
Deployable Mechanisms for Distributed

Denial-of-Service (DDoS) Attack Mitigation

Soon Hin Khor

Interdisciplinary Information Studies (III)

University of Tokyo

A thesis submitted for the degree of

Doctor of Philosophy

24 March 2010

ThesisFigs/utokyo_clean.eps

I would like to dedicate this thesis to my loving parents and

wonderful friends ...

Acknowledgements

First and foremost, I need to thank my advisor, Dr. Akihiro Nakao,

for ensuring that my rice bowl is always filled, bestowing me with

the freedom to explore my research potential and offering research

guidance along this arduous path. These 3 ingredients have proved

critical for me to last the entire distance. I am also thankful for the

support in various job and scholarship applications as well as fighting

my corner in the graduation process.

I am also extremely grateful to Dr. Nicolas Christin, my Master’s

course advisor at Carnegie Mellon University (CMU), who is ever-

ready to assist me and continue to open up new avenues in my life

even today despite the fact that I graduated from CMU, almost a

good 3 years ago.

Let me count the ways.

The recommendation letters.
The chance to teach in CMU.
The support in my pursuit of establishing a start-up.

The ramen.

This truly defines the ultimate meaning of education. Many may have

gone to universities but only a lucky few will experience education of

this kind.

The gamut of emotions that I was immersed in during this academic

pursuit, probably encompasses what one can encounter in an entire

lifespan, barring, death.

When the nights seem endless, Aiko, Ayumi and Kana have taken
turns to amuse me with their antics and ebullience.

When non-academic issues rear their ugly heads, Yabu and Wataru,
puts life into perspective.

When I tire of people, the innocence and exuberance of Michi, remind
me that there is hope.

When I need cheer and laughter in a language more natural to me,
technology brings Julie and Ang Joo virtually closer to me.

When I am hungry at dinner-time or need the adrenaline rush of tum-
bling down some snowy slopes, there is Iwase.

Without my friends, this journey will be so much poorer and less

bearable.

My gratitude also goes out to International Information Systems Se-

curity Certification Consortium, Inc., (ISC2) and Japan Student Ser-

vices Organization (JASSO) for providing me with scholarships, with-

out which my academic pursuit would not have been possible. Thanks

also to University of Tokyo for providing a system to disburse the

ISC2 scholarship monies to me.

I also want to thank the professors and the kind people who have

set aside bucket-loads of valuable time to read my research, offered

feedback and tried to help me to succeed.

I need to thank all my lab mates for putting up with me and the

side-effects of my presence.

Last but not least, words fail me on how to even start thanking my

parents for always having the belief but yet accepting me for whatever

I was, am and will be. All the gifts and money that I shower them

with is just a poor attempt to make up for the time that we are apart.

Abstract

The goal of our research is to make the Internet more resilient against

Distributed Denial-of-Service (DDoS). Although there is similarly themed

existing research, what sets mine apart is the focus on “deployable

resiliency”. After more than 10 years of research, despite DDoS mit-

igation improving significantly, they still lack deployability and/or

comprehensive resiliency, thus the term “deployable resiliency”; they

require either global-scale cooperation and complex changes to Inter-

net core infrastructure or they incur huge initial outlay to purchase re-

source for decent yet not comprehensive DDoS resiliency. The former

results in DDoS research being un-adopted while the latter restricts

deployability to only large wealthy organizations.

To rectify the problem, we examine issues that hamper resiliency and

existing proposals that mitigate them. Our strive for deployable re-

siliency mechanism pushed us to relentlessly question what is holding

back adoption of existing proposals from an economic and technologi-

cal standpoint. The end result consists of 2 economic frameworks and

their accompanying defense-in-depth mechanisms.

As a deployability guide, we design a base framework, Burrows, that

rectifies existing economic inefficiencies that plague many existing pro-

posals, namely negative externality, misaligned economic incentives

and overwhelming infrastructure modification requirements. A sec-

ond framework, KUMO, extends the first by facilitating the harness

of large quantities of Internet resources for DDoS defense through

lowering the barrier for cooperation. On top of these frameworks,

we construct a multi-prong DDoS defense focusing on deterrence and

client/server reaction. Each prong can be implemented independently

to ease deployment concerns but yet ultimately, they complement each

other when fully deployed.

The deterrence mechanism (Overfort) offers automated malicious packet

traceback to the Internet Service Provider (ISP) harboring the orig-

inator, thereby forcing/enabling the ISP to act against perpetrators,

to avoid black-listing. Path-selection empowers client reaction (AI-

RON-E) to hotspots by selecting an alternative path while connection

establishment urgency signaling empowers client reaction to poor ser-

vice from server by expending more resource to send a stronger signal

and receive higher priority. Detection of unsolicited traffic and traffic

reception control (Overfort, sPoW) empowers server reaction to filter

undesirable traffic before it drains server resources and clogs uplinks.

The end result is a high deployable resiliency DDoS mitigation mech-

anism; it is (1) unilaterally deployable because it is cheap, i.e., based

on a pay-as-you-use model, while requiring only minimal changes to

existing infrastructure, and (2) resilient against all types of DDoS,

with additional deterrent and client empowerment mechanisms.

Contents

1 Introduction 1

1.1 Scope of Study . 1

1.2 Motivation . 2

1.3 Problem Statement . 3

1.4 Research Goal . 4

1.5 Design Principles in a Nutshell . 4

1.5.1 Effectiveness Principles . 4

1.5.2 Deployability Principles 5

1.6 Research Questions . 6

1.7 Overview and Contributions of Study 8

1.7.1 Burrows . 8

1.7.2 Overfort . 9

1.7.3 AI-RON-E . 10

1.7.4 KUMO . 10

1.7.5 sPoW . 10

1.8 Limitations . 11

1.8.1 Resilient Name Service . 11

1.8.2 Imperfect DDoS Defense 12

1.8.3 No Client Modification Caveat 12

1.8.4 No Server Modification Caveat 12

1.8.5 Hidden Server Location Enforcement 13

1.9 Study Presentation Layout . 13

vi

CONTENTS

2 Background and Related Work 14

2.1 Background . 14

2.2 Related Work . 17

2.2.1 Economic Framework: Inefficiency Rectification 17

2.2.2 Economic Framework: Resource Harness 17

2.2.3 Prevention: Network-Layer Filtering 18

2.2.4 Prevention: Overlay . 20

2.2.5 Deterrence: Traceback . 20

2.2.6 Server Reaction: Traffic Control Through Middle-boxes . . 21

2.2.7 Server Reaction: Packet Scrubbing Infrastructure 22

2.2.8 Server Reaction: Pushback 23

2.2.9 Server Reaction: Network Capabilities 25

2.2.10 Client Reaction: Proof-of-Work (PoW) 26

2.2.11 Client Reaction: Exploiting Alternate Paths 26

2.3 Deployable Resiliency . 27

2.3.1 Resiliency (Effectiveness Against DDoS) 28

2.3.2 Deployability . 33

2.3.3 DDoS Mitigation Comparison Chart 36

2.4 The X-Factors . 36

3 Burrows 38

3.1 Deployable Resiliency . 38

3.1.1 Resiliency . 38

3.1.2 Deployability . 39

3.2 Assumptions . 40

3.3 Overview . 40

3.4 Design Goals . 41

3.4.1 Security Properties . 42

3.4.2 Economic Properties . 43

3.5 Architecture . 44

3.5.1 Burrows Architecture . 44

3.5.2 Miscellaneous Components 46

3.6 Limitations . 48

vii

CONTENTS

3.7 Future Work . 49

3.8 Conclusion . 49

4 Overfort 51

4.1 Deployable Resiliency . 51

4.1.1 Resiliency . 51

4.1.2 Deployability . 53

4.2 Assumptions . 54

4.3 Overview . 55

4.4 Design Goals . 56

4.5 Architecture . 58

4.6 Evaluation . 61

4.6.1 Overfort Segregation Algorithm Approach 61

4.6.2 Overfort Simulation Model 62

4.6.2.1 Overfort Configuration Parameters 62

4.6.2.2 Overfort Operating Condition Parameters 63

4.6.2.3 Output: Overfort Effectiveness Measurement . . 64

4.6.3 Overfort Simulation Algorithm 64

4.6.4 Overfort Simulation Results 65

4.7 Discussion . 68

4.7.1 LDNS Granularity Segregation 68

4.7.2 Multi-server Protection . 69

4.8 Limitations . 69

4.9 Future Work . 71

4.10 Conclusion . 71

5 AI-RON-E 73

5.1 Deployable Resiliency . 73

5.1.1 Resiliency . 73

5.1.2 Deployability . 74

5.2 Assumptions . 75

5.3 Overview . 75

5.4 Design Goals . 76

5.5 Architecture . 77

viii

CONTENTS

5.6 Evaluation . 81

5.6.1 Evaluation Methodology 81

5.6.2 Results . 82

5.6.2.1 Hop-count of indirect paths 82

5.6.2.2 Speed and ability of link failure masking capability 83

5.6.2.3 Intermediary selection algorithm resource consump-

tion . 85

5.7 Discussion . 85

5.7.1 Minimizing link failure effects 85

5.7.2 Deployment issues and workaround 86

5.7.3 AI-RON-E Client Code . 86

5.8 Limitations . 87

5.9 Future Work . 89

5.10 Conclusion . 89

6 KUMO 90

6.1 Deployable Resiliency . 90

6.1.1 Resiliency . 90

6.1.2 Deployability . 91

6.2 Assumptions . 92

6.3 Overview . 93

6.4 Design Goals . 93

6.5 Architecture . 95

6.6 Implementation . 97

6.6.1 Framework . 97

6.6.2 Protocol . 98

6.6.3 Multipath Facility Components 99

6.6.4 Accounting Facility . 102

6.6.5 Walkthrough . 103

6.7 Evaluation . 104

6.7.1 Flexibility . 104

6.7.2 Data Transfer Time . 105

6.7.3 Multipath Data Transfer Under DDoS 107

ix

CONTENTS

6.7.4 IRC intermediary stability 107

6.7.5 IRC intermediary path diversity 108

6.8 Discussion . 110

6.8.1 Marketplace . 110

6.9 Limitations . 110

6.10 Future Work . 111

6.11 Conclusion . 111

7 sPoW 112

7.1 Deployable Resiliency . 112

7.1.1 Resiliency . 112

7.1.2 Deployability . 114

7.2 Assumptions . 114

7.3 Overview . 115

7.4 Design Goals . 117

7.5 Architecture . 118

7.6 A Walkthrough . 122

7.7 sPoW Implementation . 124

7.7.1 Big Picture . 125

7.7.2 Attacks . 126

7.7.3 Connection Management and Puzzle Generation Algorithm 127

7.8 Evaluation . 130

7.8.1 Model Assumptions . 131

7.8.2 Theoretical Analysis . 131

7.8.2.1 Worst Case Connection Establishment Time . . . 131

7.8.3 Experiment . 133

7.8.3.1 Tick-based Emulation 133

7.8.3.2 Caveats . 136

7.8.3.3 Experiment Scenarios 137

7.9 Discussion . 140

7.9.1 Alternative Manifestations 140

7.9.2 Utilization of Existing Name Service 141

7.9.3 sPoW Client Code . 141

x

CONTENTS

7.10 Limitations . 141

7.11 Future Work . 142

7.12 Conclusion . 143

8 Conclusion 144

A DDoS Mitigation Mechanism Metrics 147

A.1 Deployability . 147

A.2 Incentive . 149

A.3 Effectiveness . 150

References 164

xi

List of Figures

2.1 Existing deployability, incentive level and effectiveness of significant

DDoS mitigation research in from 2000-2009. 33

2.2 Our DDoS research in terms of deployability, incentive level and effec-

tiveness. 36

3.1 Protected servers in Burrows only connect with the rest of the Internet

through Burrows intermediaries. 44

4.1 Overfort architectural overview 58

4.2 acc (left y-axis) and N add (right y-axis) under varying R and arr bad

with Y =4, N use=30, N LDNS=100, arrgood=0.02 and td=80 67

4.3 Number of LDNSes that are identified as bad under different types

of attack with Y =4, N use=30, N LDNS=100, R=0.5, arr bad=0.05 and

td=80 . 67

4.4 N add required for LDNS segregation as N LDNS varies under 3 different

R values. It is faster for the simulation to run with smaller N LDNS

values thus we have more points where N LDNS <1000 and the use of

log-scale. 68

5.1 AI-RON-E architecture consists of OSR routers (non edge node inter-

mediaries), oracles and clients embedded with logic to consult oracles

to aid indirect path construction. 78

5.2 A CDF showing that AI-RON-E indirect paths have shorter hop-counts

than SOSR ones regardless of the number of intermediaries selected for

use. 83

xii

LIST OF FIGURES

5.3 A CDF showing the number of intermediaries used, before finding one

that can mask a given failure. 83

5.4 Failure-masking rate of normalized link locations, l, for SOSR and AI-

RON-E variations. Failure-masking rate is highest near Internet core,

l∼0.5. 84

5.5 The number of entries in the cache used to provide enough intermedi-

aries as required by the different AI-RON-E variations. 84

6.1 KUMO framework is implemented as KS-side and KC-side. Both hide

KUMO details from client, protected server and intermediaries. In ad-

dition, KUMO provides multipath and accounting facility. 97

6.2 The KUMO communication process from IC channel creation, IC re-

quest to EC establishment as described in Section 6.6.5. 102

6.3 The average transmission time of various files sizes through different

intermediary types. 106

6.4 The average transmission time of various files sizes through I3 and IRC

when different percentages of multipaths fail due to congestion. . . . 106

6.5 Path diversity measurement in relation to number hops away from

KUMO protected server. 108

6.6 Improvement in path availability when intermediaries are utilized from

the perspective of the server at various hops away. 108

7.1 A walkthrough of how a client can communicate with a server protected

by sPoW. 124

7.2 The sPoW architecture adopts after KUMO with the exception of re-

placing the KUMO DNS Updater with Puzzle Generator and KUMO

DNS Requester with Puzzle Requester as well as adding a Connection

Manager to the server-side component. 125

7.3 Tick-based activity flowchart . 135

7.4 Connection establishment time normalized to “tardiness” metric for

legitimate clients when zombies attack by solving puzzles with different

puzzle level, k. 138

xiii

LIST OF FIGURES

7.5 Connection establishment time normalized to “tardiness” metric for

legitimate clients when zombies attack by solving puzzles with k= 3 but

with tunable parameters, server capacity, C and zombie power varied. 138

7.6 Connection establishment time as the experiment is scaled up to more

realistic numbers of legitimate client/zombie ratio. 139

xiv

List of Tables

2.1 Resiliency Against DDoS (Part 1) 34

2.2 Resiliency Against DDoS (Part 2) 35

3.1 Resiliency of Burrows against DDoS 38

4.1 Resiliency of Overfort against DDoS 51

5.1 Resiliency of AI-RON-E against DDoS 73

6.1 Resiliency of KUMO against DDoS 90

7.1 Resiliency of sPoW against DDoS 112

7.2 Connection manager events, their significance and puzzle manager re-

actions . 129

7.3 sPoW experiment emulation configuration parameters 134

A.1 Deployability Rating . 148

A.2 Incentive Rating . 149

A.3 Effectiveness Rating . 151

xv

Chapter 1

Introduction

1.1 Scope of Study

A Distributed Denial-of-Service (DDoS)1 attack can be carried out on anything

that offers a service. This can range from cutting off the telephone cables in an

office to prevent incoming/outgoing calls, sending a single/bunch of packets to

exploit a system/application vulnerability, which terminates the service, hijack-

ing Border Gateway Protocol (BGP) prefix (128)) thus, the reachability of the

authentic server, to coordinating a mass web page request/arbitrary packet flood

from an army of compromised hosts to bring a server to its knees.

For the last form of attack, depending on the content type of the victim server,

which can be static or dynamic, the defense and its effectiveness is different. Static

contents are contents whose relevancy lasts for periods longer than a few hours

and thus cache-able. This includes news, Frequently Asked Questions (FAQs),

weather reports, etc., including video streaming, whose data timeliness is critical

but should not be confused with its relevancy period. Dynamic contents, on the

other hand, are contents whose relevancy is fleeting thus mandating real-time

accessibility for decision-making and processing, e.g., banking transactions, chat

messages, online game, etc. As the former can be sufficiently dealt with using

existing caching and replication technology such as Akamai (4), CoralCDN (45),

and CoDeeN (120), the focus of this study is on DDoS protection of the latter.

1We use DoS and DDoS, interchangeably unless the need to distinguish them arises.

1

1.2 Motivation

1.2 Motivation

Due to the ease (no vulnerabilities and minimal skills required) of perpetrating

a DDoS attack compounded by the tedious concerted multi-party effort required

to prosecute the perpetrator, mainly due to lack of traceback mechanisms and

the lag of legal enforcement behind electronic crimes, the threat of DDoS is in-

cessant. In between 2001 to 2004, 68,700 attacks bombarding 34,700 victims in

5,300 domains were inferred from experiments carried out by Moore et al. (78),

while Akamai’s State of the Internet (3) report has documented various high-

profile DDoS attacks every quarter since its inception in 2008. The numbers

reported by the former is also likely to be a lower bound due to the limitation

of the “back-scatter analysis” methodology employed; inference is only possible

for DDoS attacks that spoof their traffic origins to avoid accountability. Besides

network measurements, anecdotal evidence from end-user and infrastructure op-

erator perspectives are equally foreboding. In the CSI Computer Crime and

Security Survey 2008 (31), 21% of 522 correspondents from end-users of U.S. cor-

porations, government agencies, financial institutions, medical institutions and

universities, have experienced some form of DDoS attack on their infrastructure,

while in the Arbor Networks Annual Infrastructure Report 2008 (15), DDoS has

remained one of the top security concerns for Internet Service Providers (ISPs)

since 2005 and furthermore, 21% of 66 reported that DDoS handling consumed

the most amount of their operation resources.

The consequences of the lag in legal enforcement is chilling and none more

visible than the brash and bold attempts to overtly sell DDoS tools or organize

concerted DDoS on the Internet. The activities of the former are carried out over

Internet Relay Chat (IRC) (80), which is a chat room protocol for people of similar

interests to gather virtually, or forums, which is the virtual equivalent of classified

ads or bulletin boards (44; 110; 114). For the latter, two immediate examples

that come to mind are the 2008 DDoS attempt on Channel News Network (CNN)

organized by http://hacksa.cn, and the current 2009 attempt on a list of Iranian

government websites using tools offered on a Google hosted site, http://sites.

google.com/site/nedasites/Home.

2

http://hacksa.cn
http://sites.google.com/site/nedasites/Home
http://sites.google.com/site/nedasites/Home

1.3 Problem Statement

With the number of Internet users booming to 1.7 billion on 30 June 2009 (56)

and computer security not getting any easier, the number of compromised hosts

and consequently, the scale of coordinated attacks are likely to grow in the future.

The introduction of resource-rich cloud computing platforms, where adopters

are charged based on usage of the cloud’s server and network resources, known

as “pay-as-you-use” or utility computing, may appear to overcome DDoS, i.e.,

resource bottlenecks are eliminated. However, upon deeper analysis, these clouds

merely transform a conventional DDoS attack on server and network resources

to a new breed that targets the cloud adopter’s economic resource. We term

this attack as economic DDoS (eDDoS). In other words, the adopter’s economic

ability, i.e., the financial means to pay for resources consumed by both legitimate

and DDoS traffic, becomes the new bottleneck for attacks.

In summary, the ease of attack, the lack of law enforcement, the growth in

Internet complexity with no deployable mitigation in the horizon are factors that

motivate this study.

1.3 Problem Statement

The pressing issue of DDoS has galvanized much research. However, two issues

plague existing research: (1) they were designed prior to the emergence of cloud

computing so they lack awareness of eDDoS thus cannot defend against it effec-

tively, and (2) widespread adoption of DDoS mitigation research remains elusive,

most likely due to 3 factors that we briefly posit here:

Negative Externality The effectiveness of a deployment is reliant upon co-

operation with many other parties, who are possibly competitors or simply

indifferent towards DDoS.

Misaligned Economic Incentive The party in the best position (ISP) to de-

ploy DDoS mitigation mechanisms is not the party afflicted by DDoS (end-

user) thus the party in the privileged position lacks deployment incentives,

leaving the afflicted party defenseless.

3

1.4 Research Goal

Ossified Infrastructure DDoS mitigation mechanisms require ISPs to aban-

don or make overwhelming modifications to their existing infrastructure

investments, thus diminishing their appeal (116).

1.4 Research Goal

Our goal is to develop effective and deployable DDoS attack mitigation mecha-

nisms. Our definition of “effective” is that a mechanism or combination of them

should be able to mitigate existing DDoS attacks on dynamic contents (Sec-

tion 1.1) as well as the newly emerged eDDoS attacks on billable resources. Our

definition of “deployable” is that a mechanism must not require modifications

to ossified core Internet routers and the deployment resources, in terms of time,

effort and money, must be within the means of a single small-sized ISP, which we

define as having a customer-base, thus Internet access routers (routers installed

at customer locations) of at least 15,000.

1.5 Design Principles in a Nutshell

This section presents our design principles for developing effective and deployable

DDoS mitigation mechanisms.

1.5.1 Effectiveness Principles

Our proposal has to be effective against DDoS attacks on dynamic contents and

eDDoS attacks on billable resources. To defend against DDoS attacks on dynamic

contents, we propose two options.

Unfair Arms-race We engage attackers in a resource arms-race but one where

the winning odds are in our favor, by designing a mechanism that ease the

server task of harnessing DDoS defense resource so that it exceeds attackers’

aggregated flooding capacity.

Automatic Traceback and Black-list In a situation, where we cannot tilt the

balance of an arms-race, we propose an automatic traceback mechanism to

4

1.5 Design Principles in a Nutshell

locate perpetrators with an automatic black-listing scheme that prevents

them from further communication with the targeted server. A rapid trace-

back and black-listing implementation can shut out all attackers before

server resources are exhausted.

eDDoS occurs because of the straight-forward billing mechanism of cloud plat-

forms that indiscriminately charge resource usage whether by legitimate or DDoS

traffic to cloud adopters. To tackle eDDoS, we propose:

Do-It-Yourself Adopter-friendly Cloud Billing Mechanism Our research

empowers a cloud adopter to modify the cloud platform’s billing mechanism

on her own, to reduce the cost of resource used for prioritizing every packet

destined to her service so that legitimate traffic may be favored over DDoS

traffic.

1.5.2 Deployability Principles

To achieve deployability, we design our mitigation mechanisms to abide by the

following 3 design principles:

“Semi-closed Model” Internet We refactor the Internet from an “open model”

where everybody can freely connect, to a “semi-closed model” where a server

is empowered to explicitly declare who it is willing to receive traffic from.

All traffic destined to the server is forced through control points where the

server can dictate reception and drop unsolicited traffic before they reach

it. Thus, DDoS exposure is now limited to those control points, which are

fewer and DDoS traffic can be tamed further away from the server, com-

pared to the open model where attacks can come from every conduit and

stemming of DDoS traffic occurs near the server, which is ineffective. With

fewer exposure/control points, it is also easier to deploy and upgrade DDoS

defense.

Ease of Harness of Required DDoS Defense Resource DDoS is, in prin-

ciple, an arms race; the party with more resources prevails. Therefore, a

mitigation mechanism should facilitate the harness of required DDoS de-

fense resource, which may be achieved in 3 ways: (1) facilitate amassing

5

1.6 Research Questions

many limited-resource systems distributed over the Internet, (2) facilitate

amassing few rich-resource systems in localized areas or (3) reduce the re-

quired resource for successful DDoS mitigation.

Ease of Component Deployment By opting to use Internet edge nodes, which

are located further away from the core Internet infrastructure, thus easier

to introduce, modify and upgrade by any Internet user, instead of difficult-

to-modify core routers, whose access is restricted to ISPs, we increase de-

ployability.

1.6 Research Questions

The following research questions helped us formulate our design principles and

guide how we design and develop DDoS mitigation frameworks, architectures and

mechanisms to fulfill those principles.

• What research has been done in the last 10 years and why have they not

been successful? DoS mitigation proposals have often overlooked deploy-

ability and incentive factors that strongly influence the adoptability of a

proposal, especially one that requires cooperation from multiple parties with

conflicting interests. See Related Work (Section 2.2).

• How do we address the factors that hinder DDoS mitigation mechanism

adoption—negative externality, misaligned economic incentives and ossified

infrastructure? We introduce a framework that can address those economic

issues, which future research can use as a guide. See Burrows (Section 3).

• Due to the distributed deployment requirement of most DDoS mechanisms

in order to amass resources from many locations, acquire multiple view-

points and stem attacks as early as possible at those deployment points,

cooperation between Internet parties becomes mandatory thus negative ex-

ternality (indifference to deployment) often rear its ugly head. How do we

encourage cooperation? KUMO (Section 6), the resource harness frame-

work, eases the task of amassing the required DDoS defense resource as well

6

1.6 Research Questions

as offer financial incentives to foster cooperation among distributed partic-

ipants.

• Is incremental design the best way to encourage participation, i.e., a party

will participate solely based on the fact that participation improves its ex-

isting defense, regardless of the ineffectiveness of the overall defense if a

critical level of cooperation is not achieved? Incremental approach is a

minimal requirement for any cooperative mechanism. However, it is better

to introduce economic incentives to hasten cooperation, e.g., in KUMO, eco-

nomic incentives increases the quantity of available DDoS defense resource

quickly.

• Or is it possible, contrary to conventional wisdom of existing research (75),

to reduce the deployment footprint and cooperation while remaining effec-

tive? The use of a few localized and resource-rich resources such as cloud

computing allays the requirement for widespread deployment and cooper-

ation thereby achieving effectiveness while increasing deployability but at

the expense of losing the ability stem attacks near the sources. See sPoW

(Section 7).

• Parties afflicted by DDoS are not in the most strategic position to take react

while ISPs who are, are not incentivized to do so without substantial profit.

“Misaligned economic incentives” is an issue that often requires rectification

by legal enforcement. Given that it takes many long debates or a disaster

of significant proportion for authorities to get their act together, can we

develop a technology to re-align incentives; empower parties keen on DDoS

protection with a platform for cooperation? Burrows and Overfort em-

powers DDoS-afflicted parties with platforms to cooperate. KUMO, sPoW

and AI-RON-E goes a step further by enabling unilateral deployment. Be-

sides being a cooperative platform, Overfort can also be deployed by a single

entity.

• Can we reduce the modification required by DDoS mitigation mechanisms

on existing ossified infrastructure through better design? Overfort innova-

tively utilizes mandatory destination IP field as unspoofable source identity

7

1.7 Overview and Contributions of Study

while AI-RON-E uses IP spoofing to coax existing routers to create indirect

paths and sPoW introduces self-verifying puzzles that enhance a client’s

ability to compete against DDoS agents (zombies). These features are novel

because they avoid making demanding changes to well-accepted protocols and

core infrastructure.

• Even if it is impossible to design a deployable mechanism that offers full

protection, can we reduce the probability or the impact of a persistent

DDoS onslaught? We adopt a multi-prong approach for DDoS defense, e.g.,

deterrence (Overfort), prevention (Overfort), client reaction (AI-RON-E,

sPoW), server reaction (Overfort, sPoW).

1.7 Overview and Contributions of Study

Based on those research questions, we design a framework (Burrows) that can

address the afore-mentioned three economic issues and further enhance it with

a resource harness framework (KUMO). Following that, we design mechanisms

based on the Burrows framework to provide multi-prong defense against DDoS.

In the following subsections, we concisely describe the workings of each mech-

anism and punctuate its contribution to research.

1.7.1 Burrows

Burrows’ contribution is a DDoS mitigating framework that be used as a design

foundation for aligning economic incentives and minimizing negative externality

while preserving existing infrastructure investment. By restricting connectivity to

a protected server through mediating control points, referred to as intermediaries,

where traffic filtering and prioritization technology can be deployed, the server’s

security now relies solely on intermediaries within the server owner’s control in-

stead of being dependent on various distributed Internet components owned by

various third parties, thus minimizing negative externality. Burrows realigns eco-

nomic incentives by empowering server owners who are keen on DDoS protection

to cooperate by pooling their intermediaries to build this protection layer around

their servers without assistance from dis-interested parties, e.g., their ISPs. The

8

1.7 Overview and Contributions of Study

tricky problem of negative externality and economic incentive misalignment has

now been transformed into a more technological one; how do we differentiate

between good and bad traffic or in more general terms, how do we identify traf-

fic that is desired/solicited by the protected servers at those intermediaries. In

other words, intermediaries offer traffic reception control, which does not exist in

the current Internet. Secondly, the number of intermediaries or their aggregated

resources will determine the size of DDoS onslaught that the cooperative defense

can withstand.

1.7.2 Overfort

Overfort’s contribution is a novel mechanism that uses virtual resources, which

are cheaper than physical ones, to automatically locate zombies and black-list

the entities, e.g., ISPs, that offer connectivity to those zombies, by rejecting the

entities’ query about the server location. Due to “fate-sharing”, legitimate clients

within an ISP harboring zombies, are also punished and their dissatisfaction can

exert economic pressure on the ISP, galvanizing it to clean up or monitor its

customer base to prevent black-listing, thus preventing DDoS attacks. It is to our

knowledge that Overfort is the only automatic traceback and black-list mechanism

that is deployable by a single small-sized ISP. The difference between Overfort

compared to existing traceback and black-list mechanisms (Section 2.2.5) is that

all our traceback and black-list enforcement components are within the control

of a single deployer. Other schemes require assistance from third parties to aid

in traceback or enforce black-listing, which is deemed economically illogical (24).

For example, an ISP is not going to enforce punishment on her own paying clients

based on a black-list created by other parties such as the remote ISP of a server

under attack. The black-list only needs to be created periodically and it can also

be shared with all other ISPs. Overfort’s method of segregating zombie-serving

entities using virtual resources and barring them from re-discovering a path to

the server, instead of engaging in an arms race through over-provisioning implies

that Overfort can successfully defend against DDoS even it if has less resources

than attacker—a property that is unique.

9

1.7 Overview and Contributions of Study

1.7.3 AI-RON-E

AI-RON-E’s (pronounced as ’irony’) contribution is a non-centralized, lightweight

mechanism, i.e., without requiring extensive network probing or data storage of

the entire Internet topology, to discover alternative paths to a desired server

dynamically. It empowers clients to bypass congested points, e.g., DDoS, without

server assistance, by employing IP spoofing to force “triangular routing” (also

known as traffic deflection); it makes a packet detour to a selected point en-

route to destination, much like how one takes an alternate road when the most

direct path to the destination is congested. Using IP spoofing to create covert

channels (95) for data transmission is not new but in AI-RON-E, the scale and

purpose that we employ it for—mobilizing all Internet routers as deflection points

without requiring changes to them, in order to bypass hotspots is novel.

1.7.4 KUMO

One key question raised in Burrows, is the extent of successful deployment of

cooperative DDoS defense relies on the amount of shared resources accumulated

from all participants. KUMO’s contribution is facilitating any existing system or

future one to easily act as a shared DDoS defense resource, e.g., intermediaries,

without it being even aware, i.e., no modifications, as well as offer an accounting

platform to compensate the system financially for its resource usage. We believe

such an incentive system can help seed the growth of shared resources.

1.7.5 sPoW

When the number of connection requests exceeds server capacity, the server needs

a way to prioritize requests. Proof-of-Work (PoW) empowers a client to signal

its connection urgency through its willingness to expend its own resources to

generate a proof that reflects consumed resources. The server utilizes a PoW

verifier to confirm the validity of the proof as an indicator level of the client’s

resource consumption, enabling the server to prioritize requests during DDoS.

In conventional PoW schemes, the verifier role is crucial; it has to process every

single packet to ensure that the packet is accompanied by a valid puzzle solution

10

1.8 Limitations

and determine the urgency signal embedded in the solution. The implications are

twofold: (1) a PoW verifier needs to be packed with plenty of resources and (2)

the usage of a PoW verifier changes the attack focal point from the server to the

verifier itself; attackers can just send packets with randomly generated incorrect

puzzle solutions that the verifiers still need to expend to process. To deal with

(1), we can deploy the PoW verifier in a cloud platform, however because of

(2) such deployment will result in eDDoS. This is where sPoW comes in. It

is, to our knowledge, the first self-verifying PoW; instead of generating a proof

that signals its urgency that needs to be verified, a client solves a PoW puzzle

by deciphering it to discover a hidden channel to communicate with the server.

In other words, no verification is necessary. To empower clients to signal their

urgency, clients request and solve PoW puzzles whose levels reflect their urgency;

each puzzle leads to a connection request channel that is served at a priority

level reflected by the puzzle’s difficulty level. Novelty aside, obviating the need

for PoW verifiers that needs to be installed in strategic locations, e.g., in the

Internet core, which faces stiff resistance from ISPs due to the disruption and

uncertainty of new technology, saves implementation/operational resources and

greatly enhances deployability but most importantly it removes the possibility of

eDDoS.

1.8 Limitations

1.8.1 Resilient Name Service

Burrows, Overfort, KUMO and sPoW relies on a naming service; a service that

converts well-known server hostname to an identity, e.g., an IP address belonging

to an intermediary that is aware of how to forward packets to the server or the

server can retrieve data from. We have designed the systems in such a way that

they only require the naming service to provide small dynamic pieces of data that

needs no synchronization, i.e., no need for revocation or systematic replication

even if the naming infrastructure is distributed. Moreover, it is possible to make

simple modification to existing widely used Domain Name Service (DNS) or the

futuristic but backwards compatible peer-to-peer based CoDoNS (89) to serve the

11

1.8 Limitations

required data. The resiliency of existing DNS through Anycast (2) as well as the

scalability of CoDoNS makes the assumption that the naming service is resilient

realistic.

1.8.2 Imperfect DDoS Defense

Nothing in our system prevents DDoS completely; instead they improve the

chances of good clients reaching a server by empowering them to compete for

server resources, e.g., by finding an alternative faster path to the server or send-

ing a stronger urgency signal through resource expenditure to gain higher prior-

ity service. This empowerment is not without trade-offs. They result in more

resource consumption on the clients themselves, in terms of storage, e.g., AI-

RON-E cache, or CPU, e.g., sPoW puzzle resolution. Clients with little resources

may be disadvantaged. However, this can be rectified through the use of proxy to

aid economically-related clients, e.g., low-resource mobile phone clients can uti-

lize their provider proxies. A longer connection establishment and data transfer

time is also to be expected during DDoS.

1.8.3 No Client Modification Caveat

Our claim that no client modification is required is based on the assumption

that clients are willing to at least make a few mouse clicks to launch and grant

zero-installation executables possibly full access to their systems. The danger one

normally associates with such an action can be allayed by using signed certificates

from top-level certification authority, e.g., Verisign, to vouch for the executables.

1.8.4 No Server Modification Caveat

Our claim that no server modification is necessary holds true because the server/ap-

plication requires no modification to utilize our research. However, we do need

to install a server-side component, which can be co-located on the server or on

a separate system. This component hides the details of our technology from

the server. Note that a single server-side component can be utilized by multiple

servers thus sharing the burden/cost of setup and operations.

12

1.9 Study Presentation Layout

1.8.5 Hidden Server Location Enforcement

Since our proposals are based on having intermediaries that act as traffic control

points for a protected server to accept/reject traffic, we rely on the need to

prevent direct server connectivity. To enforce indirect connectivity, we advocate

concealing the reachability of the server, e.g., hiding the IP address from clients,

but unfortunately, the server reachability has to be revealed to the intermediaries.

Depending on the design for a mechanism, indirect reachability enforcement varies

from (1) utilizing technological solutions that requires setup cost and expertise

between each intermediary to server, e.g., BGP-MPLS-VPN (Burrows) or plain

VPN (sPoW), (2) using only trusted intermediaries, e.g., a single-entity owned

intermediaries (Overfort), (3) relying on financial relationships between protected

server and intermediary providers that places the onus of protecting hidden server

location on intermediary providers (KUMO) and requesting filtering assistance

from ISP when intermediaries cannot be trusted, as proposed in Phalanx (38),

but also deployable in Overfort, KUMO, Burrows.

1.9 Study Presentation Layout

In the next section, we describe the background of our research, specifically, why

DDoS occurs and how existing research intends to deal with it. In subsequent

sections, we present each of our research in chronological order: Burrows, Over-

fort, AI-RON-E, KUMO and sPoW. Each research section begins with a look at

deployable resiliency; (1) we offer details on how each research is resilient against

DDoS and (2) we explain why each research is more deployable compared to

existing research. Following that, each section is broken into subsections that

follow the familiar flow of assumptions, overview, design goals, architecture, eval-

uation, limitations, future work and conclusions. Finally, we wrap up with our

conclusions of the study.

13

Chapter 2

Background and Related Work

2.1 Background

Denial-of-Service (DoS) is easy to launch, whether in the electronic or physical

world but especially so in the electronic one because of the low cost incurred in

generating extreme load on a remote system. Furthermore, two Internet designs,

exacerbate DDoS:

Affinity Between an IP Address and Physical Location Discounting an un-

timely physical relocation, a server is unable to change its IP address to

something significantly un-guessable due to the small range of IP address

block its owner is assigned. This aids the attacker in quickly rediscovering

the server in its attempt to shake off an attack.

Lack of Traffic Control Reception The inability of a server to control who

it receives traffic from until the traffic arrives at its doorstep is a another

factor that greatly aids the attacker in flooding not only the server but

its uplink resulting in collateral damage to other servers sharing the same

uplink.

As will become evident later in Section 3.5, an intermediary-based architecture

where direct server connectivity is forbidden, instead a pool of distributed inter-

mediaries where each can receive traffic on behalf of a server before forwarding it

if requested, makes it difficult for attackers to guess and flood all locations where

14

2.1 Background

the server can be reached. The intermediaries also grant a server the ability to

dictate traffic reception to keep itself and its uplink from packet floods. These

two important intermediary-based architecture features tackles the two Internet

design “flaws”.

Unfortunately, the problems do not end there. There are multitudes of ways

an attacker can launch a DDoS as documented in Mirkovic’s taxonomy of at-

tack mechanisms (74). In our study, the DDoS attacks analyzed are limited to

brute-force DDoS on dynamic contents, as defined earlier in the scope of study

(Section 1.1) and eDDoS. The former covers the entire taxonomy with the excep-

tion of “application targeted attack”, “semantic attack” which the application

targeted attack is a subset of, and “infrastructure (core Internet router) tar-

geted attack”. eDDoS is not reflected in the taxonomy as it emerged after the

taxonomy creation. Semantic DoS, which exploits a protocol weakness , e.g.,

Shrew attack (64) on TCP or an implementation vulnerability, e.g., Slow Loris

attack (50) on Apache Web Server while important, are tackled orthogonally by

initiatives that ensure more secure software development such as U.S. Homeland

Security’s Built Security In project (30) and research that can automatically an-

alyze protocols for security weakness. Note that in semantic DoS, a distributed

DoS (DDoS) is not necessary since few packets will suffice. Our research does

not protect against core Internet router DDoS because we do not want to in-

troduce any technology in them since their owners are understandably resistant

to any proposed modification or update, which may affect stability and down-

time, and that seriously undermines deployability. For ease of comprehension, we

adopt terms used in the taxonomy to refer to attacks we address in this study,

namely, filterable DDoS to refer to attacks whose packets are distinguishable from

legitimate ones thus filterable and non-filterable DDoS, which is the complete op-

posite. It is important to note that filterable DDoS does not only refer to packets

with properties that makes it conspicuously identifiable as malicious, e.g., mal-

formed packet headers. It also refers to packets that may look legitimate but can

somehow be identified as unsolicited. We would also like to point out that non-

filterable DDoS is a misnomer, which we inherit from Mirkovic et al., and used in

this paper for the sake of usage consistency with the DDoS research community;

Mirkovic’s non-filterable DDoS term means the attack packets resemble legitimate

15

2.1 Background

ones thus may be difficult to filter but ultimately still filterable through smarter

heuristics such as statistical anomaly. To quote a simple example, a thousand

legitimate-looking attack packets requesting for the same web page originating

from a single source IP, is categorized as non-filterable DDoS, even though it is

easily detectable thus filterable. Understanding the nuances of the terms filter-

able and non-filterable DDoS is necessary for comprehending the ensuing study.

Strange as it may seem at first thought, an attacker may prefer a filterable DDoS

attack over a non-filterable one for 3 reasons: (1) it is easier to generate thus

a heavier onslaught is possible, (2) no understanding of the targeted entity nor

its communication protocol is necessary to craft attack packets, and (3) it is not

possible to launch non-filterable attacks for entities protected by some authen-

tication service that requires the sender to include some secret tokens. With

the emergence of cloud-computing, or more specifically utility-based computing,

a “pay-as-you-use” model, which expounds low start up cost and scalability for

the masses, a new DDoS—economic DDoS (eDDoS) needs to be reflected in the

taxonomy. Unlike conventional DDoS, eDDoS targets the financial constraint of

an organization, not its physical network/server constraints. eDDoS occurs when

zombies send a large amount of undesired traffic that exploits the cloud elasticity

to chalk up an exorbitant amount of cost on a cloud adopter’s bill leading to

service withdrawal or bankruptcy (63).

Our main gripe with various existing research is that although they have

devised clever ideas to patch the two Internet design “flaws”, they are often not

able to defend against all 3 types of DDoS effectively but worst of all, even the

more effective ones, due to the lack on economic insight, remain stuck within the

hallowed halls of the academia unable to gain widespread deployment.

In this chapter, we start by categorizing existing DDoS mitigation research

based-on the kind of circumvention they offer—deterrence, client/server reaction,

or economic framework, and we point out the advantages of our research in each

of those areas. Following that, we compare their effectiveness against filterable,

non-filterable and eDDoS. Finally, we look at their deployability before concluding

the chapter by emphasizing how this study stands out in defense against the 3

types of DDoS analyzed.

16

2.2 Related Work

2.2 Related Work

We classify DDoS mitigation research based on how they tackle the issue—client

reaction, server reaction, prevention, deterrent and economic rectification. Each

classification is further sub-divided into more specific classes as necessary.

2.2.1 Economic Framework: Inefficiency Rectification

There is a dearth of analysis addressing the lack of DDoS mitigation mechanism

deployability. Although most recognize the importance of deployability, it does

not receive enough focus; casually rolling out the “incremental deployment” or

peer-to-peer (P2P) based model has become second-nature. The former assumes

that the adopter is contented to improve on status quo regardless that the de-

ployment is nonetheless ineffective without achieving critical adoption level. The

latter misses the crucial point that the success of file-sharing P2P systems is un-

likely to be replicable in security, chiefly because the “gain” perceived by a user

in obtaining a tangible file is totally different from the gain perceived in being

secure. The security acquired is often offset by the loss of convenience or addi-

tional incurred effort, thus there exists only a tenuous link between file-sharing

and security collaboration incentives.

Our work, Burrows, is a framework intended to clearly delineate the factors

that enhance deployability of a DDoS mechanism; it highlights the need as well

as the how to minimize negative externality, re-align economic incentives and

reduce disruption to ossified infrastructure. DDoS mitigation mechanisms that

adhere to Burrows framework are those most likely to be adopted and deployed,

e.g., (24; 38; 48; 62; 63).

2.2.2 Economic Framework: Resource Harness

Edge node intermediary proposals (Section 2.2.6), hide a protected server and

grants the server traffic reception control capability. As a result the intermediaries

themselves can come under heavy DDoS. Thus, the resiliency of intermediary-

based defense is proportional to the quantity of intermediaries. These proposals

mostly rely solely on incremental deployment while some may embed code into

17

2.2 Related Work

unrelated but popular applications, e.g., P2P clients, which are widely distributed

in order to turn them into intermediaries (38). The incentive of incremental de-

ployment seems to be insufficient as evidenced in other security-related technology

that advocate such approach, e.g., Secure BGP (58).

Our work, KUMO is an economic inefficiency rectification framework, which

complements incremental deployment. It extends Burrows’ concept of re-aligning

economic incentives by facilitating security collaboration, through lowering the

participation “cost”, e.g., burden of setup and maintenance, and offering “re-

wards” for participation, e.g., financial gains. In other words, KUMO enables

any existing and future edge nodes running any protocol to act as intermediaries

by contributing their over-provisioned resource, in return for financial rewards,

while not requiring any modification at all. This greatly surpasses the incentives

of an incremental deployment model, enabling research that adopts KUMO to

quickly attain its critical adoption mass for DDoS defense.

2.2.3 Prevention: Network-Layer Filtering

Network-layer filtering refers to dropping packets based on network and transport-

layer (as define by TCP/IP) characteristics. It is easily deployable because it can

be supported by existing routers at line speed. There are two types of filtering:

egress and ingress. In this study, we disambiguate the two terms by always using

them in reference to the Internet, i.e., ingress filtering controls packets entering

the Internet while egress does the reverse.

Ingress filtering proposals such as RFC2827 (42) and D-WARD (73) focus on

preventing malicious packets from entering the Internet and thereby attacking

a victim. The former is employed at each stub network router allowing only

packets with source IPs of that stub network to enter the Internet. This prevents

spoofed DDoS; DDoS attacks whose packets have falsified origin information to

avoid accountability. The latter involves monitoring two-way traffic flows for each

source IP at ISP edge routers to detect anomalous traffic and stem them near

the sources. Ingress filtering requires widespread deployment points and does not

benefit the adopter. This lack of economic incentive usually results in under-

deployment; as of 19 Sep 2009, according to MIT’s Spoofer project, around 20%

18

2.2 Related Work

of IP addresses are still spoofable, thus D-WARD, which has a deployment model

that mirrors ingress filtering, may likely suffer the same fate.

The two most common egress traffic rules are filtering all traffic to the victim

and filtering based on “malicious” sources. The former, completes the DDoS but

is nonetheless necessary to spare entities sharing heavily impacted common paths

from collateral damage. The latter can be manipulated by attackers spoofing a

legitimate entity’s source address to get it blacklisted and filtered but can be

addressed by Hop-count filtering (HCF) (57), which maintains a map correlating

the number of hops, a node takes to reach a server. The starting value of Time-

To-Live (TTL) field in the IP layer, which is decremented by each router on the

way to the destination, is well-known albeit different for different systems, i.e. it

is restricted to values of 30, 32, 60, 64, 128, 255 (43), thus based on the TTL

at the destination, and the expected TTL from the HCF table, the victim can

determine if the packet is spoofed. Unfortunately the deployment of smart egress

filtering near the server cannot mitigate collateral damage.

In order to reduce the deployment points required and address collateral dam-

age issues unmitigated by ingress and egress filtering mechanisms respectively,

Distributed Packet Filtering (DPF (82)) proposes a filtering mechanism deeper

in the Internet. Each router that has a DPF filter installed, builds an Autonomous

System (AS) 1 connectivity map that enables it to deduce from the packets source

IP address whether that packet could have arrived at its particular network in-

terface. Due to the power law nature of the Internet, this reduces the deployment

points required to only 20% of Autonomous System (AS) sites and its proactive

packet dropping at the first DPF-installed router encountered overcomes the col-

lateral damage issue to a great extent. Unfortunately, un-spoofed attack packets

will still pass through DPF unmolested.

Our work, sPoW also relies on filtering but a white-list one, which is one

of the cornerstones of security (97). When the characteristics of malicious ele-

ments, e.g., packets, cannot be clearly defined, can be manipulated by attackers

or has large number of possibilities, then white-listing reduces the filter size as

well as eliminate false positives, i.e., wrongly disallowing good traffic, since what

1A number that is assigned to each ISP by the central Internet registry, IANA.

19

2.2 Related Work

is allowed/good is always clearly specified in the white-list. One of sPoW’s fea-

tures is to use cryptic and hard-to-guess names for its obscure connection request

channels, ensuring only legitimate clients that successfully solve puzzles can find

them. A white-list is used to permit only traffic addressed to those cryptic channel

names.

2.2.4 Prevention: Overlay

SOS (59), WebSOS (32), Mayday (11), use a small set of ever-changing “secret”

overlay nodes that are permitted direct communication with the server, which

makes them and the server difficult for the attacker to target. Clients gain entry

into the overlay after authentication, e.g., Transport Layer Security (TLS) (36)

or simple Turing-test verification, e.g., CAPTCHA (117), at attack-resilient en-

try points and their data is forwarded to the secret nodes using overlay routing,

which can withstand routing node failures and hides the location of the secret

nodes. The use of overlay routing increases latency and the requirement for ISP

assistance to deploy filtering rules to restrict direct communication to secret nodes

hinders deployment. Moreover, the economic issue of acquiring many entry points

that perform authentication, for DDoS defense has also not been addressed. Our

work does not enforce any form of authentication, instead sPoW offers an alter-

native approach—instead of differentiating attacker and authenticated clients, it

empowers a client to signal its connection request urgency in order to receive

priority service by expending more of its own resource. This has the advantage

of delegating resource consumption to the client-side instead of burdening the

entry-points where DDoS can be generated by submitting a multitude of delib-

erate incorrect authentication information.

2.2.5 Deterrence: Traceback

Single-packet (102), ICMP (20) and probabilistic marking (99) traceback can be

deployed to locate zombies. However, given that there are thousands (88) or

millions (33) of zombies, traceback is interesting but without the ability to au-

tomatically shut out DDoS, is ineffective. Our work, Overfort, does automated

20

2.2 Related Work

traceback to ISP-level, instead of host-level, which although is less granular, re-

quires less resource, but more importantly also comes with a DDoS shut out

mechanism—the ISP will be black-listed and it’s entire user base will no longer

be able to resolve the server name to its actual IP address. The ISP will remain

black-listed until it convinces the server through out-of-band communication that

it has cleaned up its user base. Thus Overfort offers a very strong incentive for

ISPs to keep their user base clean. Moreover, compared to existing traceback

mechanisms, all Overfort traceback and black-list enforcement components are

within the jurisdiction of a single deployer, making it easy to deploy.

2.2.6 Server Reaction: Traffic Control Through Middle-

boxes

Route-tunnel (48), CenterTrack (105), CAT (24), Phalanx (38), I3 (104), and

Burrows (60), prevent direct connectivity, thus mitigating direct DDoS attacks

to servers and only allowing indirect connectivity through middle-boxes, which

function as server-governed traffic control points. Route-tunnel propose to restrict

the dissemination of a server IP to only middle-boxes while the middle-boxes in

turn advertise reachability for the server thus effectively sinking all traffic prior

to forwarding them to the server. Detection of malicious traffic by the server

enables pushback to the middle-box, located in rich bandwidth network core.

CenterTrack is an overlay network, consisting of IP tunnels or other connections

that is used to selectively reroute interesting datagrams directly from edge routers

to special tracking routers. The tracking routers, or associated sniffers, can easily

determine the ingress edge router by observing from which tunnel the datagrams

arrive, thus dropping malicious packets near ingress points becomes possible.

CAT suggests deploying middle-boxes at ISP boundaries that will intercept traf-

fic and perform handshake on behalf of the server to provide secret tokens that

grants subsequent packets tagged with them to flow through the middle-boxes to

the server. The tokens can timeout or be revoked by the server. Route-tunnel

and CAT rely on funneling server traffic through specialized middle-boxes in the

core and boundary of Internet, which has abundance of bandwidth. Phalanx and

I3 are designed to enable bandwidth accumulation from nodes on Internet edges

21

2.2 Related Work

for defense by installing software components on them for traffic control pur-

poses. The usage of Internet edge nodes facilitates deployment but unfortunately

the server now requires filtering assistance for protection against direct attacks.

Phalanx, unlike the previous three and I3, does not rely on DDoS detection to ini-

tiate reaction; it classifies traffic using a Proof-of-Work (PoW) scheme. A client

solves a cryptographic puzzle and submits the solution together with its packet

as proof of the resource it expended, to a PoW verifier, which asserts the solution

and prioritizes the packet based on the client resource expended. PoW enables

non-filterable DDoS defense; it prioritizes packets solely based on the resources

expended by their origins instead of determining whether a packet is malicious,

which is not possible in non-filterable DDoS. However, the purpose common to

all these middle-boxes proposals is to enable server reaction to drop unwanted

traffic before they clog the server and its uplinks. Our work, Overfort, KUMO

and sPoW are all edge node intermediary based proposal, thus closest in spirit

to Phalanx and I3, with similar traffic control intentions. However, each of them

adds an additional defense capability—deterrence (see Section 2.2.5), resource

accumulation (see Section 2.2.2) and connection signaling urgency respectively

(see Section 2.2.10).

2.2.7 Server Reaction: Packet Scrubbing Infrastructure

Due to the difficulty of determining a packet’s intent merely by inspecting its

characteristics, the issue of economic incentives and avoiding collateral damage,

dFence (69) as well as commercial solutions like Prolexic (86) has proposed or built

a packet scrubbing infrastructure. Packet scrubbing is a superset of network-layer

filtering as it involves more sophisticated heuristics, such as machine-learning,

statistical analysis and anomaly detection to identify undesirable packets. A

centralized and shared packet scrubbing infrastructure, has economies of scale to

purchase loads of resources for DDoS defense deep in the Internet thus minimizing

collateral damage while enabling those who wants acquire DDoS protection the

opportunity to do so without the high capital investments.

Besides subscribing to scrubbing centers, a single entity can divert traffic

by using a sinkhole (47) to construct a Do-It-Yourself (DIY) scrubbing center

22

2.2 Related Work

built out of a selection of commercial products from Arbor Networks Threat

Management System (TMS) (16), Cisco Anomaly Guard (28) or Intelliguard

DPS (55)

Either way, scrubbing is based on anomaly/signature-based detection, which

may result in legitimate traffic being cleansed due to false positives. The ability

of such technology to handle non-filterable DDoS traffic also has not been well-

documented.

Our work currently does not utilize anomaly/signature-based malicious packet

detection/filtering because of the false positives/negatives in anomaly detec-

tion and the over-reliance of sometimes untimely attack signatures updates in

signature-based detection. Such mechanisms are also thrown into disarray when

faced with non-filterable traffic. With network bandwidth growing, keeping traf-

fic state to perform resource-intensive anomaly detection may be another area

of concern. Therefore instead of determining the malice of each packets, sPoW,

utilizes a self-verifying Proof-of-Work (PoW) 2.2.10 to prioritize non-filterable

traffic based on the resources expended by their origins.

2.2.8 Server Reaction: Pushback

The term pushback refers to a distributed architecture where a victim is in the

best position to detect an attack due to its vantage point of receiving all attack

traffic, and it requests for widely-deployed upstream nodes, usually routers, to

assist in filtering attack packets way before it clogs the uplinks, to avoid collateral

damage to systems sharing those uplinks. The difference between middle-box

proposals and pushback is a subtle one. The former uses intermediaries more

for traffic control with pushback (often only one-level) as a by-product, while

the latter utilizes multi-level iterative communication and cooperation between a

large number of widespread nodes for pushback purposes.

The earliest form of pushback deployed, known as “black-hole routing” (47),

employs Border Gateway Protocol (BGP) (90) routing announcements to bind a

victim’s IP address to each upstream ingress router’s Null interfaces, which drops

packets, during a DDoS attack. Although it completes the DDoS on the victim,

it is nonetheless necessary to mitigate collateral damage.

23

2.2 Related Work

“Pushback” 1 Pushback (68), AITF (18), and StopIt (65) enables a victim to

request more granular filtering from the pushback infrastructure instead of drop-

ping all traffic to it. In Pushback, “congestion signature” comprising destination

IPs, network and transport layer fields, in AITF, “recorded path” comprising

source, destination IPs as well as traversed inter-AS gateways, and in StopIt, the

source and destination IP pair, offers granularity in describing traffic that should

be blocked as specifically as possible. Pushback, AITF and StopIt can also han-

dle spoofed source IP attack traffic well, with Pushback generating congestion

signature without relying on source IPs, while AITF and StopIt is cognizant of

AS-level topology thus aware of packets whose embedded path information vio-

lates the expected paths derived from AS-level map. All of them serve to push

DDoS traffic back to attacking sources through iterative communication; victim

servers will solicit their pushback-capable upstream nodes to stem the offending

flows and the process is iterated until filters are installed at nodes as near as possi-

ble to the attacking sources. Economic-wise, there are 2 problems. The upstream

router owners are unlikely to filter sources who are their paying subscribers to

aid victims whom they have no economic relationships with (24). Moreover, the

requirement for co-operation between competitive ISPs to deploy a standardized

piece of technology on their uptime-sensitive core equipments is likely to face stiff

resistance. Pushback technologies like filtering technologies rely on the ability to

install filters/rules that match DDoS traffic in order to drop them thus they may

be also littered with false positives/negatives and are weak in the opposition of

non-filterable DDoS traffic. Our work Burrows, Overfort, KUMO and sPoW are

all intermediary-based architecture, with the intermediaries offering the server

a non-iterative single pushback of undesired traffic to the intermediaries. They

trade-off the ability to pushback attack traffic all the way back to distributed at-

tack sources in return for better deployability, i.e., single non-interactive pushback

only requires deployment at a deployer’s own intermediaries instead of distributed

third party components such as core Internet routers or third party ISPs customer

access routers.

1This research is named “pushback”, which coincides with the general term pushback used,
thus we capitalize specific references to this technology throughout this literature.

24

2.2 Related Work

2.2.9 Server Reaction: Network Capabilities

Network capability schemes (13) (called “capability”, for short), TVA (126) and

SIFF (123) enable a server to control traffic reception by communicating the

desirability of a traffic flow to capability-enabled nodes (capability nodes) along

a traffic path using a secret token, which is not unlike middle-boxes described

in Section 2.2.6. However, for even faster eradication of unwanted traffic, the

destination-generated token is installed at capability nodes that the approved

traffic has to traverse from source to destination, resulting in traffic without tokens

or forged ones, being dropped (or given low priority) as soon as it encounters a

capability-enabled node has not been given instruction, i.e., approved tokens, to

forward such traffic. With a large number of capability nodes, unwanted traffic

will get dropped earlier compared to the middle-box approach.

In short, capability offers an elegant way to provide different levels of protec-

tion to initial connection requests and established connections, with the differ-

ence being, the latter possessing a server-issued approval token, thus given higher

queuing, routing and forwarding priority. An established connection is afforded

such priority since it represents a connection that has been accepted by the server

and also the server has the authority to downgrade the established connection

anytime by revoking its tokens from capability nodes. However, the token acqui-

sition process is hard to protect since it is open to all and most proposals rely

on approximate fair queuing at routers based on the area of origin of the token

requester.

Phalanx, is slightly different—it does not rely on specialized routers along

the client-server path to verify tokens. Instead, it has widely distributed middle-

box intermediaries that perform the verification. Unsolicited traffic is thus, not

stemmed near the sources but only after they have reached the intermediary.

To safeguard the token acquisition process, a PoW scheme is implemented. Our

work, sPoW, is similar to Phalanx—the ability to stem attack near sources is trade

off for deployability. However, the significant difference is that we utilize only a

few resource-rich resource intermediaries, i.e., could platforms, which is easy to

obtain and deploy. Moreover, sPoW is a self-verifying PoW while Phalanx’s PoW

is not and this enables sPoW to defend against the emerging threat of eDDoS.

25

2.2 Related Work

2.2.10 Client Reaction: Proof-of-Work (PoW)

The introduction of capability (Section 2.2.9) provides servers with the ability to

prioritize established connection traffic over connection request traffic even under

DDoS and drops excessive lower priority traffic near sources. However, the pro-

cess of obtaining capability is open to everyone, thus it remains a DDoS target.

During this early stage in a connection request, i.e., the capability acquirement

process, a server has little information on the legitimacy of clients, thus the best

way to differentiate clients is by offering a scheme where a client can create a

higher priority signal for connection initiation request by expending more of its

own resource, which is known as Proof-of-Work (PoW). Servers can then prioritize

clients based on their PoW. Speak-up (118) uses bandwidth as PoW by having

clients send more requests during DDoS while OverDoSe (101), Portcullis (83)

and Phalanx (38) require clients to solve crypto-puzzles as PoW. Speak-up may

give rise to congestion elsewhere while the latter PoWs all require specialized

puzzle verifiers that can become new DDoS failure points if they have insufficient

capacity. Moreover puzzle re-use, i.e., re-using a solved puzzle solution, per-

mits an attacker to submit a connection request without expending any resource,

defeats PoW and is difficult to deal with without timely inter-communication

between the puzzle verifiers. Our work, sPoW, avoids issues associated with puz-

zle verifiers by eliminating the need for them by introducing self-verifying PoW.

In sPoW, each crypto-puzzle conceals the information of a connection request

channel, i.e., a channel that a server is listening for a connection request. Upon

resolution, a client recovers the difficult-to-guess channel name, so that it can

send a connection request to the server through the channel.

2.2.11 Client Reaction: Exploiting Alternate Paths

RON (12), SOSR (49) and Detour (98) propose to use intermediary nodes on the

Internet to deflect traffic around problematic links/hotspots. This approach is

useful for circumventing DDoS when there is an abundance of alternate paths,

which is exactly what the Internet has, as pointed out by Teixeira et al. (113).

RON, requires a full-mesh connectivity between the intermediaries to exchange

routing updates, in order to enable the best intermediary selection given a set

26

2.3 Deployable Resiliency

of criteria, e.g., latency or throughput. With connectivity in the order of O(n2),

where n is the number of intermediaries available, RON’s scalability is limited

to below 100. SOSR, is extremely light-weight in resource consumption since it

does not keep state but despite that, by randomly selecting 4 nodes out of 39

available, it can mask 66% of link failures. However, the usage of end-hosts as

intermediaries result in indirect paths with more hop-counts since packets has to

detour to the Internet edges where end-hosts are before being deflected to their

final destinations. The small number of end-host intermediaries also reduces the

possibility of masking failures, e.g., 5% of failures can only be masked by 25% of

intermediaries, making a case for the availability of a larger set of intermediaries

and the importance of better intermediary selection algorithm. Our work, AI-

RON-E introduces the possibility of using the large number of existing routers

as deflectors, thus reducing indirect path hop-count and increasing possibility of

failure masking. It does so by exploiting controlled source IP spoofing, which

does not require any change to existing routers, and introducing an lightweight

oracle-based intermediary selection algorithm to choose intermediaries that can

help bypass link failures with high probability while requiring little resource.

2.3 Deployable Resiliency

We want to measure how our research stacks up against existing work so we

created the metric “deployable resiliency”, which evaluates the effectiveness and

deployability of a DDoS defense from 3 perspectives—resiliency, deployability and

incentive. Resiliency is a measure of effectiveness of the research against the 3

types of DDoS and the type of defense it offers (see Figure A.3). Deployability is

the ease at which a research can be deployed. This is influenced by its required

deployment size, availability of technical skills at deployment locations and ease

of installing/modifying new/existing systems to incorporate the research (see Fig-

ure A.1). Incentive is defined as the willingness of the owner of a system, e.g.,

router, server, computer, etc., to deploy the research. This is mainly influenced

by the level of affliction DDoS has on a system owner as well as required deploy-

ment size (see Figure A.2). We plot Figure 2.1, which shows existing research,

and compare it with Figure 2.2, which shows our research. From the figures, it is

27

2.3 Deployable Resiliency

clear that our research has higher deployable resiliency. Readers with a need or

desire to understand the details of how we derive the measurements for resiliency,

deployability and incentive for each research, can read the next two subsections,

while others can proceed to Section 2.4.

2.3.1 Resiliency (Effectiveness Against DDoS)

Before proceeding to rate each mechanism’s resiliency against DDoS, we would

like to provide a more robust definition of effective DDoS defense. Filterable

DDoS and non-filterable DDoS are well-documented (74) and both can occur to

any server that is connected to the Internet or the DDoS mitigation mechanism

protecting the server. Thus effective defense against any of those DDoSes man-

dates that the mechanism has to successfully mitigate that DDoS at both the

server as well as at the mechanism itself. eDDoS, on the other hand, can occur

only if a pay-as-you-use system, such as a cloud platform, is utilized. A cloud

may be utilized under two circumstances to increase scalability: (a) the DDoS

mitigation research itself does not have a mechanism to harness sufficient resource

for DDoS defense so it needs to be deployed in the cloud, or (b) the server be-

ing protected wants to grow dynamically to meet legitimate traffic demands so

it needs to be deployed in the cloud. Thus effective eDDoS defense mandates

that a DDoS mitigation mechanism itself has to be resistant against eDDoS (in-

termediary eDDoS) if it relies on the cloud for scalability and it must certainly

reduce undesirable packets heading towards servers that are deployed in the cloud

(server eDDoS). In our theoretical evaluation of deployable resiliency, to ensure a

fair evaluation of different research, we set the baseline for comparison as follows:

• We assume that servers to be protected are always deployed in cloud plat-

forms thus a mitigation mechanism must always defend against server eD-

DoS.

• It can be safely assumed that a mitigation mechanism is not susceptible to

eDDoS (intermediary eDDoS) unless we specifically indicate that it needs

to adopt a cloud platform for scalability reasons.

28

2.3 Deployable Resiliency

• Defending against filterable DDoS is a pre-requisite for non-filterable DDoS

defense, which is in turn a pre-requisite for eDDoS defense. The resultant

corollaries are:

– Effective defense against a certain DDoS also implies effective defense

against the pre-requisite attacks. For example, if a mechanism can

defend against non-filterable DDoS, it can also defend against filterable

DDoS but not vice-versa.

– The ability to tackle non-filterable DDoS will determine the extent

server eDDoS can be mitigated.

The general approach to address the 3 types of DDoS are as follows. For

filterable DDoS defense, a mitigation mechanism has to posses more resources

than attackers such that it can drop distinguishable attack packets as they ar-

rive while having spare capacity to handle legitimate packets. For non-filterable

DDoS and server eDDoS defense, the principle goal is to handle DDoS pack-

ets that slips through filterable DDoS defense by somehow reducing them. The

existing approach is to employ anomaly-based detection that requires a lot of

resources and susceptible to false positives/negatives, to somehow distinguish

non-filterable DDoS packets. A more effective approach is to transform the com-

plex problem of determining the malice of a packet into a more manageable one

such as determining a packet’s priority that can adjusted by its sender through

resource expenditure to generate a mathematical proof embedding a priority level

that commensurates with the resource expended, thus enabling the proof accom-

panying each packet to be verified and the embedded priority level accurately

determined by the mitigation mechanism for packet prioritization. This is known

as Proof-of-Work (PoW). PoW reduces non-filterable DDoS traffic by empower-

ing legitimate clients to increase their traffic priority and compete against DDoS

packets for a server’s resources. For intermediary eDDoS defense, we have to en-

sure that the non-filterable DDoS packet analysis mechanism described above is

carried out by non-billable resources otherwise attackers can flood the mechanism

with arbitrary packets to drive up billable processing charges.

29

2.3 Deployable Resiliency

Table 2.1 and 2.2 summarizes the ability of related work and our research (in

italics) to defend against the 3 types of DDoS analyzed in this study—filterable,

non-filterable and eDDoS (intermediary and server).

Research that exploits alternate Internet paths does not offer a server defense

against filterable, non-filterable and eDDoS. However, they can route around con-

gestion created by filterable or non-filterable DDoS as long as there are alternate

paths available; a condition that can be created by making intermediaries and

servers multi-homed. The intermediaries are not cloud-based thus eDDoS is not

applicable here. However, it is defenseless against eDDoS at the server since the

primary intention of eDDoS is not congestion, which alternate paths can counter,

but rather the financial resource depletion of the target.

Middle-box proposals can defend against filterable DDoS either by pushing

back undesirable traffic to a location rich in bandwidth and far away from the

bottleneck, e.g., an ISP’s core network, or pushing back traffic to a huge number

of distributed locations, whose aggregate resources is expansive, e.g., back to traf-

fic origins. Phalanx falls into the first category while Route-Tunnel, CenterTrack

and CAT falls into the second. Route-Tunnel, CenterTrack and CAT cannot de-

fend against non-filterable DDoS resulting in attack packets slipping through the

defense and causing eDDoS at the server. Phalanx, on the other hand, utilizes

PoW thus it can defend against non-filterable DDoS. However, if Phalanx inter-

mediaries that verify all PoW proofs are built from cloud platforms, then even

incorrect proofs, incur cloud resource usage making Phalanx itself susceptible

to eDDoS. Burrows and KUMO are frameworks that advocate intermediary us-

age to facilitate traffic pushback thus effective only against filterable DDoS, with

KUMO being extremely effective since it facilitates harnessing lots of resource

for DDoS defense. If an entity can utilize KUMO intermediary resources without

paying then eDDoS is not an issue, however, to encourage growth of intermedi-

aries a pay-as-you-use compensation scheme for intermediaries is required thus

exposing a KUMO adopter to eDDoS. Filtering proposals also rely on dropping

malicious packets that have particular characteristics identifiable through statis-

tical anomaly, e.g., D-WARD, or signature matching, such as bad source IPs,

e.g., egress filtering or violation of expected characteristics, such as TTL-source

30

2.3 Deployable Resiliency

IP association with the packet arrival interface, e.g., HCF and DPF. False pos-

itives/negatives in D-WARD makes its non-filterable DDoS and server eDDoS

defense imperfect, while DPF and HCF is only effective against filterable DDoS.

Worse still, localized mechanisms, e.g., egress filtering and HCF, are not capable

of pushing back traffic resulting in incomplete defense against filterable DDoS,

i.e., collateral damage is incurred on other servers sharing same uplinks.

Packet scrubbing infrastructures rely on the economies of scale of the out-

sourcing model, i.e., many customers pooling resources to construct a bigger

infrastructure than possible if each were to build individual ones, thus have

huge resource for defense against filterable DDoS. Pushback proposals, like some

middle-box proposals, also push back traffic to distributed locations, whose ag-

gregate resource, is sufficient to stem filterable DDoS traffic preventing bottleneck

downstream. Unfortunately scrubbing infrastructures and Pushback mechanisms,

utilize detection mechanism, like filtering, thus can be only somewhat successful

with non-filterable DDoS due to possible false positives/negatives thus they are

only partially effective against eDDoS at servers. Black-holing, which is a local

deployment of pushback, by a single entity, to the entry points of the entity’s

boundary is very crude; it will drop all traffic, regardless good or bad, for a par-

ticular destination at those entry points. The end result is that any DDoS on

the server always succeed but eDDoS will not happen because the server is taken

offline at the first sign of an attack since the primary focus of black-holing is to

avoid other servers in the entity network from suffering collateral damage.

Traceback technology is only a partial solution to DDoS; it only enables trace-

back of attack traffic to each source to facilitate a zombie black-list compilation. It

relies on other orthogonal research, such as, attack traffic detection to determine

which traffic packets to traceback and an enforcement implementation to actually

drop traffic from clients in black-list. Thus by itself, it cannot defend against any

DDoS attack. Overfort is different. It is both a traceback black-list enforcement

mechanism. An entity can harness sufficient Overfort intermediaries for defense

against filterable DDoS either through cooperation or even by itself. Since those

intermediaries can come from a non utility computing based pool, e.g., an ISP’s

access routers, it is not exposed to eDDoS at the intermediaries. However, its

reliance on orthogonal malicious traffic detection algorithm exposes it to false

31

2.3 Deployable Resiliency

negatives/positives, resulting in only partial defense against non-filterable DDoS

and eDDoS at server.

Network capability enables a server to inform widespread intermediaries about

approved traffic, enabling non-approved traffic to be dropped as soon as it encoun-

ters an intermediary. However, prior to determining approved traffic a server has

to accept all initial connection request traffic approval consideration. The large

number of widespread intermediaries can provide sufficient resources against fil-

terable DDoS. However, a server has to rely on false positive/negative-ridden

anomaly detection algorithm to reject non-filterable DDoS traffic that pretends

to be initial connection requests. This reduces its non-filterable DDoS and server

eDDoS defense to partial.

Overlay proposals are accompanied by authentication mechanisms that mini-

mize automated, unauthorized traffic from discovering the location of a protected

server. As long as the authentication mechanism has sufficient resource, e.g.,

employing a cloud platform, to sustain the largest of filterable DDoS, then a

reverse-Turing authentication mechanism will eliminate non-filterable DDoS and

server eDDoS, which are automated. Note that non-automated attacks are rare

since they cannot generate sufficient attack traffic to cripple neither the mitiga-

tion mechanism nor protected server. However, the usage of a cloud platform as

intermediaries exposes it to intermediary eDDoS. Also note that the applications

supported by such overlay mechanisms are restricted to those that have graphi-

cal user interface and are interactive; both are requirements of a reverse-Turing

authentication mechanism.

PoW is described above under Phalanx and the same argument applies here,

i.e., it can defend against non-filterable DDoS. The only exception is that Portcullis

and OverDoSe intermediaries are non utility-based, while Speak-Up has no inter-

mediaries, thus they are not susceptible to intermediary eDDoS.

sPoW employs a cloud platform to create sufficient intermediaries for defense

against filterable DDoS. However, unlike other DDoS mitigation mechanisms that

utilize cloud resources for traffic differentiation or prioritization, sPoW, is a care-

fully devised PoW scheme (a self-verifying PoW) designed to delegate such re-

source consuming task to the cloud platform’s built-in mechanisms, e.g., its fire-

wall, thus circumventing the huge cost of associated with handling non-filterable

32

2.3 Deployable Resiliency

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

D
ep

lo
ya

bi
lit

y
Le

ve
l

Incentive Level

Cap

Prolexic

Blackhole

HCF

Speak-Up

Spread
SOS

Mayday,WebSOS

DPF

CenterTrack,
Route Tunnel

CAT

Trace

AITF
StopIt

Phalanx

TVA,SIFF
D-WARD

Portcullis,
OverDoSe

RON,SOSR

Detour

server react

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

D
ep

lo
ya

bi
lit

y
Le

ve
l

Incentive Level

Cap

Prolexic

Blackhole

HCF

Speak-Up

Spread
SOS

Mayday,WebSOS

DPF

CenterTrack,
Route Tunnel

CAT

Trace

AITF
StopIt

Phalanx

TVA,SIFF
D-WARD

Portcullis,
OverDoSe

RON,SOSR

Detour

client react

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

D
ep

lo
ya

bi
lit

y
Le

ve
l

Incentive Level

Cap

Prolexic

Blackhole

HCF

Speak-Up

Spread
SOS

Mayday,WebSOS

DPF

CenterTrack,
Route Tunnel

CAT

Trace

AITF
StopIt

Phalanx

TVA,SIFF
D-WARD

Portcullis,
OverDoSe

RON,SOSR

Detour

prevent

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

D
ep

lo
ya

bi
lit

y
Le

ve
l

Incentive Level

Cap

Prolexic

Blackhole

HCF

Speak-Up

Spread
SOS

Mayday,WebSOS

DPF

CenterTrack,
Route Tunnel

CAT

Trace

AITF
StopIt

Phalanx

TVA,SIFF
D-WARD

Portcullis,
OverDoSe

RON,SOSR

Detour

deter

Figure 2.1: Existing deployability, incentive level and effectiveness of significant DDoS

mitigation research in from 2000-2009.

DDoS packets (intermediary eDDoS). The power of PoW enables defense against

non-filterable and server DDoS.

2.3.2 Deployability

Next we analyze the deployability of existing research, which is made up of incen-

tive and ease of deployment factors. Incentive measures the alignment between

the party affected by DDoS and the party that is empowered to deploy the miti-

gation mechanism. A match between the party afflicted and the party empowered

will result in high incentive and thus enhances adoption. Deployment incentive

for a research thus depends on where the components needs to be deployed and

it is also affected by the quantity of components required for the research to be

effective.

The ease of deployment is a measure of the effort involved in deployment

and the availability of expertise to deploy. This can be objectively measured by

considering the location of deployment and the number of deployment points,

with the location itself an indication of the effort required as well as expertise

availability. Ease of deployment at server-side is high followed by Internet edge,

client-side and network in decreasing order of ease, while expertise availability is

high at server-side, Internet edge and network but low at clients. The number of

33

Chapter1/Chapter1Figs/defence_type_bubble_wo20091218.epsi

2
.3

D
e
p
lo

y
a
b
le

R
e
silie

n
cy

Mechanism
Type

Mechanism Filterable DDoS Non-filterable DDoS Intermediary eDDoS Server eDDoS

Alternate path RON, SOSR,
Detour, AI-

RON-E

Yes (if alternate path
exists)

Yes (if alternate path
exists)

Not applicable (non
utility-based)

No

Middle box Route-Tunnel,
CAT, Center-
Track

Yes No Not applicable (non
utility-based)

No

Middle box
with PoW

Phalanx Yes (use utility-based
intermediary)

Yes (traffic prioritiza-
tion through competi-
tion)

No Yes

Economic
framework

Burrows Yes Not applicable (depen-
dent on chosen technol-
ogy)

No Not applicable (depen-
dent on chosen technol-
ogy)

Resource
harness frame-
work

KUMO Yes No No No

Distributed fil-
ter

D-WARD Yes Partial (false nega-
tives)

Not applicable (non
utility-based)

Partial (false nega-
tives)

Distributed fil-
ter

DPF and ingress
filter

Partial (only against
spoofed DDoS)

No Not applicable (non
utility-based)

Partial (only against
spoofed eDDoS)

Localized filter HCF, egress fil-
ter

Partial (neighbor col-
lateral damage and
HCF is only effective
against spoofed DDoS)

No No Partial (HCF is only ef-
fective against spoofed
eDDoS while egress fil-
ter can be bypassed
by continuously alter-
ing attack packet char-
acteristics)

Packet scrub Prolexic Yes Partial (false nega-
tives)

No (may be charged
high monthly premium
or utility-based)

Partial (false nega-
tives)

Table 2.1: Resiliency Against DDoS (Part 1)

34

2
.3

D
e
p
lo

y
a
b
le

R
e
silie

n
cy

Mechanism
Type

Mechanism Filterable DDoS Non-filterable DDoS Intermediary eDDoS Server eDDoS

Local push-
back

Black-hole Yes No Not applicable Yes (all traffic
dropped)

Pushback Pushback,
AITF, StopIt

Yes Partial (false nega-
tives)

Not applicable (non
utility-based)

Partial (false nega-
tives)

Traceback Single-packet,
ICMP, Proba-
bilistic

No (only traceback
while black-list de-
pendent on other
mechanism)

Not applicable (only
traceback while black-
list dependent on other
mechanism)

Not applicable (non
utility-based)

Not applicable (only
traceback while black-
list dependent on other
mechanism)

Traceback
with auto
black-list

Overfort Yes Partial (false nega-
tives)

Deployer billing model-
dependent

Possible (with com-
plete black-list)

Network capa-
bility

Network Ca-
pability, TVA,
SIFF

Yes Partial (established
connections are pro-
tection but initial
connection requests are
not)

Not applicable (non
entity-based)

Partial (established
connection protection)

Overlay SOS, WebSOS,
Mayday

Yes Yes (use reverse Turing
test)

No Yes

PoW Speak-Up,
Portcullis, Over-
DoSe

Yes Yes (traffic prioritiza-
tion through competi-
tion)

Not applicable (non
utility-based)

Yes

Self-verifying
PoW

sPoW Yes Yes (traffic prioritiza-
tion through competi-
tion)

Yes Yes

Table 2.2: Resiliency Against DDoS (Part 2)

35

2.4 The X-Factors

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

D
ep

lo
ya

bi
lit

y
Le

ve
l

Incentive Level

sPoW
AI-RON-E

Overfort

Burrows

KUMO

server react

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

D
ep

lo
ya

bi
lit

y
Le

ve
l

Incentive Level

sPoW
AI-RON-E

Overfort

Burrows

KUMO

client react

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

D
ep

lo
ya

bi
lit

y
Le

ve
l

Incentive Level

sPoW
AI-RON-E

Overfort

Burrows

KUMOprevent

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

D
ep

lo
ya

bi
lit

y
Le

ve
l

Incentive Level

sPoW
AI-RON-E

Overfort

Burrows

KUMO

deter

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

D
ep

lo
ya

bi
lit

y
Le

ve
l

Incentive Level

sPoW
AI-RON-E

Overfort

Burrows

KUMO

econ

Figure 2.2: Our DDoS research in terms of deployability, incentive level and effec-

tiveness.

deployment point further reduces ease of deployment factor since they increase

the effort and expertise required.

2.3.3 DDoS Mitigation Comparison Chart

Based on the 3 criteria of incentive, deployability and effectiveness. We plot

Figure 2.1 to represent all existing research. Notice that there are only a few

mechanisms that are in the ideal deployable resiliency area—top-right corner.

Moreover, those few mechanisms there do not offer effective defense against all

the 3 critical DDoS. We plot a similar chart (Figure 2.2) to represent our research.

Burrows, which is just a framework, has average deployable resiliency, however

the rest of our research have high deployable resiliency.

2.4 The X-Factors

This section elucidates the major factors that distinguish our work from existing

research. The combination of KUMO and sPoW is the only work, to our knowl-

edge, that can address all the 3 types of DDoS affecting dynamic contents. Our

work is also the first research to address the rising concern of eDDoS by empow-

ering users to virtually alter the billing mechanism of cloud platforms to one that

36

Chapter1/Chapter1Figs/defence_type_bubble_our20091219.epsi

2.4 The X-Factors

reduces their exposure to eDDoS, without any assistance from cloud providers

but yet not violating any contractual terms and conditions. This empowerment

is necessary to transfer some burden of eDDoS from the cloud adopters to the

providers whom otherwise will just turn a blind eye to eDDoS due to the lack of

incentive to act against it. In addition, as visible from Figure 2.2, most of our

work has relatively high deployable resiliency with sPoW offering unprecedented

deployability by using cloud computing’s enormous resource for DDoS defense.

This is possible because our mechanisms take into consideration economic factors

that may hinder deployment or reduce deployment incentives. Finally, Overfort,

is unique because it offers two features: (1) defense against DDoS even though

the mechanism may have less physical resource capacity than the attacker and

(2) it performs traceback and enforce black-listing that punishes an entire cluster

of users if there is a zombie among them by empowering a server to refuse connec-

tivity to that “bad” cluster. This exerts economic pressure on clusters, e.g., ISPs

who are always accountable to their customers, to proactively keep their user

base clean in order to avoid disconnectivity. In other words, Overfort delegates

security responsibility to many cluster administrators to ease the job of cleaning

up and securing the Internet. The added bonuses are Overfort can be deployed

unilaterally by a single ISP and the zombie black-list created can be sold to or

shared with other ISPs and the Internet community.

37

Chapter 3

Burrows

This section is an abridged version of my paper co-authored with Nicolas Christin,

Tina Wong and Akihiro Nakao entitled “Power to the People: Securing the

Internet One-Edge at a Time” published in ACM Large Scale Attack Defense

(LSAD) Workshop held in conjunction with ACM SIGCOMM Conference in Ky-

oto, Japan, Aug 2007 (acceptance rate: 45%).

NOTE: This paper is largely based on my Master’s research in Carnegie Mellon

Cylab Japan. An excerpt is included in this thesis as the paper was mainly written,

published and presented when I was a Ph.D. student at University of Tokyo and

more importantly, the concepts have been further refined.

3.1 Deployable Resiliency

3.1.1 Resiliency

Defense Cate-
gory

Filterable DDoS Non-filterable
DDoS

eDDoS (inter-
mediary)

eDDoS (server)

Economic
Framework

Yes Not applicablea No Not applicablea

aBurrows is technology-agnostic. Its defense against non-filterable DDoS is dependent on
the technology plugged into the framework.

Table 3.1: Resiliency of Burrows against DDoS

38

3.1 Deployable Resiliency

Burrows attempts to rectify the economic inefficiency issues, namely negative

externality, mis-aligned economic incentives and ossified infrastructure in order

to encourage DDoS mitigation mechanism adoption. It tackles the issue from the

following angle:

Economic Framework: Inefficiency Rectification By creating a general frame-

work that future DDoS mitigation research can be based upon, we ensure

that future research implicitly takes into consideration these economic fac-

tors to enhance adoptability. The Internet is a common public infrastruc-

ture, thus, each user is likely to exploit it to her advantage with little

regard to its well-being, a phenomenon known as “tragedy of the com-

mons” (92). From a security standpoint, users are disinterested in deploy-

ing secure mechanisms because they cost money and inconvenience, thus

opting to do nothing, resulting in the burden of an insecure Internet being

shared by everyone. The idea put forth by Burrows to create a semi-closed

Internet model, where a server is granted the ability to control traffic recep-

tion through a group of intermediaries that all traffic destined to the server

is forced to pass through. Doing so limits the dependency of a server’s

DDoS protection solely to the intermediaries’ defense capability and capac-

ity thus minimizing negative externality, i.e., dependency on disinterested

parties for defense cooperation. Burrows also enable security-minded par-

ties to pool edge node intermediaries to augment defense capacity instead

of modifying ISPs ossified infrastructure thus successfully re-aligning eco-

nomic incentives, i.e., DDoS afflicted server owners are no longer helpless

against DDoS, they can deploy Burrows among themselves, and avoid over-

whelming infrastructure changes.

With sufficient intermediaries, filterable DDoS can be thwarted. However, defense

against non-filterable DDoS and eDDoS is reliant on the technology deployed at

the intermediaries to detect and reject them.

3.1.2 Deployability

DDoS research that is based on Burrows framework have a higher probability

of widespread deployment because they rectify economic inefficiencies that ex-

39

3.2 Assumptions

ists in the Internet. Even when ISPs, who are in the best position to mitigate

DDoS, shun DDoS mitigation mechanism deployment due to poor returns, parties

afflicted by DDoS are empowered to defend themselves using Burrows’ coopera-

tively constructed intermediary-based traffic reception control platform. Burrows

also reduces the effect non-adopting parties can impose on adopters; instead of re-

lying on all parties (dis-interested or otherwise) adopting the same mechanism to

effectively deal with DDoS traffic that can originate from anywhere and use many

distinct paths to reach a server, in Burrows, all traffic destined for the server is

funneled through the traffic control platform obviating the need to equip points

along all Internet paths with DDoS mitigation technology therefore increasing

deployability. The possibility of funneling traffic for traffic control to edge nodes,

which can be easily introduced, upgraded or modified, without requiring changes

to the Internet core infrastructure, greatly simplifies DDoS mitigation mecha-

nisms deployment.

3.2 Assumptions

Resilient Naming Service Burrows relies heavily on a naming service to tell

clients where to find intermediaries that can forward traffic to a destination

server. It can utilize existing Domain Name Service (DNS) for this purpose,

i.e., the mapping for a server hostname can be continuously updated to

point to available intermediaries that can forward traffic to the server. This

implies that Burrows’s resiliency is no worse than the existing Internet,

which also relies heavily on DNS. For improved name service resiliency,

research such as CoDoNS (89) and ConfiDNS (85) can be adopted.

3.3 Overview

Despite a plethora of research in the area, none of the DDoS mitigation mech-

anisms proposed so far has been widely deployed. We argue that these deploy-

ment difficulties are primarily due to economic inefficiency, rather than technical

shortcomings. We identify economic phenomena, negative externality—the bene-

fit derived from adopting a technology depends on the action of others, economic

40

3.4 Design Goals

incentive misalignment—the party who suffers from an economic loss is different

from the party who is in the best position to prevent that loss, and ossified Inter-

net infrastructure—core Internet infrastructure that is in a strategic position for

DDoS mitigation deployment are also the most difficult and resistant to change

due to its complexity and the repercussions of its downtime, as the main stum-

bling blocks of adoption. Our main contribution is to build a DDoS mitigation

framework, Burrows, with an economic incentive realignment property.

At the core of Burrows is a wide-area virtual private network, or secure over-

lay, carved out of the existing Internet. Entry points into the Burrows overlay

are controlled by intermediaries. Together they grant a protected server in Bur-

rows the ability to control traffic reception from any Internet source by employ-

ing technologies that can detect and drop unsolicited/attack packets. With the

server’s security dependent only on the resiliency of intermediaries instead of the

entire Internet community, Burrows minimizes negative externality. To rectify

the aforementioned economic incentive misalignment, the power to realize Bur-

rows is put into the hands of Internet users, i.e., each server owner can deploy

her own intermediaries within her domain of control. Server owners can join

forces by sharing intermediaries to create a single well-provisioned overlay with

more control points, instead of smaller individual ones with few control points. In

addition, Burrows supports incremental deployment; even with as few as two par-

ticipants, Burrows provides a secure overlay that contains twice as many control

points as when there is a single participant. Burrows is also designed such that

these intermediaries can be deployed at Internet edges, where modifications and

upgrades are easy to implement thus no modification to the ossified core Internet

infrastructure is necessary.

3.4 Design Goals

In this section, we discuss the objectives a DDoS mitigation architecture with

economic incentive realignment mechanism should strive to fulfill. To that effect,

we first identify the security properties required to defend against the threat and

describe the economic properties necessary to stimulate adoption of the design.

While some of the properties may have been addressed in past research, their

41

3.4 Design Goals

deployability has not necessarily been fully discussed. Thus, we elect to revisit

them and consider issues in their deployment.

3.4.1 Security Properties

We define security properties, in particular what needs to be protected and type

of protection required.

Server Control of Traffic Reception In DDoS attack, zombies simply flood

a server with more requests than it can handle. Hence, a server that can

dictate how much traffic it should receive will not be susceptible to DDoS.

Even though technologies that pushback undesired traffic can be used for

such a purpose, they require changes to the existing Internet infrastructure,

which is extremely challenging due to the ossification of the Internet (116).

Uplink Protection It may be possible to protect a server from DDoS attacks by

constraining direct connectivity to the server, using for instance a Virtual

Private Network (VPN). However, even if the server is not directly vulner-

able, DDoS can still occur if the Internet uplink of the server is flooded.

This situation can notably occur if an attack is targeted at the router that

connects the server to its Internet uplink. Thus, it is crucial that the uplink

router itself be shielded from attacks, an issue generally ignored by related

proposals. Also note that the uplink protection must be implemented in

routers, and its wide deployment is likewise hindered.

Traffic Protection The third key component to protect against DDoS attacks

is the traffic itself. Non-filterable DDoS traffic masquerades as “legitimate”

traffic and as such cannot be easily filtered, e.g. a few million valid HTTP

requests targeted at a web server, may prevent valid traffic from reaching

its destination, and must be filtered. CAPTCHA (117), “fight fire with

fire” (118) and Proof-of-Work (PoW) (19; 34; 121) are some existing tech-

nologies that address this issue.

Protection Independent of Offered Service Some DDoS-protection architec-

tures are based on content replication (e.g., as in Akamai). Replicating

42

3.4 Design Goals

content is (thus far) mostly limited to HTTP and streaming traffic. Con-

versely, we strive for an architecture that can be resilient to DDoS attacks

regardless of the contents being served.

3.4.2 Economic Properties

In addition to the security properties outlined above, a DDoS-resilient architec-

ture must adhere to certain economic properties to be deployable.

Minimizing Negative Externality In designing an architecture for adoption

on the Internet, we have to ensure that the effectiveness of the architecture

is minimally affected by people who choose not to adopt the architecture.

Failing to do so will result in the architecture being overlooked by even its

most ardent advocates.

Realigning Economic Incentives ISPs may not experience direct economic

losses due to DDoS, while end-users with web presence do. Since end-users

are more likely to have incentives to deploy DDoS mitigation mechanisms,

we need an architecture that empowers end-users with the ability to secure

their servers without requiring aid from ISPs.

Small “Critical Mass” Effectiveness Most DDoS mitigation mechanisms re-

quire substantial deployment size, or “critical mass,” to be effective. Build-

ing critical mass requires time and effort. Instead, we strive to design for

incremental deployment that ensures that even with as few as two partici-

pants, both participants extract tangible benefits from their involvement.

Backwards Compatibility We need existing servers to be able to utilize our

DDoS mitigation mechanism with little or no modification. We also need

the mechanism to be completely transparent to existing clients as well as

mandating little changes to ossified Internet infrastructure. Indeed, unless

the architecture has an extremely compelling property, e.g. total DDoS

elimination, a backwards compatible (evolutionary) solution is more likely

to gain acceptance than one that is not (revolutionary) (100).

43

3.5 Architecture

Internet hosts

Burrows Overlay

Burrows
host

Burrows

Burrows
intermediary

uplink

Figure 3.1: Protected servers in Burrows only connect with the rest of the Internet

through Burrows intermediaries.

3.5 Architecture

In this section, we describe the architecture of Burrows and discuss how we fulfill

the objectives described in Section 3.4.

3.5.1 Burrows Architecture

Throughout the design of Burrows, we ensure that our architecture requires mini-

mal changes to the existing servers, clients and Internet infrastructure. Designing

Burrows as an overlay network makes it possible to embed various DDoS mitiga-

tion mechanisms (see following subsections) to achieve the properties identified

in Section 3.4 without modification to the current Internet.

Server and Uplink Protection As depicted in Figure 3.1, at the core of Bur-

rows is an overlay network, Burrows overlay. The overlay is formed by a

collection of Burrows intermediaries distributed all over the Internet. Bur-

rows servers, i.e., servers that need DDoS protection, are connected only to

the Burrows overlay. Burrows is technology-agnostic so it does not dictate

the technology used for creating this overlay and connecting the Burrows

server to the overlay. However, usage of Border Gateway Protocol Multi-

Protocol Label Switching Virtual Private Network (BGP-MPLS-VPN) (93)

44

Chapter2/Chapter2Figs/underlying.eps

3.5 Architecture

for server-overlay connectivity is advocated since it can protect both the

server and its uplink against direct DDoS attacks. This is possible since

a server utilizing BGP-MPLS-VPN does not expose its IP address to the

Internet but instead uses the upstream router’s IP address for connectivity

purposes. Even though this merely shifts DDoS attacks to an upstream

component, that ISP-owned component is usually better provisioned thus

offers stronger defense against DDoS and its upstream location can relieve

an uplink from a deluge of unwanted traffic.

Since the overlay protects Burrows servers from direct reachability, connec-

tivity from an Internet host (i.e., a system outside Burrows) to a Burrows

server is achieved through Burrows intermediaries. Indeed, each Burrows

intermediary added, provides an additional entry point into the overlay

leading to the server. This intermediary-based architecture addresses the

two Internet design “flaws” described in Section 2.1 by (1) enabling a server

to be reachable from a wider range of IP addresses, i.e., the distributed in-

termediaries’ IP addresses, thus making it difficult for attackers to find and

clog all access points and (2) enabling a server to control traffic reception

at intermediaries in order to prevent attack traffic from overwhelming its

uplink and itself.

Traffic Protection Since it is difficult or error-prone to determine a packet’s

malice by just examining its contents or detect anomaly in statistics of pack-

ets received, proposals to prioritize packets based on a client-controllable

packet “property” that is “visible” to a server (thus prioritizable) and can

reflect its connection request urgency has been put forth (Section 2.2.10).

Such schemes require resources to receive all traffic prior to analysis or prior-

itization. Using multiple intermediaries provides a possible way to construct

a front-end platform powerful enough to receive all traffic. By incorporat-

ing the best of such non-filterable DDoS protection with this platform, it is

possible for Burrows to defend against non-filterable DDoS.

Small Critical Mass Effectiveness Even with a minimum of two intermedi-

aries, a Burrows server acquires the benefit of having twice the capacity

45

3.5 Architecture

(two Burrows uplinks) to resist DDoS than it had before (its sole Inter-

net uplink). We use VPN to prevent direct server connectivity to Burrows

servers thereby forcing all Internet traffic to go through intermediaries and

then use multiple intermediaries to achieve the effect of uplink replication

and small critical mass effectiveness.

Incentive Realignment and Minimal Negative Externality We adopt a self-

scaling model (as seen in peer-to-peer applications) to empower end-users to

build Burrows thereby realigning economic incentives. Each participant is

entitled to harbor her server in Burrows only if she contributes at least one

Burrows intermediary. Through this model, it is likely that Burrows com-

prises only security-conscious participants. We accordingly decrease the

probability that insecure systems exist within Burrows, further reducing

negative externality and the effect of tragedy of commons. PlanetLab (84)

is an extremely successful example of an infrastructure build incrementally

using a self-scaling model with a similar incentive alignment mechanism.

Edge Node Technology Deployment By empowering participants to build

Burrows platform using edge nodes, which are easy to introduce, upgrade or

modify instead of mandating changes to ossified core Internet infrastructure,

we increase the deployability.

3.5.2 Miscellaneous Components

On top of the components required for DDoS defense, we introduce 3 peripheral

components here that are necessary to ensure the functionality and integrity of

Burrows.

Name Resolution Service An Internet host that wants to initiate a connection

to a Burrows server needs to resolve the server’s hostname to the IP address

of an intermediary that is willing to handle the server’s traffic. A Burrows

server can continuously authenticate to a dynamic DNS system to update

its hostname record to map to a fleeting set of intermediaries that will

handle its traffic at a given period of time.

46

3.5 Architecture

Accounting Database Any peer-to-peer overlay network is always faced with

the problem of free-riding participants, i.e., participants who benefit from

the overlay network without contributing to it. In the case of Burrows, a

given end-user’s server can consume more traffic than what her intermediary

routes. To alleviate free-riding, we propose a traffic accounting mechanism

consisting of a database that keeps track of how much traffic each Burrows

intermediary has routed and for which Burrows server the traffic routed was

for. We can adopt an existing wide-area resilient database such as a public

Distributed Hash Table (DHT) (91), to store traffic accounting information.

In order to prevent the traffic accounting system from being tainted with

bogus information, we assign public/private key pairs to all the Burrow

servers for accounting information signing and verification.

Whenever an intermediary routes traffic for a server, it keeps track of the

traffic. At different preset intervals, each intermediary will request each

server that it routed traffic for to digitally sign on accounting information

indicating its resource consumption on that intermediary. A server has

the right not to sign if the information in deemed inaccurate, similarly, an

intermediary can refuse to forward traffic for the server should the server

refuse to sign. Each intermediary then updates the accounting database

with the digitally signed accounting information.

At preset intervals, before an intermediary routes packets for a server, it

checks the traffic accounting system to see if that server’s corresponding

intermediary has contributed enough to the overlay. If not, the intermediary

will notify the owner of that server about its free-riding violation and discard

the packets. The owner can react to the violation notice by increasing the

uplink and capacity of her intermediary. If there is no free-riding violation,

the intermediary routes for the destination server.

Hidden Action Monitor By routing traffic between Internet hosts and Bur-

rows servers, malicious intermediaries can perform subtle attacks known as

hidden actions, i.e., they can eavesdrop, modify and discard packets, which

transit through them without the communicating parties being aware of

such misdeeds.

47

3.6 Limitations

The simplest way to prevent hidden actions is to use end-to-end encryp-

tion such as Secure Sockets Layer (SSL) to encrypt traffic between client

and server. Without end-to-end encryption, for hidden attack detection

purpose, we need to distinguish between two traffic directions: a malicious

intermediary can drop (or tamper with) packets originating from Burrows

to the Internet and vice versa.

For traffic exiting Burrows, the Burrows server may occasionally send “pre-

dictable reply test packets,” i.e., packets that elicit predictable responses.

For example, while communicating with an email server at abc.com, the test

packet can be crafted to request that the email recipient is kokoro@hotmail.com.

If the reply to the test packet differs from the expected “no forwarding

permitted”1 error message, one can conclude that the intermediary has

dropped/modified the packet or its corresponding reply.

To examine hidden actions when packets are originating from the Internet

and head towards the Burrows servers, we use the same mechanism but a

predictable reply test packet has to be sent out by some designated trusted

nodes periodically.

3.6 Limitations

Heavy Resource Consumption Forwarding The need for intermediaries to

keep accounting information, interact with servers for digital signing and

update/refer accounting data from a distributed accounting database, can

consume substantial intermediary resource and increase traffic forwarding

delay. Whether an attacker can introduce traffic load that exploits this

resource consumption to deplete intermediary resources resulting in a dif-

ferent type of DDoS or increase forwarding delay significantly is a subject

for future work.

Hidden Action Monitor Deficiency The hidden action monitor relies on send-

ing requests with predictable replies. Malicious intermediaries can introduce

1This error message is expected since typical email servers will not receive emails for a
domain which they are not configured for.

48

3.7 Future Work

heuristics or signatures to detect request with predictable replies, much like

how anti-viruses detect malicious traffic, so that they avoid tainting those

test packets. This will result in an arms-race between hidden action moni-

tor and malicious intermediaries. Although imperfect, this defense can help

reduce the possibility of malicious intermediaries. An alternative approach

is to use only intermediaries of trusted entities and/or limit the number of

intermediaries to a few but resource-rich ones. Although using only trusted

intermediaries sounds unreasonable, we point the reader to the Internet,

where malicious routers can be difficult to combat but their existence is

very low due to the fact that routers only interconnect with other routers

that their owners have trust or business relationships with.

3.7 Future Work

We would like to use Burrows as a framework for designing future DDoS research

and encourage other DDoS researchers to do likewise. Two ideas that we intend

to further explore are: (1) using an ISP’s access routers, which are distributed

to its Internet subscribers as intermediaries, and (Section 4) (2) using resource-

rich cloud computing platforms as intermediaries (Section 7). In both cases, the

intermediaries belong to trusted entities, thus, the need to implement complex

hidden action monitor and traffic accounting, is relaxed. In the former, the

access router intermediaries can be trusted to keep accurate accounting, while in

the latter, the cloud computing accounting is kept by the cloud provider itself,

which can to be trusted.

3.8 Conclusion

We postulate that the main impediment to large-scale deployment of existing

DDoS mitigation infrastructure lies in the misalignment of economic incentives

among Internet parties. Our main contribution in this paper is to introduce

a DDoS mitigation framework that intrinsically incorporate economic incentive

realignment mechanisms. We identify minimizing negative externality, empower-

ment of end-users with the ability to protect themselves and ease of deployment

49

3.8 Conclusion

as the three key incentive realignments necessary. We realize these realignments

with a secure overlay, Burrows, which employs easy-to-modify edge node inter-

mediaries to act as entry points into the overlay leading to protected servers.

Forcing all traffic through these intermediaries limits a protected server’s secu-

rity exposure to those intermediaries, which we can easily implement strong secu-

rity mechanisms, such as attack traffic filtering and traffic control reception. We

also adopt a peer-to-peer model to empower end-users to build Burrows without

requiring aid from infrastructure providers, by creating a platform for pooling

intermediaries to increase defense against DDoS.

50

Chapter 4

Overfort

This section is largely adapted from my paper co-authored with Akihiro Nakao

entitled “Overfort: Combating DDoS with Peer-to-Peer Puzzle” published in Se-

cure Systems and Network (SSN) Workshop, held in conjunction with IEEE In-

ternational Parallel and Distributed Processing Systems (IPDPS) Conference in

Miami, USA, May 2008.

4.1 Deployable Resiliency

4.1.1 Resiliency

Defense Cate-
gory

Filterable DDoS Non-filterable
DDoS

eDDoS (inter-
mediary)

eDDoS (server)

Server React,
Deter/Prevent

Yes Not applica-
blea/Fair-shareb

Model-
dependentc

Possibled

aIts defense against non-filterable DDoS is dependent upon technology that a deployer is
free to chose.

bOverfort can allocate server resources “fairly” to all clusters when non-filterable DDoS
detection cannot be handled.

cA common pool of intermediaries may be shared at no cost, provided at a fixed cost or
utility-based pricing

dIf zombies can be completely segregated and black-listed, which is dependent on the
deployer-chosen non-filterable DDoS detection technology, before aggregated intermediary re-
source is depleted then server eDDoS can be prevented.

Table 4.1: Resiliency of Overfort against DDoS

51

4.1 Deployable Resiliency

Overfort offers protection against DDoS from two angles: deterrence/preven-

tion and server reaction.

Deter/Prevent Upon attack detection, a server uses Overfort to traceback the

attack to a client “cluster”, i.e., clients that are associated together because

they utilize the same local Domain Name Service (LDNS) server to trans-

late the server’s domain name to one of the many IP addresses that leads

to the server. An example of a cluster is the entire user base of an ISP since

they share the ISP’s LDNS. The entire cluster can then be refused connec-

tivity to the server as punishment for an infringement by one of them. The

LDNS/cluster administrator is forced to quickly locate and remove zombies

for connectivity to that server to resume. She also has to continually keep

the cluster zombie-free to avoid future disconnectivity that may antagonize

her clients.

Server Reaction: Traceback and Black-list of Bad Clusters To defend against

filterable DDoS with less physical resources than attackers, Overfort enables

a server to quickly traceback and black-list all bad clusters by using cheap

virtual resources, before server resources are depleted. Overfort can en-

force black-listing, without relying on other parties, by not divulging an IP

that can lead to the server, to clusters in the black-list. This preserves the

remaining server resources for legitimate client use.

As shown in Table 4.1, Overfort can withstand filterable DDoS if various parties

cooperate by pooling resources to deploy Overfort components (intermediaries)

such that the aggregated intermediary resource exceeds the attacker capacity.

Filterable DDoS, like non-filterable DDoS, and server eDDoS can also be success-

fully defended against, if all attack traffic including non-filterable DDoS traffic

can be detected so that all bad clusters can be traceback and black-listed be-

fore the aggregated intermediary resource is depleted. Since non-filterable DDoS

detection has some inaccuracy, defense against non-filterable DDoS and server

eDDoS is possible but rated as partial in the case where false positives occur. In

the worst case that no segregation is possible, Overfort gracefully degenerates into

a fair-sharing system; all clusters are allocated equal server resources with clients

52

4.1 Deployable Resiliency

in clusters with zombies receiving the short-end of the stick. Intermediary eDDoS

occurs if Overfort intermediaries bill servers based on resource used to handle the

server-destined traffic. A cooperative model where intermediaries are pooled for

common usage or a fixed monthly subscription is charged, intermediary eDDoS

will not happen.

4.1.2 Deployability

Overfort contributes to DDoS mitigation mechanism deployability in two distinct

ways: (1) empowers afflicted end-users to cooperate incrementally or/and (2)

empowers ISPs with unilateral deployment.

End-user Empowerment Each end-user can install an Overfort component,

known as Overfort Gateway (OFG), on her system to turn it into an Over-

fort intermediary; each intermediary can pool their resources for stronger

DDoS defense. To hasten critical mass resource accumulation, i.e., the ag-

gregate resource required for effective DDoS defense, Overfort is designed

to rely on virtual resources instead of physical ones, i.e., each end-user’s

access link (physical resource) can be arbitrarily divided up into multiple

virtual links (virtual resources). The number of virtual links required to

completely traceback and black-list all bad clusters depend on each DDoS

attack’s properties, e.g., number of bad clusters, total number of clusters

in the Internet, etc. Given that with an OFG, each end-user can split a

physical uplink into arbitrary number of virtual links, Overfort makes it

easier to achieve the required critical mass. However, there are limitations

and negative impacts of splitting a physical link into too many virtual links

(see Section 4.8).

ISP Empowerment The OFG is a piece of non-complex code that can easily

be incorporated into an ISP customer’s access router. Thus, a single ISP

with a user base of a few thousands can unilaterally deploy Overfort to

overcome even the most powerful of DDoS (Section 4.6.4).

53

4.2 Assumptions

4.2 Assumptions

Malicious Traffic Detection Overfort needs to distinguish between legitimate

and attack traffic to instantiate traceback and punishment. Research in at-

tack traffic detection abounds, thus Overfort is designed to plug-in any type

of detection mechanism thereby inheriting the strengths and weaknesses of

that mechanism.

Resilient Naming Service Overfort relies heavily on a naming service to en-

able clients to find Overfort intermediaries that can lead to their destination

servers. For this purpose, Overfort can utilize existing DNS by just making

some changes to the authoritative server—a protected server continuously

update the dynamic DNS to map its hostname to available intermediaries.

This implies that Overfort’s resiliency is no worse than the existing Internet,

which also relies heavily on DNS. For improved resiliency, existing research

such as CoDoNS (89) or ConfiDNS (85) can be adopted.

Line-speed Rate-Limiting/Throttling OFG creates virtual links by splitting

the physical link network bandwidth of the hardware it is installed on.

It does so by assigning an IP (or any form of ID that can be used for

routing packets in the future Internet) to each virtual link and realizes

the virtualized link concept by limiting the bandwidth consumption for

each IP; each OFG relies on the hardware on to drop packets when the

bandwidth usage quota of a virtual link IP has been exceeded, at line speed.

Such a rate-limiting requirement is reasonable since it is done based solely

on the destination IP field of a packet whose location within a packet is

fixed, which facilitates processing, and state-keeping of bandwidth usage

is limited to per-virtual link IP of an OFG. If an OFG is installed on a

generic hardware, such as a PC or server, instead of a router, as in the case

of end-users, it may be better for the OFG to communicate with the access

router to dynamically control rate-limiting at the access router for superior

filtering performance (See Figure 4.1).

Hidden Server Location Enforcement Overfort’s functionality relies on the

enforcement of indirect connectivity, which prevents direct attacks. Thus it

54

4.3 Overview

is critical that each OFG that relays traffic to the protected hidden server

does not divulge the server’s location. In a unilateral or cooperative deploy-

ment between ISPs, all OFGs are installed in access routers that belong to

a single or multiple ISPs. Since ISPs are naturally trusted, we assume that

the hidden location of a server can be well preserved. When OFGs are

installed by a motley crew of end-users on their own systems, whose trust-

worthiness is questionable, preservation of a server’s hidden location man-

dates additional effort of setting up a VPN tunnel from the intermediaries

to the protected server’s upstream ISP router, e.g., BGP-MPLS-VPN (93).

In such setup, intermediaries are only aware of the protected server’s up-

stream ISP router IP instead of the server’s, which is completely private.

With the upstream router better provisioned for DDoS attacks compared

to the server itself, its IP leak has a less severe impact.

4.3 Overview

There are many existing attack traceback mechanisms (20; 99; 102). However,

they have not successfully contend with two issues: (1) deployability and (2) en-

forcement of punishment. The former arises because thus far, traceback mecha-

nisms require installation of traceback technology-specific components on a large

number of deployment points, which is both time and resource-consuming in

terms of the actual deployment effort and the negotiating process among all de-

ployers to agree on a technology, respective responsibilities and benefits. Such

cooperative mechanisms also incur a lot of message exchanges during traceback

that may flood the Internet. The latter is often an un-answered question. “What

happens when you have identified large numbers of distributed zombies?”. Shut-

ting them down requires gargantuan effort, which is also untimely and dependent

on other parties. Overfort is an attempt to design a unilaterally deployable trace-

back mechanism that is also capable of automated unilateral zombie shutdown

enforcement. The key idea is to create multiple obscure channels that can lead

to a protected server. In the simplest case, where each client/zombie can be

assigned to a unique channel, an attack can easily be traced back to its origins

by the mere observation of the channel under attack. After a zombie has been

55

4.4 Design Goals

black-listed, its subsequent request for a channel will be rejected leaving it unable

to find and attack the server. The obscurity of channels reduces the likelihood

that zombies can guess their whereabouts. Our research also attempts to deal

with the realistic scenario where a one-to-one client/zombie-to-channel mapping

is not possible through “clustering”.

The key design is to construct an overlay using ingress gateways (intermedi-

aries) with multiple access channels (virtual links) with different bandwidth that

lead to the server within it, thus projecting an illusion of multiple servers sans

the intensive resource requirements. This overlay is constructed on-demand, i.e.,

only enabled under attack, using over-provisioned resources such as IP blocks and

CPU cycles/bandwidth at routers and servers that are leased from or donated by

the participants in Overfort.

By provisioning these multiple access channels with different bandwidth in

the overlay, we transform the act of perpetrating a DDoS attack from a brute

force automated attack targeted at a single IP into a combinatorial puzzle of

finding all the access channels and determining sufficient DDoS traffic required

to clog every channel. Furthermore, with a segregation mechanism that clusters

clients based on LDNSes they utilize to perform DNS resolution, and iteratively

assigns the clusters to different access channels over time for attack observation,

we can identify and segregate clusters containing zombies to a limited number of

access channels enabling the larger pool of remaining channels to serve productive

traffic. Both of these features are the keys to enabling Overfort to defend against

DDoS with significantly less resources.

4.4 Design Goals

A DDoS attack usually directs all the DDoS traffic in an automated brute force

fashion to a server’s single IP (or an upstream router) from multiple zombies

distributed across the Internet, in an attempt to clog a bottle-neck. Another

important observation is that although an attacker may spoof the source IPs of

attack packets, she needs legitimate packets to consult the DNS for an IP of the

server before launching an attack, especially when the DNS mapping changes

frequently.

56

4.4 Design Goals

Based on these observations, we define the following five strategies to raise

the barrier against DDoS attacks.

Proliferating Access Channels On-Demand This strategy proliferates the

number of IPs a server is accessible from. Increasing the number of access

channels obviously evades a single point of failure as well as installs multiple

targets that an attacker needs to flood, making DDoS coordination hard.

Moreover, we enable these channels to be switched “on” only under a DDoS

attack; otherwise, clients connect directly to the server. An attacker will

find it hard to harvest channels in preparation for a planned DDoS attack.

Segregating and Penalizing Malicious Access Attackers have to continu-

ously query LDNSes to find access channels that lead to a server. We

exploit this as a mean to track which access channels we have handed out

to whom so that if an attack occurs at a certain access channel, we can iden-

tify the perpetrator and prevent her from obtaining new access channels by

rejecting her subsequent name resolution queries.

Obfuscating Channel Location and Bandwidth A DDoS attack will not suc-

ceed without identifying where all the access channels are located and how

much traffic is required to clog them. This strategy aims to make it dif-

ficult to find all the IPs of the access channels, i.e., the discovery of one

access channel IP will not make it any easier to find the remaining ones.

In addition, we make it pain-staking to discover the bandwidth that each

access channel can handle. To do so, we craft responses to requests that are

received through the access channels, so that they have inconclusive signifi-

cance, e.g., its non-responsiveness or unresponsiveness at higher traffic vol-

ume does not necessarily infer that its bandwidth is completely exhausted.

Providing Fair Service Under Non-Filterable DDoS Attack/Flash Crowd

Most DDoS mitigation mechanism may prosper only when DDoS traffic is

anomalous and thus detectable. Non-filterable DDoS traffic, however, mim-

ics legitimate traffic and resembles flash crowd; a surge in legitimate client

requests due to popularity of content. When faced with such attacks or

57

4.5 Architecture

flash crowd, we gracefully degrade network services provided to clients in a

fair manner.

Empowering Afflicted Parties To Defend Against DDoS We elect to achieve

the above goals using a self-scaling scheme such that one can utilize unused

resources, e.g., IP blocks and CPU cycles/bandwidth at routers and servers

belonging to oneself or contributed by multiple parties, as Overfort’s access

channels. Such a unilateral or co-operative coordinated peer-to-peer system

empowers DDoS afflicted parties to construct Overfort themselves without

relying on dis-interested third parties (60).

4.5 Architecture

This section describes the architecture of Overfort that fulfills our five design

goals specified in Section 4.4.

Router

Protected
Server

OFG

Stub Network

OFG

OFG

Stub Network

Public IP
interface

Internet

Total Bandwidth of Stub Network

On−Demand Overfort Tunnel

Overfort Gateway Module

On−Demand Multiple Virtual Links
Bandwidth

Client

virutal link IPs

PC

Router

Router

"Secret" IP
interface

Figure 4.1: Overfort architectural overview

On-Demand DDoS Mitigation Overlay To introduce numerous access chan-

nels, we utilize OFGs scattered over the Internet in different IP subnets,

58

Chapter3/Chapter3Figs/overfort4.eps

4.5 Architecture

e.g., in stub networks as shown in Figure 4.1. Each OFG acts as an inter-

mediary that listens on a set of IPs. Each IP is termed as a virtual link IP

and they can accept traffic destined for the server being protected. Name

resolution for the server will resolve into any of virtual link IPs at the in-

termediaries. Therefore, clients can send packets destined for the server to

any virtual link IP, which, in turn, will forward these packets through its

Overfort tunnel to the server and vice versa. Indeed, the intermediaries also

serve as strategic points for implementing various DDoS detection and miti-

gation technology such as Pushback (68) and low-rate DDoS attack defense

mechanisms (107).

For Overfort to be enabled on demand, the protected server is multi-homed

to at least 2 IPs; the public IP that connects the server to the Internet

directly and the “secret” IP that is only known to intermediaries. Under

normal traffic conditions, name resolution for the server will return the

public IP, so clients may connect directly to the server and do not suffer

performance penalty with using the intermediaries. Under a DDoS attack,

the usage of the public IP will cease and each LDNS that requests for

name resolution will receive different virtual link IP instead as reply. The

implications of the secret IP being divulged or discovered can be alleviated

if it is made a private IP and intermediaries use virtual private tunnels that

require both ends, i.e., the intermediary and the protected server, to be

pre-configured.

Traffic Segregation with Dynamic DNS Clients can be naturally clustered

based on the LDNSes that they utilize. As name resolution queries ar-

rive at our authoritative DNS server, we check if the server has requested

for Overfort to be switched on. With Overfort enabled, name resolution

queries from different LDNSes will be assigned to different virtual link IPs

in a round-robin fashion. After the last virtual link IP available has been

assigned, we will re-use them starting from the first one.

When an attack occurs on a certain virtual link IP, we mark all the LDNSes

assigned to that virtual link IP as “suspicious” and they will be dis-associated

from that virtual link IP. When a subsequent name resolution query arrives

59

4.5 Architecture

from a dis-associated LDNS, it will be reassigned to a new virtual link IP.

On the other hand, if there is no DDoS attack on a virtual link IP, the

associated LDNSes will remain assigned to the same virtual link IP. Note

that these immediate association and dis-association can be done through

setting the TTL of name resolution relatively short. By this suspicious

marking scheme, we can accurately identify a bad LDNS—the LDNS is

serving zombies—by locating LDNSes with more markings than the aver-

age.

Virtual Link IP and Bandwidth Obfuscation To make guessing of virtual

IPs non-trivial, we scatter intermediaries all over the Internet so that they

are likely to be in disjoint IP subnets. However, in practice, we utilize

multiple IPs within the same IP subnet for virtual links at each OFG,

which may make it easy for an attacker to discover another virtual link IP

once she finds a single virtual link IP, e.g., by periodically sending protected

server-bound probes to the entire IP subnet range.

To deal with this, we restrict virtual link IPs from responding to clients that

are not associated with the LDNSes assigned to them by introducing client-

LDNS association mechanism. Each virtual link tracks which client IPs are

within k Autonomous Systems (AS) away from IPs of LDNS assigned to it,

i.e., it assumes that each LDNS only serve clients within k AS distance (k

should be a low integer, e.g., 1) This mechanism also serves to obfuscate

virtual link bandwidth probing; a non-response could be interpreted as the

virtual link is not in service, has no bandwidth available or the client is

not entitled to utilize the virtual link because its LDNS is not assigned to

the virtual link. To defeat the mechanism, an attacker can make all her

zombies send probes to all the virtual links. However, intermediaries that

are assigned with LDNSes, which the attacker does not have zombies k hops

from cannot be subjected to such brute force probing method.

Fair Service Under Indistinguishable DDoS Attack Since LDNS segrega-

tion described above enables us to keep track of which LDNSes are asso-

ciated with which virtual link IPs, it is possible to provide a fair network

60

4.6 Evaluation

service during indistinguishable DDoS attack; we assign all the available

virtual links fairly among all the LDNSes. Clients that share the same

LDNSes with zombies, however, will be significantly marginalized. Sec-

tion 4.7 discusses why even under such circumstances, this is the best way

to provide fair service.

Peer-to-Peer and Virtualization Mechanism We use the term “peer” to

loosely encompass the entire gamut from end-user peers to ISP peers –

in order of increasing level of trust among peers. We expect end-user peers

to install OFG software on their servers while ISP peers can opt to modify

stub routers to incorporate intermediary functionality (see Figure 4.1). The

OFG virtualizes each peer’s physical link into multiple virtual ones.

The incentive to co-operate can vary; end-user peers benefit from the syn-

ergy of shared resources in mitigating DDoS, while with a distributed packet

accounting service to keep track of traffic routed by one’s intermediary for

a protected server, not unlike the one described in Burrows (60), ISP peers

will be motivated to provide gateways for a premium. In scenarios where

end-user peers exist, the level of trust of these peers can be elevated using

mechanisms to deter malicious hidden actions as in Burrows (60).

4.6 Evaluation

4.6.1 Overfort Segregation Algorithm Approach

Among the architectural components introduced in Section 4.5, the most crucial

one is the bad LDNS detection and segregation mechanism using multiple virtual

link IPs. If every LDNS can be mapped to a single virtual link IP then identi-

fication of bad LDNSes in an attack becomes straight-forward; through LDNS-

to-virtual link IP assignment records, we can trace an attack at an IP back to

a LDNS. Unfortunately, there are already approximately 800,000 LDNSes (88)

in Internet in 2006. Ideally, we can acquire a similar number of systems/access

routers to install OFGs so that the straight-forward bad LDNS detection and seg-

regation algorithm suffices; given that there are 1.7 billion users (56), even if we

61

4.6 Evaluation

make the unreasonable assumption that among every 2000 users, only one pos-

sesses an access router, we can acquire 800,000 routers for OFG installation, which

is sufficient make one-to-one LDNS-virtual link IP mapping possible. However, to

minimize negative externality and increase deployability we devise a segregation

algorithm that greatly reduces the number of virtual link IPs required so that

even a single entity’s resource, e.g., a single ISPs access routers, is sufficient to

meet the virtual link IP requirement. We trade-off algorithm simplicity for a less

resource-intensive algorithm by mapping more than one LDNS to a single virtual

link IP and during an attack, re-assign each of the LDNSes to different virtual

link IPs over time so that through observations of which virtual link IPs are un-

der attack over time, we can deduce the bad LDNSes. This section presents the

feasibility study focused on evaluating the number of virtual link IPs required

to complete LDNS segregation and the accuracy of the segregation mechanism

under different operating conditions as well as under a variety of DDoS attacks.

4.6.2 Overfort Simulation Model

This section introduces the Overfort simulation model that consists of Overfort

configuration parameters, parameters adjustable to represent different operating

conditions, and outputs that measure the effectiveness of LDNS segregation.

4.6.2.1 Overfort Configuration Parameters

Deviation from average markings: Y As described in Section 4.5, an attack

on a virtual link IP will result in all the LDNSes associated with that IP

being marked as suspicious. Eventually, LDNSes with Y more markings

than the average are classified as bad. Y must be carefully chosen; a high

Y will result in less false positives (good LDNSes wrongly identified as bad),

but utilizes more virtual link IPs with segregation taking longer and vice

versa.

Number of virtual link IPs in used at any time: N use Although Overfort

may have many virtual link IPs, at any given time, only N use are in use,

62

4.6 Evaluation

i.e., LDNSes are assigned to only these N use virtual link IPs in a round-

robin fashion. Since the number of LDNSes usually exceeds N use, multiple

LDNSes could be multiplexed onto a single virtual link IP. When a virtual

link IP is assigned to a bad LDNS, the attacker will relentlessly flood it.

Overfort must allocate another virtual link IP from its unused set to replace

the flooded one to ensure that there is always N use virtual link IPs available

for assignments.

4.6.2.2 Overfort Operating Condition Parameters

Total number of LDNSes requesting name resolution: N LDNS This rep-

resents the total number of LDNSes that will request name resolution for a

server under attack. It comprises the number of LDNSes requesting name

resolution during the same period of time under normal conditions plus the

number of bad LDNSes that perform name resolution during attack.

Ratio of good vs. bad LDNSes: R This is the ratio of good LDNSes versus

bad LDNSes out of N LDNS LDNSes that request name resolution for the

server throughout the duration of attack.

Expected bad LDNS requests arrival rate: arr bad arrivals per second This

represents the uniformly distributed expected arrival rate of name resolution

requests for the server at a bad LDNS—the LDNS that is serving zombies

for name resolution. A straight-forward DDoS attack will most likely aim

to find all the virtual link IPs as fast as they can through continuous query

of DNS, i.e., arr bad will have a high value. This is, however, upper-bounded

by the DNS TTL value that we assign to the virtual link IP returned as

the name resolution reply. Attempts to request name resolution at a faster

rate will just result in the same virtual link IP cached at the LDNS to be

returned.

Expected good LDNS requests arrival rate: arr good arrivals per second

This represents the Poisson distributed expected arrival rate of name res-

olution request for the server at each good LDNS (27). We believe that

63

4.6 Evaluation

arr good varies for each good LDNS depending on the number of the clients

that LDNS is serving, making it hard to assign a single representative value.

Attack detection time: td seconds td sec after a bad LDNS has been as-

signed to a virtual link IP, the model determines whether an attack has

occurred 1 and if so, all LDNSes associated with the virtual link IP will be

marked as suspicious.

A lower value of td is desirable, since it implies speedy attack detection,

which results in less LDNSes being multiplexed to a single virtual link IP,

thus reducing the likelihood of a good LDNS sharing the same virtual link

IP as a bad LDNS and being implicated when the virtual link IP is attacked.

A good DDoS detection technology will have a low td.

4.6.2.3 Output: Overfort Effectiveness Measurement

Accuracy percentage: acc % This shows the percentage of bad LDNSes cor-

rectly identified as bad. A value of 100% indicates that Overfort identifies

all bad LDNS correctly without any false positives.

Additional number of virtual link IPs required: N add As soon as a vir-

tual link IP is assigned to a bad LDNS is identified, the virtual link will

be incessantly attacked, so a new virtual link IP must be introduced to

maintain N use number of IPs in service. N add represents the number of

additional virtual link IPs introduced in total before Overfort completes

LDNS segregation.

4.6.3 Overfort Simulation Algorithm

All the LDNSes start in the “unassigned” pool, i.e., they are not assigned to any

virtual link IP since no client has requested any of the LDNSes to perform name

resolution. We label each LDNS as good or bad so that the ratio of good over

bad LDNSes corresponds to the configured parameter R. At a prefixed interval,

e.g., 1 sec, for each unassigned LDNS, the expected arrival rate (either one of

1As in Section 4.6.4, in on-attack mode, an attack will always occur while in flip-flop-attack

mode, an attack will occur with probability of 0.5.

64

4.6 Evaluation

arr good or arr bad depending on whether the LDNS is good or bad) determines if a

name resolution is requested. The requesting LDNS will be assigned to the next

available virtual link IP from the pool of N use IPs in a round-robin fashion. We

keep track of each LDNS’s arrival time and its virtual link IP assignment. For

each LDNS, after td has elapsed since its assignment, we simulate if the LDNS

attacks its virtual link IP. If so, we increment the suspicious marks on all the

LDNSes that has been assigned to that virtual link IP. LDNSes with Y more

marks than average will be classified as bad and they retain their virtual link IP

assignments indefinitely, which effectively prevents bad LDNSes from capturing

more virtual link IPs with subsequent name resolutions, while other LDNSes are

dis-associated from the virtual link IP and dumped back into the unassigned pool.

They will be re-assigned to other virtual link IPs at their next name resolution

query arrival. We have to allocate a new virtual link IP to replace the one that

has been discovered and increment N add by one. The entire process is repeated

at the prefixed interval until all bad LDNSes has been completely segregated or

we stop the simulation manually.

4.6.4 Overfort Simulation Results

Through some experimentations, we settled on the value of N use=30, Y =4 and

td=80 1. Due to the lack of information about R and arr bad, we explore how

Overfort performs under different values. All the experiments use N LDNS=100

and arr good=0.02. We show that for other values of N LDNS, the results of the

experiments can be extrapolated linearly in Figure 4.4. For all experiments except

otherwise stated, we assume that attackers employ the on-attack mode, i.e., a

virtual link IP returned to an bad LDNS as a response to a zombie’s DNS request

is attacked immediately. We simulate two other attack modes, on-off attack and

random attack, that attackers will employ in their attempts to defeat Overfort’s

defense mechanism and show their impact in Figure 4.3. We run each experiment

5 times and take the averaged results.

1In the future, the values of N use and Y can be chosen adaptively based on operating
conditions. We use a conservative td=80 since a lower value td will intuitively give better
results.

65

4.6 Evaluation

Figure 4.2 (right-axis) shows how Overfort performs with various R and arr bad.

Even under severe DDoS conditions, i.e., R=0.5, N add stayed below 510. With

the initial virtual link IPs, N use=30, we require at most 510+30=540 virtual link

IPs to completely perform LDNS segregation. In other words, after re-assigning

LDNSes to 540 different virtual link IPs, we have identified the bad LDNSes and

stop providing available virtual link IPs to them. Assuming that each interme-

diary has an average of 5 virtual link IPs, we only need a total of 540/5=108

intermediaries. Under less averse condition of R=0.97, less than 50 total virtual

link IPs, i.e., less than 10 intermediaries are required. In other words, Nadd, vir-

tual link IP requirements for complete segregation, decreases monotonically with

R. Also note that under this operating condition with N LDNS=100, when R is

lower than 0.85, using a one-to-one mapping, which requires 100 virtual links, is

more efficient than the Overfort segregation algorithm, which will require more

than 100 virtual links.

In Figure 4.2 (left-axis), we show the accuracy of the LDNS segregation al-

gorithm. When arr bad=0.1, 0.05 and 0.02, the accuracy is sustained at 100%.

When arr bad=0.002, however, the accuracy drops drastically to 80%. This sce-

nario occurs if attackers slow down their name resolution intentionally. With

more good LDNS arrivals than bad ones, there will be few attacks, which causes

the average suspicious marking to be extremely low. As a result, good LDNSes

that are wrongly marked a few times will have Y more markings than the average

resulting in false positives. Fortunately, this strategy cannot result in a DDoS

flood because zombies only make 1 name resolution request every 1/0.002=500

seconds, which does not prevent legitimate clients from finding an available chan-

nel to communicate with server. An attacker can exploit this to generate false

positives—some innocent LDNSes will be black-listed but the attacker cannot

target a specific LDNS to be black-listed since she does not know where which

virtual link IP a targeted LDNS is assigned to. One possible fix for this is to

adapt Y dynamically based on overall name resolution inter-arrival rates.

We also evaluated how Overfort will perform when an attacker tries various

forms of DDoS attacks to subvert it. Three types of attacks are simulated, (1)

on-attack, zombies will always attack once they obtain a virtual link IP (2) flip-

flop-attack, zombies will attack a virtual link IP with 0.5 probability, i.e., they

66

4.6 Evaluation

 0

 20

 40

 60

 80

 100

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 51

 102

 153

 204

 255

 306

 357

 408

 459

 510

ac
c,

%

N
ad

d

R

acc for arrbad=0.1

 0

 20

 40

 60

 80

 100

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 51

 102

 153

 204

 255

 306

 357

 408

 459

 510

ac
c,

%

N
ad

d

R

acc for arrbad=0.05

 0

 20

 40

 60

 80

 100

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 51

 102

 153

 204

 255

 306

 357

 408

 459

 510

ac
c,

%

N
ad

d

R

acc for arrbad=0.02

 0

 20

 40

 60

 80

 100

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 51

 102

 153

 204

 255

 306

 357

 408

 459

 510

ac
c,

%

N
ad

d

R

acc for arrbad=0.002

 0

 20

 40

 60

 80

 100

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 51

 102

 153

 204

 255

 306

 357

 408

 459

 510

ac
c,

%

N
ad

d

R

Nadd for arrbad=0.1

 0

 20

 40

 60

 80

 100

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 51

 102

 153

 204

 255

 306

 357

 408

 459

 510

ac
c,

%

N
ad

d

R

Nadd for arrbad=0.05

 0

 20

 40

 60

 80

 100

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 51

 102

 153

 204

 255

 306

 357

 408

 459

 510

ac
c,

%

N
ad

d

R

Nadd for arrbad=0.02

 0

 20

 40

 60

 80

 100

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 51

 102

 153

 204

 255

 306

 357

 408

 459

 510

ac
c,

%

N
ad

d

R

Nadd for arrbad=0.002

Figure 4.2: acc (left y-axis) and

N add (right y-axis) under varying R and

arr bad with Y =4, N use=30, N LDNS=100,

arrgood=0.02 and td=80

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

id
en

tif
ie

d
ba

d
LD

N
S

time,sec

identified bad LDNS for on-attack

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

id
en

tif
ie

d
ba

d
LD

N
S

time,sec

identified bad LDNS for flip-flop-attack

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

id
en

tif
ie

d
ba

d
LD

N
S

time,sec

identified bad LDNS for random-attack

Figure 4.3: Number of LDNSes that are

identified as bad under different types of

attack with Y =4, N use=30, N LDNS=100,

R=0.5, arr bad=0.05 and td=80

attempt to evade segregation by not always attacking, and (3) random-attack,

zombies randomly attack any virtual link IP, i.e., they try to frame good LDNSes.

We simulate the scenario with N LDNS=100 and R=0.5, i.e., there are 50 bad

LDNSes. As shown in Figure 4.3, Overfort correctly identified all the 50 bad

LDNSes regardless of on-attack or flip-flop-attack. In case of flip-flop-attack,

however, it takes longer because the lower frequency of attacks leads to bad

LDNSes taking longer time to exceed the Y threshold. Note that for random

attacks, no bad LDNS was identified since, by randomly attacking virtual link

IPs, it is likely that all the LDNSes are uniformly marked, resulting in none of

them having Y more markings than the average. In short, bad LDNSes cannot

escape segregation nor can zombies successfully frame good LDNSes through

different attack modes.

Throughout our simulations, we choose N LDNS=100 since a larger value will

result in simulations taking very much longer. Figure 4.4 shows linearity holds

for N add with respect to N LDNS even for various R. Therefore, even though we

simulate for N LDNS=100, we can extrapolate our results linearly to estimate the

N add required for larger values of N LDNS.

In the current Internet, it has been estimated that there are approximately

800,000 LDNSes with approximately 10% bad ones. Extrapolating the results in

67

Chapter3/Chapter3Figs/output20071029.epsi
Chapter3/Chapter3Figs/avemark_con20071029.epsi

4.7 Discussion

 1

 10

 100

 1000

 10000

 100 1000 10000

N
ad

d

NLDNS

Nadd for R=0.5

 1

 10

 100

 1000

 10000

 100 1000 10000

N
ad

d

NLDNS

Nadd for R=0.8

 1

 10

 100

 1000

 10000

 100 1000 10000

N
ad

d

NLDNS

Nadd for R=0.97

Figure 4.4: N add required for LDNS segregation as N LDNS varies under 3 different

R values. It is faster for the simulation to run with smaller N LDNS values thus we have

more points where N LDNS <1000 and the use of log-scale.

Figure 4.4, we require approximately 120,000 virtual links to completely segregate

all bad LDNSes. This amounts to only 2 class B IP addresses.

In summary, note how the Overfort algorithm significantly reduces the number

of virtual links required for segregation, compared to a straight forward one-to-

one mapping, i.e., from 800,000 to 120,000 virtual links. Assuming that each

physical OFG has 5 virtual links, then only 120,000/5 = 24,000 physical OFGs

are required. A small/medium size ISP thus can unilaterally install the OFG

code into each customer’s access router and successfully perform this segregation

and share/sell this blacklist with/to the Internet community.

4.7 Discussion

4.7.1 LDNS Granularity Segregation

It is true that LDNS segregation may lead to false positives that aggrieve innocent

clients while bad LDNSes that are accurately identified incurs collateral damage

to innocent clients sharing the same LDNSes as zombies, but we postulate that

penalizing bad LDNSes is the best mechanism due to the following rationale:

Infeasibility and Scalability Overfort can only segregate clients at LDNS gran-

ularity because it cannot associate each client with a virtual link IP since

68

Chapter3/Chapter3Figs/avelinear20071029.epsi

4.8 Limitations

clients interact with Overfort indirectly through their LDNSes. Even if we

could, it will imply that even more virtual link IPs are required to track

and identify individual zombies. This clearly does not scale.

Security Responsibility Delegation By penalizing bad LDNSes, we delegate

the task of shutting down zombies to the vast army of LDNS administrators

on hand. Indeed, such security responsibility delegation will encourage

LDNS administrators to be more prudent about the integrity of their client

base.

4.7.2 Multi-server Protection

Thus far, we described how Overfort can protect a single server; all virtual links

tunnel back to a single protected server thus forming a virtualized network. This

concept can be extended to protect multiple servers; different sets of virtual links

will tunnel back to different protected servers thus each protected server and their

corresponding virtual links will form different virtualized networks (116). At first

glance, increasing the number of protected servers, will increase the number of

virtual resources required linearly giving rise to scalability concerns. However,

since the bad LDNS blacklist of a protected server can be shared with other

protected servers, they can choose to snub a bad LDNS in the shared black-

list without assigning it any virtual link. In other words, the number of virtual

links required is not proportional to the number of protected servers protected

by Overfort, but rather is fixed by the number of zombies in the Internet.

4.8 Limitations

Client-LDNS Association Verification In Overfort, virtual link IPs are nu-

merous with the active ones unknown to a client unless it performs a name

resolution through its LDNS. An attacker may not want to perform name

resolution to avoid traceback so it has to perform DDoS blindly; it floods the

entire virtual link IP space. Overfort’s large virtual link IP space thins out a

brute-force attack that arrives at a protected server’s doorstep, However, be-

cause virtual link IP addresses may be adjacent due to the block assignment

69

4.8 Limitations

method adopted by the Internet central authority IANA, virtual link IPs

may be guessable, which facilitate attackers discovering supposedly obscure

virtual links. To alleviate this issue, we try to restrict virtual link usage

only to clients that has performed name resolution through enforcement of

client-LDNS mapping. The enforcement attempts to determine a client has

performed name resolution by checking if the virtual link it attempts to use

is the one assigned to its “associated” LDNS. A client is deemed associated

to an LDNS if their distance in AS hops is within k, where k is configurable

by the Overfort deployer. Enforcing the mapping requires 3 pieces of infor-

mation: client AS, LDNS AS and AS distance between the client-LDNS.

Existing IP-to-AS resolution service, e.g., CYMRU (112), provides client

and LDNS AS, while, an Internet AS map build from RouteViews (94) pro-

vides the AS distance. Building the AS map is resource-consuming only

at initial stage. With AS relationship relatively static incremental AS map

modification is fairly straightforward. However, the IP-to-AS resolution

consumes resources as it needs to be performed for each packet that arrives

at the virtual link, thus opening up an avenue for resource depletion at-

tack. Caching IP-to-AS mapping will alleviate this to some extent, but this

remains an valid area of concern.

Cheap Virtual Resources Overfort relies on the quantity of virtual links to

perform complete segregation. Moreover, some form of ID, e.g., an IP

address, is required to be associated with each new virtual link. Currently,

the Internet uses IPv4 for routing, and IPv4 is running out (10) thus the

usage of IPv4 as ID is not considered “cheap”. However, this problem can

be mitigated once the large address space IPv6 is adopted.

Restricted Virtual Link Bandwidth With each additional virtual link cre-

ation, the bandwidth of every existing virtual link at the OFG where the

virtual link is created, is equally reduced to free up resources for the new

virtual link. Having more virtual links aid complete segregation and reduces

the requirement for large number of physical OFGs, e.g., access routers, but

at the expense of reduced virtual link bandwidth. This can be alleviated

by balancing number of physical OFGs and virtual links, e.g., participation

70

4.9 Future Work

from a few more ISPs increases the physical OFG locations thus relaxing

the virtual link quantity requirement.

Intermittent Connection During Segregation Time As shown in Figure 4.3,

when there are 100 LDNSes where 50% are bad, it takes at least 1000 sec-

onds or 17 minutes to completely perform segregation. However, in the

meantime, a legitimate client using a virtual link which is also assigned

to zombies will experience intermittent connectivity because it will be re-

assigned a new virtual link when an attack occurs at its current virtual

link. However, once segregation is completed, the occurrence of choppy

connectivity due to constant virtual link reassignment is minimized.

Reliant on Non-filterable DDoS Attack Detection Effectiveness In order

to perform traceback and black-list, Overfort needs to detect an attack.

Thus ultimately, Overfort’s bad LDNS segregation success relies on the ef-

fectiveness of the non-filterable DDoS detection technology employed. Over-

fort is designed to be detection technology-agnostic; it can be upgraded by

plugging in the latest non-filterable DDoS attack detection technology.

4.9 Future Work

In future, we would like to implement Overfort over PlanetLab (84) to further

study the relationships between the configurable parameters. The ideal imple-

mentation will be able to dynamically adapt Y and N use to increase its effective-

ness against more powerful foes with efficient use of the virtual link IPs. Another

important issue is to balance the remote IP-to-AS queries and the quantity of

information cached locally on each OFG, which is necessary to determine the le-

gitimacy of a packet sent to a virtual link in order to avoid attacker from probing

for active links.

4.10 Conclusion

We propose Overfort, an on-demand overlay architecture that makes perpetrating

DDoS difficult by transforming it from an automated attack on a single IP address

71

4.10 Conclusion

into a combinatorial puzzle of discovering all access channels and the bandwidth

allocated to each. By reassigning each LDNS to a different virtual link each time

its current virtual link is attacked, eventually, through careful reassignment-and-

observation process, even though multiple LDNSes are assigned to a single virtual

link, we can determine the bad LDNS(es) among the set of LDNSes. This enables

Overfort to tame DDoS if we have sufficient virtual links to segregate all LDNSes

utilized by zombies. Failing which, at least Overfort increases the work factor

of DDoS perpetration through additional name resolutions incurred, by a factor

equivalent to the number of virtual links at its disposal. Compared to existing

traceback mechanisms, Overfort excels by offering a unilateral, instead of co-

operative, scheme, to simplify traceback as well as a unilateral auto punishment

system, which is lacking in today’s systems. Our preliminary study shows that

Overfort approach is promising for defending against DDoS attacks even when

attackers have more resources.

72

Chapter 5

AI-RON-E

This section is largely adapted from my paper co-authored with Akihiro Nakao

entitled “AI-RON-E: Prophecy of One-hop Source Routers” published in IEEE

Globecom Next Generation Networks Symposium in New Orleans, USA, Dec 2008

(acceptance rate: 36.8%1.).

5.1 Deployable Resiliency

5.1.1 Resiliency

Defense Cate-
gory

Filterable DDoS Non-filterable
DDoS

eDDoS (inter-
mediary)

eDDoS (server)

Client React Yesa Yesa Not applicable No

aIf alternate paths exist.

Table 5.1: Resiliency of AI-RON-E against DDoS

AI-RON-E offers protection against DDoS from the angle of client reaction.

Client Reaction: Exploit Internet Alternate Paths Clients that deploy AI-

RON-E are empowered to route around congestion points, resulting from

operational failures or DDoS attacks, without resource-intensive require-

ments, e.g., keeping the entire map of the Internet.

1This is unofficially obtained from http://www.cs.ucsb.edu/ãlmeroth/conf/stats/#globecom

73

5.1 Deployable Resiliency

As shown in Table 5.1, AI-RON-E can bypass filterable DDoS; it empowers clients

to find alternative routes that are not clogged with a high probability of 0.69 (see

Section 5.6.2.2). It has no reliance on distinguishing good/bad traffic thus it is

useful even in the event of non-filterable DDoS. However, eDDoS’s intention is

not to clog paths to the server but rather increase the server utilization cost in

a utility-based environment thus AI-RON-E is ineffective against server eDDoS.

It is not affected by intermediary eDDoS because the intermediaries are routers,

which in today’s Internet do not impose utility-based charges.

5.1.2 Deployability

Existing hotspot-bypass mechanisms have resource-intensive requirements; either

they require construction of an Internet map whose path information needs to be

updated constantly (67), continuous probing of multiple network paths to discover

congested paths (12; 98) or taking opportunistic measurements from a large vari-

ety of sent packets, at their destinations, which requires a wide deployment of re-

ceptors at those destinations (127). AI-RON-E aims to reduce stringent resource

requirements without overly-compromising on the congestion bypass effective-

ness; an AI-RON-E-enabled client consults specialized nodes known as “oracles”

to obtain their partial views of the Internet, specifically, the paths those oracles

take to reach the client’s desired destination. Oracles have only that simple single

function implemented by returning traceroute (115) results of a specified desti-

nation. A partial view from a random oracle is sufficient to enable a client to

determine which possible detour points can help bypass any broken links with

high probability. As shown in Section 5.6, having approximate 100 nodes is suffi-

cient to give diverse partial views. No state is ever required on oracles and their

system requirements can be met with minimum PC specifications. The loss of

one oracle does not affect the AI-RON-E system and can easily be replaced by

another system elsewhere in the Internet. For maximum diversity of views, pre-

ferred oracle locations are at the Internet edges, thus deployable by anyone with

an Internet connectivity. Clients that wants to enjoy the benefit of AI-RON-E

can either install the AI-RON-E network stack or download AI-RON-E-powered

zero-installation clients, deployed on Java Web Start (JWS) technology,, which

74

5.2 Assumptions

empowers them to bypass congestion without relying on the destination server or

network providers. In the short term, for high deployability purposes, AI-RON-E

client can utilize source IP spoofing (see Section 5.7.2) to mobilize all existing

routers as detour points to bypass hotspots. In the longer term, we make rec-

ommendations to router vendors on appropriate changes to existing loose/strict

source routing code to enable this detour feature without resorting to source

spoof, which can be released as patch and incrementally rolled out to production

routers. All the above properties ensure that oracles and AI-RON-E clients have

very low deployment barriers while our dual time-scale and incremental approach

makes deployability on routers feasible compared to most research.

5.2 Assumptions

Oracle Deployment Besides changes to routers, which we have a short-term

alternative (See Section 5.1.2), the component that parties have lowest in-

centive to deploy are oracles. However, due to the low specifications, min-

imal deployment effort and insignificance of a single oracle unreliability in

an entire system, we believe that oracle deployment is not an issue. For

example, we can utilize the hundreds of Planet Lab (84) nodes as oracles.

5.3 Overview

In One-hop Source Routing (OSR), we select a detour point (intermediary) to

create an indirect path consisting of source-to-intermediary and intermediary-to-

destination. The careful selection of an intermediary will ensure that the indirect

path can bypass a hotspot interfering with a direct client-server communication.

OSR research is not new but existing work, either uses edge nodes as interme-

diaries, e.g., RON (12), SOSR (49), RON-DG (87), Fei et al. (41) or introduce

OSR code in routers, e.g., Yang et al. (125). The former increases deployabil-

ity while requiring fewer OSR nodes since by just deploying them at different

country ISPs, they are likely to have maximum divergence—relatively disjointed

paths that lead to the same destination, as shown by the success of random in-

termediary selection in failure masking (49). By disjointed paths, we mean paths

75

5.4 Design Goals

that have few overlaps. However, since packets need to detour out to these edge

nodes before being deflected to their destinations, the hop-count of these indirect

paths are long. The latter have shorter indirect paths but widespread deployment

faces resistance from infrastructure owners due to the effort involved, the risk of

disruption and lack of financial incentives. Requiring each client to keep a list of

thousands of intermediaries wastes resources and the selection of a suitable inter-

mediary to bypass failure among the thousands in real-time also poses a tricky

issue. Parsing down the thousands of nodes to those in strategic locations may

allay the issue. However, the parsing algorithm is resource-intensive (26) even

when considering just a localized area, e.g., within an AS. AI-RON-E bridges the

space between edge node and router-based OSR. AI-RON-E reduces deployability

headache in the short-term by utilizing source IP spoofing to mobilize all exist-

ing routers on the Internet as intermediaries without requiring any modification

on the routers. In the longer term, OSR-capable routers can be incrementally

introduced; given that the OSR code on the router simply requires processing an

additional header field to determine the deflection target (intermediary), which

is a subset of existing code that performs loose/strict source routing, this is a

reasonable long-term assumption.

AI-RON-E refines the use of edge nodes; instead of using edge nodes as inter-

mediaries, AI-RON-E clients use them as oracles; the oracles’ diverse partial views

of the Internet is utilized to aid the selection of a suitable intermediary among the

thousands of routers. As a measure of the light-weightedness and effectiveness in

failure masking, we designed AI-RON-E to match SOSR’s light-weightedness of

randomly selecting 4 edge nodes to attempt to bypass failure. The reason why we

want AI-RON-E to outperform SOSR (described in Section 2.2.11), not only in

terms of light-weightedness but also failure masking rate, is because SOSR is the

most cost-effective alternative path selection mechanism to-date—it has the best

ratio of failure masking rate over resource consumption, e.g., network probing

and Internet information caching.

5.4 Design Goals

AI-RON-E aims to provide the following:

76

5.5 Architecture

Reduced hop-count indirect paths With only edge nodes available as inter-

mediaries, traffic detouring to them, en-route to destinations, has to travel

from one edge of the Internet (source) to another edge (intermediary) before

arriving at the final edge (destination). This network edge-to-edge-to-edge

routing is superfluous and can be reduced.

Better failure-masking ability than SOSR AI-RON-E strives to improve failure-

masking ability from two angles—mask more link failures and find failure-

masking indirect paths quicker compared to SOSR.

Light-weight intermediary selection algorithm From a large pool of candi-

dates, the intermediary selection algorithm has to, within a few attempts,

successfully find an intermediary that can mask a given link failure using

minimal resources such as network probings for path discovery.

Internet-scale infrastructure and Internet path diversity utilization We

want AI-RON-E to deliver an infrastructure that can support a large Inter-

net community and also enable Internet path diversity to be better utilized

than it currently is.

Incremental deployment Although the AI-RON-E prophecy foretells a future

where all Internet routers are OSR-capable, a partial deployment is defi-

nitely useful thus an incremental deployment makes sense. Moreover, AI-

RON-E requires making modifications to the Internet routers and this has

traditionally faced steep resistance. Besides progressive changes, incremen-

tal deployment enables users to opt-in with resource investment that suits

their technology-risk appetite with the option to scale up the infrastructure

that does not require major re-work when the need arises. The appeal of

incremental deployment has been shown to work in practice, e.g., in Planet

Lab (84) and peer-to-peer networks such as BitTorrent (22).

5.5 Architecture

In the AI-RON-E infrastructure (see Figure 5.1), any Internet system, e.g., servers,

routers, etc., may play any/all combination of the 3 roles: oracles that provide

77

5.5 Architecture

Oracle

OSR
Router

OSR−Aware
Client
Non OSR−
Aware Node

Direct Path

Indirect Path

Q

P
a

b

Oracle Path
Consultation

j

d

f

h

g

ec

k
ORC1

Figure 5.1: AI-RON-E architecture consists of OSR routers (non edge node interme-

diaries), oracles and clients embedded with logic to consult oracles to aid indirect path

construction.

their partial viewpoints of the Internet (similar to existing traceroute servers (66)),

intermediaries (OSR routers) that redirect traffic or/and clients that utilize the

infrastructure to mask link failures.

Once an AI-RON-E client (P) detects a failure (c-e) in its direct path to

a destination (Q) using a mechanism similar to traceroute, it will choose an

intermediary to bypass the failure by consulting a random oracle (ORC1) to

obtain its “oracle path”—the path the oracle takes to reach the same destination,

e.g., ORC1’s oracle path is ORC1-k-d-f-g-h-j-Q. Nodes along the oracle path,

excluding the destination (ORC1-k-d-f-g-h-j) are candidate intermediaries that

P can choose from since they are OSR routers that are capable of re-directing

packets. For example, with d as an intermediary, P can bypass c-e using the

indirect path constructed by concatenation of client-intermediary path P-a-b-d

and intermediary-destination path d-f-g-h-j-Q.

The architecture is designed with the following properties to fulfill the design

goals described in Section 5.4 and in Section 5.6 we show that AI-RON-E can

indeed achieve them.

OSR routers far from the Internet edges offer shorter indirect paths With

only edge node intermediaries as in SOSR, e.g., ORC1, in Figure 5.1, client

P has to use ORC1 as an intermediary and the indirect path formed would

have 12 hops (P-a-b-d-k-ORC1-k-d-f-g-h-j-Q). In AI-RON-E, an OSR router

78

Chapter4/Chapter4Figs/airone_arch.eps

5.5 Architecture

that is further from the Internet edge, e.g., d, can be used as an intermediary

thereby creating a shorter indirect path of 8 hops (P-a-b-d-f-g-h-j-Q).

Oracle-based intermediary selection for better failure-masking To formu-

late an intermediary selection algorithm that rivals the failure-masking rate

of SOSR, we borrow SOSR’s random intermediary selection algorithm and

add a twist to it—since random edge node intermediaries can provide good

failure-masking performance by virtue of their location at the Internet edges

that gives rise to indirect path disjointedness from the direct path, our

hunch is that by selecting a random node along an edge node intermediary-

destination path as an intermediary, AI-RON-E can delivery similar effec-

tiveness.

To compensate for the possible reduction of path disjointedness resulting

from selection of an intermediary further away from the Internet edges,

AI-RON-E has heuristics to remove candidates that cannot contribute to

failure-masking; candidates in an oracle path that also appear in the di-

rect path (source-destination) are filtered out. For example, in Figure 5.1,

ORC1-k-d-f-g-h-j are in ORC1’s oracle path but we exclude h and j as

candidates. Since they lie along the direct path (P-a-c-e-h-j-Q), if they are

used as intermediaries, P will most likely reach them via the direct path

that includes the assumed broken link c-e resulting in bypass failure.

From the remaining candidates, ORC1-k-d-f-g, we choose only 2 for use–

one between the first node and mid-point of optimized oracle path (k) and

another between the mid-point and the last node in the optimized oracle

path (f).

This avoids using adjacent candidates that may have similar client-intermediary

paths resulting in “fate-sharing”; both candidates succeeding or failing. In

Figure 5.1, P reaches adjacent nodes f and g through the paths P-a-c-e and

P-a-c-e-f respectively, resulting in both candidates failing to mask the fail-

ure at c-e. Through “bad” candidates filtering, AI-RON-E naturally seeks

out intermediaries that has a higher chance of masking failure quicker than

otherwise. However, note that filtering may result in some oracle paths

producing only 1 or no candidate intermediary.

79

5.5 Architecture

Caching oracle paths to retain light-weightedness We use SOSR’s light-

weightedness as a benchmark for AI-RON-E. SOSR sends N packets and

waits for at most N round-trip-times (RTT), before failing or succeeding

in masking failure, where N is the number of intermediaries selected. A

higher N instinctively provides a better masking rate, but it also incurs

more network overhead. With the law of diminishing returns applying, for

SOSR, N=4 is ideal (49).

Oracle paths form the basis for AI-RON-E to select better intermediaries

but is expensive in terms of network probes required to obtain them. Thus,

AI-RON-E retains SOSR’s light-weightedness by trading-off some storage,

i.e., requiring each AI-RON-E client to maintain previously acquired oracle

paths in a cache of size 0.5N to 1.5N. Clients always use their own cached

oracle paths to find candidate intermediaries and expensive oracle consul-

tations are only triggered when N intermediaries cannot be provided after

exhausting all cache entries. As shown in Section 5.6.2.2, despite using the

same few cached oracle paths, there are enough intermediaries along those

paths to produce diverse indirect paths to mask various link failures on a

path.

Distributed OSR routers aid scalability and path diversity utilization

The huge pool of OSR routers enable AI-RON-E to support a large user

community. Moreover, since the pool comprises widely-dispersed OSR

routers located at different depths from the Internet edges, AI-RON-E

clients that obtain random oracle paths and then select random intermedi-

aries within the oracle paths, will most likely utilize different intermediaries

resulting in traffic being distributed evenly over the Internet, thereby uti-

lizing path diversity better and reduce congested “hotspots”.

Loose-coupling enables incremental deployment Incremental deployment

offers incremental benefits; with each OSR router introduced, it creates an

extra opportunity for AI-RON-E clients (1) to mask link failures or divert

traffic from current congested “hotspots” and (2) better utilize Internet

path diversity. Incremental deployment is possible by making AI-RON-E

80

5.6 Evaluation

components—client, oracle and intermediary—loosely-coupled, i.e., a client

can use any AI-RON-E node as an oracle or intermediary making bootstrap-

ping into the AI-RON-E infrastructure extremely effortless and relatively

de-centralized since existing tools, e.g., traceroute from remote systems (66)

or from the client itself can be used to discover routers that can be used as

AI-RON-E oracles/intermediaries. Moreover, destinations do not need to

be AI-RON-E-aware. Thus, new AI-RON-E components can be “dropped”

in any time and any place to scale up the existing infrastructure. As part

of our goal to hasten deployability, we propose a shorter-term solution of

utilizing source-spoofing to mobilize all existing routers as OSR points (see

Section 5.7.2).

5.6 Evaluation

This section evaluates AI-RON-E’s link failure masking approach. Using our

hypothetical link failure evaluation methodology, we can assess more link failures

than a conventional empirical link failure monitoring approach can within a given

period of time but with the assumption that only a single link within a path fails

at a time. Through it, we can foretell the effectiveness of AI-RON-E even though

the infrastructure has yet to exist. More specifically, we want to find out if

AI-RON-E can achieve its design goals: (1) Does AI-RON-E provide shorter hop-

count indirect paths than SOSR? (2) Can AI-RON-E mask link failures as well

and as fast as SOSR even though the intermediaries have to be selected from a

larger pool of candidates that are mostly further from the Internet edges? and (3)

How light-weight is AI-RON-E’s resource utilization, specifically, cache storage?

5.6.1 Evaluation Methodology

We first describe the general architecture setup followed by a description of our

hypothetical link failure evaluation approach and finally how we can simulate

SOSR and AI-RON-E on this same setup for comparison purposes.

We use Planet Lab (PL) nodes at 100 distinct locations as traceroute servers.

When consulted, each can provide the traceroute from itself to a given destination.

81

5.6 Evaluation

Next, we select 15 PL nodes (Asia - 3, US - 3, East Europe - 3, West Europe -

3, South America - 2 and Canada - 1) as traffic source and each source performs

traceroute to the same set of 25 randomly-selected distinct PL locations to obtain

direct paths. In our hypothetical link failure evaluation approach, for each link

along each direct path, we check if there is an indirect path that can bypass it in

the event of failure.

To simulate SOSR, any one of the 100 PL traceroute servers can be used as in-

termediaries and the indirect path is constructed by concatenating the source-PL

path (obtained by traceroute from source) with the PL-destination path (obtained

by consulting the selected PL traceroute server).

For AI-RON-E, the 100 PL nodes act as oracles and intermediaries can be

any node along a randomly selected oracle’s oracle path, excluding bad candi-

dates that are heuristically filtered out (see Section 5.5). An indirect path can be

constructed by concatenating the source-intermediary path (obtained by tracer-

oute from source) with the intermediary-destination path (the sub-path of the

oracle path obtained by consulting the selected oracle/PL node, starting from

the intermediary).

For both SOSR and AI-RON-E, we conclude that an indirect path can bypass

a failed link if it does not appear in the indirect path.

5.6.2 Results

In total, we evaluated approximately 15 x 25 = 375 paths comprising about

4500 links. For each link we theoretically assess if a bypass is possible. This is

more than 3 times the amount of link failures analyzed by SOSR. From here-

forth, “SOSR-N ” and “AI-RON-E-N ” are used to refer to SOSR and AI-RON-E

algorithms with N -selected intermediaries respectively.

5.6.2.1 Hop-count of indirect paths

As shown in Figure 5.2, AI-RON-E indirect paths always have shorter hop-counts

than SOSR ones because traffic does not need to detour to distant Internet edges

en-route to destinations; the AI-RON-E plots are always further to the left of

SOSR ones. At the 80th percentile, regardless of N, for AI-RON-E, the ratio of

82

5.6 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

pe
rc

en
t o

f p
at

hs

r: ratio of indirect path hop-count over direct path hop-count

SOSR-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

pe
rc

en
t o

f p
at

hs

r: ratio of indirect path hop-count over direct path hop-count

SOSR-12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

pe
rc

en
t o

f p
at

hs

r: ratio of indirect path hop-count over direct path hop-count

AI-RON-E-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

pe
rc

en
t o

f p
at

hs

r: ratio of indirect path hop-count over direct path hop-count

AI-RON-E-12

Figure 5.2: A CDF showing that AI-

RON-E indirect paths have shorter hop-

counts than SOSR ones regardless of the

number of intermediaries selected for use.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

pe
rc

en
t o

f l
in

ks

a: attempts before finding bypass

SOSR-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

pe
rc

en
t o

f l
in

ks

a: attempts before finding bypass

SOSR-12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

pe
rc

en
t o

f l
in

ks

a: attempts before finding bypass

AI-RON-E-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

pe
rc

en
t o

f l
in

ks

a: attempts before finding bypass

AI-RON-E-12

Figure 5.3: A CDF showing the number of

intermediaries used, before finding one that

can mask a given failure.

an indirect path hop-count length over its direct path length, r, is roughly 1.6

whereas for SOSR, r is approximately 2.3. This represents 30% improvement in

path length reduction. It is also interesting to note that in some cases, AI-RON-E

indirect paths are shorter than their direct paths, i.e., percent of paths>0 for r<1.

There are two possible explanations: (1) Internet routing policies determined by

ISP relationships (54) may dictate that Internet routing choose a path based

on other characteristics rather than the shortest one and (2) Internet routing

relies on Border Gateway Protocol (BGP) (90), which selects the shortest path

to destination based on Autonomous System (AS) hop-counts but huge ASes

have many router hop-counts within therefore, a shortest AS hop-count path

(chosen by BGP) does not necessarily mean a shortest router hop-count path (as

discovered by AI-RON-E).

5.6.2.2 Speed and ability of link failure masking capability

Figure 5.3 shows which intermediary out of N selected ones, a, successfully masks

a failed link. Note that the plots for SOSR-4 and AI-RON-E-4 are discontinued

after a=4 while for SOSR-12 and AI-RON-E-12, they end after a=12 since the

algorithms themselves limit the number of intermediaries (N) being selected.

These end-points, a=4 and a=12, also represent the number of links that can be

83

Chapter4/Chapter4Figs/aironevssosr_pathlencdf_detail.epsi
Chapter4/Chapter4Figs/aironevssosr_attemptscdf.epsi

5.6 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
t o

f p
at

hs
 w

ith
 li

nk
 fa

ilu
re

s
m

as
ke

d

l: normalized location of link failure in path

SOSR-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
t o

f p
at

hs
 w

ith
 li

nk
 fa

ilu
re

s
m

as
ke

d

l: normalized location of link failure in path

SOSR-12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
t o

f p
at

hs
 w

ith
 li

nk
 fa

ilu
re

s
m

as
ke

d

l: normalized location of link failure in path

AI-RON-E-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pe
rc

en
t o

f p
at

hs
 w

ith
 li

nk
 fa

ilu
re

s
m

as
ke

d

l: normalized location of link failure in path

AI-RON-E-12

Figure 5.4: Failure-masking rate of nor-

malized link locations, l, for SOSR and AI-

RON-E variations. Failure-masking rate is

highest near Internet core, l∼0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

pe
rc

en
t o

f l
in

ks

c: number of oracle paths in cache used to provide candidate intermediaries

AI-RON-E-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

pe
rc

en
t o

f l
in

ks

c: number of oracle paths in cache used to provide candidate intermediaries

AI-RON-E-8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

pe
rc

en
t o

f l
in

ks

c: number of oracle paths in cache used to provide candidate intermediaries

AI-RON-E-12

Figure 5.5: The number of entries in the

cache used to provide enough intermediaries

as required by the different AI-RON-E vari-

ations.

masked by each algorithm variation after trying all N intermediaries. For N=4,

AI-RON-E masks 69% of failures compared to SOSR’s 60% while for N=12, AI-

RON-E masks 74% of failures versus SOSR’s 69%. In both cases, AI-RON-E

masks more link failures than its SOSR counterpart.

Figure 5.4 also shows the higher failure-masking rate of AI-RON-E but from

a different angle; it shows the location of link failures that can be masked by

indirect paths. Link failure location, l, are normalized within the path, i.e., l

vary from 0 to 1 with l∼0 indicating links near the source of a path and l∼1

indicating links near the destination. As expected, links nearer the Internet core,

l∼0.5, has better path diversity resulting in higher failure-masking rate, i.e. close

to 100% for l=0.5 to 0.7.

Besides showing the masking rate of the algorithms, Figure 5.3 also shows

that AI-RON-E can seek out indirect paths faster than SOSR between 6-12%

of the time. For instance, AI-RON-E-4 can find 52% of failure-masking indirect

paths by just using the 1st intermediary while SOSR-4 can only manage to find

only 40%. The filtering of bad candidates by AI-RON-E obviously aids finding

an intermediary that can mask a given failure quicker.

84

Chapter4/Chapter4Figs/aironevssosr_maskrateloc.epsi
Chapter4/Chapter4Figs/airone_oracles_usedcdf.epsi

5.7 Discussion

5.6.2.3 Intermediary selection algorithm resource consumption

Figure 5.5 allays the fear one may have about the size of the oracle path cache

required by each AI-RON-E client. Since we select at most 2 candidates from

each oracle path, for AI-RON-E-N, the minimum number of oracle paths needed

to find N intermediaries is N /2. This explains why the CDFs for AI-RON-E-4,

8 and 12 start at 2, 4, and 6 respectively on the x-axis. However, after filtering

out bad candidates, some oracle paths are left with no candidates. Under those

circumstances, more than N /2 oracles paths will be required to produce the

number of intermediaries specified by the algorithm.

As N increases, the number of cached oracle paths, thus the cache size, re-

quired to provide those intermediaries increases. However, the plots show that

to provide N required intermediaries to 70-80% of links, the upper-limit of the

cache size is bounded (“knee” of the plots); a meager cache size of 0.5N to 1.5N

is sufficient. For the remaining 20-30% of links, it is extremely challenging to

provide the required number of intermediaries because those links have low path

diversity thus more resources, i.e., cache storage or network probes, has to be

sacrificed to find candidate intermediaries.

5.7 Discussion

5.7.1 Minimizing link failure effects

The hypothetical approach to analyzing link failures without them actually oc-

curring gives rise to AI-RON-E’s ability to minimize link failure effects prior to

link failures, i.e., once a direct path is established, AI-RON-E immediately at-

tempts to find indirect paths to bypass each link along the direct paths, in the

background in preparation for link failures. Moreover, these indirect paths may

also be used concurrently to enable multi-paths and increase transmitted band-

width (14), (53). However, minimizing link failure effect only makes sense for

long-term connections, e.g., daily critical back up of data to remote data center.

85

5.7 Discussion

5.7.2 Deployment issues and workaround

Using PL nodes in the existing Internet as AI-RON-E intermediaries is unsatis-

factory since PL nodes are not non-edge intermediaries. Therefore, we have to

exploit a peculiarity in IP routing—source IP spoofing, to “coax” existing routers

to function as non-edge intermediaries. Upon encountering a link failure, through

oracle consultation, an AI-RON-E client selects an “non-edge intermediary” (this

can be any conventional router) to mask the failure. To coax the conventional

router to behave as an intermediary, the client crafts a packet by spoofing the

source IP header with the intended destination IP and insert into the destination

IP header, the IP of the router (intermediary) with TCP port number set to 0,

which triggers an error condition at the packet recipient. Note that any other in-

valid settings on IP or TCP/UDP fields that can result in an error condition will

also suffice. When the packet reaches the router, it gets rejected with “ICMP port

unreachable” and the router attempts to send it back to its “originator” which

in this case, has been spoofed with the intended destination IP. We are aware

that IP filters reject spoofed IP packets so this mechanism may not work for all

nodes. However, we foresee that nodes with specialized need for resilient connec-

tions to selected targets, e.g., daily inter-bank data transfer, can be permitted

“controlled spoofing”, i.e., the node can spoof its source IP to be one of those

permitted range of target IPs and this can be controlled at the ingress firewall

belonging to either/both the end-user or/and ISP.

5.7.3 AI-RON-E Client Code

Clients that want empowerment will install AI-RON-E code in one of the 3 forms:

(1) AI-RON-E network libraries that applications can be recompiled with, (2)

application-specific AI-RON-E clients in the form of zero-installation code, e.g.,

Java Web Start(JWS) or Java Applets, and (3) operating system (OS) with AI-

RON-E-aware network stack. The first is ideal for developers to recompile their

applications without changes, in order to acquire AI-RON-E features, and dis-

tributed the new AI-RON-E-aware application binaries to users. The second is

ideal for application service providers, e.g., a retail web site, since by writing a

JWS AI-RON-E client for the site, all its consumers can transparently download

86

5.8 Limitations

this JWS client from the homepage and use it through their browsers to acquire

AI-RON-E features. The third option of modifying the OS network stack re-

quires meticulous OS recompilation but is ideal since all applications can acquire

AI-RON-E capabilities without changes.

5.8 Limitations

Cache size per destination Each cached oracle path provides information for

bypassing link failures only to a particular destination. As the number of

destinations increase, the cache entries increase linearly. This seems to de-

tract some value from our proposition at first glance, however, the number

of resilient connections that a client actually require may be smaller than

thought; a lot of connections are for casual browsing, with only the occa-

sional critical transactional connection or other protocols, e.g., SSH (111),

requiring resiliency.

Source Spoofing Exploitability Source spoofing may be blocked by access

routers manually configured (42) or enabled automatically by uRPF-capable (29)

routers. Therefore, AI-RON-E may not be available to everyone. However,

as reported by the MIT Spoofer Project (71), the number of networks not

protected against source IP spoofable is still substantial. Moreover, we fore-

see that AI-RON-E is utilized for critical applications such as, critical data

transfer between two banks, more than for casual use. In such cases, the

initiator of the connection can easily permit “controlled” source spoofing,

e.g., allow only source IPs to be spoofed as a restricted range of permitted

destination IPs.

Uncertainty in Traceroute Prior to failure, a client determines its traceroute

to its destination. When its connection is disrupted, a second traceroute

is performed to determine the failed link; a link is identified by its two

adjacent routers. By determining if the failed link is contained within an

analytically constructed indirect path, we can determine whether bypass

is possible using that indirect path. However, due to security reasons or

mis-configurations, hops in traceroutes sometimes cannot be ascertained

87

5.8 Limitations

and they are marked with asterisks/stars “*”. This makes determining

whether an indirect path can bypass a failed link without actually sending

the packet, impossible. To obtain a lower bound for our evaluation, in other

words, to under-estimate our bypass success rate, we apply strict rules for

determining bypass; when a failed link has “*” as one of its adjacent routers,

we reject the possibility that an indirect path can bypass the link failure as

long as the other non-“*” adjacent router appears in the oracle path used

to construct the indirect path. For example, consider that an oracle path

is ORC1-k-d-f-g-h-j-Q, while the failed link in the direct path of P-a-c-e-

h-j-Q is e-h but the client traceroute only returns P-a-c-*-h-j-Q as direct

path, with *-h being the failed link. Even though the oracle path does not

contain the broken link e-h, the “*” in makes it inconclusive and based on

our strict rule, we deduce that the oracle path cannot be used to bypass

the broken link since the “h” in *-h appears in the oracle path, leading to

under-estimation of success rate.

Single Link Failures In our evaluation, we considered only single link failures

in the path since single link failures account for 70% of failures in the IP

backbone (70). Multiple link failures is part of our future work.

Router Alias A router has many interfaces, thus many IPs. Therefore, even

when two paths appear disjointed based on the IPs of its router hops, they

may share a router or even a link (share two adjacent routers). In other

words, an indirect path may appear to bypass a failed link when in reality it

cannot. Therefore, we need to utilize alias resolution tools like Ally (103),

which employs multiple heuristics, to determine if different IPs actually

belong to the same router. The evaluation is thus reliant on the accuracy

of these alias resolution tools.

Effectiveness Reliant on Path Diversity The effectiveness of AI-RON-E ul-

timately relies on the availability of path diversity. As shown in Figure 5.4,

near the Internet edge (near source and destination) failure masking rate is

low due to the low path diversity in such areas. To improve path diversity,

the source or destination can be made multi-homed.

88

5.9 Future Work

5.9 Future Work

Before the long-term goal of introducing AI-RON-E code into routers, we would

like to further study the implications of OSR. Although OSR is somewhat simi-

lar to source-routing in IPv4 and IPv6, with the IPv4 version already outlawed

through best practice and the IPv6 version likely to follow suit after the dangers

were brought into light (21), we believe OSR, which is a very restricted form of

source routing that permits the sender to control the path taken by specifying

one-hop instead of multiple hops, poses less security issues. Through the secu-

rity study, we can make recommendations to router vendors to enable OSR by

slight modification to already existing loose/strict source routing router code.

Another area that we can improve on is adapting AI-RON-E to bypass multiple

link failures that account for 30% of failures in the IP backbone (70).

5.10 Conclusion

We described the AI-RON-E prophecy that involves equipping every router with

OSR capability to turn them into AI-RON-E intermediaries and clients with

logic to select failure-masking intermediaries through oracle consultation. The

proximity of router intermediaries to the Internet core offers shorter hop-count

indirect paths of up to 30% while their sheer number enables AI-RON-E to exploit

path diversity to find failure-masking indirect paths. AI-RON-E can improve

SOSR failure masking rate by 6-8% and seeks out the indirect paths faster 6-12%

of the time. All this come at the expense of a slightly more involved algorithm,

i.e., filtering of bad candidates and the maintenance of an oracle path cache with

0.5N to 1.5N entries for each destination, at each client.

89

Chapter 6

KUMO

6.1 Deployable Resiliency

6.1.1 Resiliency

Defense Cate-
gory

Filterable DDoS Non-filterable
DDoS

eDDoS (inter-
mediary

eDDoS (server)

Economic
Framework

Yes No No No

Table 6.1: Resiliency of KUMO against DDoS

KUMO enforces DDoS defense from the following angle:

Economic Framework: Resource Harness KUMO is an intermediary-based

framework; it conceals servers from direct client connectivity thus offering

traffic reception control ability to servers. This shifts the brunt of DDoS

attack to the intermediaries. Thus, a large number of intermediaries is nec-

essary for defense against filterable DDoS attacks. Existing intermediary-

based research has often incorporated incremental deployment mechanism

to encourage users to adopt the research with the hopeful eventuality that

everyone does likewise resulting in sufficient intermediaries for DDoS de-

fense. However, we would like warn against such wishful thinking by point-

ing to the lack of success of other incrementally deployable security stan-

dards namely Secure BGP (S-BGP) (58) and secure DNS (DNSSEC) (17).

90

6.1 Deployable Resiliency

The lack of adoption in the former is due to concerns about the resource

consumption on routers when cryptography is used and the issues with

Public Key Infrastructure (PKI), both of which are critical S-BGP compo-

nents (23). The problems of the latter is due to the perception of a lack

of need, the concern about the operational and technical issues, as well

as the financial constraints as reported by 65 DNS registry participants of

a DNSSEC survey (25). KUMO represents the first DDoS research that

attempts to tackle the issue of harnessing intermediaries head-on with in-

cremental deployability only as a sub-feature. It does so by facilitating

the usage of any existing or future Internet systems as intermediaries and

offering financial compensation for intermediary owners.

KUMO is superior in harnessing intermediaries for filterable DDoS defense. Un-

fortunately, it offers no defense against non-filterable DDoS and server eDDoS

because the intermediaries that shield a server are normal systems (and not spe-

cially constructed defense systems) belonging to other organizations, thus no

DDoS detection and filtering mechanism can be built onto them. The proposed

KUMO pay-as-you-use (utility-based) billing system for intermediary resource

usage further exposes a KUMO adopter to intermediary eDDoS; when attackers

flood intermediaries with requests to forward packets to the adopter’s server, this

rakes up the server’s intermediary usage charges.

6.1.2 Deployability

The ease of recruiting any existing and new system as an intermediary and the

remuneration offered in return for an intermediary’s resources, facilitates resource

harness for DDoS defense from both a technological and economic standpoint as

never before. We foresee the following as rich sources of intermediaries: (1) the

thousands of existing Internet servers, e.g., Internet Relay Chat (IRC) (80), fo-

rums1, Software-as-a-Service (SaaS) such as OnlineMQ (81)—a message queuing

service, Amazon Simple Storage Services (S3) (7), etc., (2) the smaller number

but equally significant amount of next generation prototypes, e.g., I3 (104)—

Berkeley’s Internet indirection architecture, proxy networks (119), Tor (37)—an

1Forums are also known as message boards or discussion groups.

91

6.2 Assumptions

anonymous routing system, AI-RON-E (61), etc., and (3) the possible emergence

of an intermediary marketplace consisting of suppliers, brokers and consumers to

reap the incentives at stake. We do not offer any economic proof substantiating

a marketplace emergence but merely envision that KUMO can offer a founda-

tion for it better than existing DDoS mitigation schemes due to the hassle-free

(no component installation and maintenance) nature of participation (see Sec-

tion 6.8.1).

6.2 Assumptions

Resilient Naming Service KUMO relies heavily on a naming service to tell

clients which intermediaries can forward their connection requests to the

desired destinations. It can utilize existing DNS for this purpose by just

making some changes to the authoritative server, i.e., the mapping for a

KUMO protected server hostname can be continuously updated to point to

available intermediaries. This implies that KUMO’s resiliency is no worse

than the existing Internet. For improved name service resiliency, existing

research such as CoDoNS (89) and ConfiDNS (85), can be adopted.

Aggregate Intermediary Resource The aggregate resource of intermediaries

employed must be greater than the capacity of zombies used to launch

a filterable DDoS in order for defense to be effective. This is achievable

because of the ease KUMO can recruit intermediaries to exceed the size of

zombies.

Hidden Server Location Enforcement Intermediaries play an important role

in concealing a server behind to avoid direct attacks. Servers have to uti-

lize only trusted intermediaries that will not divulge their locations thus

exposing them to direct attacks. This reduces the number of intermediaries

available for use thus possibly affecting the aggregated resource capacity,

which is critical for DDoS defense. We assume that there are sufficient

intermediaries that a server can trust or enforce trust upon, e.g., through

real-world business relationships or mutually beneficial DDoS cooperative

initiatives, to acquire sufficient intermediaries for DDoS defense.

92

6.3 Overview

6.3 Overview

DDoS mitigation proposals have gained little traction in deployment to date be-

cause of their two misconceptions: (1) taking for granted that a large number of

DDoS mitigation intermediaries are easily available or (2) requiring modifications

to critical and proprietary existing core systems spanning multiple parties, e.g.,

core routers, to incorporate DDoS mitigation features in order to use them as

intermediaries. KUMO is the first work, to the best of our knowledge, that at-

tempts to address these critical misconceptions through its framework design; it

facilitates using any existing or future Internet systems, instead of core systems,

without modification, as intermediaries; by making non-disruptive modifications

on the client-side through zero-installation technology such as Java Web Start

(JWS) (109) or Java Applets (108), and the server-side through a server com-

ponent, we enable tunneling of client-server communication through any inter-

mediary’s application layer protocol. KUMO also offers an accounting platform

to establish an incentive scheme, which compensates intermediaries for resource

utilization. KUMO’s protection principle of “a degraded service is better than

no service” focuses on service availability rather than performance guarantees

since the latter is always going to be difficult under adverse conditions. In other

words, KUMO’s strength is ensuring the availability of critical services albeit with

degraded performance.

6.4 Design Goals

Swarm DDoS Protection The communication between client-server must be

resistant against filterable DDoS that may flood any point in the data path.

We consider four possible locations of congestion: (1) client-intermediary

path, (2) intermediary, (3) intermediary-server path and (4) protected server.

We adopt the “swarm” approach of harnessing intermediaries, whose aggre-

gate resource is greater than zombies perpetrating DDoS, thus mitigating

(2) and shielding protected servers against filterable DDoS. The distributed

locations of intermediaries increase path diversity thereby reducing the oc-

currence of hotspots in the path from distributed clients to intermediaries

93

6.4 Design Goals

(1). The server (4) and the path from intermediaries to a server (3) is not

susceptible to congestion because a server is capable of controlling traffic

reception by either retrieving data at its own pace from the intermediaries

or terminating connections to intermediaries to stop packet arriving from

them.

Intermediary Recruitment Ease To harness a large swarm of intermediaries

we must (1) avoid mandating complex changes to existing infrastructure,

(2) make it easy to adopt the technology and (3) allay concerns about

disruption to existing operation.

Economic Incentive Another important factor in encouraging intermediary

participation to increase swarm size is to offer economic incentives.

Utility-Based DDoS Mitigation Service Although DDoS mitigation services

currently exist, the monthly subscription charges are costly because service

providers need to recoup the cost of building the large-scale infrastructure.

This hampers service adoption especially by smaller organizations. We want

to build a “pay-as-you-use” service (utility-based service) to enable more

organizations to acquire DDoS protection.

Highly Reliable Eventual Communication KUMO’s focus on availability

rather than performance guarantees, is crucial to mitigate havocs wrecked

by worm epidemics (77), e.g., disrupted Auto Teller Machines and airline

flights, etc. Therefore, “exclusive” web sites— in terms of information

stored, e.g., an airline reservation system or a bank that hold exclusive

user information, and in terms of products/services on offer, e.g., a sole

product distributor, whose unavailability rather than poor response will

cause major inconveniences, are the most likely benefactors of KUMO.

Resistant Against Complete Persistent Disruption It should be difficult

for an attacker to persistently disrupt the communication between a tar-

geted client-server pair.

94

6.5 Architecture

6.5 Architecture

In this section, we describe the features used to fulfill the design goals in Sec-

tion 6.4 followed by full details about the KUMO architecture.

Intermediary-based Architecture To protect against filterable DDoS, an intermediary-

based architecture shields a server from direct client connectivity and grants

it the ability to control traffic reception. This shifts the brunt of the attacks

to the intermediaries. Such an approach makes sense since it is easier to

replicate intermediaries compared to a server; intermediaries have function-

ality limited to just traffic forwarding or temporarily storing client-server

traffic. The complex issue of replicating a server has now been transformed

to a more tractable issue of harnessing sufficient intermediaries to absorb

DDoS attacks with the remaining ones available to relay client-server traffic.

Utilization of Any System as Intermediary To increase a defense’s swarm

size quickly, we facilitate recruitment of any existing or new Internet system

as a swarm member. A dynamic client component, such as Java Applet,

and a server-side component can enhance both a client and server with the

ability to tunnel their traffic through any intermediary’s protocol. Besides,

easing deployment, the minimal modification required on client, server and

intermediary serves to protect various parties’s existing IT investments thus

encouraging adoption.

Technology Transparency To enable usage of any existing or future Internet

systems as intermediaries, we design KUMO such that a KUMO client

can communicate with its desired server by tunneling the communication

through an intermediary’s protocol. An intermediary does not even know

that it is being utilized by KUMO. This technology transparency implies

2 important things: (1) a system can become an intermediary without

making any technological changes and (2) a system owner does not have to

exceedingly worry about possible disruption to existing operation when the

system doubles-up as an intermediary since no new technology is introduced

and KUMO merely uses the system like a conforming client.

95

6.5 Architecture

Traffic Accounting System By incorporating an accounting system to keep

track of how much traffic each intermediary has handled for each protected

server, KUMO facilitates payment from the server owner to the interme-

diary owners. This economic incentive spurs existing and future system

owners to offer their over-provisioned system resources for intermediary

purposes, which facilitates the KUMO swarm to achieve large sizes.

Idle Resource Loan A lot of Internet systems are over-provisioned for peak

load, which only occurs occasionally, while at other times, the over-provisioned

resources remain idle. To increase the efficiency of over-provisioned re-

sources, these systems can “loan” them out for intermediary purposes in

return for financial compensation, while retaining the control of how much

resources to loan out and the ability to pre-empt the loan when peak

load occurs. KUMO makes use of “idle resource loan” concept to build

a utility-based DDoS mitigation service; the already paid-for but idle over-

provisioned resources can be activated for use against DDoS defense by

KUMO subscribers, which the subscribers only have to pay for based on

usage.

Capabilities and Multipath Communication To mitigate against complete

persistent disruption on a certain client-server pair’s communication, KUMO

differentiates between initial connection (IC) requests and established con-

nections (EC), and keep the intermediary channels used for EC privy only

between the client-server pair. In other words, KUMO has a two-stage con-

nection establishment process. In stage 1, the IC channels for any server

are known and open to every client. Upon successfully competing among

themselves and possibly against zombies, clients whose IC request is pro-

cessed by the server will enter stage 2, where each client and server pair

will agree upon multiple EC channels for subsequent communication. The

secrecy of the EC channel names enhanced by their multiplicity, ensure that

complete and persistent disruption of a client-server pair communication is

extremely difficult for attackers.

96

6.6 Implementation

Client

KUMO Name
Servers

Accounting

Channel
Plug−in
Type B

Plug−in
Type A

Intermediary
Type B

Type A
Intermediary

Stack
KUMO

KS−side
KUMO

KC−side
KUMO

Resolver
KUMO DNS

Updater

DNS Update

Communication

KUMO DNS

KUMO DNS
Reply

KUMO DNS
Request

KUMO

Server
KUMO Protected

Figure 6.1: KUMO framework is implemented as KS-side and KC-side. Both hide

KUMO details from client, protected server and intermediaries. In addition, KUMO

provides multipath and accounting facility.

6.6 Implementation

KUMO consists of a framework and protocol implemented in the form of a name

server, a protocol stack, a client-side (KC-side) and server-side (KS-side) compo-

nent. We start with the description of the framework and protocol, followed by

the other components classified based on their functionality.

6.6.1 Framework

The framework seeks to: (a) hide details of KUMO, enabling clients and servers to

utilize KUMO without requiring any modification, (b) enable any Internet system

to be used as an intermediary unmodified, (c) grant traffic control reception to a

protected server and (d) incorporate an accounting platform for billing purposes.

For (a), the framework provides a multipath facility that is manifested as the

KUMO stack embedded in the KC-side and KS-side (see Figure 6.1). Both com-

ponents work hand-in-hand to handle data fragmentation/assembly, data frag-

ment transmission/reception over multiple intermediary channels, lost data frag-

ment request/retransmission and “unreliable” intermediary channel tracking. To

97

Chapter5/Chapter5Figs/kumo_min.eps

6.6 Implementation

achieve (b), the multipath facility is designed only to require a simple code plug-

in, written once for each intermediary type and dynamically pluggable into the

stack thus enabling KUMO to understand how to send/receive data to/from that

intermediary type using that intermediary’s protocol. As long as KUMO knows

how to send/receive data to/from an intermediary type, the multipath facility

will be able to perform various packet manipulation, e.g., fragmentation/assem-

bly and data tunneling, over those intermediaries. For protected server traffic

control reception (c), KUMO offers two ways. First, if a protected server has

capacity to handle new clients, it creates a new listening channel at the interme-

diary and updates the KUMO name server with a new server hostname mapping

to the new channel. A client that consults the name server will discover the avail-

able connection request channel. Second, if the protected server is overwhelmed

by traffic from a certain channel, it can drop the “synchronous” channel, i.e., a

channel created on a traffic forwarding intermediary, or the protected server can

retrieve traffic at its own pace from an “asynchronous” channel, i.e., a channel

created on intermediaries that act as message a pick-up point. An accounting

facility (d), can be naturally implemented at the KS-side where all traffic is ac-

cumulated before transmission to the protected server.

6.6.2 Protocol

The KUMO protocol is message-based as oppose to stream-based; it receives

transmission data from application layer as a piece of message from which the size

can be determined and acknowledgments, request for retransmissions and retrans-

missions themselves are all done in relation to that message, which is uniquely

identified by its message ID. Each message can be fragmented into different sizes

corresponding to the maximum transmission unit (MTU) of the various interme-

diaries in use and sent simultaneously. To support such multipath transmission,

the protocol headers include message ID, fragment offset (location of the fragment

within the message), fragment length and total message length, which are neces-

sary for fragmentation and re-assembly. For retransmission request, the receiver

indicates the fragment offset and fragment length missing. If there are multiple

consecutive fragments missing, the fragment length missing will be the sum of

98

6.6 Implementation

the lengths of all the consecutive fragments. Thus a single retransmission request

can solicit multiple fragment retransmissions. Retransmission of a fragment can

occur over another channel type that is different from the one it was sent over

initially thus possibly incurring further fragmentation.

6.6.3 Multipath Facility Components

The KUMO framework and protocol are implemented as a protocol stack using

Ruby because Ruby facilitates fast prototyping. However, there is a performance

trade-off since it is an interpreted language. As part of our future work, we will

port the entire protocol stack into C for performance reasons and Java, in order

to support zero-install dynamic client—Java Web Start (JWS) or Java Applet.

The multipath capability is mainly implemented in the KUMO stack, which

is utilized by KC-side and KS-side. The KUMO stack can be installed as a library

that exposes an application programming interface (API) to all of KUMO’s fea-

tures. Applications can be written or ported to take advantage of KUMO multi-

path facility through the API, with minimal knowledge about KUMO’s internals.

Listing 6.1 shows the sample Ruby server code that listens for a initial connection

request.

Listing 6.1: Ruby code for creating a server socket to listen for connection requests

using KUMO API

1 # NOTE: Lines beg inn ing wi th # are comments

2 @kumo control ler = KUMOCompositeChannelController . new

3 @ksside = KSside . new(@kumo control ler)

4 @ksside . s t a r t

5 # Parameter d e s c r i p t i o n s :

6 # domain : The domain name the l i s t e n i n g socke t i s f o r

7 # send domain : The name o f d e s t i n a t i o n where r e p l y shou ld

8 # be sent . Usua l l y t h i s i s j u s t the l i s t e n i n g ”domain”

9 # with some appended wi th random number to c r ea t e a

10 # unique d e s t i n a t i o n .

11 # output : The con ten t s o f the connect ion r e que s t

12 # sock id : The socke t ID used to send r ep l y

13 @ksside . r e g i s t e r i c h a n d l e r (domain) { | domain , send domain , output ,

14 sock id |

15 . . .

99

6.6 Implementation

16 # in s e r t code to perform ta s k when a connect ion r e que s t i s r e c e i v ed

17 . . .

18 }

Lines 2-4 are standard server-side initiation code. The developer just need to

insert application specific code to handle connection request, in between the

parentheses in lines 13 and 18. For example, the code to handle the 2nd stage

of connection phase, i.e., negotiating the intermediaries that is privy to only a

client-server pair for further communication, can be done here. Using KUMO

API on the client-side is equally easy as shown in Listing 6.2.

Listing 6.2: Sample listing for creating a client code to send data using KUMO

API

1 # NOTE: Lines beg inn ing wi th # are comments

2 # Parameter d e s c r i p t i o n s :

3 # send domain : the d e s t i n a t i o n domain name o f the data to be sen t

4 @kumo control ler . s t a r t a l l c h a n n e l s e t s f o r d oma i n s ([send domain])

5 # The va l u e s o f the parameters are :

6 # send msg : The data to be sen t

7 # rep l y : The r ep l y from the s e r v e r

8 # rep l y s o c k i d : The socke t ID through which we can respond

9 # to the r ep l y we r e c e i v e

10 # processed : True i f we dec ide to handle r e p l y . Advance use only .

11 @kumo control ler . send (send domain , send msg) { | reply , r ep l y s o ck id ,

12 proce s sed |

13 . . .

14 # in s e r t code to perform ta s k when r ep l y to data sen t i s r e c e i v ed

15 . . .

16 }

The developer just need to insert application specific code to handle reply

received for the data sent, in between the parentheses in lines 11 and 16. For

example, the client code, used to negotiate intermediaries for 2nd stage of con-

nectivity with the server, can be placed here.

Besides creating standard client-server application code, we can use the KUMO

API to create a KUMO-based on-demand zero-install KC-side, e.g., through

JWS 1, which is automatically packaged with the KUMO API libraries, to of-

1This will be possible once we port the KUMO stack to Java.

100

6.6 Implementation

fer out-of-box KUMO-aware applications, e.g., a KUMO-based web browser.

In either case, the KC-side is protocol-neutral, i.e., regardless of the type

of message sent through it, e.g., HTTP (web), SMTP (email), etc., its role is

just to encapsulate the message with KUMO protocol, utilize the multipath fa-

cility to fragment and tunnel the KUMO encapsulated message over multiple

intermediaries channels using those intermediaries protocol. Intermediary plug-

ins that can dynamically loaded by the KUMO stack enable the messages to be

sent/received to/from various intermediaries. The usage of intermediaries is con-

trolled by the KS-side and shielded from developers. Intermediaries are stored

in a pool indexed based on the domain name the intermediaries will serve on

the KS-side stack. Upon initialization of a listening socket, using the API reg-

ister ic handler(domain) on a ksside object (Listing 6.1), the KS-side stack will

automatically select an intermediary from the pool serving the domain, create a

channel on the intermediary and update the dynamic DNS entry for the domain

with a mapping to the new channel. Note that the KS-side stack can maintain

multiple intermediary pools for different domains, thus a single KS-side can be

shared by multiple servers from different domain. Once an IC connection request

of a client is accepted by the server on the listening socket, the client-server pair

will agree upon multiple intermediary EC channels for subsequent communica-

tion. The role of the KS-side includes retrieving tunneled KUMO traffic from in-

termediary protocol, stripping the KUMO headers, reassembling the fragmented

data and determining what to do with the data, i.e., data from IC connections

will be used to establish EC connections, while data from EC connections will be

forwarded to the destination server. Replies from the destination server will be

tunneled back over multiple intermediary channels to the client by the KS-side

through the KC-side.

The KUMO stack also handles retransmission and tracks intermediary chan-

nels used for each fragment in order to identify “unreliable” intermediary chan-

nels. KUMO uses distinct counters to record fragments dropped by each channel

and if a counter exceeds a configurable threshold, its channel is marked “unreli-

able” and excluded for use with the possibility of a new channel being created by

the server to replace it. It is necessary to quickly discontinue the use of unreliable

101

6.6 Implementation

X
X

Content Distribution
NetworkDNS

X

KUMO Protected

Client Server

Intermediary

Request
Channel

KS−Side

KC−Side
KUMO Name Servers

1

1

3
5

4

6

7

7

8

2

Figure 6.2: The KUMO communication process from IC channel creation, IC request

to EC establishment as described in Section 6.6.5.

channels, because they result in many retransmission requests, which slows down

data transfer.

6.6.4 Accounting Facility

A KS-side has an accounting facility to keep track of the utilization of each inter-

mediary by each protected server. Through accounting, a KS-side can: (1) abide

by its agreement with each system owner not to exceed the capacity committed

for intermediary functionality; an intermediary that no longer has excess capacity

will not be selected for use until the excess capacity is available again and (2)

bill a protected server to compensate the intermediaries used for data relay. It

is interesting to note that if intermediaries have built-in billing mechanisms, e.g.,

SaaS platforms such as Amazon’s S3, then a protected server can be billed using

the intermediary’s billing system with KUMO’s accounting system used to vali-

date the billing. This can foster trust among intermediary and protected server

owners in KUMO thereby encouraging participation.

102

Chapter5/Chapter5Figs/kumo_walkthru.eps

6.6 Implementation

6.6.5 Walkthrough

To tie-up loose ends and for ease of reference, we provide a walkthrough of KUMO

here. The example protected server we are using is a fictional web pet store,

AiKoPon. To utilize KUMO, AiKoPon develops a KUMO-based Java Applet

to deliver a zero-installation client to web browsers. The applet can be embed-

ded in a static web page stored in a highly-resilient Content Distribution Network

(CDN) (4; 45; 120). It is transparently downloaded when a user hits on the static

web page. In this scenario, we show the KS-side being installed on a protected

server but it can be installed on separate system. The parenthesized numbers

in our description correspond to the numbered steps in Figure 6.2. We do not

show the process of intermediaries registering with the KS-side and indicating the

domain that they would like to restrict their service to. Rather, we assume that

this has been completed. The KS-side selects 2 intermediaries where it will listen

for connection requests and creates IC request channels on them (1). It updates

its dynamic DNS entries on the KUMO name servers to point to those new chan-

nels (2). A user that wants to visit AiKoPon’s website consults the DNS server

and is directed to load the homepage containing the applet from the CDN (3).

The applet consults the KUMO name servers to obtain an available IC request

channel for AiKoPon (4) and sends a connection request to the channel on the

intermediary (5). If the request times out, e.g., gets dropped by the intermediary

due to congestion, or is already occupied by another client, thus receiving no

reply from the protected server, the applet will retry steps (4) and (5) until it

eventually succeeds. The intermediary, if it is a synchronous one, forwards the

connection request to the KS-side (or KS-side will pull the request if the inter-

mediary is asynchronous), and retrieves the connection details (6). The KS-side

processes the connection request using application specific code (Listing 6.1) and

sends its reply back to the applet through the intermediary (7), e.g., negotiating

multiple EC channel intermediaries privy only to a client-server pair for further

communication. At the same time the KS-side will inform the KUMO name

servers to remove the hostname mapping to the channel that is now occupied (8).

When the KS-side has resources available to serve clients, it will start over from

103

6.7 Evaluation

step (1). A client can now proceed to communicate with the server by tunneling

communication over the negotiated EC channels.

6.7 Evaluation

To prove KUMO’s much vaunted deployability, its usability and ability to mitigate

DDoS; we demonstrate: (1) KUMO’s ease of use by plugging-in as intermediaries,

5 types of live Internet systems, 1 experimental one as well as 4 hybrids, which

are a combination of synchronous and asynchronous live Internet systems, (2)

data transmission occurs within acceptable times through these intermediaries

and (3) data transmission is still possible under data loss of up to 60% (and

possibly higher) by using multipath as a case study. In addition, we define a

metric for path availability and show how distributed intermediaries enhance

path availability by using IRC intermediaries as a sample set.

Our setup consists of a single Planet-Lab (PL) node in the US with the KS-side

installed, acting as a KUMO protected web server and 20 PL nodes (5 in Asia, 7

in Europe and 8 in US) with the KC-side installed, acting as KUMO clients. We

perform data transfer between each KUMO client and protected server pair (20

pairs) in turn using different intermediary types.

6.7.1 Flexibility

We plug-in live application systems as intermediaries and perform file transfer of

a 51kB (25 A4-size pages) text file over them using HyperText Transfer Protocol

(HTTP) between each KUMO client-server pair. KUMO is protocol-agnostic so

the usage of HTTP serves as only one of the possibilities. We tested the following

as intermediaries: 3 live application systems (forums, IRC and OpenDHT (91)—a

distributed peer-to-peer database system), 1 Web 2.0 application (Flickr—a social

network photo site), 1 SaaS platform (Amazon’s S3) and 1 next generation server

(I3). These intermediaries can be categorized into synchronous and asynchronous

ones. Synchronous intermediaries (IRC and I3) can immediately forward data

it receives from a sender to the receiver while for asynchronous ones (forum,

OpenDHT, Flickr, S3), a receiver has to pull the data stored by the sender from

104

6.7 Evaluation

them. Receivers using asynchronous intermediaries need to periodically poll for

data availability, which involves a trade-off between timeliness of data reception

and polling resource consumption. Since the resource consumption taxes both

receiver and intermediary, we introduce hybrid intermediaries, i.e., a combination

of synchronous intermediaries as control channels to inform the remote end when

data transfer is completed and asynchronous intermediaries for the data transfer.

The 4 hybrid intermediaries used are: hybrid-forum, hybrid-opendht, hybrid-flickr

and hybrid-s3.

In all cases, the file transfers were successfully tunneled through the various

mix of intermediaries using multipaths, validating our flexibility and eventual

communication goal claims.

6.7.2 Data Transfer Time

To tunnel data through the intermediaries, data has to be wrapped in KUMO

protocol headers and then further encapsulated using those intermediaries’ pro-

tocol headers. The increased header to data size ratio and additional processing

overhead during encapsulation/decapsulation prolong data transfer time. Thus

besides demonstrating flexibility, we need to measure the file transfer time over

the intermediaries as usability proof. In the setup, we store 5 text files on

the PL protected server (in US): RFC 1412 (4 text pages/7kB), RFC 1918 (9

pages/22kB), RFC 1738 (25 pages/51kB), RFC 1044 (43 pages/101kB) and RFC

1700 (230 pages/449kB). In our evaluation, we transferred these files over the 9

intermediary types (IRC, forum, OpenDHT, Flickr, hybrid-forum (IRC-forum),

hybrid-opendht (IRC-OpenDHT), hybrid-flickr (IRC-Flickr), hybrid-s3 (IRC-S3),

I3). The limited deployment of certain intermediaries, e.g., Flickr and forums,

forces us to vary the locations of the KUMO clients instead of the intermediaries,

in order to test under various network conditions. In total, we ran the file trans-

fers: 5 (different file sizes) * 9 (intermediary types) * 20 (different KUMO client

locations) = 900 times.

The plot shows the average transfer time of each file size over each interme-

diary type from 20 different client locations. To preserve visibility details of the

transfer time of the rest of the intermediary types, we do not show the transfer

105

6.7 Evaluation

 0

 10

 20

 30

 40

 50

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

IRC

 0

 10

 20

 30

 40

 50

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

h-forum

 0

 10

 20

 30

 40

 50

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

h-flickr

 0

 10

 20

 30

 40

 50

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

flickr

 0

 10

 20

 30

 40

 50

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

forum

 0

 10

 20

 30

 40

 50

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

h-s3

 0

 10

 20

 30

 40

 50

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

I3

 0

 10

 20

 30

 40

 50

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

direct

Figure 6.3: The average transmission time

of various files sizes through different inter-

mediary types.

 0

 20

 40

 60

 80

 100

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

IRC

 0

 20

 40

 60

 80

 100

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

IRC-20% loss

 0

 20

 40

 60

 80

 100

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

IRC-40% loss

 0

 20

 40

 60

 80

 100

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

IRC-60% loss

 0

 20

 40

 60

 80

 100

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

I3

 0

 20

 40

 60

 80

 100

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

I3-20% loss

 0

 20

 40

 60

 80

 100

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

I3-40% loss

 0

 20

 40

 60

 80

 100

10kB 100kB 1000kB

tr
an

sf
er

 ti
m

e,
s

filesize,kB (log)

I3-60% loss

Figure 6.4: The average transmission

time of various files sizes through I3 and

IRC when different percentages of multi-

paths fail due to congestion.

times using OpenDHT because they are a magnitude slower than the rest. As

shown in Figure 6.3, the average transfer time using I3 is timely (< 5s), i.e.,

comparable to direct transfer except at file size 449kB. With a 449kB file, a large

portion of the time is spent in the still unoptimized KUMO stack fragment re-

assembly code. We verified this in a separate experiment where we measured the

data transfer time without reassembly and the transfer completed within 13 sec-

onds. IRC, hybrid-forum, hybrid-flickr, hybrid-s3 can be used to achieve eventual

data communication within 10 seconds for file sizes up to around 101kB.

In conclusion, for fast data transmission of small pieces of data around 10kB,

e.g., incremental data retrieval in AJAX communication, command/control data

transmission in SOAP messages, etc., I3 and IRC are ideal intermediaries while

for fast transmission of data around 101kB, only I3 is appropriate. For even-

tual communication of data around 101kB, such as airline reservation or personal

banking information, hybrid-forum, hybrid-flickr and hybrid-S3 can satisfy the

requirements. Even with the few types of intermediaries tested, we show that

KUMO can satisfy a range of data communication requirements. As future work,

we strongly believe that by porting KUMO from Ruby to C, optimizing the code,

and fine-tuning the various timers in the KUMO protocol stack, e.g., retrans-

mission timers, KUMO will be more efficient in catering to the various data

106

Chapter5/Chapter5Figs/transfertime2.epsi
Chapter5/Chapter5Figs/drop.epsi

6.7 Evaluation

communication needs.

6.7.3 Multipath Data Transfer Under DDoS

Under the duress of DDoS, a portion of the multipaths utilized by a KUMO client-

server pair may drop packets. In this experiment, we explore the scenario where

20%, 40% and 60% of the multipaths become completely unusable by completely

dropping all packets traversing them. We only tested IRC and I3 intermediaries

because only these intermediary types have significant transfer time performance

gain through multipath utilization due to their small packet payload size. For

other intermediaries, sending the entire data through a single connection while

relying on the intermediary’s protocol or TCP is more efficient.

As expected, the increase in packet loss and prolongs the data transfer time

(see Figure 6.4). However, for small data sizes (up to 7kB), both IRC and I3,

exhibits decent performances (below 10 seconds) for losses of up to 40%. More-

over, for I3, the increase in transfer time for up to 101kB data size, is well within

10 seconds. Due to the time taken and data retransmission volume required over

IRC, we do not carry out data transfer beyond 22kB. For the same reason, we

totally avoid the experiment with 80% of the multipaths impaired. We can safely

conclude that KUMO offers eventual communication even in the extreme cases

of 60% data loss.

6.7.4 IRC intermediary stability

Stability of intermediaries is crucial for KUMO’s functionality. Of the interme-

diaries that we tested, all but IRC and I3 are expected to have stable existence

due to their commercial nature. I3 nodes reside on Planet Lab so they inherit its

stability. Therefore, in this experiment, we only measure the stability of IRC in-

termediaries. We cull the IRC server hostnames from the list at netsplit.de, which

contains a comprehensive list of IRC servers under all domains and perform do-

main name resolution for the hostnames to eliminate non-existent servers. We

scripted a Ruby program based on SIL (96), which is a generic banner grabber,

to connect to each IP address and check for IRC NOTICE messages that are part

of IRC connection establishment protocol. This script is run only once on each

107

6.7 Evaluation

2−hop away

A B
C

1−hop away

R1

R2

R3

R4

R5

KUMO Protected
Server

Protected Server

Router

Intermediary

Default Path
To KUMO

Figure 6.5: Path diversity measure-

ment in relation to number hops away from

KUMO protected server.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

nu
m

be
r

of
 s

er
ve

rs

number of routers

1-hop away

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

nu
m

be
r

of
 s

er
ve

rs

number of routers

2-hop away

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

nu
m

be
r

of
 s

er
ve

rs

number of routers

3-hop away

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

nu
m

be
r

of
 s

er
ve

rs

number of routers

4-hop away

Figure 6.6: Improvement in path avail-

ability when intermediaries are utilized

from the perspective of the server at var-

ious hops away.

of the 20 PL nodes with at least a 24-hour gap between the runs. This enables

us to measure the stability of live IRC intermediaries over 14 days (1 Oct to 14

Oct 2008). We ran the script from different nodes so that IRC servers that are

very restrictive on locality of clients they serve can be reflected since they may

not be good intermediary candidates. The availability of IRC servers over the

2-week period is relatively consistent, around 1500 servers.

6.7.5 IRC intermediary path diversity

We are interested to show that having widely distributed intermediaries available

to choose from increases the path diversity to a protected server. Therefore

we attempt to measure the path diversity that is offered by IRC intermediaries

since among the intermediary types we used, IRC has the largest base, so it

is a good indicator of future path diversity should intermediaries become easily

available. With direct connectivity, at any point in time, a KUMO client can

reach a protected server only through a single Internet default path. However,

with intermediaries available to bounce traffic, the path diversity/availability to

reach the protected server increases. As a metric for comparing path availability,

we analyze the number of distinct routers, d, through which the intermediaries

can offer a path to the protected server n hops away from the protected server

108

Chapter5/Chapter5Figs/pathdiv.eps
Chapter5/Chapter5Figs/spread_pop.epsi

6.7 Evaluation

where n=1 to 4. In Figure 6.5, if A and B are our intermediaries, even if can

use either of them to bounce traffic, at n = 1-hop away, the path diversity to

protected server is still only 1, i.e., only one router (R2) that can lead to the

protected server. If our intermediaries are B and C, now at n = 1-hop away, the

path diversity has increased to 2 (R2 and R4). Thus, d is a good measure for path

diversity with reference to n. Without access to the intermediaries, we cannot

obtain the traceroute of the default path from them to the protected server. To

“predict” the path, we carry out the following steps: (1) We traceroute from the

protected server to a selected intermediary with undetermined hops (hops marked

by “*”) removed. (2) Assuming that step (1) produces a traceroute of k hops,

with the intermediary itself being the k -th hop, we utilize iPlane (67) to predict

the reverse path starting at the k -th hop to the protected server. (3) If prediction

fails, we make iPlane predict a shorter reverse path by starting from the (k−1)-

th hop. (4) We repeat (3) until iPlane successfully or fails to predict the reverse

path. It is unlikely that iPlane can predict the complete reverse path from an

intermediary to the protected server but we always end up with a reverse path

starting from the intermediary’s ISP point-of-presence to the protected server.

Given that the intermediary is likely single-homed to its ISP, the last few hops of

our traceroute from a protected server to an intermediary is probably the same as

first few hops of the reverse path from intermediary to protected server so we can

safely conclude the reverse path starting from an intermediary’s ISP predicted by

the iPlane reflects the path taken by traffic originating from the intermediary.

In this experiment, the 20 PL nodes are used as protected servers. From

Figure 6.6, by observing the x-axis where number of routers = 1, i.e., the number

of routers that can lead to a PL protected servers when no intermediaries are

used, as a reference point, we can see that at 1 hop away, employing intermediary

increases the availability of 20% of the PL protected servers by twice while at

2 hops away, the availability is increased for 70% of PL protected servers by

2−7 times. Overall, the presence of intermediaries does indeed increase path

availability to a protected server significantly.

109

6.8 Discussion

6.8 Discussion

6.8.1 Marketplace

With incentives at stake, parties may be interested to act as intermediary providers.

We foresee 3 types of providers: (1) those offering their existing operational

servers to defray the cost of their over-provisioned peak load capacity, (2) non-

profit organizations whose sustenance has been based on charity and (3) those

who feel that offering high-bandwidth and low-latency intermediaries is a prof-

itable business model. The last group will be keen to implement next generation

intermediaries, e.g., I3, AI-RON-E (61) (where routers are capable of bouncing

traffic) or SaaS-type intermediaries that are specifically designed to possess su-

perior traffic forwarding capabilities.

Brokers will enter the eco-system to harness the islands of intermediaries to

form KUMO clouds with sufficient mass for filterable DDoS defense and offer

it as a service to consumers. Protected servers can choose from the array of

brokers who may differ in terms of KUMO cloud capacity, intermediary types,

pricing scheme and value-added services, e.g., availability of a large base of KS-

side servers, which enables protected servers to attain KUMO protection without

even having to worry about KS-side installation.

Even though some other DDoS schemes, e.g., Phalanx, may arguably offer

similar incentives and spawn similar marketplaces, they require additional com-

ponents to be introduced onto systems that wish to act as intermediaries giving

rise to 2 sticking points with adopters that KUMO does not: (1) security policies

and IT governance forbid installation of additional components on corporate sys-

tems that do not contribute directly to business objectives and (2) installation of

additional DDoS mitigation components requires additional expertise and cost in

installation, maintenance and troubleshooting.

6.9 Limitations

Defenseless Against Non-filterable DDoS As noted, KUMO enables a pro-

tected server to control traffic reception to prevent filterable DDoS. How-

110

6.10 Future Work

ever, during a non-filterable DDoS attack, the inability to differentiate traf-

fic from different origins leads to a server offering services based on a first-

come-first-serve basis. Such a scheme marginalizes legitimate clients since

the large number of zombies will reduce the probability that a particular

client can obtain an available channel from the KUMO name server before

the zombies do, to almost negligible. Having the ability to somehow differ-

entiate between traffic sources is critical for defense against non-filterable

DDoS.

6.10 Future Work

We intend to tune the KUMO stack so that most performance issues can be

ironed out. On top of that, porting the stack to Java is a priority since it enables

developers to create zero-install JWS clients or Java Applets that their customers

can use and gain protection against DDoS disruption transparently. It is also a

necessity to incorporate a mechanism for servers to distinguish between traffic

sources to defend against non-filterable and eDDoS.

6.11 Conclusion

We present KUMO, a DDoS mitigation framework that facilitates adopting any

existing or future Internet system as an intermediary to achieve an intermediary

pool size sufficient to withstand a filterable DDoS attack. We envision that

KUMO’s unique ability to utilize servers without modification and its incentive

scheme can attract more participants than previous DDoS mitigation schemes

that require component installation, therefore entailing maintenance effort and

possibly violating a system’s security policies. With the emergence of faster and

more varied SaaS platforms, we believe that KUMO can play an important role

to unite all these over-provisioned resources for defense against DDoS.

111

Chapter 7

sPoW

This section is largely adapted from my paper co-authored with Akihiro Nakao en-

titled “sPoW: On-Demand Cloud-based eDDoS Mitigation Mechanism” published

in IEEE/IFIP Hot Topics on Dependable Systems Workshop held in conjunc-

tion with Dependable Systems and Network (DSN) in Estoril, Portugal, Jul 2009

(acceptance rate 37%).

7.1 Deployable Resiliency

7.1.1 Resiliency

Defense Cate-
gory

Filterable DDoS Non-filterable
DDoS

eDDoS (inter-
mediary)

eDDoS (server)

Client/Server
React

Yes Yesa Yesa Yesa

aPrioritize traffic base on resource expended by client instead of distinguishing good/bad
traffic.

Table 7.1: Resiliency of sPoW against DDoS

sPoW offers protection against DDoS from the angle of client and server re-

action collaboration.

Client/Server Reaction: Request Urgency Signal and Prioritization On

112

7.1 Deployable Resiliency

the server-side 1, we actively maintain a set of obscure channels to handle

connection requests with varying priorities based on the protected server’s

request load. A puzzle is created to conceal a channel’s property informa-

tion, such as its location, with a difficulty proportional to the channel’s

priority. A client requests for a server-side generated puzzle by specify-

ing the destination server and a puzzle difficulty level, which reflects its

connectivity establishment urgency. The puzzle difficulty determines the

amount of resource a client has to expend to solve it, in order to recover

the obscure channel location from the puzzle. This mechanism enables a

server to prioritize traffic based on resources expended by a client, instead

of distinguishing bad/good traffic using resource intensive and inaccurate

bad traffic classification technology.

As shown in Table 7.1, sPoW can bypass filterable DDoS because it adopts KUMO

framework (see Section 6) to enlist resource-rich cloud infrastructures as its in-

termediaries, i.e., traffic reception control point. With just a few cloud interme-

diaries, we can harness sufficient resource for filterable DDoS defense. In order to

circumvent the thorny issue of distinguishing good/bad traffic with minimal false

positives, which becomes almost impossible in the case of non-filterable DDoS,

sPoW proposes to utilize PoW (Proof-of-Work) to differentiate traffic based on

the traffic originators’ willingness to expend its own resources for the purpose of

connection establishment. With PoW, due to the huge but yet finite resources of

attackers, legitimate clients can establish connectivity within bounded albeit pro-

longed time (see Figure 7.4). Although enlisting cloud intermediaries for DDoS

defense is an appealing proposition, it exposes a server owner to excessive cloud

utilization triggered by attackers sending arbitrary traffic into the cloud, i.e., in-

termediary eDDoS, which gets forwarded to the server, i.e., server eDDoS. sPoW

is, to the best of our knowledge, the first research to address both eDDoS through

the use of self-verifying PoW; only clients that expend sufficient resource to re-

cover obscure channels can send traffic through those channels in the cloud. Even

so, there is no guarantee that all traffic from originators that expend resources

1Server-side refers to part of the server infrastructure not necessarily the server and it may
not even belong to the server owner.

113

7.2 Assumptions

are non-malicious but the main goal of the mechanism is just to empower legiti-

mate clients with the ability to compete with large swarms of zombies to reduce

the amount of malicious traffic overworking the cloud intermediary and protected

server resources.

7.1.2 Deployability

To combat DDoS, a mechanism needs to possess more aggregated resources than

attackers; aggregated resources can be harnessed from multiple distributed mod-

erately provisioned locations (11; 13; 18; 24; 32; 38; 48; 59; 60; 62; 65; 73; 82;

83; 105; 123; 126) or few localized well-provisioned clusters (63). The majority of

research adopts the former approach, clearly reflecting the opinion of the commu-

nity that harnessing sufficient localized resource for specialized DDoS defense is

neither cheap for end-users to unilaterally deploy nor such endeavor is profitable

for ISPs to build a service. sPoW debunks this trend by using utility-based cloud

computing to overcome the deep-rooted issue of cost and deployability in 3 ways:

(1) the use of just a few cloud infrastructure is sufficient for DDoS defense thus

easing unilateral deployment without relying on ISPs or other parties for coopera-

tion, (2) protected servers pay for only cloud resource that they use, reducing the

initial cost outlay substantially and (3) self-verifying PoW enables the protected

server to set a peak resource utilization, which is similar to other existing mech-

anisms, but with the unique property that sPoW ensures the resource utilization

is allocated as much as possible in favor of legitimate clients. The complex issues

of preventing a protected server’s hidden location from being leaked and account-

ing can be side-stepped because cloud computing platforms are built by trusted

organizations who are highly motivated to prevent such leakage and are equipped

with their own comprehensive accounting system.

7.2 Assumptions

Resilient Naming Service sPoW relies heavily on a naming service. It can

utilize existing DNS by just making some changes to the authoritative server

(see Section 7.9 for details). This implies that sPoW’s resiliency is no worse

114

7.3 Overview

than the existing Internet. For improved resiliency, existing research such

as CoDoNS (89) or ConfiDNS (85), can be adopted.

Rich Cloud Computing Resource Each cloud infrastructure is very-well pro-

visioned because it is a shared environment for multiple customers. By us-

ing a single cloud or an aggregate of a few, we assume that it is possible to

harness sufficient resource to thwart even the largest of DDoS attacks.

Hidden Server Location Enforcement A cloud is utilized as an intermedi-

ary to receive traffic on behalf of a protected server in order to grant the

server the ability to accept traffic from clients that have expended sufficient

resource to discover the obscured channels the server is listening on at the

cloud. Since the server can rely on only one or a few of these clouds for

protection and these clouds belong to large trusted entities, e.g., Amazon,

Google, etc., the hidden server location can be well-preserved, preventing

attackers from discovering its location and attacking it directly.

7.3 Overview

Elastic cloud computing (9; 46) promises an affordable and highly dependable

computing infrastructure that is easy to setup, maintain, and scale. These value

propositions have spurred many businesses to adopt cloud computing technol-

ogy (8). However, this dream setup can become a nightmare during a DDoS

when the cloud adopter must pay for resources used, whether by a server to han-

dle a large amount of undesired traffic, or by a defense mechanism to filter them.

Either way, attack packets stretch the cloud elasticity resulting in an economic

DDoS (eDDoS).

For cloud computing to remain attractive, our key goal is to combat the yet

unaddressed eDDoS threat (5; 52; 106) by proposing sPoW, a unilaterally deploy-

able and affordable on-demand cloud-based eDDoS mitigation mechanism. sPoW

is designed to mitigate eDDoS triggered by both filterable and non-filterable at-

tack packets, which can occur at either the network or application layer. Today’s

cloud billing mechanisms are based on network-layer traffic handling; if a cloud

can determine how to forward a packet to its destination server by observing the

115

7.3 Overview

network-layer headers, it will do so even though a packet is malicious, unsolicited,

or malformed at the application layer, and billing will occur. Two strategies to de-

crease the impact of eDDoS are to (1) detect and filter DDoS packets before they

trigger a cloud’s billing mechanism by mere observation of the packets’ network-

layer headers and where it is impossible to do so (2) employ a system that enables

packets’ origins to compete with each other for the servers resources by expend-

ing their own resources to generate and embed a “signal” within their headers, a

system generically known as Proof-of-Work (PoW). A signaling system increases

the efficiency of a server’s resources; legitimate clients, when denied service, will

attempt to generate stronger signals in order to receive higher priority, which

has the impact of reducing DDoS traffic getting through to the server. However,

unlike existing signaling systems that require resources to verify those signals,

which in turn makes them a DDoS or eDDoS target sPoW is the first system, to

our knowledge, that can prevent eDDoS traffic from incurring any costly cloud

resources during verification of a packet’s signal strength.

Our work extends previous work on capabilities (13) and PoW. Capabilities

grant existing connections the highest priority to server resources because they

were once initial connection requests but they successfully competed for the right

to the server resources through PoW. With PoW, a client expends its resources

to solve a “crypto-puzzle” and submits proof of the solution (the signal), which

also indicates the puzzle difficulty, together with its initial connection request

thereby enabling the PoW system to verify the puzzle correctness and prioritize

the request, based on the puzzle difficulty, in a queue that forwards requests to

the server. PoW enables initial connections from legitimate clients and zombies

to compete for the resources remaining from existing connection handling.

During DDoS, legitimate clients will expend more resources to solve more dif-

ficult crypto-puzzles to elevate their initial connection requests’ priority at the

expense of longer connection request generation time. An attacker, with huge

but finite resources has 2 options: (a) expend more resources to generate even

higher priority connection requests to drown those legitimate clients but sacri-

fice the quantity of requests it can generate, resulting in other possibly lower

priority legitimate clients “sneaking” access to the server, or (b) maintain its

116

7.4 Design Goals

current connection request priority to continue to generate the maximum quan-

tity of connection requests but permit those higher priority legitimate requests

to gain access to the server. Either way, the introduction of capabilities and

PoW, empower existing connections and legitimate clients’ connection requests

to compete effectively to reduce the portion of non-filterable eDDoS connection

requests that reach the server while increasing their own. The initial connection

is set up only once per client-server pair and subsequently, it can be used to send

multiple application protocol requests and receive corresponding replies between

the pair. Refer to the explanation after Step 10 in Section 7.6 for details.

Capabilities and PoW are known to work handily against DDoS but they have

yet to be made deployable and affordable due to their lofty requirements such

as making modifications to proprietary existing core systems spanning multiple

parties in order to incorporate new features nor have they been constructed to

handle eDDoS. Our contribution is using capabilities in an innovative way to fit

the cloud platform and designing a conceptually new PoW—a self-verifying PoW,

to build a first-of-its-kind, immediately and unilaterally deployable, cloud-based

mitigation platform for eDDoS.

7.4 Design Goals

Unilateral Deployment It must be reasonably affordable for a single party

interested in protecting its servers against eDDoS and DDoS to deploy

sPoW unilaterally.

On-Demand eDDoS Mitigation The cloud adopter should not incur signifi-

cant infrastructure setup or maintenance costs under normal circumstances

while being able to scale easily to meet with traffic demands. During an

eDDoS attack, the cloud adopter should only incur the cost from legitimate

traffic as much as possible.

Network-level eDDoS Defense An on-demand eDDoS mitigation mechanism

must be capable of distinguishing as much network-level eDDoS traffic as

possible and drop them to avoid billing the adopter for it.

117

7.5 Architecture

Non-filterable eDDoS Defense Non-filterable eDDoS traffic that is indistin-

guishable from legitimate client traffic cannot be filtered out accurately.

Thus a scheme that enables a server to prioritize initial connection requests

based on PoW and clients that are capable of demonstrating PoW are nec-

essary. sPoW empowers legitimate clients to compete with and reduce

non-filterable eDDoS initial connection requests that enter the cloud and

trigger the billing mechanism.

Immediate Deployability To make sPoW attractive, we want it to be deploy-

able on existing cloud infrastructure without requiring any changes.

7.5 Architecture

We describe the architecture used to fulfill the design goals in Section 7.4.

Localized Cluster(s) DDoS mitigation is most effective when deployed at mul-

tiple heterogeneous points as DDoS can be stemmed the soonest possible at

those points leaving downstream resources unclogged. Such an approach,

however, entails numerous deployment points as well as substantial co-

operation among multiple parties with possibly conflicting incentives and

priorities. sPoW adopts an alternative approach similar to Phalanx (38) and

KUMO (Section 6), which trades-off the ability to eliminate attacks near

sources for unilateral deployment by clustering bandwidth and resources at

a single or a few localized sites to withstand the largest of DDoS onslaught

expected. The constant drop of CPU and bandwidth prices has made such

a unilateral approach appealing. However, the similarity ends there, unlike

Phalanx, we do not require crypto-puzzle verifiers, to be installed anywhere.

Further advantages of not requiring verifiers are elaborated in Section 7.5.

In Figure 7.1, sPoW is deployed as a localized cluster in Cloud #1 to pro-

tect servers in cloud, e.g., Cloud #2, or other servers in general. It can also

be deployed as a multi-site localized clusters on a few clouds concurrently.

Cloud-based DDoS Mitigation Mechanism A constant problem with DDoS

mitigation proposals is the cost in acquiring a large deployment base and

118

7.5 Architecture

the trustworthiness of the deployed base. A cloud-based DDoS mitigation

mechanism removes the need for an initial expensive infrastructure outlay,

increases the trustworthiness of the deployed base due to its controlled en-

vironment as well as ownership by trusted providers and is easier to grow

since a general purpose computing cloud is flexible in meeting customer

needs thus easier to share and has a wider customer base thereby achieving

economies of scale, which drives down the cost, faster than a shared DDoS

specific infrastructure.

Ephemeral Server Channels To prevent network-level flood from chalking up

server utilization, sPoW mediates initial connections to the server through

ephemeral server channels—a short-lived (single initial connection request

serving) varying set of channels that connects to the server. A channel is

just a named entity, e.g., a message queue in a cloud, where data can be

stored and prioritized before being forwarded/retrieved to/by the server.

A client needs to find a server channel through which it can communicate

with the server. It does so by querying a sPoW name server that func-

tions like a Domain Name Server (DNS), which returns the connectivity

details of a server associated channel when a server hostname is provided.

The constantly varying server channel set protects the server from persis-

tent network-level eDDoS that usually involves sending attack packets to a

server’s single IP address. With sPoW, the attacker is forced to (1) mimic

legitimate clients by querying a sPoW name server continuously to seek out

valid server channels in order to send attack packets or (2) spread its attack

over the entire channel identity namespace. The former results in an non-

filterable eDDoS and is handled using capabilities and self-verifying PoW

scheme described next. The latter means sPoW successfully transforms

network-level eDDoS into a packet pattern matching filtering problem; a

perimeter that can drop traffic whose destination is not within the server

channel set identities is sufficient to eliminate most network-level eDDoS

before the billing mechanism is triggered. However, some brute force traffic

does get through and incur utilization cost. The trade-off of using a larger

channel identity namespace, which increases packet header-to-data ratio

119

7.5 Architecture

but reduces the network-level eDDoS that incurs billing is a subject left for

future work. Server channels can be implemented at any OSI layer as long

as there is sufficiently large namespace for server channel names at that

layer to obscure server channels. For example, at the application-layer, we

can utilize names of message queues of Amazon’s SQS (6) or OnlineMQ (81)

to represent server channels; only data sent to message queue names setup

as server channels will be forwarded to the server and billed to the adopter

while the rest is dropped without charges. For other alternative server

channel implementations, refer to Section 7.9.1.

Capabilities and Self-Verifying PoW Scheme To address non-filterable eD-

DoS, we need to prioritize traffic. We adopt a two prong approach. First,

we utilize capabilities, to prioritize existing connection traffic over initial

connection request traffic and secondly, we prioritize among the initial con-

nection requests using self-verifying PoW. The two prioritization schemes

empower existing connections and legitimate client initial connection re-

quests to compete effectively and reduce non-filterable eDDoS connection

requests that triggers undesirable billing mechanism in the cloud.

Existing connection traffic is afforded higher priority than initial connection

requests because the former is more “trusted”; it originated as an initial

connection request and became an existing connection after successfully ex-

pending its resources to compete for the right to access the server. Unlike

the original capabilities, we do not use cryptographic tokens agreed between

a client-server pair to mark existing connection traffic, instead, the traffic

is carried over established one or more communication channels. whose

identities are privy only between the client-server pair. Note that a com-

munication channel is different from a server channel because the former

is used for existing connections and each channel identity is privy to only

a client-server pair while the latter is used for initial connection requests

and its identity is openly available to any client that queries a sPoW name

server (see Figure 7.1). The privy of a communication channel identity

serves the same purpose as the secrecy of a capability token; it identifies

traffic associated with that existing connection and minimizes possibility

120

7.5 Architecture

that attackers can spoof traffic claiming to belong to that connection re-

sulting in unwanted traffic (eDDoS) being transmitted to the server. By

default all existing connections have the same priority but an application

can assign priorities based on the activity carried out over those connec-

tions, e.g., casual browsing traffic should have lower priority than purchase

transaction traffic, by communicating the priority assigned to each existing

connections (using channel names) to sPoW. Note that at any time, an ex-

isting connection can be terminated by the server if it is deemed harmful

or needs to make way for other higher priority connections.

Prioritizing among initial connection requests is trickier since they can come

from anywhere, including malicious sources thus we need a PoW scheme

where all clients’ initial connection requests are prioritized based on the re-

sources each expended in solving “crypto-puzzles” with the difficulty level

reflecting the resources expended, which in turn signals each client’s con-

nection establishment urgency. Unlike conventional DDoS PoWs (38; 83),

where the clients solve crypto-puzzles and submit solutions for each ini-

tial connection request followed by solution verification, prioritized queuing

and forwarding to the server by some PoW verifier, sPoW does not need

verifiers. It is self-verifying because the crypto-puzzle consists of both the

encryption of a server channel connectivity details, e.g., IP address, port

number, etc., and the partial encryption key (the encryption key that can

be used to recover the channel details but with k bits concealed). By brute-

forcing these k bits, which is also the puzzle difficulty indicator, a client

discovers the server channel where it can submit an initial connection re-

quest, which is then queued for forwarding based on the puzzle difficulty

associated with that server channel. The subtle difference of not requiring

a verifier and delegating verification to client-side offers sPoW 2 advan-

tages: (1) the cloud infrastructure is freed of verification computations and

more importantly, (2) we can be reasonably sure that each initial connec-

tion request is submitted by a client who has expended enough resources to

successfully discover that server channel and during DDoS, as explained in

Section 7.3, with PoW, the origin of this traffic is less likely to be attacking

agents due to fierce competition from legitimate clients thus reducing the

121

7.6 A Walkthrough

probability that traffic entering the cloud is malicious. Contrast this to

conventional PoWs that have to implement verifiers in the cloud resulting

in un-verified traffic entering the cloud in order to be verified, which incurs

cloud billable resources thus subjecting those PoWs to eDDoS. For (1), we

would like to point out that the main purpose is to eliminate the ability of

attackers to ramp up the cost incurred by puzzle verification and to some

extent save processing resources in the cloud. Although compared to non

self-verifying PoWs that leave puzzle generation to the clients by just of-

fering them seeds to guide unique and time-limited puzzle creation, sPoW

needs to generate puzzles for clients, thus consuming slightly more resource

but we argue that overall, self-verification consumes less resource since a

generated puzzle is re-used until a client/zombie solves it, i.e., it cannot be

excessively triggered by zombies, while non self-verification schemes can be

over-worked by zombies relentlessly submitting incorrect puzzles.

Existing Technologies We have carefully selected the technologies used to achieve

each of our design goals to ensure that they can be easily supported out of

existing cloud platforms for immediate deployment.

7.6 A Walkthrough

To show how the different pieces of technology work together to deliver an eDDoS

mitigation mechanism, we provide a walkthrough here. In order to use sPoW, we

need client-side and server-side components. The server-side component shields

sPoW details from a server in order for it to utilize sPoW unmodified. The client-

side can be implemented as a zero-installation Java Applet or Java Web Start

(JWS) (109) client and embedded in a static web page hosted on resilient content

distribution networks (CDN) (4; 45; 120). It is dynamically and transparently

downloaded by users visiting the web page of sPoW-protected servers. The server-

side component can be installed on a server itself or on a disparate system. In our

description below, each number in parentheses corresponds to the step number

in Figure 7.1.

122

7.6 A Walkthrough

A client that wants to contact the server performs a DNS resolution (1) to

obtain the location of the client-side component on the CDN and proceeds to

download it together with the server-side component’s public key, which can be

retrieved using HTTPS (2). The client-side component then performs a sPoW

name resolution specifying the server hostname and the puzzle difficulty, k, to

obtain the crypto-puzzle for the destination server (3). The sPoW name server

forwards the puzzle request to the server-side component handling puzzle gen-

eration for that domain name (4). The server-side component randomly creates

an ephemeral server channel (5), encrypts the channel details and sends back

both the encrypted details as well as the encryption key with k bits undisclosed

as the crypto-puzzle (6). Note that under certain circumstances, the server-side

component may return an existing puzzle, instead of creating a new one. See Ta-

ble 7.2, which is discussed in Section 7.7.3 for details. The client-side component

brute-forces and recovers the server channel details and submits an initial con-

nection request (7), which includes a randomly generated shared key, encrypted

using the server-side component’s public key to protect its secrecy, through that

server channel. If its initial connection request is not established within a time-

out period, it can request for a more difficult crypto-puzzle and re-submit the

connection request through the higher priority channel. When the server receives

the initial connection request (8), it creates a communication channel (9), en-

crypts the channel details using the client generated shared key and sends the

information back to the client-side component (10). Communication between

the client-server component pair can proceed using the established communica-

tion channel. Destination server application protocol-specific commands sent by

a client-side component terminate at the server-side component after traversing

the communication channel. The server-side component echoes the command

to the target application through connections that it initiates as an immediate

client of the application. The application replies also terminate at the server-side

component before they are echoed back to the client-side component. Thus the

communication channel is a one-time setup for each client-application pair that

can handle multiple commands/replies, e.g., if a client-side component is com-

municating with a HTTP server, throughout the entire HTTP session spanning

123

7.7 sPoW Implementation

X
X

Content Distribution
NetworkDNS

X

Client
Server

Cloud #2

Internet

Cloud #1
sPoW on

sPoW Name Server

Communication
Channel

Ephemeral Server

Server−side

Channel

Component

Client−side
Component

4

2
3

5

7

66

9
1

8

10

Figure 7.1: A walkthrough of how a client can communicate with a server protected

by sPoW.

multiple HTTP commands, multiple connections are created between the server-

side component and the HTTP server but only one communication channel is

used to send/receive data between the client-side and server-side components.

7.7 sPoW Implementation

sPoW utilizes the KUMO framework (Section 6) to harness cloud platforms as

intermediaries where communication and server channels are created. Architec-

turally, sPoW adopts from KUMO, but with a few important changes/additions—

the puzzle generator and puzzle requester/solver replaces the KUMO DNS up-

dater and KUMO DNS resolver respectively with the connection manager as an

addition. Figure 7.2 shows how the sPoW components are added on top of the

KUMO framework (compared to Figure 6.1). The client-side and component-

side is implemented by KUMO KC-side and KUMO KS-side respectively. In this

section, we provide a big picture of how the components tie in together before

discussing about possible ways the system can be attacked and finally explaining

how the components work together to deal with the attack.

124

Chapter6/Chapter6Figs/spow_walkthrough.eps

7.7 sPoW Implementation

Communication
Channel

Accounting

Client

KUMO Name
Servers

Puzzle

Puzzle
Puzzle

Request

Reply
Supply

Puzzle
Requester

Generator
Puzzle

Plug−in
Type B

Plug−in
Type A

Intermediary
Type B

Type A
Intermediary

Stack
KUMO

KS−side
KUMO

KC−side
KUMO

Manager
Connection

Server
KUMO Protected

Figure 7.2: The sPoW architecture adopts after KUMO with the exception of replac-

ing the KUMO DNS Updater with Puzzle Generator and KUMO DNS Requester with

Puzzle Requester as well as adding a Connection Manager to the server-side component.

7.7.1 Big Picture

Connection Manager Manages the channels that a server is listening for initial

connection requests. This is a critical function because a server has limited

capacity and to defend against DDoS, the manager needs to ensure the

channels, with the help of self-verifying PoW, are used to serve mostly

legitimate client requests, instead of being hogged by zombies. It is also

responsible for creating and maintaining multiple communication channels

between each client-server pair after a client’s initial connection request has

been handled.

Puzzle Generator Generates a puzzle to protect the connection server channel

by encrypting the channel information, e.g., the channel IP, port, name,

etc. The encrypted data and the encryption key with k bits concealed to-

gether are referred to as a puzzle. A client that receives a puzzle has to

expend resources to brute-force the k hidden bits to retrieve the channel

information. This concealment determines the puzzle difficulty since each

additional bit concealed increases the resource expended by a client to re-

trieve the request channel. In this study, the terms puzzle difficulty and

125

Chapter6/Chapter6Figs/spow_arch.eps

7.7 sPoW Implementation

channel protection level are synonymous—the latter refers to the difficulty

of the puzzle created to conceal the channel information.

Puzzle Distributor The puzzle distributor stores the generated puzzles index-

ing them using the hostname those puzzles are created for. Puzzle distribu-

tion is de-coupled from generation because the generator, which coordinates

its generation activity with the stateful connection manager algorithm that

keeps track of all server connections, is difficult to replicate, and may be-

come a single-point-of-attack. A puzzle distribution system, whose purpose

is restricted to storing hostname-to-puzzle mapping is easier to replicate,

and thus is used to hand out puzzles while concealing the puzzle gener-

ator from attacks. The KUMO name servers can play the role of puzzle

distributor without modification.

Puzzle Requester/Solver A puzzle requester running on the client-side ob-

tains a puzzle by specifying the hostname and puzzle difficulty level in its

puzzle request sent to the puzzle distribution system. The requester then

expends the client resources to solve the puzzle and submit its connection

request through the channel whose information is retrieved from the puz-

zle. The requester is responsible for retrying connection request submission

until its request is processed by the server. Each retry involves using an al-

gorithm to select a puzzle difficulty that improves its chances of connection

establishment.

7.7.2 Attacks

The cloud intermediaries, connection manager and puzzle generator are key com-

ponents in sPoW that protects a server from DDoS thus they themselves will

now have to bear the brunt of attacks. We assume that cloud intermediaries are

resource-rich thus are not susceptible to attacks. In this section, we will elaborate

on attacks on the other two components.

PoW Violation with Proof Sharing If clients can share a puzzle proof then

the main concept of prioritizing client requests based on resources expended

will be violated; clients can obtain high priority service by resubmission of

126

7.7 sPoW Implementation

someone else’s proof without expending any resource. PoW schemes need

to protect against proof sharing.

Puzzle Generation Resource Exhaustion Zombies can request for a lot of

puzzles without any intention of solving them. This leads to 2 types of re-

source exhaustion—processing power (CPU) and/or network connectivity

(memory/storage/configuration limit). Unlike conventional PoWs (38; 83),

where clients themselves generate the puzzles based on seeds/random num-

bers provided by the server-side, in sPoW, the server-side itself is responsible

for puzzle generation, thus is susceptible to puzzle generation resource ex-

haustion attack. Therefore, the “low resource consumption” task of puzzle

request performed by many zombies can easily overwhelm the server-side

CPU resource required for “high resource consumption” puzzle generation.

Moreover, since each puzzle leads to a channel, through each puzzle acqui-

sition, zombies can hog those puzzles’ channels by not solving those puzzles

nor submitting any request through those channels, resulting in the server-

side waiting in vain and tying up network connectivity resources, i.e., the

memory/storage or configuration limit, required to maintain each channel.

Puzzle Level Inflation If the connection manager simply replaces lower protec-

tion level channels with higher ones when its network connectivity resource

runs out in order to favor high priority clients, zombies can inflate puzzle

difficulty by merely requesting for the most difficult puzzles. This results

in clients having to solve un-necessarily high puzzles to submit connection

requests.

In this study, we also use the term puzzle accumulation attacks to refer to both

resource exhaustion and puzzle level inflation attack.

7.7.3 Connection Management and Puzzle Generation Al-

gorithm

In this section, we describe the details of connection management and puzzle

generation algorithm, and how they are designed to thwart the described attacks.

127

7.7 sPoW Implementation

For our self-verifying PoW, a server needs to maintain connectivity to its

server channels or keep track of them to periodically poll them for connection

request arrivals. This consumes the server’s finite resource, so server channels

are limited at a any point in time. Under normal circumstances, each initial

connection request can be given a unique puzzle that leads to a unique server

channel. However, during non-filterable eDDoS, puzzle requests will exceed the

server channels. It becomes necessary to hand the same puzzles of previously

created server channels, which have yet to receive any initial connection requests,

as replies to multiple puzzle requests. Server channel sharing results in only the

quickest puzzle solver being successful in initial connection request submission.

Frustrated clients can choose to solve increasingly difficult puzzles until their

connection requests are handled. As previously noted, given that an attacker’s

resource is finite, at a certain difficulty level, the attacker will no longer be able

sustain the DDoS on all server channels enabling some legitimate clients to prevail.

Note that, at all times, the puzzle to channel mapping always remain one-to-one,

thus we use the term puzzle/channel interchangeably, e.g., creation of a puzzle

implies the creation of a channel, etc.

Furthermore, the algorithm needs to take into consideration attacks described

in the previous section 7.7.2. Puzzle sharing can be ameliorated if channels are

ephemeral ; each channel will close upon reception of a initial connection request

and its resources will be freed up for new channel creation. Puzzle accumulation

attacks can be mitigated by sharing request channels while puzzle inflation attack

alleviation requires the algorithm to keep track of puzzle resolution rate for each

puzzle difficulty level in two consecutive periods and only permitting new puzzles

to be generated at that level if the puzzle resolution rate for that level in the

previous period is similar or higher than the puzzle request rate of that level

in the current period, i.e., almost all previously requested puzzles need to be

solved before sPoW permits generation of new ones. In short, the connection

management algorithm’s role here is to determine (a) when a new channel should

be created, (b) when and which channels should be shared, e.g., oldest and least

shared channel, (c) which channel should be dropped when a request for a higher

difficulty puzzle arrives, e.g., oldest and lowest difficulty channel, and (d) when

a channel should be closed.

128

7.7 sPoW Implementation

Event Significance Puzzle Management

A) Channel request re-
ceived at a channel with
protection level k

Puzzle at difficulty k solved Close the channel after single
use to avoid puzzle sharing at-
tacks

B) Puzzle request for
k<klowest

Puzzle request from client
not very determined to
reach protected server

If capacity exceeded, drop re-
quest, otherwise create new
channel

C) Puzzle request
k≥klowest, sk,t−1=rk,t

and Ok=0

No channel at k yet If capacity exceeded, drop old-
est and klowest channel to ac-
quire new channel for puzzle
generation at k, otherwise cre-
ate new channel

D) Puzzle request for
k≥klowest, sk,t−1≥rk,t and
Ok≤sk,t−1

Puzzles at k are solved as
quickly as they are handed
out

If capacity exceeded, drop old-
est and klowest channel to ac-
quire new channel for puzzle
generation at k, else create
new channel

E) Puzzle request for
k≥klowest but sk,t−1<rk,t or
(sk,t−1=rk,t and Ok>sk,t−1)

Puzzles for k are requested
faster than they are re-
solved indicating possible
puzzle accumulation attack

Oldest existing channel at k

used for puzzle generation at
k

Table 7.2: Connection manager events, their significance and puzzle manager reac-

tions

Before proceeding, we define a few terms that facilitate the explanation of

our algorithm. k is the difficulty level of a puzzle, which is also the protection

level of the channel associated with the puzzle. The condition 0<kmin<k<kmax

holds with kmin selected such that the effort expended to recover the channel

information is non-negligible while kmax is dependent on the cipher key size, e.g.,

for Data Encryption Standard (79), kmax=64. We also define C as the server-

side capacity catered for request channel handling (requests per second). The

algorithm keeps track of the number of puzzle requests in the current period, rk,t

where period=t and number of puzzle resolutions in the previous period, sk,t−1.

The optimal length of each period, t, is left for future work. At any time, each

of the channels may have different protection levels with klowest being the lowest

protection level. Also Ok indicates the number of channels with protection level

k.

Table 7.2 shows a summary of events at the connection manager, their signif-

129

7.8 Evaluation

icance and the manager’s reaction. Upon puzzle request, the server-side acquires

a server channel, creates a puzzle of the specified difficulty from it and hands

it back to the puzzle requester. The server-side listens to that channel until a

connection request is received, upon which the channel is closed (Event A). The

puzzle handed out to clients are unique if the capacity, C, is not exceeded. Issues

arise under adverse conditions of puzzle accumulation attack or non-filterable

DDoS. In both cases, even after C is exhausted, new puzzle requests keep arriv-

ing. To handle DDoS, we abide by the principle to service connection requests

based on k thus when a k≥klowest puzzle request arrives, we close the oldest and

klowest channel and acquire a new channel to generate the new puzzle at k. Other-

wise, if k<klowest, we just reject the puzzle request (Event B). To mitigate puzzle

accumulation attacks, the algorithm ensures that the oldest and klowest channel

is dropped in favor of the creation of a new higher or similar level one only if the

sk,t−1≥ rk,t. In other words, a new channel replaces an older and lower priority

one only if it can been proven that the combination of clients and attackers have

the capacity to solve such a higher level puzzle if it is issued; the proof is demon-

strated by the puzzle resolution rate of in the previous period. This rule is split

into Events C and D with the former handling the special case of allowing at

least one k channel to be created even if none has been solved previously, with-

out which, no client can request for a higher level puzzle. To mitigate possible

puzzle generation resource exhaustion attacks, existing yet-to-be-utilized chan-

nels should be re-used, i.e., their corresponding puzzles should be handed out as

response to puzzle requests, when possible signs of such attack as elaborated in

Event E occurs, namely, the puzzle request rate in the current period exceeds the

puzzle resolution rate in the previous period.

7.8 Evaluation

As explained in Section 7.1.1, with sPoW, a legitimate client is guaranteed to es-

tablish connection within bounded time. The poignant question is “how much is

the connection establishment time prolonged when DDoS occurs?” We attempt

to answer the question by first performing a theoretical analysis, followed by

130

7.8 Evaluation

experiment-cum-simulations to validate our analysis. Before doing so we intro-

duce the assumptions our analysis and experiments are based upon.

7.8.1 Model Assumptions

We assume that the cloud intermediary has multiple huge network pipes from

various tier-1 ISPs resulting in rich path diversity. In a DDoS attack, the cloud

network connectivity cannot be degraded because of its multiplicity as well as

well-provisioned capacity, and neither can the paths from legitimate clients to the

cloud be congested due to the rich path diversity and distribution of clients and

zombies. This is a reasonable assumption because even in the current Internet,

during DDoS, congestion often occurs not on the client-side but on the server-side,

which lacks path diversity. With sPoW, however, the paths from the cloud to

the server are unaffected by DDoS because the cloud intermediary is responsible

for dropping unsolicited traffic. We also assume that the cloud intermediary

has sufficient CPU resource to process all connectivity requests in its network

queue to filter unsolicited ones fast enough so that the queuing delays do not

dominate the connection establishment time. Since the cloud intermediary act as

a traffic control point for a protected server—the server can control the number of

requests forwarded to it or the server itself can control the rate of request arrivals

by pulling them from the cloud; the limited server resources never becomes the

bottleneck.

7.8.2 Theoretical Analysis

7.8.2.1 Worst Case Connection Establishment Time

Since in our assumptions, there is no network queuing delays or network bottle-

necks that dominate connection establishment time, the bulk of a client’s connec-

tion establishment time is incurred during puzzle resolution and awaiting server

handling. In this section, we analyze the puzzle resolution time theoretically and

as we will soon explain how that can represent a client’s connection establishment

time. Previous work has either not analyzed this metric (38) or the simulations

131

7.8 Evaluation

performed assume that all the requests that is successfully forwarded to the pro-

tected server can be handled, thus offering little insight into how puzzle resolution

time is affected if the protected server capacity has limited capacity (83).

One of the best strategy an attacker can employ to prolong a legitimate client’s

connection establishment time is to utilize its resource to solve the most difficult

puzzles to clog all channels (83). We assume that the attacker is lucky enough

to obtain all Clower distinct puzzle channels, i.e., lower of the two capacity that

determines maximum puzzle generation rate of a server-side—connection request

handling (since puzzles must be associated with a request channel) Cnet (requests

per second) or puzzle generation, Ccpu (puzzles per second). Thus, we are calcu-

lating the upper-bound of puzzle resolution time. In such a scenario, the attacker

can concentrate Nbot/Clower on a single puzzle where Nbot is the botnet size or

the number of zombies. Assuming that puzzle-solving effort is linear, the puzzle-

solving time is inversely proportional to the botnet size and a legitimate client

has similar capacity to a zombie, then for a single legitimate client, the time taken

to solve a puzzle of the same difficulty is Nbot/Clower. Solving a puzzle with addi-

tional one-bit difficulty requires twice the effort, 2∗Nbot/Clower. If a client solves

a puzzle and its difficultly level, which determines its initial connection request

order in the service queue, is high enough that the request can be serviced prior

to its short timeout period, the connection establishment time will be approxi-

mately similar to its puzzle-solving time. The puzzle-solving time is dominant

since the request’s queuing time in the cloud intermediary is minimal and there

is no bottleneck along the client-server path (see Section 7.8.1). Assuming that

connection request handling is similar to an Apache web server request, with a

carrier class 8-CPU Linux cluster that can handle around 8000 requests per sec-

ond (51) running the server-side component, the time taken by a legitimate client

to successfully solve a puzzle when there is 1 million bots attacking is a mere 250

seconds. Note that Cnet is lower than Ccpu because even on a Lenovo ThinkPad

X60 laptop with a specification of one Intel Core 2 T5500 1.66GHz and 1 GB

RAM, we can generate approximately 3850 puzzles from 133-byte strings (the

estimated size of a connection request consisting of server channel data such as

application-layer channel name, intermediary IP and port number) in a second.

132

7.8 Evaluation

7.8.3 Experiment

7.8.3.1 Tick-based Emulation

Performing DDoS experiments is difficult since carrying it out at real-scale re-

quires extreme amount of resources. A theoretical analysis is best supplemented

by simulations or experiments on a testbed, e.g., Emulab (122) or DETER-

lab (35). However, both are less than ideal. The former lacks realism while the

latter suffers from complexity in emulating a real-world environment at a smaller

scale in terms of legitimate/attack traffic source and Internet topology (72). For

sPoW, we apply a novel approach, which involves actual deployment of sPoW

code on the Planet Lab infrastructure (84). This overcomes realism concern

about the topology. Since our model assumes that there is minimal network

traffic congestion and queuing delay even during DDoS due to the high capac-

ity nature of cloud intermediaries and rich path diversity offered by the clouds’

multiple tier-1 ISP connectivity, the influence of background traffic is negligible

thus ameliorating the necessity to simulate it. Our challenge is then to simulate

how legitimate clients and attackers compete for a server’s limited server chan-

nels by solving different puzzle level that varies in resolution time. We introduce

“tick-based activity” to emulate the interaction between clients, zombies and a

protected server. Also as the experiments are long-running, in the scale of days,

the instability of some PL nodes reduces the nodes available for experiments. To

make up for this, we introduce the concept of virtual hosts; a physical node can

be emulating multiple virtual hosts that represent multiple clients or zombies. In

tick-based activity, all virtual hosts’ activities in a physical node are governed

by a shared tick controller. At each tick, each virtual host is permitted to exe-

cute an activity which is one of the following: get puzzle for connection request

(get puzzle), brute force a single puzzle combination in an attempt to decrypt the

puzzle to obtain the concealed server channel information (brute force), submit

connection request through uncovered server channel (submit request), wait for

connection establishment request from server (wait reply) and receive information

to establish communication channels (conn establish). The activity flowchart is

shown in Figure 7.3. To emulate competition, the clients and zombies can be

configured with different parameters as shown in Table 7.3.

133

7.8 Evaluation

Parameter Description Significance

group Group name Virtual hosts defined under this group
will be assigned names using the group
name suffixed by a unique number, which
is incremented for each virtual host in the
group starting from zero.

qty Quantity Number of virtual hosts defined in the
group. See group.

power Power of a virtual
host

Determines how often (in ticks) a vir-
tual host will execute its action relative to
each other. A higher power virtual host
will execute more often. We use the con-
cept of a virtual host and its power to
represent zombies collaborating to com-
pete against legitimate clients. Example,
in the case where the number of zombies
is Nzombie and legitimate clients is Nlegit,
a virtual host of power= Nzombie/Nlegit

will represent zombies banding together
to compete against a single legitimate
client.

algo Puzzle difficulty
selection algo-
rithm

Determines how puzzle difficulty is se-
lected with each attempt to establish con-
nection. A zombie may just request for
the same puzzle level continuously while
a legitimate client will request for increas-
ing puzzle difficulty with each failed at-
tempt.

stamina Connection estab-
lishment quantity

How many established connections a
client desires. A zombie desires “infinite”
connections while legitimate clients usu-
ally want 1.

delay Delay (in ticks)
prior to activity
commencement

Used to control when legitimate clients
commence connection request. This can
be used to delay client requests so that
zombies can gain initial momentum to
speed up the effect of full-fledge DDoS
within a short time.

Table 7.3: sPoW experiment emulation configuration parameters

134

7.8 Evaluation

Puzzle Obtained

Yes

get_puzzle

brute_force

Channel Info Retrieved

Yes

submit_request

wait_reply

Reply Received

conn_established

Yes

Channel Available

No

No

No

Yes

No

No

Yes

Timeout Exceeded

Figure 7.3: Tick-based activity flowchart

We provide an example of a example configuration (Listing 7.1) here in YAML

format (124). because it is the best way to explain the parameters.

We define two groups, one with group name “att” and the other “legit”. Each

group will have 5 virtual hosts (qty=5). The “att” group will start immediately

(delay=0) and request/solve level “4” puzzles (algo=4). It will continue to re-

quest/solve puzzle until the experiment is terminated (stamina=infinite). The

“legit” group will start after 30 ticks (delay=30) and request/solve puzzle that

varies according to the formula x-((rand(x)-rand(x))/4), where x is the attempt

number. The legit virtual hosts will stop after succeeding in establishing a single

connection request (stamina=1). Note that the power of the attack group vs.

the legitimate client group is 20 vs. 1. This represents 20 zombies collaborating

to compete with a single legitimate client. Thus, in total this configuration is

emulating 5 legitimate clients competing with 5x20=100 zombies. This competi-

tion is reflected in the emulation through the relationship between each tick and

virtual host activity. All activities except brute force occupies on a single tick,

since, regardless of collaboration, all of those activities cannot be accelerated.

brute force activity however can be parallelized and therefore, with more power

135

Chapter6/Chapter6Figs/act_flow.eps

7.8 Evaluation

the virtual host is permitted to brute force more combinations. In other words,

the configuration will result in legitimate clients only carrying out brute force

activity once every 20 ticks while attackers perform a brute-force combination at

every tick.

Listing 7.1: Sample example configuration file to emulate 5 clients vs. 5x20

1 at tacke r g roup :

2 group : a t t

3 qty : 5

4 a lgo : 4

5 de lay : 0

6 stamina : i n f i n i t e

7 power : 20

8 l e g i t g r o up :

9 group : l e g i t

10 qty : 5

11 a lgo : x−((rand (x)−rand (x)) / 4)

12 de lay : 30

13 stamina : 1

14 power : 1

On top of those parameters, the connection manager implementation has two

tunable parameters: (1) period for determining puzzle request and resolution rate,

t and (2) server capacity, C. Both of which have been explained in Section 7.7.3.

7.8.3.2 Caveats

The existence of virtual hosts and the requirement for virtual hosts to perform

multi-stage processing, get puzzle, brute force, etc., make the concept of virtual

hosts in our experiment different from existing ones where the virtual hosts are

used purely to send attack traffic without any need to process server replies. This

makes measuring connection establishment time—the time a get puzzle is issued

to the time conn establish is achieved, difficult since the connection establishment

time of each virtual host is actually influenced by the processing of other virtual

hosts that are running simultaneously on the same physical system. In fact, thus

far, no experiments use DETER emulation test bed for measuring connection

establishment time (72) when virtual hosts are involved. We intend to overcome

136

7.8 Evaluation

this by measuring connection establishment time in terms of ticks and convert the

ticks into a measurement of “tardiness”. The measurement in tardiness is nec-

essary because we want to compare the connection time in different experiments

using different configuration, e.g., power. An experiment with zombie power=5

means that a legitimate client only performs an action every 5 ticks while the

zombies perform one every tick. However, in another experiment where zombie

power=3, a legitimate client performs an action every 3 ticks. Assuming that a

legitimate client completes connection establishment by performing each activity

sequence in the connection establishment cycle once (total of 4 activities), then

the legitimate client in the former experiment will clock 4x5=20 ticks while the

legitimate client in the latter experiment clocks 4x3=12 ticks. However, both

actually should complete roughly within the same amount of time, barring major

differences in CPU load and traffic conditions, if the experiment was carried out

in real time since in both cases, the legitimate clients completed their actions

without any retry. Thus we need a metric tardiness that is obtained by dividing

the connection time in ticks with ticks required for a legitimate client to complete

connection in the absence of DDoS, i.e., zombie powerx4.

7.8.3.3 Experiment Scenarios

With all the assumptions, modeling and connection establishment time measure-

ment metrics carefully thought out, we ran experiments to seek insight about the

following:

Legitimate client bounded connection time To determine if a legit client

can establish a connection within bounded time, we configure attackers

to compete with increasing level of k in each experiment, starting from

2 to 4. In those experiments, we set zombie power= 3, legitimate client

power= 1, qty= 5, C= 5, t= 120 and deploy the clients/zombies on 4

physical nodes with another node to act as a server. This experiment reflects

4x5=20 legitimate clients competing against 4x5x3=60 zombies, i.e., 20

zombies in groups of 3. As shown in Figure 7.4, as zombies increase k

from 2 to 3, legitimate clients have to expend more resources to solve more

difficult puzzles before successfully gaining higher priority in connection

137

7.8 Evaluation

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

es
ta

bl
is

he
d

co
nn

ec
tio

ns

tardiness

zombie power=3,k=2,C=5,20 vs. 60

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

es
ta

bl
is

he
d

co
nn

ec
tio

ns

tardiness

zombie power=3,k=3,C=5,20 vs. 60

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

es
ta

bl
is

he
d

co
nn

ec
tio

ns

tardiness

zombie power=3,k=4,C=5,20 vs. 60

Figure 7.4: Connection establishment

time normalized to “tardiness” metric for

legitimate clients when zombies attack by

solving puzzles with different puzzle level,

k.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

es
ta

bl
is

he
d

co
nn

ec
tio

ns

tardiness

zombie power=3,k=3,C=5,20 vs. 60

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

es
ta

bl
is

he
d

co
nn

ec
tio

ns

tardiness

zombie power=9,k=3,C=5,20 vs. 180

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

es
ta

bl
is

he
d

co
nn

ec
tio

ns

tardiness

zombie power=3,k=3,C=10,20 vs. 60

Figure 7.5: Connection establishment

time normalized to “tardiness” metric for

legitimate clients when zombies attack by

solving puzzles with k= 3 but with tunable

parameters, server capacity, C and zombie

power varied.

establishment thus resulting in longer connection establishment time, i.e.,

the CDF for k= 3 is further to the right. However, when the zombies

increase k from 3 to 4, the connection establishment time for legitimate

clients improves, i.e., k= 4 is further to the left. This indicates that as

zombies attempt to solve more difficult puzzles, their resources become

over-stretched leaving them unable to solve sufficient puzzles to dominate

all available channels to the server, resulting in legitimate clients solving

easier puzzles successfully establishing their connection in shorter time.

Effect of tunable parameters Besides k, we explore how connection estab-

lishment time is affected by the parameters power and C. As shown in Fig-

ure 7.5, when power of attackers are increased from 3 to 9, i.e., the effective

zombie quantity becomes 5x4x9=180 competing with 20 legitimate clients,

the CDF shifts to the right, indicating that connection establishment times

degrade, which is expected since there are more zombies competing for

server channels. The effect of increasing C from 5 to 10 improves establish-

ment time since with more channels available the chances that legitimate

clients can establish connections increase.

138

Chapter6/Chapter6Figs/ic_tardy_bounded20091209.epsi
Chapter6/Chapter6Figs/ic_tardy_tunable20100127.epsi

7.8 Evaluation

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

es
ta

bl
is

he
d

co
nn

ec
tio

ns

tardiness

zombie power=3,k=3,C=5,20 vs. 60

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

es
ta

bl
is

he
d

co
nn

ec
tio

ns

tardiness

zombie power=20,k=4,C=20,20 vs. 400

Figure 7.6: Connection establishment time as the experiment is scaled up to more

realistic numbers of legitimate client/zombie ratio.

Approaching realistic experimentation We scale up the power of zombies to

20, thus emulating 20 legitimate clients competing with 5x4x20=400 zom-

bies and we assume that the server is catered for peak loads, i.e., we set C

equal to the number of legitimate clients. We chose the power of 20 because

this was the also the ratio between legitimate clients/zombies used in the

Portcullis simulation (83). Moreover, as noted by Rajab et al. (88), the

number of live zombies is usually only in the magnitude of a few thousands,

thus if legitimate clients numbering in at least hundreds, we believe the

power of 20 can be a reflection of the ratio between legitimate clients/zom-

bies in real scenarios. Figure 7.6, shows that in the 20 legitimate clients vs.

400 zombies (20 vs. 400) experiment, connection establishment for a ma-

jority of the connections improve; approximately 13 out of 20 connections,

are faster than in the 20 vs. 60 because the in the 20 vs. 400, server is

catered for peak legitimate load, i.e., C=number of legitimate clients. Some

clients suffer from longer connection times as they attempted to solve puz-

zles that are much harder because they fail in their initial attempts while

others failed to complete because of the nodes they were running on were

disrupted since the experiments often last beyond two days. Overall, in

the realistic experiment, 75% of legitimate clients can establish connections

within a tardiness of 35. In order words, assuming, that with no DDoS,

the connection establishment time is 0.5 seconds, under DDoS where zom-

139

Chapter6/Chapter6Figs/ic_tardy_realistic20100127.epsi

7.9 Discussion

bies outnumber legitimate clients by 20 to 1, and with the server catered

to handle all legitimate clients, legitimate clients are expected to establish

connection within 35x0.5=17.5 seconds.

7.9 Discussion

7.9.1 Alternative Manifestations

To implement server channels, we can utilize any technology, which enables cre-

ation of different “channels” with distinct names that can transport or store data.

The channel namespace must also be large enough to force an attacker to spread

its brute-force network-layer DDoS attack over the large namespace resulting in

only a small fraction of DDoS getting through to the protected server.

Therefore, although we utilize a message queuing cloud as an example of

application-layer channel provider. We can easily utilize Amazon’s Simple Stor-

age Service (S3) (7) as well but the server-side component would need to contin-

ually poll S3 for initial connection request arrivals since S3 does not push data

to the server (Step 8 in Figure 7.1).

Another more general and flexible but complex alternative is to use generic

clouds, e.g., Amazon’s Elastic Cloud (EC2) (9). Inside the cloud we roll out our

own application-layer channel providers, such as IRC servers (80) or Berkeley’s

I3 (104). The IRC channel and I3 trigger names have large namespaces that are

resistant to brute-force. Another alternative is to utilize the transport layer as

channel providers by combining an IP address and a TCP/UDP port number

to form a namespace for implementing server channels. These channel providers

need to work with generic cloud firewalls to constantly update the rules to permit

only traffic destined to the selected server channels in order to mitigate against

network-level eDDoS; only traffic headed towards the ephemeral server channels

is permitted and billed while the rest are dropped at the firewalls, incurring no

charges.

140

7.10 Limitations

7.9.2 Utilization of Existing Name Service

sPoW can rely on existing DNS servers as a puzzle delivery mechanism. Instead

of returning the IP address of the requested hostname, it returns the puzzle as

the DNS address (A) resource record (76). Puzzle requester in the client-side

component will be able to request and solve the puzzle.

7.9.3 sPoW Client Code

We have talked about how Java Applets or Java Web Start can be used to trans-

parently coax a users web browser to load sPoW-based clients to achieve resilient

connectivity to web applications. For non-browser based applications, we have

two options: (1) recompile the client with sPoW libraries or (2) upgrade the

operating system (OS) with sPoW-enhanced network stack. The former is ideal

for developers to recompile their applications without no changes and making

the sPoW-enhanced binaries available for use. The latter requires meticulous OS

recompilation but is ideal since all applications can acquire sPoW capabilities

without changes.

7.10 Limitations

Cloud Provider Billing System The example manifestation of sPoW provided,

relies on Amazon SQS, which bills the cloud adopter for only traffic stored/re-

trieved in/from her message queues and her queue management (creation/dele-

tion) requests. SQS offers defense against network-level with its vast infras-

tructure; it drops DDoS traffic at no cost to the adopter because of SQS’s

inability to determine the destination of the traffic since it is targeted at

queue names that belongs to no adopter. sPoW exploits this billing mecha-

nism idiosyncrasy to avoid adopters from having to foot the bill for handling

unsolicited traffic, i.e., eDDoS, by changing the queue names frequently.

The cost for changing queue names are currently very low but may subse-

quently change in the future (possibly due to our exploitation) and a sharp

increase may impact the unilateral deployability of sPoW.

141

7.11 Future Work

Lack of Realistic Experiment Testbed Even though in Section 7.8, we showed

that the time legitimate clients take to establish connections under DDoS

is indeed bounded, and how the bounded time varies under different DDoS

scenarios, the experiments are not carried out in realistic environments. The

devastating and large-scale nature of DDoS attack prevent experiments from

being carried out realistically or at the same scale. Most DDoS research

have resorted to pure simulation (83), or cleverly introducing environmental

parameters to simulate DDoS in experiments, e.g., Phalanx (38) simulates

DDoS by making 50% of its intermediaries drop 75% of received traffic. In

our evaluation, we simulate DDoS, by performing experiments using tick-

based activity.

Discrepancy in Computational Power sPoW empowers legitimate clients to

expend own resources in order to get higher priority service from a server.

However, low computational power legitimate clients, e.g., mobile phones

or personal desktop assistants (PDAs), will end up with the short-end in

such a scheme. This has been pointed out by Parno et al. (83). In order to

mitigate this, providers of mobile Internet services may offer their clients

access to a proxy that computes a rate-limited number of puzzles on behalf

of each client. Re-designing puzzles to use non-parallelizable decryption as

well as exploring memory-based function puzzles (1; 39; 40) since memory

discrepancy among devices are much smaller 5-10 times versus 38 times in

computational power discrepancy, are other alternatives.

7.11 Future Work

The real acid test is to deploy sPoW to defend a server application in a real en-

vironment. For a start, our intention is to create a zero-install sPoW-based basic

web browser initially, i.e., without all the complicated support for Javascripts etc.,

using JWS and deploy a server-side component on a powerful server. Through

these two components, together with Amazon’s S3 and SQS, we can offer a pay-

as-you-use DDoS resilient service to web servers that has static web pages without

any modification. From there, we will increase the functionality of the JWS sPoW

142

7.12 Conclusion

web browser to support more features in order to offer DDoS resiliency to a wider

base of web pages and applications.

In the connection management algorithm, we would also like to investigate

further how the value of t, the period used for puzzle request and resolution

rate calculation, and a larger number of zombies can affect a client’s connection

establishment time.

Currently a client attempts to retry failed connection establishment by slowly

increasing puzzle difficultly chosen, perturbed by some randomness. It would be

interesting to see if other puzzle difficulty selection algorithms can result in a

faster connection establishment time, and whether there is a different optimal

algorithm for different traffic conditions. If so, we want to find out what those

conditions are, and how a client can probe/monitor those conditions in order to

adopt different puzzle difficulty selection algorithms.

7.12 Conclusion

We created sPoW, which is a unilaterally deployable “pay-as-you-use” cloud-

based eDDoS mitigation mechanism that offers filterable and non-filterable eD-

DoS protection to servers deployed in clouds or DDoS protection to servers in

general. sPoW itself, in turn, needs to be protected against eDDoS. By mediat-

ing connectivity to servers and varying the channel identities used to reach the

servers frequently, sPoW transforms network-level eDDoS into traffic that can be

filtered. To handle non-filterable eDDoS, sPoW adapts conventional capabilities

through an innovative way to work with our self-verifying PoW, enabling the ratio

of non-filterable eDDoS in legitimate-looking traffic to be reduced thereby mini-

mizing the cost incurred by non-filterable eDDoS but at the expense of protracted

legitimate client connection establishment time.

143

Chapter 8

Conclusion

We started out by defining our goal of deployable resiliency; a DDoS mitiga-

tion mechanism should be (1) unilaterally deployable, i.e., it is low in resource

consumption while requiring minimal modification to existing core infrastructure

and (2) resilient against the newly-emerged eDDoS as well as all types of DDoS

described by Mirkovic’s taxonomy (74), with exception of semantic and router

infrastructure targeted attacks. Our proposal also includes the additional fea-

tures of DDoS attack deterrent and client empowerment DDoS congestion bypass

mechanisms. We then identify economic phenomena, negative externality, incen-

tive misalignment and ossified infrastructure as the main impediments to DDoS

research deployability. To overcome them, we design the Burrows framework;

its self-scaling model empowers end-users, who have the most incentive to de-

ploy DDoS mitigation mechanisms, to collaborate on the construction of a traffic

control reception overlay comprising of many systems known as intermediaries,

without assistance from disinterested parties. This realigns economic incentive.

By forcing all server-destined traffic through this overlay of intermediaries, a

server’s DDoS defense is solely dependent on the intermediaries thus minimizing

negative externality, i.e., the need to rely on disinterested parties for defense.

Moreover, the intermediaries can be deployed on Internet edge nodes instead of

difficult-to-modify ossified core Internet infrastructure. It is crucial for the traffic

control mechanism to possess resources sufficient to drop all filterable DDoS traf-

fic while continuing to accept all non-filterable DDoS and legitimate traffic that

it needs to prioritize. This implies that the overlay must be capable of amassing

144

large number of intermediaries, which is questionable.

Thus besides self-scaling, we explore the possibility of using any existing In-

ternet system as an intermediary in KUMO, which is designed based on the

Burrows framework. KUMO tunnels client traffic to a protected server through

any existing Internet system by utilizing that system’s protocol. The elegance of

KUMO is that no modifications are required on the client, protected server and

even the Internet systems that play the role of intermediaries. Furthermore, a

digital signature-less accounting mechanism can be implemented to compensate

the Internet systems for the use of their resources. Overall, we believe KUMO

enhances resource accumulation for DDoS defense since any existing Internet sys-

tem can be recruited as an intermediary without modifications and its owner will

have the financial incentive to contribute the system’s often idle over-provisioned

resources for intermediary purposes.

In both Burrows and KUMO, the haphazard recruitment of intermediaries im-

plies that there may be malicious systems among them leading to confidentiality,

integrity and availability (CIA) issues. Restricting intermediaries used in traffic

control to those belonging to trusted entities or those from entities a protected

server has existing relationships with can alleviate this security exposure.

We look at the possibility of reducing this trust issue by exploring 2 other

ways to amass intermediaries for traffic control: (1) utilizing the large number

of an ISP’s access routers (Overfort) and (2) utilizing a few resource-rich cloud

computing platforms (sPoW). Both eliminates trust issues since the intermedi-

aries are trusted. Overfort is a first-of-its-kind unilaterally deployable automatic

traceback and black-list mechanism. It enables a server to traceback to clusters

that harbor zombies and subsequently black-list those clusters by refusing their

queries about the server’s whereabouts. This feature enables Overfort to quickly

find and suppress DDoS even though the aggregate intermediary resource is less

than those of attacking zombies. sPoW is a unilaterally deployable mechanism

that is different from Burrows, KUMO and Overfort because it has a mecha-

nism to deal with all three filterable DDoS, non-filterable DDoS and eDDoS. The

usage of resource-rich cloud platforms facilitates sufficient resource harness for

defense against filterable DDoS. For non-filterable DDoS defense, sPoW enables

clients to compete for a server resources with attackers by expending more of

145

their own resources to discover obscure channel names that lead to the server

with each channel’s priority proportional to its name obscurity. sPoW’s unique

self-verifying PoW enables a deployer to modify the cloud’s billing mechanism

without the cloud providers assistance and without violating contractual terms,

such that the cost of eDDoS is not solely borne by her; eDDoS traffic will not

know the obscure channel names created within the cloud thus it will be dropped

by the cloud provider’s firewall at no cost to the sPoW deployer.

Finally, AI-RON-E is a slight deviation from the traditional DDoS defense

because instead of defending against it, it empowers legitimate clients to find

alternate paths to bypass congested caused by DDoS.

146

Appendix A

DDoS Mitigation Mechanism

Metrics

We classify DDoS mitigation research using 3 metrics: (1) deployability, (2) in-

centive and (3) effectiveness. A high rating for all 3 indicates a very effective and

high deployable resilient mechanism. At the very least, 2 of the 3 metrics, deploy-

ability and incentive ratings of a research must be high, otherwise the research

will become a “white elephant” that never make it beyond the doors of academia.

This classification is not perfect and is still evolving. We hope to obtain feedback

in particular from authors of those research we classified to understand the ac-

curacy of these ratings as well as evaluate the necessity to include other metrics

that enables more objective and accurate ratings.

A.1 Deployability

We define deployability as the ease at with which a DDoS mitigation mechanism

can be deployed. To measure deployability objectively, we introduce the following

metrics: (1) deployment location and (2) deployment size. Based on these met-

rics, we assign deployability ratings from 0 to 10 with 10 being easiest to deploy.

The possible values for each metric and ratings are shown in Table A.1.

147

A.1 Deployability

Server-side Edge Client-side Network Rating
Few None None None 10.0
None Few None None 9.5
Few Few None None 9.0
None None Few None 8.5
Few None Few None 8.0
None Few Few None 7.5
None None None Few 7.0
Few None None Few 6.5
None Few None Few 6.0
None None Few Few 5.5
None Many None None 5.0
Few Many None None 4.5
None None Many None 4.0
Few None Many None 3.5
None *a Many None 3.0
None None None Many 2.5
Few None None Many 2.0
None * None Many 1.5
None None * Many 1.0
None Many Many Many 0.0

aAs long as there is a column with “many” then the other value of columns marked by “*”
is unimportant, i.e., they can be “few” or “many”, the deployability rating is unaffected.

Table A.1: Deployability Rating

The ease of deployability at deployment locations in diminishing order is:

server-side, Internet edge (“edge” for short), client-side and network. The de-

ployability ratings assigned to those locations are influenced by (1) the modifica-

tion flexibility of the systems at those location to incorporate DDoS defense and

(2) the likelihood of technical skills available to perform those modifications. At

the server-side, both rank high. At the edge both also rank quite high but edge

nodes often needs to be specially installed for certain purposes thus mandating

slightly higher skill set, which may not be easily available, at the client, skill

level drops drastically, while at the network, modification is extremely difficult

due to the complex and intricately interwoven systems. Also mechanisms that

require components to be deployed at more than one classified location is rated

lower, e.g. mechanisms that require network and edge components are rated lower

148

A.2 Incentive

than those that require only network components. We use the terms many, few,

none to indicate deployment size, a DDoS defense’s deployability degrading as

the number of deployment points increase.

A.2 Incentive

We define incentive as the willingness of an owner of a system, e.g., router, server,

computer, etc., to deploy DDoS defense mechanisms. To measure incentive ob-

jectively, we introduce the following metrics: (1) level of DDoS affliction at the

deployment location and (2) deployment size. The affinity between the afflicted

location and the deployment location contributes to incentive rating; if a mitiga-

tion mechanism is designed to be deployed at a location that is highly afflicted by

DDoS, the incentive to deploy, thus the rating will be high and vice versa. The

possible values for each metric are shown in Table A.2.

Afflicted Fairly Afflicted Not Afflicted Rating
Most None None 10.0
Most Few None 9.5
Most Most None 9.0
Few Most None 8.5
None Most None 8.0
Most None Few 7.5
Most Few Few 7.0
Most Most Few 6.5
Few Most Few 6.0
None Most Few 5.5
Most Few Most 5.0
Most Few Most 4.5
Few Most Most 4.0
Few Few Most 3.5
Few None Most 3.0
None Most Most 2.5
None Few Most 2.0
None None Most 1.5

Table A.2: Incentive Rating

149

A.3 Effectiveness

The level of DDoS affliction is ranked in diminishing order as afflicted, fairly

afflicted, and not afflicted. Afflicted indicates that the systems in that location

bears the full brunt of DDoS, e.g., the server under attack, while fairly afflicted

refers to the systems that suffers collateral damage, i.e., they are not under direct

attack but nonetheless are affected, e.g., servers that share the uplink with the

server under attack or networks and routers along the attack path. We want to

highlight a particular case that is easily misunderstood in this area; usually clients

do not bear the brunt of attacks, i.e., they are classified as not afflicted, unless

they want to connect to the server under attack, which means clients should be

classified under fairly afflicted in that circumstance.

We use the terms most, few, none to indicate deployment size. Although the

deployment size terms here look similar to those used as metric for deployability

in the previous section, they differ because unlike in deployability where the terms

describe the absolute quantity of the nodes where installation is required, here

the terms are used in a relative sense, with respect to the total number of nodes

required in the entire deployment. For example, for the combination of “afflicted

- most, fairly afflicted - most, non-afflicted - none”, it means that most of the

deployment nodes are spread equally in both afflicted and non-afflicted areas,

and this is equivalent to the combination of “afflicted - few, fairly afflicted - few,

non-afflicted - none”. Due to this, not all combinations are shown in the table,

as this can be easily worked out by the reader. Although it can be argued that,

the number of absolute nodes also affect the incentive, we believe that this has

been catered for when we used absolute node quantity as a metric for rating

deployability.

A.3 Effectiveness

We measure the effectiveness DDoS mitigation mechanism by rating it based

on the type of defense it offers and the type of DDoS it protects against. The

effectiveness ratings are shown in Table A.3.

Most descriptions can be easily associated with the DDoS attacks that we

describe in this main text with the exception of the following two, which we offer

150

A.3 Effectiveness

DDoS Defense Rating
eDDoS (including non-filterable, spoofed net-level DDoS) 10.0
Non-filterable DDoS (without requiring user authentication) 9.0
User authenticated initial and established connection protec-
tion

8.0

Established connection DDoS protection only (no initial con-
nection protection)

7.0

Pushback spoofed/net-level DDoS to client-side 6.0
Pushback spoofed/net-level DDoS to network-side 5.0
Avoid hotspots 4.0
Filter DDoS (spoofed/net-level, non-filterable, eDDoS) near
server

3.0

Filter spoofed/net-level DDoS near server 2.0
Filter spoofed/net-level non-distributed DoS near server 1.0

Table A.3: Effectiveness Rating

further explanation.

Established connection DDoS protection only (no initial connection protection)

DDoS defense that has some means to tag established connection traffic

with unforgeable tokens so that they can be given priority, (13). However,

to obtain these tokens, i.e., in the initial connection request stage, legiti-

mate clients and zombies have to compete without any way to differentiate

them thus putting legitimate clients at a disadvantage.

User authenticated initial and established connection protection Similar

to the above except that initial connections from legitimate clients and zom-

bies can be differentiated by offering clients the opportunity to use authen-

tication or solve reverse Turing tests to gain priority high priority during

initial connection request than automated zombies that are incapable of

doing so.

151

References

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately Hard,

Memory-bound Functions. In Network and Distributed System Security

Symposium (NDSS), 2003. 142

[2] J. Abley and K. Lindqvist. RFC 4786: Operation of Anycast Services

(http://www.ietf.org/rfc/rfc4786.txt), 2006. 12

[3] Akamai Technologies. State of the Internet Quarterly Reports (http://

www.akamai.com/stateoftheinternet/), 2008. 2

[4] Akamai Technologies. Akamai Technologies (http://www.akamai.com/),

2009. 1, 103, 122

[5] Amazon Cloud Computing Forum. Unaddressed DDoS Concerns in

Amazon’s Cloud (http://developer.amazonwebservices.com/connect/

search.jspa?q=DDoS), 2009. 115

[6] Amazon Web Services. Amazon Simple Queue Services (SQS) (http://

aws.amazon.com/sqs/), 2009. 120

[7] Amazon Web Services. Amazon Simple Storage Services (S3) (http://

aws.amazon.com/s3/), 2009. 91, 140

[8] Amazon Web Services. Amazon’s Web Services Case Studies (http://aws.

amazon.com/solutions/case-studies/), 2009. 115

[9] Amazon Web Services. Elastic Compute Cloud (EC2) (http://aws.

amazon.com/ec2/), 2009. 115, 140

152

http://www.ietf.org/rfc/rfc4786.txt
http://www.akamai.com/stateoftheinternet/
http://www.akamai.com/stateoftheinternet/
http://www.akamai.com/
http://developer.amazonwebservices.com/connect/search.jspa?q=DDoS
http://developer.amazonwebservices.com/connect/search.jspa?q=DDoS
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/solutions/case-studies/
http://aws.amazon.com/solutions/case-studies/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

REFERENCES

[10] American Registry for Internet Numbers (ARIN). ARIN IPv4 De-

pletion Notice (https://www.arin.net/knowledge/about_resources/

ceo_letter.pdf), 2009. 70

[11] David Andersen. Mayday: Distributed Filtering for Internet Services. In

USENIX Symposia on Internet Technologies and Systems (USITS), 2003.

20, 114

[12] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris.

Resilient Overlay Networks. In ACM Symposium on Operating Systems

Principle (SOSP), 2001. 26, 74, 75

[13] Thomas Anderson, Timothy Roscoe, and David Wetherall. Preventing In-

ternet Denial-of-Service with Capabilities. In ACM Hot Topics in Networks

(Hotnets), 2002. 25, 114, 116, 151

[14] Farooq M. Anjum. TCP Algorithms and Multiple Paths: Considerations

for the Future of the Internet. 2004. 85

[15] Arbor Networks. Annual Infrastructure Security Report (http://www.

arbornetworks.com/report), 2005. 2

[16] Arbor Networks. Arbor PeakFlow TMS (http://www.arbornetworks.

com/peakflowsp), 2009. 23

[17] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Re-

source Records for DNS Security Extensions (http://www.ietf.org/rfc/

rfc4034.txt), 2005. 90

[18] Katerina Argyraki and David R. Cheriton. Active Internet Traffic Filter-

ing: Real-time Response to Denial-of-Service Attacks. In USENIX Annual

Technical Conference (ATC), 2005. 24, 114

[19] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-resistant Au-

thentication with Client Puzzles, 2000. 42

[20] Steve Bellovin, Marcus Leech, and Tom Taylor. ICMP Traceback Messages.

Internet Drafts, 2003. 20, 55

153

https://www.arin.net/knowledge/about_resources/ceo_letter.pdf
https://www.arin.net/knowledge/about_resources/ceo_letter.pdf
http://www.arbornetworks.com/report
http://www.arbornetworks.com/report
http://www.arbornetworks.com/peakflowsp
http://www.arbornetworks.com/peakflowsp
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc4034.txt

REFERENCES

[21] Phillippe Biondi and Arnaud Ebalard. IPv6 Routing Header Security. In

Canada Security West Conference (CANSECWEST), 2007. 89

[22] Bram Cohen. BitTorrent (http://www.bittorrent.com), 2009. 77

[23] Kevin Butler, Toni Farley, Patrick McDaniel, and Jennifer Rexford. A

Survey of BGP Security Issues and Solutions. In Proceedings of IEEE,

2009. 91

[24] Martin Casado, Aditya Akella, Pei Cao, Niels Provos, and Scott Shenker.

Cookies Along Trust-Boundaries (CAT): Accurate and Deployable Flood

Protection. In USENIX Steps to Reducing Unwanted Traffic on the Internet

(SRUTI), 2006. 9, 17, 21, 24, 114

[25] ccNSO. DNSSec Survey Report 2009. ICANN, 2009. 91

[26] M. Cha, S. Moon, C. D. Park, and A. Shaikh. Placing Relay Nodes for

Intra-Domain Path Diversity. In IEEE INFOCOM, 2006. 76

[27] Xin Chen, Haning Wang, Shansi Ren, and Xiaodong Zhang. DNScup:

Strong Cache Consistency Protocol for DNS. In IEEE International Con-

ference for Distributed Computing Systems(ICDCS), 2006. 63

[28] Cisco Networks. Cisco Anomaly Guard (http://www.cisco.com/en/US/

products/ps6235/index.html), 2009. 23

[29] Cisco Networks. Understanding Unicast Reverse Path Forwarding (http://

www.cisco.com/web/about/security/intelligence/unicast-rpf.

html), 2009. 87

[30] Computer Emergency Response Team (CERT). Build Security In

(https://buildsecurityin.us-cert.gov/daisy/bsi/home.html), 2009.

15

[31] Computer Security Institute. CSI Computer Crime and Security Report

(http://www.gocsi.com/), 2008. 2

154

http://www.bittorrent.com
http://www.cisco.com/en/US/products/ps6235/index.html
http://www.cisco.com/en/US/products/ps6235/index.html
http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html
http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html
http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
http://www.gocsi.com/

REFERENCES

[32] Debra L. Cook, William G. Morein, Angelos D. Keromytis, Vishal Misra,

and Daniel Rubenstein. WebSOS: Protecting Web Servers From DDoS

Attacks. In IEEE International Conference on Network (ICON), 2003. 20,

114

[33] David Dagon, Cliff Zou, and Wenke Lee. Modeling Botnet Propagation

Using Time Zones. In Network and Distributed System Security Symposium

(NDSS), 2006. 20

[34] Drew Dean and Adam Stubblefield. Using Client Puzzles to Protect TLS.

In USENIX Security Symposium, 2001. 42

[35] DETERlab. DETERlab Testbed (http://www.isi.edu/deter/), 2000.

133

[36] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

v1.2 (http://www.ietf.org/rfc/rfc5246.txt), 2008. 20

[37] Roger Dingledine and Nick. Tor: The Second-Generation Onion Router. In

USENIX Security Symposium, 2004. 91

[38] Colin Dixon, Thomas Anderson, and Arvind Krishnamurthy. Phalanx:

Withstanding Multimillion-Node Botnets. In USENIX Network Systems

Design and Implementation (NSDI), 2008. 13, 17, 18, 21, 26, 114, 118, 121,

127, 131, 142

[39] C. Dwork, A. Goldberg, and M. Naor. On Memory-bound Functions for

Fighting Spam. In CRYPTO, 2003. 142

[40] C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail.

In CRYPTO, 1993. 142

[41] T. Fei, S. Tao, L. Gao, and R. Guerin. How to Select a Good Alternate

Path in Large Peer-to-Peer Systems. In IEEE INFOCOM, 2006. 75

[42] D. Ferguson and P. Senie. RFC 2827: Network Ingress Filtering (http://

www.ietf.org/rfc/rfc2827.txt), 2000. 18, 87

155

http://www.isi.edu/deter/
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc2827.txt
http://www.ietf.org/rfc/rfc2827.txt

REFERENCES

[43] P. Ferguson and D. Senie. RFC 2267: Network Ingress Filtering: Defeat-

ing Denial of Service Attacks which employs IP source address spoofing

(http://www.ietf.org/rfc/rfc2267.txt), 1998. 19

[44] Jason Franklin, Vern Paxson, Adrian Perrig, and Stefan Savage. An Inquiry

into the Nature and Causes of the Wealth of Internet Miscreants. In ACM

Computer and Communications Security (CCS), 2007. 2

[45] Michael Freedman, Eric Freudenthal, and David Mazieres. Democratizing

Content Publication with Coral. In USENIX Network System Design and

Implementation (NSDI), 2004. 1, 103, 122

[46] Google. Google App Engine (http://code.google.com/appengine/),

2009. 115

[47] Barry Raveendran Greene, Chris Morrow, and Brian Gemberling. ISP Secu-

rity - Real World Techniques II. North America Network Operators Group

(NANOG), 2001. 22, 23

[48] Adam Greenhalgh, Mark Handley, and Felipe Huici. Using Routing and

Tunneling to Combat DoS Attacks. In USENIX Steps to Reducing Un-

wanted Traffic on the Internet (SRUTI), 2005. 17, 21, 114

[49] Krishna P. Gummadi, Harsha V. Madhyastha, Steven D. Gribble, Henry M.

Levy, and David Wetherall. Improving the Reliability of Internet Paths

with One-hop Source Routing. In USENIX Operating Systems Design and

Implementation (OSDI), 2004. 26, 75, 80

[50] ha.ckers.org. Slow Loris HTTP DoS (http://ha.ckers.org/slowloris/),

2009. 15

[51] Ibrahim Haddad. Open-Source Web Servers: Performance on a Carrier-

Class Linux Platform (http://www.linuxjournal.com/article/4752),

2001. 132

[52] Chris Hoff. Cloud Computing Security From DDoS (http://www.

rationalsurvivability.com/blog/?p=66), 2008. 115

156

http://www.ietf.org/rfc/rfc2267.txt
http://code.google.com/appengine/
http://ha.ckers.org/slowloris/
http://www.linuxjournal.com/article/4752
http://www.rationalsurvivability.com/blog/?p=66
http://www.rationalsurvivability.com/blog/?p=66

REFERENCES

[53] H. Y. Hsieh and R. Sivakumar. A Transport Layer Approach for Achieving

Aggregate Bandwidths On Multi-Homed Mobile Hosts. In ACM Mobicom,

2002. 85

[54] Geoff Huston. Interconnection, Peering, and Settlements. In Internet Soci-

ety INET, 1999. 83

[55] Intelliguard. Intelliguard dps (http://www.intelliguardit.net/Docs/

Whitepapers/IntelliGuardIT_Inline_Deployment_Whitepaper.pdf),

2009. 23

[56] Internet World Stats. Usage and Population Statistics (http://www.

internetworldstats.com/stats.htm), 2009. 3, 61

[57] Cheng Jin, Haining Wang, and Kang G. Shin. Hop-Count Filtering: An

Effective Defense Against Spoofed DDoS Traffic. In ACM Computer and

Communications Security (CCS), 2003. 19

[58] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Protocol (SBGP).

In IEEE Journal on Selected Areas of Communication, 2000. 18, 90

[59] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay Services.

In ACM Special Interest Group in Communications (SIGCOMM), 2002. 20,

114

[60] Soon Hin Khor, Nicolas Christin, Tina Wong, and Akihiro Nakao. Power

to the People: Securing the Internet One Edge at a Time. In ACM Large

Scale Attack and Defense (LSAD), 2007. 21, 58, 61, 114

[61] Soon Hin Khor and Akihiro Nakao. AI-RON-E: The Prophecy of One-hop

Source Routers. In IEEE Globecom Next Generation Networks Symposium,

2008. 92, 110

[62] Soon Hin Khor and Akihiro Nakao. Overfort:Combating DDoS with Peer-

to-Peer DDoS Puzzle. In IEEE Secure Systems and Nework Workshop,

2008. 17, 114

157

http://www.intelliguardit.net/Docs/Whitepapers/IntelliGuardIT_Inline_Deployment_Whitepaper.pdf
http://www.intelliguardit.net/Docs/Whitepapers/IntelliGuardIT_Inline_Deployment_Whitepaper.pdf
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

REFERENCES

[63] Soon Hin Khor and Akihiro Nakao. sPoW: On-Demand Cloud-based eDDoS

Mitigation Mechanism. In Hot Topics in Dependency WorkShop (HOT-

DEP), 2009. 16, 17, 114

[64] Aleksandar Kuzmanovic and Edward W. Knightly. Low-Rate TCP-

Targeted Denial of Service Attacks. In ACM Special Interest Group in

Communications (SIGCOMM), 2003. 15

[65] Xin Liu, Xiaowei Yang, and Yanbin Lu. To Filter or to Authorize: Network-

layer DoS Defense Against Multimillion-Node Botnets. In ACM Special

Interest Group for Communications (SIGCOMM), 2008. 24, 114

[66] Looking Glass. Looking glass (http://www.bgp4.net/wiki/doku.php?

id=tools:ipv4_looking_glasses), 2009. 78, 81

[67] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas

Anderson, Arvind Krishnamurthy, and Arun Venkataramani. iPlane: An

Information Plane for Distributed Services. In USENIX Operating Systems

Design and Implementation (OSDI), 2006. 74, 109

[68] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern Pax-

son, and Scott Shenker. Controlling High Bandwidth Aggregates in the

Network. ACM Computer Communication Review (CCR), 2002. 24, 59

[69] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang. dFence:

Transparent Network-based Denial of Service Mitigation. In USENIX Net-

work Systems Design and Implementation (NSDI), 2007. 22

[70] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen

nee Chuah, and Christophe Diot. Characterization of Failures in an IP

Backbone. In IEEE INFOCOM, 2004. 88, 89

[71] Massachusetts Institute of Technology. Spoofer Project: Current State of

IP Spoofing (http://spoofer.csail.mit.edu/summary.php), 2009. 87

[72] Jelena Mirkovic, Sonia Fahmy, Peter Reiher, and Roshan Thomas. How to

Test DDoS Defenses. In Cybersecurity Applications & Technology Confer-

ence For Homeland Security (CATCH), 2009. 133, 136

158

http://www.bgp4.net/wiki/doku.php?id=tools:ipv4_looking_glasses
http://www.bgp4.net/wiki/doku.php?id=tools:ipv4_looking_glasses
http://spoofer.csail.mit.edu/summary.php

REFERENCES

[73] Jelena Mirkovic, Gregory Prier, and Peter Reiher. Attacking DDoS at the

Source. In IEEE International Conference on Network Protocols (ICNP),

2002. 18, 114

[74] Jelena Mirkovic and Peter Reiher. A Taxonomy of DDoS Attack and DDoS

Defense Mechanism. In ACM Computer Communications Review (CCR),

2004. 15, 28, 144

[75] Jelena Mirkovic, Max Robinson, and Peter Reiher. Alliance formation for

DDoS defense. In Applied Computer Security Associates (ACSA) New Se-

curity Paradigms Workshop (NSPW), 2003. 7

[76] P. Mockapetris. Domain Names: Implementation and Specification

(http://www.ietf.org/rfc/rfc1035.txt), 1987. 141

[77] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Stani-

ford, and Nicholas Weaver. Inside the Slammer Worm. IEEE Security and

Privacy Magazine, 2003. 94

[78] David Moore, Geoffrey M. Voelker, and Stefan Savage. Inferring Internet

Denial-of-Service Activity. In USENIX Security Symposium, 2001. 2

[79] National Institute of Science and Technology (NIST). Data Encryp-

tion Standard (http://csrc.nist.gov/publications/fips/fips46-3/

fips46-3.pdf), 1993. 129

[80] J. Oikarinen and D. Reed. RFC 1459: Internet Relay Chat (http://www.

ietf.org/rfc/rfc1459.txt), 1993. 2, 91, 140

[81] OnlineMQ. OnlineMQ (http://www.onlinemq.com), 2009. 91, 120

[82] Kihong Park and Heejo Lee. On the Effectiveness of Route-based Packet

Filtering for distributed DoS Attack Prevention in Power-Law Internets. In

ACM Special Interest Group for Communications (SIGCOMM), 2001. 19,

114

159

http://www.ietf.org/rfc/rfc1035.txt
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.ietf.org/rfc/rfc1459.txt
http://www.ietf.org/rfc/rfc1459.txt
http://www.onlinemq.com

REFERENCES

[83] Bryan Parno, Dan Wendlandt, Elaine Shi, Adrian Perrig, Bruce Maggs,

and Yih-Chun Hu. Portcullis: Protecting Connection Setup from Denial-

of-Capability Attacks. In ACM Special Interest Group for Communications

(SIGCOMM), 2007. 26, 114, 121, 127, 132, 139, 142

[84] Planet Lab. Planet Lab Consortium (http://www.planet-lab.org/

consortium), 2002. 46, 71, 75, 77, 133

[85] Lindsey Poole and Vivek S. Pai. ConfiDNS: Leveraging Scale and History

to Detect Compromise. In USENIX Annual Technical Conference (ATC),

2008. 40, 54, 92, 115

[86] Prolexic. Network Protection Services (http://www.prolexic.com), 2009.

22

[87] S. Qazi and T. Moors. Scalable Resilient Overlay Networks Using

Destination-Guided Detouring. In IEEE International Conference on Com-

munications (ICC), 2007. 75

[88] Moheed A. Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. My

Botnet is Bigger than Yours. In USENIX Hot Topics in Botnets (HOT-

BOT), 2007. 20, 61, 139

[89] Venugopalan Ramasubramanian and Emin Gun Sirer. The Design and

Implementation of a Next Generation Name Service for the Internet. In

ACM Special Interest Group for Communications (SIGCOMM), 2004. 11,

40, 54, 92, 115

[90] Y. Rekhter and T. Li. RFC 1771: Border Gateway Protocol (BGP)

(http://www.ietf.org/rfc/rfc1771.txt), 1995. 23, 83

[91] S. Rhea, B. Godfrey, B.Karp, J. Kubiatowicz, S. Ratnasamy, and

S. Shenker. OpenDHT: A Public DHT Service and its Uses. In ACM

Special Interest Group for Communications (SIGCOMM), 2005. 47, 104

[92] Chris Rose and Jean Gordon. Internet Security and the Tragedy of the

Commons. In Journal of Business and Economics Research, 2003. 39

160

http://www.planet-lab.org/consortium
http://www.planet-lab.org/consortium
http://www.prolexic.com
http://www.ietf.org/rfc/rfc1771.txt

REFERENCES

[93] E. Rosen. RFC2547bis-03: BGP/MPLS IP VPNs, 2004. 44, 55

[94] RouteViews. University of Oregon Route Views Project (http://www.

routeviews.org/), 2005. 70

[95] Craig Rowland. Covert Channels in the TCP/IP Suite. In First Monday,

Peer Reviewed Journal on the Internet, 1996. 10

[96] sacrine. Sil v1.0 - A tiny banner grabber (http://www.netric.org), 2009.

107

[97] Jerome Saltzer and Michael Schroeder. The protection of information in

computer systems, 1975. 19

[98] Stefan Savage, Tom Anderson, Amit Aggarwal, David Becker, Neal Card-

well, Andy Collins, Eric Hoffman, John Snell, Amin Vahdatand Geoff

Voelker, and John Zahorjan. Detour: a Case for Informed Internet Routing

and Transport. In IEEE Micro, 1999. 26, 74

[99] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson. Practical

Network Support for IP Traceback. In ACM Special Interest Group for

Communications (SIGCOMM), 2000. 20, 55

[100] C. Shapiro and H. Varian. Networks and Positive Feedbacks, 1998. 43

[101] Elaine Shi, Ion Stoica, David Andersen, and Adrian Perrig. OverDoSe: A

Generic DDos Protection Service Using an Overlay Network. 2006. 26

[102] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones,

Fabrice Tchakountio, Beverly Schwartz, Stephen T. Kent, and W. Timo-

thy Strayer. Single-packet IP traceback. In IEEE/ACM Transactions on

Networking (TON), 2002. 20, 55

[103] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Mea-

suring ISP Topologies with Rocketfuel. IEEE/ACM Transactions in Net-

working, 2004. 88

161

http://www.routeviews.org/
http://www.routeviews.org/
http://www.netric.org

REFERENCES

[104] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh

Surana. Internet Indirection Infrastructure. In ACM Special Interest Group

for Communications (SIGCOMM), 2002. 21, 91, 140

[105] Robert Stone. CenterTrack: an IP overlay network for tracking DoS floods.

In USENIX Security Symposium, 2000. 21, 114

[106] Krishnan Subramaniam. Cloud Computing Risks eDoS (http://www.

cloudave.com/link/cloud-computing-risks-edos), 2008. 115

[107] Haibin Sun, John C. S. Lui, and David K. Y. Yau. Distributed Mechanism

in Detecting and Defending Against the Low-rate TCP Attack. Computer

Networks Journal, 2006. 59

[108] Sun Microsystems. Java Applets (http://java.sun.com/applets), 2009.

93

[109] Sun Microsystems. Java Web Start (http://java.sun.com/javase/

technologies/desktop/javawebstart/index.jsp), 2009. 93, 122

[110] Symantec. Symantec report on the underground economy

(http://eval.symantec.com/mktginfo/enterprise/white_papers/

b-whitepaper_underground_economy_report_11-2008-14525717.

en-us.pdf.), 2008. 2

[111] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol

(http://www.ietf.org/rfc/rfc4252.txt), 2006. 87

[112] Team CYMRU. CYMRU IP to ASN Service (http://www.team-cymru.

org/Services/ip-to-asn.html), 2009. 70

[113] Renata Teixeira, Keith Marzullo, Stefan Savage, and Geoffrey M. Voelker.

In search of path diversity in ISP networks. In ACM Internet Measurement

Conference (IMC), 2003. 26

[114] Rob Thomas and Jerry Martin. Underground Economy: Priceless. In

USENIX ;login:, 2006. 2

162

http://www.cloudave.com/link/cloud-computing-risks-edos
http://www.cloudave.com/link/cloud-computing-risks-edos
http://java.sun.com/applets
http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp
http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf.
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf.
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf.
http://www.ietf.org/rfc/rfc4252.txt
http://www.team-cymru.org/Services/ip-to-asn.html
http://www.team-cymru.org/Services/ip-to-asn.html

REFERENCES

[115] Traceroute. Traceroute (http://www.openbsd.org/cgi-bin/man.cgi?

query=traceroute), 1987. 74

[116] J. Turner. Virtualizing the Net - a strategy for enabling network innovation

[Keynote 2]. In IEEE Symposium on High Performance Interconnects, 2004.

4, 42, 69

[117] L. von Ahm, M. Blum, N. Hooper, and J. Langford. CAPTCHAS: Using

Hard AI Problems for Security. In EuroCrypt, 2004. 20, 42

[118] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and

Scott Shenker. Ddos defense by offense. In ACM Special Interest Group for

Communications (SIGCOMM), 2006. 26, 42

[119] Ju Wang, Xin Liu, and Andrew A. Chien. Empirical Study of Tolerat-

ing Denial-of-Service Attacks with a Proxy Network. In USENIX Security

Symposium, 2005. 91

[120] Limin Wang, Kyoung Soo Park, Ruoming Pang, Vivek Pai, and Larry Peter-

son. Reliability and Security in the CoDeeN Content Distribution Network.

In USENIX Annual Technical Conference (ATC), 2004. 1, 103, 122

[121] XiaoFeng Wang and Michael K. Reiter. Defending Against Denial-of-

Service Attacks with Puzzle Auctions. In IEEE Symposium on Security

and Privacy, 2003. 42

[122] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,

Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Inte-

grated Experimental Environment for Distributed Systems and Networks.

In USENIX Operating Systems Design and Implementation (OSDI), 2002.

133

[123] Abraham Yaar, Adrian Perrig, and Dawn Song. SIFF: A Stateless Internet

Flow Filter to Mitigate DDoS Flooding Attacks. In IEEE Symposium on

Security and Privacy, 2004. 25, 114

163

http://www.openbsd.org/cgi-bin/man.cgi?query=traceroute
http://www.openbsd.org/cgi-bin/man.cgi?query=traceroute

REFERENCES

[124] YAML. Yet Another Mark-up Language (http://www.yaml.org/spec/1.

2/spec.html), 2009. 135

[125] Xiaowei Yang and David Wetherall. Source Selectable Path Diversity via

Routing Deflections. In ACM Special Interest Group for Communications

(SIGCOMM), 2006. 75

[126] Xiaowei Yang, David Wetherall, and Thomas Anderson. A DoS-limiting

Network Architecture. In ACM Special Interest Group for Communications

(SIGCOMM), 2005. 25, 114

[127] Ming Zhang, Chi Zhang, Vivek Pai, Larry Peterson, and Randy Wang.

PlanetSeer: Internet Path Failure Monitoring and Characterization in

Wide-area Services. In USENIX Operating System Design and Implemen-

tation(OSDI), 2004. 74

[128] Zheng Zhang, Ying Zhang, Y. Charlie Hu, and Z. Morley Mao. Practical

Defenses Against BGP Prefix Hijacking. In ACM CoNEXT, 2007. 1

164

http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html

	1 Introduction
	1.1 Scope of Study
	1.2 Motivation
	1.3 Problem Statement
	1.4 Research Goal
	1.5 Design Principles in a Nutshell
	1.5.1 Effectiveness Principles
	1.5.2 Deployability Principles

	1.6 Research Questions
	1.7 Overview and Contributions of Study
	1.7.1 Burrows
	1.7.2 Overfort
	1.7.3 AI-RON-E
	1.7.4 KUMO
	1.7.5 sPoW

	1.8 Limitations
	1.8.1 Resilient Name Service
	1.8.2 Imperfect DDoS Defense
	1.8.3 No Client Modification Caveat
	1.8.4 No Server Modification Caveat
	1.8.5 Hidden Server Location Enforcement

	1.9 Study Presentation Layout

	2 Background and Related Work
	2.1 Background
	2.2 Related Work
	2.2.1 Economic Framework: Inefficiency Rectification
	2.2.2 Economic Framework: Resource Harness
	2.2.3 Prevention: Network-Layer Filtering
	2.2.4 Prevention: Overlay
	2.2.5 Deterrence: Traceback
	2.2.6 Server Reaction: Traffic Control Through Middle-boxes
	2.2.7 Server Reaction: Packet Scrubbing Infrastructure
	2.2.8 Server Reaction: Pushback
	2.2.9 Server Reaction: Network Capabilities
	2.2.10 Client Reaction: Proof-of-Work (PoW)
	2.2.11 Client Reaction: Exploiting Alternate Paths

	2.3 Deployable Resiliency
	2.3.1 Resiliency (Effectiveness Against DDoS)
	2.3.2 Deployability
	2.3.3 DDoS Mitigation Comparison Chart

	2.4 The X-Factors

	3 Burrows
	3.1 Deployable Resiliency
	3.1.1 Resiliency
	3.1.2 Deployability

	3.2 Assumptions
	3.3 Overview
	3.4 Design Goals
	3.4.1 Security Properties
	3.4.2 Economic Properties

	3.5 Architecture
	3.5.1 Burrows Architecture
	3.5.2 Miscellaneous Components

	3.6 Limitations
	3.7 Future Work
	3.8 Conclusion

	4 Overfort
	4.1 Deployable Resiliency
	4.1.1 Resiliency
	4.1.2 Deployability

	4.2 Assumptions
	4.3 Overview
	4.4 Design Goals
	4.5 Architecture
	4.6 Evaluation
	4.6.1 Overfort Segregation Algorithm Approach
	4.6.2 Overfort Simulation Model
	4.6.2.1 Overfort Configuration Parameters
	4.6.2.2 Overfort Operating Condition Parameters
	4.6.2.3 Output: Overfort Effectiveness Measurement

	4.6.3 Overfort Simulation Algorithm
	4.6.4 Overfort Simulation Results

	4.7 Discussion
	4.7.1 LDNS Granularity Segregation
	4.7.2 Multi-server Protection

	4.8 Limitations
	4.9 Future Work
	4.10 Conclusion

	5 AI-RON-E
	5.1 Deployable Resiliency
	5.1.1 Resiliency
	5.1.2 Deployability

	5.2 Assumptions
	5.3 Overview
	5.4 Design Goals
	5.5 Architecture
	5.6 Evaluation
	5.6.1 Evaluation Methodology
	5.6.2 Results
	5.6.2.1 Hop-count of indirect paths
	5.6.2.2 Speed and ability of link failure masking capability
	5.6.2.3 Intermediary selection algorithm resource consumption

	5.7 Discussion
	5.7.1 Minimizing link failure effects
	5.7.2 Deployment issues and workaround
	5.7.3 AI-RON-E Client Code

	5.8 Limitations
	5.9 Future Work
	5.10 Conclusion

	6 KUMO
	6.1 Deployable Resiliency
	6.1.1 Resiliency
	6.1.2 Deployability

	6.2 Assumptions
	6.3 Overview
	6.4 Design Goals
	6.5 Architecture
	6.6 Implementation
	6.6.1 Framework
	6.6.2 Protocol
	6.6.3 Multipath Facility Components
	6.6.4 Accounting Facility
	6.6.5 Walkthrough

	6.7 Evaluation
	6.7.1 Flexibility
	6.7.2 Data Transfer Time
	6.7.3 Multipath Data Transfer Under DDoS
	6.7.4 IRC intermediary stability
	6.7.5 IRC intermediary path diversity

	6.8 Discussion
	6.8.1 Marketplace

	6.9 Limitations
	6.10 Future Work
	6.11 Conclusion

	7 sPoW
	7.1 Deployable Resiliency
	7.1.1 Resiliency
	7.1.2 Deployability

	7.2 Assumptions
	7.3 Overview
	7.4 Design Goals
	7.5 Architecture
	7.6 A Walkthrough
	7.7 sPoW Implementation
	7.7.1 Big Picture
	7.7.2 Attacks
	7.7.3 Connection Management and Puzzle Generation Algorithm

	7.8 Evaluation
	7.8.1 Model Assumptions
	7.8.2 Theoretical Analysis
	7.8.2.1 Worst Case Connection Establishment Time

	7.8.3 Experiment
	7.8.3.1 Tick-based Emulation
	7.8.3.2 Caveats
	7.8.3.3 Experiment Scenarios

	7.9 Discussion
	7.9.1 Alternative Manifestations
	7.9.2 Utilization of Existing Name Service
	7.9.3 sPoW Client Code

	7.10 Limitations
	7.11 Future Work
	7.12 Conclusion

	8 Conclusion
	A DDoS Mitigation Mechanism Metrics
	A.1 Deployability
	A.2 Incentive
	A.3 Effectiveness

	References

