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Chapter 1

Introduction

One of the most important theme of computer science is to reduce software costs for developing
correct programs. Honest programmers will do their best to write both correct and efficient programs in a
way based on some programming principle. Research on programming methodology has brought many
guiding ideas in conventional programming languages. For example, so-called structured programming in
the late sixties has seriously affected our traditional style of programming practices. The reduction in

software costs has not been successfully achieved, however.

A growing interest in functional programming as a practical approach to software development has
been attached to a new departure for a radically different methodology. According to a functional
approach, we can write clean initial programs in a powerful and elegant programming language with many
sophisticated features. Such programs can be transformed into more efficient ones by applying simple
mathematical rules, since purely functional programming avoids any side effects of which presence makes
transformation a complex task. Program transformation in general aims for obtaining an efficient program
that preserves correctness and requires less computing resources than the original. Its object is how to
attain the ideal that only the necessary computation is to be taken and no other computaion be taken at all.

Full laziness is a new approach to this ideal.

Section 1.1 demonstrates how functional style increases clarity of programs. Section 1.2 describes
the basic idea of full laziness in a general setting and claims its optimality. Section 1.3 gives an outline of

the rest of the thesis.

1.1. Functional programming is effective

Functional programming has a long history. Important early work includes two languages,
McCarthy’s Lisp [McCarthy62] and Landin’s ISWIM [Landin66]. Church’s lambda calculus [Church41]
provides the mathematical background to most of the functional language including Lisp and ISWIM.
There has been a good deal of argument, however, on whether Lisp is a functional language or not. For

practical reasons, it contains impure features for functional programming as well as the clean mathematical



form of recursion equations. In fact, almost all serious programs written in the dialects of Lisp turn out to
be of imperative style as in traditional procedural languages like Algol, Fortran, and Pascal. It is due
solely, or at any rate mainly, to the conviction that assignment and goto statements are indispensable to get
adequate performance from the machine. There is, however, a serious drawback in the use of side effects
caused by these statements. Such referentially opaque features in procedural languages make programs

incomprehensible and error-prone.

Recent study on functional programming shows that many sophisticated features such as local recur-
sion, lazy evaluation, and partial parametrization open up a new programming style that has not been
observed in traditional programming methodology. Moreover, purely functional programming becomes
practical by the efficient compiler and by the high power of recent computers. We shall discuss such novel
features in Chapter 2. This section gives a brief overview of functional programming that brings us the

conviction of its effectiveness.

Programming at a higher level

We note first that functional programming allows one to specify problems in a highly abstract way.
We can write programs with the whole picture in mind in functional programming, while every computa-
tional step has to be specified in procedural, or imperative, programming.

Consider the problem of finding Ramanujan’s numbers as a non-trivial example; to find the numbers
that are equal to two different sums of two natural numbers raised to the third power. A Pascal program to
find the least Ramanujan’s number is developed in [Wirth73] by the method of stepwise refinement. Along
with control structures and data structures, housekeeping variables for recording the state of computation

are introduced in the course of refinement. The final program developed is shown in Figure 1.1.1.

A functional solution to this problem looks like Figure 1.1.2.! This simple program will print pairs of

two numbers indefinitely, or rather until it runs out of space, producing the output

1 Strictly speaking the problem requires the number 1729, not the pair ((9,10),(1,12)), for example. Section 2.1
illustrates how this program is obtained from the specification of the problem. The language used here will be explained in
Chapter 8.



vari,il,ih,min,a, b,k : integer;
J.p,S :array [1..12] of integer ;
begin i :=1; il =1; ih =2
jl=1 pl]l=1; S[11:=2; j[2]1:=1; p[2] =8; S[2]=9;
repeat min:=S[i]; a =i; b =jli];
if j[i]1=i then il :==il+1 else
begin ih :=ih+1; plih] :=ih*ih*ih;
jlih1:=1; S[ik] =plirl+l
end;
i=il; k:=i;
while k <ih do
begin k :=k+1;
if S[k]<S[i] then i ==k
end
until S[i]=min;
writeln(min,a,b,i, j[i])
end.

| Figure 1.1.1. A Pascal program for finding the least Ramanujan’s number

ram (sort_r 1)

whererec {
ram (x:(y:z)) =
if sumcubes x == sumcubes y then (x,y):ram(y:z) else ram(y:z)
and
sort r k = (kk):merge_r [(k.b)| b<—[k+1.]](sort_r (k+1))
and

merge r (x:u)(y:wv) =
if sumcubes x <= sumcubes y then x :merge r u (y:v) else y : merge_r (x:u)v
and
sumcubes (a b) = a*a*a+b*b*b
}

Figure 1.1.2. A functional program for finding Ramanujan’s numbers

((9:10),(1,12)) ((9,15),(2,16)) ((18,20),(2,24)) ((19.24),(10,27)) ((18.30),(4.32)) ((15,33),(2,34))
((16,33),(9,34)) ((27,30),(3.36)) ((26,36),(17,39)) ((31,33),(12,40)) - - -
The least Ramanujan’s number is 93+103=13+123=1729. The expression ram(sort_r 1) of the functional
program represents an infinite list of the pairs satisfying the condition. Setting aside the details, it is
observed that the functional program is an executable specification of the problem rather than a program
expressing the computational process a step at a time as is typical in procedural programming. The pro-

gram should be correct as far as the problem is formulated this way. There are, of course, many problems



of which specifications are non-constructive, e.g., axiomatic. In these cases we have to rewrite them in
terms of equations and functions. Functional programs thus developed are easy to verify because proofs
can be based on the well-understood concept of functions rather on the more cumbersome notion of con-

ventional computers.

Another important point related to programming methodology is that we can write a program by first
developing the most general solution and then making it specific. If we are required to find the least
Ramanujan’s number, we have only to make a composition first (ram (sort_r 1)) where first is the func-

tion that takes the first element of the list. This is contrast to the traditional style of programming.

High productivity

A number of studies have shown that a programmer produces a roughly fixed number of lines of code
independent of the language used. The reason why a high level procedural language, e.g., Fortran, Pascal,
etc., has made a step forward in software productivity is that programs written in such a language are an
order of magnitude shorter than the equivalent assembly code. The significance of the fact is that the most

important factor in software production costs is the level of language used in programming.

The compact notation for functional programs allows more algorithms to be expressed per line than
procedural languages because the details of implementation are not specified in functional programming. A
functional language would increase productivity much the same way as a high level procedural language
does compared to an assembly language. Several experiments for sizable problems have been reported

[Morris80, Turner81b, Peyton-Jones85] to support this view.

Efficiency problems
Although there is evidence that functional programming increases productivity, functional programs
have gained an unfavorable reputation for running slowly. Major sources of the inefficiency pointed out are
. The high frequency of function calls, which results in many operations for parameter passing,
. The overhead for garbage collection,

. The lack of destructive updating of large data structures,



. The performing of the same computaion repeatedly.

Although some of them reflect the fact that functional languages are not so close to conventional computers
as are procedural languages, others do merely that many implementations have been inefficient. It is worth
noting that functional programs have typically been run interpretively rather than compiled. The reason is
that implementation techniques for functional languages have received too little research effort compared to

theoretical work. Development of compiling techniques will greatly improve the efficiency.

Evaluation method may also increase the efficiency of functional programs. For example, the use of
lazy evaluation can lead to substantial improvement in manipulating large data structures by reducing the
amount of unnecessary computation. Another important approach to the efficiency problem is program
transformation. Mathematically concise expressions can be transformed into more efficient ones that use
less computational resources. Lazy evaluation combined with program transformation well deserves atten-

tion from the point of implementing functional languages. We shall discuss this in the next section.

1.2. Full laziness is optimal

Functional languages are free of side effects. A programmer is never concerned about unexpected
modifications to variables by other routines. Consequently the parameter passing mechanisms call-by-
value and call-by-name have the same effect, provided the computation terminates2. In the call-by-value
discipline, every argument must first be evaluated and a copy of the result then be passed to the function.
In the call-by-name discipline, the argument is evaluated at each occurrence of the corresponding parameter
within the function. Evaluation in this context roughly means the process of simplification of the form of
expression, or reduction; 6 is simpler than 2* 3 by our criterion. Evaluation mechanisms greatly affect the
efficiency of functional programs. This section provides the basic idea of full laziness with relation to

parameter passing mechanisms.

Parameter mechanisms

To illustrate the differences between the parameter mechanisms mentioned above, we first introduce

2 This fact is closely related to the Church-Rosser theorem of lambda calculus {Church41]. The call-by-name
mechanism actually possesses better terminating properties.



some notations to denote expressions. We write functional application by juxtaposition;

f a
means that the function f is applied to the argument a. We usually omit the parentheses around argu-
ments. A function definition is written as

fxy=x+y.
The function f is a higher order function which take their arguments one at a time.

Consider an expression
f@2*3)1
which uses the function f defined as above. In the call-by-value mechanism, the arguments (2*3) and 1
are evaluated and the results 6 and 1 are passed to the function f. The function then evaluates (6+1) to
yield 7. On the other hand, the arguments (2* 3). and 1 are passed as they are in the call-by-name mechan-
ism. The evaluation of the function body x+y demands the evaluation of the arguments when the values of
x and y are needed as operands of ‘+’. The difference of the parameter mechanisms just observed is the

time when arguments are evaluated.

Given are a definition3

gxy = ify=1thenOelsex

and an expression

g (2*3)1,
the argument (2* 3) is evaluated when g is called by value, while its value is not actually needed. It is not
the case if the call-by-name mechanism is used. This example demonstrates a characteristic feature of call-
by-name; arguments of a function are evaluated in a demand-driven fashion. Call-by-name seems better
than call-by-value at first sight from this property. However, if a function is defined as

hxy =x+x

and the value of

haoP

is required, the simpleminded call-by-name mechanism demands the evaluation of the argument o, twice for

3 We use ‘=="to mean the equality; y==1 means a predicate ‘is y equalto 1 ?".



each of two occurrences of x in the function body. It is very costly if the argument a is of the complex
form. In contrast to this, the argument a is evaluated only once when the function is called by value. Call-
by-value is desirable in this case. This is the major reason why modern procedure languages adopt call-by-

value as their standard parameter passing mechanism and exclude parameters called by name.

Call-by-need and lazy evaluation

As described above, the call-by-name mechanism has both merits and demerits in evaluating argu-
ments. In procedural languages, evaluation of the argument o possibly causes side effects and may yield
different values each time evaluation takes place. However, there are no worries about side effects in func-
tional languages. The property of referential transparency serves for introducing a new device of parame-
ter passing. Referential transparency implies that the value of an expression depends only on its textual
context, but not on computational history. In functional languages, therefore, the result of evaluation of a
at the first time may be used at later time its value is needed. In general, function arguments are passed by
name, and each of them is evaluated in a demand-driven way the first time its value is needed. Subsequent
references to the argument use the value already evaluated. Such a parameter passing discipline is known
as call-by-need [Wadsworth71] or call-by-delayed-value [Vuillemin74]. The evaluation mechanism of
expressions based on call-by-need is called lazy evaluation [Henderson76]. Lazy evaluation is sometimes
worded as

Never do today what you can put off until tomorrow,
but we also use the result that has been obtained, if any. Call-by-name and call-by-need are semantically
equivalent, so it does not matter which is used. But call-by-need is much more efficient than call-by-name

in practice.

Fully lazy evaluation

We may say that lazy evaluation has both call-by-name and call-by-value properties; every argument
of a function is evaluated at most once. It is superior to either of call-by-name or call-by-value mechanism
because there may be multiple evaluation stages of an argument in call-by-name and every argument is

always evaluated exactly once in call-by-value.



Fully lazy evaluation goes one step further in evaluating functional expressions. Suppose that a func-
tion f is defined as

fxy=({acx)+y
where fac is the factorial function defined elsewhere. Given is an expression with a local definition

(g 3)+(g 4) where g=f 5,
several evaluation strategies may be considered?. In any lazy evaluation scheme, the expression (f 5) in
the local definition is not evaluated until either of (g 3) or (g 4) becomes to be evaluated. We assume here
that (g 3) is evaluated first. Then, (f 5 3) is evaluated to obtain the value of (g 3). This in turn cause
(fac 543 to be evaluated yielding the value 123. The evaluation step is schematically shown as

@€3) > (53 > (fac 5)+3 - 120+3 - 123.
Similarly evaluation of (g 4) is

g4 > (f54) > (fac 5)+4 > 120+4 - 124.
As we can see from these evaluation steps, it is obvious that the second evaluation of (fac S) is redundant
because its value 120 has been obtained at the first time its value is needed. Ordinary lazy evaluation does

not concern this situation.
Evaluation by an alternative strategy may be considered. It proceeds similarly as above, but the
expression (fac 5) becomes 120 once it has been evaluated. Accordingly the definition

g8=f 5
becomes®

gy=120+y.

Then the expression (g 4) is evaluated as

(g4 > 120+4 —> 124,
We can say in a general setting that

Every expression is evaluated at most once after the variables in it have been bound.

4 We use where-clauses to introduce local definitions. The meaning of an expression with a where-clause would be
obvious. It is similar to the usage in mathematics.

5 Replacement of expressions is, of course, conceptual, and requires some devices to be implemented. We shall deal
with them in later chapters.



Such evaluation mechanism is called fully lazy evaluation [Hughes84].

Fully lazy evaluation is very similar to well-known optimization techniques such as constant folding
and moving invariants from loops in procedural languages [Aho77]. Although optimizing compilers per-
form these tasks at compile time, fully lazy evaluation does at execution time. Hence full laziness sub-

sumes dynamic compilation or self-optimizing evaluation. We may summarize our conclusion as
Fully lazy evaluation is optimal

in the sense that it performs no redundant computation.

1.3. Outline of the thesis

Chapter 2 describes some characteristic features of functional programming with emphasis on the use

of higher order functions and partial parametrization in practical programming.
Chapter 3 presents the concept of laziness and full laziness in evaluation of functional programs.

Chapter 4 describes several evaluators based on combinator reduction. Experimental results are also

includeds.

Chapter 5 gives the definition of the fully lazy normal form which is the basis of the translation and

evaluation system described in Chapters 6, 7 and 87.

Chapter 6 presents a program transformation technique called lambda-hoisting for fully lazy evalua-

tion of functional programs8.

Chapter 7 describes an abstract machine called fully lazy functional machine which is used as a target

machine of portable compilers in Chapter 8°.

Chapter 8 presents a method of implementing portable compilers for functional languages. Actual
implementations of an experimental language on several computers are described with experimental

results10.

6 The contents of Chapter 4 is partly described in [Takeichi84] and [Takeichi85].
7 Related work by the author in a different context is found in [Takeichi82a,82b}
8 An extended abstract of Chapter 6 has been presented in [Takeichi86b].

9 An earlier version of the abstract machine is reported in [Takeichi86a].

10 The author’s experience with portable compilers can be found in [Takeichi77].
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Chapter 9 illustrates how higher order functions and partial parametrization bring unexpected gains in
efficiency!!.

Chapter 10 deals with the topic of types in functional specifications. An application of the
polymorphic type discipline to the problem of inserting injection operations to denotational specifications is

described!2.
Chapter 11 summarizes the contributions of the thesis and discusses directions for future work.

The appendices provide an example of program translation described in Chapters 6-8, the syntax

definition of the language uc in Chapter 8, and an example of typechecking in Chapter 10.

11 The major part of Chapter 9 has been published as [Takeichi87].
12 The contents of Chapter 10 has been published as [Takeichi86c].



Chapter 2

Overview of functional programming

This chapter gives a brief overview of characteristic features in functional programming. We first

deal with an example of program development with a view to illustrating the theme proposed by Turner
Functional programs as executable specifications

in [Turner84]. We also discuss the use of higher order functions and partial parametrization for practical
purposes. This may lead to a novel programming methodology since these features provide a particularly
powerful abstraction mechanism that is not found in traditional languages. Finally we discuss work on pro-

gram transformation of functional programs relevant to this thesis.

2.1. Program development
Consider the problem of Ramanujan’s number presented in Chapter 1:

Find the least number that is equal to two different sums of two natural numbers raised to the

third power.

A functional program has been shown in Figure 1.1.2 for comparison with a Pascal solution. We here illus-
trate how we can arrive at the executable solution from a specification of the program at a higher level.

Those wishing to know about development of the Pascal program should consult Section 15.2 of [Wirth73].

We have to find the least number x such that
x =a3+b3 =c3+43
where a, b, and ¢ are natural numbers such that a#c and a#d. If we can express the set R of pairs
((a.b).(c .d)) of two pairs (a,b) and (c,d) of natural numbers that satisfy the above equation, the problem
is solved immediately by selecting the pair from R that gives the least Ramanujan’s number. Hence we set

up a subproblem of finding the set R .

The set R can be obtained by arranging possible pairs (a,b) in an increasing order of the sum of

cubes sumcubes (a ,b) where!

1 We here assume that the function sumcubes takes a pair of natural numbers as the form of the parameter (a,b)
indicates. It is natural that the function has a single parameter in this case, while we usually use the curried form for
functions with more than two arguments.

11
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sumcubes (a,b) = a3+b3,

and combining adjacent pairs (a,b) and (c,d) of the sorted sequence S that are equal to each other with

respect to the valuation function sumcubes, i.e., sumcubes (a ,b) = sumcubes (c ,d). We now arrive at the

first specification.
R =ram§
whererec

ram (x:(y:z)) =

if sumcubes x = sumcubes y then (x,y) : ram (y:z) else ram (y:z)

We use whererec-clauses to introduce local recursive definitions; the function ram is defined recursively.
We write ‘a:x’ to represent a sequence, or list in programming language terminology, that is formed by
prefixing an element a at the front of x. Function parameters may be specified by patterns as above. The
function ram takes a sequence of which first element is denoted by x, the second element by y, and the rest

by z in the right-hand side of the definition.

The next problem is how to specify the sorted sequence S. Let

[o..]
denote a set of all natural numbers greater than or equal to o. Then a set

X ={@h)lae[l.];be[a.])
contains all of the pairs that should be taken into account. We use here the symbol ‘<’ instead of usual
mathematical symbol ‘e’. The symmetry of the valuation function sumcubes (a ,b) allows for limiting the
range of b as b>a. This limitation is indeed necessary because otherwise pairs ((a,b),(b ,a)) would be
included in R. Using the notation we get a definition of S :

S = sort sumcubes {(ab)la «[1.];b¢[a.])

where

sortr X
represents a sorted sequence of which elements are taken from an infinite set X and arranged in order with
respect to a valuation function r. Another question may arise: is the function sort computable? There
cannot exist a recursive definition of sort on infinite sets. However, we can derive a recursive definition of

sort after the analogy of Turner’s examples [Turner84].
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For any k21, let

Xk =Q{(a,b)lb(—[a..]},

and

sortrk
be a sorted sequence of elements of X;. Notice that the function sort has been redefined; the second
parameter k should have been X, for the older definition. We rewrite S as

S = sort sumcubes 1.

By separating the set X into two parts as shown in Figure 2.1.1,

Xp = (kb)) 1 b« [k .1} UXin

as shown in Figure 2.1.1, we may merge two sorted sequences of the disjoint sets to arrange the elements of

X} in order.

> b
Xi
k ( {(k,b)Ibe[k. ]}
k+1
Xk+1
 J
a

Figure 2,1.1. X; composed of two sets

We may write the definition of sort as

sort r k = merge r (sort r {(k,b)|b<lk..1}) (sort r (k+1))
where
merge r (x:u)(y:w) =
ifr x<rythenx :merger u (y:v)elsey :merger (x:u)v .

The function merge maps two sorted sequences (x:u) and (y:v) into a single sorted sequence. We have

thus derived a recursive definition of the function sort with an auxiliary function merge .
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The definition of R along with that of the function sort may be considered as a specification of the
subproblem. It tells what are Ramanujan’s numbers, but does not how these are computed. The
specification is not executable, however. We have used a notation for representation of infinite objects that
was devised by Turner. We can compute with such an infinite object so far as we know that as much of its
elements as is required in a particular computation is obtained in finite steps. Computation of infinite
objects can be realized by lazy evaluation mentioned in Chapter 1. Of course we must take care not to
compute all of the elements of an infinite object. The above specification is written in a functional style and
is really a ‘program’ of our functional language used in this thesis (See Chapter 8 for details). But it is
undesirable for our purposes. It contains infinite computation that does never terminate unless we adopt

some intricate evaluation mechanism other than ordinary lazy or fully lazy evaluation mechanisms.

In order to get a specification appropriate for execution we rewrite the right-hand side of the
definition of sort. Note that we take here the function sumcubes as r, and that sumcubes is a monotoni-
cally increasing function with respect to components of the argument. We may give a more compact
expression for the second argument of merge :

sortr {(kp)Ibe[k.1}=[kb)Ibe[k.]]
provided that r is monotonic. The notation used in the right-hand side represents a sequence of which ele-
ments are arranged in order as

(kk):(kk+1): (kk+2) -
that is, the elements are ‘generated’ as b takes values k, k+1, k+2, - -+ to infinity. From this and the fact
that any element of (sort r (k+1)) does not precede (k k) in the sorted sequence (sort r k), we get a new
definition of sort:

sortrk = (kk):merger [(k,b) | be[k+1..1](sort r (k+1)).
This finishes our example of program development. We have thus obtained the program for the subprob-
lem as shown in Figure 2.1.2. The program presented here is slightly different from that of Figure 1.1.2.
The functions sort and merge are specialized and called sort_r and merge_r in Figure 1.1.2 so that they
use the function sumcubes instead of the given valuation function r. Rewriting this way seems to serve for

reduction of computational steps for passing sumcubes each call of the functions. It is possible, however,



ram (sort sumcubes 1)

whererec {
ram (x:(y:z)) =
if sumcubes x == sumcubes y then (x.y):ram(y:z) else ram(y:z)
and
sort rk = (kk):merger [(kb)| b<—[k+1.]] (sort r (k+1))
and

merge r (x:u)(y:v) =
if rx<=ry then x :merger u (y:v) else y :merge r (x:u)v
and
sumcubes (a.b) = a*a*a+b*b*b

}

Figure 2.1.2. A functional program for finding Ramanujan’s numbers
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to evaluate the program of Figure 2.1.2 in a way to produce the same effect. Such an evaluation mechanism

is the major theme of this thesis.

What we learn from the example are:

. We may introduce mathematical notations suitable for specifying the problem, e.g., sets and

sequences.

. We have to write relations between objects in terms of equations.

. A specification might not be executable as it is, but it may be transformed into executable one by

clear mathematical reasoning.

Of course, program development depends on the language used. It will be clear, however, that mathemati-

cal notations and function definitions of our ad hoc language can be translated into such expressions that

any functional language accepts. We shall demonstrate in Chapter 8 how sets and sequences are

represented by functions and fundamental data structures. Concrete representation of abstract objects is

thus hidden in our language in the sense of abstract data types. Another abstraction mechanism is brought

up by the use of higher order functions as described in the next section.

2.2. Higher order functions and partial parametrization

The program in the previous section includes functions that take functions as their arguments; the

function sort and merge both have functional parameter r which is to be applied to elements of sequences.
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A functional parameter is one of the common abstraction mechanisms existent in both functional and pro-
cedural languages. Pascal, for example, allows us to write functions (and procedures) that take functions
(or procedures) as arguments. But such a parameter mechanism in procedural languages seems to be a
treasure useless to practical programmers. The use of functional or procedural parameters in traditional
programming is very rare. One of the causes for little use should be sought in restrictions on procedures or
functions as values. A Pascal function (and procedure) comes into existence only by its declaration. There
is no other way to produce functions and procedures by programs.

In functional languages we are dealing with allows us to write functions that take functions as argu-
ments and return functions as results. Functions can be made elements of data structures like lists, pairs, or

trees. Thus, the function in functional languages is a “first class object’.
As an illustration we consider a problem of implementing a simple table.
. The table initially contains no entry.
. An entry is entered in the table so that it will be looked up with a unique key.
. The table is searched with a key for the entry to be sought.
We assume here that each key is chosen from a set a, and each table entry from a set f. We may consider

that the table has the type?

a—-p.

That is, a particular configuration of entries is represented by a function.

The initial configuration of the table should be empty:

init_table = t where t x = undef

where undef € P is a distinguished element. The function init_table returns undef for any element in o.

A table ¢ is extended withae o and be P as

extend t (a,b) =t where t’' x =if x==a then b elset x

and ¢ is looked up using x€ a as

2 The term ‘type’ roughly means sets in this context. 0—p represents a set of functions of which source (domain) is &t
and target (range) B.
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lookup t x =t x.

We can convince ourselves relations such as

lookup (init_table)x = undef foranyxeq,

and

lookup (extend t (a,b))x = b if x=a,and=lookup t x otherwise.
In this implementation, functions are passed as arguments and returned as results.
Another representation method of the table is to use a list structure of which elements are pairs of
type oxB. This is a rather standard way of implementation in procedural programming. An initialized table
corresponds to an empty list

init_table = [].
A new entry (a ,b) is entered in the table ¢ as

extend t (a,b) = (ab):t.
We may look up such a table ¢ as

lookup t x = lookup’ t x
whererec
lookup’ t' x = if t'=[ ] then undef else
(if x=a then b else lookup’ u x
where ((a.b):u)=t’' )

In fact, it is most desirable that the table type is defined as an abstract type; only init_table, extend, and
lookup should be made available to the user. Some functional languages provide the facilities to define
abstract types [Milner84, Turner85]. The function lookup for tables implemented by lists seems somewhat

‘procedural’ while it is really pure functional.
In either implementation of the table, the function lookup has two parameters ¢ and x, and therefore

called second-order. The type, or functionality, is

lookup : Yy—>[a—B]
where y s the type of the table implemented as above in either

y=a-p

o3

3 ‘o list” denotes the type of lists of which elements are of type a.
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v=(axp)list .
In general, functions may have arbitrary numbers of parameters. If a function is defined to have n argu-
ments, it can always be applied to m<n arguments. The result is a function that may take (n—m) argu-

ments, if m <n, in which the first m arguments have been fixed.

Suppose that we are required to search a table, say T, frequently with different keys x. We like to
have a function lookupT that does specifically look up the table T and never does other tables. The func-
tion lookupT is easily obtained by instantiating the function lookup with the first argument T':

lookupT = lookup T .

The resultant function takes a single argument x. We call such a discipline partial parametrization.

Higher order functions and partial parametrization provide a powerful kind of abstraction. Many
similar functions can be defined by parametrizing a higher order function that represents a common pattern
of computation, or an abstract algorithm. The advantage of programming this way is that modularity can
be achieved by a simple notion of functional abstraction and application. The use of these features in prac-
tical programming is extremely important. Programs become more compact and easier to read. We shall

discuss it in more detail in Chapter 9.

2.3. Program transformation

Program transformation has been studied by many researchers in many contexts. Compiler optimiza-
tion and program synthesis are such examples. This section describes some transformation techniques

relevant to this thesis.
All of the transformation techniques of functional programs enjoy the beneficial property of referen-
tial transparency. We have already transformed a specification into an executable program in Section 2.1.

The unfold-fold transformation method is one of the most well-known techniques. It was developed
in [Burstall77]. The method is based on two transformation rules, unfolding and folding. The aim of this
technique is to improve the efficiency of programs written in a functional language without changing their

meaning. The transformation rules consist of

. Definition: Introduce a new equation e=E . The left-hand side e is not an instance of that of any pre-
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vious equation.
. Instantiation: Introduce an instance of an equation by substitution.

. Unfolding: If e=E and f=F are equations and there is some occurrence in F an instance e’ of e,
replace ¢' by the corresponding instance E' of E getting F[E'/e']l. Then add an equation

f=FIE'le".

. Folding: If e=E and f=F are equations and there is some occurrence in F an instance E' of E,
replace E ' by the corresponding instance e’ of e getting F [e¢'/E']. Then add an equation f =F [e /E"].
. Abstraction: Introduce a where-clause by deriving from an equation e =E a new equation
e =E[x1/Eq," - xn/E,] where x;=E;and - -- and x,=E,
" where x; are new variables and E; are subexpressions. The right-hand side is an expression obtained

by replacing all the occurrences of E; with x;.

. Algebraic laws: Transform an equation by using laws about the primitives such as associativity,

commutativity.

Developing a sequence of transformation steps based on these rules requires some heuristics. Bird [Bird84]
proposed a method using the unfold-fold transformation technique to transform programs that traverse data
structure many times into ones that do only once. In Chapter 9 of this thesis we shall give a brief overview
of his method and present a more versatile transformation method based on higher order functions and par-
tial parametrization.

Wadler [Wadler85] describes a transformation technique which can be applied to a restricted class of
programs and claims that listlessness is better than laziness. We shall discuss laziness for executing any

functional programs from a different viewpoint in this thesis.

Another kind of transformation techniques related to this thesis is for implementation of functional
languages. Turner [Turner79] proposed a novel method for evaluation of functional programs called com-
binator reduction. The transformation technique used in this context is to ‘compile’ functional programs
into combinator code. Simple transformation rules will be shown in Chapter 4. Several alternatives have

been developed in [Noshita85a,85b]. Hughes’ work is the idea of super-combinators and the transforma-
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tion algorithm [Hughes84], which will be also discussed in Chapter 4. Lambda-lifting by [Johnsson85] is a
transformation method for compiling programs to generate efficient code. It is similar to our lambda-
hoisting transformation in Chapter 6.

Finally we would like to describe an experimental result from which we becomes convinced of the
practical importance of program transformation. Turner [Turner82] gives a program for the 8-queens prob-

lem as shown in Figure 2.3.14.

quéens 8
whererec {
queens n =.
if n=0 then [[]]
else [b++[g] | ¢ <—[1.8]; b <—queens(n—1); safe q b ]
and
safe ¢ b = foldr (&&) true [ (checks g bi) 1 i «[l.length b]]
and
checks q b i = ({(q==bi) || abs(q—bi)y=length b—i+1) where bi=nthi b
}

Library functions: length, nth, foldr , abs

Figure 2.3.1. A functional program for the 8-queens problem

We used a compiler described in Chapter 8 to translate the program of which number of the queens had
been scaled down to 5. That compiler makes use of a transformation technique for full laziness (See
Chapter 3) by default, and does not optionally. Two object programs compiled with or without the transfor-
mation runs 2.85 seconds and 43.7 seconds, respectively to print the results. The effect of transformation is
remarkable, while we cannot find the cause only from a higher level specification in Figure 2.3.1. We can
say that

The higher the level of specifications or languages, the more important the transformation technique

for implementation.

4 The program is written in uc. See Section 8.3 and Appendix B.



Chapter 3

Laziness and full laziness

This chapter describes evaluation mechanisms in a formal way to make the differences between them
become clear. We deals with only lazy evaluators; an ordinary lazy evaluator proposed so far is described
in Section 3.1, and a fully lazy evaluator is defined in Section 3.2. A lazy evaluator, whether it is an ordi-

nary one or a fully one, aims at practical utility of the following ideas [Henderson76]:
. Perform computation only when it is necessary.

. Never perform the same computational steps twice.

These intuitive statements need to be examined formally.

Section 3.3 gives some remarks on implementation of evaluators which serve for the basis of efficient

evaluators described in Chapters 4-8.

3.1. Lazy evaluation

In this section we shall describe the definition of an ordinary lazy evaluator. We use a simple func-
tional language specified in Figure 3.1.11. Although the language is very simple, fundamental features of
functional languages are included; functional applications by combination, and abstractions by fn-
expressions2. Local definitions by where-clauses are excluded for simplifying the evaluator. Expressions
with where-clauses like

eowhere x1=¢; and - - - and x,=¢,

can be considered as a syntactic sugared form for

(fnxy. -~ - fnxs.e0)er --- en).
These are semantically equivalent. Recursive definitions may be expressed using the fixed point operator Y
defined by Y f =f (Y f) and where-clauses. We shall deal with recursive definitions directly in later
chapters, however. Excluded also are specifications of primitive functions such as arithmetic and Boolean

operations, and data constructors and destructors. A more important function would be * if* for conditional

1 The language shown in Figure 3.1.1 will be extended in Chapter S so that expressions with where- and whererec-
clauses are allowed. The extended language will be used as our referential language throughout this thesis.

2 We avoid to use A in the source language because it is used in the description of the semantics. We use fn instead.

21
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Syntactic domains

beBas basic values

xelde identifiers

ecExp expressions
Abstract syntax

e:=blxleelfnx e

Semantic domains

B basic values

E=[B+F], expressible values

F=D—>SE functions

D=E denotable values

U=Ide-> D, environments
Semantic functions

B :Bas—> B (unspecified)

E:Exp—->U->E

Elblp=BIb]

E[x]p=plx]

Efeoeilp=(Eledp)E[e1lp)
E [fn x. eolp = MO.E [eo)(p+<x —8>)

Notations
Domain construction operator + stands for the disjoint sum.
For any domain X, X,=X+{err}.
For an environment p, p+<x —8> denotes
Ay.if x=y then 3 else p[y].

Initial Environment
The initial environment py satisfies po[x J#err for pre-defined identifiers x .

Figure 3.1.1. Denotational Specification of a Very Simple Functional Language

expressions. A conventional non-lazy evaluator needs to deal with conditionals as special forms because
for an expression (if e1 e2 e3) either ez or e3 must be selected according to the value of e; while all of the
arguments are always evaluated before invocation of functions by such an evaluator. It is not the case,
however, in our lazy evaluator. We may consider that in lazy evaluation ‘if” as well as other basic opera-
tions are primitive functions. Each primitive function has its own evaluation rule, which is independent of

the basic algorithm presented here.

We first define an ordinary lazy evaluator using the notation in [Henderson76]. We assume that the

abstract memory M has an very accomodating property. Each cell of M is capable of holding any of the
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forms e € Exp in Figure 3.1.1. It is certainly unrealistic, but it greatly simplifies the discussion. We shall
discuss about practical evaluators in Section 3.3. A memory cell at address T of M holds an expression. A
simple expression b or x is held in the cell & in an obvious way. How about compound expressions like
(eoe1)? Such an expression is represented using addresses of cells for component expressions. Figure

3.1.2 shows the rules for representation of expressions in the abstract memory M.

Syntactic domains
beBas basic values
xelde identifiers
ecExp expressions

Representation in M

eeRep representation of expressions

ne Addr addresses

gx=blxInnlfox ninwithx=rand --- and x=n
Representation function

Rep : Exp - Rep

Rep[b]=|b ]

Replx]=x ]

Repleoe]= | mom ] where mo::Rep [eo] and m;::Rep [e1]
Rep[fnx. eol= |fnx. mo| where mo::Rep[eo]

Notations
A representation € of an expression e is quoted by | and ].
7::€ means that the cell at address & contains €.

Figure 3.1.2. Representation of expressions in the abstract memory M

The last form of €, i.e.,

| 7o with x1=m; and - - - and x,=7, ]

stands for a representation of a suspended expression which comes out in the course of evaluation. See

below for details.

The state of a computation is described by a partial function

K : Mem

where

Mem = Addr — Rep .
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If an address 7 appears as a component of any representation of expression, p «t is defined. Addresses for
which 1 is undefined are the free cells. We use a notation p+<n—¢€> to describe a new memory which

differs from p only at address m:

p+<mo—€> = Am. if n=no thenc else u 7 .

This notation is very similar to the p+<x—&> notation in Figure 3.1.1. We assume also that ‘+’ in

pU+<m—e> associates to the left. That is,

L+ <WM1—E€1> + <M2—€2> = ([.L+ <M1—E€1> )+ <M2—E2>

and the rightmost term represents the last change to the memory.

Evaluation starts with loading the memory M with the representation € of an expression e to be
evaluated. The result can be found in the memory location which originally contains €. Our lazy evaluator

Eval (n,u) evaluates € at location 7t of the memory status | and returns a new memory [":

Eval : Addr X Mem — Mem .

We may have a new memory

W =Eval (np) where um = €
with the result

[T
The evaluator Eval is defined by cases of the form of expressions. We shall give some remarks in

parentheses ‘{” and ‘) for ease of understanding.

Lazy evaluator Eval (1)
[1] Caseprm = |b]
return |L ;

[2] Caseurm = |x]

return [l ;
3] Casepn = |mom ]

let py = Eval (mo,) ;
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if w1 o= | fn x.72 with 6 | then
let py = p+<n— | w2 with x=r; and 0 |> ;
return Eval (n,J12) ;

else error ;

{ For a combination | o 7t |, first evaluate 7o, which must be a function. If so, the cell at
location x is made to contain a new expression composed of the function body m; with an argu-

ment binding x=m;. Then evaluate it with the altered memory 2. }
[4] Caseprm = |fnxmo]
return j ;
{ No more evaluation possible. }
[51 Caseprw = | w'with 0] where 6= | x;=m; and - -- and x,=%, ]
[5-1] Casepn' = |b ]
return u+<n—|b |>;
{ Update the cell & with a simpler expression b . }
[5-2] Casepn' = |x |
if there is an x; such that x=x; ,(1<i<n) then
choose smallest such i ;
let i = Eval (m; J) ;
return W +<n—UI T >
else error ;

{ Find an expression x denotes from the binding 6. Evaluate it and update the location &

with the result. }
[5-3] Casepn' = |mom )

let mo' and &y’ be distinct free cells;



let w1 = p+ <> |mo' 711’ > + <mo'—> | Mo with 0] > + <m'— |7t; with 6] > ;
return Eval (n) ;

{ Distribute the binding 6 to each components. New cells are required to hold the

instances of expressions represented by o and ©; which may contain free variables. }
[5-4] Casepun' = [fnx.mo]

return i ;

{ No more evaluation done for | fn x.towith 6 . }
[5-5] Casepn' = | mo with ']

let uy = p+ <n'— | mo' with 6'and 6] > ;

return Eval (n,)L1) ;

{ Combine two nested bindings into one. }
To illustrate how the lazy evaluator works, we shall consider an expression

(g 3)+(g 4) whereg=(f 5 wheref xy =(fac x}+y)
where fac is the factorial function. This expression has already been presented as an example in Section
1.2, where the differences of lazy and fully lazy evaluation mechanisms are explained. In the language of
Figure 3.1.1, we must write the expression as

(fn g.(add (g 3) (g 4))) ((fn f.f 5)(fnx.fny.(add (fac x)y)))

The functions add and fac are considered as primitives.
The function add eventually evaluates its two arguments (g 3) and (g 4). Both terms are evaluated

by first computing g by the evaluator. Let us consider the computation of

(fnf.f S)(Enx.fny. (add (fac x)y)))
which is assigned to g. This term is evaluated to become something like

[ 71 with f=rs ] .
We may write the initial configuration of the memory i as Figure 3.1.3(a). That is,

3 For simplicity, we omit representation details for ‘(add (fac x))’ held in the cell at ;. Computation here will not
proceed beyond this point.



27

Moo= | 7 with f =4 |

which represents an expression with a where-clause

f S where f =fnx.fny.(fac x)+y

in an extended language.
(a) Initial memory state Lo (b) Final memory state 3 =Eval (1o,}L0)
7o i | m with f=my | 7o :: | ®s with x=m0 |
T M T M
m S ] m:|f ]
w3 |S] w3 5]
7 | fx.ms | 7s 2 | fx.ms |
75 | fny.me | 75 :: | fny.me |
e | 77 M | T 2 | 17 s |
n7:: | (add (fac x)) | w7 2 | (add (fac x)) ]
mg: |y ] ms: [y ]
79 2 | fox.ms |
o :: | 703 with f=my |
Figure 3.1.3. An example of lazy evaluation

Evaluation proceeds as follows.

Eval (mo.0): Mo Teo=| 1 with f =4 | and pomti=| 72 703 | [Case 5-3]
| let 7o and ;0 be free cells;
[ let pi=po+<mo—> | 79 T10] >+<M9—> | 712 With f =1ts] >+<m10—> [13 with f =ma| > ;
| poe—Eval (mo,111): 1 Tio=| 109 10 | [Case 3]
| Eval (To9,101): 1 Tto=| 2 with f =r4 | and p mo=f [Case 5-2]
| Eval (mta,j11): p 1= M x.7ts | [Case 4]
I return p;;
e
| return pi+<m9—H T4>;
& p+<me—| fox.ms]> ;
| o=p+<mo—> | fnx. s | > ;
| let pa=py+<mo—> | s with x=mio | > ;
| Eval (mo13): paTo=| 7s with x=mt10 ] and p3 ts=fn y.7s [Case 5-4]
Ireturn s ;
leus
I return p3 ;
« U3

The evaluator returns i3 shown in Figure 3.1.3(b). The result of evaluation is

Hamo= | (fmy. (fac x)+y ) with x=(5 with f =fnx.fny.ns)] .
That is, g becomes



(fny.(fac x )}y ) where x=5
and evaluation of (g 3) proceeds as*

(g 3) > (fac x)+y with y=3 and x=5 [Case 3]
— (((add (fac x)) with y=3 and x=5) (y with y=3and x=5)) [Case 5-3]

The step taken as a [Case 5-3] creates two new cells to hold components of expressions with bindings. As
remarked in the algorithm, these cells are needed for distributing the binding to components of an combina-
tion. The binding is used to determine values of free variables in that combination. The original expression
must be preserved for the use when other bindings are given, and therefore new cells are allocated each
time the combination is instantiated by a binding. Similar steps are taken to assign a cell, say ', to hold
w2 | (add (fac x)) with y=3 and x=5 | .
The result of (add (fac 5)) supersedes the original expression at ' as the algorithm shows’. When the
other operand of ‘+’, i.e., (g 4) is evaluated, similar computation is performed. In that process, a new cell
is allocated to hold
| (add (fac x)) with y=4 and x=5 |
which will be evaluated in such a way that the term (fac 5) is computed again. Thus the computation of

(fac 5) is performed twice by the lazy evaluator described above.

3.2. Fully lazy evaluation

We shall examine the lazy evaluator Eval in more detail before discussing full laziness. The
difference between call-by-name and call-by-need parameter mechanisms has been explained in an informal
manner in Section 1.2, Our lazy evaluator Eval uses the call-by-need mechanism. When an expression

pn = | ® with x,=n; and - - - and x,=n, |
where pun'=|x; | is evaluated, the expression at 7; bound by a variable (parameter) x; is replaced by the

result of evaluation as shown in the case [5-2] of the algorithm:

let iy = Eval (m: ) ;
return J+<wtoON TG >

If the call-by-name strategy were used, these two statements should be

4 We do not show here the details of memory changes, but illustrate only the effect of evaluation.:

5 It is, however, unusual in most practical evaluators. Rewriting each expression by its result costs too much in practice.
See Section 3.3.
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let puy = p+<mop® > ;
return Eval (1) ;

In this case we first fetch the expression at ; with which we replace the cell &, and then evaluate it in the
altered memory. It would be obvious that the evaluator based on call-by-name computes the argument
every time it appears because the contents of the cell w; is never changed. We use the term ‘lazy evalua-

tion’ to mean the way of evaluation performed by the original algorithm Eval based on call-by-need.

We now turn to the discussion of full laziness. As illustrated in the previous section, our lazy evalua-
tor Eval suffers from multiple computations of the same expression. Strictly speaking, the goals stated
intuitively at the beginning of this chapter have not been achieved by the ordinary lazy evaluator. It is
somewhat surprising that this point had not been argued until Hughes mentioned full laziness of combinator

reducers [Hughes84]:
Every expression is evaluated at most once after the variables in it have been bound.

It would be clear that Eval in the previous section does not have the property of full laziness. Hughes
claims only that his reduction method for super-combinators performs fully lazy evaluation, but does not
present any general algorithm for fully lazy evaluators. We shall define a fully lazy evaluator Eval* by
modifying the evaluator Eval. The fundamental difference between laziness and full laziness will be made

clear by this approach.

If the result of evaluation of (f 5) were®

1

mo': [fy.m']
' n'y )
7' 2 | (add (fac x)) withx=5 ],

it would be obvious that the steps for computing (fac 5), and in fact (add (fac 5)), are taken only once
when evaluating (g 3)+(g 4). A cell m,' for an instance of expression ‘(add (fac x))’ is allocated as soon as

x is bound, and the contents of that cell will be updated when the expression is evaluated first time after y

is bound. It will be referenced by evaluation for other occurrences of that expression.

We may rewrite the algorithm of Eval according to such observation.

6 We omit here again further deails on memory configuration for ease of reading.
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Fully lazy evaluator Eval® (n,1)
(1] Caseprn = |b]
return 1 ; { Same as Eval .)
[2] Caseprm = |x]
return Y ; { Same as Eval .}
3] Caseurn = |[mom |
let W = Eval* (mo,0) ;
if iy mo= | fn x.72 | then
let p2 = pi+<n— | 7tz with x=m; |>;
let p3 = Refine (m12) ;
return Eval* (m.u3) ;
else error ;

{ Note that the cell mp in memory iy holds a function of the form | fnx.w | and ‘with 0 disap-

pears in Eval®. Refine distributes the binding | x=n; | to the function body 7.}
[4] Caseprn = |[fonxmo]

return jL; { Same as Eval. }
{‘[S]Casep® = | = with 0 ]* does not occur in Eval* .}

The idea behind the changes is to bring the binding into the function body and to make instances of
expressions with bindings as soon as the function is invoked. Of course, this is only conceptual. See the

next section for implementation.

Any representation of the form

| 7 with 6 |

is assumed to be fully reduced to a representation without ‘with 8’ by Refine . Since association of vari-

ables with values is established in Refine , the rule [5] in Eval becomes unneccesary.
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The algorithm for Refine is defined as follows.
Refine (m 1)
let pm= | n'withx=r]
[R-1]Casepun' = |b ]
return p+<n—| b |>;
[R-2] Casepm' = |x |
if x=x; then
return H+<ToUR> ;
{ Réplace 7 with ur, which is an expression x denotes. }
else
return p+<n— | x |>;
{ The variable x has not been bound yet. }
R3] Casepr' = |mom |
let o' and m;' be distinct free cells;
let = p + <n— 7o' m1'| > + <o’ Mo With ¥=Tt| > + <my'— |1y with X=T]> ;
let p2 = Refine (no' J1) ;
return Refine (m1',12) ;

{ Distribute the binding | x=T] to each component. New cells are required to hold the

instances of expressions represented by 7o and 7t; which may contain free variables. }
[R-4] Casepr' = | fnx.mo |
if x=x then
return L + <x—| fo x.7wo | > ;
{ The binding [ x=T| does not go through fn x. }

else
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let &* be a free cell;
let p* =p+<n—| mxn* |>+<n® > no with withx=x|> ;
return Refine (n* n*);

{ Refine distributes the binding to a new instance n* of the function body. }
The memory L in Figure 3.1.3(a) represents

f 5 wheref =fnx.fny. (fac x)+y

as

7o :: |7ty with f=n4] .
If we refine Lo by Refine (1o, l0), we obtain a memory state [ as follows. It is shown in Figure 3.2.1(a).

Ho«—Ref ine (To,10) : Lo To=| 71 with f =m4 | and pomi=| 7273 | [Case R-3]
| let 7ty and ;0 be free cells;
Ilet |1y = po + <M1 —> | Mo M10) > + <Mo—> |72 With f =14 ] > + <m0~ [mawith f =ms)> ;
| fi2¢~Ref ine (o, fl1) : {1 mo=| 72 with f =rts] and fi; nz=| f | [Case R-2]
I return [1;+<mo—}i; 74;
| f=fi+<my— | fox. 75 | >;
| fs¢—Ref ine (m10)12): P2 10=| 73 with f =rts ] and flomt3=| 5 ] [Case R-1]
I return flp+<mo—|5]>;
I fs=flz+<mio— | 5]>;
| returnjis;

Ho=(13
The fully lazy evaluator Eval* produces fis of Figure 3.2.1(b) as an intermediate stage of evaluation.

Eval® (moflo): lomo= mom10]  [Case 3]
| l1e—Eval”® (m9,10): floo=| fnx. 7ts | [Case 4]
I return [io;
I t1=flo;
Het =il +<mo— | s withx=m10 | > ;
| fa<—Refine (mo,]12): fi2 To=| 7s with x=m;0 | and fl ts=| fn y.76 | [Case R-4]
| let 1) be a free cell;
1et la=pla+<mo— | fny. ;11 | >+<m11—> | 6 with x=m10) >;
| la—Refine (w11, 113): i3 T11=| Mg with x=m10| and fla =] 70773 [Case R-3]
[ let 712 and w13 be free cells;
et fis = fa+<m11—> | T12 W13 ] >+<M12—> | 707 with x =mt10 ] >+<m13—> | 78 with x =m;0) >;

We are convinced that the result will be’

7 Note that the cell 7t actually contains addresses of cells for ‘add ’ and * (fac x) with x=m;¢’
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(a) Memory state [ip (b) Intermediate memory state s
o [ ™o mio | T | fy.my |
7w | M)
e |Lf ) m:|f]
w3 |S5) m 5]
7t | foxms | 742 | fox.ms |
s :: | fony.me | s i | fny.me ]
T | 777 | g |77 7
w72 | (add (fac x)) ] w72 | (add (fac x)) |
mg: |y ] ns Ly
o o | fx.xs | o :: | fx.7es |
T [5) o 5]
T i [z s
M2 3 | 707 with x=my0 |
T3 ;| s with x=m10 |
| Figure 3.2.1. An example of fully lazy evaluation

o | fy.m |

w11 o [ T2 T3

T2 i | 77 with x=my0 |
maz |y |

and 712 holds the maximal part of the expression which is dependent only on x and independent of y.

3.3. Practical fully lazy evaluators

We have described algorithms for lazy and fully lazy evaluators using an abstract memory M of
which cell is capable of holding any kind of expressions. A real memory word does, however, contain only
a limited amount of information. It may holds an atomic values and a pointer (address). A natural
approach to implementing practical evaluators is to represent variable-sized memory cells in M with linked
lists of machine words. We shall discuss several implementation methods for the fully lazy evaluator from

practical viewpoints.

Refinement of bindings

The first thing we must consider is an efficient implementation technique for the Refine algorithm.
The definition of Refine would be unrealistic; it distributes an argument to all the component expressions

of a function body whenever the function is invoked. There are several solutions proposed.
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Assume that we deal with only a fixed number of predefined functions called combinators each of
which contains no free variables. For example,

S=fnf.fng. fox. f x(gx)

and

K =fnx.fny x

are combinators, but

F =fnx.fny xz
is not because a free variable z appears in the function body. If every expressions is composed of
predefined combinators, we can implement Refine by embedding the rules for each combinator in
the evaluator. Since there is no free variable in function bodies, association of arguments and vari-

ables is established in a simple manner.

In fact, it is possible to transform any expression of Figure 3.1.1 into an expression comprising only
combinators S and K, and other constants. Of course, a few other primitive functions are necessary
for practical languages. Turner’s combinator approach [Turner79] is based on this idea. See Chapter

4 for details.

The Refine process essentially locates occurrences of the parameter x of the function concerned. An
important implication of Refine is that in a function body © maximal parts #%;, - - - , . dependent on
x should be identified, and only the cells in memory 1
m; = | & with x=x |

must be allocated when the function is invoked. That is, Refine (r; i) for distributing | x=r ] to
i ; may be put off until evaluation of [ir; occurs. What we expect from Refine is to allocate shar-
able cells ; for maximal occurrences of expressions dependent of x. Fortunately we can identify
such maximal occurrences e, - - -, e corresponding to %1, - - -, %, by analysis of the scope of vari-

ables in the function body e.

Recall that the form

L% with =% |

comes into existence when a form
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[w'x]
is in memory W, and Eval* (',11) results in p; such that

}Llﬂi'= Lfnfﬁj .

This suggests that we may rewrite the expression e as a combination

((fnxy. -+ .faxs.e')er - - en)
where e ' is an expression obtained from e by replacing every occurrence of ¢; in e with x;. By doing
so, we may evaluate expressions in a fully lazy way by an ordinary lazy evaluators. Hughes pro-

posed a method based on this strategy and call such functions super-combinators. See Section 4.2,

Representation of expressions

The abstract memory suggests that graphical representation may be appropriate to hold expressions in

actual memory. Such evaluators are known as graph reducers. Chapter 4 describes them in greater detail.

Another important method, and in fact which turns out to be more efficient than graph reducers on
conventional computers, is to generate fixed-code which executes the evaluation process as in ordinary
compiler languages. In such evaluators,

| 7 with x=x |
need to be represented by a data structure called closure®. Refinement is performed just as in the super-
combinator approach before code generation, but transformation for producing super-combinators is of

course optional. A fixed-code approach to combinator reduction can be found in Section 4.5.

An implementation method for more efficient evaluators that achieve full laziness will be discussed

in Chapters 5-8.

8 Combinator reduction and closure reduction are compared in [Ida85] from a different viewpoint.



Chapter 4

Combinator reduction

Tumer proposes an implementation technique for functional languages which is based on combinator
calculus. Function definition in a functional language is translated into a lambda expression which is then
transformed into a combinator expression with no free variables. Functional application in the form of
combinator expression is reduced to a simpler one by an evaluator. In this chapter several implementation
techniques for conventional computers are presented and these are compared each other from experimental

results.

It is well known in the theory of lambda calculus that variables in lambda expressions are unneces-
sary if a few functions called combinators which embody certain common pattemns of application are intro-
duced. Combinators S and K defined as

Sfegx=fx(@x)

Kxy =x

are adequate for eliminating variables from any lambda expression. By convention we denote functional
application by juxtaposition and assume that it associates to the left. Turner [Turner79] uses additional

combinators for practical reasons to evaluate functional programs. Combinators included are

Ix =x
Bfgx=f(gx)
Cfgx=fxg

and extended ones of S, B, and C denoted by S’, B’, and C°.

Shfgx=h({x)(gx)
Bhfgx=hf(gx)
Chfegx=h({x)g
Moreover combinators for conditional expressions, recursive applications, arithmetic operations, and data

constructors are also introduced.

IFet f =t ife istrue, f otherwise

Yf=ff)

+xy = x+y .eftc.

36
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A combinator expression is simply an applicative expression, i.e., a constant or a combination of a

function and an argument, with the restriction that its constituents must be also applicative expressions.

Although the above combinators are considered standard, any closed function that does not have any
free variable can be taken as a combinator. Hughes [Hughes82] proposes a new idea of transforming
lambda expression into such a combinator expression. Specifically chosen combinators for each program
are called super-combinators.

The combinator expression is reduced to a simpler expression by applying reduction rules repeatedly.

This process corresponds to evaluation of programs in conventional programming systems. We may take

equations defining combinators as reduction rules. For example, from the definition

Bfgx=f(x)
we have arule
Bfgx - f (gx).

Every occurrence of an applicative expression (B f g x) may be reduced to a simpler term (f (g x)) when-

ever possible.

Section 4.1 describes a basic algorithm by Turner [Turner79] for translating applicative expressions
into combinator expressions. Section 4.2 introduces the idea of super-combinators by Hughes [Hughes82].
Section 4.3 gives Turner’s evaluator based on graph rewriting. Section 4.4 describes another evaluation
scheme proposed by the author [Takeichi85]. It is based on graph copying and has an advantage in imple-
menting on conventional computers. Section 4.5 deals with a compiling scheme for generating fixed-code
for combinator reduction. The evaluators are compared each other using experimental results in Section
4.6.

Sections 4.1-4.3 give brief overview of the work by Tumer and Hughes. Those wishing to know
more on their work consult [Turner79] and [Hughes82], respectively. These sections are included for this
chapter being self-contained. The rest of this chapter describes the author’s work on combinator reduction

in detail.
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4.1. Combinators

As mentioned above, lambda expressions can be translated into expressions composed only of com-
binators and constants. We may call such expressions combinator expressions. Combinators are, in fact,
considered as predefined constants representing functions. In this section, we describe Turner’s method of

translating applicative expressions into combinator expressions.

We first define a class of expressions, i.e., applicative expressions, to be dealt with in this chapter.

An applicative expression is either

(1) simple and is either
(1.1) aconstant symbol that may be a combinator,
or
(1.2) avariable

or

(2) compound and is a combination, i.e., a functional application of the form (e; e2) where e and e are

applicative expressions.
or
(3) alambda expression of the form Ax.e where x is a variable and e is an applicative expression!.
Variables may appear only inside of lambda expressions, and they must be bound by some lambda binding.

A combinator expression is simply an applicative expression that contains no lambda expressions,

i.e., ones of case (3) above.

For a function definition of the form

fx1x2 - xa =€

where e is an applicative expression, f can be expressed as an applicative expression

f =M1Axz - Min.e

Hence, we do not consider translation rules for definitions in this chapter2.

1 We use fn-binding instead of A-binding in other chapters of this thesis.
2 Tumer describes such a rule for definitions in [Tumer79].
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Consider, for example, a definition of the factorial function

facn =1IF(=n0)1(*n (fac (—n 1))
where IF, +, * and — are predefined function constants. For simplicity, we consider a symbol fac as a con-
stant. The right-hand side is an applicative expression for

if n=0 then 1 else n*fac (n—1)
in conventional notation. Recall that functional application associates to the left, and the right-hand side of
the above definition is a short hand for

((IFEn0)) D (*n (fac (-n 1))))
The above definition can be written using lambda notation as

MIFEn01™n (fac (-n 1)

Translation of a lambda expression into combinators is to abstract variables from the body expres-
sion. If the body expression e of a lambda expression Ax.e is a lambda-free applicative expression,
abstracting x from e basically proceeds according to the following rules:

AMxx o1
Axa - Ka where x#a

Ax.(e1e2) — S (Ax.e1) (Ax.e2)

The rules for abstraction must be applied recursively until no lambda expression remains. Note that the
translation removes lambda expressions by introducing combinators I, K, and S. However, applying these
rules to a lambda expression tends to yield a very large combinator expression. Turner proposes optimiza-
tion rules using following relations to reduce the size of combinator expressions.

SKa)(Kp) =K(@p)

SKa)B=BaP

Sa(KB)=CaP

He also introduces several combinators as mentioned in the beginning of this chapter.

The above translation rules for the lambda expression assume that its body has already been

translated into a lambda-free applicative expression in the same manner if its original contains lambda

expressions. Thus, we have a straight algorithm trans for translating any applicative expression e : 3

3 Syntactic terms are quoted by quasi-parentheses [ and ] to distinguish them from ones describing the algorithm.
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trans e =

if e isa variable then e

else if e isaconstant then e

else if e isa combination [(e; e2)] then [((trans [e1]) (trans [e2]) )]

else let ¢ be a lambda expression [Ax.eo] in abstr [x] (trans [eo])
abtsrve =

let v=[x] in

if e isavariable [x] then [I]

else if e contains no occurrences of [x] then [(K e)]

else if e isa combination [(e; e2)] then

if [e1] contains no occurrences of [x] then

[B [e1]) (abstr [x] [e2])]

else if [e2] contains no occurrences of [x] then
[(C (abstr [x] [e1]) [e2])]
else [(S (abstr [x] [e1])) (abstr [x] [e2]))]

Translating the lambda expression in the above definition of fac, we get
fac = S(CBIF(=0))1)(S* (B fac (C-1))

Related works include discussions on the complexity of Turner’s algorithm and proposals for new
representation of combinators. Kennaway [Kennaway82] deals with the complexity of the translation algo-
rithm and proves that the size of the resulting combinator expression is O (n2) in the worst case where n is
the size of the original lambda expression. Hikita [Hikita84] shows that the size of the combinator expres-
sions is O (n32) in the average case. Noshita [Noshita85a] proposes an idea of encoding sequences of com-
binators to a single symbol to reduce the size of the resulting expression to O (nlogn ). However, we do not

discuss their works here.

4.2, Super-combinators

Turner’s method described in the previous section transforms an applicative expression to a combina-
tor expression consisting of predefined combinators and constants. However, an idea of generating combi-
nators according to the source expression is proposed by Hughes [Hughes82]. In fact, any lambda expres-

sion with no free variable can be taken as a combinator. Consider a function

®=MIF (=n0)1(*n (fac (—n 1))).
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It contains no free variables and therefore it is a combinator. We may use @ in defining the factorial func-
tion fac as

facn = dn.

The right-hand side is a combinator expression.

In this case we have derived the combinator ® from the definition of fac with no difficulties because
it takes only one parameter and the body expression contains no lambda expression. It is, however, not the

case with functions that have more than one parameters or contain lambda expressions. A simple abstrac-

tion rule is to translate the lambda expression as follows: if Ax.e contains free variables y1, y2, - -, ym,
then translate it into
Dy1y2 - Ym
where
D = Ay;.Ay2 . Aym.Ax. e
or

Qyiy2 - yYnx =€
in the form of a function definition. Repeated application of this rule eliminates all the lambda expression

in e. It is true, therefore, that the function @ becomes really a combinator in the sense described above.
However, such a simpleminded method does not generate combinators for fully lazy evaluation (See Sec-

tion 3.2).

Hughes improves this to generate super-combinators for full laziness. The basic idea is to extract
maximal free occurrences o, 02, - - -, (s Of expressions from Ax.e with respect to the bound variable x,
and construct a combinator @ as

Daiaz - amx = e [av/ou, a0, -, AGm/0n]
where e [a1/0u, - - - ,am/0m ] TEpresents an expression obtained from e by replacing all the occurrences of
a; with a; simultaneously. Informally speaking, the maximal free occurrence of expressions with respect
to x is the maximal part of an applicative expression independent of x. See Section 6.3 for the formal
definition.

Consider for example a highly recursive function
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fxyz=IFGzy)ffyzCx)FzxCyNHFxy 2z )y

Maximal terms independent of the last parameter z are

ou=x, e=(-x1), ca=(f xy), cu=(-y 1), as=(f y), and og=y.
We can define a super-combinator

0:a1a2a3a4asa6z =IF (>za6)(f (a5za2)(f zar1a4) (@az(-z 1)) as

and rewrite the original definition as

fxy = ¢ o1020304 050
=6xCxDFxy)Ey DE ¥y
Similarly we get another super-combinator by abstracting the right-hand side with respect to y.

byarazy = a1(a2y) =y D(f y)y

and

fx =0 (%:x(x1)({ x).
Finally we have

0xx = ¢ (O: x (—x 1) (f x)
and

f = 6x.
Note that the super-combinators ¢x, ¢y, and ¢, have been derived so that the occurrences of maximal free

terms with respect to x, y, and z are replaced by parameters and they appear as argument to those combina-
tors in reconstructing the original expression. As explained by Hughes, the order of parameters is critical

for defining super-combinators. We shall leave the details to [Hughes82].

4.3. Graph rewriting evaluator

Tumner [Turner79] shows an evaluator for combinator expressions based on graph rewriting. Every
combinator expression is represented by a graph of which nodes correspond to functional applications.
Every node has a function field and an argument field as shown in Figure 4.3.1. We have a graph represen-
tation of the combinator expression for fac in Section 4.1. as Figure 4.3.2. The evaluator uses a stack
called left ancestor stack (LAS) to keep the pointers to the nodes. The stack initially contains the pointer to

the node representing the expression to be evaluated. The function field of the node pointed to by the top of
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the stack is pushed down in turn until a combinator appears at the top of the stack. The reduction rule for

that combinator is then applied as shown in Figure 4.3.3.

LAS LAS

Bl

{3 17]

Before reduction

[ g1 x|
B[ 7] 5L
new node

After reduction

Figure 4.3.3: Reduction of B by graph rewriting

After combinator reduction is performed, stacking operation is resumed. This process terminates in either
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of the following cases. No more reduction proceeds if data has been obtained, in which case it is the result
of evaluation. If the number of arguments supplied is less than required for yielding data, reduction cannot

be taken. The evaluator returns the partially reduced graph that represents a function.

The graph is transformed according to the rules for combinator reduction. Any node representing an
expression might be pointed to by pointers from several nodes as a result of sharing common expressions.
The graph rewriting evaluator deals with such a shared node in the graph as follows. The result of combi-
nator reduction is always left in the root node of the original expression. Hence the node to which the

reduction rule is applied is necessarily overwritten with the result as shown in Figure 4.3.4.

LAS indirection node

3 REER
KRN

Before reduction After reduction
Figure 4.3.4: Reduction of + by graph rewriting

If the reduction does not result in a combination, the root node becomes an indirection node with the iden-
tity function I in the function field and the value obtained in the argument field. Combinators for arithmetic
operations and the standard combinator K always require indirection nodes. The use of the indirection

node is essential for call-by-need evaluation.

4.4. Graph copying evaluator

The key to the graph copying scheme relies on the fact that the expression graph can be simplified by
copying its nodes and arcs instead of rewriting the root node. The node pointed to from multiple nodes in
the graph appears only at reduction of specific combinators. Consider for example the reduction of S with
f,g,and x asits arguments. It yields a graph representing (f x (g x)) in which only the occurrences of x

should refer to the identical node for x. The root node for (f x (g x)) may be created.

The evaluator by graph copying also uses a stack called argument stack (ARGS) to keep the argu-

ments themselves instead of the pointers. The mechanism of pushing arguments onto the stack and
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dispatching combinators for reduction follows the way the graph rewriting evaluator does. Since rewriting
the node is unnecessary in graph copying, the stack keeps only the argument. Instead of rewriting, a copy
of the expression graph is made according to the need. Figure 4.4.1 shows how the standard combinators B

and ‘+” are reduced by graph copying.

X

g 1, e ]
7

Bl [B]f]

ARGS

2

1

"

Before reduction After reduction
Figure 4.4.1: Reductions of B and + by graph copying

A problem arises along with the reduction of S as mentioned above. Although a straightforward
application of the method could implement the copy rule of call-by-name parameters, each occurrence of
the identical expression need to be evaluated repeatedly. Two occurrences of the third argument x should
be identical after the reduction. Once either of these happens to be reduced to yeild a (possibly functional)
value, the other should become that value. Such a call-by-need mechanism is most important for lazy
evaluators. Fortunately, it can be implemented by inserting a special combinator T only to the expression
to be shared. The name of that combinator comes from an established compiling technique of using thunks
for call-by-name parameters in procedural languages [Ingerman61]. Figure 4.4.2 shows the effect of reduc-
ing S by graph copying. Note that the node with T in its function field is pointed to from two arguments
fields. The reduction rule for T differs slightly from the standard one.

T (evale) — ¢’
with rewriting the node to become (T (deliver e”)) where e’ is the result of evaluation of e, and
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ARGS PFEER ARGS _= & 1;/}: ]
X
F= T-="
g [, T s | -—————"".._T_JZ/_J
f f - -
S| 517 {oa] = ]
new nodes
Before reduction After reduction

Figure 4.4.2: Reduction of S using thunk T

T (delivere) — e

Two distinguished constants eval and deliver are used with T. The effect of applying the rule for T is
shown in Figure 4.4.3. A similar mechanism is suggested in [Jones82] for fixed-code generation of combi-

nators (See Section 4.5).

ARGS ARGS
e!
T
ARGS
e
Before reduction After reduction

Figure 4.4.3: Reduction of thunk combinator T

Extension of the above method to super-combinators presents no major problems. Assume that the
reduction rule for a combinator @ is
Dx1x2 - xn > Flxy,x2,0 0, %)
where F is an applicative expression comprising variables x1,x2, - -  ,xa, and constants. When reducing @,
thunks, or the nodes with T in their function field, are necessary only for arguments corresponding to vari-

ables with multiple occurrences in F. Reduction by graph copying for ® proceeds in general as follows.
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Let X, be the set of variables that appear more than once in F .
(1) Make thunks with eval indicator each for x in X;.
(2) Fill the argument field of the thunk for x; in X, with i-th argument on the stack.

(3) Construct a graph representing an applicative expression for F by replacing x; not in X, with

J-th argument on the stack and x; in X; with the corresponding thunk.

Algorithm for graph copying evaluator

while top of ARGS points to an application node do
Discard the top of ARGS ;
Push argument and function parts of the node in this order;
if top of ARGS is a combinator then
if number of arguments on ARGS is sufficient to reduce then
Reduce the combinator using as many arguments on ARGS ;
Put the resulting expression onto ARGS in place of them;
goto 1;
else
Construct a graph for partially evaluated function;
return the result as the value of the original expression;
if top of ARGS is a data then return it;
if top of ARGS is a thunk then
if it has eval indicator then
Evaluate the expression in the thunk recursively;

Rewrite the thunk with deliver indicator and the result;
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Put the result on ARGS in place of the thunk;
goto 1;
else
Get the value from the thunk;
Put it on ARGS in place of the thunk;
goto 1;

It should be noted that the evaluator is called recursively for evaluating thunks and special combina-

tors as IF, and +.

Comparison with the graph rewriting evaluator

Rewriting the node to which the reduction rule is applied ensures the call-by-need property in the
graph rewriting scheme. If we consider combinators as machine instructions, and super-combinators as
microprogrammed instructions, graph rewriting evaluation looks like seclf-reorganizing execution of
machine-coded programs. From a methodological point of view, such programs should be avoided at least
on conventional hardware. This holds also for a similar scheme used in SKIM machine [Clarke80]. The
fixed-code scheme to be described in the next section relies on compiling combinator expressions to gen-
erate stack machine code. As in the fixed-code, the graph copying evaluator does not change any part of the

expression graph except thunks. It is therefore easy to adapt the method to super-combinators.

The number of cells for representing the application node seems to be approximately the same in
both evaluators. In fact, it turns out that the numbers of S reductions and C reductions are approximately

the same. Evaluation of the factorial function fac applied to n reduces both combinators 2n +1 times each.

Graph copying scheme using chunks

As to storage allocation strategies in the graph copying evaluator, there is much room for choice.
One may use chunks, i.e., contiguous memory words, of arbitrary size for storing applicative form with
many arguments as shown in Figure 4.4.4. The size of the chunk has to be kept either in itself or with the

pointer to it. An algorithm for the evaluator using chunks follows.
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Figure 4.4.4: Chunks for super-combinator reduction

while top of ARGS points to a chunk of application do
Discard the top of ARGS ;
* Move the chunk onto ARGS ;
if top of ARGS is a combinator then
if number of arguments on ARGS is sufficient to reduce then
* Reduce it using as many arguments on ARGS ;
Put the result on ARGS in place of them;
goto 1;
else
* Dump the arguments on ARGS as a chunk representing a function

return it as the value of the expression;
Other cases are the same as before

The lines marked * offer the advantage of using data transfer instructions such as

49



50

load multiple memory words into registers,

store registers into multiple words, or

move multiple words from memory to memory
Such instructions cannot be used in graph rewriting.

The second of * marked lines would require explanation. As shown in Figure 4.4.4, the result of
reduction can be represented by chunks allocated in contiguous memory words; in this case, 6 chunks are
allocated in 17 words. In this way, we can allocate as many words as required all at once, and then copy
the template of the resulting graph to these words using data transfer instructions. After copying the tem-
plate, it is only necessary to adjust pointers to the chunks just being created, and fill argument positions

with arguments on the stack.

See Section 4.6 for experimental results.

4.5. Fixed-code for combinator reduction

In the previous sections, we have discussed implementation techniques for combinator reduction
based on graph rewriting and graph copying. The graph reduction is usually performed by an interpreter
that manipulates combinator graphs according to the reduction rules. Our purpose in this section is to
present an alternative scheme for efficient combinator reduction on conventional computers; a technique of
translating combinator expressions into fixed-code programs for a stack machine. The code is executed
directly by the machine and it remains unchanged throughout the execution as the object code of conven-
tional compiler languages. Hence the code is fixed in this scheme, while the combinator graph is

transformed during evaluation.
Objects manipulated by the stack machine are either
. an irreducible atomic value such as numbers and data structures. or
. a pair consisting of a code address y and a pointer to an environent chunk € in the heap store.

The second kind of object which we may call closure and denote by [y:€] corresponds to a combination,

i.e., functional application, that is not yet evaluated. (See Chapter 7 for detailed discussions on the closure.)
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The object is pushed onto the stack and is moved to the heap store as an element of an environment.

Environment chunks are created when reductions are taken and variables (parameters) are bound.
They are used to evaluate particular instances of expressions. If values of variables are required in evalua-
tion of these instances, they are retrieved from the environment. A combinator may be considered as an
irreducible value because it represents itself and is a kind of constants, If the reduction rule for a combina-
tor @ is to be implemented by a code chunk with address g, the value of the combinator can be represented

by a closure [Yo : $] where ¢ is an empty environment.

Other irreducible values, i.e., numbers, data structures, etc., can also be represented by a pseudo-
closure. If a code chunk beginning at address deliver returns the environment part of the closure, a
pseudo-closure [deliver :0] always yields the value a. Hence we may consider that the object manipulated

by our stack machine is a single kind of quantity, i.e., a closure.
The stack machine (Figure 4.5.1) has four registers*:
ap: argument pointer
fp: frame pointer
ep: environment pointer
pc: program counter

The registers ap and fp points to the stack; ap watches the top element of the stack, and fp holds the base
address of the current stack frame created by a recursive invocation of the code. The environment pointer
register ep normally contains the address of a chunk in the heap as its name suggests, or sometimes has an
irreducible value as mentioned above. The program counter pe is incremented by executing the code

except when an explicit transfer of the control is forced.

Consider the reduction rule

Oxixz - X = Flxy,x2, -+ )

where @ is a standard combinator or a super-combinator, and F is an applicative expression. The code that

4 Implementation of the heap store calls for another register hp (heap pointer) to allocate chunks. However, it is
irrelevant here and is omitted for brevity.
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Figure 4.5.1: The stack machine for combinator reduction

reduces ® should do the following action:

if (number of arguments on the stack) > n then

Pop up n arguments a1, o, - - -, 0, from the stack;
Create an environment chunk € containing o, 0, « -+, Oa;
Set ep point to €;

Jump to the code address vy for the expression F ;
else
return a functional value, i.e., a closure

Putting aside the translation rule for generating fixed-code in this section, we shall investigate actions that
should be taken by the stack machine. Translation rules for a more general setting are described in Chapter

7.

Assume that

F(x1,x2, -+ xn) = (€0, €1, *** €m)

where e;, (j=0,1, - - - ,m) are applicative expressions comprising variables x; and constants, but no other
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variables. Since all the ¢; may contain only variables in the environment €, the values of ¢;’s in a particular

instance of the right-hand side can be completely determined using €.
If e; is an irreducible constant such as a number, or it is a combinator, its value is itself.

If e; is a variable x;, the value currently bound to x; can be found in the environment chunk € which

is accessible through ep.

If ¢; is again a combination, its value can be obtained by evaluating it in the same way using €. In
combinator reduction, evaluation of e; should be delayed until its value is actually needed. It is, therefore,
appropriate to represent its value by a closure [y; : €] where 7; is the code address for the reduction of the
combination e;. It should be noted that irreducible values can also be represented by pseudo-closures as

explained above.

The stack machine put the values of em, -, €1, o onto the stack in this order. Then the machine
pops up and examines the value on the top of the stack, i.e., the value of eo. If it is an irreducible value
other than a combinator, that value should be retumned to the caller as the result of evaluation. If it is a com-
binator, reduction proceeds much the same way as above. Recall that the value of a combinator is simply a

closure [Yo : ¢] where Yo is the code address for .

As a more concrete example, we have a part of the fixed-code for reducing the combinator B

Bfgx > f(gx)
as follows.
Y8 : code for reducing B
if (fb—ap)>3 then

Pop up oy, o, and o, from the stack;
Create an environment chunk € and fill it with os, 0, and 0, ;
ep :=¢;

80 t0 Y (g x))

5 See Chapter 3 for details on lazy evaluation.



else return a functional value;
Y ¢ x): code for reducing f (g x)
Push a closure [y ) : ep] onto the stack;
Push oy which is the first element of € poined to by ep;
Pop up and examine the top of the stack;
Ye x):  code for reducing g x
Push o, which is the third element of ¢;
Push o, which is the second element of €;
Pop up and examine the top of the stack;

Snapshots of the reduction process is illustrated in Figure 4.5.2.

Stack Stack
— ¢ [=ap
oy
Ot ep > h o/ |eap
! ! o R
& L [— Fmme—- |
Environment ep - Olg 1
- fp - fp o=
Environment
........ B...T=pC ESRUUTONR ONUTE:
W @ x» W@ x» pe
Y Ye o
...... Goqar e geeeest
. During reduction:
Before reduction o be about to examine 0y

Figure 4.5.2: Snapshots of reduction of B
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It should be noted that the thunk combinator T is necessary for call-by-need evaluation as in the
graph copying scheme.

A similar but more versatile stack machine is introduced in Chapter 7, where an algorithm for com-
piling functional programs into fixed-code programs of that machine is also presented. We do not give a

compilation algorithm in this section, since it is very similar to one given in that chapter.

4.6. Experimental results

In this section we present some experimental results on the efficiency of evaluators based on the
methods explained in Sections 4.3-4.5. The evaluators were written on a typical conventional computer.
As we have mentioned at the beginning of this chapter, it is the main subject here to investigate techniques

for implementing efficient combinator reducers on such a machine.

The combinator reducers

In order to ensure that our measurements of the efficiency faithfully reflect the intrinsic qualities for
implementation on conventional computers, we write the evaluators in the assembly language. Experimen-
tal results reported so far were obtained using interpreters written in higher level languages [Hughes84].
Another experimentation gave the number of reduction steps instead of actual computation time [Peyton-
Jones82]. However, there may be the possibility of losing the true nature of the schemes applied to imple-

mentation on conventional machines.

Three evaluators were written by the author in the assembly language with fair keenness on a com-
puter Melcom 70/250. The machine normally accesses data in the memory using general registers.

. Graph Rewriting Reducer (GRR) based on the scheme described in Section 4.3.

. Graph Copying Reducer (GCR) based on the scheme described in Section 4.4. This evaluator
uses instructions for transferring multiple words from memory to memory, and allocates
chunks for graph nodes.

. Fixed-code (FC) of the stack machine described in Section 4.5. The instruction of the stack

machine is implemented by code sequences of the target machine. We assign general registers
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to the registers of the stack machine. Our target machine has no sophisticated hardware stack.

The graph rewriting reducer GRR manipulates combinator graphs comprising standard S, K,1, B, C,IF, Y

and strict combinators such as arithmetic and Boolean operators; we call it GRR[SKIBC]. The graph copy-

ing reducer GCR deals with both standard combinators and super-combinators; we call them GCR/SKIBC]

and GCR([SC], respectively. The fixed-code FC is generated from super-combinator expressions because

generation of fixed-code for pre-defined combinators is less meaningful. Such a fixed-code program is

referred as FC[SC].

Basis for comparison

The comparison among the three combinator reducers was performed according to the following

observations.

(1)

@

&)

(O]

®

As mentioned in Section 4.4, GCR has the advantage over GRR that it can easily be adapted
for super-combinators. Is there any drawback to GCR applied to the standard combinators?

Which of GRR[SKIBC] and GCR[SKIBC] runs faster?

It would be a natural consequence that GCR[SC] should be more efficient than GCR[SKIBC]
because the use of the standard combinators is considered as a specific choice of (super-) com-
binators, while combinators are generated from the source expression in the super-combinator

approach. To what degree does GCR[SC] run faster than GRR[SC]?

It would be obvious that FC[SC] runs faster than its graph reduction counterpart GCR[SC],
because it is considered as a compiled code for reduction performed by the GCR interpreter.

How fast does FC[SC] run compared with GCR[SC]?

As for the amount of store claimed, actual numbers of words required for reduction should be
measured. The cell representing a node of the graph manipulated by GRR requires 2 words,

and the chunk for GCR and FC varies in size as described in Sections 4.4 and 4.5.

The time used by the garbage collector seems almost the same among the three reducers. The

total number of words required is more informative than the time for garbage collection.
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Experiment 1
In order to compare the time and the store required for reduction, we chose an expression defined by
a highly recursive function £ S,

£ 03060
whererec
fxyz=
IFGzy)FFyzCx )@ exy D xy 2 D)y
The value of (f On 2n) is 2n. The time required is proportional to n2 by call-by-need evaluation as we

have done with the reducers, while it is proportinal to 30 by call-by-value evaluation. All of our reducers

use the call-by-need mechanism. The results are summarized in Table4.6.1.

Table 4.6.1: Run-time and store claimed for (f 0 30 60)

Reducer GRR GCR GCR FC
[combinator] [SKIBC] [SKIBC] [SC] [SC]
Run-time in msec. 8646 7428 3030 1572
(ratio) (2.85) (2.45) (1) (0.52)
Store claimed in words | 149432 120626 113446 66432
(ratio) (1.32) (1.06) (1) (0.59)

We may say that GCR is better than GRR even in the case of the standard combinators on our
machine. As for the choice of combinators, the super-combinator expression is reduced about two and a
half times faster than the expression based on the standard combinators using approximately the same

amount of store. Hughes also reported similar results [Hughes82].

The fixed-code runs two times faster than graph reducers and saves significant amount of space.

Experiment 2
As a typical example of using infinite lists implemented by lazy evaluation, we chose the problem of
finding the n-th prime number. We measured the run-time and the amount of store claimed by

GRR[SKIBC] and GCR[SC] for the 30-th prime’:

6 See also Section 4.2 for the definition of f and the super-combinators derived from it.
7 The program shown is written in uc. See Chapter 8 for details.
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nth 30 primes
whererec {
primes = sieve [2..]

and
sieve (p:x)=p :sieve [n I n <—x;n%p!=01]

and
nth n (a:x)=if n==1 then g else nth (n-1) x

}
The results are shown in Table 4.6.2.

Table 4.6.2: Run-time and Store claimed for 30-th prime

Reducer GRR GCR
[combinator] [SKIBC] [SC]
Run-time in msec. 1950 836
(ratio) (2.33) ¢))]
Store claimed in words 30572 14916
(ratio) (2.05) (¢))

This experiment demonstrates more on the effectiveness of the super-combinator approach. It is

worth noting that tha saving of the store is significant as well as the running time.

Experiment 3
In order to estimate the number of function calls per unit time, we used the function nFib in [Hender-

son83]:

nFib n =if n<1 then 1 else nFib (n—1)+nFib (n—-2)+1
The result of this function gives the number of function invocations required to calculate it. Each of the

timings in Table 4.6.3 was the average of the results obtained by calls of nFib on various arguments.

Table 4.6.3: Number of function calls per second by nFib benchmark

Reducer GRR GCR FC
[combinator] [SKIBC} [SC]1 [SC]
Function calls per second 561 1430 2447
(ratio) (0.39) 1) 1.71)
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Relative efficiencies in time of the reducers are observed from the result. These figures are well comformed
with the timings in Experiment 1. The count for FC[SC] is comparable to the micro-coded evaluator for a

lazy SECD machine [Henderson83]18.

Experiment 4

The function f used in Experiment 1 was treated as a curried function with the functionality

f :int—int — int — int
That is, (f x) is again a function with two arguments, and (f x y) becomes another function with an argu-
ment. It is a well-known fact that every curried function f has its uncurried counterpart f* and vice versa.
In our case,

f’ : intxint X int — int
and the call of the uncurried function f* corresponds to make the function itself as a super-combinator with
three arguments. Table 4.6.4 compares the run-time required by curried and uncurried functions applied to

arguments 0, 30, and 60.

Table 4.6.4: Run-time for curried and uncurried functions

Reducer GCR FC
[combinator] [SC) [SC]
Function definition | curried uncurried | curried uncurried
Run-time in msec. 3030 1910 1572 1060
(ratio) (1.59) ) (1.48) 1)

As described in Chapter 2, the higher order function of the curried form is useful in functional pro-
gramming. There is a problem, however, in the combinator approach as shown from this experiment. We

shall device a mechanism for efficient implementation of the higher order function in Chapter 5-8.

Conclusion

We may conclude from these experiments that:

8 However, an elabolate compilation scheme for generating fixed-code gains much more in both time and space. See
Chapters 5-8.
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The graph copying scheme is superior to the graph rewriting scheme on conventional comput-
ers.
The use of super-combinators produces a significant improvement in graph reduction methods.

The fixed-code runs about twice as fast as the graph reducer.



Chapter 5

Fully lazy normal form

This chapter introduces a class of expressions called the fully lazy normal form which will be used
through Chapters 6-8. The reason for using such expressions is motivated in Section 5.1. Section 5.2 pro-
vides the definition of the fully lazy normal form for a simple language. The relation with the super-
combinator approach is given in Section 5.3 with some experimental results. Finally in Section 5.4, fully

lazy evaluation of expression is demonstrated through an example.

5.1. Motivation
As explained in Section 4.2, a lambda expression Ax.e with maximal free occurrences of expressions
oy, 02, ***, O can be transformed into

Qoo - O

where @ is a super-combinator defined as

Daiaz - amx = e [a1/ou,ax/02, - ,am/0m].
In general the number of the maximal free occurrences may be greater than m since the expressions oy
occur possibly more than once in the body e. The right-hand side represents an expression obtained from e

by replacing all the occurrences of o; with a; simultaneously.

The maximal free occurrence of an expression with respect to the lambda variable x is the maximal
part of an expression that does not depend on x. (See Chapter 6 for the formal definition.) It is a simple
extension of the free variable not bound by x, while the occurrence of such a variable is in fact the minimal
free occurrence. Consider a lambda expression

M. (+y Gy x) -y 2))
where + and — are constants, and x, y, and z are variables. There are four free occurrences of variables;
three y’s and one z. These are minimal as described above. Since the expression (— y z) does not depend
on x and is not part of any larger free occurrences of expressions, it occurs maximal free. Similarly two
occurrences of the expression (+ y) are maximal free occurrences. Hence the lambda expression has three

maximal free occurrences of two expressions (+ y) and (—y z). We may choose either one of
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ou=(+y), 0=(-y z), and ®ajazx=a,(-(a1x)ay),

or

ou=(-y z), da=(+y), and ®a;arx=a2(-(az2x)ai).

The lambda expression becomes

©H+y)y2)
and

O (-yz)(+y)
respectively.

As this example illustrates, the transformation does not define the super-combinator uniquely, since
the parameters ay, a2, - -, am are allowed to appear in any order. However, if we consider that the
expression Ax.e is located in the body of another lambda expression as in

A, - (Axe) -,
the arguments of ® dependent on x” should be moved to the last part of the argument list, say ote+1, - - -,
Om , (k<m). This leads to making the term ®ou0z - - - o be a maximal free term with respect to x’, and
reduces the number of parameters of the super-combinator @' for this lambda expression to the minimum.
If this strategy had not been taken for the right-hand side of a function f in Section 4.2

f MMy lFCzy)fFyzEx)zxCy)NFxy2D))y,
a set of super-combinators

¢'; b1babsbabsbez = IF (>z b1)(f (baz b2) (f z babs)(bs(—z 1)) by
Oy b1babsy = ¢y bi(f y)ba(-y 1) b3
Oxx =0y -xDx (f x)

would be derived. The optimized super-combinators illustrated in Section 4.2 were

¢: a1az2a3aaasa6z =IF (>z ae)(f (asz a2)(f zaras)(as(—z 1)) a¢
dyarazy = ai(a2y)y D({f y)y
bxx = ¢y G x (—x 1)) (f x).

Note that the combinator ¢, has more arguments than ¢,. The choice of parameter order is essential to
obtain super-combinators with fewer arguments. Such effort has been made in part to minimize the number

of stack operations when reducing the combinator expression.
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As a summary of the idea of the super-combinator is that it is based on

. extracting maximal free occurrences of expression of every lambda expression as arguments of

a global function, i.e., a super-combinator,

. defining the global function with corresponding number of parameters, i.e., the number of max-
imal free expressions plus the number of lambda variables in the original lambda expression,

and

. choosing the parameter order so that the total number of parameters of the super-combinators

for a program should be as few as possible.

It should be noted that the transformation based only on the first two rules generates super-combinators that
share the best property of full laziness. The last principle is provided for efficiency. The number of argu-
ments does nevertheless increase as the nesting level of lambda expressions becomes deeper. All of the
combinator reduction schemes presented in Chapter 4 use the stack to pass the arguments to combinators.
This suggests that many operations on the stack should be taken in reduction of super-combinators and they

may cause the loss of efficiency.

In this chapter we present a restricted class of applicative expressions, which we call fully lazy nor-
mal form. The fully lazy normal form is more general than the form of super-combinators in the sense that
the latter is a special instance of the former. Evaluation of the program of the fully lazy normal form in an
ordinary lazy way results in fully lazy evaluation of the original program. In other words, it enables us to
implement full laziness by means of an ordinary lazy evaluator. This is our basic strategy to achieve full

laziness. See Chapter 3 for the formal definitions of lazy and fully lazy evaluators.

We shall use a simple functional language shown in Figure 5.1.11,

5.2. Definition

The basic idea of defining a sublanguage of Figure 5.1.1 is to make a restriction on the form of

expressions. The function may contain local definitions in a restricted way, while the super-combinator

1 We avoid to use A in the source language because it is used in the description of the semantics. We use fn instead.



Syntactic domains

beBas basic values
xelde identifiers
e€Exp expressions
Abstract syntax
ex=blxleelfnx el
e wherex=¢ and --- and x=¢ |
e whererec x=¢ and - - - and x=e

Semantic domains

B basic values

E=[B+F], expressible values

F=D—>E functions

D=E denotable values

U=Ide > D, environments
Semantic functions

B :Bas— B (unspecified)

E:Exp>U->E

E[blp=B[b]

E[x]p=plx]

Elegeilp =(E[eop)E[e1lp)
E[fn x. eolp = M.E [eo)(p+<x —5>)
E[eowherex;=e;and --- and x,=¢,]p =E [eo]p'
where p=p+<x1E [e1]p>+ - -+ +<xx—E [ex]p>
E [eo whererec x1=¢1 and - -- and x,=e.1lp =E [eq]p’
where p'=p+<x1—E [e1]p>+ - -+ +<xx—E [ex]p'>

Notations
Domain construction operator + stands for the disjoint sum.
For any domain X, X,=X+{err}.
For an environment p, p+<x —8> denotes
Ay.if x=y then § else p[y].

Initial Environment
The initial environment po satisfies po[x Jerr for pre-defined identifiers x .

Figure 5.1.1. Denotational Specification of a Simple Functional Language

must not. The syntax rules and a context condition of the fully lazy normal form are shown in Figure 5.2.1.
The semantic function E of Figure 5.1.1 is supposed to be applied to the new syntactic category e’ as well
as ¢. Note that where-clauses disappear in the fully lazy form. We shall explain the reason in Chapter 6.
Local definitions by whererec-clauses may appear only in the outermost expression, i.e., the program, or in

the body of fn-abstraction. That is, the program of the fully lazy normal form is of either form
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Syntax
e :=¢ | ¢’ whererecx=¢’ and - and x=e’
e:=blxlee lfmx e

Context condition
Expression e does not contain any free occurrences of compound expressions.

Figure 5.2.1. Fully Lazy Normal Form

€o

or
eo whererec x1=¢; and --- and x,=e, .

The expression in general is composed of primitive elements » from Bas and x from Ide, and functions of

the form

fnx. eo

or
fn x. eo whererec x1=¢; and --- and x,=e, .
We shall develop an algorithm in Chapter 6 for transforming any expressions into expressions of the fully

lazy normal form that satisfy the context condition.

It should be noted that expressions composed of combinators or super-combinators are of the fully
lazy normal form. The combinator expression uses only the first kind of the function that contains no local

definitions.

5.3. Relation with combinators

Reduction of a combinator expression achieves fully lazy evaluation of the source program. Several
implemention methods of the evaluator have been presented in Chapter 4. The combinators selected by
Turner [Turner79] are so primitive that many execution steps are needed to reduce the combinator expres-
sion. Hughes [Hughes82] improves this by generating super-combinators specifically chosen for the source
program. It has been observed from experimental results in Section 4.6 that the super-combinator code runs

several times faster than Turner’s code.
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In order to compare the fully lazy normal form with super-combinators, consider the function f
presented in Sections 4.2 and 5.1. We may rewrite the definition as?
f =fx(
fy (MmzIF Gzy){f (bazad)(f zxb2)(b1(~z1))y)
whererec (b1 =(a1y)and b2=(—y 1)and b3=(f y)} )
whererec {a1=(f x)andaz2=(-x1)}.
It should be observed that
. maximal free occurrences of expressions in the original expression have been moved out of

inner scope as in the case of super-combinators, but free variables remain as they are, and
. the structure of fn nesting is kept unchanged.

It is obvious that the right-hand side is syntactically correct and is consistent with the context condition of

the fully lazy normal form.

The fully lazy normal form allows functions with local declarations, while it is not the case with the
super-combinator approach. This reduces the number of stack operations for passing arguments from one
combinator to another. To see the difference between these approaches applied to actual implementation,
we have made a few experiments. It is of course difficult to discuss the comparative merits in general
because thier computational models are different. It would be worthwhile, however, to give experimental
results on the timings using the evaluators coded with the aim of efficient implementation on conventional
computers. The code based on the fully lazy functional machine(FLFM) generated from expressions of the
fully lazy normal form has been used. Chapter 7 provides the description of FLFM. The results for the

code FC[SC] based on the super-combinator are reproduced from Section 4.6.

Table 5.3.1 shows the timings for evaluation of (f 0 30 60) on the Melcom 70/250. See also Experi-

ments 1 and 4 in Section 4.6. The results of the nFib benchmark are shown in Table 5.3.2.

It can be expected from these results that the code based on FLFM for the fully lazy normal form

gives a greater efficiency to implementation of functional languages on conventional computers.

2 We use fn here instead of A. See the footnote in Section 5.1. Functions written in upper case letters as IF , HEAD and
TAIL , and prefix operators like = and — are taken as elements of Ide. These are pre-defined functions defined in the initial
environment po. We do not specify the concrete syntax of the language in this chapter; we insert symbols { and } or indent
where-clauses to clarify textual scope.
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Table 5.3.1: Run-time for (f 0 30 60)

Code FC[SC] FLFM

curried 1572 980
Run-time | (ratio) | (1.60) m

inmsec. | uncurried 1060 586
(ratio) (1.81) )

Table 5.3.2: Number of function calls per second by nFib benchmark

Code FC[SC] FLFM
Function calls per second 2447 3588
(ratio) 1) (147)

As another example, we consider the function e/ by which Hughes [Hughes82] explains the motiva-
tion of using the super-combinator. The function el selects the n -th element of a linear list s

el =fn. (fns. IF (=n 1) (HEAD s) (el (—n 1) (TAIL 5))).
We can derive super-combinators ¢, and ¢, by Hughes’ method as

el = én

where

Gon = ¢s (UF =n1))(el —n 1))

and

0sabs =a (HEAD s) (b (TAIL 5)).
We assume here that the function variable el is global as we have done in the case of f . In addition to the
problem of super-combinators caused by the increase in the number of operations for passing arguments, it
remains open how to compile recursive definitions into what kind of combinators. For example, the func-
tion el might be expressed using the fixed-point combinator Y as

el=Y(fnel. d(F (=n 1) (el (-n 1)))
However, when more than one recursive functions are included, it becomes difficult to express the combi-

nator code in a form from which the original recursive definition can be presumed. Hughes proposes an
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approach to this problem that uses graphical combinators which is similar to ours, but gives no credit for
the efficiency. The fully lazy normal form assumes that the recursive definition is properly treated by a
primitive operation of the evaluator. By rewriting the above definition, we get an expression of the fully
lazy normal form:

el =fnn. (fns.a (HEAD s) (b (TAIL 5)))
whererec { a=IF (=n 1)and b=el (-n 1)} .

5.4. Evaluation of expressions

- In the fully lazy scheme, every expression is evaluated at most once, while only every argument of a
function is evaluated at most once in ordinary lazy evaluation with a call-by-need [Wadsworth71] or a call-
by-delayed-value [Vuillemin74] mechanism. To illustrate the difference between them, we take a function
snd derived from el. The function snd that gives the second element of a list can be defined by instantiat-

ing the function e/ with the first argument:

snd =el 2.
We trace first the case of using the straightforward definition. Evaluation of the right-hand side proceeds

as3

el 2—-
fns.(IF (=v1 1) (HEAD s) (el (—v1 1) (TAIL s5)) where vi=2)

No more computaion proceeds unless the argument for s is supplied. Assume that a list s is given:

snd sy
—IF (=v1 1) (HEAD o)) (el (—v1 1) (TAIL ©1)) where { o1=s1 and vi=2}
— IF false (HEAD o) (el (—v; 1) (TAIL c,)) where { Gi=s1 and vi=2}
— IF-FALSE (HEAD o) (el (—v1 1) (TAIL G,)) where { G1=s1 and v;=2}
— el (-v1 1) (TAIL 1) where { o1=s1 and vi=2}
— (IF (=v21) (HEAD ©3) (el (-Vv21) (TAIL ©2))
where { 6=TAIL o) and v>=(—v; 1)} ) where {Gi1=s; and v=2}
— (IF (=Vv21) (HEAD &,) (el (—v21)(TAIL o))
where { 6=TAIL o, and v2=1}) where { 01=5s; and v;=2}
— IF true (HEAD o3) (el (- v2 1) (TAIL o)) where { 6,=TAIL o, and v=1}

3 We shall write down the computational process using a similar notation as the source language; expressions bound to
parameters are represented by where- or whererec-clauses with generated fresh variables.
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where { o1=s1 and v;=2}
— IF-TRUE (HEAD ©2) (el (—v21) (TAIL o2)) where { 0,=TAIL &, and v>=1}
where { G1=s; and v;=2}
— (HEAD o, where { 6=TAIL o, and v>=1}) where { 01=s; and v;=2}
When the function snd is applied to another list s, after (snd s1) is evaluated, similar steps are necessarily

taken. However, since the first argument of el is common to both (snd s1) and (snd s2), some part of com-

putation is made to be done only once. This is the very purpose of using the fully lazy normal form.
If we use the definition of el written in the fully lazy normal form, snd can be defined as

snd =el 2
— fns. oy (HEAD s) (B1 (TAIL 5))
whererec { ay=IF (=v; 1) and Bi=el (~v;1) and v;=2}.
Evaluation of (snd s1) proceeds as follows:

snd s1
— oy (HEAD o) (B1 (TAIL &1)) whererec o1=s1
whererec { ou=IF (=vi 1) and Bi=el (-v1 1) and v;=2}
— oy (HEAD o) (B1 (TAIL 61)) whererec Gi=si
whererec { 0;=[F-FALSE and Bi=el (- v; 1) and v;=2}
— I[F-FALSE (HEAD &) (B; (TAIL ©1)) whererec o1=s;
whererec { au=IF-FALSE and Bi=el (-v11) and v;=2}
—p1 (TAIL ©1) whererec o1=s;
whererec { ou=IF-FALSE and Bi=el (- vi 1) and v;=2}
The first term B; becomes

B1=fn 5. 0z (HEAD s) (B2 (TAIL s5))
whererec { 0=IF (=v21) and Br=el (-v21) and v=(-vi 1)}

and

B1 (TAIL o1)
— 0z (HEAD ©,) (B2 (TAIL ©2)) whererec 0=TAIL o,
whererec { 02=IF (=v21) and By=el (-v21) and v=(-v; 1)}
— oz (HEAD ©3) (B2 (TAIL o2)) whererec o=TAIL 6,
whererec { 02=IF (=v2 1) and Bz=el (-v21) and v=1}
— 02 (HEAD ©3) (B2 (TAIL ©,)) whererec 6:=TAIL 0,
whererec { a=IF-TRUE and Bs=el (- v21) and v=1}
— IF-TRUE (HEAD ©3) (B2 (TAIL ©3)) whererec c>=TAIL &,
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whererec { 0=IF-TRUE and B=el (—v21) and v,=1}
— HEAD o, whererec 0=TAIL G
whererec { 0=IF-TRUE and Bx=el (—v21) and v>=1}

We have thus obtained the result of (snd s1). At the same time, we have a new version of the function snd :

snd =fn 5. oy (HEAD s5) (B1 (TAIL s))
whererec { o=IF-FALSE
and Bi=fns. oz (HEAD s5) (B2 (TAIL s))
whererec { 0p=IF-TRUE and Bx=el (—v21) and v=1)}
and vi=2}
All the terms dependent on n have already been evaluated. When (snd s2) is to be evaluated, only the

necessary computational steps dependent on s2 have to be taken. We have thus attained full laziness in

evaluating both the terms (snd s1) and (snd s2) in a program.

We shall deal with an algorithm for translating any expression into the fully lazy normal form in

Chapter 6.



Chapter 6

Lambda-hoisting

Lambda-hoisting is a technique for transforming functional programs into the fully lazy normal form
which has been defined in Chapter 5. The proposed method has a great advantage in that efficient code for
conventional computers can be generated from the transformed program. In this chapter the basic idea of
lambda-hoisting is described with remarks on similar techniques, and a simple algorithm is presented in a

formal way.

6.1. Transformation to the fully lazy normal form

Compilation techniques for lazy functional languages have been studied by many researchers. Turner
[Turner79,81a] proposes a novel scheme of generating combinator expressions as object code, and applies
it to implement several functional languages [Turner76,81b,85]. Programs are compiled into expressions
consisting of only pre-defined combinators. Hughes [Hughes82,84] generalizes this idea to generate similar
code using super-combinators that are dependent on the source program and produced during compilation.
In Chapter 4 of this thesis, we have described these methods in detail and claimed that the super-
combinator approach gains in running time by a factor of two over the combinator method on conventional
computers. As a different approach to compilation of lazy languages, modified versions of the classical

SECD machine [Henderson80] adapted for lazy evaluation are used [Henderson83].

Combinator code, including one using super-combinators, is usually represented by a graph and
evaluation is taken by an interpreter that performs graph reduction. Such an evaluation method differs from
the way the code of usual compiler languages runs to evaluate expressions. It is also possible, however, to
generate fixed-code for conventional computers that evaluates combinator expressions [Jones82, Takei-
chi84,85] (See Section 4.5.). The fixed program thus obtained can be considered as a program coded for a
lazy SECD machine. Hence, there is no essential difference between two approaches at least in regard to

lazy evaluation, though they seem quite different at first sight.

However, there remains a great difference. The combinator approach enjoys full laziness in its

nature. Full laziness is the property that every expression is evaluated at most once after the variables in it

71
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have been bound [Hughes84] (See Chapter 3). This property is not found in the compiler for a lazy SECD
machine [Henderson83] or in the lambda-lifting algorithm [Johnsson85] for generating conventional

machine code.

In the rest of this chapter, we present a technique called lambda-hoisting for transforming programs
into ones convenient for fully lazy evaluation, i.e., of the fully lazy normal form which has been introduced
in Chapter 5. Evaluation of the transformed program in the ordinary lazy way [Friedman76, Henderson76]
results in fully lazy evaluation of the original program. We use a simple functional language shown in Fig-

ure 6.1.11,

The basic idea of lambda-hoisting is to transform source programs into programs consisting of a
more general form of functions than super-combinators. The resulting function may contain local
definitions in a restricted way, while the super-combinator must not. The fully lazy normal form is defined

as in Figure 6.1.2. It is a sublanguage of the language of Figure 6.1.1. A program of the fully lazy normal

form should be either
€0
or
eo whererec x;=¢; and --- and x,=e, .

The fn-abstraction? has the form

fnx eo
or

fn x. eo whererec x;=¢; and --- and x,=e, .
As explained in Chapter 5, expressions e, - - -, e, in the last form are maximal occurrences of expressions
dependent on x in the original fn-body, and e is obtained by replacing those occurrences by x1, * - -, Xa,

correspondingly. We shall develop an algorithm for transforming any expression into an expression of the

fully lazy normal form that satisfies the condition.

1 The language is the same one in Chapter 5. Figures 6.1.1 and 6.1.2 are reproduced from Figures 5.1.1 and 5.2.1,
respectively.

2 Recall that we are using fin rather than A in our source language. Accordingly, the term lambda-abstraction should be
called fn-abstraction here.



Syntactic domains

beBas basic values

xelde identifiers

ecExp expressions
Abstract syntax

ex=blxleelfnx el

e where x=e¢ and --- and x=¢ |
e whererec x=¢ and - - - and x=¢

Semantic domains

B basic values

E=[B+F], expressible values

F=D->E functions

D=E denotable values

U=Ide - D, environments
Semantic functions

B :Bas—>B (unspecified)

E :Exp->U—>E

E[blp=B[b]

Elxlp=plx]

Eleoeilp=(Eleolp)E[e1lp)

E[fn x. eolp = MO.E [eo)(p+<x —5>)

E[eo where x1=e; and - -- and x,=e,]p=E [eq]p’

where p=p+<x1-E [e1]p>+ - -+ +<xa—>E[ea]p>

E [eo whererec x1=e; and - - - and x,=ex]p = E [eo]p’

where p=p+<x1oE [e1lp'>+ - -+ +<x,>E [ea]p">

Notations

Domain construction operator + stands for the disjoint sum.

For any domain X, X,=X+{err}.
For an environment p, p+<x —8> denotes

Initial Environment

Ay.if x=y then 3 else p[y].

The initial environment py satisfies po[x Jzerr for pre-defined identifiers x .

| Figure 6.1.1. Denotational Specification of a Simple Functional Language

6.2. Rewriting where-clauses

73

The first stage of lambda-hoisting is to transform where-clauses in the source expression into

whererec-clauses by renaming variables according to the rules shown in Figure 6.2.1. By doing this, we

become free from worries concerning the conflict of identifiers that may be caused when free occurrences of

expressions are moved to outside the function from where they originally appear.
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Syntax
e :=¢' | ¢ whererecx=¢' and --- and x=¢'
e=blxlee lfnx e

Context condition
Expression e does not contain any free occurrences of compound expressions.

Figure 6.1.2. Fully Lazy Normal Form

Environment for renaming
ne R=[1Ide —» Ide, ]

Rewriting rules
R :Exp - R - Exp

RbIn=b

R [xIx=n[x]

Rleoeilm= (R [eolm)(R [e1]n)

R fn x. eoln=1fn x". R [eo}(m+<x—x">)
where x’ is a fresh identifier

R[eowherexi=e;and --- and xy=¢, It =

R[eoln' whererecx'1=R[eijrand - -- and x'»=R e,
where T'=t+<x19x" 1>+ * ** +<Xy X% >
and x’; are fresh identifiers

R [eo whererec x;=¢1 and - - - and x,=e, ]t =
R[eo]ln' whererecx'1=R[e;]n'and - - - and x’»=R [e, ]I
where B'=f+<x19x 1>+ -+ +<Xn—oX'x>

and x’; are fresh identifiers

Notation
For an environment for renaming 7, t+<x —x’> denotes
Ay.if x=y then x’ else n[y].

Initial Environment
The initial environment i satisfies 7to[x ]=x for pre-defined identifiers x.

Figure 6.2.1. Rules for Renaming Identifiers and Rewriting where-clauses

Although we do not give a formal definition of fresh variables for brevity, the next proposition

should be observed.
Proposition
For any ne R, x#y and a fresh variable x’ € Ide, (n+<x—x'>) [y] #x’.

Using this, we can prove that
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Lemma
For any e R and p,p'e U satisfying p'(n[x])=p(x],

E[R[eln]lp'=E[elp
holds for any e € Exp.

Since initial environments moe R and poe U satisfy po(molx 1)=polx ], the next theorem holds.

Theorem
E[R [e Imo]lpo = E [e ]po for any program e .

The theorem states that the meaning of the program is preserved through the transformation by the rules in

Figure 6.2.1.

6.3. Lexical levels of expressions

The main part of lambda-hoisting is to identify maximal free occurrences of expressions (See Section
6.4). To do so, it is necessary to determine fn-variables on which each expression depends. Each fn-
variable can be identified by the level number, i.e., the number of nested fn-abstractions. We assume that

the outermost fn-variable is assigned the level number 1.

In Hughes’ algorithm for finding super-combinators, each compound expression, or combination of
the form (e e1), is assigned the maximum level number of its constituents. It is insufficient for our pur-
pose, however. As it will turn out, it is necessary to assign a set of level numbers to each expression. For a
combination, the union of the sets of level numbers for its constituents is assigned. Every constant has the

singleton set {0}, and each variable has {0} U{l} where [ is the level of the variable.

We denote the maximum of a set of level numbers

I={llz b}
by

I I-I =max{ll,l2’ et ’IH.}
The rules for assigning the set of level numbers to the expression are shown in Figure 6.3.1. Since lexical
levels are computed for expressions transformed by the rules in Section 6.2, the rule for where-abstraction

is not used in our lambda-hoisting algorithm, though it is included in Figure 6.3.1.



Level numbers
leN

Environment for level numbers
we L=[Ide »>N,;]

Assignment rules
L:Exp—>L->N-2N

L[blol ={0}

Lx]ol = {0}u{ox]}

Lfegeilol =L[eo)oluLei]ol

L[fn x. eo]lol =L [eol(tr-<x—I+1>)(I+1) — {I+1)}

Lleowherexi=e;and - and x,=e, ol =L [eo]w']
where 0'=0+<x191 1>+ - - +<xy >

where ;=1 L[e;]ol | fori=1,--- n.

L[eo whererec x1=¢; and - -- and x,=e,]0! =L [eo]w'!
where W'=0+<x1—1>+ -+ +<xp, 2>

where [;=| L[e;]J0'l | fori=1,--- ,n.

Notation
For an environment for assignment ®, w+<x—! > denotes
Ay.if x=y then [ else w[y].

Initial Environment
The initial environment ey satisfies wo[x =0 for pre-defined identifiers x.

Figure 6.3.1. Rules for Assigning Level Numbers to Expressions

76

The rule for fn-abstractions is worth noting. Assume that fn x. e appears in the context we L of the

level I. If e contains x and no other variables, we get

I L[fnx eodwl 1=0

from the rule. Hence the combinator has the level O in any context and at any level. For example, an

occurrence of a combinator

S=fnfgxfx(gx)

is considered as a constant3.

and

Consider the case that e contains a variable y of w[y]=l asin

e0=...y “ e

3 In the extended fn-binding fn x1 - * - x,, we consider that variables x1, * * -, X, are of the same level, say (/+1) if the

fn-abstraction appears at level /.
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fny (fnx.eo) .
We have

Lleo)(w+<x—I+1>)(I+1)={0,1,--- }
and it is concluded that

I Lfnx eolw! 1 =1
whether x appears in e or not. That is, the function fn x.e o depends on the variable of level /. This exam-
ple illustrates the reason why we compute the set of lexical levels instead of only the maximal level. It is

necessary to find the largest or the second largest of the level numbers assigned to eo.

Finally, it should be noted that the rule for whererec-abstractions is stated using a recursive equation
for o"
0'=0+<x1—IL[eJoT1>+ --- + <xp—>I1L[e,]00' |>
A question may arise: does the equation have a solution at all? If it does, we need an algorithm to find an
o' satisfying the equation. We answer this by presenting a simple algorithm. This can be used in practice
for lambda-hoisting, though it may not be an optimal algorithm. It is based on a simple iteration starting
with initial approximations to | L [e;J®' | and improving them successively.
I'i:=0fori=1, --- ,n;
repeat
=17 fori=1, --- ,n;
O=0+<x1HH1>+ -+ <Xo>
I'i=I1Llelwl | fori=1, --- ,n;

until { ;=l'; foreveryi=1, --- ,n}

From the observation that the operations employed are monotonic, and 0</;<!/ holds fori=1,---,n, it can

be shown that the algorithm terminates.

6.4. Maximal free occurrences

We now define free occurrences of combinations. The free occurrence of combinations is a simple
extension of the free occurrence of variables that is not bound by an fn-abstraction. Note that we are deal-

ing with only expressions transformed by the rules in Section 6.2.

Definition (Free occurrences of combinations)
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An occurrence of an expression of the form (e e1) is called a free occurrence with respect to we L

and leN, if

O<IL[eoll | <l ,0<IL[ej]Jol | <l , and | Llegei]lol | £0
hold.

Since

I Lleoeilol | =1 LeodwlUL[e1]ol | =1 Lleolod | or | Lej]ol |
from the rules in Figure 6.3.1, the above condition can be restated as: both |L [eo]w! | and IL [eq]w! | are

less than /, but at least either of them is greater than 0.

Definition (Maximal free occurrences of combinations)
A free occurrence of a combination e*=(e¢ €1) with respect to we L and /e N is called maximal, if

either of following conditions holds.
(1)  There is an occurrence of a combination containing e* as (e’ e*) or (e* ¢’), and

IL[e*]ol | < | L[e' ]l |
holds.

(2) The occurrence e* appears as either

fox.e*
e* whererec x;=e;and --- and x,=e,

or

x;=e* in a whererec-clause.

6.5. Algorithm

Rules for lambda-hoisting are shown in Figure 6.5.1. In short, maximal free occurrences of combina-
tions are moved outside the original fn-body by creating new declarations with fresh variables.
Algorithm

An expression e is transformed into e* of the fully lazy normal form by

<p*, 0%, e*>=HI[R [e Imo]po0

For example,



Level numbers
leN

Environment for level numbers
weL

Declarations of maximal free occurrences of combinations
HE M=[N — 2Dec]
d € Dec declarations

d:=x=e

Hoisting rules
H:Exp>M-5>L-o>N->[MxLXxExp]

Hbluwl =<y, o, [b]>
HxJpol =<p, o, [x]>
Hleoe1]pwl = <p*, 0%, e*>
let <p", @", €’1> = H [e1]'e'l where <, o', e’o> = H [eo]uwl in
if ' (i=0,1) is a maximal free occurrence of a combination w.r.t. ®" and [,
W =p+<k opkU[x'=ei]>, 0 =0"+<x' k>,
and e*=[(x’ €'1)] or e*=[(e’0ox")] for i=0,1, respectively,
where k=1L [e;]Jo"l | and x’ is a fresh identifier
else p*=p", 0*=0" and e*=(e’0 €’1)
H[fnx. equol = <p*, 0*, [fnx. eo* 1>
let <p', @', e’0> = H [eo](u+<l+1-{ }>)o+<x > +1>)({ +1) in
ifwd+1)=()
and ¢’y is a maximal free occurrence of a combination w.r.t. ® and /,
W =p+<k Pk U[x'=e’0] >, 0" =0'+<x’—k >, and e*=[x']
where k=1L [e’o]®'l | and x’ is a fresh identifier
else u* =, 0" =", and e*=[e’o whererec p'(/+1)]
H[eo whererec x1=¢; and - - - and x,=¢,Juo! = H [eo]ps 0l
where i =pi+<k ol U [xi=e’;]> and 0;=0'i+<x; —k >
where <\';, 0, i >=H [¢; ])i-100i—1] and k=1L eI |
fori=1,--- ,n,and po=1, W=

Notations
Tuples in [MXLXExp] are written as <p, ®, e >.
Syntactic elements are quoted by [ and ].
For a declaration set 1, p+<k —0> denotes
ALIf j=k then o else pij
If W={[x1=e1],- - - ,[xn=ea]}, [eo whererec p/] denotes
[eo whererec x1=¢; and - - - and x,=¢, ]

Initial set of declarations
The initial set of declarations o satisfies pol ={ } for any /e N.

Figure 6.5.1. Lambda-hoisting Rules for the Fully Lazy Normal Form
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fax.(fny +C~x1Dy))
is transformed into4

fnx. (fny. (z y) ) whererec z=(+ (-x 1)) .

A more realistic example is shown in Figure 6.5.2. This example demonstrates the use of full laziness for

eliminating multiple traversals of data structures [Takeichi87]. See Chapter 9 of this thesis.

Source program:
fn x.
(& FORK (fn u. TIP (§ MIN I))
where & = btree x

whererec
btree =fn x.
(fng f.
IF (ISTIP x) (f (TIPVAL x))
(g (btree (LEFT x) g f) (btree (RIGHT x)g f))))
Fully lazy normal form:
fnx'. (& FORK (fnu’. o)) whererec { &' =btree’ x’ and a=TIP (§' MIN I)})

whererec
btree’ =fnx".(fn g f. B2(f' P1) (8" B3g fIBsag f)))
whererec { B = T/IPVAL x” and B2=IF (ISTIP x")
and B3 = btree’ (LEFT x") and PB4=btree’ (RIGHT x")}

| Figure 6.5.2. An Example of Lambda-hoisting

As the function btree in the source program has no free variables, it has been moved to the outermost level
in the fully lazy form. The reader will have observed from this example how the lambda-hoisting algorithm

works.

We believe that the meaning of programs remains unchanged through the transformation. That is,
Ele*lpo=El[elpo where <u*, ", e*>=H|[R [elno]po0
Although we have not completed the proof of this soundness theorem, it seems possible to prove it with
great care in dealing with strict functions such as arithmetic operations and predicates. Then the lambda-
hoisting transformation preserves the meaning of programs. Evaluation of the resulting program in a lazy
way turns out to be fully lazy. Since full laziness implies ordinary laziness by definition, it would be obvi-

ous at least intuitively that the transformed program requires no more evaluation steps than the original.

4 The form fn x. ¢ whererec - - - should read as fn x. (¢ wWhererec - -+ ).



81

6.6. Remarks

In this chapter we have developed an algorithm for lambda-hoisting. The algorithm presented in the
previous section can be considered as a functional program, though there remain some informal descrip-
tions like " --- for i=1,---,n". We have a program written in Lisp for transforming Lispkit Lisp
[Henderson80,83] programs into the fully lazy normal form. Programs of the fully lazy normal form are
compiled into fixed-code of the Fully Lazy Functional Machine [Takeichi86a] (See Chapter 7). The FLFM
code is then translated into machine code for conventional computers. We have developed code generators
for MC68000, i8086, Melcom 70/250, and Melcom MX2000. As the task of the code generator is a simple
macro processing driven by a table, it is easy to generate code for other machines. In Chapter 8, we shall

describe a portable compiler developed this way.

The fully lazy normal form relaxes restrictions on the representation of functions; the function body
possibly contains local definitions. The super-combinator approach keeps the traditional form based on
lambda calculus, and where- and whererec- clauses are transformed into functional applications, e.g.,
eo where x;=e into (fn x1.e0)e1. Although these are semantically equivalent in our language as well, we
have not followed this transformation because the number of parameter passing becomes large for nested

function definitions.

The key to the lambda-hoisting technique is to transform programs into ones with local recursion.
Elimination of non-recursive local declarations by where-clauses greatly simplifies the algorithm. A simi-
lar compilation technique called lambda-lifting [Johnsson85] takes no account of full laziness. Functions
expressed by fn-abstractions inside another function remain as they are by lambda-hoisting, while all the
functions are made global by lambda-lifting. The presence of local functions enables one to instantiate a

function to obtain other functions by partial parametrization.

We have presented an example that demonstrates the use of full laziness for eliminating multiple
traversals of data structures. Fully lazy evaluation brings unexpected gains in efficiency. More investiga-
tion on the novel feature with relation to partial parametrization in functional programming will be found in

later chapters.



Chapter 7

Fully lazy functional machine

In order to explore the applicability of full laziness in functional programming, an abstract machine
called Fully Lazy Functional Machine (FLFM) has been developed. The machine is a variant of the SECD
machine suitable for evaluating expressions in a fully lazy way. This chapter describes the structure of
FLFM and an algorithm for translating functional programs into FLFM code. Although the FLFM program
can be executed using a small interpreter, generation of machine code for conventional computers is
expected to gain efficiency. The implementation technique described in this chapter is useful to generate
efficient code for a wide class of functional languages. Actual implementation on a variety of machines

will be described in Chapter 8.

Hughes [Hughes82,84] introduces the idea of fully lazy evaluation of applicative expressions in rela-
tion with combinators. Full laziness implies ordinary laziness in [Henderson76, Friedman76]. Among oth-
ers, it has an important property that every expression is evaluated at most once, whereas in ordinary lazy
evaluation scheme only the expression passed as argument to function is evaluated at most once. Consider-
ing the whole computational process for an expression, fully lazy evaluation is optimal in the sense that
necessary computation is performed only once and unnecessary computation is not done at all. See Chapter

3 for the detailed discussion.

Hughes also describes an algorithm that translates applicative expressions possibly with lambda
abstraction into super-combinators (See Section 4.2). Another transformation technique called lambda-
hoisting has been developed [Takeichi86b] for generating more efficient code. As described in Chapters 5
and 6, any expression is lambda-hoisted into the fully lazy normal form, which uses a more general form of
functions than super-combinators. The lambda-hoisting approach deals with expressions of the form

eo where x;=¢e; and --- and x, =é€,

and

eo whererec x1=¢; and --- and x, =e¢,

in a naive way, while some kind of artificial combinator has to be introduced for the super-combinator

method. Our functional machine provides instructions to manipulate these expressions efficiently.

82
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We begin with a review of the fully lazy normal form to clarify our intention to design a functional
machine for fully lazy evaluation. Section 7.2 describes how evaluation of the fully lazy normal form
proceeds and explains the motivation to design a new functional machine. A machine model for fully lazy
evaluation which we call Fully Lazy Functional Machine (FLFM) is defined in Section 7.3. Rules for com-
piling functional programs to generate FLFM instructions are formulated in Section 7.4. Implementation

techniques of FLFM with code generation for conventional computers is the topic of Section 7.5.

7.1. Expressions of the fully lazy normal form

" We use a simple functional language shown in Figure 7.1.1 of which formal semantics has been
given in Figure 5.1.1. The figure includes the syntax and the context condition of the fully lazy normal

form which is extracted from Figure 5.2.1.

Syntactic domains

beBas basic values
xe€lde identifiers
ecExp expressions
Abstract syntax
ex=blxleelfnxx  ---xel
e wherex=¢ and --- and x=¢ |
e whererec x=¢ and --- and x=e¢
Semantic domains
B basic values
E=[B+P+F], expressible values
P=EXxE pairs
F=D->E functions
D=E denotable values
U=1Ide > D, environments

Syntax of the Fully Lazy Normal Form
e :=¢' | ¢ whererecx=¢’ and --- and x=¢’
e=blxlee lfx e

Context condition of the Fully Lazy Normal Form
Expression e does not contain any free occurrences of compound expressions.

Figure 7.1.1. A Simple Functional Language and the fully lazy normal form
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The domain E of expressible values is now extended to include P which represents a domain of pairs
produced by a primitive constructor of data structure. Data structure of some kind should be included in
any functional language to solve practical problems. We are taking a simple data structure into account to
write programs that deal with lists and frees. However, interpretation of the pair structure depends on the
language implemented on FLFM. What we need here for the design of FLFM is to distinguish values in P
with ones in B. The value in B is considered as a scalar that is represented by a single entity in a FLFM
word, and the value in P by a pair of FLFM words possibly with a pointer to it. It should be noted that we
have not introduced any syntactic domain for expressions which represent values in P. We assume here
that only the function cons can produces these values, and therefore the value of a combination

(cons ey e2)

lies in P where e; and e are any expressions.

Another extension is the form of fn-abstraction expressions. An expression
fMmxixy - x.e
represents a functional value in F. Although we have mentioned in Section 6.3 that the variables x1, x2,
- -+, x¢ are of the same level, this form is an abbreviation of
fnx;.(fnx2 (---(faxe.e))),
and represents a curried function. The function thus defined may be partially parametrized by fewer, say

1 <k , arguments to obtain a function returning the value of e when applied to k—/ arguments.

7.2. Design principles

In this section we first review how an expression is evaluated mechanically using a few devices. The
design principles of our machine model, called Fully Lazy Functional Machine (FLFM), is then explained.
The machine can be considered as a variant of the SECD machine [Henderson80, Landin69] specifically

designed for our purpose.

Evaluation

Let us look at how evaluation of an expression proceeds. An expression of the fully lazy normal

form is either
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(1) anexpression b € Bas representing a value in B,
(2) avariable xelde,

(3) acombination

(e’o ell e e'”)

where each e; is an expression of the form (1), (2), (3), or (4),

(4) an expression of the form

fnx; - x.e

representing a value in F where e is any expression of the fully lazy normal form,

or
)

e’o whererec x1=¢’y and - - - and xn=€'m

where each e; is an expression of the form (1), (2), (3), or (4).

An expression of the class (1) represents a constant in the sense that it has been completely reduced
to a value that cannot be simplified any more. In other words, it remains unchanged if ever evaluation is
taken for it. Hence the evaluation of such an expression is trivial; do nothing. Similarly, every expression

of the class (4) represents a function in F and is also treated as a constant.

Evaluation of a variable x of the class (2) depends on the static context where it appears in the pro-
gram and on the dynamic behavior of the program. Bindings of variables with values are established in the
course of evaluation, and they are kept in the environment from which we can find the value of the variable.
The value associated to x may be further reducible to a simpler form, because its evaluation may have been
suspended. Consequently the evaluation of the variable proceeds by first taking the value out of the vari-
able in the environment, and then evaluating that value. The environment is affected when a function is

invoked to obtain the value of a combination, or an expression with local definition is evaluated.

Suppose that an expression of the class (3)

’

(€oe’r -+ €n)

is forced to be evaluated. FLFM maintains the stack and the environment as follows. Let o, be the
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suspended value corresponding 10 each e; in the current environment. That is, o; contains the expression
e’; and everything that is necessary to evaluate it, which will be explained shortly. The machine pushes the
value o, - -, 01, 0o Onto the stack in this order. and evaluates o at the top of the stack. Then it applies
the result to arguments o, - - -, a, on the stack. The values on the stack might be constants or closures.

A closure is a pair consisting of the code for evaluating e’; and the current environment.

For simplicity, assume that e’¢ is an expression representing a function
fox; - x.e
In this case the value 0 at the top of the stack is a constant and no more evaluation is necessary. When
applying the function oy to the arguments @y, - - -, 0., the value oy on the stack is removed, and the argu-
ments left on the stack are used to create a new environment for the function body e. The new environment
is obtained by extending the current environment. The arguments are moved from the stack to extend the
environment in such a way that o; is bound to x;. If sufficient number of arguments, i.e., k£, have been

found on the stack, evaluation proceeds to e (Figure 7.2.1).

. Environment
Environment
Ok Qg~1| =———> " ———a O —r—— for
fore . ,
(€oe’r -~ )

Figure 7.2.1. Evaluation proceeds to the function body e

Otherwise, no further computation can be done and a closure consisting of the code for further computation
and the partially filled environment is returned as the result of the original expression (Figure 7.2.2). The

closure is shown in dashed boxes in the figure.

r—=T -1
] ] ] 1<k
i i .
L}L ..\_1\ Environment
oy —aloy_y| —— ——a O} | —f—— for
(e’o e'l e e’n)
Code

Figure 7.2.2. Evaluation results in a partially parametrized function
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Consider next the class (5) of expressions with local recursive definitions:
e’owhererec x1=¢’1 and --- and xp=¢'m
The evaluation of e’¢ requires a new environment that represents recursive bindings of x; with the
suspended value B; of ’;. Evaluation of e’; should be suspended in the same way as in function arguments,
and therefore B; is a closure unless it is a constant. Recursive definition introduced by the whererec-clause
produces a circular environment as shown in Figure 7.2.3. Dashed boxes are closures. Note that this form
of expression may appear as the outermost expression of the fully lazy normal form, or as a function body.
The figure illustrates the latter case where arguments of the function o; have already been inserted to the

environment.

Environment
fore'o

oy — el O] | ——

Figure 7.2.3 A circular environment

Finally consider what steers the evaluation. The first request to evaluate, or simplify, an expression is
usually made by the user of the program; for example, he wants to print out the value of the expression e .
He already knows a representation of the value, i.e., e, because it is written according to the rules of the
language. However, what he needs is the simplest representation of the value. For an expression (fac 6)

using the factorial function fac , he prefers 720 to 6x(fac 5) or 6x5x4x3x2x1.

Once requested, evaluation proceeds as described above. As we have seen in the case of the class (3)
expressions, the head term e’o of a combination is always forced to be evaluated when that combination is
evaluated. In addition to this case, strict functions such as add, eq, etc., call for evaluation of their argu-

ments. Hence the evaluation process is necessarily recursive.

Values
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Values pushed onto the stack and held in the environment are represented as either

(1) an evaluated value, which may be a basic value in B, a data structure in P=EXE, or a function in

F=D-E,
or
(2) an unevaluated value represented by a closure consisting of the code and the environment.
For brevity, we simply use the word value to mean the representation of values in FLFM.

In case of an evaluated value, it should never be evaluated again. As described above, the closure
structure is a kind of values corresponding to the suspended expression. It may yield a basic value, a pair,
or a function. Once evaluated, every unevaluated value becomes an evaluated value equivalent to the origi-

nal. Hence the distinction between evaluated and unevaluated values should be made in FLFM.

To make full use of the call-by-need mechanism, every value held in the environment has to be
updated by the result when it is evaluated. This can be attained in FLFM using the information on the kind
of value representations just mentioned. The evaluated value may be referenced many times, while the

unevaluated one is evaluated only once at the first time when its value is required.

As we have seen in evaluation of a combination, an expression may produce a functional value that is
a partially parametrized function as its value. It is also represented by a closure. Even in the case that the
program generates a non-functional value as its result, functional values may appear in the course of evalua-
tion. Such functional values may be referenced more than once to be shared by several occurrences of that

expression.

Suppose that an expression y

\VEfnxl...xl...xk.e

appears in the context

0=(ye1 - €1)
where [ <k, and 0 appears in

£1E(ef'l+1 "'f'k)

and
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€e2=(0g14 -+ g%).
Then, an environment structure like Figure 7.2.4 should be made. In the figure, o; stands for the value of

e’i, Bi for the value of f';, and 7; for the value of g’;.

Environment
fore — P | —4— - —Bin \
invoked by €
r—=T=--1
Oy —— | —a—— oy | —
Leel__41
Environment
fore — —  —] VI /
invoked by €

Figure 7.2.4. A partially parametrized function and environments

Note that every argument o; in an environment might be replaced by the result of evaluation. If we
had produced duplicated copies of the list of o, - -, o, one for €;, and one for &3, we could not update
the value efficiently. It is concluded that every partially parametrized function should be represented as a

value to be shared, and the environment should have a structure as shown in Figure 7.2.4.

7.3. Machine Structure

The FLFM machine consists of four registers §, E, C, and D, each of which holds a list representing
the stack, the environment, the control code, or the dump, respectively. It should be noted that the SECD
model of FLFM is a conceptual one; the stack need not be of the list structure in actual implementation, for

example. We will discuss about implementation details in Section 7.5.

We follow the notation used in [Henderson80] to specify the machine by state transition as
S ECD - §& E C D
To describe the change of the environment E, we will use the convention that E; means the i-th link of E,
and *E; the contents, or the value, of the i-th element of E (Figure 7.3.1). Note that arguments passed to
functions are moved from the stack S to the environment so that their values are to be referenced as *E;,

notas E;.

We denote a closure consisting of code C and environment E by [C:E], and an empty list by ¢

instead of nil. The symbol ¢ is also used for a distingushed reference for C, which will be explained later.



Eo E, E;

E 3 *EO - *El PR *Ek ——

Figure 7.3.1. The environment structure

As mentioned earlier, primitive functions if, eq, add, etc., are considered as functions defined in the
standard environment and treated as global objects. Each of them has its own evaluation rule which is
different from functions defined in programs. We put them aside for the present and confine ourselves to

general FLFM instructions.

Load Instructions

Load Constant

S E (CONSTb.CY D » (b.S) E C D

where b is a basic value in B.

Load Global

S E (GLOBg.C)Y D > ([C:E1.§) E C D

where g is a global symbol representing a (possibly unevaluated) value. The value can be obtained

by executing the code C’ for g.

Load Closure

§ E (CLOSC".C)Y D —» ([C":E1.§) E C D

where C’ stands for the code to be evaluated under environment E .

Load Argument

S E (ARGi.C) D —» (*;.§5) E C D

where *E; is the i -th element of the current environment E .
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Environment Control Instructions

Extend Environment
(x.$) E (EXTENV.C) D -»> S (x.E) C D
¢ E (EXT ENV.C) (SE'C'.D) —> ([C":E]1.8') EF C' D
where C” stands for (EXT_ENV .C). The second rule shows how partially evaluated function is

obtained.

Make Dummy Environment

S E (DUMMYENV .C) D - S (¢.E) C D

This instruction creates a dummy entry for environment which will be filled by the FILL ENV
instruction. This entry becomes the first element of the recursive environment formed by local

definitions.
Insert Environment

(x.§) E (INNENV.C) D » § E C D

where E’ points to the same environment entry as E, which is in fact the dummy entry created by
DUMMY _ENV . *E=¢ remain unchanged as *E’=¢, but changes are made by inserting a new entry
with value x from the stack as *E’;=x. Accordingly, the entries E;, (i 1), become E’;4; of the new
environment E’ (Figure 7.3.2). This instruction along with the CLOS instruction effectively creates

circular structures for recursive definitions.

Fill Environment

(x.S) E (FILLENV.C) D » § E C D

where E’=E. The only change is *E’¢=x while *E ¢=¢ before execution of FILL ENV . That is, the

value x on the stack is moved to the first element which has had a dummy value ¢.

Evaluation and Application Instructions

Evaluate

(x.§) E (EVAL.C) D »> (x.S) E C D
([¢:x1.S) E (EVAL.C) D - (x.S5) E C D



E'=FE ——n ¢ \.. ........ = o —_—

Dotted line shows before
execution of INS_ENV

Figure 7.3.2. INS_ENV instruction

([¢:[C:E11.S) E (EVAL.C) D —> ([¢:[C:EN.S)Y E C D
([C:E']1.S) E (EVAL.C) D —» ¢ E C ((C:E'1S)E (UPDATE)C .D)
where x is not a closure, and the closure [C’:E’] in the right-hand sides stand for the same one on the

left-hand sides. The second and the third cases deal with the indirection closure that is produced by

the UPDATE instruction to avoid repeated evaluation. See the rule for UPDATE.
Apply

(x.¢) E (APPLY) (SE'C'.D) - (x.§8') EF C' D

([»:[C:E1N.S) E (APPLY) D > S§ E C D
where x may be a closure or an indirect closure. The first rule shows that the value x is returned to
the caller of the function when the stack is empty after that value is taken out. The other rule states

application of the functional value [C’:E’] to arguments on the stack. The functional value has

already been evaluated and should be kept in an indirection closure.

Call

S E (CALLC".C) D - ¢ E C (SECD)

This instruction transfers control to the code C* with saving the current status of the machine.

Update

(x[CE'}.S) E (UPDATE) (C.D) —» (x.§) E C D
(IC":E"1IC':E’']1.§) E (UPDATE) (C.D) — ([¢:C":E"]}S) E C D
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where x is not a closure. The top of the stack before execution of this instruction holds the value
returned by recursive evaluation invoked by the EVAL instruction. The second top of the stack con-
tains the closure to be updated. This closure is changed to an indirection closure with its code part ¢
and environment part x or [C”:E”]. The indirection closure is used to realize full laziness as shown
in Figure 7.3.3. Firstly the closure is evaluated only once because it becomes an indirection closure
containing the result. In case that a closure [C”:E"] is obtained as the result of evaluation, the origi-
nal closure [C’:E’] is updated to become an indirection closure [¢:[C”:E”]] which represents an
evaluated value. It is the indirection closure that should be placed on the stack, not the resulting clo-
| sure. Another important role of the indirection closure is that it provides a mechanism of sharing as

illustrated in Figure 7.3.3. Repeated evaluation of the closure [C*:E’] can be avoided by indirection.

Before After
— I ——— —_— X s s
I"LT"'/ r--T-—/
1C 1 E ra— 1O 1 X re—
| S S— | | IR SA— |
unevaluated indirection
closure closure

Figure 7.3.3. Indirection closure

The second case of EVAL instruction deals with evaluation of the indirection closure.

Primitive Operations

In addition to the instructions having been described, several primitive operations are necessary for
implementing arithmetic and Boolean functions. Since such functions differ from language to language,
various operations may be needed to implement a particular language on FLFM. It is a reasonable assump-
tion that these functions are classified into several classes, e.g., strict functions, constructor functions, etc.,
and functions of a class are implemented in a similar way using corresponding operations. The function

provided in a standard environment does not have any free variables in it and therefore it can be referenced
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by a global symbol. We assume here that some mechanism of linking global symbols g with occurrences
of g in the program. The GLOB instruction performs part of this process.

We show here how these primitive functions can be implemented by a small set of FLFM instruc-

tions. In later sections, we will discuss about some optimization rules to gain efficiency.
Arithmetic and Boolean Operations
We first consider the function add for addition of two integers. Assume that we have an instruction

ADD which adds two elements on the stack S and puts the result on the top of S .

(xy.S) E (ADD.C) D » (a.§S) E C D

where o represents the sum of two numbers obtained from x and y by evaluation.

The code for add can be written as
add = (EXT _ENV ; EXT ENV ;ARG 0; EVAL ; ARG 1;EVAL ; ADD ; APPLY )
Semicolons are inserted to mark the boundary of instructions for readability. The last instruction APPLY

returns the sum on the stack to the caller

Other arithmetic functions such as sub, mul, etc., and Boolean functions as eq are defined quite simi-
larly.
List Operations

Primitive functions for the list structure differ a bit from strict functions. The constructor cons for
list cells should not evaluate arguments in lazy evaluation [Friedman76].
cons = ( EXT_ENV ; EXT ENV ; ARG 0; ARG 1; CONS ; APPLY )
The instruction CONS produces a pair <x.y > in B=EXE from x,y€E.
(xy.S§) E (CONS.C) D -» (<xy>.8S) E C D
The selector functions head and tail first evaluate the argument and take an appropriate component
of the pair.
head = (EXT ENV ;ARG 0; EVAL ; CAR ; EVAL ; APPLY )

tail = (EXT ENV ;ARG 0; EVAL ; CDR ; EVAL ; APPLY )
where CAR and CDR are FLFM instructions:
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(<xy>.8) E (CAR.C) D »> (x.S5) E C D
(<xy>.8) E (CDR.C) D > (y.S) E C D

Conditional Operation

We have not yet dealt with any conditional operations. In ordinary SECD machine, SEL and JOIN
instructions take part in conditional execution. The compiler generating code for such an SECD machine
treats if as a special form for conditionals. However, in lazy languages, a conditional expression of the
form (if e, e2 e3) is simply a combination and it can be compiled into

(LD e3;LD ey;LD e1;GLOB if; EVAL ; APPLY ) .

where LD e; represents the code for loading the value of expression ¢; onto the stack.

The function if can be written using a conditional instruction SELECT as

if= (EXT ENV ; EXT ENV ; EXT ENV ;ARG 2; EVAL ; SELECT C1C3)

where

C1=(ARG 1;EVAL ; APPLY )
C2=(ARG 0;EVAL ; APPLY ) .
The instruction SELECT selects either C; or C2 according to the value at the top of the stack:

(true.S) E (SELECTC,C2) D —» S E Ci1 D
(false.S) E (SELECTC:C2) D -» S E C, D
The Boolean values true and false are assumed to be in B.

7.4. Compilation rules

Rules for compiling expressions into FLFM code is simpler than those for compiling similar expres-

sions into ordinary SECD machine.

Rules

Let

p=[uou1,*+ ,upl

stand for the static environment to lookup variables in lexical-addressing. Concatenation of static environ-

ments is represented as
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[vovi, =« - gl e [uour, -« ,upl = Vove, - - Vg, lhothy, "« * u4p] .

We use the notation in [Henderson80]:

e*p

represents FLFM code for expression e with respect to the environment p, and

(s1)1(s2) 1 --+ 1 (sn)

stands for
(5152 - s )
and (EXT_ENV)k to represent a sequence of EXT_ENV instruction repeated k times. The basic compila-

tion rules follow.

(*1) Basic value notation b € Bas

b*p=(CONST B) | (APPLY )

where B is the value in B the expression b represents.

(*2) Identifier x € Ide

. _ | (ARG )| (EVAL) | (APPLY ) if x=u; for some i
x*[uou1, - Upl= | (GLOB x ) I'(EVAL') I'(APPLY') otherwise

(*3) Combination

(eoer -~ en)*p=enfp | --- lerfp | eo*p

(*4) Function notation

(fnxy---xe.e)*p=(EXT ENV }* | e*p

(*S) Expression with local dedinitions!

(eowherexi=e1and --- and xn=en)*p=enfp | --- | e1fp | (EXT_ENV Y= | eo*p'

where p'=[xm, - - - x1]*p.

(eo whererec x1=¢; and - - - and x,=en )*p =
(DUMMY ENV ) | entp' | -+ | ertp' | (INS_ENV ym-1| (FILL ENV ) | eg*p'
where p'=[xm, - - - x1]*p.

1 Although expressions with where-clauses are not of the fully lazy normal form, such expression can be compiled into
FLFM code. Since the rules may be applied to expressions not satisfying the condition of the fully lazy normal form, the
rule is included here.
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Expressions of which evaluation is suspended are transformed as follows:

(1) Basic value notation b € Bas

btp=(CONST B)

where P is the value in B the expression b represents.

(¥2) Identifier x € Ide

(ARG i) if x=u; for some i
xtluom1,  upl=1 (GLOB x') otherwise

(13-5)Combination, Function notation, and Expression with local definitions

etp=(CLOS ) | e*p

Finally, the code for evaluating the outermost expression e under the standard initial environment po is
(CALL ) | e*po .
Optimization
The compilation rules described above do not use any specific information about primitive functions.
If we had used such information, we could obtain better FLFM code.

Suppose that we have a term (add ey e2). If we use the knowledge about the arity of add and its
strictness, the environment consisting of e1 and ez is not necessary. In such a case, we can generate FLFM
code as

(add 1 e2y*p=(CALL ) | ex*p | (CALL ) | ex*p | (ADD ) | (APPLY ) .

The expression is otherwise compiled into

(CLOS )l ex*p | (CLOS )1 e1*p | (GLOB add ) | (EVAL ) |(APPLY )
and the global function add creates an environment as specified in the previous section. Similar rules can
be applied to other arithmetic and Boolean functions. It should be noted that such optimization cannot be

taken unless sufficient number of arguments are accompanied with the primitive function.

For the list constructor cons , and for the selectors head and tail , we have

(cons ey ex)*p=eafp | e1fp | (CONS) | (APPLY )
(head e1)*p=(CALL ) | es*p | (CAR) | (EVAL ) | (APPLY )
(tail e1)*p=(CALL )| e1*p | (CDR) | (EVAL ) | (APPLY )
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Given the conditional form (if e e2 €3), we can optimize the term as
(iferezes)*o=(CALL ) | ey*p | (SELECT ) | ex*p | ea*p .
7.5. Implementation

In this section, we look over an FLFM implementation on a conventional machine MC68000 in order
to fill the gap between the virtual machine model FLFM and the actual machine. As we shall see in

Chapter 8, we have already implemented FLFM on four kinds of basically different machines.

As mentioned in Section 7.3, there is no need to use the list structure to represent every object held
by the registers S, E, C, and D . In the first place, the stack § can be implemented by usual hardware stack
manipulated by auto-increment and -decrement addressing of MC68000. Moreover, the value at the top of
§ is always held in a data register instead of on the stack. The code C is a fixed code of MC68000 instruc-
tions, and controlled by the program counter. The dump D can be embedded in the stack using the frame
pointer indicating stack frames for recursive activations of functions. To attain the sharing property of the
environment E , it is reasonable to make the environment using the list structure as illustrated in figures in

Sections 7.2 and 7.3.

Each value is represented by a 32 bit word of which first 8 bit byte is used for the tag part indicating
value types. Remaining 24 bit field contains primitive (integer, character, or Boolean) value, or a pointer to
a cell allocated in the heap store. Four of the address registers of MC68000 are devoted to maintaining S,
E, D, and the heap store. Figure 7.5.1 illustrates the stack, the heap, and pointers. Tags are not shown in
the figure. We use a standard technique for garbage collection. Two heap storages are provided. When we
are facing with the situation where no more cells are available, active cells in the current heap are copied to
the other heap and then the role of the heaps is exchanged. An instruction CHECK inspects the heap

pointer for availability of new cells in the current heap.

Most of the FLFM instructions are expanded into MC68000 instructions. Commonly used instruc-
tion sequences like EXT ENV, APPLY , etc., are supplied as run-time routines. An example of MC68000
code is shown in the Appendix A of this thesis. As for the performance, the code thus obtained runs as fast

as about 4400 function calls per second on Sun-2 workstations. This exceeds the execution count, about
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Figure 7.5.1. Implementation of FLFM

2000, by a micro-coded interpreter of the SECD machine for Lispkit Lisp on the Perq [Henderson83].

We shall leave further implementation details to Chapter 8.

7.6. Remarks

Our primary concem in this chapter is to develop compilation technique for fully lazy evaluation on
conventional machines. Once we have obtained expressions of the fully lazy normal form, we can evaluate
them in fully lazy way using ordinary lazy evaluation mechanism. It requires, however, that the evaluator
allows function application of insufficient number of arguments, which is not the case of ordinary SECD
machines. Our FLFM has been designed as a basic model of fully lazy evaluators. As shown above, code
generation from FLFM code turns out to be much easier than from ordinary SECD code. This enables us to

enhance portability of compiler systems.
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Johnsson [Johnsson85] deals with a compilation scheme for ordinary lazy evaluation. It is, however,
different from ours in several respects. Among others, it does not support full laziness, as is the basis of our

method.

An advantageous feature of full laziness in practical problems has been investigated in Chapter 9.
We believe that our compilation technique is extremely useful for exploiting the applicability of full lazi-

ness.



Chapter 8

Fully lazy implementation

There are many varieties of functional languages that have been developed to promote programming
practices in a functional style. As for implementations of these languages, there has been a reputation for
inefficiency. One of the reasons is that they were typically run interpretively rather than compiled. In this
chapter, we shall provide an existence proof for both the feasibility and the viability of functional languages
implemented on conventional computers and also explore the usefulness of the fully lazy normal form in
compilers. We choose a compilation method based on the technique of lambda-hoisting (Chapter 6), and
translate functional languages into a target language. Our target language is the code of the Fully Lazy
Functional Machine (Chapter 7). The FLFM code is then transformed into machine code of several com-
puters by a table-driven translator. This greatly enhances the portability of the compiler system. We shall

demonstrate implementations on four different machines in Section 8.2.

Despite different appearances of functional languages, almost all share similar characteristics. More
precisely the differences are superficial but the similarities are fundamental. Because the underlying con-
cepts of functional languages are quite few, we provide the language implementer with a common inter-
mediate language as the interface to fundamental features of functional programming. The common inter-
mediate language is a simple functional language that can be compiled into machine code. Although we do
not hope to add ill-conceived languages to the Tower of Babel of programming languages [Sammet69], the
use of the common intermediate language makes a new implementation quite easy. In Section 8.3, we shall
present an example implementation of a language designed for evaluating the expressive power of a set

notation similar to that of Zermelo-Fraenkel set theory.

8.1. Compiler design

Examples of functional languages are pure Lisp [McCarthy62], Backus’ FP [Backus78], ISWIM
[Landin66], ML [Gordon79b, Milner84], HOPE [Burstall80], SASL [Tumner76], KRC [Turner82], and
Miranda [Turner85]. Although these languages vary in appearance from the simplest form of Lisp to a

sophisticated notation of Miranda, they are built on a few fundamental concepts:

101
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(1) A setof objects, e.g., primitive data values and primitive functions,
(2) Functional abstraction, e.g., fn x.e,

(3) Functional application, e.g., (eo €1),

(4) Definition (possibly recursive) mechanism, e.g., x=e,

(5) Data structuring facilities such as constructing lists and pairs

(6) Lazy and non-lazy evaluation mechanisms.

Some languages do not allow functional abstraction and higher order functions; in which case predefined
functional forms are used for combining terms [Backus78]. The other provides extended features such as
exception handling and assignment [Gordon79b, Milner84]. The addition of a type discipline is common to
modern functional languages [Milner84, Turner85]. See Chapter 10 of this thesis. Most of these
differences can be treated separately before generating machine code, and programs can be embedded in a
standard representation of fundamental concepts. It is believed that the large part of languages is common
to each other. One reason of convincing on this point is the fact that functional programming allows only a
few alternatives for introduction of new notions. Any representation for new idea would be translated into
a crude but more primitive form by combining already existent ones using functional composition. Such
extensibility is one of the advantageous features in functional programming. The situation is contrast to
extensible procedural languages in the late sixties, e.g., Algol 68 [Wijngaarden69], which went into the
great complexity. As far as functional languages are concerned, it seems better to design a translator for a
common intermediate language that provides typical features (1)-(6) of many functional languages. The
language-dependent part of the compiler is separated in this way as the front-end. The front-end of the
compiler translates the source program of a particular language into the common intermediate language.
The common intermediate language acts as an interface between the language-dependent part and the rest

of the compiler.

Let us next consider the other end of the compiler. It is obviously desirable that the compiler is port-
able and can be implemented on many machines. One method is to define a target language which links

the machine-independent and machine-dependent parts. The target language could also be thought of as an
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abstract machine since the machine-independent part of the compiler see it like an object machine. The
machine-independent part known as the back-end translates the target language into machine code of the
object machine. There are a number of examples of such abstract machines for implementing procedural
languages. BCPL [Richards71] has been implemented on many machines using OCODE as a target
language. We had designed a back-end of OCODE and implemented BCPL on the Melcom 70/250 com-
puter which is also an object machine of our functional languages. Some implementations of Pascal use a
target language called P-code. Compilers generate P-code which is then usually interpreted. Further details
of porting Pascal compilers are discussed in [Takeichi77]. A few abstract machines have been used for
functional languages. The SECD machine [Henderson76] is an example, but the code is designed to be
interpreted as P-code for Pascal is. Cardelli has designed a target language FAM (functional abstract
machine) for ML [Cardelli84b] which could be implemented on many machines. We had ported ML on the
Melcom 707250 [Chujo84]. FAM reflects the design of ML in a number of ways. It does not provide any
instruction for lazy evaluation. What is worse is that the back-end tends to become complex and porting
the compiler to an essentially different machine is a laborious task. Making good use of our experiences on
portable compilers, we have designed an abstract machine, Fully Lazy Functional Machine (FLFM), as
described in Chapter 7. The target language FLFM is compact and provides instructions convenient for
implementing (full) laziness. It will turn out that we can generate efficient code for various machines from

the FLFM code.

Since we have defined a common intermediate language and a target language, the problem of imple-
menting m languages on » machines would essentially involve writing m+n pieces of translators, i.e., m
language-dependent front-ends and n machine-dependent back-ends, rather than mxn complete compilers

(Figure 8.1.1). The language- and machine-independent part of the compiler is called the core translator.

8.2. Compiler structure

We have seen in the previous section that our compiler comprises the core translator, a front-end
translator for each source language and a back-end translator for each object machine. In this section we
discuss in more detail the structure of the compiler. The main part of the compiler is the core translator that

translates the common intermediate language into the target language from which the back-end translator



104

Language Language Language
1 2 m
Y
Language- Language- Language-
dependent dependent dependent
front-end 1 front-end 2 front-end m

Common Translator
intermediate
language
Core translator:
Common intermediate language
_)
Target language
Target
language
Machine- Machine- Machine-
dependent dependent dependent
back-end 1 back-end 2 back-end n
Machine 1 Machine 2 Machine n
code code

code

Figure 8.1.1. Compilers of m languages on n machines

generates machine instructions. A front-end translator will be demonstrated in the next section.

Common intermediate language

Our common intermediate language borrows its syntax from Lispkit Lisp [Henderson76] with a few
extensions (Figure 8.2.1). Every program of the common intermediate language is an S-expression. New

forms of bindings v € Bin are included in the language; that is, compound bindings of the form



Syntactic domains
beBas
xelde
ecExp
veBin

Syntax
e:=x
| (quote b)
I(eoer - en)
| lambda (vi -~ - wt)e)

vi=x
_|(V1 V)
1(v1 " Vm . Vma1)

Note

Figure 8.2.1. Common intermediate language

I(leteo (vi.e1) -+ (Va.€n))
| (letrec eo (v1.€1) **+ (Va.€n))

basic value notation
identifiers
expressions
bindings

Parentheses (, ), and dot . are terminal symbols.
quote, lambda, let, and letrec introduce special forms.

Wi - vm)or (Vi "+ Vi .Vm+1)
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are allowed as well as simple variables x € Ide. The requirements (1)-(6) mentioned in the previous section

should be examined.

(1) A primitive value is an integer, a Boolean, a character, or a distinguished value nil.

An integer value is represented by a quoted expression as

(quote b)

where b € Bas is a decimal notation of the number.

Boolean values are written using a constructor bool as

(bool (quote 0)) for false

and

(bool (quote 1)) for true.

These values are of a primitive data type bool unlike Lisp where nil and non-nil values act as

Boolean.
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Similarly a character is represented as

(char (quote c))

where ¢ is the internal code of the character.

For simplicity, (quote b) is sometimes written using a quote symbol * as b °.

The distingushed value nil is identified by a special identifier nil or an empty combination ( ) accord-
ing to the Lisp tradition.

The constructors

bool: int = bool

and

char: int — char

are predefined type transfer functions.

Primitive functions may vary depending upon the source language to be implemented. The compiler
knows only a few functions such as add, sub, eq , if, etc., and makes machine-independent optimiza-
tion on these functions as described in Section 7.4. Other language-dependent functions are assumed
to be provided as library functions. All the optimization rules form a table describing how the com-
piler deals with special combinations of functions and arguments. The contents of the table may be

changed to meet the rules of the source language.

Functional abstraction is represented by an expression

(lambda (vi vy --- w)e)

which is semantically equivalent to

(lambda (v1) (lambda (v2) - - - (lambda (w)e) --- ) ).

We may write this expression in our referential language being used throughout the thesis as

favy---ve.

The binding of the lambda form is extended in such a way that components of a structured argument

may be specified by variables. See below for the details.

Functional application is of the form
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(eoer -+ en)

which is equivalent to

(eo(er -+ €n)).

An expression with local definition is either

(leteo (vi.e1) -+ (Va.en))

or

(letreceo (vi.e1) -+ (va.€n)).

Corresponding expressions in our referential language are

eowherevi=e;and - v,=e,
and '
eowhererecvi=¢;and - - v,=e,

respectively. However, the bindings v; may be compound.

There is a primitive data constructor cons for creating a pair structure. As in Lisp, there is no distinc-
tion between pairs and lists. These are distingushed only in the source language, if necessary. If we
wish to handle a record structure as in Pascal

record nodevalue : integer; left, right : pointer end

the front-end should translate it into a structure using pairs

(nodevalue . (left . right)) or equivalently (nodevalue left . right)
for example, and produce selector functions

nodevalue = (lambda((n 1 .r))n)
left=(lambda((n 1 .r))1)
and

right=(lambda((nl .r))r).
In order to represent an empty structure, nil is provided as a primitive value denoted by nil .

The compiler compiles any program written in the common intermediate language to generate code
that evaluate the original expression in a lazy (actually in a fully lazy) way. A special function val

causes the argument expression be evaluated before function call. Consider for example



108

(f (val (add n 1)) (subn 1)) .

The code sequence of this expression looks like

<evaluate (add n 1)>; <make closure (subn 1)>; <call f >

or
(ARG n; CONST 1, ADD ; CLOS (ARG n; CONST 1; SUB; APPLY); CALL f)
in FLFM code. That is, the function val may be used to indicate that the argument should be

evaluated in a non-lazy way.

Compound bindings

Burstall [Burstall69] proposed several syntactic extensions of the ISWIM language [Landin66] which
is the basis of our referential language. These enable us to write compact programs that manipulate data
structures such as lists and tuples. The basic idea is that a single identifier, say cons , may serve for the data
constructor, the destructor producing the components of the data structure, and the predicate. The role of
the identifier can be distingushed from the context it appears. For example,

cons(a.b)

in ISWIM means the pair structure with @ and b as its components. If cons appears in a binding as

let cons(x,y)=p ine ,

x and y are bound to the components of the pair p ; that is, it is equivalent to
let x=car (p) and y=cdr(p) ine .
The use of the constructor this way is very attractive for representing decomposition of the data structure,

because it makes the selectors virtually useless and explicit use of the selector disappears.
The extension of bindings in the common intermediate language follows Burstall’s idea. For exam-
ple,

(lete ((x.y).p))

means

(lete (x . (head p)) (y . (tail p)))
where head and tail are standard selector functions of the data structure produced by the constructor cons .

Such a syntactic device allows us to write compact programs that manipulate data structures. Recent
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functional languages provide mechanisms to define a function by giving several alternative equations dis-

tinguished by the use of different patterns in the parameters. In Miranda [Turner85],

reverse [1 =[]
reverse (a:x) = reverse x ++ [a]

define a function that reverses a list. Such a function definition may be expressed in the common inter-

mediate language as!

(reverse .
(lambda (1)
@if (null u) (quote nil)
(let (append (reverse x) (cons a (quote nil))) ((a. x).u)))))

where u is a fresh identifier. We shall discuss such translation rules of the front-end in the next section.
Elimination of compound bindings

The first phase of the core translator eliminates compound bindings of the form
(V1 vm)or (Vi oo Vm . Vms1)
by decomposing the structure using the standard selector functions head and fail. The translation rules are

summarized in Figure 8.2.2.

For example,

(lambda ((x.y)) €)

is transformed as

(lambda ((x.y)) e) — (lambda (u) (let V[e]lS[(x.y).ul)

where u is a fresh identifier and

S[(x.y)ul=S[x,head u)) | S[y,(tail u)l= [(x.(head u)) (y.(tail u))] .

Finally we have an expression without compound bindings

(lambda (u) (let Ve] (x. (head u)) (y.(tail u)))).
It should be noted that local definitions are added to the original expression but nesting of the lambda
expression remains unchanged. We could have used nested lambda forms instead of let- or letrec-

expressions as

1 This is not an expression, but a definition that may appear in a letrec-expression.
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beBas basic value notation
xelde identifiers

e€Exp S-expressions
veBin bindings

Rules for elimination of compound bindings
V : Exp — Exp

Vix]l=[x]
V [(quote b)] = [(quote b)]
Vi(eoer -+ ea)]=[(VIedd Vie1l -+ Viea))]
Vi(lambda(vy - -+ w)e)]l=
[(lambda (xy --- xx) (let V[e]Svi,x1] | -+ | S[vi,xa]))]
where x; are fresh identifiers.
Vi(eteo(vi.e1) -+ (va.€x))]l=
[(et (et VIeol Svi,x1] | -+ 1 Sva, xa]) (x1.€1) -+ (Xn . €n))]
where x; are fresh identifiers.
Vi(letreceo(vi.e1) -+ (va.€n))]l=
[(letrec VIeol Svi,x1] | =-+ | S[va,xal (x1.€1) - ** (xn . €n)]
where x; are fresh identifiers.

Rules for decomposition of compound bindings
S : BinxExp — Exp”*

Skxx]=¢ (empty)
Slx.el=[(x .e)]
Slvivz -+ vm)el=
S[vi,(head e)] | S[va,(head(tail e))] | - -+ | S [Vm,(head (tailm—! e))]
S[(viva -+ Vm . Vma1)el=
S[vi,(head e)] | S[va,(head(tail e))] | ---
| 8§ [V (head (tailm—1 e))] | S [Vm+1,(tail™ e)]

Notations
Syntactic elements are quoted by [ and ].
Operator | concatenates S-expressions.
tailp stands for p -fold application of the function tail .

Figure 8.2.2. Elimination of compound bindings

(lambda ((x.y)) e) — (lambda (u) ( (lambda (x y) V (e 1)(head u)(tail u)))
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It is, however, undesirable for our purpose. Extra lambda-bindings induce more operations required for

passing parameters. It is from this reason that we have introduced the fully lazy normal form instead of

using super-combinators as a basis of a compiler producing efficient code. See the discussion in Chapter 5.
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Lambda-hoisting

The second phase of the core translator performs the lambda-hoisting procedure of Chapter 6 on the

expression that has passed through the first phase.

FLFM code generation

The core translator finally generates FLFM code according to the rules described in Section 7.4. The
compiler consults a table that specifies machine-independent optimization rules for generating efficient
code. Although optimization rules for standard functions have been included in the table, language-

dependent rules or heuristic rules might be added, if desired.

Machine code generation

The back-end translator of the compiler takes FLFM code as input and generates machine code as
output. The task of the back-end is very simple; it repeatedly reads an FLFM instruction and looks up the
corresponding machine instructions in the code table. It can be said that the back-end translator generates
machine code in a table-driven way. Consequently we have only to make a code table for each object

machine.
We have developed code tables and FLFMs for four different machines:
. Motorola MC68000, one of the most popular microprocessors,
. Melcom 70/250, an enhanced version of old Sigma 7,
. Melcom MX?2000, a machine very similar to IBM 370, and
. Intel 18086, another popular microprocessor for small systems.

The computers on which the compilers and the FLFMs have actually been implemented are the Sun-2

workstation, the Melcom 70/250, the Melcom MX2000, and the NEC-PC9801.

It can be said that the core translator and several back-end translators form a portable functional sys-

tem as shown in Figure 8.2.3.
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Figure 8.2.3. Core translator and back-ends
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8.3. A functional language translator

We may write programs in the common intermediate language, and this is the only way of program-
ming until more sophisticated languages are made. As described in Section 8.1, our compiler for a new
language can be implemented by prefixing its front-end translator to the core translator. This section pro-
vides an informal introduction to a functional language uc (pronounced you see) and explains how the
front-end translator is constructed2. It is not claimed that the syntax or semantics of the language uc are
more elegant than those of other functional languages. The uc language rather borrows many ideas from

Miranda [Turner85].

Translation rules are presented on the basis of abstract syntax of uc. The concrete syntax of uc is
found in Appendix B of this thesis. For any form o of uc,
o — S-expression
means that o should be translated into the right-hand expression of the common intermediate language. We
sometimes write

[a]

to represent the corresponding S-expression. For example,

ifeithen ez else es — (if [e1] [e2) [e3))

is the rule for conditional expressions.

The language is purely functional. A uc program is an expression which represents a value we are
interested in. Every program has a unique name that may be referred by other programs. That is, the name
of a program is global in the sense that it denotes the expression common to all the programs in that com-
puting environment. From the viewpoint of implementation these names are used for combining separately
compiled modules to form a larger program. Such a global name g appeared in some expression should be
compiled to an FLFM instruction GLOB g. Other names are local in a program and must be bound by fn-

abstraction or local declaration. Here is a simple program fac:

2 The language uc was used in previous chapters for explaining ideas in functional programming.
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[ whererec
f n = if n==0 then 1 else n*f (n-1) .

Then we can write a program fac 10 that uses the expression denoted by fac as

fac 10.

This program is equivalent to

f 10
whererec
f n = if n==0then 1 else n*f (n—-1).

Note that the identifier f in the program fac has a meaning inside that program, but the name fac is glo-

bal. The name fac actually denotes the value of f which is defined by means of a whererec-clause.

Any identifier x in a uc program is translated into itself, i.e.,

X > X.

Primitive values are those provided by the common intermediate language. An integer constant is
denoted by the usual decimal notation 8.

S > (quote d).

Boolean constants are represented by true and false both of which are reserved word.

true — (bool (quote 1))
false — (bool (quote 0)) .

A character constant is written as 'c .
'c' = (char (quote 5))
where 3 is a decimal representation of internal code for the character ¢. A string constant has the form

"c1c2- - - ¢ " that represents a list structure of characters (See below).

”

"cicz - ren” = [[ler','ed, - a1
The most commonly used data structure is the list which is written using brackets and commas as
[1,2,3,5,7,11,13].
[e1,e2, - ,ex ] > (cons [e1] (cons [ez) --- (cons [en) (quotenil))---))

where cons is a primitive data constructor provided in the common intermediate language. An empty list is

denoted by a reserved word nil or [ ] both of which are translated into (quote nil ).
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There is a shorthand notation using ‘.." for lists whose elements form an arithmetic series of unit
differences. For example, [1..n] means a list [1,2, - - - ,n]. Such an expression is translated into a combina-
tion using a library function fromto.

[e1..e2] = (fromo [e1] [e2]).
The function fromto is defined as

fromto x y = if x>y then [] else x : fromto (x+1) y

where “:’ is an infix operator for cons (See below).
Lazy evaluation makes it possible to write down infinite data structures. We may write a program, i.e., a
global expression, ones that represents an infinite sequences of ones as

ones whererec ones =1:ones .

There is a modified form of the ‘.." notation for the infinite arithmetic series.

[e1..] = (from [e1])
where the library function from is
fromx = x :from(x+1).
The notation for function application is simply juxtaposition as is usual in many functional

languages.

eoey - - en —> ([eo] [e1] - [ea])

There are infix operators and unary oprerators for commonly used functions.

e1, ez o (cons [e1] [e2))

e1 ++ e2 - (append [e1] [e2])
e1: ez — (cons [e1] [e2])

er Il e2 = (or [e1] [e2])

e1 && ex — (and [e1] [ez])
er = e2 - (eq [e1] [e2])

e1 1= ez — (neq [e1] [e2])

e1 < ea = (It [e1] [e2))
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e1 > ez = (gt [e1] [e2])

e1 <= e2 > (leq [e1] [e2))

e1 >=e2 - (geq [e1] [e2])

e1+ ez — (add [e1) [e2))

er— e2 > (sub [e1] [e2])

er* ez — (mul [e1] [ez2))

e1/ e2 - (div [e1] [e2])

e1 % ex > (rem [e1] [e2])

“e1 — (neg [e1])

1er = (not [e1])
It would be unnecessary to explain in detail, but some remarks should be made. The functions that appear
in the right-hand sides are provided in the common intermediate language and most of them have thier
counterparts of FLFM instructions. The function cons appears in two rules for operators *,” and *:’. Since
the data structure available in the common intermediate language and FLFM is only one produced by cons,
every structure in the source language has to be mapped into the single domain. It should also be noted that

the unary minus operator is denoted by ‘™. The reason of doing so will be clear in the next paragraph.

The language uc is a fully higher order language and functions are first class objects. It is therefore
desirable to write standard functions listed above in some way using operator symbols. The language
solves this problem as

(0) = o

where o is an operator and y is the name of its function counterpart. For example,

(+) > add
(=) > sub
(") > neg
(&) > and.

Many list processing functions can be obtained by partially parametrizing a library function foldr
foldr whererec

foldr op k = fnx.if x==[]then k else op a (foldr op k u)
where (a:u)=x
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foldr (+) 0 for the sum of the elements,
foldr (*)1 for the product of the elements.

Functional abstraction is written as fn vy --- v . e where v; are variable structures that are simply
translated into simple variables or compound bindings of the common intermediate language.
fovy --- we.e — (lambda([vi) --- [w]) [e]).
A variable structure v may be a simple variable x or either of the form (v1,v2) or (vi:v2). Symbols *,’
and ‘:’ correspond to ones for operator symbols. These are right associative so that (a:b:c) means
(a:(b:c)).
X o x
v1,v2) = ([vi].[v2])
i:v) = ([vi].[v2])
Expressions with local definitions d are translated as
letdiand --- andd,ine — (let [e] [di] -+ [dn])
letrecdiand --- andd, ine — (letrec [e] [di) --- [da))
e whered;and --- andd, — (let [e) [d1] --- [dn])
e whererecdiand --- andd, — (letrec [e) [d1] -+ [da)])
A definition d may be a variable definition or a function definition:
v=e — ([v].[e])

xvi--w=e — (x.(ambda([v1]) -+ [w]) [e])).

One of the most powerful notations in uc is the one for set comprehension called ZF-expression after
Zermero-Fraenkel set theory. A ZF-expression is of the form
lelqi;---3qn]
where each qualifier ¢; is either a generator of the form ‘x<—e’ or a guard which is a predicate p (a
Boolean expression) used to restrict the ranges of the values of the variables. The translation rules for the

ZF-expression is summarized in Figure 8.3.1.

A simple example of a ZF-expression is a list of odd numbers
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[elqis - iqn] ZF-expression with qualifiers g;
Qualifier:

X <—e generator

p predicate (Boolean expression)

Rules for translation of ZF-expressions
(1] [e | x<—€'] — (map (lambda (x) [e)) [e’))

3] [elqi; - sqesp;p’]l > [lelqi; - q;( && p)])
(4] [elqgi; - iqeix<—e']l—><slqi; - ;q>

wheres = [[e | x<—¢'])
[5] [elqi; - iqrix<—e;plo><slqi; - ;q>

wheres = [[e | x<—€';p 1)

Auxiliary rules

<0> <sl> > s
<> <s lx<—e' > — (concmap (lambda (x)s ) [e’])

<3> <slgqi; - sqip;p>><elq; - ;q:;(p&&p)>
<4> <slqi; - iqrix<—e>->3><s"lq1; " ;q>

where s’ =<e | x<—e' >
<5> <slqi;  iqrgix<—e;p>><slq1; " ;>

wheres'=<e | x<—¢' ;p >
Library functions

map f x =ifx==[]then[]elsef a :map f u
where(a :u)=x
filter p x =if x==[] then [ ] else
if p a then p a : filter p u else filter p u
where(a :u)=x
concmap f x =if x==[]then []else f a ++ concmap f u
where(a :u)=x

Figure 8.3.1. Translation of ZF-expression

2] [e | x<—e';p 1 — (map (lambda (x) [e) ) (filter (lambda (x) [p]) [¢']))

<2> <s lx<—€ ;p > — (concmap (lambda (x) s ) (filter (lambda (x) [p)) [¢’]))

[2*n+1 | n<—[0..]]

which is translated into an S-expression of the common intermediate language as

(map (lambda (n) (add (mul (quote 2) n) (quote 1)) ) (from (quote 0) ) ) .
Another ZF-expression of a list of odd numbers looks like

[n 1 n<—[0.];0ddn].

This expression is transformed into
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(map (lambda (n) n) (filter (lambda (n) (odd n)) (from (quote 0))))
which should be simplified as

(filter (lambda (n) (odd n)) (from (quote 0) ) ) .
A variant of the ZF-expression { e | g1; - -- ; qx } represents a list of which duplicated elements are made
single.

felqu; -~ iq} > (mkset [[elqi; - ;ql])
where mkset is a library function defined as

mkset x = if x==[]then []else a : filter (neq a) (mkset u) where (a:u)=x .

A set of pairs of A and B can be written as

{&xy) I x<-A;y<-B}

which is transformed into

(mkset (concmap (lambda (x) (map (lambda (y) (cons x y))B))A)).
Example programs developed in Chapters 1 and 2 have been presented by such compact notations of uc

borrowed from Miranda [Turner85].

The front-end translator for the language uc has been developed using the yacc parser generator and
the lex scanner generator of UNIX operating systems3. It is an easy task to write a front-end for a new

language if these development tools are available. An example of translation can be found in Appendix A.

8.4. Experimental results

Several programs have been written and benchmarked on four different systems described in Section

8.2. Some of them have been mentioned in the previous Chapters.

The nFib benchmark
We have used the nFib function [Henderson83] in Chapter 4 to estimate the efficiency of the evalua-

tors based on combinator reduction.

nFib n = if n<1 then 1 else nFib (n—1+nFib(n-2)+1

The result of this function is the number of function calls done in the course of calculation. We can allocate

3 Developed and Licensed by AT&T.
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arbitrary number of cells for FLFM on the Sun-2 (MC68010, 10Mz), the Melcom 70/250, and the Melcom
MX2000. The FLFM on the PC9801 (18086, 8Mz) uses always 32K cells. We measured the timing with
sufficient number of cells so that garbage collection does not take place on the first three machines. For the
last one, we reduced the average time required for garbage collection from the total running time. The

results are summarized in Table 8.4.1.

Table 8.4.1: Number of function calls per second by nFib benchmark

Machine Sun-2 M70/250 MX2000 PC9801
Function calls per second | 4378 3588 7108 2700

The combinator reducers have been experimented on the Melcom 70/250 and the fast reducer based on the
fixed code scheme performs 2447 function calls per second. Our FLFM based code runs 50% faster than

the combinator reducer on the same computer.

Finding the 30-th prime

As a typical example of using infinite lists implemented by lazy evaluation, the program for finding

the 30-th prime number was written in uc.

nth 30 primes

whererec {

primes =sieve [2..]
and

sieve (px)=p :sieve (n |l n <—x;n%p!=01]
and

nth n (a:x)=if n=1 then g else nth (n-1) x
}

To estimate the applicability of the FLFM based compilers, total running time including time for garbage
collection was measured with different heap sizes on three machines. The results are shown in Table 8.4.2.

The results by the graph reduction evaluators are presented in Chapter 4. However, the run-time
measured there does not include the time for garbage collection.

We also wrote a program in ML and processed by the compiler system on the Melcom 70/250

[Chujo84]. The language ML evaluates every expression in a non-lazy way, and the program is coded by



121

Table 8.4.2: Run-time in seconds for 30-th prime

Heap size {| Sun-2 M70/250 MX2000

5K cells 0.7 1.65 0.66
10K cells 0.7 1.03 0.46
20K cells 0.5 0.92 0.40

producing closures to put off evaluation. The run-time was 4.18 seconds using the heap of 5K cells. FLFM

runs about three times faster than the ML code.

Ramanujan’s numbers

As an example of a sizable program, we measured the run-time and the amount of store claimed for
printing first 10 Ramanujan’s numbers. See Chapters 1 and 2 of this thesis for the specification of the prob-

lem. We had defined a program ram as

ram (sort_r 1)

whererec {
ram (x:(y:z)) =
if sumcubes x == sumcubes y then (x,y):ram(y:z) else ram(y:z)
and
sort_r k = (k,k):merge r [(k,b)! b<~[k+1.]] (sort_r (k+1))
and

merge r (x:u)(yw) =
if sumcubes x <= sumcubes y then x : merge r u (v:y) else y : merge r (x:u)v
and
sumcubes (a,b) = a*a*a+b*b*b
}

and wrote a program as

take 10 ram
where take is a library function which takes specified number of elements of the second argument.

The total number of cells allocated in the course of evaluation is 232111. The run-time varies with

the heap sizes as shown in Table 8.4.3.

The FLFM on the MX2000 executes programs that caclulate integers very fast, but it is rather slow
when programs manipulate data structures extensively. It is one of the anomalies of our FLFM on different

machines.
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Table 8.4.3: Run-time in seconds for 10 Ramanujan’s numbers

Heap size || Sun-2 M70/250 MX2000

10K cells || 27.3 354 352
20K cells || 21.7 26.7 30.3
30K cells || 19.5 25.9 29.0

In order to estimate the efficiency of the garbage collector of the FLFM, we have measured the time
required for garbage collection on the Sun-2 using the above program. Accumulated number of active cells
divided by the total time for garbage collection gives the average number of cells collected in a unit of time.

The results are summarized in Table 8.4.4.

Table 8.4.4: Efficiency of garbage collection on the Sun-2 FLFM

Heap size || Totaltime | Numberof GC  Total time for ~Accumulated Collected cells | GC time
(K cell) (second) (times) GC (second) active cells per second ratio
10 273 40 10.2 165940 16269 37.3%
20 21.7 14 3.48 55928 16071 16.0%
30 19.5 8 1.98 33060 16697 10.2%
40 18.9 6 1.68 27693 16484 8.9%
50 18.4 4 1.14 17634 15468 6.2%

As mentioned above, the total number of cells required by the program is about 232 K cells and the net
time, i.e., total time minus GC time, is approximately 17 seconds. Hence the average number of cells com-

sumed per second is 13 K cells, which is 80% of the collection capacity.



Chapter 9

Traversals of data structures

The use of higher order functions in functional programming opens up the possibility of defining
functions by partial parametrization, and lazy evaluation brings out a new approach in programming metho-
dology. This chapter describes a new transformation technique based on partial parametrization and fully
lazy evaluation for eliminating multiple traversals of data structures. It uses no particular mechanisms in
functional programming, whereas it transforms a wider class of programs into efficient ones than that pro-

posed so far.

9.1. Motivation

One of the most important features in functional programming is the use of higer order functions as a
powerful mechanism of abstraction. Many similar functions can be defined by parametrizing a higher order
function that represents a common pattern of computation. The advantage of programming this way is that
modularity can be achieved without introducing any new mechanism except for functional abstraction and
application. Such a modular style of programming is of increasing importance in writing large-scale pro-
grams. However, programs consisting of these functions sometimes turn out to be inefficient to execute.
The main source of the inefficiency lies in the way functions are defined in a program. Each function is
usually defined independently by instantiating the common pattern with no reference to the other functions.
For example, consider a higher order function that represents a traversal algorithm of a certain data struc-
ture. This function is supposed to have a parameter for the operation on each element of the data structure.
Then we can define various functions that operate on the data structure by instantiating different operations
for the parameter, and use them to construct a program. It is true that the program written in this way
attains a high degree of modularity, but multiple traversals of the data structure are inevitable if the program

contains multiple instances of the higher order traversal function.

Another important feature in functional programming is that programs can be improved by simple

transformations. This is due to the principle of referential transparency of functional programs.

In this chapter, we illustrate how these features of functional programming bring unexpected gains in

123
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efficiency. The purpose of the transformation technique proposed is, among others, directed to refinement
of programs written in a modular style into efficient ones; programs that traverse a data structure more than

once are transformed into ones that do so only once.

A similar transformation method by Bird deals with programs of a particular form of functional com-
position [Bird84]. It relies on lazy evaluation and local recursion to build a circular program structure. Our
method can be applied to a wider class of programs than Bird’s. It is based on partial parametrization and
fully lazy evaluation in addition to local recursion assumed by Bird. Partial parametrization is a basic
mechanism in modular programming as described above, and full laziness can be reduced to ordinary lazi-
ness by a simple transformation of programs. We can thus make many programs into efficient ones without

any particular mechanisms.

We introduce the basic idea of our method through a simple example in Section 9.2. The new
transformation technique is described in a general setting in Section 9.3. Further example programs are
transformed in Section 9.4. More on the transformation rules are formulated in Section 9.5. Finally in Sec-
tion 9.6 some remarks on related research are given with actual benchmarks using the uc language system

described in Chapter 8.

9.2, Partial parametrization and fully lazy evaluation

Consider a program to find the average of the elements of an integer list x :

average x = DIV (sum x) (length x)
whererec
sumx =IF (NULL x) 0 (PLUS (HEAD x) (sum (TAIL x)))
and
lengthx =IF (NULL x)0 (PLUS 1 (length (TAIL x)))

We use a ternary function IF for conditional expressions; IF true e; ea=¢; and IF false e; e;=e> hold.
The functions PLUS and DIV are binary arithmetic operations that return the sum and the quotient of two
integers, respectively. NULL is a predicate that returns true when applied to a null list nil, and returns
false otherwise. HEAD and TAIL are selectors for a nonnull list (PREFIX x y) with
HEAD (PREFIX x y)=x,and TAIL (PREFIX x y)=y. Although predicates and selectors for data structures

should have been defined more formally, we leave it for the later sections.
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The above program average traverses the given list x twice; once for computing the sum of the ele-
ments and once for finding the length of the list. One way to make the program efficient is to combine the
two functions sum and length into a function sum-length:

sum-length x = [sum x , length x]
where [a,b] represents a pair of a and b. A recursive definition of sum-length can be synthesized by the
unfold-fold method [Burstall77] and the where-abstraction:

sum-length x =IF (NULL x) [0,0] [PLUS (HEAD x)s ,PLUS 11]

whererec [s,/]=sum-length (TAIL x)

Having defined this function, we can rewrite the function average as

average x =DIV s |
where [s,/] = sum-length x
whererec sum-lengthx = - - -

This program traverses the list x only once.

The above transformation method can be applied to programs of the form A(f x)(g x), which we
may call §’-composition after the S’ combinator of combinator logicl. It is, however, largely dependent on

the form of functional composition.

Bird [Bird84] extends this idea of the tupling and the unfold-fold methods to develop a technique for
transforming programs of the S-composition form, i.e., f x(g x), into ones that traverse a data structure x
only once. Bird’s transformation relies on lazy evaluation [Friedman76, Henderson76] and local recursion
to build a circular program structure. We do not deal with such a program here, but explain the basic idea
of our new transformation technique based on partial parametrization and fully lazy evaluation using the

example program average . In later sections we will apply the technique to Bird’s examples.

First of all, it should be observed that both the functions sum and length traverse the list x precisely
in the same manner. Or rather, one can say that these definitions come out from a common pattern of com-
putation. They differ only in the function that operates on the elements of the list. Hence, the uncommon

operation having been made a parameter f, the common parts of these functions can be expressed as a

1 Tumer [Tumer79] introduces the combinator S* for S’ h f g x=h(f x)Xg x) as an extension to the standard S
combinator for S f g x=f x(g x). The combinator S’ is also written as ® in some books on combinatory logic. We prefer
S’ to @ because the latter symbol is used differently in this chapter.
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higher order function accum that accumulates the results of applying the function f to all the elements of
the list x:
accum f x =

IF (NULL x) 0 (PLUS (f (HEAD x)) (accum f (TAIL x)))

We can redefine the two functions using accum:

sum=accum I where Ix=x
length=accum (K 1) where Kx y=x

The use of higher order functions this way is so common that we can find many illustrative examples in the
literatures on functional programming, e.g., [Burge75]. In fact, the function accum itself can be defined by
instantiating another higher order function that represents a more general pattern of computation (See Sec-

tion 9.4).

The transformation technique proposed in this chapter uses such a higher order function of which
parameters are arranged so that the first one is the data structure x to be traversed. We accordingly use the
following version of the accumulation function in place of accum :

accum’ x f =

IF (NULL x) 0 (PLUS (f (HEAD x)) (accum’ (TAIL x) f))

and we rewrite the functions sum and length as

sum x =accum’ x 1
length x = accum’ x (K 1)

Then, we can take advantage of an opportunity to make the common term (accum’ x) be shared by both of
the functions. This term is a unary function obtained by parametrizing only the first argument of the binary
function accum’. As has been done above, the higher order function that is derived from a commonly used

one but takes the data structure as its first argument is denoted by the function name with a prime attached.

Using the above definitions, we can rewrite the original program as

average x =DIV (E1) (§ (K 1))
where &=accum’ x
whererec accum’ x f = - - -

Lazy evaluation with a call-by-need mechanism [Wadsworth71], or call-by-delayed-value [Vuillemin74]

ensures that the term & appearing in both the arguments of DIV is evaluated only once.
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Therefore, if the list x has been frozen in the function &=(accum’ x) and no more reference to x
occurs in evaluation of (§ f ) for any function f , the new program average traverses the list x only once. If
we were allowed to pre-compute § for a particular x, say [3;5], we obtain § in a single traversal of x as

& = accum’ [3;5]
=Af. IF (NULL [3;5)O(PLUS (f (HEAD [3;5)))(accum’ (TAIL [3;51)f ))
=Af. PLUS (f 3)(IF (NULL [5))0(PLUS (f (HEAD [S]))(accum’ (TAIL [5))f )))
=Af. PLUS(f 3)(PLUS (f S)F (NULL[J)0( --- )))
=Af. PLUS(f 3YPLUS(f 5)0)

Using this value for &, we can compute the average of [3;5] according to the equation for average without
traversing x any more. Precomputation is not satisfactory, however. It is costly to calculate (accum’ x) as
above each time the list x is given. Fortunately, the desired effect is achieved by the use of fully lazy
evaluation; every expression is evaluated at most once after the variables in it have been bound
[Hughes84]. In our particular case, fully lazy evaluation ensures that any expression containing the param-
eter x is evaluated at most once. With an algorithm similar to the one by Hughes for finding super-
combinators [Hughes82], the definition of accum’ can be rewritten as
accum’ x =® (IF (NULL x)) (HEAD x) (accum’ (TAIL x))

where ® B oy o2 f =B 0PLUS (f o) (02f))

where @ is a super-combinator, that is, a closed function with no free variables. The arguments of @ are

maximal terms dependent on x (See Section 9.3).

In lazy evaluation, the arguments of ® are evaluated at most once as needed within the body of ®.
Once the argument has been evaluated, its result is retained in place for subsequent evaluation. We have

thus attained full laziness by means of ordinary lazy evaluation with call-by-need semantics.

By way of illustration, we will trace the computational process for average [3;5]. In that, the function
DIV forces both the operands be evaluated before division is taken, evaluation of the first operand (€ I)
proceeds as
EXI=accum’ [3;5]1

=® (IF (NULL [3;5])) (HEAD [3;5]) (accum’ (TAIL [3;5]) 1
= (IF (NULL [3;5])) 0 (PLUS (I(HEAD [3;5])) (accum’ (TAIL [3;5])I))
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The first term (/F (NULL [3;5))) is evaluated to become IF-FALSE. The function IF-
FALSE=(IF false) satisfies IF-FALSE e1 e>=e». Similarly, IF-TRUE=(IF true) and IF-TRUE e; ex=¢,.
Once the result has been obtained, it supersedes the argument for later use. That is, £ becomes

£ = ® IF-FALSE (HEAD [3;5]) (accum’ (TAIL [3;5]))
and the term (§ I) becomes

§EI=PLUS (I (HEAD [3;5))) (accum’ (TAIL [3;5]) I)
Evaluation now proceeds to the arguments of PLUS . The first one is evaluated to be 3 and the second to be

accum’ (TAIL [3;5) I1=® (IF (NULL t)) (HEAD t) (accum’ (TAIL t))1
where t=TAIL [3;5] has not yet been evaluated. When that expression is evaluated, (NULL t) results in

false and ¢+ becomes [5] as a side-effect. Thus we have

& =® IF-FALSE 3 (® IF-FALSE (HEAD [5)) (accum’ (TAIL [5])))

and
EI=PLUS (3 (®IF-FALSE (HEAD [5]) (accum’ (TAIL [5]) I)))
Finally we obtain
€=®IF-FALSE 3
(O IF-FALSE 5
(® IF-TRUE (HEAD [ 1) (accum’ (TAIL []))))
and

E1=PLUS 3 (PLUS 50)=8
When the other argument of DIV , i.e., (€ (K 1)), comes to be evaluated, the value & that has just been
obtained is used. Note that the term
® IF-TRUE (HEAD []) (accum’ (TAIL [ 1))
is immediately reduced to 0 with no reference to HEAD or TAIL if some argument follows it. Since there
is no more NULL , HEAD , or TAIL remaining in &, we get the value (§ (K 1))=2 without any traversal of

the list x .

As we have seen from the above example, our new transformation technique consists of the following

novel ideas in functional programming:
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(1) For the common expressions to share the result of partial parametrization of the higher order func-
tion.

(2) For the partially parametrized function to be evaluated recursively in a fully lazy way.

We assume hereafter that our functional language allows one to deal with partially parametrized functions
as first class objects, and that evaluation is done lazily with the call-by-need mechanism. We have already
demonstrated a technique of transforming a function definition into one that is evaluated in a fully lazy way

using the ordinary lazy evaluation mechanism.

9.3. Transformation rules

Our transformation technique exemplified in the last section contains several stages. We describe

them in a general setting to formulate the rules. Suppose that a naive functional program is given as

fx=F
whererec
g1x=kvi. Gy
and
and
gk x =Av. Gy

where F contains terms (g; x) and constants. Each of G; may well contain lambda variables v; in addition
to x and constants. In general, G; may contain (g; x) for i #f, so the g’s can be mutually recursive. We

assume, however, in this section that G; does not contain (g; x).

[Generalization]

The first thing to do in our transformation is to find a common recursive form for the traversal func-
tions g1, ..., g¢. The higher order function A with parameters x, y1, ..., Y& should be defined so that every
traversal function concerned is a particular instance of 4 applied to x, and p actual arguments. Let A be
defined recursively as

hxy -y =H

where H contains 4, x, y1, ..., yp and constants. Then we have
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gix =MAi.hxay - a fori=1,--- k

with ay, ..., a, chosen appropriately.

[Substitution]

The next step is to replace all the terms (g; x) in F by

XV,’.&G] a,,

and to use where-abstraction getting

fx=F
where
E=hx
whererec
hxy - yp=H
[Lambda-hoisting]

To realize full laziness by a call-by-need mechanism, transform the above definition for the function
h by hoisting maximal free occurrences of expressions in H with respect to y1, ..., yp .
hx =®by -+ bn

where

QB Bmyr o yp=H
where b; ’s stand for the expressions each of which occurs maximally free in H and contains only x, 4 and

constants.

Among these stages, only the generalization is heuristic. The other two are done entirely mechani-
cally. Generalization can be done by simple inspection for small programs, whereas general rules and algo-

rithms are to be sought for sizable programs.

On the other hand, generalization may be rather straightforward when programs are constructed from
a generic traversal function by means of partial parametrization. Constructing programs in such a style is,
indeed, one of the advantageous features of functional programming. In our particular case, we have a spe-
cial interest in traversal functions for certain data structures. As every traversal function necessarily

depends on the concrete data structure, defining an abstract data type would be most appropriate. Using an
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abstract type definition, the structure of data and the traversal functions on it can be encapsulated into a
module. The data structure used in the previous section can be written in Standard ML [Milner84] as
abstype intlist = nil | PREFIX of int (int list)
with
val NULL nil =true | NULL (PREFIX _ _)=false
and HEAD (PREFIX a x)=a
and TAIL (PREFIX a x)=x
and rec accum’ x = O(F (NULL x))YHEAD x)(accum’ (TAIL x))
where ®B oy oz f =B 0 (PLUS (f o) (02f))
end

We have used data constructors nil and PREFIX corresponding to [ ] and [;] in the previous example. It is
true that there may be various kinds of traversal functions for a particular data structure, but generalization
becomes trivial if all the (g; x) are expressed as instances of a generic traversal function in common. We

will give some typical data structures and traversal functions in later sections.

The lambda-hoisting rule is much similar to the rule by Hughes [Hughes82] specifying how to con-
vert a lambda expression into super-combinators2. It is slightly different, however, in the treatment of
recursive definitions. We will give an algorithm for lambda-hoisting adapted to the definition for A
specified as above. For simplicity, we assume here that the right hand side expression H is of the applica-
tive form and it does not contain lambda expressions as its constituents. That is, an applicative expression
is either
(1) simple and is either

(1.1) aconstant

or

(1.2) avariable

or

2 The lambda-hoisting technique in more general setting has been fully developed in Chapter 6 of this thesis. Although
the expression transformed by lambda-hoisting in this chapter is not of the fully lazy normal form (Chapter 5), there is no
essential difference between the rules here and in Chapter 6.
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(2) compound and is a combination (e e2) where both e and e are applicative expressions.

Here, we regard fixed functions like IF , PLUS, 1, etc., as constants. We first define free occurrences of

applicative expressions.
An occurence of an expression e in H is defined to be free with respect to y1, ..., ¥, as follows.
(1) Ife issimple and
(1.1) ife is aconstant, e is not free in H,
or
(1.2) if e is a variable, and
(1.2.1) if e is the function variable /# or the variable x, e is free in H with respect to yy, ...,
Yp>
or
(1.2.2) e isnotfree in H, otherwise.
(2) Ife is compound and is a combination (e e¢2), and
(2.1) if either of ey or ez is frec in H, and
(2.1.1)  the other one is also free in H, or the other one is a constant, e is free in H with
respect to yi, v, Yp o
or
(2.1.2) e isnotfree in H, otherwise.
(2.2) e isnot free in H, otherwise.

Free occurrences of expressions that are not part of any larger free occurrence of an expression are called

maximal free occurrences of expressions in H with respect to y1, ..., ¥p .

We assume that all the operations usually written in infix form are expressed by corresponding func-
tions, and the conditional expression is also written using the function IF with three arguments. Although
there is no problem arisen from this definition, it would be desirable to deal with conditionals as a special

form. That is, even in the case that (IF e e2) happens to be a maximal free occurrence from the above
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definition, we take both the parts (/F ;) and e as maximal free occurrences.
We can now describe the algorithm for lambda-hoisting.

(Stepl) Identify all the maximal free occurrences of expressions b1, ..., bn in H with respect to yj, ...,
Yp-
(Step2) Replace each occurrence of b; in H with a new variable B; fori=1, - -- ,m to obtain H’.

(Step3) Construct the definition of the form
hx = ®by -+ by where ®B; --- Bny1 -~ yp=H'
If there exist common sub-expressions in by, ..., bm, the expression ® b - -- b, should be
further transformed using where-abstraction so that they are replaced by the common variables

bound to those expressions.

It is desirable, though not absolutely necessary, that identical expressions are not duplicated among b1, ...,
bm in (Stepl). For example, consider the case where there are two maximal free occurrences of (HEAD x)
in H. If we take them to be distinctively, say b1 and b2, we cannot have the advantage of call-by-need
evaluation at least as it is. After one of them has been evaluated to yield the value of (HEAD x), the result
cannot be used in evaluation of the other one. In fact, (Step3) ensures that such situation is properly dealt
with for completing lambda-hoisting. The number of parameters is, of course, greater than the case where
common expressions are made into one in (Stepl). On the other hand, even if no duplicated b; have been
extracted in (Stepl), (Step3) is indispensably necessary. This is because there may exist an expression b;

identical to some proper sub-expression of another expression b; both of which occur maximally free in H .

As mentioned earlier, lambda-hoisting is intended to realize full laziness by ordinary lazy evaluation.
The procedure essentially converts an expression into a new form of expression that uses functions with no
free variables. In that, it is most important that maximal free occurrences of expressions are identified and
they are moved out as arguments of the functions. This is the basic idea of super-combinators by Hughes.
It should be noted, however, that the lambda-hoisting rule differs from that of Hughes for recursive
definitions. According to [Hughes82], the definition of accum’ in the previous section can be rewritten as

accum’ x = Af.IF (NULL x) 0 (PLUS (f (HEAD x)) (accum’ (TAIL x) f)
=IF (NULL x) 0 (Af.PLUS (f (HEAD x)) (accum’ (TAIL x) f))



134

=IF (NULL x) 0 ((Ax.Af. PLUS (f (HEAD x))(accum’ (TAIL x) f)) x)

and we have a super-combinator ¥ such that

accum’ x =IF (NULL x)0 (¥ x)
whererec ¥ x f = PLUS (f (HEAD x)) (accum’ (TAIL x) f)

In case of x=[3;5], we get

EI=accum’ [3;5] 1
=IF (NULL [3;5)) 0 (¥ [3;5D I
=¥ (3;5]1
=PLUS (I (HEAD [3;5])) (accum’ (TAIL [3;5]) 1)
and the computation proceeds as before to yield the value (£ I)=8. But the value of & after evaluation of

(€ 1) is simply (‘¥[3;51), and no further reduction has been taken. This means that another traversal of the

data structure is needed in evaluation of (€ (K 1)).

Yet another transformation rule called lambda-lifting is presented in [Johnsson85]. The idea of iden-
tifying maximal free occurrences of expressions is not included in lambda-lifting. If we extrapolate the
idea of lambda-lifting and move out maximal free occurrences of expressions instead of variables alone, we
have

accum’ x = @' (IF (NULL x)) (HEAD x) (TAIL x)

whererec ®'B ay oz f =B 0 (PLUS (f ou) (accum’ oz f))

This form of definition fails again to achieve our end. The situation is much similar to the case of Hughes’

algorithm for super-combinators.

In summary, it is essential in lambda-hoisting that the variable # representing the traversal function
and the variable x for the data structure should be taken to be free with respect to other variables as care-
fully described in the definition of free occurrences of expressions. As a matter of fact, we have made the
data structure be the first argument of the traversal function 4 so that the combination of £ and the expres-

sion for selecting some part of the data structure x become a single larger free expression.

9.4. Functions on some data structures

In this section we will illustrate how the transformation rules are applied to programs that traverse

particular data structures. We have already presented our transformation technique for a program of the
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S’-composition form in Section 9.2. We can equally transform programs of the S-composition form using
the rules in the previous section. Example programs in this section are taken from [Bird84] for comparing

our transformation technique with Bird’s.

9.4.1. Functions on lists

To begin with, consider a definition of a general list type

abstype ‘a list = nil | PREFIX of 'a (a list)
with
val NULL nil =true | NULL (PREFIX _ _)=false
and HEAD (PREFIX a x)=a
and TAIL (PREFIX a x)=x
and rec ---
end

Traversal functions to be defined in this abstract type are, among others, ones that scan a single list of the
type 'a list. We first define these functions in a commonly used form, and then derive the final equations
by exchanging the order of parameters. Such functions are from [Burge75]:

listla g f x=IF (NULL x)a (g (f (HEAD x))(list1 a g f (TAIL x)))

list2a g f x=IF (NULL x) a (list2(g (f (HEAD x))a) g f (TAIL x))

The functions list 1 and list2 are more general than the function accum used in Section 9.2. In fact, we
have
accum =list1 0 PLUS

accum = list2 0 PLUS

It should be noted, however, that we can derive the recursion equation of accum from list 1 by replacing the

term (Jist 1 a g) on the right hand side with accum itself, while we cannot do it from list2.

These functions can be used to define many functions. For example, commonly used higher order

functions map and filter:

map f x =IF (NULL x) nil (PREFIX (f (HEAD x)) (map f (TAIL x))

filter p x =IF (NULL x)nil (!F (p u) (PREFIX u v)v)
whererec u = HEAD x and v = filter p (TAIL x)
can be defined using list1 as
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map = list 1 nil PREFIX
filter p =list 1 nil v IF (p u) (PREFIX u v)v)I

And the function reverse that reverses the given list can be written using list2 as

reverse = list2 nil PREFIX 1

We need sometimes functions that operate two lists of the same length as in comparing correspond-
ing elements of the lists. Hence, we next define such functions zip 1 and zip 2 that scan lists x and y of the
same length. These are based on list 1 and list 2, respectively.

ziplagfxy=
IF (NULL x)a (g (f (HEAD x) (HEAD y))(ipla g f (TAIL x) (TAIL y)))

zip2agfxy=
IF (NULL x)a (zip2 (g (f (HEAD x) (TAIL y))a) g f (TAIL x) (TAIL y))

Here, the function g combines successively the results of f applied to corresponding elements of the lists x
and y. The functions list 1 and list 2 are defined using zip 1 and zip2 as
listla g f x=zipla g f x DUMMY

list2a g f x=zip2a gf_x DUMMY

where

fry=fx

and DUMMY is a dummy expression never to be evaluated though its presence is necessary.

We now turn to defining the final equations for these functions to make the proposed transformation
technique be applicable. To do so, we have only to promote the parameter x at the front of the parameter
list. Asnoted in Section 9.2, we write such function names with primes.

listl'xa g f=IF (NULL x)a (g (f (HEAD x)) (list1' (TAIL x)a g f))
list2xa g f=IF (NULL x)a (list2 (TAIL x) (g (f (HEAD x))a)g f)

zipl'xagfy=
IF (NULL x)a (g (f (HEAD x) (HEAD y)) (zip1' (TAIL x)a g f (TAIL y)))
zip2'xagfy=
IF (NULL x)a (zip2' (TAIL x) (g (f (HEAD x) (HEAD y))a) g f (TAIL y))
By lambda-hoisting, we get the equations
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list1'x = ® (IF (NULL x)) (HEAD x) (list 1' (TAIL x))
where ®Boana g f=Ppa (@ (f o)Xnag f))
list2' x = ® (IF (NULL x)) (HEAD x) (list2' (TAIL x))
where ®Banagf=Ba(m(g (f ®a)g f)
zipl'x =® (IF (NULL x)) (HEAD x) (zip1' (TAIL x))
where ®Bana g fy=Pa (g (f « (HEAD y)(na g f (TAIL y)))
zip2' x = ® (IF (NULL x)) (HEAD x) (zip2' (TAIL x))
where ®Banag fy=Ba (g (f « (HEAD y))a)g f (TAIL y))

We assume here that these definitions are included in the above abstract type definition of ‘a list.

As an example of list traversal programs, consider the palindrome problem in [Bird84]: Determine

whether a given list of integers is palindromic; i.e., equal to its reverse.

A straightforward solution looks like

palindrome x = eqlist x (reverse x)

whererec

eqlist x y =

IF (NULL x) true
(AND (EQUAL (HEAD x) (HEAD y)) (eqlist (TAIL x) (TAIL y)))

and

reverse x =reverse’ x nil
and

reverse’ x z =IF (NULL x) z (reverse’ (TAIL x) (PREFIX (HEAD x) z))

The auxiliary functions eqlist and reverse can be readily expressed using zip 2' as

eqlist x y =zip2' x true AND EQUAL y
reverse x = zip2' x nil PREFIX K DUMMY

Note that the definition of reverse is derived from the one using list2 and the equation combining /ist2 and
zip2. We have thus finished the generalization step. The final program can be obtained by substitution.
palindrome x =§ true AND EQUAL (€ nil PREFIX K DUMMY)

where E=zip2'x

Lambda-hoisting of the function zip 2 has been completed in the definition of the type 'a list.
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9.4.2. Functions on trees

We shall consider another data structure 'a tree:

abstype 'a tree =TIP of'a | FORK of (a tree) (a tree)
with
val ISTIP (TIP _)=true | ISTIP (FORK _ _)=false
and TIPVAL (TIP a)=a
and LEFT (FORK I r)=1
and RIGHT (FORK I r)=r
and rec
btree’ x = ® (IF (ISTIP x)) (TIPVAL x) (btree’ (LEFT x)) (btree’ (RIGHT x))

where @Bvnlgf=B(f v)(g Mg f)Csrf)
end

Here, the function btree’ is based on a familiar form of tree traversal functions

btree g f x =
IF (ISTIP x) (f (TIPVAL x))(g (btree g f (LEFT x)) (btree g f (RIGHT x)))
that applies the function f to each tip of the tree x and combines the results of doing so on left and right

subtrees by the function g over the tree.

We can solve the tree replacement problem in [Bird84] using the traversal function btree’. The prob-
lem is to change a given binary tree into one identical in shape to the first, but with all the tip values
replaced by the minimum of the tip values of the first. For example, the tree of Figure 1 is changed into

that of Figure 2. (Figure 3 will be referred in Section 9.5.)

2 4 2 2 3 4

Figure 1 Figure 2 Figure 3

A straightforward solution to this problem would be
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transform x =replace x (tmin x)
whererec
replace x m =
IF (ISTIP x) (TIP m) (FORK (replace (LEFT x)m) (replace (RIGHT x) m))
and
tmin x =IF (ISTIP x) (TIPVAL x) (MIN (tmin (LEFT x)) (tmin (RIGHT x)))

where MIN yields the minimum of the two integers.

‘We can define the auxiliary functions replace and tmin in terms of btree’ as

replace x m = btree’ x FORK (Au.TIP m)
tmin x = btree’ x MIN 1

By substitution, we get

transform x =& FORK (Au.TIP (§ MIN 1))
where & = btree’ x

It is easy to see that this program traverses the tree x only once as in the case of list traversal. It is because
our transformation technique does not depend on the data structure itself, but on the traversal function.

There are many programs on tree structures that can be transformed similarly.

The original transform is of the S-composition form dealt with by Bird. We sketch here Bird’s
transformation method for comparison. To apply the method to this problem, we define a new function that
produces a pair from a tree and an integer

repmin t m = PAIR (replace t m) (tmin t)
Once this function has been defined properly, the function can be rewritten as

transform t =FST p
whererec p =repmin t (SND p)
where FST(PAIR x y)=x and SND (PAIR x y)=y . The reader should refer to [Bird84] for the reasoning

by which this has been derived from the definition of repmin. The recursive definition of repmin can be

obtained using the standard unfold-fold method [Burstall77].
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repmin t m =
IF (ISTIP t) (PAIR (TIP m) (TIPVAL t)) (PAIR (FORK t11t2) (MIN m1m?2))
whererec
t1=FST r1 and m1=SND r1 where r1=repmin (LEFT t)m
and
t2=FST r2 and m2=_SND r2 where r2=repmin (RIGHT t)m

Using this function, we can carry out the tip replacement in a single traversal of the tree.

Table 9.4.1 contains the number of primitive operations performed to print out the resulting tree of
Figure 2 when applying the function transform to the tree of Figure 1. The effect of transformations is

clearly seen from it.

Table 9.4.1: Number of primitive operations by transform

Program

Operation || Straightforward Ours Bird’s
IF 10 5 5
IF-TRUE 6 6 3
IF-FALSE 4 2
ISTIP 10 5 5
TIPVAL 3 3 3
LEFT 4 2 2
RIGHT 4 2 2
MIN 2 2 2
FORK 2 2 2
TIP 3 1 3
PAIR - - 5
FST - 5
SND - - 5

9.5. More on transformation rules

'We have excluded so far the case where the auxiliary traversal functions are mutually recursive. It is,

however, too restrictive in practice as illustrated in the next example.

Consider a problem in [Hughes85]): Find the set of the deepest tips in a tree, where the set is

represented by a list. A naive solution can be
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deepest x =
IF (ISTIP x) (PREFIX (TIPVAL x) nil)
(IF (GREATER (depth 1) (depth r)) (deepest 1)
(IF (LESS (depth 1) (depth r)) (deepest r)
(APPEND (deepest 1) (deepest r))))
whererec
| =LEFT x and r =RIGHT x
and
depth x =
IF (ISTIP x) 0 (PLUS 1 (MAX (depth (LEFT x)) (depth (RIGHT x))))
The function APPEND concatenates two lists and the function MAX gives the maximum of the two argu-

ments. Here we can see that the function deepest does not only depend on itself, but also on the function

depth. We have not yet established the rules for such cases.

There can be several possibilities of extending the idea of our transformation technique to deal with
such cases. One way to do this would be to define general computational rules for the tuple [g1, - - - ,gx] of
the auxiliary functions. This may raise a new problem of defining the meaning of functional application
([g1, - - .g¢] x) consistently. So, we shall deal with mutual recursion of the auxiliary functions differently.

Although this approach is applicable to any data structure in general, we focus here on the tree structure.

Consider the general form of tree traversal programs.

fx=F
whererec
g1x =IF (ISTIP x) (y1 (TIPVAL x)) s,

and

and
gt x =IF (ISTIP x) (yi (TIPVAL x)) sx

Each function s; may contain g; (j#i) as well as g;. We can assume here, however, that only the terms
(LEFT x) and (RIGHT x) are the arguments of g; and g; in s;, and no other terms do not contain the vari-
able x. This implies that there is no term dependent on x directly nor indirectly except (LEFT x) and
(RIGHT x). Since the auxiliary function g; traverses the data structure x, such assumption is very natural

in practice. Hence, we can define a higher order function common to all the g;’s using the following rules.
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[Generalization with Lambda-hoisting]

Rewrite each s; of the auxiliary function

8 x =IF (ISTIP x) (yi (TIPVAL x)) s;

si=0i (gil)(gir)
(811)(g11)

@i-11) (i)
DUMMY DUMMY

Gin1 1) (gin1 1)

(g D) (g 1)
where
| =LEFT x and r =RIGHT x

where o; is a combinator, that is, a closed lambda term composed of only lambda variables, and constants.
The first pair of the arguments (g; 1) and (g; r) corresponds to the self-recursive terms within s;. The other
arguments represent mutual recursive terms. Two DUMMY arguments appear at i-th position for ;. This
process can be done using a variant of the lambda-hoisting technique. The arity of the combinator is com-

mon to all the 6;, and equal to 2k +2.

Then the common recursive form can be written as

hxyo=
IF (ISTIP x) (y (TIPVAL x))
(cmyo)Cyo)
Mvyi10) Cy101) - (M Ye o) (C e Ok))
where
N=h (LEFT x) and {=h (RIGHT x)
[Substitution]

Replace all the terms (g; x) in F by

Evy; o; where E=h=x
getting F’.
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{Lambda-hoisting]}

By applying the lambda-hoisting procedure to the function 2 above, we obtain the final form

fx=F
where
E=hzx
whererec
h x =@ (IF (ISTIPx)) (TIPVAL x) (h (LEFT x)) (h (RIGHT x))
where
®Bvnlyo=
Byv)
(cmyo)Cyo)
Myio)Cyi01) -+ Myror) Cye or))
Although the function 4 can be defined in the abstract type ‘a tree, it would be less general than the

higher order functions defined so far. Firstly, the function / is dependent on the number k of the auxiliary
functions. And it is observed that only some part of the terms (n y; 6;) and ({ y; ©:) are actually needed
as will be shown in the examples. In fact, redundant terms should not be included to keep the number of
arguments as small as possible. Omission of unnecessary terms makes gains in execution time and space.

Therefore, we will give a particular definition of » adapted for each problem.

We now try to transform the program deepest presented at the beginning of this section. Observe

that the auxiliary functions deepest and depth can be rewritten as

deepest x =
IF (ISTIP x) (y1 (TIPVAL x)) (01 (deepest 1) (deepest r) (depth 1) (depth r))
where
1 v =PREFIX v nil
and
oinfonaz=
IF (GREATER o4 02) | (IF (LESS o4 02) { (APPEND n {))
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depth x =
IF (ISTIP x) (y2 (TIPVAL x)) (02 (depth 1) (depth ry DUMMY DUMMY)
where
ya2v =0
and

o2n{ oy pe=PLUS 1 (MAX 0
where |=(LEFT x) and r=(RIGHT x). We have assigned deepest t0 g1 and depth to g2. According to the

general form of s;, 51 and s2 in this case should have been

s1=01 (deepest 1) (deepest r) DUMMY DUMMY (depth 1) (depth r)
52=02(depth 1) (depth r) (deepest 1) (deepest r) DUMMY DUMMY

But as mentioned earlier, s2 does not contain any term on deepest and the arguments (deepest 1) and
(deepest r) of o are redundant. Hence we have omitted the third and fourth arguments of both o; and o».

From the above definitions, we get the final program

deepest x =& y; 0
where
E=hzx
whererec
h x =® (IF (ISTIP x)) (TIPVAL x) (h (LEFT x)) (h (RIGHT x))
where
eBvnlyo=
Bwv)(cmyo)Cvo)My202) Cy202))
where

yav="--- and eo2n{oyop=---
and

yiv="--- and oym{oyop=---

Our next example is again a tree replacement problem: Transform a binary tree into one of the same
shape of which tip values are those of the original tree arranged in increasing order. For example, the tree

of Figure 1 is to be transformed into that of Figure 3.

A solution with refinement by transformational programming is given in [Bird84].
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transform x = replace x (sort (tips x))
whererec
replace x z =
IF (ISTIP x) (TIP (HEAD z))
(FORK (replace (LEFT x) (take (size (LEFT x)) z))
(replace (RIGHT x) (drop (size (LEFT x))z)))
and
size x =IF (ISTIP x) 1 (PLUS (size (LEFT x)) (size (RIGHT x)))
and
tips x = ntips x nil
and
ntips x z =
IF (ISTIP x) (PREFIX (TIPVAL x) z) (ntips (LEFT x) (ntips (RIGHT x)z))

The functions take and drop over list structures are defined as

take n z =IF (EQUAL n Q) nil (PREFIX (HEAD z) (take (MINUS n 1)(TAIL 2)))
drop n z =IF (EQUAL n Q) z (drop (MINUS n 1) (TAIL z))

Although there is much room for improvement on these functions, we confine ourselves to transformation
for eliminating multiple traversals of the binary tree. We assume that an efficient sorting function sort

exists.

Here, we illustrate the transformation process in another way; define first the function 4, and then
rewrite the auxiliary functions in terms of 4. This is the way of programming with higher order generic
functions. In this case, we need to include only the term (size (LEFT x)) as an argument to the combinator
¢ in the general form. Taking this into account, we have a common recursive form for the program
transform

h x =® (IF (ISTIP x)) (TIPVAL x) (h (LEFT x)) (h (RIGHT x))
where
eBpvniyo=
Bwv)(@Mmyo)(Cyo)ny:02)
where ;2 and o, come from size.

Using the function 4, we can rewrite the auxiliary functions:



replace x = h x Y 61
where
V1 v =Au. TIP (HEAD u)
and
o1 M L a=2Au. FORK (v (take o.u)) ({ (drop a.u))

sizex =h x Y262
where
yav =1
and
o2n{a=PLUS n{

ntips x =h x Y303
where
y3v =Au. PREFIX v u
and
osna=iunu)
By substitution we obtain the final program

transform x =&y 6 (sort (€ y3 63 nil))

where
E=hx
whererec
h x =® (IF (ISTIP x)) (TIPVAL x) (h (LEFT x)) (h (RIGHT x))
where
Bvnlyo=
Byv)(cMmyo)(yo)ny:02)
where
y2v=--- and 027]C°~=
and
viv=-- and oynlo=---
and
yi3v=--- and o-snca.__
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The transformation rules above can be applied in a systematic way; no heuristic process employed.

9.6. Remarks
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We wrote two programs for the deepest problem in the previous section; a straightforward program
and a transformed program. Both programs were written in the language uc and compiled as described in
Chapter 8. We measured the run-time and the store claimed to find the number of the deepest leaves of the
balanced tree with 1024 leaves. Table 9.6.1 shows the results obtained on the FLFM on Sun-2. No garbage

collection were taken.

Table 9.6.1: Run-time and store claimed for the deepest programs

Program Straightforward  Transformed
Run-time in seconds 16.9 12.2
(ratio) (1) (0.72)
Store claimed in cells 317477 330787
(ratio) 6} (1.04)

The effect of the transformation is clearly demonstrated; about 30% improvement on running time with a

little increase in allocated cells.

Although our transformation technique has been applied to small programs in this chapter, there is no
problems encountered on applying it to practical programs if we establish the transformation rules for the
data structure that the program deals with. Examples of such rules have been shown in Sections 9.4 and
9.5. The transformation rules for various kind of data structures lead to the possibility of an automatic
transformation system for optimizing functional programs. Transformed programs have to be evaluated in
a lazy way; the argument expression is never evaluated until required, and when it is evaluated the argu-
ment is replaced by its result. Hence a partially parametrized function shared by several positions in an
expression effectively distributes information obtained by the first visit to every data item. In fact it is

memo-ized as a function closure which is bound to the shared variable corresponding to the argument.

It should be noted that our technique imposes no restriction on the forms of functional composition;
Bird [Bird84] deals with the form f x (g x). As shown by the examples, our rules do not depend on the
form of functional composition, but do only on the traversal function. As for the language issue, it is
assumed that our functional language allows the higher order function and its partial parametrization in

addition to lazy evaluation and local definition mechanisms assumed by Bird. In fact these features,
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including partial parametrization of higher order functions, are particularly powerful and useful tools in

functional programming.



Chapter 10

Checking types in functional specifications

It is a desirable feature of a programming language that there should be some simple discipline of
types. It ensures that only valid function applications may occur in any expression. The user of traditional
typed languages is required to declare the type of variables and procedures. For a fragment of a Pascal pro-

gram

var x:integer; y: char;

begin --- x+y --- end

the compiler can detect an error ‘illegal type’ of operands of the operator + which expects integers or reals
using the information on variable types declared. A more flexible type system is adopted in several func-
tional languages. Its basic idea is to deduce the type of a construct from the types of its constituents. Given
is an expression x+y and the type of the operator +:intxint—int, the type of that expression is deduced as
int and both operands x and y must be of type int. Milner proposed such a type system [Milner78] and
successfully used in ML which is the metalanguage of the LCF proof system [Gordon79b). The Milner
type discipline also permits polymorphic functions which is similar to the concept of generic procedures in
traditional languages. The polymorphic type system marks a step forward in programming language
design. It enables the compiler to deal with polymorphic functions without loss of error-detecting abilities.

If it were not used, polymorphism is supported only by typechecking at run time.

In this chapter, we present an application of the polymorphic type system in the field of semantics
description of programming languages. In describing denotational semantics of programming languages,
injection operations into sum domains are conventionally omitted for the sake of brevity. This in turn leads
to difficulties for semantic processing systems which accept denotational specifications as input and
mechanically calculate them for debugging the semantics. We deal with an algorithm for inserting injec-

tion operations to denotational specifications as part of the typechecking process.

10.1. Insertion of injection operations

The Semantics Implementation System (SIS) of Peter Mosses [Mosses79] can be considered as the

first system which generates a compiler or an interpreter from syntactic and semantic specifications written

149
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in the style of denotational semantics. Experience with SIS led us to designing an experimental system
[Ohira84] which includes a typechecker for which SIS lacks, and a translator to convert denotational
description into functional programs. Since it had no interface to parser generator, only a few example
specifications and programs were processed. More recently, a Semantic Prototyping System (SPS) of
Mitchell Wand has been built [Wand84]. Most of the inefficiencies of SIS pointed out in [Bodwin82] have
been improved in SPS using the tools such as Yacc and Scheme 84 available in UNIX operating systems!.
Wand has also implemented a typechecker and insists on its importance from his experience with sizable
examples. He makes an interesting remark that most common error detected by the typechecker is failure
to inject operands into corresponding sum domains. The principal cause underlying such failure is to be
sought in the fact that we usually take a value both as an element of a sum domain and as one of its sum-
mand domain when we write down denotational specifications. This kind of convention is widely adopted
in the literature on denotational semantics {Gordon79a, Stoy77] for avoiding a tedious task of balancing
types of operands, and for making the specification more readable. As mentioned in [Gordon79a], such
convention might be taken as a conversion analogous to the coercion operation of programming languages.
The necessary operations for retaining the type consistency could be inserted in such a way that conversion
operations between integers and reals are generated by compilers. This would serve for a concise notation

to be accepted by the semantic processing system.

We deal with denotational specifications written in a tentative semantics description language.

10.2. A semantics description language

Major components of SIS are a parser generator and an evaluator. The parser generator accepts con-
crete syntax of the language and generates a parser to analyze the program written in that language into an
abstract syntax tree. The abstract syntax tree corresponds to an element of the syntactic domain which is
represented by concrete data structure manipulated by the evaluator. Semantics of the language is written
using Denotational Semantics Language (DSL), which is an extension of lambda notation. The DSL

description is then converted into a simpler form to be evaluated when the parse tree is given.

1 Developed and Licensed by AT&T.
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The SPS of Wand consists of similar components. In addition, included is a typechecker for guaran-
teeing type consistency. Yacc and Scheme 84 take the part of the parser generator and the evaluator,
respectively. Semantics is described using Scheme 84 functions. According to [Wand84], programs com-
piled by SPS run much faster than those by SIS. Wand concludes that the efficient interpreter provided by
Scheme 84 means a great deal. And the Yacc parser generator adopted by SPS seems to do much to

increase the efficiency of syntactic processing.

Our Sementics Description Language (SDL) is independent of the parser generator, while the inter-
face to it should be assumed. We expect to use the state-of-the-art software tools such as Yacc and Lex.
We also assume that the SDL description can be directly evaluated, or translated into certain functional
language for execuﬁén. In our previous work [Ohira84], we chose ML [Gordon79b, Chujo84] as an imple-
mentation language of the evaluator. Typechecking performed by ML becomes redundant if the con-
sistency of the SDL specification is checked separately. We could write a front-end translator of SDL for
the portable functional system described in Chapter 8 of this thesis. In this case the front-end should per-
form typechecking.

SDL consists of the facilities to define domains and functions; no syntactic definitions are written in
SDL. We refrain from giving a complete definition of SDL in this thesis. Instead, we will informally intro-
duce a small set of primitives. And expected facilities to be implemented by the evaluator will be men-

tioned where appropriate.

10.2.1. Domains

In the semantics processing system, every domain has to be implemented in some way; that is, every
element of defined domains should be represented as a value to be calculated by the evaluator. In other
words, each domain should be represented by a concrete data type of the language with which the evaluator
is to be implemented. We do not deal with polymorphic values in our evaluator, while do with polymorphic
functions in describing semantic functions. Hence we make the assumption that every value in denotational
description lies in certain data type of the implementation language, and a correspondence between them

exists.
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In this section, we use the term type to refer to the domain when its representation is in mind.

The way of defining domains in SDL follows standard textbook. We leave the details to Section 3.3

of [Gordon79a].

LetD,Dj, D3, - - - stand for arbitrary domains, and /nt, Bool,? for primitive domains.

(D1) Primitive Domains

(D1.1) Standard domains: Int of integer values, and Bool of Boolean values.

(D1.2) Singleton domains: ? of a distinguished element ?, and any domain with a single element

represented by a symbol.

(D1.3)  Abstract domains: Domains of which structures and values are not specified in SDL but

are to be provided by the evaluator.
(D2) Function Domains
D 1D of functions with the source D and the target D .
(D3) Product Domains
D XD 2x - - - XD, of n-tuples of elements from D,D5, - -+, D,.
(D4) Sequence Domains

D* of finite sequences of elements from D .

(D5) Sum Domains

t1[D1]+22[D2)+ - - - +tx [Dn] of union of D1, D2, - - -, D, with tags ty, 12, - - -

Domain equations are used to define recursive domains:

D,=Gi[D1, - Dm]

Dm=Gm[Dl, *o ,Dm]

,t;;.

where each G; is a domain expression constructed from D;, - -, Dn and primitive domains using the

domain constructors —, X, *, and + described above.

Although it would be unnecessary to explain each of these in detail, several points should be noted.
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The domain ? of (D1.2) is intended to be one consisting of a single element ? representing the
semantically nonsensical value. In our typechecking algorithm, failure in matching the type of an expres-
sion with required type results in assigning ? to that expression (See the next section). Other singleton
domains will be used to define finite domains in combination with operation + of (D5). For example, we
can define a finite domain

Finalstate = abort[Error] + normal [Stop ]

where Error and Stop are singleton domains of which values are error and stop, respectively.

Implementation of abstract domains (D1.3) remains open in the sense of the abstract type in program-
ming languages. This is similar to holes of the type system of SPS. We require for these domains only that
all the necessary functions and their types are to be given in the part of expression definitions. For exam-
ple, the domain Ide of identifiers commonly used in specifications of programming languages might be
treated as an abstract domain; we are not interested in how the element of Ide is represented. If we use a
function equal_ide to check the equality of two identifiers, all that we need in typechecking is the type of

that function, i.e., (Ide xIde )—>Bool .

Rule (D5) for construction of the sum domain differs slightly from that of [Gordon79a]. Every sum-
mand of a sum domain must have a unique tag which is used to discriminate among summands and to

inject the summand into the sum domain. The usage of the tag will be explained in the next section.

As mentioned earlier, we make the assumption that the element of the syntactic domain is to be
represented by an abstract syntax tree generated by the parser. DSL of SIS has a particular construction
rule for syntactic domains. In contrast to this, our syntactic domains are constructed using general rules for
sums and products of syntactic domains themselves. For example, a syntactic domain Cmd of commands

cmd = cmd ;cmd | ide :=exp

can be defined as

Cmd = cmd_seq [CmdxCmd] + cmd_asg [Ide XExp]

where Ide and Exp are syntactic domains for identifiers and expressions2. We do not distinguish between

2 It may be claimed that the use of terminal symbols ought to be allowed in SDL to write Cmd = [Cmd ";" Cmd] +
[Ide ":=" Exp] as an abbreviation to Cmd = "Cmd;Cmd"[Cmd xCmd] + "Ide:=Exp"[/de xExp]. Improvements should be
made on SDL for the user to write the specification more comprehensible, though it is not our main concemn here.
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syntactic and semantic domains in domain construction.

10.2.2. Expressions

Expressions used in defining semantic functions are usually written in a particular version of lambda

notation. An expression in SDL is either

ED
(E2)

(E3)

(E4)

or

ES)

(B1)
or

(B2)

a constant of type integer or Boolean,
a variable,

a combination, or an applicative expression of the form

fe1 ttt én

where n21, f isa variable,and e, - - -, e, are expressions. Note that f must be a variable; expres-

sion of other form is not allowed. (This is motivated later in the next section).

a lambda expression of the form

Ave,
a case expression of the form
caseeo{ ti[vil.e1 | <+ | ta[valen }
where eq, €1, - - -, e, are expressions, f1, - - -, t, are tags of a sum domain, and vy, - -, v, are

bindings.
The binding in (E4) and (ES) is an extension to lambda notation. It is either

a variable x,

a structured binding of the form

'le LR T

where n21, vis a constructor, and vy, - - -, v, are bindings.

The constructor in bindings may be any curried function which creates a structured data of a particu-

lar type from its components. Examples are
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prefix : a—>o* H>a*
pair : o—>B—>ox<p.

Constructors prefix and pair are polymorphic in the sense that they are applicable to values of any types o
and B. We will shortly discuss about polymorphism in our typechecking algorithm,

The case expression is another extension to conventional lambda notation. It tests a value of a sum
domain and binds it to variables in the binding of corresponding summand. To gain a better understanding
of the usage of the case expression, consider the primitive operations over sum domains in [Gordon79a].
For a sum domain

D =!1[D1]+ +tn[Dn],

there are primitive functions

. true if d comes from summand D;
isDi d = [false otherwise (Test)
i 1 D“ i ] i . .
outD; d = 4 1'? :fu(l'g,?vi;? holds (Projection)
and
inD;id =d inD (Injection)

Note that these functions have types

isD; : D —-Bool
outD; : D —-D;
inD; : D; —D.

As mentioned in the previous section, we use tag ¢; to inject values of D; into D ; that is, (inD; d) is written
as (i d) in SDL. The test isD; and the projection outD; can be written using the case notation

cased { ti[vi]false | --- | ti[vi)true | --- }

and

cased { (1lvi].?2 | --- TGl 1 --- ],

respectively. As will be shown in following examples, the case notation is more useful than primitive

operations like tests and projections.

As far as typechecking is concerned, special forms like infix notation for arithmetic operations are not

relevant and are excluded from SDL. The conditional expression
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if e then e else e2
could be defined by a function

if : Bool »a—0—a

or
if : (axo)—Bool —a.

as appropriate. Polymorphic functions appear again. In fact polymorphism eliminates the need to consider
special functions one by one, and makes our typechecking algorithm versatile and independent of the
implementation language of the evaluator. Polymorphic values are, however, not included in SDL
domains. That is, functions like prefix and pair can be used to describe semantics such a way that they
appear at the function position of combinations and the constructor position of structured bindings. We can
say that polymorphic functions are second class objects in the sense that they are not allowed to become

arguments of functions.
We now extend the domain expression by adding
(D0O) Type variables o, B, - - -
for specifying types of polymorphic functions.
The expression definition is a system of recursive equations

E\:T1=FilEy, -+ Es]

Ey : Ty =FylE), -+ Ea]

where each E; is a variable, 7; is a domain expression constructed using (D0)-(D4), and each F; is an
expression built from (E1)-(ES). Note that the domain construction rule (D5) is not allowed here. This
effectively eliminates the possibility of defining sum domains of which summands contain type variables,

i.e., polymorphic sum domains.
Expression F;[E, - - - ,E,] may be omitted; in this case E;:T; simply states that E; is of type T;.
Otherwise, E; is defined by the right hand side of the equation. The type may be polymorphic in the first

case, but must not be polymorphic in the second case.
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10.3. Types and typechecking

In order to ensure consistent treatment of the type, we follow a clear exposition of polymorphic
typechecking scheme by Cardelli [Cardelli84a]. We start with discussion of types with relation to domains

described in the previous section.

10.3.1. Types
Correspondence between domains and types is rather straightforward. Types are structures given by

domain definitions. Given a domain equation

D; =G;[D1, - -+ ,Dm]
the type specified by D; is the structure defined by G;[D,, - - - ,Dn]. That is, we are concerned with the

structure of the domain.

A type can be either a type variable or a type operator. Type variable stands for an arbitrary type.
Type operator corresponds to one of the primitive domains or the domain constructors. An operator stand-
ing for primitive domains like Int, Bool or 7, or an abstract domain is nullary. Parametric operators like —,
%, *, and + take one or more types as arguments. Types containing type variables are polymorphic and
called polytypes. Other types are monomorphic and called monotypes. Recall that types corresponding to

domain expressions in the domain definition are monomorphic. In SDL, only a function can be
polymorphic.

Thus, a type is either
(T1) an atomic type,

(T1.1) atype variable,

(T1.2) aprimitive type operator among int, bool, 2, - - - , corresponding to a primitive domain,
(T2) T1—>T2, where T and T3 are types,
(T3) T1XTax: - XT,,whereT1,T2, ---, T, are types,
(T4) T*,whereT is atype,

or



158
(TS) t1[T1+t2[T2l+ - - - +ta [T ], where t1,t2, - - -, ts aretags,and Ty, To, - - -, T, are monotypes.

As mentioned earlier, constituent types of a sum type must be monomorphic.

The correspondence between domains and types is straightforward. For example, for a set of domain
equations
Do=t1[D1]+ 12[D3]
Di=IntxDy

D> =Bool

a type o corresponding to Do is: o=t [intxc] + t2[bool] where int and bool are primitive types

corresponding to the primitive domains /nt and Bool .

10.3.2. Typechecking and injection operations

Typechecking is a process of checking whether every term, or subexpression, of an expression has a
type consistent with ones of other terms. In particular, we are concerned with the consistency of types of
combinations. Let f be of type 61—0, and e of type ¢'1. Then what condition should be satisfied for the
combination (f e) being meaningful ? A sufficient condition would be 61=c";, getting the type ¢ for (f e).
In another case where o; is a sum type and ¢'; is its summand with tag ¢, we can transform the term into
acceptable one (f (f1 €)) using injection operator ¢,:6'1—01. We will make a generalization of this idea in

our typechecking algorithm.

In SDL, and in many textbooks, the type of the expression is given in its definition as described in the
previous section. Although naming convention such as e for a variable of type Exp might be applied, there
is no declaration of types for locally declared variables. This is very contrast to conventional typed
language like Pascal. Typechecking in SDL is, therefore, the process of checking whether every
Fi[E1,- - - [Ea] does or does not have a type consistent with T; under the condition that each E; has type T;
for j=1,- - - ,n. Note that T; should be monomorphic in the definition of the form

Ei :T; =F\[E1, -+ ,Ea]
No types for local variables are specified in SDL3.

3 The accepted usage of global declarations, e.g., e :Exp for variable e and decorated variables ey, e ', etc. being of type
Exp, may help typechecking. We do not adopt such declarations in SDL because the types of local variables can be
inferred from the context as shown in the algorithm. However, there remains the possibility of using such global
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Our typechecker does not only check the consistency of types, but also inserts necessary injection
operations to SDL specifications. Let P be the typechecking procedure producing SDL specifications with
injection operations inserted for any SDL specifications. Then, for any x, x'=P(x) is also an SDL

specification and x '=P(x") is expected. That is, P has the idempotent property P2=P.

10.3.3. Typechecking algorithm

Our typechecking algorithm partly relies on the polymorphic type system of ML [Gordon79b,
Milner78]. It is different, however, in that ours determines types of constituents of an expression from the
type of that expression, while the type of an ML expression is inferred from known types of its constituents.
That is, types are propagated downwards from an expression to its constituent subexpressions in our algo-
rithm. This enables us to insert injection operations into subexpressions properly to keep the type of the

larger expression unaffected.
We now introduce some notations for describing the algorithm.

We use the notation
[0'—>0]
to represent an injection operation. For monotypes ¢' and ¢ other than ?, [6'—>0] is the function that
injects every element of type ¢ into one of type 6. In particular, it is simply the identity function if ¢’ and
o are identical. If ¢' or ¢ is polymorphic, or either of them is ? , it stands for the function Ax.? which maps

any value into the nonsensical element ? of type ? .
The environment p for variables associates variables with their types. The initial environment po for

the definitions

E;:T;=F\[Ey, --- [Eax] fori=12,---,n
is
po={ E1>Ty; -+ ;Ex—Ts }

that represents the function

T; if x=E;
PoX = lundefined otherwise

declarations to locate erroneous specifications of types.
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An environment p is updated by {x =6} to yield a new environment p+{x —50}:

o
EHx 0Ny ={py otherwise

Similarly, the environment © for type variables maps type variables to monotypes. Substitution T/n

of type variables in a type expression T with monotypes under the type environment 7 is defined as
(1) For an atomic type

(1.1) atype variable o, /i = oL

(1.2) aprimitive type operator 0, 0O/T =0
(2) For a functional type 71972, (T19T2)/%t = (T1/T)—>(t2/TT)

(3) For aproduct type TiXT2X - - - XTy,

(T1XT2X - - - XTp )/ = (/)X (TS T)X + * + X(Tp /TE)

(4) For a sequence type t*, (t* )/n=(t/n)*
(5) For a sum type &, which should be a monotype, o/t = ©.

Finally, we denote the expression obtained by inserting injection operations to the expression e in the

context requiring type ¢ under the environment p by

<e:c |l p>

where ¢ is a monotype.

The basic algorithm P can be described as follows. We use o, ¢, 6", 61, --- to represent mono-

types, and T, 71, - - - to represent polytypes (including monotypes).

(A1) If a constanti of type int appears in the context requiring type o, injection function y:int—o, if any,

is inserted to obtain (y i) of type 6. That is,

<i:o | p>=[int—>ocli

Similarly for a constant b of type bool,

<b :0 | p>=[booloclb

The type ? is considered to be universal; it is consistent with any type.

<?:clp>=?
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(A3)

(A4)

(AS)
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If a variable x of type ¢’ appears in the context requiring type o, injection function y:0'—>0, if any, is
inserted to obtain (y x) of type o. Types of variables are assigned by expression definitions or bind-
ings in expressions of the form (E4) or (ES). The type of each variable is maintained as an environ-

ment p.

<x :0 | p>=[px—0olx
For a combination (f e; - - - e,) in the context requiring type G, assume that variable f is assigned a
functional type pf =T1— - - - 95T, —7, which can be polymorphic with type variables o, - - -, Op.
Find a type environment = for type variables o; by unifying T with ¢ or its summands. Then replace
type variables o in 71— - - - 57, —T by monotypes using the type environment 7t just obtained to
yield a monotsrpe 61— - -0y, —a'. That is, o’=t/n and o';=t;/x for i=1, - - - ,n. Finally make a
new combination
<(feir-e):0lp>=[c"o0l(f €1 - €)

where each e; is a transformed expression of e; under the context of required type ', ie.,
e'i=<e;:0' 1p>.

If f does not have a functional type of the above form,

<(fei-e):clp>=2
For a lambda expression Av.e in the context requiring type o, find a functional type ¢'—>¢" from o
itself or its summands with injection function y:(¢'>6")—0c. Update the environment p to reflect
the lambda variables in binding v of type o' as p+{c/v} (See below). Then check and transform e in
the context of required type ¢" with the new environment to obtain e'. Finally make a combination
of y and a new lambda term Av.e’ getting y(Av.e’). Thatis,
<Av.e : 0 | p>=[(c'o0")>0](Av.<e : 6" | p+H{a'Iv}>)
If no functional type is found from o or its summands,
<Ah.e:clp>=?
For a case expression

e =case eg{tilvilerl -+ lta[val.en}

in the context requiring type o, find a functional type ¢'—>¢" from ¢ itself or its summands with
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injection function y:(6'>6")—0G. Assume that ¢’ is a sum type

o'=tlo+ - +ta[Ca] .

Transform e into €’ of type ¢":

e'o=<eo:0' | p>

For each ¢;, find the new environment p+{c; /v;} for variables which reflects binding v; of type o,

and transform e; with respect to type 6" to obtain ¢’; under that environment:

e =<e; :¢" | pH{ci/vi}> for i=12,---n

Then make a new expression

<e : 0 | p>=[(c'>0")—>0c](case e'o {ti[vil.e’1l --- 1ta[val.e'n})

of type ©.

If no functional type is found from & or its summands, or if the source type o' of the functional type

is not a sum type,

<e:0lp>=?

The injection function may well be the identity function. The typechecking procedure P will report

type inconsistencies to make the term be reduced to ? if the conditions mentioned in each case are not

satisfied. It should be noted that polymorphic types are allowed only for the function f in (A3).

In (A4) and (AS), the environment p of variables needs to be updated. Bindings are either a variable

or a composite variable structure.

(AB1)

(AB2)

If the binding is a variable x and the type given to it is o, then the new environment is one
updated as x has type . That s,

p+{o/x}] = p+{x—>c]
If the binding is of the form

le . e . vn
and the given type is o, assume that the constructor y has type T1— - - - =71, —7, which can be
polymorphic with type variables o, - -+, t». Note that ¢ must be monomorphic. Then find
type environment & for type variables o; by unifying T with . Finally replace type variables o;

in 11— - - - 951, > by monotypes using the type environment 7 to obtain ¢'1— - - - 56, 50.
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That is, o=t/x, and o';=t;/r for i=1,- - - ,n. The new environment is obtained by applying this
algorithm recursively:

PHO/I(W1 - - - va )} = pHO UV I+ - - +{C'n IV}
If the constructor y does not have the type as above,

PHOIW1 "« )] = pH{V1i7}+ - - - +H{vg 7]

The unification algorithm [Robinson65] is used in stages (A3) and (AB2) to find particular instances

of polymorphic types.

To illustrate how the types of subexpressions are determined, consider a simple term (pair x y) in the
context of required type Val=val[int]+valo[Numxbool]. Assume that Num=num;[int]+num,[? ], and the
environment for variables gives types int and bool to x and y, respectively, i.e., p={ x —»int; y —bool }.
To begin with, Rule (A3) is applied to (pair x y). The type of pair is polymorphic, i.e., a—p—0oxB. By
unifying oxp with the second summand of Val, a type environment n={o—Num; B—bool} is obtained.
And o' = (wB)/m=Numxbool. Then the injection operation for that term is [6'—Val]=val,. The next
step is to check types of subexpressions x and y, which must be transformed to have type Num and bool,
respectively. We can apply Rule (A2) to both terms. From the environment p, px = int, which is injected
into Num by num, i.e., [px —int] = num,. And y remains as it is. Thus, we obtain a term

<(pair x y):Val | p> = (valo(pair(numi x) y))
of type Val.

A small but complete example of typechecking a specification in Figure 10.3.1 is shown in the
Appendix C of this thesis. The specification is written in the form of S-expression of Lisp, which should be
considered as an internal form of SDL. A more sophisticated style of specifications will be allowed in the

final definition of SDL.

10.4. Remarks

We have not specified how to choose a summand from possible candidates in the clauses "by unify-

ing T with o or its summands” in (A3), and "from o itself or its summands” in (A4) and (AS). The most
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Abstract syntax
i integer notation
b truth value notation
cmde Cmd commands
expe Exp expressions

cmd ::= cmd ; cmd | output exp

expu=ilb
Semantic domains
Int integers
Bool truth values
State states
Cc = State—Ans commamd continuations
Ec = Val->Cc expression continuations
Ans = {error}+ValxAns answers
Val = Int+Bool values
Semantic functions

C:Cmd->Cc—Cc
E : Exp—»Ec—Cc

Clcmdl;cmd2] ¢ = C[emd1](C[cmd2]c)
Cloutput exp] ¢ = E[exp](Avs.(v, ¢ 5))
Elilk=ki

ElbJk=kb

Figure 10.3.1. Example language definition

general solution would be one to try all the possible cases using backtracking. However, it would be
impractical for sizable specifications. Since the main purpose of our algorithm is still guaranteeing the type
consistency of specifications, no backtracking is implemented in our typechecker; actually only the first
possible summand is taken. The validity of inserting injection operations could be confirmed to some
degree by applying the procedure P to the resulting specification again to check whether the idempotent
property is satisfied. Of course, it does not follow that the transformation is correct even if that property
holds. In either case, the resulting specification has to be inspected whether it is or is not the intended one.

If not, the necessary injection operation should be inserted to make the specification unambiguous.

To find out the cause of ambiguity, the dependency graph for domains would be helpful. The depen-
dency graph consists of nodes containing type operators, and of arcs directed to constituent types. Each
node is associated with a type of which structure is given by the maximal subgraph containing that node.

The domains defined in the specification correspond to types associated with the dependency graph. Figure
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10.4.1 illustrates the graph for domains defined in Figure 10.3.1. Summands with the identical structure do
not exist in this case. If several descendants of a + node have the same kind of operators among —, X, *, or

primitive types, care should be taken to make the specification unambiguous.

Ec

4
/

Figure 10.4.1. Dependency graph for domains

Although there is a limitation of our typechecker, injection insertion turns out to be useful for practi-

cal problems. In fact, there is little chance of failure in injection by the above procedure.

We have devised an algorithm for inserting injection operations to denotational specifications.
Although local binding mechanisms such as "let --- in ---",or " --- where ---" are not included in

SDL described in this chapter, extension of our algorithm to such expressions is straightforward.

In a sense, our algorithm is based on a compromise reached by restricting the class of acceptable
expressions to ones described in Section 10.1 at the cost of generality. Although the rule (E3) seems too
restrictive at first sight, it turns to be no practical problems. If more general form of combination (f e) had
been allowed, the types of f and e could not be deduced from the type of (f e) alone; a functional type
should be produced for f =Av.e’ from little knowledge of the type of f. This can be done if we simply
check the type consistency as in ML, but it is not the case for our purpose. From this observation, we have

chosen a slightly restricted class of expressions for our specification language.

Mitchell [Mitchell83] deals with polymorphic typechecking with automatic coersions between types.
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Allowable coercion there should be of the form " o is coercible to B" where o and B are atomic types. This

is too restrictive for our purpose.

As the final remark, we have to state about the limitation of our algorithm. Although the value for
practical usage has been demonstrated in this chapter, we do not claim that our algorithm is complete or

optimum. On the contrary, it fails easily for artificial problems as described in the previous section.

It is hoped, however, that this research has made a step toward a complete design of SDL and a more
sophisticated semantics implementation system based on SDL. Another area of research is in extending
this work to coercion insertion in functional languages. The applicability of our algorithm and the relations

to other approaches, e.g.,[Futatsugi84], should be studied further.



Chapter 11

Conclusions

11.1. Contributions of the thesis
The major contributions of the thesis are as follows:

. New transformation techniques for functional specifications. It is a great advantage of functional
programming that it allows us to specify problems in a highly abstract way. In practice, however, the
specification must be transformed into a form suitable for execution. Program transformation in this
context means source-to-source conversion of programs. The technique described in Chapter 9 is
based on higher order functions and partial parametrization, both of which are particularly powerful
and useful tools in functional programming. Unlike other transformation work, our transformation is
algorithmic rather than heuristic. The idea of lambda-hoisting in Chapter 6 has been successfully

used for that purpose.

. Fully lazy evaluators. Among many ideas on evaluation mechanisms of functional programs, fully
lazy evaluation turns out to be optimal in the sense that every expression is evaluated at most once
after the variables in it have been bound. It would be intuitively clear that full laziness is better than
ordinary laziness at least in principle because only the arguments of functions are evaluated at most
once in lazy evaluation. It is, however, necessary to provide an existence proof of efficient evaluators
which perform fully lazy evaluation. The combinator reducers in Chapter 4 and the fully lazy func-

tional machine in Chapter 7 are such evaluators.

. Portable compilers. We have demonstrated a portable compiler system in Chapter 8. Successful
implementations on four different computers prove that our approach is correct to produce efficient
code on different machines. The lambda-hoisting technique has been used for obtaining expressions

of the fully lazy normal form in the course of compilation.

. Typechecking with operator insertion. Polymorphic types are particularly useful in checking types of
functional specifications. The polymorphic type discipline allows us to specify generic functions of

which argument can be of any type. It enables the compiler to deal with polymorphic functions
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without loss of ditecting abilities of type inconsistencies. We have developed an extended
typechecking algorithm in Chapter 10 that may insert type transfer functions like coercion in conven-
tional languages during the typechecking process. Unfortunately, insertion of such operators cannot
be uniquely determined in nature. This does, however, serve for using compact and rigorous nota-

tions in functional specification.

Future work
The work may raise some questions for future research.

Deciding the parameter order for optimal evaluation. Since partial parametrization depends on the
order of parameters, maximal free subexpressions may change according to that order. It would be
desirable to discover an algorithm for determining an optimal order of parameters so that full laziness
takes great effect. The use of algebraic laws such as commutativity and associativity of arithmetic

operations should also be considered.

Automatic transformation systems. An approach to transformation systems based on the technique
described in Chapter 9 would be promising. If we develop some mechanisms for defining abstract
data types and associated higher order functions, we can transform a wide class of programs into -
more efficient ones. As described above, the method is algorithmic and transformation is straightfor-

ward. What we need is the highly abstract definition of data types and traversal functions.

Designing higher level notations. We have demonstrated in Section 8.3 that the Zermero-Fraenkel
set notation can be transformed into primitive functional notation. The use of the ZF-notation in
functional language is an excellent idea of Turner and we have borrowed his idea. Other convenient
notations for specifying problems should be sought and implemented. A candidate for such notations
is functional arrays similar to arrays of conventional languages. Of course, functional arrays do not
permit destructive updating which is the main purpose of assignment of procedural programming.
Although the array notation is not very high level, great many algorithms have been deviced using
conventional arrays. They are expressed in a natural way using arrays and very comprehensible

Some of them can be functional algorithms on functional arrays. An efficient method of implement-
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ing functional arrays should be studied.

Concurrent execution. Functional programs contain implicit parallelism which makes execution on
parallel processors most attractive. The idea of full laziness does not cause any problem in parallel
evaluation. We have not discussed parallelism in this thesis, there are many problems unsolved. Is
parallel processing really effective? How can communication overhead be minimized? Further

research should be expected.
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Appendix A

An example of program translation

This appendix contains

primes.uc: Program primes written in uc (Appendix B).

primes.lk: Program in the common intermediate language. It has been obtained by translating
primes.uc as described in Section 8.3 and eliminating compound bindings as in Section
8.2.

primes.flk: Program in the common intermediate language, which has been obtained by lambda-
hoisting primes.lk as described in Chapter 6.

primes.s: Target code for the MC68000. It runs on the Sun-2 workstation using run-time routines

provided as the FLFM library.

primes.uc

# prime numbers
primes
whererec {
primes= sieve [2..]
and

}

sieve (p:x)=p : sieve [n | n<-x; n%p !=0]

primes.lk

(letrec primes
(primes sieve (from (quote 2)))
(sieve lambda
(@00004)
(let (cons p
(sieve
(map (lambda (n)
n)

(filter (lambda (n)
(neq (rem n p) (quote 0)))

x)))

(p head @00004)
(x tail @00004))))
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L00012:
jbsr _CHECK
movl ad@,a0
movl a0@(4),d0
movl d0,a2@-
movl a5,d0
movl a4,a5@+

primes.flk
(letrec g00004
(200005 lambda
(@00004)
(letrec (cons g00006
(g00005
(map (lambda (n)
n)
(filter (lambda (n)
(neq (rem n g00006)
(quote 0)))
£00007))))
(g00007 tail @00004)
(g00006 head @00004)))
(200004 00005 (from (quote 2))))
primes.s
text movl d0,a2@- jbsr  _EVAL
TAG =0x{f000000 movl a4@,a0 jbsr _CAR
ADDR =0x OO fFff movl a0@(4),d0 jbsr  _EVAL
T_DATA =0x80000000 jbsr _EVAL jra  _APPLY
T_CONS =0x80000000 jra  _APPLY L0O0009:
T_INT =0xc0000000 L00006: jbsr _CHECK
T_BOOL =0xa0000000 josr  _CHECK movl ad@,a0
T_CHAR =0x90000000 movl #T_INT+2,d0 movl a0@,a0
T_UNIT  =0x88000000 movl d0,a2@- movl a0@(4),d0
FALSE =T_BOOL movl # _from,a0 jbsr  _EVAL
TRUE =FALSE+1 jbsr _GLOB jbsr _CDR
NIL =T_UNIT jbsr  _EVAL jbsr _EVAL
.globl _primes jra _APPLY jra _APPLY
.globl _primes L00007: L.00010:
.data jbsr  _CHECK jbsr _CHECK
_primes:  .long 0 jst  _EXT_ENV movl a5,d0
Jong __primes jbsr  _DUMMY_ENV movl a4,a5@+
text movl a5,d0 movl #L00011,a5@+
__primes: movl a4,a5@+ movl d0,a2@-
L00004: movl #L00008,a5@+ movl ad@,a0
jbsr _CHECK movl d0,a2@- movl a0@,a0
jbsr _DUMMY_ENV movl a5,d0 mov] a0@,a0
movl a5,d0 movl a4,a5@+ movl a0@,a0
movl ad4,a5@+ movl #L00009,a5@+ movl a0@(4),d0
movl #L00005,a5@+ movl d0,a2@- jbst _EVAL
movl d0,a2@- jst _INS_ENV jra  _APPLY
movl a5,d0 jbsr  _FILL_ENV L00011:
movl ad,a5@+ movl a5,d0 jbsr _CHECK
movl #L00007,a5@+ movl a4,a5@+ movl a$5,d0
movl d0,a2@- movl #L00010,a5@+ movl a4,a5@+
jsr _INS_ENV movl d0,a2@- movl #L00012,a5@+
jbsr _FILL_ENV movl ad@(4),d0 movl d0,a2@-
movl ad@(4),d0 movl d0,a2@- movl a5,d0
jbsr  _EVAL jbsr _CONS2 movl a4,a5@+
jra  _APPLY jra  _APPLY movl #L.00015,a5@+
L00005: L00008: movl d0,a2@-
jbsr  _CHECK jbsr _CHECK movl #_map,a0
movl a5,d0 movl ad@,a0 jbsr _GLOB
movl a4,a5@+ movl a0@,a0 jbsr _EVAL
movl #L00006,a5@+ movl a0@(4),d0 jra  _APPLY

movl #L00013,a5@+

movl d0,a2@-
movl #_filter,a0
jbsr _GLOB
jbsr _EVAL
jra  _APPLY
L00013:
jbsr _CHECK
jstr _EXT_ENV
movl #T_INT+0,d0
movl d0,a2@-
movl #L00014,a0
jbsr _CALL
jbsr  _NEQ
jra  _APPLY
L00014:
jbsr _CHECK
movl ad@,a0
movl a0@(4),d0
jbsr  _EVAL
movl d0,a2@-
movl ad@(4),d0
jbsr _EVAL
jbsr _MOD
jra  _APPLY
L00015:
jbsr _CHECK
jst _EXT_ENV
movl ad@(4),d0
jbsr _EVAL
jra _APPLY



Appendix B

Syntax of uc

This appendix provides the concrete syntax of the uc language which has been extracted from the

yacc specification used in the front-end translator.
. Operators are arranged in order of increasing binding power, and the associativity L, R, or N is

shown in the comment field:

L: left associative, R: right associative, N: non-associative

. Character constants CHAR_CONST and string constants STRING_CONST are denoted as in language

C.
. Only the decimal notation is allowed for integer constants INT_CONST.
. Identifiers IDENTIFIER are [a-zA-Z][a-zA-Z_0-9]* in the lex notation.

. Tokens including reserved words are enclosed by ¢ ” .

prog : expr
expr : exprl simple expression
I ‘fn’ vars_s ‘.’ expr functional abstraction
| ‘let’ decl_I ‘in’ expr expr. with non-recursive decl.
| ‘letrec’ decl_l ‘in’ expr expr. with recursive decl.
| exprl ‘where’ decl_b alternative for ‘let ...’
| exprl ‘whererec’ decl_b alternative for ‘letrec ...’
exprl : expr2
! ‘if” s_expr ‘then’ exprl ‘else’ exprl
expr2 : s_expr
| expr2 ‘,” expr2 pair (R)
S_expr : a_expr
| S_expr ‘++’ s_expr append (L)
| s_expr ‘.’ s_expr list cons (R)
! s_expr ‘I’ s_expr logical or (R)
I s_expr ‘&&’ s_expr logical and (R)
I S_expr ‘=="s_expr equal to (N)
I s_expr ‘!="s_expr not equal to (N)
| S_expr ‘<’ s_expr less than (N)
| S_expr >’ s_expr greater than (N)
| S_expr ‘<="s_expr less than or equal to (N)
| S_expr ‘>="s_expr greater than or equal to (N)
| S_expr ‘+’ s_expr sum (L)
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[ s_expr ‘-’ s_expr difference (L)

| S_expr ‘*’ s_expr product (L)

| s_expr ‘/’ s_expr quotient (L)

| s_expr ‘%’ s_expr remainder (L)

|  s_expr negation (N)

| ‘I’ s_expr logical not (N)
a_expr : var variable

| var arg_l functional application

| b_expr basic expression
b_expr : ‘pil’ list mil

| ‘true’ Boolean true

| ‘false’ Boolean false

I INT_CONST integer constant

I CHAR_CONST character constant

| STRING_CONST string constant

| ‘[’ Lexpr ‘1’ enumeration of list elements

1 ‘Cexpr‘) parenthesized expression

| ‘(’ operator ‘Y’ operators as function names
operator : TP T&E | =="1 =" 1< TS =" I S=" 4 L LR 1P 1% | P
arg_| : b_expr argument list

| var

| arg 1b_expr

l arg | var
1_expr : /* empty */ nil

| el_expr element list

| dot_expr dotdot expr.

| zf_expr Zermelo-Fraenkel expr.
el_expr : S_expr

1 s_expr ‘.’ el_expr

dot_expr : s_expr ‘..’ from ‘s_expr’ to infinity
| S_expr ‘..” s_expr interval
zf_expr : s_expr ‘I’ qual_l qualified zf-expression
qual_l : qual
| qual_1°;’ qual_1 qualifier list
qual : exprl guard, i.e., filter
| var ‘<-’ exprl generator
decl_1 : decl
[ decl_1 ‘and’ decl_1 declaration list
decl_b : decl
| ‘{* decl 1)’ for ‘where’ and ‘whererec’

decl : vars ‘=’ expr simple binding



var

vars_s

vars

vars_l

var vars_s ‘=’ expr

IDENTIFIER
vars

vars vars_s
var

¢ (’ v ars—‘l 6) ’
vars

vars_] ¢, vars_l
vars_] ‘2’ vars_1
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function definition

variable structure, i.e., compound binding

structured variable

pair
list cons



Appendix C

An example of inserting injection operations

This appendix presents an example specification of a simple language shown in Figure 10.3.1, and

the result of insertion of injection operations to that specification.

SDL specification

s Domains

@ ; 7=(?}

(Int (Int)) ; Standard domains Int
(Bool (Bool)) ; and Bool

(State (State)) ; Abstract domain State
(Cmd (+ (cmd-seq (* Cmd Cmd)) (cmd-output Exp))) ; Cmd

(Exp (+ (exp-int Int) (exp-bool Bool))) ; Exp

(Cc (-> State Ans)) ; Command continuations
(Ec (> Val Cc)) ; Expression continuations
(Ans (+ ("error") ((* Val Ans)))) ; Answers

(Val (+ (Int) (Bool)))) ; Values
;s Functions
((pair (> (0) (> (1) (* Q) ANN) ; pair : 0—f—axB

(C (> Cmd (-> Cc Cc)) ; Semantic function C

(lambda (cmd ¢)
(case cmd

(cmd-seq ((pair cmd1 cmd2)) (C cmd! (C cmd2 c)))
(cmd-output (exp) (E exp (lambda (v s)
(pair v (c5)))
)

)
(E (> Exp (-> Ec Cc)) ; Semantic function E
(lambda (exp k)
(case exp (exp-int (¢) (k €)) (exp-bool (e) (k €))))
)]

Transformed SDL specification

(H )]

(Int (Int))

(Bool (Bool))

(State (State))

(Cmd (+ (cmd-seq (* Cmd Cmd)) (cmd-output Exp)))

(Exp (+ (exp-int Int) (exp-bool Bool)))

(Cc (-> State Ans))

(Ec (> Val Cc))

(Ans (+ (Ansl (error)) (Ans2 (* Val Ans)))) ; Summand tags Ansl, Ans2,Vall,
(Val (+ (Vall Int) (Val2 Bool)))) ; and Val2 have been generated.
((pair (-> (0) (> (1) (* (0) (1)))))

(C (> Cmd (> Cc Cc))

(lambda (cmd) ; Lambda-binding has been normalized.
(lambda (c)
(case cmd
(cmd-seq ((pair cmd1 cmd2)) (C cmdl (C cmd2 c)))
(cmd-output (exp)
(Eexp
(lambda (v)
(lambda (s)
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(Ans2 ; Ans2 : ValxAns—Ans
(pair v (c5))))
)
)]
)
)
(E (> Exp (> Ec Cc))
(lambda (exp)
(lambda (k)
(case exp
(exp-int (e) (k (Vall e))) ; Vall : Int—Val
(exp-bool (e) (k (Val2 €))))) ; Val2 : Bool>Val
)

)]



