. Com-
paring the adhesion force and cell-cortical tension to the sorting configurations,
they concluded that the cell-cortical tension mainly contributes to the interfacial
tension and determines the sorting configurations in zebrafish embryonic cells.
There are several other studies to estimate relative intensities of the parameters
of the CPM and Vertex models from experimental observations in various sit-
uations such as cell patterning in the Drosophila retina [82], epithelial packing
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geometries of Drosophila cells [37], and the tissue elongation in the Drosophila
embryo [152]. To understand developmental processes, it is necessary to con-
nect the molecular-level observations, such as expression-level and localization of
proteins, with morphogenetic events, such as cell configuration and tissue defor-
mation. In this sense, these attempts are important to link different hierarchical
levels and obtain further understanding of developmental processes.

4.1.3 Importance of the study of biological dynamics
Until now, most studies of the CPM have argued only on the stationary patterns
of interest. In contrast, the kinetics of the model have not been discussed so
much. Although several works have treated dynamical properties of the model
[114, 126, 135], understanding of the model kinetics remains rather poor.

Dynamics in cells and tissues can be observed in many different situations
such as transport of molecules, cellular movement, and blood flow. Not only
observing stationary states and patterns, but also the time-dependent dynamics
give us meaningful information of the system properties. One of such examples is
seen in transport of a molecule within a neuron (Fig. 4.8). Neurons typically show
polarized morphology with a long axon. For cellular functions, it is necessary for
neurons to transport various molecules from cell body toward axon terminals or
synapses. If the transport of a molecule is conducted thoroughly by diffusive
process, the molecule shows random displacements as shown Figure 4.8A. For
such a diffusive molecule, the typical time it takes to diffuse a distance L is given
by t ∼ L2/D, where D is the diffusion constant of the molecule. This indicates
that the time scale grows quadratically with distance. On the other hand, if the
molecule is actively transported in a directed fashion by molecular motors, the
molecule moves with constant velocity V . In this case the time to travel a distance
L grows linearly with length, t ∼ L/V . We plot the time of transport as a function
of the distance for these two cases in Figure 4.8B. The graph has a different slope
(quadratic or linear), depending on the transport mechanism. If we assume the
axon length of a neuron as L = 10 cm and the diffusion constant of a molecule as
D = 100 µm2/s, diffusive transport takes the time of 108 s, amounting to the order
of several years. This is too long for usual cellular functions. In the case of active
transport, if we assume the velocity as V = 1 µm/s, it takes only about 105 s. This
corresponds to the scale of a day, which is an acceptable time scale compared to
the diffusive transport.

The above example highlights that different underlying mechanisms leads to
a huge difference in the kinetics, which could be a crucial for the functionality of
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Figure 4.8: Transport of a molecule within a neuron. (A) Illustration of passive
and active transport. Image is reproduced from [144]. (B) Time of transport as
a function of length for two transport mechanisms. The diffusion constant is set
as D = 100 µm2/s, which is a characteristic diffusion coefficient for a globular
protein in water at room temperature. The velocity of molecular motors is set as
V = 1 µm/s as an approximate speed of a kinesin moving on a microtubule. We
have used the approximated values of D and V listed in [144].

cells and tissues. Similarly, to ask the kinetics of cell sorting is important since
the time scale of this process should have a large impact on the time schedule of
developmental processes. In this chapter, we deal with this question via investigat-
ing the sorting kinetics of the CPM and comparing the results with experimental
observations. As a preparation for the study, we review the theory of the phase
separation kinetics in the following section. Also in the case of phase separa-
tion, it will be shown that several underlying processes leads to clearly different
behaviors in the kinetics.

4.2 Review of phase separation kinetics
As we have seen, the stationary configuration of cell sorting is well understood
as a minimization of the surface energy which arises from the difference of the
surface tension between the cell types. This is similar to the phase separation pro-
cess. Typically, the phase separation of a system is induced by rapid temperature
quench (cooling of the system) over the critical temperature. After temperature
quench, the homogeneous phase of the system, such as binary alloys and poly-
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mer blends, begins to separate into two different phases. We show an example of
phase ordering process in Figure 4.9. The phase ordering usually begins with the
formation of small domains, and then the length scale of the phase ordering grows
with time. In the past decades, the phase separation kinetics has received much
attentions, and its understanding has been developed through theoretical, numeri-
cal and experimental investigations [16,18,47,66]. Here we give a brief review of
the theory for the phase-ordering kinetics. For more complete description of the
theory, see the above references.

Figure 4.9: Phase separation process of sulfur hexafluoride (SF6). It separates into
gas and liquid phases after temperature quench. Images are reproduced from [14].
The phase ordering proceeds from left to right.

4.2.1 Dynamical scaling hypothesis
An important theoretical prediction in the growth process of phase ordering is
that the domain growth process obeys the dynamical scaling, that is, the growth is
determined only by a single length scale of the system, L(t). One commonly used
measure of the domain structure is the spatial correlation function of the field φ,

C(r, t) = 〈φ(r0 + r)φ(r0)〉, (4.8)

where φ is a physical quantity characterizing the two phases (such as a local mag-
netization, or relative density of some materials). On the basis of the standard
dynamical scaling, the correlation function is expected to be scaled as,

C(r, t) ≈ F (r/L(t)), (4.9)

for large L(t), where F (x) is a unique scaling function. The dynamical scaling
has been proven in some simple models [17, 31]. Although the scaling has not
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System Order Hydrodynamics Growth exponent
parameter (L(t) ∼ tn)

model A not conserved non 1
2

model B conserved non 1
3

1
3

a
(d = 3) 1

2

a
(d = 2)

model H conserved exist 1b —

2
3

c 2
3

c

(a) diffusive, (b) viscous hydrodynamic, (c) inertial hydrodynamic regime

Table 4.1: Domain growth laws of phase separation process

been confirmed for many cases, the evidence has been accumulated from numeri-
cal simulations [4,26,71,100] and experiments [61,62,96]. This scaling indicates
that the domain structure of the system is characterized only by the single charac-
teristic length L(t), and statistical property of the system is independent of time,
just by the rescaling of the length by L(t).

An important consequence of the scaling is that the growth law of phase or-
dering obeys an algebraic growth law,

L(t) ∝ tn, (4.10)

where n is the growth exponent, which value depends on several characteristics of
the system such as the conservation laws and hydrodynamic effects. Before giving
the explanations for each system, we summarize the growth laws of model A,
model B, and model H (according to the classification of Hohenberg and Halperin
[66]) in Table 4.1.

4.2.2 Non-conserved fields
We use a continuous description of an order-parameter field φ(r, t). Landau free-
energy functional to describe the ordered phase is given as,

F [φ] =

∫
dr

[
1

2
|∇φ|2 + V (φ)

]
, (4.11)
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Figure 4.10: Ginzburg-Landau potential V (φ).

where the potential V (φ) has a double-well structure. For simplicity, we adopt a
symmetric function V (φ) = (1−φ2)2, where the energy minimum of the potential
is taken at φ± 1 (V (±1) = 0) (Fig. 4.10).

When the order parameter is not conserved ( d
dt

∫
drφ 6= 0), the time evolution

of φ obeys model-A dynamics (in the classification of Hohenberg and Halperin
[66]),

∂φ

∂t
= −∂F

∂φ
,

= ∇2φ− V ′(φ), (4.12)

where V (φ)′ ≡ dV/dφ. This equation is called the time-dependent Ginzburg-
Landau (TDGL) equation, or the Allen-Cahn equation. This equation corresponds
to a coarse-grained description of the Ising model.

We begin with the introduction of the idea of surface tension. If the system is
in a stationary state with a flat domain wall, equation (4.12) is written as,

d2φ

dz2
= V ′(φ) (4.13)

with φ(±∞) = ±1 (see Fig. 4.11). Here the coordinate z is taken normal to the
wall and the position of the wall (defined by φ = 0) is set to be at z = 0. By
integrating the equation once and imposing the boundary conditions, the equation
gives rise to (dφ/dz)2 = 2V (φ). This result can be used in equation 4.11 to give
the energy per unit area of the wall, that is the surface tension, as

σ =

∫ ∞

−∞
dz

(
dφ

dz

)2

=

∫ 1

−1

dφ [2V (φ)]1/2 . (4.14)
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Figure 4.11: Spatial profile of the order parameter with a domain wall in one
dimension.

This shows that the excess energy is localized in the domain walls. In the phase
separation process, the driving force for the domain growth is the wall curvature
since the energy of the system can only decrease through a reduction in the total
wall area after the development of the domain walls.

The existence of surface tension implies that a force proportional to mean
curvature acts at each point on the wall. Consider a spherical domain of radius
R in three dimensions. The work done by the force f in decreasing the radius is
4πR2fdR. This balances the decrease in surface energy 8πσRdR, which gives
f = 2σ/R. Then the velocity of domain movement is given by

η
dR

dt
= −2σ

R
, (4.15)

where η is the friction constant. This indicates that the characteristic domain size
of the system L(t) grows with L(t) ∝ t1/2 in the case of model A dynamics.

Dimensional analysis for growth law

We can derive the growth law with exponent 1/2 through dimensional argument
of the Allen-Cahn equation (4.12). By paying our attention to the movement of
domain walls, the equation is transformed to,

−v∂φ
∂n

= (∇ · n)
∂φ

∂n
+
∂2φ

∂n2
− V ′, (4.16)

where a new coordinate n is taken normal to the wall, n is a unit vector along this
direction and v is the velocity of the domain wall. If the the domain boundary is
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sufficiently sharp compared to the local curvature of the wall, the last two terms
are approximately cancelled out by equation 4.13. Then we get,

v + ∇ · n = 0. (4.17)

If there is a single characteristic scale L, then the wall velocity is estimated as
v ∼ L/t. The second term ∇ · n corresponds to the wall curvature κ, that is
approximated as κ ∼ 1/L. Balancing these two terms, the growth law L(t) ∼ t1/2

is obtained.

4.2.3 Conserved fields
Next we introduce the case of conserved order parameter ( d

dt

∫
drφ = 0). The

conservation law means that materials or chemicals of the fields is neither gen-
erated nor degraded along all the time. The conservation of the order parameter
leads to a different dynamical equation of the field φ(r, t),

∂φ

∂t
= ∇2µ, (4.18)

where µ (µ ≡ δF/δφ) is the chemical potential and F is the free-energy functional
which is the same as defined in the previous section. This is called model-B
according to [66], or Cahn-Hilliard equation. This equation is a model of binary
alloys and microscopically corresponds to Kawasaki-exchange dynamics of ising
spins.

The domain growth mechanism is different from the non-conserved case, since
the field cannot move independently. The dominant mechanism is evaporation-
concentration process, that is the transport of the order parameter from domains
with high curvature to those with low curvature (Fig. 4.12).

The chemical potential µ is written as µ = −∇2φ+ V ′(φ). As in the calcula-
tion of the Allen-Cahn equation, we consider the movement of domain walls. The
equation is transformed to,

µ = −κ∂φ
∂n

− ∂2φ

∂n2
+ V ′. (4.19)

A new coordinate n is taken normal to the wall. κ = ∇ · n is the curvature of the
wall. By multiplying both sides of the equation by (∂φ/∂n) and integrating over
n through the wall, we get,

2µ+ σκ =

∫
∂

∂n

[
−

(
∂φ

∂n

)2

+ V

]
dn. (4.20)
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Figure 4.12: Evaporation-condensation process. (A) Schematic representation of
temporal change of domains. (B) Profile of the order parameter.

By assuming that the the domain boundary is sufficiently sharp, the equation is
reduced to,

µ = −σκ
2
. (4.21)

This gives the chemical potential near the domain wall with curvature κ.
Then the growth law can be intuitively derived as the non-conserved case. If

we assume that there is only one length scale L(t) in the system, both the average
distance between domain walls and the curvature of the walls are determined by
this scale. From (4.21), the chemical potential is µ ∼ σ/L. Thus the right-hand
of (4.18) is ∇2µ ∼ σ/L3, while the left-hand side is ∂φ/∂t = −v∂φ/∂n ∼ L̇/L.
This gives L/t ∼ σ/L2, and then we obtain the growth law of model B as follows,

L(t) ∼ (σt)1/3. (4.22)

The growth law of 1/3 is considered to be true independently of the ratios of two
phases (

∫
drφ/

∫
dr) and spatial dimensions, with the exception of the logarithmic

corrections for the two-dimensional case [25, 72, 158].
In the limit that the one phase occupies a infinitesimal volume fraction c, t1/3

growth can be demonstrated more convincingly by the Lifshitz-Slyozov theory
[105] for the dimensions d > 2, while it is also extended for the two-dimensional
case [157, 199].

4.2.4 Binary liquids
For the phase separation of binary liquids, we should take account of hydrody-
namic effects. The principal new ingredient is the advection of the order param-
eter by the fluid. The incorporation of advection terms into equation (4.18) leads
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to
∂φ

∂t
+ v · ∇φ = λ∇2µ, (4.23)

where v is the local fluid velocity, µ is the chemical potential and λ is a kinetic
coefficient. The velocity v obeys the Navier-Stokes equation of incompressible
fluid as follows,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= η∇2v −∇p− φ∇µ, (4.24)

where p is the pressure and η is the viscosity of the fluid. The density ρ is constant
because of incompressibility. The final term in equation (4.24) arises from the
free-energy change per unit volume that accompanies the transport of the fluid.
The gradients of chemical potential ∇µ act as a driving force on the fluid. The
temporal evolution of the conserved order parameter coupled with hydrodynamic
effect (4.23), (4.24) is called model-H dynamics [66].

Our aim is to obtain the growth law of this system. To do this, we assume
the left-hand side of equation (4.24) to be zero using the Stokes-approximation,
which is the over-damped limit of the system. The resulting linear equation for v
is written in Fourier space as follows,

v̂(k) =
1

ηk2
[−ikp̂(k) + F̂(k)], (4.25)

where F(r) = −φ∇µ, and f̂ means the Fourier transformation of f . The pressure
p̂(k) is determined by the incompressibility condition k · v̂(k) = 0. Substituting
the obtained expression of p̂(k) into equation (4.25), we obtain,

v̂α(k) =
1

ηk2

(
δαβ − kαkβ

k2

)
F̂β(k). (4.26)

The repeated indices mean summation from 1 to d (d is the spatial dimensions).
Then in the real space (for d = 3), the fluid velocity is expressed as,

vα(r) =

∫
dr′[Tαβ(r − r′)∂βφ(r′)]µ(r′), (4.27)

Tαβ(r) =
1

8πηr

(
δαβ +

rαrβ

r2

)
, (4.28)

where T (r) is the Oseen tensor. Substituting this result into equation (4.23), the
time evolution of order parameter is given by,

∂φ

∂t
= λ∇2µ−

∫
dr′[∇φ(r) · T (r − r′) · ∇′φ(r′)]µ(r′). (4.29)

73



In order to estimate the sizes of the two terms on the right-hand side of the
equation, we use dimensional arguments as before. Using µ ∼ σ/L, the first dif-
fusive term is assumed as λ∇2µ ∼ λσ/L3. From T (r) ∼ 1/ηL, ∇φ ∼ 1/L and
µ ∼ σ/L over the integral interval

∫
d3r ∼ L3, the second advective term has

the dimensions of σ/ηL. The advective transport of the order parameter there-
fore dominates over diffusion under the condition σ/ηL � λσ/L3, that is, if the
characteristic length scale satisfies L � (λη)1/2. Using v ∼ L/t and the same
dimensional argument to the expression of the velocity (4.27), the growth law of
the characteristic domain size in this regime is given as,

L(t) ∼ σt

η
. (4.30)

In contrast, when L� (λη)1/2, the diffusive effect dominates the advective trans-
port. In this case, by equating the first term of the right-hand side of equation
(4.29) with the left-hand side of the equation, we obtain,

L(t) ∼ (λσt)
1
3 . (4.31)

Thus far, we have ignored the inertial terms on the left-hand side of equation
(4.24). Under what conditions is it justified to ignore these terms? Using the
dimensional argument again, we see that in the stage L � (λη)1/2, the inertial
term has the dimensions of ρL/t2 ∼ ρσ2/η2L from equation (4.30), while the
terms of the right-hand side give the dimensions of σ/L2. Comparing these terms,
we can conclude that the inertial terms are negligible when σ/L2 � ρσ2/η2L,
that is L � η2/ρσ. At sufficiently late time, when this inequality is violated, the
inertial terms will therefore be important.

In the case that the inertial effect is dominant over the viscous effect, the in-
ertial terms and the driving terms of equation (4.24) should balance; the former
scales as ρ(v · ∇)v ∼ ρL/t2 and the latter as φ∇µ ∼ σ/L2. The growth law L(t)
is therefore obtained as

L(t) ∼
(
σt2

ρ

) 1
3

. (4.32)

To summarize, there are in principle three growth regimes for phase separation
of binary liquids in three dimensions, with the growth laws,

L(t) ∼ tn (4.33)

n =


1
3
, L� (λη)

1
2 , (diffusive),

1 (λη)
1
2 � L� η2

ρσ
, (viscous hydrodynamic),

2
3
, L� η2

ρσ
, (inertial hydrodynamic).

(4.34)
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These growth laws have been observed by numerical simulations [4, 91, 92, 147,
168, 189]. The former two regimes have been also confirmed by experiments of
binary liquids [27, 196].

The above discussions apply for three-dimensions. In the case of two-dimensions,
the exponents are given by,

n =

{
1
2

L� η2

ρσ
, (diffusive),

2
3

L� η2

ρσ
, (inertial hydrodynamic).

(4.35)

The diffusive regime has the exponent of 1/2, and it is connected to the inertial
regime of 2/3 skipping the viscous regime [11, 47, 48, 120] (the reason of the ab-
sence is explained later). Both the growth laws have been observed by numerical
simulations [4, 38].

We have derived the growth laws of binary liquids via dimensional analysis of
model-H dynamics. In the above derivation, the physical situations of the system
are rather unclear since we only considered the relative contributions of several
terms of (4.23) and (4.24) for the domain growth. We rederive the exponents of
diffusive and viscous hydrodynamic regime more intuitively, and comment on the
case where the fractions of two fluids is not equal.

Phenomenological argument for the diffusive regime

In the diffusive regime, where viscous or inertial hydrodynamic effects have only
minor effects, the growth law of the domain size is 1/3 in three dimensions and
1/2 in two dimensions. Although the exponent in three dimensions is same as
that of model-B dynamics, the dominant mechanism in the diffusive regime is
different. It is diffusion and coalescence of domains rather than the continuous
transport (evaporation-condensation) of the order parameter (see Fig. 4.13, and
also Fig. 4.12) [143, 169, 197]. To derive these exponents, we follow a similar
argument as in [169].

We deal with a system of two immiscible fluids, where domains of one ma-
terial float randomly in the other. The density of domains of radius a per unit
volume is denoted as n(r; a). Consider a domain of radius a1 coalesces with do-
mains of radius a2. The coordinate origin is fixed at the center of the domain.
The number of the collisions per unit time, I(a1, a2), follows from an integral of
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domain flux over the surface at r = a1 + a2,

I(a1, a2) = 4π(a1 + a2)
2 (D(a1) +D(a2))

dn(r; a2)

dr

∣∣∣∣
r=a1+a2

, (4.36)

where D(a) is a diffusion coefficient of the domain of radius a. We assume that
domains that just touch merge quickly, much faster than diffusion.

If the scaling hypothesis is valid, the time dependence of average density of
characteristic radius size a follows,

dn

dt
= −I(a, a)n = −32πa2D

dn

dr
n. (4.37)

This indicates for the dimensions of d,

dn

dt
∝ −ad−1D

dn

dr
n. (4.38)

By assuming dn/dr as dn/dr ∼ n/a and the diffusion constant D as D ∝ a−γ ,
the time dependence of the number density becomes,

d

dt

(
1

n

)
∝ ad−γ−2. (4.39)

The fraction of the minority phase c is written as c = nvda
d (0 < c < 0.5), where

vd denotes the sphere volume of unit radius for dimensions d. Using this relation,
we obtain the growth law as follows,

a(t) ∼ t
1

γ+2 . (4.40)

In the case of the spherical drop of a fluid in three dimensions, the diffusion coeffi-
cient isD(a) ∼ 1/ηa from the Einstein-Stokes relation, which leads to the growth
exponent of 1/3. In two dimensions, the diffusion coefficient is D(a) ∼ 1/η
[15, 93], which gives the growth exponent of 1/2.

a1

a2
a3 (>a1, a2)

Figure 4.13: Domain-coalescence process.
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Phenomenological argument for the viscous hydrodynamic regime

The linear growth law (4.30) was first derived by Siggia [169]. In the case the
mixing ratio of two fluids are around 0.5, the successive coalescence of domains
leads to percolating or continuous domains. For the ease of discussion, we assume
continuous domains as a long tube of fluid of radius a in a medium of uniform
pressure. If the long tube is under radial fluctuations with wave length l (Fig.
4.14), The difference of local curvature leads to a pressure difference along the
tube. The pressure difference is roughly σ/R from the Young-Laplace relation,
which leads to the pressure gradient per unit length as ∇p ∼ σ/al. This pressure
gradient along the tube axis induces the flow. If the produced fluid flow follows
the equation of Hagen-Poiseuille flow, the average velocity of the fluid obeys v ∼
a2∇p/η ∼ σa/ηl. This leads to L(t) ∼ σt/η via the dimensional argument.

In this argument, the point is that the tube breaks into small domains since
the tube structure of fluids in three dimensions is unstable to long-wavelength
fluctuations for the wave length larger than 2πa [153, 154, 184]. In the case of
two dimensions, the long tube structure corresponding to stripe-like pattern is
linearly stable against infinitesimal perturbation [120]. Because of this stability,
the hydrodynamic flow is not induced. Thus, there is no viscous hydrodynamic
regime [11].

Growth law for the mixtures of unequal fractions

The viscous and inertial hydrodynamic regime is considered to be dominant when
the mixing ratios of two fluids are almost same and percolating clusters exist. For
two immiscible fluids with fractions far from equal, such hydrodynamic effect
also appears at the intermediate time scale. However, at sufficiently late stage,
the evapolation-condensation mechanism (Fig. 4.12) is believed to be dominant.
Thus the growth law of the late stage is t1/3 for the unequal mixtures. This has

a

l

Figure 4.14: Schematic representation of deformation of a tube.
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been observed in numerical simulations [26,108,133] and in experiments of binary
liquids [143, 197].
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4.3 Segregation kinetics of cell sorting
We have seen that the time dependence of the characteristic domain size obeys
a power-law growth (Eq. 4.10), and that the transport mechanisms of the order
parameter lead to a clear difference in the macroscopic behavior of the system,
the growth exponent of the power law. While the diffusive transport results in the
exponent n = 1/3 (model B), the hydrodynamic flow leads to n = 1 in three
dimensions (model H). Thus the hydrodynamics contribute to much faster growth
of domains.

To understand the morphogenetic event, connections between tissue and molec-
ular/cellular level are important. The segregation kinetics of cell sorting is an ex-
ample bridging these scales. Similarly to the phase separation process, the study
of sorting kinetics will provide understanding of underlying cellular behaviors.

Experimental observations

How does the kinetics of cell sorting process behave? Beysens et al. examined
the temporal behavior of the sorting of chick epithelial and retinal cells and its
domain-growth kinetics [14]. The result is shown in Figure 4.15. As shown in
Figure 4.15A, the sorting process shows temporal patterns similar to the phase
separation kinetics (Fig. 4.9), where initially small cellular domains are formed
and the size of domains grow with time. It was reported that the characteristic
domain size grows linearly with time as shown Figure 4.15B [14]. Beysens and
coworkers argued that the cellular aggregates behave like immiscible fluids, im-
plying the flow-like movements of cells.

A similar argument comes from the observations of cellular aggregates of hy-
dra [155,156]. Rieu and Sawada studied the relaxation of elongated aggregates in
a two dimensional geometry, toward a circular shape [156]. They found that the
relaxation time is proportional to the radius of the aggregate, which is expected
from hydrodynamic laws [112]. They also studied the profiles of cellular motions
in aggregates, where correlated motions of neighboring cells are observed along
with the shape relaxation of aggregates (shown in Fig.4.16). They also studied
cellular motions in aggregates during cell sorting [155]. The trajectories of cell
motions exhibited correlated flow of neighboring cells of the same type.

These results indicate that cellular aggregates behave like fluid, and hydrody-
namic effects come from the correlated motions of neighboring cells.
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Figure 4.15: Sorting process of chick embryonic cells in three dimensions [14].
(A) Snapshot of sorting process, (B) Growth kinetics.
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Figure 4.16: Shape relaxation of hydra endodermal aggregates. (A) Snapshots of
shape relaxation. (B) Cell trajectories (from 0 to 6h) and (C) displacements (from
0 to 3h) in aggregate during the relaxation. Scale bar: 100µm. The images are
reproduced from [156].

Numerical simulations

While most studies of the CPM are concerned primarily with the stationary cel-
lular geometries and patterns, several studies reported the kinetics of cell sorting
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process of the CPM [53, 54, 125]. The simulation result of the two-dimensional
CPM carried out in [54] is shown in Figure 4.17. Figure 4.17A shows snapshots
of cellular geometries. The size of cellular domains in the sorting process of the
CPM grows with time similarly to that in the sorting experiment (Fig. 4.15) and
phase separation kinetics of fluid (Fig. 4.9). However, in contrast to the exper-
iments, the kinetics of the CPM indicated the logarithmic time dependence as
shown Figure 4.17B, which is much slower than the observation. Note that the
decrease in the domain length in Figure 4.17B indicates the logarithmic growth of
domain size since the relative density of domain boundary length has a dimension
of R−1.
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Figure 4.17: Cell sorting behavior in the CPM. (A) Snapshot, and (B) growth
kinetics of sorting process. (A) and (B) is reproduced from [53] and [54] respec-
tively.

The numerical result of the CPM means that the sorting process of cellular
aggregates takes much longer time to obtain the final stationary configuration of
cells. The experimental results do not show such a slow kinetics. Indeed the sort-
ing proceeds with much reasonable time-scale. This implicates that other mecha-
nisms lacking in the CPM are necessary to speed up the sorting process.

As such a mechanism hastening the sorting as seen the experiments, recently,
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Belmonte et al. performed a particle based simulation of cell sorting [12]. In the
model, each cell is represented by a particle, and particles within the interaction
radius interact each other. Such models are sometimes called as self-propelled
particle system. While cells in the CPM move randomly, particles in this model
have a polarity and move with a constant velocity if there is neither other particle
nor fluctuation. With this model, they studied the relaxation process of the cell
sorting. They showed that the growth law of domain size is not logarithmic but
algebraic (power-law) with the exponent n ' 0.18. The authors argued that the
difference in the growth laws between the CPM (logarithmic) and their particle-
based model (algebraic) is a result of the active cellular movement they introduced
in the model. However, the obtained exponent is still much slower than the exper-
imental result, and even slower than the phase separation of the model B, where
dynamics is driven only by diffusion.

4.4 Re-investigation of the kinetics of the Cellular
Potts Model

4.4.1 Sorting of two cell types with the mixture ratio 50 : 50

To resolve the discrepancy between the experiments and numerical results, we
first re-analyzed the CPM. In the previous studies, the numerical calculations of
the CPM were performed with about 1000 cells [54, 125]. This system size for
the simulation might have been very small to determine the growth law precisely.
To clarify this possibility, we first re-analyzed the kinetics of CPM by using a
sufficiently large system size. We investigated the sorting of two cell types with
the Hamiltonian, which is given by (4.1; here, we denote the type of σ-th cell
as τσ with τσ = +1 or −1. We used a square lattice in two dimensions for the
numerical simulation with a periodic boundary condition. In our simulation, all
sites of the lattice were filled by cells; thus, the number of sites N is set as N =
MV0, in which M represents the number of cells. For ease of calculations, the
adhesive strength of homotypic cells was assumed to be the same for both types,
that is, J++ = J−−. The adhesive strength of heterotypic cells was assumed to be
symmetric, that is, J+− = J−+, which is normally true. For ease of comparing
the results of the different parameter values, we defined the rescaled parameters;
J̃ττ ′ = Jττ ′L0, λ̃V = λV V

2
0 , and λ̃L = λLL

2
0. The rescaled parameters were

set as λ̃V = 1250, λ̃L = 600. The adhesive interactions were set as J̃++ =
J̃−− = −300 and J̃+− = J̃−+ = −100, where the interactions satisfy the relation,
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(2J̃+− − J̃++ − J̃−−) > 0, to favor cell sorting. The effective temperature of the
system was set as β = 0.1. We denoted the degree of the mixture ratios as ψ0,
where

ψ0 =
M+ −M−

M
. (4.41)

M+ and M− are the number of type +1 and −1 cells, respectively. First, we
investigated the case of ψ0 = 0, that is, the fraction of the two cell types was set at
50 : 50. Figure 4.18 shows the typical evolution of the sorting process. Initially,
two types of cells are distributed randomly (Fig. 4.18 A). Then the aggregates of
each type begin to form (Fig. 4.18 B), and its domain size (width) increase with
time (Fig. 4.18 C, D). Finally, the cells are completely segregated to layers of
homogeneous cells (Fig. 4.18 E).

Domain growth of the CPM obeys the algebraic growth law

The domain size of each cell type continues to increase until the domain grows up
to a size comparable to the system size. We quantified the kinetics of this domain
growth process in a large system size. Here, the optimal volume and peripheral
length of cells were set at V0 = 9 and L0 = 12. To characterize the domain size,
one typical length scale is the perimeter density of domains, γ, which is defined
as,

γ ≡ (1 − ψ0)
−1/2 A

N
, A =

∑
〈ii′〉

(1 − δττ ′). (4.42)

A refers to the number of heterogeneous interactions, andN is the number of sites
in the system. The prefactor is added for normalization. The summation is over
the neighboring square lattice sites. Figure 4.19 shows the time dependence of γ
from random initial conditions. At the early stage (MCS < 104), γ(t) seems to
decrease logarithmically with time (Fig. 4.19A). Such behavior of the peripheral
length is consistent with the previously reported results (Fig. 4.17) [54, 125].
However, when we observed the dynamics in a long time scale, the temporal
behavior did not obey the logarithmic decay. Instead, γ exhibited an algebraic
(power-law) as, γ(t) ∼ t−n with n = 0.31± 0.01 (Fig. 4.19B). The growth expo-
nent of γ is obtained from the least-square fit to the data within the time interval
1 × 105 < MCS < 2 × 106.

Another indicator of the domain growth is the spatial correlation function of
cell types, C(r, t). The correlation function is defined as,

C(r, t) = C(x, y, t) = 〈τ(r0, t)τ(r0 + r, t)〉r0 − 〈τ(r0, t)〉2r0
. (4.43)
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Figure 4.18: Cell sorting process in the CPM. Gray and while cells represent the
cell types of τ = +1 and −1. The number of cells M was set at M = 322. The
optimal volume and peripheral length of cells were set as V0 = 25 and L0 = 20,
respectively. Configurations were shown on several occasions (the number of
Monte Carlo Steps; MCS) (A) MCS = 0, (B) MCS = 5×103, (C) MCS = 5×104,
(D) MCS = 4 × 105, and (E) MCS = 4 × 107. The simulations were performed
under periodic boundary conditions.
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Figure 4.19: Time dependence of perimeter density of domains, γ(t). The data
are shown on (A) semi-log and (B) log-log coordinates. The number of cells
is M = 2882. The data were averaged over 24 independent runs. Error bars
represent the SD of the trials. In the normal scale of γ, the error bars are smaller
than the symbol size. The solid lines with the slope n = −0.32 are for visual aid.

The brackets denote an average of all sites. For numerical calculations, we approx-
imated C(r, t) as C(

√
2r, t) ' {C(r, r, t)+C(r,−r, t)}/2 for ease of calculation.

Figure 4.20 shows the C(r, t) of the simulation at several time points. The cor-
relation function exhibits oscillation at about zero, reflecting alternating domain
layers (Fig. 4.18). Corresponding to the domain growth with time, the correlation
length or the wave length of the oscillation” increases. We defined the charac-
teristic domain size of the system, R(t), by the first point where C(r, t) crossed
the zero line (see Fig. 4.20), as is commonly adopted in the analysis of phase
separation kinetics [7, 72, 159]. The time dependence of R(t) is shown in Figure
4.21. Although we could not discriminate whether R(t) obeys the logarithmic or
algebraic growth at the early stage (MCS < 104), we did observe a linear relation
between lnR(t) and ln t at late stage (MCS > 4 × 104), implying the algebraic
growth of R(t) with n = 0.33± 0.02. The exponent was obtained from the fitting
within the time interval 1 × 105 < MCS < 2 × 106.

Both indicators of domain size, R(t) and γ(t) (γ−1 to be exact), exhibited al-
gebraic growth except in the early stage (MCS . 104). This suggests that the
kinetics of the domain growth in the CPM follow not the logarithmic but an alge-
braic growth law for a sufficiently large system size.
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Growth exponent is compatible with the model-B dynamics

The time dependence of domain size exhibited the power law behavior with the
exponent n ∼ 0.31 for γ(t) and n ∼ 0.33 forR(t). These are close to the exponent
of model B, n = 1/3. To confirm the exponent of the CPM, we considered the
asymptotic behavior of domain growth. The slope of the log-log plot of R(t) or
γ(t) is interpreted as an effective exponent neff(t) at time t [24, 72, 189]. neff is
written as,

neff(t) ≡
d[lnR(t)]

d[ln t]
. (4.44)

For numerical simulation, we calculated the effective exponent using the approx-
imation neff(t) ' ln(R(ct)/R(t))

ln(c)
. c is set at c = 5. Figure 4.22 shows neff(t) as a

function of 1/R(t) forM = 1282, 2162, and 2882. For each system size, neff(t) in-
creases monotonically asR(t) increases at early stage, and after that, stays around
1/3 as 1/R(t) approaches 0. For the behavior of neff(t) at late stage, the coinci-
dence of neff(t) to 1/3 is improved as the system size is increased. This result is
consistent with the expectation of n = 1/3.

Correlation function of cell types exhibits the dynamical scaling behavior

As described in the previous section, an important theoretical prediction in the
phase separation kinetics is that the domain growth process obeys the dynamical
scaling. From the scaling hypothesis, the correlation function is expected to be
scaled as the equation (4.9). To check if the scaling is also valid for the CPM, the
C(r, t) of Figure 4.20 is re-plotted, here as a function of r/R(t) (shown in Figure
4.23). The data for different time points lie on the same curve. This shows that
the system rescaled by the length R(t) exhibits the same statistical property for
the spatial correlation of cell types. Thus, the scaling holds for the sorting process
of the CPM as well.

Taken together, we conclude that the kinetics of the domain growth in the CPM
follows the algebraic growth law with n ∼ 1/3 in the case of ψ0 = 0. This expo-
nent is consistent with the model-B dynamics. In addition, our results indicate a
faster relaxation than the results of previous works on the CPM [54, 125].
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4.4.2 Sorting of two cell types with uneven ratios
Uneven mixtures show different growth kinetics

We next investigate the sorting process in a case where the mixture ratio of two
cell types is not 50 : 50, that is ψ0 6= 0. Since {Jij} is symmetric, we only
consider the case ψ0 ≥ 0; the cell of τ = +1 is in the majority of the system.
Similarly with the even mixtures, we calculated γ(t) and R(t). Figure 4.24 shows
the kinetics of γ(t) for several different ratios. γ(t) does not show logarithmic
time dependence (in Figure 4.24A). Instead, as shown in Figure 4.24B, γ(t) seems
to exhibit power-law decrease at the late stage for the mixtures ψ0 ≥ 0.4. For the
mixtures ψ0 = 0.06 and 0.1, which are close to ψ0 = 0.0, γ(t) shows a power-
law with an exponent close to that of ψ0 = 0 at the intermediate stage (104 MCS
< 105). At the late stage, γ(t) shows a different time dependence from that of
ψ0 = 0, with a slower slope.

The results of R(t) for uneven mixtures are shown in Figure 4.25. The time
dependence ofR(t) also seems different from the logarithmic growth for ψ0 ≥ 0.4
(4.25A). For ψ0 = 0.1 and 0.2, althoughR(t) seems to exhibit logarithmic growth
in the late stage, this is probably a transient behavior associated with a crossover
between different growth mechanisms as is shown later. The power-law behavior
of R(t) is similar to that of γ(t) as shown in Figure 4.25B; for ψ0 ≥ 0.4, R(t)
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Figure 4.24: Time dependence of γ(t) for uneven ratios. The data are shown
on the (A) semi-log and (B) log-log coordinates. The number of cells is set as
M = 5122. The optimal volume and peripheral length are set as V0 = 25 and
L0 = 20. The slopes of the solid and broken lines are 1/3 and 1/4, respectively.
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shows a power-law growth at the late stage, and for ψ0 ∼ 0.0,R(t) shows a power-
law similar to that of ψ0 = 0 at the intermediate stage. For ψ0 = 0.2, the slope of
the growth kinetics in the log-log plot seems to still change within our simulation
time scale.

Although both R(t) and γ(t) seem to follow a power-law in t for ψ0 ≥ 0.4,
their growth exponent seems different from those for ψ0 = 0. We sum up the
estimated values of growth exponent in Table 4.2. The data are fitted among the
time interval 5 × 105 < MCS < 1.5 × 106. We show the results for ψ0 = 0 and
ψ0 ≥ 0.4. For ψ0 = 0, the results obtained in the previous section are also shown.
The exponents of ψ0 = 0 are around 0.33, while those of ψ0 ≥ 0.4 are within the
range 0.24 < neff < 0.28.

Measure ψ0 = 0 ψ0 = 0.4 ψ0 = 0.6 ψ0 = 0.8

γ(t)
0.311 ± 0.001

0.255 ± 0.007 0.264 ± 0.004
0.269 ± 0.007

(0.31 ± 0.01)a (0.2733 ± 0.0003)b

R
0.333 ± 0.002

0.242 ± 0.004 0.269 ± 0.008
0.264 ± 0.004

(0.33 ± 0.02)a (0.272 ± 0.003)b

a. results of the previous section, b. M = 7682.

Table 4.2: Effective growth exponents for two different measures of domain size
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Domain morphology of clusters

To see the origin of the different kinetics, we have shown snapshots of the sorting
process for the mixture ratios ψ0 = 0, 0.2, and 0.6 in Figure 4.26. For ψ0 = 0,
the domains of each cell type show interconnected structures, while for ψ0 =
0.2 and 0.6, the domains of minority cells (shown in gray in Fig. 4.26) have
different morphologies. For ψ0 = 0.6, the domains of minority cell types assume a
spherical shape after the initial domain formation with nearby cells. For ψ0 = 0.2,
the domain morphologies are intermediate between the two cases. The domains
with a small size have a spherical shape, while those with a large size have a
deformed and elongated shape within the shown time scale. The difference in the
domain structure between interconnected and spherical one seems to lead to the
different kinetics.

To verify our hypothesis, we characterized the domain morphologies. To that
end, we defined a shape factor [157] as,

si =
64

π

Ai

l2i
, (4.45)

where Ai and li are the area and perimeter length of i-th cluster, respectively. The
prefactor 64/π normalizes the shape factor so that si satisfies si = 1 for circular
domains on the square lattice. In contrast, convoluted clusters are characterized by
si << 1. We also used an averaged shape factor of the system, which is defined
as,

S =

∑
iAisi∑
iAi

, (4.46)

where the summation is taken over all domains of minority cells in the system.
Figure 4.27 shows the si of all the clusters against Ai/Atot for ψ0 = 0, 0.1, and
0.8 at several time points. Atot refers to the total area occupied by cells of the
minority type. For ψ0 = 0, while clusters are distributed over a wide range of
Ai and si, the largest cluster is characterized by Ai/Atot ∼ 1 and si ∼ 0 at all
the shown time points. This corresponds to the percolated cluster with highly
convoluted morphology as shown Fig. 4.26. For ψ0 = 0.8, there is no cluster with
Ai/Atot ∼ 1 or si ∼ 0. At the late stage (MCS = 1.5 × 106), si becomes si ∼ 1
for all the clusters, which indicates that a large majority of domains assumes a
circular morphology. For ψ0 = 0.1, the situations are more subtle. Although there
are many clusters with si ∼ 0 at the early stage (MCS = 5 × 103), a majority of
clusters assume si > 0.5 at the late stage (MCS = 1.5 × 106). The largest cluster
also shows an increase in si at this stage.
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Figure 4.26: Different domain morphologies in the sorting process. Snapshots are
shown for the mixture ratios ψ0 = 0, 0.2 and 0.6. White: cells of τ = +1, gray:
cells of τ = −1. The data are shown at the times MCS = 0 (top), 2×104 (center),
and 1 × 105 (bottom). The number of cells is N = 1282. V0 = 25 and L0 = 20.
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We also showed the time dependence of S and si of the largest cluster (referred
to as slc) for ψ0 = 0, 0.1, and 0.8 (Fig. 4.28). Reflecting the distribution of domain
morphologies, S assumes stationary values for ψ0 = 0.0 and 0.8, S ∼ 0.1 for
ψ0 = 0 and S ∼ 1 for ψ0 = 0.8. In contrast, the S for ψ0 = 0.1 does not assume
a constant value, but continues to increase over the simulation time steps. This
shows that the domains of the system are a mixture of convoluted and circular
domains, and the proportion of circular domains grows with time. As seen in
Figure 4.28, slc shows similar behaviors to S for ψ0 = 0 and 0.8. For ψ0 = 0.1,
the slc stays slc ∼ 0 for MCS . 105, while slc shows a systematic increase for
MCS & 105. Around this time point, R(t) of ψ0 = 0.1 takes a clearly different
value from that of ψ0 = 0 (Fig. 4.25). This suggests that the domain morphology
of the largest cluster is a good indicator for the sorting kinetics; the system with
slc ∼ 0 shows the power-law domain growth with a growth exponent n ∼ 1/3,
and the system with slc ∼ 1 also shows the power-law domain growth with a
growth exponent n ∼ 0.26.

Figure 4.27: Distribution of shape factor si against Ai/Atot, where Atot = (1 −
ψ0)N/2.
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To verify the power-law growth of unequal mixtures, the size distribution of
clusters is investigated. From the dynamical scaling, the distribution is expected
to obey,

P (A) = P0(A/A0), (4.47)

where P0 is a unique scaling function, A is the domain size, and A0 is the aver-
age domain size. Figure 4.29A shows cumulative distribution of domain size for
ψ0 = 0.8. As representing the domain-growth, the distributions shift toward the
larger domain size with time. Figure 4.29B shows the distribution as a function of
rescaled domain size. The rescaled distributions lie on a unique scaling function
at small domain size. At large domain sizes, although the rescaled distributions
show a slight shift among the timescale 1 × 105 < MCS < 5 × 105, the dis-
tributions seems to lie on a single curve at a late stage, MCS > 5 × 105. This
scaling behavior supports the idea that the domain growth at ψ0 = 0.8 shows the
power-law behavior.

To summarize, the above results indicate that there exist two kinetics of domain
growth for cell sorting in the CPM; both are power-law growth, one with the ex-
ponent n ∼ 1/3 as seen in the even mixture ratio, and the other with the exponent
0.24 < n < 0.28 in uneven mixtures. In the case of the even mixture, the domain-
growth proceeds by smoothing the interface of the interconnected domains, driven
by the surface tension. In the uneven case, the growth proceeds via the increase in
the average size of circular domains. In addition, we should note that the behav-
iors of R(t) for ψ0 = 0.1 and 0.2 (shown in Fig. 4.25) are probably transient, and
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at the later stage, it will asymptotically follow the power-law growth of circular
domains.

Growth law for uneven mixtures

We now consider the reason why the exponent becomes smaller than 1/3 in the
domain growth of uneven mixtures. Two mechanisms have been proposed for
the growth of circular domains in phase separation kinetics: the evaporation-
condensation process (Fig. 4.12) and the direct coalescence of domains (Fig.
4.13). For model-B dynamics of unequal mixtures, the dominant mechanism is
the evaporation-condensation process [157]. In the present case, it seems that
this mechanism does not work since the cells are barely separated from a do-
main to which they originally belong. Instead, domain coarsening proceeds via
diffusion and coalescence of cell domains. This is understood from a simple ar-
gument as follows. Consider a situation in which two neighboring cells of the
same type are surrounded by cells of another type. To separate the neighbor-
ing cells, it is necessary to overcome an energy barrier posed by the replace-
ment of homogeneous adhesions to heterogeneous ones. The probability that
the replacement of just one homogeneous adhesion (not cell) occurs is given by
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psite = exp(−β∆Hsite), where ∆Hsite ∼ (2J+− − J++ − J−−), while the proba-
bility that the replacement of all the adhesions occurs is pcell = exp(−β∆Hcell),
where ∆Hcell ∼

√
V0∆Hsite (V0 is the optimal cell area). The barrier accom-

panied by the separation of two cells is higher by a factor of
√
V0 than that ac-

companied by the separation of a homogeneous bond. Because we have used
the parameters L0 = 4

√
V0, J̃++ = J̃−− = −300 and J̃+− = −100 (where

J̃ττ ′ = Jττ ′L0), ∆Hcell is estimated as ∆Hcell ∼ 100. From this value and
β = 0.1, the probability of separating the two homogeneous cells is estimated
as pcell ∼ exp(−10) = 4.5 × 10−5. The time scale this event occurs just once is
given by p−1

cell, which is comparable to the whole simulation time steps. Since the
separation of homogeneous cells is necessary for the evaporation-condensation
process, this mechanism does not work in the simulations of the CPM, at least
within the timescales of the simulations in this thesis.

Hence, the diffusion and coalescence of cell domains should be the dominant
mechanism. For the diffusion and coalescence mechanism, the time dependence
of domain size is written as L(t) ∼ t1/(γ+2) (Eq. (4.40)). γ is related to the
diffusion coefficient of the cluster of radius R, as is given by D(R) ∼ R−γ . For
a spherical particle in liquid in three dimensions, γ = 1 from the Einstein-Stokes
relation, which leads to the growth exponent 1/3. If the diffusion-and-coalescence
process works in the sorting process of the CPM, the obtained growth exponent in
uneven mixtures can be reproduced by investigating the domain-size dependence
of the diffusion coefficient D(R). To calculate the diffusion coefficient in two-
dimensional CPM, we have considered a cluster of M0 cells of one type (τ =
+1) as the initial condition and measured the displacement with time over many
trials. Figure 4.30 shows the average displacement of a cluster for various value
of M0. In the long time scale, the displacement of cell clusters obeys

√
〈|∆r|2〉 ∼

t
1
2 , which implies that cell clusters move diffusively. From these data, we have

estimated the diffusion coefficient with the usual relation for the diffusive process,
〈|∆r|2〉 = 2Dt. We calculated the D for two cases: one is a cluster of M0 cells of
τ = +1 surrounded by cells of the other type, and the other is a cluster ofM0 cells
of τ = +1 surrounded by the medium. For the latter case, the cluster can diffuse
freely in the space since the energy constraint of the second and third terms of the
Hamiltonian (4.1) does not work for the medium. Interfacial interaction energy
is assigned as J̃++ = J̃−− = −300 and J̃+− = −100 for the former and as
J̃++ = −300, J̃mm = 0, J̃+m = −100 for the latter, where m means the medium.

Figure 4.30B shows the result obtained forD as a function ofM0. For clusters
surrounded by the medium, the D decreases with M as D ∼ M−1

0 . This relation
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is understood from the following discussion. Consider that the motion of each
cell in the cluster is modeled as ṙi =

∑
j fij + ξi, where ri is the position of the

cell i, fij is interactions between cells i and j, ξi is random force to cell i, and
summation of j is taken over interacting neighbors. The motion of the cluster
position, center of mass of cells, obeys ṙ = d

dt
( 1

M0

∑
i ri) = 1

M0

∑
i ξi = 1√

M0
ξ,

where the random variable ξ has the same statistical property with ξi. Here the
summation of interacting forces is canceled out since we assumed fij = −fji. The
relation D ∼ M−1

0 is then reproduced as 〈|∆r|2〉 = 1
M0

〈|ξ|2〉 = 2( D0

M0
)t = 2Dt,

where 〈|∆r|2〉 is the average displacement of the cluster and D0 is the intensity of
noise, given as 〈|ξ|2〉 = 2D0.

For clusters surrounded by cells of the other type, D decreases more slowly
for small M0, where the slope is around −3/4. However, as the M0 increases,
the slope becomes steeper and D seems to obey the relation D ∼ M−1

0 for rel-
atively large M0 (M0 > 102). We have investigated the sorting and diffusion of
a cluster in the CPM with the Neumann-neighborhood interactions (interactins
with the four nearest sites) for the first term of the Hamiltonian (4.1). Because
the simulation of Neumann-neighborhood interactions is susceptible to the lattice
effect, we have also calculated the diffusion coefficient in the CPM with Moore-
neighborhood interactions (interaction with the eight surrounding sites). Figure
4.31 shows the result. Also for the Moore-neighborhood interactions, D seems
to obey the relation D ∼ M−1

0 for large M0 although the slope of D for clusters
surrounded by other cells seems to depend on V0.

Why does M0 dependence of D differ between the two cases (being sur-
rounded by the medium and by other cells)? There is an additional energy barrier
originating from the surroundings for the diffusion of a cluster surrounded by
cells of other types, as compared to the case of a cluster surrounded by medium.
In the case of small M0, this additional energy barrier should change the kinetics
of the cluster since the size of cluster is comparable to that of a single cell. On
the other hand, in the case of large M0, the effect of single-cell length scale prob-
ably becomes negligible since the length scale of the cluster is far from that of a
single cell. Therefore the asymptotic behavior of diffusion to large M0 should be
D ∼M−1

0 also for clusters surrounded by cells of other types.
Assuming that the clusters take a circular shape, the diffusion coefficient as a

function of the cluster radius obeys D ∼ R−2 for D ∼ M−1
0 . This leads to the

growth exponent n = 1/(γ + 2) = 1/4. In the case of ψ0 = 0.8, the estimated
exponent from the simulations is 0.264 ≤ neff ≤ 0.269 for M = 5122 (M is
total cell number in the system), and neff ∼ 0.272 for M = 7682 (see Table 4.2).
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Figure 4.31: Diffusion of a cluster of cells for Moore-neighborhood interactions.
Diffusion coefficientD as a function ofM0. D is estimated from the data averaged
over 400 trials.

These values are compatible but slightly higher than 1/4. This slight discrepancy
is attributed to the M0 dependence of D for a cluster surrounded by other cells
(Fig. 4.30). The cluster radius R is related to M0 as R '

√
V0M0/π. For the

sorting simulation in Figure 4.24 and 4.25, the V0 is set as V0 = 25. The diffusion
coefficient seems to obey D ∼ R−2 for M0 > 100, which corresponds to R > 28.
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In contrast, for small clusters with R < 28, the slope of D(M0) is around −3/4,
which leads to the growth exponent n = 2/7. Since the characteristic correlation
length of the sorting simulation is around R(t) = 30 at the most for ψ0 = 0.8
(Fig. 4.25), it is feasible that the effective growth exponent increases to more than
1/4. Indeed the effective exponent stays in the range 2/7 < neff < 1/4 as expected
fromD(M0), which is consistent with the phenomenological explanation. Finally,
we should note that a more extensive simulation is necessary since the data ofR(t)
and γ(t) is required over a longer time scale to evaluate the correct exponent.

4.5 Extended Cellular Potts Model with polarized
motion

We have shown that the kinetics of the CPM exhibits the power-law growth in both
cases, for the even and uneven mixture ratios of two cell types. Thus the domain-
growth of the CPM proceeds much faster than previously believed [54,125]. How-
ever, the kinetics of the CPM remain slower than the experimental observations,
in which the size of cellular domains grows linearly with time. Then, how does
the difference in the sorting kinetics arise? One possibility is that the cells do
not move randomly but show a directed motion via cell polarity and coordination
among neighboring cells. So far, the spontaneous organization of the correlated
motion of cells is reported in several systems such as the aggregates of Dictyos-
terium cells [150] and cultured epithelial cells [59]. Such movements are also
observed in the sorting of hydra [155], which could accelerate the sorting process.

Hence we extended the model, to incorporate polarized movement of cells.
The effective energy is now given by,

H = HCPM − λP

∑
uσ · rσ. (4.48)

The first term on the right-hand side represents the Hamiltonian of the original
CPM (Eq. (4.1)). The second term is a new one incorporating a polarized motion
of cells, where uσ and rσ are the polarity and center of mass of σ-th cell, respec-
tively. This term refers to the fact that the cells tend to move toward the polarized
directions. uσ is updated depending on their own direction and the interactions
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among surrounding cells. The update rule is given by,

∆uσ,t+1 = (1 − |uσ,t|2)uσ,t − γ1

∑
σ′

Lσσ′∆Pσσ′nσσ′

+γ2

∑
σ′

Aττ ′Lσσ′∆uσσ′,t + ξσ,t. (4.49)

where ∆uσ,t+1 = uσ,t+1−uσ,t, ∆Pσσ′ = (Pσ′−Pσ), nσσ′ =
rσ′−rσ

|rσ′−rσ| and ∆uσσ′,t =

(uσ′,t − uσ,t). Lσσ′ refers to the length of interface between cells σ and σ′ The
first term of Equation (4.49) refers to the spontaneous cell polarization. This term
makes cells take a polarized state, |uσ,t| = 1, without intercellular interactions.
The second term expresses the effect of local pressure from neighboring cells
directed to the normal to cell-cell interface. The pressure is defined as

Pσ ≡ −(δH/δVσ), (4.50)

which is approximated by Pσ ' −2λV (Vσ − V0) − 2λL(Lσ − L0)
√
π/Vσ. Here

we assume that the cells take a spherical shape of volume V0. The third term in
Equation (4.49) represents the tendency of the cells to correlate their polarity to-
ward the same direction through mechanical and/or chemical signal transductions
via cell adhesion. Aττ ′ is the interaction strength between a pair of cells. The
strength of the correlating cell polarities could be different based on the types of a
pair of interacting cells. The fourth term refers to the noise with statistical charac-
teristics 〈ξσ〉 = 0 and 〈ξσ,tξσ′,t′〉 = Dδσσ′δtt′ . We set the parameters as γ1 = 10−4,
γ2 = 10−5, D = 10−4. Here, we extended the original CPM to describe polarized
cellular movement. In this extended model, cell polarity and intercellular cou-
pling of the polarities are phenomenologically incorporated. This model does not
satisfy the detailed balance and thus assumes a non-equilibrium condition. This
is because we have assumed that fluctuations in Eq. (4.48) and (4.49) arise inde-
pendently. In addition, we should note that cellular movements and cell sorting
process are originally far from the equilibrium.

We show the results of the numerical simulations for the following two cases:

case I. interactions with the same strength among all the cell types:

Aττ ′ = A0 = 10.0

case II. interactions only between the same types of cells:

A11 = A22 = 15, A12 = A21 = 0
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Figure 4.32: (A) Domain growth of the cell-sorting process in the extended model
in two dimensions. The simulations are carried out withM = 5122. Solid, broken,
and dotted lines with the slopes 1/3, 2/3, and 1 are shown. (B) Correlated motion
of neighboring cells.

Figure 4.33: (B) Correlated motion of neighboring cells.
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CPM extended CPM (case I) extended CPM(case II)

R
0.34 ± 0.01 0.68 ± 0.03 0.88 ± 0.12

(105 < MCS < 106) (5 × 104 < MCS < 105) (5 × 104 < MCS < 105)

Table 4.3: Effective growth exponents for the extended CPM

The time dependence of R(t) for the two cases is shown along with the result of
the CPM in Figure 4.32. The mixture ratio is set as ψ0 = 0. As shown in the
figure, the inclusion of polarized movement induces much faster growth of the
domain size, compared to the result of the original CPM. Indeed, the inclusion
induces the correlated motion of neighboring cells (shown in Fig 4.33).

We have estimated the growth exponents of R(t) of the extended model, and
the results are listed in Table 4.3. In case I, the domain growth in two-dimensional
simulations results in the power-law growth with the exponent neff = 0.68±0.03.
In case II, the domain growth in two-dimensional simulations results in the power-
law with neff = 0.88 ± 0.12. These exponents are much larger than the results of
the original CPM, and the exponent of the case II is similar with the experimental
observations. In the extended model, cells exhibit a polarized movement. Thus,
our results indicate that the cooperative movement of cells is crucial for the quick
progress of cell sorting.

4.6 Discussion
In this chapter, we have numerically investigated the kinetics of cell sorting. First,
we re-examined the growth kinetics of the CPM and showed that the model ex-
hibits not a logarithmic, but power-law growth in domain size. We have ob-
served two regimes of power-law growth in the CPM, one has the growth exponent
n ' 0.33 for the mixture ratio 50 : 50, and the other has the exponent n ' 0.26
for uneven mixtures. Second, we extended the model to incorporate polarized and
correlated movement of cells. The extended model exhibited a domain growth
faster than that of the original CPM. The obtained exponent is n ' 0.68 and
0.88, depending on the interactions among neighboring cells. The results indicate
that the active and collective movement is crucial for the quick progress of the
sorting process, which could contribute to the developmental robustness in tissue
morphogenesis.
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Two power-law regimes of the CPM

The growth exponent of even mixture is close to that of the model B, where
the order parameter is transported diffusively. This exponent is consistent with
a view that each cell moves diffusively via random ruffling of cell surfaces in
the CPM [53, 126]. The other growth exponent of uneven mixtures seems to
come from the diffusion-and-coalescence mechanism of domain growth for cir-
cular domains. The size dependence of the diffusion coefficient has a power-law
dependence, D(R) ∝ R−2 for large clusters (Fig. 4.30), which should lead to
the growth exponent n = 1/4. Still, we could not rule out the possibility that the
growth exponent of uneven mixtures might also approach n = 1/3 after a much
longer time scale. We should note that we have paid attention to the sorting ki-
netics observed within the simulation time scale, and we believe that the different
dominant mechanisms result in the distinct sorting kinetics for even and uneven
mixture ratio.

From the experimental point of view, the size dependence of the diffusion co-
efficient is probably easier to measure than the domain growth kinetics. By mea-
suring the diffusion coefficient of the cell cluster, it will be possible to estimate the
driving force for the cell cluster, and check whether the diffusive motion of cells
is dominant as in the CPM, or if there are other components to it. Since the reason
for D(R) ∼ R−2 is quite natural, it could be a starting point to discuss the motion
of a cell cluster. The kinetics of cell clusters is important for the understanding
of metastasis and many developmental processes; thus, further investigation of
numerical models and experiments on the behavior of cell aggregates is needed.

Quick sorting behavior of cellular aggregates

As already mentioned, Beysens et al. reported that the sorting of the chick epithe-
lial and retinal cells progresses with linear domain growth (Fig. 4.9) [14]. This is
much faster than the kinetics of the original CPM. From our analysis, correlated
movement of neighboring cells is implicated to contribute to this quick progress
of cell sorting. In the case of the hydra aggregates of endodermal and ectoder-
mal cells [155], such a cellular flow has been observed during the sorting process.
Another possibility of the linear growth is that it arises not from the collective
movement of cells but from the hydrodynamic effect of the culture medium sur-
rounding cells. However, this is not plausible since the estimated viscosity of the
cell aggregate is much larger than the usual liquid by orders of magnitude around
107 ∼ 108 [14, 41].
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If the correlated movement of cells is necessary for the quick cell sorting and
rearrangement, the cell motility and adhesive property should affect the macro-
scopic behavior of the tissue. For chick neural retina aggregates in three dimen-
sions, the shape relaxation time of the deformed aggregates was estimated [127].
It is expected to be proportional to the aggregate radius if the chick-cell aggre-
gates behave similarly with hydra-cell aggregates [156]. Instead, the power-law
dependence with the slope 3/2 was obtained, that is τ(R) ∝ R3/2. This indicates
that the chick neural retina aggregates behave slower than hydra endodermal ag-
gregate. Cell types might introduce a crucial difference in the kinetics such as
cellular rearrangement and sorting, in the tissue morphogenesis.

Cellular aggregates as complex active fluid

Actin networks and cell populations are assumed to behave as a complex active
fluid [81, 162, 190]. For example, the spontaneous ordering of a directed move-
ment is observed in a sheet of fibroblasts [59], and the spontaneous ordering of
a rotational motion is observed in aggregates of Dictyosterium cells [150]. An
interfacial pattern such as viscous-fingering via active movement toward the va-
cancy emerged in the epithelial wound healing of MDCK cells [146]. In addition
to such in vitro experiments, Schotz et at. [163] indicated that the robust veloc-
ity profiles observed in the epiboly of zebrafish embryo cannot be explained by
adopting the usual Newtonian fluid. Since the zebrafish cells show the active flow
of cell motion in the epiboly, the properties of cell populations as an active fluid
could be indeed important for such developmental processes.
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Chapter 5

Summary and concluding remarks

Here, we studied how biological systems achieve the elaborate coordination seen
in various developmental processes. First, we studied the temporal expression pat-
terning of neural stem cells in Drosophila neurogenesis (chapter 2). Comparing
the expression patterns of empirical data and of numerical models, we identified
the requisite regulations and predicted an unknown factor to reproduce known ex-
pression profiles. From the analysis of the expression stability of the networks,
the Drosophila temporal patterning network was noted to have a regulatory mod-
ule to achieve robust sequential expression. We found that dynamic expression
patterns in development could be also regulated in the single-cell level regulation
embedded in network architecture. Since intercellular interactions are important
in many developmental processes, we next studied the robust differentiation strat-
egy via intercellular signaling (chapter 3). A proposed mechanism to produce
cell diversity is based on the self-consistent tuning of the bifurcation parameter
of dynamical systems. As a simple biologically applicable example, we showed
that the bistability generated by one of the most simple network motif, positive-
feedback, was shown to lead to different regulation behaviors of populations by
the inclusion of intercellular interactions. This indicates that in some cases, the
single-cell level behavior is tuned to meet the population-level requirements in
development. These strategies to make developmental systems robust via chem-
ical networks. The physical and mechanical properties of tissues should also be
important for morphogenesis. As cell aggregates are considered to behave like
a fluid, we focused on the conditions under which they could be assumed to be
so. For this, we investigated the segregation kinetics of cell sorting of the orig-
inal and extended versions of the Cellular Potts Model (chapter 4). The results
of the original CPM demonstrated the power-law behavior of the model; the ran-
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dom movement of cells alone is not enough to explain the fast sorting process of
the experiments. In contrast, the extended model shows fast sorting, which indi-
cates that the collective movement of cells is necessary for the emergence of “the
hydrodynamic effects” in cell aggregates.

To summarize, we have studied the strategies underlying robust development at
several hierarchical levels. Further work is required to understand, and, more
importantly, bridge the molecular, cellular, and tissue-level descriptions. We hope
that the work in this thesis will provide some insights for further investigations.
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