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Formulation of the Shear Stress/Shear Strain Relationship
Using the Torsion Testing Data

Hiroshi YosHimara*, Masamitsu OHTA** and Kazuhiro OricucHr**

1. Introduction

In our previous papers, we tried to obtain the shear stress/shear strain relationship of
wood by torsion of a rectangular bar, and proposed an equation deriving the shear stress/
shear strain relationship from the torsional moment-shear strain diagrams."? In that
method, we used the total shear strain instead of the plastic strain, and did not consider the
existence of yield stress. Based on the strain-incremental theory, however, it is inconven-
ient to describe the stress-strain relationship in the plastic region without considering the
yield stress and plastic strain because the stress-strain relationship is usually separated into
the phases before and after the occurrence of yielding.® When the yield stress is considered
and the total strain is separated into the elastic and plastic strain components, it is rather
convenient in describing the shear stress/shear strain relationship based on the plasticity
theory. In addition, we found that the shear stress/shear strain relationship all over the
strain range can be easily formulated by a function when the plastic strain is used. It is also
convenient to give the stress-strain formula in stress analysis in various occasions.

In this paper, we tried to formulate the shear stress/shear strain relationship in the
plastic region with an n-power function by separating the total strain into elastic and
plastic strain components, and examined the validity of this formulation.

2. Theories

2.1 Shear stress/shear strain relationship given by the torsion test

Figure 1 shows the diagram of torsion of an orthotropic bar with a rectangular
cross-section. The xyz- and XYZ-axes are defined as those of orthotropic and geometrical
symmetries. Here, the x-, y-, and z-axes coincide with the tangential, radial, and longitudinal
directions, respectively. The angle ¢ lying between the axes z and Z is defined as “grain
angle”.

When the bar is twisted around the y (Y)-axis, the shear strains at the centers of the XY-
and YZ-planes, 7xy and 7yz, respectively, are represented as follows:"
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where 0 is the torsional angle, a and b are the lengths in the directions of the X- and Y-axes,
respectively, and Gxy and Gyz are the shear moduli in the XY- and YZ-planes, respectively.
The values of pxy, pyz, and k are represented as follows:
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Fig. 1. Diagram of torsion-testing speci-

where Sxy is the shear yield stress on the ]
men {unit: mm).

XY-plane. Similar to Eq. (4), the shear
stress/shear strain relationship in the plas-
tic strain region is written as follow5'
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where M, is the torsional moment at the occurrence of yielding, and ¢, is a material
parameter. With this equation, we tried to formulate the shear stress/shear strain relation-
ship by the following procedure.

The M-y%y relationship is approximated by Ludwik’s n-power function as follows:?
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where a is a parameter determining the volume of the plastic strain. The second term in the
braces of Eq. (6) is represented by eliminating M from Eq. (7) as follows:
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Substituting Egs. (7) and (8) into Eq. (6), the torsional moment M is eliminated, and the shear

stress/shear strain relationship in the plastic strain range is given as follows:

1 1/n
Txy:pxyMy { 1+ <1 +qp } . (9)

When 7ky=0, zxy is equal to pxyM, which coincides with the shear yield stress Sxy. Hence,
pxvMj, is eliminated from Eq. (9), and the shear plastic strain is represented as:

P
Txy
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Thus, the shear stress/shear strain relationship is represented in all over the strain
range as follows:
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2.2 Shear stress/shear strain relationship given by the equivalent stress/equivalent
plastic strain relationship
When the stress-strain relationship in the plastic region satisfies the strain-incremental
theory, the shear stress/shear strain relationship can be obtained from the equivalent stress
(6)/equivalent plastic strain (&) relationship. Here, the equivalent stress is derived by the
following Hill-type yield criterion:

72 72,
Szy + S; , (12)
xy yz
where S, and S,; are the shear yield stresses in the xy- and yz-planes which coincide with the
XY-plane in the condition of $=0° and ¢ = 90°, respectively. Then, the &—&? relationship
is represented by Ludwik’s power function as follows:
ep—K("SS"y , (13)
xy
where K and m are the material constants. In the pure shear stress condition, the shear
stress txy is derived by substituting 7., =7xy cos¢ and t,.=1txy sing as the following equation:
T 0 = S (14)
cos2¢  sin¢ Sy
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From the plasticity theory, the plastic shear strain increment dy%y is given by the Prandtl-
Reuss function as follows:
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Integrating Eq. (15), 7%y is obtained as follows:
TRYy= - €P. (16)
XY

From Egs. (13), (14) and (16), the shear stress/shear plastic strain relationship can be
formulated by the power function. The shear stress/shear strain relationship can be
expressed in all over the strain range as follows:
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3. Experiment

3.1 Specimens

Sitka spruce (Picea sitchensis Carr.) and Konara (Japanese oak, Quercus serrata Murray)
were used in this experiment. Specimens were conditioned at 20°C and 65% relative
humidity before and during the tests.
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The dimensions of specimen is shown in Fig. 1. Specimens were cut with the grain
angle ¢ varying at intervals of 15 degrees from O to 45 degrees. By changing the grain
angle, the stiffnesses on the side planes of the specimens were given in various way.?

3.2 Torsion tests

Biaxial strain gages (FCA-2-11, Tokyo Sokki, Co., Ltd.) were bonded on the surface
centers of the XY- and YZ-planes for the measurement of the shear strains, yxy and 7vyz,
respectively, and the specimen was twisted around the y (Y)-axis which coincided with the
radial direction. From the measured relationships between the torsional moment and shear
strains, M-yxy and M-7yz, the shear moduli of the XY- and YZ-planes, Gxy and Gyz, respective-
ly, were obtained by the following equations:

_ o kxy [ (2N [Gxy & (=10 (2n—1ab [ Gxy

Gxr= a’bk I: 2(7Z> Gyz ngl (272—1)2 tanh 2a Gyz ] (18)
_ Kyz _ g i 1 (2n—1)zb Gxy 17!

Grz= a’bk [1 2<ﬂ'>n§l (2n—1)?2 {COSh 2a Gyz } }

where xxy and kyz are the inclination of the M-yxy and M-yyz relationships in the elastic
range, respectively.

In the grain angle range used here, the yield stress on the XY-plane was always smaller
than that on the YZ-plane, and hence, the shear stress/shear strain relationship on the
YZ-plane cannot be determined. In this study, hence, we examined the shear stress/shear
strain relationship on the XY-plane. From the M-yxy diagram, the torsional moment at the
occurrence of yielding, My, was obtained. The shear yield stress, Sxy, can be calculated by
the following equation:

Sxy=pxyMy . (19)
According to the numerical calculations conducted in a previous paper, however, the real
value of shear yield stress is about 809 of that obtained from Eq. (19).? Here, we evaluated
the shear yield stess as 80% of that derived by Eq. (19). The torsional moment (M)-plastic
shear strain (ry) relationship was regressed to Eq. (7), and the shear stress/shear strain
relationship was formulated to Eq. (11).

3.3 Compression tests

To determine the equivalent stress/equivalent plastic strain relationship, uniaxial
compression tests were made. The dimensions of the short column specimens were 40
(L)X 20 (R)X 20 (T) mm. Uniaxial strain gages (gage length=2 mm, FTA-2-11, Tokyo Sokki
Co., Ltd.) were bonded on the centers of the LR-planes, and a load was applied along the
long axis of each specimen at the crosshead speed of 1 mm/min. From the obtained stress
(0)-plastic strain (e?) relationships, the equivalent stress (3) and equivalent plastic strain (&)
were calculated by the following equations:

ag
=S, =
Ty (20)
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where Y is the compressive yield stress. The equivalent stress/equivalent plastic strain
relationships were approximated into Eq. (13), and the parameters K and m were obtained.
The shear stress/shear strain relationship was derived by substituting the values of K and
m into Eq. (17). This shear stress/shear strain relationship was compared to that obtained
by the torsion testing data.
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Table 1. Shear moduli and shear yield stresses in the XY-plane corresponding to the grain
angles (unit: kgf/cm?)

Grain angle

Species Shear modulus Gxy Yield stress Sxy

0° 15° 30° 45° 0° 15° 30° 45°
Spruce 770 860 960 1480 13 12 12 13
Konara 2800 3000 3300 4100 31 28 33 36

Table 2. Paramete @ and n obtained by regressing the torsional moment-shear strain rela-
tionship into Ludwik’s z#-power function

Grain angle

Species a (X1079) n

0° 15° 30° 45° 0° 15° 30° 45°
Spruce 3.79 2.86 2.13 2.35 1.14 1.93 1.54 1.27
Konara 3.35 5.29 4.09 4.47 1.96 151 1.83 1.58

Table 3. Parameters K and m obtained by

regressing the equivalent stress/ 4. Results and Discussion
equivalent plastic strain relation-
ship into the Ludwik’s power Table 1 shows the shear moduli and
function the yield shear stresses on the XY-planes,
Species K (109 ” Gxy and. Sxv, respectively, corresponding to
the grain angles, and Table 2 shows the
Spruce 0.12 1.65 parameters a and n obtained by the regres-
Konara 4.15 2.28 sion of M-r¥y relationship to Ludwik’s

power function. Substituting these values
into Eq. (11), the shear stress/shear strain relationships corresponding to the grain angles
were obtained. Table 3 shows the values of K and m derived from the equivalent stress/
equivalent plastic strain relationships. Substituting these values into Eq. (17), the shear
stress/shear strain relationships were obtained. Figure 2 shows the comparisons of the
shear stress/shear strain relationships obtained by Egs. (11) and (17). In deriving the
relationship by Eq. (11), the value of g, should be determined. After several trials, we
determined that g, was equal to 0.2(a%®+b?)/ab as similar to g in Eq. (4). The stress-strain
behaviors of both species were different with each other. The shear stress/shear strain
diagrams of spruce show less curvature, whereas those of konara show more sharp ones.
We thought that the proposed formula represented these tendencies effectively, and that
the shear stress/shear strain relationship can be formulated by approximating the torsional
moment-shear strain relationship.

5. Conclusion

We tried to formulate the shear stress/shear strain relationship of wood by approxima-
ting the torsional moment-shear strain relationship with Ludwik’s zn-power function, and
concluded that the shear stress/shear strain relationship can be well formulated when the
torsional moment-shear strain relationship is derived by the power function.



16
30
o S
E pruce
3 ¢=0
é“ZO =
&
2
E10
Z
]
2
«n L L

o

(=3

0.01 0.02
Shear strain y,,,

=
=)

0.03

& Konara s
=1 $=0 Py
Do} g

&

]

£20 |-

g

2

“ 1 |

0 0.01 0.02

Shear strain y,,,

=
®
o

0.03

w
8 8

—_
=)

Shear stress zyy (kgficm? )

o

A

Shear stress zyy (kgf/cm®)

40

20

0
0

H. YosHinara, M. OHTA and K. OricucHI

Spruce
$=15

N
Shear stress Tyy (kgffcm®)

30

20

10

=]

0.01 0.02
Shear strain y,,

0.03

Konara P

¢=15 P

60

40

20

Shear stress zyy (kgf/cm?)

0.01 0.02
Shear strain y,,

0.03

0
0

0
0

0.01 0.02
Shear strain y,,,

0.03

Konara -
¢=30" 7

1 1

0.m 0.02
Shear strain y,,,

0.03

50

B, Spruce

=S O =45

= 30

8 20 z

g

w

510

2

2y ] |

0 0.01 0.02 0.03
Shear strain y,,,
80

“B Konara - 2
S 60 p=45 g

=0

<

Saof

2

[

; 20 -

2

2 0 | )

0 0.01 0.02 0.03

Shear strain y,,

Comparison of the shear stress/shear strain relationship predicted from the torsion

testing data and the equivalent stress/equivalent plastic strain relationship.
Legend: Solid and dashed lines are obtained from the torsion tests and the equivalent
stress/equivalent plastic strain relationships, respectively.

Summary

In this paper, we tried to formulate the shear stress/shear strain relationship of wood
by approximating the torsional moment-shear strain relationship with Ludwik’s n-power

function.

Sitka spruce (Picea sitchensis Carr.) and konara (Japanese oak, Quercus serrata Murray)
were used for the specimens. Specimens were cut so as to have various angles between the
grain and the geometrical axes. These specimens were twisted around the radial axis, and
the torsional moment-shear strain relationships were obtained. This relationship was
approximated to Ludwik’s #-power function, and this relationship was transformed into the
shear stress/shear strain relationship which was formulated by a similar power function.
The applicability of the shear stress/shear strain formula was examined by comparing with
that predicted from the equivalent stress/equivalent plastic strain relationship.

We concluded that the shear stress/shear strain relationship can be well formulated
when the torsional moment-shear strain relationship is derived by the power function.
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Abstract

Genetic Diversity and Structure of Hinoki
(Chamaecyparis obtusa) in Chichibu District

Ding-Qin Tanec, Hailong SHEN and Yuji IpE

The genetic diversity and structure of hinoki were investigated in natural forests and
plantations in Chichibu district by using 10 allozyme loci in 8 enzyme systems as marker
genes. The analysis of gene composition and genetic structure, both intrastand and
interstand, showed that in natural forests, 95.4% of the total genetic variation was main-
tained intrastand. It is shown that Chichibu natural forests possess great genetic variabili-
ty. The analysis of estimated average heterozygosities revealed that plantations possess as
large an intrastand genetic diversity as natural forest. But only 1.7% of genetic variation
(Gst) was attributable to genetic differences interstand, much less than the 4.6% in natural
forests. Notably, plantations possessed less genetic variation interstand than the natural
forests. The estimated average multilocus heterozygote deficit reached —0.091, which
deviated significantly from the expected value under panmixia that was fitted in natural
forests. This reconfirmed that some procedures during afforestation gave rise to a reduc-
tion of homozygotes and resulted in an excess of heterozygotes.

Formulation of the Shear Stress/Shear Strain
Relationship Using the Torsion
Testing Data

Hiroshi YosHinArA, Masamitsu Outa and Kazuhiro OriGUcHI

In this paper, we tried to formulate the shear stress/shear strain relationship of wood
by approximating the torsional moment-shear strain relationship with Ludwik’s n-power
function.

Sitka spruce (Picea sitchensis Carr.) anq konara (Japanere oak, Quercus serrata Murray)
were used for the specimens. Specimens were cut so as to have various angles between the
grain and the geometrical axes. These specimens were twisted around the radial axis, and
the torsional moment-shear strain relationships were obtained. This relationship was
approximated to Ludwik’s #-power function, and this relationship was transformed into the
shear stress-shear strain relationship which was formulated by a similar power function.



The applicability of the shear stress/shear strain formula was examined by comparing with
the relationships predicted from the equivalent stress/equivalent plastic strain relation-
ship.

We concluded that the shear stress/shear strain relationship can be well formulated
when the torsional moment/shear strain relationship is derived by the power function.

Establishment of a Callus Culture System of Populus
euphratica, Populus alba cv. Pyramidalis and
Populus maximowiczii X Populus
plantierensis

Hailong SHEN, Shin WATANABE and Yuji Ipe

A basic protocol of callus culture of Populus euphratica, Populus alba cv. Pyramidalis
and Populus maximowiczii X Populus plantierensis (FS-51) was established. Callus was
induced on MS medium containing BAP, NAA and 2.4-D in combination or alone. The
callus could be subcultured on MS medium supplemented with 0.2 mg/!{ BAP and 1.0 mg/!
NAA. When callus was cultured on the medium containing BAP in combination with NAA
or GAs, adventitious shoots were regenerated. The shoots were successfully rooted on 1/2
MS medium.

A Study on Landscape Formation and the Influence of
Hang-Zhou West Lake in China

Yue SHEN

This research elucidates the landscape composition and landscape formation of Hong-
Zhou West Lake (H-Z. W.L), and studies the landscape forming of other landscape areas
based on H-Z. W. L. The main method of the research was to make out DTM according to
topographical maps and perform quantitative analysis. In conclusion, the features of
the landscape composition of H-Z. W.L are 1) both collected and expanded landscape,
2) three-layer structural landscape, 3) a skillful combination of man-made landscape and
natural landscape. The formation methods are 1) promoting a layer-structure, 2) laying
out atmosphere, 3) creating a typical landscape. In the lates projects of landscaping, the
landscape composition and formation methods of H-Z. W. L were referred to and a common
landscape appeared.



