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ABSTRACT

A at capsule with blunt nose is often used for the reentry capsule of sample-return

projects. It is known that such capsule tends to be dynamically unstable at transonic

speeds. The instability phenomena has been studied experimentally since 1960's, but its

mechanism is not well understood. The ow�eld around the reentry capsule is numerically

simulated and discussed to reveal the mechanism of the dynamic instability. A new post-

processing technique that uses frequency �lters, are applied to detect the ow structure

out of complicated ow�eld.

The results showed that the base pressure of the capsule produces pitch-down moment

for the positive pitch angle, and the oscillation of the base pressure is delayed from the

pitch angle when the capsule oscillates in pitch. The delay cause the hysteresis in the

aerodynamic pitching moment, and the hysteresis makes the capsule dynamically unsta-

ble. The base pressure and the wake at the neck point (the foot of the recompression

shock wave) oscillate with the same delay time. When the neck point moves upward,

the pressure at the upper part of the base becomes higher and the base pressure pro-

duces pitch-down moment. Two oscillations coincides each other, and therefore the base

pressure is correlated to the ow�eld near the neck point.

There is strong reverse ow behind the capsule, and the impingement of the reverse

ow against the base determine the base pressure distribution. The behavior of the reverse

ow is governed by the vortex structure behind the capsule. The vortex is composed

of the ring vortex and the pair of longitudinal vortices, and the interaction between

the longitudinal vortices and the ow�eld near the neck point de�ne the base pressure
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distribution. The base pressure does not change until the disturbance of the longitudinal

vortices caused by the pitching motion of the capsule reaches the neck point, and the

time lag is the cause of the phase delay of the base pressure.

Both the base pressure distribution and the delay of the base pressure is governed

by the pair of longitudinal vortices, and therefore the dynamic stability of the capsule is

closely related to the formation of the pair of longitudinal vortices.
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NOMENCLATURE

Roman Symbols

c : speed of sound

Cl : roll moment coe�cient

CL : lift coe�cient

Cm : pitch moment coe�cient

Cmq + Cm _�: pitch damping coe�cient

Cn : yaw moment coe�cient

D : diameter of the capsule

e : total energy per unit volume

f : frequency

h : total enthalpy per unit volume

M : Mach number or pitch moment

p : static pressure

Pr : Prandtl number

q : angular velocity or dynamic pres-

sure

Q : vector of the conservative variables

Re : Reynolds number

St : Strouhal number

t : time

u; v; w: velocity components

U; V;W : contravariant velocities

x; y; z: cartesian coordinate �xed to the

object

Xe; Y e; Ze: cartesian coordinate �xed

to the space

Greek Symbols

� : angle of attack

� : angle of sideslip

 : speci�c heat ratio

� : circulation

� : delay time

� : pitch angle

� : viscosity coe�cient

�; �; �: generalized coordinate
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NOMENCLATURE 2

� : density

� : phase angle

 : roll angle

! : angular velocity

Subscripts

b : base side

f : front side

l : laminar

t : turbulent

1 : free stream

Superscripts

n : evaluated at nth time step



CHAPTER 1

INTRODUCTION

The sample-return project, which is the project to collect and return the sample of an

extra-earth planet, is drawing attention recently. The Institute of Space and Astronauti-

cal Science (ISAS) started an asteroid sample-return project \Muses-C" in 1995[2] aiming

at launch on 2002 and rendezvous with the asteroid \Nereus" on 2004. The collected sam-

ple will be returned by the reentry capsule separated from the mother spacecraft on 2006

1. The collected sample will bring us new knowledge about the origin and the evolution

of the solar system, and the project is attractive from the scienti�c viewpoint. Besides,

it is also a challenging theme for the engineering side as well, to design a spacecraft that

meet the requirement of the mission.

One of the key issues for the engineering side is the development of the return capsule.

A spacecraft returns from the interplanetary orbit usually decelerates using rocket engine

before the reentry, and once enters the earth's orbit to keep the reentry velocity lower.

However, since the weight of the return capsule is strictly restricted to enable such long

range mission within limited launch capability, and the reentry capsule of the Muses-C

depends on aerodynamic braking and it reenters directly from the hyperbolic earth-return

trajectory to save the propellant required to transfer the orbit. Consequently, the nominal

reentry velocity is expected to be 12 km/s which is much higher than that for the reentry

from the earth's orbit, and severe heating is expected during the reentry. The capsule

1The project recently re-scheduled. The target asteroid is changed to 1989ML, and the launch is

scheduled on the Summer of 2002

3
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Figure 1.1: Outline con�guration of the reentry capsule of the Muses-C

with small ballistic coe�cient (large drag and light weight) experience large deceleration

at the upper atmosphere where the convective heating is not severe, therefore lowering

the ballistic coe�cient reduce the maximum convective heating in general. Figure 1.1

shows the reentry capsule of the Muses-C. Large nose radius produce large drag, and

short body length reduce the weight, resulting the small ballistic coe�cient.

In addition to the heat protection, the attitude control of the capsule is also an im-

portant issue at the development of reentry capsules. The attitude of the vehicle must be

maintained within the limit in the whole speed range, to protect the payload from strong

heating in the hypersonic region, and to ensure the deployment of the parachute in the

transonic and/or subsonic region. Since the capsule does not have any active attitude

control device, the attitude of the capsule must be maintained by its own aerodynamic

stability, and therefore the aerodynamic stability of the capsule is important for the de-

sign. Most of the basic con�guration parameters such as nose radii or body lengths are

determined mainly from the thermal protection requirement, and there are little room

to optimize the con�guration with respect to the aerodynamic stability. Fortunately, the

center of gravity of such an capsule is located in forward of the center of pressure, and
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the object is statically stable in general. However, such capsule tends to be dynami-

cally unstable in the transonic speed range, and sometimes fall into self-exited pitching

oscillation.

Since both the static and dynamic aerodynamic characteristics of reentry capsule

have to be accurately determined for the feasibility study of the project, the dynamic

stability of capsules are evaluated experimentally even in the early space developments,

and the instability phenomenon at transonic speeds has been known since 1960's. The

dynamic aerodynamic characteristics of the Gemini reentry capsule was measured by the

one-dimensional forced oscillation method, and it was reported that the capsule was dy-

namically unstable around � = 180� (head shield forward) at low supersonic speeds[3].

The characteristics of the dynamic instability phenomena was studied intensively in con-

junction with the Viking project. The aerodynamic characteristics of three candidate

capsule con�gurations were evaluated by the ballistic range test facility[4]. Since the en-

try capsule of the Viking was required to have low ballistic coe�cient, the three capsules

were similar to the reentry capsule of Muses-C, and they were all dynamically unsta-

ble at transonic speeds. Sammonds [5] parametrically studied the dynamic stability of

several blunted-cone capsules, and reported that a spherical afterbody with its center

at the center of the gravity of the capsule eliminates the dynamic instability, while the

corner radius of the capsule has no signi�cant e�ect on its dynamic stability. The �nal

con�guration of Viking entry vehicle was also tested in the ballistic range, and the dy-

namic instability was con�rmed for the Mach number around M = 2 and angle of attack

j�j < 8� [6]. Yoshinaga[7] evaluated the pitch damping coe�cient of the OREX, the �rst

Japanese reentry vehicle, by the single-degree of freedom wind-tunnel experiment. The

capsule fallen into self-excited oscillation at transonic speeds 0:95 < M < 1:5, and the

maximum amplitude of the oscillation exceeded 20� which was the mechanical limit of

the model capsule. Yoshinaga reported that the amplitude of the sharp-edged capsule is

smaller than that of the blunt-edged capsule. Berner[8] evaluated the static aerodynamic
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coe�cients of blunt capsules by a numerical simulation, and compared them with the

experimental results obtained from the ballistic range test facility. He also evaluated

the dynamic aerodynamic coe�cients from the experiment, but there was no attempt

to evaluate the dynamic characteristics of the capsule from the results of the numerical

simulation. Chapman[9] reviewed the current state of the understandings on the aero-

dynamics of the blunt capsules, but there were no comments about the mechanism of

the dynamic instability phenomena. In late 1990's, several reports about the dynamic

stability of blunt capsules were published in conjunction with the Stardust, the comet

sample return project in NASA. Chapman et al[10] investigated the pitch damping char-

acteristics of the Stardust sample return capsule using ballistic range. The pitch damping

of the capsule is highly nonlinear with the angle of attack; it was dynamically unstable

at small angles of attack and dynamically stable at higher angles.

The dynamic stability of the capsules with particular con�gurations were studied one

by one in these works, and there seemed to be little e�ort that reveals the mechanism of

the dynamic instability. There is no way to evaluate the dynamic stability of a capsule

before the experiment, and the dynamic stability of the capsule has been assured based

on the trial-and-error approach in the design of reentry capsules. Several capsules have to

be designed and tested iteratively until the optimized con�guration is obtained, which is

time and cost consuming work. If there is some guideline about the correlation between

geometry of a capsule and its dynamic stability, it will greatly save the time and the

cost to design capsules. The understandings of the mechanism of the dynamic instability

is indispensable to establish such guideline. To the authors knowledge, it is Hiraki[1]

who �rst tried to investigate the mechanism of the dynamic instability. Hiraki studied

the dynamic stability of blunt capsules based on the wind tunnel experiment using a

one-dimensional free-oscillation method, in conjunction with the Muses-C project. He

discussed the instability phenomena in detail, and tried to reveal its mechanism.

Figure 1.2 shows his wind tunnel model. The model capsule is supported at its center
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of the gravity by a bearing so that it rotates freely in the pitch. The capsule is �rst

�xed at zero pitch angle, and released after the free stream is stabilized. Figures 1.3

show the time histories of the pitch angle after the release for various free stream Mach

numbers. The capsule becomes dynamically unstable and falls into self excited oscillation

with large amplitude at transonic speeds. The frequency of the limit cycle oscillation is

approximately 20 Hz, and the reduced frequency is as low as O(0:01). Hiraki modeled

the motion of the capsule using curve �t technique. The model well agrees with the

experimental results, and the model equation showed that the capsule is dynamically

unstable for the small angle of attack, while it is dynamically stable for the large angle of

attack. He also measured the time history of the surface pressure during the oscillation,

and revealed that the base pressure plays an important role for the dynamic instability.

The experiment was carried out with several capsule con�gurations, and he found that the

dynamic stability of the capsule depends on its forebody shape. One model is dynamically

unstable at transonic speeds, and the other model is dynamically stable for all speeds

between M = 0:3 � 2:5. Hiraki concluded from the observation that the capsule with

small semi-apex angle tends to be dynamically stable.

Hiraki's experiment revealed many interesting features about the dynamic instability

of the capsule. However, his experimental data was limited to the history of the pitch

angle and the surface pressure, and the inuence of the sting is not evaluated while

the inuence of the base ow�eld seems to be dominant for the dynamic instability

phenomena. It is di�cult to discuss the correlation between the ow�eld and the dynamic

stability only from these data in detail, and the mechanism of the dynamic stability is

sill not clear. The objective of current study is to discuss the correlation between the

ow�eld and the dynamic stability, and reveal the mechanism of the dynamic stability

phenomena at transonic speeds.

Typical dynamic instability is caused by the interaction between the oscillation of the

attitude of the object and the oscillation of the ow�eld, and if the oscillation of the
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Figure 1.2: Wind tunnel model for one-dimensional free oscillation method (Ref.[1])

Figure 1.3: Time histories of pitch angle for various Mach numbers (Ref.[1])
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ow�eld that takes part in the dynamic instability is the oscillation which corresponds

to the natural frequency (i.e. Strouhal number) of the ow�eld, the reduced frequency

of the limit cycle oscillation should be O(1). Actual reduced frequency of the limit

cycle oscillation observed in the experiment is as low as O(0:01), and it seems that some

ow structure which has longer length scale and/or lower characteristic speeds than the

natural frequency oscillation, governs the dynamic instability phenomenon. Therefore,

the information of the ow�eld away from the body is essential for the discussion of the

mechanism of the dynamic instability. From this view point, we choose the computational

approach as it gives us the time-dependent information of the whole ow�eld.

The contents of this dissertation are as follows.

Firstly, the modeling of the phenomena is discussed in chapter 2, and the description

of the numerical methods used in this study is presented in chapter 3. Since the ow�eld

considered in this study is complicated, special attention is paid to the post processing of

the numerical results. The ow�eld around the capsule in the forced pitching oscillation

is simulated and the temporal characteristic of the ow�eld is discussed in chapter 4. The

ow�eld around the oscillating capsule and that around the capsule at �xed pitch angles

are compared in chapter 5. The ow�eld around the oscillating capsule is approximated

by a simple constant-delay mode, and the characteristics of the dynamic stability of the

capsule are discussed based on the model. The structure of the ow�eld is investigated

in detail from the simulation of the ow�eld around the capsule at �xed pitch angles,

and the correlation between the ow�eld and the aerodynamic forces that work on the

capsule is discussed in chapter 6. Finally, a model for the mechanism of the dynamic

instability is proposed and validated in chapter7. The summary of the dissertation is

presented in chapter 8.



CHAPTER 2

DEFINITION OF THE PROBLEM

The trajectory and the attitude of the capsule entering the atmosphere are inuenced

by its aerodynamic characteristics, the gravity and the density gradient along the path

et cetera, and the capsule moves with six degrees of freedom. In this study, several

assumptions are imposed for the motion of the capsule for the simpli�cation of the anal-

ysis. Before going into the analysis, the assumptions and the de�nition of the problem

considered in this study are described in this chapter.

2.1 Basic Assumptions

Firstly, following conditions are imposed.

� the center of the gravity of the capsule traverses a straight path with constant

velocity

� the inuence of the gravity is neglected

� the density of the atmosphere is constant along the ight path

There is no need to consider the translation of the center of the gravity under these

conditions, and only the rotational motion about the center of the gravity is discussed

hereafter.

10
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Figure 2.1: Coordinate system

2.2 Nonlinear Formulation of Aerodynamic Moment

System

Figure 2.1 shows the de�nition of the coordinate system. Xe;Ye;Ze are the axes �xed to

the space, and Xe is aligned to the direction of the uniform ow. x; y; z are the coordinate

system �xed to the object where x is coincident with the axis of the symmetry of the

object. The angle of attack � is the angle between the uniform ow and the axis of

the symmetry, and the \pitching motion" is de�ned as the motion inside the � plane.

The pitching moment M is the moment component normal to the � plane. Despite the

basic assumptions, nonlinear e�ects and the coupling terms are not omitted at this step.

Considering the axial symmetry of the object, the aerodynamic moments work upon the

object are expressed as the functionals of the argument functions �(t), _�(t) and _ (t).

Tobak et al[11] derived the simpli�ed formulation of the aerodynamic moments from the
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original functionals as follows

Cm(t) = Cm(1;�(t)) + ( _�l=V )Cm _�(1;�(t)) + ( _ l=V )Cm _ (1;�(t)) + ( _�l=V )Cm _�(�(t))

(2.1)

Cn, the yawing moment and Cl, the rolling moment are also expressed similarly.

The procedure to derive Eq. (2.1) is same as that presented in [12] and it is based on

the following assumptions

� the ow�eld does not changes drastically with � and q, and the terms higher than

(��)2 (�q)2 are negligible

� the rate of the change of � is slow, and therefore _� is small

� the physical properties at certain moment depend only on the properties right before

that moment

The ow�eld considered in this study is the ow around the object with simple ge-

ometry. The separation point is �xed the edge of the capsule, and the ow�eld does not

change drastically with the pitch angle. The motion of the object is so slow that the

reduced frequency is as low as O(0:01). Therefore, all these assumptions are convincing.

The third term in Eq. (2.1) is the Magnus moment caused by the rolling angular

velocity _ . The history of the attitude of the OREX during the actual reentry [7] show

that the period of the rolling is one order of the magnitude longer than that of the pitching

oscillation, and therefore the Magnus moment is considered to be negligible. The second

term in Eq. (2.1) is the pitching moment caused by the coning motion. Considering the

axial symmetry of the capsule, the contribution of the second term is also considered to

be small. The formulation of the aerodynamic moments �nally reduce to the following

[11]:

Cm(t) = Cm(1;�(t)) + ( _�l=V )Cm _�(�(t)) (2.2)
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Cn(t) = ( _�l=V )Cn _�(1;�(t)) (2.3)

Note that the conditions imposed to derive Eqs. (2.2) and (2.3) are

� three basic assumptions

� three assumptions to derive Eq. (2.1)

� the experimental result that the rolling rate is low

� the object is axially symmetric and the coning motion of the object produce a small

pitching moment

which are all considered to be reasonable for the problem considered in this dissertation.

Equations (2.2) and (2.3) show that even when the capsule oscillates with all three

motions, pitching, rolling and coning in reality, the pitch stability of the capsule can be

discussed from the analysis of the planer pitching oscillation.

2.3 Modeling of the Phenomena

Based on the above discussions, the planer pitching oscillation of the capsule is studied

in this dissertation. The capsules used in the present study are those used in the Hiraki's

experiment. Figures 2.2 and 2.3 show two capsules used in the Hiraki's experiment. The

geometric parameters of the capsules are listed in Table 2.1. The wind tunnel experiment

showed that the D45 model is dynamically unstable at transonic speeds, and the D30

model is dynamically stable for all speeds between M = 0:3 � 2:5. Since the gravity is

neglected from the basic assumption, there is arbitrariness in the selection of the � plane,

and the � plane is selected to be the perpendicular plane.
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Figure 2.2: D45 model capsule Figure 2.3: D30 model capsule

Table 2.1: Geometry of the model capsules

D45 Model D30 Model

nose radius 50 mm
semi-apex angle 45 degree 30 degree

maximum diameter 100 mm

body length 50 mm

base con�guration 45 degree truncated cone

dynamic stability

at transonic speeds
unstable stable



CHAPTER 3

NUMERICAL METHODS

3.1 Flow Solver

3.1.1 Governing Equations

The governing equations are the three-dimensional Navier-Stokes equations. Physical

properties are non-dimensionalized by the speed of sound and the density of the uniform

ow, and the length is non-dimensionalized by the diameter of the capsule. The concrete

formulation of the Navier-Stokes equations and the non-dimensionalization are given in

Appendix A.

The equations are discretized and solved by the �nite di�erence method on a discrete

grid system. Since the numerical dissipation accompanied with the spatial discretization

is proportional to the grid spacing, the grid has to be clustered at the region where the

viscous e�ect is dominant to resolve the viscous layer. Otherwise, excessive numerical dis-

sipation mask the physical viscous term and the pro�le of the viscous layer is determined

mainly by the grid distribution no matter how the physical viscous term is included in

the governing equations. As for the ow�eld considered in this study, viscous e�ect is

dominant at the boundary layer near the capsule and the shear layer at the edge of the

wake downstream. It is not di�cult to cluster the grid at the wall to resolve the bound-

ary layer. However, the location of the shear layer is not known before the simulation,

and it is almost impossible to cluster the grid at the shear layer within practical number

15
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of total grid points. Fortunately, the di�erence in the pro�le of the shear layer at the

wake does not change the large scale structure of the ow�eld in many cases. Hiraki's

experimental result indicates that the dynamic instability phenomena considered in this

study is governed by the ow structure which has long length scale, and therefore even

the simulation that neglect the physical viscous e�ect at the shear layer downstream will

provide useful information for the qualitative discussion about the instability phenomena.

The \thin-layer approximation" is applied to the viscous terms, and the spatial deriva-

tives parallel to the wall ( @
@�

and @
@�
) are omitted. The equations are transformed to the

generalized curvilinear coordinate system as follows.

@ bQ
@t

+
@ bE
@�

+
@ bF
@�

+
@ bG
@�

= Re�1
@ bS
@�

(3.1)

bQ = J�1

2666666666666664

�

�u

�v

�w

e

3777777777777775
; bE = J�1

2666666666666664

�U

�uU + �xp

�vU + �yp

�wU + �zp

U(e+ p)� �tp

3777777777777775
; bF = J�1

2666666666666664

�V

�uV + �xp

�vV + �yp

�wV + �zp

V (e+ p)� �tp

3777777777777775

bG = J�1

2666666666666664

�W

�uW + �xp

�vW + �yp

�wW + �zp

W (e+ p)� �tp

3777777777777775
; bS = J�1

2666666666666664

0

�m1u� + (�=3)m2�x

�m1v� + (�=3)m2�y

�m1w� + (�=3)m2�z

�m1m3 + (�=3)m2(�xu+ �yv + �zw)

3777777777777775
p = ( � 1)

�
e� 1

2
�
�
u2 + v2 + w2

��

m1 = �x
2 + �y

2 + �z
2

m2 = �xu� + �yv� + �zw�
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m3 =
1

2
(u2 + v2 + w2)� +

1

Pr( � 1)
(c2)�

For the turbulent simulation, � and Pr are replaced by

� = �l + �t;
�

Pr
=

�l

Prl
+

�t

Prt

The turbulent eddy viscosity coe�cient �t is evaluated from a turbulence model. U; V

and W are the contravariant velocities

U = �t + �xu+ �yv + �zw

V = �t + �xu+ �yv + �zw

W = �t + �xu+ �yv + �zw

Since the grid system moves with the capsule, the components correspond to the trans-

lation of the grid points are added to the conventional de�nitions of the contravariant

velocities. Metrics and jacobian are given as follows

�x = J(y�z� � z�y�); �y = J(z�x� � x�z�); �z = J(x�y� � y�x�)

�x = J(y�z� � z�y�); �y = J(z�x� � x�z�); �z = J(x�y� � y�x�)

�x = J(y�z� � z�y�); �y = J(z�x� � x�z�); �z = J(x�y� � y�x�)

�t = �(�xx� + �yy� + �zz� )

�t = �(�xx� + �yy� + �zz�)

�t = �(�xx� + �yy� + �zz� )

�x;y;z,�x;y;z and �x;y;z correspond to the area vector of the cell interface, and �t,�t and

�t represent the volume being swept by the translation of the cell interface. Since the
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grid rotates with time, these metrics are evaluated every time step. The grid does not

deform, and therefore the jacobian is constant with time.

J�1 = x�y�z� + x�y�z� + x�y�z� � x�y�z� � x�y�z� � x�y�z�

The ow�eld considered in this study is transonic. The static temperature does not

changes much from the reference value, and the laminar viscosity �l is assumed to be

constant for the whole ow�eld.

3.1.2 General discretization

Partial di�erential equation (3.1) is discretized as follow

bQn+1
j;k;l = bQn

j;k;l +
�
�R( bQn+1) + (1� �)R( bQn)

�
(3.2)

R( bQn) = ��t
� eEj+ 1

2
;k;l � eEj� 1

2
;k;l +

eFj;k+ 1

2
;l � eFj;k� 1

2
;l +

eGj;k;l+ 1

2

� eGj;k;l� 1

2

+ eSj;k;l+ 1

2

� eSj;k;l� 1

2

�n
(3.3)

Here, temporal di�erence of the conservative variable bQ is evaluated by the trapezoidal

method, and the spatial di�erences of the ux bE; bF ; bG are evaluated by the central

di�erence. eE; eF and eG are the numerical uxes de�ned at the cell interface. The temporal

accuracy of the scheme varies with the �. � = 0 yields �rst-order Euler explicit scheme,

� = 1
2
yields Crank-Nicolson second-order implicit scheme, and � = 1 gives �rst-order

Euler implicit scheme. The spatial accuracy depends mainly on the evaluation of the

numerical uxes.

3.1.3 Evaluation of Numerical Fluxes

Roe's Flux Di�erences Scheme[13] is widely used for the numerical uxes in the simulation

of transonic ow�elds. Roe's scheme gives good resolution of both the shock wave and
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the boundary layer, and it is suitable for the simulation of transonic viscous ow�eld.

This scheme is, however, less robust and su�ers from numerical instability at the strong

expansion which is observed at the edge of the reentry capsule. In the present study, the

numerical uxes are evaluated by the SHUS (Simple High-resolution Upwind Scheme)

scheme[14] which is a family of the AUSM[15] type schemes, to avoid numerical instability

at the strong expansion while maintain the resolution of the shock wave and the boundary

layer.

The AUSM scheme splits the numerical ux into two part, one from the contribution

of the convective term, and the other from the pressure term as follows

Ej+1

2

=

0BBBBBBBBBBBBBB@

�

�u

�v

�w

e

1CCCCCCCCCCCCCCA
uj+1

2

+

0BBBBBBBBBBBBBB@

0

pj+ 1

2

0

0

0

1CCCCCCCCCCCCCCA
= E

(c)

j+ 1

2

+

0BBBBBBBBBBBBBB@

0

pj+1

2

0

0

0

1CCCCCCCCCCCCCCA
(3.4)

convective term represents the scalar physical properties transported by the mass ux

�u, therefore it is evaluated by the upwind di�erencing

E
(c)

j+1

2

= uj+ 1

2

0BBBBBBBBBBBBBB@

�

�u

�v

�w

e

1CCCCCCCCCCCCCCA
j+ 1

2

=Mj+1

2

0BBBBBBBBBBBBBB@

�c

�cu

�cv

�cw

�ch

1CCCCCCCCCCCCCCA
j+ 1

2
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= Mj+1

2

0BBBBBBBBBBBBBB@

�c

�cu

�cv

�cw

�ch

1CCCCCCCCCCCCCCA
L

ifMj+1

2

� 0; Mj+ 1

2

0BBBBBBBBBBBBBB@

�c

�cu

�cv

�cw

�ch

1CCCCCCCCCCCCCCA
R

ifMj+ 1

2

< 0 (3.5)

where subscripts L and R denote the physical states at the left and right side of the cell

interface respectively. Mj+1

2

and pj+ 1

2

are de�ned as follows

Mj+ 1

2

=M+
L +M�

R ; M� =

8>><>>:
�1

4
(M � 1)2 ; if jM j � 1;

1
2
(M � jM j) ; otherwise

(3.6)

pj+ 1

2

= p+L + p�R; p� =

8>><>>:
p

4
(M � 1)2 (2�M) ; if jM j � 1;

p

2
(M � jM j) =M; otherwise

(3.7)

Shima and Jounouchi[14] rewrote Eqs (3.4) to (3.7) into generalized formulation.

Ej+ 1

2

=
m+ jmj

2
�+ +

m� jmj
2

�� + epN (3.8)

� =

0BBBBBBBBBBBBBB@

1

u

v

w

h

1CCCCCCCCCCCCCCA
; N =

0BBBBBBBBBBBBBB@

0

1

0

0

0

1CCCCCCCCCCCCCCA
; m = �u; ep = �+p+ + ��p�

�� =

8>><>>:
1
4
(2�M�)(M� � 1)2; if jM � j � 1

1
2
(M � jM j) =M; otherwise

where subscripts � denote the left and right side of the cell interface. They showed

that all the AUSM type schemes such as original AUSM, AUSM+, AUSMDV, SFS and



3.1. Flow Solver 21

SHUS can be expressed by this formulation. The di�erence between these schemes is

the expression of the mass ux m. SHUS scheme uses the mass ux of an approximate

Riemann ux for the mass ux m.

m =
1

2

(
(�u)+ + (�u)� � j�uj���

j �M + 1j � j �M � 1j
2

���u

�j
�M + 1j+ j �M � 1j � 2j �M j

2

�p

�c

)
(3.9)

�� = �� � �+; �p = p� � p+; �u = u� � u+

�� =
�+ + ��

2
; �p =

p+ + p�

2
; �u =

u+ + u�

2
; �c =

s

�p

��
; �M =

�u

�c

The experience showed that the SHUS scheme is rather robust and e�cient than the

Roe's ux di�erence splitting.

The physical properties at the both sides of the interface, Q+ and Q� are evaluated by

the MUSCL (Monotone Upstream-centered Schemes for Conservation Law) interpolation

based on the primitive variables with the di�erentiable limiter. [16]

Q+

j+ 1

2

= Qj +

�
s

4
[(1� �s) �� + (1 + �s)�+]

�
j

(3.10)

Q�

j+ 1

2

= Qj+1 �
�
s

4
[(1� �s) �+ + (1 + �s)��]

�
j+1

(3.11)

s =
2�+�� + "

(�+)2 + (��)2 + "

(�+)j � Qj+1 �Qj; (��)j � Qj �Qj�1

The spatial accuracy of the scheme varies with the value of �. � = +1 yields second-

order central di�erence scheme, � = �1 to second-order fully-upwind scheme, and � = 1
3

gives upwind-biased third-order scheme. � is set to be 1
3
in the present study. " is a

small number (typically 10�6) to prevent division by zero at the uniform region where

�+ = �� = 0
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3.1.4 Time Integration

The ow�eld considered in this study is essentially unsteady, and the numerical scheme

which has higher temporal accuracy is preferable for the discussion of the temporal behav-

ior of the ow�eld. In addition to the temporal accuracy, total simulation time (time step

�t� total iteration number) is also important since the time scale of the phenomenon is

very long. Therefore, the numerical scheme have to be numerically e�cient so that the

simulation of long total simulation time is carried out within allowable wall clock time.

The selection of the time integration scheme is the trade-o� between the time accuracy,

total simulation time, and the wall clock time required for the simulation.

The explicit time marching method is one choice. Even the simplest Euler explicit

scheme has at least �rst-order temporal accuracy, and it is easy to extend temporal

accuracy of the explicit schemes using the Runge-Kutta method. However, the time step

�t for the explicit schemes is restricted by the CFL condition, and the restriction is so

strict when the grid is clustered near the wall to resolve the boundary layer, that it is

almost impossible to simulate the phenomena which have long time scale. The LU-ADI

factorization implicit algorithm[17] with no inner iteration is used for the time integration

in this study to overcome the restriction of the time step �t.

Let � = 1 and rewrite Eqs. (3.2) and (3.3),

� bQn � bQn+1 � bQn = ��t
�
@� eE + @� eF + @� eG�n+1

(3.12)

note that the viscous terms are omitted for simplicity. Then locally linearize the numerical

uxes and Eq. (3.12) reduces to

� bQn = ��t
�
@�
� eE + bA� bQ�+ @�

� eF + bB� bQ�+ @�
� eG + bC� bQ��n (3.13)

h
I +�t

�
��
bA+ ��

bB + ��
bC�i� bQn = ��t

�
@�
eE + @�

eF + @�
eG�n � R:H:S: (3.14)
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where ��; �� and �� are the �nite di�erence operator for each direction, and bA; bB and bC
are the jacobian matrix of the numerical uxes

bA =
@ eE
@ bQ; bB =

@ eF
@ bQ; bC =

@ eG
@ bQ

The implicit operator inside the [ ] of the left hand side of Eq. (3.14) is the 5 � 5

sparse but non-band block matrix, and it is a tough work to inverse it. Equation (3.14)

is further approximated and decomposed into the factorized form.

h
I +�t�� bAi hI +�t�� bBi hI +�t�� bCi� bQn = R:H:S (3.15)

Now, each implicit operator reduces to 5 � 5 tri-diagonal block matrix when the �nite

di�erence operator � is evaluated by the second-order central di�erence. Each implicit

operator can be written in the diagonal form:

h
I +�t�� bAi := R� (I +�t����)R

�1
� (3.16)

where R� and �� are the matrix of the right eigen vectors and the vector of the eigen

values of the jacobian matrix bA. Here, bA = R���R
�1
� . Then eigen value �� split into

positive and negative components.

h
I +�t�� bAi = R�

�
I +�t���

+
� +�t���

�

�

�
R�1� (3.17)

��� =
1

2
(�� + j��j)

Introducing the idea of the ux vector splitting schemes, the di�erence operator �� for

the positive components �+
� is evaluated by one-sided backward di�erencing, and the

operator for the negative component ��� is evaluated by one-sided forward di�erencing.
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The implicit operator for �-direction �nally yields

h
I +�t��

bAi = R�

�
I +�t�b��

+
� +�t�f��

�

�

�
R�1
�

= R�

�
I ��t���j +�t�b��

+
�

�
(I +�t j��j)�1�

I +�t�+
�j
+�t�f��

�

�

�
R�1
� (3.18)

note that �+
� + ��� = j��j.

Implicit operators for �- and �-direction are also decomposed similarly. The sparse

5 � 5 block matrix in Eq. (3.14) �nally reduces to the product of 5 � 5 block diagonal

matrix, scalar diagonal matrix, and lower and upper scalar bi-diagonal matrixes. The

inversion of the �nal implicit operator does not require any matrix inversion, and the

LU-ADI scheme is very e�cient. The LU-ADI scheme introduces several approximation

to inverse the implicit operator e�ciently, and its temporal accuracy is less than �rst-

order. However, according to Imai's study[18], the LU-ADI scheme has su�cient temporal

accuracy to resolve the behavior of large scale vortex structure provided that the local

CFL number is smaller than unity in the inviscid region. 1

The grid spacing and the time step are carefully chosen in the present study, to

maintain time accuracy enough to resolve the temporal behavior of the ow�eld.

3.1.5 Turbulence Model

The turbulent viscosity �t is evaluated from the Baldwin-Lomax algebraic eddy-viscosity

model[19]. This model was developed for the two-dimensional attached and steady bound-

ary layer, and it evaluates the turbulent viscosity from the velocity pro�le along the line

\normal" to the wall. There has been a lot of discussions about the use of Baldwin-

Lomax turbulence model for the unsteady simulation of the three-dimensional separated

ow�eld. However, the separation point is clearly �xed to the edge of the capsule in this

1The summary of Imai's study is presented in Appendix B.
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case, and the turbulence model does not seem to inuence the qualitative mechanism

of the ow�eld. Therefore, one of the simplest turbulence model is used to reduce the

computational cost.

The turbulent viscosity �t is given by

�t =

8>><>>:
(�t)inner; y � ycrossover;

(�t)outer; otherwise
(3.19)

where y is the normal distance from the wall, and ycrossover is the smallest y at which

(�t)inner and (�t)outer are equal. (�t)inner is the turbulent viscosity inside the inner layer,

and it is given by

(�t)inner = �l2j!j; l = ky
h
1� exp(�y+=A+)

i
(3.20)

where j!j is the magnitude of the vorticity, and y+ is de�ned as

y+ =

p
�w�w

�w
y (3.21)

the subscript w denotes the properties evaluated at the wall, and �w is the skin friction

at the wall. The turbulent viscosity at the outer region (�t)outer is given by

(�t)outer = K CCP �FWAKE FKLEB(y) (3.22)

FWAKE = min
�
ymax Fmax; CWK ymax u

2
DIF Fmax

�
(3.23)

Fmax is the maximum value of the function F (y) along the line normal to the wall, and

ymax is the y at which F (y) takes its maximum value. The function F (y) is de�ned as

follows

F (y) = yj!j
h
1� exp(�y+=A+)

i
(3.24)
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FKLEB is the Klebano� intermittency factor given by

FKLEB(y) =

241 + 5:5

 
CKLEB y

ymax

!6
35�1 (3.25)

The constants appear in the equations are given as follows.

A+ = 26; CCP = 1:6; CKLEB = 0:3; CWK = 0:25

k = 0:4; K = 0:0168; P r = 0:72; P rt = 0:9

For the ow�eld with an attached boundary layer, magnitude of the vorticity j!j

outside the boundary layer is small. The function F (y) takes its maximum at the edge

of the boundary layer, therefore the ymax represents the thickness of the boundary layer.

However, when strong shear layer exists away from the wall, another peak of j!j appears

at the shear layer, and F (y) may take its maximum there. In such cases, ymax becomes

far larger than the boundary layer thickness, and it makes (�t)outer too large. The local

maxima of F (y) at the edge of the boundary layer has to be distinguished from other

peaks caused by the large vorticity outside the boundary layer, to evaluate the turbulent

viscosity of the separated ow�eld properly. In this study, the Fmax and ymax are searched

from the region within prescribed distance (�=D < 0:013 for the front side, �=D < 0:028

for the base side) from the wall.

3.1.6 Boundary Conditions

Solid Wall Boundary

Solid wall boundary at the surface of the capsule is treated as \non-slip" wall, and the

velocity components at the wall are given as

u = x� ; v = y� ; w = z� (3.26)
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where x� ; y� ; z� are the velocities of the grid point at the wall. The density is extrapolated

from the adjacent node.

�l=1 = �l=2

The pressure is de�ned from the equilibrium condition of the momentum normal to the

wall (\normal momentum equation")

@p

@n
= ��

u2
k

R
(3.27)

where n is the unit vector normal to the wall, uk is the velocity component parallel to

the wall, and R is the radius of the curvature of the wall. Equation (3.27) is expressed

in the generalized coordinate system as follows:

Ap� +Bp� + p� = C (3.28)

8>>>>>>>>>><>>>>>>>>>>:

A = 1
D
(�x�x + �y�y + �z�z)

B = 1
D
(�x�x + �y�y + �z�z)

C = 1
D
f�U (�x�x + �y�y + �z�z) + �V (�x�x + �y�y + �z�z)g

D = �2x + �2y + �2z

here, the wall is � = const plane.

Outer Boundary

The physical properties at the outer boundary are �xed to those of the uniform ow.

Ql=lmax = Q1
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Periodic Boundary

The nodes at planes k = 1; 2; 3 and k = 4 are coincident with the nodes at planes

k = kmax � 3; kmax � 2; kmax � 1 and k = kmax respectively. Therefore,

Qk=1 = Qk=kmax�3 ; Qk=2 = Qk=kmax�2

Qk=kmax�1 = Qk=3 ; Qk=kmax = Qk=4

Axis Singularity

The properties along the singular line at the axis is averaged from the variables at the

nodes around the axis.

Qj=1;jmax =
1

kmax � 4

kmax�3X
k=2

Qj;k

3.2 Data Processing

The ow con�guration considered in this study, such as the shape of the object or the

ow conditions, are relatively simple. However, resultant ow�eld is rather complicated

and shows unique characteristics.

The frequency of the oscillation of the capsule is 20 Hz. The reduced frequency is as

low as O(0:01), and the variation of the ow�eld due to the pitching motion of the capsule

is very slow. On the other hand, there is a shedding of vortex, which is analogous to

the Karman vortex, behind the capsule. The Strouhal number is O(1) and the frequency

of the shedding is a few kHz, which is much higher than the frequency of the pitching

oscillation of the capsule. Since we are interested in the \slow" pitching oscillation of

the capsule, the purpose of the post processing is to derive information that is related

to the slow variation of the ow�eld from the results of the simulation. Animations are

commonly used for the analysis of the unsteady ow simulations. However, there are

several di�culty in observing the \slow" phenomena only by simple animations:
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� The unsteady evolution of the ow�eld have to be simulated during at least several

oscillation cycles, while the interval at which the ow variable are saved to �les,

have to be small enough to resolve the highest frequency of the ow�eld. Therefore,

many (typically more than one thousand �les, tens gigabytes in size) data has to

be processed for the discussion of the unsteady ow�eld.

� The reduced frequency of the oscillation is very small, and the inuence of the

pitching motion of the capsule upon the ow�eld is very small. Weak variation of

the ow�eld has to be distinguished out of the disturbed ow�eld.

Following two methods are applied in the data processing to derive information out

of the complicated results of the present simulation.

3.2.1 Curve Fitting

The discrete time series of the ow properties are approximated by the superposition of

harmonic oscillations.

Qn � 1

2
a0 +

NX
k=0

ak cos (k! (n�t)) +
NX
k=0

bk sin (k! (n�t)) (3.29)

where ak; bk are the amplitude for kth harmonic component, and ! = 2�f is the angular

velocity of the pitching oscillation of the capsule. The amplitudes ak; bk are evaluated by

the least square �t method. The procedure reduces to the Fourier transformation, and

ak; bk are given as

ak =
2

T

Z T

0
Q(t) cos(k!t)dt (3.30)

bk =
2

T

Z T

0
Q(t) sin(k!t)dt (3.31)
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The amplitude ck and the phase angle �k are de�ned as

ck =
q
a2k + b2k (3.32)

tan(�k) = ak=bk (3.33)

The time series of the ow properties are reduced to two scalar parameters, and it

becomes possible to discuss unsteady behavior of the ow�eld from the still contour plots

of ck and �k.

3.2.2 Frequency Filter

The uctuation of realistic ow�eld is usually composed of several frequency components.

Each component corresponds to its own phenomenon, and in many cases, if not always,

it help our understanding the mechanism of the ow�eld to distinguish and discuss each

component one by one. However, it is di�cult to distinguish each component when the

amplitude of di�erent components are in the same order.

Figure 3.1 shows an example of oscillation at two di�erent points. The oscillations

shown in 3.1 are composed of three components with di�erent frequencies. Each compo-

nent is shown in Figs. 3.2(a)�3.2(c). It is not di�cult to understand the relationship (i.e.

amplitude ratio and phase di�erence) between two oscillations for each component one

by one. But once three components are superimposed into one (Fig. 3.1), it is almost

impossible to distinguish each component from the time history. Frequency �lters are

often used to separate uctuations with di�erent frequencies in the post-processing of

experiments. As a straightforward extension of this technique, time series of the physical

properties at all nodes are processed by the frequency �lters, and the secondary processed

data instead of the raw data is visualized.
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Figure 3.1: Time histories of the physical property
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Figure 3.2: Time histories of the each component

Filtering procedure

The post-processing procedure of the unsteady simulation result using a frequency �lter

is as follows:

(1) extract time history of a ow variable at a node that represents the ow�eld

(2) decompose the time history into modes using Fourier analysis

(3) select the mode to visualize

(4) process the time history of the ow variables at all nodes by the frequency �lter to

eliminate surplus modes

(5) visualize the �ltered ow variables
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Figure 3.3: Characteristics of the Butterworth �lter

(6) create animation

the steps (5) and (6) are the same procedure as those used in the ordinary post-

processing of the unsteady simulations, However, the complicated uctuation is already

divided into components by the �ltering, and the mechanism of each components can be

discussed separately. It will be easier to understand the ow�eld with this method.

Digital �lter

n-th order digital �lter stores n data sets on the main memory as a temporary variable.

The numerical simulation using millions of nodes outputs tens to hundreds MB data �le.

On the other hand, the main memory size of the modern workstation is hundreds MB to

several GB. Therefore, allowable order of the �lter is ten at the maximum. It is di�cult to

achieve sharp cut-o� characteristic with 10th order FIR digital �lter, and the IIR digital

�lter[20] is used in the present study

Figure 3.3 show the characteristics of the 4th order Butterworth low-pass �lter as an

example of the IIR digital �lter. The cut-o� frequency fc is 1000Hz The �lter cause 0.4

msec of delay at the low frequency region, and therefore the delay has to be compensated

when comparing the �ltered value with the non-�ltered property. The delay also shows
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distortion near the cut-o� frequency 1kHz. The cut-o� frequency has to be carefully

selected so that it is kept far away from the dominant frequency of the phenomena.

Otherwise, the �ltering process distorts the ow�eld and may outputs misleading results.



CHAPTER 4

FLOWFIELD AROUND THE CAPSULE

IN THE PITCHING OSCILLATION

The ow�eld around the oscillating capsule is very complicated, and it is di�cult to

discuss the mechanism of the dynamic instability in detail without the general under-

standings of the ow�eld. In this chapter, the ow�eld around the capsule under the

forced pitching oscillation is simulated on a relatively coarse grid, and the behavior of

the oscillation of the ow�eld is discussed.

4.1 Method of Analysis

4.1.1 Flow Con�guration

The simulation in this chapter basically follows Hiraki's experiment. The ow�eld around

the oscillating D45 model capsule, which was dynamically unstable at transonic speeds in

the experiment, is numerically simulated and discussed. Hiraki's experiment was carried

out with one-dimensional free oscillation method, but the limit cycle oscillation of the

capsule observed in the experiment was almost sinusoidal, and therefore the motion of

the capsule is approximated by the forced sinusoidal oscillation in the present simulation.

The numerical conditions are shown in Table 4.1. The period of the oscillation is 149.7

in non-dimensional time unit, and the time step �t is set to be 1/150,000 of the period.

The simulation starts from the steady state solution of zero angle of attack. During the

34
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Table 4.1: Flow conditions
Mach number 1.3

Dia. of the capsule 0.1 m
Re number 2:5� 106

Frequency 20 Hz

Max. pitch angle �20�
Reduced frequency 0.0323

computation, overall aerodynamic forces are monitored. The history of the forces at the

third cycle coincides with that at the second cycle, and the ow�eld is considered to have

reached to the periodic state in two cycles. Seven oscillation cycles are simulated after

the ow�eld reached to the periodic state to accumulate the unsteady ow�eld data.

The simulations are carried out on 4PE of the Fujitsu VPP500/7 at the ISAS, and it

required 40 hour to compute one oscillation cycle.

4.1.2 Grid Systems

The computational grid is shown in Fig. 4.1. The grid consists of 121� 64� 61 points.

The minimum grid spacing at the wall is 6:0 � 10�5 so that it captures the turbulent

boundary layer. The computational domain ranges from -2.0 to 10.0 in the x direction

and -10.0 to 10.0 in the y and z directions. The whole grid system oscillates around the

center of the gravity of the capsule (xCG; 0; zCG) in pitch sinusoidally. The velocity at

each node is given by 8>>>>>><>>>>>>:
xt = (z � zCG)�max! cos(!t)

yt = 0

zt = �(x� xCG)�max! cos(!t)

(4.1)

The inuence of the body motion is reected to the simulation through the temporal

components of the metrics and the solid wall boundary conditions (Eq. (3.26)). The outer

boundary is placed far enough (10D) from the capsule. and the results of the simulation

show that all the disturbance are damped out inside the computational domain. Therefore
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Figure 4.1: Computational Grid (121� 64� 61)

the outer boundary condition that �x all the physical properties to the uniform ow

condition is considered to be reasonable for this simulation.

4.1.3 Post Processing

Instantaneous physical properties of the ow�eld are saved every 1,000 time steps to

the �les, and 150 data �les (1.3 gigabytes in size) are created each cycle. The physical

properties are de�ned on the moving grid �xed to the capsule, but the grid system �xed to

the space is sometimes more convenient for the analysis of the amplitude and the phase.

The physical properties are mapped over the equally spaced rectangular grid �xed to the

space as shown in Fig. 4.2, and time series of data are obtained at each point. The time

series of data are then processed by the Fourier analysis, and the spatial distribution of

the amplitude and the phase are obtained.

The ow�eld away from the capsule is mainly discussed on the rectangular grid, and

the physical properties at the surface of the capsule is discussed on the original body-�tted

grid system in this chapter.
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Figure 4.2: Grid used in post processing

4.2 Overview of the Flow�eld

Figure 4.3 shows the instantaneous density gradient distribution around the capsule in

the forced pitching oscillation. The capsule is at zero angle of attack, and it is in the

pitch-up motion at the moment of the Fig. 4.3 The bow shock wave is formed ahead of

the capsule. The ow separates at the edge of the capsule and forms shear layer behind

the capsule. The shear layer converges as it goes downstream due to the strong expansion

at the edge, and the recompression shock wave emanates from the neck point of the wake.

The oscillation of the ow�eld is shown in Fig. 4.4. 1 The fundamental ow features

do not change even when the capsule oscillates, although their locations move with the

pitch angle of the capsule; the upper half of the bow shock wave moves backward and

lower part moves forward, and the wake downstream moves upward, when the capsule is

pitched up. Figure 4.4 also shows that the ow�eld oscillates with hysteresis. The wake

passes slightly below the centerline when the capsule is pitching up at � = 0�, while it

passes upper side when the capsule is pitching down at � = 0�. The ow�eld downstream

varies depending on the direction of the pitching motion of the capsule.

The ow�eld behind the capsule is essentially unsteady due to the vortex shedding

1Animation is available in the attached CD-ROM. See Appendix D
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Figure 4.3: Instantaneous density gradient distribution

from the edge of the capsule. The power spectrum density of the base pressure of the

capsule in the forced pitching oscillation (20Hz) and that of the capsule �xed at zero

angle of attack are compared in Fig.4.5. The base pressure of the capsule �xed at � = 0�

oscillates at approximately 770Hz, which corresponds to the Strouhal number St = 0:256,

due to the vortex shedding and no distinct peak is observed below 400Hz. Figure 4.5 shows

that the lowest natural frequency of the ow�eld is 770Hz for this ow con�guration.

When the capsule oscillates in pitch at 20Hz, the peak that corresponds to the vortex

shedding shifts higher to 1000Hz, and new peaks appear at 20Hz and 40Hz. These peaks

are the harmonic uctuation induced by the pitching motion of the capsule. Although

high frequency uctuation is noticeable behind the capsule, its frequency is far higher than

that of the oscillation of the capsule, and it seems that the high frequency disturbance

does not directly contribute to the dynamic instability of the capsule. The pitching

oscillation of the capsule induces only the harmonic uctuations to the ow�eld, and

therefore we can focus only on the harmonic component of the oscillation of the ow�eld

in the following discussions.
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Figure 4.4: Flow�eld around the oscillating capsule
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Figure 4.5: Power spectrum density of the base pressure

4.3 Pitching Moment and Surface Pressure

4.3.1 Pitching Moment

The aerodynamic pitching moment around the axis of rotation is plotted against the pitch

angle in Fig. 4.6. The gradient of the moment, @M
@�

is negative. The aerodynamic moment

works to suppress the pitch angle of the capsule, therefore the capsule is statically stable

in the pitch. Hysteresis of the moment is also observed in Fig. 4.6. The pitching moment

is higher when the angular velocity is positive than when the angular velocity is negative.

Consequently, net work-input to the capsule during one oscillation cycle is positive, and

the amplitude of the oscillation grows up. The capsule is dynamically unstable under

this enforced oscillation although it is statically stable.

4.3.2 Surface Pressure

Time histories of the surface pressure at two locations; one in the front and the other in the

base part of the capsule, are plotted with the history of the pitch angle in Fig. 4.8. Both



4.3. Pitching Moment and Surface Pressure 41

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

-20 -15 -10 -5 0 5 10 15 20

P
itc

hi
ng

 m
om

en
t

Pitch angle (deg)

Pitching moment

Figure 4.6: Pitching moment works to the capsule

are located in the plane of symmetry of the capsule, and their positions are shown in Fig.

4.7. The cross symbols in Fig. 4.8 denote the instantaneous surface pressure obtained by

the numerical simulation, and the dashed lines are the �rst harmonic component obtained

from the Fourier analysis. The history of the base pressure is processed by the LPF with

cut-o� frequency of 150Hz to eliminate high frequency uctuations.

The surface pressure at the front point varies synchronously with the pitch angle; the

pressure is same at the same pitching angle both in the pitching up and down. Therefore,

the front pressure does not contribute to the hysteresis of the pitching moment. On the

other hand, the base pressure oscillates with a phase delay against the pitch angle. The

base pressure at a certain pitch angle varies depending on the direction of the pitching

motion and hence, the pitching moment due to the base pressure shows hysteresis. The

pressure at the upper part of the base is higher when the pitch angle is positive, and the

higher static pressure at the base rotates the capsule pitching-down. The base pressure

works on the capsule to make it statically stable. In general, a system that is statically

stable becomes dynamically unstable when the system works with delay, and therefore

the phase delay of the base pressure makes the capsule dynamically unstable.
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Figure 4.7: Location of pressure port

The dynamic instability of the capsule is caused by the hysteresis of the pitching

moment, and it is the phase delay of the backside pressure that produces the hysteresis.

4.4 Fluctuation of the Pressure Field

Time histories of the static pressure at all the nodes are processed by the Fourier analysis,

and the spatial distribution of the amplitude and the phase are obtained. Figure 4.9

shows the distribution of the phase angle of the oscillation of the static pressure. Only

the region where the phase angle is between �20� and +20� is displayed, and the white

region indicates the area where the phase is delayed. The contour plots of the density

gradient are plotted in the bottom half for reference. The pressure phase along the dashed

lines A and B in Fig. 4.9 are plotted in Figs. 4.10 and 4.11 respectively.

The ow�eld can be divided into following three regions:

Region 1: The recirculating region surrounded by the capsule, shear layer and the re-

compression shock wave

Region 2: Wake region downstream of the recompression shock wave

Region 3: Flow�eld outside of the wake
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Figures 4.9 to 4.11 show that the pressure phase is delayed only in the Region 1.

The ow�eld is supersonic at the Region 3, and the pressure at this region is directly

inuenced by the upstream ow�eld which is coupled with the attitude of the capsule.

Therefore the phase delay angle at the this region is almost zero. Figure 4.11 shows that

the phase angle is nearly constant inside both the Region 1 and Region 3, and it changes

rapidly at the shear layer at Z=D ' 0:5. The gradient of the phase angle at the shear

layer is as large as 14 (rad/m). One-dimensional propagation of a disturbance wave is

described as

f (x; t) = f0e
i!(t� x

C
)

where i is the imaginary unit and C is the speed of the wave. The phase angle � is given

by

�(x; t) = !

�
t� x

C

�

therefore the spatial gradient of the phase angle caused by the propagation is

@�

@x
=
!

C
=

2�f

C

The ow�eld considered in this study is transonic, and the value of the characteristic

speeds u; c and u � c are all hundreds m/s. If the pressure uctuations at the Region

1 and the Region 3 are directly correlated each other, the gradient of the phase angle

should be 2�f
c
' 0:4(rad/m) at the interface of two regions, therefore the gradient of

14(rad/m) along the line B is unreasonably large for the transonic ow�eld. It indicates

that the uctuation inside the Region 1 is not directly inuenced by the uctuation at

the Region 3. The pressure at the Region 2 oscillates with the phase angle approximately

160�, which is 20� delayed against 180�. The pressure at the Region 2 decreases when

the capsule pitches up, but the its oscillation is slightly delayed from the pitch angle,

and the delay time is same as that at the Region 1. Since the pressures at two regions
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oscillate with the same delay time, the pressure right behind the capsule is considered to

be coupled with the ow�eld downstream of the neck point.

4.5 Oscillation of the Shock Wave and the Wake

The oscillation of ow variables other than the pressure is discussed in this section.

The amplitude and the phase of the uctuation of the radial position of the wake

along the section B-B in Fig. 4.12 are shown in Table 4.2. The wake at the section B-B

represents the interface between the Region 1 and Region 3. Since the position of the

capsule's edge moves when the capsule oscillates, the deviation of the edge position is

subtracted from that of the wake position at the analysis of the phase and the amplitude.

The amplitude of the oscillation is less than 2% of the diameter of the capsule, and it

does not seem that the oscillation of the wake near the capsule directly inuences the

pressure phase behind the capsule.

Secondly, the axial location of the recompression shock wave along the section A-A in

Fig. 4.12 is plotted against time in Fig. 4.13. The recompression shock wave oscillates

twice during one cycle of the oscillation of the capsule (0.05 sec). The recompression shock

wave takes its most backward position 2.2 msec after the capsule passes the neutral (pitch

angle � = 0) position. Thus, the motion of the recompression shock wave is 2.2 msec

delayed from the capsule. The delay time of the recompression shock wave coincides

with that of the oscillation of the static pressure at Region 1 and Region 2. Since the

recompression shock wave emanates from the neck point, the motion of the shock wave

represent the oscillation of the ow�eld near the neck point.

The pressure inside the Region 1 and Region 2, and the ow�eld around the neck

point, which is the interface between two regions, all oscillate with the same delay time.

Again, the pressure behind the capsule is considered to be coupled with the ow�eld

around the neck point.



4.6. Summary 47

2 30 1 54 6

2 30 1 54 6

0

2

-2

X/D

Z/D

1

-1

A AB

B

Figure 4.12: De�nition of the sections

Table 4.2: Oscillation of the wake near the capsule

Amplitude Phase

Section B-B 0.016 -98.40 deg

4.6 Summary

Flow�eld around a capsule oscillating at transonic speed is numerically simulated. It

becomes clear that the dynamic instability of the capsule is caused by the phase delay of

the base pressure.

The pressure right behind the capsule, the pressure downstream of the recompression

shock wave and the recompression shock wave that emanates from the neck point all

oscillate with the same delay time. It indicates that the base pressure is coupled with

the ow�eld near the neck point Therefore, delay in the transition of the ow�eld near

the neck point is the cause of the delay in the oscillation of the base pressure.
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CHAPTER 5

EVALUATION OF THE DYNAMIC

CHARACTERISTICS BY A SIMPLE

CONSTANT-DELAY MODEL

The study in chapter 4 revealed that the dynamic instability of the capsule is caused

by the delay of the aerodynamic pitching moment. However, the ow�eld behind the

capsule is scattered by the high frequency disturbances, and it is still di�cult to discuss

the mechanism of the dynamic instability.

Fortunately, the reduced frequency of the oscillation is as low as O(0:01), and the

motion of the capsule is very slow compared to the characteristic time of the ow�eld.

The fundamental ow structures such as the shock wave and the wake are not changed

by the pitching motion of the capsule, and the inuence of the motion upon the ow�eld

seems to be small. Considering these characteristics, the ow�eld around the oscillating

capsule may be reasonably modeled by the ow�eld around the capsule which changes

its pitch angle in a quasi-steady manner. If this is the case, it becomes possible to discuss

the mechanism of the dynamic instability by the simulation of the ow�eld around the

capsule at �xed pitch angle, with consideration of constant time delay of the backside

pressure. There is no need to process gigabytes of data, and it will be easier to discuss

the mechanism of the ow�eld with this approach.

In this chapter, the ow�elds around the capsule �xed at certain pitch angle and

49
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Table 5.1: Flow conditions
forced oscillation �xed pitch angle

Mach number 1.3

Dia. of the capsule 0.1 m
Re number 2:5� 106

Pitch angle

forced sinusoidal oscillation

Frequency : 20 Hz

Max. pitch angle : �20�
Reduced frequency : 0.0323

0�, 2:5�, 5�, 7:5�,

10�, 15�, 20�

that around the oscillating capsule are numerically simulated, and the di�erence in the

aerodynamic pitching moment is discussed.

5.1 Method of Analysis

5.1.1 Flow Con�guration

The geometry of the capsule and the uniform ow conditions are same as those of the

simulation in chapter 4.

The ow�eld is highly unsteady even when the pitch angle is �xed, and the time step

is de�ned small enough to resolve the unsteady uctuation of the ow�eld. The time

step �t for the simulation of the oscillating capsule is 1/150,000 of one oscillation cycle

again, and the time step for the simulation of �xed pitch angle is set to be 0.001 in

non-dimensional time unit. �t is approximately 3:4� 10�7 second in physical time unit

for both cases. The numerical results showed that the highest dominant frequency of the

ow�eld is approximately 1 kHz which corresponds to the Strouhal number (St = fD=u)

of 0.27, and therefore �t = 3:4 � 10�7 second is small enough to resolve the unsteady

uctuation of the ow�eld.

The simulations are carried out on the Fujitsu VPP800/12 at the ISAS. It required 20

hour on 4PE of VPP800/12 to compute one forced oscillation cycle. The simulations for

the �xed pitch angle are carried out on single PE, and each case required approximately
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Figure 5.1: Computational Grid (151� 64� 121)

30 hour.

5.1.2 Grid Systems

The grid used in this study is shown in Fig. 5.1. The grid consists of 151 � 64 � 121

points with O-O topology, and the grid are clustered at the base region to resolve the

ow�eld behind the capsule. The minimum grid spacing at the wall is 2:0 � 10�5, and

the computational domain ranges from -4.0 to 10.0 in the x direction and -10.0 to 10.0

in the y and z directions. The Courant number is smaller than 0.3 with �t = 1=1000,

except for the region near the wall (� < 0:04).

5.1.3 Post Processing

Figure 5.2 shows the time history of the static pressure at a point at the base of the

D45 model �xed at � = 10�. High frequency uctuation is observed although the pitch
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Figure 5.2: Time history of the base pressure of the D45 model �xed at � = 10�

angle of the capsule is �xed. The amplitude of the oscillation reaches 10% of the average

pressure, and its frequency is approximately 1kHz. The high frequency uctuation is

also observed in the simulation result of the forced pitching oscillation (Fig. 4.5). These

disturbances correspond to the shedding of small vortices from the edge of the capsule.

Since the time scale of the vortex shedding (1KHz) is totally di�erent from that of the

oscillation of the capsule (20Hz), the slow oscillation of the capsule does not seem to

inuence the high frequency shedding of the small vortices. The behavior of the small

vortices are considered to be the same both for the capsule �xed at certain pitch angles

and the capsule oscillating in pitch. The inuence of the slow pitching oscillation of

the capsule on the ow structure is the primary concern in this chapter, and therefore

the inuence of the high frequency component should be excluded for the low frequency

component to be clearly observed.

For the simulation of the �xed pitch angle cases, the physical properties are summed

up during 20,000 steps (approximately 7msec in the real time unit) after the ow�eld

have reached to the stationary state, and the time averaged properties are used for the

discussion. The average time of 7msec is considered to be long enough for the disturbance
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at nearly 1kHz oscillation to be excluded.

The physical properties obtained from the forced-oscillation simulation are processed

by the Low Pass Filter (LPF) with cut-o� frequency of 150Hz for the high frequency

uctuation to be eliminated. Since the LPF cause delay to the output data, the �ltered

history of the physical properties can not be compared with the raw history of the pitch

angle directly. The history of the pitch angle is also processed by the same LPF to

compensate the delay caused by the LPF. The dominant frequency of the ow�eld is

20Hz, which is low enough compared with the cut-o� frequency, and the LPF does not

distort the fundamental behavior of the ow�eld.

5.2 Simple Constant-Delay Model

Overall aerodynamic pitching moment due to the static surface pressure that works on

the capsule is given as M =
I
p~n�~r � ds. The ow�elds in front and back of the capsule

are considerably di�erent each other, and therefore we separate the contribution from the

front pressure and that from the base pressure as follows:

M =Mf +Mb (5.1)

8>><>>:
Mf (�) =

I
front area

p~n� ~r � ds

Mb(�) =
I
base area

p~n� ~r � ds
(5.2)

If the surface pressure of the capsule oscillates with the delay time � against the

pitch angle (\constant-delay model") when the capsule oscillates in pitch with � =

�MAX sin(!t), the aerodynamic pitching moment works on the capsule during the os-

cillation will be described as

Mf delay(t) = Mf �xed (�MAX sin(!(t� �f ))) (5.3)
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Mbdelay(t) = Mb�xed (�MAX sin(!(t � �b))) (5.4)

where the subscript \�xed" denotes the moment works on the capsule at �xed pitch

angle, and \delay" denotes the constant-delay model. The result of the forced-oscillation

simulation in chapter 4 showed that �f ' 0 and !�b � 1, then

M(t) = Mf delay
(t) +Mbdelay(t)

=
�
Mf �xed(�)

+Mb�xed(�)

�
� �b

@Mb�xed

@�

�����
�

_�+ O(�2) (5.5)

TheMb shows strong non-linearity at small angles of attack, as shown in the next section,

and the higher order terms in Eq.(5.5) is not negligible. However, Eq.(5.5) describes

general characteristics of the aerodynamic pitching moment.

The aerodynamic pitching moment works on the object placed in a uniform ow is

expressed using aerodynamic coe�cients as follows

M =
1

2
�1u

2
1SD �

�
Cm +

�
Cmq + Cm _�

� D

u1
_�

�
(5.6)

Note that � = � since the object is placed in the uniform ow.

Comparing Eq.(5.5) and (5.6), it gives 1

Cm / Mf �xed(�) +Mb�xed(�) (5.7)

Cmq + Cm _� / ��b
@Mb�xed

@�

�����
�

(5.8)

Since Mf is much larger than Mb, Eqs. (5.7) and (5.8) tell that the static aerodynamic

characteristics of the capsule depends mainly on Mf , while the dynamic characteristic

is mainly determined by the gradient of Mb. The gradient of Mb is evaluated from the

simulations of the ow�eld around the capsule at �xed pitch angles, and therefore the

1These expressions are compared with the Hiraki's expression. See Appendix C
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Figure 5.3: Base pitching moment of the D45 Model (Fixed pitch angle)

dynamic characteristic of the capsule can be evaluated without the simulation of the

forced oscillation, provided that the base aerodynamic pitching moment Mb during the

forced oscillation can be approximated by the \constant-delay model" .

5.3 Comparison with the Results of the Forced Os-

cillation Simulation

The square symbols in Fig. 5.3 show the base pitching momentMb obtained for the D45

Model capsule �xed at each angle of attack. The pitching moment is almost constant at

Mb ' �0:02 for j�j � 0, and abruptly reverses its sign at � = 0. Mb is approximated by

the following equations

Mb�xed(�) =

8>>>>>><>>>>>>:
aM tanh(bM�) j�j < �M0

cM(� � �M 0) + aM tanh(bM�M0) � > �M 0

cM(� + �M0)� aM tanh(bM�M0) � < ��M 0

(5.9)
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Figure 5.4: Base pitching moment of the D45 Model (constant-delay model)

cM = aMbM (1� tanh2(bM�M 0))

aM = �0:0019; bM = 0:5; �M0 = 5:5

Substituting Eq.(5.9) into Eq.(5.4) and plotting for the several �b, it gives Fig. 5.4.

Each curves in the Fig. 5.4 shows the history of the Mbdelay evaluated by the \constant-

delay model" for the delay time 1.5, 3.0, 4.5 and 6.0 msec, respectively. If the fundamental

ow structure behind the capsule is not disturbed by the pitching motion of the capsule,

the base pitching moment for the capsule in the forced oscillation may be modeled by

the \constant-delay model", and the actual history of Mb will become similar to one of

the curves in Fig. 5.4. The solid curve in Fig. 5.5 shows the actual history of the base

pitching momentMb when the D45 Model capsule is in the forced pitching oscillation. The

history ofMbdelay evaluated from the \constant delay model" is also plotted as symbols in

the �gure. The magnitude ofMb is almost constant at �0:002, andMb reverses its sign at

certain pitch angle. The history of Mb is close to the plots of the \simple constant-delay

model" for the delay time roughly � = 3:0msec.

The base pitching moment Mb during the forced oscillation is reasonably approxi-

mated by the simple \constant-delay model". The characteristic of the base pressure
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Figure 5.5: Base pitching moment of the D45 Model (Forced oscillation)

distribution reects the behavior of the ow�eld behind the capsule, and therefore it

indicates that the ow�eld behind the oscillating capsule can also be expressed by the

\constant-delay model". That is, the mechanism of the ow�eld that determine the base

pressure distribution of the oscillating capsule is essentially the same as that for the cap-

sule at �xed pitch angle with the delay time in mind. Therefore, it is possible to discuss

the correlation between the ow structure and the dynamic stability of the capsule from

the simulation of the ow�eld around the capsule at �xed pitch angle.

5.4 Consistency with the Experiment

Figure 5.5 also shows that the hysteresis in the base pitching moment appears at j�j < 10�,

and the capsule is dynamically unstable only in this region. Hiraki[1] reported from his

experiment that the D45 Model capsule is dynamically unstable at small angle of attack,

and the constant-delay model is consistent with his experiment.

The base pitching moment of the D30 Model capsule is plotted with the base pitching

moment of the D45 Model capsule in Fig. 5.6. The base pitching moment of the D30
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Figure 5.6: Base pitching moment of the D45 & D30 Models (Fixed pitch angle)

Model is almost constant at Mb ' 0. The pitch damping coe�cient Cmq + Cm _� is

proportional to
@Mb

@�
(Eq. 5.8), therefore the D30 Model capsule is predicted to be

dynamically neutral or stable from the constant-delay model, and in fact, the D30 Model

capsule was dynamically stable in the Hiraki's experiment.

These two results show that this simple constant-delay model are consistent with the

characteristic features observed in the past experiments

5.5 Summary

The aerodynamic pitching moment works on the capsule at �xed pitch angle and that

works on the capsule in the forced pitching oscillation are compared. The magnitude

of the base pitching moment for the capsule at �xed pitch angles are almost constant

at j�j � 0 and reverse its sign abruptly at � = 0. The base pitching moment for the

capsule in the oscillation also shows similar features except for the small delay, and the

history of the base pitching moment is reasonably expressed by the \simple constant-

delay model". It indicates that fundamental structure of the ow�eld that governs the

base pressure distribution is not changed by the pitching motion of the capsule, and
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therefore the mechanism of the dynamic stability of the capsule can be discussed by the

simulation of the ow�eld around the capsule at �xed pitch angle. Considering that the

surface pressure is delayed only in the base region, the dynamic stability of the capsule

depends mainly on the gradient of the static base pitching moment, @Mb

@�
.



CHAPTER 6

FLOWFIELD ANALYSIS FOR THE

CAPSULE AT FIXED PITCH ANGLE

The simulation of the ow�eld around the capsule under the forced pitching oscillation

in chapter 4 showed that the dynamic instability of the capsule is caused by the delay of

the base pressure, and the base pressure is governed by large scale ow structure behind

the capsule. The ow�eld around the oscillating capsule is compared with the ow�eld

around the capsule at �xed pitch angle in chapter 5. It becomes clear that the ow

structure behind the oscillating capsule is essentially same as that behind the capsule at

�xed pitch angle, except for the slight delay against the pitch angle.

In this chapter, the ow�eld around the capsule at �xed pitch angle is intensively

analyzed and the correlation between the ow�eld and the base pressure distribution is

discussed.

6.1 Flow Con�guration

The ow�elds around the D45 model capsule and the D30 model capsule are compared

in this chapter. The D45 model capsule was dynamically unstable, while the D30 model

capsule was dynamically stable in the Hiraki's experiment. Therefore, the di�erence in

the dynamic stability of the two capsules is considered to be related to the di�erence in

the ow�elds around two models.

60
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The numerical conditions and the grids are same as those used in chapter 5.

6.2 Base Pressure Distributions

Following the discussion about the characteristic of the pitching moment caused by the

base pressure in chapter 5, the characteristic of the base pressure distribution itself is

studied.

6.2.1 Time-Averaged Distribution

The time-averaged base pressure distributions along the centerline (line A-A in Fig. 6.1)

are plotted against z-coordinate for each pitch angle in Fig. 6.2. The base pressure of

the D45 model (Fig. 6.2(a)) uniformly decreases at the region z < 0:3 (lower side) as the

angle of attack increases. The pressure at z > 0:3 also decreases, but for the less amount.

The pressure level at z > 0:3 is almost the same as that at z < 0:3 for the small angle of

attacks, but it is higher for the large angle of attacks. The pressure di�erence between

z < 0:3 and z > 0:3 increases as the angle of attack increases. The high pressure region

at the leeward side (z > 0:3, upper side of the base) for the positive pitch angle produces

pitch-down moment. On the other hand, the base pressure of the D30 model is almost

uniform even when the pitch angle is positive (Fig. 6.2(b)), and the base pressure does

not produce any pitching moment.

These characteristics are consistent with the characteristics of the base pitching mo-

ment Mb shown in Fig. 5.6. Considering that the dynamic stability of the capsule is

governed by the gradient of Mb, the ow structure that causes the di�erence in the time-

averaged base pressure distribution is also the cause of the dynamic instability of the

capsule.
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Figure 6.2: Time averaged base pressure

6.2.2 Time History of the Base Pressure

The time-averaged pressure distribution behind the capsule varies linearly with the angle

of attack, and the base pitching moment is almost constant for 0� < � � 20�. The

fundamental feature of the ow�eld behind the capsule is considered to be the same for

0� < � � 20�, and therefore the characteristics of the ow�eld is discussed mainly for

� = 10� as a representative case.

Time histories of the base pressure at 4 points in the base (shown in Fig. 6.3) of

two capsules at � = 10� are shown in Figs. 6.4(a) and 6.4(b). The time-averaged

base pressure for the D45 model at � = 10� is approximately 0.36 (Fig. 6.2(a)), and

instantaneous base pressure at 3 points, \Right",\Bottom" and \Left" uctuate within
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Figure 6.3: Location of the pressure ports (After looking forward)

the range of 0:37 � 0:01. The pressures at the \Top" also uctuates around 0:38 with

small amplitude for the most part, but it occasionally rises up to approximately 0.45.

The pressure at all the 4 ports are almost uniform except for the short pressure peaks.

Since the base pressure distribution for the D45 model is described as a superposition of

the constant value and the short pressure peaks, the time-averaged pressure distribution

depends on the behavior of the pressure peaks. The time-averaged pressure at the leeward

(upper) side of the D45 model becomes higher because the pressure peaks appear only in

this region.

The base pressure for the D30 model (6.4(b)) is also expressed as the superposition

of the constant value and the short pressure peaks, but the peaks appear not only at the

\Top" but appear randomly at all the pressure ports. The pressure peaks also exist for

the D30 model, but as they appear randomly all over the base, the time-averaged base

pressure of the D30 model becomes uniform.

The di�erence in the characteristics of the time-averaged base pressure reects the

di�erence in the unsteady behavior of the pressure peaks. Therefore the ow mechanism

that cause the pressure peak is considered to be responsible for the dynamic instability

of the capsule.
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Figure 6.4: Time history of the base pressure

6.3 Correlation between the Base Pressure and the

Velocity Field

Figure 6.5 shows the time averaged velocity vectors in the plane of symmetry of the D45

model at � = 10�. A reverse ow region is observed behind the capsule. The maximum

velocity of the reverse ow is approximately u ' �0:5. The non-dimensional density

inside the recirculating region is � ' 0:4 and the resulting non-dimensional dynamic
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Figure 6.5: Vector map in the plane of symmetry (� = 10�,time averaged)

pressure is 1
2
�u2 ' 0:05, which is consistent with the height of the pressure peaks in Figs.

6.4(a) and 6.4(b).

Figure 6.6 shows the correlation between the reverse ow and the base pressure. 1

Each picture corresponds to the instance when the pressure peak, indicated by the arrow

t1� t6 in Fig. 6.4, appear at the base. The blue semi-transparent surface is the iso-surface

of axial velocity u = �0:4, which represents the core region of the reverse ow. The color

of the surface of the capsule denote the static pressure distribution. The contour of the

axial velocity are also plotted at 3 planes, x = 1:0, 1:5 and 2:0 to show the position of

the reverse ow region within the wake. The contours are displayed only for the subsonic

region, and therefore the shape of the contour planes represent the cross sections of the

wake at each planes. The high pressure regions at the base (colored yellow and red)

always appear at the head of the reverse ow. For the D45 model, the reverse ow passes

upper side of the wake and the high pressure spot always appears at the top part of the

base. The position of the reverse ow of the D30 model near the base uctuates with the

1Animations are available in the attached CD-ROM. See Appendix D
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high pressure spot. These �gures indicate that the high pressure spots are caused by the

impingement of the reverse ow against the base.

The primary di�erence between the reverse ow of two capsules is their position at the

downstream sections. The reverse ow of the D45 model passes upper side of the wake

at all three sections, while the ow�eld behind the D30 model is essentially axisymmetric

even for the positive pitch angle and the reverse ow passes almost center of the wake at

the sections x = 1:5 and 2:0. The base pressure distribution of the capsule is considered

to be correlated to the ow structure that shifts the reverse ow upward.

6.4 Vortex Structure Behind the Capsule

6.4.1 Time-averaged Streamlines

Figure 6.7 shows the time-averaged streamlines behind the capsules at the �xed pitch

angle, � = 10�. The two-dimensional time-averaged streamlines in the plane of symmetry

are also shown in Fig. 6.8 A pair of large scale vortices is observed behind the D45 model

(Fig. 6.7(a)). These vortices are the counterclockwise vortex when observed form the left

side (Fig. 6.8(a)), and this vortex pushes the reverse ow upward. The streamlines behind

the D30 model (Fig. 6.7(b)) are distorted almost randomly, and no clear ow structure is

observed from the �gure. In Fig. 6.8(b), the size of the upper vortex (clockwise) and the

lower vortex (counterclockwise) are the same, and the ow�eld behind the D30 model is

almost axisymmetric although the pitch angle of the capsule is not zero.

It becomes clear that the ow structure that makes the wake asymmetric and shifts

the reverse ow upward is the pair of vortices behind the capsule.
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t = t1

t = t2

t = t3

(a) D45 Model

t = t4

t = t5

t = t6

(b) D30 Model

Figure 6.6: Reverse ow and base pressure (� = 10�)
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(a) D45 model (b) D30 model

Figure 6.7: Streamlines behind the capsules (� = 10�, time-averaged)

(a) D45 model (b) D30 model

Figure 6.8: Streamlines in the symmetry plane (� = 10�, time-averaged)
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(a) Side view

(b) Back view (c) Top view

Figure 6.9: Vortex structure behind the D45 model (schematic view)

6.4.2 Vortex behind the Oscillating Capsule

The particle traces behind the D45 model capsule in the forced oscillation are shown in

Fig. 6.10. 2 The time series of the physical properties are pre-processed by the LPF with

cut-o� frequency of 150Hz to eliminate high frequency disturbances. The particles are

released from X=D = 1:25 in a line at a certain interval, and the unsteady ow structure

is visualized by the deformation of the particle line. The color of the particles denotes the

residence time after the release, and the color of the capsule show the surface pressure

distribution. The capsule is pitching down from � = 2:73� to � = �14:71� in Fig. 6.10.

The large counterclockwise vortex, which is recognized as the region where the particle

2Animation is available in the attached CD-ROM. See Appendix D
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does not exist, is observed right behind the capsule when the pitch angle is positive (Fig.

6.10(a)). At the moment of Fig. 6.10(b), the pitch angle of the capsule is almost zero. But

the counterclockwise vortex is still dominant behind the capsule and the surface pressure

at the upper side of the base is higher than the pressure at the lower half. The ow�eld

behind the capsule is close to that at the small positive pitch angle, and therefore the

transition of the ow�eld is delayed from the pitch angle of the capsule. As the capsule

further pitches down, the counterclockwise vortex gradually diminishes (Fig. 6.10(c))

and a small clockwise vortex is formed at the upper side downstream (Fig. 6.10(e)).

It gradually develops and propagates upstream, and �nally replace the counterclockwise

vortex at the lower side. (Fig. 6.10(g)). The surface pressure at the lower half does

not exceeds the pressure at the upper part until the clockwise vortex becomes dominant

behind the capsule.

The transition of the base pressure distribution is consistent with the transition of

the vortex structure behind the capsule. The base pressure of the capsule in the pitching

oscillation is also governed by the vortex structure behind the capsule.

6.4.3 Vortex Core

The vortices behind the capsule have three-dimensional structure. It is di�cult to recog-

nize the three-dimensional vortex by two-dimensional pictures of the streamlines (Figs.

6.7 and 6.9), and therefore the behavior of the vortices behind the capsule was discussed

only by the two-dimensional streamlines in the plane of symmetry (Figs. 6.8 and 6.10) in

the previous two sections. The vortex-core identifying technique developed by Sawada[21]

is applied here for the discussion of the three-dimensional structure of the vortices. His

method is based on the critical-point analysis, �nds out the core of vortices automatically,

and visualize the vortices as the locus of the vortex core. It gives more clear view of the

vortex structure than the streamlines.
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(a) � = 2:73� (b) � = 0:22�

(c) � = �3:94� (d) � = �6:36�

(e) � = �9:44� (f) � = �10:88�

(g) � = �12:90� (h) � = �14:71�

Figure 6.10: Particle traces behind the D45 model (Forced pitching oscillation)
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(a)

(b)

(C)

(d)

Figure 6.11: Locus of the vortex core (� = 10�,time averaged)

Figure 6.11(d) shows the locus of the vortex core behind the D45 model at � = 10�, 3

and the arrows in the �gure show the direction of the propagation of the vortices. Figures

6.11(a)�(c) show the two-dimensional streamlines inside each cross section. The vortex

behind the capsule is composed of a distorted ring vortex and a pair of longitudinal

vortices that emanates from the kink of the ring vortex. The ring vortex corresponds to

the reverse ow, as shown in section(a), and two contra-rotating vortices observed in Fig.

6.8 are turned out to be the cross sections of the same ring vortex. The behavior of the

reverse ow is correlated to the shape of the ring vortex. That is, when the lower part

3Animation is available in the attached CD-ROM. See Appendix D
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of the ring vortex is in front of the upper part, the reverse ow directs upward, passes

upper side of the wake and hits the base at its upper part.

The vortices at the section (c) are a pair of longitudinal vortices. The right (looking

after) vortex rotates clockwise, and the left vortex rotates counterclockwise, and they

propagate downstream. The vortices at the section (b) also look like longitudinal vor-

tices, but they are the parts of the distorted ring vortex. The vortex at the section (b)

propagates upstream. Although the vortices at the sections (b) and (c) are the separate

vortices, they rotates in the same direction, and they both emanate from the neck point.

It seems that the vortices at the sections (b) and (c) are both induced by ow structure

at the neck point.

Since the vortices at the sections (b) comes from the distortion of the ring vortex, the

distortion of the ring vortex, that govern the behavior of the reverse ow, is considered

to be closely related to the formation of the longitudinal vortices downstream.

6.4.4 Pair of the longitudinal Vortices

Figure 6.12 shows the sideview of the streamlines inside the shear layer. The streamlines

right behind the capsule slightly directs downward. The downward streams converge at

the rear end of the recirculating region, roll up, and form upward stream. The rolled

up upward stream splits into two streams. The ow going downstream forms the pair of

longitudinal vortices, and the ow going upstream distorts the ring vortex. Both the pair

of the longitudinal vortices downstream and the distortion of the ring vortex are caused

by the roll up of the streamlines inside the shear layer at the neck point.

The streamlines inside the shear layer are directly connected to the pair of the lon-

gitudinal vortices downstream, and the streamlines and the longitudinal vortices are

considered to be an united ow structure shown in the schematic �gure as Fig. 6.13.
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Figure 6.12: Streamlines inside the shear layer (� = 10�,time averaged)

Figure 6.13: Schematic view of the longitudinal vortex pair
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6.5 Summary

The ow�elds around the capsules at �xed pitch angle are simulated, and the ow struc-

ture that controls the base pressure distribution is discussed.

The base pressure distribution is determined by the impingement of the reverse ow

against the base. When the reverse ow impinges the base at its top, the upper base pres-

sure becomes higher and the base pressure produce pitch-down moment. The behavior

of the reverse ow is correlated to the vortex structure behind the capsule. The vortex

behind the capsule is composed of a ring vortex and a pair of longitudinal vortices. It

seems that the formation of the pair of longitudinal vortices is closely related to the base

pressure distribution.



CHAPTER 7

TOTAL DISCUSSIONS

The ow�eld around the capsules has been discussed and the mechanism of the dynamic

instability was revealed in the previous chapters. In this chapter, the mechanism of the

dynamic instability is summarized, and it is veri�ed through several numerical experi-

ments.

7.1 The Mechanism of the Dynamic Instability

7.1.1 Modeling of the mechanism

The dynamic stability of the capsule is caused by the phase delay of the base pressure.

When the pitch angle of the capsule is changed, the base pressure does not change until

the information that \the pitch angle has changed" reaches the base through the following

four steps. (Fig. 7.1)

When the capsule pitches up from zero angle of attack,

(1) the pressure �eld at the front side of the capsule changes immediately. The pressure

�eld rotates the ow inside the shear layer behind the capsule downward, and the

downward directed ow propagates downstream.

(2) the downward directed ow converges at the rear end of the recirculating region

(neck point), rolls up, and forms upward stream. The transition of the ow�eld near

the neck point is slightly delayed from the motion of the capsule, since the speed
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Capsule Wake Wake Recompression shock

Recompression shock
Flow Structure

Flow Structure
Base Pressure

(1) (2)

(3) (4)

Figure 7.1: The mechanism of the delay of the base pressure

of the propagation inside the shear layer is �nite. The motion of the recompression

shock wave is coupled with the ow�eld near the neck point, and therefore its

motion is also delayed.

(3) the rolled up stream induces a pair of longitudinal vortices both upstream and

downstream. The upstream longitudinal vortices distorts the ring vortex behind

the capsule, and it shifts the reverse ow upward.

(4) the reverse ow impinges the base at its top, and the surface pressure at the upper

part of the base becomes higher than the lower part. The base pressure distribution

cause pitch-down moment.

These mechanism derive �b > 0 and
@M

b�xed
@�

���
�
< 0. Equation (5.8) tells that the
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capsule is dynamically unstable provided �b
@Mb�xed

@�

���
�
< 0, and therefore the capsule

becomes dynamically unstable until certain pitch angle is reached.

7.1.2 Limitation of the model mechanism

The model mechanism well describes the features observed in the numerical results. How-

ever, the present model should not be applied to all the reentry capsules. The present

model is based on the following two conditions, and therefore the present model should

be applied only to the capsule that satis�es these conditions:

(1) the ow�eld behind the capsule is characterized by the reverse ow, and the behav-

ior of the reverse ow is correlated to the vortex structure behind the capsule

(2) the base pressure causes pitch-down moment when the pitch angle is positive

The vortex behind the capsule studied in this thesis is composed of a ring vortex and

a pair of the longitudinal vortices. The ring vortex is formed by the separation at the

edge of the capsule. Suppose that the capsule had a cylindrical body, the ow would

separate at the side surface of the body rather than the edge of the base surface when the

angle of attack is not zero. The separation at the side surface forms a pair of longitudinal

vortices instead of a ring vortex, and the vortex structure behind the capsule would be

di�erent from that assumed in the modeling. Therefore the �rst condition requires that

the capsule has no or very short cylindrical body.

If the vortex structure behind the capsule is same as that of the capsule studied in this

thesis, the pressure at the upper part of the base becomes higher when the pitch angle is

positive. The high pressure region at the upper part produces pitch-down moment when

the normal vector of the high pressure region cross the axis of symmetry forward of the

center of the gravity of the capsule (Fig.7.2). Therefore the second condition requires

that the base part of the capsule has large semi-apex angle and that it is nearly at.
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pitch-up moment pitch-down moment

Figure 7.2: Base con�guration and the pitching moment

7.2 Numerical Experiments

Two hypothesis are deduced from the mechanism described in the previous section.

� the phase delay angle � is proportional to the frequency of the oscillation

The delay of the base pressure is caused by the propagation of the downward di-

rected ow from the capsule to the neck point. The speed of the propagation and

the distance between the capsule and the neck point do not change with the fre-

quency of the oscillation, and therefore the delay time is constant regardless of the

frequency. The phase angle � is given by � = 2�f�, and the delay phase angle

should be proportional to the frequency f .

In other words, the phase delay angle is proportional to the size of the capsule, so

long as the frequency of the oscillation is kept constant. If the capsule is scaled

up twice, the distance between the capsule and the neck point also becomes twice.

The time required to for the disturbance to propagate becomes double, and the

resulting phase delay angle is also double of that of the original capsule.

� the dynamic stability of a capsule depends mainly on its forebody shape
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frequency average pressure amplitude phase angle

20 Hz 0.3163 0.03604 -16.4 deg

40 Hz 0.3141 0.03495 -29.4 deg

Table 7.1: Characteristics of the base pressure oscillation for di�erent frequency

@Mb�xed
@�

is governed by the characteristics of the base pressure distribution. The base

pressure distribution is correlated to the downward directed ow behind the capsule,

and the downward directed ow is considered to be inuenced by the pressure �eld

outside of the wake. Since the pressure �eld outside of the wake depends mainly

on the forebody shape of the capsule, the dynamic stability of a capsule depends

mainly on the forebody shape.

Additional simulations are carried out to verify these hypothesis.

7.2.1 Oscillation with Higher Frequency

The ow�eld around the D45 model under the forced pitching oscillation is simulated.

The numerical conditions and the grid are same as those in chapter 4 but for the di�erent

frequency of the oscillation. This time, the frequency of the forced oscillation is 40Hz,

which is double of that in chapter 4.

The time history of the surface pressure at one point at the base is shown in Fig. 7.3,

and the characteristic parameters of the pressure oscillation are compared with those for

the oscillation of 20Hz in the Table 7.1. The time averaged pressure and the amplitude

of the oscillation is almost same for two frequencies, while the phase angle for the 40Hz

is approximately double of that for the 20Hz The delay phase angle is proportional to

the frequency of the oscillation, and the result supports the hypothesis.
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Figure 7.3: Time history of the base pressure (f =40Hz)

7.2.2 Parametric Study about the Shape of the Capsule

The evaluation of the dynamic stability requires the simulation of the oscillating capsule,

and it is too expensive for the parametric study. Therefore, the ow�elds around miscel-

laneous capsules at �xed pitch angle are simulated and the ow�elds behind the capsule,

which are directly coupled with their dynamic stability, are compared. Three capsules

shown in the bottom of Fig. 7.4 are all composed of the forebody and the afterbody of

the D45 and the D30 models. The D45t model is the forebody of the D45 model with

at base, the D45+30 model is composed of the forebody of the D45 model and afterbody

of the D30 model, and the D30+45 model is the combination of the afterbody of the D45

model and forebody of the D30 model.

Figures 7.5 and 7.6 show the time-averaged base pressure distributions in the plane

of symmetry of these capsules, at the angle of attack � = 10�. The base pressure of

capsules which have D30 forebody are almost uniform, while the base pressure of all the

capsules with D45 forebody become higher at the leeward side (upper part). Although

the height and the extent of the high pressure region changes with the afterbody shape,

base pressure distribution seems to be determined mainly by the forebody con�guration.

The characteristic of the time-averaged streamlines (Fig.7.7) also depends mainly on the
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D45-FLT D45+30 D30+45

D45 D30

Figure 7.4: Capsules composed of forebody & afterbody of D45 & D30 models

forebody con�guration. The pair of longitudinal vortices is observed only behind the

capsules with the D45 forebody, and not behind the capsules with the D30 forebody.

Inuence of the afterbody con�guration on the formation of the longitudinal vortex pair

seems to be small.

These results indicate that base pressure distribution of a capsule, and therefore

the dynamic stability of a capsule principally depends on the forebody con�guration.

Berner[8] and Hiraki[22] both reported from their experiments that small modi�cations

in the base geometry do not a�ect the dynamic stability of the capsule, which supports

the above hypothesis.
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7.3 Shape of the Capsule and Its Aerodynamic Char-

acteristics

The discussions in the previous chapter indicate that
@M

b�xed
@�

is closely related to the

formation of the pair of longitudinal vortices shown in Fig. 6.13. The vortices are

analogous to the \tip vortex" of a wing. The most simpli�ed expression of the circulation

� of the tip vortex is

L =
1

2
�V 2CLS = �V �b

� =
1

2
V aCL (7.1)

The strength of the tip vortex is proportional to the lift coe�cient CL. Analogously, the

dynamic stability of the capsule, which is coupled with the strength of the longitudinal

vortices, may also be related to the static lift coe�cient of the capsule. Figure 7.8

shows the lift coe�cient of the D45 model and the D30 model. Only the D45 model

is dynamically unstable, and jCL�j of the D45 model is far larger than that of the D30

model.

It is impossible to draw a conclusion from only one example, but it seems that the

capsule with large jCL�j tends to be dynamically unstable.
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7.4 Summary

The detailed mechanism of the dynamic instability of the capsule is discussed. The phase

delay of the base pressure is created through the feedback-loop from the capsule, wake,

recompression shock wave, and to the base pressure. Then the delay of the base pressure

makes the capsule dynamically unstable. The mechanism well describes the features

observed in the results in the previous chapters. This model can be applied to the capsule

without no or very short cylindrical body and nearly at base. Additional numerical

simulations are carried out to verify the hypothesis derived from the mechanism, and the

results are consistent with the hypothesis.

The correlation between static and dynamic aerodynamic coe�cients are discussed.

It seems that the capsule with large jCL�j tends to be dynamically unstable.
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(a) D45t (b) D45+30

(c) D30+45

Figure 7.7: Time averaged streamline for miscellaneous capsules
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Figure 7.8: Lift Coe�cient for D45 & D30 model



CHAPTER 8

CONCLUDING REMARKS

The ow�eld around the blunt capsules, that represent the reentry capsule used in the

sample-return project, are numerically studied for the better understanding of the mech-

anism of the dynamic instability of the capsule at transonic speeds.

The ow�eld around the capsule in the forced pitching oscillation was numerically

simulated. The results indicated that the oscillation of the base pressure is slightly delayed

from that of the pitch angle, while the foreside surface pressure varies synchronously with

the pitch angle. The base pressure, the recompression shock wave, and the wake near the

neck point all oscillate with the same delay time, and the oscillation of the base pressure

is considered to be coupled with the ow�eld around the neck point.

The ow�eld around the capsule at �xed pitch angle were compared with the ow�eld

around the capsule in the oscillation. The characteristics of the surface pressure for two

ow�eld are turned out to be essentially the same except for the slight delay in the base.

The surface pressure of the oscillating capsule was modeled by a simple constant-delay

model, and the dynamic stability of the capsule was discussed based on the model. It

was shown that the dynamic stability of the capsule depends mainly on the behavior of

the base pressure. The capsule is dynamically unstable provided that the base pressure

produce pitch-down moment for the positive pitch angle, and the transition of the base

pressure is delayed from the pitch angle.

The characteristic of the base pressure was discussed from the simulation of the ow-

�eld around the capsule at �xed pitch angles. There is strong reverse ow behind the

87
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capsule, and the impingement of the reverse ow against the base determine the base

pressure distribution. The ow�eld behind the capsule is characterized by the vortex

that is composed of a ring vortex and a pair of longitudinal vortices. The longitudi-

nal vortices induce upward stream at the neck point when the capsule pitches up, and

the upward stream push the reverse ow upward, and the base pressure produce pitch

down moment. The base pressure does not changes, when the pitch angle of the cap-

sule changes, until the change of the longitudinal vortices caused by the attitude change

propagates downstream and reaches the neck point. The time lag causes the phase delay

of the base pressure.

Both the base pressure distribution and its delay are closely related to the pair of the

longitudinal vortices, and therefore the dynamic stability of the capsule is considered to

be related to the formation of the pair of the longitudinal vortices downstream.

The mechanism of the dynamic instability revealed in this study reasonably explains

all the characteristic features observed in the numerical simulations. It is also consistent

with several important features reported in the former experiments.
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APPENDIX A

NAVIER-STOKES EQUATIONS

The conservation form of the three-dimensional Navier-Stokes equations written in the

cartesian coordinate system are as follows
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Static pressure p is evaluated from the equation of state of the ideal gas

p = ( � 1)

�
e� 1

2
�(u2 + v2 + w2)

�
(A.2)

The stress tensor � and the heat ux vector � are given as

�xx = �2
3
�(ux + vy + wz) + 2�ux

�yy = �2
3
�(vy + wz + ux) + 2�uy

�zz = �2
3
�(wz + ux + vy) + 2�uz

�xy = �yx = �(uy + vx); �xz = �zx = �(wx + uz); �yz = �zy = �(vz + wy)

�x = u�xx + v�xy + w�xz +
�

Pr( � 1)
(c2)x

�y = u�yx + v�yy + w�yz +
�

Pr( � 1)
(c2)y

�z = u�zx + v�zy + w�zz +
�

Pr( � 1)
(c2)z

The e�ect of the turbulence is simulated as the eddy viscosity, and the molecular

viscosity coe�cient � and the Prandtl number Pr in the stress terms are replaced by

� = �l + �t;
�

Pr
=

�l

Prl
+

�t

Prt

for the turbulent simulation.

The physical properties are non-dimensionalized by the density and the speed of sound

of the free stream, and the characteristics length.

� =
��

��1
; u =

u�

c�1
; v =

v�

c�1
; w =

w�

c�1
; p =

p�

��1c
�
1

2
=

p�

p�1
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x =
x�

L�
; y =

y�

L�
; z =

z�

L�
; t =

t�

L�=c�1
; � =

��

��1

where the superscript � denotes dimensional value, and the subscript 1 denotes free

stream conditions. The Reynolds number is given as

Re =
��1c

�

1L
�

1

��1
=

1

M1

��1u
�

1L
�

1

��1



APPENDIX B

TEMPORAL ACCURACY OF THE

LU-ADI METHOD

Imai studied the shedding of the Karman vortex behind the two-dimensional cylinder

using the LU-ADI factorized implicit method, and discussed the temporal accuracy of

the LU-ADI method. [18] The basic equations are the thin-layer two-dimensional Navier-

Stokes equations. The numerical uxes are evaluated by the SHUS scheme, and the �rst

order Euler implicit scheme (� = 1) is used for the time integration. These numerical

methods are same as those described in chapter 3, except for the dimension of the basic

equations. Imai carried out series of the simulations using following two implicit schemes

for several the time step �t, and the ow�eld and the Strouhal number St = fD=u are

compared.

� the LU-ADI without inner iteration

the implicit scheme same as that used in the present dissertation. The scheme

contains error due to the linearization, the factorization and diagonalization and

the temporal accuracy of the scheme is less than �rst order.

� the LU-ADI with inner iteration

the error due to the linearization etc. are eliminated by the Newton-Raphson

iteration. The temporal accuracy of this scheme is exactly �rst order.

The Strouhal number St is plotted against �t in Fig. B.1. The Strouhal number
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Figure B.1: Strouhal number

(a) �t = 0:005 (b) �t = 0:1

Figure B.2: Instantaneous vorticity distribution around the cylinder

evaluated from two di�erent schemes converge to the same value for �t < 0:005. The

LU-ADI method without inner iteration is considered to be accurate enough to resolve

the unsteady evolution of the ow�eld with �t < 0:005.

Figures B.2(a),B.2(b) show the instantaneous ow�eld simulated by the LU-ADI

method without inner iteration for two values of �t. The Karman vortices start growing

at the shear layer right behind the cylinder for �t = 0:005, while the growth of the vor-

tices is relatively slow for �t = 0:1, and the di�erence in the initial growth of the vortices

cause the di�erence in the spacing of the vortices downstream. Therefore, it seems that
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Figure B.3: Top:Vorticity , Bottom: Courant number

the temporal accuracy at the region where the vortices start growing is important to

evaluate the unsteady behavior of the entire ow�eld.

Figures B.3(a),B.3(b) show the local Courant number distribution. The contour lines

of the vorticity is plotted in the top half for reference. The local Courant number at edge

of the boundary layer where the vortices start growing is O(10) for �t = 0:1 and O(1)

for �t = 0:005.

The LU-ADI method is considered to has enough temporal accuracy to resolve the

behavior of large scale vortex structure provided that the local CFL number is smaller

than unity.



APPENDIX C

COMPARISON WITH HIRAKI'S

EXPRESSION

Hiraki[22] expressed the aerodynamic pitching moment as a function of pitch angle � and

the pitch angular velocity _� as follows

M = I _� = qSd � Cm(�; _�) (C.1)

Equation (C.1) is expanded into Taylor series around _� = 0, and the terms higher

than second order are omitted

Cm(�; _�) = Cm(�; _� = 0) +
@Cm

@ _�

�����
_�=0

�
 
d

V

!
_�

= Cmst(�) + Cm _�(�) �
 
d

V

!
_� (C.2)

where Cmst is the static pitch moment coe�cient, and Cm _� is the pitch damping coe�-

cient. Hiraki expressed these coe�cients as follows

Cmst = a � � + b � �3 (C.3)

Cm _� = "

 
1� �2

�2

!
(C.4)

where a; b; "; � are the constants. He identi�ed these constants from his experimental
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results using curve-�t technique, and showed that the time history of the pitch angle

predicted from these equations are coincident with the experimental results. He also found

that the amplitude of the limit cycle oscillation of the larger capsule is also consistent

with the prediction with the same constants a; b; "; �, and concluded that the constant �

does not depends on the scale and the inertia moment of the capsule or the free stream

conditions.

Substituting Eq. (C.2) into Eq. (C.1) and compare with Eq. (5.5), it reveals that

��b
@Mb�xed

@�

�����
�

(C.5)

in the present study corresponds to

qSd � Cm _� = qSd � "
 
1 � �2

�2

!
(C.6)

in Hiraki's expression.

Mb�xed is approximated by Eq. (5.9), and Eq. (C.5) yields

��b
@Mb�xed

@�

�����
�

=

8>><>>:
��baMbM

�
1� tanh2 (bM�)

�
j�j < �M0

��baMbM
�
1� tanh2 (bM�M0)

�
j�j > �M0

(C.7)

aM = �0:0019; bM = 0:5; �M 0 = 5:5

Figures C.1 and C.2 show the Eq. (C.5) and Eq. (C.6), plotted for several �b and "

respectively.

Both Eq. (C.5) and Eq. (C.6) linearly increases with �b and " at small j�j where

the capsule becomes dynamically instability, It indicates that " in Hiraki's expression

corresponds to the delay time �b in the present study.
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Figure C.1: Equation (C.5)
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APPENDIX D

MOVIE FILES IN THE CD-ROM

Following MPEG-1 movies are recorded in the attached CD-ROM.

� oscillate-capsule s.mpg (Fig. 4.4)

Density gradient around the oscillating D45 model capsule

� mu45.mpg (Fig. 6.6(a))

correlation between the reverse ow and the base pressure of the D45 capsule

� mu30.mpg (Fig. 6.6(b))

correlation between the reverse ow and the base pressure of the D30 capsule

� particle.mpg (Fig. 6.10)

particle traces behind the oscillating D45 model capsule

� vcore-stdy45 4.mpg (Fig. 6.11(d))

locus of the vortex core behind the D45 capsule at � = 10�
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