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Abstract

In order to interprete seismograms, we should separate the
effects of source and medium. which are strongly coupled. The
medium effect 1is wusually estimated by computing synthetic
seismograms for &a model of the Earth. Of course, a
three-dimensionally heterogeneous, arbitrarily anisotropic and
attenuative medium is the most realistic model, but it requires
a great deal of theoretical and numerical efforts. At present
one- or two-dimensionally layered. isotropic and attenuative
media consisting of homogeneous layers are the most productive
models for precise waveform analyses of seismograms. A new
approach based on the reflectivity method is presented here to
compute complete synthetic seismograms in these models.

Foilowing the standard derivation of the reflectivity
method, displacement and stress components are doubly
transformed into the frequency-wavenumber domain. and they are
treated together in a motion-stress vector. In
one-dimensionally layered media which have only flat

interfaces, the boundary conditions at the 1interfaces are



simply satisfied by the motion-stress vectors and propagator
matrices for individual wavenumbers. Thus synthetic
seismograms can be obtained by summing up displacement
transforms computed individually. These seismograms include
all multiple reflections and surface waves. /The effect of
Q-values can easily be introduced into them.

In two-dimensionally layerd media, on the other hand,
scattering by irregular interfaces causes the coupling among
different wavenumbers. The boundary conditions are not
satisfied for individual wavenumbers. but only for a total
wave-field. Then we introduce the Aki-Larner technique to
solve the integral equations for these conditions. and enlarge
the propagator matrices to express the total wave-field.

Numerical examples are presented for several one- and
two-dimensionally layered media to comfirm the validity of our
approach. Some of them compare to the results of other
methods, i.e. the finite element method. +the finite difference
method. asymptotic ray theory. and the Gaussian beam method.
Our results agree well to those of +the finite element and
difference methods even in a later portion where the latter two

methods break down.

In the second half, our approach is applied to investigate
- the effects of c¢rustal structures on synthetic seismograms.
Computations for typical models reveal that layers thicker than
A/10 (R: wavelength of input signal) cannot be ignored. and
interface dents larger +than 1/10 must affect seismograms.

Seismograms are also synthesized for the crustal model of the



Kanto plain obtained by refraction experiments. They show that
the irregular interface strongly affects their waveform and

amplitudes.
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1. Introduction

Seismologists look at the Earth' s interior and earthquake
sources through windows called seismograms. Since the effect
of medium on seismograms is strongly coupled with the effect of
source, the interpretation of seismograms should start with the
separation of them. On interpreting amplitudes or waveforms
the medium effect is usually estimated from synthetic
seismograms computed for a model of the Earth. It is no wonder
that a detailed analysis of medium requires synthetic
seismograms for a realistic model. Moreover, a source analysis
also requires them, becauseA wrong eétimatioﬁs of medium and
source effects can produce a result apparently consistent with
observation.

Oof course, a three-dimensionally heterogeneous,
arbitrarily anisotropic and attenuative medium is the most
realistic model., ©but it requires a great deal of theoretical
and numerical efforts. It also has too many parameters to
build an initial model, or to obtain significant results from
data presently available. One- or two-dimensionally layered
media consisting of homogeneous, isotropic and attenuative
layers are the most productive models for precise waveform
analyses of seismograms.

From the 1960’ s a number of methods were presented for

synthesizing seismograms in layered media. At present it can
be said that, except for some computational problems. the
theory of seismogram synthesis has been completed for

one~-dimensionally layered media (I-D media) whose physical



properties depend only on depth. Methods for I-D media can be

divided into three groups. The first group (e.g.. Cerveny &
Ravindra 1971:; Hron & Kanasewich 1971) is based on asymptotic
ray theory. Methods of this group are approximate but very
fast. The second group, based on wave theory. can generate
more accurate seismograms at the cost of longer computation
time. Thellast group is purely numerical, and requires much
more extensive computations. The general finite difference,
finite element. and boundary element methods belong to this
group. Recent efforts of theoretical seismologists were
focussed on the second group. i. e. wave-theoretical methods.

In this group are Generalized Ray Theory (Helmberger 1968;

Muller 1969), WKBJ Theory (Chapman 1978), and Full Wave‘Theory
(Cormier & Richards 1977)., which can compute seismograms for
specified phases. On the other hand the reflectivity method
can generate complete seismograms including all body and

surface waves. In its original version (Fuchs 1968a; Fuchs &

Muller 1971) a few approximations still remained. but they will
be removed in- this paper following the formulation of Kind
(1978).

In the reflectivity method a doubly transformed wave-field
is computed using propagator matrices, and seismograms are
obtained by numerical inverse transforms. The transformed
wave-field is expressed byA a linear combination of
reflectivities (generalized reflection coefficients) in the

original reflectivity method and its revisions (e. g.. Faber &



Muller 1980; Kohketsu 1981), but reflectivities do not
explicitly appear in the complete wave-field of the extended
version described hereafter. However. Kennett & Kerry (1979)
have shown that +the 1latter wave-field implicitly includes
reflectivities for all parts of a layered medium. Thus.
following Aki & Richards (1980), we suggest that all methods
where transformed wave-fields are evaluated with matrices and
inverted numerically will be referred to as Reflectivity
Methods.

The reflectivity method has many variations. Some authors
modified propagator matrices to avoid numerical instabilities
at high frequencies (e.g.. Kennett 1980; Ha 1984), and others
deformed the integration contour of inverse transform to
improve convergence (e.g.. Wang & Herrmann 1980; Sato & Hirata,
1980). Bouchon (1979) and Cormier (1980) replace the Hankel
transform with the double Fourier and the spherical harmonic
transforms to apply the method to rectangular faults and the
spherical Earth. The 'Discrete Wavenumber Method" of Bouchon
(1981) and the ' Wavenumber Integration Method of Apsel & Luco
(1983) are essentially identical to the reflectivity method.
The modal summation method (e.g.. Harkrider 1964; Harvey 1981)
is a distant relative with residue approximation for numerical
inverse transforms. The Alekseev-Mikhailenko method (Alekseev
& Mikhailenko 1980), the collocation method (Spudich & Ascher
1983). and the discrete wavenumber/finite element method (Olson
et al. 1984) can be called half-breeds of the reflectivity

method and purely numerical approaches.



Here it should be noted that the reflectivity method has
been able to be applied to 1-D media. At present, however,
seismologists and geophysicists are strongly interested in the
Earth' s laterally heterogeneous structure. Synthetic
seismograms used in analyses of the lateral heterogeneity are

usually computed by the asymptotic ray/beam method (e.g..

Cerveny et al. 1977; Cerveny 1983) or purely numerical methods

(e. g.., Boore 1970; Smith 1975). The former contains many
serious approximations, and the latter requires extensive
computations ' and large core storage. Wave-theoretical

approaches. especially the reflectivity method. may be superior
to the above methods’ cost-accuracy trade-off. In the second
chapter of this paper the reflectivity method will be extended
to the complete seismogram synthesis in I-D media and
two-dimensionally layered media with laterally varying
interfaces (2-D media).

In the +third chapter our method will be applied to
investigate the effects of the details of crustal structures on
synthetic seismograms. Thin layers in the shallow part of the
crust, and fluctuations on interfaces are usually ignored. but
they must influence seismograms in some situations. By
numerical simulations it will be shown how thick layers and how
large fluctuations on interfaces can affect synthetic
seismograms.

Finally, synthetic seismograms will be computed for the
actual structure beneath the Kanto plain. The two-dimensional

structure of attenuative sediments will be derived, and its



effects will be estimated by comparing synthetic seismograms

for a variety of crustal models.



2. Method

In this chapter we will derive the double integral
transform of the surface displacement due to an incident plane
wave, &a line source or a point source in 1-D and 2-D media. To
a possible extent we will follow Kohketsu s (1987) formulations
for SH waves. We will then rewrite this transform in a matrix
form so that it can be 1inverted numerically by a digital
computer. Examples of synthetic seismograms will also be
presented and some of them will be compared to the results of

other methodé in order to comfirm the validity of our method.

2. 1 Boundary Condition

The considered medium consists of (M-1) layers overlaying

a halfspace. The halfspace will sometimes be called the M-th
layer. A Cartesian coordinate system (x v, =2) is used with
z-axis taken position downward (Fig.2.1). Each layer 1is

isotropic and homogeneous with P-wave velocity a,. S-wave
velocity B, and density p, (k=1.M). If a layer |is

attenuative, we should take the following complex velocity

models:

a, = az[“néakl" (ﬁ)‘fﬁz] » B = Bg[l*thlakln (%)—fé;;] ‘v

where j = /-1. and Q,. @ are the Q values of P and S waves



for the k-th layer. respectively. @), B) are the P. S wave
velocities of the k-th layer at o= w,. The free surface and

interfaces separating the layers have laterally irregular

shapes expressed by the depth function:

z,(x) = z) + h(x) (k=0, M-1) ., , (2)

which fluctuates around the average depth zJ with the function

h,(x). The  average thickness of the k-th layer is

0 o
dy = 25 = 24,

We consider plane waves whose 1initial direction of
propagation is confined in the z-z plane. Since their motion
will be independent of ¥ at any time in our 2-D media. the

wave-field as well as the medium properties are functions only

of z and z. The elastic displacement [u,v,w] can be expressed
by

[%%—%g. v(x, 2. t), g§+g%] (3)
with the P-wave potential ¢(x, 2, t) and the SV-wave one
¢(zx, 2, ). v(x, 2, t) represents a displacement of SH wave.

Since the wave-field is independent of y, stress components are

reduced as



Too = (A42w)8% + p 80, o = 2 (8%, U,

Tez = Rggdr (l+2a) Tep = ﬂ(g—g+g—lx‘))
v v
Ty = Haz- Tay = Koz - (4)
where A and ¢ are Lameé’ s constants. The four upper components

are due to P-SV wave, and the two lowers due to SH wave.
Following the standard derivation of the reflectivity method,
we doubly transform the potentials, displacements and stresses

into the frequency-wavenumber (w-k) domain as

oz 2z, t) = ﬁ :—6(3;. z, »)eldw
¢(x, 2, t) = 2115 ¢(:x:. z, w)e’dw
u(x, z, t) = % :E(x. z, w)e’'do
w(x, 2z, t) = —21‘77[:5(3:, z, w)e’'dw
T,.(ZT 2. t) = %f:g(x z, w)el'dw
Too(T 2, t) = 217z Tz 2 ©) e’ do
v(z, 2, t) = 217z mv(x. z, w)e’'dw
T(T 2. t) = 217: p(a:, z, w)el'dw , (5)

and



As in (4).
P-SV wave,

o(z 2, @) = 217? m?;(k. z, w)e?*dk

i

Pz, 2, @) = ﬁ%Jij%(k.z.w)e””dk

ulz, z, @) = ﬁl—i m'zz(k, z, w)e?*de
— m~

w(z, 2z, w) = g; w(k, z, w)e’* dk
- 1 [~ ez
s(x 2z, @) = 5x s(k, z, w)e’ "dk
— w~

t(z 2, ©) = ﬁ%- Tk, z, ®)e’™dE

;(x: s (D) = 'zliz-j w;}'(ko 2 w)ejkzdk

p(zs 2, @) g; M?(k.z,w)eﬂmdk . (8)

the six upper transforms in (5) and (8) belong to

and the two lowers to SH wave. Since ¢. ¢ and v

satisfy the wave equations

%, ¢ and v

where

2

2,2 379
a‘viep=

LPYT

2.2 829
v =
8v¢ at?
2
8 at?

should have the form

'(; — PX-ecvjvaz + PX+e-jv“z

3 = VX-e-fjuaz + VX+e-jv$z

‘1\; = HX-e+jvaz + HX+e—jUal (7)
I k >k

v, =

I Y PP k <k, k,

I
cle



v represents the P wave velocity (a) or the S wave velocity

(B).

When an upper layer with a;,, 8, and p; is separated from

the lower with @, B, and p, by the interface at z(z)=2°+A(x)

(Fig. 2. 2), the condition of continuity must be imposed along

the interface. The condition for continuity of displacement

[Tah 2(2) @)e™dk = [ (ke 2(2). @)™ dk

[T,k 2(2), @)e™dk = [ Wy(k 2(2). @) ™*dk

[T5, (b 2(2). @)e™@dk = [ By(k 2(2). )™ dk (8)

has to be satisfied for every =z If z=2° 1i.e. the interface
is horizontal (1-D media), kernels are independent of x and

this integral equation will simply be solved as

U (k. 2% @) = Uy(k 2°% )

w, (k. 2% @) = W,(k 2° )

U, (R 2% @) = Ty(k 2% 0) . (9)
For an irregular interface, however, we have no trivial
solutions like (9). In other words, scattering by irregular

interfaces causes the coupling among different wavenumbers.
Aki and Larner (1970) found a practical way to solve (8) for
irregular interfaces, but their formulation is restricted to
one-interface problems. In the present paper we will extend it
to the reflectivity method for multilayered media. After

insertion of (7) and (2) into (6). we now approximate the

-10-



infinite integrals of u, w and v in (6) by the finite sums

Ak N-1

2—7-1.'- ng.:.n[;H':P}C + :H:P)(: + fIHfVX? + :H:VX:] ej"‘"w

AE_ Nil [;H"'PX"' z ZH". }(n. zHrn, Jnakz

Zﬂ-ns_n "+PmLP)C:+V_V-+V+VX:e

Ak Y3

2 5 [+ X e (10)
with

Y = jndke™ T Sy = 45y, QTN

;H;r. — ;ije:Fjvmh(z) , ;Hf;, - jndke¥jvﬂnh(m)

EH’"» _ e;jyﬁ‘nh(a)

+ = »

where Uy, =V,lsmu (v=a. 8). We next insert (10) into the

boundary condition (8) and take the Fourier transform of both

sides, then we have

N-1 -
5 z z N_. z z z z
3, [ e X = T [ G, o meoNL N1 N1

" = g% e dnmiba g, (11)

(11) are a system of 4N simultaneous linear equations for P-SV
wave, and a system of 2N equations for SH wave. They can be

rewritten in a matrix form as

-11-



|:;H1- ;Hl- :H1+ :’H1+} V(Dl- {f‘HZ— $H2— f’H2+ :IB’H2+} V®2—

A _ JH_ ZH, H, 71 He JHy PH,, JH,, 7Pz,
_P¢1+_ _P®2+_
b D
H¥1- BY 2-
[aHx— HH1+] [ ] = [IIHZ- EH2+] [ ] (12)
H¢1+ HY 2+
where
_ T
o, = -X;N }(;N X: 1] ,
'H;N. -N H;N. ~-N+1 L. H;N. N-1 1
H;N-»-l. -N H;N-o-l. -N+1 . . . H;N+1. N-1
H, = . . ... . (13)
-Hl:-l. -N IIZ—L—N-«»I L. HI;I-I.N-I |

H, can easily be calculated by the Fast Fourier Transform.

Similarly. the condition for continuity of traction must

be imposed along the interface. Taking n=(n, 0,n,) as the

unit normal to the interface (Fig. 2.2), we require continuity

of the traction

¥

T = [T. T, T.] .
T

&
T, =Ty + TN,

T, =Tzly + Ty, - (14)

=Tax?ly + Ty,

From (4) we have

T, = lnz(g—g+-g-1§) + u(2nz%+nz(%%+g—g))
T, = ln,(g—;‘; g—’g) + ﬂ(2nzg—g+nz(g—g-+%))
T, = n(ntg—g + nzg—g) . (15)

-12-



In 1-D media only the continuity of z,.7,, and 7,, is required,

because n= (0,0, 1). Moreover., it is good enough for 1-D media

that transformed stresses individually satisfy these conditions

as
5,k 2% @) = 5,(k 2°% )
Tk 2% @) = T,k 2°% @)
D (k2% ) = Dy(k 2°% @) . (18)

On the other hand, for irregular interfaces we should apply the

same procedure to T as the displacement. Using equations

nz=—:'L) nz='1—' h’=%t

zZ_1 Z_ 1L
(1+h’ )2 (1+h’ )2

we obtain

n=-N

Nl ry mn z z ymn N-1 z ymn mn z ymn
,,EN[PJ-l —1+PJ:? +1+VJ-1VXT1+mVX:1] = nEN[F]_ZPXT2+;]+2P}(:2+¢]_2V)C'2+;IEVXT

-1

3 [T T = T WX TG, | o meeN N1 N1

n=-~N

mn _ AR ([ ;m_f(n-m)akz
J = anqf‘e dz . (17)
where
S = —E S [-h(2uk,-kD) t2ndky ] e T
(1+h' )2

— L [+-h'nbky,,-1]1e" B
(1+h" )2

5

tjvmh(.‘c)

e

stl-+th'ndkv ,+l]e
(1+h' )2

_'g'_ﬁ[ h, l iZnAkupn] e:jvﬁnh(t)
(1+h’ )2

5

= — L S [-WindkFiule D, (18)
(1+h' )2

-183-

N-lﬂ: T mn T ymn T ymn N.lzm T ymn T rmn T ymn
2 [pJ'iTprx‘eru +1+VJ-1VX?1+V‘]+1VX21] = ,n=z_:N[PJ-ZPX-r-‘z+PJ+2PX:‘2+VJ-2VX1‘2+VJ+2VX:-‘

]
)



with [ = Zkz—kz. Thus, the matrix form of the continuity

condition for traction becomes

[79; -] [P ]
;Jl-— $J1— ;Jl-v- $J1+ V@l— :Jz- :Jz- §J2+ $J2+ V(Dz-
;Jl- ;Jl— ;J1+ ;Ju 1. ;Jz- ;Jz— ;J2+ ;J2+ 7Pz,
_P¢1+_ » _P©2+_
D 0]
H"1- HY 2-
[HJI- 3J1+] [ ] = [xJz- 3J2+] [ ] (19)
H®1+ E¢2+
where
-J;N: -N J;Ns -N+1 . . . J;No N-1 T
J;N+1' -N J;N+1o -N+1 . . . J;N+1o N-1
J, =
-J:-l. -N J:-L -N+1 JJ:-I. N-1 ]

Finally, by combining (19) with (13) the boundary

conditions of P-SV wave at the irregular interface yield 8N

linear equations with the 8N variables ( X; and ,X}).

K¢, = K,9, | (20)
where
[PH. JH 7H, JH,]
K - PH. pH. BH, oH,
OIS S-S M
PO IS - S

T

¢ = -PQ- V¢- P¢+ V¢+

el

The conditions for SH wave similarly yield 4N linear equations

-14-



with 4N variables (, X;). where

[Ji JL}
K —3
EJ— HJ+
T
o = [i®-#b4 : 20

K. which represents scattering due to the irregular interface,

will hereafter be called the Irregularity Matrizx.

-15-



2. 2 Propagator Matrix

In the reflectivity method

developed for 1-D media, used
are some vectors and matrices defined by Haskell (1953) for

individual wavenumbers. motion-stress

The

vector expressing
the wave-field was defined as

s™z) = % 7 3 t"]T (P-SV)

n n T
- 5" 7] ( SH ). (22)

Using this vector the boundary condition at a flat interface
yields

sT(z%) = sh(z%). (23)
The amplitude vector

n T

¢M(z) = [X* X0 X7 X7 (24)

was introduced to represent the

solutions of the wave equation
(7).

These vectors are related by

s™(z) = t"®"(=z) .

(25)
+7k -Jv, +jk +ivg ]
+JV, +jk -JV, +jk

t" = (P-SV)

+pel  -2pkv,  +pl +2pky,

_—Zukua -ul +2pkyv, -pl
1 1

= . . ( SH ) .
+][£Up.n —]!“uﬁn '

Two amplitude vectors at different depths in a layer are also
related by

-16-



P"(z+d) = e"(d)P" (=) (28)

in which:

+jvmd 0 0 0 T

" 0o e o 0

e (d) = ety d (P-SV)

0 0 gl 0

i 0 0 0 +jvﬁ.nd-
e"’j"ﬁ‘nz 0
= ( SH ) .
0 'j”ﬁ'nz

Then we can relate two motion-stress vectors at different

depths in a layer as

s"(z+d) = g"(d)s™(z)
g™(d) = t"e™(d)t™ " . (27)

n

g 1s usually called the Propagator Matriz. We now specify

these matrices for the k-th layer with g7 = g"(d,). t; and

ey = e"(d,), and the vectors with s,(z) and 9. Using the
propagator matrices and the ©boundary condition (23) for 1-D

media, the motion-stress vector s}(z3) at the free surface is

related to the amplitude vector ¢:(Zi¢) at the upper boundary

of the halfspace by

_17;



Pp(zy ) = m" sT(z) .
-1
n® = t},‘ 8':-13':-2 ..... g";‘ . (28)

If we apply the stress free condition and the radiation
condition
T T
sT(z)) = [Um w0 O ] or [V“ 0 ]

T

Oplzy ) = {0 0 PX;,VX;]T or [0 ,X;] (29)

to (28)., we can obtain transformed surface displacements U", W"

and V" for 1-D media. Synthetic seismograms computed from
these transforms are complete, because there is no
approximation in our formulation.

On the other hand, the ©boundary conditions at irregular
interfaces cannot be satisfied for individual wavenumbers, but
only for the total wave-field as shown in the preceding
section. Thus the reflectivity method 1itself should be
modified to treat it. When we consider wavenumbers from -NAdk
to (N-1)4k, the total wave-field can be expressed by the

enlarged motion-stress vector

S(z)

[u W S t]T (P-SV)

[v p]T ( SH ) (30)

-18-



-N _-N+1 ~N-1
-N  .-N+1

~-N -N+1

-N __-N+1 ~N-1
t . . . t

[
[
[ .
s = [‘g'" -
[
[ -N 5-N+1 . . . ZN_I

where §n=§(ndk.z.w) etec. We can also define +the enlarged

propagator matrix G(d) for this vector as

-Gl 1 Gl 2 Gl 3 G14-
G21 G22 G23 G24
G(d) = (P-SV)
G31 G32 GSS G34
-G4l G42 G43 G44_
-Gl 1 Gl 2
= ( SH ) (31)
_G21 G22
-g;g -
-N+1
g i7
Gu =
| 9i; |
G(d) consists of sixteen or four diagonal submatrices. A

submatrix G,;, further consists of the (i, ) elements of the

propagator matrices g™, g™, ... g"' Like g"(d). G(d) can

also be factored as

-19-



G(d) = TE()T! . (32)

T and E(d) have such a partitioned diagonal form as G(d).

Their submatrices are made of the elements of t and e(d).
After some matrix calculations we find that T! is a

partitioned diagonal matrix consisting of the elements of t!.
We again specify these enlarged matrices for the k-th

layer with G,=G(d,), T, and E,=E(d,). and the enlarged
motion-stress vector with S,(z). The following relations among

them are still wvalid:

Sk(22) = Gksh(zz-l)
S,(z) = T, Q. (=) . ' (33)

where &, is the enlarged amplitude vector defined for the k-th

layer by (20). The condition of continuity at the k-th flat
interface and the stress-free condition at the flat surface are

simply represented as

S (20) = S, (2D

5,z = [Uwoo] -5V
= [vo] ( SH) (34)

with

-20-



U = [U—N o . UN-I]
W = [W-zv W WN—-I]
T
vV = [V—N ! . VN-—I]
o=[o o - o]

For the irregular interface. on the other hand. we have

K. k(pk(zz) = K,, k+1®k+l(z:) (35)
from (20). K(; 1is the irregularity matrix for the <i-th
interface on the side of the j-th layer. Inserting (33) into

(35) the condition for the enlarged motion-stress vector can be

written as

Ke, wT'Su(22) = K, 401 ThhiShin (22) - (36)

Similarly. at the 1irregular surface we have the stress-free

condition

K, T;'S,(29) = [UW O o]T or [V o]T : (37)

1-D and 2-D media have the same radiation condition

T

Ou(25,) = [0 O 0, V@,*]T or [0 ,,q>,+] (38)

in the total wave-field.
Now we can carry the total wave-field in the halfspace up

to the free surface using the boundary conditions (34) or (36).
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When all the interfaces are flat, the motion-stress vector

S,(z3) is related to @,(zy,) by

Pu(za.) = M S, (20 .
M= T;IIGI-IGI-Z """ G, - (39)

This equation is identical to (28), which was derived for an
individual wave-field, excepting the enlarged  form of the
matrices. If only the k-th interface is irregular and all of

the others are flat, M in (33) becomes

M = T;lGl-lGx-z' : 'Gh+1Tk+1K;.1k+1Kk. kT;leGk—l ce Gy (40)

(40) is obtained by adding the part indicated with a underline

to (39). In the case of an irregular surface we have

M= T;IGx-lGl—z cte Gk+lTk+1K;.1k+1Kk. ET;IGka-l e G1T1K;.11 (41)

from (37). Fur thermore. if all of +the interfaces and the

surface are irregular. (41) yields

M= K;il.lKl—l.l-lEl-lK;iz,l—lKl-Z.l—ZEl-z """ Kz.lzKL 1E1K;.lo' (42)

by (32).
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2. 3 Synthetic Seismogram

In this section we will show how to compute synthetic
seismograms using the boundary conditions and the enlarged
propagator matrices presented in the previous section.
Seismograms due to a plane wave, &a 1line force and a point

dislocation will be considered.

(1) Plane Wave Incidence

’

Hereafter we drop enlarged from terms such as the

enlarged propagator matrix. the enlarged motion-stress vector
ete. When a plane wave with the horizontal wavenumber I4k
travels from the halfspace 1into the overlaying layers at time
t=0, the radiation condition 1is slightly different from (38).
If a plane P-wave 1is 1incident, the amplitude vector at the

upper boundary of the halfspace is expressed as

o T
Ou(2yy) = [1 0 Oy, V®l+] | (43)

with

1 =[oo--010~~o]T.

In case of an incident SH-wave., it yields

ou(z8) = [1 0] (44)

Substituting (43), (44) and (84) for ®,(z5,) and S,(zJ) in (39)
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we obtain

(45)

Solving (45) for U.W and V yields
-1
U = (Mu"MmM;;Mn) -1

W

(Mx z’MuM;;Mzz)_l -1

\Y

M -1 (486)

with the submatrices of M defined as

-Ml 1 Ml 2 Ml 38 Ml 4=7

MZ 1 M22 M28 M24 [Ml 1 Ml 2]
or

M31 M32 M33 M34 M2 1 MZ 2

_M4 1 M42 M43 M44_

47)

The surface displacement can be obtained by integrating
numerically the elements of U W and V and inverting the
integral into the time domain with FFT.

Since there are surface wave poles along the integration
path (the real £k axis), some of the elements diverge to
infinity. In order to avoid this mathematical difficulty. we

introduce a small imaginary part into frequencies as = wp-jw;.

-24-



It moves all the poles away from the real axis into the second

and fourth quadrants of the complex k2 plane. It also prevents
aliasing in the time domain. Its effect can easily be removed
from the final time history by multiplying ewﬂ. For all the
computations in this paper we will take w, = n/T (T: duration

of seismogram).

Here we test the wvalidity of our method against other
techniques such as the Aki-Larner method (AL. Bard & Bouchon
1980), asymptotic ray theory (ART. Hong & Helmberger 1978), the
Gaussian beaﬁ method (GB, Nowack & Aki 1984), the finite
difference method (FD, Boore et al. 1971), or the finite
element method (FE. Hong & Kosloff 1978). SH waves in the
basin structure of Fig. 2. 3 have already been studied with these
methods. The symmetrical basin varies in thickness from 1 km

at the edge to 6 km in the center along the interface

z(x) =D + C[l—mm(Zn(m—%)/w)] ,

2
w=50km D=1%km C =5 km. (48)

A plane SH wave 1is impinging vertically from the lower
halfspace. Its time function (Fig.2.4) 1is described by the

Ricker function
ree) = 4E(p-1)e” (49)

where b = n(t-t,)/t,. t, = 20 sec and t, = 18. 3 sec. Figure 2.5

in which our results are appended to Fig.18.286 of Aki &

Richards (1980) and Fig. 19 of Nowack & Aki (1984). compares
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synthetic seismograms generated by the six different methods.
The letters at the tail of the lowermost traces indicate which
method was used to compute them.

On computing our seismograms RF, we calculate the
irregularity matrix K with N = 128 and 4k = 2z/128km. If we
directly apply the radiation condition of the halfspace at the
irregular interface. up-going scattered waves will be neglected
(Aki & Richards 1980). To avoid this Rayleigh ansatz error. a
dummy layer with ideritical material parameters to the halfspace
is introduced immediately below the interface. The wave-field
in the layerAhas an up-going part as shown in (7). and up-going
waves scattered around the interface can be taken into account.
Since our formulation has been constructed for multilayered
media, we can easily insert layers at any depth. In all
computations hereafter. a dummy layer will always be inserted.

Although the Aki-Larner method suffers the Rayleigh ansatz
error, the seismograms AL of Bard and Bouchon (1980) agree well
with ours. This agreement shows that the error is small for
the structure of Fig.3 and the +time function (37). In the
lower halfspace, plane waves with (37) have a predominant
wavelength of 64 km, which 1is sufficiently 1longer than the
amplitude of interface irregularity, C.

In the early portion all of the +traces agree with one
another, but in the later portion the ray and beam seismograms
(ART and GB) differ from the others. This may be due to the
high—frequency feature of asymptotic ray and beam theories, or
to the neglect of some multiples in the seismograms.

As the case of an irregular surface, we consider a simple
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mountain-like topography shown in Fig. 2. 6. The S-wave velocity
of the medium 1is 500 m/sec, and the +time function of an

incident SH wave is expressed by (49) with t,= 0.2 sec. The

seismograms section in the left half of Fig. 2.7 was computed by
Boore (1972) with the finite difference method. He used the
surface indicated in Fig. 2.6 by a solid line. Its ramp nature
is resulted from the grid configuration of his method. Since
the wave length of the incident wave 1is sufficiently longer
than the ramp size. we adopt the smooth surface indicated by a
dashed line on computing our section in the right half. We
take N = 64 and 4k = 2n/128m for the irregularity matrix. The
two sections excellently agree to each other. We find a strong
amplification in the traces at the top of the mountain. and a
reflected wave from the other side in the traces at the
mountain foot.

We next consider the Dbasin structure of Fig. 2. 8, which
consists of two layers. The upper and 1lower interfaces are
expressed by (48) with (w. D,C) = (40 km, 1. 4 km, 1. 4 km) and
(40 km, 3 km, 2 km) respectively. The velocity contrast
between the basin and the halfspace is rather low. Figure 2.9
compares our seismograms RF to the seismograms FE computed by
Iwashita (personal communication) with the finite element

method. An incident SH wave has the time function

f(t) = (l-cos2nfyt)/2nf, (50)

with f, = 0. 5 Hz. In Fig. 2.9 we find two obvious differences.
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First the FE trace at 18 km has a much smaller amplitude than
the RF trace. Secondly the FE traces close to the center of
the basin are contaminated by some artificial phases in the
later portion. In order to suppress artificial reflected waves
due to the 1limit of model size, +the efficient absorbing
boundary of Cundall et al. (1978) was introduced at +20 km in
the finite element computation. It suppressed actual waves as
well as the artificial ones in 1its vicinity., and reduced the
amplitude of the 18 km trace. Moreover, it could not perfectly
erase artificial waves, which are distinct in the traces close
to the basin center.

The last example in this part 1is presented to show the
seismic response of a sedimentary basin due to an incident P
wave. The basin shape in Fig. 2. 10 is again represented by (48)
with w = 10 km, D = O km and C = 1 km. The Ricker’ s function

(48) is also used with t, = 2.8sec as a time function of the

incident wave. We take N = 128 and 4k = 2r/64km for the
irregularity matrix. Fig. 2. 11 shows vertical displacements at
the free surface. Since the velocity contrast Dbetween the
basin and the halfspace is as high as in the model of Fig. 2. 3,

a reverberation appears in the basin with large amplitudes.
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(2) Line Source

A buried line source requires somewhat different matrix
calculations. The source causes discontinuity of displacement

and stress represented by the discontinuity vector

T
4 = [6u sw &s 5t (P-5V)
T
= [ov 2] ( SH ) (51)
[ . -N  ._-N+1 N-11T
du = |su  &u < - - du ]
_ T
sw= oz &% - - - & ]
- Ne 49T
sv =[5 5™ . . . &
- ~N+ - T
ds = [5‘§N 5’;:"1 .. 5“§'N 1]
st = [s3" s¥™ . . . Y]
T
_ ~-N ~~N+1 N-1
ép = [ap 6p . . . 513 ] ,
where 6% =8% (ndk. z. @) etec. We assume without 1loss of

generality that the source is 1located on the s-th interface.

As there is no incident wave from the halfspace, we have

0 X _—
0 W
O =M, |4 + M, o (P-SV)
[P, L 0] |
[0 ] i V]
. = M, _A + M’_O__ ( SH ) (52)
instead of (45). The s-th interface divides M into the lower

part M, and the upper M,. The solution of (52) is
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RuUJ {'Ru 0 Rw R15 i
= M; A
‘Rnw 0 Ru R12 Rla

-M;,V = [Mu M12]M;IA (53)

where

R,, = Mlekm - Mijkl .

s, t (the subscripts of R) = 1.2, 3,4, 5 6 correspond to the pairs
jk. Im (the subscripts of M) = 12,13, 14, 238, 24, 34. Like the
plane wave iﬁcident problem the surface displacement due to the
line source can be obtained by integrating numerically the
elements of U.W and V and inverting the integral into the time
domain.

We compute a section of seismograms with our 2-D

reflectivity method for the flat two-layer (one 1layer and

halfspace) structure where By B; = 2.0, 3.6 km-sec™ and

Py» Py = 2.3, 2.8 g-cm™°. A transverse line force is buried at

0.5 km depth in the upper layer 3 km thick. Figure 2. 12

compares our section with the one computed by the 1-D

reflectivity method. Their travel times are reduced with the
velocity of +the halfspace, 3.6 km/sec. As a source time
function (49) is used with ¢, = 1. 83sec. The agreement between

the two sections shows the wvalidity of the 2-D reflectivity

method for line source problems.
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We next consider the basin structure shown in Fig. 2. 13.
In this strucuture, the layer and the halfspace in the previous
example are separated by the interface whose shape is expressed
by (48) with w = 50 km. D = 3 km and C = 2. 5 km. The line
force is located at O. bkm depth in the center of the basin. We
take N = 128 and 4k = 2n/128km for the irregularity matrix.

The traces in the right half of Fig. 2. 14 were computed for
this structure. For +the laterally homogeneous case the
seismograms in Fig. 2. 13 are presented in the left half to show
the effect of the laterally heterogeneous structure. Both the
irregular ana flat interfaces generate clear head waves, which
are indicated by arrows in the figure. Multiplly reflected
waves are coming a few seconds after the arrival of direct
waves (A in the left half indicates the arrival of the direct
waves ). They are strongly distorted by the irregular

interface.
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(3) Point Source

We are most interested in synthetic seismograms for a
seismic point source, Dbecause an earthquake source is usually
modeled as a point dislocation or a group of point
dislocations. The wave-field of a point source is generally
expressed by a triple Fourier transform in the Cartesian
coordinates (x. ¥) and ¢. Since the triple inversion requires
extensive computation, we wuse the Hankel transform in a
cylindrical coordinate system (7, 6, z).

The disﬁlacement (4, v, w) in the cylindrical coordinates

is written in potential form as

) 3w 18X
U =37t 370z * 76

139 1 8% ax

V=280 " 75z00 ar

-8, 8T _ e
w= 3=+ 52 vy (54)

where

6(r. 0.2 t) = AL8) [Tgsig, f;"aS(k, 2. 0)J,Ckr)dk

T(r 0,2 t) = %%lfde’“‘mfo T (ke 2z, 0)J,(kr)dk
X(r. 0.2 t) = %a%lf_we"‘"dm [, Rk 2. 030, (BT dE

A(8) = radiation pattern.
J, = Bessel function (l-order) . (55)

In u and v of the above equations we find the coupling of P-SV
and SH motions. However, if the near-field terms concerned

with the coupling decay at long distances depending 1/7. their
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effects can be ignored except at very close distances, or at
very low frequencies, as pointed out by Wang and Herrmann
(1980) and Kohketsu (1985). When we neglect these near-field

terms, (54) is reduced to the decoupled form

_ 39 a’w
Y =% * 37z
_ 98X
v = “5r
2
w=g%_g_r¥2', (58)

Under the similar approximation stress components are also

reduced to

Tyy = (l+2u)g—7;+ ug—t‘:. Tgo = l(g—%+g—g’),
Toz = %g Trg = 2_171‘ N (57)

Comparing (b55) and (57) with (3) and (4), we find that the
basic equations in the <c¢cylindrical coordinates coincide with
those 1in the Cartesian coordinates by the following

substitutions:

z-7r, y-0., e -J, (k7).

oF )4

Thus, when a 2-D medium depends on 7 and z; its elastic
response to the point source can be computed in the far field
with the same procedure as shown 1in the preceding sections.

The discontinuity wvector due to a point source can Dbe
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calculated from the results of Sato (1972). The asymptotic
expansion of the Bessel function

1 -5 (er-A2LL L1, | (59)

2nkr exp[

J (kT) =

is also valid at distances where +the near-field terms can be
ignored.

Figure 2. 15 illustrates a comparison between the
seismograms in a 1-D medium computed without and with the
near-field terms. They represent tangential displacements at
10, 30, 50, 70, and 90 km distances due to a vertical dip-slip
source buriéd at 10 km depth in +the Central U.S. model

(Herrmann 1979, Table 2. 1).

d(km) a(km/s) B(km/s) p(g/cm®)

1 5. 00 2. 89 2.5
9 6. 10 3. 52 2.7
10 6. 40 3. 70 2.9
20 6. 70 3. 87 3.0
- 8. 15 4. 70 3.4

Table 2.1 The Central U. S. model

(after Herrmann. 1979)

Herrmann’' s (1979) source time function
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(0 t=<0
(t/T)%/47 O<zst
F(t) = 1(-(t/T)*+4(t/T)-2) /47 ©<ts=3z (60)

((t/T)-8(t/T)+16/4T7 8r<tsdr

.0 t>4t
is used with <t=0.5 sec. Although the seismograms in the
section (A) does not include the near-field terms, the two
sections compare favorably. The difference appearing in the

early part of the 10km traces arises from the neglect of the
terms in (A). Figure 2. 16 compares radial displacements

computed without and with the near-field terms. A strike-slip

source with dJd=80° and A=5° 1is buried at 6km depth in the

crustal structure beneath Tokyo (Table 2. 2).

d(km) ea(km/s) B(km/s) p(g/cm®)

1.0 1.8 0.7 2.0
1.6 2.5 1.5 2.3
- 5.5 3.0 2.5

Table 2. 2 The Tokyo model

Q,=35 and Q,=15 are given to the top sedimentary layer. The

source time function 1is the same as that for the previous
example. The sections in Fig. 2.16 also compare favorably

except the top traces at 10km distance, which show the
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significant difference caused by the loss of SH waves in the
section (A). The asymptotic expansion (58) for the Bessel
function may also 1lead to wrong waveforms. Thus these two
examples show that the near-field terms can be ignored and the
aymptotic expansion (59) can be used at distances farther than
10km from the source.

Figure 2. 17 shows the synthetic seismograms which were

computed by the 1-D and 2-D reflectivity methods for the flat

structure 1in the previous section. A point source with
vertical dip slip 1is buried at a depth of 1 km The time
function (60) is wused with < = 0. bsec. Both the record

sections agree with each other, except for the uppermost
traces. Acausal arrivals arising from the neglect of the
near-field terms contaminate the early part of the trace
computed with the 2-D reflectivity method at 4 = 5 km.

The seismograms in the right half of Fig. 2.18 were
calculated for the basin structure of Fig. 2. 13. The interface
is expressed by (48) with D = 3 km énd C = 1.0 km, and the
source is buried in the center of the basin. We take N = 128
and 4k = 2rn/320km for the irregularity matrix. Compar ing them
with the traces for the flat strucuture in the left half. we
again find multiplly reflected waves with distortion and clear

head waves.

-36-



3. Effect of crustal models

In this chapter we will reveal how much the detail of a
crustal model affects synthetic seismograms using the method
mentioned previously. Seismograms will be computed for typical
models to investigate the effect of a thin layer, and that of
an interface dent or trough. Our approach will also be applied

to the actual structure beneath the Kanto plain.

3.1 Effect of crustal details

Here it 1is <considered how synthetic seismograms are
influenced by the details of crustal models. First we
investigate the characteristics of SH waves travelling through
a thin layer. A line force is buried at a depth of 5km in a
halfspace underlying a thin layer (Fig. 3.1). The velocity
contrast between the upper layer and the lower halfspace is
2.0/3.6, which is rather low. Since f(t) in (49) is used as
the time function of source force, the 1incident wave

propagating into the layer has the time dependence

[* fctras. (61)

The layer may have various thicknesses. The seismograms
in Fig. 3.2 are computed at 10km, 30km and b50km for some
particular layer thicknesses., i. e. A/60, 4/30, A/10, A/6 and

A/83, where A is the predominant wavelength of the incident wave
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in the halfspace. Comparing them to the top traces which are
computed for the model without the layer, it is found that the
layer of A/10 or over strongly deforms the seismograms.
Especially. the traces at distances of 30km and 50km are
contaminated by well-developed reverberation phases in the
later portion. The traces for A1/60 and A/30, on the other
hand. have quite similar shape to that of the top traces.

Secondly we investigate how dents on interfaces affect SH
waves propagating through them. A plane SH wave is impinging
vertically ffom a halfspace 1into an overlying layer (Fig. 3. 3).
Its characteristics are represented by (49) and the predominant
wavelength 4 in the layer. On the interface there is a dent,
whose width is 4A. It may have various depths.

We cénsider two cases of the velocity contrast between the
layer and the halfspace. Figure 3.4 shows the synthetic

seismograms for the case of 1low velocity contrast (8,/8, =

1.7/38. b). They are computed at the points A, B and C in
Fig. 3. 3. In the seismograms computed for dent depths of 1/30
and A/10, the principal part agree well to that of the top
traces computed for a flat interface. In the seismograms of
A/6 and A/10, however. reverberation phases contaminate their
principal parts.

The situation is more serious in the case of high velocity

contrast (B,/B, = 0.7/8.5, Fig.3.5). The reverberation phases

are strongly amplified even in the seismograms of 1/30.

Moreover, they are very sensitive to the interface dent. and
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the seismograms in Fig. 3. 5 have very different shape from each
other.

The last example in this section is presented to show the
effect of an interface trough on synthetic seismograms. The
same line force as in Fig. 3.1 1is burried in a layer 8km thick
overlying a halfspace (Fig. 3.6). The velocity contrast between

the layer and the halfspace is rather low (8,/8, = 2.0/3.6). A

trough extends on the interface from 10km to 30km. It may have
various depths.

The seismograms at the top of Fig. 3.7 are computed for the
model without the trough. On these traces the arrivals of head
and direct waves are indicated by A and A, respectively.
Comparing them to the seismograms for the trough depths of
/30, /10 and A/6. the arrival delay of head waves due to the
trough is not obvious. However, the distortion by the trough
can be seen, though the amplitudes of the head waves are very
small.

Of course, the direct waves are affected little by the
trough. The trough delays the arrivals of reflected wave
trains coming after the direct waves. This delay can be
identified in the seismograms of 1/10 and A/6 by the separation
of the direct wave and the reflected wave train. Even in the
leftmost seismograms observed in front of the trough. we find a
small effect 6f the trough at the tail of the principal phase.

From the above three examples it can be said that layers
thicker than a tenth of 1 (A: wavelength of an incident wave),

and interface dents or troughs 1larger than a tenth of A may
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affect synthetic seismograms. Reverberations in low velocity
sediments may suffer very strong effects by them Thus,
seismograms which are computed ignoring them may lead to wrong

estimations of medium effects.
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3.2 Seismograms in the Kanto plain

(1) Gg structure

Finally we apply our approach to compute synthetic
seismograms in the Kanto plain. The shallow structure in and
beneath the Kanto plain has been investigated in detail by more
than 20 refraction experiments (Shima et al. 1976a. b, 1978a,
b, 1981) and in situ‘measurements at deep boreholes (Takahashi
and Hamada 1975, Ohta et al. 1981). The 1-D structures of

velocities and density were revealed as Table 3. 1.

d(km) a(km/s) B(km/s) p(g/cm®)

1.3 1.8 0. 68 2.0
1.0 2.7 1.5 2.3
- 5.5 3.0 2.5

Table 3.1 Velocity model in the Kanto Plain

The influence of @ cannot be ignored, because even 1in the
near-field, seismograms may be distorted by such a low @ as
expeéted for sediments (Takeo 1985). Thus we here estimate the

1-D structure of Gh by comparing >observed and synthetic

explosion seismograms (Kohketsu and Shima. 1985).
Figure 8. 8 shows the record section obtained by the first

Yumenoshima experiment. Thin solid 1lines 1in the figure
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indicate the travel times of a refraction through the halfspace

(Pg), a direct wave (FP,) and a reflection in the first layer
(PP;). Of the two sedimentdary layers the top is expected to

dominate characteristics of seismograms. because it must have a

very low Gg according to 1its low velocities. Therefore we

compute seismograms for the model of Table 8.1 with various

QP-values of the top layer. The dispersive velocity model in
(1) is used with w, = 2zx5 Hz.

Figure 8.9 shows four synthetic record sections which are

computed with QP—Values of the +top 1layer equal to (a) o,
(b) 100, (c¢) 50 and (d) 20. Since Q, hardly affects explosion

seismograms except for Rayleigh waves, it is derived by the

approximated relation Q,/Q, = 4/9. In the sections for Q,=«
and 100, reverberation phases and surface waves coming after P,
and PP, dominate the seismograms. The situation is better in
the sections (c¢) and (d) for @Q,=50 and 20. However. the
amplitude of P; is still small in (c¢), and we can find no
significant phases on the travel time of P, and PP, in (d).
Therefore the Q;—value of the +top layer 1is expected to be

between 50 and 20.

We next carry out a waveform inversion to determine the
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Q,-values of the three layers (Fig. 3.10). From the above

result the layers are given 50, 100 and 500 as initial values

of Gg. After eight iterations we obtain the values of 85, 100

and 400. In the synthetic record section computed with these
values (Fig. 3. 11), the agreement to the observed section is
improved except for well developed multiple reflections with

apparent velocities b. bkm/sec.
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(2) Two-dimensional structure

Since we have data of dense refraction experiments, we can
image a two-dimensional structure. For example, the 6-th,
12-th and 21-th Yumenoshima experiments were carried out along
the Yumenoshima-Hatoyama profile. which extends from Tokyo in
the NW direction. They  were followed by the reverse
experiments of the Hatoyama and Bijoki explosions. Fig. 3. 12
shows the shot points (big <cross) and the observation points-
(small plus) of these experiments.

The 2-D structure is obtained by comparing the observed
and calculated travel times. The travel time calculation for

2-D media 1is performed by the ray tracing program SEIS83

(Cerveny and Psencik 1983). The result of the 6-th Yumenoshima
experiment is shown 1in Fig. 3.13. In the right diagram big
crosses and small pluses indicate observed and calculated
travel +times, respectively. The interface separating the
sediments and the basement has a basin shape except for the
velocity anomaly around 45km. The phase appearing beyond 55km
with a high velocity is considered +to come from a deeper part
of the medium.

The shape of the first interface 1is not determined well,
because the phase travelling along it could not be detected

except at the vicinity of the explosive sources.



(3) Seismograms for a point source

We here show the effect of the two-dimensionally layered
attenuative sediments in the Kanto plain on long-period
synthetic seismograms. The Saitama earthquake occurred in 1931

at the north-western part of +the Kanto plain. and seismograms

were obtained at the Earthquake Research Institute. the
University of Tokyo. As shown in Fig. 8. 12 the epicenter and

thevERI are located on the Yumenoshima-Hatoyama profile. Then
we compute synthetic seismograms ofb this earthquake for a
variety of cfustal models. Since we cannot compute seismograms
for a finite fault in a 2-D medium by the current computer
facility, only SH waves due +to a point dislocation are
computed. From the result of Abe (1974) the source is assumed
to be with a vertical strike slip at the depth of 6km.

We consider four models in Table 8. 2.

d(km) B(km/s) p(g/cm®) Q,

Model F, H 3.5 2.8 o
Model M 1.5 1. 2 2.2 @
- 3.0 2.5 ©

Model MQ 1.5 1.2 2. 2 40
MQ2 - 3.0 2.5 200

Table 8.2 Crustal models
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Model F is an infinite space. and Model H is a halfspace with
the same material parameters as Model F. Model M 1is the
simplified 1-D structure along the Yumenoshima-Hatoyama
profile. Since the first interface cannot be determined well,

the two sedimentary layers are combined 1into a 1. 5km thick

layer with B=1.2km/sec and p=2. 2g/cm°. Attenuation is

considered in Model MQ. The @Q -values are estimated from the
previously obtained Qp values with the relation Q.,/Q, = 4/9.

Finally the irregularity of the interface between the sediment
and the basement 1is considered in Model MQ2. The interface
shape is presented in Fig. 3. 14. The source and the ERI are
also indicated by a big cross and an arrow in the figure.

We computed seismograms for a long-period seismograph
installed at the ERI (4=68km) with adjustments for arrival
times. The seismograms for Model F are computed by the method
of Sato (1975) and doubled for including the effect of the free
surface. Figure 3. 15 shows the computed seismograms for these
crustal models. It 1is <clearly found that a waveform is
distorted more and an overall amplitude becomes greater. when
the crustal model comes close to the actual structure (from
Model F to Model MQ2). Especially, the trace for Model MQ2 is
strongly amplified and distorted by a thick sediment beneath
the observation point. .Comparing the traces for Models M and
MQ. we also find that the low @ value of the sediment reduces

the amplitude of the later potion of the trace MQ. During the
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initial half cycle they have a similar waveform.

These distortion and amplification, or the reduction by
the attenuative sediment must appear in synthetic seismograms
for a finite fault source. The reason for this is that they
are synthesized by summing up seismograms for ©point sources

distributed over the fault.
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4. Conclusion

The reflectivity method is extended to compute synthetic
SH and P-SV seismograms in one- and two-dimensionally layered
media. We introduce the Fourier transform technique of Aki &
Larner (1970) to solve the integral equations for the
two-dimensional boundary conditions, and enlarge the propagator
matrices to express the total wave-field. Numerical examples
are also presented for structures consisting of homogeneous
layers separated by irregular interfaces.

Our method can be applied to vertically inhomogeneous
layers by using appropriate propagator-matrix elements (e. g.,
Woodhouse 1978; Kennett & Illingworth 1981). Because of
limitations of the Fourier transform seismograms cannot be
computed for a block structure or a vertical discontinuity.

At present two computational problems still remain. First

we have no analytical expression for the 1inverse of
irregularity matrix, K?. When the interfaces are highly
irregular, off-diagonal elements of the submatrices of K grow

so large that a numerical 1inversion breaks down. or large
noises remain. These noises may become much larger if seismic
waves propagate through many irregular interfaces.

Secondly our method also suffers the overflow errors
related to high frequencies, slow phase velocities and thick
layers as in the 1-D reflectivity method. It is not sovserious
in SH-waves calculations, but for P-SV waves we have to

introduce some techniques such as delta matrix extension
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(Dunkin 1965) and normalization (Harvey 1981), or to
reformulate the problem without the propagator matrices
(Kennett 1980; Ha 1984). Recently Kennett (1986) extended his
formulation to three-dimensionally heterogeneous media by
extracting terms associated with heterogeneity.

If we neglect +the coupling between the SH and P-SV
wave-fields, the extension to a three-dimensional structure is
straightforward. However, we should carry out a double Fourier
transform with respect to both x and vy coordinates to construct
the irregularity matrix K and the linear equation system for
the conditioh of continuity is expanded into 4Nx4N equations.
Since it takes 10 (plane wave incidence) or 30 (point source)
minutes for Hitachi M-280H (15 MIPS) to compute the numerical
examples in this paper, a three-dimensional computation

requires 100 or 900 minutes.

To illustrate the effect of crustal models on synthetic
seismograms, several examples are also presented. Numerical
simulations reveal that surface layers thicker than A/10 (2:
wavelength of an incident wave) cannot ignored. and interface
dents or troughs larger than 1/10 must affect seismograms.

The results of refréction exﬁeriments (e.g., Sasaki et
al. 1970, Aoki et al. 1972) and travel-time analyses of natural
earthquakes (e. g., Ukawa and Fukao 1981) show that the main

body of the crust (V,=6~7 km/sec, V ,=3~4 km/sec) does not reach

the Earth' s surface. There are several layers separating them

and their interfaces often have irregular shape. When we
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analyze seismic waves in the crust with a dominant frequency of
1/5 Hz, layers thicker than 1lkm and interface dents larger than
1km should be taken into account.

If those are neglected, synthetic seismograms 1lead to
wrong estimations of medium effects. For example, the source
models of Japanese ear thquakes were mostly derived with
synthetic seismograms for infinite or semi-infinite crustal

models. They certainly include some errors.
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Figure 2. 1 A layered medium consisting of (M-1) layers and a

halfspace. The k-th layer with material parameters a, B, and p,

is bounded by the (k-1)-th and &k-th

interfaces at the depths of

z,_, and Zye The solid line associated with a thin line is

the free surface.
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Figure 2. 2 An irregular interface between two layers. n is the

unit normal to the interface.
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Figure 2. 3 A two-dimensional basin structure with a soft

sediment layer. A plane SH wave is impinging vertically from

the lower halfspace.



Figure 2. 4 Ricker’ s wavelet used for a source time function.
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various methods for motion on the surface of the structure in
Fig. 2. 8. Our seismograms are indicated by the letters RF. The
results of Aki-Larner (AL), Gaussian Beam (GB), Asymptotic Ray
Theory (ART). Finite Element (FE), and Finite Difference (FD)
were obtained from Aki & Richards (1980. Fig. 13.26) and Nowack
& Aki (1984, Fig. 19).
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finite difference calculation. A plane SH wave is impinging
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Figure 2. 7 Comparison of synthetic seismograms computed for
the model of Fig. 2.6 by the finite difference method and the
2-D reflectivity method. The numbers at the head of the left
traces indicate for which point in Fig. 2.6 a trace is computed.
The trace with letters REF is an input signal.
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lower halfspace.
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Figure 2. 14 Comparison of synthetic seismograms due to the
line force computed for flat and two-dimensionally irregular
structures. The irregular structure is shown in Fig. 2. 13. The
seismograms are reduced by the S velocity of the lower
halfspace. Arrows and black triangles indicate the arrivals of

head and direct waves, respectively.
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Figure 2. 16 Comparison of radial displacements due to a point
source computed without +the near-field terms (A) or with

them (B). The velocity model of Table 2.2 is used as a crustal
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Figure 2. 17 Comparison of synthetic seismograms computed by
the 1-D and 2-D reflectivity methods. The traces are
tangential surface displacements at distances 5 10, 15 20 and
25 km from a point dislocation buried in the flat structure.
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Figure 3. 1 Configuration of the crustal model studied. The
upper layer may have various thicknesses (h). A line force is
burried at a depth of 5km.
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Figure 3. 4 Comparison of the synthetic seismograms computed

for various dent depths. The low velocity contrast is adopted.
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dent depth using the predominant wavelengh A of the incident

wave.
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Figure 3. 5 Comparison of the synthetic‘ seismograms computed
for various dent depths. The high velocity contrast is
adopted. The values at the head of the leftmost seismograms
indicate the dent depth wusing the predominant wavelengh A of

the incident wave.
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Figure 3. 8 Observed record section of the first Yumenoshima
refraction experiment. Thin solid lines indicate travel times
of Py, P, and PP,.
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Figure 3. 9(b) Synthetic record section computed with the Q,
of the top layer equal to 100.
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Figure 3.9 (c) Synthetic record section computed with the Q,
of the top layer equal to 50.
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Figure 3. 9(d) Synthetic record section computed with the Q,
of the top layer equal to 20.
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Figure 3.10 The progression of theoretical waveforms from the
starting model through eight iterationms. The observed
waveforms shown at the bottom with letters OBS.
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Figure 3.11 Synthetic record section computed with the

obtained Q, structure.
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Figure 3. 12 Map around Tokyo. The
points of refraction

and small pluses.

epicenter of the

shot and observation
experiments are indicated by big crosses

A big plus and a triangle indicate the

Saitama earthquake of 1981 and the Earthquake
Research Institute., respectively.
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Figure 3. 14 Simplified two-dimensional structure along the

Yumenoshima-Hatoyama profile. A big plus and an arrow indicate

the point source and the observation point. respectively.
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Figure 3. 15 Synthetic seismograms due to the fixed point
source for the wvariety of crustal structures listed in
Table 3. 2.



