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Abstract

This thesis presents a unified understanding of edit-based approaches to approximate tree matching
and introduces new facts on the subject. It also provides a broad view of kernel-based learning methods for
trees, and proposes novel methods based on this view.

These contributions have a wide range of applications to pattern matching, computational biology, and
many other areas of computer science. As an example, this thesis includes an application to computational
biology to demonstrate the effectiveness of a novel learning method developed in this work.

This thesis is divided into two parts. The first part is devoted to a detailed analysis of the classes of
edit-based approximate tree matching such as the tree edit problem and the alignment problem for trees.
We focus on the notion of tree mapping in order to describe the semantics of approximate tree matching.
We then establish an algebraic model of approximate tree matching. This algebraic model enables us to
reveal unknown hidden relationships among a variety of edit-based approximate tree matching problems,
which include the equivalence between two problems, the alignment problem and the less-constrained edit
problem. Also, we give the tree mapping for the alignment of trees, which has been unknown for the past
decade. In addition, we reveal a class hierarchy of edit-based approximate tree matching.

The second part focuses on tree kernels for kernel-based learning of trees. We first show that existing
tree kernels are formulated by counting functions of tree mappings from the unified view based on the class
hierarchy of approximate tree matching established in the first part. In addition, we develop two novel tree
kernels more flexible than known tree kernels, and show that the counting function for the alignment of trees
does not satisfy a requirement for a tree kernel. The last half of the second part addresses the development
of a faster tree kernel without sacrificing its learning performance. We propose two simple tree kernels,
a spectrum tree kerneland its variant, agram distribution kernel. The effectiveness of these methods are
demonstrated by applying them to a problem in computational biology.

Keywords: approximate pattern matching, tree edit distance, alignment of trees,
machine learning, kernel methods, tree kernels, convolution kernel, glycans
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Chapter 1

Introduction

This thesis is a comprehensive study of approximate pattern matching and machine learning for trees. A
tree is a mathematical abstraction representing a hierarchical structure of information, which allows us to
effectively access and maintain data. The expressive power of trees is superior to strings, and inferior to
general graph structures. A string is regarded as a simple form of tree, i.e. a node-labeled tree with only
one branch.

We already have the fertile field of stringology, the study of strings, which enjoys a lot of elegant and
pragmatic methods along with the history of computer science for string pattern matching, string indexing,
and so forth. Over the fertile field of stringology, the study of trees has also been carried out for many years.
Actually, in some ways, the study of trees can be viewed as just as highly-developed and mature a field as
stringology. So what contribution to this field above and beyond the constellation of existing work on trees
can we make? In what follows, we discuss the motivation behind our work.

1.1 Background and Objectives
When considering algorithms on trees, they may remind us of a great number of data structures and al-
gorithms such as binary search trees, red-black trees, and B-trees, suffix trees, range trees, andk-d trees
(cf. [MS05]). All of the tree structured data used in these methods are internal representations for efficient
manipulation or succinct organization of entities in the real world.

For example, suffix trees are used for indexing strings, andk-d trees used for partitioningd-dimensional
space. These trees are obtained by reconstructing the structures of entities in the real world such as strings
of DNA sequences or two-dimensional matrices of pixel images rather than directly reflecting the surface
tree structures in the entities.

The main concern with these algorithms lies in how to efficiently construct and traverse such an
internal tree structure, whereas a tree-to-tree comparison algorithm is required for dealing with the tree
structured entities.

After all, there have not been urgent requirements for comparing tree structured entities until recently
with a few exceptions such as phylogenetic trees. The amount of tree structured data, however, not derived
from internal representations has dramatically increased in the past decade with the rapid growth of the
Internet, and some research fields such as bioinformatics. For example, tree structured data such as HTML
and XML are widely found in Web-based systems. Also, in the field of bioinformatics, we can see tree
structured data such as RNA secondary structures and glycan structures. On top of that, due to some
recent developments in graph theory, the tree decomposition algorithm enables us to view a complex graph
structure as a tree-like structure.

1.1.1 Matching in Trees

Recently the problem of measuring the similarity of two trees has been a focus of researchers in various
scientific fields such as computational biology [Aku00, Sak03, HTGK03, AS04], image analysis [TH03d,
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TH02, TH03c, TH03e, TH03b, Tor04, BBP04, Ols05], pattern recognition [FG00, GB02], natural language
processing [FRV04] and information extraction from Web pages [CD01, HK05, ZL05]. For example, the
secondary structure of an RNA chain is an important factor for determining its functions. Since RNA
secondary structures are often represented trees, measuring the similarity of the trees that represent the
secondary structures of an unknown RNA chain and a known RNA chain could provide plenty of clues for
us to guess the functions of the unknown RNA from knowledge of the known RNA.

Tree edit distanceis the most widely accepted metric for measuring the difference or dissimilarity of
trees. The tree edit distance between two trees is defined as the minimum cost of a series of elementary edit
operations needed to transform the first tree into the second.

Tai presented an important correspondence between tree edit distance andtree mapping[Tai79]. Since
then, tree mapping has been attracting the interest of researchers. The tree mapping between two trees is
a set-theoretic description of the transformation from one tree to the other. Intuitively, a tree mapping
describeswhat the transformation between two trees is by showing a set of node pairs, whereas a tree edit
algorithm describeshow to transform one tree into the other. Tree mapping allows us to understand and
investigate tree edit distance in a qualitative and abstract way.

Other than the tree edit distance proposed by Tai (Tai distance), a variety of tree edit distance measures
have been proposed in the past three decades. Following in the wake of Tai’s result, most of these measures
have been defined by using the notion of tree mapping in conjunction with the algorithms. For example,
the algorithms for computing thestructure-preserving[TT82, Tan93, TT88, Tan95],constrained[Zha95,
Zha96],structure-respecting[Ric97], less-constrained[LST01], andbottom-up[Val01] distance measures
were proposed according to the definitions using the notion of tree mapping, i.e. these measures have
the corresponding tree mapping definitions. We refer to the tree mapping defining Tai distance as the
Tai mapping, and we also refer to the other classes of tree mappings in the same way. In contrast, the
tree mapping definingalignment distanceremains unknown in spite of its significance since this distance
measure [JWZ95] was proposed in 1995.

In response to these results, Wang and Zhang revealed a hierarchy of some of tree edit distance mea-
sures based on the analysis of tree mapping [WZ01]. Nevertheless, these measures are not exactly based on
a common mathematical formalization. Consequently, less or more, they tend to be subject to ambiguity,
redundancy and sometimes inaccuracy in their mathematical discussion. For example, the original defi-
nition of less-constrainedmapping [LST01], which had been prevailing (e.g. presented in a widely cited
survey on tree edit distance [Bil05], and some other publications such as [Höc05]), is incorrect. Also, the
original definition of bottom-up mapping [Val01] is not consistent with the proposed algorithm. For an-
other example, the equivalence of notions between the structure-preserving and the constrained mappings
were mentioned in [Zha96] although both notions are not exactly equivalent. Also, the equivalence between
the constrained and structure-respecting mappings were mentioned in [LST01] without any mathematical
proofs.

Taking this observation into account, we aim to establish a theoretical foundation that could form a
common basis for the study of approximate tree matching, and introduce new facts including relationships
among a variety of tree edit distance measures.

1.1.2 Learning in Trees

The kernel method, a method of machine learning, provides a generic framework to address a variety of
applications, and is being extensively studied [STC04]. The problems to which this method can be applied
include theclassification problem, i.e. the problem of determining the class to which a given instance
belongs. In kernel methods, in order to design a classifier for trees is necessary to design a similarity
measure (i.e. tree kernel) between two trees. This task is very similar to designing an algorithm for tree edit
distance. The problem of computing tree edit distance is regarded as a combinatorial optimization problem
of tree patterns while the problem of computing a tree kernel is regarded as a counting problem of tree
patterns.

Since Collins and Duffy first proposed a tree kernel for parse trees [CD01], a variety of tree kernels
have been proposed such as kernels for parse trees in natural language processing [ZAR03, CS04, SI05,
Mos06], phylogenetic trees [Ver02], Prolog proof trees [PFR06], and glycans [HYHK04, HYN+05]. In this
work, we focus on general-purpose kernels for labeled trees [VS02, KK02, KSK06a].

By theoretical analysis of existing tree kernels, a significant affinity between approximate tree match-
ing and kernel-based learning for trees has emerged. This thesis reveals a hidden and important relationship
between the two fields. Based on the relationship, we develop novel tree kernels more flexible than known
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tree kernels.
From the practical point of view, we address the development of a faster tree kernel without sacrificing

its learning performance. We propose two simple tree kernels, a spectrum tree kernel and its variant, a gram
distribution kernel. The effectiveness of these methods are demonstrated by applying them to a problem in
computational biology.

1.2 Organization
This thesis is divided into two parts. Part I is devoted to approximate tree matching, and divided into three
chapters. Chapter 2 surveys a variety of conventional edit-based approaches to approximate tree matching
with unifying mathematical formulation. Chapter 3 establishes a theoretical foundation for approximate
tree matching in an algebraic way. In our formalization, we first introduce a very general mapping between
trees, and call it a tree homomorphism. Starting with the notion of tree homomorphism, we tighten the tree
mapping gradually to adjust it to existing edit operations. Chapter 4 reveals the relationship among existing
tree edit distance measures by means of the formulation presented in the previous chapter.

Part II focuses on kernel-based machine learning for trees, and divided into four chapters. Chapter 5
surveys conventional kernel-based learning methods for trees. Chapter 6 proposes a novel tree kernel based
on counting the number of tree mappings. Chapter 7 presents a simple and efficient tree kernel based on the
notion of treeq-gram, and presents its variant. Chapter 8 shows the application of proposed tree kernels to
the glycan classification problem. Finally, in Chapter 9, we conclude this thesis by discussing further issues
to be addressed after the entire summary.

1.3 Main Results
Here, we list the main results presented in this thesis along with references to the relevant publications.

Part I. Matching in Trees

All the results presented in this part have been published in [KSM05, KSMY05].

Chapter 3. Theoretical Foundation of Approximate Tree Matching

• We have established a theoretical foundation of edit-based approaches to approximate tree matching,
which bridges the gap between operational semantics and declarative semantics of tree edit distance.

Chapter 4. Relationship Analysis among Tree Edit Distance Measures

• We have proved that the alignment problem [JWZ95] is essentially equivalent to a variant of the tree
edit problem called the less-constrained edit problem [LST01].

• We have identified thetree mappingcondition for the alignment of trees, which had previously been
unknown. Tree mapping provides definitions of various tree edit distance measures in a declarative
way, in contrast to the operational way of conventional definitions. To the best of our knowledge,
the mapping condition for the alignment of trees has been unknown, and the alignment of trees was
defined only in the operational way in [JWZ95].

• We have shown that the condition of the less constrained mapping given by Luet al. [LST01] does
not relax the condition of the constrained mapping due to Zhang [Zha96]. In fact, we show that the
condition due to Luet al. [LST01] is identical to that of the constrained mapping. We revise it and
give an originally intended condition of less-constrained mapping.

• We have proved that the constrained distance [Zha96] and the structure-respecting distance [Ric97]
are equivalent, but structure-preserving distance [TT88] is a superclass of these two distance mea-
sures.

Part II. Learning in Trees

Chapter 6. Mapping Kernels for Trees

The results in this chapter have been published in [KSK06b].
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• We have presented the counting functions for the four mapping classes, i.e. Tai, alignable, semi-
accordant, and accordant mappings, in recursive form. These forms enable us efficient evaluation by
dynamic programming.

• We have proved that the counting functions for the accordant, semi-accordant, and Tai mappings are
positive semidefinite. In contrast, for the alignable mapping, a counterexample to positive semidef-
initeness has been given. Hence, the counting functions for the Tai, semi-accordant, and accordant
mappings are kernel functions whereas that for the alignable mapping is not. The accordant case
proves that the elastic tree kernel [KK02] is a kernel function.

Chapter 7. Spectrum Kernels for Trees

The results in this chapter have been published in [OHKH05, KHOH06, KHAK+06, KHK+06, KHK+07].

• We have proposed two new kernel functions (similarity measures) for trees calledspectrum tree kernel
andgram distribution kernel. The spectrum tree kernel can be regarded as a natural extension of the
spectrum string kernel. This string kernel counts the number of shared substrings of a fixed length
q between two strings, while our kernels count the number of shared line-shaped connected graphs
with a fixed numberq of nodes occurring in two trees without sacrificing its efficiency as compared
with the string case.

Chapter 8. Application to Glycan Classification

The results in this chapter have been published in [KHAK+06, KHK+06, KHK+07].

• The spectrum tree kernel and the gram distribution kernel have been applied to glycan structure
analysis. Our results have shown that our kernel outperforms the layered trimer kernel of Hizukuri
et al. [HYN+05] which is well tailored to glycan data while we do not adjust our kernel to glycan-
specific properties.

• In addition, we have extracted specific features from various types of glycan data using our trained
SVM. The results show that our kernel is more flexible and capable of finding a wider variety of
substructures from glycan data.

1.4 Conventions Used in This Thesis
The following logical symbols are used for succinct descriptions.

• ¬P notP .
• P ∧ Q P andQ.
• P ∨ Q P or Q.
• P ⇒ Q if P , thenQ.
• P ⇔ Q P if and only if Q.
• ∃x there existsx.
• ∃!x there exists exactly onex.
• ∀x for all x.

We use the following notational conventions throughout this thesis.

• N = {1, 2, 3, . . .} is the set of natural numbers.
• R is the set of real numbers.
• R+0 is the set of nonnegative real numbers.
• ∥x∥1 is theℓ1-normon a vectorx = (x1, x2, . . . , xn) of real numbers defined as

∑n
i=1 |xi|.

Also, we use the standard asymptoticbig O notationsuch as O(·), Ω(·), Θ(·), o(·), ω(·) (cf. [CLRS01,
Chapter 3]).

l The shaded paragraph beginning with this leaf icon designates an open problem or an incorrect assertion in
prior work.







Part I

Matching in Trees

“For trees, you see, rather conceal themselves in daylight.
They reveal themselves fully only after sunset. I neverknowa tree,”

— Algernon Blackwood,The Man Whom the Trees Loved





Chapter 2

Approximate Tree Matching

Approximate pattern matching methods for trees have directly adopted many of the fundamental notions
cultivated for strings. Hence we start with a cursory review on some of the basic notions used in approximate
string matching. In particular, we concentrate on an edit-based approach, string edit distance, which is a
prevailing approach as a common framework for measuring the difference or distance between two strings.

Subsequently, we introduce the basic notation for trees, and give a comprehensive survey on a variety
of distance measures for trees presented in prior work. Toward a unified view of approximate tree matching,
we point out confusion and inconsistency inherent in prior work.

2.1 Distance and Metric
Following the convention in the approximate tree matching field, we abuse the termdistance, i.e. by distance
we vaguely mean degree of dissimilarity, and then it does not necessarily meanmetric in the mathematical
sense.

Definition 2.1 (Metric) A metricon a setX is a mappingd : X × X → R that satisfies the following
conditions:

1. ∀x, y ∈ X d(x, y) ≥ 0 (non-negativity),
2. ∀x, y ∈ X d(x, y) = 0 ⇐⇒ x = y (equality),
3. ∀x, y ∈ X d(x, y) = d(y, x) (symmetry),
4. ∀x, y, z ∈ X d(x, z) ≤ d(x, y) + d(y, z) (subadditivity, or triangle inequality).

The pair (X, d) is referred to as ametric space.

Note that the first condition, non-negativity, is derived from the other three conditions. If the second condi-
tion (equality) is replaced with the condition

2′. ∀x ∈ X d(x, x) = 0,

then the mapping is calledpseudometric.

2.2 Approximate String Matching
First, we introduce the conventional definition of string edit distance (cf. [Gus97, Chapter 11], [NR02,
Chapter 6], [CR02, Chapter 12], [Rah07]). The definition is given in an operational way, i.e. the string edit
distance is defined by describinghow to compute it by applying edit operations. We refer to this way of
definition as theoperational definition. Next, we show two viewpoints of string edit distance:

9



10 Chapter 2. Approximate Tree Matching

• approximate common subsequence problem, and
• approximate common supersequence problem (alignment problem).

Although these two viewpoints are a mathematically equivalent problem for strings, they lead to two math-
ematically distinct problems for trees in contract to strings.

In addition, we give an alternative definition by describingwhat the string edit distance is without
using edit operations, which we refer to as thedeclarative definition. This type of definition plays an
important role in theoretical analysis of tree edit distance.

We also review some approximation algorithms for string edit distance.

2.2.1 Strings

A finite nonempty set of symbols is called analphabet, denoted byΣ. A stringoverΣ is is a finite series of
elements ofΣ. We represent a stringx consisting of a series of symbolsa1, a2, . . . , an as

x = a1a2 · · · an (ai ∈ Σ for i ∈ {1, . . . , n}).

The length of stringx, denoted by|x|, is the number of symbols inx. For two stringsx = a1 · · · am (ai ∈ Σ
for i ∈ {1, . . . ,m}) andy = b1 · · · bn (bj ∈ Σ for j ∈ {1, . . . , n}), we define aconcatenationof x andy as

x·y = a1 · · · amb1 · · · bn.

Thenull string, denoted byε, is a string with length 0. In particular, for any stringx,

ε·x = x·ε = x.

We defineΣn as follows

Σn =

{
{ε} if n = 0,

{x·a | x ∈ Σn−1 ∧ a ∈ Σ} if n ≥ 1.

By Σ∗ we denote the set of all strings overΣ, i.e.

Σ∗ =
∪
n≥0

Σn.

The i-th symbol in a stringx is denoted byx[i]. For a stringx = a1 · · · an, a substringof x is a string
ai · · · aj such that 1≤ i ≤ j ≤ n, denoted byx[i..j]. Let us definex[i..j] = ε for i > j. A subsequenceof
x is a stringai1ai2 · · · aik

such that 1≤ i1 < i2 < · · · < ik ≤ n.
Note that for a stringx, all the symbols in a substring ofx need to be consecutive inx while the

symbols in a subsequence is not necessarily. For example, “test” is a subsequence of “tapestry” but not a
substring, while “tape” is a subsequence and a substring.

2.2.2 String Edit Distance

Thestring edit distanceprobably originated fromLevenshtein distance[Lev66]. The Levenshtein distance
between two strings is the number of deletions, insertions, or replacements of symbols required to transform
the first string into the second. Later, the string edit distance was generalized to consider the cost of edit
operations according to the relevant symbols to be edited [WF74].

Edit Operations

The string edit distance between two strings is defined as the minimum cost of elementary edit operations
required to transform one string into the other.

The set of elementaryedit operationson a string consists of the following three operations.

Replacement of a symbol in a string by a new symbol inΣ.

Deletion of a symbol from a string.

Insertion of a symbol inΣ into a string.

In order to estimate the cost of edit operations, we consider the cost factor of each edit operation, which we
call anedit signaturedenoted as follows:
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• “a 7→ b” for the replacement of a symbola in the first string by a symbolb in the second,
• “- 7→ b” for the insertion of a symbolb in the second string into the first,
• “a 7→ -” for the deletion of a symbola from the first string,

where the symbol “-” is not in Σ, and called thegap symbol. Let us abuse notation by referring to each edit
operation as its edit signature although the edit signatures do not have enough information for actual edit
operations if there is no confusion. In fact, an edit signature does not tell us about the position to be edited.
This implies that we focus only on the transition of symbols for estimating the cost for edit operations
applied to a string, and do not consider the positions of symbols in the string. We writex

e−→ y if we obtain
a stringy from a stringx by applying an edit operatione.

Let d be a cost function of edit signatures, and we equate the two notationsd(a 7→ b) andd(a, b) as
follows:

d(a 7→ b) = d(a, b) for all a, b ∈ Σ ∪ {-},

where we assume thatd : Σ ∪ {-} × Σ ∪ {-} → R is a metric.

Example 2.2 Consider the string “string” with the alphabetΣ = {a, b, . . . , z}.

• string
i 7→o−−→ strong (replacement of “i” by “ o”)

• string
r 7→-−−−→ sting (deletion of “r”)

• string
-7→a−−−→ staring (insertion of “a”)

String Edit Problem

We here forbid edit operations with the edit signaturesa 7→ b such thata = b. If a series of edit operations
E = ⟨e1, . . . , en⟩ (n ≥ 1) transforms a stringx into a stringy, there exists a series of strings⟨x0, . . . , xn⟩
such thatx0 = x, xn = y, and thei-th edit operationei = (ai 7→ bi) transformsxi−1 into xi for i ∈
{1, . . . , n}, i.e.

x = x0
e1−→ x1

e2−→ · · · en−→ xn = y.

If x = y, then we definen = 0. The cost function cost(·) for a series of edit operationsE = ⟨e1, . . . , en⟩ is
derived from the total cost for the elementary edit operations as follows:

cost(E) =
n∑

i=1

d(ei).

If n = 0, then we define cost(E) = 0. We refer to the series of edit operationsE as theedit script. Now let
us denote the set of all possible edit scripts to transformx into y by E(x, y). Then the formal definition of
string edit distance is given as follows.

Definition 2.3 (String Edit Distance) The edit distance between two stringsx andy is defined as
follows:

DEdit(x, y) = min
E∈E(x,y)

cost(E).

We refer to an edit script with the minimum cost as anoptimal edit script. Note that the optimal
edit script is not necessarily determined uniquely. The problem of computing the edit distance between two
strings along with an optimal edit script is called thestring edit problem. It is known that for any two strings
x andy, the edit distanceDEdit(x, y) is a metric ifd(a, b) is a metric for anya, b ∈ Σ ∪ {-}.

Recall that the Levenshtein distance between two strings is the number of deletions, insertions, or
replacements of symbols required to transform the first string into the second. We refer to Levenshtein
distance as string edit distance withunit costsor simply unit-cost edit distance. More precicely, in this
distance measure, the cost functiond : (Σ ∪ {-}) × (Σ ∪ {-}) → R is defined as

d(a, b) =

{
0 if a = b,

1 if a , b.

We denote byDEdit
1 (x, y) the unit-cost edit distance between two stringsx andy.
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Example 2.4 Let Σ = {A, C, G, T}. Now considering the unit-cost edit distance between two strings
“ACTC” and “ACGT,” we can transform the first string into the second with minimum cost 2 as follows.

• ACTC
T 7→G−→ ACGC

C7→T−→ ACGT , or

• ACTC
-7→G−→ ACGTC

C7→-−→ ACGT.

Hence the string edit distance between “ACTC” and “ACGT” is 2.

2.2.3 Approximate Common Subsequence Problem

There is an alternative view in defining string edit distance. In Definition 2.3, we apply all edit operations
to the first string to obtain the second. In the alternative view, we use onlyreplacementsanddeletionsas
the elementary edit operations, and define the string edit distance between two strings as the minimum cost
of edit operations to transform two strings into a common third string. In other words, this problem is to
find an approximate common subsequence shared by two strings with the minimum cost of edit operations
without insertions. In this case, we permit the edit operation with edit signature- 7→ -. This operation
changes nothing and is called anidentity edit operation.

The problem of computing the edit distance between two strings along with an approximate com-
mon subsequence of the minimum cost of edit operations is called theapproximate common subsequence
problem. It is easy to show that the approximate common subsequence problem is equivalent to the string
edit problem in the computation of string edit distance since any deletion of a symbola from the second
string has its complementary operation, the insertion ofa into the first string with the edit signature- 7→ a.
Obviously, the replacement of a symbola in the first string by a symbolb in the second is equivalent to the
replacement ofb in the second bya in the first.

Example 2.5 We consider the same problem as in Example 2.4. Then, for example, the following two
transformations give the minimum cost 2.

ACTC ACGT

ACT
$$

C7→ -

HHHHHHHHH zz

- 7→G
vvvvvvvvv

or, ACTC ACGT

ACTT.
$$

C7→T
JJJJJJJJJ zz

T 7→G
ttttttttt

Hence the string edit distance between “ACTC” and “ACGT” is 2.

Longest Common Subsequence Problem

When we use onlydeletionsas the elementary edit operations, and define the string edit distance as the
minimum number of edit operations to transform given two strings into a common third string, the edit
problem is said to be thelongest common subsequence problem(LCS problem). In this problem, the cost
functiond : Σ ∪ {-} × Σ ∪ {-} → R is given as follows:

d(a, b) =


0 if a = b,

1 if a , b and (a = “-” or b = “-”) ,

∞ otherwise (replacement).

Note that this cost functiond is not a metric. Since each replacement can be replaceable by one deletion
and one insertion, any cost of replacement greater than or equal to 2 leads to the same distance (if the cost
of replacement is 2,d is a metric). We denote byDEdit

lcs (x, y) the edit distance with this cost functiond
between two stringsx andy. The size of the longest common subsequence between two stringsx andy is
obtained by

LCS(x, y) =
|x| + |y| − DEdit

lcs (x, y)
2

.

Note that, in general, the LCS problem is formalized by maximizing an editscoreso that the length of a
longest common subsequence is equal to the score. Many of elegant algorithms have been proposed [Gus97,
Section 12.5], [BHR00].
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2.2.4 Approximate Common Supersequence Problem — Alignment

There is yet another alternative view in defining the string edit distance. First, let us define the notion of
supersequence. For a stringx, a supersequenceof x is a string obtained by inserting arbitrary number of
symbols intox. For example, “tapestry” is a supersequence of “test.”

In the alternative view, we use onlyreplacementsand insertionsas the elementary edit operations,
and define the string edit distance as the minimum cost of edit operations to transform two strings into a
common third string. In other words, this problem is to find an approximate common supersequence shared
by two strings with the minimum cost of edit operations withoutdeletions. We permit the identity edit
operation as in the approximate common subsequence problem.

The problem of computing the edit distance between two strings along with an approximate common
supersequence of the minimum cost of edit operations is called theapproximate common supersequence
problem. As in the case of the approximate common subsequence problem, it is easy to show that the
approximate common supersequence problem is equivalent to the string edit problem in the computation
of the string edit distance since any insertion of a symbola into the second string has its complementary
operation, the deletion ofa from the first string with the edit signaturea 7→ -.
Example 2.6 We consider the same problem as in Example 2.4. Then, for example, the following two
transformations give the minimum cost 2.

ACGTC99
-7→G

ttt
ttt

ttt
t ee

C7→-

KKKKKKKKK

ACTC ACGT,

or, ACTT::
G7→T

uuuuuuuuu dd
T 7→C

JJJJJJJJJ

ACGT ACTC.

Hence the string edit distance between “ACTC” and “ACGT” is 2.

Alignment Problem

Once we obtain an approximate common supersequence, we can align two strings according to the super-
sequence. For example, consider the two strings “ACTC” and “ACGT,” and an (approximate) common
supersequence “ACGTC.” We have the following alignment.

First string A C T C
Approximate common supersequenceA C G T C

Second string A C G T

In general, thealignmentof two strings is depicted, without showing an approximate common superse-
quence, by padding out each string with thegap symbol“ -” not in Σ to align each symbol at the same
column.

First string A C - T C
Second string A C G T -

We refer to an alignment corresponding to the edit distance as anoptimal alignment. Note that an optimal
alignment is not necessarily unique. More formally, we can state the definition of the alignment of strings
as follows.

Definition 2.7 (Alignment of Strings) An alignmentof two stringsx andy is obtained by the following
two steps:

1. Insert gap symbols “-” into x andy so that the following two conditions are satisfied:

(i) two resulting stringsx′ andy′ have the same length ofn, i.e. |x′| = |y′| = n.

(ii) x′[i] = y′[i] = “-” does not hold for anyi ∈ {1, . . . , n}.

2. Collect the pairs of symbols at the same columns in order, i.e.

A = ⟨(x′[1], y′[1]), (x′[2], y′[2]), . . . , (x′[n], y′[n])⟩.

The cost of an alignmentA is defined as the sum of the costs of all pairs of aligned symbols :

cost(A) =
n∑

i=1

d(A[i]) =
n∑

i=1

d(x′[i], y′[i]),
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Algorithm 2.1 String edit distance and traceback

procedureEditDistance(x, y) procedureTraceback(D[0..m, 0..n])

Input: x = a1 · · · am

y = b1 · · · bn

D[0, 0] ← 0
for i ← 1 to m do

D[i, 0] ← D[i − 1, 0] + d(ai, -)
for j ← 1 to n do

D[0, j] ← D[0, j − 1] + d(-, bj)
for i ← 1 to m do

for j ← 1 to n do
D[i, j] ←

min

 D[i − 1, j − 1] + d(ai, bj)
D[i − 1, j] + d(ai, -)
D[i, j − 1] + d(-, bj)

return D[m,n]
end

Input: resulting array D[0..m, 0..n] of
EditDistance(x, y)

i ← m; j ← n
x′ ← ε; y′ ← ε
until i = 0 and j = 0 do

if D[i, j] = D[i − 1, j − 1] + d(ai, bj) then
x′ ← ai·x′; y′ ← bj ·y′

i ← i − 1; j ← j − 1
else ifD[i, j] = D[i − 1, j] + d(ai, -) then

x′ ← ai·x′; y′ ← “-” ·y′

i ← i − 1
else ifD[i, j] = D[i, j − 1] + d(-, bj) then

x′ ← “-” ·x′; y′ ← bj ·y′

j ← j − 1
end until
return (x′,y′) /* aligned strings* /

end

whered : (Σ ∪ {-} × Σ ∪ {-}) \ {(-, -)} → R, and by abuse of notation we setd((a, b)) = d(a, b). An
optimal alignmentis an alignment that minimizes the cost over all possible alignments. Analignment
distanceis the cost of an optimal alignment. We denote the set of all possible alignments betweenx and
y byA(x, y). Then, thealignment distancebetween two stringsx andy is given as follows.

DAln(x, y) = min
A∈A(x,y)

cost(A).

Since each column in an alignment corresponds to a unique edit signature, edit distance is equivalent
to alignment distance for strings.

2.2.5 Operational Definition

All these views so far lead to the following recurrences for computing string edit distance.

D(ε, ε) = 0,

D(a·x, ε) = D(x, ε) + d(a, -),

D(ε, b·y) = D(ε, y) + d(-, b),

D(a·, b·y) = min

 D( x, y) + d(a, b)
D(a·x, y) + d(-, b)
D( x, b·y) + d(a, -)

wherea and b are symbols fromΣ, and D(x, y) denotes the edit distance between two stringx and y.
We refer to the definition or algorithm describinghow to compute string edit distance as theoperational
definitionof it.

Needleman and Wunsch proposed an algorithm [NW70] (known as Needleman-Wunsch algorithm)
for computing an optimal alignment bydynamic programmingin the field of computational biology, while
Wagner and Fischer introduced an algorithm for computing string edit distance [WF74]. Both algorithms
have basically the same structure although Needleman-Wunsch algorithm computes an optimal alignment
of two strings with maximum similarity score, i.e. the score is not necessarily a metric. Based on these two
algorithms, inAlgorithm 2.1, we show two algorithms for computing string edit distance (EditDistance)
and an optimal alignment corresponding to the distance (Traceback). The algorithm EditDistance computes
the edit distance between two stringsx = a1a2 · · · am andy = b1b2 · · · bn, and Traceback computes two
aligned strings according to the result of EditDistance. This procedure is calledtraceback. EditDistance
runs inΘ(mn) time, and Traceback runs inΘ(m + n) time.
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In this algorithm, the edit distance problem for two strings is reduced to the shortest path problem
in a kind of lattice graph called anedit graph. The edit graph is constructed according to the following
definition.

Definition 2.8 (Edit Graph for Two Strings) Let x = a1a2 · · · am andy = b1b2 · · · bn be strings. The
edit graphof x andy is an edge weighted graphG(x, y) = (V,E) such that

• the set of verticesV is {v(i,j) | (i, j) ∈ {0, . . . ,m} × {0, . . . , n}},
• the set of edgesE consists of the following edges:

· (v(i−1,j−1), v(i,j)) ∈ E with the weightd(ai, bj) for (i, j) ∈ {1, . . . ,m} × {1, . . . , n},

· (v(i−1,j), v(i,j)) ∈ E with the weightd(ai, -) for (i, j) ∈ {1, . . . ,m} × {0, . . . , n},

· (v(i,j−1), v(i,j)) ∈ E with the weightd(-, bj) for (i, j) ∈ {0, . . . ,m} × {1, . . . , n}.

Given two stringsx andy, each node of edit graph forx andy is represented as D[i, j], which stores
the edit distance between two stringsx[1..i] andy[1..j] for (i, j) ∈ {0, . . . , |x|} × {0, . . . , |y|}.

Example 2.9 Figure 2.1shows the edit graph for two strings “ACTC” and “ACGT” after computing Edit-
Distance (Figure 2.1(a)) and Traceback (Figure 2.1(b)), where all the edit costs are assumed to be 1 (unit
cost), i.e.

d(a, b) =

{
0 if a = b,

1 otherwise,

for any (a, b) ∈ (Σ ∪ {-} × Σ ∪ {-}) \ {(-, -)}. In Figure 2.1(a), the distance (minimum weight) from top
left to bottom right in the edit graph is computed, and it turns out to be 2 as given at the bottom right node.
Figure 2.1(b) shows two possible optimal alignments (or edit scripts). Since, by the procedure Traceback,
replacements are preferred to deletions and insertions, the former alignment is obtained by this procedure.

First string A C T C
or

A C - T C
Second string A C G T A C G T -
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(a) Edit graph obtained after computing
EditDistance(ACTC, ACGT)

(b) Two shortest paths in the edit graph

Figure 2.1. Dynamic programming algorithm for string edit distance
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Improvements of Dynamic Programming Based Algorithms

Algorithms for string edit distance based on dynamic programming basically run in quadratic time, i.e. for
two strings of sizen in Θ(n2) time, and it is computationally expensive for long strings. To improve the
computational complexity, many attempts have been made, and some sub-quadratic time algorithms have
been proposed based on theFour-Russianstechnique [MP80], bit-parallelism [Mye99], LZ78 compression
[CLZU02], and so forth.

A fixed-parameteralgorithm is also proposed (cf. [Gus97, Section 12.2]) by fixing an upper boundk
of the number of applying edit operations. This algorithm runs in O(kn) time. Bodlaenderet al. [BDFW95]
investigated theparameterized complexityof the LCS problem for multiple strings.

2.2.6 Declarative Definition

Here we consider an alternative definition of string edit distance by using the notion oftrace [WF74]. A
trace is an order-preserving mapping between two strings.

Definition 2.10 (Trace [WF74]) For two stringsx = a1 · · · am andy = b1 · · · bn, a traceof x andy is
M ⊆ {1, . . . ,m} × {1, . . . , n} satisfying the following conditions.

1. ∀(i, j), (i′, j′) ∈ M [i = i′ ⇐⇒ j = j′],

2. ∀(i, j), (i′, j′) ∈ M [i < i′ ⇐⇒ j < j′].

Note that these two conditions are integrated into one condition:∀(i, j), (i′, j′) ∈ M [i ≤ j ⇐⇒ i′ ≤ j′].
For two stringsx = a1 · · · am andy = b1 · · · bn, we denote

MD = {1, . . . ,m} \ {i ∈ {1, . . . ,m} | ∃j (i, j) ∈ M},
MI = {1, . . . , n} \ {j ∈ {1, . . . , n} | ∃i (i, j) ∈ M}.

We define the cost of trace between two stringsx andy as follows:

cost(M ) =
∑

(i,j)∈M

d(ai, bj) +
∑

i∈MD

d(ai, -) +
∑

j∈MI

d(-, bj).

Intuitively, the elements ofMD indicate the indices of symbols to be deleted fromx, and the elements of
MI indicate the indices of symbols to be deleted fromy (or to be inserted intox).

Let us denote the set of all possible traces betweenx andy by M(x, y). Wagner and Fisher showed
that the string edit problem is reduced into the optimization problem of traces.

Theorem 2.11 (Theorem 1 in [WF74])For two stringx andy,

DEdit(x, y) = min
E∈E(x,y)

cost(E) = min
M∈M(x,y)

cost(M ).

We refer to the definition describingwhat string edit distance is by using the notion of trace as the
declarative definitionof it.

Example 2.12 A trace of “ACTC” and “ACGT” is shown inFigure 2.2(a), while Figure 2.2(b) is not a
trace since it violates the condition of trace in Definition 2.10.
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(a) A trace (b) Not a trace

Figure 2.2. Example of a trace
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Since both the edit and alignment problems can be reduced into the same combinatorial optimization
problem of traces in Theorem 2.11, these two problems are computationally equivalent, i.e. for any two
stringsx andy, the following holds:

DEdit(x, y) = DAln(x, y).

By using the notion of trace, Kececiogluet al. formalized the alignment problem for more than
two strings (multiple alignment) as a combinatorial optimization problem with integer linear programming
[KLM +00].

In Table 2.1, we summarize three operational definitions of string edit distance. In this table, all the
edit operations are applied only to source strings to transform them to a target string. All these definitions
can be reduced into a declarative definition by trace.

Table 2.1.Three views of string edit distance

Problem Source(s) Target
Operations

Del Ins Rep

Edit x y X X X

Approximate common subsequence x, y z X X

Approximate common supersequence
x, y z X X

(Alignment)
x, y: two input strings, z: a common string obtained by editingx andy

Del, Ins, and Rel stand for deletion, insertion, and replacement operations respectively.

2.2.7 Approximation of String Edit Distance

If we want a set of strings similar to a given string pattern among a large data set of strings, it is required to
speed up the computation of string edit distance even by sacrificing the accuracy of the computation.

In addition, the metric space of string edit distance is not tractable. Actually, for a set of stringsX, the
metric space is represented as a set of pairwise distances between strings inX with ann × n table. Then,
it is difficult to see a comprehensive structure of these strings in the metric space. If this metric space can
be embedded into a more familiar and tractable metric space such as Euclidean space while preserving the
distances between each pair of strings, it may gain the understanding of the whole structure of given data.

Driven by these motivations, a variety of filtering (cf. [NBYST01]) and embedding (cf. [Cor03])
methods have been proposed.

Filtering by a Lower Bound

Ukkonen introduced a distance measure between two strings calledq-gram distance[Ukk92], which gives
a lower bound for string edit distance (this is also known as anon-expanding embedding). The basic idea
of q-gram distance is simple: the more the different substrings occur between two strings, the more distant
these are. A string (text) analysis based onq-gram dates from Shannon’s paper [Sha48]. Aq-gram (or
n-gram†) is a string inΣq for q ∈ N.

For two stringsx,w ∈ Σ∗, if there existy, z ∈ Σ∗ such thatx = y·w·z, thenx has anoccurrenceof
w. Let #x[w] denote the total number of occurrences ofw in x, i.e.

#x[w] = |{y | x = y·w·z ∧ y, z ∈ Σ∗}| .

Theq-gram profileof a stringx is the vectorGq(x) = (#x[w])w∈Σq , indexed by allq-gramsw and arranged
in lexicographic order ofq-grams.

Definition 2.13 (q-Gram Distance) For two stringsx andy in Σ∗, andq ∈ N, theq-gram distance
betweenx andy is defined by

DGram
q (x, y) = ∥Gq(x) − Gq(y)∥1 =

∑
w∈Σq

|#x[w] − #y[w]| .

†These “q” and “n” are no more than parameter symbols. Thus, it may also be mentioned ask-gram,l-gram, and so on.
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Example 2.14 ForΣ = {a, b}, consider two stringsx = abaaa andy = bbaaaa in Σ∗. The 2-gram profiles
areG(x)2 = (2, 1, 1, 0) andG(y)2 = (3, 0, 1, 1).

w aa ab ba bb
#x[w] 2 1 1 0
#y[w] 3 0 1 1

Therefore, the 2-gram distance betweenx andy is DGram
2 (x, y) = 3.

Note thatq-gram distance is not a metric but apseudometric.

Example 2.15 For Σ = {a, b}, consider two stringsx = abaa andy = baab in Σ∗. The 2-gram profiles
of x andy are the same:G(x)2 = G(y)2 = (1, 1, 1, 0). Then the 2-gram distance betweenx andy is
DGram

2 (x, y) = 0 in spite ofx , y.

Theorem 2.16 (from Theorem 5.1 in [Ukk92]) For two stringsx andy, and a natural numberq ∈ N,
the following holds.

DGram
q (x, y)

2q
≤ DEdit

1 (x, y).

Theq-gram distanceDGram
q (x, y) can be evaluated in time O(|x|+ |y|) and in space O(|Σ|q + |x|+ |y|)

[Ukk92]. By Theorem 2.16, we can compute a lower bound of unit-cost edit distance much faster than the
edit distance itself, and this property is applied to efficient filtering for string search based on unit-cost edit
distance.

For a set of stringsX = {x1, x2, . . . , xn} (xi ∈ Σ∗ for i ∈ {1, . . . , n}), and a string patternp ∈ Σ∗,
let us denote all the strings inX within unit-cost edit distancek from p by

X≤k
Edit(p) = {x ∈ X | (∃x ∈ X) DEdit

1 (p, x) ≤ k},

and all the strings inX within q-gram distancek from p by

X≤k
Gram(p) = {x ∈ X | (∃x ∈ X) DGram

q (p, x) ≤ k}.

When we want the setX≤k
Edit(p), we can narrow this set by first computingX≤2qk

Gram (p), since by Theorem 2.16
the following holds.

X≤k
Edit(p) ⊆ X≤2qk

Gram (p).

Following q-gram based filtering, many filtering methods have been proposed such as the wavelet-
based method by Kahveci and Singh [KS01], the spaced seed method by Maet al. [MTL02] and the gapped
q-gram method by Burkhardt and Kärkkäinen [BK03].

String Edit Distance Embeddings

Attempts to embed a set of pairwise distances into a more tractable metric space such as a low-dimensional
Euclidean space have a long history. For example, Metric multi-dimensional scaling (MMDS) (cf. [KWU06])
is a well-known method mainly for visualization. Most of algorithms for MDS have been developed based
on heuristics without theoretical quality assurance of embeddings.

Recently, theoretical studies of embeddings have revealed some remarkable facts. Now let us denote
by ℓ1 normed spaces (with arbitrary dimension). If there exists a mappingϕ : Σn → ℓ1 such that for any
two stringx andy,

DEdit
1 (x, y) ≤ ∥ϕ(x) − ϕ(y)∥1 ≤ δ · DEdit

1 (x, y),

then we say that the metric space of unit-cost edit distance can beembeddableinto ℓ1 spaces withδ-
distortion (δ ≥ 1). Many attempts have been made for achieving a lower distortionδ. For strings over
{0, 1}n, Krauthgamer and Rabani [KR06] showed a lower bound of distortionΩ(logn), and Ostrovsky and

Rabani [OR05] showed an upper bound of distortion 2O(
√

logn log logn)† with a probabilistic polynomial time
algorithm. The dimensionality of embedded spaces due to Ostrovsky and Rabani [OR05] is, however, at
least quadratic inn. Thus, it is difficult to develop efficient algorithms straightforward from the embedding.
(Note that these results on strings over{0, 1}n is extendable to larger alphabets.)

†2O(
√

log n log logn) = o(nc) for any constantc > 0.
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From a pragmatic point of view, it is very important to develop an efficient embedding algorithm
with the best possible distortion (cf. [Bad06]). By using a dimensionality-reduction technique, Batuet al.
addressed this problem, and proposed an efficient algorithm that approximates unit-cost edit distance within
a factor of nearlyδ ≈ n1/3 in almost linear time [BES06].

Cormode and Muthukrishnan addressed the approximation problem of string edit distance with an
additional edit operations —substring move(or block move) operations . Shapira and Storer [SS02] showed
that the string edit problem with substring move operations is NP-complete by reducing the BIN-PACKING
problem into this edit problem. Interestingly, in approximation of string edit distance, the addition ofmove
operationsmakes the problem easier as opposed to exact computation. This contrast is attributed to the
fact that approximation algorithms do not constructively compute edit scripts or traces. Cormode and
Muthukrishnan proposed an efficient algorithm that approximates unit-cost edit distance with substring
move operations within a factor ofδ = O(log log∗ n)† in almost linear time [CM07, CM02, Cor03].

2.3 Basic Notation for Trees
Trees we consider in this thesis are mainly labeled rooted trees, in which each node is labeled from a
finite alphabet. Anordered treeis a tree in which the left-to-right order among siblings is given. An
unordered treeis a tree with no order among siblings. In order to formulate these trees, we employ a subclass
of partially ordered set theory (or lattice theory) and its algebraic system rather than graph theory since
approximate pattern matching between two trees is considered as an order-preserving mapping between
two ordered sets.

2.3.1 Rooted Trees

We define a tree as a subclass of a partially ordered set. Apartially ordered set(or aposetfor short) is a set
V with a binary relation≤ (called apartial order), denoted by (V,≤), that satisfies the following:

1. ∀x ∈ V (x ≤ x) (reflectivity),
2. ∀x, y ∈ V (x ≤ y ∧ y ≤ x =⇒ x = y) (antisymmetry),
3. ∀x, y, z ∈ V (x ≤ y ∧ y ≤ z =⇒ x ≤ z) (transitivity).

If the setV in a poset (V,≤) is finite, we say the poset isfinite. Two elementsx, y ∈ V do not always
satisfy eitherx ≤ y or y ≤ x. Thus, ifx, y ∈ V satisfy eitherx ≤ y or y ≤ x, two elementsx andy are
said to becomparable. In contrast, ifx andy is not comparable,x andy are said to beincomparable. We
write x < y if x ≤ y andx , y. Also, we often writey ≥ x andy > x for x ≤ y andx < y respectively.

Let (V,≤) be a poset, andU be a nonempty subset ofV . A nodex ∈ U is minimal in U if, for all
y ∈ U such thaty ≤ x, it holds thatx = y. The nodex is calledminimumif x is a unique minimal nodes.
If any two elements ofV are comparable, then we refer to (V,≤) as achainor a totally ordered set, and to
≤ as alinear orderor atotal order.

Definition 2.17 (Rooted Trees)A rooted treeT is a non-empty finite poset (V,≤) that satisfies the
following:

1. There exists a unique elementr ∈ V such thatx ≤ r for all x ∈ V ,

2. For allx, y, z ∈ V , if x ≤ y andx ≤ z, theny andz are comparable.

The elements ofV are callednodes(or vertices) of T , and the noder is called theroot of T and denoted
by root(T ).

We refer to the binary relation≤ as thehierarchical order, where, for two nodesx ≤ y, we say that
x is anancestorof y, andy is a descendentof x. Also, for two nodesx < y, we say thatx is a proper
ancestorof y, andy is aproper descendentof x.

For a treeT , and a nodex ∈ T , by (↑x)T (resp. (�x)T ) we denote the set of all ancestors (resp. proper
ancestors) ofx in T , i.e.

(↑x)T = {y ∈ T | x ≤ y}, (�x)T = {y ∈ T | x < y}.
†log∗ n is callediterated logarithmof n, and is the number of application times of log function to get a constant, i.e. log∗ n =

0 if n ≤ 1; otherwise log∗ n = 1+ log∗(logn).
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Note that for anyx ∈ T , the sets (↑x)T and (�x)T form chains, and Definition 2.17.2 can be replaced with
the following equivalent condition:

2′. The set (↑x)T is a chain for everyx ∈ V .

For a treeT , by V (T ), we denote the set of all nodes inT , and by≤T the hierarchical order≤ of T
for clarity. We also writex ∈ T instead ofx ∈ V (T ) for short.

Theparentof a non-root nodex, denoted by par(x), is the minimum nodey in the set{z ∈ V | z >
x}, and conversely, the nodex is called achild of par(x). The set of all children of a nodex is denoted by
ch(x), i.e. ch(x) = {y ∈ V \ {root(T )} | par(y) = x}. For any two distinct children of a node, one node
is said to be asibling of the other. A node with no children is called aleaf. The set of all leaves in a tree
T is denoted by leaves(T ). Thedepthof a nodex is, denoted by dep(x), the number of proper ancestors of
x, i.e. dep(x) = |{y | x < y}|. The depth of any root node is 0. By dep(T ) we denote the maximum depth
of T , i.e. dep(T ) = max{dep(x) | x ∈ T}, and call it thedepthor heightof T . The size of a treeT is the
number of nodes inT , denoted by|T |. For a nodex, the size of ch(x) is denoted by deg(x), and referred
to as thedegreeof x. The maximum number of children for all nodes in a treeT is denoted by deg(T ), i.e.
deg(T ) = max{deg(x) | x ∈ T}, and referred to as thedegreeof T .

Note that a rooted treeT pursuant to Definition 2.17 is naturally regarded as a directed graph. In
fact, by defining the set of nodes asV (T ) and the set of directed edges asE(T ) = {(x, par(x)) | x ∈
V (T ) \ {root(T )}}, (V (T ), E(T )), we have a directed graphG = (E(T ), V (T )).

A tree may be equipped with another order in addition to the hierarchical order. This additional order
is called thesibling order, denoted by≼, and defines the left-to-right relation between nodes.

Definition 2.18 (Rooted Ordered Trees)A rooted ordered treeT is a triplet (V,≤,≼) such that the
pair (V,≤) is a rooted tree, and the pair (V,≼) is a non-empty finite poset that satisfies the following:

1. For anyx, y ∈ V , two nodesx andy are comparable with respect to the sibling order if and only
if x andy are equivalent, or incomparable with respect to the hierarchical order.

2. For any distinct nodesx, y, x′, y′ ∈ V , if x ≤ x′, y ≤ y′ andx′ ≼ y′, thenx ≼ y.

We define the notation≺,≻, and≽ for the sibling order in the same way as the hierarchical order. For two
nodesx ≺ y, we say thatx is to theleft of y, andy is to theright of x. Also we denote by≼T the sibling
order in a treeT .

We refer to the rooted trees without the sibling order as theunordered trees, and to the rooted ordered
trees as theordered treesfor short. Also, we use the termtreessimply to refer to both the ordered and
unordered trees if there is no confusion. For example, if we say “This property holds for a tree,” we mean
that the property holds no matter whether the relevant tree is ordered or unordered. ByT , TU, andTO, we
denote the set of all trees, unordered trees, and ordered trees with finite nodes respectively.

We define aforestby omitting the condition 1 in Definition 2.17. As in the case of trees, we define
ordered forestsandunordered forests, and use the termforeststo refer to both ordered and unordered forests.

Definition 2.19 (Forests)An unordered forestF is a finite poset (V,≤) that satisfies the following:

1. For allx, y, z ∈ V , if x ≤ y andx ≤ z, theny andz are comparable.

An ordered forestF is a triplet (V,≤,≼) such that the pair (V,≤) is an unordered forest, and the pair
(V,≼) is a poset that satisfies the following:

2. For anyx, y ∈ V , two nodesx andy are comparable with respect to the sibling order if and only
if x andy are equivalent, or incomparable with respect to the hierarchical order.

3. For any distinct nodesx, y, x′, y′ ∈ V , if x ≤ x′, y ≤ y′ andx′ ≼ y′, thenx ≼ y.

As in the case of trees, for a forestF = (V,≤), we denote byV (F ) the set of nodesV , and by≤F the
hierarchical order≤, and by≼F the sibling order for clarity. We also writex ∈ F instead ofx ∈ V (F ) for
short. The size of a forestF is the number of nodes inF , denoted by|F |. By F , FU, andFO, we denote
the set of all forests, unordered forests, and ordered forests with finite nodes respectively.
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Definition 2.20 (Forest Induced by a Set of Nodes)Let T be a tree, andU be a subset ofV (T ). A
forest ofT induced by a set of nodesU is a forestT [U ] = (U,≤) (or (U,≤,≼) for ordered trees) defined
as follows:

1. V (T [U ]) = U ,

2. ∀x, y ∈ U [ x ≤T [U ] y ⇐⇒ x ≤T y ],

3. ∀x, y ∈ U [ x ≼T [U ] y ⇐⇒ x ≼T y ] (only for ordered trees).

By F (v) we denote the forest ofT induced byV (T (v)) \ {v}.

Example 2.21 Figure 2.3depicts a treeT , and a forest ofT induced byU , i.e. T [U ], where

U = {t2, t3, t5, t7, t8, t10, t12, t13, t15}.

T

t1

t2

t3
t4

t5 t6

t7

t8

t9

t10 t11

t12

t13
t14

t15

T [U ]

t2

t3 t5 t6 t7

t8

t10

t12

t13 t15

Figure 2.3. A treeT and a forest ofT induced byU

Normally, trees and forests are denoted with upper-case letters and nodes with lower-case letters.
Preferably, we use for trees lettersR,S, T ; for forests the letterF . Optionally, subscripts and primes are
used.

A forestF ′ is called asubforestof a forestF if V (F ′) is a subset ofV (F ), and the hierarchical order
(and the sibling order for an ordered tree) ofF ′ are inherited fromF .

Definition 2.22 (Complete Subtree)Let T be a tree. Acomplete subtreeof T rooted atv ∈ T is a tree
S defined by

1. V (S) = {x ∈ T | x ≤T v},

2. ∀x, y ∈ S [ x ≤S y ⇐⇒ x ≤T y ],

3. ∀x, y ∈ S [ x ≼S y ⇐⇒ x ≼T y ] (only for ordered trees).

By T (v) we denote the complete subtree ofT rooted atv ∈ T . In the same manner, we define acomplete
subtreeof a forestF rooted atv ∈ F .

A forestF ′ is called acomplete subforestof a forestF if F ′ consists of complete subtrees inF .

Remark 2.1 The termsubtreeis used in several meanings. In this definition, byT (v) we denote the
complete subtree rooted atv ∈ T . On the other hand, for any subset of nodesU ∈ V (T ) such thatT [U ]
forms a tree, if every edge inT [U ] is also an edge inT , then the treeT [U ] is referred to as thesubtreeof
T , otherwise, asubtree patternof T .

Definition 2.23 (Labeled Trees and Labeled Forests)Let Σ be a nonempty finite set of symbols,
calledalphabet, and letl : V → Σ be alabeling functionfrom a set of nodesV to an alphabetΣ. If all
the nodes in a tree or a forest are labeled by a labeling functionl, we say that the tree or the forest is
labeled.



22 Chapter 2. Approximate Tree Matching

T1 T2 � � � Ti| {z }F1 Ti+1 Ti+2 � � � Tn| {z }F2| {z }F1 � F2 = T1 � T2 � � � � � Tn
vT = v(F )

T1 T2 � � � Tn| {z }F = T1 � T2 � � � � � Tn
Figure 2.4. The composite of two forestsF1 andF2 Figure 2.5. TreeT = v(F )

We use sans-serif typeface for labels, e.g.Σ = {a, b, c, d, . . .}.
We introduce the notion of theleast common ancestor(also known as thelowest or nearest common

ancestor) of a set of nodes. This notion plays a significant role in comparing structures of two trees.

Definition 2.24 (Least Common Ancestor)For a treeT and a set of nodesU ⊆ V (T ), a common
ancestorof U is a nodex ∈ T such thaty ≤ x for all y ∈ U . The least common ancestorof U is
the common ancestorx of U such thatx ≤ y holds for any common ancestory of U , and denoted by
lca(U ).

For a treeT , when the set of nodesU ⊆ V (T ) includes just two nodesx andy, we have a function
`: V × V → V defined by

x`y = lca({x, y}) .

Example 2.25 For the treeT in Figure 2.3, we can observe the following.

lca({t3, t4, t6}) = t2, lca({t3, t6, t9}) = t1, lca({t3}) = t3,
t3` t6 = t2, t4` t9 = t1, t8` t10 = t8.

2.3.2 Syntactic Representation of Ordered Trees and Forests

An ordered forest is viewed as a series of subtreesT1, . . . , Tn as shown inFigure 2.4, and a new tree is
constructed by adding a new node so that it is the parent of the roots of all subtrees as shown inFigure 2.5.
From this observation, we introduce yet another representation of ordered trees and forests in a syntactical
way. This syntactic representation is inspired by the notation due to Dulucq and Touzet [DT03b].

Definition 2.26 (Syntactic Representation of Ordered Trees and Forests)Let T1, . . . , Tn (n ≥ 0)
be a series of ordered trees. ByT1 • · · · • Tn we denote a concatenation of ordered treesT1, . . . , Tn in
order. We refer to a concatenation of ordered trees as anordered forest. If n = 0, i.e. an ordered forest
with no trees, we refer to it as anempty forest, and simply write∅. We also use the notation•n

i=1 Ti

instead ofT1 • · · · • Tn for short. Let us defineTi • · · · • Tj = ∅ for i > j.
Let F be anordered forestT1 • · · · • Tn andv be a node not included inV (F ). The ordered tree

v(F ) is defined as follows.

• V (v(F )) =
(∪n

i=1 V (Ti)
)
∪ {v}.

• x < y if and only if one of the following holds.

· x, y ∈ Ti for somei, andx < y in Ti.

· y = v.

• x ≺ y if and only if one of the following holds.

· x, y ∈ Ti for somei, andx ≺ y in Ti.

· x ∈ Ti, y ∈ Tj andi < j.
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Algorithm 2.2 Tree traversals

procedurePreorder(v(F ) • F ′)
visit(v)
Preorder(F ) if F , ∅
Preorder(F ′) if F ′ , ∅

end

procedurePostorder(v(F ) • F ′)
Postorder(F ) if F , ∅
Postorder(F ′) if F ′ , ∅
visit(v)

end

This representation can be defined in recursive form, and it is convenient for decomposing a tree
structure recursively. In the following, we give the definition in a mutually recursive manner (See Figure 2.4
and Figure 2.5).

Definition 2.27 (Recursive Definition of Ordered Trees and Forests)Let TO be the set ofordered
treesdefined hereinafter, and let• be a connective symbol. The set ofordered forestsis the smallest set
FO such that:

(F1) T ∈ TO =⇒ T ∈ FO.

(F2) T1, . . . , Tn ∈ TO =⇒ T1 • · · · • Tn ∈ FO.

(F3) F1, . . . , Fn ∈ FO =⇒ F1 • · · · • Fn ∈ FO.

Let V be the set of nodes. The set ofordered treesis the smallest setTO such that:

(T1) v ∈ V =⇒ v ∈ TO.

(T2) v ∈ V ∧ F ∈ FO =⇒ v(F ) ∈ TO.

For an ordered forestF = T1 • · · · • Tn, we writeTi ∈ F for anyi ∈ {1, . . . , n}.

Example 2.28 The tree in Figure 2.3 is represented as
t1(t2(t3 • t4(t5 • t6) • t7) • t8(t9(t10 • t11)) • t12(t13 • t14(t15))).

Note that a forest can be∅, whereas a tree must include at least one node. A tree and a forest are
usually represented byT andF (possibly with a subscript or a superscript), respectively. In comparing two
forests or trees, we use the following matching conventions:

T • F = T1 • · · · • Tn =⇒ T = T1 ∧ F = T2 • · · · • Tn,
F • T = T1 • · · · • Tn =⇒ T = Tn ∧ F = T1 • · · · • Tn−1,

T • F = T ′ =⇒ T = T ′ ∧ F = ∅,
F • T = T ′ =⇒ T = T ′ ∧ F = ∅,

v = v′(F ) =⇒ v = v′ ∧ F = ∅.

2.3.3 Tree Traversals

A tree traversal is a way of enumerating all the nodes in trees. Here, we present two basic traversal schemes
for ordered trees,preorderandpostordertraversals. In aleft-to-right preorder traversal, the root of a tree
is first visited, and then the subtrees rooted at its children are visited from left to right recursively. (In a
right-to-left preorder traversal, these children are visited from right to left recursively.)

On the other hand, in aleft-to-rightpostorder traversal, the root of a tree is visited after all the subtrees
rooted at its children are visited from left to right recursively. (In aright-to-left postorder traversal, these
children are visited from right to left recursively.) We refer toleft-to-right preorder or postorder simply as
preorder or postorder if otherwise stated.

In Algorithm 2.2, we show the procedures for the left-to-right preorder and postorder traversals.
These procedures are initially called as Preorder(T ) and Postorder(T ) for an ordered treeT . The proce-
durevisit(v) depends on the application. We have the procedures for right-to-left preorder and postorder
traversals by rewriting the first line of each procedure respectively as follows:

procedurePreorder(F ′ • v(F ))

procedurePostorder(F ′ • v(F ))
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Example 2.29 Consider a labeled ordered treeT in Figure 2.6, in which each label is attached to the left of
each node. Figure 2.6(a) depicts preorder numbering ofT , in which each number is attached to the right of
each node, and Figure 2.6(b) depicts postorder numbering ofT . According to these orders, we can serialize
the labels inT . We refer to these serialized labels aslabel sequencesof T .

The label sequence ofT in left-to-right preorder is “abcdef” while the label sequence ofT in left-to-
right postorder is “cedbfa.” Ta 1b 2 3 d 4e 5 f 6 Ta 6b 4 1 d 3e 2 f 5

(a) Preorder numbering (b) Postorder numbering

Figure 2.6. Left-to-Right Preorder and Postorder numberings of an ordered tree

For a treeT , byET we denote the left-to-right preorder inT . Then, the formal definition is given as
follows.

Definition 2.30 (Left-to-Right Preorder) For a treeT , theleft-to-right preorderof T is the minimum
total orderET satisfying the following: for anyx, y ∈ V (T ),

• x ≤T y =⇒ x ET y,
• x ≼T y =⇒ x ET y,

If x , y andx ET y, we denotex ▹ y. In other words, for a treeT , the left-to-right preorder ofT
is a common linear extension† of the hierarchical order and sibling order ofT . It is easy to see that the
left-to-right preorder ofT is uniquely determined, and totally ordered onV (T ).

2.4 Tree Edit Distance — Tai Distance
Tree edit distance is a generalization of string edit distance. In this section, we review the operational
definition of tree edit distance along the lines of string edit distance.

2.4.1 Edit Operations

The tree edit distance between two trees is defined as the minimum cost of elementary edit operations
required to transform one tree into the other [Tai79, ZS89].

The set of elementaryedit operationson a treeT consists of the following three operations.

Replacement of a nodex in T by a new nodey not inT .

Deletion of a non-root nodex from T , moving all children ofx right under the parent ofx.

Insertion of a new nodex into T as a child of a nodey in T , moving a subset (a consecutive subsequence
in the case of ordered trees) ofy’s children and their descendants right under the new nodex. Note
that this is the complementary operation of deletion.

†A totally ordered set (X,E) is a linear extensionof a poset (X,≤) if for any x, y ∈ X, x ≤ y ⇒ x E y holds.
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Remark 2.2 (Root-Editable Operations) According to the definition of edit operations, we cannot delete
the root and insert a new root of any tree. This setting is just for theoretical tractability. Actually, in most
algorithms of (general) tree edit distance, it is allowed to edit the root of any tree as well as the other nodes,
and edit operations are defined on forests instead of trees. We may assume, without loss of generality, that
the root of any tree remains intact by any edit operation since we can add an abiding dummy root on the top
of the root of the original tree, and regard it as the new root. By removing the dummy root after applying
all the edit operations, we have the same effect of root-editable operations. In fact, in spite of the definition
of edit operations, we employ root-editable operations in this thesis.

As in the case of strings, in order to estimate the cost for edit operations to transform a treeS to a tree
T , we denote eachedit signatureas follows:

• “s 7→ t” for the replacement of a nodes in S by a nodet in T ,
• “ε 7→ t” for the insertion of a nodet in T into S,
• “s 7→ ε” for the deletion of a nodes from S.

The symbolε denotes anull node, and we assume the label of any null nodeε is agap symbol, i.e. l(ε) =“-.”
Let us abuse notation by referring to each edit operation as its edit signature although the edit signa-

tures do not have enough information for actual edit operations if there is no confusion. We writeS
e−→ T ,

if we obtain a treeT from a treeS by applying an edit operatione,
Let d be a cost function of edit signatures, and we equate the two notationsd(x 7→ y) andd(x, y) as

follows:

d(s 7→ t) = d(s, t) for all (s, t) ∈ (V (S) ∪ {ε}) × (V (T ) ∪ {ε}).

Note that each edit signature is used just for a cost factor of each edit operation. Then an edit signature
cannot be a representation of edit operation itself. In fact, the edit signature for insertion does not have any
information about where the node is to be inserted. Moreover, almost all conventional models based on edit
distance have factored in just a transition of the labels of edited nodes, because this simplification enables us
to estimate the cost for edit operations regardless of the applicative order. It may oversimplify in a specific
application, and establishing a more general edit model is an open problem to address, although it goes
beyond the scope of this thesis.

Example 2.31 Figure 2.7shows that the three elementary edit operations.

Replacement
x 7→ x′

tuv xw y z −→

tuv x0w y z
Deletion
x 7→ ε

tuv xw y z −→

tuv w y z
Insertion
ε 7→ x

tuv w y z −→

tuv xw y z
Figure 2.7. Examples of the three elementary edit operations
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2.4.2 Tree Edit Problem

We here forbid edit operations with the edit signaturesx 7→ y such thatx = y. If a series of edit operations
E = ⟨e1, . . . , en⟩ (n ≥ 1) transforms a treeS into a treeT , there exists a series of trees⟨T0, . . . , Tn⟩ such
thatT0 = S, Tn = T , and thei-th edit operationei = (si 7→ ti) transformsTi−1 into Ti for i ∈ {1, . . . , n},
i.e.

S = T0
e1−→ T1

e2−→ · · · en−→ Tn = T

If S = T , then we definen = 0. The cost function cost(·) for a series of edit operationsE = ⟨e1, . . . , en⟩ is
derived from the total cost for the elementary edit operations as follows:

cost(E) =
n∑

i=1

d(ei).

If n = 0, then we define cost(E) = 0. We refer to the series of edit operationsE as theedit script. By
E(S, T ) we denote the set of all possible edit scripts to transformS into T .

Tai presented the following edit distance for trees [Tai79]. Although a variety of tree edit distance
measures have been proposed, Tai’s distance measure is recognized as the most standard one, and we refer
to it asTai distanceto distinguish it from the other variants of tree edit distance.

Definition 2.32 (Tai Distance [Tai79]) The edit distance between two treesS andT is defined as
follows:

DTai(S, T ) = min
E∈E(S,T )

cost(E).

We refer to an edit script with the minimum cost as anoptimal edit script. The problem of computing
the edit distance between two trees along with an optimal edit script is called thetree edit problem, or more
specificallyTai edit problem.

Tai showed that ifd is a metric, then the tree edit distance is also a metric. In particular, Tai defined
the cost functiond as a metric over node labels, i.e.

d(x, y) = dl(l(x), l(y)) for all (x, y) ∈ (V (S) ∪ {ε}) × (V (T ) ∪ {ε}), (2.1)

wheredl : (Σ∪{-})× (Σ∪{-}) → R is a metric. Throughout this thesis, we assume that the cost function
d is a metric.

We refer to Definition 2.32 as anoperational definitionof tree edit distance, or anoperational se-
manticsof tree edit distance. We refer to a specific algorithm for computing tree edit distance also as an
operational definition (or semantics).

2.4.3 Algorithms for Ordered Trees

The algorithms for computing Tai distance for ordered trees have been continuously improved since Tai
proposed an O(n6) time and space algorithm [Tai79] in 1979, wheren denotes the size of inputs (n =
max{|T1| , |T2|} for given two treesT1 and T2). Subsequently, Aoki presented a top-down algorithm
[Aok83] with the time and space complexity of O(n4), and it was followed by a bottom-up algorithm
[Tan83] which runs in O(n4) time and O(n3) space. Zhang and Shasha independently developed a bottom-
up algorithm [ZS89] which runs in O(n4) time and O(n2) space, and Klein improved their algorithm, and
proposed an algorithm [Kle98] with O(n3 logn) time and O(n3 logn) space (this space bound can be im-
proved to O(n2) due to Klein’s comments cited in a survey [Bil05, Section 3.2.3]). It is notable that Klein’s
algorithm runs in the same computational complexity even forunrootedordered trees.

These algorithms are all based on decomposing tree structures with dynamic programming, and have
been improved by refiningdecomposition strategyfor trees. Dulueq and Touzet conducted an intensive
analysis of decomposition strategy for trees [DT03b, DT05], and proved a worst-case lower bound of
Ω(n2 log2 n) time for any decomposition strategy based algorithms [DT05, Corollary 16].

Later, without dynamic programming, Chen proposed a novel algorithm [Che01] by reducing the tree
edit problem into a matrix multiplication problem. Chen’s algorithm runs in O(n3.5) time and O(n3) space.
Then, Klein’s algorithm had been still asymptotically most efficient.
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Table 2.2.Computational complexity of Tai edit problem for ordered trees

Reference
Specific complexity n-Parameterized

Time Space Time Space

[Tai79] O(n1n2h
2
1h

2
2) O(n1n2h

2
1h

2
2) O(n6) O(n6)

[Aok83] O(n1n2h1h2) O(n1n2h1h2) O(n4) O(n4)
[Tan83] O(n2

1n2ℓ1) O(n1n2ℓ1) O(n4) O(n3)
[ZS89] O(n1n2c1c2) O(n1n2) O(n4) O(n2)
[Kle98] O(n2

1n2 logn2) O(n1n2)† O(n3 logn) O(n2)
[Che01] O(n1n2 + ℓ2

1n2 + ℓ2.5
1 ℓ2) O((n1 + ℓ2

1)c2 + n2) O(n3.5) O(n3)
[DMRW07]‡ O(n2

1n2(1+ log n2
n1

)) O(n1n2) O(n3) O(n2)

Worst-case lower bounds in decomposition strategy based algorithms
[DT03b, DT05] Ω(n1n2 logn1 logn2) Ω(n2 log2 n)
[DMRW07] Ω(n1n

2
2(1+ log n1

n2
)) Ω(n3)

Fixed-parameter algorithms Remark

[SZ90] O(K2n1 min{ℓ1, ℓ2}) O(n1n2) unit costs
[Tou05] O(k3n) O(kn) O(k2n) time for traceback

ni: size of treeTi for i ∈ {1, 2}, and assume thatn1 ≤ n2 = n,

hi: height (depth) of treeTi for i ∈ {1, 2}, ℓi = |leaves(Ti)| for i ∈ {1, 2},

ci = min{ℓi, hi} for i ∈ {1, 2}, K: fixed upper bound of distance.

k: fixed upper bound of the number of insertions and deletions.

† This bound is reported in a survey [Bil05, Section 3.2.3] as Klein’s comments.

‡ A worst-case optimal algorithm in decomposition strategy based algorithms.

Based on the decomposition strategy framework proposed by Dulueq and Touzet [DT03b, DT05], the
most recent improvement has been made by Demaineet al. [DMRW07]. They presented an O(n3)-time
and O(n2)-space algorithm and tightened the worst-case lower bound ofΩ(n2 log2 n) time by Dulueq and
Touzet [DT05] toΩ(n3) time. Thus, their algorithm is known to be worst-case optimal in decomposition
strategy.

Shasha and Zhang proposed afixed-parameter algorithm[SZ90] for unit-cost Tai distance. This
algorithm runs in O(K2 · min{n1, n2} · ℓ) time and O(n1n2) space for a fixed upper boundK of unit-cost
Tai distance, whereℓ = min{|leaves(T1)|, |leaves(T2)|}. This algorithm returns the unit-cost Tai distance
between given two trees if the distance is at mostK, otherwise stops. Touzet proposed afixed-parameter
algorithm [Tou05] without unit-cost restriction. This algorithm runs in O(k3n) time and O(kn) space for a
fixed upper boundk of the number of insertions and deletions.

We summarize the complexities of these algorithms inTable 2.2. Among these algorithms, in
what follows, we show Zhang and Shasha’s algorithm since it is succinct and is the basis of the other
decomposition-based algorithms.

Zhang-Shasha’s Algorithm for Ordered Trees

Zhang and Shasha’s operational definition of Tai distance is simple and almost the same as the definition of
string edit distance. In their definition, Tai distance is defined on two forests instead of two trees.

D(∅, ∅) = 0

D(F • v(F ′), ∅) = D(F • F ′, ∅) + d(v, ε)

D(∅, F • v(F ′)) = D(∅, F • F ′) + d(ε, v)

D(F1 • v1(F ′
1), F2 • v2(F ′

2)) = min

 D(F1, F2) + D(F ′
1, F

′
2) + d(v1, v2)

D(F1 • F ′
1, F2 • v(F ′

2)) + d(v1, ε)
D(F1 • v1(F ′

1), F2 • F ′
2) + d(ε, v2)

(2.2)
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Algorithm 2.3 Zhang-Shasha’s algorithm for Tai distance
Input: T1, T2

computell (·), keyrootsindex(T1), keyrootsindex(T2)
foreachm ∈ keyrootsindex(T1) in ascending orderdo

foreachn ∈ keyrootsindex(T2) in ascending orderdo
TreeDist(m, n)

return DT [|T1| , |T2|]

procedureTreeDist(m, n)
D(∅, ∅) ← 0
for i ← ll (m) to m

D(T1[ll (m)..i], ∅) ← D(T1[ll (m)..i − 1], ∅) + d(T1[i], ε)
for j ← ll (n) to n

D(∅, T2[ll (n)..j]) ← D(∅, T2[ll (n)..j − 1]) + d(ε, T2[j])
for i ← ll (m) to m

for j ← ll (n) to n
if ll (i) = ll (m) and ll (j) = ll (n) then

D(T1[ll (m)..i], T2[ll (n)..j]) ←

min

 D(T1[ll (m)..i − 1], T2[ll (n)..j]) + d(T1[i], ε)
D(T1[ll (m)..i], T2[ll (n)..j − 1]) + d(ε, T2[j])
D(T1[ll (m)..i − 1], T2[ll (n)..j − 1]) + d(T1[i], T2[j])

DT [i, j] ← D(T1[ll (m)..i], T2[ll (n)..j])
else

D(T1[ll (m)..i], T2[ll (n)..j]) ←

min

 D(T1[ll (m)..i − 1], T2[ll (n)..j]) + d(T1[i], ε)
D(T1[ll (m)..i], T2[ll (n)..j − 1]) + d(ε, T2[j])
D(T1[ll (m)..i − 1], T2[ll (n)..j − 1]) + DT [i, j]

end

The decomposition strategy of this algorithm is simple, i.e. it always focuses on the rightmost roots of
two forests. Any complete subforestF ′

1 of F1 (resp.F ′
2 of F2) occurs in the computation D(F1, F2) as an

argument is called arelevant forestof F1 (resp. F2). It is easy to see that the number of relevant forests
dominates the computational complexity of this type of decomposition-based algorithms.

In order to compute these recurrences efficiently, Eq.(2.2) is split into the following two recurrences.

D(F1 • v1(F ′
1), F2 • v2(F ′

2)) = min

 D(F1, F2) + DT (v1(F ′
1), v(F ′

2))
D(F1 • F ′

1, F2 • v2(F ′
2)) + d(v1, ε)

D(F1 • v1(F ′
1), F2 • F ′

2) + d(ε, v2)

DT (v1(F1), v2(F2)) = min

 D(F1, F2) + d(v1, v2)
D(F1, v2(F2)) + d(v1, ε)
D(v1(F1), F2) + d(ε, v2)

where D(F1, F2) denotes the Tai distance between two forestsF1 andF2, and DT (T1, T2) denotes the Tai
distance between two treesT1 andT2. As shown inAlgorithm 2.3, Zhang and Shasha implemented the
recurrences efficiently with dynamic programming. In this algorithm, all the nodes in each treeTi (i ∈
{1, 2}) are indexed by left-to-right postorder numbering from 1 to|Ti|. For a treeT , by T [i] we denote the
node indexed byi, and byT [i..j] we denote a forest induced by the set of nodesT [i], T [i+1], . . . , T [j]. If
i > j, thenT [i..j] = ∅. By ll (i) we denote the index of the leftmost leaf in the subtree rooted atT [i]. The
array DT [i, j] stores the Tai distance between two treesT1(T1[i]) andT2(T2[j]), and D(F1, F2) denotes an
abstract array (or a hash table) which stores the Tai distance between two forestsF1 andF2.
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The essential idea of this dynamic programming algorithm is left-to-right postorder numbering of
nodes. In the numbering, a set of nodes indexed by consecutive numbers induces a forest, and the forest
T [ll (i)..i] forms the complete subtree rooted atT [i] for any i ∈ {1, . . . , |T |}. By virtue of such properties,
this numbering enables right-to-left decomposition of forests in a bottom-up manner.

The set of nodes keyroots(T ) is defined as follows:

keyroots(T ) = {root(T )} ∪ {v ∈ T | v has a left sibling}.

In implementation, the indices of the nodes in keyroots(T ) are computed as keyrootsindex(T ).

keyrootsindex(T ) = {k ∈ {1, . . . , |T |} | @k′ ∈ {1, . . . , |T |} such thatk < k′ andll (k) = ll (k′)}.

Example 2.33 For a given treeT in Figure 2.8(a), the nodes in keyroots(T ) are depicted by filled circles:

keyrootsindex(T ) = {3, 5, 8, 10, 11, 13, 15, 17, 18, 19}.

Each iteration in the procedure TreeDist(m,n) is computed along each thick line from a leaf to an ances-
tor depicted by a filled circle. Then, the thick lines and isolated filled circles in Figure 2.8(a) depict the
decomposition strategy of Zhang-Shasha’s algorithm forT (cf. [DT05]). In this strategy, a given tree is
decomposed along leftmost disjoint paths as shown in Figure 2.8(a). We can observe thatT [ll (16)..16]
forms the complete subtree rooted atT [16] sincell (16) = 12. Figure 2.8(b) shows the forest induced by
the set of nodes{T [i] | 7 ≤ i ≤ 17}, i.e. T [7..17].T
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T [7::17℄
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17

(a) keyroots(T ) (b) ForestT [7..17]

Figure 2.8. Left-to-right postorder numbering of nodesT1 T2
(a) Worst (biquadratic) case (b) Quadratic case

Figure 2.9. Two extreme examples in Zhang-Shasha’s algorithm

Complexity. We here estimate the time complexity of Zhang-Shasha’s algorithm. For a treeT and a node
v ∈ T , we define thecollapsed depthof v as the number of ancestors ofv included in keyroots(T ), and
denote it by cdepth(v), i.e.

cdepth(v) = |(↑v)T ∩ keyroots(T )| .
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Also, let cdepth(T ) denote
cdepth(T ) = max{cdepth(v) | v ∈ T}.

It follows from the recurrence in Eq.(2.2) that the number of relevant forests for each nodev ∈ keyroot(T )
is |T (v)| − 1. Then, we obtain the upper bound of the number of relevant forests for a treeT as follows:∑

v∈keyroots(T )

|F (v)| <
∑

v∈keyroots(T )

|T (v)| =
∑
v∈T

cdepth(v) ≤
∑
v∈T

cdepth(T ) = |T | · cdepth(T ).

Zhang and Shasha showed that cdepth(T ) ≤ min{dep(T ), leaves(T )} for a treeT in [ZS89, Lemma 6].
Hence, Zhang-Shasha’s algorithm runs in O(|T1| · |T2|min{dep(T1), leaves(T1)}min{dep(T2), leaves(T2)}).

Dulucq and Tichit [DT03a] conducted an exact complexity analysis of Zhang-Shasha’s algorithm
[ZS89], and showed that the average time complexity of the algorithm isΘ(n3). The worst case ofΘ(n4)
time happens if the same two treesT1 andT1 in Figure 2.9are given [DT03a], while the time complexity is
Θ(n2) if two treesT2 andT2 are given. In Figure 2.9, the filled circles indicate the elements of keyroots(Ti)
for i ∈ {1, 2}, and we assume|T1| = |T2| = n.

Decomposition-based Algorithms

Following Zhang-Shasha’s algorithm [ZS89], two remarkable algorithms were proposed: Klein’s algorithm
[Kle98] and an optimal decomposition algorithm due to Demaineet al. [DMRW07]. These three algorithms
are all based on the decomposition strategy.

Definition 2.34 (Decomposition Strategy [DT03b, Definition 3])For two ordered forestsF1 andF2,
consider Tai distance betweenF1 andF2. Let

F1 = TL
1 • FR

1 = FL
1 • TR

1 ,

F2 = TL
2 • FR

2 = FL
2 • TR

2 ,

whereTL
i andTR

i are trees, andFL
i andFR

i are forests fori ∈ {1, 2}. A decomposition ofFi is a
left-decomposition ifFi is decomposed intoTL

i andFR
i for eachi ∈ {1, 2}. A decomposition ofFi is

a right-decomposition ifFi is decomposed intoFL
i andTR

i for eachi ∈ {1, 2}.
A decomposition strategyis denoted by a mappingS : FO × FO → {left, right}. We refer to

left or right as adirection. In strategy, the direction indicates the way of decomposition for each pair of
forests.

Example 2.35 In Eq.(2.2) in Zhang-Shasha’s algorithm, each forest is decomposed into therightmosttree
and the rest of forest, i.e. a forestF = T1 • · · · •Tn−1 •Tn is decomposed intoT1 • · · · •Tn−1 andTn. This
strategy is depicted byS(F1, F2) = right for any forestsF1 andF2.

The decomposition strategies for Zhang-Shasha’s algorithm and Klein’s algorithm are depicted as
follows.

• Zhang-Shasha’s algorithm [ZS89]:S(F1, F2) = right.
• Klein’s algorithm [Kle98]: Assume that|F1| ≥ |F2|, then

S(F1, F2) =

{
left if |FL

1 | ≤ |FR
1 |

right otherwise.

In the decomposition strategy in Klein’s algorithm, for given two forestsF1 andF1 (assume|F1| ≥ |F2|),
the number of decomposed forests is bound by O(|F1| log |F1|) and O(|F2|2) respectively. Since these upper
bounds determine the time complexity of Klein’s algorithm, it runs in O(|T1| · |T2|2 log |T1|) for given two
treesT1 andT2 (assume|T1| ≥ |T2|).

Klein’s algorithm determines the direction of decomposition according only to the complete sub-
forests ofF1 even if |F ′

1| ≤ |F ′
2| holds for a pair of relevant forestsF ′

1 andF ′
2 in a subproblem, where

F ′
1 andF ′

2 are complete subforests ofF1 andF2 respectively. It is a legitimate question to ask if Klein’s
decomposition strategy can be applied also to a subforest ofF2 if |F ′

1| ≤ |F ′
2| holds in a subproblem.

Demaineet al. tackled this problem, and designed a new succinct algorithm, and proved that it is an
optimal algorithm in decomposition-based algorithms [DMRW07].
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Approximate Tree Matching with Variable-Length Don’t Care Patterns

In approximate string matching, a variable-length-don’t-care pattern (VLDC pattern) is an element of (Σ ∪
{*})∗, where the symbol “*” is a VLDC symbol, which matches any substring with cost 0 [Aku96]. For
example a VLDC pattern “a*ndment” matches a string “alignment” with distance 1 since “*” matches “lig”
with cost 0 and “d” is deleted with cost 1 (we assume unit costs).

Zhanget al. extended the notion of VLDC pattern matching in strings to trees, and proposed an
algorithm for approximate tree matching between two ordered trees with VLDC patterns [ZSW94] as a
variant of the Tai edit problem. In the algorithm, the following two VLDC symbols were introduced: (1)
a path-VLDC, which matches part of a path from the root to a leaf of a tree; (2) an umbrella-LDC, which
matches part of a path and all the subtrees ramifying from the nodes, except at the lowest node of the path.
This algorithm runs in the same computational complexity of Zhang-Shasha’s algorithm for Tai distance.

2.4.4 Algorithms for Unordered Trees

For unordered trees, Zhang proposed an algorithm [ZSS92] for computing Tai distance for unordered trees
with a similar dynamic programming procedure as Algorithm 2.3, and showed it runs in O(n1n2+ℓ1!3ℓ1(ℓ3

1+

d2
2)n2) time, where byd2 we denote deg(T2), and the other parameters are the same as in Table 2.2.

Also Zhanget al. [ZSS92] showed that the decision problem of determining whether the Tai distance
between two given treesT1 andT2 is less than or equal tok ∈ N (Tai distance problem) is NP-complete,
even for binary trees with an alphabet of size two, by reducingExact Cover by 3-Sets (X3C)(cf. [GJ79,
page 221]) into this decision problem. Moreover, Zhang and Jiang [ZJ94] showed that the largest common
subtree problem and the Tai edit problem is shown to be MAX SNP-hard, also even for binary trees with
an alphabet of size two, by reducingMaximum Bounded Covering by 3-Sets(MAX 3SC-3) [Kan91] into
this optimization problem. This fact implies that the Tai edit problem does not have any polynomial-
time approximation scheme (PTAS), unless P=NP, where a problem has a PTAS if the problem can be
approximated within a factor of 1+ ϵ (for any constantϵ > 0) in polynomial time.

Torselloet al. proposed an algorithm [TH03a] by reducing the problem of computing Tai distance
for unordered trees into themaximum weighted clique problemin order to take advantage of a powerful
heuristics for approximation [BPS00]. Horeshet al. developed an A∗ algorithm [HMU06] forunlabeled
unordered trees.

We summarize the computational complexity of the Tai edit problem for unordered trees inTable 2.3
and the algorithms for Tai distance for unordered trees inTable 2.4.

Table 2.3.Computational complexity of Tai edit problem for unordered trees

Reference Worst-case lower bound Remark

[ZSS92] NP-complete even for binary trees with an alphabet of size two
[ZJ94] MAX SNP-hard ′′

Table 2.4.Algorithms for Tai distance for unordered trees

Reference Method Remark

[ZSS92] dynamic programming O(n1n2 + ℓ1!3ℓ1(ℓ3
1 + d2

2)n2) time
[TH03a] reduction to maximum weighted clique problem approximation algorithm
[HMU06] A∗ algorithm for unlabeled trees

ni: size of treeTi for i ∈ {1, 2}, ℓi = |leaves(Ti)| for i ∈ {1, 2}
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2.5 Tree Mappings
Tai showed a fundamental correspondence between the effect of a series of edit operations and a common
pattern shared in two trees [Tai79]. The common pattern is represented as a set of pairs of nodes called a
tree mapping(originally called just amapping[Tai79]). Tai distance and the other variants are defined by
giving a condition of tree mappings as well as the operational ways. We refer to this static view of tree edit
distance by a class of tree mappings as thedeclarative definitionor as thedeclarative semantics.

Basically, a declarative definition of a tree edit distance measure makes it clearer and easier to study
mathematical properties of the measure. In fact, most algorithms for computing various tree edit distance
measures have been designed from the view of tree mappings, and the correctness of each algorithm also has
been proved mainly by verifying the correspondence between the algorithm and the declarative definition
of the edit distance measure.

In what follows, we first introduce a general form of tree mapping, and next show the declarative
definition of Tai distance by using tree mapping.

2.5.1 Tree Mapping based Distance

A tree mapping is a partial node-to-node correspondence between two trees.

Definition 2.36 (Tree Mapping) A tree mappingM from a treeS to a treeT is a set of pairs of nodes
M ⊆ V (S) × V (T ) satisfyings1 = s2 ⇔ t1 = t2 for any (s1, t1), (s2, t2) ∈ M .

We also say that a tree mappingbetweenS andT if there is no confusion. We denote byM(S, T ) all
possible tree mappings betweenS andT , and byMST we sometimes denote an element ofM(S, T ).

For a tree mappingM between two treesS andT , we use the following notation:

M (s) = t if ∃t ∈ T [(s, t) ∈ M ] for s ∈ S,

M−1(t) = s if ∃s ∈ S [(s, t) ∈ M ] for t ∈ T,

M (1) = {s ∈ S | ∃t ∈ T [(s, t) ∈ M ]} ,

M (2) = {t ∈ T | ∃s ∈ S [(s, t) ∈ M ]} .

Given a cost functiond : (V (S)∪{ε})× (V (T )∪{ε}) → R as shown in Eq.(2.1), the cost of a tree mapping
M is defined as follows:

cost(M ) =
∑

(s,t)∈M

d(s, t) +
∑

s∈V (S)\M (1)

d(s, ε) +
∑

t∈V (T )\M (2)

d(ε, t). (2.3)

In this chapter, we introduce a variety of classes of tree mappings by imposing some restriction on tree
mappings, and define tree edit distance measures such as Tai distance, alignment distance and constrained
distance based on these classes of tree mappings. These classes are referred to as the symbolC when we
need a general description for each class of tree mapping, and we refer to the tree mappingC-mapping. Let
MC(S, T ) denote the set of all possible tree mappings belonging to classC between two treesS andT , i.e.

MC(S, T ) = {M ∈ M(S, T ) | M is a tree mapping fromS to T belonging to classC}.

In what follows, we give a few important properties of tree mappings related to the notion of tree
mapping class.

Definition 2.37 (Class Hierarchy of Tree Mappings) A classC1 of tree mappings is asubclassof a
classC2 of tree mappings, denoted byC1 ⊆ C2, if MC1(S, T ) ⊆ MC2(S, T ) holds for any two treeS
andT . Conversely, we say thatC2 is asuperclassof C1 if C1 ⊆ C2. In particular,C1 is aproper subclass
of a classC2, denoted byC1 ( C2, if C1 ⊆ C2 andMC1(S, T ) ( MC2(S, T ) for some two treesS andT
hold. Conversely, we say thatC2 is aproper superclassof C1 if C1 ( C2.
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Definition 2.38 (Monotonicity of a Class of Tree Mappings)A classC of tree mappings ismonotonic
if the following holds:

(∀S, T ∈ T )(∀M,M ′ ∈ M(S, T )) [ M ′ ⊆ M ∧ M ∈ MC(S, T ) =⇒ M ′ ∈ MC(S, T ) ].

Definition 2.39 (Composition of Tree Mappings)Let R, S, andT be trees. For any two tree mappings
MRS ∈ M(R,S) andMST ∈ M(S, T ), thecompositionof MRS andMST is defined as follows:

MST ◦ MRS
† = {(r, t) ∈ V (R) × V (T ) | ∃s ∈ S [(r, s) ∈ MRS ∧ (s, t) ∈ MST ] }.

Lemma 2.40 (Subadditivity of Tree Mapping Costs) Let R,S, andT be trees. If the cost function
d is a metric, then for any two tree mappingsMRS ∈ M(R,S) andMST ∈ M(S, T ), the following
holds.

cost(MST ◦ MRS) ≤ cost(MRS) + cost(MST ).

Proof. For any (r1, t1), (r2, t2) ∈ M23 ◦M12, the conditionr1 = r2 ⇔ t1 = t2 holds due to Definition 2.36.
Then, we consider the cases for the nodes of each tree.

1. For any nodes ∈ S, it suffices to consider the following four cases:
(a)s ∈ MRS

(2) ands ∈ MST
(1), (b) s <MRS

(2) ands ∈ MST
(1),

(c) s ∈ MRS
(2) ands <MST

(1), (d) s <MRS
(2) ands <MST

(1).
In any case, there exist two unique node pairs (r, s) ∈ (V (R) ∪ {ε}) × V (S) and (s, t) ∈ V (S) ×
(V (T ) ∪ {ε}) associated withs. Sinced(r, t) ≤ d(r, s) + d(s, t), the assertion holds in these cases.

2. For any noder ∈ R, if r ∈ MRS
(1), then there exists a unique node pair (r, s) ∈ MRS . Hence, it is

considered in the previous cases 1(a) and 1(c). Otherwise,r <MRS
(1) holds, andd(r, ε) is considered

both in cost(MRS ◦ MST ) and cost(MRS). This factord(r, ε) does not make any difference between
cost(MST ◦ MRS) and cost(MRS) + cost(MST ).

3. For any nodet ∈ T , by symmetry, it is similar to the previous case.

Therefore, the assertion holds in any cases.

We define two important properties of a class of tree mappings.

Definition 2.41 (Symmetricity of a Class of Tree Mappings)A classC of tree mappings issymmetric
if MC(S, T ) =MC(T, S) holds for any two treesS andT .

Definition 2.42 (Transitivity of a Class of Tree Mappings) Let R, S, andT be arbitrary trees. A class
C of tree mappings istransitiveif, for any two tree mappingsMRS ∈ MC(R,S) andMST ∈ MC(S, T ),
the compositeMST ◦ MRS is a tree mapping such thatMRT ∈ MC(R, T ).

We introduce tree mapping based distance according to the class of tree mappings.

Definition 2.43 (C-Distance) Given a classC of tree mappings, theC-distancebetween two treesS and
T is defined as follows:

DC(S, T ) = min
M∈MC(S,T )

cost(M ).

We call this definition adeclarative definitionof C-distance.

If a C-mappingM between two trees has the minimum cost, we callM an optimalC-mapping. In
practical use, we often normalize distance as follows:

NDC(S, T ) =
DC(S, T )

max{|S| , |T |}
.



34 Chapter 2. Approximate Tree Matching

S

s1

s2

s3

s4 s5

s6

s7

s8 s9

T

t1

t2

t3

t4 t5

t6

t7 t8

t9

Figure 2.10.Tai mapping

Proposition 2.44 (Lower/Upper Bound of C-Distance) Given two classesC1 andC2 of tree mappings,
if C1 is a subclass ofC2, thenC1-distance is an upper bound ofC2-distance, i.e.

C1 ⊆ C2 =⇒ ∀S, T ∈ T [ DC2(S, T ) ≤ DC1(S, T ) ].

Proof. It is obvious from Definition 2.37.

Proposition 2.45 (Transitivity of C-Distance)
If a classC of tree mappings is transitive, thenC-distance is transitive.

Proof. Recall that we assume that the cost functiond is a metric. LetR, S, andT be trees. SinceC is
transitive,MST ◦MRS belongs to classC of tree mappings for anyMRS ∈ MC(R,S), MST ∈ MC(S, T ),
andMRT ∈ MC(R, T ). SinceC is transitive, it holds thatMST ◦ MRS ∈ MC . Without loss of generality,
we may assume thatMRS , MST , andMRT are tree mappings with minimum costs. By Lemma 2.40 and
the definition ofC-distance, we have

DC(R, T ) = cost(MRT ) ≤ cost(MST ◦ MRS) ≤ cost(MRS) + cost(MST ) = DC(R,S) +DC(S, T ).

2.5.2 Tai Mapping — Declarative Definition of Tai Distance

Tai proposed the following class of tree mappings for reducing the problem of computing the minimum cost
of edit scripts into the problem of computing the minimum cost of tree mappings [Tai79]. Tai formulated
tree edit distance in accordance with the paper by Wagner and Fisher [WF74] for string edit distance.

Definition 2.46 (Tai Mapping [Tai79]) A tree mappingM ⊆ V (S)×V (T ) is said to be aTai mapping
if the following are satisfied for any (s1, t1), (s2, t2) ∈ M .

1. s1 = s2 ⇐⇒ t1 = t2.

2. s1 < s2 ⇐⇒ t1 < t2.

3. s1 ≺ s2 ⇐⇒ t1 ≺ t2 (only for ordered trees).

Note that the first and second conditions are replaced withs1 ≤ s2 ⇔ t1 ≤ t2.
This class is indicated byC = Tai. Then, byMTai(S, T ), we refer to the set of Tai mappings between

two treesS andT .

Example 2.47 For two ordered treesS andT in Figure 2.10, M = {(s1, t1), (s4, t3), (s6, t6), (s7, t9)} is a
Tai mapping fromS to T . The Tai mapping is depicted by dashed lines. For two ordered treesS andT
in Figure 2.11, M = {(s1, t2), (s2, t3), (s3, t4)} is not a Tai mapping sincet4 ≤ t2 does not hold although
s3 ≤ s1 holds.
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Figure 2.11.Non-Tai mapping

Proposition 2.48 (Transitivity of Tai Mapping, Lemma 3.1(1) in [Tai79]) Tai mapping is transitive.

Proof. Let R, S andT be trees. Consider two Tai mappingsMRS ∈ MTai(R,S) andMST ∈ MTai(S, T ).
For any (r1, t1), (r2, t2) ∈ MST ◦ MRS , there exists1, s2 ∈ S such that (r1, s1), (r2, s2) ∈ MRS and
(s1, t1), (s2, t2) ∈ MST . By the definition of Tai mappings, the following hold:

1. r1 = r2 ⇔ s1 = s2 ands1 = s2 ⇔ t1 = t2,

2. r1 ≤R r2 ⇔ s1 ≤S s2 ands1 ≤S s2 ⇔ t1 ≤T t2,

3. r1 ≼R r2 ⇔ s1 ≼S s2 ands1 ≼S s2 ⇔ t1 ≼T t2 (only for ordered trees).

Therefore,MST ◦ MRS is also a Tai mapping fromR to T .

In the following lemma, we show an important correspondence between edit scripts and Tai mappings.

Lemma 2.49 (Edit Script and Tai Mapping) Let S andT be two trees. The following two properties
hold between the costs of edit scripts and Tai mappings.

1. For any Tai mappingM ∈ M(S, T ), there exists an edit scriptE ∈ E(S, T ) such that cost(E) =
cost(M ).

2. For any edit scriptE = ⟨e1, . . . , en⟩ ∈ E(S, T ), there exists a Tai mappingM ∈ M(S, T ) such
that cost(E) ≤ cost(M ).

Proof. Without loss of generality, for any Tai mappingM ∈ M(S, T ), we assume (root(S), root(T )) ∈ M
(cf. Remark 2.2).
1. From the definition of the cost of a tree mapping in Eq.(2.3), we can construct a corresponding edit script
E with the same cost asM consisting of:

• the replacement ofs by t for (s, t) ∈ M ,
• the deletion ofs from S for s ∈ V (S) \ M (1),
• the insertion oft into S for t ∈ V (T ) \ M (2).

2. Let an edit scriptE = ⟨e1, . . . , en⟩ ∈ E(S, T ). Then, there exists a series of trees⟨T0, . . . , Tn⟩ such that
T0 = S, Tn = T , and thei-th edit operationei = (si 7→ ti) transformsTi−1 into Ti for i ∈ {1, . . . , n}. We
prove the lemma by induction onn.

If n = 0, the edit scriptE = ⟨⟩ corresponds to the Tai mappingM = {(s, s) | s ∈ S}, i.e. an
isomorphic mapping fromS to S. Thus, we have cost(E) = cost(M ) = 0.

If n = 1, the cost of edit scriptE = ⟨(t 7→ t′)⟩ exactly corresponds to a Tai mappingM . Therefore,
cost(E) = cost(M ) = d(t, t′).

If n ≥ 2, by the induction hypothesis there exists a Tai mappingM1 from T0 to Tn−1 such that
cost(M1) ≤ cost(⟨e1, . . . , en−1⟩). Consider the transformationTn−1

en−→ Tn via an edit operationen =

(t 7→ t′), where eithert or t′ (not both) can be a null nodeε. Then, there exists a Tai mappingM2 =

M ′ ∪ {(t, t′)} from Tn−1 to Tn such thatM ′ is an isomorphic mapping fromTn−1 to Tn except for a
difference by the effect of{(t, t′)}. Hence, cost(M2) = d(t, t′). Now we have a Tai mappingM =M2 ◦M1

from S to T . By Lemma 2.40, the following holds.

cost(M ) ≤ cost(M1) + cost(M2) ≤ cost(⟨e1, . . . , en−1⟩) + d(t, t′) = cost(E).

It follows by induction that the assertion holds for all edit scriptsE.
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By using Lemma 2.49, Tai showed that the tree edit distance in Definition 2.32 is reduced into the
cost minimization problem of tree mappings.

Theorem 2.50 (Theorem 3.1 in [Tai79])For two treesS andT , the following holds.

DTai(S, T ) = min
E∈E(S,T )

cost(E) = min
M∈MTai(S,T )

cost(M ).

Proof. Straightforward from Lemma 2.49.

This theorem bridges the gap between the operational and declarative definitions of Tai distance. If the cost
of a Tai mappingM is minimum, this mappingM is referred to as anoptimal Tai mapping. Note that Tai
mapping is a natural representation of root-editable operations in Remark 2.2.

By using the transitivity of Tai mappings, Tai showed that Tai distance is a metric.

Corollary 2.51 (Metricity of Tai Distance) Tai distance is a metric.

Proof. Since there exists an isomorphic mapping between the same two trees, and Tai mapping is symmet-
ric, then it is obvious that for any treesS andT ,

DTai(T, T ) = 0 and DTai(S, T ) = DTai(T, S).

Since tree mapping is subadditive by Lemma 2.40, and Tai mapping is transitive by Proposition 2.48, it
follows from Proposition 2.45 and Theorem 2.50 that Tai distance is transitive, i.e. for any treesR,S, and
T , we have

DTai(R, T ) ≤ DTai(R,S) +DTai(S, T ).

Therefore, Tai distance is a metric.

2.5.3 Approximate Common Subforest Problem

There is an alternative view in defining Tai distance as in the string case in Section 2.2.3. In Definition 2.32,
for given two trees, we apply all edit operations to the first tree to obtain the second. In the alternative
view, we use onlyreplacementsanddeletionsas the elementary edit operations, and define the Tai distance
between two trees as the minimum cost of edit operations to transform two trees into a common third forest,
i.e. we redefineE(S, T ) as the all possible edit operations to obtain a third common forest by applying
replacements and deletions to two treesS andT . In other words, this problem is to find anapproximate
common subforestshared by two trees with the minimum cost of edit operations withoutinsertions. In this
case, we permit the edit operation with edit signatureε 7→ ε. This operation changes nothing and is called
an identity edit operation.

The problem of computing the edit distance between two trees along with an approximate common
subforest of the minimum cost of edit operations is called theapproximate common subforest problem. It is
easy to show that the approximate common subforest problem is equivalent to the tree edit problem in the
computation of tree edit distance since any deletion of a nodex from the second tree has its complementary
operation, the insertion ofx into the first tree with the edit signatureε 7→ x.

From the viewpoint of Tai mapping, this problem is clear. For a Tai mappingM between two treesS
andT , approximate common subforests are bothS[M (1)] andT [M (2)]. From the definition of Tai mapping,
these two forests are isomorphic if the effect of replacements are ignored. If replacements are not used,
S[M (1)] andT [M (2)] are isomorphic.

Example 2.52 Figure 2.12shows a Tai mapping betweenS andT , and a common subforest patternF of
S andT .
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Figure 2.12.Approximate Common Subforest

Table 2.5.Some classes of approximate tree matching

Reference Tree mapping/ Distance ClassC Section

[Tai79] Tai Tai §2.4
[JWZ95] alignable/ alignment Aln §2.7
[TT88] structure-preserving SP §2.8.1
[OT88, Tan84] strongly structure-preserving SP♭ §2.8.2
[Lu79] Lu Lu §2.8.3
[Zha95] constrained Cst §2.8.4
[Ric97] structure-respecting SR §2.8.5
[LST01] less-constrained Cst♯ §2.8.6
[Sel77] top-down (LCST) Top §2.9.1
[Val01] bottom-up Bot §2.9.2

2.6 Variants of The Tree Edit Problem
A variety of tree edit distance measures have been proposed other than Tai distance. Most of them are
defined by imposing a certain restriction on the edit operations or the tree mappings of Tai distance.

There are two major motivations for restricting Tai mapping. The first is to improve the computation
cost of the edit problem. The second is to tailor a tree mapping for specific applications, since Tai mapping
may be too general for certain applications such as comparing parse trees, taxonomies, and more structure
sensitive distance measures are required in these applications. In the following sections, we give a cursory
review on some of important classes of tree mappings in tree edit distance, and related problems. Once a
class definition of tree mappings is given, we can define the distance measure by using the condition based
on Definition 2.43. Then, we use mainly a declarative definition if it is known.

Table 2.5supplies terms for classes of approximate tree matching based on the optimization of edit
scripts or tree mappings. Some of the terms are slightly modified from the originals due to uniformity.

Before reviewing a variety classes of approximate tree matching, we define two representative cost
functions commonly used in various distance measures.

2.6.1 Unit Costs

If the tree edit distance between two trees is defined asthe number of edit operationsto transform one tree
into another, the cost functiond is given by

d(x, y) =

{
0 if l(x) = l(y),

1 if l(x) , l(y).
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Table 2.6.Computational complexity of alignment problem

Trees Reference
Degree unbounded Degree bounded

Time Space Time Space

[JWZ95] O(n1n2(d1 + d2)2) O(n1n2(d1 + d2)) O(n2) O(n2)

ordered
[WZ03] O(n2

1n2(d1 + d2)2) O((logn1)n2(d1 + d2)d1) O(n3) O(n logn)
[WZ05] O(n1n2(d1 + d2)2) O((logn1)n2(d1 + d2)d1) O(n2) O(n logn)
[Jan03] O(k2n(logn + d3)) O(k2n logn)

unordered
[JWZ95] MAX SNP-hard polynomial†

[FA06] (unit costs, degree and alphabet size bounded) O(γKn)

ni: size of treeTi for i ∈ {1, 2}, and assume thatn1 ≤ n2 andn = n2, di = deg(Ti) for i ∈ {1, 2}.

k: fixed upper bound of the number of inserted gap symbols.

K: fixed upper bound of the unit-cost alignment distance.

γ: parameter determined bydi (e.g.γ ≤ 4.45 for unordered binary trees).

†For unordered binary trees, O(n2) time and space.

We refer to theC-distance based on the cost functiond asC-distance withunit costsor simply unit-cost
C-distance, and we denoted byDC

1 (S, T ) the unit-costC-distance betweenS andT . The cost of a tree
mappingM between two treesS andT is simplified as follows:

cost(M ) = |{(x, y) ∈ M | x , y}| + |V (S) \ M (1)| + |V (T ) \ M (2)|
= |{(x, y) ∈ M | x , y}| + |S| + |T | − 2 · |M |.

2.6.2 Largest Common Subforest Patterns

On the other hand, if the tree edit distance between two trees is defined asthe number of edit operationsto
transform one tree into anotherwithout replacements, the cost functiond is given by

d(x, y) =


0 if l(x) = l(y),

1 if l(x) , l(y) and (l(x) = ‘-” or l(y) = “-”) ,

∞ otherwise (label replacement).

As in the case of strings (Section 2.2.3), if we need just the distance value, it is enough to let the cost of
replacement be more than or equal to 2. By computing theC-distance between two treesS andT based on
the cost functiond, we can find alargest common subforest patternof S andT . (Tai refers to it as alargest
common substructurebetweenS andT [Tai79].) We refer to the distance asC-distance withLCS costsor
simply LCS-costC-distance, and we denoted byDC

lcs(S, T ) the LCS-costC-distance betweenS andT .

2.7 Alignment of Trees and Alignment Distance
Thealignment of treeswas introduced by Jianget al. [JWZ95], as a natural extension of the alignment of
strings, in search of better comparison methods for RNA secondary structures. While the Tai edit problem
can be regarded as the problem of finding an approximate common subforest of two trees, the alignment of
trees can be regarded as the problem of finding anapproximate common supertreeof two trees.

We summarize the proposed algorithms and computational complexities for computing alignment of
trees inTable 2.6.

2.7.1 Operational Definitions

The definition of alignment of trees was given in an operational way [JWZ95] as follows.

Definition 2.53 (Alignment of Trees [JWZ95]) An alignmentof two treesS andT is obtained by the
following two steps:
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1. Insert new nodes with gap symbol “-” into S andT so that the following two conditions are
satisfied:

(i) two resulting treesS′ andT ′ are isomorphic if labels are ignored, and letϕ be an isomorphic
mapping fromS′ to T ′

(ii) for any nodes ∈ S′ labeled with a gap symbol, the nodeϕ(s) ∈ T ′ is not labeled with a gap
symbol.

2. Collect the pairs of nodes as follows:

A = {(s, ϕ(s)) ∈ V (S′) × V (T ′) | s ∈ S′}.

We refer toA as an alignment ofS andT . The tree obtained by relabeling all nodes inS′ with
(l(s), l(ϕ(s))) for s ∈ S′ is called analigned tree.

The cost of an alignmentA is defined as the sum of the costs of all pairs of aligned nodes :

cost(A) =
∑

(s,t)∈A

d(s, t) =
∑

(s,t)∈A

dl(l(s), l(t)).

An optimal alignmentis an alignment that minimizes the cost over all possible alignments. Analign-
ment distanceis the cost of an optimal alignment. We denote the set of all possible alignments between
two treesS andT by A(S, T ). Then, thealignment distancebetween two treesS andT is given as
follows.

DAln(S, T ) = min
A∈A(S,T )

cost(A).

The problem of computing an optimal alignment or alignment distance is referred to as thealignment
problemin trees.

l Tree Mapping for Alignment of Trees. In Definition 2.53, alignment distance is not defined as the min-
imum cost of tree mappings as in the case of Tai distance. We refer to the class of tree mappings for
determining alignment distance asalignable mappings. For any alignmentA ∈ A(S, T ), an alignable
mappingM is given by

M = {(s, t) ∈ V (S) × V (T ) | (s, t) ∈ A}.

The explicit condition of alignable mappings had not been identified for ten years since Jianget al. first
introduced the notion of alignment of trees in an operational way [JWZ95]. In Section 4.6, we reveal the
condition of alignable mappings.

Example 2.54Consider the unit-cost alignment distance between two ordered treesS andT in Figure 2.13.
Then, we haveDAln

1 (S, T ) = 4 since the minimum cost is computed by

dl(a, a) + dl(b,−) + dl(c, c) + dl(−, f) + dl(d, d) + dl(−, e) + dl(e,−) = 4.

Figure 2.14(left) shows the alignable mapping corresponding to the alignment in Figure 2.13, and by over-
laying the node pairs in the mapping we obtain the same aligned tree Figure 2.14(right) as in Figure 2.13.

An alignment of two trees is not uniquely determined.Figure 2.15shows another alignable mapping
betweenS andT , and its aligned tree.

Figure 2.16(left) shows a Tai mapping betweenS andT . This mapping is not an alignable mapping
since by overlaying the node pairs in the mapping we obtain an acyclic directed graph in Figure 2.16(right),
and it is not a tree. It is obvious from this observation that alignable mappings are in a proper subclass of
Tai mappings.

Alignment Problem as a Restricted Tree Edit Problem

The alignment problem is viewed as a restricted tree edit problem in which all the insertions precede all the
deletions. In the alignment problem for strings, the set of edit operations gives the same distance regardless
of the order of operations, while the order may cause a big difference in the tree edit problem.
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Example 2.55 For two treesS andT in Figure 2.17, we assume unit costs. Then, the alignment problem
is solved by applying all insertions before deletions, and an optimal edit script is

E = ⟨ε 7→ f, ε 7→ e, e 7→ ε, b 7→ ε⟩.

There is no shorter path betweenS andT under the restriction. On the other hand, if there is no such
restriction, then we have a shorter path with an optimal edit script

E = ⟨b 7→ ε, ε 7→ f⟩

as shown inFigure 2.18.

2.7.2 Approximate Common Supertree Problem

There is yet another alternative view of the alignment problem. First, let us define the notion of supertree.
For a treeT , asupertreeof T is a tree obtained by inserting an arbitrary number of nodes intoT .
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In the alternative view, we use onlyreplacementsandinsertionsas the elementary edit operations, and
define the alignment distance as the minimum cost of edit operations to transform two trees into a common
third tree. In other words, this problem is to find an approximate common supertree shared by two trees
with the minimum cost of edit operations withoutdeletions. We permit the identity edit operation as in the
approximate common subtree problem. For example, in Figure 2.15, the tree to the right is obtained from
two treeS andT by inserting two nodes respectively.

The problem of computing the alignment distance between two trees along with an approximate
common supertree of the minimum cost of edit operations is called theapproximate common supertree
problem.

For strings, the approximate commonsupersequenceproblem is equivalent to the approximate com-
monsubsequenceproblem. For trees, both are, however, different as already seen.

2.7.3 Algorithms for Ordered Trees

For two treesT1 andT2, we setn = max{|T1| , |T2|} andd = max{deg(T1), deg(T2)}. Jianget al. first
proposed an O(n2d2)-time and O(n2d2)-space algorithm [JWZ95] for computing alignment distance for
ordered trees. Later, Wang and Zhao [WZ03] improved the space complexity by sacrificing the time com-
plexity for the case ofd ≪ n as often seen in RNA secondary structures. The algorithm runs in O(n3d2)
time and O(n logn · d2) space. Recently, Wang and Zhao achieved a further improvement by proposing a
new algorithm which runs in O(n2d2) time and O(n logn · d2) space.

Jansson and Lingas proposed afixed-parameter algorithm[JL03, Jan03] for ordered trees. The algo-
rithm runs in O(k2n(logn + d3)) time for a fixed upper bound of the number of inserted nodes labeled with
gap symbolsk, i.e. this algorithm returns the alignment distance between given two trees if there exists an
optimal alignment with at mostk nodes labeled with gap symbols.
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D(∅, ∅) = 0

D(F, ∅) =
∑
T∈F

DT (T, ∅), D(∅, F ) =
∑
T∈F

DT (∅, T )

DT (v(F ), ∅) = D(F, ∅) + d(v, ε), DT (∅, v(F )) = D(∅, F ) + d(ε, v)

DT (v1(F1), v2(F2)) =

min


DT (∅, v2(F2)) + min

T∈F2

{DT (v1(F1), T ) − DT (∅, T )}, ⟨ε 7→ v2⟩
DT (v1(F1), ∅) + min

T∈F1

{DT (T, v2(F2)) − DT (T, ∅)}, ⟨v1 7→ ε⟩
D(F1, F2) + d(v1, v2), ⟨v1 7→ v2⟩

(2.4a)

D(F1 • T1, F2 • T2) = min


D(F1, F2 • T2) + DT (T1, ∅)
D(F1 • T1, F2) + DT (∅, T2)
D(F1, F2) + DT (T1, T2)
D′(F1 • T1, F2 • T2)

(2.4b)

D′(F1 • v1(F ′
1), F2 • v2(F ′

2)) = D′(T 1
1 • · · · • Tm

1 , T 1
2 • · · · • Tn

2 ) =

min

 min
1≤i≤m

{D(T 1
1 • · · · • T i−1

1 , F2) + D(T i
1 • · · · • Tm

1 , F ′
2)} + d(ε, v2)

min
1≤i≤n

{D(F1, T 1
2 • · · · • T i−1

2 ) + D(F ′
1, T

i
2 • · · · • Tn

2 )} + d(v1, ε)
(2.4c)

Figure 2.19.Recurrences for computing alignment distance for ordered trees

Jiang-Wang-Zhang’s Algorithm

The algorithm for computing alignment distance [JWZ95] for ordered trees was proposed based on the
recurrences inFigure 2.19, where D(F1, F2) denotes the alignment distance between two forestsF1 andF2,
and DT (T1, T2) denotes the alignment distance between two treesT1 andT2. Figure 2.20andFigure 2.21
illustrate the intuitive meanings of Eq.(2.4a) and Eq.(2.4c) respectively. In Algorithm 2.4, we show the
algorithm for computing alignment distance.
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Figure 2.20.DT (∅, v2(F2)) + min
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2) in Eq.(2.4c)

An optimal alignable mapping (optimal alignment) can be basically computed by tracing back the
resulting arrays D and DT obtained by TreeAlign and ForestAlign.



2.7. Alignment of Trees and Alignment Distance 43

Algorithm 2.4 Alignment distance for ordered trees
procedureTreeAlign(T1, T2)

D(∅, ∅) ← 0
foreachv ∈ T1 in postorderdo

let F1 be a forest such thatT1(v) = v(F1)
D(F1, ∅) ←

∑
T∈F1

DT (T, ∅)
DT (v(F1), ∅) ← D(F1, ∅) + d(v, ε)

foreachv ∈ V (T2) in postorderdo
let F2 be a forest such thatT2(v) = v(F2)
D(∅, F2) ←

∑
T∈F2

DT (∅, T )
DT (∅, v(F2)) ← D(∅, F2) + d(ε, v)

for v1 ∈ T1 in postorderdo
let F1 = T 1

1 • · · · • Tm
1 be a forest such thatT1(v1) = v1(F1)

for v2 ∈ T2 in postorderdo
let F2 = T 1

2 • · · · • Tm
2 be a forest such thatT2(v2) = v2(F2)

for i ← 1 to m do
ForestAlign(T i

1 • · · · • Tm
1 , F2)

for j ← 1 to n do
ForestAlign(F1, T

j
2 • · · · • Tn

2 )

DT (v1(F1), v2(F2)) = min


DT (∅, v2(F2)) + min

T∈F2

{DT (v1(F1), T ) − DT (∅, T )}
DT (v1(F1), ∅) + min

T∈F1

{DT (T, v2(F2)) − DT (T, ∅)}
D(F1, F2) + d(v1, v2)

return DT (T1, T2)
end

procedureForestAlign(T 1
1 • · · · • Tm

1 , T 1
2 • · · · • Tn

2 )
for i ← 1 to m do

D(T 1
1 • · · · • T i

1, ∅) ← D(T 1
1 • · · · • T i−1

1 , ∅) + DT (T i
1, ∅)

for i ← 1 to n do
D(∅, T 1

2 • · · · • T i
2) ← D(∅, T 1

2 • · · · • T i−1
2 ) + DT (∅, T i

2)
for i ← 1 to m do

for j ← 1 to n do
let Fk • vk(F ′

k) = T 1
k • · · · • T i

k for k ∈ {1, 2}
D(T 1

1 • · · · • T i
1, T 1

2 • · · · • T j
2 ) =

min



D(T 1
1 • · · · • T i−1

1 , T 1
2 • · · · • T j

2 ) + DT (T i
1, ∅)

D(T 1
1 • · · · • T i

1, T 1
2 • · · · • T j−1

2 ) + DT (∅, T j
2 )

D(T 1
1 • · · · • T i−1

1 , T 1
2 • · · · • T j−1

2 ) + DT (T i
1 , T j

2 )
min

1≤k≤i
{D(T 1

1 • · · · • T k−1
1 , F2) + D(T k

1 • · · · • T i
1, F ′

2)} + d(ε, v2)

min
1≤k≤j

{D(F1, T 1
2 • · · · • T k−1

2 ) + D(F ′
1, T

k
2 • · · · • T j

2 )} + d(v1, ε)

end

We, however, need to take notice that Jiang-Wang-Zhang’s algorithm is designed for computing just
one optimal alignable mapping even if there exists more than one. Although Zhang-Shasha’s algorithm for
Tai distance also computes just one optimal Tai mapping, the resulting arrays implicitly contain all possible
optimal Tai mappings. Hence, we can enumerate all the possible optimal Tai mappings from the resulting
arrays by traceback.

On the other hand, the resulting arrays by Jiang-Wang-Zhang’s algorithm excludes some possible
alignable mappings in the first place since these excluded mappings are always replaceable with alternative
mappings with the same costs from the viewpoint of cost optimization. Therefore, in a precise sense, the
recurrences used in Jiang-Wang-Zhang’s algorithm do not mathematically correspond to the definition of
alignment of trees, and it computes alignment distance in a subclass of alignable mappings. This is a slight
difference in recurrences or implementation, but may cause a difference in the definition of tree mappings
(See Section 4.8.1).
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We do not enter into the detail of the correctness of all the recurrences in Figure 2.19. However,
we sketch the proof of the correctness of Eq.(2.4a) since the exclusiveness of a tree mapping arises from
Eq.(2.4a).

Proof of the correctness of Eq.(2.4a) [JWZ95, Lemma 2]. Consider an aligned tree of an optimal align-
mentA of T1 = v1(F1) andT2 = v2(F2). We assume that

∆1 = {x < T1 | (x, y) ∈ A for somey ∈ T2}
∆2 = {y < T2 | (x, y) ∈ A for somex ∈ T1}

It suffices to consider the following four cases.

1. (v1, v2) ∈ A: The nodesv1 andv2 are aligned. Hence, the rest ofv1(F1) andv2(F2), i.e. two forests
F1 andF2, need to be aligned, i.e.

DT (v1(F1), v2(F2)) = D(F1, F2) + d(v1, v2).

2. (v1, w2) ∈ A for somew2 ∈ ∆2, and (w1, v2) ∈ A for somew1 ∈ ∆1: Recall thatw1 andw2 are
labeled with the same gap symbol. Hence, due to the metricity ofd, the cost cannot be better than the
case 1, i.e.dl(l(v1), l(v2)) ≤ dl(l(v1),−)+dl(−, l(v2)). Hence, we may ignore this case for computing
the minimum cost.

3. (v1, w2) ∈ A for somew2 ∈ ∆2, and (w1, v2) < A for anyw1 ∈ ∆1: The root of the aligned tree is
obtained by aligningv1 andw2, and the nodev2 must be aligned with a node inT ∈ F1. Hence,

DT (v1(F1), v2(F2)) = DT (v1(F1), ∅) + min
T∈F1

{DT (T, v2(F2)) − DT (T, ∅)}.

4. (w1, v2) ∈ A for somew1 ∈ ∆1, and (v1, w2) < A for anyw2 ∈ ∆2: Symmetric to the case 3.

From this proof, it is clear that the case 3 is ignored in the recurrences in Figure 2.13. If this case
is completely excluded, in a precise sense, the recurrences in Figure 2.13 end up with mathematically
mismatching the definition of alignment of trees. In addition, this proof assumes the metricity of the cost
function d (we see in Corollary 2.59 that alignment distance is not a metric even ifd is a metric), while
Zhang-Shasha’s algorithm does not assume it. By adding the case 3 to Eq.(2.4a), we have the following
recurrence mathematically equivalent to the definition of alignable mappings.

DT (v1(F1), v2(F2)) = min


DT (∅, v2(F2)) + min

T∈F2

{DT (v1(F1), T ) − DT (∅, T )}
DT (v1(F1), ∅) + min

T∈F1

{DT (T, v2(F2)) − DT (T, ∅)}
D(F1, F2) + d(v1, v2)
D(F1, F2) + d(v1, ε) + d(ε, v2)

(2.5)

For enumerating all the alignments between two trees, we need to use this recurrence, or implement some
supplementary procedure in traceback.

Example 2.56 We assume the following cost function:

d(x, y) =


0 if l(x) = l(y),

1 if l(x) , l(y) and (l(x) = “-” or l(y) = “-”) ,

3 otherwise (label replacement).

There are two possibilities of optimal alignable mappings as shown in Figure 2.19(a) and (b). Jiang-Wang-
Zhang’s algorithm, however, does not consider the case of (b).

Complexity. We here estimate the time complexity of Jiang-Wang-Zhang’s algorithm. LetT1 andT2 be
two given trees. For each pair of nodesv1 ∈ T1 andv2 ∈ T2, the procedure ForestAlign runs in

O
(
|ch(v1)| · |ch(v2)| ·

(
|ch(v1)| + |ch(v1)|

))
time,

and then the procedure TreeAlign runs in

O
(
|ch(v1)| · |ch(v2)| ·

(
|ch(v1)| + |ch(v2)|

)2
)

time.
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T1
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v1

b c d

T2

v2

c

b d

T1

a
v1

b c d

T2

v2

c

b d

(a) Case 1 obtained by JWZ’s algorithm (b) Case 2 excluded by JWZ’s algorithm

Figure 2.22.Two optimal alignable mappings

Therefore, the time complexity of Algorithm 2.4 is

∑
v1∈T1

∑
v2∈T2

O
(
|ch(v1)| · |ch(v2)| ·

(
|ch(v1)| + |ch(v2)|

)2
)

≤
∑

v1∈T1

∑
v2∈T2

O
(
|ch(v1)| · |ch(v2)| ·

(
deg(T1) + deg(T2)

)2
)

≤ O

(( ∑
v1∈T1

|ch(v1)|
)
·
( ∑

v2∈T2

|ch(v2)|
)
·
(
deg(T1) + deg(T2)

)2

)
≤ O

(
|T1| · |T2| ·

(
deg(T1) + deg(T2)

)2
)

.

Amalgamation of trees. It seems that alignment of trees can be applied to amalgamating two trees into
one supertree based on the similarity. However, we have yet to solve the problem of determining one aligned
tree out of more than one candidate. It is obvious that the way of amalgamation from an obtained alignment
is not unique even for strings. The amalgamation of trees has, however, a more complex ambiguity than
strings as shown in the following example.

Example 2.57 Consider two treesS andT , and an alignmentA depicted by dashed lines inFigure 2.23. By
overlaying pairs of nodes inA with preserving any order inS andT , we have two possible amalgamations
R1 andR2.

S

a

b

c

T

a

c d

R1

a

b

c d

R2

a

b

c d

Figure 2.23.Two aligned trees obtained by using the same alignment

2.7.4 Algorithms for Unordered Trees

Jianget al. proved that the alignment problem for unordered trees is MAX SNP-hard if either of given
two trees has arbitrary degrees [JWZ95]. Jianget al. [JWZ95] also presented a polynomial-time algorithm
for unordered trees with bounded degree (the degree of a node is defined as the number of its children)
by giving the same structure of recurrences in Figure 2.19. In particular, for unordered binary trees, an
O(n1n2)-time and -space algorithm was shown in [JWZ95], whereni for i ∈ {1, 2} is the size of treeTi.

Fukagawa and Akutsu proposed afixed-parameter algorithm[FA06] for unit-cost alignment of un-
ordered trees with bounded degree and a bounded size alphabet. This algorithm runs in O(γkn) time, where
n = max{|T1| , |T2|} for given two treesT1 andT2, γ is a constant determined by max{deg(T1), deg(T2)},
andk is a fixed upper bound of the number of inserted nodes labeled with gap symbols.
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2.7.5 Alignable Mappings

Even without the explicit condition of alignable mappings, the following important property is known. By
Alnwe denote the class of alignable mapping. The following proposition leads to the fact that the alignment
distance isnot a metric.

Proposition 2.58 Alignable mapping is not transitive.

Proof. We show this proposition by a counterexample to transitivity. For treesR, S, andT , let MRS ∈
MAln(R,S), MST ∈ MAln(S, T ) be two alignable mappings. As shown inFigure 2.24, althoughMRS

andMST are alignable mappings, the compositeMST ◦ MRS ∈ M(R, T ) is not alignable. Since the
composite of two alignable mappings is not necessarily alignable, alignable mapping is not transitive.

R

r1

r2

r3

S

s1

s2

s3

T

t1

t2

t3

MRS MST

Figure 2.24.Counterexample to transitivity in alignable mappings

Although this intransitivity does not necessarily imply that alignable distance is not a metric, we
immediately have the following corollary by using the same counterexample.

Corollary 2.59 Alignable distance is not a metric.

Proof. See the following counterexample.

Example 2.60 We assume unit costs. For treesR, S andT , consider threeoptimal alignable mappings
MRS ∈ MAln(R,S), MST ∈ MAln(S, T ), andMST ∈ MAln(S, T ) as shown inFigure 2.25. Then, we
have

DAln
1 (R, T ) = 4, DAln

1 (R,S) = 1, DAln
1 (S, T ) = 1.

Hence,
DAln

1 (R, T ) > DAln
1 (R,S) +DAln

1 (S, T ).

It follows that alignable distance is not a metric.
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(R
,
S) =

1

MRS

D A
1 (S
, T )
=1M

ST

D
A

1
(R, T ) =4

MRT

Figure 2.25.Non-metricity of alignable distance

For Tai distance, we have

DTai
1 (R, T ) = 2, DTai

1 (R,S) = 1, DTai
1 (S, T ) = 1,
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since Tai distance is a metric.

2.8 Structure Sensitive Distance
Tai distance and alignment distance are primarily defined in an operational way by using edit operations.
In these two distance measures, the notion of tree mapping is rather used for characterizing the distance
measures. In contrast, some distance measures between trees are primarily defined based on Definition 2.43
by giving subclass definitions of Tai mappings without explicit definitions of how to apply edit operations
to trees. These classes consider not merely node-to-node mappings but also subtree-to-subtree mappings
by tree mappings. In this section, we show these classes of tree mappings, and related distance measures.
We summarize the complexities of these algorithms inTable 2.7.

Table 2.7.Computational complexity of structure sensitive distance problems

Trees Class Reference Time Space

SP structure-preserving† [TT88] O(n1n2l2) O(n1n2)
SP♭ strongly structure-preserving [Tan84] O(n1n2) O(n1n2)
Lu Lu [Lu79] O(n1n2) O(n1n2)

ordered SR structure-respecting [Ric97] O(n1n2d1d2)‡ O(d1h1n2)††

Cst constrained [Zha95] O(n1n2) O(n1n2)
Cst constrained [WZ05] O(n1n2) O((logn1)n2)‡‡

Cst♯ less-constrained [LST01] O(n1n2d
3
1d

3
2d)

Cst constrained [Zha96] O(n1n2d logd) O(n1n2)
unordered Cst♯ less-constrained [LST01] MAX SNP-hard†††

Lu Lu [AYO+03] O(n1n2)‡‡‡ O(n1n2)

For i ∈ {1, 2}, ni: size of treeTi, hi = dep(Ti), ℓi = |leaves(Ti)|, di = deg(Ti), d = d1 + d2

†SP-distance is asymmetric w.r.t.T1 andT2.

‡The algorithm for SR-distance is exactly the same as the algorithm for Cst-distance except for the complexity estimation.

††For the computation of an optimal SR-mapping, O(n1n2) space is required.

‡‡An optimal Cst-mapping can also be computed with this space complexity.

†††In fact, a more negative result is proven. There is no absolute polynomial-time approximation unless P=NP.

‡‡‡This algorithm assumes degree-bounded trees.

2.8.1 Structure-Preserving Distance

Tanaka and Tanaka introduced a subclass of Tai mapping [TT82, Tan93, TT88, Tan95] by restricting the
condition of Tai mapping. It was probably the first attempt at defining a distance measure between two trees
by considering tree images mapped by a tree mapping.

Since the original definition of structure-preserving mapping is a slightly verbose, we modify the
representation of the definition without changing the essential formalization.

The node of the rightmost leaf of a complete subtree ofT rooted att ∈ T is denoted byrl (t). Let M
be a tree mapping fromS to T . Fors ∈ S, we define theroot imageof s underM as follows:

RM (s)† =

{
lca({M (x) ∈ T | x ≤S s }) if {x ∈ M (1) | x ≤S s} , ∅,
⊥ (undefined) otherwise.

Note that RM (s) may not be well-defined for somes ∈ S. (If RM (s) , ⊥, we say that RM (s) is well-
defined fors.) For a nodes ∈ S, we refer to the complete subtree rooted at RM (s) as the image ofS(s)
underM . The structure-preserving mapping is represented as follows.

†RM (s) is in effect the same asr(s) in [TT82, TT88].
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Definition 2.61 (Structure-Preserving Mapping [TT82, Tan93, TT88, Tan95])
For two ordered treesS andT , a Tai mappingM from S to T is structure-preservingif the following
condition is satisfied:

∀s1, s2 ∈ S
[
RM (s1) , ⊥ ∧ RM (s2) , ⊥ =⇒ [rl (s1) ES s2 ⇐⇒ rl (RM (s1)) ET RM (s2)]

]
.

This definition uses a property of left-to-right preorder such thatV (T (t)) = {x ∈ T | t ET x ET rl (t)} for
any nodet ∈ T . The definition implies that “two subtreesS(s1) andS(s2) are isolated (i.e. not overlapped)
if and only if two subtreesT (RM (s1)) andT (RM (s2)) are isolated for anys1, s2 ∈ S.”

Remark 2.3 Note that the original definition of structure-preserving mapping was incomplete in [TT82]
(in Japanese) and [TT88] (in English). It was, later, corrected by adding the condition∀(i1, i2), (j1, j2) ∈
M [i1 ∈ An(i2) ⇔ j1 ∈ An(j2)] to the definition in [TT82] or [TT88]. The notes [Tan93] and [Tan95] are
complementary remarks of [TT82] (in Japanese), and [TT88] (in English) respectively for the correction.

l Structure-preserving mapping & isolated-subtree or constrained tree mapping.The idea of structure-
preserving mapping has been widely prevailing due to its importance since it was proposed. But, the slightly
complicated formulation of this idea has been occasionally led to a misunderstanding of the structure-
preserving mapping. For example, [WZ01] and [Val01] regard the structure-preserving mapping and the
constrained mapping [Zha95] as the same class of tree mappings although both are different.

Example 2.62 Consider a tree mappingM = {(s5, t4), (s6, t7), (s11, t11), (s13, t12)} between two treesS
andT as shown inFigure 2.26. Now we focus on two nodess2, s10 ∈ S. For the subtree rooted ats2 ∈ S,
two nodes are included inM (1), i.e.

V (S(s2)) ∩ M (1) = {s5, s6}.

Therefore, the root image ofs2 underM is

RM (s2) =M (s5)`M (s6) = t4` t7 = t2.

For s10, we have RM (s10) = t10. The shaded subtreesS(s2) andS(s10) are isolated from each other, and
the images of these subtrees underM , T (t2) andT (t10), are also isolated. In the same way, we can confirm
that, for any two nodesx1, x2 ∈ S, if the complete subtrees rooted atx1 andx2 are isolated from each other,
then the images of these subtrees underM are also isolated. Hence,M is a structure-preserving mapping.
On the other hand, consider a tree mappingM ′ = {(s5, t4), (s6, t9), (s11, t11), (s13, t12)} between two trees
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Figure 2.26.Structure-preserving mapping

S andT as shown inFigure 2.27. Two isolated subtreesS(s2) andS(s10) have the overlapped imagesT (t1)
andT (t10) underM ′. Hence,M ′ is not a structure-preserving mapping.
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Figure 2.27.Non-structure-preserving mapping

Proposition 2.63 (Asymmetricity of Structure-Preserving Mapping)
The structure-preserving mapping is asymmetric.

Proof. Consider a tree mappingMST from S to T as shown inFigure 2.28(a). It is easy to confirm that
MST is a structure-preserving mapping fromS to T . On the other hand, consider a tree mappingMTS from

S
s1

s2

s3

s4

T
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(s1)S

s1
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T
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MST

RMST
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(a) Structure-preserving mapping fromS to T
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t4
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RMTS
(t1)
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(b) Non structure-preserving mapping fromT to S

Figure 2.28.Asymmetricity of structure-preserving mapping

T to S in Figure 2.28(b). Although two subtreesT (t2) andT (t5) are isolated from each other, the images of
these two subtrees underMTS are overlapped. Hence, the tree mappingMTS is not a structure-preserving
mapping.

It is straightforward from Proposition 2.63 that the structure-preserving distance is not a metric. Also,
it is easy to see that the structure-preserving mapping is monotonic and transitive.

Tanaka and Tanaka proposed an algorithm for computing structure-preserving distance [TT88], which
runs in O(|T1| · |T2| · |leaves(T2)|) time and O(|T1| · |T2|) space based on the following recurrences.

l Structure-respecting mapping does not exactly correspond to the algorithm.Although we do not go
into detail, these recurrences do not exactly correspond to the definition of structure-respecting mapping in
Definition 2.61. The symmetric version of this algorithm corresponds to Lu’s algorithm.
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D(∅, ∅) = 0

D(∅, v(F ) • F ′) = D(∅, F • F ′) + d(ε, v)

D(F, ∅) =
∑
T∈F

DT (T, ∅)

DT (v(F ), ∅) = D(F, ∅) + d(v, ε)

D(T1 • F ′
1, v2(F2) • F ′

2) =min

 D(T1 • F ′
1, F2 • F ′

2) + d(ε, v2)
DT (T1, ∅) + D(F ′

1, v2(F2) • F ′
2)

DT (T1, v2(F2)) + D(F ′
1, F

′
2)

DT (v1(F1), v2(F2)) =min

 D(v1(F1), F2) + d(ε, v2)
D(F1, v2(F2)) + d(v1, ε)
D(F1, F2) + d(v1, v2)

2.8.2 Strongly Structure-Preserving Distance

As shown in Section 2.8.1, the structure-preserving mapping is asymmetric. Tanaka defined the symmetric
version of the structure-preserving mapping, and termed it as thestrongly-preserving mapping.

Let M be a tree mapping fromS to T . Fory ∈ T , we define theroot imageof y underM as follows:

R−1
M (y) = lca({M−1(t) ∈ T | y ≤T t ] }) .

For a nodet ∈ T , we refer to the complete subtree rooted at R−1
M (t) as the image ofT (t) underM . The

strongly-preserving mapping is defined as follows.

Definition 2.64 (Strongly Structure-Preserving Mapping [Tan84])
For two ordered treesS andT , a Tai mappingM from S to T is thestrongly structure-preservingif the
following two conditions are satisfied:

1. ∀s1, s2 ∈ S
[
RM (s1) , ⊥ ∧ RM (s2) , ⊥ =⇒ [rl (s1) ES s2 ⇐⇒ rl (RM (s1)) ET RM (s2)]

]
.

2. ∀t1, t2 ∈ T
[
RM (t1) , ⊥ ∧ RM (t2) , ⊥ =⇒ [rl (t1) ET t2 ⇐⇒ rl (R−1

M (t1)) ES R−1
M (t2)]

]
.

l Strongly structure-preserving mapping & Lu mapping. Tanaka and Ohmoriet al. stated in [Tan84] and
[OT88] that the strongly structure-preserving mapping is equivalent to Lu mapping in Section 2.8.3. In fact,
the strongly structure-preserving mapping is equivalent to the constrained mapping due to Zhang [Zha95],
and a superclass of Lu mapping. We prove the fact in Section 4.3.

2.8.3 Lu Distance

Although Lu distance is not primarily defined by tree mapping, we introduce it here since it is closely
related to the other tree mapping based distance measures.

Shin-Yee Lu proposed an algorithm [Lu79] of tree edit distance with the same intention as Tai dis-
tance, and applied it to clustering of handwritten characters. As mentioned in [SZ97, Section 14.2.4], this
algorithm does not compute Tai distance despite Lu’s intention, but computes some other distance. We refer
to the distance measure asLu distance. Later, the same algorithm for unordered trees was independently
proposed by Aokiet al. [AYO+03] for glycan structure matching.

The algorithm for computing Lu distance is based on the following recurrences.
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D(∅, ∅) = 0

D(F, ∅) =
∑
T∈F

DT (T, ∅), D(∅, F ) =
∑
T∈F

DT (∅, T )

DT (v(F ), ∅) = D(F, ∅) + d(v, ε), DT (∅, v(F )) = D(∅, F ) + d(ε, v)

DT (v1(F1), v2(F2)) =

min


DT (∅, v2(F2)) + min

T∈F2

{DT (v1(F1), T ) − DT (∅, T )}, ⟨ε 7→ v2⟩
DT (v1(F1), ∅) + min

T∈F1

{DT (T, v2(F2)) − DT (T, ∅)}, ⟨v1 7→ ε⟩
D(F1, F2) + d(v1, v2), ⟨v1 7→ v2⟩

(2.7a)

D(T1 • F1, T2 • F2) = min

 D(F1, T2 • F2) + DT (T1, ∅)
D(T1 • F1, F2) + DT (∅, T2)
D(F1, F2) + DT (T1, T2)

(2.7b)

In these recurrences, Eq.(2.7a) is the same as Eq.(2.4a) for alignment distance, and Eq.(2.7b) is the same as
the recurrence for string edit distance.

These recurrences are computed in O(|T1| · |T2|) time and space by using dynamic programming.

l Structure-preserving mapping & Lu mapping. Shasha and Zhang stated in [SZ97, Section 14.7] that
the algorithm introduced by Tanaka and Tanaka [TT88], i.e. the algorithm for computing the structure-
preserving distance, is the same as Lu’s algorithm [Lu79]. In fact, both are different. It is obvious from the
fact that the structure-preserving mapping is asymmetric, while Lu mapping is symmetric.

l Tree mapping for Lu distance. The tree mapping condition for Lu distance has been unknown. We reveal
it in Section 4.8.

2.8.4 Constrained Distance — Isolated-Subtree Distance

This distance measure is also known asisolated-subtree distance[WZ01]. Based on almost the same inten-
tion as the structure-preserving mapping due to Tanaka and Tanaka [TT88], Zhang proposed aconstrained
mapping(or isolated-subtree mapping)†, and designed a quadratic-time algorithm for ordered trees [Zha95]
and a polynomial-time algorithm even for unordered trees [Zha96]. The constrained mapping is succinctly
and naturally defined as follows.

Definition 2.65 (Constrained Mapping [Zha95, Zha96])
A Tai mappingM is constrainedif the following condition holds:

∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s3 < s1`s2 ⇐⇒ t3 < t1` t2].

Note that from Definition 2.65, it is obvious that

(s1, s2), (t1, t2) ∈ M [s1 < s2 ⇐⇒ t1 < t2]

for any constrained mappingM , i.e. the condition of Tai mapping for unordered trees is implied.
For a tree mappingM from S to T , let M1 andM2 be two arbitrary subsets ofM . An implica-

tion of the constrained mapping is that if two subtreesS(lca(M1
(1))) andS(lca(M1

(2))) are disjoint, i.e.
V (S(lca(M1

(1)))) ∩ V (S(lca(M1
(2)))) , ∅, thenT (lca(M2

(1))) andT (lca(M2
(2))) must be disjoint as well,

and vice versa.
From the definition, it is obvious that the constrained mapping is symmetric, and monotonic.
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Figure 2.29.Constrained mapping
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Figure 2.30.Non-constrained and structure-preserving mapping

Example 2.66 Consider the same example as Figure 2.26. It is easy to confirm that, by the tree mapping
M , any disjoint two complete subtrees inS are mapped to disjoint two complete subtrees inT as shown in
Figure 2.29, and vice versa.

On the other hand, the Tai mapping shown in Figure 2.10 is not constrained sinces4 < s6`s7 and
t3 ≮ t6` t9.

The tree mapping inFigure 2.30 is not constrained while it is structure-preserving. Actually, it is
easy to see thats4 < s2`s3 andt5 ≮ t3` t4.

The constrained distance is proved to be a metric by the following proposition.

Proposition 2.67 (Transitivity of Constrained Mapping [Zha96, Lemma 2(1)])
The constrained mapping is transitive.

Proof. Let R, S andT be trees. Consider two constrained mappingsMRS ∈ MCst(R,S) andMST ∈
MCst(S, T ). It follows from Proposition 2.48 thatMST ◦ MRS is a Tai mapping.

For eachi ∈ {1, 2, 3}, let (ri, ti) be any element inMRS ◦ MST . Then, there existssi such that
(ri, si) ∈ MRS and (si, ti) ∈ MST for eachi ∈ {1, 2, 3}. By the definition of constrained mappings, the
following holds:

r3 < r1`r2 ⇔ s3 < s1`s2 ands3 < s1`s2 ⇔ t3 < t1` t2.

Therefore,r3 < r1`r2 ⇔ t3 < t1` t2 holds.

Corollary 2.68 (Metric of Constrained Distance [Zha96, Theorem 2])
The constrained distance is a metric.

Proof. Since there exists an isomorphic mapping between the same two trees, and the constrained mapping
is symmetric, then it is obvious that for any treesS andT ,

DCst(T, T ) = 0 and DCst(S, T ) = DCst(T, S).
†Zhang refers to it as aconstrained edit distance mappingin [Zha95, Zha96].



2.8. Structure Sensitive Distance 53

D(∅, ∅) = 0

D(F, ∅) =
∑
T∈F

DT (T, ∅), D(∅, F ) =
∑
T∈F

DT (∅, T )

DT (v(F ), ∅) = D(F, ∅) + d(v, ε), DT (∅, v(F )) = D(∅, F ) + d(ε, v)

DT (v1(F1), v2(F2)) =

min


DT (∅, v2(F2)) + min

T∈F2

{DT (v1(F1), T ) − DT (∅, T )}, ⟨ε 7→ v2⟩
DT (v1(F1), ∅) + min

T∈F1

{DT (T, v2(F2)) − DT (T, ∅)}, ⟨v1 7→ ε⟩
D(F1, F2) + d(v1, v2), ⟨v1 7→ v2⟩

(2.8a)

D(F1, F2) = min


D(∅, F2) + min

v(F ′
2 )∈F2

{D(F1, F
′
2) − D(∅, F ′

2)}

D(F1, ∅) + min
v(F ′

1 )∈F1

{D(F ′
1, F2) − D(F ′

1, ∅)}

DS(F1, F2)

(2.8b)

DS(∅, ∅) = 0

DS(T • F, ∅) = DT (T, ∅) + DS(F, ∅)

DS(∅, T • F ) = DT (∅, T ) + DS(∅, F )

DS(T1 • F1, T2 • F2) = min

 DS(F1, F2) + DT (T1, T2)
DS(T1 • F1, F2) + DT (∅, T2)
DS(F1, T2 • F2) + DT (T1, ∅)

(2.8c)

Figure 2.31.Recurrences for computing constrained distance for ordered trees

Since tree mapping is subadditive by Lemma 2.40, and the constrained mapping is transitive by Proposi-
tion 2.67, it follows from Proposition 2.45 that the constrained distance is transitive, i.e. for any treesR,S,
andT , we have

DCst(R, T ) ≤ DCst(R,S) +DCst(S, T ).

Therefore, the constrained distance is a metric.

Zhang’s Algorithm for Ordered Trees

Zhang proposed an efficient algorithm for computing the constrained distance for ordered trees [Zha95]
based on the recurrences shown inFigure 2.31.

Note that an optimal constrained mapping is required (even ifd is not a metric), Eq.(2.8a) should
include the factor

D(F1, F2) + d(v1, ε) + d(ε, v2)

as in the case of Eq.(2.5) in alignment distance. The definition of DS(F1, F2) is the same as the string edit
distance if two forestsF1 andF2 are regarded as two strings consisting of trees instead of symbols. These
recurrences are computed by using dynamic programming technique as shown in Algorithm 2.5.

Complexity. The computational complexity of this algorithm is estimated as follows. For each pair of
nodesv1 ∈ T1 andv2 ∈ T2, the procedure StringEditDistance runs in O(|ch(v1)| · |ch(v2)|) time. The time
complexity of computing D(F1, F2) in Eq.(2.8b) and DT (T1, T2) in Eq.(2.8a) is bounded by O(|ch(v1)| +
|ch(v2)|). Hence, the factor of O(|ch(v1)| · |ch(v2)|) dominates the time complexity for each pairv1 ∈ T1

andv2 ∈ T2. Therefore, the time complexity of Algorithm 2.5 is∑
v1∈T1

∑
v2∈T2

O
(
|ch(v1)| · |ch(v2)|

)
≤ O

( ∑
v1∈T1

|ch(v1)| ×
∑

v2∈T2

|ch(v2)|

)
≤ O

(
|T1| · |T2|

)
.

The space complexity is O(|T1| · |T2|) since we need to store DT (T1(v1), T2(v2)) and D(F1(v1), F2(v2)) for
eachv1 ∈ T1 andv2 ∈ T2.
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Algorithm 2.5 Constrained distance for ordered trees
procedureConstrainedDistance(T1, T2)

D(∅, ∅) ← 0
foreachv ∈ T1 in postorderdo

let F1 be a forest such thatT1(v) = v(F1)
D(F1, ∅) ←

∑
T∈F1

DT (T, ∅)
DT (v(F1), ∅) ← D(F1, ∅) + d(v, ε)

foreachv ∈ V (T2) in postorderdo
let F2 be a forest such thatT2(v) = v(F2)
D(∅, F2) ←

∑
T∈F2

DT (∅, T )
DT (∅, v(F2)) ← D(∅, F2) + d(ε, v)

for v1 ∈ T1 in postorderdo
let F1 be a forest such thatT1(v1) = v1(F1)
for v2 ∈ T2 in postorderdo

let F2 be a forest such thatT2(v2) = v2(F2)

D(F1, F2) = min


D(∅, F2) + min

v(F ′
2 )∈F2

{D(F1, F
′
2) − D(∅, F ′

2)}

D(F1, ∅) + min
v(F ′

1 )∈F1

{D(F ′
1, F2) − D(F ′

1, ∅)}

StringEditDistance(F1, F2)
DT (v1(F1), v2(F2)) =

min


DT (∅, v2(F2)) + min

T∈F2

{DT (v1(F1), T ) − DT (∅, T )}
DT (v1(F1), ∅) + min

T∈F1

{DT (T, v2(F2)) − DT (T, ∅)}
D(F1, F2) + d(v1, v2)

return DT (T1, T2)
end

procedureStringEditDistance(T 1
1 • · · · • Tm

1 ,T 1
2 • · · · • Tn

2 )
DS [0, 0] ← 0
for i ← 1 to m do

DS [i, 0] ← D[i − 1, 0] + DT (T i
1, ∅)

for j ← 1 to n do
DS [0, j] ← D[0, j − 1] + DT (∅, T j

2 )
for i ← 1 to m do

for j ← 1 to n do

DS [i, j] ← min

 DS [i − 1, j − 1] + DT (T i
1, T j

2 )
DS [i − 1, j] + DT (T i

1, ∅)
DS [i, j − 1] + DT (∅, T j

2 )
return DS [m,n]

end

Zhang’s Algorithm for Unordered Trees

In contrast to Tai distance and the alignment distance problems, the constrained distance problem has a poly-
nomial algorithm for unordered trees. Zhang proposed an algorithm for computing constrained distance for
unordered trees [Zha96]. This algorithm has the same structure as that for ordered trees in Figure 2.31
except for Eq.(2.8c). Zhang designed the algorithm by replacing the string edit distance problem in Equa-
tion (2.8c) for ordered trees with a minimum cost maximum bipartite matching problem, and reducing it
to the minimum cost maximum flow problem. This algorithm runs in O(|T1| · |T2| · (deg(T1) + deg(T2)) ·
log2(deg(T1) + deg(T2))) time for given two unordered treesT1 andT2.

Improvements of Constrained Distance

Recently, Wang and Zhao proposed a more space efficient algorithm for computing constrained distance for
ordered trees. It runs in O((log|T1|) · |T2|) space with the same time complexity O(|T1| · |T2|) as Zhang’s
algorithm for two input treesT1 andT2.
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Ferraro and Godin improved the algorithm to find an optimal constrained mapping with minimum
number of connected components [FG03] with the same computational complexity, and applied it to the
plant comparison problem [FG00].

2.8.5 Structure-Respecting Distance

In order to design more structure-sensitive distance than Tai distance, Richter independently introduced the
structure-respecting mapping[Ric97] for ordered trees with the same intention of the constrained mapping.
The structure-respecting mapping is defined as follows.

Definition 2.69 (Structure-Respecting Mapping [Ric97]) A tree mappingM is structure-respecting
if the following condition holds: for all (s1, t1), (s2, t2), (s3, t3) ∈ M such that none ofs1, s2, ands3 is
an ancestor of the others,

s1`s2 = s1`s3 ⇐⇒ t1` t2 = t1` t3.

From the definition ofstructure-respecting distance, Richter [Ric97] derived exactly the same algo-
rithm as Zhang’s algorithm for computing constrained distance for ordered trees [Zha95] in Algorithm 2.5.
The difference between two algorithms arises just from the estimation of computational complexity. Zhang
gave a tighter estimation than Richter. Richter estimates that this algorithm runs in O(|T1| · |T2| · deg(T1) ·
deg(T2)) time and O(deg(T1) · dep(T1) · |T2|) space (or O(|T1| · |T2|) space when tree mapping is required
by traceback).

l Constrained mapping & structure-respecting mapping. The equivalence of two tree mapping classes
defined in Definition 2.65 (constrained mapping) and 2.69 (structure-respecting mapping) has yet to be
proved, although these two algorithms are the same, and Chin Lung Luet al. stated thatboth the concepts
of constrained edit mapping and structure respecting mapping are equivalent.We prove the equivalence
between these two classes in Section 4.1.

2.8.6 Less-Constrained Distance

Theless-constrained mappingwas introduced by Chin Lung Luet al. [LST01] with the intention of relaxing
the condition of the constrained mapping [Zha95, Zha96] so that non-constrained mappings such asM2 in
Figure 2.32(b) are allowed while Tai mappings such asM3 in Figure 2.32(c) remain prohibited. Luet al.
formulated the condition of less-constrained mapping as follows.

Definition 2.70 (Less-Constrained Mapping [LST01]) A Tai mappingM is less-constrainedif the
following condition holds: for all (s1, t1), (s2, t2), (s3, t3) ∈ M such that none ofs1, s2, ands3 is an
ancestor of the others,

s1`s2 ≤ s1`s3 ∧ s1`s3 = s2`s3 ⇐⇒ t1` t2 ≤ t1` t3 ∧ t1` t3 = t2` t3.

This definition is, in fact, critically inconsistent with the concept of less-constrained mapping as follows.

l The concept of less-constrained mapping is not formulated by Definition 2.70.We show an example
that illustrates the inconsistency between the concept of less-constrained mapping and what Definition 2.70
implies.

Example 2.71 Consider the less-constrained mappingM2 in Figure 2.32(b). It is obvious that the following
two conditions are satisfied inM2.

• s1`s2 ≤ s1`s3 ands1`s3 = s2`s3.
• t1` t2 � t1` t3 and t1` t3 = t2` t3.

Therefore, the tree mappingM2 is excluded by Definition 2.70.

Moreover, in Section 4.4, we prove that Definition 2.70 is mathematically equivalent to the definition of
constrained mapping (Definition 2.65), and we give a correct definition.
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Figure 2.32.Feature of constrained and less-constrained mappings

The algorithm for computing less-constrained distance [LST01] for ordered trees was proposed based
on the recurrences inFigure 2.33, where D(F1, F2) denotes the alignment distance between two forestsF1

andF2, and DT (T1, T2) denotes the alignment distance between two treesT1 andT2. While the mapping
definition is inconsistent with the concept of less-constrained mapping, this algorithm is consistent with the
concept of less-constrained mapping. These recurrences are the same as those for alignment distance except
for Eq.(2.9c). This algorithm runs in O(|T1| · |T2| · deg(T1)3 · deg(T2)3 · (deg(T1) + deg(T2))) time.

l Less-constrained mapping & alignable mapping.We prove the equivalence between two classes of less-
constrained mapping and the alignable mapping in Section 4.6.

Computational Complexity for Unordered Trees

Chin Lung Luet al. showed that the less-constrained distance problem for unordered trees has no polynomial-
timeabsolute approximationalgorithm unless P= NP [LST01]. A problem has anabsolute approximation
algorithm if, for any instanceI of the optimization problem, the absolute error of the approximate solution
APP(I) is bounded by a constantc, i.e.

|APP(I) − OPT(I)| ≤ c,

where OPT(I) is an optimal solution ofI (cf. [ACG+02, Section 3.1.1]). This result is more negative than
MAX SNP-hard.
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D(∅, ∅) = 0

D(F, ∅) =
∑
T∈F

DT (T, ∅), D(∅, F ) =
∑
T∈F

DT (∅, T )

DT (v(F ), ∅) = D(F, ∅) + d(v, ε), DT (∅, v(F )) = D(∅, F ) + d(ε, v)

DT (v1(F1), v2(F2)) =

min


DT (∅, v2(F2)) + min

T∈F2

{DT (v1(F1), T ) − DT (∅, T )}, ⟨ε 7→ v2⟩
DT (v1(F1), ∅) + min

T∈F1

{DT (T, v2(F2)) − DT (T, ∅)}, ⟨v1 7→ ε⟩
D(F1, F2) + d(v1, v2), ⟨v1 7→ v2⟩

(2.9a)

D(F1 • T1, F2 • T2) = min


D(F1, F2 • T2) + DT (T1, ∅)
D(F1 • T1, F2) + DT (∅, T2)
D(F1, F2) + DT (T1, T2)
D′(F1 • T1, F2 • T2)

(2.9b)

D′(T 1
1 • · · · • Tm

1 , T 1
2 • · · · • Tn

2 ) =

min


min

1≤i≤k≤m
1≤j≤n


D(T 1

1 • · · · • T i−1
1 , T 1

2 • · · · • T j−1
2 )

+D(T i
1 • · · · • T k

1 , F j
2 ) + d(ε, v2)

+D(T k+1
1 • · · · • Tm

1 , T j+1
2 • · · · • Tn

2 )


min

1≤i≤m
1≤j≤k≤n

 D(T 1
1 • · · · • T i−1

1 , T 1
2 • · · · • T j−1

2 )
+D(F i

1, T j
2 • · · · • T k

2 ) + d(v1, ε)
+D(T i+1

1 • · · · • Tm
1 , T k+1

2 • · · · • Tn
2 )


,

where letT i
1 = v1(F i

1) andT j
2 = v2(F j

2 ).

(2.9c)

Figure 2.33.Recurrences for computing less-constrained distance for ordered trees

2.9 Subtree Isomorphism based Distance
The problem of determining whether two trees are isomorphic has been extensively studied and fundamental
for a variety of tree pattern matching problems. In approximate tree matching, the problem of finding a
common subtree† between two trees is an important generalization of tree isomorphism. This problem has
a lot of variants, which are defined by tree mapping as well as the other tree edit distance measures.

2.9.1 Top-Down Distance — LCST Problem

The top-down distance is a tree edit distance measure with a simple restriction on edit operations. That is,
applying deletions and insertions is confined to leaf nodes.

From the historical point of view, the edit-based approach to approximate tree matching probably
dawned with the top-down distance due to Selkow [Sel77]. Later, Yang [Yan91] and Chawathe [Cha99a]
applied the top-down distance to the change detection problem of two parse trees of programs toward a
better alternative to thediff utility [HM76].

Wang and Zhang [WZ01] redefined the top-down distance by setting thetop-down mapping.

Definition 2.72 (Top-Down Mapping [WZ01]) A Tai mappingM between two treesS andT is a
top-down mappingif, for any pair (s, t) ∈ M such that boths andt are non-root nodes, there exists also
a pair (par(s), par(t)) ∈ M .

We show an example of top-down mapping inFigure 2.36. The algorithm for computing the top-
down distance is based on the following operational definition [Sel77].

†The termsubtreemeans a connected subtree pattern in a tree (See Remark 2.1).
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D(∅, ∅) = 0

D(F, ∅) =
∑
T∈F

DT (T, ∅), D(∅, F ) =
∑
T∈F

DT (∅, T )

DT (v(F ), ∅) = D(F, ∅) + d(v, ε), DT (∅, v(F )) = D(∅, F ) + d(ε, v)

DT (v1(F1), v2(F2)) = D(F1, F2) + d(v1, v2)

D(T1 • F1, T2 • F2) = min

 DT (T1, T2) + D(F1, F2)
DT (T1, ∅) + D(F1, T2 • F2)
DT (∅, T2) + D(T1 • F1, F2)

In Algorithm 2.6, we show the algorithm proposed by Selkow [Sel77]. This algorithm runs in O(|T1| · |T2|)
time and space.

Complexity. For two given treesT1 and T2, the procedure SubTopDownDistance is called once for
each pair of nodesv1 ∈ T1 and v2 ∈ T2 with the same depth, i.e. dep(v1) = dep(v2). In each call,
SubTopDownDistance runs in O(|ch(v1)| · |ch(v2)|). Therefore, the time complexity of Algorithm 2.6 is
O(|T1| · |T2|) as in the case of the constrained distance problem for ordered trees.

Algorithm 2.6 Selkow’s algorithm for top-down distance
procedureTopDownDistance(T1,T2)
/* precompute the global arraysD(·, ·) andDT (·, ·) * /
D(∅, ∅) ← 0
foreachv ∈ T1 in postorderdo

let F1 be a forest such thatT1(v) = v(F1)
D(F1, ∅) ←

∑
T∈F1

DT (T, ∅)
DT (v(F1), ∅) ← D(F1, ∅) + d(v, ε)

foreachv ∈ V (T2) in postorderdo
let F2 be a forest such thatT2(v) = v(F2)
D(∅, F2) ←

∑
T∈F2

DT (∅, T )
DT (∅, v(F2)) ← D(∅, F2) + d(ε, v)

return SubTopDownDistance(T1,T2)
end

procedureSubTopDownDistance(v1(T 1
1 • · · · • Tm

1 ), v2(T 1
2 • · · · • Tn

2 ))
D[0, 0] ← d(v1, v2)
for i ← 1 to m do

D[i, 0] = D(T 1
1 • · · · • T i

1, ∅)
for j ← 1 to n do

D[0, j] = D(∅, T 1
2 • · · · • T j

2 )
for i ← 1 to m do

for j ← 1 to n do

D[i, j] = min

 D[i − 1, j − 1] + SubTopDownDistance(T i
1, T j

2 )
D[i − 1, j] + DT (T i

1, ∅)
D[i, j − 1] + DT (∅, T j

2 )
return D[m,n]

end
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Chawathe’s Algorithm

All the algorithms for computing top-down edit distance due to Selkow [Sel77], Yang [Yan91] and Chawathe
[Cha99a] run in O(|T1| · |T2|) time for given two treesT1 andT2. The algorithms by Selkow and Yang in-
clude a recursive call as shown in Algorithm 2.6. On the other hand, Chawathe’s Algorithm [Cha99a] is
designed without recursive calls. In this algorithm, the top-down distance problem for two trees is reduced
to the shortest path problem in a kind of lattice graph called anedit graph. The edit graph is constructed
according to the following definition.

Definition 2.73 (Edit Graph for Two Trees) Let S and T be trees. Lets1, s2, . . . , sm ∈ S and
t1, t2, . . . , tn ∈ T be sequences of nodes indexed by left-to-right preorder numbering, where|S| = m
and|T | = n. Theedit graphof S andT is an edge weighted graphG(S, T ) = (V,E) such that

• the set of verticesV is {v(i,j) | (i, j) ∈ {0, . . . ,m} × {0, . . . , n}},
• the set of edgesE consists of the following edges:

(Assume that two dummy nodessm+1 andtn+1 with depth 0)

· dep(si) = dep(tj) ⇐⇒
(v(i−1,j−1), v(i,j)) ∈ E with the weightd(si, tj) for (i, j) ∈ {1, . . . ,m} × {1, . . . , n},

· dep(si) ≥ dep(tj+1) ⇐⇒
(v(i−1,j), v(i,j)) ∈ E with the weightd(si, ε) for (i, j) ∈ {1, . . . ,m} × {0, . . . , n},

· dep(si+1) ≤ dep(tj) ⇐⇒
(v(i,j−1), v(i,j)) ∈ E with the weightd(ε, tj) for (i, j) ∈ {0, . . . ,m} × {1, . . . , n}.

Given two treesS andT , each node of edit graph forS andT is represented as D[i, j], which stores the
top-down distance between two subforestsS[{s1, . . . , si}] andT [{t1, . . . , tj}] for (i, j) ∈ {0, . . . , |S|} ×
{0, . . . , |T |}. We show Chawathe’s algorithm in Algorithm 2.7.

Example 2.74 Consider two ordered trees inFigure 2.34, in which each node is indexed by left-to-right
preorder numbering.Figure 2.35(a) shows the edit graph for two ordered treesS andT after computing
TopDownDistance(S, T ), where all the edit costs are assumed to be 1 (unit cost). In Figure 2.35(a), the
distance (minimum weight) from top left to bottom right in the edit graph is computed, and it turns out to
be 5 as given at the bottom right node. It is easy to design the traceback procedure for obtaining optimal
top-down mappings as well as the procedure Traceback in Algorithm 2.1 for strings. Figure 2.1(b) shows
two shortest paths corresponding to two possible optimal top-down mappings in Figure 2.36.
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b 2
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Figure 2.34.Two input trees in computing top-down distance: labels are attached to the left of the
nodes, and sequential numbers in preorder to the right.

Largest Common Subtree (LCST) Problem for Unordered Trees

This problem is also known astop-down maximum common subtree isomorphism[Val98, Section 4.3].
The largest common subtree(LCST) problem is the top-down distance problem with LCS costs (See Sec-
tion 2.6.2). Yang’s algorithm [Yan91] has, in fact, the LCS-costing scheme.

This problem has been well-studied independently of the top-down distance problem, and some re-
sults have a significant impact across the board on the approximate tree matching problem.
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(a) Edit graph obtained after computing
TopDownDistance(S, T )

(b) Two shortest paths in the edit graph

Figure 2.35.Edit graph for two ordered treesS andT
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Figure 2.36.Top-down mappings

Algorithm 2.7 Chawathe’s algorithm for top-down distance
procedureTopDownDistance(S,T )

Input: left-to-right preorder sequences of nodes
s1, . . . , sm ∈ S, where|S| = m
t1, . . . , tn ∈ T , where|T | = n
let sm+1 andtn+1 be dummy nodes with depth 0

D[0, 0] ← 0
for i ← 1 to m do

D[i, 0] ← D[i − 1, 0] + d(si, ε)
for j ← 1 to n do

D[0, j] ← D[0, j − 1] + d(ε, ti)
for i ← 1 to m do

for j ← 1 to n do
x ← ∞; y ← ∞; z ← ∞
if dep(si) = dep(tj) then x ← D[i − 1, j − 1] + d(si, tj)
if dep(si) ≥ dep(tj+1) then y ← D[i − 1, j ] + d(si, ε)
if dep(si+1) ≤ dep(tj) then z ← D[i, j − 1] + d(ε, tj)
D[i, j] ← min{x, y, z}

return D[m,n]
end
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There is an O(n3)-time algorithm for unordered trees, and an O(n2)-time algorithm for unlabeled
unordered trees with bounded degree [Mat78]. Recently, Fukagawa and Akutsu proposed a fixed-parameter
algorithm for unordered trees with a bounded size alphabet [FA06]. This algorithm runs in O(4kn) time
for unordered trees, wherek is a fixed upper bound of differences between two input treesT1 andT2, and
n = max{|T1| , |T2|}. Even for unrooted trees, it runs in O(4kkn) time.

For more than two input unordered trees, Akutsu [Aku92] showed that the LCST problem is NP-
hard, and moreover, Akutsu and Balledórsson [AH00] showed that the LCST problem is also very hard
to approximate. This result implies that the intractability ofmultiple tree matching problemsbased on not
exclusively the LCST problem but also the other approximate tree matching problems.

2.9.2 Bottom-Up Distance

The bottom-up distance [Val01] is a tree edit distance measure with the restriction that applying deletions
and insertions is confined to maximal nodes with respect to hierarchical order.

Valiente introduced thebottom-up mappingfor formulating the bottom-up distance.

Definition 2.75 (Bottom-up mapping [Val01]) A Tai mappingM between two treesS andT is a
bottom-up mappingif and only if, for any pair (s, t) ∈ M , the following hold.

1. ∀s ∈ S
[

s ∈ M (1) =⇒ ∀s′ ∈ S(s) [s′ ∈ M (1)]
]
.

2. ∀t ∈ T
[

t ∈ M (2) =⇒ ∀t′ ∈ T (t) [t′ ∈ M (2)]
]
.

The bottom-up mapping between two trees is the common complete subforest between two trees if
labels are ignored.

Valiente proposed an O(|T1| + |T2|)-time and -space algorithm [Val01] for computing the bottom-up
distance for both ordered and unordered trees. This algorithm takes advantage of the algorithms for the
common subexpression problem [DST80, FSS90]. Then, it basically computes the LCS-cost bottom-up
mapping between two trees.

l The bottom-up mapping is not a subclass of isolated-subtree or constrained mapping.Definition 2.75
is different from the original definition of bottom-up mapping [Val01] in which the bottom-up mapping is
required to be a subclass of isolated-subtree mapping. Since Valiente’s algorithm, in fact, does not compute
isolated-tree mappings, we omit the requirement of isolated-subtree mapping in our definition of bottom-up
mapping.

Example 2.76 Figure 2.37shows an optimal bottom-up mapping between treesS andT (we only depict
the mapping between maximal nodes with lines). This example is drawn from [Val01, Figure 8]. From
this example, it is easy to verify that the bottom-up mapping is not constrained, i.e. not an isolated-subtree
mapping. In fact, althoughs2 < s7`s9 does not hold,t4 < t8` t12 holds.

2.10 Related Work
There have been various directions to study related to approximate tree matching. Most of improvements
and refinements in approximate tree matching have been made by taking advantage of the results in the field
of stringology such as fixed-parameter algorithms, low-distortion embeddings, non-linear gap penalty, local
similarity, multiple alignment. These topics are all intriguing and significant for real-world applications also
in trees. In this section, we give a cursory review on some of these topics.

2.10.1 Hierarchical View of Tree Mappings

Wang and Zhang [WZ01] established a hierarchy among several distance measures based on the notion of
tree mappings. Although there was some confusion in understanding the relationship between the structure-
preserving distance [TT88] and the constrained distance [Zha95], the following was proved.

Tai ) Aln ) Cst ) Top.
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Figure 2.37.Bottom-up mapping

2.10.2 Tree Inclusion Problem

The tree inclusion problem is regarded a special case of approximate tree matching. For two treesP andT ,
P is includedin T if P is obtained fromT by deleting nodes inT .

The tree inclusion is also defined by a class of tree mappings. A tree mappingM from P to T is
left-total if the following holds:

∀p ∈ P [ ∃t ∈ T such that (p, t) ∈ M ].

P is includedin T if there exists a left-total Tai mappingM with LCS costs fromP to T .
Since Kilpel̈ainen and Mannila proposed [KM95] a quadratic-time algorithm for ordered trees, some

improvements have been made [Che98, Bil05].
The tree inclusion problem for unordered trees are proved to be NP-complete [MT92, KM95]. Va-

liente proposed a constrained tree inclusion [Val05] by confining deletions only to nodes with at most one
child, and presented a polynomial time algorithm for unordered trees.

We summarize the complexities of these algorithms inTable 2.8.

Table 2.8.Computational complexity of tree inclusion problem

Trees Class Reference Time Space

general [KM95] O(ℓpnt) O(npnt)
general [Che98] O(ℓpnt) O(ℓp min{ht, ℓt})

ordered
general [BG05] O(ℓpnt) O(np + nt)
general [BG05] O(npℓt log lognt) O(np + nt)
general [BG05] O(npnt/ lognt) O(np + nt)
constrained [Val05] O(npnt/ lognt) O(npnt)

unordered
general [MT92, KM95] NP-complete
constrained [Val05] O(n1.5

p nt/ lognt) O(npnt)

np = |P |, nt = |T |, ℓp = |leaves(P )|, ℓt = |leaves(T )|, ht = dep(T )

2.10.3 Additional Edit Operations

In this thesis, we consider only the three elementary edit operations: replacements, deletions, and insertions.
Barnard [BCD95] introducedswapping operationson two complete subtrees rooted at adjacent siblings
into Zhang-Shasha’s algorithm for computing Tai distance. Also, Bille [Bil03] incorporatedmergeandsplit
operationson nodes into Zhang-Shasha’s algorithm with some restrictions. Chawatheet al. [CRGMW96,
CGM97, Cha99b] proposed efficient change detection algorithms includingmove operationson complete
subtrees with heuristics for semi-structured data such as XML documents.
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Magniez and Rougemont [MR07] proved that the Tai edit problem for ordered trees with move oper-
ations on complete subtrees is NP-complete even for binary trees by reducing the one-dimensional perfect
BIN-PACKING problem into the Tai edit problem.

2.10.4 Gap Costs

Sakakibara [Sak03] proposed a polynomial-time algorithm for computing alignments of a specific type of
binary trees withaffine gap penaltiesfor the analysis of RNA secondary structures. For more general gap
penalties in tree edit distance, Touzet showed the following negative result.

Convex Gap Costs for Tai Distance

For a tree mappingM between two treesS andT , we refer to the set of (inserted or deleted) nodes (V (S) \
M (1)) ∪ (V (T ) \ M (2)) as thegapsin M . In this thesis, we consider only tree edit distance withlinear gap
costs, i.e. insertions and deletions are applied to nodes one by one, and the total cost is evaluated as the sum
of each cost of editing one single node.

On the other hand, in string edit distance, a variety of costing schemes other than linear gap costs have
been proposed in computational biology for confirming to biological models (cf. [Gus97, Section 11.8,12.6]).
In analogy with the costing schemes in strings, Touzet [Tou03] proposed a new edit model calledgapped
edit distance. In this model, we can delete and insert a subtree with contiguous nodes by one step edit
operation. Aconvex gap costfunction is as a natural extension of it for strings, and defined as follows:

cost(τ1(τ2)) ≤ cost(τ1) + cost(τ2),

whereτ1 andτ2 are subtrees, andτ1(τ2) is a subtree such thatτ2 is attached to a leaf ofτ1. Touzet showed
a negative result that the Tai edit problem with convex gap costs for ordered trees is NP-hard, while there
exists a quadratic-time algorithm if gaps are restricted to complete subtrees [Tou03].

2.10.5 Local Similarity between Trees

If two large trees are not totally similar but share a small important subtree pattern, we need a specific
method to find such a local pattern in stead ofglobal tree matching methods. In strings, the algorithms
for computinglocal alignmentshave been widely developed since Smith and Waterman first presented a
local alignment algorithm [SW81]. The technique used in Smith and Waterman’s algorithm is also applied
straightforward to the algorithms for finding local similarity in tree mappings of the alignable and the
constrained classes.

Höchsmannet al. [HTGK03] proposed an algorithm for computing an optimal local alignable map-
ping between ordered trees, and applied it to the analysis of RNA secondary structures [Höc05, Section 7.1].
This algorithm runs in O(|T1| · |T2| ·deg(T1) ·deg(T2) · (deg(T1)+deg(T2))) time and O(|T1| · |T2| ·deg(T1) ·
deg(T2)) space for two input treesT1 andT2. Ferraro and Ouangraoua [FO05] proposed an algorithm for
computing an optimal local constrained mapping between unordered trees with the same complexity as
Zhang’s algorithm [Zha96].

Aoki et al. [AYO+03] developed a local approximate matching algorithm for unordered trees. This
algorithm is a local matching and unordered tree version of Shin-Yee Lu’s algorithm [Lu79].

2.10.6 Approximation of Tree Edit Distance

For a large data set of trees, as in the case of strings (Section 2.2.7), the computation of tree edit distance is
often required to speed up even by sacrificing the accuracy of the computation.

In addition, if this metric space of tree edit distance can be embedded into a more familiar and tractable
metric space such as Euclidean space while preserving the distances between each pair of trees, it may gain
the understanding of the whole structure of given data.

Filtering by a Lower Bound

Inspired byq-gram distancefor strings due to Ukkonen [Ukk92], a few similar methods have been proposed
for trees.
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Kailing et al. proposed distance measures [KKSS03] between unordered trees by combining a few
very simple histograms of tree features;i.e., degrees, heights, and labels of all nodes. These histogram-
based distance measures are all computed in linear time, and are obviously lower bounds of Tai distance
between unordered trees.

Augstenet al. [ABG05] introducedpq-gram distancebetween two ordered trees. Thepq-grams are
subtrees in which the number of leaves isq with the same depthp and the number of edges isp+ q−1. The
pq-gram distanceis defined based on the differences of the number of the occurrences ofpq-grams between
two input ordered trees. Thepq-gram distance between two trees is computed in O(n logn) time and O(n)
space for the size of treesn. Although it is not shown that thepq-gram distance gives a theoretical lower
bound of any tree edit distance, the 1,2-gram distance achieves empirically an effective approximation to
Tai distance for real address data in the form of ordered trees.

Yanget al. [YKT05] also introduced thebinary branch distanceBBD(T1, T2) between two ordered
treesT1 andT2. A q-level binary branchis a perfect binary tree† with depthq. Two input trees are normal-
ized into binary tree representations. Then, the binary branch distance is defined based on the differences of
the number of the occurrences ofq-level binary branches between two input ordered trees. It is computed
in O(|T1| + |T2|) time. The lower bound is given as follows:

BBD(T1, T2) ≤ (4 · (q − 1)+ 1) · DTai
1 (T1, T2).

Tree Edit Distance Embeddings

As in the case of strings (Section 2.2.7), the low-distortion embedding problem for tree edit distance has
very recently started to be addressed.

Garofalakis and Kumar [GK05] first introduced a low-distortion embedding algorithm of Tai distance
for ordered trees with move operations on complete subtrees. This algorithm embeds a treeT into a vector
image FV(T) with at most O(|T |) non-zero components in O(|T | log∗ |T |) time. For two ordered treesT1

andT2, andn = max{|T1|, |T2|}, the following logarithmic distortion bounds are proved:

DTai
1 (T1, T2) ≤ 5 · ∥FV(T1) − FV(T2)∥1 = O(log2 n log∗ n) · DTai

1 (T1, T2).

Moreover, Garofalakis and Kumar applied their algorithm to building a compact concise sketch synopses,
and to approximating the similarity joins over streaming XML data.

Akutsuet al. [Aku06, AFT06] proposed two algorithms of embedding Tai distance for ordered trees
into string edit distance. These embedding algorithms do not require move operations, but assume bounded
degree trees. An input tree is coded into a string by using an Euler tour or a modified Euler tour (See
[AFT06]). For a treeT , let us denote these two codings by Euler(T ) and Euler′(T ) respectively. Then the
following hold.

1
2h + 1

· DTai
1 (T1, T2) ≤DEdit

1 (Euler(T1), Euler(T2)) ≤ 2 · DTai
1 (T1, T2),

1
O(n3/4)

· DTai
1 (T1, T2) ≤DEdit

1 (Euler′(T1), Euler′(T2)) ≤ 6 · DTai
1 (T1, T2),

whereh is the minimum height of two input trees, and the sizes of both trees are assumed to be O(n).

2.10.7 Edit Distance between Graphs

There has not been an established model of the edit distance for general graphs. Bunkeet al. have recently
given a couple of edit distance measures between two graphs based on the maximum common subgraph
[Bun97], the maximal common subgraph [BS98], and the minimum common supergraph [BJK00]. On the
other hand, Robles-Kelly and Hancock proposed methods for converting a graph into a string to exploit the
established theory of string edit distance [RKH02, RKH03].

2.11 Summary
There are a lot of problem settings in approximate tree matching according to the factors considered such
as tree types, costing schemes, edit operations, the classes of tree mappings. We mainly focus on labeled
rooted trees, and formulate a variety of methods in a uniformed representation. Then we have clarified
confusion and inconsistency in prior work as follows.

†a perfect binary tree is a tree in which every node has two or zero children, and all leaves are at the same depth.
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• The tree mapping for alignment distance has not been known in any explicit formulation since Jiang
and Wang proposed an algorithm for computing alignment of trees [JWZ95].

• The formulation of less-constrained mapping due to Luet al. [LST01] does not imply the tree map-
pings initially intended.

• The relationship among structure-preserving, Lu, constrained, less-constrained, and structure-respecting
distance measures are not clear, although some are regarded as the same.

The following two chapters are devoted to solve these problems.





Chapter 3

Theoretical Foundation of
Approximate Tree Matching

In the previous chapter, we went through a variety of tree edit distance measures in both operational and
declarative forms. Now we have found that there exit a few inconsistencies between declarative definitions
and operational definitions.

In this chapter, we equip the notion of tree edit distance with an algebraic formulation for bridging
the gap between operational and declarative semantics.

3.1 Preliminaries
We first show some important properties on interrelations of nodes in a tree with respect to least common
ancestors.

Proposition 3.1 For any treeT = (V,≤), and anyx, y, z ∈ V , the following properties hold.

1. For any subset of nodesU ⊆ V , there exists a unique least common ancestor ofU .

2. x`y andx`z are comparable.

3. x`x = x.

4. x`y = y`x.

5. (x`y)`z = x` (y`z).

6. x ≤ y ⇐⇒ x`y = y.

7. y ≤ x ∧ z ≤ x =⇒ y`z ≤ x.

8. x ≤ x′ ∧ y ≤ y′ =⇒ x`y ≤ x′`y′.

9. lca(U ) = lca(U \ W ∪ {lca(W )}) for non-emptyW such thatW ⊆ U ⊆ V .

10. x`y < x`z =⇒ x`z = y`z.

11. x`y = x`z =⇒ y`z ≤ x`y.

Proof. 1. Let x andy be two least common ancestors ofU . Thenx ≤ y andy ≤ x hold. Hencex = y.

2. Bothx ≤ x`y andx ≤ x`z hold. By Definition 2.17(2),x`y andx`z are comparable.

3–9. We omit these proofs since they are all obvious.

10. Sincey < x`z by the premise, we havey`z ≤ x`z. We consider the following two cases since
x`y andy`z are comparable by (2).

• Assumex`y < y`z, thenx < y`z. We havex`z ≤ y`z.
• Assumex`y ≥ y`z, thenx`y ≥ z. We havex`y ≥ x`z. It is contradictory to the premise.

Hence we havey`z ≤ x`z andx`z ≤ y`z.

11. It follows from z ≤ x`z and the premise thatz ≤ x`y holds. Moreovery ≤ x`y also holds, then
y`z ≤ x`y.

67
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From Proposition 3.1.9–10, the relation among the least common ancestors of two nodes among given
three nodes is summarized as follows.

Corollary 3.2 For any treeT = (V,≤), and anyx, y, z ∈ V , any of the following properties holds.

1. x`y < x`z andx`z = y`z.

2. x`y = x`z andy`z ≤ x`z.

3. x`y > x`z andx`y = y`z.

For an ordered tree, there have several relations between the hierarchical order and the sibling order
via least common ancestors.

Proposition 3.3 For any ordered treeT = (V,≤,≼), and anyx, y, z ∈ V , the following properties
hold.

1. x ≺ y =⇒ x < x`y ∧ y < x`y.

2. x`y < x`z ∧ x ≺ z =⇒ y ≺ z.

3. x`y < x`z ∧ x ≻ z =⇒ y ≻ z.

4. x ≺ y ≺ z =⇒ x`y ≤ x`z.

5. x ≺ y ≺ z =⇒ y < x`z.

Proof. 1. Sincex ≺ y, two nodesx andy are incomparable with respect to the hierarchical order, i.e.
x � y andy � x. We then immediately havex < x`y andy < x`y.

2. Sincex ≺ z, we havex`y � z. Also we havex`y � z sincex`y < x`z. Hencex`y andz are
incomparable in the hierarchical order. It follows thatx`y ≺ z because ifx`y ≻ z, we havex ≻ z.
Thus we obtainy ≺ z sincey ≤ x`y.

3. We omit this proof since this is symmetrical to (2).

4. If x`y > x`z andy ≺ z, then we havey ≺ x by (2). This is the contraposition of the assertion.

5. Sincex ≺ y ≺ z, we havey < x`y by (1), andx`y ≤ x`z by (4). Hence we havey < x`z.

3.2 Tree Homomorphism
In this section, we first introduce the notion of tree homomorphism. This notion stipulates a minimum
requisite for a structure-preserving relationship between two trees. In the following two sections, By im-
posing further restrictions on the tree homomorphism, we provide two fundamental relationships between
two trees.

Definition 3.4 (Tree Homomorphism) Let S andT be two unordered trees, anunordered tree homo-
morphism† from S to T is a (set-theoretic) mappingf : V (S) → V (T ) that satisfies the following:

∀x, y ∈ S [ x ≤S y =⇒ f (x) ≤T f (y) ].

WhenS andT are two ordered trees, we define anordered tree homomorphismfrom S to T by adding
the following condition to the unordered tree homomorphism.

∀x, y ∈ S [ x ≺S y =⇒ f (y) �T f (x) ].

For an ordered or unordered tree homomorphismf : V (S) → V (T ), we simply writef : S → T .
For a homomorphismf : S → T , we definef (V (S)) as{f (x) ∈ T | x ∈ S}, and abuse the notationf (S)
to denotef (V (S)).
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Proposition 3.5 For two ordered treesS andT , let f : V (S) → V (T ) be a mapping that satisfies the
following:

∀x, y ∈ S [ x ≤S y =⇒ f (x) ≤T f (y) ].

Then the following two statements are equivalent.

1. ∀x, y ∈ S [ x ≺S y =⇒ f (y) �T f (x) ].

2. ∀x, y ∈ S [ f (x) ≺T f (y) =⇒ x ≺S y ].

Proof. (2 ⇒ 1): We now assume thatx ⊀S y for x, y ∈ S. Then one ofx ≤S y, y ≤S x, or y ≺S x holds.
It follows that

• x ≤S y =⇒ f (x) ≤T f (y),
• y ≤S x =⇒ f (y) ≤T f (x), or
• y ≺S x =⇒ f (x) ⊀T f (y).

For each case, we havef (x) ⊀T f (y).
(1 ⇒ 2): We omit the proof since it is similar to the converse.

Example 3.6 For two ordered treesS andT , Figure 3.1depicts an ordered tree homomorphismf from S
to T . Note that, in this example,s2 ≺S s3 andf (s2) ⊀T f (s3). This tree homomorphism is bijective but its
inversef−1 is not a tree homomorphism. Ss1s2 s3

T t1t2t3
f

Figure 3.1. An ordered tree homomorphismf fromS to T

Definition 3.7 (Tree Isomorphism) Let S andT be two ordered (resp. unordered) trees. Anordered
(resp. unordered) tree isomorphismf : S → T is an ordered (resp. unordered) tree homomorphism
such that the mappingf is bijective fromV (S) to V (T ), and the inverse mappingf−1 is also an ordered
(resp. unordered) tree homomorphism.

We simply write a tree homomorphism and a tree isomorphism without “ordered” and “unordered” if
the context is clear, or both ordered and unordered are considered in the context.

In graph theory, the notion of isomorphism is defined as follows:

Let G = (V,E), andG′ = (V ′, E′) be two graphs. Two graphsG andG′ are isomorphic,
denoted byG ≃ G′, if there exists a bijection (i.e. a one-to-one and onto mapping)f : V → V ′

such that
∀x, y ∈ V [ (x, y) ∈ E(G) ⇐⇒ (f (x), f (y)) ∈ E(G′) ],

and such a mappingf is called anisomorphism.

We show that two unordered trees are isomorphic also as graphs if and only if there exists a tree isomorphism
between them.

Proposition 3.8 Let S andT be two unordered trees. For a mappingf : V (S) → V (T ), the following
two statements are equivalent.

1. f is an unordered tree isomorphism fromS to T .

2. f is a bijection such that∀x, y ∈ S [ (x, y) ∈ E(S) ⇐⇒ (f (x), f (y)) ∈ E(T ) ].
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Proof. We only show that 1 implies 2 since the converse is straightforward. Defineg : V (S) × V (S) →
V (T ) × V (T ) by settingg(x, y) = (f (x), f (y)). Then it suffices to showg(E(S)) ⊆ E(T ).

For any edge (x, y) ∈ E(S), let z be a node inV (T ) such thatf (x) ≤T z <T f (y). Sincef−1 is a
tree homomorphism, we havex ≤S f−1(z) <S y, and hencex = f−1(z) because (x, y) is an edge ofS. It
follows fromz = f (x) that (f (x), f (y)) is an edge ofT .

Proposition 3.9 Let S andT be two ordered trees. For a mappingf : V (S) → V (T ), the following
three statements are equivalent.

1. f is an ordered tree isomorphism fromS to T .

2. f is an ordered tree homomorphism fromS to T , and an unordered tree isomorphism fromS to
T .

3. f is a bijection and an unordered tree homomorphism fromS to T such that

∀x, y ∈ S [ x ≺S y =⇒ f (x) ≺T f (y) ].

Proof. (1⇒3): It is straightforward.
(3⇒2): It suffices to show thatx <S y for any x, y ∈ V (S) such thatf (x) <T f (y). One ofx <S y,
x >S y, x ≺S y andx ≻S y holds, and we havex ⊀S y andx �S y since we havef (x) ≺T f (y) or
f (x) ≻T f (y) otherwise. Further,x ≯T y sincef is a tree homomorphism of the unordered tree.
(2⇒1): If f (x) ≺ f (y), thenx ≺ y. We thus havef−1 is also a tree homomorphism.

Example 3.10 For unordered trees, the tree isomorphisms are not uniquely determined.Figure 3.2shows
two tree isomorphisms fromT to itself, i.e. there exists a non-trivial automorphism.Tt1t2 t3

T t1t2 t3f1 Tt1t2 t3
T t1t2 t3f2

a trivial tree isomorphism a non-trivial tree isomorphism

Figure 3.2. Tree isomorphisms for unordered trees.

In contrast to unordered trees, for two ordered treesS andT , a tree isomorphism fromS to T is
unique if it exists. This property follows the fact that there exists a uniqueleftmost leaffor any ordered tree
T , where the leftmost leaf is defined as the nodex of T such that

@y ∈ T s.t. (y < x) and @y ∈ T s.t. (y ≺ x).

Hence iff is an ordered tree isomorphism fromS to T , the leftmost node ofS must be mapped to the
leftmost node ofT .

The following proposition can be proved by the induction on the size of two ordered treesS andT .

Proposition 3.11 Let S andT bet two ordered trees. An ordered tree isomorphism fromS to T is
unique if it exists.

Corollary 3.12 Let T be an ordered tree. An ordered tree isomorphismf : T → T is identical to the
identity map ofV (T )

3.3 Tree Embedding
We introduce a variant of the tree homomorphism,embedding, which plays a central role to define the
alignment of trees.
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Definition 3.13 (Embedding) Let S andT be two ordered (resp. unordered) trees. An ordered (resp.
unordered)embeddingfrom S to T is an ordered (resp. unordered) tree homomorphismf : S → T
such that

∀x, y ∈ S [ x ≤S y ⇐⇒ f (x) ≤T f (y) ].

We define theresidueof f as res(f ) = |V (T (f (root(S)))) \ f (S)|.

It is obvious from the definition that any embedding is an injection (i.e. a one-to-one mapping), and
for any embeddingf : S → T , and any two nodex, y ∈ S, we havex = y ⇐⇒ f (x) = f (y), and
x <S y ⇐⇒ f (x) <T f (y).

Example 3.14Figure 3.3shows an embeddingf fromS toT . The residue off is res(f ) = |V (T ) \ f (S)| =
|{t1, t2, t3, t4, t5, t6, t7, t8} \ {t2, t4, t7}| = 5.Ss1s2 s3

T t1t2t3t4t5 t6t7 t8f
Figure 3.3. An ordered embeddingf fromS to T .

Proposition 3.15 Let S andT be ordered trees, andf : S → T be an ordered embedding. Then, for all
x, y ∈ S, f (x) ≼T f (y) if x ≼S y.

Proof. Assume thatf (x) �T f (y). Then one off (y) ≺T f (x), f (x) <T f (y), or f (y) <T f (x) holds.
Thus one ofx < y, y < x, or y ≺S x must hold. It follows thatx �S y.

Proposition 3.16 Let R, S, andT be (ordered or unordered) trees. Suppose thatf : R → S and
g : S → T are tree homomorphisms, i.e.

S
g

%%JJJJJJJJJJJ

R
g ◦ f //

f
::ttttttttttt

T.

Then the following properties hold.

1. If f andg|f (R) are embeddings, the composite off andg, i.e. g ◦ f , is an embedding fromR to
T . Moreover, res(g ◦ f ) = res(f ) + res(g|f (R)) holds.

2. If g ◦ f is an embedding, thenf is also an embedding.

Proof. 1. By Definition 3.13, for anyx, y ∈ S, if g(f (x)) ≤T g(f (y)) thenf (x) ≤S f (y), and iff (x) ≤S

f (y) thenx ≤R y. Thereforeg ◦ f is an embedding. Also, res(g ◦ f ) = |V (T )| − |(g ◦ f )(R)| = (|V (S)| −
|f (R)|) + (|V (T )| − |g|f (R)(S))|) = res(f ) + res(g|f (R)).

2. The mappingf is a tree homomorphism. Thus it suffices to show thatf (x) ≤S f (y) ⇒ x ≤R y,
for all x, y ∈ R. Now assume thatf (x) ≤S f (y). Then we haveg(f (x)) ≤T g(f (y)) sinceg is a tree
homomorphism. We obtainx ≤R y since the mappingg ◦ f is an embedding.

The embedding has a universal property in the following sense.
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Proposition 3.17 (Universal Property of Embeddings)Let R, S, andT be three (ordered or un-
ordered) trees. For an embeddingf : R → T , and a tree homomorphismg : S → T , if g(S) ⊆ f (R),
then there exists a unique tree homomorphismh : S → R such thatg = f ◦ h, i.e.

R
f // T

S.

g

OO

∃!h

__

Proof. Let us choose the unique (set-theoretic) mappingh : V (S) → V (R) so thatg = f ◦ h. We show
that h is a tree homomorphism. Letx andy be two nodes inV (S). From the definition ofh, it follows
thatg(x) = f (h(x)) andg(y) = f (h(y)). Assume thatx ≤S y, then we haveg(x) ≤T g(y). Sincef is an
embedding, we haveh(x) ≤R h(y).

Corollary 3.18 Let R, S, andT be three trees, andf : R → T andg : S → T be two embeddings
with f (R) = g(S). There exists a unique isomorphismh : S → R such thatg = f ◦ h.

The following proposition and corollary show important relations between the embedding and the
binary operator̀ , i.e. any embedding preserves the hierarchical order of least common ancestors between
two trees.

Proposition 3.19 For an embeddingf : S → T , and anyx, y ∈ S, let z ∈ f (S) ⊆ V (T ) be the
minimum node with respect to the hierarchical order ofT such thatf (x)`f (y) ≤T z. Then the node
z is identical tof (x`y). Furthermoref (x)`f (y) <T f (x`y) holds if and only iff (x)`f (y) < f (S)
holds. (SeeFigure 3.4.) Sx`yx y

Tz = f(x`y)f(x)`f(y)f(x) f(y)
f

Figure 3.4. An example of the property in Proposition 3.19.

Proof. Let z be a node inf (S) ⊆ V (T ) such thatf (x)`f (y) ≤T z. Sincef is an embedding, we
havex`y ≤S f−1(z). Hencef (x`y) ≤T z. This implies thatf (x`y) is the minimumz such that
f (x)`f (y) ≤T z. The rest of the assertion is obvious.

Corollary 3.20 For any embeddingf : S → T , and anyx, y, z ∈ S, if x`y <S x`z, then
f (x)`f (y) <T f (x)`f (z).

Proof. Sincef is an embedding, by Proposition 3.19 we havef (x)`f (y) ≤T f (x`y) <T f (x`z),
andf (x)`f (z) ≤T f (x`z). If f (x)`f (z) = f (x`z), then there is nothing to show. Heref (x`y) and
f (x)`f (z) are comparable with respect to the hierarchical order ofT . If there exists a nodew ∈ T such that
f (x)`f (z) ≤T w <T f (x`z), thenw cannot be mapped byf from any node inV (S) by Proposition 3.19,
i.e. w , f (x`y). Hencef (x`y) <T f (x)`f (z). Thus we concludef (x)`f (y) <T f (x)`f (z).
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Note that Corollary 3.20 cannot be extended to the 4-node case, i.e. for any embeddingf : S → T , even
if w`x ≤S y`z, the propertyf (w)`f (x) ≤T f (y)`f (z) does not necessarily hold. ActuallyFigure 3.5
illustrates an example in which, for an embeddingf , two nodesf (s1)`f (s2) andf (s3)`f (s4) are not
comparable with respect to the hierarchical order inT , while s1`s2 <S s3`s4 holds.Ss3`s4s1`s2s1 s2 s3 s4 Tf(s3`s4)f(s1)`f(s2)f(s1) f(s2) f(s3)`f(s4)f(s3) f(s4)

f
Figure 3.5. Corollary 3.20 cannot be extended to the 4-node case.

Proposition 3.21 Let T be a tree, andU be a subset ofV (T ). If T [U ] is a tree, then the natural
(set-theoretic) inclusionf : U → V (T ) is an embedding, and res(f ) = |V (T ) \ U |.

We denote this embedding byEU : T [U ] → T .

3.4 Insertion
Insertion of a node to a tree is known as a primitive operation used in tree edit distance. In what follows,
we show the insertion is defined as a primitive variant of the embedding. More importantly, it is shown that
any embedding is decomposed into one or more insertions.

Definition 3.22 (Insertion) Let S andT be two trees. An embeddingf : S → T with res(f ) = 1 is
called aninsertion. For an insertionf : S → T with a unique nodex ∈ V (T ) \ f (S), the insertionf is
said bex-insertion intoS, denoted byIx.

Proposition 3.23 For anyx ∈ V (T ) \ {root(T )}, there exist a treeS and anx-insertionIx : S → T .
Furthermore, thex-insertion is unique up to isomorphism.

Proof. Let x be a node inV (T ), andU beV (T ) \ {x}. Then the natural inclusionEU : T [U ] → T is an
x-insertion intoT [U ] by Proposition 3.21. It follows from Corollary 3.18 that thex-insertion is unique up
to isomorphism.

By the following theorem, we give the most important property of embeddings. That is, the embed-
ding is identical to the composite of a series of insertions. In other words, any embedding corresponds to a
transformation of a tree to another by repeatedly applying an insertion, i.e. a primitive edit operation.

Theorem 3.24 (Decomposition of Embedding)Let f be an embedding fromS to T such thatV (T ) \
f (S) = {t1, . . . , tn}. There exists a series of treesT0, T1, . . . , Tn, and a series of insertionsfi : Ti →
Ti−1 for i ∈ {1, . . . , n} such that

1. T0 = T ,

2. Tn = S,

3. (f1 ◦ · · · ◦ fi)(Ti) = V (T0) \ {t1, . . . , ti},
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4. f = f1 ◦ · · · ◦ fn, i.e.

Tn

∥

fn

Itn

// Tn−1
fn−1

Itn−1

// · · ·
f2

It2

// T1
f1

It1

// T0

∥

S
f // T.

Proof. We apply induction onn = res(f ). Forn = 1, it is obvious thatf is an insertion. Now we assume
thatn ≥ 2. Letf1 be thet1-insertion intoT1. Note thatf1 can be naturally regarded as an insertion from
T1 to T0 by Proposition 3.16.2. Nowf (Tn) ⊆ f1(T1) holds. Then there exists a unique tree homomorphism
g : Tn → T1 such thatf = f1 ◦ g by Proposition 3.17. Moreover, by Proposition 3.16.2,g is also an
embedding and res(g) = n − 1, andg(Tn) = V (T1) \ {f−1

1 (t2), . . . , f−1
1 (tn)} holds.

By the induction hypothesis, there exist a series of treesT2, T3, . . . , Tn, and a series of insertions
fi : Ti → Ti−1 for i ∈ {2, . . . , n} that satisfy the following:

1. Tn = S,

2. (f2 ◦ · · · ◦ fi)(Ti) = V (T1) \ {f−1
1 (t1), . . . , f−1

1 (ti)},

3. g = f2 ◦ · · · ◦ fn.

Then we have (f1 ◦ · · · ◦ fi)(Ti) = V (T0) \ {t1, . . . , ti} as follows:

(f1 ◦ · · · ◦ fi)(Ti) = f1(V (T1) \ {f−1(t2), . . . , f−1
1 (ti)})

= f1(T1) \ {t2, . . . , ti}
= V (T0) \ {t1, t2, . . . , ti}.

Then we complete the proof.

3.5 Tree Contraction
We introduce a variant of the tree homomorphism,contractionalong with the embedding, which plays a
central role to define the general tree edit distance due to Tai.

Definition 3.25 (Contraction) Let S andT be two (ordered or unordered) trees. Acontractionfrom S
to T is a tree homomorphismf : S → T such that

1. f is surjective ontoV (T ),

2. ∀x, y ∈ S [ f (x) = f (y) =⇒ f (x`y) = f (x) ],

3. ∀x, y ∈ S [ f (x) <T f (y) =⇒ ∃z ∈ S s.t.f (y) = f (z) ∧ x <S z ].

We define theduplicationof f as dup(f ) = {x ∈ S | f (x) = f (par(x))}.
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Figure 3.6. The definition of contraction

The second condition means that if two nodes are mapped to one node, then the least common ancestor
of these two nodes is also mapped to the same node. The third condition with the second one means that
if any incomparable two nodesx, y are mapped to comparable two nodes such thatf (x) <T f (y), then all
the nodes on the path betweeny andz (z >S x) is also mapped tof (y) (SeeFigure 3.6). Without the third
condition, mappings such as shown in Figure 3.1 are also allowed.

Example 3.26Figure 3.7shows a contractionf fromS toT . The duplication off is dup(f ) = {s2, s3, s5, s6, s8}.Ss1s2s3s4s5 s6s7 s8
T t1t2 t3

f
Figure 3.7. A contractionf fromS to T

Proposition 3.27 LetS andT be two (ordered or unordered) trees. Any contractionf : S → T satisfies
the following properties:

1. f (root(S)) = root(T ),

2. If (x, y) ∈ E(S), then (f (x), f (y)) ∈ E(T ) or f (x) = f (y),

3. For any nodex ∈ T and a node setU = f−1(x) ⊆ V (S), the least common ancestor ofU is
included inU , i.e. lca(U ) ∈ U , and

4. dup(f ) =
∪

x∈T f−1(x) \ {lca(f−1(x))}.

Proof. 1. It is straightforward sincef is surjective and a tree homomorphism.

1. The case off (x) = f (y) is obvious. Then assumef (x) <T f (z) ≤T f (y) for x, y, z ∈ S. By
Definition 3.25, we may assumex < z. It follows from (x, y) ∈ E(S) thaty ≤T z, and thenf (y) = f (z).
This implies that (f (x), f (y)) ∈ E(T ).

2. For a nodex ∈ T , let U bef−1(x). Chooses ∈ U so thats ≮S y for all y ∈ U . We show that such
s ∈ U is identical to lca(U ). By Definition 3.25, for any nodey ∈ U , we havef (s`y) = x, and hence
s`y = s, i.e. y ≤S s. Thens = lca(U ) holds.
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3. Let t be a node inT . Assume that, forx ∈ S, f (x) = t andx ≤S lca(f−1(t)). For all y such that
x <S y ≤S lca(f−1(t)), we havef (y) = t sincef is a tree homomorphism. In particular, par(x) ∈ f−1(t),
and hence

dup(f ) ⊇
∪
t∈T

f−1(t) \ lca(f−1(t)) .

We have the converse since iff (x) = f (par(x)) = t, thenx ≤S lca(f−1(t)), thus lca(f−1(t)) < dup(f ).

The next proposition gives the very fundamental property that any contraction preserves the least
common ancestors.

Proposition 3.28 (LCA-Preserving) Let S andT be two (ordered or unordered) trees. For any con-
tractionf : S → T andx, y ∈ S, the following holds:

f (x`y) = f (x)`f (y).

The property is said to beLCA-preserving.

Proof. Sincef is surjective ontoV (T ), there existsz ∈ S such thatf (z) = f (x)`f (y). Now we choose
x′ ∈ S such thatx′ ≥S x andf (x′) = f (z). In the case off (x′) <T f (z), suchx′ exists sincef is a
contraction. On the other hand, in the case off (x′) = f (z), it suffices to definex′ = x. In the same way, we
can choosey′ ∈ S such thaty′ ≥S y andf (y′) = f (z).

By the definition of the contraction, we havef (x′`y′) = f (z) = f (x)`f (y). Thereforef (x`y) =
f (x)`f (y) sincex′`y′ ≥S x`y.

Corollary 3.29 Let f : S → T be a contraction. For any nodesx, y, z ∈ S such thatx`y <S x`z,
the following hold.

1. f (x)`f (y) ≤T f (x)`f (z),

2. f (x)`f (y) = f (x)`f (z) ⇐⇒ f (x`y) = f (x`z),

3. f (y)`f (z) = f (x)`f (z).

Proof. Straightforward from Proposition 3.28.

Proposition 3.30 Let R, S, andT be three (unordered or ordered) trees. For two homomorphisms
f : R → S andg : S → T , the following properties hold:

1. If f andg are both contractions, theng◦f is also a contraction, dup(g◦f ) = dup(f )∪f−1(dup(g)),

2. If f is surjective ontoV (S) andg ◦ f is a contraction, theng is also a contraction.

Proof. 1. Since it is obvious thatg ◦ f is surjective ontoV (T ), we verify the remaining requirements for
the contraction one by one.

First, we showg(f (x`y)) = g(f (x)) holds for anyx, y ∈ R such thatg(f (x)) = g(f (y)). In fact,
g(f (x`y)) = g(f (x)`f (y)) = g(f (x))`g(f (y)) = g(f (x)) holds by Proposition 3.28.

Next, we show that there existsz ∈ R such thatg(f (z)) = g(f (y)) andx <R z for anyx, y ∈ R
such thatg(f (x)) <T g(f (y)). Sinceg is a contraction, there existsz′ ∈ R such thatg(f (z′)) = g(f (y))
andf (x) <S f (z′). In the same way, there existsz ∈ R such thatf (z) = f (z′) andx <R z sincef is a
contraction. Henceg(f (z)) = g(f (z′)) = g(f (y)) holds.

The equation dup(f ◦ g) = dup(f ) ∪ f−1(dup(g)) is showed as follows. By Proposition 3.27, either
(f (x), g(y)) ∈ E(S) or f (x) = g(y) holds for any (x, y) ∈ E(R). Therefore,g(f (x)) = g(f (y)) holds if and
only if eitherx ∈ dup(f ) or f (x) ∈ dup(g) holds.

2. Since it is obvious thatf is surjective ontof (S), we verify the remaining requirements for the contraction
one by one.
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First, we showg(f (x)`g(y)) = g(f (x)) holds for anyx, y ∈ R such thatg(f (x)) = g(f (y)).
Note thatg(f (x))`g(f (y)) ≤T g(f (x)`f (y)) ≤T g(f (x`y)) generally holds. Sinceg ◦ f is a con-
traction,g(f (x))`g(f (y)) = g(f (x)`f (y)) = g(f (x`y)) holds by Proposition 3.28. Hence, we obtain
g(f (x)`f (y)) = g(f (x)).

Next, we show that there existsz ∈ R such thatg(f (z)) = g(f (y)) andf (x) <S f (z) for anyx, y ∈ R
such thatg(f (x)) <T g(f (y)). Sinceg ◦ f is a contraction, there existsz ∈ R such thatg(f (z)) = g(f (y))
andx <R z. Thusf (x) <S f (z) holds.

The contraction has a universal property in the following sense.

Proposition 3.31 (Universal Property of Contractions) Let R, S, andT be three (ordered or un-
ordered) trees. For a contractionf : R → S and a tree homomorphismg : R → T such thatg(x) = g(y)
if f (x) = f (y) for anyx, y ∈ R, there exists a unique homomorphismh : S → T satisfyingg = h ◦ f ,
i.e.

T

R
f

//

g

OO

S.

∃!h

__

Proof. By the premise of the proposition, we have the unique set-theoretic mappingh : S → T such that
h ◦ f = g.

Next, we show thath is a tree homomorphism. Assume thatx, y ∈ R satisfyf (x) < f (y). By
assumption and Definition 3.25, we may assumex <R y. Therefore, we haveg(x) ≤T g(y). Henceh is an
unorderedtree homomorphism.

Whenf andg are ordered tree homomorphisms, so ish. In fact, if g(x) ≺T g(y), we havex ≺R y.
Therefore, one ofg(x) ≺T g(y), f (x) <S f (y) andf (x) >S f (y) holds. If f (x) <S f (y) holds, we can
choosey such thatx <S y by assumption and Definition 3.25. Thus, this contradicts the assumption of
g(x) ≺T g(y). In the same way,f (x) >S f (y) does not hold.

Corollary 3.32 Let R, S andT be three (ordered or unordered) trees. Forf : R → S andg : R → T
be both contractions such that, for anyx, y ∈ R, f (x) = f (y) if and only if g(x) = g(y), there exists a
unique isomorphismh : S → T such thatg = h ◦ f .

Proposition 3.33 Let T be an (ordered or unordered) tree, andU be a subset ofV (T ) including the
root of T . Assume thatT [U ] is a tree, and letf be a surjective mapping fromV (T ) to U such that
f (x) = x for all x ∈ U , andf (x) = f (par(x)) for all x < U . Thenf : V (T ) → U is a contraction with
dup(f ) = V (T ) \ U .

We denote this contraction byCU : T → T [U ].

Proof. First, we show thatf is a tree homomorphism. Letx, y be two any nodes inV (T ). By definition,
there existx′, y′ ∈ T such thatx ≤T x′, f (x) = x′, y ≤T y′, andf (y) = y′. In other words,x′ is the
minimum ancestor ofx such thatx′ ∈ U , andy′ is the minimum ancestor ofy such thaty′ ∈ U .

If x ≤T y, thenx′ ≤T y′. Thereforef is an unordered tree homomorphism. Also, for orderedT , if
x′ ≺T y′, thenx ≺T y. Thereforef is an ordered tree homomorphism.

Finally, we verify thatf satisfies the conditions for the contraction.

1. The mappingf is surjective by assumption.

2. If x′ = y′, thenx`y ≤T x′ = y′. Therefore,f (x) ≤T f (x`y) ≤T f (x′) = f (x) holds.

3. We havex <T y′ sincex′ <T y′.

We thus have the assertion.



78 Chapter 3. Theoretical Foundation of Approximate Tree Matching

3.6 Deletion
Deletion of a node, as well as insertion of a node, is a primitive edit operation to transform a tree to another.
In this subsection, we formally define the primitive edit operation of node-deletion as a primitive variant of
the tree homomorphism. At the same time, we present a property that characterizes the contraction from a
operational point of view. We thus show that any contraction is identical to the composite of one or more
deletion.

Definition 3.34 (Deletion) Let S andT be two (ordered or unordered) trees. A contractionf : S → T
with |dup(f )| = 1 is called adeletion. In particular,f is called anx-deletion, if dup(f ) = {x}, and
denoted byDx.

Proposition 3.35 For anyx ∈ S such thatx , root(S), there exist a treeT and anx-deletionf : S → T .
Furthermore, such anx-deletion is unique up to isomorphism.

Proof. LetU beV (S)\{x}. ThenCU : S → S[U ] is anx-deletion by Proposition 3.33. By Corollary 3.32,
anx-degeneration is unique up to isomorphism.

In the same way as an embedding is decomposed into insertions, a contraction is decomposed into
deletions.

Theorem 3.36 (Decomposition of Contractoin)Let f be a degeneration fromS to T with dup(f ) =
{t1, . . . , tn}. There exist a series of treesT0, T1, . . . , Tn and a series of deletionsfi : Ti → Ti+1 for
i ∈ {0, . . . , n − 1} such that

1. T0 = S,

2. Tn = T ,

3. dup(fi−1 ◦ · · · ◦ f0) = {t1, . . . , ti},

4. f = fn−1 ◦ · · · ◦ f0, i.e.

T0

∥

f0

Dt0

// T1
f1

Dt1

// · · ·
fn−2

Dtn−2

// Tn−1
fn−1

Dtn−1

// Tn

∥

S
f // T.

Proof. We prove the assertion by induction onn. Whenn = 1, f is a deletion by definition.
In the following, we assumen ≥ 2. Let f0 : T → T1 beDt1. By Proposition 3.31, there existsg :

T1 → T such thatf = g ◦ f0. By Proposition 3.27,g is a contraction with dup(f ) = dup(f0)∪ f−1
0 (dup(g)).

Furthermore, dup(g) = {f0(t2), . . . , f0(tn)} holds. In fact, iff0(t1) ∈ dupg, then par(t1) ∈ dup(f ).
Hencef0(t1) ∈ {f0(t2), . . . , f0(tn)}.

Thus, by applying the induction hypothesis tog, there exists a series of treesT2, T3, . . . , Tn as follows:

1. Tn = T ,

2. dup(fi−1 ◦ · · · ◦ f1) = {f0(t2), . . . , f0(ti)} for i ∈ {2, . . . , n − 1}, and

3. g = fn−1 ◦ · · · ◦ f1.

Obviouslyf = g ◦ f0 = fn−1 ◦ · · · ◦ f0 holds. In addition, the following holds.

dup(fi−1 ◦ · · · ◦ f1 ◦ f0) = dup(f0) ∪ f−1
0 (dup(fi−1 ◦ · · · ◦ f1))

= {t1, . . . , ti}

We thus have the assertion.
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3.7 Duality between Embedding and Contraction
The embedding and the contraction satisfy a certain duality property. In this subsection, we show the duality
between embeddings and contractions.

Theorem 3.37 (Duality Theorem) For two (ordered or unordered) treesS andT , the following prop-
erties hold. (SeeFigure 3.8.)

1. For any contractionf : S → T , there exists a unique embeddingg : T → S such thatf ◦ g is the
identity map onV (T ) andg ◦ f is the identity map onV (S) \ dup(g).

2. For any embeddingg : T → S such thatg(root(T )) = root(S), there exists a unique contraction
f : S → T such thatf◦g is the identity map onV (T ) andg◦f is the identity map onV (S)\dup(f ).

Figure 3.8. The duality between contractionf and embeddingg

Proof. 1. Let U beV (S)\dup(f ), andh : S[U ] → S be the embedding defined by Proposition 3.21. Then
f ◦ h is an isomorphism. In fact, sincef ◦ h : S[U ] → T is a bijective tree homomorphism, it suffices to
show thatx <S y holds iff (h(x)) <T f (h(y)) for anyx, y ∈ S according to Proposition 3.8).

By definition of the contraction, there existsz ∈ V (S) such thath(x) <S z andf (h(y)) = f (z).
Sinceh(y) = lca((f−1(f (h(y))))), we haveh(x) <S z ≤S h(y). Hencex <S y sinceh is an embedding.
Therefore,g = h ◦ (f ◦ h)−1 is an embedding fromT into S, and the rest of the assertion is obvious.

2. Let U beg(T ) andh : S → S[U ] be the contraction defined by Proposition 3.33. In the same way as the
proof to (1), it is shown thath ◦ g is an isomorphism. Therefore,f = (h ◦ g)−1 ◦ h is a contraction fromS
ontoT , and the rest of the assertion is obvious.

In the rest of this chapter and the next chapter, we use the following notation.

• By f̄ , we denote the embedding that is the dual off in the sense of Theorem 3.37, providedf : S → T
is a surjective contraction.

• By ḡ, we denote the contraction that is the dual ofg in the sense of Theorem 3.37 providedg : T → S
is an embedding such thatg(root(T )) = root(S).

Example 3.38 (Tai Mapping as a Common Subtree Pattern)We can define Tai mapping by using the
notions introduced in this chapter. Recall that an alternative view of Tai mapping is a common subtree
pattern shared in two trees. Then if we obtain two isomorphic trees by repeatedly deleting nodes from each
tree, the corresponding nodes in the isomorphic two trees forms a Tai mapping. From this observation, we
can give an alternative definition of Tai mapping as follows.

Definition 3.39 (Tai Mapping by Common Subtree Pattern) A tree mappingM from R to S is aTai
mappingif there exists a triplet (T, f, g) that satisfies the following.

1. f : R → T is a contraction.

2. g : S → T is a contraction.
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3. M = {(lca(f−1(x)), lca(g−1(x))) | x ∈ T}.

R
M //

f %%JJJJJJJJJJJ S

g
yysssssssssss

T.

The triplet (T, f, g) is called acommon subtree patternbetweenR andS onM .

3.8 Summary
Figure 3.9 illustrates our algebraic framework of approximate tree matching. In this chapter, we have
established a theoretical foundation of edit-based approaches to approximate tree matching, which bridges
the gap between operational semantics and declarative semantics of tree edit distance. This framework
enables us to study mathematically the relationship among approximate tree matching methods defined in
various ways.

Figure 3.9. Algebraic formulation of approximate tree matching



Chapter 4

Relationship Analysis among
Tree Edit Distance Measures

In this chapter, by comparing tree mapping conditions of a variety of tree edit distance measures, we reveal
the relationship among them. First, we prove the equivalence between the constrained mapping and the
structure-respecting mapping. Secondly, we show that the symmetric version of structure-preserving map-
ping is equivalent to the constrained mapping. In addition, we prove that the definition of less-constrained
mapping due to Lu [LST01] turns out to be the definition of constrained mapping, and show the correct
definition of less-constrained mapping.

Recall that the explicit definition of alignable mapping has remained unknown. We address this
problem by using the algebraic framework developed in Chapter 2. Finally, we show some new facts on the
classes of tree mappings, and summarize the hierarchy of tree mappings.

4.1 Constrained and Structure-Respecting Mappings: C st = SR
We show the equivalence between structure-respecting and constrained mappings with a few other equiva-
lent tree mappings.

Proposition 4.1 (Constrained Mapping & Structure-Respecting Mapping) For a Tai mappingM ,
the following are equivalent:

1. ∀(s1, t1), (s2, t2), (s3, t3) ∈ M ,

s1`s2 < s1`s3 ∧ (∀i, j ∈ {1, 2, 3} si ≮ sj)

⇐⇒ t1` t2 < t1` t3 ∧ (∀i, j ∈ {1, 2, 3} ti ≮ tj).

2. ∀(s1, t1), (s2, t2), (s3, t3), (s4, t4) ∈ M ,

s1`s2 = s3`s4 ∧ (∀i, j ∈ {1, . . . , 4} si ≮ sj)

⇐⇒ t1` t2 = t3` t4 ∧ (∀i, j ∈ {1, . . . , 4} ti ≮ tj).

3. For any (s1, t1), (s2, t2), (s3, t3), (s4, t4) ∈ M ,

s1`s2 < s3`s4 ∧ (∀i, j ∈ {1, . . . , 4} si ≮ sj) ⇐⇒ t1` t2 < t3` t4 ∧ (∀i, j ∈ {1, . . . , 4} ti ≮ tj).

4. M is structure-respecting, i.e.∀(s1, t1), (s2, t2), (s3, t3) ∈ M

s1`s2 = s1`s3 ∧ (∀i, j ∈ {1, 2, 3} si ≮ sj)

⇐⇒ t1` t2 = t1` t3 ∧ (∀i, j ∈ {1, 2, 3} ti ≮ tj).

5. M is constrained, i.e.

∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s3 < s1`s2 ⇐⇒ t3 < t1` t2].

81
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Proof. (1 ⇒ 4): We prove the contraposition ofs1`s2 = s1`s3 =⇒ t1` t2 = t1` t3 under the condition
that any ofs1, s2, s3 is not a proper ancestor of the others. Ift1` t2 , t1` t3, we may assumet1` t2 < t1` t3

sincet1` t2 and t1` t3 are comparable.s1`s2 < s1`s3 and therefores1`s2 < s1`s3 immediately
follows the condition (1).
(4 ⇒ 5): Assume thats3 < s1`s2. Note that, ift3 andt1` t2 are comparable, thent3 < t1` t2 holds. In
fact, if t3 ≥ t1` t2, thens3 ≥ s1 ands3 ≥ s2 holds, which contradicts the assumption ofs3 < s1`s2.
Hence, to show the assertion, it suffices to verify thatt3 is comparable witht1` t2.

If some two ofs1, s2, s3 are comparable,s3 is comparable withs1 or s2 (if s1 ≤ s2 for example,
s3 < s1`s2 = s2 holds). Therefore,t3 is comparable witht1` t2 by the definition of the tree mapping.

Suppose that any two ofs1, s2, s3 are not comparable with each other. We may assume thats1`s2 =

s1`s3 without loss of generality, and hencet1` t2 = t1` t3 sinceM is structure-respecting. In particular,
t3 is comparable witht1` t2.
(5 ⇒ 1): Assume thats1`s2 < s1`s3 and any ofs1, s2, s3 is not a proper ancestor of the others (and
therefore, any oft1, t2, t3 is not a proper ancestor of the others).

Then,t3 � t1` t2 holds. In fact,

(i) if t3 < t1` t2, thens3 < s1`s2 holds by (5);

(ii) if t3 = t1` t2, eithers3 = s1 or s3 = s2 holds sincet3 ≯ t1 andt3 ≯ t2.

Any of the above is a contradiction to the assumption ofs1`s2 < s1`s3. Hence, we conclude that
t1` t2 < t1` t3.
(1 and 4⇒ 2 and 3): By Proposition 3.1, we assumes1`s3 = s3`s4 and thereforet1` t3 = t3` t4.
t1` t2 < t1` t3 follows s1`s2 < s1`s3, andt1` t2 = t1` t3 doess1`s2 = s1`s3.
(2⇒ 4) and(3⇒ 1): To prove this, it suffices to lets1 ands3 be equal, and hencet1 andt3 be also equal.

Now we have proved that the constrained mapping is equivalent to the structure-respecting mapping,
i.e.

Cst = SR.

4.2 Structure-Preserving and Constrained Mappings: SP ) Cst
Before proving the relationship between the structure-Preserving mapping and the constrained mapping,
we simplify the definition of structure-preserving mapping. From the definition of left-to-right preorder, the
following holds for any nodess1 ands2 in an ordered treeS (SeeFigure 4.1):

rl (s1) ▹S s2 ⇐⇒ s1 ≺S s2.

Figure 4.1. Left-to-right preorder and sibling order

Lemma 4.2 For a Tai mappingM from S to T , the following holds:

∀s1, s2 ∈ S
[
RM (s1) , ⊥ ∧ RM (s2) , ⊥ =⇒ [RM (s1) ≺T RM (s2) =⇒ s1 ≺S s2]

]
.
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Proof. We consider onlys1, s2 ∈ S such that RM (s1) , ⊥ and RM (s2) , ⊥. Then, there exists′1 ≤S s1

ands′2 ≤S s2 such thats′1, s
′
2 ∈ M (1). Further, we haves′1 ≺S s′2 since RM (s1) ≺T RM (s2). This implies

thats1 ≻S s2 never happens.

Therefore, the definition of structure-preserving mapping in Definition 2.61 is simplified as follows.

Definition 4.3 (Structure-Preserving Mapping (2)) For two treesS andT , a Tai mappingM from S
to T is structure-preserving if the following condition is satisfied:

∀s1, s2 ∈ S
[

RM (s1) , ⊥ ∧ RM (s2) , ⊥ =⇒ [ s1 ≺S s2 =⇒ RM (s1) ≺T RM (s2) ]
]
.

By using this, we prove the following proposition.

Proposition 4.4 For a Tai mappingM , if M is constrained, thenM is structure-preserving, i.e.

SP⊇ Cst.

Proof. Assume thatM is a constrained mapping fromS to T . We consider only nodess1, s2 ∈ S such
that RM (s1) and RM (s2) are well-defined, i.e. RM (si) , ⊥ for i ∈ {1, 2}. Then, RM (s1) and RM (s2)
respectively coincide withy1`y2 and y3`y4 such thatx1`x2 ≤S x1 and x3`x4 ≤S x2 for some
(x1, y1), (x2, y2), (x3, y3) ∈ M . The hypothesiss1 ≺S s2 implies x1`x2 <S x1`x3 andx3`x4 <S

x1`x3.
If none ofxi for i ∈ {1, . . . , 4} is an ancestor of the others,y1`y2 <T y1`y3 andy3`y4 <T y1`y3

hold, sinceM is constrained. Therefore, RM (s1) ≺ RM (s2) immediately follows.
To complete the proof, It suffices to consider the following cases.

(a) x1 ≥S x2, andx3 andx4 are not comparable with respect to the hierarchical order.

(b) x1 ≥S x2 andx3 ≥S x4.

(c) Two nodesx1 andx2 are not comparable with respect to the hierarchical order, andx3 ≥S x4.

Case (a): Any two of x1, x3 andx4 are not comparable, and hencey3`y4 <T y1`y3 holds, sinceM is
constrained. Theny1 <T y1`y3 follows from the hypothesis thatM is a Tai mapping. Therefore,
RM (s1) = y1 ≺T y3`y4 = RM (s2).

Case (b): Since RM (s2) = y3 holds, the assertion immediately follows from the hypothesis thatM is a Tai
mapping.

Case (c): The proof is symmetrical to the proof for Case (a).

Then we have proved SP⊇ Cst.

We have already seen SP, Cst since the structure-preserving mapping is asymmetric while the
constrained mapping is symmetric in Proposition 2.63. Hence, SP) Cst is concluded.

4.3 Strongly Structure-Preserving and Constrained Mappings:
SP♭ = Cst

The structure-preserving mapping is almost the same as the constrained mapping in its concept except for
the asymmetricity of structure-preserving mapping.

Here we prove that the symmetric version of structure-preserving mapping is equivalent to the con-
strained mapping. In the same way as the previous section, we simplify the definition of strongly structure-
preserving mapping in Definition 2.64 as follows.

Definition 4.5 (Strongly Structure-Preserving Mapping (2)) For two ordered treesS andT , a Tai
mappingM from S to T is strongly structure-preservingif the following two conditions are satisfied:

1. ∀s1, s2 ∈ S
[

RM (s1) , ⊥ ∧ RM (s2) , ⊥ =⇒ [ s1 ≺S s2 =⇒ RM (s1) ≺T RM (s2) ]
]
.

2. ∀t1, t2 ∈ T
[

RM (t1) , ⊥ ∧ RM (t2) , ⊥ =⇒ [ t1 ≺S t2 =⇒ RM (t1) ≺T RM (t2) ]
]
.
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Proposition 4.6 For a Tai mappingM , M is constrained if and only ifM is strongly structure-
preserving, i.e.

SP♭ = Cst.

Proof. From Proposition 4.4, SP♭ ⊇ Cst is obvious. Then we show that ifM is strongly structure-
preserving, thenM is constrained, i.e. SP♭ ⊆ Cst.

We here employ the following equivalent definition of constrained mapping (See Proposition 4.1):

∀(s1, t1), (s2, t2), (s3, t3) ∈ M

[s1`s2 < s1`s3 ∧ (∀i, j ∈ {1, 2, 3} si ≮ sj) ⇐⇒ t1` t2 < t1` t3 ∧ (∀i, j ∈ {1, 2, 3} ti ≮ tj)].

Assume thatM is a strongly structure-preserving mapping fromS to T . Let s1`s2 <S s1`s3 for
(s1, t1), (s2, t2), (s3, t3) ∈ M such that none ofs1, s2, ands3 is an ancestor of the others. Without loss of
generality, we may assume thats1 ≺S s2 ≺S s3. Let x andx′ bes1`s2 ands3, respectively. Then, we
havex ≺S x′, and therefore, RM (s) ≺T RM (x′) sinceM is strongly structure-preserving. It follows from
t1` t2 ≤T RM (x) andt3 ≤T RM (x′) thatt1` t2 <T t1` t3 holds. (Recall that ifx ≺ y, thenx < x`y and
y < x`y hold.)

In the same way, by assumingt1` t2 <T t1` t3 for (s1, t1), (s2, t2), (s3, t3) ∈ M such that none ofs1,
s2, ands3 is an ancestor of the others, we haves1`s2 <S s1`s3.

Thus,M is constrained, i.e. SP♭ ⊆ Cst.

4.4 Less-Constrained Mapping Revised
As mentioned in Section 2.8.6, Definition 2.70 due to Luet al. [LST01] does not relax the condition of the
constrained mapping. In fact, it is easy to show that the definition of less-constrained mapping due to Luet
al. is exactly equivalent to the definition of constrained mapping as follows.

Proposition 4.7 The condition for less-constrained mapping in Definition 2.70 is equivalent to the
condition of the constrained mapping, i.e. the following two conditions are equivalent.

1. for all (s1, t1), (s2, t2), (s3, t3) ∈ M such that none ofs1, s2, ands3 is an ancestor of the others,

s1`s2 ≤ s1`s3 ∧ s1`s3 = s2`s3 ⇐⇒ t1` t2 ≤ t1` t3 ∧ t1` t3 = t2` t3.

2. ∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s3 < s1`s2 ⇐⇒ t3 < t1` t2].

Proof. Definition 2.70 is reduced to a more simple form of condition by Proposition 3.1(11); i.e.,xi`yi ≤
xi`zi is implied byxi`zi = yi`zi for i ∈ {1, 2} in Definition 2.70. Therefore, it is shown that the
condition due to Luet al. is equivalent to that of the structure-respecting mapping in Definition 2.69.
Hence, the condition due to Luet al. is equivalent to the condition of constrained mapping.

We give a correct definition of the less-constrained mapping as follows.

Definition 4.8 ((Revised) Less-Constrained Mapping)A Tai mappingM is less-constrainedif the
following condition holds:

∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s1`s2 < s1`s3 =⇒ t2` t3 = t1` t3].

It is easy to confirm that this definition satisfies both cases in Figure 2.32(a) and (b). The revised
definition of less-constrained mapping may seem somewhat incomplete since is asymmetric. However, by
the following proposition, the symmetricity of the mapping condition is satisfied.

Proposition 4.9 The following two conditions are equivalent for a Tai mappingM .

1. ∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s1`s2 < s1`s3 =⇒ t2` t3 = t1` t3].

2. ∀(s1, t1), (s2, t2), (s3, t3) ∈ M [t1` t2 < t1` t3 =⇒ s2`s3 = s1`s3].
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Proof. By symmetry, it suffices to prove (1⇒ 2). Then, by assuming the condition 1, we show that
t1` t2 ≮ t1` t3 if s2`s3 , s1`s3. Note thats2`s3 ands1`s3 are comparable.

• If s2`s3 < s1`s3, then we havet1` t2 = t1` t3 by the condition 1.
• If s2`s3 > s1`s3, then we havet1` t2 = t2` t3 by the condition 1. It follows thatt1` t2 ≤ t1` t3.

Hence,t1` t3 ≤ t1` t2.

Therefore, we have the condition 2.

4.5 Constrained and Less-Constrained Mappings: C st♯ ) Cst
It is obvious that the constrained mapping is not the less-Constrained mapping as shown in Figure 2.32(b).
Then it suffices to prove the following proposition in order to show Cst♯ ) Cst.

Proposition 4.10 A constrained tree mappingM is less-constrained, i.e.

Cst♯ ⊇ Cst.

Proof. Consider a constrained mappingM . We assume thats1`s2 < s1`s3 holds for (s1, t1), (s2, t2), (s3, t3) ∈
M , we prove thatt2` t3 = t1` t3 holds. If none ofsi for i ∈ {1, 2, 3} is an ancestor of the others, we have
t1` t2 < t1` t3 sinceM is constrained. Therefore,t2` t3 = t1` t3 holds.

The remaining cases are as follows:

1. s1 < s2 or s2 < s1,

2. s1 < s3 ands2 < s3.

For the case (1), we can assumes1 < s2, and thereforet1 < t2, without loss of generality. Sinces2 is not
an ancestor ofs3, t2 is not an ancestor oft3. Therefore, we havet1` t3 > t2 andt2` t3 ≤ t1` t3 holds. The
opposite inequality follows fromt1 < t2.

In the case (2),t2` t3 = t1` t3 = t3, sincet1 < t3 andt2 < t3

Thus, we have shown thatM is less-constrained.

4.6 Alignable and Less-Constrained Mapping: A ln = Cst♯

In this section, we prove that the alignable mapping is equivalent to the less-constrained mapping, i.e.
Aln = Cst♯. The definition of alignable mapping is, however, not explicitly known. Then we first formu-
late the alignable mapping by the algebraic framework developed in previous chapter before proving the
equivalence.

4.6.1 Algebraic Formulation of Alignable Mappings

We study the property alignable mapping by using the algebraic framework introduced in Chapter 3. We
redefine the alignable tree mapping as follows.

Definition 4.11 (Alignable Mapping) A tree mappingM from S to T is alignable if there exists a
triplet (R, f, g) that satisfies the following.

1. f : S → R is an embedding.

2. g : T → R is an embedding.

3. f (x) = g(y) for (x, y) ∈ M .

R

S
M //

f

::ttttttttttt
T.

g

eeKKKKKKKKKKK

The triplet (R, f, g) is called analigned treeof S andT onM .
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Let us show several properties of alignable mappings.

Lemma 4.12 Note thatM ′ be a subset ofM . If M is alignable, thenM ′ is also alignable.

Proof. An aligned tree onM is also an aligned tree onM ′.

Lemma 4.13 For an alignable mappingM with an alignment tree (R, f, g), (s, t) = (s, ḡ(f (s))) holds
for any (s, t) ∈ M , where ¯g is the contraction such that ¯g ◦ g is the identity map ofT .

Proof. The assertion is obvious since ¯g ◦ g is the identity map ofT .

Folding Two Sibling Subtrees. Let T be a rooted tree,v andw be two nodes inT such that par(v) =
par(w), andν be a new node not inV (T ). We define a posetT (vw) = (V (T )(vw),≤(vw)

T ) as follows.

• V (T )(vw) = V (T ) \ {v, w} ∪ {ν}.
• For any two nodesx, y ∈ V (T )(vw), x ≤(vw)

T y holds if and only if any of the following holds.

1. x , ν, y , ν andx ≤T y.

2. x = ν andy ≥T v (i.e. y ≥T w).

3. y = ν, andx ≤T v or x ≤T w.

Figure 4.2 illustrates an example of the folding Two sibling subtrees.

Lemma 4.14 T (vw) = (V (T )(vw),≤(vw)
T ) is a rooted tree.

Proof. First, we show thatx ≤(vw)
T z if x ≤(vw)

T y andy ≤(vw)
T z.

• If x, y, z , ν, thenx ≤T y andy ≤T z hold, and thereforex ≤T z holds.
• If x = ν, thenv ≤T y andy ≤T z hold. Thereforev ≤T z holds.
• If y = ν, thenx ≤T v or x ≤T w, andz ≥T v andz ≥T w hold. Thereforex ≤T z holds.
• If z = ν, thenx ≤T y, andy ≤T v or y ≤T w hold. Thereforex ≤T v or x ≤T w holds.

Hence we havex ≤(vw)
T z for each case.

Secondly, we show that (↑x)T(vw) = {y ∈ V (T )(vw) | y ≥T (vw) x} is a chain for every nodex. Let
us choose arbitrary two nodesy, z ∈ (↑x)T . If y , ν andz , ν, theny ≥T x andz ≥T x for x , ν, or
y ≥T a andz ≥T v for x = ν hold. In any case,y ≤T z or y ≥T z holds. Thus we havey ≤(vw)

T z or
y ≥(vw)

T z. If y = ν, thenx ≤T v or x ≤T w, andx ≤T z hold. Therefore one ofv ≤T z, w ≤T z, z ≤T v

andz ≤T w holds. Hence we haveν ≤(vw)
T z or ν ≥(vw)

T z.

T =⇒ T (vw)

v w �
Figure 4.2. Folding two subtreesT (v) andT (w)
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Proposition 4.15 Let S andT be two trees. Any singleton tree mappingM = {(s, t)} from S to T is
alignable for any two nodess ∈ S andt ∈ T .

Proof. We start by constructing a treeR′ = (V (R′),≤R′ ) from S andT as follows.

• V (R′) = V (S) ∪ V (T ).
• x ≤R′ y holds for any two nodesx, y ∈ R′ if and only if any of the following holds.

1. x, y ∈ S andx ≤S y.

2. x, y ∈ T andx ≤T y.

3. x ∈ S andy ∈ (�t)T .

4. x ∈ T (t) andy ∈ (�s)S .

Note thatR′ = (V (R′),≤R′ ) is a rooted tree. We have par(s) = par(t) in R′ since (�s)R′ = (�t)R′ =

(�s)S ∪ (�t)T by the definition of≤R′ .
Thus, we can apply Lemma 4.14 to the treeR′, andR = (V (R),≤R) = R′(s,t) is a rooted tree.

Moreover, it is easy to see that natural inclusion mapsf : V (S) → V (R) andg : V (T ) → V (R) are
embeddings. In particular, sincef (s) = g(t) holds,M = {(s, t)} is alignable.

Lemma 4.16 Let M be an alignable mapping from a treeS to a treeT . For two treesS andS′, let
h : S → S′ is an embedding. For a tree mappingM , the following are equivalent.

1. M is alignable.

2. M ′ = {(h(x), y) | (x, y) ∈ M} is alignable.

Proof. (2⇒ 1) By the definition of the alignable mapping (Definition 4.11), it is obvious.
(1 ⇒ 2) Let (R, f, g) be an aligned tree onM . Then the embeddingsf : S → R andg : T → R satisfy
f (s) = g(t) for all (s, t) ∈ M . By Theorem 3.24, it suffices to consider the following two cases.

1. h is not surjective and res(h) = 0.

2. h(S) = S′ and res(h) = 1.

Case 1: Letting V (R′) = V (S′) \ h(S) ∪ V (R), we define the relation≤R′ over V (R′) such that, for
x, y ∈ V (R′), x ≤R′ y if and only if one of the following holds.

(i) x, y ∈ V (S′) \ h(S) andx ≤S′ y;

(ii) x, y ∈ R andx ≤R y;

(iii) x ∈ R andy ∈ (�h(root(S)))S′ .

Note thatR′ = (V (R′),≤R′) is a tree. Let

α : (V (S′) \ h(S)) → V (R′) and β : V (R) → V (R′)

denote the natural inclusions. We definef ′ : V (S′) → V (R′) with

f ′(x) =

{
α(x) if x ∈ V (S′) \ h(S)

β(f (h−1(x))) if x ∈ h(S).

Also, we defineg′ : V (T ) → V (R′) with g′ = β ◦ g. It is easy to see that bothf ′ andg′ are embeddings.
Sincef ′(h(s)) = β(f (h−1(h(s)))) = β(f (s)) = β(g(t)) = g′(t), we have the conclusion in the case of (1).

Case 2:In the following, we use the following notation.

• v: V (S′) \ h(S) = {v}.
• w: par(v) = h(w).
• ci: ch(v) = {h(c1), . . . , h(cn)}.

Now, lettingV (R′) = V (R)∪{v′}, we define the relation≤R′ overV (R′) such that, forx, y ∈ R′, x ≤R′ y
if and only if one of the following holds.
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1. x, y ∈ R andx ≤R′ y.

2. x = v′ andy ≥R′ f (w).

3. x ∈ R, and∃z ∈ R[f (ci) ≤R′ z < f (w) ∧ x ≤R′ z] andy = v′.

Note thatR = (V (R′),≤R′ ) is a tree
Letting α : V (R) → V (R′) be the natural inclusion, we definef ′ : V (S′) → V (R′) with f ′(x) =

α(f (h−1(x))) if x , v andf ′(v) = v′. Further, we defineg′ = α◦g : V (T ) → V (R′). Note that bothf ′ and
g′ are embeddings. Sincef ′(h(s)) = α(f (h−1(h(s)))) = α(f (s)) = α(g(t)) = g′(t), we have the conclusion
in the case of (2).

This lemma implies that ifM is alignable after inserting nodes, it is also alignable before applying
the insertions.

By the definition of tree mapping, without loss of generality, we may assume that for (s, t) ∈ M if
s = root(S), thent = root(T ).

Lemma 4.17 Let (R, f, g) be an aligned tree onM . Then there existf ′ andg′ such that (R, f ′, g′) is
also an aligned tree onM andf ′(root(S)) = g′(root(T )). In particular, the following are equivalent.

1. M is alignable.

2. M ∪ {(root(S), root(T ))} is alignable.

Proof. Let (s, t) ∈ M . Two nodesf (root(S)) andg(root(T )) are comparable inR since they are ancestors
of f (s) = g(t). If f (root(S)) = g(root(T )), there is nothing to prove.

Without loss of generality, we may assume thatf (root(S)) < g(root(T )). Definef ′ : V (S) → V (R)
with f ′(x) = f (x) if x , root(S) andf ′(root(S)) = g(root(T )). In the following, we show thatf ′ is an
embedding. First, assume thatx ≤S y for x, y ∈ S. If y , root(S), thenf ′(x) <R f ′(y) holds sincef is a
tree homomorphism. Ify = root(S), thenf ′(x) = f (x) <R f (root(S)) <R f ′(root(S)) holds. Thusf ′ is a
tree homomorphism. The propertyx < y if f ′(x) < f ′(y) is also easily proved. Consequently, we see that
f ′ is an embedding.

Since the (2)⇒(1) follows from Lemma 4.12, it suffices to show (1)⇒(2). As shown in the first
part, if (R, f, g), we have another aligned tree (R, f ′, g′) such thatf ′(root(S)) = g′(root(T )). Therefore,
M ∪ {(root(S), root(T ))} is alignable.

4.6.2 Equivalence between Alignable and Less-Constrained Mappings

In this section, we prove that the alignable mapping is equivalent to the less-constrained mapping.
In the following lemma, we prove that an alignable mapping can be constructed from tree mappings

between subtrees.

Lemma 4.18 Let M be a tree mapping from a treeS to a treeT . Let Si andTi be as follows:

• Si: the treeS(si) for ch(root(S)) = {s1, . . . , sm}, and
• Ti: the treeT (ti) for ch(root(T )) = {t1, . . . , tn}.

By symmetry we assume thatm ≤ n. By Mi ⊂ V (Si) × V (Ti) for i ∈ {1, . . . ,m}, we denote the
tree mapping{(s, t) ∈ M | s ∈ Si andt ∈ Ti}. If M =

∪m
i=1 Mi and eachMi for i ∈ {1, . . . ,m} is

alignable, thenM is also alignable.

Proof. Let (Ri, fi, gi) be an aligned tree ofMi. Hence the embeddingsfi : Si → Ri andgi : Ti → Ri

satisfyfi(s) = gi(t) for all (s, t) ∈ Mi for i ∈ {1, . . . ,m}. Now we let

V (R) = {r} ∪
m∪
i=1

V (Ri) ∪
n∪

i=m+1

V (Ti),

wherer is a new node not inS norT . We define the relation≤R so that, forx, y ∈ R, x ≤R y if and only
one of the following holds.
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1. 1 ≤ i ≤ m, x, y ∈ Ri andx ≤Ri
y;

2. m < i ≤ n, x, y ∈ Ti andx ≤Ti y;

3. y = r.

Note thatR = (V (R),≤R) is a tree.
Let αi : V (Ri) → V (R) for i ∈ {1, . . . ,m} andβj : V (Tj) → V (R) for j ∈ {m + 1, . . . , n} be the

natural inclusions. Thus we definef : V (S) → V (R) andg : V (T ) → V (R) as follows:

f (x) =

{
αi(fi(x)) if x ∈ Si

r if x = root(S),

g(x) =


αi(gi(x)) if x ∈ Ti for i ∈ {1, . . . ,m}
βi(x) if x ∈ Ti for i ∈ {m + 1, . . . , n}
r if x = root(S).

It is easy to see thatf andg are embeddings. Sincef (s) = αi(fi(s)) = αi(gi(t)) = g(t) for (s, t) ∈ Mi, the
lemma is shown.

Now we are ready to prove the following important theorem.

Theorem 4.19 For any tree mappingM , the following two properties are equivalent, i.e Aln = Cst♯.

1. M is alignable (in Definition 4.11).

2. M is less-constrained (in Definition 4.8).

Proof. (1⇒2): Let (R, f, g) be an alignment ofM . Thenf : S → R andg : T → R are embeddings such
thatf (s) = g(t) for all (s, t) ∈ M . Further ¯g denote the contraction such that ¯g ◦ g is the identity map ofT
(Theorem 3.37).

Suppose that (s1, t1), (s2, t2), and (s3, t3) are any three elements ofM such thats1`s2 < s1`s3. We
havef (s1)`f (s2) < f (s1)`f (s3) by Corollary 3.20, and thereforef (s2)`f (s3) = f (s1)`f (s3). Also, we
haveḡ(f (s2))` ḡ(f (s3)) = ḡ(f (s2)`f (s3)) = ḡ(f (s1)`f (s3)) = ḡ(f (s1))` ḡ(f (s3)) by Proposition 3.28.

Sinceḡ(f (s1)) = t1, ḡ(f (s2)) = t2 andḡ(f (s3)) = t3 hold by Lemma 4.13, we conclude thatt2` t3 =

t1` t3. Derivation ofs2`s3 = s1`s3 from t1` t2 < t1` t3 is shown in the same way.

(2⇒1): We prove this assertion by induction on the size of the tree mappingM . In the case of|M | = 1,
this assertion directly follows Proposition 4.15.

Let |M | ≥ 2 for the induction step. LetM be the set of node pairs{(s1, t1), . . . , (sn, tn)},

X = {s1, . . . , sn} ⊆ V (S), andY = {t1, . . . , tn} ⊆ V (T ).

It suffices to prove the assertion of the theorem under the hypothesis that lca(X) = root(S) and
lca(Y ) = root(T ). In fact, for the embeddings

α = EV (S(lca(X)) : S(lca(X)) → S, and
β = EV (T (lca(Y )) : T (lca(Y )) → T,

Lemma 4.16 asserts that, ifM ′ = {(α−1(s), β−1(t)) | (s, t) ∈ M} is alignable, thenM is alignable.
Also, we may assume thatM does not contain (root(S), root(T )) since ifM contains it, we have only

to eliminate it by Lemma 4.17.
We now chooseXk = {s1, . . . , sk}, by reorderingsi’s if necessary, so that

• k ≥ 1,
• lca(Xk) is not the root ofS,
• for anyx ∈ X \ Xk, lca(Xk ∪ {x}) = root(S).

Note thatk < n. Let us denote byYk the set of nodes{t1, . . . , tk} corresponding toXk.



90 Chapter 4. Relationship Analysis among Tree Edit Distance Measures

Claim 1 For anyi ≤ k andj > k, the nodesi`sj is the root ofS.

Proof. The two nodessi`sj and lca(Sk) are comparable sincesi ∈ Xk. Now assume that
si`sj ≤ lca(Xk). It follows that lca(Sk ∪ {sj}) = lca(Xk). This contradicts the definition of
Xk. Hence lca(Xk) < si`sj , and in particularsi`sj = lca(Xk ∪ {sj}). This implies that
si`sj is the root ofS.

Let A = {x ∈ ch(root(S)) | ∃i[1 ≤ i ≤ k ∧ si ≤ x]}, andB = {x ∈ ch(root(S)) | ∃j[k < j ≤ n ∧ sj ≤
x]}. We haveA ∩ B = ∅ since ifx ∈ A ∩ B, we havesi`sj ≤ x for 1 ≤ i ≤ k andk < j ≤ n, as is
contradictory to Claim 1.

Thus, by inserting nodes as children of root(S) if necessary, we may assume the following properties
(Lemma 4.16 asserts that, ifM is alignable after insertion of nodes, it is alignable without the insertion):

• the children of root(S) are only two nodesv andw,
• lca(Sk) ≤ v,
• lca(X \ Sk) ≤ w.

Now, to apply the similar proof toYk, we claim the following.

Claim 2 For anyi ≤ k andj > k, the nodeti` tj is the root ofT .

Proof. We start with showing that, for anyi′ ≤ k andj′ > k, ti` tj = ti′ ` tj′ . By Claim 1,
we now havesi`si′ < si`sj . Hence, sinceM is less-constrained (Definition 4.8),ti′ ` tj =
ti` tj holds. In the same way, we havesj `sj′ ≤ b < si′ `sj and thereforeti′ ` tj = ti′ ` tj′ .
Hence, we concludeti` tj = ti′ ` tj′ . Hence we haveti` tj = ti′ ` tj′ . Next, we show the
assertion of the claim. Sinceti` tj = ti′ ` tj′ for all i′ ≤ k andj′ > k, we have lca(Y ) ≤
ti` tj . Since lca(Y ) is the root ofT , the nodeti` tj is also the root ofT .

Therefore, in the same way as the case ofS, by inserting nodes as children of root(T ) if necessary, we may
assume the following properties:

• the children of root(T ) are only two nodesv′ andw′,
• lca(Yk) ≤ v′,
• lca(Y \ Yk) ≤ w′.

By the induction hypothesis,Mk={(s1, t1), . . . , (sk, tk)} is an alignable mapping fromS(v) to T (v′), and
M \ Mk is an alignable mapping fromS(w) to T (w′). Then, by Lemma 4.18,M is an alignable mapping
from S to T .

For ordered trees, an algorithm for computing a less-constrained edit distance was presented by
Lu et al. [LST01]. As in The time complexity of the algorithm is, for two treesT1 andT2,

O
(
|T1| · |T2| · deg(T1)3 · deg(T2)3 · (deg(T1) + deg(T2))

)
. By Theorem 4.19, we can immediately improve this algorithm because there is a more efficient algorithm
for computing an alignment of trees by [JWZ95]. The time complexity is

O
(
|T1| · |T2| · (deg(T1) + deg(T2))2)

Recall that Jianget al. showed that the alignment problem for two unordered trees is MAX SNP-
hard [JWZ95]. Furthermore, we obtain a more negative result for the alignment of trees because Luet al.
showed that the less-constrained distance problem for unordered trees has no polynomial-time absolute
approximation algorithm [LST01], i.e. the solution is not within an additive constant of the optimum,
unless P= NP. Then we immediately have the following corollary.

Corollary 4.20 The alignment problem for two unordered trees has no polynomial-time absolute approxi-
mation algorithm, unless P= NP.
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4.6.3 Property of Alignable Mappings

In order to verify that a given tree mappingM is alignable, we do not need to verify that the requisite
condition for the alignable mapping holds for all the elements ofM . In fact, it suffices to verify the same
condition only for theleavesof M defined as follows.

Definition 4.21 (Leaves in Tree Mapping)For a tree mappingM , the set of leavesL(M ) is defined as

L(M ) = {(s, t) ∈ M | ∀(x, y) ∈ M [x ≤ s =⇒ x = s]}.

Proposition 4.22 Let M be a Tai mapping. Then, the following are equivalent.

1. M is alignable.

2. L(M ) is alignable.

Proof. (1⇒2): It is obvious.
(2⇒1): For (s1, t1), (s2, t2), (s3, t3) ∈ M , we assume thats1`s2 < s1`s3. Further, let (s′i, t

′
i),∈ L(M )

satisfys′i ≤ si andt′i ≤ ti for eachi ∈ {1, 2, 3}. We consider all the cases as follows.

(i) If si andsj are not comparable with each other for anyi, j ∈ {1, 2, 3} such thati , j, we have
si`sj = s′i`s′j andti` tj = t′i` t′j by Proposition 3.1. This immediately implies the assertion.

(ii) If s1 ≤ s3 ands2 ≤ s3 hold, thent1` t3 = t2` t3 = t3 holds.

(iii) If s1 ≤ s2 holds, thens1`s2 = s1`s3 implies thats2 is not an ancestor ofs3. Hence, we have
t1` t2 = t2 < t2` t3.

Therefore, we have the assertion.

This proposition implies a close relation to the analysis of phylogenetic trees although it goes beyond
the scope of this thesis.

4.7 Semi-Accordant Mappings: A cc♯ = Cst = SP♭ = SR
We have already shown that the following three mappings are equivalent: strongly structure-preserving,
constrained, and structure-respecting mappings. Therefore, we unify these three classes of tree mappings,
and coin a new term standing for these classes instead of the conventional terms.

As shown in this section title, we refer to the class of these three mappings assemi-accordant map-
ping, and denote the class by Acc♯. We employ the definition of constrained mapping as the primary
definition of semi-accordant mapping.

Definition 4.23 (Semi-Accordant Mapping) A Tai mappingM is semi-accordantif the following
condition holds:

∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s3 < s1`s2 ⇐⇒ t3 < t1` t2].

In order to verify that a given tree mappingM is semi-accordant, we do not need to verify that the req-
uisite condition for the semi-accordant mapping holds for all the elements ofM . As in case of the alignable
mapping, it suffices to verify the same condition only for theleavesof M defined in Definition 4.21.

Proposition 4.24 Let M be a Tai mapping. Then, the following are equivalent.

1. M is semi-accordant.

2. L(M ) is semi-accordant.

Proof. (1⇒2): It is obvious.
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(2⇒1): For (s1, t1), (s2, t2), (s3, t3) ∈ M , we assume thats1`s2 = s1`s3. Further, let (s′i, t
′
i),∈ L(M )

satisfys′i ≤ si andt′i ≤ ti for eachi ∈ {1, 2, 3}. Sincesi andsj are not comparable with each other for
any i, j ∈ {1, 2, 3} such thati , j, we havesi`sj = s′i`s′j andti` tj = t′i` t′j by Proposition 3.1. This
immediately implies the assertion.

4.8 Accordant and Lu Mappings: A cc ) Acc∗ = Lu
Here, we introduce an important class of tree mapping by restricting accordant mapping. This class plays
an important role in Part II in this thesis.

Definition 4.25 (Accordant Mapping) For a Tai mappingM , M is accordantif and only if the fol-
lowing condition is satisfied:

∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s1`s2 = s1`s3 ⇐⇒ t1` t2 = t1` t3].

Example 4.26 Figure 4.3 shows an example of accordant mappings. Figure 4.3(a) and (b) are accordant
while Figure 4.3(c) is semi-accordant but not accordant.

S

a

b

c d

T

a

c d

S

a

b

c d

T

a

c d

S

a

b

c d

T

a

c d

(a) Accordant mapping (b) Accordant mapping (c) Non-accordant mapping

Figure 4.3. Accordant mapping

The accordant mapping has the following equivalent form of definitions.

Proposition 4.27 For a Tai mappingM , the following four conditions are all equivalent.

1. ∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s1`s2 = s1`s3 ⇐⇒ t1` t2 = t1` t3].

2. ∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s1`s2 < s1`s3 ⇐⇒ t1` t2 < t1` t3]

3. ∀(s1, t1), (s2, t2), (s3, t3), (s4, t4) ∈ M [s1`s2 = s3`s4 ⇐⇒ t1` t2 = t3` t4]

4. ∀(s1, t1), (s2, t2), (s3, t3), (s4, t4) ∈ M [s1`s2 < s3`s4 ⇐⇒ t1` t2 < t3` t4]

Proof. (1⇒2): If s1`s2 < s1`s3, thens2`s3 = s1`s3. By condition (1), we havet2` t3 = t1` t3 and
thereforet1` t2 ≤ t2` t3. Sinces1`s2 = s1`s3 follows t1` t2 = t1` t3, we concludet1` t2 < t1` t3.
(2⇒1): We claim thats1`s2 , s1`s3 if t1` t2 , t1` t3. Sincet1` t2 andt1` t3 are comparable, we may
assume thatt1` t2 < t1` t3. Hence, we haves1`s2 < s1`s3 by condition (2).
(1∧2 ⇒ 3∧4): By Proposition 3.1, we may assumes1`s3 = s3`s4 and thereforet1` t3 = t3` t4 by
condition (1).t1` t2 = t3` t4 follows s1`s2 = s1`s3 by condition (1), andt1` t2 < t3` t4 doess1` t1 <
s1`s3 by condition (2).
(3⇒1 and 4⇒2): The conditions (1) and (2) are respectively obtained by lettings1 = s4 in the conditions
(3) and (4).

If Eq.(2.7a) of the recurrences in Section 2.8.3 is rewritten as follows, the algorithm for computing an
optimal accordant mapping is immediately obtained.

DT (v1(F1), v2(F2)) =

min


DT (∅, v2(F2)) + min

T∈F2

{DT (v1(F1), T ) − DT (∅, T )}
DT (v1(F1), ∅) + min

T∈F1

{DT (T, v2(F2)) − DT (T, ∅)}
D(F1, F2) + d(v1, v2)
D(F1, F2) + d(v1, ε) + d(ε, v2)
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Without proof, we show some important properties of accordant mappings.

Proposition 4.28 For an accordant mappingM , the following hold.

1. M is monotonic, symmetric, and transitive.

2. If d is metric, accordant distance is a metric.

3. If M is accordant,M is semi-accordant, and not vice versa; i.e Acc♯ ) Acc.

4.8.1 Closure of Tree Mappings

). The accordant mapping is characterized by the existence of theclosurewith respect to the binary opera-
tion x`y. Hence, there exists a tree mappingM∗ such thatM ⊆ M∗ and (s1`s2, t1` t2) ∈ M∗ for any
(s1, t1), (s2, t2) ∈ M∗ if and only if M∗ is accordant.

Definition 4.29 (Closure of Set of Nodes)For a given subsetU ⊆ V (T ), we can define theclosureU∗

of U as the minimum set satisfying the following:

1. V (T ) ⊇ U∗ ⊇ U .

2. For anyx, y ∈ U∗, x`y ∈ U∗.

From this definition, the closureU∗ of U is defined as follows:

U∗ = V (T ) ∪ {x`y | x, y ∈ U}.

We extend the notion of closure to tree mappings.

Definition 4.30 (Closure of Tree Mapping) For two treesS andT , let M be a tree mapping between
S andT . The closure ofM is defined as the minimum tree mapping satisfying the following.

1. V (S) × V (T ) ⊇ M∗ ⊇ M .

2. (s1`s2, t1` t2) ∈ M∗ holds for any (s1, t1), (s2, t2) ∈ M∗.

If the closureM∗ exists for a tree mappingM , the following holds:

M∗ =M ∪ {(s1`s2, t1` t2) | (s1, t1), (s2, t2) ∈ M}.

We refer to the class of the closure ofC-mapping asC∗. Note that every tree mapping does not
necessarily have its closure. In fact, a tree mapping has its closure if and only if it is accordant.

Example 4.31 In Figure 4.4, we show an accordant mapping (left), and its closure (right). It is easy to see
that the closure is also an accordant mapping. InFigure 4.5(left), we show a Tai mapping. Figure 4.5(right)
shows that the resulting mapping calculated along the definition of closure in Definition 4.30. It is obvious
that this mapping is not a tree mapping. Then there is no closure for the Tai mapping in Figure 4.5(left).

Proposition 4.32 For a tree mappingM , the following are equivalent.

1. M is accordant.

2. M∗ =M ∪ {(s1`s2, t1` t2) | (s1, t1), (s2, t2) ∈ M} is a tree mapping.

3. M∗ is accordant

Proof. The equivalence between (1) and (2) is obvious by (3) and (4) in Proposition 4.27. The condition
(3) apparently implies (2).
(3⇒2): M∗∪{(s1`s2, t1` t2) | (s1, s2), (t1, t2) ∈ M∗} =M∗ holds. In particular,M∗∪{(s1`s2, t1` t2) |
(s1, s2), (t1, t2) ∈ M∗} is a tree mapping, and henceM∗ is accordant.

We have immediately the following proposition from the definition of closure of tree mappings.
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Figure 4.4. Closure of a tree mapping
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Figure 4.5. A Tai mapping with no closure

Proposition 4.33 (Tree Mapping for Lu distance) A tree mapping in Lu distance is the closure of an
accordant mapping, i.e.

Acc ) Acc∗ = Lu.

If d is a metric, the following holds:

DAcc(T1, T2) = DAcc∗ (T1, T2).

4.9 Summary
We have addressed the problems raised in Chapter 2, and untied confusion in the definitions and relation-
ships of tree edit distance measures. The class hierarchy of tree mappings established this chapter is shown
in Figure 4.6. In Table 4.1, we summarize the properties in each class of tree mappings. For tree mapping
classes of Tai, alignable, semi-accordant, and accordant, each class is clearly discriminated by a simple tree
mapping depicted in Table 4.2.
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Figure 4.6. Class hierarchy of tree mappings
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Table 4.2.Characteristic of tree mapping classes

S

T s1 s2 s3 s1 s2 s3 s1 s2 s3 s1s2 s3 s1s2 s3t1 t2 t3 Tai
Alignable
Semi-Acc.
Accordant

Tai
Alignable

Tai

t1 t2 t3 Tai
Alignable

Tai
Alignable
Semi-Acc.
Accordant

Tai
Alignable

t1 t2 t3 Tai Tai
Alignable

Tai
Alignable
Semi-Acc.
Accordantt1t2 t3 Tai

Alignable
Semi-Acc.
Accordant

Tai
Alignable
Semi-Acc.t1t2 t3 Tai

Alignable
Semi-Acc.

Tai
Alignable
Semi-Acc.
Accordant

Semi-Acc. stands for Semi-Accordant,
M = {(s1, t1), (s2, t2), (s3, t3)}.





Part II

Learning in Trees

“I like to climb trees. I can see everything.”

— Orson Scott Card,Speaker for the Dead





Chapter 5

Kernel-based Learning for
Trees

Data encountered in the real world are often not represented as vectors of numbers, but as structured data.
Analysis ofstructured datasuch as sequences, trees, and graphs is attracting considerable attention. Haus-
sler [Hau99] introduced theconvolution kernel, a general framework for designing kernel functions for
discrete data structures including structured data. The basic idea of convolution kernel is to decompose a
data object into its parts, and to define a kernel function in terms of the parts. Many convolution kernels
specialized for various discrete data structures have been proposed.

In this chapter, we focus on the kernel method forrooted ordered labeled trees. A rooted ordered
labeled tree is a fairly general data structure that models a wide variety of structured data including parse
trees of natural language texts, semi-structured data such as HTML/XML, and biological data such as RNA
secondary structures and glycans. We focus on glycans in the next chapter. Throughout this chapter, we
refer to rooted ordered labeled trees simply astreesunless otherwise stated.

5.1 Support Vector Machines
Support Vector Machines (SVMs) are a class of supervised learning algorithms first introduced by Vapnik
[Vap95]. SVMs have shown an outstanding generalization performance in a variety of practical problems
and have a strong theoretical basis in statistical learning theory.

SVMs is primarily a two-class discriminative classifier. For a given set of training data, each of which
is labeled with positive and negative, SVMs learn a linear decision boundary to discriminate between the
positive and negative classes of the predetermined training data. To determine whether an arbitrary datum is
positive or negative, which is not necessarily a training datum, the decision boundary has only to be applied
to each element of data.

To be more precise, the two-class classification is defined as follows. LetX ⊂ Rn denote the input
space andY denote the output space{−1,+1}, where the values−1 and+1 indicate the labels of negative
and positive respectively.

A training datumis a pair inX × Y and a training set is a finite set of training data, denoted by

D = {(x1, y1), . . . , (xm, ym)} ( X × Y.

Thexi is referred to as an example, and theyi as aclass label. The purpose of the learning procedure in
SVMs is to find a hypothesis functionf : X → R \ {0}, which is characterized by a pair of parameters,
weight vectorw ∈ Rn andthresholdb ∈ R. In fact, the hypothesis function is represented by the following
linear function:

f (x) = w · x + b

A datumx is classified as positive or negative iff (x) < 0 or f (x) > 0 respectively. In other words, the
learning procedure outputs adecision functionfd : X → Y , i.e.

fd(x) = sgn(w · x + b),

so thatyi = fd(xi) approximates the probabilistic relation between inputs and outputs.

101



102 Chapter 5. Kernel-based Learning for Trees

5.2 Kernel Methods
Thekernel method, a method of machine learning, provides a diversity of applications with a generic and
flexible framework to solve various problems including the classification problem, and is being extensively
studied (cf. [STC04]). The advantages of the kernel method, also known as thekernel trick, have resulted
from the usage ofkernel functionsinstead of usage of explicit and fixed vector representations of data.

We take the classification problem for instance to clarify the feature of the kernel method. The
classification problem is a problem to find a decision function

fd : X → {−1, 1}

so thatfd(xi) = yi holds for a given set of training data{(x1, y1), . . . , (xN , yN )} ⊂ X × {1,−1} for a
proper subset{x1, . . . , xN} of a data spaceX , i.e. {x1, . . . , xN} ( X ). As seen in the previous section,
SVMs solve the classification problem, if the set of training data{(xi, yi)} is linearly separable, i.e. under
a given vector representation of an object spaceX by ϕ : X → Rn, there existw ∈ Rn andb ∈ R such
that:

∀i [yi = sgn(w · ϕ(xi) + b)]. (5.1)

Eventually, givenϕ and the training data, SVMs findw andb that make Eq.(5.1) hold. Whenϕi(x) denotes
thei-th component ofϕ(x), i.e. ϕ(x) = (ϕ1(x), . . . , ϕn(x)), eachϕi(x) is called afeatureof x, andRn is a
feature space.

A problem in practicing SVMs is that it is an elaborate and time-consuming job todiscoveran ap-
propriateϕ : X → Rn so that the image of the positive training data (i.e.{ϕ(xi) | yi = 1}) and that of the
negative ones (i.e.{ϕ(xi) | yi = −1}) are split by a hyperplane.

Apart from the classification problem and SVMs, the same applies to many conventional methods of
machine learning. In fact, they solve problems provided with a feature space and a vector representation
that fulfill certaingoodconditions. In other words, to take advantage of conventional learning machines,
it is required to determine agood vector representationϕ to a feature space, which is an elaborate and
time-consuming job, too.

In contrast, the kernel method does not require a vector representationϕ, but does a kernel instead,
which is a symmetric and positive semidefinitepairing K : X × X → R.

Symmetric: K(x, y) = K(y, x);

Positive Semidefinite: an arbitraryGram matrix

[K(xi, xj)]i,j=1,...,n =

K(x1, x1) . . . K(x1, xn)
...

. . .
...

K(xn, x1) . . . K(xn, xn)


has only non-negative eigenvalues.

In learning machines such as SVMs, we need to provide an appropriate vector representationϕ such
that the provided kernelK is identical to the natural inner product in the associated feature space, that is,
K(x, y) = ⟨ϕ(x), ϕ(y)⟩ holds. The kernel method encapsulates vector representations of data and feature
spaces, and does not necessarily requireexplicit vector representations. We have only to design asimilarity
functionK(x, y) between two objectsx andy, and verify the positive semidefiniteness of the function.

5.3 Haussler’s Convolution Kernels
Haussler [Hau99] proposedconvolution kernels, a general framework for handling discrete data structures
by kernel methods. The basic idea of the Haussler’s convolution kernel method is

1. decomposing objects into theirsubpartsand then,

2. calculating the convolution kernel using a known underlying kernel defined for the subparts (a subpart
kernel).

LetX andX ′ denote nonempty data spaces. The following theorem gives the special form of the Haussler’s
R-convolution kernel [Hau99, Theorem 1] for the case ofD = 1.
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Theorem 5.1 (Convolution Kernel with D = 1 [Hau99]) Let K′ : X ′ × X ′ → R be a kernel. Given
a binary relationR ⊂ X ′ ×X , the functionK : X × X → R defined by the following is also a kernel.

K(x, y) =
∑

(x′,x)∈R

∑
(y′,y)∈R

K′(x′, y′).

Intuitively, letS(x) be the set including all parts of the structurex such thatS : X → 2X
′
, the convolution

kernel is defined as follows:
K(x, y) =

∑
x′∈S(x)

∑
y′∈S(y)

K′(x′, y′).

Haussler’s theorem [Hau99, Theorem 1], which defines the general form of theR-convolution kernel, is
obtained as a corollary to Theorem 5.1.

Corollary 5.2 (Haussler [Hau99]) Let K′
d : X ′

d × X ′
d → R be kernels ford = 1, . . . , D. Given a

relationR ⊂ X ′
1 × · · · × X ′

D ×X , the functionK : X × X → R defined in Eq.(5.2) is also a kernel.

K(x, y) =
∑

(x′
1,...,x

′
D,x)∈R

∑
(y′

1,...,y
′
D,y)∈R

D∏
d=1

K′
d(x′

d, y
′
d) (5.2)

Proof. Define a functionK′ : (X ′
1 × · · · × X ′

D) × (X ′
1 × · · · × X ′

D) → R as follows.

K′((x′
1, . . . , x

′
D), (y′

1, . . . , y
′
D)) =

D∏
d=1

K′
d(x′

d, y
′
d) (5.3)

SinceK′ is the tensor product ofK′
1, . . . ,K

′
D and the set of kernels is closed under the operation of tensor

product,K′ is a kernel overX ′ = X ′
1×· · ·×X ′

D. Therefore, applying Theorem 5.1 tok defined in Eq.(5.3),
we obtain the fact thatK defined by Eq.(5.2) is a kernel.

The set of kernels is closed under direct sum, as well. Therefore, we obtain thatK defined in Eq.(5.4)
is a kernel as a corollary to Theorem 5.1.

K(x, y) =
∑

((x′
1,...,x

′
D),x)∈R

∑
((y′

1,...,y
′
D),y)∈R

D∑
d=1

K′
d(x′

d, y
′
d) (5.4)

The implication of the above discussion is that the variety of the operations that preserve the property
of being kernels is an important factor to determine the range of application of the Haussler’s convolution
kernel. In this regards, Lemma 5.3 and Corollary 5.4 adds an example of the Haussler’s convolution kernel,
but the meaning is more than it. In fact, Corollary 5.4 showed a way to weight the underlying kernels
K′(x′, y′) when they are accumulated into a convolution kernel.

Haussler’s theorem is available even if the underlying kernelsK′(x′, y′) are weighted according to
the structuresx′ andy′.

Lemma 5.3 Let K′ : X ′×X ′ → R be a kernel. For any functionf : X ′ → R, the functionK′′ defined
by the following is a kernel.

K′′(x, y) = f (x) · f (y) · K′(x, y) (5.5)

Proof. Apparently,F (x, y) = f (x) · f (y) is a kernel. Since the property of being kernels is closed under
tensor product and restriction of domains,K′′ is also a kernel.

Corollary 5.4 For a given functionS : X → 2X
′
, let wx be a set of functions indexed byx ∈ X such

that
wx : S(x) → R.
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Then, the functionK defined by the following is a kernel.

K(x, y) =
∑

x′∈S(x)

∑
y′∈S(y)

wx(x′) · wy(y′) · K′(x′, y′)

Proof. By lettingX ∗ denoteX ′×X , we extend our definitions as follows:w∗ : X ∗ → R, K∗ : X ∗×X ∗ →
R andS∗ : X → 2X

∗
such that

w∗(x′, x) =

{
w(x, x′) if x′ ∈ S(x)

0 if x′ < S(x),

K∗((x′, x), (y′, y)) = K′(x′, y′),

S∗(x) = {(x′, x) | x′ ∈ S(x)}.

Since the following Equation holds, the assertion immediately follows from Lemma 5.3 and Theorem 5.1.

K(x, y) =
∑

(x′,x)∈S∗(x)

∑
(y′,y)∈S∗(y)

w∗(x′, x) · w∗(y′, y) · K∗((x′, x), (y′, y))

To normalize the size factor of instances, the followingnormalized kernelis often used:

K̃(x, y) =
K(x, y)√

K(x, x)
√

K(y, y)
.

5.3.1 Gap-Weighted String Kernel

The string kernels that Lodhi [LSST+02] introduced is an important example of Haussler’s convolution ker-
nels. Lodhi took advantage of Corollary 5.4 and introduced string kernels. To evaluate similarity between
two strings, this kernel [LSST+02] uses the number of the substrings commonly occurring between two
strings.

First, let us consider the counting function defined as follows.

K(x, y) =
∑

s∈S(x)

∑
t∈S(y)

δ(s, t) (5.6)

The functionK(x, y) defined by Eq.(5.6) returns the number of common substrings ofx andy, and is as-
serted to be a kernel by Theorem 5.1. In Eq.(5.6),S(x) means that the multiset (or bag) of all subsequences
in x, andδ(s, t) is the Kronecker’s delta, defined by

δ(s, t) =

{
1 (s = t)

0 (s , t).

The kernelK in Eq.(5.6), however, involves some drawback due to the property that all the substrings
are counted with the same weight. For example, for

x = conversion and y = convolution,

the matching of the first occurrences of “con,” that is, the matching between

conversion and convolution,

is important, since it indicates that they are both contiguous with the same prefix “con.” In contrast, the
matching between

conversion and convolution
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is just a coincidence, and should have a much less important impact on the similarity betweenx andy.
To mitigate the drawback, Lodhi [LSST+02] introduces a weighted counting method as defined by

Eq.(5.7), which is a kernel by Corollary 5.4.

K(x, y) =
∑

s∈S(x)

∑
t∈S(y)

λg(s,x) · λg(t,y) · δ(s, t) (5.7)

In Eq.(5.7),g(s, x) is defined as the length of the subsequences with gaps inx. The constantλ is called a
decayfactor, and is taken from the interval (0, 1). Fors = con andx = conversion, we have the following
weight for each matching:

• g(s, x) = 3 for matchingconversion, since the sequence “con” spans 3 character-long inx.
• g(s, x) = 10 for matchingconvolution, since the sequence “con” spans 10 character-long inx.

5.3.2 Spectrum Kernel for Strings

Leslieet al. introduced a simple and efficient string kernel, thespectrum kernel[LEN02], for classifying
proteins. The spectrum kernel is based on the simple idea that the more substrings with a fixed length are
shared in two strings, the more similar they are. Hence, the notion of the spectrum of a string is often used
in approximate string matching [JU91, Ukk93].

Let Σ be a finite alphabet. ByΣ∗, we denote the set of all strings overΣ, byΣq all strings with length
q overΣ. A q-gram is any string with lengthq in Σq.

Recall that #x[w] is defined as the total number of occurrences ofw in x (See Section 2.2.7), i.e.

#x[w] = |{y | x = y·w·z ∧ y, z ∈ Σ∗}| .

Theq-gram profileof a stringx is the vectorGq(x) = (#x[w])w∈Σq , indexed by allq-gramsw and arranged
in lexicographic order ofq-grams. It is a feature mapping from an input spaceΣ∗ to R|Σ|q . Then, the
q-spectrum kernelof two stringss1 ands2 is defined as follows.

Kq(s1, s2) =
∑

w∈Σq

#s1[w] · #s2[w]

= ⟨Gq(s1), Gq(s2)⟩.

Example 5.5 Let Σ = {a, b}, and consider the 2-spectrum kernel of the stringss1 = abaaabaa and
s2 = aababbab. The 2-gram profiles ofs1 ands2 are given as follows.

w aa ab ba bb
#s1[w] 3 2 2 0
#s2[w] 1 3 2 1

Hence,K2(s1, s2) = ⟨(3, 2, 2, 0), (1, 3, 2, 1)⟩ = 13.

Theq-spectrum kernelKq(s1, s2) can be evaluated in time O(q · (|s1|+ |s2|)). Moreover, the spectrum
kernel allows SVMs to classify a new string in linear time.

5.4 Tree Kernels
Also, for more complex discrete structures than strings, a variety of convolution kernels are proposed. In
this section, we focus on the kernels for trees.

The intuitive idea of tree kernels in common is as follows. For two treesT andτ , let #T [τ ] denote
the total number of occurrences ofτ in T . The vector representation ofT is denoted by

ϕ(T ) = (#T [τ1], #T [τ2], #T [τ3], . . .),

whereτi (i ≥ 1) are subtree patterns inT . Then the kernel is given by the inner product of two vectors for
two treesT1 andT2:

K(T1, T2) = ⟨ϕ(T1), ϕ(T2)⟩ =
∑

i

#T1[τi] · #T2[τi].

The choice criteria of subtree patternsτi lead to a variety of tree kernels.
Note that we omit the weight factor in kernels for simplicity.
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5.4.1 Parse Tree Kernel

Collins and Duffy [CD01] presented theparse tree kernelas a counting function of common subtrees, which
is in the class of convolution kernels [Hau99].

Since a common subtree between two ordered treesT1 andT2 uniquely defines a partial mapping
betweenV (T1) andV (T2), the parse tree kernel is regarded as a counting function of partial node-to-node
mappings between trees. Then the kernel function is basically defined as follows. (Note that the definition
is slightly modified from the original so that it can be applied not only to parse trees but also to general
rooted labeled ordered trees.)

K(T1, T2) =
∑

v1∈V (T1)

∑
v2∈V (T2)

KSC(v1, v2),

whereKSC(v1, v2) is the counting function of the number of the partial mappingsf that satisfy the following
conditions.

• f is a mapping from a set of nodesV ′ ⊆ V (T1) to V (T2) with l(f (v1)) = l(v2).
• Any v ∈ V ′ \ {v1} satisfies the following conditions:

1. v < v1 (v is a descendent ofv1),

2. par(v) ∈ V ′,

3. |ch(par(v))| = |ch(f (par(v)))|,
4. If v is thei-th child of par(v), thenf (v) is also thei-th child off (par(v)).

A partial mapping satisfying the above conditions is referred to as asubtree-congruentmapping. The value
of KSC(v1, v2) can be calculated by the following recurrences.

KSC(v1(F1), v2(F2)) =


δ(l(v1), l(v2)) ·

|ch(v1)|∏
i=1

(1+KSC(T i
1 , T i

2)) if |ch(v1)| = |ch(v2)|,

0 otherwise,

where we assume, forn = |ch(v1)|,

F1 = T 1
1 • · · · • Tn

1 ,

F2 = T 1
2 • · · · • Tn

2 .

The value of the kernelK(T1, T2) can be calculated by dynamic programming in O(|T1| · |T2|) time. Note
that the subtree-congruent mapping is injective and preserves the hierarchical and the sibling orders between
two trees.

5.4.2 Labeled Tree Kernel

The parse tree kernel is too restrictive since it considers only subtrees with the same number of children.
Kashima and Koyanagi [KK02] proposed an extended tree kernel by generalizing parse tree kernel [CD01].

Let T1, T2 andτ be trees. By #Ti[τ ] we denote the total number of the occurrences of subtreeτ in Ti.
Then, the labeled ordered tree kernel [KK02] ofT1 andT2 is defined as follows:

K(T1, T2) =
∑
τ∈T

#T1[τ ] · #T2[τ ],

whereT denotes the universal set of trees. The kernel function is rewritten as

K(T1, T2) =
∑

v1∈V (T1)

∑
v2∈V (T2)

#MTop(T1(v1), T2(v2)),

where #MTop(T1(v1), T2(v2)) is the number of common subtrees rooted at bothv1 andv2. Specifically,
#MTop(T1(v1), T2(v2)) is the counting function of the number of thetop-down mappingsM betweenT1(v1)
andT1(v2). We have the following recurrences for efficiently computing #MTop(T1(v1), T2(v2)) by dynamic
programming. In the recurrences, letKT (T1(v1), T2(v2)) be #MTop(T1(v1), T2(v2)).
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K(T1, T2) =
∑

v1∈V (T1)

∑
v2∈V (T2)

KT (T1(v1), T2(v2)), (5.8a)

KT (v1(F1), v2(F2)) =δ(l(v1), l(v2)) · (1+KF (F1, F2)), (5.8b)

KF (∅, F2) =KF (F1, ∅) = 0, (5.8c)

KF (T1 • F1, T2 • F2) =KF (F1, T2 • F2) +KF (T1 • F1, F2) − KF (F1, F2) (5.8d)

+KT (T1, T2) · (1+KF (F1, F2)).

We show the algorithm for computing the recurrences in Algorithm 5.1. This algorithm runs in O(|T1| · |T2|)
time and space.

Example 5.6 Consider two treesT1 andT2 in Figure 5.1. Table 5.1shows the feature vectors ofT1 andT2

for the labeled tree kernel. In this example, we depict labels of nodes as white circles and black pentagons.
We have the following kernel value.

K(T1, T2) = ⟨(3, 1, 2, 1, 0, 1, 1, 1, 1, 0), (3, 1, 2, 1, 1, 2, 0, 0, 0, 1)⟩ = 16.

T1

q

T2

q

Figure 5.1. Two ordered trees for the labeled tree kernels

Table 5.1.Feature vectors in the labeled tree kernel

q

q q

q q

q

T1 3 1 2 1 0 1 1 1 1 0

T2 3 1 2 1 1 2 0 0 0 1

Labeled Tree Kernels for Unordered Trees

Kashimaet al. proved that the problem of computing the labeled tree kernel for unordered trees is #P-
complete [KSK06a]. This difficulty can be expected since the problem of counting bipartite matchings is
known to be #P-complete [Val79], and tree matching problems for unordered trees inherently include the
computation of bipartite matching.

5.4.3 Labeled Tree Kernel with Elastic Structure Matching

Kashima and Koyanagi [KK02] extended their tree kernel by allowing elastic structure matching for a more
flexible interpretation of the common patterns, which is referred to as anelastic tree kernel.

Now consider two treesT1 andT2 in Figure 5.2. As in the previous example, we depict labels as

white circles and black pentagons. The elastic tree kernel was designed so that the subtreeis also
counted as a common structure betweenT1 andT2.

Theelastic tree kernelis given by the following recurrences.
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T1

q

T2

Figure 5.2. Two ordered trees for the elastic tree kernels

Algorithm 5.1 Labeled tree kernels

• T [i]: the i-th node inT indexed by postorder numbering (i ∈ [1, |T |]).
• F [i]: the i-th tree inF (i ∈ [1, |F |]).
• ch(v): forestF obtained by removingv from v(F ).

procedureTree Kernel(T1, T2)
def array KT [1..|T1|, 1..|T2|]
def array K[1..|T1| + 1, 1..|T2| + 1] initialized with 0
for i ← 1 to |T1|
for j ← 1 to |T2|
if l(T1[i]) , l(T2[j]) then KT [i, j] ←0
elseKT [i, j] ← 1+ Forest Kernel(ch(T1[i]), ch(T2[j]))
K[i + 1, j + 1] ← KT [i, j] +K[i, j + 1] +K[i + 1, j] − K[i, j]

return K[|T1| + 1, |T2| + 1]
end

procedureForest Kernel(F1, F2)
def array KF [1..|F1| + 1, 1..|F2] + 1] initialized with 0
for i ← 1 to |F1|
for i ← 1 to |F2|
KF [i + 1, j + 1] ← KF [i + 1, j] +KF [i, j + 1]

− KF [i, j] +KT [F1[i], F2[j]] ∗ (1+KF [i, j])
return KF [|F1| + 1, |F2| + 1]

end
The algorithm for the elastic tree kernel is obtained only by replacingKT with K.

K(T1, T2) =
∑

v1∈V (T1)

∑
v2∈V (T2)

KT (T1(v1), T2(v2)), (5.9a)

KT (v1(F1), v2(F2)) =δ(l(v1), l(v2)) · (1+KF (F1, F2)) (5.9b)

KF (∅, F2) =KF (F1, ∅) = 0 (5.9c)

KF (T1 • F1, T2 • F2) =KF (F1, T2 • F2) +KF (T1 • F1, F2) − KF (F1, F2) (5.9d)

+K(T1, T2) · (1+KF (F1, F2)).

These recurrences are the same as the recurrences (5.8) except for one letter in Eq.(5.9d). Algo-
rithm 5.1 can be also applied to the computation of the elastic tree kernel with a subtle modification.

In spite of its flexibility, the elastic tree kernel has a certain unintended property. We here discuss the
property.

l The elastic tree kernel is the counting function of accordant mapping.Although the elastic tree kernel
was proposed with the intention of allowing structural ambiguities as much as possible, it was not sufficient.
It is easy to prove that the elastic tree kernel [KK02] counts the number of the accordant mappings between
two trees. This fact indicates the possibility that more flexible tree kernels can be designed, since we have
already seen that there exist more flexible classes of tree mappings. In the next chapter, we construct more
flexible tree kernels from the point of view of tree mappings.
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l The elastic tree kernel is not a convolution kernel.The tree kernel based on convolution is defined as
follows:

K(T1, T2) =
∑

τ1∈S(T1)

∑
τ2∈S(T2)

K′(τ1, τ2)

=
∑

(τ1,τ2)∈S(T1)×S(T2)

K′(τ1, τ2),

whereS(T ) denotes a set of subtree patterns inT . The elastic tree kernel is, however, defined as follows:

K(T1, T2) =
∑

(τ1,τ2)∈MAcc(S(T1)×S(T2)

K′(τ1, τ2),

where byMAcc we denote a pair of common subtree patterns betweenT1 andT2 mapped by accordant
mappings (See Example 5.7). Since this definition is beyond the convolution kernels, it has yet to be
shown that the counting function really satisfies the required properties of a kernel function, i.e. positive
semidefiniteness. We prove it in the next chapter.

We address these problems in the next chapter.

Example 5.7 Figure 5.3shows tree mappings counted in the elastic tree kernel. In this example, we focus
on a subtree pattern consisting of three nodes. It is difficult to recognize what is the feature space in this
kernel. The subtree pattern

a

b a
is counted in some cases, and not counted in other cases as shown in

Figure 5.3.

counted mappings uncountted mappings

T1

a

a

b a

T2

a

a

b a

T1

a

a

b a

T2

a

a

b a

T1

a

a

b a

T2

a

a

b a

T1

a

a

b a

T2

a

a

b a

Figure 5.3. What is the feature space in the elastic tree kernel?

5.4.4 String Kernel for Trees

Although tree kernels due to Kashima and Koyanagi [KK02] successfully reduced the computation time by
using dynamic programming technique, quadratic computation time is still not sufficient for handling large
amounts of data, since the value of this kernel has to be evaluated for most pairs of trees in the training data
and test data. Therefore, for more efficient computation, it is important to design a more efficient kernel
that is computable in linear time, but with sufficient expressive power.

To tackle this problem, Vishwanathan and Smola proposed a linear-time tree kernel [VS02]. Their
idea was to convert trees to strings with brackets generated by preorder traversal, and to count the number
of the common substrings among them efficiently by using suffix trees.
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This tree kernel does not seem to have enough expressive power forgeneral-purpose. Since this
kernel considers only for complete subtrees, which can be represented as a substring of the sequence rep-
resentations, it cannot incorporate internal structure of trees. More specifically, this kernel considers only
the subtrees including all their descendant nodes down to the leaves. Therefore, if disjoint labels are as-
signed to leaves between two trees, the kernel value (i.e., the similarity) ends up with 0, even if these trees
are isomorphic except for the labels assigned to leaves. This seems that this kernel does not have enough
expressive power, and is a restricted similarity measure between two trees for general purpose.

Example 5.8 Consider two trees inFigure 5.4. Filled nodes indicate leaves.Table 5.2shows the feature
vectors ofT1 andT2 for Vishwanathan-Smola’s kernel. We have the the following kernel value.

K(T1, T2) = ⟨(3, 2, 1, 1, 0, 1), (2, 2, 1, 0, 1, 0)⟩ = 11.

T1

a

a

a a b

a

a b

T1

a

a

a b a b

Figure 5.4. Two ordered trees for Vishwanathan-Smola’s tree kernel

Table 5.2.Feature vectors in Vishwanathan-Smola’s tree kernel

a b

a

a b

a

a a b

a

a

a b a b

a

a

a a b

a

a b

T1 3 2 1 1 0 1

T2 2 2 1 0 1 0

Example 5.9 For the following two treesT1 andT2 as shown inFigure 5.5, the liner-time tree kernel gives
the valueK(T1, T2) = 0. In spite of only the one node mismatch at the leaf node between two trees, this
kernel regards these two trees as completely different.

T1

a

a

a

a

a

T2

a

a

a

a

b

Figure 5.5. Expressive power of the string kernel for trees due to Vishwanathan and Smola
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5.5 Summary
In this chapter, we reviewed the convolution kernel as a design framework for learning discrete structures.
Also we introduced some tree kernels in prior work, and discussed their properties and raised a few problems
to be addressed.

• The elastic tree kernel [KK02] enables to us to deal with ambiguities in trees by extending a convolu-
tion kernel for trees. As a result, the elastic tree kernel has turned out to be not a convolution kernel.
This means that it is required to prove its positive semidefiniteness.

• The elastic tree kernel has not enough expressive power as originally intended by Kashima and Koy-
anagi. It is possible to develop a more flexible tree kernel.

• The string kernel for trees due to Vishwanathan and Smola [VS02] is one of the most efficient tree
kernels in prior work. But, the expressive power is a restrictive.

In the next chapter, we design novel tree kernels based on the notion of tree mappings, and address the
problems raised in this chapter. Chapter 7 is devoted to develop a tree kernel as fast as the string kernel for
trees due to Vishwanathan and Smola.





Chapter 6

Mapping Kernels for Trees

In this chapter, we characterize tree kernels based on the class hierarchy of tree mappings established in
Chapter 4. We first propose the algorithms for computing counting functions of Tai mappings, alignable
mappings, and semi-accordant mappings. We then show that the counting functions of Tai mappings and
semi-accordant mappings are actually tree kernels and that these two tree kernels have more flexible expres-
sive power than the elastic tree kernel proposed by Kashima and Koyanagi [KK02]. In contrast, we show
that the counting function of alignable mappings is not a tree kernel.

6.1 Recursive Expressions of Counting Functions
In this section, we extend the notion of tree mappings toforests, and provide counting functions for the
extended tree mappings between two forests.

Remark 6.1 The counting functions in the label tree kernel and the elastic tree kernel both count subtree
patterns between two trees, i.e. these require a pair of nodes (sr, tr) in the mappingM such thatsr ≥ s
andtr ≥ t for any (s, t) ∈ M . On the other hand, the counting functions proposed in this chapter count
common forest patterns between two trees as well as subtree patterns for generality. It is easy to modify
our counting functions in this thesis to count only common subtree patterns by just adding the recurrence
Eq.(5.8a).

6.1.1 Mapping-based Similarity between Forests

Recall that the algorithm for Tai distance is in fact defined over two forests as well as two trees. Then we
first extend the notion of tree mappings to forests as follows.

Definition 6.1 (Tree Mapping between Forests)Let F1 andF2 be two forests. A non-empty mapping
M ⊆ V (F1) × V (F2) is said to be atree mappingif and only if M is a tree mapping fromv1(F1) to
v2(F2) for two nodesv1, v2 < V (F1) ∪ V (F2).

LetMC(F1, F2) denote the set of all possibleC-mappings betweenF1 andF2, i.e.

MC(F1, F2) = {M | M is a tree mapping of classC from F1 to F2}.

The counting functionsKC(F1, F2) are defined as follows. First, let us denote a symmetric function by

σ : Σ× Σ→ R+0 ,

whereR+0 denotes the set of all non-negative real numbers. This functionσ defines the similarity between
labels of nodes Next, we define the similarity between two trees based on a tree mappingM .

σ(M ) =
∏

(x1,x2)∈M

σ(l(x1), l(x2)). (6.1)

113
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Then the similarity between two forestsF1 andF2 is defined by

KC(F1, F2) =
∑

M∈MC(F1,F2)

σ(M ). (6.2)

6.1.2 Counting Function for Tai Mappings

The recursive expression of theKTai(T1, T2) is given as follows.

KTai(F, ∅) = KTai(∅, F ) = 0

KTai(v1(F ′
1) • F ′′

1 , v2(F ′
2) • F ′′

2 ) =

σ(l(v1), l(v2))(1+KTai(F ′
1, F

′
2))(1+KTai(F ′′

1 , F ′′
2 ))

+KTai(v1(F ′
1) • F ′′

1 , F ′
2 • F ′′

2 )

+KTai(F ′
1 • F ′′

1 , v2(F ′
2) • F ′′

2 )

− KTai(F ′
1 • F ′′

1 , F ′
2 • F ′′

2 ) (6.3)

The following natural properties of Tai mapping (Property 6.2 and Lemma 6.3) play a central role in proving
the correctness of Eq.(6.3). We omit the proofs since they are immediately obtained from the definition of
Tai mapping (Definition 2.46).

Proposition 6.2 Let M be a Tai mapping from a forestF1 to a forestF2, i.e. M ⊆ V (F1)×V (F2), and
F ′

i be any subforest ofFi for i ∈ {1, 2}. ForM ′ = M ∩ (V (F ′
1) × V (F ′

2)) andM ′′ = M ∩ (V (F ′′
1 ) ×

V (F ′′
2 )), the following hold.

1. If M is a Tai mapping fromF1 to F2, thenM ′ is also a Tai mapping fromF ′
1 to F ′

2.

2. For non-emptyM ⊆ V (F ′
1) × V (F ′

2), the following two properties are equivalent.

(a) M is a Tai mapping fromF ′
1 to F ′

2.

(b) M is a Tai mapping fromF1 to F2.

Lemma 6.3 Let F ′
i andF ′′

i be two distinct forests. For a non-empty setM ⊆ (V (F ′
1) ∪ V (F ′′

1 )) ×
(V (F ′

2) ∪ V (F ′′
2 )), the following two conditions are equivalent.

1. M ∪ {(v1, v2)} is a Tai mapping fromv1(F ′
1) • F ′′

i to v2(F ′
2) • F ′′

2 .

2. M satisfies the following three conditions.

(a) M =M ′ ∪ M ′′.

(b) M ′ is a Tai mapping fromF ′
1 to F ′

2.

(c) M ′′ is a Tai mapping fromF ′′
1 to F ′′

2 .

Theorem 6.4 Eq.(6.3) is a counting function for Tai mappings between two treesT1 andT2.

Proof. The left-hand side of Eq.(6.3) is decomposed into the following two disjoint components forF1 =

v1(F ′
1) • F ′′

1 andF2 = v2(F ′
2) • F ′′

2 .

KTai(F1, F2) =
∑

M∈M(v1,v2)

σ(M ) +
∑

M∈M̄(v1,v2)

σ(M ),

where

M(v1,v2) = {M ∈ MTai(F1, F2) | (v1, v2) ∈ M}, and

M̄(v1,v2) = {M ∈ MTai(F1, F2) | (v1, v2) <M}.

The setM(v1,v2) ⊆ M includes all the Tai mappings with (v1, v2) whereas the setM̄(v1,v2) ⊆ M is the
complementary ofM(v1,v2) in M, i.e.M̄(v1,v2) =M\M(v1,v2).
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Assume (v1, v2) ∈ M . The tree mappingM\{(v1, v2)} is identical toM ′∪M ′′ for some Tai mappings
M ′ from F ′

1 to F ′
2 andM ′′ from F ′′

1 to F ′′
2 by Lemma 6.3. On the other hand, for any Tai mappingsM ′

from F ′
1 to F ′

2, andM ′′ from F ′′
1 to F ′′

2 , the setM ′∪M ′′∪{(v1, v2)} is also a Tai mapping fromv1(F ′
1)•F ′′

i

to v2(F ′
2) • F ′′

2 by Lemma 6.3.
Hence sinceσ(M ) = σ(l(v1), l(v2)) · σ(M ′) · σ(M ′′), the following holds.∑

M∈M(v1,v2)

σ(M ) = σ(l(v1), l(v2)) · (1+KTai(F ′
1, F

′
2))(1+KTai(F ′′

1 , F ′′
2 ))

As for M̄(v1,v2), we decompose it further into the following three components.

M̄(v1,v2) =M(−,v2) ∪M(v1,−) ∪M(−,−),

where

M(−,v2) = {M ∈ MTai(F1, F2) | (v1, w) ∈ M ∧ w , v2},
M(v1,−) = {M ∈ MTai(F1, F2) | (w, v2) ∈ M ∧ w , v1}, and

M(−,−) = {M ∈ MTai(F1, F2) | (w1, w2) ∈ M =⇒ w1 , v1 ∧ w2 , v2}.

Note that the setM(v1,−) does not include any Tai mapping such thatv1 is paired with a node inF2 since
v2 is paired with a node other thanv1. Intuitively, the notationM(v1,−) means that the nodev1 is not paired
with any node inF2 in the concerned set of Tai mappings. By condition 2 of Proposition 6.2, the following
holds. ∑

M∈M(−,v2)

σ(M ) = KTai(v1(F ′
1) • F ′′

1 , F ′
2 • F ′′

2 ) − KTai(F ′
1 • F ′′

1 , F ′
2 • F ′′

2 ),∑
M∈M(v1,−)

σ(M ) = KTai(F ′
1 • F ′′

1 , v2(F ′
2) • F ′′

2 ) − KTai(F ′
1 • F ′′

1 , F ′
2 • F ′′

2 ), and∑
M∈M(−,−)

σ(M ) = KTai(F ′
1 • F ′′

1 , F ′
2 • F ′′

2 ).

The correctness of Eq.(6.3) is shown by adding together all of the above components, i.e.∑
M∈M̄(v1,v2)

σ(M ) =
∑

M∈M(−,v2)

σ(M ) +
∑

M∈M(v1,−)

σ(M ) +
∑

M∈M(−,−)

σ(M ).

6.1.3 Template of Counting Function for Subclasses of Tai Mappings

As Proposition 6.2 and Lemma 6.3 do not hold for the subclasses of Tai mapping, the simple Eq.(6.3) is not
applicable to the other three classes, i.e. the accordant, semi-accordant or alignable mapping. However, a
common template of counting functions exists that is applicable to all three of the subclasses.

C ∈ {Accordant, Semi-Accordant, Alignable}
KC(∅, F ) = KC(F, ∅) = KC

f (T, ∅) = 0 (6.6a)

KC(T1 • F1, T2 • F2) = KC
1 (T1 • F1, T2 • F2) +KC(F1, F2) (6.6b)

KC
f (v(F1), T2 • F2) = KC

t (v(F1), T2) − KC
f (T2, F1) +KC

f (v(F1), F2)

− KC(F1, F2) +KC(F1, T2 • F2) (6.6c)

KC
t (v1(F1), v2(F2)) = σ(l(v1), l(v2)) · (1+KC

2 (F1, F2)) +KC
f (v1(F1), F2)

+KC
f (v2(F2), F1) − KC(F1, F2) (6.6d)

KC
1 (F1, F2) andKC

2 (T1, T2) in the template are defined as follows.

KC
1 (T1 • F1, T2 • F2) =

∑
M∈M1

σ(M ),

KC
2 (F1, F2) =

∑
M∈M2

σ(M ),
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where

M1 = {M ∈ MC(T1 • F1, T2 • F2) |
M ∩ (V (T1) × V (T2 • F2)) , ∅ ∨ M ∩ (V (T1 • F1) × V (T2)) , ∅}, and

M2 = {M ∈ MC(v1(F1), v2(F2)) | M ∪ {(v1, v2)} ∈ MC(v1(F1), v2(F2))}.

The recursive expressions forKC
1 (F1, F2) andKC

2 (F1, F2) are given afterward.KC
t (T1, T2) takes two trees

as the arguments, andKC
f (T, F ) takes a tree and a forest. Eq.(6.6b) to Eq.(6.6d) are verified in the similar

way to Eq.(6.3), and the following Proposition 6.5 is used instead of Proposition 6.2 and Lemma 6.3.

Proposition 6.5 Let C be one of Accordant, Semi-Accordant, or Alignable. Further, letF ′
i be a

subforest ofFi satisfying one of the following.

• Fi = F ′
i .

• Fi = vi(F ′
i ).

• Fi = Gi • F ′
i • Hi for some subforestsGi,Hi of Fi.

Then the following two properties hold.

1. For aC-mappingM from F1 to F2, M ′ =M ∩ (V (F ′
1) × V (F ′

2)) is aC-mapping fromF ′
1 to F ′

2.

2. For arbitraryM ⊆ V (F ′
1) × V (F ′

2), the following two properties are equivalent.

(a) M is aC-mapping fromF ′
1 to F ′

2; and

(b) M is aC-mapping fromF1 to F2.

In the rest of this section, we use the following notations forFi = •ni

j=1 T j
i (i ∈ {1, 2}) andM ∈

MC(F1, F2).

• M [i, ∗] =M ∩ (V (T i
1) × V (F2)) for eachi ∈ {1, n1}.

• M [∗, j] =M ∩ (V (F1) × V (T j
2 )) for eachj ∈ {1, n2}.

• M [i, j] =M ∩ (V (T i
1) × V (T j

2 )) =M [i, ∗] ∩ M [∗, j] for eachi ∈ {1, n1} and eachj ∈ {1, n2}.

In what follows, we show the specific counting functions according to the class of tree mappings.

Expressions for KAcc
1 and KAcc♯

1

C ∈ {Accordant, Semi-Accordant}
KC

1 (T1 • F1, T2 • F2) = KC
t (T1, T2) · (KC

3 (F1, F2) − 1)

+KC
f (T1, T2 • F2) − KC

f (T1, F2)

+KC
f (T2, T1 • F1) − KC

f (T2, F1)

+KC(T1 • F1, F2) +KC(F1, T2 • F2) − 2KC(F1, F2) (6.7)

The functionKC
3 is defined as

KC
3 (F1, F2) =

∑
M∈M3

σ(M ),

where
M3 = {M ∈ MC(F1, F2) | M [i, j] , ∅ ∧ M [p, q] , ∅ =⇒ (i = p ⇔ j = q)}.

Any tree mapping inM3 consists of tree mappings between isolated subtrees ofF1 and F2 (SeeFig-
ure 6.1).
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44

44
44

44
44

4
• T 2

1 • T 3
1
•

M [3,3]

•

• T 4
1
•

M [4,5]

•
44

44
44

44
44

4
• T 5

1 • T 6
1 • T 7

2
•

M [7,6]

•








M3 ∋ M

F2 = T 1
2 • T 2

2 • T 3
2 • T 4

2 • T 5
2 • T 6

2 • T 7
2

Figure 6.1. A tree mapping inM3: M =M [1, 2] ∪ M [3, 3] ∪ M [4, 5] ∪ M [7, 6]
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C ∈ {Accordant, Semi-Accordant}
KC

3 (F, ∅) = KC
3 (∅, F ) = 0

KC
3 (T1 • F1, T2 • F2) = KC

t (T1, T2) · (1+KC
3 (F1, F2))

+KC
3 (F1, T2 • F2) +KC

3 (T1 • F1, F2) − KC
3 (F1, F2) (6.8)

We show the correctness of Eq.(6.7) by Proposition 6.6 and its corollary.

Proposition 6.6 (Decomposition of Accordant Mapping) Let C be either Accordant or Semi-
Accordant. Let F1 = •n1

i=1 T i
1 andF2 = •n2

j=1 T j
2 . For non-emptyM ⊆ V (F1) × V (F2), the following

are equivalent.

1. M is aC-mapping.

2. All of the following properties hold.

(i) M [i, ∗] is aC-mapping for alli ∈ {1, n1}.

(ii) M [∗, j] is aC-mapping for allj ∈ {1, n2}.

(iii) If M [i, j] , ∅, one of the following types of tree mappings holds.

(a) M =M [i, ∗]

(b) M =M [∗, j]

(c) If M [p, q] , ∅, then (i, j) = (p, q), i < p ∧ j < q, or i > p ∧ j > q holds.

Proof. (1⇒2) The property 1 implies (i) and (ii) by Proposition 6.5. In order to prove (1⇒2), it suffices
to derive a contradiction from the assumption thatM , M [i, ∗], M , M [j, ∗] andM [i, q] , ∅ for q , j.
From the assumption, there exist (x1, x2) ∈ M [i, j], (y1, y2) ∈ M [i, q] and (z1, z2) ∈ M [p, q] for p , i,
and therefore the following holds inv1(F1) andv2(F2).

x1`y1 <F1 x1`z1 = v1 and v2 = x2`y2 ≥F2 x2`z2.

Note that any two ofx1, y1, z1 are comparable by the hierarchical order, sincex1, y1 ∈ T i
1, z1 ∈ T p

1 ,
x2 ∈ T j

2 andy2 ∈ T q
2 . This contradicts the hypothesis thatM is of C

(2⇒1) We omit the proof since it is obvious.

Corollary 6.7 Let C be one of Accordant and Semi-Accordant. ForC-mappings of type (c) in Propo-
sition 6.6,M ′ from F ′

1 to F ′
2 andM ′′ from F ′′

1 to F ′′
2 , the tree mappingM =M ′ ∪M ′′ is aC-mapping

of type (c) fromF ′
1 • F ′′

1 to F ′
2 • F ′′

2 .

We assumeM [1, 1] , ∅. The following show the contributions of the tree mapping of type (a), (b)
and (c) in Proposition 6.6 toKC

1 (T1 • F1, T2 • F2).

(a) KC
f (T1, T2 • F2) − KC

f (T1, F2) − KC
t (T1, T2)

(b) KC
f (T2, T1 • F1) − KC

f (T2, F1) − KC
t (T1, T2)

(c) KC
t (T1, T2) · (1+KC

3 (F1, F2))

If M [1, 1] = ∅, the contribution toKC
1 (T1 • F1, T2 • F2) is given as follows.

KC(T1 • F1, F2) +KC(F1, T2 • F2) − 2KC(F1, F2)
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Expressions for KAln
1 and KAcc

2

KAln
1 (

m•
i=1

T i
1,

n•
j=1

T j
2 ) = κ1,1

1,1(1+ κ2,m
2,n )

+

n∑
j=2

{
(κ1,1

1,j − κ1,1
1,j−1)(1+ κ2,m

j+1,n) +
m∑
i=2

(κ1,i
j,j − κ1,i−1

j,j − κ2,i
j,j + κ2,i−1

j,j )(1+ κi+1,m
j+1,n )

}

+

m∑
i=2

{
(κ1,i

1,1 − κ1,i−1
1,1 )(1+ κi+1,m

2,n ) +
n∑

j=2

(κi,i
1,j − κi,i

1,j−1 − κi,i
2,j + κi,i

2,j−1)(1+ κi+1,m
j+1,n )

}
(6.9)

Let a, b, c, andd satisfy 1≤ a ≤ b ≤ n1 and 1≤ c ≤ d ≤ n2.

κa,b
c,d = KAln(

b•
i=a

T i
1,

d•
j=c

T j
2 ) (6.10)

We show the correctness of Eq.(6.9) by using the following proposition. (Proposition 6.8) and its
corollary.

Proposition 6.8 For non-emptyM ⊆ V (•n1
i=1 T i

1) × V (•n2
j=1 T j

2 ), the following are equivalent.

1. M is an alignable mapping.

2. The following four properties hold.

(a) M [i, ∗] is an alignable mapping for alli ∈ {1, n1}.

(b) M [∗, j] is an alignable mapping for allj ∈ {1, n2}.

(c) If M [i, j] , ∅, M [p, q] , ∅ andi < p, thenj ≤ q.

(d) None of (i, j) satisfiesM [i, j] , ∅, M [i, ∗] \ M [i, j] , ∅ andM [∗, j] \ M [i, j] , ∅.

Proof. (1⇒2) To prove that (1) implies (2), it suffices to show thatM is not alignable if (x1, x2) ∈ M [i, j],
(y1, y2) ∈ M [i, ∗] \M [i, j] and (z1, z2) ∈ M [∗, j] \M [i, j] for some (i, j). Sincex1, y1 ∈ T i

1 andz1 < T i
1,

x1`y1 < x1`z1 = v1 holds. In the same way,y2`z2 < x2`z2 holds. ThusM is not alignable.

(2⇒1) To prove that (2) implies (1), it suffices to show thatx2`z2 = y2`z2 holds, ifx1`y1 < x1`z1 for
any (x1, x2), (y1, y2), (z1, z2) ∈ M .

If x1, y1, z1 ∈ T i
1 for somei, the assertion is derived from (a). Therefore we assumex1, y1 ∈ T i

1 and
z1 < T i

1. Further, letx2 ∈ T j
2 , y2 ∈ T p

2 andz2 ∈ T q
2 for j, p, q. If any two of j, p, q are distinct, there is

nothing to prove. On the contrary, ifj = p = q, x2`z2 = y2`z2 is derived from (b). Sincej = p andq , j
hold by (d),x2`z2 = y2`z2 = v2 holds.

Corollary 6.9 For any alignable mappings,M ′ fromF ′
i toF ′

i andM ′′ fromF ′′
i toF ′′

i , the tree mapping
M =M ′ ∪ M ′′ is an alignable mapping fromF ′

1 • F ′′
1 to F ′

2 • F ′′
2 .

The entire situation is divided into the following cases.

1. M [1, ∗] =M [∗, 1] =M [1, 1].

2. M [1, j] , ∅ for somej > 1 andM [i, j] = ∅ for anyi > 1.

3. M [1, j] , ∅ for somej > 1 andM [i, j] , ∅ for somei > 1.

4. M [i, 1] , ∅ for somei > 1 andM [i, j] = ∅ for anyj > 1.

5. M [i, 1] , ∅ for somei > 1 andM [i, j] , ∅ for somej > 1.

By (1) of Proposition 6.5, Proposition 6.8 and Corollary 6.9, the contribution of each case stated
above onKC

1 (•m
i=1 T 1

i ,•n
j=1 T 2

j ) is calculated as follows.

1. κ1,1
1,1(1+ κ2,m

2,n )

2.
n∑

j=2

(
κ1,1

1,j − κ1,1
1,j−1

)(
1+ κ2,m

j+1,n

)
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3.
n∑

j=2

m∑
i=2

(
κ1,i

j,j − κ1,i−1
j,j − κ2,i

j,j + κ2,i−1
j,j

) (
1+ κi+1,m

j+1,n

)
4.

m∑
i=2

(
κ1,i

1,1 − κ1,i−1
1,1

)(
1+ κi+1,m

2,n

)
5.

m∑
i=2

n∑
j=2

(
κi,i

1,j − κi,i
1,j−1 − κi,i

2,j + κi,i
2,j−1

)(
1+ κi+1,m

j+1,n

)

Expressions for KAcc
2

KAcc
2 (F1, F2) = KAcc

3 (F1, F2) (6.11)

Eq.(6.11) is a direct corollary of the following proposition (Proposition 6.10).

Proposition 6.10 Let T1 = v1(•n1
i=1 T i

1) andT2 = v2(•n2
j=2 T j

2 ). For non-emptyM ⊆ V (•n1
i=1 T i

1) ×
V (•n2

j=1 T j
2 ), the following are equivalent to each other.

1. M ∪ {(v1, v2)} is an accordant mapping fromT1 to T2.

2. M is an accordant mapping of type (c) from•n1
i=1 T i

1 to•n2
j=1 T j

2 .

Expressions for KAcc♯
2 and KAln

2

C ∈ {Semi-Accordant, Alignable}
KC

2 (F1, F2) = KC(F1, F2) (6.12)

Eq.(6.12) is a direct corollary of Proposition 4.22.

Termination

The left-to-right recursive evaluations of Eq. (6.3) to Eq. (6.12) terminate due to the base expression in
Eq. (6.6a). Each counting function can be evaluated by dynamic programing as in the case of the algorithms
for the tree edit distance. Hence, the time complexities are O(n4) for Tai, O(n2d2) for the alignable, O(n2)
for the semi-accordant, and O(n2) for the accordant mapping class, wheren denotes the size of trees, andd
denotes the maximum degree.

6.2 Positive Semidefiniteness of Counting Functions
We assume that the label-similarity functionσ is positive semidefinite. Then intuition may suggest that the
positive semidefiniteness ofKC is inferred from the fact thatKC(x, y) is represented as a polynomial in
σ(a, b).

However, this intuition is incorrect whenC is Alignable. Consider the three forestsF1, F2 andF3, and
the label-similarity functionσ overΣ = {a, b, c, d, e, f, g, h} depicted inFigure 6.2 is a counterexample.

The Gram matrix [KAln(Fi, Fj)] is given by:

[KAln(Fi, Fj)] =

7+ 16ϵ + 8ϵ2 7 6
7 7+ 8ϵ 7
6 7 7+ 16ϵ + 8ϵ2


Since its determinantD coincides with−7+ ϵ · fq(ϵ) for some quarticfq(ϵ), the determinantD is negative
for a sufficiently small 0< ϵ < 1, and therefore, the matrix has at least one negative eigenvalue. This fact
means thatKAln(x, y) is not a kernel function.

In contrast,KC is positive semidefinite whenC is one of Tai, Semi-Accordant and Accordant (Corol-
lary 6.15). In what follows, we show an important proposition which plays a key role to prove the positive
semidefiniteness (Corollary 6.15).

The following notations are used in the next proposition.
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F1 F2 F3

d

e

a b c

f

a b c

g

a

h

b c

σ(x, y) =


1 if x = y ∈ {a, b, c}
ϵ if x = y ∈ {d, e, f, g, h}
0 if x , y

Figure 6.2. A counterexample to positive semidefiniteness

• m, n andd are all positive integers. Further, we assumeα ∈ {1, . . . , d}, i, j, aα ∈ {1, . . . , n} and
kα, lα, bα ∈ {1, . . . ,m}.

• Id
m is defined as follows.

Id
m = {(k1, . . . , kd) ∈ {1, . . . ,m}d | ki ≤ ki+1}

In addition, for an arbitrary (k1, . . . , kd) ∈ {1, . . . ,m}d, ι(k1, . . . , kd) denotes a permutation of
(k1, . . . , kd) such thatι(k1, . . . , kd) ∈ Id

m. Theα-th element of⃗k ∈ Id
m is denoted by [⃗k]α.

• WhenAij arem-dimensional square matrices parameterized by (i, j) = {1, . . . , n}2, A denotes the
derivedmn-dimensional square matrix [Aij ]i,j=1,...,n: the (mi + k,mj + l)-element ofA is defined
to be the (k, l)-element ofAij , and denoted byAij

kl.
• p is a homogeneous polynomial of degreed in them2 variablesX11, X12, . . . , Xmm. Further, assume

thatp is given a representation of

p(X11, X12, . . . , Xmm) =
∑

k⃗∈{1,...,m}d

∑
l⃗∈{1,...,m}d

ck⃗,⃗lXk1l1 · · · · · Xkdld ,

wherek⃗ = (k1, . . . , kd) andl⃗ = (l1, . . . , ld). Note that such representation ofp is not unique.

Proposition 6.11 Let A be a matrix of positive semidefiniteness. If there exists ¯ck⃗ ∈ R for each⃗k ∈
{1, . . . ,m}d such thatck⃗,⃗l = c̄k⃗ c̄⃗l, then then-dimensional square matrix [p(Aij

11, . . . , A
ij
mm)]i,j=1,...,n is

also positive semidefinite.

Proof. Since the matrixA is positive semidefinite, there existsmn-dimensional square matrixB = [Bij
kl]

such thatA = tBB.

p(Aij
11, . . . , A

ij
mm)

=
∑

k⃗∈{1,...,m}d

∑
l⃗∈{1,...,m}d

ck⃗,⃗l

d∏
α=1

Aij
kαlα

=
∑

k⃗∈{1,...,m}d

∑
l⃗∈{1,...,m}d

ck⃗,⃗l

d∏
α=1

(
n∑

aα=1

m∑
bα=1

Baαi
bαkα

Baαj
bαlα

)

=
∑

a⃗∈{1,...,n}d

∑
b⃗∈{1,...,m}d

 ∑
k⃗∈{1,...,m}d

∑
l⃗∈{1,...,m}d

ck⃗,⃗l

d∏
α=1

Baαi
bαkα

d∏
α=1

Baαj
bαlα


=

∑
a⃗∈{1,...,n}d

∑
b⃗∈{1,...,m}d

∑
k⃗,⃗l∈Id

m

ck⃗,⃗l

d∏
α=1

Baαi

bα[k⃗]α

d∏
α=1

Baαj

bα[ l⃗]α

=
∑

a⃗∈{1,...,n}d

∑
b⃗∈{1,...,m}d

 ∑
k⃗∈{1,...,m}d

c̄k⃗

d∏
α=1

Baαi
bαkα

  ∑
k⃗∈{1,...,m}d

c̄k⃗

d∏
α=1

Baαj
bαkα
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This immediately indicates that [p(Aij
11, . . . , A

ij
mm)]i,j=1,...,n is positive semidefinite.

For a positive integerN , letFN denote the set of ordered forestsF such that|F | ≤ N .
A universal treeTN is an ordered tree with a finite set of nodes, into which each forestF ∈ FN

is embedded preserving the hierarchical and sibling orders. When a single order-preserving embedding
eF : V (F ) → V (TN ) is assigned to eachF ∈ FN , a pair ofTN and the set{eF | F ∈ FN} is used as a
common numbering scheme of nodes for anyF ∈ FN .

Let C denote an arbitrary subclass of Tai mapping, including, but not limited to, Tai, Alignable,
Semi-Accordant and Accordant. The only restriction imposed onC is to satisfy

{(v1, v1), . . . , (vn, vn)} ∈ MC(F, F )

for arbitraryF, n andv1, . . . , vn ∈ F . In the above,KC(F1, F2) denotes the set of theC-mappings fromF1

to F2.

Definition 6.12 (Absorbent Mapping) The tree mapping classC is said to be

F [i]: the i-th tree inF (i ∈ [1, |F |]) absorbent,

F [i]: the i-th tree inF (i ∈ [1, |F |]) if and only if, for anyN , there exists a pair of a universal treeTN

and a set of embedding{eF | F ∈ FN} such that:

∀(F1 ∈ FN )∀(F2 ∈ FN )∀(M ∈ V (F1) × V (F2))

[M ∈ KC(F1, F2) ⇐⇒ (eF1 × eF2)(M ) ∈ KC(TN , TN )].

If C is transitive, the inverse of a givenC-mapping and the composition of givenC-mappings are all
C-mappings. In particular,MC(F, F ) under map composition forms a group.

Theorem 6.13 Let σ : Σ× Σ→ R+0 be positive semidefinite.
If C is absorbent and transitive, the functionKC |FN : FN × FN → R+0 is positive semidefinite

for an arbitraryN .

Proof. First, the members ofV (TN ) are numbered in preorder. From now on,xk denotes thek-th node of
TN , andxk[F ] doese−1

F (xk) ∈ V (F ). Further, for givenFi, Fj ∈ FN , Aij
kl denotesσ(l(xk[Fi]), l(xl[Fj ])).

Note that definingσ(l(xk[Fi]), l(xl[Fj ])) = 0 for xk[Fi] = ∅ or xl[Fj ] = ∅ does not harm the positive
semidefiniteness of [Aij

kl].
Let Id denote{(k1, . . . , kd) | 1 ≤ k1 ≤ . . . ≤ kd ≤ m}, wherem denotes|V (TN )|. For arbitrary

k⃗, l⃗ ∈ {1, . . . ,m}d, under the notation of

Mk⃗,⃗l = {(xk1, xl1), . . . , (xkd
, xld)},

ck⃗,⃗l is defined as follows.

ck⃗,⃗l =

{
1, if k⃗, l⃗ ∈ Id andMk⃗,⃗l ∈ MC(TN , TN );

0, otherwise.

Note that an arbitraryM ∈ MC(F1, F2) has exactly one instance of (k⃗, l⃗) such thatMk⃗,⃗l =M andck⃗,⃗l = 1,
since a Tai mapping preserves the preorder.

The following properties are derived from the hypothesis thatC is transitive.

1. ck⃗,⃗k = 1.

2. ck⃗,⃗l = c⃗l,⃗k.

3. If ck⃗,⃗l = ck⃗,⃗l′ = 1, thenc⃗l,⃗l′ = 1.

Consequently,Id is decomposed into the disjoint union ofId
1 , . . . , Id

ᾱd
, and the following holds.

ck⃗,⃗l =

{
1, if k⃗, l⃗ ∈ Id

α for some 1≤ α ≤ ᾱd;

0, otherwise.
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For eachId
α, define the homogeneous polynomialpId

α
of orderd by

pId
α

(X11, . . . , Xmm) =
∑

k⃗∈Id
α

∑
l⃗∈Id

α

Xk1l1 . . . Xkdld .

It is apparent thatpId
α

satisfies the hypotheses of Proposition 6.11 by defining

ck⃗ =

{
1, if k⃗ ∈ Id

α;

0, otherwise.

Therefore, [pId
α

(Aij
11, . . . A

ij
mm)] is positive semidefinite.

Thus, to complete the proof, it suffices to show that the sum of all ofpId
α

(Aij
11, . . . , A

ij
mm) coincides

with KC(Fi, Fj), and it is apparent, sinceC is absorbent by hypothesis.

It is easy to see that Accordant, Semi-Accordant, Alignable and Tai classes are all absorbent.
In contrast, the alignable mapping class is not transitive as shown in Proposition 2.58. Therefore, we

immediately have the following proposition.

Proposition 6.14 The counting function of alignable mappings is not a kernel.

Thus, Corollary 6.15 gives the main assertion of this chapter.

Corollary 6.15 LetC be one of Tai, Semi-Accordant, Accordant. KC |FN
: FN ×FN → R+0 is positive

semidefinite for an arbitraryN , if and only if σ : Σ× Σ→ R+0 is positive semidefinite.

Theorem 6.13 has a wide range of applications. For example, the subtree-congruent mapping class is
absorbent and transitive. Moreover, let Leaf-Tai, Leaf-Semi-Accordant and Leaf-Accordant respectively
denote the subclasses of Tai, Semi-Accordant and Accordant such that, forM belonging to the subclasses,
x andy are both leaves if (x, y) ∈ M . They are also absorbent and transitive. Therefore, the counting
functions for those mapping classes are positive semidefiniteness.

Proof. First, a universal treeTN is defined. The universal treeTN and an embedding (i.e. an injective map)
e : V (F ) → V (TN ) are chosen to support the following notations and properties.

• All the nodes ofTN are numbered so as to satisfy the following conditions.

(i) The numbering starts with 1 and is sequential.

(ii) If x < y, then the number assigned tox is larger than that assigned toy.

(iii) If x ≺ y, then the number assigned tox is smaller than that assigned toy.

Note that such a numbering uniquely exists.xi denotes thei-th node ofTN .
• e packsV (F ) close leftmost and topmost inV (TNN ) in the following sense.

(i) If xi ≺ xj are children of the same parent and ifxj ∈ e(V (F )), thenxi ∈ e(V (F )).

(ii) If xj < xi < xk and ifxj , xk ∈ e(V (F )), thenxi ∈ e(V (F )).

(iii) If F is a tree,e(root(F )) is coincident withx1, which is the root ofTN .

(iv) If F is not a tree,x2, which is the leftmost child ofx1, is in e(V (F )).

• xi[F ] denotese−1(xi) ∈ V (F ).
• Axi,xj = σ(l(xi[F1]), l(xj [F2])), for givenF1, F2 ∈ FN .

Let k⃗ and⃗l be non-decreasing serieses of ordern. Hence,k1 ≤ k2 ≤ . . . ≤ kn andl1 ≤ l2 ≤ . . . ≤ ln
hold for k⃗ = (k1, . . . , kn) andl⃗ = (l1, . . . , ln). Then,ck⃗,⃗l is defined as follows.

ck⃗,⃗l =

{
1, if {(xk1, xl1), . . . , (xkn , xln )} ∈ MC(TN , TN );

0, otherwise.

SinceC is one of Tai, Semi-Accordant and Accordant, the following hold.
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1. ck⃗,⃗k = 1.

2. ck⃗,⃗l = c⃗l,⃗k.

3. If ck⃗,⃗l = ck⃗,⃗l′ = 1, thenc⃗l,⃗l′ = 1.

Note that the property 3 does not holds true, ifC is Alignable.
As a consequence of the above properties,In

1 , . . . , In
αn

exist and satisfy the following.

• In
α is a set of non-decreasing serieses of ordern.

• In
α ∩ In

α′ = ∅ for α , α′

• For any⃗k, l⃗ ∈ In
α , ck⃗,⃗l = 1.

• If ck⃗,⃗l = 1 for non-decreasing seriesesk⃗ andl⃗, thenk⃗, l⃗ ∈ In
α for someα.

Therefore, the homogeneous part

pn(X11, . . . , XN̄N̄ ) =
n∑

k[1..N̄ ]

n∑
l[1..N̄ ]

ck⃗l⃗Xk1l1 . . . Xknln

is decomposed into the sum of

pIn
α

(X11, . . . , XN̄N̄ ) =
∑

k⃗∈In
α

∑
l⃗∈In

α

Xk1l1 . . . Xknln .

Since it is apparent thatpIn
α

satisfies the hypotheses of Proposition 6.11,pIn
α

(A11, . . . , AN̄N̄ ) defines a
positive semidefinite matrix.

6.3 Summary
A generalization of tree kernels due to Collins and Duffy [CD01], and due to Kashima and Koyanagi [KK02]
is addressed in this chapter. Based on the notion of tree mapping, which depicts a common sub-pattern
between two trees, it is shown that these existing kernels are the counting functions of tree mappings.
By focusing on four major classes of tree mappings proposed in the field of the tree edit distance, four
counting functions of tree mappings are proposed according to the four classes. In addition, it is proved
that three of the four counting functions are kernel functions, and the other is not by checking their positive
semidefiniteness. One of the three tree kernels developed in this chapter turns out to be the elastic tree kernel
due to Kashima and Koyanagi. The other two tree kernels are more general than existing tree kernels in the
interpretation of common patterns occurring between two trees. We summarize the counting functions of
tree mappings for the tree kernels in Table 6.1.

Table 6.1.Kernels by counting functions of tree mappings

Tree mapping Counting function PSD†

Tai mapping [Tai79] KTai (§ 6.1.2) X
Alignable mapping [JWZ95] KAln (§ 6.1.3)
Semi-Accordant mapping [Zha95] KAcc♯ (§ 6.1.3) X
Accordant mapping (§ 4.8) KAcc (§ 6.1.3), Elastic Tree Kernel [KK02] X
Common Subtree Isomorphism [Val98] Labeled Tree Kernel [KK02] X
Bottom-Up Common Subtree Isomorphism [Val98] String Kernel for Trees [VS02] X

†PSD stands for positive semidefiniteness.
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Spectrum Kernels for Trees

Most of the existing tree kernels [CD01, KK02, KSK06a] run in quadratic time with respect to the size of
the input trees. Also, the kernel function has to be evaluated for most pairs of trees in the training data and
test data. As a result, classifiers based on these kernels are too slow for real world applications.

The kernel trick used in their works contributes a significant reduction of computation time, from
exponential time for explicit enumeration of common patterns to quadratic time for implicit enumeration
by dynamic programming.

Therefore, for more efficient computation, it is important to design an explicitly computable feature
vector with low dimension, but with sufficient expressive power.

In this chapter, we propose an expressive and efficient tree kernel based ontree q-grams, subtrees
isomorphic to paths withq nodes. Note that, by using a linear time algorithm for counting allq-grams in
a tree, the tree kernel based on treeq-grams is very efficient for most practical situations. Theq-spectrum
kernel for trees is identical to the spectrum kernel for strings if strings are given as trees in which every
node has at most one child.

In contrast to the tree kernel by Vishwanathan and Smola [VS02] (one of the linear-time kernels), our
kernel has enough expressive power to consider the internal structures of trees, and is still computable in
linear time.

7.1 Tree q-Grams
In this section, we extend the notion ofq-gram for strings [JU91, Ukk92] to trees. Let us begin with
introducing a few notions for representingq-grams for ordered labeled trees. LetT be an ordered tree
in which each nodevi is indexed by left-to-right postorder numbering. We formulate thedepth sequence
D(T ), thelabel sequenceL(T ), and theparent sequencePS (T ) of T with n nodesin left-to-right postorder
as follows.

D(T ) = dep(v1) · · · dep(vn),
L(T ) = l(v1) · · · l(vn).

PS(T ) = par(v1) · · · par(vn−1).

We denotel(vi) by li for short. Note that the original depth sequence in [AAK+02] has been defined by
usingpreorder.

Example 7.1 Consider the treeT in Figure 7.1 The depth sequence, the label sequence, and the parent
sequence ofT are given as inTable 7.1.

For a treeT , and the depth sequenceD = D(T ), we denote max{d | d ∈ D} by maxD. It is obvious
that dep(T ) = maxD.
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T
b 14

a 6

b 3

a 1 a 2

b 5

a 4

b 13

a 8

b 7

a 10

b 9

a 12

b 11

Figure 7.1. An ordered tree with postorder numbering

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

di 3 3 2 3 2 1 3 2 3 2 3 2 1 0
li a a b a b a b a b a b a b b
pi 3 3 6 5 6 14 8 13 10 13 12 13 14−

Table 7.1.The depth sequence, the label sequence, and the parent sequence ofT .

Note that the reversal of the depth sequence in postorder under left-to-right order of children is the
depth sequence in preorder under right-to-left order of children. Then, by using the algorithm Pseq in
Algorithm 7.1, the parent sequencePS (T ) of T is obtained from the depth sequence ofD in O(|D|) time
and O(maxD) space.

Algorithm 7.1 Pseq

procedurePseq(D)
/* D: a depth sequence in postorder* /
T [0] ← |D|
for i = |D| − 1 downto 1 do

PS [i] ← T [D[i] − 1] T [D[i]] ← i
return PS

We define atreeq-gramsfor trees as aline treeconsisting ofq nodes in which any node has at most
two adjacent nodes. For an alphabetΣ, we denote the set of allq-grams byLq

Σ. Theq-grams haveq − 1
kinds of isomorphic patterns if the labels are ignored. Then, we divideq-grams intoq − 1 patterns by
the first depthk in its depth sequence (that is, the depth of the left leaf), and denote the patterns byPk

(1 ≤ k ≤ q − 1). We sometimes denote aq-gram by (Pk, l1 · · · lq), which is the pair of a patternPk and
label sequencel1 · · · lq ∈ Σq (SeeFigure 7.2).

Let T andP be trees. Then, we say thatP matchesT at a nodev if there exists a one-to-one mapping
f from the nodes ofP into the nodes ofT satisfying the following conditions.

1. f maps the root ofP to v.

2. Suppose thatf mapsx to y andx has childrenx1, . . . , xk from left to right. Then,y has children
y1, . . . , ym such thatm ≥ k and there exists a monotone functiong : {1, . . . , k} → {1, . . . ,m} such
thatf (xi) = yg(i) andg(i1) < g(i2) wheneveri1 < i2.

3. l(x) = l(f (x)) for eachx ∈ P .

Also, we say thatT has anoccurrenceof P if there exists a nodev in T such thatP matchesT at v.
First, we design the algorithm LabelGram to count all theq-grams occurring in a given tree as shown in
Algorithm 7.2.
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(P1, abab)

b 0

a 1 a 1

b 2

(P2, baab)

b 0

a 1

b 2

a 1

(P3, abab)

b 0

a 1

b 2

a 3

Figure 7.2. 4-grams(P1, abab), (P2, baab), and(P3, abab)

Algorithm 7.2 LabelGram

procedureLabelGram(q,D,L)
/* D: a depth sequence, L: a label sequence* /
/* initialize, whereP [k][w] andid [k][j] are empty.* /
PS ← Pseq(D)
for d = maxD downto 0 do

for k = 1 to min{q − 1, maxD} do
if k ≤ d − q + 1+ 2k ≤ maxD then

count [d] ← count [d] ∪ {(d − q + 1+ 2k, k)}
for d = maxD − 1 downto 1 do

for k = 1 to maxD do
if 0 ≤ d + k ≤ maxD then

shift [d] ← shift [d] ∪ {(d + k, k)}
/* main routine* /
for i = 1 to |D| − 1 do begin

foreach (j, k) ∈ count [D[i]] do begin/* Count * /
w ← ε
foreach l ∈ id [j][k] do begin/* Label * /

pt1 ← l; pt2 ← i
for m = 1 to k do

w ← w · L[PS [pt1 ]] pt1 ← PS [pt1 ]
for m = k + 1 to q do

w ← w · L[PS [pt2 ]] pt2 ← PS [pt2 ]
P [k][w]++

end /* Label * /
end /* Count * /
if D[i] < maxD then /* Shift * /

foreach (j, k) ∈ shift [D[i]] do
id [j][k + 1] ← id [j][k] id [j][k] ← ∅

id [j][k] ← id [j][k] ∪ {i}
end /* for * /
return P

In order to count allq-grams of anunlabeledtree, it is sufficient to count aq-gramPk with the right
leafD[i] in the algorithm LabelGram. This counting requires O(q|D|) time by using two tablescountand
shift. On the other hand, in order to count allq-grams of alabeled tree, it is necessary to maintain the
information of labels inq-grams.

The LabelGram scans a given depth sequence from left to right in analogy with a parsing algorithm,
and keeps track of all possible occurrences ofq-grams as succinct states during scanning. The LabelGram
employs two tablescountandshift. The tablecountmaintains the depthj of the left leaf and the depthd
of the right leaf inPk in order to identify the patternPk just from its depths of two leaves. Note that, for
generality, we refer to the leaf and the root in patternPq−1 as the left and right nodes respectively. On the
other hand, the tableshift maintains the depthj of the left leaf and the depthd of the root inPk in order to
discard the possibility of the occurrence ofPk.
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Figure 7.3. The table count forq = 4 andmaxD = 3
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Figure 7.4. The table shift forq = 4 andmaxD = 3

Lemma 7.2 Let Pk be aq-gram (1≤ k ≤ q − 1). Then, the following statements hold.

1. If d is the depth of the right leaf (or the root ifk = q − 1) of Pk, then the depth of the left leaf of
Pk is d − q + 1+ 2k.

2. If d is the depth of the root ofPk, then the depth of the left leaf ofPk is d + k.

Lemma 7.2 guarantees the correctness of the following construction of tablescountandshift: Let D be a
depth sequence.

1. For 0≤ d ≤ maxD, count[d] consists of the pairs (j, k) such thatj = d − q + 1+ 2k, 0≤ j ≤ q and
1 ≤ k ≤ q − 1.

2. For 1≤ d ≤ maxD − 1, shift[d] consists of the pairs (j, k) such thatj = d + k, 0 ≤ j ≤ maxD and
1 ≤ k ≤ q − 1.

For example, the tablescountandshift for q = 4 and maxD = 3 are described inFigure 7.3 and
Figure 7.4, respectively.

Here, by ‘·’ we denote the concatenation of two strings. The frequency of theq-gram (Pk, w) is stored
in P [k][w], and the indexw is stored inI[k]. Also freq[j][k] consists of the pairs (w, f ) such thatw is a
string inΣ with length at mostq andf is a positive integer that is the frequency ofw, andlabel[d] of the
triples (k,w, f ) such that 1≤ k ≤ q−1. In the functionupdate(T, Key, F ), T is either a tablelabelor freq,
andKey is either (k,w) for the tabletable, where we identify ((k,w), f ) with (k,w, f ), or w for the table
freq.

The reason why the algorithm LabelGram is necessary to maintain the information of labels inq-
gram is that a depth sequence is based on the postorder. Even if LabelGram finds the depth of the left leaf
and the right leaf of someq-gramPk in “Count” routine, it never finds the labels of the internal nodes in
the path from the root to the right leaf inPk, which we call aright branch. Then, the algorithm LabelGram
finds their labels in the “Label” routine.

Note that every depth of internal nodes in the right branch corresponds to the depth nearest in the
right-hand side of the current depth in the depth sequence. Hence, the algorithm LabelGram stores the
string of labels when it finds someq-gram, where the string consists of the labels in a path from the left
leaf to the child of the root, and the right leaf. Furthermore, whenever it finds the depth of internal nodes in
the right branch, the “Label” routine in the algorithm LabelGram concatenates a label corresponding to the
depth to the stored string in the tablelabel.

Example 7.3 Consider the treesT1 andT2 in Example 7.6 (cf., Figure 7.5), where

D(T1) = 33232132323210, D(T2) = 32321332323210,
L(T1) = aababababababb, L(T2) = abababbabababb.
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We have already given the tablescountand freq as shown in Figure 7.3 and 7.4. Then, the transitions of
freq[j][k] and label[d] for LabelGram(4, D(T1), L(T1)) and LabelGram(4, D(T2), L(T2)) are described in
Table 7.2. Here,wf andkwf denote (w, f ) ∈ freq[j][k] and (k,w, f ) ∈ label[d], respectively.

Also the underlined elementwf in the i-th column offreq[j][k] is added tolabel[D[i + 1]] by the
“Count” routine in the (i+ 1)-th iteration of the for-loop. On the other hand, the underlined elementkwf in
thei-th column oflabel[d] is added toP [k][w·li+1]. For example, in the transition oflabel[d] in Table 7.2,
the underlined elements2abb2 and1bab1 in label[2] mean thatP [2][abba] andP [1][baba] are added to 2
and 1, respectively, becausea is the label of the depth 1 in the next column of their elements.

Hence, we obtain the 4-gram profiles ofT andS as same as Example 7.6.

Theorem 7.4 The algorithm LabelGram(D(T ), L(T ), q) counts allq-grams occurring in a treeT in
O(q · deg(T )2 |T |) time and O(q(deg(T )2 + |Σ|) |T |) space.

Proof. By Lemma 7.2, the following properties of the tablescount andshift hold. (Note the following
properties of the tablescountandshift.)

1. (j, k) ∈ count[d] implies thatd andj are the depth of the left and right leaves ofPk.

2. (j, k) ∈ shift[d] implies thatd andj are the depth of the root and the left leaf ofPk.

First, we show the correctness of the algorithm LabelGram. Since the depth sequence is based on postorder,
dk+1 andlk+1 are the depth and the label of the right leaf ofPk in the depth sequenceD(Pk) = d1 · · · dq,
and the label sequenceL(Pk) = l1 · · · lq for 1 ≤ k ≤ q − 1 respectively. Furthermore, forPk, it holds that
di+1 = di − 1 for k + 1 ≤ i ≤ q − 1.

On the other hand, for (k,w·L[i], f ) stored inlabel [D[i]] by the “Count” routine,w·L[i] denotes the
label of theq-gramPk with the right leaf labeled byL[i].

Let D[j] be the current depth. Also suppose that the labelsl1 · · · li (k + 2 ≤ i ≤ q − 1) have been
already found inL(Pk) = l1 · · · lq by the “Count” and “Label” routines. Note that the “Label” routine
searches for the elements inlabel [D[j] + 1] and shifts them tolabel[D[j]]. If di = D[j] + 1, thenD[j] is
the depth of the parent of the node inPk labeled byli. Hence,li+1 = L[j] anddi+1 = di − 1 = D[j].

The “Label” routine concatenates every element oflabel [D[j] + 1] to a label, until the length of such
an element isq, so LabelGram can count allq-grams with their labels.

Next, we consider the computational complexity of LabelGram. The sizelabel[i] for eachi (0 ≤ i ≤
d) is bounded by the maximum number ofq-grams for the node inT with the maximum degree. For a nodev
with degree deg(T ), the number ofq-grams with the rootv is bounded by deg(T )+(q−2)deg(T )(deg(T )−1),
because ourq-gram is isomorphic to a line graph, and the number ofPq−1 is at most deg(T ) and the number
of Pk (1 ≤ k ≤ q−2) is at most deg(T )·(deg(T )−1) as the combination of the left and the right leaves. Then,
the size oflabel[i] is O(q · deg(T )2). The “Count” and “Shift” routines in LabelGram call justcount[D[i]]
andshift[D[i]], respectively, both of which sizes are at most O(q) for every i. Also the “Label” routine
calls justlabel[D[i] + 1] and transformslabel [D[i] + 1] and label[D[i]], both of which sizes are at most
O(q ·deg(T )2). Hence, the time complexity of LabelGram is (O(q)+O(q ·deg(T )2)) |T | = O(q ·deg(T )2 |T |).

The size ofcountandshift is O(qd) and the size oflabel is O(qd · deg(T )2). Also the size offreq
is O(qd|Σ|), because the maximum number offreq [j][k] is the number of different labels, that is, O(|Σ|).
Furthermore, since the number of allq-grams with the root as a fixed node is O(q · deg(T )2), the number of
all q-grams inT is O(qdeg(T )2|T |), which is the size ofP . Then, the space complexity of LabelGram is
O(q(d + d|Σ| + ddeg(T )2 + deg(T )2|T |)) = O(q(deg(T )2 + |Σ|)|T |), sinced ≤ |T | andq ≤ |T |.

In our experiments, the running time of this algorithm was almost on the order of O(|T |) since the
degree of trees is bounded andq is constant.

7.2 Spectrum Kernel for Trees
We first formulate theq-gram profilefor trees as in the case of strings. LetT be a tree andP = (Pk, w) ∈ Lq

Σ

a q-gram, wherew ∈ Σq. We denote the total number of the occurrences of (Pk, w) in T by #T [(Pk, w)]
for 1 ≤ k ≤ q − 1. Then, theq-gram profileof T is the vectorGq(T ) = (#T [P ])P∈Lq

Σ
.

Now we are ready to present a new tree kernel as a similarity measure between two trees.
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Definition 7.5 (q-Spectrum Kernel) Let T1 andT2 be trees. Then, theq-spectrum kernelof T1 andT2

is the inner product ofGq(T1) andGq(T2) as follows:

Kq(T1, T2) = ⟨Gq(T1), Gq(T2)⟩

Table 7.3.The4-gram profiles ofT1 (left) andT2 (right)

aabb 3 ⟨6, 8⟩, ⟨6, 10⟩, ⟨6, 12⟩
P1 abab 3 ⟨8, 9⟩, ⟨8, 11⟩, ⟨10, 11⟩

baba 1 ⟨3, 4⟩

abba 2 ⟨1, 5⟩, ⟨2, 5⟩
P2 baab 3 ⟨7, 10⟩, ⟨7, 12⟩, ⟨9, 12⟩

babb 2 ⟨3, 13⟩, ⟨5, 13⟩

P3
abab 3 ⟨1, 14⟩, ⟨2, 14⟩, ⟨4, 14⟩
babb 3 ⟨7, 14⟩, ⟨9, 14⟩, ⟨11, 14⟩

aabb 3 ⟨5, 8⟩, ⟨5, 10⟩, ⟨5, 12⟩,
P1 abab 3 ⟨8, 9⟩, ⟨8, 11⟩, ⟨10, 11⟩

baba 1 ⟨2, 3⟩

abba 1 ⟨1, 4⟩
P2 baab 5 ⟨6, 10⟩, ⟨6, 12⟩, ⟨7, 10⟩, ⟨7, 12⟩, ⟨9, 12⟩

babb 2 ⟨2, 13⟩, ⟨4, 13⟩

P3
abab 2 ⟨1, 14⟩, ⟨3, 14⟩
babb 4 ⟨6, 14⟩, ⟨7, 14⟩, ⟨9, 14⟩, ⟨11, 14⟩
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Figure 7.5. The treesT1 andT2 in Example 7.6

Example 7.6 Let Σ = {a, b} and consider the 4-gram profiles of the treesT1 andT2 shown in Figure 7.5.
Here, the numbers to the right of nodes describe the postorder. Then Table 7.3 denotes (Pi, w) such that
#T1[(Pi, w)] > 0 and #T2[(Pi, w)] > 0 in the 4-gram profile and their values, respectively. Here,⟨u, v⟩
denotes the path fromu to v in T1 andT2. Hence, the following statement holds.

K4(T1, T2) = ⟨(3, 3, 1, 2, 3, 2, 3, 3), (3, 3, 1, 1, 5, 2, 2, 4)⟩
= 58.

7.3 q-Gram Distance for Trees
We deviate here from tree kernels, and consider a distance measure based on treeq-grams. As in the case
of strings, we can defineq-gram distancefor trees as follows.

Definition 7.7 (q-Gram Distance) Let T1 andT2 be ordered labeled trees, and letq be a fixed natural
number. Theq-gram distancebetweenT1 andT2 is defined as follows:

DGram
q (T1, T2) = ∥Gq(T1) − Gq(T2)∥1 =

q−1∑
i=1

∑
w∈Σq

|#T1[(Pi, w)] − #T2[(Pi, w)]| .

We remark that theq-gram distance is not a metric but a pseudometric in the mathematical sense since
it may beDq(T1, T2) = 0 even ifT1 , T2.
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Example 7.8 LetΣ = {a, b}, and consider the 4-gram profiles of the treesT1 andT2 described in Figure 7.5.

DGram
4 (T1, T2) = ∥(3, 3, 1, 2, 3, 2, 3, 3)− (3, 3, 1, 1, 5, 2, 2, 4)∥1 = 5.

A theoretical property ofq-gram distance has yet to be well analyzed in order to apply this distance
measure to an efficient filtration of tree edit distance.

7.4 Gram Distribution Kernel
We also present another tree kernel based on treeq-grams for smoothing the kernel values from variousq
to interpolate the patterns of various lengths. A gram distribution kernel is a generalization of the spectrum
tree kernel for this purpose.

By maxpath(T ) we denote the number of nodes on the longest unique path inT . Assumem =

maxpath(T ). Then, thegram distributionG(T ) of T is the following sequence of allq-gram profiles for
everyq (1 ≤ q ≤ m).

G(T ) = (G1(T ), . . . , Gm(T )).

Definition 7.9 (Gram Distribution Kernel) Let T1 and T2 be trees, and andm =

min{maxpath(T1), maxpath(T2)}). Then, thegram distribution kernelof T1 andT2 is the sum of the
inner products ofq-gram profiles ofT1 andT2 for all the possibleq as follows:

K(T1, T2) =
m∑

q=1

⟨Gq(T1), Gq(T2)⟩.

The algorithm LabelGramDist in Algorithm 7.3 can compute the gram distribution of a tree from its
depth sequenceD, label sequenceL and parent sequencesPS, which is the main advantage in using the
gram distribution kernel.

The notations in the algorithm LabelGramDist are almost the same as LabelGram. The frequency
of theq-gram (P q

k , w) is stored inP [q][k][w]. Also, freq[j][k] consists of the pairs (w, f ) such thatw is
a string overΣ with length at mostq andf is a positive integer that is the frequency ofw. In the function
update(T, v, F ), T is an element of a tablefreq, andv is a string. Note thatmaxpath(T ) ≤ 2dep(T ) + 1. In
the algorithm LabelGramDist, we assume that 2dep(T ) + 1 < |T |.

The main difference between the algorithms LabelGramDist and LabelGram is the construction of
the labels of the right branch. In LabelGram, we have adopted the tablelabel and constructed the labels
of the right branch, with running the main routine. In contrast, whenever LabelGramDist finds someq, it
computes the labels of the right branch for the foundq-gram, by using the parent sequence.

For each nodev in a treeT rooted atr, let UPr(v) denote the unique path fromv to r. In particular,
UPr(r) = {r}. In order to compute the value ofq and rb in the “Count” routine, we use the following
relationship amongd, j, k and|UPr(p)| for a q-gramP q

k .

1. For someq, let P q
k be aq-gram (1≤ k ≤ q − 1), and letd be the depth of the right leaf ofP q

k andj
the depth of the left leaf ofP q

k . Then, it holds thatq = d + 2k + 1− j (Figure 7.6 (left)).

2. For someq, let P q
k be aq-gram (1≤ k ≤ q − 1), and letd be the depth of the right leaf ofP q

k andj
the depth of the left leaf ofP q

k . Furthermore, letr andp be the root and the parent node of the right
leaf ofP q

k , respectively. It thus holds thatrb(= |UPr(p)|) = d − j + k (Figure 7.6 (right)).

Let T be a tree andm = maxpath(T ). Then, we denote the number of differentq-grams occurring in
T by NT,q and

∑m
q=2 NT,q by NT . Note that

NT,q ≤ min{|T |, |Σ|q, deg(T )q} and NT ≤ min{|T |, |Σ|m, deg(T )m}.

Theorem 7.10 Let D andL be the depth and label sequences ofT , respectively. Also suppose that
h = dep(T ). Then, the algorithm LabelGramDist computes the gram distribution ofT in O(h2NT |D|)
time and inO(NT + h2 + |D|) space, by traversingD twice.
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Algorithm 7.3 LabelGramDist

procedureLabelGramDist(D,L, PS)
/* D : a depth sequence,L : a label sequence,PS: a parent sequence* /
/* initialize, where2 maxD + 1 < |D| * /
for d = maxD − 1 downto 1 do

for k = 1 to maxD do
if 0 ≤ d + k ≤ maxD then

shift[d] ← shift[d] ∪ {(d + k, k)}
PL ← parent list(D)
for i = 1 to |D| do begin

P [1][0][ L[i]]++
for j = maxD downto 1 do begin/* Count * /

for k = 1 to j do
foreach (w, f ) ∈ freq[j][k] do

q ← D[i] + 2k + 1− j rb ← D[i] − j + k s ← ε pt ← i
for m = 0 to rb do begin/* Label * /

s ← s · L[pt] pt ← PS[pt]
end /* Label * /
w ← w · s P [q][k][w] ← P [q][k][w] + f

end /* Count * /
if D[i] = 0 then break
if D[i] < maxD then

foreach (j, k) ∈ shift[D[i]] do begin/* Shift * /
foreach (w, f ) ∈ freq[j][k] do

update(freq[j][k + 1], w · L[i], f ) freq[j][k] ← freq[j][k] − {(w, f )}
end /* Shift * /

update(freq[D[i]][1] , L[i], 1)
end
return P

function update(T, v, F )
/* T : an element offreq[ ][ ] , v : string* /
if ∃(w, f ) ∈ T s.t.f > 0 then F ← f + F elseT ← T ∪ {(v, F )}

*
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Figure 7.6. The relationship amongd, j, k and|UPr(p)| for a q-gramP q
k

Proof. In order to show the correctness of LabelGramDist, it is sufficient to show the correctness of the
“Count” routine, by using the correctness of GramDist of computing the gram distribution for unlabeled
trees.
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Due to the relationship amongd, j, k and |UPr(p)| for a q-gramP q
k , for every (w, f ) ∈ freq [j][k],

LabelGramDist correctly computesq andrb, respectively. LetP q
k be the foundq-gram. Then,w is a string

of the left branch ofP q
k . Sincerb is the number of nodes in the right branch ofP q

k , the “Label” routine finds
the strings concatenating the label of right leaf (in the case thatm = 1) to the labels of the right branch (in
the case that 2≤ m ≤ rb) in postorder, with traversing the ancestors of the right leaf by using the parent
sequencePS. Hence,w · s is the label sequence ofP q

k .
Next, consider the computational complexity of LabelGramDist. The size of the tableshift is O(h2).

Also the size of the tablefreq isO(NT ). Furthermore, the size ofPL isO(|D|). Finally, Sincemaxpath(T ) ≤
2h+1, the size ofP isO(NT ). Hence, the space complexity of LabelGramDist isO(h2)+O(NT )+O(|D|) =
O(NT + d2 + |D|).

On the other hand, sincerb is bounded byh, the time complexity of the “Label” routine isO(h). Since
the size offreq [j][k] is O(NT ), the time complexity of the “Count” routine isO(h2NT ). Since the “Shift”
routine calls justshift [D[i]] of which size isO(h), the time complexity of the “Shift” routine isO(hNT ).
Since the time complexity of the initialization isO(h2 + |D|), the time complexity of LabelGramDist is
O(h2 + |D|) +O((h2NT + hNT )|D|) = O(h2NT |D|).

Finally, the algorithm LabelGramDist traversesD twice, that is, the construction of the parent se-
quence and the main routine.

The algorithm runs in O(h2 |T |2) time and O(h2 + |T |) space sinceNT,q ≤ min{|T | , |Σ|q, deg(T )q}
andNT ≤ min{|T | , |Σ|m, deg(T )m} for m = maxpath(T ). In our experiments, the running time of this
algorithm was on the order of O(|T |2).

Example 7.11 Consider the treeT in Figure 7.1. Then, the transition of the tablefreq in the algorithm
LabelGramDist is described inTable 7.4. Here, (w, f )q,r

v denotes thatf is the frequency,v is the depth
sequence of theq-gram, andr is the number of nodes in the right branch of theq-gram. The underline part
of v is corresponding to the strings in the algorithm LabelGramDist, that is, the labels of the right branch.
In contrast,w is the labels of the left branch. Note thatv, q andr are not stored in the tablefreq .

7.5 Summary
In order to develop a fast tree kernel with a sufficient expressive power for practical use, we extend the
notion ofq-gram for strings to trees. We employ a very simple form of subtrees withq nodes asq-grams,
and show an efficient algorithm for counting treeq-gram occurring in a tree by using dynamic programming.
Based on the number ofq-grams, we define a spectrum tree kernel, and aq-gram based distance measure
between trees. Moreover, we propose a gram distribution kernel as a generalization of the spectrum tree
kernel. In the next chapter, we demonstrate the effectiveness of these tree kernels by applying them to
biological data.
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Table 7.4.The transition of the table freq inT .

i 1 2 3 4 5 6 7
pi 3 3 6 5 6 14 8

j k 3a 3a 2b 3a 2b 1a 3b

3 1 (a, 1)3,1
aab (a, 2)2,0

ab (a, 1)2,0
ab (b, 1)2,0

ba

3 2 (ab, 2)5,2
ababa (ab, 2)4,1

abba (ab, 3)3,0
aba

3 3 (aba, 3)7,3
abababb (aba, 3)6,2

abaabb

2 1 (b, 1)4,2
baba (b, 1)3bba (b, 2)2,1

ba

2 2 (ba, 2)6,3
bababb (ba, 2)5,2

baabb

1 1 (a, 1)5,3
ababb (a, 1)4,2

aabb

i 8 9 10 11 12 13 14
pi 13 10 13 12 13 14 −

j k 2a 3b 2a 3b 2a 1b 0b

3 1 (b, 1)2,0
ba (b, 1)2,0

ba

3 2 (ba, 1)5,2
babab (ba, 1)4,1

baab (ba, 2)5,2
babab (ba, 2)4,1

baab (ba, 3)3,0
bab

3 3 (aba, 3)7,3
abababb (aba, 3)6,2

abaabb (aba, 3)7,3
abababb (aba, 3)6,2

abaabb (aba, 3)5,1
ababb (aba, 3)4,0

abab

(bab, 3)4,0
babb

2 1 (a, 1)4,2
abab (a, 1)3,1

aab (a, 2)4,2
abab (a, 2)3,1

aab (a, 3)2,0
ab

2 2 (ba, 2)6,3
bababb (ba, 2)5,2

baabb (ba, 2)6,3
bababb (ba, 2)5,2

baabb (ba, 2)4,1
babb (ba, 2)3,0

bab

2 2 (ab, 3)3,0
abb

1 1 (a, 1)5,3
ababb (a, 1)4,2

aabb (a, 1)5,3
ababb (a, 1)4,2

aabb (a, 1)3,1
abb (a, 1)2,0

ab

(b, 1)2,0
bb





Chapter 8

Application to Glycan
Classification

In the previous chapter, we have proposed two novel tree kernels: thespectrum tree kerneland thegram
distribution kernel. The spectrum tree kernel is a natural extension of the spectrum string kernel based on
the notion of treeq-gram, and the gram distribution kernel is a sum of spectrum kernels with varying values
of q.

In this chapter, we evaluate the effectiveness of these two kernels by empirically comparing their
computation time and predictive performance in a glycan structure classification problem with the existing
tree kernels.

8.1 Glycan Data
Glycans or sugar chains [Var02] are defined as the third major class of biomolecules next to DNA and
proteins. They are polysaccharide structures, or carbohydrate structures, often forming tree structures, as
opposed to the linear structure of DNA and proteins. They are known to be extremely crucial for the devel-
opment and function of multi-cellular organisms as they are found mainly on the cell surface and recognized
by various agents to signal a wide variety of events. Only in recent years, however, has bioinformatics fo-
cused on glycans, mainly because of the complexity in developing high-throughput techniques to character-
ize their structures. Databases have been developed for the public to freely search and browse carbohydrate
structures, with KEGG/GLYCAN [HGK+06], the Consortium for Functional Glycomics, and the German
Cancer Research Center (glycosciences.de) [LBLL+06] leading the way. From this data, we are now able
to mine for structural features that may not be readily clear to the naked eye. In fact, several probabilistic
models have been developed recently to attempt to mine such patterns [AKUMK06, HAKU+06].

For glycan structures, Hizukuriet al. [HYN+05] proposed a glycan-specific kernel, to which we
refer as thelayered trimer kernel. This kernel is designed according to the characteristic mechanisms of
glycan recognition. In the kernel, the feature space is defined as the set of all the trimers in each layer,
and the attribute value is the number of occurrences of trimers weighted according to the significance of
components. By using the SVM with the layered trimer kernel, Hizukuriet al. successfully showed the
effectiveness of their approach by the classification of blood components, and they extracted leukemia
specific glycan motifs in humans computationally for the first time.

The trees we deal with in our kernel are node-labeled trees while the structure of a glycan is abstractly
represented as a tree consisting regarding single sugars as nodes and the covalent bonds between them as
edges, i.e. the nodes and edges are labeled. Therefore we regard each edge label as the prefix of the label
assigned to the node right under the edge. We have also incorporated information indicating root and leaf
nodes.

In this chapter, we compare our tree kernel with the tree kernel due to Kashima and Koyanagi [KK02]
and the layered trimer kernel due to Hizukuriet al. [HYN+05] in supervised classification problems. Con-
cretely, we deal with glycan structure classification problems in the field of bioinformatics. Classification
of glycan structures are a fairly important task since their functions largely depend on their structures.
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In our experiments, we use comparable glycan data to Hizukuriet al. [HYN+05]. We have retrieved
glycan structures from the KEGG/GLYCAN database [HGK+06] and their annotations from the Carb-
Bank/CCSD database [DA92]. We employ the data set of four blood components,leukemic cells, erythro-
cyte, serum, andplasma, as the class labels according to Hizukuri et al. [HYN+05].

We also test our method on a different set of data to assess the generality of our method for extracting
glycan markers. Because of the larger amount of data and research that have been put into cystic fibrosis, we
select data related to this disease. Cystic fibrosis is one of the most lethal genetic disorders in Caucasians,
characterized by the production of excessive amounts of viscous mucus secretions in the airways of pa-
tients, leading to airway obstruction, chronic bacterial infections, and respiratory failure. Previous studies
indicated that CF-derived airway mucins are glycosylated and sulfated differently compared with mucins
from nondiseased (ND) individuals [XRD+05]. In order to obtain the those structures that were related to
CF, we have extracted those entries that are annotated with the word “cystic,” “bronch,” and “respir” as
substrings. We have found that there are a sufficient number of structures representing each of these groups
to test our method. We have summarized the data used in our experiments in Table 8.1. Note that the total
numbers in the table are not the sum of each number of data since these data are overlapping.

Table 8.1.The data labels, and the number of each data set in the experiments

leukemia erythrocyte plasma serum total
191 274 144 202 480

cystic fibrosis respiratory mucin bronchial mucin total
53 123 110 153

8.2 Experimental Results

8.2.1 Computation Time

Figure 8.1describes the running time for computing the treeq-spectrum kernelKq for 2 ≤ q ≤ 8, and the
labeled ordered tree kernelKt proposed by Kashima and Koyanagi [KK02]. Here, the “computation time”
is the average time for computing each tree kernel function between all combinations of pairs of trees, after
randomly generating 10 trees with the size, degree, and size of alphabet at most 1000, 5, and 8 respectively.
Figure 8.1 shows that our kernelKq runs in all most linear time with respect to the size of trees, while the
computation time ofKt increases drastically.

8.2.2 Glycan Data Classification by Spectrum Tree Kernel

In this experiment, we compare our spectrum tree kernel with the labeled ordered tree kernelKL in super-
vised classification problems. Concretely, we deal with glycan structure classification problems in the field
of bioinformatics.

We had fourteen kinds of node labels. We have summarized the data used in our experiments in
Table 8.1.

We used LIBSVM [CL01] as the SVM implementation, and used the area under the ROC curve
(AUC) as the performance measure. The AUC is a prevailing performance measure of a decision function
with a kernel to separate positive examples from negative ones. The AUC values range from 0.5 to 1.0,
where the value 0.5 indicates a random separation whereas the value 1.0 indicates a perfect separation.
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Figure 8.1. The running time for computingKt andKq

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

leukemic cell erythrocyte plasma serum

Blood Component

A
re

a
 U

n
d

e
r 

th
e
 R

O
C

 C
u

rv
e
 (

A
U

C
) q=1 q=2 q=3 q=4 q=5 q=6 Kt Ks

Figure 8.2. Area under the ROC curve

8.2.3 Predictive Accuracy

Figure 8.2shows the comparison of the results by the proposed method with varying the parameterq, the
labeled ordered tree kernelsKt [KK02], and the tree kernel due to Vishwanathan and SmolaKs [VS02]
(in the area under the ROC curve (AUC). All the performance measures were measured by 5-fold cross
validation.

The approach by Hizukuriet al. [HYN+05] roughly corresponds to the caseq = 3 (with various
biological heuristics), but the spectrum tree kernel achieves the better performances at largerq except for
the classleukemic cell. This result supports effectiveness of incorporating various structural contexts in
trees.

The tree kernel due to Vishwanathan and Smola also gave relatively good performances in spite of its
restricted expressive power. Since the nodes near the leaves tend to determine the functionalities of glycans,
this data set seems to be well-suited to this tree kernel.
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Figure 8.3. The performances of the SVM classifier for the gram distribution kernel and the
layered trimer kernel

It is surprising that the spectrum tree kernel outperforms the labeled ordered tree kernels in spite of
its expressiveness of structured information, which indicates that the expressive power of the spectrum tree
kernel is moderate for glycan data, and prevents overfitting to the training data. This encourages us to apply
our kernel to the data in other application domains on which the spectrum tree kernel performs better, but
still with almost linear time (quasi-linear time) for kernel computation.

Also, it is interesting to point out that the valueq achieving the predictive performance varies among
the class labels, which indicates that the effective length of the patterns varies among class labels.

8.2.4 Motif Extraction by Gram Distribution Kernel

We use the decision valueδ(x) obtained from the trained SVM to evaluate the contribution of each feature
(i.e. q-gram pattern) in order to identify the glycan substructures characteristic to the target class. We define
thefeature scoreF (f ) [HYN+05] to indicate the significance of a featuref to be

F (f ) =
∑
x∈X

δ(x) · Ix(f ),

whereIx(f ) is the indicator function defined byIx(f ) = 1 if x contains a featuref .
Features with large absolute values of feature scores are indicatemotifsof glycan substructures play-

ing key roles in discriminating the class label. Furthermore, we can compose larger and more complex
substructures by overlapping more than oneq-gram pattern.

8.2.5 Results and Discussion

We have evaluate the effectiveness of our gram distribution kernel by empirically comparing its predictive
performance against the layered trimer kernel on glycan data.Figure 8.3 illustrates the performance of the
SVM classifier for the two experiments as stated in the following subsections. For classifying multi-classes,
we employ the one-vs-rest approach with a binary classifier SVM. Performance is compared using the area
under the ROC curve (AUC) measured by 5-fold cross validation.

Leukemia-Specific Features

As shown in the left graph in Figure 8.3, our kernel and the layered trimer kernel show almost identical
performance. Since the top-scoring features are 3-mers as shown in the left graph inFigure 8.4, the layered
trimer kernel is well fit to these data sets.
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Figure 8.4. The distributions of feature scores

As listed in Table 8.2, the top-scoring features in the leukemia data set are in the 200 range and com-
pletely consists of subsets, or completely match the top-scoring substructure from the results by the layered
trimer kernel. The second top scoring structure also comes immediately after this group of substructures,
scoring over 200. Correspondingly, on the erythrocyte data set, the top scores are around 120 and consists
completely of substructures, or completely match the high scoring substructures from the layered trimer
kernel Note that in our experiments, we incorporate information indicating root and leaf nodes, which we
indicate in this table.

In contrast, we have obtained different resulting features for the serum and plasma data sets. However,
this can be explained by the fact that these data sets were less specific, resulting in the low scores from both
methods. Thus, although our method does not require any special weighting techniques, it has been able to
produce similar results as the previous method. On top of that our method allows us to find substructures
larger than trimer structures. In fact, a 6-mer structure scoring 200 is also obtained.

Features Captured for Cystic Fibrosis

We first look at the accuracy performance of our method and compare it to the layered trimer method. We
find that the AUC scores are much higher for all three data sets, compare to the slightly higher performance
of this previous method on the leukemia data set (See Figure 8.3).
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Table 8.2.Features extracted by our method

leukemia

Score Substructure

226 (leaf)NeuAc2–α3Gal–β4
201 (leaf)NeuAc2–α6Gal–β4
201 (leaf)NeuAc2–α3Gal–β4GlcNAc–β2
200 –Gal–β4GlcNAc–β2Man–α6Man–β4GlcNAc–β4GlcNAc(root)
200 –Gal–β4GlcNAc–β2Man–α3Man–β4GlcNAc–β4GlcNAc(root)

erythrocyte

Score Substructure

122 –Gal–β4GlcNAc–β3Gal–β4
86 (leaf)Fuc–α2Gal–β4GlcNAc–β3
86 –GlcNAc–β3Gal–β4Glc–β1(root)
82 –Gal–β4GlcNAc–β3Gal–β4GlcNAc–β3
81 (leaf)Fuc–α2Gal–β4GlcNAc–β3Gal–β4

Note that 1-mer and 2-mer substructures are found to have the top scores as shown in the right graph in
Figure 8.4. Looking at the features extracted from our method, the top scoring CF-related structures scored
63 and representα2− 3 sialylated structures, which corresponds with the literature [MLGB92, DDRL99].
The second top scoring structure scored 39 and represents the sialylated galactose which are often found at
the non-reducing ends of these structures. We also find the 6-sulfated GlcNAcs in the higher scoring range,
as also mentioned in the literature [DDRL99]. In contrast, the highest scoring structures from the bronchial
and respiratory data sets are the non-sialylated substructures of the O-glycan core. This further supports the
possibility of the sialylated galactose substructure as being characteristic of CF.

8.3 Summary
In this work, we focus on explicit feature extraction from tree structured data. In order to assess the per-
formance of our new method, comparable kernels included the layered trimer kernel [HYN+05] and Vish-
wanathan and Smola [VS02]. The latter is not included in our experiments due to its limited expressive
power; it only considers entire subtrees and cannot extract the internal structures as features. Other ker-
nels considered are the Collins and Duffy kernel [CD01] and the Kashima and Koyanagi kernel [KK02].
However, both of these methods implicitly enumerate features; therefore, they cannot be used to directly
extract motifs from our data sets. Thus, the only kernel available that can be applied directly to glycans is
the trimer kernel, and our method outperforms it in the experiments. In addition, our method can be used
for other glycan data sets.







Chapter 9

Conclusion and Future Work

This chapter summarizes the results of this work, and concludes by discussing further issues to be addressed.

9.1 Conclusion
This thesis has focused mainly on two problems relating to tree structured data. Firstly, we have addressed
the tree-to-tree comparison problem based on edit distance. Secondly, we have applied the resulting theory
established in the first problem to a tree classification problem based on kernel methods, and developed
novel learning methods.

The notion oftree mappingsallows us to have a uniform approach to two different problems, the
matching and learning problems in trees. These two problems are regarded as the following combinatorial
problems.

Edit-based tree matching: An optimization problemof tree mappings, in which a minimum cost of tree
mappings between two trees gives a common tree pattern or a distance measure.

Kernel-based tree learning: A counting problemof tree mappings, in which the number of tree mappings
between two trees gives a similarity or kernel function for learning trees.

In what follows, we review the more specific results of these two subjects and our contributions
along with the outline of this study. We began this thesis with a review of prior work on approximate tree
matching in Chapter 2, and gave the strict definitions of existing methods based on partially ordered set
theory instead of conventional ones. A variety of tree edit distance measures have been proposed in the
past three decades such as Tai distance, alignment distance, less-constrained distance, constrained distance,
structure-preserving distance, structure-respecting distance, top-down distance, bottom-up distance, and so
forth. These measures were described mainly in two ways, i.e. operational description and declarative
description. An operational definition of a tree edit distance measure describeshowto compute the distance
by showing the procedure or the algorithm, whereas an declarative definition of a measure describeswhat
the measure is by means of a set-theoretical treatment. In particular, the notion of tree mapping has been
used in the declarative definition since Tai showed his distance measure is defined by using tree mapping. A
tree mapping depicts node-to-node correspondences between two trees according to the structural similarity.
During this review, we have identified a number of confusions and unsolved problems in prior work on tree
edit distance. These problems include the following:

• The declarative definitions of less-constrained distance given by Luet al. is incorrect. It does not
coincide with the algorithm, and it defines a different distance from what they originally intended;

• The tree mapping of alignment distance has been unknown for the past decade, i.e. there has not been
a declarative definition of alignment distance;

• Equivalent distance measures have been repeatedly proposed without being recognized.
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These problems were all caused by the lack of a theoretical foundation for describing the semantics of tree
edit distance, and a means of bridging the gap between operational definitions and declarative definitions.
To surmount these problems, we have constructed a mathematical model of tree edit distance by using
partially ordered set theory in Chapter 3. This theoretical foundation enables us to deal with the semantics
of tree edit distance in a rigorous way. In Chapter 4, we have revealed the following facts:

• We showed a correct declarative definition of less-constrained distance, and that the definition given
by Lu et al. turned out to represent the constrained distance given by Zhang.

• We identified the condition of the tree mapping of alignment distance, i.e. a declarative definition of
alignment distance.

• We proved the equivalence among the strongly structure-preserving distance, structure-respecting
distance, and constrained distance. We also proved the equivalence between the alignment distance
and less-constrained distance.

Furthermore, we showed a hierarchical relationship among these edit distance measures.
The last half part of this thesis deals with a tree classification problem with the Support Vector Ma-

chine (SVM) based on kernel-based learning. In particular, we have focused on a kernel design problem for
trees. In Chapter 5, we gave a cursory review of tree kernels presented in prior work. From this review, we
found that some of these tree kernels are characterized by some classes of tree mappings. In fact, we showed
that a tree kernel proposed by Kashima and Koyanagi is the counting function of tree mappings in a class,
i.e. the accordant mapping. From this observation, we extrapolated that counting functions for the other
classes of tree mapping would also form new tree kernels. Then we applied the theoretical foundation that
we developed in the first half of this thesis to the design problem of tree kernels in Chapter 6. Specifically,
we proposed the algorithms for computing counting functions of Tai mappings, alignable mappings, and
semi-accordant mappings. We then showed that the counting functions of Tai mappings and semi-accordant
mappings are actually tree kernels and that these two tree kernels have more flexible expressive power than
the tree kernel proposed by Kashima and Koyanagi. In contrast, we showed that the counting function of
alignable mappings is not a tree kernel. All of these results have confirmed and proved the effectiveness of
our theoretical foundation of approximate tree matching.

In the next chapter, we aimed to develop a faster tree kernel without sacrificing its learning perfor-
mance as compared with the tree kernels proposed by Kashima and Koyanagi, which runs in quadratic time
with respect to the size of trees. Then we proposed a spectrum tree kernel based on the notion of tree
q-gram, which runs in almost linear time. In addition, we proposed its variant, a gram distribution kernel.
The basic idea of the spectrum tree kernel is that the more the same subpatterns are shared in two trees, the
more similar these trees are.

Finally, in Chapter 8, we evaluated the effectiveness of the two kernel based on treeq-gram by em-
pirically comparing its computation time and predictive performance in a glycan structure classification
problem with the times and performances of existing methods. We attained a good performance with our
tree kernels although we do not incorporate any biological knowledge specific to glycan data classifica-
tion. Moreover, by using the trained SVM, we successfully extracted common characteristic substructures
specific to a class of glycans.

9.2 Future Work
In the first half part of this thesis, we focused on the tree-to-tree comparison problem between two labeled
rooted trees. Two important problems immediately emerge from our problem setting by extension.

Firstly, we considered only pairwise comparison of trees in this thesis. A variety of multiple tree
comparison problems can be considered by extension such as a common sub/super-tree pattern problem
shared in more than two tree. From the theoretical point of view, it is intriguing to extend the notion of
each class of tree mapping to more than two trees, and to investigate the property of tree mapping. From
a practical point of view, if a tree mapping among multiple trees could be efficiently computed, it would
provide a general method for common pattern discovery in trees, and a wide range of applications would be
expected including motif extraction from biological data, schema extraction from XML data, and so forth.

Secondly, another challenging problem still to be addressed is the extension of our algebraic formula-
tion for trees to more general graph structures such as directed acyclic graphs, and planar lattices, in order to
develop new approximate matching methods for these structures. There is still need for more fundamental
investigation of this area since a widely-accepted model of the edit distance for general graphs has yet to be
established.
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In the second part of this thesis, we developed several tree kernels with high expressiveness. The
expressiveness is determined by the pattern language by which the number of subpattern occurrences in
trees are counted in computing the value of a kernel function. In this work, we employed several classes of
tree mappings andq-gram as pattern languages for tree kernels. However, the trade-off between two factors
of expressiveness of the pattern language and the learning performance has not been well investigated.
In fact, we expect that some pattern languages with high expressiveness such as Tai mapping and semi-
accordant mapping may not necessarily lead to a sufficient learning performance, since Bringmannet al.
reported in [BZRN06] that the use of more complex patterns does not necessarily lead to better accuracy.
Identification of the trade-offs between our pattern languages is therefore an important area for further
investigation.

We reviewed some tree kernels which were originally thought to be in the class of Haussler’s convo-
lution kernel. To our surprise, the elastic tree kernel proposed by Kashima and Koyanagi turned out to be
beyond this class. Nevertheless, we did showed that this class of counting functions is also guaranteed to
be a kernel. This fact implies that our mapping kernel leads to a more general framework superseding the
convolution kernel for designing kernels of discrete structures.

Finally, from a practical point of view, the tree kernels proposed in this thesis should be applied to a
wider variety of real-world tree structured data other than glycan data including XML documents and RNA
secondary structures.

Closing Remarks
Much work remains to be done. I, however, believe that the findings of this thesis provide fundamental and
effective contributions to assist in solving problems related to tree-to-tree comparison. I hope that these
results will encourage further advances in our understanding of approximate tree matching, and lead to
deeper insights into related problems.
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[BK03] S. Burkhardt and J. K̈arkkäinen,Better filtering with gappedq-grams, Fundamenta Infor-
maticae56 (2003), no. 1–2, 51–70.

[BPS00] I. M. Bomze, M. Pelillo, and V. Stix,Approximating the maximum weight clique using repli-
cator dynamics, IEEE Transaction on Neural Networks11 (2000), no. 6, 1228–1241.

[BS98] H. Bunke and K. Shearer,A graph distance metric based on the maximal common subgraph,
Pattern Recognition Letters19 (1998), 255–259.

[Bun97] H. Bunke, On a relation between graph edit distance and maximum common subgraph,
Pattern Recognition Letters18 (1997), 689–694.

[BZRN06] B. Bringmann, A. Zimmermann, L. De Raedt, and S. Nijssen,Don’t be afraid of simpler
patterns, Proc. of 10th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD), Lecture Notes in Computer Science, vol. 4213, 2006, pp. 55–
66.

[CD01] M. Collins and N. Duffy, Convolution kernels for natural language, Advances in Neural
Information Processing Systems 14 [Neural Information Processing Systems: Natural and
Synthetic, NIPS 2001], MIT Press, 2001, pp. 625–632.

[CGM97] S. S. Chawathe and H. Garcia-Molina,Meaningful change detection in structured data, Proc.
of the ACM SIGMOD International Conference on Management of Data, 1997, pp. 26–37.

[Cha99a] S. S. Chawathe,Comparing hierarchical data in external memory, Proc. of the 25th Interna-
tional Conference on Very Large Data Bases (Edinburgh, Scotland, U.K.), 1999, pp. 90–101.

[Cha99b] S.S. Chawathe,Managing change in heterogeneous autonomous databases, Ph.D. thesis,
Stanford University, 1999.

[Che98] Weimin Chen,More efficient algorithm for ordered tree inclusion, Journal on Algorithms26
(1998), no. 2, 370–385.

[Che01] W. Chen,New algorithm for ordered tree-to-tree correction problem, Journal of Algorithm
40 (2001), 135–158.



Bibliography 151

[CL01] C.-C. Chang and C.-J. Lin,LIBSVM: a library for support vector machines, 2001, Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

[CLRS01] T. H. Cormen, C. E. Leiserson, R..L. Rivest, and C. Stein,Introduction to algorithms, MIT
Electrical Engineering and Computer Science, The MIT Press, 2001.

[CLZU02] M. Crochemore, G. M. Landau, and M. Ziv-Ukelson,A sub-quadratic sequence alignment
algorithm for unrestricted cost matrices, Proc. of 13th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2002, pp. 679–688.

[CM02] G. Cormode and S. Muthukrishnan,The string edit distance matching problem with moves,
SODA, 2002, pp. 667–676.

[CM07] G. Cormode and S. Muthukrishnan,The string edit distance matching problem with moves,
ACM Transactions on Algorithms3 (2007), no. 1.

[Cor03] G. Cormode,Sequence distance embeddings, Ph.D. thesis, University of Warwick, January
2003.

[CR02] M. Crochemore and W. Rytter,Jewels of stringology — text algorithms, World Scientific
Publishing, Hong-Kong, 2002, 310 pages.

[CRGMW96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom,Change detection in hier-
archically structured information, Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, 1996, pp. 493–504.

[CS04] A. Culotta and J. S. Sorensen,Dependency tree kernels for relation extraction, Proc. of 42nd
Annual Meeting of the Association for Computational Linguistics (ACL), 2004, pp. 423–
429.

[DA92] S. Doubet and P. Albersheim,Carbbank, Glycobiology2 (1992), no. 6.

[DDRL99] S. Degroote, M. P. Ducourouble, P. Roussel, and G. Lamblin,Sequential biosynthesis of sul-
fated and/or sialylated Lewis x determinants by transferases of the human bronchial mucosa,
Glycobiology9 (1999), no. 11.

[DMRW07] E. Demaine, S. Mozes, B. Rossman, and O. Weimann,An optimal decomposition algorithm
for tree edit distance, Proc. of the 34th International Colloquium on Automata, Languages
and Programming (ICALP), 2007.

[DST80] P. J. Downey, R. Sethi, and R. E. Tarjan,Variations on the common subexpression problem,
Journal of the Association for Computing Machinery (J. ACM)27 (1980), no. 4, 758–771.

[DT03a] S. Dulucq and L. Tichit,Rna secondary structure comparison: exact analysis of the zhang-
shasha tree edit algorithm, Theoretical Computer Science306(2003), no. 1–3, 471–484.

[DT03b] S. Dulucq and H. Touzet,Analysis of tree edit distance algorithms, Proc. in 14th Annual
Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes of Computer Sci-
ence, vol. 2676, 2003, pp. 83–95.

[DT05] S. Dulucq and H. Touzet,Decomposition algorithms for the tree edit distance problem, Jour-
nal of Discrete Algorithms3 (2005), no. 2–4, 448–471.

[FA06] Daiji Fukagawa and Tatsuya Akutsu,Fast algorithms for comparison of similar unordered
trees, International Journal of Foundations of Computer Science17 (2006), no. 3, 703–729.

[FG00] P. Ferraro and C. Godin,A distance measure between plant architectures, Annals of Forest
Science57 (2000), 445–461.

[FG03] P. Ferraro and C. Godin,An edit distance between quotiented trees, Algorithmica36 (2003),
1–39.

[FO05] P. Ferraro and A. Ouangraoua,Local mapping between unordered trees, Tech. Report RR-
105, LaBRI, 2005.



152 Bibliography

[FRV04] M. V. Ferro, F. J. Ribadas, and J. Vilares,Phrase similarity through the edit distance, Proc.
of Database and Expert Systems Applications, 15th International Conference, DEXA 2004,
Lecture Notes in Computer Science, vol. 3180, 2004, pp. 306–317.

[FSS90] P. Flajolet, P. Sipala, and J.-M. Steyaert,Analytic variations on the common subexpression
problem, Automata, Languages and Programming, Lecture Notes in Computer Science, vol.
443, Springer Verlag, 1990, pp. 220–234.

[GB02] S. Günter and H. Bunke,Self-organizing map for clustering in the graph domain, Pattern
Recognition Letters23 (2002), 405–417.

[GJ79] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman And Company, New York, 1979.

[GK05] M. Garofalakis and A. Kumar,XML stream processing using tree-edit distance embeddings,
ACM Transactions on Database Systems30 (2005), no. 1, 279–332.

[Gus97] D. Gusfield,Algorithms on strings, trees, and sequences: Computer science and computa-
tional biology, Cambridge University Press, 1997.

[HAKU +06] K. Hashimoto, K. F. Aoki-Kinoshita, N. Ueda, M. Kanehisa, and H. Mamitsuka,A new
efficient probabilistic model for mining labeled ordered trees, KDD, 2006.

[Hau99] D. Haussler,Convolution kernels on discrete structures, UCSC-CRL 99-10, Dept. of Com-
puter Science, University of California at Santa Cruz, 1999.

[HGK+06] K. Hashimoto, S. Goto, S. Kawano, K. F. Aoki-Kinoshita, and N. Ueda,Kegg as a glycome
informatics resource, Glycobiology16 (2006), 63R–70R.

[HK05] A. Hogue and D. Karger,Thresher: Automating the unwrapping of semantic content from the
world wide web, Proc. of 14th International World Wide Web Conference (WWW), 2005,
pp. 86–95.

[HM76] J. W. Hunt and M. D. McIlroy,An algorithm for differential file comparison, Tech. Report
CSTR #41, Bell Telephone Laboratories, 1976.

[HMU06] Y. Horsesh, R. Mehr, and R. Unger,Designing an a* algorithm for calculating edit distance
between rooted-unordered trees, Journal of Computational Biology13 (2006), no. 6, 1165–
1176.
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