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Chapter I. Introduction

81.1. Solitons and Kinks in Nonlinear Systems

In the last twenty years, a new concept of "soliton" has

been constructed and developed in nonlinear physics. Notion of

the soliton was first introduced by Zabusky and Kruskall). who

carried out a computer simulation of Korteweg- de Vries (KdV)

2)

equation in 1965. They observed that localized solitary waves

do not change their shapes or velocities after collisions and
behave as if they were noninteracting particles. It was a great
impact that such nonlinear excitations, which are particular
solutions of the equation, should not decay into other modes
immediately. Similar phenomenon had been observed in a computer

simulation of sine-Gordon equation performed by Perring and

Skyrme in 1962.3°

Since then, it has become apparent that the systems bearing

4)

the solitons have very beautiful mathematical structure. At

first, a powerful method was developed by Gardner, Greene,

5) 6)

Kruskal and Miura in 1967 and by Lax in 1968, in order to

solve the initial value problem of the KdV equation. This method
is called the inverse scattering method (ISM), which transforms
the nonlinear equation into a series of three linear equations.

Up to now there are many nonlinear equations which can be solved

by the inverse scattering method:7) for example, nonlinear

8) Toda Lattice,?’ 197

11)

Schrédinger .equation, KdV equation and the

Sine-Gordon equation. They are called as completely

integrable systems. Other methods for obtaining N-soliton



solutions have been devised. One is Hirota's direct methodlz)

and another is Bdcklund transformation.lS)

The solitons have two important features:
(1) They are 1localized objects which can not be obtained by
conventional perturbative expansion from one of the ground
states; in other words, they are essentially nonlinear excita-
tions. It is thus interesting to regard the system bearing the
soliton as an unperturbed ground state.l4)
(2) They are stable against collisions with other excitations;
other solitons, small or large oscillations ( breathers ), and so
on. The result of the collisions is perfectly Kknown. The
solitons only suffer shifts of their locations. This unique
character of the solitons is mainly due to the fact that the

system has an infinite number of conserved quantities.4)

For instance, the Hamiltonian of the sine-Gordon system has

the form,

dx{ I 109 \2 (S0P \2 2
H-A(T 550+ SR+ witi-wse) |,

(1.1.1)
with ¢(x,t) being displacement field, & lattice constant, Co
coupling strength between neighboring ions, and wo characteristic

frequency of small vibrations at one of the potential minima.

One soliton solution is given by

Ps x) = 4 tan”' fexp(X/A)il

d = C/wo, (1.1.2)



which is easily derived from integration of the equation of
motion. It has been shown that the sine-Gordon system has an
infinite number of conserved quantities.ll)

The completely integrable systems are, so to speak, ideal
systems. They hold unique positions among the nonlinear systems.
From the physical point of view, it is necessary to extend the
concept of the soliton to excitations in non-integrable systems.

As an example, we take up the ¢4 system whose Hamiltonian has

the forn,

He AT e - 9Y

(1.1.3)

As in the sine-Gordon system, we can obtain a kink-type solution
which connects the two different ground states, i:¢0. It is

expressed in an explicit form,

Pr (> = P, tanh (%/24 ), (1.1.4)

with d=cO/w0. We will call this solution as a kink, hereafter.
Computer simulations show that the kink and the antikink do not

15)  This implies that kink-

pass through (or reflect) each other.
antikink solution does not exist in the ¢4 system. Furthermore,
this system is considered to have only two conserved quantities;
one is the total momentum and the other is the total energy.
Nonlinear and localized solutions in the non-integrable
systems will decay into other modes after a long time. However,

if their life time is long enough compared with the time scale we

are interested in, it is useful to regard them as elementary



excitations. From this point of view, many works have been

carried out in wvarious fields of physics:ls) A fluxon 1in a

17) domain walls in magnetic systems,IS)

19)

Josephson Jjunction,

excitations in one-dimensional polymer chains, charge-density-

wave systems,ZO) biological systems,zl) field theory and

22)

elementary particle physics, and so on.

In statistical mechanics, the concept of the soliton has

23)

been widely introduced. Krumhansl and Schrieffer studied the

thermodynamic properties of the ¢4 model, assuming that the
system was composed of non-interacting kinks and usual phonon-
like modes. In this ideal gas phenomenology, static properties
such as the free energy and the equal time correlation functions
were calculated. Furthermore, Currie et al. pointed out that
the kink-phonon interaction must be taken into account through a

24)

self-energy correction of the kink. It has been established

that the 1ideal gas phenomenology reproduces the exact results

obtained by transfer integral method.Z2>'26)

There are some other approaches to the statistical mechanics

27,28)

of the soliton (kink) bearing systems. Recently the path

integral approach using collective coordinate method was

29)  In this method, the location of the soliton (kink)

performed.
was introduced as a collective coordinate. This approach also
reproduces the exact results.

On the contrary, dynamical aspects of the soliton (kink)
bearing systems have not been discussed by the transfer integral
method. They have been studied in the ideal soliton (Kink) gas

23)

Phenomenology. Krumhansl and Schrieffer showed that the Kink



motion contributes to the appearance of a central peak in the
structure factor S(k,w). The dynamical properties in the sine-
Gordon system was also studied in the ideal gas phenomenology.30)
Effect of the Kkink-phonon interaction on S(k,w) was also
investigated, by taking account of the phonon phase shift.SI)

Indeed in the completely integrable systems, collisions
between the solitons and the other excitations lead only to the
shifts of their locations and the phases. Therefore the ideal
soliton gas phenomenology will be justified in this case. On the
contrary, in the non-integrable systems, interesting and highly
nontrivial interactions can occur in the collision. It is thus
quite important to study the dynamics of the Kinks.

Various kinds of phenomena were observed in computer
simulations. Koehler, Bishop, Krumhansl and Schrieffer carried
out a molecular dynamics study of the ¢4 chain, wusing the

deterministic equation of motion.32)

In Fig. 1.1, typical
displacements are plotted as a series of snapshots 1in time.
Koehler et al. observed that the kinks did not carry out free
translational motion between collisions with other kinks.
Rather, 1isolated kinks appeared to undergo Brownian-like motion.
Schneider and St01133) also observed similar Brownian-like
motion. The time evolution of the displacement pattern is shown
in Fig. 1.2. Lattice sites with positive displacement are marked
by a black dot, while lattice sites with negative displacement
are not shown. Propagating kinks will then be represented by a
line separating black and white regions. In Fig. 1.2, we can see

that there are various kinds of events as well as the Brownian-

like motion of the kinks: @®~®.
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Displacements at 1000 lattice sites as a series of
snapshots in time for T=0.117; t=0,100 and 200. Here
the temperature is estimated from the time average of
the kinetic energy. It is normalized by four times of

the potential barrier between the two minima. The
excitation energy of the kink 1is 2V 2/3 in this
normalization. ( Cited from Ref. 32, T.R. Koehler et

al.: Solid State Commun. 17 (1975) 1515.)
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Time evolution of the displacement patterns in the ¢4
system for T=0.00448. The potential Dbarrier is

0.001875 and E_ =0.0224 in this simulation. Lattice
sites with positgve displacement are marked by a black
dot, and lattice sites with negative displacement are
not shown. The marked events denote: @ kink reverses
its velocity, @ creation of a kink-antikink pair, @

kink-antikink collision and decay into "phonons," @
kink-antikink collision, ® breather-like features.

( Cited from Ref. 33, T. Schneider and E. Stoll: Phys.
Rev. B23 (1981) 4631.)



The propagation properties are distinctly different from
those of the sine-Gordon solitons. In Fig. 1.3, the time
evolution in the sine-Gordon system is shown. Dots represent
lattice sites passing the maximum of the single-site potential.
The soliton motion is then characterized by the line patterns.
The occurrence of bubbles is attributed to large amplitude
breathers. As expected, almost free propagations of the solitons
are observed. We can also see that the soliton-soliton ® and
soliton-antisoliton @ collisions are associated only with a
phase shift without changing the velocity.

In the present thesis, the Brownian-like motion is taken up
and discussed. It is, however, worth while referring to several
other works on the kink dynamics.

For example, kink-antikink collision was extensively studied

15,34) On energetic grounds,

by means of computer simulation.
the kink and the antikink can not pass through each other in the
¢4

antikink collision; the kink and antikink reflect each other, or

system. There are two possible final states of the kink-

they are trapped by their mutual attraction. Computer simulation
showed that, over a small range of initial velocities, intervals
of 1initial relative velocity for which " the trapping occurs
alternate with region for which the reflection takes place. This
structure was accounted for in terms of a resonant energy
exchange between the translational motion of the two Kinks and a
small oscillation mode (“"amplitude oscillation mode" or "shape
mode"} localized at each kink location.l®’

Another example is numerical studies of the kink dynamics in

35, 36)

highly discrete models. As shown by Peyrard and Kruskal,
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Time evolution of the lattice patterns in the sine-
Gordon system for T=12.5. ( Potential barrier is 2.0
and E_=43.244 in this case.) Dots represent lattice
sites “passing the maximum of the single-site potential
(m, 3m, -°). The marked collisions denote: @
soliton-soliton collision (0-2n—>2n-4n), @ soliton-
antisoliton collision, @ breather creation, @ breather
decay.

( Cited from Ref. 33, T. Schneider and E. Stoll: Phys.
Rev. B23 (1981) 4631.)



there are some particular velocities at which the kink can
propagate with a little energy dissipation. This phenomenon was
explained by a simple model that the kink moving at a velocity wv
can excite the phonon mode whose wave number k satisfies the

following resonance condition,
Wg = /ka; (1.1.5)

where W is the dispersion of the phonon in the discrete system.
Whether the kink tends to dissipate energy or not depends on the

number of k's satisfying the above condition.



§1.2. Kink-Phonon Interactions in the ¢% System

From the configurations in Fig. 1.1, it is supposed that the
Brownian-like motion of the ¢4 kink is induced by nonlinear
interactions between the kink and thermally excited phonons.
From this point of view, the motion of the kink was discussed by

37) In this section, we briefly summarize

Wada and Schrieffer.
the kink-phonon interactions in the ¢4 system.

If the temperature is low enough, the interactions between
kinks are negligible and the amplitudes of thermally excited
phonons are small. Then, the interaction between the kink and
the phonons can be investigated using a perturbation method, the

38) |t is worth while

phonon amplitude being the small parameter.
noting that this method differs from the conventional
perturbation 1in the sense that the Kink solution is regarded as
the ground state.

The complete set of the linear modes around one Kkink

14,39) 1f

solution, ¢K(x), can be obtained in the ¢4 systen.
there is a small deviation around the kink, we can introduce the

deviation field ®»(x,t) by

P, ty= PO+ Y, ), (1.2.1)

Substituting eq. (1.2.1) into the equation of motion and
linearizing with respect to ®»(x,t), we obtain the following

equation,

P a5y 2 3 Wo® ) _
- G - Y =o0
ot? ot ((A)o 2 wsh? (%/2d)

(1.2.2)

10



Eigenfunctions and eigenfrequencies of eq. (1.2.2) can be

calculated analytically. Their explicit forms arel!4'39)

) w=0, P, 0= [ cosh ™ (1/zd))

D w=Fwr=2w’, feo=[Er suh (%) wsh? (Yad),

2

3) W= wo + G?k2==60n P

1 64'103(
VAL (144 (1+4kd?)

Xi“? fam’z(x/z‘-d) — bikd Tomh‘(’%_d)_.l _4}220(2}

RV

V4

(1.2.3)

with L being the length of the system. These eigenfunctions (
linear modes ) satisfy the orthonormality conditions and the
completeness relation.

These three kinds of the eigenfunctions have simple physical
interpretations. The function wo(x) corresponds to the
"Goldstone mode" which arises owing to the translational symmetry
breaking by the presence of the Kkink. If the shift of the
location of the kink &(t) is small enough in comparison with d,
we can expand the kink solution as follows:

B = 6th) = Pe (0 ~ ) di’f’ + 0 ((%4)"),

(1.2.4)

Since the Goldstone mode is proportional to d¢K(x)/dx, the

coefficient of the mode gives the first approximation of the kink

11



shift &6 (t).

When the function wl(x) is added to the kink solution, the
center of the kink does not move, but its form undergoes a
vibration with frequency W, - We may call wl(x) as an
"amplitude oscillation mode”.

The third function wk(x) corresponds to the "phonon mode".
Except 1in the wvicinity of the kink, it is in the form of a

propagating plane wave,

| ikx+ 3AM

QP 00 > ¢ , (x> ®)
> - X — -®
N g (1.2.5)

where A(k) is a phase shift,

Shd )

= m-' —_—
o= 2w (55a

(1.2.6)

The presence of the kink vields an effective potential in the

4 model, this

Schr8dinger-type equation, (1.2.2). In the ¢
effective potential is reflectionless; in other words, the phonon
is not reflected by the presence of the kKink but suffers only the
Phase shift. The phonon dispersion is identical to that of small
oscillations around one of the potential minima in the case of
the absence of the kink.

Nonlinear interactions between the kink and the phonon was

37)

studied by Wada and Schrieffer. They investigated the Kkink-

Phonon collision by integrating the equation of motion 1In a

12



perturbation with respect to the phonon amplitude. A schematic
view of the collision is shown in Fig. 1.4. In the lowest order,
the phonon suffers only a phase shift and the kink seems to be
transparent to the phonon. In the second order approximation,
the nonlinear interaction generates higher harmonics with typical
frequencies zero and t2u&r where Wq is the frequency of the
incident wave packet phonon. The former gives rise to a shift of
the Kkink 1in the opposite direction to the propagation of the
incident phonon (see Fig. 1.4(b)). The latter corresponds to a
transmitted higher harmonics as well as a reflected phonon.

When the phonons are thermally excited and collide with the
kink at random, the above shifts lead to a random walk of the
kink. Wada and Schrieffer calculated the diffusion constant of

this diffusive motion by

D= Adim {S&)°D/2% , (1.2.7)

;{——)oo

where &6(t) was the shift of the kink position and the brackets
indicated thermal average in a sector where the kink is at rest
initially. Since the shift &6 (t) was proportional to square of

the amplitude of the incident phonon, the diffusion constant

calculated by eq. (1.2.7) was proportional to (kBT)2.37)

Theodorakopoulos discussed the diffusive motion of the ¢4—

40) The diffusion constant he obtained

was also proportional to (kBT)z, ‘but it was four times as large

kink phenomenologically.
as the result of Wada and Schrieffer. This difference will be
discussed in Chapter II.

Higher order processes yield other phenomena. A computer

13
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Fig. 1.4 The initial condition (a). A Kink is located at the
origin. A wave packet, moving with a group velocity v
approaches the Kkink from the left. The final statg

(b). The Kink 1is shifted in the direction of the
initial phonon locationf

14



simulation of the ¢4—kink has shown that the wave packet phonon
also transfers momentum to the kink in the collision.?!’  The
velocity, which the Kkink gains after the collision, is
proportional to fourth power of the incident phonon amplitude.
Simple application of energy and momentum conservation laws gives
an expression of the velocity, which agrees with the result of

41)

the simulation. The same expression can be obtained by

extending the Wada and Schrieffer's perturbative calculation to

the fourth order.42)

This momentum transfer is mainly due to the
fact that the second order phonons with frequencies i2o}3 carry
away the momentum. The effective interaction between the Kink
and the phonon is attractive.

In an ordinary Brownian system, the momentum exchange
between fluid molecules and a Brownian particle leads to the
viscosity of the particle. If this applies to the kink in the
¢4 system, it is predicted that the momentum transfer would give
rise to a friction ( viscosity ) in the ¢4 kink motion. In this
case the friction would be proportional to (kBT)z, because the
momentum transfer is in the fourth order with respect to the
phonon amplitude.

If we substitute this friction I' into the Einstein
relation, D=kBT/MF, we obtain the diffusion constant
proportional to (kBT)_l, where M is "mass" of the Kkink. This
temperature dependence is apparently different from that of the

37) One of

diffusion constant calculated bVAWada and Schrieffer.
the main purposes of the present thesis is to calculate the
friction and to clarify the relation between the obtained

friction and the Wada and Schrieffer's diffusion constant.

15



§1.3 Solitons in trans-Polyacetylene

Over the past several years, static and dynamical properties
of trans-polyacetylene, L trans-(CH)x ], have been extensively

studied. 43’

It has Dbecome apparent that there are mobile
unpaired spins, presumably solitons, which are more mobile at
higher temperatures. However, the soliton motion in real samples
is considered to be very complicated owing to various Kkinds of
disorder; network of fibres, impurities, and defects. In this
thesis, we study the diffusion constant of the soliton in simple
models proposed for polyacetylene, to find out possible
mechanisms of the diffusive motion and to discuss what is needed
for interpretation of the experiments.

For polyacetylene, the concept of the soliton was first

19,44)

introduced by Su, Schrieffer and Heeger. They proposed the

following Hamiltonian, ( SSH model ),

. 2
H—:—E‘-Z M“.z +-E'Z.(V‘n-n—M”)

n 2 n

-1 [to“d(unf|“un)] ( Cm-f:s Cns t Cn,-'s- Chﬂ,S)
h,s (1.3.1) ’
where u, is the displacement of the n-th (CH) wunit from its
undimerized equilibrium position, Cnfs and Cn,s the creation and
annihilation operators of a m-electron with spin s at the n-th
site, respectively, M the mass of the (CH) unit, K the spring
constant mainly due to o-bonds, tb the nearest-neighbor transfer
integral of the m-electrons in the undimerized state, and a the

coupling constant which comes from the modulation of the transfer

integral due to the change of the nearest-neighbor distance.

16



Figure 1.5 shows two degenerate ground states where lattice

dimerization is realized owing to the Peierls instability.45) In
this case, the lattice displacement is
4}
Un= (=) Uo , (1.3.2)
and the electronic eigenvalues are
Ch,s = * Er ,
Fp = 2/ 13 ws*ka + 402 UG ain® kA
4 (1.3.3)
with a being the lattice constant. The magnitude of uO is
determined so as to minimize the total energy,
2 r
E T (W= Un) + I Chys
“ k,s 2 (1.3.4)

where the prime on the summation means the sum over the occupied
states ( half-filled ).

A Kkink-type excitation connecting the two ground states 1is
called as a "soliton" in trans—(CH)X. In this case, there
appears one electronic state at £=0, the gap center, for each
spin orientation. As discussed by Su, Schrieffer and Heeger,lg)
a neutral soliton is supposed to have an unpaired spin, while a

charged soliton carries no spins. This unique relation is called

as the reversed spin-charge relation.

In the {following, we summarize the experimental results

especially on the dynamics of the solitons in trans—(CH)x.

17
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Fig. 1.5 Two degenerate ground state of trans-polyacetylene.

Lattice dimerization is realized owing to the Peierls
instability.
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Fig. 1.6 (a) Number of unpaired spins satisfying Curie-law (N.)

as a function of (ASF )} dopant concentration vy. Tﬁe
low doping range is sgown on an expanded scale in the
inset. '

(b) Pauli susceptibility x,_. as a function of y. The
right-hand scale gives the %ﬁplied density of states of
the Fermi energy. The open-circle datum point is from
Ref. 46. ( Cited from Ref. 47, S. Ikehata et al.: Phys.
Rev., Lett. 45 (1980) 1123.)
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The existence of the solitons was verified by observing the
reversed spin-charge relation. From the spin susceptibility, the

number of unpaired spins NC and Pauli susceptibility XP were

estimated as a function of the A_F -dopant concentration y.46’47)

(see Fig. 1.6) In the range 0.005<y<0.05 , xP does not turn on,
whereas the transport data indicate that the polymer is an

excellent conductor. This implies that the charge carriers

47)

generated by dilute doping are spinless. It is consistent

with the soliton doping mechanism. The rapid decrease of NC is
probably due to ionization of neutral solitons which have existed

in the undoped polyacetylene intrinsically.

The reversed spin-charge relation was also shown in the ESR

studies of trans—(CH)x carried out during photoexcitation.48)

Flood et al. estimated the number of photoinduced unpaired spins.

2

It was 10 times as large as that of photogenerated charge

49)

carriers. From these results, Flood et al. concluded that (1)

the photogenerated charge carriers were spinless and (2) the

branching ratio (photogeneration of charged solitons compared to

neutral solitons) was at least 102. The latter conclusion is

50)

consistent with a theoretical calculation in the SSH model.

NMR and ESR experiments on undoped polyacetylene were
carried out extensively to study the motion of unpaired spins in
it. At first, the features of the spin motion was verified by

51-53)

the motional narrowing of the ESR line and by the

observation of the Overhauser effect.>4 7]
The temperature dependence of the ESR 1line widths is

displayed in Fig. 1.7, where AH becomes smaller as the
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51,52)

temperature increases. Similar motional narrowing was

53) It was pointed

observed in the ESR study by spin echo method.
out that the ESR line width showed inhomogeneous broadening below
170 K. These results indicates that the unpaired spin becomes
less mobile as the temperature decreases. As seen in Fig. 1.7,
the cis-rich sample exhibits resonances with weakly temperature
dependent line width, apparently not motionally narrowed. This
is consistent with the soliton picture, because the unpaired spin
observed 1in the cis-rich sample are associated with small length
of trans isomer locked in by regions of cis.

Another evidence of the mobile unpaired spin was shown 1in

54-57)

the dynamical nuclear polarization (DNP) experiments. This

experiment consists of ©Observing the NMR while’ pumping the

electronic system near ﬁ(oe, the electronic Zeeman energy. Two

limiting results may occur according to whether the electron-

58)

nuclear coupling is static or dynamic. If the electronic spin

is moving, it is possible to enhance the NMR signal by pumping

the electronic system at ﬁ(»e. This is the Overhauser effect

(OE). On the other hand, in the static case, the NMR signal can

be enhanced by pumping at ﬁ(oeiﬁ<ul. This is the so-called

“solid-state effect" (SSE). In Fig. 1.8(a), the enhancement of

the NMR signal is shown for undoped (CH)X samples with different

54)

degrees of cis-trans content. In the all—trans-(CH)Y, a pure

OE is seen which means that the electronic spins are moving at

10rad/sec. On the contrary, in mixed

least '‘a frequency we~5><10
samples, both OE and SSE are observed. This implies that the
unpaired spins are mobile in trans—(CH)x and fixed in cis-rich

samples. Temperature dependence of the enhancement of NMR signal

21



Fig.

1

08

8160 8180 8200 Wp/21(MHz)

(a)
60 F L | J l ! i ! I
o_ql i ﬂ « 300K, 5W
11a°
e =55K,Q5W
*' ol | 4
£ | I _
& I3
g 20r ;’;Hi & 12
é i iﬂ'} AL -
§ ot eaae \‘“m —0
o2 '& _
Z
SRS ST TR SR T
8520 8560 8600

Mw. pumping frequency ¥, (MHz)

(b)

Results of dynamical nuclear polarization experiments.
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function of the pumping frequency w_ near _/2mn=8190
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Commun. 39 (1981) 881.)
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for trans-(CH)X is shown in Fig. 1.8(b), where a mixture of SSE

and small OE is observed at 5.5 K>°’

Both the ESR line width and DNP results indicate that there
are mobile wunpaired spins in trans—(CH)x, which become less
mobile or fixed as the temperature decreases. In order to
identify the unpaired spins with the neutral solitons, however,

dimensionality of the spin dynamics must be clarified. It has

52,55)

been discussed in the analyses of (1) ESR line shape, (2)

53)

rphase memory time in spin echo experiments, (3) frequency

dependence of proton NMR T1,54’59) and (4) frequency dependence

of ESR TIGZ).

(1) The 1line shape of trans—(CH)X was compared with those

expected in the one- and three-dimensional cases.52) The

experimental absorption 1line lay between the one- and three-
dimensional 1line shapes. Weinberger et al. analyzed their

results to estimate the intra- and inter-chain diffusion rates (

or correlation times ).52)

~10!lsec™! for intra-chain and D, ~6X10

They found, at room temperature, D"

7 1

sec - for inter-chain

diffusion rate.

(2) From the spin echo experiment, Shiren et al. also

53)

estimated the diffusion rate. They analyzed the phase memory

time, TM, in order to avoid the ambiguity due to the
inhomogeneous broadening below 170 K. The obtained diffusion
rate showed a strong temperature dependence for T>40 K. They

1__ -1

concluded that the largest possible diffusion rate was 10 "sec

at room temperature, which was consistent with the results of

Weinberger et al..52)
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(3) Dimensionality of the spin motion affects the frequency

dependence of the nuclear spin lattice relaxation time, Tl_l,

which 1is proportional to the spectral density function f(w,,)

N
with wN being the nuclear Larmor frequency. In one dimension,
f(w)=(2D”(o)—l/2, whereas in two dimension f(w)xIn(1/w) and
in three it is frequency independent. Nechtschein et a1.54’59)

-172  1ne diffusion

Tsecl  at

showed that Tl_l was proportional to

~6x10!3sec™!

N
rates they estimated were D
54)

<
I amiDl~6X10

room temperature.

It 1is apparent that there is inconsistency . between the

13

magnitude of the diffusion rate obtained by NMR"T1 { D”—v6x10

sec”!) and that obtained from the ESR line shape ( Dlrvlollsec-l).

In order to explain this inconsistency, Holczer et’al. suggested
the existence of two spin species ( diffusive spin and localized

55) They considered that a small amount of the localized

spin ).
spins, about 10%, completely masked the ESR line features of a
large majority of the diffusive spins, while they had only
negligible effect on the nuclear relaxation. The diffusive spins
were supposed to be trapped by residual oxygen and‘turn into the
localized spins. In their model, however, the concentration of
each spin species must be determined from some phenomenological
models or from other experimental data. For example, it was
determined so that the frequency dependence of ESR 1line width

59)

might be reproduced consistently. By this prescription,

Nechtschein et al. estimated the diffusion rate in the

53)  rTheir result is shown in Fig. 1.9.

-1
1 k4
to C/JT”Iw, where C was the number of the diffusive spins

temperature range 4-300 K.

The proton relaxation rate, T was supposed to be proportional
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determined by the above prescription. Owing to the trapping

effect, C Dbecame fewer and fewer as the temperature decreased.
Oon the other hand, the original data of Tl_1 also decreased with

decreasing temperature. Consequently, the temperature dependence

of D" was determined from delicate balance between T1 1 and C.

There are two problems in the analysis of the NMR results.

53,60)

First, it was pointed out that the same frequency

dependence of TI-1 can be observed in the nuclear relaxation due

58) -1 of

61)

to spin diffusion to paramagnetic impurities.
13

Second, Tl
C is frequency independent, as observed by Scott and Clarke.
This 1is not consistent either with the soliton picture or the
spin diffusion to paramagnetic impurities. Because of these
problems, the analysis of Nechtschein et al. 1is now open. to
question.

(4) Recently a new evidence of one~-dimensional spin motion

62)

was provided by Mizoguchi, Kume and Shirakawa. They found

w 172 frequency dependence of ESR T, ( see Fig. 1.10 ). In this

case, the possibility of the spin diffusion to paramagnetic
impurities 1is excluded, because there is a relaxation mechanism

due to the hyperfine interaction (Fig. 1.10). The dependence of

ESR T -1 on the spin concentration also contradicts the spin

1
diffusion mechanism which predicts T1-10<C1/4.

In order to determine the diffusion rate DII’ Mizoguchi et

1 by assuming the crystalline structure of

-1

al. calculated Tl-

'Poiyacetylene chains. Comparing the expression of Tl with the
data in Fig. 1.10, they obtained D, = (3.7+1.6)%1013sec”! and
D”=(1.1i0.5)><10135ec—1 from the dipolar and hyperfine parts,

respectively. These values are consistent with the NMR result of
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Nechtschein et al..>>'°9)

63)

Mizoguchi and Kume also studied the frequency dependence

of the ESR line width, in order to study the diffusion rate at

low temperatures, where the analysis of ESR T1 1 became difficult

owing to the inhomogeneous broadening. As shown in Fig. 1.11,
they divided the line width into three parts; T,” -1 T, -1 and
AH Then they estimated the concentration of trapped spins

trap’
(solitons) from AH

I—l ""1
T1 and T2

process to T1 of ESR. The obtained diffusion rate is shown in

Fig. 1.12, together with that obtained from NMR T

trap” The diffusion rate was calculated from

with a correction of the trapping and a similar

[ Since both

data agreed with each other very well, Mizoguchi and Kume
suggested that the NMR T1~might reflect the relaxation due to the
one-dimensional spin motion.

There is, however, inconsistency with some other

experiments. First, the secular part T2’ _1, which represents a

motionally narrowed line width due to the soliton diffusion, must

correspond to the phase memory time TM measured in the spin echo

53)

experiment. However the two experiments show that TM is

64)

shorter than T, . Second, Mehring et al. carried out time

2
resolved ESR experiment to distinguish between the contributions
from three types of defects in polyacetylene; the mobile soliton,
the trapped soliton and local defects. The diffusion rate was
estimated from the 1line width corresponding to the mobile

9s5ec™!, which was smaller

soliton. Their result was D"= 4X10
than that of Mizoguchi et al.. Consistent explanation of these

results remains a future problem.
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It is worth while noting that there are other kinds of

experiments studying the soliton dynamics in polyacetylene. The

65)

first is u+SR experiment, where the one-dimensional diffusive

motion of the solitons was verified. The second example is

dynamics of photoinduced excitations. From the time evolution of

.66) estimated the

14sec-1

the polarization memory, Vardeny et al

14 -1

diffusion rate D"(SOOK)=2.2X10 secC and D, (80K)=1.7X10

9

Il
which were comparable to those obtained from NMR and ESR

67) investigated the dynamics of the

experiments. Shank et al.
photoinduced absorption by a model of geminate recombination of
the photoinduced excitations. They obtained D“(SOOK)=

13 -1 12 -1

1X10" “sec and D, (20K)= 1X10 “sec

In summary, various experiments indicate that the solitons
become more mobile at higher temperatures. However, it has not
been possible to determine the diffusion rate wunambiguously,

especially at low temperatures.
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§1.4. Soliton-Phonon Interactions in trans-Polyacetylene

In order to consider the soliton motion in polvacetylene, we
summarize the soliton-phonon interaction in Takayama, Lin-Liu and

68) which is a continuum limit of the SSH

Maki's (TLM) model,
model. In the continuum 1limit, the Hamiltonian (1.3.1) 1is

transformed to

~ 2
H - 2_13_ Sax (At +wg atat))

1.
+Z_,Jo\>( Yty [-iVp (ﬁfg + @ AE) ] Y, t),
s (1.4.1)

where the coupling constant g, the bare optical phonon frequency

wQ and the Fermi velocity"-vF are defined by

4K
We = ——

(7] M ,

Up = 2a %o, (1.4.2a)

respectively, 01 and g the Pauli matrices, and the order
parameter A(x,t) is proportional to the continuum limit of the

staggered lattice displacement,

= 1 n
A,t) = 47(—:) Un , (@=naj (1.4.2b)

The electron fields zps* (x,t) and #_(x,t) with spin index S
have two components representing the right- and left going waves.

In deriving eq. (1.4.1), the electronic dispersion near the Fermi
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level has been approximated as a linear dispersion.
From the above Hamiltonian, the following coupled self-

consistent equations for ®»(x,t) and A(x,t) are derived,

Zkz/‘jls (x.1) = [w:l)FU‘af; + G0, A(X,*)]Z/’i’s (J(,*)/

(1.4.3)
. 2 <!t
AGt) + W d @)= =F L o 06 Y o),
(1.4.4)

where the suffix i of ¥ implies the electronic state index and
the prime attached to the summation indicates the sum over the
occupied states. In deriving eq. (1.4.4), the adiabatic
approximation has been used, 1i.e., we have assumed that the
occupancy of the electronic states does not change even if
A(x,t) varies with time. This assumption is justified, when we
consider the linear modes and nonlinear interactions between them
in the lowest orders.

As one of exact static solutions of eqs. (1.4.3) and

(1.4.4), there is a soliton solution in the form,68)

Ds) = Ap tanh (X/S) 5= Ur/d0
’ ’ (1.4.5)

where A, is the magnitude of the order parameter in the perfect

0
dimerized state,

1
Ao = VV 61—.1%

’ (1.4.6)

with W being the full electronic band width (4t,) and A the

0
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dimensionless coupling constant

;\f’ a;///TC'VF U)gz

(1.4.7)

The corresponding electronic wave functions and eigenvalues are

(0)

expressed by {wn 5 (x)} and {8n}, respectively. The

electronic band structure is

for valence and
£ =t/ A3+ V2R

conduction band,

2M = 0 . for mid-gap level.
(1.4.8)

Linear modes around a single soliton were studied by several

groups.69_73) Substituting

A@.t)= As) + §A (%),

(o)
Bs 0= 0+ 3% 0000,
(1.4.9)

into eq. (1.4.3), we obtain

()

o (0 0 t (0)
5% oty =T, s & Jo\x ¥ @ dacuLt Yy oy
4,8 d (24_%.) d ’

(1.4.10)

in the lowest order with respect to 8§A(x,t). Next substitution
Of eqs. (1.4.9) into eq. (1.4.4) leads to the integral eigenvalue

equation for the linear modes in the following form,
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I~ 0 9, O = - i 49 K, 9) dq(9)
° O

Aly

ot
kewg)=2'Z" - : { L% o ij)(x)][lfd('o}%) & %]

N

J

+(;<—+J')§

(1.4.11)

where gQ(x) is the Fourier transform of §A(x,t) and the double

prime on the summation means the sum over the unoccupied states.
Eigenvalue problem eq. (1.4.11) was numerically solved by
replacing the integral by a discrete sum with a uniform mesh

.70’71’73) It was shown that there are three localized modes;

dx
one of +them is the Goldstone mode related to the shift of the

soliton center.

The phase shifts of the extended phonon modes are of

73)

particular interest. The phonon modes can be classified into

even and odd parity function. They have the forn,

Jeg) = cos[§x+de@/a ] + foqtt1,

901 ) = sin [IX+ 808> ] + 7(03 o),
(1.4.12)

where Se(q) and 80(q) are the phase shifts of the even and odd

parity functions, respectively, and feq(x) and foq(x) are
functions localized near the soliton center. Note that, in the
absence of the soliton, geq(x) and goq(x) have the form cosl[qx]

and sinlgxl, respectively. From the explicit forms of the phonon
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Fig.

1.13 Phase shifts of extended phonon modes with even parity
dx=0.1%, as

(Se) and odd parity (8,) for the case
functions of q. The sol?d lines are functional fitting

for first 30 data. ( Cited from Ref. 73, Ono et al.:
J. Phys. Soc. Jpn. 55 (1986) 1656.)
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modes obtained numerically, the phase shifts were calculated

73) In Fig. 1.13, the result is

through the least square method.
shown, where the solid lines indicate functional fitting of the
two phase shifts. (Explicit forms of the fitting functions will
be shown in §3.3.) The two phase shifts differ each other in
the long wave length limit, kiis-l, £ being the soliton width.

This means that the effective potential for the phonons in the

74) in other words,

presence of the soliton is not reflectionless;
the phonons with small wave numbers suffer reflection. It is
apparent if we consider the following scattering state,

18e(3)/2 i80(8) /2
Pye0 = € j%(x) +48 jog (1),

(1.4.13)

which approaches in the region far from the soliton,

459 W) etd) i3

9% |, dSeld)  JdolDy -
1 —~
~oe & 7 > (e e e (1.4.14)

The reflection coefficient,
R = (€ € )/ 2 ) (1.4.15)

vanishes only when the two phase shifts coincide with mod 2m.

In deriving eq. (1.4.14), we have used the relation

g oq 00 ?QZ (-1) —=, cos[9x - Sel®)fa ]

Jog 1) = = Jog (-1) 75T sin [9t— So®)/2 ]
(1.4.16)
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Note that, 1in the ¢4 system, the two phase shifts are identical
to A(k) in eq. (1.2.6) and thus the effective potential for
phonons is reflectionless.

With the help of these linear modes, a collision between the

75) It was shown

'soliton and a wave packet phonon was studied.
that the collision gives rise to a shift of the location of the
soliton in the second order perturbation approximation. Here the
phonon amplitude is the smallness parameter. The shifts of the

soliton due to the collisions with thermally excited phonons |
would lead to the random walk of the soliton, as discussed by

37}

Wada and Schrieffer in the ¢4 system (see also §1.2). This

mechanism would vyield a diffusion constant proportional to
(kgD 2.

On the other hand, owing to the reflection of the phonon, it
is expected that the momentum transfer also takes place in the
collision process. On the analogy of the ordinary Brownian
motion, the momentum exchange would give rise to the friction in
the soliton dynamics. In this case, we can predict that the
friction is proportional to kBT, because the velocity change of
the soliton after the collision would be proportional to second
power of the 1incident phonon amplitude owing to the momentum
conservation law. If we substitute this friction 1into the
Einstein relation, we obtain a temperature independent diffusion
constant, which is apparently different from that of the random

walk mechanism. We are confronted with similar problem as in the

kink dynamics of the ¢4 model .
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§1.5 Outline of the Thesis

As discussed in the preceding sections, it is very important
to study the kink ( soliton ) dynamics in the thermoequilibrium
system. We investigate diffusive motion of the kink in three
typical systems; the ¢4 system, the sine-Gordon system, and
trans-polyacetylene.

4 system 1is

In chapter 1II, the Xkink dynamics in the ¢
considered as a simple example of the non-integrable systems. AS
discussed in §1.2, the kink-phonon interaction yields the shift
of the kink location as well as the momentum transfer. We thus

propose that there are two mechanisms in the Brownian-like motion

of the ¢4-kink. One is a random walk discussed'by Wada and
Schrieffer,37) whose basic steps are the shifts of the kink due
to collisions with thermally excited phonons. The other is an

ordinary Brownian motion, where the friction is caused by the
momentum transfers in the collisions. Although the origin of
these two mechanisms is the same kink-phonon interaction, we
distinguish the two and discuss the relation between them.

At first, we obtain the friction at low temperatures. In
order to study the kink motion, we introduce the collective

coordinate method in §2.2. In this method, the position of the

14)

kKink 1is treated as a new dynamical variable. The friction is

76)

investigated with the help of Mori's formula, which gives a

generalized Langevin equation for the Kink motion. The Fourier-

Laplace transform of the retarded friction function is calculated

up to the order of (kBT)2 in §2.3 and §2.4. The obtained
friction T is proportional to (kBT)2 in the zero frequency
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limit. It is consistent with the fact that the momentum transfer
is in the fourth order with respect to the phonon amplitude. The
relation between the two mechanisms is clarified in §2.5 with
the help of the fluctuation-dissipation theorem for the kink
motion.

As a second typical system, we consider the sine-Gordon
system. It is well known that the velocity of the soliton never
changes and the soliton-phonon collision only leads to the shift
of their locations and phases. We can thus predict that there is
no friction of the soliton in the sine-Gordon system. This
prediction is wverified up to the order of (kBI)2 in 82.6 and
Appendix 2.A. The method to obtain the friction of the ¢4 Kink
can be immediately applied to the sine-Gordon soliton if only the
vertex functions are replaced. We believe that any higher order
calculations give =zero friction. This is one of the most
distinguished characteristics of the perfectly integrable
systems. The main part of Chapter II has been published in J.
Phys. Soc. Jpn. 54 (1985) 3425 and 55 (1986) 1252.

In Chapter I, we take up trans-polyacetylene as the third
example of the soliton dynamics. We use the model of Takayama,

68) 1, §3.2, we apply the collective

Lin-Liu, and Maki (TLM).
coordinate method to the TLM model within the adiabatic
approximation. It is shown that there are only a few differences
between the Hamiltonian in the ¢4 model and that in the TLM
model when they are written 1in terms of the collective
coordinates. Therefore the method of calculating the friction of

4

the ¢ kink can be also applied to the polyacetylene. It is

performed 1in §3.3. The friction of the polyacetylene soliton
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becomes proportional to kBT, reflecting the fact that the
momentum transfer occurs in the second order processes. Ve
conclude that the diffusive motion of the soliton is induced by
the same two mechanisms as in the ¢4 system. The first half of
Chapter Il has already been published in J. Phys. Soc. Jpn. 55
(1986) 2305.

Here it 1is useful to summarize the kink dynamics in the
above three typical systems. With respect to the kKink (soliton)-
phonon interaction, they have different characters. (a) In the
¢4

process, (b) in the sine-Gordon system it never occurs, and (c)

system the momentum transfer occurs in the fourth order

in the TLM model it occurs in the second order. As a result, the
friction 1in each system shows different temperature dependence;
(a) F0<T2, (b) I'=0, and (¢) I'®T, respectively. We expect
that any other nonlinear system would be classified into one of
the above three types. It is also interesting that the Kkink
(soliton)-phonon collision yields the kKink (soliton) shift in the
second order processes 1in any system of the three. This
phenomenon seems to be a universal feature of the Kkink-type
excitations. It leads to the random walk of the Kink (
Dx(kBT)2), when the frequency is not zero and the temperature is
low enough.

We have restricted ourselves to the classical low
temperature region. It is important to study the quantum effect
in polyacetylene, because the optical phonon frequency is of

3

10°K. Quantum correction is discussed in §3.5.

It is also significant to take account of the lattice
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pinning effect on the soliton motion. In Chapter IV, the lattice
pinning energy (or Peierls potential barrier) is estimated in the
Su, Schrieffer, and Heeger's model. It is shown that the pinning
energy is almost negligible when the parameters in the
Hamiltonian are the wvalues proposed for polyacetylene.
Furthermore the pinning energy for different parameters is
calculated. As expected, it increases as the soliton width
becomes narrower.

Chapter V is devoted to summary, future problems, and

discussion.
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Chapter II. Brownian-like Motion of Kinks in One-Dimensional

¢4 System

8§2.1 Introduction

As discussed in 81.5, we propose that there are two

mechanisms for Brownian-like motion of Kinks:

(1) One is a random walk whose basic steps are shifts of the kink
due to collisions with thermally excited phonons.

(2) The other is ordinary Brownian motion, where the Kink moves
in wviscous field. The origin of the friction 1is momentum

exchange between the kink and the phonons.

In this chapter, friction and diffusion constant of the ¢4-kink
are calculated in the form of low temperature expansion. The
relation between the above two mechanisms is also clarified.

In order to study the motion of the Kink, we use the
collective coordinate method. This method was developed first in

the field theory to quantize kink solutions.}!’2’

The position of
the Kkink 1is treated as a new dynamical variable called the
collective coordinate. In this method the Hamiltonian is highly
nonlinear and the perturbation procedure to solve the equation of
motion becomes complicated. However, since the «collective
coordinate is not involved in the Hamiltonian, thermal averages
of various quantities can be calculated in a straightforward way.
Recently it has been shown that calculations by means of this
method reproduce the exact free energy obtained by the transfer

integral method.3’4)
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We calculate the friction with the help of Mori's formula.5)

It gives a generalized Langevin equation for the kink motions,
dividing the force term into two parts; one part being the
friction term and the other the random force. In this formula,
the friction is given as a function of time 7 (t). We calculate
its Fourier-Laplace transform TI'(w) in the 1low temperature
expansion.

At first, we discuss the static limit of TI'(w), which
represents the friction of the ordinary Brownian motion in the
mechanism (2). It 1is to be shown that, in the lowest order
proportional to kBT, 7 (t) has the form of [ Qexp(iQt)+the
complex conjugate term 1, where Q is a sum of frequencies of
thermally excited phonons. The static limit of 1its Fourier-
Laplace transform is given by Q8(Q). This shows that ' (w=0)
vanishes in the lowest order. In the next order proportional to
(kBT)z, there appear many terms. Most of them are shown to have
the time dependence [ Qexp(iQt)+complex conjugate 1 and thus
they have no contribution to I'(w=0). Only a few terms
contribute to the static limit. These terﬁs turn out to be
related to the generation of higher harmonics of two thermally
excited phonons, which is consistent with the mechanism of the
kink-phohon collision discussed in §1.2.

The relation between the two mechanisms is clarified by
investigating the fluctuation-dissipation theorem for the Kkink
motion. We calculate a dynamical diffusion constant D(w) in the
low temperature and the low frequency region. In the static

limit, (w—0), D(w) becomes an ordinary diffusion constant

connected with the friction through the Einstein relation. In
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this case the static limit of I'(w) due to the second mechanism
(2) 1is playing a dominant role. On the other hand, when the
frequency 1is not zero and the temperature is 1low enough, the
dynamical component of the friction, I'(w), becomes dominant.
In this case, the diffusion constant becomes proportional to
(kBT)2 and the Brownian-like motion of the first mechanism (1)
(random walk) shows up. As the temperature increases, however,
the diffusion constant approaches to the curve of D=kBT/MF(0).
Thus we conclude that there occurs a cross-over from the random

2

walk (De<(k,T) T/MI" (0)ex

B
(kBT)°1), when ® is not zero.

) to the ordinary Brownian motion (D=kB

In section 2.2, we introduce the ¢4 model and apply the
collective coordinate method to it. A diagrammatic representa-
tion of the perturbation procedure is also developed in order to
solve the equation of motion. In section 2.3, we first review
Mori's formula and perform the calculation of the friction in the
lowest order. The next order terms are studied in §2.4 and the
static 1limit of I'(w) is calculated. The dynamical diffusion
constant 1is obtained in 82.5 with the help of the fluctuation-
dissipation theorem of the first kind. Discussion is given 1in
8§2.6, where some remarks on the obtained friction in association
with the elementary processes of the collision are included.

It 1is also an interesting problem to study the friction in
perfectly integrable systems. In §2.6 and Appendix 2.4, we
perform similar calculations in the sine-Gordon system and show,
as expected, that there is no friction in that system.

The dynamical diffusion constant is also obtained from the
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velocity autocorrelation function. It is shown in Appendix 2.B.
For completeness, 1in Appendix 2.C we compare our results with

6) to show that the diffusion

those of Wada and Schrieffer
constant in the latter is to be multiplied by a factor of four.
Explicit forms of the interaction Hamiltonians are included in
Appendix 2.D. In Appendix 2.E details of the calculations are

summarized.
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§2.2 The ¢ Model and the Collective Coordinate Method

In the continuum approximation, the model of a ¢4 chain can
be described in terms of displacement field ¢ (x) and momentum

field P(x), by the following Hamiltonian,

i’i{ Py G’ (Mf_ W' gz W8 ¢«}

amA T 3 e 8 P2

4

’

(2.2.1)

with 2 being lattice constant, o courling strength between
neighboring ions with mass m, and A is defined by A = mQ2. This
system has a double-well local potential, whose minima are at
¢=j:¢0. The constant Wy characterizes the frequency of small

vibrations at one of the potential minima. A stationary Kkink

solution in the system is given by
¢K(x)=¢0tanh (x/72d), (2.2.2)

where d=c0/w0.
A new dynamical wvariable QO(t), which represents the

location of the kink, 1is introduced by a point canonical

transformation,l’7’8)
d(x,t) = ¢K(X-Q0(t)) + x(x—QO(t),t), (2.2.3a)
P0+$nx’ dx
P(x,t)= - ¢K' Fx—QO(t))+ﬁ(X-Q0(t),t), (2.2.3b)
M0(1+$(t)/M0)
with constraints
Ix(x,t)qﬁK’ (x)dx=0 , (2.2.4a)
Sn(x,t)tbK' (x)dx=0 . (2.2.4b)
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where £ (t) and M0 are defined by

£(t)=S¢K’(x)x’(x,t)dx,

2

_ , _ 2
MO-I(¢K )“dx=2¢,°/3d,

(2.2.5)
and primes on ¢K and x imply spatial derivatives. Unless we
indicafe otherwise, all integral signs in this chapter denote
one-dimensional unrestricted integrations over x. The variable
Qo(t) is called "the collective coordinate".”

As shown in 81.2, the eigenvalue problem for linear modes

9) The complete

around a single kink can be solved analytically.
set of eigenfunctions contains the Goldstone mode (zero frequency
mode) of the form, ¥ (x)=¢ " (X)/VM,. In terms of this

complete set, the fields x¥x and m can be expanded as

- _ *

x(xX,t) = Ql(t)ﬂ(x) + E Qk(t) ﬂsx), ( Q_k— Qk )

n(x,t) = P,()e(x) + = P.*(t)p(x) (P, =P.%)
' - 1 l k k k ’ _k_ k

(2.2.6)
where the Goldstone mode is excluded because of the constraints

(2.2.4). The functions wl(x) and wk(x) represent the amplitude

8) investigated a point canonical trans-

*) Gervais and Jevicki
formation in the path integral formula and showed that careful
treatment of the transformation leads to additional potential
terms in the action. In the present chapter, however, we discuss

only the classical limit where their additional terms are not

necessary.
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oscillation mode and the phonon mode, respectively. Their
explicit forms are shown in §1.2.
With the help of egs. (2.2.3) and the expansion in (2.2.6),

the Hamiltonian in terms of the new variables becomes

H = HO + HI , (2.2.7a)
Qwi xS
Ho = ’Ajdﬂl' %—o -t-Ek*zLM(P/Mo*"P'I'*%PIP”)

2 (0RO T wieon ),
(2.2.7b)

Hy= i (Po+ Snx’d:c)z._ Po

T 2my MO(‘+§/M0)2 Mo % + Hg

(2.2.7¢c)

where EK and M are the excitation energy of the kink, EK=Mc02,

and the kink mass, M=mQMO, respectively. The eigenfrequencies

2_ 2 2_ 2 2,2
are wl —3w0 /4 and wk —wO +c0 .

Hamiltonian HQ is composed of nine terms which are cubic or

K The interaction
quartic in the variables Q. They are included in the twenty-one
interaction Hamiltonians which were calculated without using the

10) We show the explicit forms of these

collective coordinate.
interaction Hamiltonians in Appendix 2.D.

We will calculate thermal averages at an initial time t=0
according to the canonical ensemble distribution. From now on, a
variable which is not 1indicated to be a function of time
represents the value at the initial time. Since the
transformation in eqgs. (2.2.3) and (2.2.5) is canonical8), the

functional integrals over ¢(x) and P(x) can be replaced by

55



integrals over QO’ PO’ Qn’ and Pn(n=l,k) with a constant

Jacobian. (From now on, the suffix n always represents both 1

and k.) Thermal averages with respect to the distribution

determined by H0 are

2y .
<P0 >0—mQM0kBT.

*
<Pn Pn' >0_8n,n"anB (2.2.8)
2 . .

%*
<Qn Qn’>0“8n.n’kBT/mQ‘°n .

T,

where kB is the Boltzmann constant, and 8n n’ is the Kronecker's

6 function.

Using the explicit form of the Hamiltonian (2.2.7), we

obtain the equations of motion

dGoth _ Po+ [T’ dx

dt meMo (11 50)/Mo ) | (2.2.92)
dPothy _

ar =%

(2.2.9b)

d Oplt) TS Po+ frtx"dx
- = ml Pn * + : )' ; C-n,n’ Qn’ (t),

At md Mo (1+36)/41,)*
x (2.2.9¢c)
APu 1 2 dHe
M e~ AW Qn ) — @
at mi * o On* )
’ 7,3\
Pot fix”dx * (Po +fmx’ax)
Z' C nn' Phl (*) - 7 CO,-’L
MmO Mo (1+ 3I0/0,)% 7 N mAMS 1+ 300/M)3
' (2.2.9d)

The wvariable P0 is constant, because the Hamiltonian does not

depend on the variable QO owing to the translational symmetry of
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the systenm. It represents the total momentum of the system as
readily seen from the expression for the total momentum,

-§é7 (x,t)P(x,t)dx. The function C is defined by

n,n’
§¢n(x)¢n,’ (x)dx, whose explicit form is given in Appendix 2.D.

Note that Ck K’ can be divided into a 6 function part Cka, and

a normal part Ck?k’ which has no singularity.

Since we are interested in the nonlinear interactions
between the kink and the small deviations around it, we solve the
equation of motion using perturbation method. The time evolution
operator exp(-itf) satisfies an integral equation

L ~tde t -4 (t—tl)ﬁo —4'1/-{,
e =e +J dt, . (-if1) € (2.2.10)
0 )

where £ is the Liouville operator defined by

. oH aHa)
(2.2.11)

”4£:A-Z(—OO; o T 3P Yo

7

‘tO
<tI=I}nt0. Equation (2.2.10) leads to the following integral

being similarly defined in terms of H0 instead of H, and

equation of Qn(t),

-t
Qy)‘*) = e, QV\

it t -t
i°@,,+}dt.6 | (-«‘fix)Gn(t.))

0
(2.2.12)

which is solved iteratively. We can thus obtain a perturbation

expansion of Qn(t) in terms of PO’ Q and Pn' Each term of this

n’
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iteration is represented by a diagram.

Before discussing the details of the perturbation procedure,
it 1is useful to begin with a few remarks. We consider that the
system is in equilibrium at the 1initial time. In the 1low
temperature region, the amplitudes of thermally excited phonons
at t=0 are small and thus the perturbative calculation Iis
Justified. It gives a low temperature expansion, because the
square of the amplitude of the phonon is proportional to the
temperature.

Let us now return to the perturbation procedure. The first
term on the right-hand side of eq. (2.2.12) gives the non-

interacting time evolution. For example,

ALY
.
—-— v ———t— N ! \P *
= 3Ot ) P GORE) 4 3 (06~ g ) erp(--unt)
=J-§§0n¢ exp(tiwet) (2.2.13a)

X ml ‘ .
Pe(t) = 7= 2 (£iwr)Rrz exp(£itat ), (2.2.13b)

where summation over * means the sum over two signs, one of
which corresponds to upper signs of symbols * and the other to

the lower signs. The quantity a,, is defined by

PR*
Q - —r (2.2.14)

The thermal averages of eq. (2.2.8) give
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¥*
<a18 a, » >0—8 s KoT/m w 2.

le £, € B 1
<a, *a > =< = 2
ke %k &7 2072 gk-gs - >0-8k,k’ 8¢, e KgT/mew, =,
=84k 8. er <38 Og,

(2.2.15)

where £ and &€’ take =*.
With the help of (2.2.7c) and (2.2.11), we find the lowest

order terms in (—Ltl) to be,

IPPRUNSE) '} % Con (W 0w s )
‘ =90, dPn meon,, n/n {Fn TInie,f
Po" J
+ — s = Gon 5
m L M " 9Pn (2.2.16)
where HQ(s) is a part of Hy cubic in @ 's. Substitution of

(2.2.16) into (2.2.12) gives the integral equation for Qn(t) in
the lowest order. 1Its diagrammatic representation is depicted in
Fig. 2.1, where time axis is taken in such a way that the left-
hand side of the diagram corresponds to the past: A solid
triangle represents Q (t) or ?;(t) and an open one represents
Qn(t) or Pn(t), (n=1,k): The wavy line which is not connected
directly to a triangle corresponds to the integral in (2.2.12):
A solid circle connected to a straight 1line indicates the
variable PO:
Note that there are many other terms in the higher order, which

Vertices mean the Liouville operator, -Lﬁl(l).

are not shown in Fig. 2.1. The dynamical variable Qn(t) can be
Oobtained by iteratively substituting the 1left-hand side of

Fig. 2.1 into the open triangles on the right-hand side. In the
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Fig. 2.1
[ ]
Qom

Fig. 2.2

A = A+ +
Cytx Ein) ty t

time

—-

Diagrammatic representation of the integral equation
for Qn(t), (n=1,K). Time axis is horizontal, the left-
hand "side being the past and the right-hand side the
future. A solid triangle represents Q _(t) or P_(t) and
a solid circle indicates PO' The waUy line which is
not connected directly to a triangle corresponds to the
integral in (2.2.12). Vertices mean the interaction
Liouville operator.

1

° *
'+<+ +<{+O’\/\A
O~—~A O~—4m™A

+ o o o

Diagrammatic representation of dQ,(t)/dt, eq. (2.2.8a).
The denominator is expanded in a power series. An open
circle with two 1incoming wavy 1lines indicates the
vertex Cn n’ and an open circle with a wavy line
represents cO,n‘ A solid circle is PO'
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same way, the variable Pn(t) is obtained.

Equation (2.2.8a) gives the velocity of the kink dQO(t)/dt
with the help of Qn(t) and Pn(t) obtained above. A diagrammatic
representation 1is shown in Fig. 2.2, where an open circle with
two 1incoming wavy lines indicates the vertex Cn,n’ which comes

from §nyx” dx=LC , P *Q » + an open circle connected to a wavy
n,n” 'n *n

Q in

line represents the vertex C0 n which comes from $=ZZCO n®n

the denominator of eq. (2.2.8a).
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§2.3. Friction of the Lowest Order

In order to calculate the friction of the ¢4 kink, we shall

) It is to be briefly

use the method developed by Mori.
summarized.
A projection of a real variable g{(t) onto a real variable a

is defined by

<g(t),a>

Pg(t)==-35

a, (2.3.1)

where a is an initial value of a dynamical variable a(t) and the
inner product, < , >, represents the canonical ensemble average
with respect to the inifial distribution. It is shown that the

equation of motion for the dynamical variable a(t) becomeSS)

t
da(t)/dt = -§r(t-7)alridr+ R(t), (2.3.2)
0

where R(t) represents the random force acting on a(t) and ¢ (t)

is the friction term defined by

r (£)= <R(t),R(0)> / <a,ad, (2.3.3a3)
R(t)= exp (-itP” £) a, (2.3.3b)

where P’ =1-P. We have used the self-adjoint property of the

Liouville operator <ifa,b>=<a,-iLb>, for real variables a and b.

It leads to the relations <a,b> = -<a,B> and <a,a> = <a,a> = 0.
Equation (2.3.2) gives a generalized Langevin equation for

kink motions, when we take the velocity of the kink dQO(t)/dt as
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the dynamical wvariable a(t). We calculate Fourier-Laplace
transform of 7 (t),

00

F'w) = § 7((t) exp(-iwt) dt. (2.3.4)
: 0
The fluctuation-dissipation theorem of the first Xkind 1is
obtained from the Langevin equation (2.3.2). The inner product
of éo and the equation becomes (af{t) being replaced by éo(t))
t

(£),Qy>=-§ 7 (t-1)<Qy(1),Q>d7,
0 (2.3.5)

L []
at <9
where the relation <éO,R(t)> = 0 has been used. Fourier-Laplace

transform of (2.3.5) and integration by parts 1lead to the

fluctuation-dissipation theorem;

0o | i <QyrQy>
Dw)=§ <Q0(t),Q0>exp(—iwt)dt= —_—— (2.3.6)
0 iw+tl (w)
Instead of (2.3.4), it is convenient to calculate
Q. (t),Q.>
rottys —2—0
o0
. (w)= § 7r.(t) exp(-iwt)dt, (2.3.7)
t 0 t

which 1is essentially the Fourier-Laplace transform of the total

force correlation. Some intriguing discussions are necessary to
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identify I'(w) with Ft(o)), when the latter is estimated using
perturbation approximations. We shall summarize them in §2.6.
Here, the structure of Ft(a)), (2.3.7), is to be studied.

Since the friction is generated by the momentum transfer
between the kink and the thermally excited phonons, I‘t(w) would
diminish as the temperature decreases. It can be expanded with

respect to the temperature,

(0)
t

1

M (w) =T (0) + rt( Y w) 4 -, (2.3.8)

0)

In the present section, we calculate Ft( (w). The next order

(1)
t

The quantity ao(t) is obtained by differentiating dQO(t)/dt

term, I’ {w) is to be calculated in the following section.

with respect to time. From eq. (2.2.9a), the first order term of

dQO(t)/dt is

o (V) Po
Go (*) - M 5 (2.3.9)
which vanishes in éo(t), (see Fig. 2.2). The second order term
is given by
3 = —L— = Pt Ops (11
@o (f‘ = C!’l,nl PP\ (t) n’

mil Mo n,n’

2k 5 Con Ontt],

f-nteﬁﬂgﬁ n
(2.3.10)
which is shown in Fig. 2.3. The quantities tht) and 6£(t) are
defined in eqs. (2.2.13). Differentiating (2.3.10) with respect

to time, we obtain
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(a) (b)

Fig. 2.3 The second order term of dQ,(t)/dt, obtained from
~Figs. 2.1 and 2.2. It correspogds to eq. (2.3.10).
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1
50(2) - . .
QO (t)=——%Y C ,(iunﬂ(iw iu>,)antan,iexptt1wnti1w , t)

2M0"*""t n,n n n n
\f2P0

-_—==) C (xiw_ ) a_,exp(xiw_t),
mSlMOS/2"t 0,n n° “n n (2.3.11)

where the summations over *x, one for n and the other for n” are
performed independently according to the rule below (2.2.13).

Functions Ci (i, Jj=0,1,k) are defined by Ci JEj'wi(x)wj’ (x)dx,

J
which appear in the quantities §mx” dx and £. Substitution

into (2.3.7) gives

F(mw\ Sw<§m A .e:;wtd;t NORSN (!
e« ) o), Qo ), /<Qo/;@o >O

kgT (0 %-w_, 52
= —- E C ,C n nt n2 I >
s N,nNn =
4M nn (:.)n (A)nr
iw iw
XA + }
2 . 2 2 . 2
(wn+wn,) -(w-i€) (wn wn,) (w-ig)
4kBT iw '
+ Y C C N (2.3.12)
M n 09n 0,-n wnz‘(w-18)2
where we have used the relation Cn,n’= _Cn',n and & is an

infinitesimal positive constant.

(0)

It is now clear that Ft (w) vanishes as w goes to zero.

In the low frequency expansion, we find

0) 2

(w) = HUFI( + w° Q) 3

r, (0 + 0wy, (2.3.13)

t 2
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(0) B n n
F - Z C IC ’
1 ! n,n _ng-n 2 2
2M n.n wn wn,
4k T
B 2
* M E CO,nCO,-n /wn
93 __
= — T, (2.3.14)
40
o) kBT (“’k“‘)k' )2
r =— X C +C_y s T8 (W ,~w,, )
2 aM k¥ K,k k,-k ("kzwk' 2 k Yk
= ( 7In(2+V3)/V3 - 1 )’T"/nwo, (2.3.15)
where the relation
W W in
5 5 = principal part 5 5~ (6(Q+wWI+8(Q-w)),
Q°-(w-ig) Q°-w 2

(2.3.16)

is used. We have introduced a dimensionless temperature

~ o 2, 2
T = kBT/dew0 ¢0 . (2.3.17)

Since the denominator of $'is equal to SEK/Z, ?'represents the

ratio of the energy of the thermally excited phonon to that of

(0) (0)

the kink. The integrations over k and k/ in Fl and F2

are carried out in Appendix 2.E(1).

67



§2.4. Friction of the Next Order

In the previous section we have shown that the static limit
of the Fourier-Laplace transform of the friction vanishes in the
order of KkK,T. As mentioned in 81.2, the elementary process of

B
the collision between a kink and a wave packet phononll’lz)

tells
us that the phonon transfers momentum to the kink in the fourth
order processes in the amplitude of the phonon. Therefore we
could predict that the friction of the kink is proportional to
| (kBT)2 in the low temperature region, 1if the ¢4—kink would
behave as an ordinary Brownian particle. The resuit in §2.3 is
consistent with the above prediction. In the present section, we
shall calculate the next order terms.

We begin with a few remarks. First, 1in the diagrammatic
representation developed in 82.2, the wavy lines represent both
the phonon modes (indexed by k) and the amplitude oscillation
mode (indexed by 1). Thus one diagram represents a number of
terms which are obtained by attaching the indices k or 1 to each
wavy line. These terms have similar structures and they can be

easily obtained from a term containing only the phonon modes

according to the following rules:

(1) If we attach the index 1 to a wavy line instead of k, we
replace the corresponding frequency Wy by Wy

(2) Each wvertex function (aHI/aQn in the Liouville operator
and Cn,m) is replaced by a relevant function according to
incoming wavy lines.

From now on, therefore, we will show expressions which contain
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only the phonon modes.

Second, the numerator of rt(t), eq. (2.3.7), has following
(2) (4)

seven terms in the next order: <R0 (t),RO >0,

Ry P t), Ry Pexpc-pH >, two terms in <Ry ()R, exp(-
(3) (3) (3) (2)

BHD Y., Ry, Ry, <Ry P )Ry Pexp(-BH >, and

<R0(4)(t),RO(2)>O, where Ry(t) represents §,(t). Each of the

first four terms does not give contributions to I'(tw=0). It is
shown in Appendix 2.E(2).
Let us now proceed to calculate the remaining three terms.

Equation (2.2.9a) gives the thifd order terms (see Fig. 2.2)

— _—
o = A Lo Cod (P ¥ B ) PR () O )
m 0 ’

2 ) Cun Fe® Gy () Cop O t)

mMIM¥ v R,P

2P (1) 3Po
Qﬂ% %Cok@ QM’Z' Cthp(ﬂCoh Qp(ﬂ

(2.4.1)

On the other hand, the second order phonon is (Fig. 2.1)

Q ff ")
3 5 A

‘4&? h k1) (T

t
fokt. exp (Tiwpti +iwe k-1, tiwy! (x—i‘,))

Po Iwn 3
+ 22 me Mp %;) C—P,h(ﬁ’ *:'_IIJ—;) Art ] at, exp(t:wpf, :t,‘a)hﬂ.f,))
o

Po2 f t
+ ZmzﬁzM'.;—/z (%' Co, -P ﬂw ’ Aty exp (3 ‘*’Ptl) (2.4.2a)
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*
()
P )

= - 3ml

Yl A i Gus O / 4t) exp (=3 wph Eitlt-t) it 4, ))
P
+ — o p (FiWpEiW +J Ahy exp (21 Wpky Titg (+-2
205 My n(_'_)C PR priln) (pes , | ep(eiphy R |))

Po’ Co
N — at, exp (+iwph
7_mQMJ/2 l*z) ,-pj Fp(riwpht) | (2.4.2b)

The summations over (*x) are carried out independently with
respect to p, k, and kK according to the rule below.eq. (2.2.13).

Substituting (2.4.2) into (2.4.1) and differentiating with

respect to time, we obtain RO(S)

0(3)(t) is shown and its explicit

(t). In Fig. 2.4, the
diagrammatic representation of R
expression is calculated in Appendix 2.E(3). In particular, a

term corresponding to Fig. 2.4(a) is

B)

ey, ArtAxt Qr'=
4a; r)-.--————————-ZL wA.
( HZMoL™ L p(e) Crac Atk ( j:“’I’) TWp+ WRF Wy

X f(sztwhf/) exp(ziwpt * iWEt) =~ (tWr *WK rWy) exp (LW, Wt 4 M{'t)f
(2.4.3)

(3)
0

is represented by Fig. 2.5, where rules of constructing diagrams

The quantity R (t=0) is calculated in Appendix 2.E(2) and it
are almost the same as those in §2.2. The only difference 1is
that a wavy line which is not connected directly to a triangle
does not mean the time integral.

Using these results and after some algebra, we see that the

diagrams Fig. 2.4(a) and Fig. 2.5(a) give
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RN

(c) (d)

< < <=

(9) (h)

Fig. 2.4 Diagrams representing the third order terms of RO(t).
Their explicit expressions are shown in eqs. (2.4.3)

and (2.E.14).

]
A~ Q
A~nQ &AQ

(@)  (b) (©) (d)

Fig, 2.5 Diagrams representing the quantity R (3)(t=0), eq.
(2.E.7a). A wavy line which is not cOnnected to a
triangle does not mean the time integral.
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1

W 'ﬁ/’hlirglg,‘%,’,ep,i Axrz: Qr'+ ah"z 031 a‘['t O?“_r

Rom(«a;T) RoB)(FG) =

(] p
[ Cpu Arper C pr g  A-ply g’ exp (Fiwpts iwet 4 Wat)

+C p°,w Ak, i K" Cp';,l suA_p 3,87 ¢ @iwet Hwet +ipt)

"'”CP,‘;"A Pk, K (CP rqn Azprg gl CP%"A AR,

2 2
tWrTwy ) — Wy
X ’{ (2w ) exp (i&WK*iiwh’t I4wn"*)

(tWrt W)~ wy*

2
w I — w 2 .
+ el 4 exp (2 1WA +iw, 1)
W2 — p?
- ke P exp(ziwgt —iwpt) ] (2.4.4)
2Wp (ZWh TWi + Wp) ’
where the summation over iwp has been carried 6ut. We will
first <calculate the first term on the right-hand side. Since

eq. (2.3.7) gives

rt(4a, 5a(1):t)

= q m2£2 b i b o »)
T o4<pi L3 nzni K Coorr Ark i (Ck,-k +Choat *Caopt) Aiotd, 7
0 R,

* <O an>0<aza».>o<a th">0 exp (2:Wet AWk £/ Wr'L)

2
and
[ (44, 5a); w=10)

zﬁ’-
i —Z
2<P 2 L° kK

p D D b
Crk’,'b." A R,k k" (Ck,_h + Ch',-h' + Cn",—h") A—k,—k’, -k’

x<akan>o<ahan>o<a §5(wvwn*w ")+ § (W -0+ W) + § (o +p W )}

J

(2.4.5.)
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where we have used the formula

w
; = 4T cS(,Q
L{—;mo FERREPEY : ). (2.4.6)

Using the thermal averages (2.2.8), (2.2.15) and the symmetry

relation, Ak,k’,k” =Ak,k”,k” etc., we finally obtain

[1l4a,5a(); w=0)

_ ‘?_‘lt(he'r 21 5 _(rtR4R"Y

2Mp AmE | L ppln" wltwn *wWpn®

Ak,h’,h" ,4 -h, -k -h" $ (e + Wi/ — wn')
(2.4.7)

As discussed before, the diagrams Fig. 2.4(a) and Fig. 2.5(a)
have other terms which contain at least one amplitude oscillation
mode instead of phononh modes. According to the rules to obtain

those terms, they have the form
40,5610 ;w=0)y

(ke 21y (hR)
- MO YHQ LZ h,b., Wszn’zw‘z

A’ A -k, -t § (W - Wr')

TT hsT)l Dy R? J
— ] T ik A,k d (We=2d))
.ZMD WLQ L R wh2w,‘l- A hA (2.4.8)

The other terms on the right-hand side of (2.4.4) and- the
contributions from other diagrams are calculated in Appendix
2.E(3), where it is shown that they cancel each other exactly.
Thus we conélude that eqgs. (2.4.7) and (2.4.8) are the only terms
which contribute to the static limit of the friction. It 1is
Clear that each of them has a positive value. The integration

With respect to k” in (2.4.7) can be carried out by the formula
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S (wn vl = W) = —E £ g (rai) + SR

oK (2.4.9)
where x(>0) is defined by w, =w +w,, . Thus we obtain
2 w
Fﬂm,munw=0):‘_ﬁf(kﬂw 1 K
i aMy L] 1 R Gk wetwpr Wi

2
x{@ﬂﬁ«)AmMKA4yw4<+0Hh“kf4mmfk4mﬁu&§

(2.4.10)

The other integrations with respect to k and k” are carried out
numerically using the explicit form of Ak,k’ K~ in the Appendix
D. Note that the & function part of Ak,k’ K~ does not contri-

bute. The result is

I Re T \IOJ
e samiw=0) = 0.02441 7 (o] Wo.

(2.4.11)

In the same way, eq. (2.4.8) gives

3J§ m? )_1_( ke T )200
Sinh?(5m) | $*\ medwo 0,
(2.4.12)

QIqa,Qall);w:o)A: (0.05735t

where the +two values correspond to each term in (2.4.8).
Finally, the sum of (2.4.11) and (2.4.12) gives the friction of
the ¢%-kink

r1 I—T.t (W‘;O)

1

2

| kg T ) w
o.1224 %"(Wﬂdt«)o’ 0.

\\

(2.4.13)
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8§2.5 Diffusion Constant and Fluctuation-Dissipation Theorem of

the Kink Motion

We define the dynamical diffusion constant by

[o0) . . <é07é0>
D(w)=§ <Qy(t),Qp>exp(-iwt)dts ————,
0 iw+T(w)
(2.5.1)
The numerator is calculated up to the order of (K T)2 in

Appendix 2.B. The result is

. KpT

<0.,0.> = =B— (1+K,+ 0(T%)), (2.5.2)
0’70 M 1
2k TV M
_ B 0 2 2,5
Ky = M ,Ei,Nn,n’ “0,nf-n,n" ,-n" 7¥n “n't
k,T
B 2
+ y § CO,nCO,—n/wn
113 .
= —— T, (2.5.3)
40
where Nn n’ =3, if (n,n” )=(1,1) or (k,k” ), and unity otherwise.

The parameter s 1is a half of the number of the k modes in

{n,n” ,n” ). The function An n .n” comes from the nonlinear
. . . . s . ,
interaction Hamiltonian, mQ EAn,n’ ,n”QnQn’ Qn” /L”, which is
contained in HQ (Appendix 2.D). The integrations over k and k”

in Kl are also done in Appendix 2.E(1).
Substitution of the results in the preceding sections into
the right-hand side of (2.5.1), T'({w) being replaced by I‘t(w),

gjives
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KT 1 + K.+ 0(T%)
D(w) = —> ) 12 ) 3 ~72 ~3=.
M iw+ T +iwl, +wl, +w00(‘r" , TS, 0°T)
(2.5.4)
where the frequency in reduced unit is defined by
W = W/wg. (2.5.5)

When we take the static limit w—=>0, we obtain the Einstein

relation
Dy= lim <8Q0(t)2>/2t = kgT/MT, (2.5.6)
t—>o00
It is the diffusion constant proportional to (kBT)fl. Using eq.
(2.4.13) we obtain
_ ~-1.2
DO— 12.25 T “d Wg- (2.5.7)

On the other hand, when the frequency is not zero, the

temperature dependence of D(w) is different. In Fig. 2.6, we show

the real part of D(w)/d2w0 as a function of the temperature 'T

(0)

for several values of ®. When the relation r(0)<u02r2 holds,

2

(that is ﬁigai ), the right hand side of (2.5.4) can be expanded

as follows:
kBT
iMw

- r§0)+ 0(T%)}

D(w) = {1+ K

1

- (0)

kT

+ B 2 {1 + O(T)>}
M

kgTT _
5 1+ 0(Oy.
Mw (2.5.8)

+

In this region, the lowest order term of the real part of D(w)
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becomes

kBTF2(0)
DQ)E—————————, (2.5.9)
M
which is proportional to (kBT)z. This corresponds to the diffu-

sion constant of the random walk, referred to in Chapter 1,
whose basic steps are shifts of the kink in the collision with

the phonons. In fact, using (2.3.15) we obtain

2,2

D = 2.06 T“d Wg- (2.5.10)

W

It 1is four times as large as the result derived by Wada and

6)

Schrieffer. The difference of the factor 4 is discussed 1in

Appendix 2.C. The present result 1is equal to the diffusion
constant calculated phenomenologically by Theodonhkopoulos.lS)

As shown in Fig. 2.6, the real part of D(w) approaches to
the curve of DO as the temperature increases. From the
expression in (2.5.4) we can see that D(w) is well approximated

by D, when the static friction coefficient I'(0) is larger than

0
w. This condition is rewritten as T°2o.

The frequency dependence of the real part of D(w) is shown
in Fig. 2.7 for several values of T. The half-width at the half-
maximum of the central peak is determined by w~I (0).

In order to check the fluctuation-dissipation theorem, we
calculate the wvelocity autocorrelation function <é0(t),éo> in
Appendix 2.B. Substituting the result into (2.5.1), we obtain

the low temperature expansion of D(w) which coincides with

(2.5.9).
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Fig. 2.6

107°}

10 ~ »
10 ™ 10
Log-log plot of the real part of D(w)/dzw , (eq.

(2.5.4)), as a function of the temperature for several
values of the frequency. The reduced temperature and
frequency are defined in egs. (2.3.17) and (2.5.5),
respectively. In the region T<®°, the diffusion
canstant is approximately Dw which is proportional g%
T®, eq. (2.5.10). On the other hand, in the region T

> &, D(w) approaches to the curve of D, (eq. (2.5.7))

which satisfies_l the Einstein relgtion and is
proportional to T .
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7.5 T 1 I
30 T=0.001
G —— 7=0.002
N 50l 1 — — T=0.005| .
= II \" ———= T=0.01
2.5¢ e
,,,,,,,, =
//
— R
—~1x107
Fig. 2.7 The Q{equency dependence of the real part of

D(w)/d"w,, eq. (2.5.4), for several values of the
temperatuge. The half-width at the half-maximum of the
central peak is determined by w~T1(0).
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§2.6 Summary and Discussion

Investigating the fluctuation-dissipation theorem for the
kink motion, we have shown that the two mechanisms are effective
in the Brownian-like motion of the ¢4 kink,

One of the two mechanisms is characterized by the friction
coefficient I'(w). It has been identified with I‘t(w). When

we substitute the integral equation for R(t)

. t
R(t)= Qo(t)+ i) dtlexp{-ht(t—tl)}(iRt)R(tl)
0
LX) t °
B QO(t)+ XodtlQO(t-tl)r(tl), (2.6.1)
into the definition &6f TI'(w), eq. (2.3.4), the following
relation,
iwl (w)
FtUoh —, (2.6.2)
iw+tlN'(w)

14)

is obtained. At low frequencies, we generally expect that

I'tw) ~ finite, Ft(a))‘v iw. (2.6.3)

14) that there is a frequency

It was, however, pointed out by Kubo
region where Ft(Q)) is almost frequency independent and identi-

cal with I'(0). It is in the region

') « w « W (2.6.4)

wc being the inverse of collision duration time. In the lower
frequency region ( w < I'(0) ), Ft(w) decreases as iw while
F'iw) ~ T (0). In the previous sections, we have calculated

Ft(u)) in the low temperature expansion. As readily seen from
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(2.6.2) this expansion has not taken account of higher order
terms with respect to I'(0)/iw. Because of this, the result has
not satisfied eq. (2.6.3). It is, however, expected that the
perturbation results can be used to obtain I'(w), 1in the sense

Kubo discussed. It is worthwhile to make a remark that the lower

limit in (2.6.4), G*sz, is further lower in the frequency

region than that for (2.5.9), which is O~T172.

We have found that the kink behaves as an ordinary Brownian

particle and the Einstein relation DO=kBT/MF holds in the static

limit ( long time 1limit ). The diffusion constant is
1

proportional to (kBT)— When the frequency is not zero and the

temperature is low enough ( ﬁ(<§62 ), the dynamical component of

'(w) becomes dominant. The diffusion constant turns out to be

proportional to (kBT)z. It is the result of the random walk of
the kink, whose basic steps are the shifts of the kink due to the
collisions with thermally excited phonons. This mechanism is
characteristic for the dynamics of the kinks, 1in the sense that
an ordinary Brownian particle does not suffer a shift of its
location from a single collision. As the temperature increases,

a crossover takes place from the random walk ( D (kBT)2) to

the ordinary Brownian motion ( D = kBT/MF < (kBT)-l), as shown

in Fig. 2.6.

Let us discuss the relation between the analysis on the

11,12)

kink—phonoh collision process and the present results.

(1) The temperature dependence of the obtained friction 1is

-consistent with the fact that the change of the kink velocity
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~after the «collision is proportional to the fourth order of the
incident phonon amplitude.

(2) In the collision process, the higher harmonics of phonons
carry the momentum away and thus the kink changes its velocity.
It 1is readily seen that the present friction is also related to
the generation of the higher harmonics. The first term on the

(2)(t) has a term

right-hand side of eq. (2.4.2a) shows that Qp
with a frequency (icokiuuk, ), which is the higher harmonics of
two thermally excited phonons with frequencies Wy and Wyr -
This higher harmonics contributes to the static limit of the
friction with another thermally excited phonon, when the fre-
quency of the latter (iuuk” ) coincides with (ic@kiuuk, ), ( see
eq. (2.4.5)). Note tHat 1in the collision process analyzed in
ref. 12, one kind of phonon with a typical frequency Wg collided
with the Kkink. Therefore, the momentum transfer was related to
the generation of the phonon with a frequency 2w2i'

12) that the effective interaction between

(3) It was pointed out
the Kkink and the wave packet phonon is attractive and thus an
overtaking phonon reduces the kink wvelocity, but a head-on
colliding phonon accelerates the kink. The magnitude of decele-
ration surpasses that of acceleration. On the other hand, the
number of phonons which collide head-on could be larger than that
of overtaking phonons. Therefore the friction of the kink is
determined by the competition between the colliding rate and the
magnitude of the velocity change. The present calculation has
resulted in a positive friction. 1[It is an interesting problem to

study the friction from a phenomenological point of view.

(4) Not only the excitations of phonons but also the excitations
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of the amplitude oscillation modes are relevant to the friction.
In fact, the first term of eq. (2.4.8) comes from a term in
Qp(z)(t) with a frequency (iuhétwl) which 1is the higher

harmonics of a thermally excited phonon and a thermally excited
amplitude oscillation mode. The second term of (2.4.8) comes
from two thermally excited amplitude oscillation modes. They

were not included in the analysis of Kkink-phonon collision

process in ref. 12.

Next we shall show that the obtained friction can be readily
reproduced, except the numerical factor, by a dimensional
analysis. It 1is important to realize that parameters m and %

play only the role of a normalization factor of the Hamiltonian

(2.2.1) in a form of the product mQ ( = A/%). Since TI' is
proportional to (kBT)Z, it depends on m2 as (kBT/m2)2. The
2 3

product I'(m? /k,T)“ has a dimension of (time) (length)—z. Since

B
there are three additional parameters d, wo, and ¢O’ it turns

out

RRT \* 1
r “(V:Q) we d* - (2.6.5)

Dependence on ¢0 cannot be determined by the dimensional analy-

Sis, since ¢0 is dimensionless. The acceleration RO(S),

eq. (2.4.3), 1is proportional to ¢0_3, because Mooc¢02 and

; S (1)s (1)
Ag,m,ﬁxl/¢0‘ On the other hand, the quantity <Q0 QO
2

proportional to ¢0—

>0 is
Therefore, eq. (2.4.5) gives 1“(0)0<¢0‘4.
With eq. (2.6.5), the friction is reproduced except the numerical
factor.

In the collective coordinate method the kink location QO(t)
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is defined byl)

§¢(X,t)¢K’(X-QO(t))dx = 0, (2.6.6)

as shown from eqs. (2.2.3) and (2.2.4). When the kink is moving
at a constant velocity v, the field can be expressed as

Pp(x,t) = ¢K((x-vt)r)+ no Goldstone mode around it,
(2.6.7)

where r= 1/ 1—(v/c0)2. In this case, eq. (2.6.6) does not give
QO(t)=vt as discussed in ref. 12. 1[It is because the phonon modes
around a moving kKink is not orthogonal to ¢F{ (x-vt) and thus
j‘¢(x,t)¢K’ (x-vt)dx#0. The difference between Qo(t) and vt
is, however, in the ofder of (v/cy)®. Ve believe that this
difference gives to the friction a correction higher than
0(kgT 2.

Next 1let wus briefly discuss the sine-Gordon system. In
completely integrable systems a soliton (Kink) never changes its
velocity. Therefore, we can predict that there is no friction of
the soliton due to the soliton-phonon collisions. The method to
obtain the friction in the present chapter can be immediately
applied to the sine-Gordon system if only the vertex functions
are changed. Since there is no amplitude oscillation mode,ls)
the friction 1is given by (2.4.7). The explicit form of the

vertex function in the sine-Gordon system is shown in

Appendix 2.A. It is readily seen that the vertex Ak K’ KSG
vanishes for any values k and k” . Therefore the friction of the
Sine-Gordon soliton 1is zero up to the order of (kBT)2. We

believe that any higher order calculations do not give friction.
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It is one of the characteristics of the completely integrable
systems. Even if the friction I'(0) is equal to zero, the static

limit (w—>0) of the real part of D(w) does not diverge but has
2

a finite wvalue Dw 0<(kBT) . The imaginary part of D(w)
diverges as w—0. It is of course a special case, where the
solitons behave as non-interacting particles. There exists only

the shift of their locations as a result of the collisions.
Therefore, the diffusion constant Dw due to the random walk of

16,17) In real systems, there

the soliton can be calculated.
would be some perturbations which destroy the complete
integrability and the divergence of the diffusion constant would
be suppressed.

Recently Kunz and Combs performed the calculation of I (0)

Va
(K(0) by their notation ) for highly discrete ¢2 18)

systems.
One of their results was that the diffusion constant goes to zero
as the temperature decreases, owing to the discreteness effect.
When the temperature is low enough and the kinetic energy of the
kink 1is less than the lattice pinning energy, the kink can not
move freely any longer and the diffusion constant decreases. The

lattice pinning energy was found to be approximatelylg)

E
Q) = —4a cos(2nQy/2), (2.6.8)
2

where Ea is in the present notation

39E
E = —K exp( -9.68 d2/9 2
16d

). (2.6.9)
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Therefore, the effect of the discreteness on the diffusion

constant would become significant in the region

T < — exp( -9.68 d2/2

). (2.6.10)

alw

It would also be important to compare (2.6.9) with the

uncertainty principle energy for the soliton being located within

a given period of the potential.<9’

18)

Another result of Kunz and Combs was that a component of

o) (ﬁ}(O)) is proportional to (kBT) in the 1low temperature

region, even if the continuum limit is taken. .In §2.3, however,
we concluded that I'(0) is equal to zero in the order of (kBT).

Our result is due to thesfact that eq. (2.3.12) has an integrand

. 2 2,2 I .
proportional to (W “Wpr ) Ck,k’clk,—k’ ,  which vanishes at

k=xk” . On the other hand, the corresponding expression for
K7(t), (A26) of ref. 18, has an integrand which vanishes at q=-9”

but does not vanish at g=q” . This difference gives rise to

~

K, (0)exk,T. We <can show that it comes from their assumption

7 B
(A13) that the extended phonon modes could be treated as

undistorted plane waves. If we use the distorted phonon (¢k(x))

correctly, the relevant expression ( in the notation of ref. 18)

L
ou
y —K_

ul £ %, (2.6.11)
. oX

would not be estimated by

2
ou 9

Uk

—%— $dx exp{i(gq+q” )x}, (2.6.12)

oX

but by
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2

auK 9

1
U P00 P _(x).
ox K a7 d

L

§dx

Equation (2.6.13) does reproduce the factor ((okz-w}g

because

1 ,
§dx ¢K(x)¢K (x)wq(x)wq,(x)

2
S 2_ 2, d_
= 5g §Ax (8 -8, (O 5P ()9, (X)}
2
¢
0 2_ 2
= - — ("~ )C_ _,
35“002 9 9" "“q,q9

where the eigenvalue equation for the linear modes,
has been used. In summary, it is very important to
of the correct form of phonons. Otherwise, the
coupling could be misinterpreted and the temperature

various quantities would be mistaken.
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2
)Ck,k' s

(2.6.14)

eq. (1.2.2)
take account
Kink-phonon

variation of



Appendix 2.A. The Sine-Gordon Case
The Hamiltonian of the sine-Gordon system has the form

H>L AS%%';'(%%Y“' (ji)*““ (1-c °5¢)§. (2.A.1)

It has the soliton solution

C/’KS&(X) = 4 tan~' Jexp (A )i , (2.4.2)
with d=c0/w0. The phonon mode around the soliton is
$G 1 skX _
Y @)= Rd + < tanh (W) 2.5.3)
k(O TR © (

Therefore, the three phonon interaction Hamiltonian part in HSG

is calculated to be

D= BT Absi b* Or O Br

SG w4 S  sq SG sG
AR,h',k": - 2L Jdl sin 4),((1) LFR (0 (.PR/ ed) ()Ok// x)

= 1 wo’d T 2
- —3-20,- 0y +2
JOTRA®) (1t R7d*) (1t R"3d2) 24 cosl\(’n’en/z)( | 02~ B +264)
- i N

’wol,/(ﬁ'hzd") (l‘fh’ldz) (H' hn:dz) 2y DOS‘\(TIQ'/Z)
x (Wn_-(—wlz' +wh")(wh+wk’ —(,)kl') (U)k - Wy’ +LJ’Qn )(—(A)K +Wp' W) )

(2.A.4)
with Q =(kM+k” Mk”Ma". Since the relation ASCG ., = o
n k,k” , k&
holds, the friction 1is zero up to the order of (kBT)z, as
discussed in §2.6. This is associated with no higher harmonics

generation at the phonon-soliton collision, which was pointed out

in ref. 17.
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Appendix 2.B: Velocity Autocorrelation Function

We will calculate the velocity autocorrelation function,

<é0(t),é0>, up to the order of (kBT)z. The lowest order terms of

the kink velocity are

20 1y~ Po
Go = Po/M (2.B.1a)
() .
Q, (k) = ;’—4—0 )5]: 5 Chn,n” (2i0n)An=Qys erp (1int £iW,- )
2 P
- 2P 2. Con Qnz erp (= w"*) (2.B.1b)

mLMJ% ht

First, we will verify the relation

 Go®, @0’ > = ke T/M. (2.B.2)
The left-hand side of (2.B.2) can be transformed as

e i) o, , P/ Y
< oPo » e"‘ti PO/M >

_ oH
- 0P > Fb/$4 jz

where the self-adjoint property of the Liouville operator and

i

{Gott), 0>

n

(2.B.3)

—LtP0=0 are used. From the definition of the inner product, the

final expression in (2.B.3) becomes

_eH
So\Poo\QoTTo\Pnd@n . Fe e /=

ReT
jo\Poo\QoT o\PndGV\( e"(BH B /z = “73“

[
(2.B.4)
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With the help of this relation, we find that the low

temperature expansion of the velocity autocorrelation funetion is
(2 (z) m .
CBot), @D = <Qp ), >, T <08 , G0

+ (B, 0N D> — <Ol , &> ro(F7)

. 2 ke T ; ~
= COPW, 67, +2 2SR x 0@,

(2.B.5)
From (2.B.1b), the first term on the right-hand side is

_ (ReTY?
Q)
<Q<§aﬁ<) @oz o 4M2 g-l Cnn C n, -n’ /wn (/Un

x i(wh-whf cos (Wnt Wy )k + (Wntw, )Z;ws(wn*wn’)i‘&

4(5\83); Co Co, -n c,oswnt/wn

(2.B.6)
where we have used the relation Cn,n’ = —Cn, .0 To calculate the
third term in (2.B.5), we must take account of the effect of the
nonlinear Hamiltonian on the thermal average. Using the explicit

forms of HI’ (2.2.7¢), we obtain
hBT 2. . @ @ 2,,(3)2 ~3
B = %@HI b+ am<PeHT Y o)

= B2 Cop Comn o

-2“*‘;1’ T Nut Con Ao, niow foodtw o LS

(hnT)2

~3
M2 nh, Cin,nt Con,—n /bdn + ol ’,

(2.B.7)
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where < >C indicates +the thermal average of the connected
diagram. HI(4) and HI(3) are the quartic- and the cubic terms in
HI’ respectively. Substitution of (2.B.6) and (2.B.7) into

(2.B.5) gives

[ * h
(Qo(ﬁ,90> = —’\%T—

(bBT) 20
=L, Con Con e S0 Wy

x [ (W~ Wy ) 08 §(wn +wn' V1§ + (Wntwa ) 08 § (W~ ) 1 §
- anz - Z-wn,2 ]

ke T/ IMo
+’2—(_’:'7— hZ./, Na.n’ Co, A-n,n’,~n’ /(A)nzwn'sz
(heT) > 4 0(T3
ZCOV\CO m(q‘wsw”* 3)/w (2 B.8)

It is readily seen that <Q0,Q0> (eq. (2.5.2)) is obtained from

(2.B.8). After some algebra, Fourier-Laplace transform of (2.B.8)

becomes
~ Wk hgT(H‘K\) l?eTP“;)w)
n €> + - +0 T 3
g(@ ), o>€' dk = T Mw M w2 7 ))
(2.B.9)

which coincides with D(w), up to the order of T2.
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Appendix 2.C. Diffusion Constant Dw

We will reproduce the diffusion constant Dw using the
formula
D= lim <8Q0(t)2>/2t, (2.C.1)
t—>00 .
6)

to compare the present result with that of Wada and Schrieffer.
Here 8Q0(t) is the shift of the kink position.
With the help of the relation (2.B.2), we obtain

e .
86,1, 80"y = [ dT <Qolv) , Pot/MY

ke T 2*
= —— (2.C.2)
M .
Therefore, the low temperature expansion of <8Q0(;)2> becomes

50,y Y = 2< 860, §60 (5

()]

(2) 2 2 ~
+ (og' ) ), = <8@Qotty ) + O(T?3),
(2.C.3)
The second and third terms are calculated in the same way as eqgs.

(2.B.6) and (2.B.7). Finally we obtain

(ke T)?

2
{80y (1) > = Ve ,,,Z;,/ Cn,n’ C—n,-n’/6-‘)1‘12-“”1’2

TS T—
, BleTy

wE ;. Co,n Coj-n (1~ cos wnﬂ')/wn"'
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RgT
M

+ (1+ K, =) ¢?

(2.C.4)

Note that the last term proportional to t2 diverges in the
formula (2.C.1). This term corresponds to the first term of
D(w) in (2.5.8), which diverges when w—0. To remove this
divergence, we must proceed to calculate the next order terms (
proportional to Ts) and renormalize the divergence into the
denominator in the form, D(w)= kBT/M{iw+I‘(w)}.

For large t, the first term in (2.C.4) becomes

z (Wr+ Wk’)*
_USB_T_Q_ZI Co Gkl 2t J(Wr— WK ) |
2M*° ke ’ ! Wy Wr
(2.C.5)
where we have used the formula
| wSQt —~
Lim s = 7 d(N). (2.C.6)

£ -0

Substitution of (2.C.5) into (2.C.1) reproduces the diffusion
constant Dw (eq. (2.5.10)).

Now we compare the above discussions with previous ones of

Wada and Schrieffer,S) who calculated the diffusion constant
using the same formula, (2.C.1). There are several differences.
In ref. 6, the collective coordinate was not introduced. The

kink position was calculated from the coefficient of the
Goldstone mode.

The second difference is that the previous discussions were
confined in the sector where the kink was 1initially at rest.

This is the reason why the divergent term was not obtained.
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Thirdly, the adiabatic hypothesis was used; that 1is, the
initial time was taken at the negative infinity and the adtabatic
constant & was introduced. The time t, in the denominator of

(2.C.1), was replaced by

0
123 1
5 e dat = — (2.C.7)
w .

This approximation is reasonable as far as the order of magnitude

. . ~2
is concerned. However, the numerical prefactor of T

of Dw can
not be determined precisely. This 1is the reason why the
diffusion constant obtained in ref. 6 is different from ours by a
factor 4. We consider that the correct prefactor is 2.06 as
shown in §2.5, which is identical with the phenomenological
estimation of Theodorakopoulos.lS)

Next, we shall show that Dw can be reproduced 1in the
formula of ref. 6, without introducing the adiabatic hypothesis,
if a small frictional force is supposed to be working against the
Goldstone mode. The strength of the force would be reduced to
zero later.

Equation of motion for the Goldstone mode q, was given by
(4.9) of ref. 6 and (2.13a) of ref. 12

4 JH1

o = “ I 9%, ’ (2.C.8)

in the notation of the latter. It is modified to

> ; 1 JHz
Bo + A% =~ ml 08, (2.C.9)
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A being the strength of the frictional force. This has the

solution
t SN
l A i dHI(t')
9% tt)= —— | ak; (e - ) =
Ame ), 3%0 ’

(2.C.100)
for 1initial conditions q0(0)= &0(0)= 0. Retaining only the
relevant H6 for HI’ we rewrite (2.C.10)

I o,
1) = —— 2 ’ K+
bott) = 5= 27 Atk,r’ Or: A
) A -Ax%
e/:l:dﬂlzf kY Y{t _ 1 + l_ e
x — L]
{ (,\t;u)gt;wg)(t{wkt;wn') AAz Wz WR) ,
(2.C.11)

where A6k K’ is defined by (A.1) of ref. 12. Using the relation

34 Zott)
)= - [34
Gtz - [ 2

(2.C.12)

which is obtained from (1.2.3) and (1.2.4), we get

<Go(t)2>=3d( ko T )Z Ackre Aok —K /wfF wie™

29 L.
" [ | = S (Wrtwy )1
(A*+ (Wez Wk’ )) (WrtWy )2
- | “Af (2
(1= €™ sin (We 2w ) T L i-e™) }
M+ (WrE wr)?) (WrT We!) 22 ( A%+ (Wt Wr'Y)
(2.C.13)
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We take the limit

A » Wo/) > 1,

(2.C.14)
Using (2.C.6) and
in S L
Qi sin ) ,
Ty, 9] (2.C.15)
we obtain
2 ke T Vv Ack,k Ab-k, -’
<90(ﬂ>= 30{ (——'——)Z 2 2 2
medol /R WKW (We-Wk')
T I
X {7[1: J(u)n-—(«)n’)—;\' J(wn— WR/) + Kz E .
(2.C.16)

The 1last two terms can be neglected by the condition (2.C.14).
The first term gives the same expression with (2.C.5), as seen

easily with the help of the relation

Sd L

- BIE 2wy Cow
Abk ZJZC%(R k) RR

(2.C.17)

which is obtained from the equality (2.6.14).

Furthermore, it can be shown that equation (2.C.4) is again
obtained by the discussions in ref. 6, without introducing the
adiabatic hypothesis and the frictional force, if the thermal
distribution of the initial momentum of the Goldstone mode is

taken into account.zl)

It is thus considered that the method
developed in ref. 6 is equivalent to-the collective coordinate

method. Difference is a matter of convenience.
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Appendix 2.D. Interaction Hamiltonians and Vertex Function Cn n

b

Here, the explicit forms of the nine interaction Hamil-
tonians of HQ in eq. (2.2.7c) are shown. They were included in

the twenty-one interaction Hamiltonians in ref.10. Notations and

expressions are simplified and some errors are corrected. The
vertex functions Ci j (i,Jj=0,1,k) defined by, j‘wi(x)wj’ (x)dx,
are also shown. The function Ck K’ was first calculated by

Gervais, Jevicki, and Sakita, eq.(A3) in ref. 22.

Ho =Hm +Hur + Hikk + Hekk+ Hyp *Hiik * Hitkk + Hikkk t Hugkn |

A= 23 T wo?
M= 28 deia (2.D.1)

Him = m2 A 03 ,

Hilk = MTQ% Ak ©/'Cr |

5

A“h= ' 41000’2 3T KZ(KZ-H)(ZKZ—I)
eI (1 k) (114kY) 4 sinhmK ’

(2.D.2)

with K kd,
Hikk = y{l g—h, Alrp 6,0 0On’

Mt = we' I ENER
e G,/ (H12) (4R ) (1 Kk'?) (11 4K/ 2) 2 wsh T(KtK')

1
o k) — () + S KT ety g g

(2.D.3)
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mP " u
Heer = =52 Ak, k" Qr O’ Or" |

" P PYIHCIPQ‘ Pa\’t
A k" = Awrkr S (KK + Artpt — (KKt K")
A)Q RRN = ; {700 d = = =
o Bt ) (1t 4k ) (it B2 (4D (HE™) (1+4K")
* (KP4 KK T3+ 2 (K4 K74 Ku)}, (2.D.4a)%
P AT wid
Ah,h',h." = ’ = =
28 [ 1+ kD (a2 (KD (1H4E2) (KK (1+4K"2)
x{ 24 E(FHKHE) +8 (0K KKK
¥ 14,0 ! ,9
+3 (KK KK+ KK KR kK kD
—3(K‘+k"+k”‘)+2K2I<'2/<"2 f , (2.D.4b)
w 2
Hini= m2Ann le‘ , Auan = ——5__2—0—(;—02—0(— ,
(2.D.5)

Hik = %ﬂ% Ailia Q»BQn,

A'W()z ,J:j’—TD
Ak =
% 4 (1t )+ 4¥2)  I4o toshmiK

K(11E)(1+4qk* ) (=5t ak2),
(2.D.6)

| Hilkk =

r-LQ

I Aukw 07 0k0w,

A”fl/h’ = 2 woz -k
to/ (tE 4P (H K (1 4K7)  sinh P

b 2 )
)((NOP|+I—6P2P|1' PB"’ PgPl P5' +EP5PZ"I7P7 , )
(2.D.7)
with Pn=(kn+ k- MHg?

£

*) These are the corrected forms of the corresponding equations

in Ref. 10.
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RN m U] 'I
Hirk k" = i m " A r k" @) Or Or' Or
At JA
Alp, bl b = W

J31T
A tE) (4R () (k) (1t £72) (114K"2)

wshn Q,

x (Fh0i+£0:00+ 265 + 0,0, - 205+ 2050, - £0,)

(2.D.8)%
with @ =™ x” M+ x”™Ma",

m{
= fow e A ki Qe O Qur Qu

H kkkk

b P rincipal part
Ah,lz',h",h"'-: Ar ek SR + Ak,h’,k"k’” Frrepr P

sinh TTR,
An, h’Dh" R" = T Wo’

g¢02»](|+K1)('1’4‘42)(”""2)(\1"4K'2)(|1~K"2)(|-fq_‘<"2) (rr KIHZ)(|+ 4](“'1)

’

-X(2+5R2+ %Ezt——quz R:_s ;RQR)." -*123 +'—(Rl"2Rq) )

(2.D.9a)*
An,tg' B R = Wi d
A R =
Eorf (1HY(1+ 412 ) (11 K2) (4K ) (K" D (1H AR ) (1+ K" 2) (1+4K"?)
R |
5‘/— _ -
%(-SER - £R:Ri ~6Ry =R Ry + S5 T ReRy+7 Ry b ony¥
with R =(k™+ x” M+ k7 x7Mha",
Cu = 0, (2.D.10)
| 1 NERS
Ch,‘! == C/,/Q = -

(1+4K*)(3+4K?)
JLA(H K (1t4KF) 16 cash K ’

(2.D.11)
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D N
Cost = Gl * G,

b 2T[1'h/ ’ _ J ,
Cor’ = -—L——-g(’lﬂl) = 1k Jhﬂz,o/

(2.D.12a)

A}

C}zNh’ = - 4 3T
' L (HER) 1+ 4K (1K) (r+4E'2) SinhTT(K+E')

< (K2 (K2 40)

(2.D.12b)
= = C,/ = JE”’
2 (2.D.13)
(o;p=—Cr,0 =— 4 F K3+ K2)
/ ' JLd (HED)(tar)d 2 sinhTK
(2.D.14)
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Appendix 2.E: Details of Calculations

(1) Numerical factors of FI(O), F2(0) and K1

With the help of the explicit forms of Cn n’ given 1in

Appendix 2.D, the first term of I‘l“” becomes

: (k=K ) ¥ (KK )2
§-$[ﬁakdk = L , j(mETD) ;
g (HE) (4K (K ) (114K™) sinh™ T (k1K)

-t-de TD(:f4K’)(3T4Kl)i('7+4K‘) ]
128 (1+K*)? ocoshmK

2, 12 Y 2
_ 3 2K+ = 37 K 1T (1+4Kk*)(3t4K)
"'??T. 142 2y 2 z_ T DT 2
(Y (IF4K)  (114K?) sih mk 32 (1tK?) tosh' TK
33 o~
=== 7 (2.E.1)
4o v
where we have used the formulaelz’zs)
2
J"" N € b I ({7 , 3
o0 (K D) sinh®>mlktk!)  sinh*TK 3TK® | (2.E.2a)
S"‘dK, (K- e (Hakr) o )
= - +
e (HaeE) ShTRERD) T 5 cosiwk 3T, (20EED)
o«
1 P
dk = T~ —
L, (1t k?) cosh*TK w, (2.E.2¢)
%) The formula (2.E.2b) corresponds to (E.2b) in ref.l12.
However, the expression of (E.2b) had a typing mistake. The

second term has to be 1/3m.
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™ Km _ __%__
L dk g = wBal, ()
" e 22 16,
T2 T T earIPam
. wshiTk TC 22 ’ (2.E.2d)

In the same way, the second term of

with Bn Bernoulli number.
(0)

Yy is
[38
~ [ 3T K AL
67[ ZTJO“( (1+4K*) sinh” TK NPT ]
= 37
2 (2.E.3)

Equations (2.E.1) and (2.E.3) lead to FI(O’, eq. (2.3.14).

The integration in F2(0) is identical with that carried out

in ref. 6, (4.19),

>~ k!l (k3¢ 1)32
r—,z(o): 27T jdk = .
21T Wo (1 k372 (144K

- I (2 e - 1)

T Wo
(2.E.4)
Next the numerical factor of K, 1is calculated. Note that
not contribute. The

the & function part of Ak,k',k” does

first term of Kl’ (2.5.3), becomes
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2
9~ < K
- fdkdl (kD) (i w2 )UHK)R (1rak'?) sibtmi

2 +10K e g K4 o (54 (5K + 5K ) K+ 6K K~ 3/<6§

—rn

17
QT ~ 2;<4+8K + 54
+ am jd«
16 (+K*)* (1+4K*)
~ k=1 QT2 ~
- e L + BT
2 (1+4<*) sinh® Tk [2
49 ~
= —T
O *

(2.E.5)

The second term of K1 gives 3?78, which is readily seen from

(2.E.3). Finally we obtain the result of (2.5.3).

(2)

(2) Calculations of Terms of the Friction with R0 (t)

(2)

It is shown that the terms of <R0(2)(t),RO 0

(2) (3) (2) (4) o
0 (t),R0 0’ 0 (t),R0 >0 do not contri

bute to the static friction. First, we calculate Ro(t=0) up to

eXP(-BHI)>

<R eXP(—BHI)> and <R

the fourth order. Estimating eqs. (2.2.9c) and (2.2.9d) at the

initial time, we obtain
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0 '
QY‘ = m@ Pa ¥

. (z') PD C-h n/Gn/
On = mﬁMo % ’ /
3
6= __%Pﬁ%— , , Conn' On Co,n2 One
0
1 w Pt O
—_— o On’ Cn”n "' I'n n
* me Mo n'n”n"’ Cnn "
< ¥

Pn = —mown ©n

X (2) §_V_";e 7 oAl n/Qn 4
102z At ©

C
- mg:’b n Conne P”’ - m?M 0=

€)Y 4mg
PV‘ = L{ HZH”H'"A -n, n’ h"i” " QM'Q’)” Qnm
' ] (1
+ MeM, h’n"n"’ C—n n! Pn Cn"ﬂ“ Pn Qn
_zh , X COun
- 7 Con B o O
2 Po *
* ML M n'znu Co -n Cn’,n" Par On
_ 3P T Co,—n Con On’. (2.E.6)
VWQMO n/

Substitution into eq. (2.2.9a) gives

- 3) — __...__3“. e n / / L~ iz
G (01=RO)= — =iy %’,?",p’t Crge A-pig.g' Agz Az Qg

!
T EMT: %ﬁﬂt Ci.g7 Co,gv (FWR 2 Wy =Wy ) Oge Agr » Agry

3 Po

+ FYTYVE %Z, Cog Go zl(:}:,b’-’ziswz ) agt 07,:

po-
g 2y . Cor Gl Qs
= :.Qz”)'/: op’ P,Z 8
=m (2.E.7a)
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.o w)
( Yoy = Ro (0)

=— - 7 CpgA-ris,3lg" Qgs Qo= Qg Qyme

Mol pig.4'9/8"s

S
TIMBCA PRalsere
‘ Cq g Cogn Co,g™ (xt0g) (x5 TWgr t W) Ag=Ay'=gs gz

Cr//illA_Pllg' z/ Co;g,” aii a?’t az"t azmt

3
FH g
- P _paCaren (£1Wy ) Agt Qg2 Qg+
JZml M Pz'i‘.‘i'.i"z Cop C-r1lsis

—6_{)0—- Z’ "t COgCOIZI CO,i” (iiwﬁ)aﬁi a‘("t af"z
J—MQMO zil i’+ ()

5P T CoprC-pig Cog” Qg2 Qgix
) P;8 “ot ' (2.E.7b)
T Tl Th e OF =

The quantity Ro(z)(t=0) can be easily obtained form eq. (2.3.11).

Next, the interaction Hamiltonians up to the fourth order

are ,
3) _ (3) f _ Po
1 o't mm XX - Gms S
(4) )2
Hi'" = Hé 1m2M (fxax
2 Po [ ' .
MM,z X dx 3
+ 3F%2 2
Mp3 *
2L Mo (2.E.8)
With these results and Ro(z)(t), we can calculate each term
of <R (2) (2) (2) (3)

0 (t),R0 exp(—BHI)>0, <R0 (t),R0 exp(—BHI)>0, and

(4)
0 >

[(Qexp(iQt)+c.c.], and thus do not contribute to the static

(2)

<R0 (t),R 0° Almost all of them have a time dependence of

friction. The only exceptional case is a term in

(2) (4)
0 0

eq. (2.E.7b).

<R (t),R >O’ which comes from the first term in
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@
Ry, Re ('7Eb(n))>°

3 N D 0 b
T2MAL2 5’: R"+ Ciokl (Ck, w *Cpk +2 Crrpr ) A—h,-h,’h'ﬁ -R"

2 2 * * *
% (k= We') <Or Qe O Gl SOr! Gy, erp (tiwort ziwpt)  (2.E.9)
Substituting this into (2.3.7) we obtain

fZ(z, TEbL() ; W=0)

——n: N b D P ' ot "
\?z 3 L C;oyb_' (Ck x Ch’,—k’ -f-ZC/z’/'—h") A—Iq,—k,k,’-h
f’o L h/hl,h“ V4

x(wé-wn'z)<a:an},<a5*a¢>,<akfad,>t> Stwg-wg) ~ 2-E10)
7

where the zero point at k = -k’ wvanishes owing to the hyperbolic
sine function in A_k K K7 .-k” " However, eq. (2.E.10) vanishes
because the first two terms cancel each other and the third term
is antisymmetric with respect to k” . Thus we conclude that each
. (2) (2) (2) (3)
term in <R0 (t),RO 0’ 0 0

(2)(t),R (4) does not contribute to T

exp(—BHI)> <R (t),R exp(-ﬁHI)>

0’

>

0 0’ (0).

and <R

0 t

(3) Cancellations of Remaining Terms of the Friction

We shall show that other terms, not calculated in §82.4,
cancel each other exactly.

First, we <calculate the remaining terms in eq. (2.4.4),
which corresponds to the diagrams in Fig. 2.4(a) and Fig. 2.5(a).
The contribution from the second term in (2.4.4) can be easily

estimated in the same way as the first term. 1[It gives
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[7, (40,50 (2); w=0)

gt m2Q? > ¢ [ p D N
= —_ = krt Cp'y + (~p"pn" Cop -~
2<P*, L3 k,h',h'jp( o ’K * Gt ) Pk

% Ak K, r" A -P, kR, )’ <a§an>°<an"&n'),<ak" ﬂcdlzz")O

x {ka—rwn'—wn"h J (We-Wr + Wi )+ §[-We tWE’ *wn")j (2.E.11)

which 1is to be cancelled in eq. (2.E.30). Second we will show

that the first component in the third term in (2.4.4),
Dcf’ A_p, q,q9" "’ does not contribute to the static friction.

Its explicit form is

with
CP,

[} (40,500) ; w=10)

= Ammd” N P b D
- 2<Foz>° L3 k,zhih’,'f* Ci’,h” (C;Q,.;Q + Ch’,—h, -+ Ck'j-h”)

XAkl A-kR -k AR, <Ok T, < Orr,

X (Wn-rwn')‘._ wh"2 ‘
[ (WrtWg')2— Lk)p" J (We+ We "a)hn)

(WR—wR')I_ (A)R"l ' " ’
' (wR—wh')"-wP’ ? (g“*h- Wh'+Wr ) +S(‘C()n *t-(,dn-t-wnn)s

! ' “2— 2 "
+i (WrtWy! )*~Wp? M (Wn—wy' ) *—p? i(WR W )(((“)k —Wp)].

(2.E.12)

As far as a term has the form of Q6(Q), it does not give a

contribution to the static friction. The only exceptional case

is the third term when one of the vertex functions Ak K K" is
the & function part (2.D.4a) and the other is the principal part
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(2.D.4b). In this case, it becomes
[} (#a,5a13)5 w=0)

Qm mL* Wel' >~ W™ C N,
2<P* 0 L3 Rt k" sinh TRtk tk")d —RTR, R

-

X CORArR% <O Qe D, <A *an"), 8 (W'~ Wretnt)

[(C"‘ ’Q"Chv"”cﬁ"—h”)/%w kK A-ki—h : }

(Wk‘\"(dg )l-whm (wn’-Wn )2~(,()mhl

, {
+(¢ %*Ch, * CH kK /) Ahn R A—k S A f(b()pf‘dn. et | W) Wi q
2

(2.E.13)
where the =zero points wvanish owing to thé hyperbolic sine

functions in the denominators. However the two terms in (2.E.13)

D D
k,k' 9k” _k’—k’ g"'k,,

K.~k .-K” hold.™ The second component in the
N

cancel each other because the relations A

P P
k,k, ,klf

third term in (2.4.4), with C

and A = A

P, 9q” A"p, aq, aq” ?

this exceptional case, each term having a time dependence of

does not have

[Qexp(iQt)+c.c.]T. Therefore, it makes no contribution to the

static friction.

*) We may consider that these terms in (2.E.13) are
contributions from higher harmonics with momentum (k+k” ) which

emerges through the three phonon interaction A The fact

kK,k’,k""
that they give no contributions to the friction 1is consistent
with the analysis of kink-phonon collision where only the higher
harmonics with frequency 2wEi played an important role in the

momentum transfer.
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Next, we calculate the other contributions in

<R0(3)(t),R0(3)>0. The explicit forms of RO(S)(t), represented
in Figs .2.4(b)-2.4(h), are
(3) Po N twh, tWp Wy .
4m g Mo? heps Cﬁh C.P/h ( TwWp )xwwwn Oz Qs

d f(t:wpt;wy) exp (#iwph T<WR'R) = (=it iWi' ) exp (£ ik t:{wn't)g

Po p :
Z . C-—h,k C"Q,h’ ('-'—"i WRF iWE ) an-; alﬂ!i'

t 2mfMy* AR =

* { exp (+WRE i WRE) + (3Whr Wi )1 exp (xitunt et )} ,

P’ L[ e
F‘S)(I‘C)t)— Zf’m’ﬂzMs/L ’5)/: Cf,h CO,"P :tu)P( j_—_wp )anz

% { (th:wK)Q,P (:t{wpk:t{(wa_t)—- (xwr) erp (:;cq,qt) § ,

(3) Cp K Co R" (FWr) (FWr T Wh' = =Wr") Ons Qr'+ Qr"'+

(44)*)’ J—Nd/z ’{/Zp:h"
"exp(:t:u)a’ktiu)n't + (wnp"1 )’

Ore Ap'z

2) . - 3Po '
RQ (4@)*) - ngﬂg/lt;/ﬁ %h’i CD/P A—PI kR.R (pr)(twp; Wh F wh')

X { (ziwp ).exp (1\'(4091’) — (tiWpzWh') uP(;:wht xiWR' L) .i ,

(3) . Po? _N +Wn Arz
(af:%) = — Fm0® My F,Z;a‘?— C-pk Cop (14 *Wwp ) TWpFwe

X ?(;wp) exp (ziwpt) - (tWe) €¥p (twdnt) 75

J2Po® p ‘ ‘ o
- m%z(;,(o.vz % C-re Co,r Orz {eiP(ttwR‘k) +i Wt expl wni)g,

B), a. 3
Ro <4a;t)=—mfﬂ,3—a Cop Co,p gy, OXP (21 ),

R cah;t)= —;;i%%—— Z, Cok Cot Grele (z iwrzitonl)

(2.E.14)
% exp (tiwgkt riwt ) |
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where R0(3)(4a:t) corresponding to Fig. 2.4(a) has been shown in

(3)

eq. (2.4.3). Using these terms and RO (0) obtained in eq.
(2.E.7a), we can calculate the remaining terms of
<R0(3)(t) Ro(s) 0 Almost all of them have a time dependence of

[Qexp(iQt)+c.c.], and thus do not contribute to the static
friction. One of the two exceptional cases is a term

3 <P D |
T 2, (v Crp' (We-We) G r Gy i

3)
4b;1), Ro (O > =
<RO ( >o ZmzﬁzHoq p’hlt

x 0 QS O Oy (HitortiWK)E exp (ziwpt ziwn %)
(2.E.15a)

However, its contribution to F (0) turns out to be

M (4b,5¢5w=0) = _ 3T LPeD, Wik — Wi}
t m2* M4 g:- C:lzh (:hh. ( R‘ )

% Co,-r Co,-k QR Gn YL O "D, § -ty )
- 0 (2.E.15b)

—
>

where we have used the formula

i it —dwt
Lim S”;Qx(eﬁ- e at = - amd(Q). (2.8

w-)o

The same discussion applies to the other case
<R, ¥ cag;t),R ‘P (5d)>, to see that it does not give the
contribution either.

Finally, the various terms in <Ry ()R P exp(-pH 1> and
R, (t2,R ?)>  are similarly investigated. In Fig. 2.8, we
show all the diagrams which contribute to the friction.

[Figs. 2.8(a,b)] Using R, °’(t) in eq. (2.4.3) and the

third order interaction Hamiltonian in (2.E.8), we find that

Figs. 2.8(a) and 2.8(b) give
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Fig. 2.8

<<< h ex,,<-pH><<< e exp<-rm>

<§f N
Cninas

Sl

(h) (i)

Diagrams in <R, 3 (t),R @ exp(-pH,)>, and
<R, (4)(t),R,(2)> ., wh?ch cont?ibute to the friction.
Thgy are ca?cula%ed in Appendix 2.E(3). The total sum
of I'(4a,5a(2)) and their contributions is shown to be

zero in eq. (2.E.30).
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:izﬁﬁfgﬁ D D b
C._ + (kT C_ "t
,2 <P02>° L? k,Zk;, hl: z ( klh C ho h , h

F‘t(m;wzo)= -
x i Cg,hjh"AR,h'/h"A—g.‘-h,'h/ (W= Wrs )+ C—h"j—h" AbrirA-k, §,-§ Wi }
x O Ar ), < oVl % PR A" Q" PAY C\g*ag Vo

 { 5okt -Wr") + § (Wr- Wit Wr) + § (-t wrtt W) §

3nmf B N
2 i (G wht Coi + otk ) Anscat Gy Coprt

x Wi <ataed,< A O, A O Sy

X 3 5 (Wrt o - Wi )+ Sww-Wi+ W)+ § (cwp+ Wr'+ Nn")}
(2.E. 17)
and

3wm0 N
T T Zo  (Corr G+ Gt 1) A Co Coa

* W Wi <apf Ar >, < an'fan’>o< Ax" ah”)O

% § § (ke gt = W) = §(WR= k' + W)+ § (st W'+ W) §
(2.E.18)

[Fig. 2.8(c)] In order to calculate the diagram in
Fig. 2.8(c), we need the third order phonon. According to the
diagrammatic perturbation procedure, we obtain
q A-prh it Acp b, ot
G2 L3 g ipla) (twp) (2Wpr) (TiWp F < Wp! F i Wp)

ﬂki anl: abﬂi

n
* L %1 1 exp (2ipt, +(HiwnTiWn's ik )(E-1)))

=GP (i Tl k) + (i il (£-1) ; '19)

and
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%) __ 9
o (FGN) = 705 p,Zfz',h",h"',P,P't Copr A-piae Ap,p; un AnzQn'e Qurs e

* [ wp® =~ e *
W § (Wp F W)= Wwpr? { (£ Wrt Wr! WL ~Lp)

xp (iwpt* jwpm k]

— wp’—w'll/lz
“p | wp =0R") <0 pr2 § (£ W+ W'+ +lp)

exp (—1wpt=wrt)

(Wp/—iwkl')zs W2
wPr {({,{)P/ _twnn)z_wpz } ('ik)ntUJk' - wP,)

exp (4wWp't £ Wt £ 4WR" )

(Wp'F Wer ) ~Wem?
Wp! § (Wyr 7 We)*—w0p *f (£t T Wr! + wp')

eyp (" A‘MP’f‘i‘v‘w R" i= {wkmj')

(iwktwh’iwk" )2 - whmz
;('rwl“-'whfiu]h” )1~ wPI g‘; (twhrwp’)z— wP/z?

=2 erp [£iWpk HiWp't TiWgR"L +i w.a"ﬂ]

(2.E.20)
where the summations over i(up and ixop, are carried out.

Finally Fig. 2.8(c) gives

qmm*Q* D D N
8C;wm0)z — LML ¥ Dt G iAo
r"t( ) <POI>OL3 h,h',b-'}P (C kl h )Ah;k/PA P/ h' _h C,{/ IZI

X (W= WR) g Fony, COr e, <O ¥ AR

Wp

i W+ Wp
x| - (W + Wp~We"
. [ (wk_‘_wP))-wnlz S k P R )

Wr—Wp — Wp+Wp") t § (-Wetp+Wyn
(wh_wp)z_wk.JS(Wn pt0pn) + § (-Witp n)ﬂ

9Ttm20? b b N
2<4Ps* L3 ,:%hv;,, (C-e + (i) Ar ke, p A Pk C-k' k"

x < AR A< A On %< A" e 5, We' w0,
P

(2.E.21)
X 18 (' + 0y, 1-0p) + S (WK-Wei's wp) =+ § (e +iet “’P)f

[Fig. 2.8(d)] Using the second order phonon in eq. (2.4.2),
we obtain the contribution from Fig. 2.8(d). We notice it gives

complementary terms to Fig. 2.8(c); that is, a term similar to
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the first term in (2.E.21) which has CD_p p instead of (CD_k K
D

» +) and a term similar to the second term with CD
"k gk ~p0p

. D D .
instead of (C —k',k’+c —k”,k”)‘ The sum of Figs. 2.8(c) and

+C

2.8(d) is

[ (8¢;w=0) + ﬂ (8d; w=0)

_ Qu m29?
2<Po*2, L3

h.h' b." (C"‘h Rt C“'P,P + C—hll k'9l4k k"PA ’P"b b’ Ck .k" Z))h':

P
* AR OO (Ond Bo CQ Rr S S 00y = ) 1 J(0htp 40k + f (s o+t §

M D, /] D" " D - N '
+ L<%)>0L3 h,Z’h.',n':P<C-h’h "'C—h,h +C‘P,P)Ap-'b/PA—P/}2/_}2 C"bll—h“ ‘L(J\hz

P 2
* +
7( <agal>o<ak, az>°<Qh~" ak”>o§é (wh' +th” —wP) +J(wp'—(4}nu +wp) -\- J(*wkl f({)rzu +UP)5
(2.E.22)

where we have exchanged the variables p and k partially in the
first term and used equalities due to the § functions.
[Figs. 2.8(e-g)]1 They compose another group. Corresponding

to Fig. 2.8(e), we obtain

(3) 2 Po *Wp Ar= Qn’+
Op tsest)= —=2 L, CopinAeppn (1+
¢ ’ 4mAMp [ gyt p7 (2 =p? )(iwp)(twrxwp':u/k')

+
% L at, {exp (riwpti * (Tiwp*iWk! ) (t-11)) - exp(tiWpt +iWp L, = .‘u]h(t-t,))g

7
(2.E.23)
and
[t (5e;w=0)
Wp!
= a,zE/ ZL, (C—bk*C-k h’)Ahk'PC- -k Co_n P<anak>°<ak a,y)o
Q) , Wp +Wp

% [w”wn S (e +Wp —W') + ’“—H(wn ~wptWe') = é(—-wg+w,,+wn\)}]‘

(2.E.24)
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Figure 2.8(f) gives two terms. First it has a singular term
which diverges,

[ (8f-1;w=0) = — ——%7 z,C- s O

o0
+ Y.
% (A4 Cort +2 Ak’ Co,-n ) <BNCALAN), So M0 .5.25)

However, the contribution from Fig. 2.8(g9g) gives the very

counter-term of it. Second, Fig. 2.8(f) has the other term which

is complementary to Fig. 2.8(e) with CD_p P instead of (CD_k K
D

+C in (2.E.24). Totally, Figs. 2.8(e)-2.8(g) give

-k’ L,k

[ (se5w=0) + [} (®f; w=0) + [} (®F; w=1)
- 3
- H;zDL'-Vz R, P <C"'hh+C"’fl h + C FP ) Ahh P C_P —k CO Y <a)4ak)0

*
x(q,:a.{%fg(wuw,{—wp) + §{Wr-Wr/+Wp)+ 5(—tdn+wn'*“’P)§, (2.E.26)

where the antisymmetric property with respect to the exchange of
P and k has been used.

[Figs. 2.8(h,i)] Corresponding to Fig. 2.8(h), we obtain

(3) 3 4 P& Ar=
By (shy t) = -7 A=
p (8h; ) ZJ'_',,n,)Q MPrr h p’ (tl ~F A PP’ (-th)(i Wp!) (£ -Wp F Wr = Wp’)

¥ Itd*; iQKP (i‘.'wpi‘ft{u)p“—h)) — exp ('.ti(&)p"k\ T4 W}q*)}’
(o]

2

R(Fh/ =0) = - zMi/z 3% ﬁ (C-h kG h) Ak'klp qu"h Co"P Wp2

x <Q3an>o {AQx an'>o f J(wn-l'wn’—wp) t J (Wr-Wwi +Wp) +§(-Wr+ wn‘-c—wp)g

(2.E.27)
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Figure 2.8(i) gives a complementary term to this, which has C

. D D
instead of (C—k,k+c~k',k’)'

[Figs. 2.8(j-m)] Figures 2.8(Jj) and 2.8(2) give

[ (8);w=0)

\

N D N (w + Wr') (Wp'+ Wi ) (Wi -wp'*)
2 C. P,h Cesp Coikl Cop v d )2
zMu kR, P ’ wp (Wp*~ Wr?)

x <Ar ArZ< Ar )y § (Wp—wk’)

el o N o oy
)_Tr:oz RZI/?.I ( C‘h?b *C—h"k’) C‘h',h' Chlzh C—k, K (Wp tW§ )2<a:ah>°<anah>a
x §(Wr-wr')

+._4__Z C,D:C‘,),C?J 'J/(wz.(.wlz)joo-t
Mo* ik R, -k -k, R LRk C—h,—h R K oa ,

(2.E.28)
rs;w=0)
< -2 S o G O o i’f—‘:’?“@ <anar § opmion)
3 <Po 2o

p P 00
- W% (o G Copk Corn <4k ary, Jo dt

(2.E.29)
We can verify that the contribution from Fig. 2.8(k) exactly
cancel With that from Fig. 2.8(j) and so does the contribution

from Fig. 2.8(m) with that from Fig. 2.8(2). It is readily seen

that the total sum vanishes;

'(4a;5a(2))+I"(8a)+T"(8b)+I"(8c)+I" (8d)+I" (8e)+I" (8f)
+I"(89)+I" (8h)+I" (8i)+T (8J)+T" (8K)I+T"(82)+I" (8m) = 0.

(2.E.30)
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Chapter I Brownian Motion of a Soliton in trans-Polyacetylene

§3.1. Introduction

In the previous chapter, the Brownian motion of the ¢4-kink
has been studied. In this chapter, we study diffusive motion of
a soliton in trans-polyacetylene, using Takayama, Lin-Liu, and

b As in the ¢4 case, there are two

Maki's model (TLM model).
mechanisms. One 1is a random walk and the other is an ordinary
Brownian motion.

As discussed in §1.4, the effective potential for phonons
in the presence of a soliton is not reflectionless in the TLM

2) This means that there is momentum transfer between the

model.
soliton and the phonons in the lowest order collision process.
As a result, it is predicted that the friction is proportional to
kBT in the low temperature region, 1if the classical ensemble
average of the phonon distribution is assumed. In fact, we
calculate the friction to show that it is proportional to kBT.
Einstein relation gives a diffusion constant which is temperature
independent.

The relation between the two mechanisms is also clarified by
investigating the fluctuation-dissipation theorem. It is shown
that, when the frequency is not zero (finite time region), the
mechanism of the random walk coexists with the ordinary Brownian
motion. The dynamical diffusion constant, D(w), becomes
proportional to T2, when w#0 and the temperature is low enough.
As the temperature increases, D(w) approaches a constant value.

3-6)

In 883.2 we apply the collective coordinate method to
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the TLM model within the adiabatic approximation. One of the
merits of this method is that the soliton coordinate (collective
coordinate) can be introduced from the original field variable by

5) It is remarkable that there are

a canonical transformation.
only a few differences between the Hamiltonian in the ¢4 model

and that in the TLM model, when they are written in terms of the

collective coordinates. Especially it 1is shown that the
equations of motion are formally universal. Using Mori's
formula,7) we calculate the friction in §3.3. In order to take

account of the reflection of the phonon, structure of I'(w) is
carefully studied. In §3.4, the diffusion constant is obtained
and the relation between the two mechanisms 1is «clarified.
Quantum correction is discussed in §3.5. Section 3.6 is devoted

to discussion.
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§3.2 Collective Coordinate Method for trans-(CH)X

For trans-polyacetylene, Takayama, Lin-Liu, and Maki derived

1)

a Hamiltonian, ( see §81.4 ),

1
H=—5 fdx { g% (x,t)+w 2AZ2

(x,t)3}
29 Q

+3 §dx zps* (x,t)[-iv

" 035x+ GIA(x,t)]ws(x,tL

F
(3.2.1)

with g the coupling constant, Wg the bare optical phonon
frequency, Ve the Fermi velocity, and 0 and 03 the Pauli
matrices. The order parameter A(X,t) is proportional to the
continuum limit of (—l)nun, where u, is the displacement of the
n-th (CH) unit from its equilibrium point of non-dimerized state.
Its conjugate momentum P(x,t) is defined by P(x,t)=A(x,t)/92.
The electron fields ws* (x,t) and ws(x,t) with the spin index s
have two components which represent the right- and left-going
waves. We use the unit system where #Z=1.

As one of exact static solutions of (3.2.1), there 1is a

soliton solution in the form
As(x) = Aotanh(x/s), (3.2.2)

with &= VF/AO the soliton width, AO the magnitude of the order

parameter in the dimerized state. The corresponding electronic

wave functions and eigenvalues are expressed by {wn ;0)(x)} and

{en}, respectively. The gap in the electronic band is equal to

2A00
In order to investigate the soliton motion, we introduce a

transformation of the variables in the form5’6)
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Alx,t) = As(x-Qo(t)) + x(x-QO(t),t),

P0+$ nx’ dx
P(X,t)= -

As (X*Qo(t))+n(X-Q0(t),t), (3.2.3)

M (1+Z (L) /M)

0 0

with constraints

Sx(x,t)As’(x)dx=0 ’

X?t(x,t)As' (x)dx=0 , (3.2.4)

where primes attached on x and As indicate the spatial

derivatives, M0 is "mass" of the soliton defined by

2

_ , _ 2 '
Mg=§ (A" )%dx=4A,“/3¢, (3.2.5)

and the function Z(t) is
E(t)=§AS'(x)x' {(x,t)dx. (3.2.6)

As readily seen from (3.2.3), a new dynamical variable QO
represents the location of the soliton. It 1is called the
collective coordinate.

As referred to in 8§1.4, the linear mode analysis around the
soliton solution was carried out numerically to show that there
are three localized modes, 9g9* Ip» and 9, in addition to the

2,8,9)%)

extended phonon modes. The lowest energy mode gO with

9)

¥ Hicks and Blaisdell concluded that there were two 1localized

2) have reinvestigated the linear modes

modes. Ono, Terai and Wada
taking account of the correct boundary condition to find that the
Phase shift analysiS of the extended modes has confirmed the
existence of the three localized modes. The number of the local-

ized modes, however, does not affect our results qualitatively.
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zero eigenfrequency has the form

2

gO(x) = sech“(x/&) « As' (x). (3.2.7)

It corresponds to the Goldstone mode. Using these linear modes,

we can expand the fields x(x,t) and n(x,t) as

_ -1/2
x (x,t) —,EoNn Qn (t)gn(x) ,
n(x,t) = L Nn—l/an*(t)gn(x) . (3.2.8)
n$o

. . . . * .
Here Nn is the normalization factor defined by Sgn gmdx'hnan,m‘

In eq. (3.2.8), the Goldstone mode is excluded because of the
constraints (3.2.4). Note that the summation is over the other

two localized modes as wegll as the phonon modes gk(x) defined by

_ . _ *
(x) = gek(x) + 1gok(x), g_k(x) = (xJ), (3.2.9)

Ik gk

with ge (x) and gok(x) being the even and odd eigenfunctions,

k
respectively. The normalization factor of = is Nk=L. It can be

shown that the transformation from {A(x), P(x)} to {QO, PO’ Q
5,6)

n9
Pn} is canonical.

Substitution of egqs. (3.2.3) and (3.2.8) into (3.2.1) leads

to the following Hamiltonian in terms of the new variables,

ns N Nn,s °n,s w g WD m,s °n,s
92(P0+S11x’ dx)2 92 5 wQ2 2
+ 5 + fncdx + 5 S(AS+ x)Cdx,
2M0(I+Z/M0) 2 29

(3.2.10)
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where Cn ST and Cn s are the creation and annihilation operators
(0)

of an electron in the state wn (x—QO) and

- (0)%4 (0)
wmn[xl = § dx wm (x)alx(x,t)wn (x). (3.2.11)

Next, we introduce the electron annihilation operator Ans and the

hole annihilation operator an by

Ans = CnS [ n : unoccupied 1], (3.2.12a)
- T . .
an = Cns [ n : occupied 1. (3.2.12b)
The creation operators are defined similarly. Then the

Hamiltonian can be rewritten as follows; 0'!1)

H = Eg + Hy + Hypy + Hypo
= ” ¥ - ’ +
Hy = Es €nlm,s Bm,s %A ®nPn,s Bn,s’
- ” ” T - V4 I d T
Hing = E Es P antx] Am,s An,s 5 ,?s P aml %] Bm,s Bn,s
7 Id T ';.
+ E -Es {¢mn[x] Am,s Bn,s + ¢nm[x] Bn,SAm,S}’
92(P0+§7tx’ ax) 2 o wQ2 )
th= 5 + Sncdx + 2$xdx,
2M0(1+Z/M0) 2 29
(3.2.13)

where ES is the excitation energy of the soliton (ES=2A0/n).
The prime and the double prime attached to the summation symbols
indicate the sums over the occupied states and the unoccupied
states, respectively.

In the following, we use the adiabatic approximation, i.e.,

we assume that the occupancy of the electronic states does not
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change even if A(x,t) varies with time. Within this approxima-

tion, the above Hamiltonian is reduced to

H = Es + H + VIx]. (3.2.14)

ad ph

The quantity VEx] is called an adiabatic potential. According

12)

to the usual many-body theory, it is expressed by

Jeg R B
Vi (x,t)1 = = v ry3
J=0
=S (01 H. _,( l _ 4 H»Jdim (3.2.15)
int" "B, - Hy "int c’ -2

where 1 0) denotes the ground state of the electrons for the

unperturbed Hamiltonian H0 and EO=§; en. Only the contribu-

tions from connected diagrams are taken into account in (3.2.15).
Since the soliton solution gives a minimal value of the energy,

the linear term with respect to x vanishes. It is also readily

(1)

seen that the bilinear terms with respect to x, i.e. V Ex1]

and,((ogz/zgz)j‘x2dx, give a simple term 2S2n2Qn*Qn, because -
the field ¥ has been expanded in terms of the appropriate linear

modes. Finally the following Hamiltonian is obtained:

2 2 2

‘ g7 (Py+§ mx” dx) g N 1 »
H=E  + + SP.P. + —XQ .“Q.°Q_ + H
S 2M, (142 /M)2 o me D Tm T o 2 n tnotn TN
> .
Hy = Z vy,
=2 (3.2.16)

where HQ represents nonlinear interactions between the linear

modes, which are cubic, quartic, and of the higher orders with

(2)

respect to Qn. The explicit expression for V [x] is given in
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ref. 10 as

2y an[x]me[x]¢mn[x]

vy = 37 37

n,s ml (en-eQ)(sn-em)

¢nQ[x]¢Qm[x]¢mn[x]

- 21 2”
n,m,s 2 (eQ-sm)(eQ—sn)

= 3 A, ., ,QQ.,Q.,/L>,
n’nl ’nll n,n yn n n n

(3.2.17)
where the parameter s is a half of the number of the extended
phonon modes in (n,n” ,n” ). Finally the equation of motion for

the collective coordinate is

dQ, (t) 92(P0+snx' dx)

= 3 .
dt M0(1+Z/M0)

dPO(t) -
dt (3.2.18)

Since the Hamiltonian (3.2.16) does not depend on QO’ owing to
the +translational symmetry of the system, the variable P0 is
constant.

Before concluding this section, we compare the polyacetylene
with the nonlinear Klein-Gordon systems, such as sine-Gordon,
84

collective coordinate Hamiltonian for the nonlinear Klein-Gordon

Although the original Hamiltonian is very different, the:

model (see 8§2.2) is similar to that for the TLM model. The
difference is in the linear mode analysis.

4

In the ¢  model, the complete set of the 1linear modes

around the soliton (Kink) contains the phonon modes and two
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localized modes with frequencies =0 and w=u>f=\f3/4w0. ( See
eq. (1.2.3) and Ref. 13. ) The phonon dispersion is determined
by 2= w02(1+ﬂ2), with 7=k£/2 and £=2d the soliton width.

On the other hand, numerical calculation in the TLM model

showed that there are three localized modes gO, gl, and 92.2’8)
Their eigenfrequencies Qi's are
QO 2 Ql 2 92 2
(—) = 0.000, (—) = 0.703, (—) = 0.941, (3.2.21)
Wo @ ol

14)

respectively, in the weak coupling limit. Here wo is the

renormalized optical pPhonon frequency w0=v‘2A(oQ and
A=92/n\ﬁqu2=0.19. Concerning the phonon dispersion, it is

worthwhile noting that there is an analytic expression in the
case of the perfectly dimerized state (i.e. A(x)=A0). The

integral equation of the linear mode around the perfectly
dimerized state has an eigenfunction of the form gk=exp(ikx) and

the corresponding eigenfrequency is given by15)

2
Q
— 5 =7 1(1«‘712)1/2a1“csinh71, (3.2.22)

“o
with z=k&/2. Since the soliton is an localized object, it is
natural to expect that the extended phonon modes asymptotically
approach the plane waves in the region far from the soliton.
Therefore, the phonon dispersion in the presence of the soliton
is the same as that in the perfectly dimerized case, (3.2.22).
In fact, the numerical calculation of the linear mode around the

soliton showed that the phonon dispersion coincides exactly with
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that without the soliton, if the finite cut-off effect of the
momentum integral is taken into account. The phonon dispersion
(3.2.22) is depicted in Fig. 3.1 in comparison with that of the
¢4 model.

Furthermore, as discussed in §1.4, the effective potential
for phonons is not reflectionless in the TLM model, while it is
reflectionless in the ¢4 model. This difference appears in the
explicit form of the phonon mode, gk(x). In the TLM model, the
phase shifts of +the even and odd parity phonon modes are
different from each other ( see Fig. 1.13 ), while they are the
same in the ¢4 model.

Except for these points, there is no difference in the
structures of the collective coordinate Hamiltonians of the TLM
model and the nonlinear Klein-Gordon model. Especially the
equation of motion of the collective coordinate, (3.2.18), |is
universal in these soliton bearing systems. In the f{following
section, we apply to the TLM model the method of calculating the

friction and the diffusion constant which has been developed for

the ¢4 model in Chapter II.
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:

Fig, 3.1 Dispersions of the optical phonon freqyencies;
(a) in the TLM model and (b) in the ¢ model.
For the TLM model, the dispersion is calculated from
the analytic form in eq. (3.2.22). The frequencies of
the localized modes are indicated by arrows.

128



§3.3 Friction Function

We use the formula developed by Mori,7)

which gives the
equation of motion for the dynamical variable Qo(t) in a form of
a generalized Langevin equation

t .
dzgo(t)/dt2 = -7 (t-1)Q,(T)dT+R(L), (3.3.1)
0

where the random force R(t) is defined by
R(t)= exp (-itP” £) 60, (3.3.2)

L being the Liouville operator and §0=§0(t=0). From now on, a
variable, which is not indicated to be a function of time, repre-
sents 1its wvalue at the 1initial time, t=0. The projection

operator P is defined by

<g(t).é0> )

Pg(t) = PORE—— QO’ (3.3.3)
and P’ =1-P, where the inner product < , > means the canonical
ensemble average with respect to the initial distribution. The

function 7 (t) represents the friction defined by
7 (£)= <R(L),R(0)> / <é0,é0>. (3.3.4)
Mori's formula gives the fluctuation-dissipation theorem of
the first kind for the soliton motion, which relates the diffu-

sion constant with the friction. Taking the inner product of
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(3.3.1) and 60, we perform the Fourier-Laplace transformation.

An integration by parts gives the fluctuation-dissiration

theorem;
0 , ) <Qy,Qy>
D(w)=§ <Qo(t),Q0>exp(-iwt)dt= —— (3.3.5)
0 iwtlN(w)
where
(e ]
Ftw)= § r(t)exp(-iwt)dt. (3.3.6)
0

In the following, we calculate

00 <Gy(t),Qy>
Fy(wi= § Mais exp(-iwt)dt, (3.3.7)

which is the Fourier-Laplace transform of the total force corre-
lation. Some discussions have been given to identify I'(w) with
Ft(u)), when the latter is estimated using perturbation approxi-
mations. (see §2.6)

We first expand Ft(u)) in a power series with respect to

the temperature T,

(0)

= (1)
Ft(w)- Ft (w) + Ft

(W) + -, (3.3.8)

the first and second terms being linear and quadratic in T,
respectively. Next, a perturbation expansion of éo(t) is
obtained from (3.2.18). Finally, substituting the obtained
expressions of éo(t) into (3.3.7) and making use of the thermal

averages of the variables

* - .2 2
<Qn Qn>0— g kBT/Qn ,
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* _ 2

2
0

2

<P >0= MOkBT/g s (3.3.9)

we obtain the low temperature expansion of Pt(o)). Here +the
brackets < , >0 indicate the thermal average with respect to the
distribution determined by the bilinear part of the Hamiltonian

(3.2.16). In the lowest order, we get,

g2k, T (@ 2-0_, %%
(02 _ B n n
Ft (t))" ’C ’C V 4 2
4M n,n n,n -n,-n Q Q , 2
0 n n
iw iw
X [ + ]
2 . 2 2 . 2
(Qn+Qn,) -(w-ig) (Qn-Qn,) ~-(w-ig)
492kBT iw
+ e———— ¥ C C ,
MO w 0,n70,-n an-(w—is)2
(3.3.10)
where Cn,m is defined by
- "'1/2 V4
Cn,m' (NnNm) Xgn(x)gm (x)dx,
(n,m=0,1,2,k) (3.3.11)
which appears in the quantities §mx” dx and .
Using the relation,
w . W in
5 5 = principal part 5 5 [S§(Q+W)+8(Q-w)1,
Q°-(w-ie) Q°-w 2
(3.3.12)
we obtain the static limit of eq. (3.3.10),
2 2 2.2
9°k,TL (Q _“-Q_~) |
r®s= 1ip F{O’(m =—B % Iqul2 1_»p | ,
w—>0 8M0 q Qq Q.p val llpl—>q

(3.3.13)
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where vq is the group velocity defined by
vq=qu/dq. (3.3.14)

Note that the second term on the r.h.s. of eq. (3.3.10) does not

(0)

contribute to the friction. Whether I' remains finite or not

depends on the structure of the function Cq p* If Cq p has a
(0)

pole at Ipl=q, T has a finite value. Otherwise it is equal

to zero. In the following, we calculate Cq p carefully, taking
into account the effect of the reflection.
The extended phonon modes approach plane waves in the region

far from the soliton. Therefore we rewrite even and odd parity

phonons in the form, ( see 8§1.4 ),

]

g (xX)

eq cosl gx + Se(q)/z 1+ feq(x),

g__(x) sinl gx + So(q)/2 1 + foq(x),

( 9>0, x>0 )
(3.3.15)

where feq(x) and foq(x) are functions localized near the soliton
at x=0. From the explicit forms of geq(x) and goq(x) obtained
numerically, the phase shifts have been calculated through the

2)

least square method. The obtained phase shifts are well

approximated by the following forms,

8e(q)=3n- 2C arctan(aqu) + arctan(a2$) + arctan(aqu) 1,

2 b.)/bn}

S 2
80(q)-2n 2C arctan{(J(qé) +b1 1 2

2 _yp

+ arctan{h/(q£)2+b1 1

)/b,y31,

3
(3.3.16)

132



with the coefficients (al, a2, a3, bl’ b2, b3)=(1.70, 0.895,
0.316, 1.53, 0.551, 3.45).%

Using the above results, we define the normal mode by
gq(x) = geq(x) + 1goq(x),
(x) = g ()% (3.3.17)
g_q gq . . .

Substituting egqs. (3.3.15) and (3.3.17) into the definition of

C eq. (3.3.11), we obtain

q,p’

c, .= (2i/L) §L/20

geq(x)gop (x) + goq(xlgep (x)1dx

2i P
= [ - { sin[8e(q)/2+80(p)/2]+ sin[SO(q)/2+8e(p)/2]}
L 2(gq+p)
P
- —HA sin[Se(q)/z-So(p)/2J— sin[&o(q)/z—se(p)/zl}
2(q-p)

L/2 , .
+$0 {p feq(x)cos[px+80(p)/2]+ fep(x)51n[qx+80(q)/2]
-p foq(x)sin[PX+8e(P)/2]+ fgp(x)cos[qx+8e(Q)/2]

+ feq(x)fop (X)+ foq(x)fep (xX)}dx 1,
(3.3.18)

for 9>0 and p>0. The function Cq -p is similarly calculated from

£

%) In ref. 2, integral in the eigenvalue problem for the linear
modes has been replaced by a discrete sum with a uniform mesh
dx. Two different values of dx have been taken. In the present

paper, we use their data for dx=0.1£.
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Cq._p= (21/L) 5720 g (gl () + g (x)g, (x)1dx.
(3.3.19)
It is readily seen that Cq,p has a simple pole at p=q, while Cq,_p
does not. For simplicity we rewrite the function Cq’p as
Cq.p= Cq7ta-p) + Co N,
Cqs= -(2iq/L) sin[SeIQ)/Z-SO(q)/ZJ. (3.3.20)

As discussed before, the singular part of Cq P leads to a

(0)

finite value of the static component, I’ Using eqs. (3.3.13)

and (3.3.20), we get,

(03 9K T aZlv_|

r@. B q"sinz[Se(q)/2—80(q)?2] da.
nMO Q 2
d (3.3.21)

The 1integration over q is carried out numerically by using the
Phase shifts in eq. (3.3.16) and Qq in eq. (3.2.22). VWe finally

obtain

P(0)

= 0.00087 (w kBT/Ao). (3.3.22)

0
In obtaining eq. (3.3.22), we have used the relations

2_ 2
g©= nvoD /2,

_ 2
M0~ 4A0 /3§ . (3.3.23)

The dynamical component of Ft(O)(w) is calculated in

Appendix 3.A. The result is, in the low frequency expansion,
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Ft(O)(w) = F(O) + UQFI(O) + wze(O) + O(ws),
) _

r, 9 = 55 (kgT7a 0,

r,. 0 - 4 (x.T/A ) (3.3.24)
1 BI/8¢g) s -3.

where a is a numerical factor of the imaginary part FI(O).

It
is not calculated, because it has little effect on the diffusion

constant as shown in the following section.
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8§3.4 Diffusion Constant

The diffusion constant of the soliton is obtained from the

fluctuation-dissipation theorem, eq. (3.3.5). The numerator is

2

calculated up to the order of (k,T)®. The result is

B
. . 9Kyl
<0.,0.> = —B (14Kk.+ 0(T 3>, (3.4.1)
0’70 M 1
0
4
29k T
B 2 2,5
K =———-ZN /C A ra ,/Q Q'L
1 vFMO an n,n” 70,n"-n,n” ,-n n "n
9%KgT )
+ —75——- § CO,nCO,~n/Qn ,
0 (3.4.2)
where Nn n,=3, if (n,n” )=(1,1), (2,2) or (k,k” ), and unity

otherwise. Substitution of (3.3.24) and (3.4.1) into the right-

hand side of (3.3.5), I'(w) being replaced by I‘t(w), gives

g“k,T 1 + K1
(0}

Dlw) = .
Tor, @i o2r (O

M iw + T >

(3.4.3)

In the static limit, w—=>0, we have the Einstein relation,

2
g kBT

(0)
MOF

D(0) = + O(T) , (3.4.4)

It is independent of the temperature in the 1low temperature

limit. Using eq. (3.3.22), we obtain
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3

D(0) = 1.4 X 10 szwo. (3.4.5)

On the other hand, when the frequency is not zero, the real

part of D(w) becomes

o2kgT(r (00402p, (02,
Re D(w)= 5 —{0) . > , (3.4.6)
Mo[w + (T ) 7]
. (0) 2 (0)
where we have used the relations, I‘l €1l and ww F2 .

In Fig. 3.2, we show the temperature dependence of eq. (3.4.6)

F(O)‘

for several values of . When the relation w?> holds, Re

D(w) is proportional to T2. This corresponds to the diffusion
constant of the "random walk", referred to in 83.1, whose basic
steps are the shifts of the soliton in the collisions with the
thermal phonons. From the expression in (3.4.6), we can see that

the real part of D(w) approaches to a constant wvalue as the

temperature increases.
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Fig. 3.2
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Log-1o9 plot of the real part of D(o))/£2u) as a
function of the temperature for several values of the
frequency. The temperature 1is normalized by the
elecfﬁqnic band gap Ao (~7000k). In the regign
w>I s the diffusion constant is proportlonﬁb)to T".
On the other hand, in the region w<I s it
approaches to a constant value in eq. (3.4.5).
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83.5 Quantum Corrections

We have restricted ourselves to the classical low
temperature region. It is important to study the quantum effect,

since the optical phonon frequency wo is of the order of 103K in

trans-(CH)x.le)

Mori's formula for calculating the friction can be easily

extended to the quantum case.7) In the classical case, the inner

product < , > is defined by the canonical ensemble average, (see

eq. (3.3.3)). In the quantal case, we use

(“b):é56<efm16”tb>dk,

@ - (kB'T)~‘, (3.5.1)

where a and b are dynamical variables and the angular brackets

denote the average over the canonical ensemble

P = exF(-GH)/T,, exp(-BH ) . (3.5.2)

As in the classical case, the friction I'(tw) is estimated by,
O %) ..
ﬂ‘wl = 50 (Go 1), Go)e dt/(@g,go). (3.5.3)

Annihilation and creation operators of the 1linear modes

(except the Goldstone mode) are defined by

2
@n = 2.(81»\ (OM 1 a-u+),
2w + (R=1)
n= A w - Q- ) ’
P 2y (a no (3.5.4)
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Substitution into the Hamiltonian, eq. (3.2.16), gives

9% (Pot (X dx)*
2Mo (1+ /Mo

H= Es + +Z£DD_\4(QMTOM+'2‘-')+HQ’
h

Ho= 2 V¥
o= I, Vi), (3.5.5)

where HQ represents the nonlinear interactions between the linear
modes.

Before calculating the friction, it is useful to discuss
small parameters which are used in the perturbation. It can be
shown that the nonlinear interactions, HQ’ are in the higher
order with respect to UuO/Ao). Furthermore, the function
C/MO, which appears in the denominator of the Hamiltonian, is

1/2

also in the order of (coO/AO) In fact, it is rewritten as,

;/Mo = MZ” Co,n @v\/f—l“’l—o

_ Jam (wo)'/‘ 1 (Woys A +
T 4 \A (T) %;o (Q\n) Con @ Qo )’(3.5.6)

where %gn is a dimensionless function defined by
S.I
AL L t
Com =% ('—g—) (NoNw) jﬁo(x) 3,00 dx (3.5.7)
and s’ is 1/2 if n-mode is the extended phonon mode and s’ =0
otherwise.

In addition to (w,/Ag), we treat P, as a small parameter.
Since the Hamiltonian does not depend on QO , we assume the

thermal average of P0 to be the same as in the classical case,
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that is,

Mo ke T
(%:%)='—“§T—' (3.5.8)
Let us now proceed to calculate the friction, I‘t(w). In

the lowest order of the perturbation, we find,

Py = BT Com G 180 (230

4Mo nn
n -Sw~
x / - 7
[ (Qu+5Le )= (W-it)? %H"‘ﬂ)“”') fudu }

Qut Quw , )
f (Q.,-S'Z,(;‘-(w—xi)’iH"H))(" f G H)}]

4szBT
ST Z Co, et tw/(.auz" (W""i)z)’
(3.5.9)
where fn is the thermal distribution function,
+ 1
'fn - < Qn a“> - = (3.5.10)
e"kaf -1 .

The first term on the right-hand side of (3.5.9) is in the order
of wO(ZoO/AO), while the second term is in the order of

wo(kBT/AO).

Using the explicit form of Cq p’ discussed in §3.3, we see

that the static limit of Ft(O)(w) is,

0)
t (w=0) =

d} 3°10g| sin” [ Sels), - S0/, 3 §4 (f4+1).

(3.5.11)

9
TMo kg T S

141



Note that eq. (3.5.11) coincides with the result in 83.3, in the

following classical limit,

ReT
3(3 - Q. (3.5.12)

In Fig. 3.3, the temperature dependence of F(O)(O) is depicted.

In the region kBT<wD, it is an activation type.
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Fig. 3.3
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Temperature dependence of the. friction in the quantal
case. The broken line indicates the classical result
proportional to T. The temperature is normalized by
the optical phonon frequency (w0~v2000k).
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§3.6 Summary and Discussion

We have investigated the diffusive motion of the soliton in
trans—(CH)x, using the TLM model and the collective coordinate
method. It has been shown that the structure of the soliton-
phonon interaction has a remarkable similarity to that in the
scalar field theory, such as the ¢4 system. Especially the
equation of motion for the collective coordinate is universal in
these soliton bearing systems. Applying the method developed in
the ¢4 model, we have calculated the friction of the soliton,
'(w), in the low temperatures.

It is found that the diffusive motion is induced by the two
mechanisms as in the ¢4 system. In the static limit, (long time
limit), the soliton behaves as an ordinary Brownian particle and
the Einstein relation holds. The diffusion constant is
independent of the temperature if we assume the classical
ensemble average. In this diffusive motion, the origin of the
friction 1is momentum transfer between the soliton and thermally
excited phonons. The other mechanism is related to the shift of
the soliton induced by the collision with the phonons. This
mechanism, however, does not appear in the static limit (or in
the long time limit). It appears only when the frequency is not
zero and the temperature is low enough. As shown in Fig. 3.2,
the dynamical diffusion constant (ReD(w)) becomes proportional
to T? in this region. |

We have also studied the quantum effect on the static limit
of Ft(O)(w). The friction has the temperature dependence of an

activation type. In the temperature range kBT<w0, therefore, it
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is important to take account of acoustic phonons, though their
coupling to the soliton 1is weaker than that of the optical

phonons by a factor asg.!7»18)

It remains a future problem.

In real systems, there may be other mechanisms for the
soliton to stop. They would contribute to the friction and
modify the temperature dependence of the diffusion constant.
Especially the discreteness effect will be studied in the

following Chapter.
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Appendix 3.A. Dynamical Component of Ft(O)(w)

(0)

We calculate the real part of Ft (w), eq. (3.3.10), in

the low frequency expansion. The integration over p(=n” ) can be
carried out wusing the relation in eq. (3.3.12). After some
algebra we obtain

9%k T

| (7
0) 4
Re [y twy = = v 2

g0 Y’

\‘.
-~
&
v\
~
JT
N
&
v

x [ C(‘l) + () f"" f t 3 vi4*452?z

+ zcsmf m‘, C:@) *+ 5 G- vzz Cs 1) w?

= Ca)) W'+ %C,mw]

8 (3.A.1)
where functions Cl(q), C2(q) and C3(q) are defined by
Ci)= Lim Cqp
N
= lhﬁ
Cllg) P"’% CZIP ’
, N
C3(?) = Lim dCz,P /dp .
P-3% (3.A.2)
The function C N is the normal part of C introduced in

q,P q,p

eq. (3.3.20). From the definition of C the explicit forms of

q,p’
Ci(q) become,

146



1'% dée dJo
HG + a5) e[S -5

24 )’L’/&x {-% {ez o0 s [+ ] + )(e.;(x) sin [§ +dofs)
=% foy 0 LAt dee] = fop0) o5 [P+ 0h]

- {ez o0 7[01' ) + ,(07(:0 7(92’ () }

’

- Tk ) 1 8 (8- o 01

Gegy = - 2311_ Sin [fofo t4os]) - 44L (g‘;e ¢ 3{: | cos [Sefy + So/z ]

' d
o ) s [see = So/2 ]

dcho /) — dJofs
- I3 ) cos [Sef /2]

( dde
{ aléc d<§° }sin [ e/ — de/2]
s ( 432

‘21 (T
+ = J o\x{ -fez GO s [{x+8e/2 )
- “{e%(x) sin[9x+ 40 /2] (’("'Jz— _}%‘2)
+ ij-e{—'-m sin [";)x+5°/2]

- -;-oi(_x) Sin [27(1-82/2]

d
- 8 fopcoas[extien] (x+ 55 )

+ -i%l-(-’coshx+5e/z]

“oz fe o
+7(‘1m 49 +’(°? g, (3.4.3)

where Primes oOn feq(x) and foq(x) represent the spatial
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derivatives. In obtaining C2(q), we have performed the integral

by part and used the following relation,

3,k (0 = Sin[So (/) + fon (0) =0.
(3.A.4)

Integrations over x and q9q in eqgqs. (3.A.1) and (3.A.3) are
carried out numerically, using the explicit forms of fok(x) and
fek(x) obtained in ref. 2. Finally we get eq. (3.3.24).

The imaginary part of Pt‘o’(w) is rewritten as

T r'tw}w) =W r., ® 4+ 0w ’

n(o) _ ZZhB’T SS“%‘”’ (principtﬂ Fart)

FM2* Mo
[ Cq,p\z (Q{‘l‘ Q;)
Q{ﬁp z

29%kseT ( |Gon)?
* ™ Mo S sz dz )

(3.A.5)

(0)

The numerical factor of Fl is not calculated, because it has

little effect of the results.
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Chapter IV Peierls Potential for a Soliton in Su-Schrieffer-

Heeger's Model

8§4.1 Introduction

In the previous chapter, we have studied the soliton motion
in the continuum model of trans-polyacetylene. It is, however,
important to consider the lattice pinning effect on the soliton
motion. In the present chapter, we investigate +the lattice
Pinning energy (or Peierls potential barrier) in Su-Schrieffer-
Heeger's (SSH)I) model, which was originally proposed for
polyacetylene.

Generally speaking, the excitation energy of the soliton in
discrete models varies according to the relative;position, to the
lattice sites. On the analogy of dislocations in solid, we can
consider the wvariation of the energy as the Peierls potential
barrier.

Numerical calculations for the (discrete) SSH model were

carried out by several groups.2_9) Ono, Ohfuti and Terai

8)  In their

developed a method to obtain static solutions.
method, self-consistent equations for the lattice displacements
and the electronic wave functions were directly solved by
iteration. Namely, the electronic Hamiltonian was diagonalized
for given lattice displacements and the obtained eigenfunctions
were used to calculate the lattice displacements through the
self-consistent equation derived so as to minimize the total

energy. The new lattice displacements were then used to obtain

new electronic wave functions.
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In this chapter, we extend the above method in order to
obtain the soliton solutions at arbitrary locations. We use a
self-consistent equation which is derived from the condition of
minimizing the total energy under the following two constraints:
The first comes from the periodic boundary condition. If we use
n+1 - Yp’ with u, being the displacement of

the n-th (CH) unit, the periodic boundary condition requires
9)

bond wvariables y(n)=u

Yy(n)=0. The second constraint is imposed so as to fix the

soliton center at an arbitrary point. Explicitly this condition
is written as y(n0+1)—y(n0)=Q, where no is a fixed integer and Q

is some constant. This means that the optical] component [defined

10) 5f the (ng+1)-th site is

fixed at the value, Q(rl)n0/4. By changing the value of Q, we

by »m=-DM-y(n)+y(n-1))/41

can obtain the soliton solutions whose centers are located at
various points, as will be discussed in §4.2.

Excitation energies of the obtained solitons are also
calculated to estimate the Peierls potential barrier. We show
that the Peierls potential is hardly observable and less than

10—10

Es in polyacetylene, with Es being the excitation energy of
the soliton (about 0.4 eV). In order to check the result, we
estimate the Peierls potentials for different wvalues of the
electron-phonon coupling constant. As expected, the barrier
increases as the electron-phonon coupling becomes stronger and
the soliton width becomes narrower.

In the following section, the formulation to obtain the

soliton solutions is explained. The Peierls potential Dbarriers

are calculated in 8§4.3. Discussion is given in 84.4.
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§4.2 Soliton Solutions

Su, Schrieffer and Heeger proposed the following

1)

Hamiltonian, ( see also §1.3 ),

H: %Z.\ (/.\.42 -+ -—';-% (Mm—l—u‘“\2

n,S

—Z [*o"’o((uwn‘uﬂ)] (wa\;‘ Cn,s + CM; thl,S))

(4.2.1)

where u, is the displacement of the n-th (CH) wunit from its
undimerized equilibrium position, Cn,sT and'Cn,s the creation
and annihilation operators of a m-electron with spin s at the n-
th site, respectively, M the mass of the (CH) unit, K the spring
constant mainly due to o¢-bonds, tO the nearest-neighbor transfer
integral of the m-electrons in the undimerized state, and a the

coupling constant which comes from the modulation of the transfer

integral due to the change of the nearest-neighbor distance. For

polyacetylene, we take, according to SSH,I)

A= 4.1 eV/A

)

to= 2.5 U

k = 21 2V/4% .
(4.2.2)

Afterwards, when we calculate the Peierls potential energies for

narrower solitons, we change the value of a from 4.0 eV/A to 6.0

ev/A.
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WVe employ the periodic boundary condition,

(An*i==LA:

’

CN"’,S = C'IS

t +
<ZAHLS = C:us

’

(4.2.3)

where N 1is the total number of the 1lattice sites. When we
consider the static solutions, we use the bond variable defined

by

g (M= Uy —Un | (4.2.4)

Eigenvectors {¢i(n)}, which diagonalize the last term on the
right-hand side of eq. (4.2.1), can be obtained by the following

eigenvalue problem,

Eiditmy= — [ho-ddwm-0) fr(v=-1) = [to—oYtn)] P.itn),
(4.2.5)

Within the adiabatic approximation, the self-consistent equation
for the bond variable y(n) is derived by varying the average of H
over the electronic ground state with respect to y(n). In the

above variation, we impose the following two constraints,

5% Y = o (4.2.6a)

2

ﬂ(nm)? Yne) = @

) (4.2.6b)
where the first constraint comes from the periodic boundary
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condition, uN+1=u1. In order to understand the second one. it is
useful to discuss the configuration of the soliton solution. In

Fig. 4.1, a typical configuration is shown, which is calculated

9)

by Terai and Ono under the first constraint, (4.2.6a). Here

n+1

the alternating bond variable is ?kn)=(—1) y(n). The solution

has, in general, optical and acoustic components defined by 107

UMY = 1 (= hwn + 2Un =Un-r) /4

f

0 Y+ Y wm-n) g

(10 nwy= (Unt + 22U+ Un- )/a ,
(4.2.7)

respectively. The two components are depicted in Figs. 4.1(b)
and 4.1(c). Comparing eq. (4.2.6b) with (4.2.7), we see that the
second constraint means that the optical component of the (n0+1)-
th site is fixed at the value, Q(-1)"0/4. Let us now return to
the self-consistent equation. With the help of Lagrange's method
of indeterminate coefficients, it is straightforward to derive

the self-consistent equation by varying the Hamiltonian under the

above constraints. We obtain,
200 ’
gz =TT GG )+ A 4 M (Sngpr = o)
(4.2.8)

where A and u are Lagrange multipliers and the sum over i and s
is restricted to the occupied states. In eq. (4.2.8), we have

used the fact that ¢i(n) can be taken real. By using
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Fig. 4.1

'08"((1,)
~ .04t
Y(1) ool
-.04}
-.08 — . ) - . L,

.04:((,)

¥(n) oo}

-.02F

-.04

.04 (c)
o) o
-.02}

-.04}

0 40 80 120
n

160 201

Typical configuration of a soliton solution with N=201
and Ne=201; (a) the alternating bond variable ¥(n), (b)
the optical component ®(n) and (c) the acoustic
component ¢¥(n). The definitions gre shown in the
text. The wunit of the ordinate is A. ( Cited from
Ref. 9, A. Terai and Y. Ono: J. Phys. Soc. dJpn. 55
(1986) 213.)
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eqs. (4.2.6), it is readily seen that A and u are expressed in

terms of {¢i(n)} as follows;
A= —1—°‘-2_'.Z' P, (n) . ()
KN "N a8 4 ’

M = _"ii >’ [ i 1) ¢; (Mot2) — P (o) Py (Mo+1) )

»,S

o
tz

(4.2.9)

The self-consistent equation is solved by iteration:s’g)

First, the eigenvalue problem, eq. (4.2.5) is solved numerically

(1)

for an appropriately chosen set of {y(n) }, and next, the

obtained eigenfunctions are substituted into the right-hand side

of eq. (4.2.8) and eq. (4.2.9) to yield a new set, {y(m %)},
which is again used as the initial values of {y(m)1’y. This
iteration is continued until the change of {y(n)} defined by.
) mAa2 m 2
¥ = Z[Ym-Ym ] /{L[?(m J
)
(4.2.10)

becomes negligibly small.

Typical configurations of the obtained soliton solutions are
depicted in Fig. 4.2, where the total number of the lattice sites
N and the electron number Ne are chosen to be N=201 and Ne=201.
The fixed site number n, is 100 and the constant Q@ 1is changed
from 0 to 0.01977. We can see that the center of the soliton

varies as the constant Q increases.
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Fig. 4.2
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Typical configurations of the obtained soliton solutions

near the fixed site n,=100 for wvarious values of Q.
The alternating bond  variable ¥(m)=(-1)"" y(n) is
shown.
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8§4.3 Peierls Potential Barrier of Solitons

Excitation energies of the obtained solutions are estimated

by the following formula,s’g)
K 2 ’ N (o) ()
Ee= 2T 8m + 2N € - = (B B,

(4.3.1)

(0) (0)

L
the perfectly dimerized state with total lattice number NO‘ In

where Ee and E are the electronic and lattice energies of
Fig. 4.3, the dependences of the excitation energies on 7y are
depicted for several values of Q. As an iteration is <carried
out, the magnitude of 7 decreases by one step. In the limit of

r—=>0, the excitation energy for each Q approaches a universal

value,

Es= o0.163112908

0.6277 Qg
= 0.40% oV (4.3.2)

In order to estimate the Peierls potential barrier precisely, we
continue the iteration until the quantity 7, eq. (4.2.10), which

14 (iq

represents the change of {y(n)}, becomes less than 10
the final stage of the iteration, the estimation of the energy
begins to fluctuate owing to errors of the computer.)
Nevertheless we do not have any meaningful energy difference for
various values of Q. We thus conclude that the Peierls potential
barrier is negligible for the soliton in the SSH model, if we use
the parameters in eq. (4.2.2) proposed for polyacetylene. The

-10

potential barrier is less than 10 ES, if any.

158



0.1631730

Es

1 1 1
0.1631720o 1.0 2.0
x 1078
¥
Fig. 4.3 Excitation energy of the soliton solutions as a

function of the convergence parameter 7y, for several

values of Q. As an iteration 1is performed, the
magnitude of 7 decreases by one step. Solid lines are
to guide the reader's eye. Note that the ordinate

scale is magnified.
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In order to check the calculation, we perform the similar
estimation of Es’ using different values of the coupling constant
a (in the present analysis a=4.0~5.8eV/A). Since stronger
coupling constants lead to narrower solitons, we choose N=101,
Ne=101 and n0=50‘ In Fig. 4.4, the explicit configurations of
the obtained solitons are shown, where «=5.2eV/A and Q is
changed from 0 to 0.105. The 7r-dependence the excitation
energies 1s depicted 1in Fig. 4.5. It 1is apparent that the
energies of different values of Q approach different wvalues in
the limit of r—0. |

We define the location of the center of the soliton by using

the optical component {®(n)} as follouws:

Xsol =m = Um)/ [y(my - % (m=1)]) >

(4.3.3)

where m is the smallest integer satisfying the relations, #® (m)>0
and % (m-1)<0. The dependence of Es on Xsol is depicted 1in
Fig. 4.6, where Xsol is calculated according to eq. (4.3.3) using
the obtained soliton solutions for various Q's.

The Peierls potential barrier EP is calculated through the

least square method by fitting the data in Fig. 4.6 to

Es = Ego + ‘Ef'(«os [Z (XSol‘ (V\o-H))Tl'/d ]

(4.3.4)

The obtained values are
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Fig. 4.4
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Typical configurations of the obtained soliton
solutions near the fixed site = The coupling
constant a is 5.2eV/A which is sé%onger than that of

trans-polyacetylene.
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Excitation energy of +the soliton solutions as a
function of the convergence parameter r, for several
values of Q and a=5.2eV/A. Solid lines are to guide
the reader's eye. The ordinate and the abscissa are
the same as those in Fig. 4.3.
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ESO = 0.431 13

2

Ep = 822 X 107" 4
a = 2.00

(4.3.5)

In the same way, the Peierls potential barrier is calculated
for various coupling constant a. The ratio of EP to the soliton
excitation energy ES as a function of a is depicted in Fig. 4.7,
where we can see the exponential dependence on «. It is
interesting to plot EP/Es as a function of the soliton width. We

calculate the soliton width by the following formila,
E ‘=‘UF4A00
= 2ako /4o U 5 (4.3.6)

where VF is the Fermi velocity, AO the gap of the electronic
band and u is the absolute value of the lattice displacement in
the perfectly dimerized state. In eq. (4.3.6), we use the

1)

expression of the soliton width in the TLM model. From

Fig. 4.8, we can see that the quantity EP/ES depends on §/a in

the following form

Br /E, = A exp (- ci/a)

(4.3.7)
with A=1.84 and C=4.97.
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Fig. 4.7 The ratio of the Peierls potential barrier to the
spliton excitation energy, as a function of the
coupling constant a.
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Fig. 4.8 - Semilog plot of the ratio of the Peierls potential
barrier to the soliton excitation energy, as a function
of the soliton width defined in eq. (4.3.6). The solid

line is a functional fitting in the form of
eq. (4.3.7).
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84.4 Discussion

In Su-Schrieffer-Heeger's model, the Peierls potential
barrier of a soliton has been estimated by obtaining the soliton
solutions at arbitrary positions relative to the lattice sites.

When the parameters are adjusted to polyacetylene, the Peierls

-10

potential is found to be less than 10 E

SQ
Su, Schrieffer, and Heegerl) suggested that the Peierls

4

potential barrier is about 20K=10" ES. Although it is not clear

how they estimated the potential barrier, the wvalue is
inconsistent with our result. On the other hand, Terai and Onog)

studied linear modes around a soliton in the SSH model by solving

numerically the eigenvalue problem for the linear mode. As One
of the linear modes, they obtained the Goldstone mode
corresponding to the translational motion of the soliton. The

frequency of the Goldstone mode was found to be O.OOwO. This 1is
consistent with our result that the Peierls potential barrier is

5) studied the soliton motion by integrating

negligible. Guinea
the equation of motion numerically within the adiabatic
approximation. He found that the soliton moved at a constant
velocity when it was slow enough. This is also consistent with
our result.

We have obtained the soliton solution us(n,Xsol) which has a

continuous variable, Xsol’ and satisfies the relation,

Us N, Xsod +2) = Us (nt2, Xsol ) . (4.4.1)

Therefore it will be possible to promote the soliton coordinate,

X to a new dynamical variable by means of the <collective

sol’
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12) It remains a future problem to investigate

coordinate method.
the soliton motion in the SSH model, where the interaction with
acoustic phonons can be taken into account.

For wvarious values of the electron-phonon coupling constant
o, we have calculated the soliton solutions and the Peierls
potential Dbarriers. The ratio of the potential barrier to the
soliton excitation energy depends on the soliton width
exponentially. It is worth while noting that, in the discrete ¢4

model, the potential barrier has the following form,lS)

Zd/

A\3 , -2 a’/a
“ —

Ef’ Ek(o\) €
(4.4.2)

where EK is the excitation energy of the kink andgd is the Kink

width. For highly discrete models ( d7/a < 1t ), the potential

barrier becomes,14)

—~ §.48 d°/a2
EEP = Eo
4 (4.4.3)
where EO is the energy difference between the maximum and the
minimum of the ¢4 potential. The dependence of Ep on the
soliton width 1in the SSH model remains to be explained 1in the

future.
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Chapter V. Summary, Future Problems, and Discussion

In the present thesis, we have studied dynamics of kinks and
solitons 1in three typical systems; the ¢4 system, the sine-
Gordon system, and trans-polyacetylene. For trans—(CH)x, we have
used a continuum model (TLM model) in the adiabatic
approximation. By applying the collective coordinate method, the
above three systems can be treated in a similar manner. As a
result, we have shown that kink (or soliton) dynamics 1in the
systems bears a striking resemblance to each other.

Two mechanisms are pointed out for Brownian-like motion of
the kink: One 1is a random walk and the other 1is an ordinary
Brownian motion. The relation between the two mechanisms 1is
clarified with the help of the fluctuation-dissipation theorem.

In the static limit (or in the long time regime), the latter

mechanism is dominant and the Einstein relation,

hg T

b= Mr, (5.1.1)

holds, where M is mass of the kink and I' is the friction caused
by the momentum transfer between the kink and thermally excited
phonons. -

On the other hand, when the frequency is not zero, the two
mechanisms coexist. Because the former mechanism (random walk
induced by shifts of the kink) 1is not related to real
dissipation, it makes a contribufion to the dynamical component
of the friction, not to the static component. As a result, this

mechanism appears only when the frequency is not zero. In this
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case, the real part of the dynamical diffusion constant becomes
proportional to (kBT)z. As the temperature increases, however,
there occurs a crossover to kBT/MF.

The only difference between the above three systems is
temperature dependence of the friction I': (i) In the ¢4 system
F0<T2, (ii) in the sine-Gordon system, the soliton never changes
its velocity and thus the friction is equal to zero, and (iii) in
the TLM model, TI'«T. This difference is attributed to the
following properties of the kink-phonon interaction; 1in the ¢4
system, the effective potential for the phonons is
reflectionless, whereas in the TLM model, it is not;

For trans-(CH)x, quantum effect on the friction 1is also
studied. Since the number of the optical phonons is
exponentially small in the region kgT<fiw,, &, being the
optical phonon frequency, the friction becomes exponentially
small.

As the first step to investigate the soliton dynamics in the
discrete Su, Schrieffer, and Heeger's model, the Peierls

potential Dbarrier is estimated. We have shown that it 1is

negligible when we use the parameters proposed for polyacetylene.

There are some problems left to future. We list up them in
the following.
1) Effect of the friction on the structure factor S(k,w).
In the sine-Gordon case, S(k,w) obtained 1in the

1)

molecular dynamics agreed rather well with the predictions

by the ideal gas phenomenology. On the other hand, for the

¢4 case, the agreement was less quantitative. It may be
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2)

3)

partly attributed to the wviolation of the ideal gas
phenomenology due to the friction.
Quantum effect on the friction of the ¢4 kink.

In the 1low temperature region, [I' will be reduced
because the number of thermal phonons is much less than that
of the <classical phonons. As shown in Appendix 2.C,
cancellations among many diagrams take place in the classical
calculation. It is of particular interest whether a similar
cancellation will occur in the quantal case.

Relation to the damped nonlinear equations.

By considering a coupling to the heat bath, the time

evolution can be studied with a Langevin equatibn or a damped

nonlinear equation driven by a random force R,Z)

S 0P 9V _\ 00

, } 9b_ *
X e C 39 - TR OLY),

(5.1.2)

where UL@d(X,t)]1 1is the potential part of +the Hamiltonian
density, and ¢ is the damping constant. Recently Kaup et
al. calculated the average velocity of the kink when a

spatially independent external force F 1is added to eq.

(5.1.2).37 They obtained,
mF ChpT
<uy=- ZE (| b )
a4y Ek )
(5.1.3)
where C is a positive constant in the order of unity. The

second term in the parenthesis is a correction due to thermal

fluctuations. It seems that the fluctuations effectively
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4)

S)

6)

7)

reduce the damping constant 7. The relation between‘ this
result and ours is of great interest.
Kink dynamics in highly discrete systems.

When the temperature is low, the kinetic energy of the
kink becomes 1less than the Peierls potential barrier. In
this case, the kink can not move freely any longer and thus

4)

the diffusion constant will approach to zero. Recently,

some attempts to treat the kink dynamics 1in the discrete
systems have been performed (see also §1.1).5)
Kink-antikink collisions and other phenomena.

As referred to in §1.1, the kink-antikink collision has
been extensively studied numerically to find out highly
nontrivial phenomena, such as two bounce structures, multi-
bounce structure, and o) on.e) Molecular dynamigs
simulations have shown that various phenomena take place, as
well as the kink-antikink collisions ( see Figs. 1.1~1.3 );
for example, creation of a kink-antikink pair, and long-lived
breather-like structures. It is important to investigate
mechanisms of these phenomena.

Ergodicity of nonlinear systems.

Of course, there have been many attempts to explore this
problem. An approach through the kink dynamics may throw new
light on this problem. Precursory work has been carried
out.7)

Interaction between the solitdn and acoustic phonons in

trans-polyacetylene.

Though the coupling of the soliton to acoustic phonons
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8)

is weaker than that to optical phonons,8’9) the acoustic

phonons may be playing an important role in the soliton
diffusion, because they exist abundantly at low temperatures.

Maki discussed the diffusion mechanism of the soliton,

‘ regarding the system of the solitons as a Boltzmann-type gas

with mean free path limited by acoustic phonons linearly

10)

coupled to the solitons. He obtained a diffusion constant

172

proportional to T in one-dimensional phonon model, and

T_l/2 in three-dimensional phonon model. However, he used
undistorted plane waves, exp(ikx), as the acoustic phonons,
and thus the shift of the soliton and the momeﬁtum transfer
due to the soliton-phonon interaction were not taken into
account.

The deviation from exp(ikx) of the acoustic phonon mode
can be obtained numerically in the Su, Schrieffer, ahd

1) 1t would be interesting to analyze the

Heeger's model.
soliton-phonon <collision in the SSH model and to study the
soliton dynamics.

Comparison with experimental results.

As summarized in 81.3, NMR and ESR experiments have
indicated that the solitons become more mobile at higher
températures. It has been suggested that the diffusion
constant of the "mobile soliton" may be proportional to TQ.

It has not been possible yet to explain this temperature

dependence. As discussed above, nonlinear interactions with

the acoustic phonons must be taken into account.

Furthermore, in real systems, there may be various effects on

the soliton dynamics: for example, discreteness effects,
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effects of disorder, Iimpurity pinning, end effects of the
polymer chains ( or finite chain length effects ), Coulomb
interactions between the solitons, and three-dimensional
effects ( for example, confinement of the soliton ). We have
shown in Chapter IV that the Peierls potential barrier is
negligible in the SSH model. Thus the energy dissipation due
to the lattice pinning will not be effective in
polyacetylene. It 1is a future problem to study the other

effects.
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