Eine Direkte Inversion Methode fur die Zweidimenzionalen Modellung

in der Geomagnetische Induktion Forschung

Zusammenfassung

Die elektlische Leitfahigkeit des Gesteines und Minerals ist
eine der wesentlicheste Eigentum im Erdmaterial. Die Yorschung der
geomagnetische Induktion ziele nach die Vermutung auf die
Verbreitung der elektrischen Leitfahigkeit im Untergrund. Weil die
Leitfahigkeit des Gesteines und Minerals auf die Temperature, den
Wasserinhalt, die chemische Zussamensetzung, der Umfan: des
partielles Schmerzen und so fort stark angewiesen ist. die
Kenntnisse in seiner Verbreitung versehe die wichtigen Information
an der Untersuchung auf den geophysichen Verfahren unler den
Inselbogen System. In dieser Forschung hat die neue Methode fir die
Interpretation von geoelektromagnetische Beobachtungen entwickelt
worden, und die Verbreitungen unter den nordostlichen und zentralen
Japan habe untergesucht worden.

Ein neue Verfaren wird entwickelt durch Anwendung des
verallgemeinertes Nichtlinear-Kleinste-Quadrat auf den
geomagnetische Induktion Problem, fur einer ubergeugenden Modell von
der zweidimenzionaler Untergrundstruktur der elektrischen
Leitfahigkeit zu erwerben. Die zweidimenzionale Erde mit e:ner
flachen Oberflache wird im Anwesenden Modellieren angennommen, die
in enier Anzahl von nichthomogener Blocken mit standigen
elektrischen Leitfahigkeiten zerféllen. Der geneuer Ausdruck hat
verleicht gewesen zu abschatzen die Teilableitung von der

theoretischer induktiver Antwortfunktionen fir den Parameter in



bezug auf die Leitfahigkeit durch Formulierung der Induktion
Gleitung mit der begrezt Element Methode (FEM).

In der Anwesenden Forschung wird die geomagnetische
Ubertragungsfunktion und der Logarithmus von der Magnetotellurischen
Impedanz fur Input Daten gebraucht, weil der Logarithmus von der
nichthomogenen Leitfahigkeit zu bestimmt durch die Inversion werden.
Diese Forschung klarte, dass die Verbindung die geomagnetische
Ubertragungsfunktion und das Impedanz viele Information an der
Untergrundstruktur und darum der hocher Entschlossenheit im
Verfahren dem Inversion bringen kann.

Einige Zahlenverzuchen hatte fur etwas simpele Modellen und
der entsprechende syntaktische Daten ausgefurt gewesen, vor den
Anlegen von dieser Methode zum wirklichem Observationergebnis, was
die folgenden Gesichtsbildungen um diesem Inversion Methode
offenbarte.

1) Die raumliche Verbreitung der Teilableitung angebe deutlich der
Unterschied zwischen Sensitivitaten dem Impedanz und der
Ubertragungsfunktion 2u der Untergrundstruktur, der erste zum
absolutem Wert von der untergrunden Leitfahigkeit aber der letztere
zum seitlichem Gegensatz in der Leitfahigkeit sensitiv ist.

2) Dieser Schema ist genugent standfest fur Modellen mit der lesser
Grad von Freiheit, aber die Stabilitat abnenmt sich naturlich mit
der Vergrosserung Grad von Freiheit.

3) Die Amplitude der Teilableitung und die Mitveranderung
(Covariance) sind gut Anzeigern fur die Genauigkeit der Aufldosung.
4) Die Vermessungen des elektromagnetisches Feldes ans Meeresboden
sind besonders wesentlich fur die Forschung der Unterseestruktur,

weil die Beobachtungen auf Land und Seeoberflache manchmal einfach



nichtsensitiv zu der Struktur bekommen.
5) Diese Methode bringt im allgemeiner die hocheren Aufldsung in der

hocher Leitfahigkeit, und die lesser Auflossung in der lesseren

leitfahigen Struktur der Induktion Wirkung schwach ist.

Die zweidimenzionale Verbreitungen der elektrischer
Leitfahigkeit unterhalb der nordostlichen und zentralen Teilen von
Japan habe mit dieser Inversion Methode untergesucht worden, durch
die Zerlegung des Ergebnis von der Beobachtungen der geomagnetischen
und geoelektrischen Feld Veranderung auf den Land und ans Meersboden
herum Japan. Im Anfang des Modellieren war die Verbreitung der
Leitfahigkeit in der seichter Tiefe hinunter zu etwas Kilometern mit
dem Ergebnis von Magnetotellurische Vermussung in der ELF und VLF
Frequenzbereichen gegeben. Demnachst war die untergrund Modellen mit
der Teilung die Schnillflahe des Erdes in der nichthomogenen
Blocken. Der Anfangswert wurde zu jeder Nichthomogenitat gegeben,
die erwartungsvolle Wirkungen und die Erfolgen der eindimenzionalen
Magnetotellurischen Inversion auf dem Land und ans Meeresboden in
Betracht geziebt.

Fur den Inversion von nortostliche Japan (NEJ) wurde die
ﬁbertragungsfunktionen an 15 Stellen und die Impedanze an 4 Stellen
als Data fur 15, 30 60 und 120 Minuten Perioden angewenden. Fur
zentrale Japan (CJ) wurde 26 und 5 Stellen beziehingsweise als Data
Punkte gegebend die ﬁbertragungsfunktionen und die Impedanzen
ausgewahlt. Die elektrischen Leitfahigkeiten widerstehend Strukturen
und der Blocken, woauf keine Messﬁng verfiigbar ist, wurde bevor der
Inversion gegeben, weil dieser den Inversion Verfahren unsicher

machen. Damnachst war die direkten Inversionen fur 8 unbekannte



Parametern fur die NEJ Modelle und 7 Parametern fur die CJ Modellen
ausgefiuhrt. Das wiederfolend Verfahren hat nach 48 Mal
Wiederholungen fur NEJ gekonvergiert, weil 32 Mal Wiederholungen fur
die Annaherung der CJ Daten erforderlich gewesen hat. Der Abschluss

kann als den Folgende gegeben werden.

1) Die beiden Modellen erwiesen sich eine gemeinsame Gesichtzug, die
ein Stiuck des Erdkruste unter die Japanischen Insel uber einstellig
leitfahiger als ander Teilen ist. Die ostliche Grenz dieses Leiter
ubereinstimmt mit der Aseismischenfront fur die NEJ Modelle. Dieses
Ergebnis vorschlagt nachdriicklich, dass diese hoche Leitfahigkeit
nicht von der Thermalursprung sondern von der moglichen Existenz des
Wasser im tieferem Erdkruste.

2) Diese Forschung deutete die Existenz einer leitfahigen Schicht,
die das Asthenosphere entsprecht, im Obererdmantel beide unter den
Pazifik-Ozean und die Philippin-See an. Unter die Philippin-See gibt
es 30 Kilometer tief hochleitfahigen Schicht, weil die Tiefe zu die
leitfahigen Schicht als 140 Kilometer unter den Pazifik-Ozean
abgeschatzen wird. Dieser Unterschied kann zu einer im Alter des
Lithospheres schreiben.

3) Es gibt eine dunne leitfahigen Schicht an der Oberflache der
untergehende Platte in beider Modellen. Es ist notig, dass die
Totalleitfahigkeit ungefahr 10® S die geomagnetischen Veranderung zu
erklaren ist. Diese Schicht kann als die von dem Meeresboden
Sediment und/oder dem Wassertragendem unterseeischem Basalt
betrachtet werden. |

4) Das NEJ Ergebnis anziegt, dass der Erdmantel Keil um ein

Vielfaches leitfahiger als den untergehenden Pazifishen Lithosphere.



Dieser Unterschied moglich zuschreiben einer im Geotherms.

5) Der Obererdmantel unter den Philippin-Platte ist hocher leitfahig
als diese unter die Honshu-Insel und die Japan-See, daraus ergibt
sich dass die Platte Bewegung spielt eine wichtige Rolle in der
Ursache der hochen Leitfahigkeit im Ozeanischem Asthenosphere.

6) Die Leitfahigkeit des Erdmantel Keiles beitragt moglich zu
abnehmen gehend weiter nach dem Japan-Graben zu die Japan-See, aber
die Richtung ist nicht vollstandig festgestellen wegen den Mangel an
Daten ans Meeresboden in der Japan-See. Dieser mag ergeben sich dass
der Wasser Inhalt ebensogut wie die Thermalstruktur im Obererdmantel

in der Bestimmung der elektrischen Leitfahigkeit beitragen.

Uberall in der Forschung hat die Wichtigkeit des Wasser
Inhaltes im tieferem Erdkruste und Obererdmantel aufmerksam gemacht
worden. Die Wirkung des Wassers kann die hochen leitfahigen Schicht
im tifer Erdkruste und die abnehmenden Richtung der Obererdmantelen
Leitfahigkeit gut erklaren. Es ist wahrscheinlich, dass der
Oberplatte Leiter die Quelle des Wasser ist, die mit dem Wasser zum
Erdmantel Keil und daher dem tiefer Erdkruste unter die Japanischen

Inselbogen versorgt.
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ABSTRACT

The electrical conductivity of rocks and minerals is one of the
fundamental physical properties of the earth's material. Geomagnetic
induction study aims at determining the distribution of the electrical
conductivity in the earth. Since the conductivity of rocks and
minerals is strongly dependent on temperature, water content, chemical
composition , degree of partial melting and so forth, the knowledge of
its distribution provides important information on the investigation
of the geophysical processes beneath the island arc system. In the
present study, a new method has been developed for the interpretation
of geoelectromagnetic observations, and the conductivity distributions
beneath the northeast and central parts of the Japan have been inves-

tigated.

In order to determine a convincing model of the two-dimensional
conductivity structure in the earth, a new technique was developed by
applying the generalized non-linear least squares method to the
geomagnetic induction problem. In the present modeling, the two-
dimensional earth with a plain surface is assumed, which is divided
into a number of inhomogeneous blocks with constant conductivities. By
formulating the two-dimensional induction equation with finite element
method (FEM), the exact expression has been put forward to evaluate
the partial derivatives of the theoretical inductive response func-
tions with respect to the parameter relating to the inhomogeneous con-
ductivity.

In the present method, the geomagnetic transfer function and the

logarithm of the magnetotelluric impedance tensor were used for input



data, while the logarithm of the inhomogeneous conductivity was
adopted as the parameter to be determined_by the inversion. The trans-
fer function and the impedance were analyzed separately in most of the
previous works. The present investigation clarified that the combined
use of these two response functions provides much information on the
subsurface structure and, therefore, the higher resolution in the in-
version process is attained.

Prior to the application of the present method to the actual ob-
servations, several numerical experiments have been performed against
some simple mbdels and corresponding synthetic data sets. Following
features about the present inversion method were revealed by the
numerical exXperiments;

1) Spatial distribution of the partial derivatives definitely indi-
cates the difference in the sensitiv{ty of the impedance and the
transfer function to the subsurface structure; i.e. the former is sen-
sitive to the absolute value of the conductivity with a maximum
amplitude of the partial derivative just above the inhomogeneity,
while the derivative being maximum above the boundary between dif-
ferent materials shows that the latter is sensitive to the lateral
contrast in conductivity.

2) The present scheme is sufficiently stable for models with the lower
degrees of freedom, though the stability decreases with increasing
degree of freedom as a common feature of the least squares.

3) The amplitude of the partial derivative, as well as the covariance
matrix, works as a good indicator for the accuracy of the solution.

4) In the investigation of the submarine structure, seafloor measure-
ments of the electromagnetic fields are particularly important, since

the observations on land and on sea surface will sometimes become
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quite insensitive to the structure.
5) The present method generally provides the higher resolution to the
structure with the higher conductivity. The less conductive structure

is weakly resolved since its induction effect is small.

By analyzing the the results of the observations of the geomag-
netic and electric field variations on land and at seafloor around
Japan, the two-dimensional electrical conductivity distributions
beneath the northeast and the central parts of Japan have been inves-
tigated by uée of the present inversion method. In the modeling, the
conductivity distribution at the shallower depth down to several
kilometers was estimated on the basis of the results of the mag-
netotelluric surveys at the higher frequencies of ELF and VLF ranges.
Then, the subsurface models were constructed by dividing the cross
section of the earth into inhomogeneous blocks by making reference to
the other geophysical and geological evidences, as well as the
electromagnetic ones. The initial value was applied to each in-
homogeneity by taking into account the expected induction effects.
Results of the one-dimensional inversion of the magnetotelluric sound-
ings on land as well as on seafloor were found to be useful in con-
struction of the initial model of the conductivity structure.

For the inversion of northeast Japan (NEJ) data, the transfer
functions at 15 sites and the impedances at 4 sites were employed as
data for the periods of 15, 30, 60 and 120 minutes. In case of central
Japan (CJ), 26 sites and 5 sites were selected as the data points
giving thé transfer functions and the impedances, respectively, for
the same discrete frequencies as those for NEJ. Conductivities of the

resistive structures and the blocks where no observation is available



on top were assigned before the inversion, because they make the in-
version process unstable. Then, the direct inversions were performed
for 8 unknown parameters for NEJ and 7 parameters for CJ. The itera-
tive process has converged after 48 cycles of iteration for NEJ, while
32 cycles of iteration has been required for the convergence of the
inversion of CJ data. Conclusions based on the final models are given
as follows;

1) Both models show a common feature that a part of the lower crust
beneath the Japanese island is conductive by more than one order of
magnitude combared with other parts of the crust. The eastern boundary
of the conductor coincides with the aseismic front for NEJ model. This
result strongly suggests that this high conductivity is not of ther-
mal origin but caused possibly by the existence of water in the lower
crust.

2) The result of the present investigation infers the existence of a
highly conductive layer, which corresponds to the asthenosphere, in
the upper mantle both beneath the Pacific Ocean and the Philippine
Sea. Beneath the Philippine Sea Plate, the highly conductive layer ex-
tends at the depth of 30-100 km. On the other hand, the depth to the
conductive layer beneath the Pacific Plate was estimated as deep as
about 140 km. This difference can be attributed to the difference in
the age of the lithosphere.

3) A thin conductive layer exists at the top of the subducting slab
in both models; i.e. the Pacific Plate and the Philippine Sea Plate.
It was found that the total conductance ( product of the conductivity
and the thickness ) of about 102 S is required in both models in order
to explain the features of the electromagnetic variations in the

vicinities of the Japan trench and the Nankai trough. This layer can



be regarded as the layer of seafloor sediments and/or water bearing
submarine basalts, and as a water reservoir to supply water to the
mantle wedge.

4) The NEJ result indicates that the mantle wedge is more conductive
by several factors compared with the underlying Pacific lithosphere.
This difference may be attribute to the difference in geotherms.

5) The upper mantle beneath the Philippine Sea Plate is highly conduc-
tive compared with those beneath the Honshu island and the Japan Sea.
This implies that the plate motion plays an important role in causing
the high condﬁctivity of the asthenosphere.

6) The NEJ result shows the possible tendency that the conductivity of
the wedge mantle decreases going farther from the Japan trench toward
the Japan sea, although the tendency is not completely established be-
cause of the lacking in data on the seafloor of the Japan Sea. This
may imply that the water content, as well as the thermal structure
contributes in determining the conductivity of the material in the up-

per mantle.

Throughout this study, the significance of water content in the
lower crust and the upper mantle has been pointed out. The highly con-
ductive layer in the lower crust and the tendency of the decreasing
conductivity toward the back arc side can be well explained by the ef-
fect of the water content. The slabtop conductor is likely to be the
source of the water, which supplies water to the mantle wedge and to

the lower crust beneath the island arc of Japan.
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1. Introduction

Electrical conductivity of rocks depends on various physical
states, i.e. temperature, pressure, water contents, oxygen fugacity,
etc. Consequently, information on the conductivity distribution gives
us fundamental data to infer the physical state within the earth.

So far, various kinds of techniques have been explored to reveal
the conductivity structure of the earth. The most prevailing method is
the electromagnetic induction method. Transient geomagnetic variation
of external origin induces electric current in the earth's interior.
The induced current is primarily dependent on the earth's conductivity
structure. Hence, the detailed analyses of the geomagnetic and the
geoelectric field variations enable us to make clear the electrical

conductivity distribution in the earth.

The transient electromagnetic field penetrates into the deeper
part of the earth as the period of the variation becomes longer. The
varjiation field can be separated into the external and the internal
ones. The ratio of the internal to the external field works as an
electromagnetic response function which depends on the conductivity
distribution with depth. Thus, assuming that the conductivity varies
only radially in the earth, investigation of the nature of the
electromagnetic variation for the wide range of frequency gives a
model of conductivity distribution with depth. In classical studies,
such approaches were for a spherical earth model. Chapman (1919)
studied a uniform core model, in which the central sphere is conduct-
ing with a constant conductivity, and the spherical shell outside the

conducting sphere is an insulator. On the basis of the result of the



analyses of Sq (solar quiet daily variation) fields, he derived a
uniform conductivity value of 3.6x107*® e.m.u. (3.6x107% S/m) for the
conducting sphere with radius of 0.96Re (Re: the earth's radius). Fur-
ther detailed investigation was made by Rikitake (1950a), who used
analyses of not only Sq but also Dst (main phase of geomagnetic
storm), s.f.e (solar flare effect), geomagnetic bays etc., and pointed
out that the uniform conductivity values obtained for the more gradual
variations are consistently larger than those for the more rapid
variations. \

Lahiri and Price (1939) took the lead in the study of a non
uniform earth model where they assumed an analytical form for the con-
ductivity distribution. Takeuchi and Saito (1963) and Eckhardt (1963)
formulated the response functions for an arbitrary distribution of the
conductivity. After that, with the development of high speed com-
puters, several models of conductivity distribution for spherically
symmetric earth have been presented until Banks (1969,1972) obtained
his optimum model. Fig.l.1 summarizes the results of the above men-
tioned works. These models have common features as follows:

(1) The shallowest part of the earth is rather resistive with a con-
ductivity of 1072 S/m, or less.

(2) Conductivity increases abruptly at the depth of 400 ~ 600 Km up
to 10° S/m.

(3) At the deeper part, conductivity increases gradually with depth.

Bailey (1970) proved that the radial distribution of the earth's
conductivity can be uniquely determined under certain conditions if
the electromagnetic response is known for all frequencies. Therefore,
accumulation of much improved data set with high resolution and wide

frequency range is desirable in this subject.



A geomagnetic variation of external origin would be regarded as
considerably uniform within a certain area of local extent. However,
it has often been noticed, since the early 1950's, that the vertical
component of geomagnetic fluctuation with the periods shorter than
several hours behaves quite differently from one site to another. Such
a behavior cannot be accounted for either by spatial dependence of the
external field itself or the internal field arising from the
electromagnetic induction in a laterally uniform earth. Thus, the
origin of the anomalous behavior of vertical geomagnetic field has
been interpreted as indicating the lateral heterogeneity of subsurface
conductivity distribution, which is denoted by the term, 'Conductivity
Anomaly (CA)'.

Fig.1.2 shows an example of such an anomalous behavior of the
vertical component. In contrast with the rather smooth distribution of
H and D (horizontal intensity and declination) components, the ir-
regular distribution is conspicuous in the vertical component.
Rikitake (1950a,b,c,1951) and many successors pointed out the
anomalous behavior of vertical component observed in the central part
of Japan as shown in Fig.1.2. Rikitake (1969) interpreted the geomag-
netic variation anomaly in Japan in terms of marked undulation of a
conductive layer in the mantle (Fig.1.3). Similar geomagnetic varia-
tion anomalies were found in various regions (e.g. Rikitake, 1966).

Anomalous Z variation has generally a good correlation with the

horizontal field variations, which can be expressed empirically:

AZ = A-AH + B-AD (1-1)



where A Z, AH and A D are variations of downward, northward and
eastward components, respectively. The coefficients, A and B, deter-
mine the characteristics of the geomagnetic induction. Eq.(l1-1) can be
interpreted as indicating that the geomagnetic variation is restricted
in a plane determined by a vector (A,B). Such a plane is often called
the Rikitake-Yokoyama plane (Rikitake and Yokoyama, 1955).

A representation method by an arrow, called the Parkinson vec-
tor, was put forward by Parkinson (1959). The Parkinson vector can be
obtained by projecting a normal vector of the Rikitake-Yokoyama plane
onto the earth's surface. Another representation is sometimes made by
use of the Wiese vector, which is almost identical to the Parkinson
vector except 180 degree's difference in direction (Wiese, 1962).

Recently, Eq.(1-1) has been treated in the frequency domain as:

Z(f) = A(f)-H(E) + B(£)-D(f) (1-2)

where Z(f), H(f) and D(f) are the Fourier transforms of the variations
of vertical, horizontal components and declination, respectively. The
complex coefficients A(f) and B(f) are dependent on frequency, and
called geomagnetic transfer functions. Everett and Hyndman (1968)
presented a method to derive the transfer functions from a set of
geomagnetic variation data by means of the least squares. The transfer
functions are often represented by an arrow in a similar way to the
Parkinson vector. The arrow derived from the transfer functions are

called the induction arrow or the induction vector.

Since the geomagnetic variation induces electric current in the

earth, the induced electric field contains information on the subsur-



face conductivity structure. It is well-known that a relationship be-
tween the induced electric field and the horizontal magnetic field

variations can be expressed in a way similar to Eq.(1-2):

Ex(f) Zax(£) -H(f) + Zxy(£f)-D(f) (1-3a)

Ey (£) Zyx(f) -H(f) + Zyy (f)-D(L) (1-3b)

n

where Ex(f) and E,(f) are the Fourier transforms of the northward and
the eastward components of the induced electric field. The coeffi-
cients Zxx(f); Zxy(f), Zyx(f) and Z,,(f) form 2x2 tensor. In case of
electromagnetic wave propagation in a medium, electric to magnetic
field ratio defines the characteristic of the medium and is called the
impedance. Analogous to that, the tensor defined by Egqs.(1-3a) and (1-
3b) is called the impedance tensor. The impedance tensor contains in-
formation on the conductivity distribution in the earth. The method of
investigation of the earth's conductivity structure by use of the im-
pedance tensor is called the magnetotelluric method (Cagniard, 1953),
often denoted by MT. The magnetotelluric method is widely used in the
investigation of local and regional conductivity distribution, as well

as the magnetovariational method by use of the transfer functions.

Since the conductivity of sea water is as high as 3-4 S/m,
depending on its salinity and temperature, geomagnetic variations are
greatly affected by the distribution of oceans and seas. Several
reports on the effect of sea water on geomagnetic variations have ap-
peared reported in 1960's to 1970's. Clear understanding of the induc-
tion effects by the presence of sea is highly important because most

tectonically active regions, such as spreading and subduction zones,



are located in ocean areas.

A coast forms a distinct boundary separating a conductive ocean
from a resistive land. Because of the large conductivity contrast,
electric current induced in the sea tends to flow in parallel to the
coast, which causes a large amplitude of the vertical magnetic field
at the coastal area. Parkinson (1964) found the geomagnetic variation
anomaly in the southern coast of Australia, and called the phenomenon
the coast effect.

On a small island, one of the most typical sea water effect,
called the island effect can be observed. Sometimes the polarity of
the vertical component of geomagnetic variation becomes to opposite at
two sites on an island. The island effect was first discovered on Oahu
island, Hawaii by Mason (1962). Since then, many examples have been
reported (Sasai, 1967, 1968; Honkura, 1971; Honkura et al., 1974,
1981; Klein, 1976; Klein and Larsen, 1978). The island effect can be
regarded as the perturbation of induced electric current by an island;
i.e. current flows in sea water avoiding the resistive island.

Extremely large amplitude of vertical component is often ob-
served at the tip of a peninsula, which is called the peninsula effect
(Sasai, 1969). The peninsula effect can be considered to be a special
case of the coast effect with irregular coastline, and may be regarded
as a combination of the coast and island effects. The induced electric
current tends to flow in parallel to the coastline. If the shape of
the coastline has an irregularity, such as a peninsula, the current
flows round along the coastline. This flow pattern causes a large
amplitude of the vertical magnetic field that sometimes exceeds that
of the correlating horizontal components.

In a narrow sea passage such as a strait, concentration of in-



duced current occurs, which produces anomalous Z variation in the sur-
rounding area. The effect is called the channeling effect. The chan-
neling effect is characterized by reversed variation of Z on the op-
posite side of the channel (Yamashita, 1976).

Above mentioned sea water effects can be regarded as results of
electromagnetic induction in horizontally non uniform conductor. These
effects can be caused also by sedimentary layers. A typical example of
the channeling effect by sedimentary layer have been found in the
southern Great Plains, U.S.A. (Porath and Dziewonski, 1971). The
anomalous feature of the geomagnetic variation in north German was
found to be principally caused by such a channeling effect
(Untiedt,1970). Local concentration of the electric current sometimes
causes enhancement in amplitude of horizontal geomagnetic variation
(Nishida, 1976). Anyway, it should be noticed that the information on
the shallower conductivity distribution is highly important even in
the investigation of deeper structure, because existence of shallow
conductive layer sometimes causes a significant induction anomaly at
longer periods.

Existence of highly conductive seas essentially obscure the
electromagnetic responses of the structure below, and hence makes the
investigation of conductivity distribution beneath coastal area quite
difficult. Honkura (1974) derived, by numerical modeling technique,
two dimensional models of subterranean conductivity distribution
beneath northeast and central Japan (Fig.1.4). In order to overcome
the difficulty of the effects of the Pacific Ocean and the Japan sea,
he made an attempt to account for the frequency dependence of the
transfer functions. He showed that the sea water effects are dominant

in spatial distribution of the geomagnetic variation in these areas,



and concluded that seafloor measurements are indispensable to make
clear the conductivity structure beneath the Japanese Island Arc in

detail.

For the purpose of the measurement of the geomagnetic signals in
the ocean, a new apparatus has been developed by Filloux (1967). He
also developed the instrument for the electric field measurement, and
have conducted magnetotelluric soundings in several areas in the
Pacific Ocean (Filloux, 1967, 1977, 1980a,b, 1981). The results indi-
cated the existence of conductive layer beneath the Pacific Ocean. The
conductivity is found to be about 10™* S/m, and does not vary very
much from one area to another. However, it was found that the depth to
the conductive layer increases with the age of the oceanic plate
(Filloux, 1981).

Seafloor apparatus for measurement of the geomagnetic field
variation, which is often called ocean bottom magnetometer (OBM), has
also been developed by Poehls and von Herzen (1976) and Law and Green-
house (1981). In Japan, Segawa, et al.(1982) succeeded in making a new
type ocean bottom magnetometer. In 1981, extensive electromagnetic
measurements were conducted in the Northwest Pacific, off northeast
Japan (Yukutake, et al.,1983). Since then, seafloor measurements have
been carried out once a year around Japan. Meanwhile, Hamano et
al.(1984) developed a instrument for electric field measurement on
seafloor (denoted by OBE), and succeeded in observation of electric
field variations correlated to the geomagnetic field disturbances.

Technique of land observations has been much improved in recent
years. Research Group for Crustal Resistivity Structure, Japan (1984),

made detailed observations of electromagnetic field variations 1in



northeast Japan in 1981 and in central Japan in 1982. In these field
experiments, observations were made for wider frequency range compared
to previous ones; i.e. at ULF micropulsation range, Schumann Resonance
frequencies in ELF range and 17.4 kHz signal in VLF range, as well as

ordinary period range of geomagnetic disturbances.

This thesis attempts to clarify the subterranean conductivity
structure beneath the Japanese Island Arc on the basis of the above
mentioned new datasets. New methods of analysis have been developed
for that purpose. The whole process of the investigation can be sum-
marized as follows:

(1) Determine the shallower structure of the electrical conductivity
on the basis of magnetotelluric measurements at higher frequencies
such as in ELF and VLF ranges, and sometimes at ULF micropulsation
periods.

(2) Compile the results of land and seafloor measurement of the
electromagnetic field variations.

(3) Give the first order approximation of the conductivity model by
one-dimensional inversion of magnetotelluric data, as well as refer-
ring to other geophysical and geological evidences.

(4) Apply the direct inversion scheme to obtain an optimum two-
dimensional model of the conductivity distribution which accounts for
the spatial and period dependences of both the transfer functions and
the magnetotelluric impedances.

In Chapter 2, previous results of laboratory measurements on the
electrical properties of rocks and minerals will be reviewed. This
review will be reffered to in the later discussions. The theory of in-

terpretation will be presented in Chapter 3. The formulation of inver-
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sion schemes is made in this chapter. In Chapters 4 and 5, techniques
of field measurements and data processing will be described for ELF
and VLF, and ULF ranges, respectively. The application of the whole
method will be made in Chapters 6 and 7 to derive two-dimensional
models beneath northeast and central Japan, respectively. Geophysical

implications of the models will be discussed in the last chapter.
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Fig.1.1 Global models of the mantle conductivity distribution.
EC: Eckhardt (1968)
MC: McDonald (1957)
BE: Berdichevsky et al.(1974)
FA: Fainberg and Rotanova (1974)
RI: Rikitake (1966)
BA: Banks (1969)
Shaded area denotes the acceptable range by Banks (1969).
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Fig.1.2 An example of simultaneous record of geomagnetic bay observed
in Japan (after Rikitake, 1967).
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Fig.1.3 A model of conductivity structure beneath Japan proposed by
Rikitake (1969). Contours indicate the depth to the top of highly con-
ductive layer in Kilometers.
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2. Electrical Conductivity of the Earth's Material

The electrical conductivity, ¢ , of silicate minerals is
strongly dependent on temperature. When water exists in the pore
space, the bulk conductivity is affected strongly by the water con-
tent. Melts and other fluids also affects the electrical conductivity.
In the investigation of the conductivity distribution within the
earth, highly conductive structure has often been found to correlate
with geothermal environment, groundwater distribution, and so forth.
Therefore, for the interpretation of the electrical conductivity
structure in the earth, it is of great importance to review results of
laboratory experiments on the electrical of conductivity of rocks and
minerals, which consist of the earth's crust and mantle, in various

physical states.

2.1 Temperature and pressure dependence of the electrical conductivity

Most of the rock forming minerals can be classified into either
semiconductor or dielectrics. As a function of absolute temperature,

T, the conductivity,o , can be expressed as

0 =YL 0 s-exp[-E,/KkT] (2-1-1)
i

where 0 ; and E, are the constant and the activation energy which

depend on the i-th conduction mechanism, composition, grain size,
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etc., and k is the Boltzmann constant. The relative importance of the
conduction mechanism also depends on temperature. At present, three
kinds of electric conduction are considered in the earth according to
the charge carriers, i.e. impurity, intrinsic electron and ion,
respectively. For relatively low temperature as in the earth's crust,
impurity conduction is dominant. At higher temperatures, the other two
are supposed to be the dominant mechanisms, although it is not well-
known which is actually dominant in the mantle (Duba, 1976).

Kariya and Shankland (1983) compiled the laboratory data of the
electrical conductivity of dry rocks which are regarded as possible
components of the lower crust. They investigated the compositional ef-
fect on the temperature dependence of the electrical conductivity by a
statistical method, where they classified crustal rocks into three
groups: granite, gabbro and basalt groups. They concluded that the
conductivity increases from silicic to mafic composition; i.e. basal—
tic rocks are more conductive than granitic rocks by one or two orders
of magnitude at the same temperature and pressure.

In the acidic rocks, the electrical conductivity varies depend-
ing on the quartz content (Parkhomenko, 1982); i.e. the conductivity
increases from granites to diorites for the temperature range of 100-
1200°C. Moreover, large variations in conductivity due to mineral com-
position have often been observed below 600°C, or so, while it is much
less dominant at higher temperatures.

Fig.2.1 show the temperature dependence of the electrical con-
ductivity for various kinds of rocks and minerals derived from
laboratory experiments. Though the conductivity varies by many orders
of magnitude with temperature and composition, it is obvious that the

relation of Eq.(2-1-1) holds throughout the temperature range.
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The change in conductivity of rocks with pressure can be at-
tributed to the change in the effective mass, or to the change in the
mobility of current carriers. For example, as interatomic distances
decrease with increasing pressure, the amplitude of thermal oscilla-
tions of atoms will decrease. As a result, the thermal scattering of
charge carriers decreases, and the mobility increases.

In general, semiconductive materials show a relatively large in-
crease in conductivity with the increase of pressure. On the other
hand, when there is a strongly metallic character in composition such
as the sulfides of iron and nickel, which could be possible components
of the earth, the absolute values of the conductivity become high,
while the pressure dependence largely decreases (Parkhomenko, 1982).
Although the pressure dependence of the conductivity of basic rocks
such as gabbro and basalt is particularly higher than that of other
rocks in the temperature range of 100 - 650°C, the conductivity in-
creases only by several factors of magnitude with an increase in
hydrostatic pressure up to 20 kbar. Therefore, in the investigation of
the conductivity structure in the crust and the upper mantle, the
pressure effect is less significant than the temperature effect on
determination of the conductivity of rocks so long as dry state is
concerned. In the presence of water, however, sometimes pressure ef-
fect becomes dominant as will be shown in a later section.

Since the electrical conductivity of rocks depends strongly on
the temperature, high temperature is often considered as a cause of
the high conductivity in the upper mantle. However, reliable experi-
ments for olivine show that the temperature higher than 1500°C is
required for high conductivity of 0.1 S/m (Fig. 2.1). At such a high

temperature, partial melting of rocks will occur in the upper mantle
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(Kushiro et al., 1968). Liquid phase of partially molten mantle
material is considered to be basaltic. Therefore, we have to consider
the bulk conductivity of mantle material with the inclusion of basalt
melt.

Many laboratory experiments indicate that the conductivity of
basalt melt is much higher than that of solid olivine, which is con-
sidered to be a major constituent in the upper mantle, at the same
temperature (Watanabe, 1970; Presnall, et al, 1972; Rai and Manghnani,
1978). Therefore, partial melting can yield a high conductivity at
relatively low temperatures. However, existence of molten magma does
not necessarily mean high conductivity; the degree of interconnection
of liquid phase is significant for the bulk conductivity (Waff, 1974).
If the liquid phase is interconnected with each other through narrow

passages (case(l)), the bulk conductivity , 0 1, can be expressed as

01 = 0 ml30 a+2f(0 w0 &)1/[30 m~f(0 m~0 &)1 (2-1-2),

whereas in case (2) where magma exists in isolated pockets,

O 2 = 0 al0 m+t20 a*2f(0 m~0 o)1/ [0 m+20 a=f(0 m— 0 &)l 2-1-3),

where 0 ., and 0 o denote the conductivity of melt and solid phases,
respectively, and f is the melt fraction ( Waff, 1974). For an extreme
case 0f (0 &/ 0 m)<<f<<K1l, bulk conductivity for cases (1) and (2) can

be expressed as follows:

2f0 m/3 (2-1-4)

Q
[
[}

02 = 0 e (2-1-5)
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Eq.(2-1-5) indicates that the isolated partial melt barely increases
the bulk conductivity. On the other hand, Eq.(2-1-4) tells us that the
existence of the interconnected liquid phase increases bulk conduc-
tivity(proportionally to the melt conductivity and the melt fraction.

Fig.2.2 summarizes the conductivity structure beneath major
ocean revealed by the electromagnetic sounding in various regions.
Each result can be characterized by the existence of a highly conduc-
tive layer below a resistive layer. However, Fig.2.2 shows that the
thickness of the upper resistive layer varies from place to place. We
compare the result of the magnetotelluric sounding conducted in the
region close to the East Pacific Rise (Filloux, 1981) with one in the
Northwest Pacific in the vicinity of the Japan Trench (Yukutake, et
al., 1984). The conductive layer appears at the depth of about 20 km
for the former result, while the resistive layer is as thick as about
150 km for the latter.

It is well~-known that the partial melting reduces the seismic
velocity. The low velocity zone is usually considered to the astheno-
sphere. Oldenburg (1981) made a one-dimensional inversion of seafloor
magnetotelluric data from various regions of different plate age, and
concluded that the highly conductive layer coincides well with the low
velocity layer at the various regions. As Filloux (1980) suggested,
therefore, the concept that the conductive layer indicates the as-
thenosphere seems reasonable.

Although the conductive layer roughly coincides with the low
velocity layer, it has been pointed out (e.g. Rikitake and Honkura,
1985) that there are systematic differences between the depths to
their top; i.e. the depth to the highly conductive layer is usually

deeper than that to the low velocity layer. This fact also supports
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the proposition that the conductive layer corresponds to the astheno-
sphere on account of following reason. At least several percent of
partial melting is required to increase the conductivity to the order
of 107 S/m at about 1200°C, while seismic velocity reduces suffi-
ciently with only a few percent of melt fraction (Shankland et al.,
1981). The depth dependence of the degree of partial melting is a pos-
sible explanation for the above mentioned difference in the depth. At
the shallower depth in the asthenosphere, the melt fraction would be
so small that the electrical conductivity remain almost unchanged but
the seismic velocity is significantly reduced. With increasing depth,
partial melting will proceed to increase the interconnectivity of melt
phase and to yield high conductivity.

In the present study, the electrical conductivity distribution
will be investigated beneath the three oceanic regions around Japan:
i.e. the Pacific Ocean, the Philippine Sea and the Japan Sea. Above
discussions will be of great importance in the interpretation of the

result.
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2.2 Effect of water on the electrical conductivity

For shallower part of the earth's crust, electric conduction is
electrolytic; i.e., the conducting medium is water distributed in the
pore structure of the crustal rock. The electrical conductivity of
water bearing rocks depends on the water content, the salinity of the
water and the geometry of the pore structure.

The conduction of an electrolyte is determined by the mobility
of the ion. In this case the mobility depends on both temperature and
concentration. Increasing temperature of an electrolyte decreases the
viscosity, resulting in a higher terminal velocity of an ion (higher
mobility). If a solution contains high concentration of ions, the mo-
tion of each ion will be influenced by other ions close to it, which
is to reduce the mobility (e.g. Keller and Frishknecht, 1966).

When an electric field is applied to an electrolytic solution,
the amount of electric current can be calculated by multiplying the
number of ions (concentration) by the velocity with which they move.
The current flowing in the electrolyte per unit electric field inten-

sity can be written as:

I = A-F-(C1V1 + C2Vz + ** 4% CxVik***) (2-2-1)

where cx and vk represent the concentration and the mobility for each
identical ion in the solution, and A and F denote the cross-sectional
area through which current flows and Faraday's number, respectively.
The conductivity of the solution can be determined by considering the

current flow through a unit cross-sectional area at a unit electric
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field intensity as:
g = F-(C1V1 + C2Vz + 4 CxVi*"') (2-2-2)

Curves in Fig.2.3 show the relationship between the resistivity
and the salinity of sodium chloride at various temperatures ranging
from 0 to 140°C. Increasing the temperature decreases resistivity
(increases conductivity), as has been previously explained. High con-
centration of ion decreases the mobility and thus has an effect of in-
creasing the resistivity to some extent. However, high concentration
means that the density of charge carrier increases at the same time.
As a result, the resistivity of the solution decreases as increasing
the salinity. However, the rate of decrease is reduced for higher con-
centration. The bulk conductivity of a water-saturated rock should be-
have in the same way.

Qhen a rock is partially saturated with water, the bulk conduc-
tivity increases with the increase of the water content. In partial
saturation, we have to consider the effect of desaturation on bulk
conductivity. The texture of rock also has some contribution to the
conductivity, as has been the case of the partial melting in the pre-
vious section.

Porosity of rocks can be classified into three general groups on
the basis of their geometry. As for consolidated sedimentary rocks and
volcanic ash bed, porosity is called as intergranular, which consists
of the rock grains and the space left after the grains were compacted.
In the second group, porosity is primarily formed as joints, which can
be seen in most igneous rocks. The third group of porosity, common in

limestones and in some volcanic rocks, is called as vugular, consist-
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ing of large, irregular cavities.

Pore spaces should be connected and filled with water in order
to yield a high electrical conduction through the bulk rock. In all
three types of porosity, pore volume consists of two parts; large
cavities and narrow passages which are called the storage pores and
the connecting pores. Most of the resistance to the electric current
flow is caused by the connecting péres, because they have much smaller
cross-sectional areas. Therefore, a rock with the higher ratio of con-
necting pores. to storage pores will have the higher conductivity for
the same porosity.

In general, the pore geometry is quite irregular so that the
relationship between the conductivity and the pore volume should be
determined empirically. A large number of of experiments have been
done in correlating the conductivity and the water content. The result

has led to the well-known Archie's law expressing the relation as:
¢ = agd wp ™ (2-2-3)

where ¢ and 0 . denote the bulk conductivity and the conductivity of
pore water, respectively, ¢ is the porosity expressed as a fraction
per unit volume, and a and m are the parameters which should be deter-
mined empirically.

The value for the parameter a varies from slightly less than 1
for rocks with intergranular porosity to slightly more than 1 for
rocks with joint porosity. Meanwhile, the exponent m is known to take
values around 2; which is a little larger than 2 for well-sorted
granular rocks, and somewhat less than 2 for poorly sorted granular

rocks.
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Fig.2.4 shows the conductivity models in various continental
areas, which were obtained by different investigators using a variety
of techniques and represent results of both one-dimensional and two-
dimensional modeling. In general, the electrical conductivity struc-
ture beneath a continental region can be divided into at least three
parts: (1) a surface layer of high conductivity possibly associated
with sediments and groundwater, (2) a low conductivity layer as-
sociated with crystalline basement, and (3) a deeper high conductivity
layer. The deep conductive layer is often associated with the upper
mantle or the lower crust beneath a tectonically active region and can
be explained by partial melting. On the other hand, a highly conduc-
tive layer is sometimes found at relatively shallower depth even
beneath the stable continental shield area. Some examples o0of conduc-
tive material used to explain crustal high conductivity include water
(Hyndman and Hyndman, 1968; Dvorak, 1975; Olhoeft, 1981), hydrated
minerals such as clays (Drury and Hyndman, 1979) and serpentine
(Stesky and Brace, 1973), Magnetic oxides (Stesky and Brace, 1973),
graphite (Alabi et al., 1975) and sulfur (Olhoeft, 1981).

Among these possible mechanisms to enhance electrical conduction
of crustal rocks shown above, the presence of water are most
frequently proposed. At shallower depth, the strong influence of water
on the electrical conductivity of rocks has been shown previously.
However, at the temperature and the pressure of lower crustal depth,
water is considered to be in a super-critical state. Quist and Mar-
shall (1968) showed that ionic fluids become insulating with increas-
ing temperature at high pressure. This result may be negative to the
proposal to ascribe the cause of high conductivity in the lower crust

to the presence of water.
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Olhoeft (198la,b) showed that the presence of water effectively
increases the conductivity of granite and basalt (Fig.2.5(a)). Some
hydrated and magnetic oxide bearing rocks, especially serpentinites,
do have appropriately high conductivity (Drury and Hyndman, 1979).
However, Stesky and Brace (1973) noted that not all serpentinites have
high conductivities but they resulted from the presence of free water.
The above results indicate the difference in the effects on conduc-
tivity between the free and structural waters. Olhoeft (1981) measured
a hornblende schist in vacuum and obtained essentially the same con-
ductivity as that of dry granite (Fig.2.5(b)) so long as the
hornblende was kept below the temperature where structural water was
released or else the released water was removed by the vacuum pump.

Thus, the presence of a water-rich fluid seems one of the most
probable explanation for the high conductivity in lower crust. But
we have to consider the problem whether and how water exists in the
lower crust.

Norton and Taylor (1979) inferred water penetrations to 6-10 km
from oxygen isotope depletions. Gregory and Taylor (1981) also sug-
gested that convective fluid flow in fractures can penetrates the
oceanic crust into the mantle. These results support an open crust to
movement of pore fluid; the water in the lower crust are essentially
of meteoric origin.

On the viewpoint of the connection to the surface being poor,
Fyfe et al.(1978) argued for the persistent fluids having water pres-
sure almost equal to the lithostatic pressure, particularly in the
metamorphic regions. This condition implies that the porosity would be
kept open by the relatively high pore pressure under the lower crustal

condition. In the island arc, this situation would be a conceivable
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one because of the possible dehydration of an underlying subducted
slab (Takahashi, 1978; Tatsumi et al. 1983).

In order to explain the electrical conductivities, it is not
necessary to insist either on an open fluid circulation or on trapped
water model in the lower crust. What should be emphasized here is that
the presence of free water is one of the most promising cause for a

highly conductive layer at lower crustal depth.
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Fig.2.1 Temperature dependences of various rocks and minerals. 1)
peridotite and olivinite (Dovorak, 1973); 2) pyroxine (Duba, et al,
1973); 3) Garnet (Kariya and Shankland, 1983); 4) granite (Olhoeft,
1981); 5) Indian basalt (Gupta and Sharma, 1978); 6) oceanic basalt
(Drury and Hyndman, 1979); 7) olivine basalt (Watanabe, 1970); 8) an-
desite (Tyburczy and Waff, 1983); 9) Ultramafic rocks (Rai and
Manghnani, 1978).
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Table 2.1 Summary of the

oceanic areas in Fig.2.2.

32

electromagnetic investigations in the

Abb. Locality Method™ Reference

EPR East Pacific Rise MT Filloux (1981)

JF Juan de Fuca Ridge GDS Law and Greenhouse (1981)

HW Hawaii 1E Klein and Larsen (1980)

JNWP Japan Trench, NW Pacific MT Yukutake, et al.(1983)

MNWP Mariana Trough, NW Pacific MT Filloux (1981)

NEIC Northeast Iceland MT Belbo and Bjorunsson (1980)
NWA Northwest Atlantic GDS Poehls and von Herzen (1976)

%) MT: Magnetotellrics, GDS:

effect.

Geomagnetic depth sounding, IE: Island



Table 2.2

Summary of the electromagnetic

tal areas given in Fig.2.4.

investigations
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in continen-

Abb. Locality Method™ Reference

WAC West African Craton, Mali MT Ritz (1984)

NAS Central African Shield, Niger MT Ritz (1983)

SAC South African Craton DC Van Zjil, et al.(1975)

ANY Adironduck, New York CSEM Nekut, et al.(1977)

SCS Scandinavian Shield, Norway HSG Jones (1980)

FSW Fennoscandia, Sweden MT Jones (1982)

CAU Central Australian Shield DC Constable, et al.(1984)
%) MT: Magnetotellrics, DC: Direct current sounding, CSEM: Control
source electromagnetic sounding, HSG: Horizontal spatial gradient

method.
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3. Theory of Interpretation

The ultimate aim of the present investigation is to obtain the
two-dimensional structures of the earth from electromagnetic observa-
tions. The method consists of the following steps.

(1) Calculate one dimensional conductivity models by the mag-
netotelluric analysis for the available sites.

(2) By interpolating the obtained structure, construct a start-
ing model for the further two-dimensional analysis.

(3) Evaluate theoretical responses from the starting model by
using a FEM method. |

(4) By calculating partial derivatives of the response functions
for the model, refine the model iteratively.

For the investigation, one dimensional inversion of magnetotel-
luric data, calculation of two-dimensional inductive responses, and
the direct inversion method for two-dimensional conductivity distribu-
tion are employed. These techniques are newly developed in the present
study. Following, the fundamental theory of each step and the develop-
ment made in the present investigation are explained in detéil. The

coordinate system used in this study is given in Fig.3.1.
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3.1 Maxwell's equation and the induction equation

The basic equations in electromagnetic induction study of the

Earth are Maxwell's equations which can be expressed as follows:

VxE= 9B/Jt (3-1-1)
VxH=1J+3dD/dt (3-1-2)
VD =0 (3-1-3)
VB =0 (3-1-4)

The magnetic induction B, the electric displacement D and the
electric current J in the above equations can be obtained from the

magnetic field H and electric field E:

B = uH (3-1-5)
D = ¢ E (3-1-6)
J = 0 E (3-1-7>

where # , € and ¢ are the magnetic permeability, the dielectric con-
stant and the electrical conductivity, respectively. Throughout the
present study, # and € are assumed to be constant everywhere with
values equal to those of the vacuum. We assume that the time variation
of the electromagnetic fields are sinusoidal with an angular frequency
w . Then, time derivative, 9 /90t in Maxwell's equations can be re-
placed with -iw . For the frequency range we concern, the displacement
current can be neglected; i.e. iwD = 0. Eliminating B, D and J with
the aid of Eqs. (3-1-5), (3-1-6) and (3-1-7), we can reduce Maxwell's

equation (3-1-1)-(3-1-4) to
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V xE=iwuH (3-1-1)"
V xH=0E (3-1-2)"
V ‘H =0 (3-1-3)"'
V ‘E =0 (3-1-4)"

Taking curl of Egs. (3-1-1)' and (3-1-2)' we have,

VxVx E = iw uVxH (3-1-8)

VxI(1/6)Vx H 1 = VxE (3-1-9)

Substitution df Eq.(3-1-2)"'" into Eq.(3-1-1)' leads us to the following

equations:

VxxVx E = iw o E (3-1-8)"

VxI[(1/0 )V x H ] iw u H (3-1-9)"'.

Thus, the variables E and H can be separated with each other. These
two independent equations are the basic equations for the electromag-
netic induction studies and are called the induction equations. If
either quantity E or H is obtained by solving the one of the induction
equations, the other field variation can be derived by taking curl

operation on the former as evident from egs. (3-1-1) and (3-1-2).
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3.2 Evaluation of one-dimensional magnetotelluric impedance

One-dimensional analysis is the most conventional and well-known
technique in the magnetotelluric sounding method. Its basic concept
was first founded by Cagniard (1953). In the one-dimensional modeling,
we assume that the conductivity, o, is horizontally uniform, and the
electromagnetic wave is a plane wave traveling in Z direction whose
electric field vector has only X-component Ex. Then the vector equa-
tion (3-1-8)' can be expressed by a scalar field component E,x as

follows:

D 2Ex/ 9 z* = iw u 0 Ex (3-2-1).

A typical solution of Eq.(3-2-1) has a form:

Ex = A explx 7 21 (3-2-2),

where A is an arbitrary constant and ¥ denotes the wave number, which

can be written explicitly by using # and o0 , and the frequency, w ,

as

' = [ iwpa 1172 (3-2-3).

In general, the wave number consists of a real and a imaginary

part and is expressed here as follows:

-~
1}

1 +1i)/ & (3-2-4),
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where

) = [ wypo/2 17272 (3-2-5).

This indicates that, when the electromagnetic wave is traveling in a
conductive medium, the amplitude decays along the travel path. The
amplitude of the wave is attenuated by a factor of 1/e in a travel
distance 8 , which is usually called the skin depth. The skin depth is
an important and useful parameter in the electromagnetic sounding
methods because it gives a guess of the field penetration depth into
the earth, or the sounding depth. Eq.(3-2-5) shows that the skin depth
is a function of frequency and conductivity. Fig.3.2 gives the rela-
tion of the skin depth to frequency and conductivity.

Since the positive and the negative value of 7 can be a solu-

tion of Eq.(3-2-1), a general solution is expressed as

Ex = A expl+7 2] + B expl-7 21 (3-2-6)

The first and the second terms of the right-hand side of Eq.(3-2-6)
corresponds to the upward and downward traveling waves, respectively.
Here, we must evaluate the unknown constants A and B from the boundary
conditions.

By using the relation between the electric and the magnetic

fields in Eq.(3-1-1)', we have in this case:

d Ex

= -iw u Hy (3-2-7)
d 2z
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Using the expression for the electric field in Eq.(3-2-6), the mag-

netic field can be written as:

Hy = -7 ( A exply 21 - B expl-7 21 )/iw u (3-2-8)

By combining Eq.(3-2-6) and (3-2-8), we can determine the ratio of
electric to magnetic field strength of electromagnetic wave travailing

in a medium: i.e. the impedance of the medium as follows:

-iw g C A exply 21 + B expl-7 21 )
Z = Ex / Hy = (3-2-9)
¥ ( A expl7y 2] - B expl-7 21 )

When the medium is a homogeneous half space, there exists no upward
traveling wave. Hence, the impedance at any depth can be simply writ-

ten as:

z = iwu /7 = (iwyp / o )72 (3-2-10)

From this equation, we can obtain a simple expression for the apparent

resistivity for the magnetotelluric method (Cagniard, 1953):

0 a = 1 Z1 2/ wu (3-2-11)

Eq.(3-2-10) tells us that the phase difference between the electric
and the magnetic field will be 45 degrees when the earth is
homogeneous.

For a horizontally stratified earth model shown in Fig.3.3, both

the upward and the downward traveling waves should be taken into ac-



count for each layer. Using hyperbolic cotangent, Eq.(3-2-9) can be

rewritten as

iw u
Z = - ——cothl 7 z + 1n(C)1 (3-2-12),
7
where,
C = ( A/B )»*72 (3-2-13).

The constant C can be determined from boundary conditions. Eq.(3-2-12)

can be expressed as
In{ C ) = coth™[ -7 Z(zy)/iw u 1 - 7 21 (3-2-14).

for z=z.:. Then the impedance at another depth z in the same layer can

be evaluated from

v Z(z21)
Z(z) = iwpu/r [ 7 (z3-2) + coth™[ —— 1 1 (3-2-15).
iw u
Therefore, the impedance at the surface, Z(0), can be expressed with

the one at the interface between the top and ihe second layer, Z(z.),

by using Eq.(3-2-15):

g 7 12(21)
Z0) = iw u /7 1 cothl 7 1hy + coth™*[ ——1 1 (3-2-16),
iw u

where h; is the thickness of the top layer. In the same manner, the
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impedance at the top of the k’'th layer is written by

7 xZ(2zZx)
Z(2x-1) = iw U /7 « cothl 7 khk + coth™*[ — 1 1 (3-2-17>,
iwu
where hx is the thickness of the k'th layer, zx—-2x-i1. At the top of

the n'th layer which extends to infinite depth, zn = o, the impedance

becomes simply:

Z(2Zn-1) = —_— = (( — ) 72 (3-2-18).

Eqs. (3-2-16), (3-2-17) and (3-2-18) give the regression formulae to
obtain the surface impedance for a multi-layered model.

Fig.3.4 shows theoretical sounding curves (apparent resistivity
and phase at the surface vs. frequency) for a simple two-layer model.
Frequency is normalized by the characteristic value which gives a skin
depth equal to the thickness of the first layer. Here following fea-
tures should be noted:

1) If the frequency is higher than the characteristic value, the
apparent resistivity approximately gives the resistivity of the first
layer.

2) At sufficiently low frequencies, on the other hand, the ap-
parent resistivity gives the true resistivity of the second layer.

3) When the substratum is more conductive than the top layer,
the phase is greater than 45°, otherwise it is less than 45°.

These features can be used for the first rough interpretation of

the actual data.
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3.3 One-dimensional inversion of magnetotelluric data

One dimensional inversion is now a popular technique for the in-
terpretation of the magnetotelluric data. For the inversion, two dif-
ferent approaches have been taken. One is the layered earth model
(e.g&. Jones and Hutton, 1981), where the regression formula given in
the previous section are utilized. In the other approach, continuous
variation of the electrical conductivity with depth (Oldenburg, 1983)
is assumed, in which numerical integration of the induction equation
is required. In both methods, the observed impedances at various
frequencies are utilized to determine the conductivity distribution as
a function of depth. In the present study we apply a layered model ap-
proach, since the layered model is more appropriate as a starting
model for the later two-dimensional numerical modeling. In this case,
the conductivity and the thickness of each layer are the unknown
parameters to be determined.

The present method includes two steps. First, an optimum model
is determined by a modified Monte-Carlo method. Then, the confidence
limit of the optimum parameter is derived from the variation of x 2
against various values 0of the parameter. The scheme is explained in
the following.

For the actual modeling, we assume complex impedances at m dif-
ferent frequencies have been obtained from the observation. Then, the
conductivity and the thickness of each layer, are searched for so as

to minimize

1 m 1
X % = r {logl Zow(f1)] - logl Zo(£fs)} % (3-3-1),
W i=1 e(f,)*
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where Z.(f;s) and Zow(f.) are the calculated impedance and the ob-
served impedance at the frequency of f;, respectively. W is calculated

from

1

(3-3-2)
i=1 e(f;)?

where e(f;) is the observation error. The weight is determined so that
Data with a shaller error has a larger contribution in determination
of the layer parameters. Since the impedance is a complex quantity
with real and imaginary parts, X * of Eq.(3-3-1) has a degree of
freedom of 2m. (This is not always valid, for all the impedances are
not independent. More precise discussion will be given later.) On the
other hand, the degree of freedom of n-layer model is 2n-1 because
each layer has two parameters:i.e. thickness and conductivity, while
the bottom layer has an infinite thickness. Thus, the number of layers
that can be determined by this data set will be at most m.

Many schemes have been applied to minimize x * in Eq.(3-3-1).
Here we used a method which determines the layer parameters by gener-
ating random numbers successively (Jones and Hutton, 1981). The advan-
tage of using this method is that the parameters of the optimum model
are independent on the starting model. On the other hand, this method
requires a large number of calculations. So the time consumptioﬁ for
the numerical calculation may sometimes be a disadvantage. However,
since the theoretical impedance is given by simple analytical forms
(Eqs.(3-2-16),(3-2-17) and (3-2-18)) in the present case, the calcula-

tion is not so time consuming.
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In this method, the conductivity and the thickness of the i'th

layer for a new model are derived from:

g ' = 0 * X %, (3-2-3)

h*'; = hy -y "2 (3-2-4)

where r, and r, are the independent Gaussian random numbers with zero
means and unit variances. The dashed parameters refer to those of the
new model. X and y give limits for conductivity and thickness. Usually
we take 10 fof y and 100 for Xx. This means that the layer thickness
and the conductivity can vary within ranges of two and four orders of
magnitude, respectively. The range is sufficiently wide to reduce the
effect of the initial assumption. Thus, this method is almost indepen-
dent of the initial values. The theoretical responses Z'-(f;)
" (i=1,--,m) are calculated for the new model and compared with the ob-
servation. The value of x '? is calculated from Eq.(3-2-3) and (3-2-4)
by replacing Zo(f:) with Z'c(f;). If x '® is smaller than x * , then
the previous parameters are replaced by the new values. If x '? is

greater than ¥ 2, no action is taken and continues to generate other

random number. The whole process is terminated when the value of x 2
becomes less than a presetted limit.

Each parameter (conductivity and thickness) is now very close to
the value which gives the minimum value of x 2 in the 2n-1 dimensional
space. Next we examine the confidence interval for each parameter.
Fig.3.5 shows an example of the x *-p . and X *-h; sections for a

three layer model. The distribution ,of x * against each layer

parameter is approximated by the fourth order polynomial as follows,
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X 2(dy) = a0,y + az.:1ds + az.:d;% + asz,;d;® + aq,;d;* (3-3-5)

where d;y denotes log of either the resistivity, o i, or the thick-

ness, h; normalized by its optimum value, p °®;y or h°®;; i.e.

d: = logl p:+ / p°®: 1 or log [ hy / h°®, 1 (3-3-6)

The curves in Fig.3.5 are the best fit curves obtained by the least
squares sense. The steepness of the curve reflects the resolution of
the determination of each parameter. Here we define the confidence in-
terval of determination by the half width of the curve as is shown in
Fig.3.5.

In this way, we can determine the layer parameters and their
confidence limits for the n-layer model. According to the previous
brief discussion about the degree of freedom, number of layers can be
equal to the number of frequencies where impedances are obtained.
However, not all the impedances at different frequencies are indepen-
dent in many cases. Hence, we have to determine an optimum number of
layers for the available data set.

The procedure is done by carrying out the inversions succes-
sively with increasing the number of layers, n. While the number of
layers, n, is less than the optimum value; i.e. the degree of freedom
of the data set, the x 2 for the n layer model, X *(n), will decrease
with increasing n. But it will be almost constant for n's greater than
the optimum number nop. Fig.3.7 shows examples of the determination of
Nop. INn this example, three-layer model are appropriate for most of
the results, since x 2 scarcely decreases for four or five layers. The

minimum X 2 is different from site to site depending on the noise
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level and the number of data points for each site.

In the magnetotelluric sounding, it is often very interesting to
know how deep the deepest layer (third layer in this case) continues.
The sounding depth is given by the skin depth (Eq.(3-2-5)) at the
lowest frequency, providing the structure is homogeneous. The maximum
sounding depth for a multi-layered model should be defined analogous
to the skin depth for a homogeneous medium. Assume we have an optimum
n-layer model by using the above mentioned method. Then, a boundary is
added below the deepest boundary of the optimum model, where the con-
ductivity contrast at this boundary is one order of magnitude. If the
assumed boundary is deep enough compared to the actual sounding depth,
X ® calculated with the additional substratum little differs from the
optimum value. However, X * will be significantly larger than the op-

timum value when the additional boundary is too shallow. In this way

we define the maximum sounding depth as the depth of the additional
boundary by which the calculated x * departs from the optimum value by
10%.

The validity of the above definition was examined by use of a
homogeneous model. In this case, the maximum sounding depth should be
coincide with the skin depth of the lowest frequency. Theoretical ap-
parent resistivities and phases were obtained at five different
frequencies, and several scatters were added to the data. Then, the
maximum sounding depth was estimated by the above mentioned process.
The results are shown in Fig.3.6. Level of scatter in each data set is
denoted by 's' for each case in the figure (s=0.5 corresponds to the
scatter of 50% of the true apparent resistivity). Curves denote calcu-
lated x ® for each data set by varying the depth of the additional

boundary. Curves with dots and crosses correspond to the resistive and
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conductive basement case by one order of magnitude compared with the
first layer, respectively. The estimated maximum sounding depths are
shown by arrows. It is natural that the estimated depth is much shal-
lower than the skin depth of the lowest frequency with large scatters
in data, while they are comparable with little scatter of less than
10% or so (Fig.3.6).

By use of the result of the one-dimensional modeling, the start-

ing model is constructed for the further two-dimensional modeling.
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3.4 Two-dimensional modeling technique by a finite element method

If the electromagnetic field variations are independent of the Xx
coordinate and the electrical conductivity is ﬁniform in x direction,
it is well known that the induction equations given by Eqs. (3-1-8)'
and (3-1-9)' are decoupled into two modes. In an analogy of wave
guide, these two modes are called E-polarization mode and H-
polarization mode, respectively. In the former case, the electric
field has only one component parallel to the strike of the structure
(x-direction) , while two components of the magnetic field exist in
the plane perpendicular to the strike. In the latter case, the mag-
netic field varies along X-direction and the electric field is con-
fined in the y-z plane. In both cases, the vector induction equations
(Egqs.(3-1-8)"' and (3-1-9)') can be reduced to scalar differential
equations with respect to x-components of electric (E-polarization)
and magnetic (H-polarization) field variations, respectively.

By solving the induction equation under a given conductivity
distribution, we can evaluate the theoretical inductive responses for
the two-dimensional problem. Various methods have been adopted to
numerical modeling of the two-dimensional conductivity structure. For
example, Jones and Price have put forward a simple formulation by a
finite difference method (FDM). Since then, progresses have been made
by many authors (e.g.. Jones and Pascoe (1972), Brewit-tylor and
Weaver (1978)). Swift(1971) and Madden and Swift (1969) made a dif-
ferent approach based on a network analogy of transmission lines.
Other methods, such as a finite element method (Coggon, 1971; Rodi,

1976; Ogawa et al.,1986) and integral equation method (Hohman, 1975;
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Lee, 1975) have been used for two-dimensional electromagnetic model-
ings, and have provided useful basis for a two-dimensional or even
three-dimensional (Hohman, 1975; Weidelt, 1975) interpretations.

In this study, a finite element method was employed to solve the
two-dimensional induction equation. This method is the most ap-
propriate one to model the complicated structure. Basic concept of the
FEM modeling scheme used in this study will be reviewed in the follow-

ings.

3.4.1 Formulation of Galerkin equation

Letting /9 x

0, the induction equation for each mode can be

expressed as

5] o) o Ie)
[ ( h ) + ( h ) + A 1 u=0 (3-4-1)>
Ay Ay dz Dz
where, for E-polarization mode,
u = Ex (3-4-2)
h = 1/C¢iw u#) (3-4-3)
A = g (3-4-4)

and, for H-polarization mode,

u = Hx (3-4-5)
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h =1/0 (3-4-6)

A = i Hu (3-4-7)

Here, we call the scalar variable u as the electromagnetic potential,
because the other field variables (y- and z-components of the magnetic
and the electric fields for E- and H-polarization cases, respectively)

can be obtained by taking spatial derivatives of u as follows:

3u
Hy = - h
oz (3-4-8)
du
Hz: = h
QY (3-4-9)

for E-polarization case, where h is given by Eq.(3-4-3). Similarly,

for H-polarization case, we have:

3u
E+ = - h
Jdz (3-4-10)
Ju
E2 = - h
oYy (3-4-11)

where h is given by Eq.(3-4-6).

We solve the partial differential equation (3-4-1) for an in-
homogeneous medium by use of the finite element method (FEM). The
basic concept of FEM is reviewed briefly here. Let a partial differen-

tial equation with an unknown variable u be written as:

R(us;y,2) =0 (3-4-12)

Any approximate solution, v, of Eq.(3-4-12) will generally give
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non zero residual; R(v;y,2)# 0. Assume that the residual is integrated
over the entire region under investigation, and that the resulting in-
tegral takes null for a set of approximate solutions. In FEM, the ap-
proximate solution is determined so that the weighted integrals of the

approximate value of Eq.(3-4-12), is null over the entire region:

R = § & 8 Vv-R(v;y,2z) dS = 0 (3-4-13)

where weight function 8 v is the variation of v, which is called here
the test function. For numerical evaluation of Eq.(3-4-13), the whole
space is divided into E elements with 'finite' areas. In this study,
triangular elements are applied. By use of the finite element ap-
proximation, total residual can be written by summation of residual of

each elements:

"
(o]

E
Y § se 6 Ve R(Ve:iy,2z) dS (3-4-14)
e:

1
where, § se dS denotes the areal integral in the e'th element

(Fig.3.8). In the present problem of Eq.(3-4-1), this may be written:

E Pe d Ve 3 d Ve
L §se 8ve [ h + h + A *Vel dS = 0 (3-4-15)
e=1 Yy 9V 3z oz

By performing partial integrals, we obtain so-called Galerkin equation

as follows:
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E BVe BSVe O Ve aSVe

L § se [ h — .+« — + h— - —— + A Ve 1 dS -

e=1 Yy Y Jdz Jdz
E J Ve
Y §Secel h:+: —-:8veldl = 0 (3-4-16)
e=1 : - 3n

where § cedl and 3/ O n denote the line integral along the boundary
of e'th element and the differentiation normal to the boundary,
respectively.

In this study, triangular element with a linear interporation
function is applied. Fig.3.8 illustrates the situation with respect
to the e'th element. The approximate solution in the e'th element, v,
is explicitly written by the product of the interporation function and
the potential at the nodes of each element, which should be determined

by FEM:

Ve = T{ ¢ o(y,2) }:{ Vo } (3-4-17)

where T denotes the transpose. In Eq.(3-4-17), vector quantities can
be written as follows:

TP oa(¥,2)} = [D i.e(¥V,2),D 5.6(V,2),D k.e(y,2)] (3-4-18)
and

{ Ve } = TIVi.esVi.0sVk.el (3-4-19)

For the e'th element shown in Fig.3.8, the interporation function at

i'th node takes the form:

D i1.e(y,2) = ( ay + bi*Xx + C1°y )/2A o (3-4-20)

where A o is the area of the e'th triangle and,
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as = Y32k T Yk“Zj
by = z5 - zx (3-4-21).
Cs = Y = Y

The interporation functions at j'th and k'th nodes can similarly be
evaluated by a combination of the coordinate of each node.

In Galerkin's algorithm, the same interporation function given
by Eq.(3-4-20) is used for the test function, & Ve, in Eq.(3-4-16).
Since the coordinate of each node is given, Eq.(3-4-16) can be reduced
to a simple linear equation with an unknown vector v. Finally, the ap-
proximate solution of the induction equation can be obtained by solv-

ing a simple matrix equation

Alw ,0 ,T) Vv = b (3-4-22)

where A is a matrix determined from the frequency, w , the conduc-
tivity of each element, o0 , and the coordinate of each node, r, while

b denotes a vector describing boundary conditions.
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3.4.2 Boundary conditions

The approximate value of the electromagnetic potential, u, can
be obtained at each node by solving the matrix equation under ap-
propriate boundary conditions. Fig.3.9 describes the boundary condi-
tions applied in the present study. The origin of the electromagnetic
disturbances are considered to exist in the ionosphere or the magneto-
sphere. So we assume, as the source boundary condition, that the

electromagnetic potential is unity at the top of the whole region,

uly, 2> =1 at 2 = Zton (3-4-22)

In other word, we investigate the electromagnetic response from an in-
homogeneous earth by applying uniform source field variation. The
height of the top boundary should be taken sufficiently high so that
the internal field generated by electromagnetic induction is negli-
gible at the boundary. For the side boundaries, at y=y. and y=Ye, the

natural boundary condition is adopted, i.e.

3 uly,2)

an

0 at ¥y = Yw and y = Ye (3-4-23)

This means that the field variation obtained by spatial derivative of
the potential has only the horizontal component. This condition is
somewhat artificial. Therefore, these side boundaries also should be
set up far away from the region under investigation.

The electromagnetic potential is assumed to be null at the bot-
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tom boundary, 2Z2=Zwvot:

uly,z)> =0 at 2z = Zuot (3-4-24)

This condition indicates that the perfect conductor exists below the
bottom boundary. If the boundary is sufficiently deep, this condition
seems reasonable, because the conductivity increases by several orders
of magnitude at the depth of 400-600km as revealed by the spherical
harmonic analysis (e.g. Banks, 1969; see Chapter 1).

Conditions given by Eas.(3-4-22), (3-4-23) and (3-4-24) are ap-
plied both for E- and H-polarization modelings. As for the H-
polarization case, following boundary condition is additionally

required:

3 ufy,z)
dt

= O at Z = Zaur (3"4—25)

where o /0 t denotes the tangential differentiation. This condition
means that the normal component of the electric field should be zero
at the earth's surface because the air can be regarded as a perfect
insulator.

Once the electromagnetic potential at each node is calculated,
the other field variables can be derivéd by taking spatial derivatives
given in Eqs.(3-4-8)-(3-4-11). Since the linear interporation function
is used here, these field variables are uniform in each element. This
situation requires that the size of each element should be small
enough to represent the complex feature of the electromagnetic

responses in such a case that a large contrast is expected between the
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subterranean conductivity inhomogeneities.

3.4.3 A scheme for automatic mesh division

The advantage of using FEM for the numerical modeling lies in
its applicability for the problem with arbitrary shaped boundary. Par-
ticularliy, use of triangular elements enables us to simulate a struc-
ture with a fairly complicated feature. For example, in case of the
interpretation of the result of seafloor measurements, we have to make
a mesh network to model a complex shaped bathymetry; gradually deepen-
ing continental shelf, steep cliffs around trench etc.. Since the con-
ductivity contrast is very large between the sea water and the land,
the shape of model bathymetry should be as smooth as possible.

However, it takes much more time to make the mesh network than
that to make numerical calculation on computer, if the mesh division
is left to manual work. Therefore, in the present study, a practical
scheme was developed for dividing triangular elements automatically.

The scheme consists of three steps as follows:

1) The entire region is first divided into rectangular mesh, where y-
and z-coordinate of each node are given as input data (Fig.3.10). Rows
are divided into closer spacings around the earth's surface. At the
same time, columns are divided so as to provide a sufficient spatial
resolution in the region under investigation. Letting the numbers of

rows and columns be ny, and n., respectively, the total number of nodes
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becomes ny-'n., and the number of rectangles becomes (ny-1)-(n=-1).

2) Each rectangle is divided into two triangles by a diagonal line.
Two different ways are considered for the division as shown in
Fig.3.11(a). The choice of the separation is given manually. Four
modes can be considered for the division of a row (Fig.3.11(b)). Thus,
the total number of triangular elements becomes 2-(ny-1)-(n-~1).

3) Global numbering is made for each node and element, i.e. nodes and
elements are numbered sequentially in the entire region. The nodes of
each element are also numbered locally. The local number of a node
should correspond one to one to its global number.

4) Then, the entire region is divided into large polygonal blocks, so
that the electrical conductivity in each block is constant. Data for
each inhomogeneity consists of the number of corners, the coordinates
of each corner and the code which indicates the conductivity in the
block.

5) Mesh configuration is modified so that each side of the polygonal
blocks of inhomogeneities coincides with a side of any triangular ele-
ments. Fig.3.12 describes schematically how the adjustment is made for
each side. Then, codes are assigned to the corresponding elements to

the conductivity inhomogeneities.

By use of this scheme, the time for the division of mesh network
is much reduced. The adjustment described by Fig.3.12 enables us to
represent a fairly complicated structure. Fig.3.13 is an example of
the mesh network representing a cross section across central Japan. It
is obvious that the shape of the subducting Philippine Sea Plate
beneath the Japan Arc is well represented by a smooth line. In par-

ticular, sea floor topography should be as smooth as possible in the
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induction modeling because the effect of sea water is quite sig-
nificant in the geomagnetic induction. Without the adjustment scheme,
the slope is described by steps, which may cause erroneous results in
the electromagnetic induction on the sea floor.

Mesh networks of two different scales were made in this study.
One has 30 rows and 36 columns, or 1080 nodes and 2030 elements; the
other has 42 rows and 78 columns, or 3276 nodes and 6314 elements. The
former was used for the calculation of simple artificial models given
in Section 3.6. The latter was used for the interpretation of the ac-
tual data, which will be seen in Chapters 6 and 7. The computer.
storage required for the calculation by use of these networks were 1.6
MB and 4.8 MB for the forward evaluation, and 3.8 MB and 10MB for the

inverse calculation which will be explained in the next section.
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3.5 Two-dimensional inverse problem

In this section, a mathematical formulation is presented for the
direct inversion of the observed magnetovariational and magnetotel-
luric data. In the electromagnetic induction problem in an in-
homogeneous medium, the rule of superposition does not hold, because
electromagnetic fields perturbed by different inhomogeneities couple
with each other. This situation often makes it very difficult to ex-
plain the observed inductive responses by a model calculation. There-
fore, an approach by a direct inversion is desirable in order to ob-
tain an unambiguous electrical structure. Since the situation is thus
inevitably non-linear, generalized non-linear inversion technique
should be applied to solve this problem.

If observable quantities can be calculated theoretically for an
applied set of model parameters, and if the Jacobian matrix, the
matrix of the partial derivatives of the theoretical equation with
respect to each parameter, is obtained, optimum parameters can be
determined iteratively as has beén reviewed by Tarantola and Valette
(1982). First, in this section, the expression of the partial deriva-
tives of electromagnetic responses from inhomogeneous conductivities
are put forward for two-dimensional conductivity structure by using
FEM, and the possibility of the direct inversion of two-dimensional
conductivity structures is discussed later. Similar approach has been
done by Ku (1976) by use of a network method for the inversion of two-
dimensional magnetotelluric data. Jupp and Vozoff (1977) has made a
good progress using a finite difference method, although their algo-
rithm is based on the linearization of the problem and their formula-

tion is restricted to the magnetotelluric method. Weidelt (1975)
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presented a two-dimensional inversion for magnetovariational data
using the integral equation method, in which undulation of the per-
fectly conductive layer or the conductivity distribution in an in-
homogeneous thin sheet conductors was determined. In this study, more
general formulation has been given and some improvements are achieved

as compared with the previous works.
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3.5.1 Parameters in the inverse problem

We consider a physical system which is described by a finite set
of parameter X = {(X:,Xz,°***Xm}, which consists of two types of quan-

tities as shown below.

D1
X], Dr D
X = 2 = Pa = (3-5-1)
Xm : P
Pa

where vector D is usually called data which is directly observable,
while vector P is called the parameter. In geophysical terms, D cor-
responds to observational data, and P to the physical properties of
the Earth's material. More generally, D and P are functions of data
and physical properties, respectively. P may include positions of in-
homogeneities in the medium. However, we assume here that the position
is fixed and only the physical properties vary for the sake of the
simplicity.

Let any particular value of the parameter set be denoted by x =
{X1,X2,°***Xm}, and physical description of them be expressed in a

functional form:

f(x) =0 (3-5-2)

When the parameter X takes partitioned form of Eq.(3-5-1), Eq.(3-5-2)
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can be replaced by a set of theoretical equations:

d = g(p) (3-5-3)

Here we attempt to determine the parameter p from the observed data d
in the least squares sense. In general, a priori information on the
parameter set is required for the least squares process. We assume
that all a priori information takes the form of a vector of expected
values Xo and a covariance matrix Co. Here, they are also assumed to

have partitioned forms:

do Caoao Caopo
Xo = s Co = (3-5-4)

Po CDOdO CpOpO

Setting up these situations, the iteration formula can be written as

follows (see Appendix A):

Pxer1 = Px * (TGk'Caocao '*Gx + Cpopo *) *-

{ TGK~Cd0do“1°[do—g(pk)] - Cpopo-1°[pk-po] } (3-5-5)

where the suffix k indicates the k'th sequence of the iteration
process. Gy is the matrix of the partial derivatives of the theoreti-

cal equation g:

Giis.x = O0&: /O0DPs.x (3-5-6)

In order to apply the present algorithm to the geomagnetic in-

duction problem, we must first determine the exact expressions for d
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and p. As shown in Appendix A, Eq.(3-5-5) depends entirely on the as-
sumption that the distributions of both d and p take Gaussian forms.
Therefore, we have to search for such expressions as not to conflict
to the assumption; in other word, we have to determine the reasonable
scaling of data and parameter. On the other hand, the expressions
should be as simple as possible. If they have complicated functional
forms, numerical evaluation of Eqs.{(3-5-5) and (3-5-6) will be fairly
difficult.

As for the observable data, two different Kind of response func-
tions are generally used in the induction study; i.e. the geomagnetic
transfer function and the magnetotelluric impedance. These two
response functions have been analyzed separately in most of the pre-
vious works. The transfer function is known to be sensitive to the
lateral heterogeneity of the conductivity, and therefore most of the
induction studies in Japan have been made on the spatial and period
dependences of the transfer function (e.g. Rikitake,1969; Honkura,
1975). On the other hand, the magnetotelluric impedance has been used
for the determination of one-dimensional conductivity distribution as
has been shown in Sections 3.2 and 3.3. Of course, impedance is also
be affected by lateral heterogeneities of the conductivity distribu-
tion. However, as will be shown by numerical experiments later, im-
pedance is more sensitive to the conductivity just below the observa-
tion site. Since these responses have different sensitivity to the
same structure, the usage of both quantities provides much information
and the higher resolution of the parameters.

Thus, the vector d, in the present case, will be expressed by two

vectors:
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d = (3-5-7)

vhere dr and dz are the vectors corresponding to the transfer function
and the impedance, respectively. Here again, we should note that dr
and dz can be generally the functions of the transfer function and the
impedance.

We apply a logarithmic scaling to the impedance as

d= = log( Z ) (3-5-8)

where Z is the vector composed of observed impedances for various
frequencies from various observation sites. Bentley (1973)
demonstrated the normal distribution of the logarithm of apparent
resistivity. There is another reason why we take a logarithm of the
impedance. The observation error of the impedance depends on the ab-
solute value of the impedance; if the impedance is large, the error
will be large in proportion to its absolute value. This implies that
the distribution is logarithmically Gaussian.

On the other hand, the transfer function is considered to take a
Gaussian distribution itself. The observational error does not depend

on its absolute value. So we take as:

dr = T (3-5-9)

where T is a vector composed of the transfer functions. We should note

that dz and dy are both complex quantities, since the impedance and
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the transfer function are complex quantities.

Thus, in the present problem, the vector of data can be written

in a partitioned form as given by Eq.(3-5-7):

dr

dz

The geomagnetic transfer function is the ratio of the vertical
magnetic field to the horizontal field, while the impedance is the
ratio of the electric to the magnetic field. Taking the above expres-
sion for a given set of data; the theoretical equation for dr takes a
different form from that for dz. In other word, the theoretical equa-

tion (3-5-3) should also be written in a partitioned form as

gr(p)
g(p) = (3-5-10)
gz(p)

Jupp and Vozoff (1977) took resistivity of the medium for the

parameter p. In this study, however, log(o ) was taken for p:

P = log(o ) (3-5-11)
wvhere ¢ is the vector of inhomogeneous conductivities. In the
simplest case, i.e. the homogeneous model, the impedance is given by

Eq. (3-2-10):

Z = (iw ypu /0 )72 (3-5-12)
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In order not to conflict the precondition of Gaussian distribution for
both p and d, we have to apply logarithmic form for the expression of
the parameter p, too. The validity of this expression can be simply
demonstrated as follows. Taking logarithms of both sides of Eq.(3-5-

12), we obtain:

log Z = { log(iw ¢ )-log(a ) } / 2 (3-5-13)

or by use of the above expression,

d=z = { log(iw p#)-p } / 2 (3-5-14)

Eq.(3-5-14) means that, if the distribution of dz is a Gaussian form,
P also takes Gaussian distribution. This expression is reasonable be-
cause the conductivity varies by orders of magnitude with the varia-
tion of other physical properties or physical states. For example, the
conductivity of rocks varies by several orders against a slight change
in the temperature as shown in Fig.2.1. Another reason why we adopted
logarithmic form for p is that, otherwise, the partial derivative
depends on the absolute values of the parameters. Then, if we take the
conductivity as the parameter, the resulting partial derivative will
be quite different from what is obtained by letting resistivity as the
parameter. This seems queer, because the physics should be the same
independent of whether the equation is written in terms of conduc-
tivity or resistivity. Jupp and Vozoff (1977) adopted logarithm of the
apparent resistivity and the phase for d, while the resistivity of the

medium was taken for p. If their expressions are applied, the dis-
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tributions of d and p will be inevitably different. This means that

the expressions of the parameters conflict to the assumption.

3.5.2 Matrix of partial derivatives

Assume we are going to determine the conductivity structure by a
direct inversion from a set of observed electromagnetic responses. The
observation is usually carried out at a number of sites and responses
were calculated for several frequencies. Now we have to obtain an ex-
act expression to evaluate the Jacobian matrix Gx for sets of data d
and parameter p defined in the previous section.

The structure is assumed to be two dimensional, and to be com-
posed of s conductive bodies with unknown conductivities (Fig.3.14).
The vector of the parameters, p, can be written as (the suffix k in-

dicating the iteration process is omitted here for simplicity):

{ P1,P2,°°*"Pe !}

p
(3-5-14)

Ps log g 3 (j=1,2,""S)

where o0 ;5 is the conductivity of the j*th inhomogeneity. For a given
set of p, the electromagnetic responses,T and Z, can be calculated
numerically at each position corresponding to each observation site,
for each frequency.

By applying FEM, the electromagnetic potential can be expressed
as the solution of a matrix equation as shown in section 3.4. We can

rewrite Eq.(3-4-22) as
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A u = b (3-5-15)

where A is the so-called element matrix which is the function of the
coordinates of each node and the model parameters. Vector b is a vec-
tor determined from boundary conditions. Note that the vector of the
approximate solution of the induction equation is denoted by u, in-
stead of v in Eq.(3-4-22). Differentiating both sides of Eq.(3-5-15)

by the parameter of the j'th body, ps, we obtain:

3 A Jdu ob
u + A- = = 0 (3-5-16)
O Ps d P, O Ps

Since the matrix A is a linear function of the conductivity (see, for
example, Eq.(3-4-16), its partial derivative can be obtained in a
straight forward manner. The electromagnetic potential u is the solu-
tion of Eq.(3-5-15), which we can evaluate at each node beforehand by
FEM. Thus, the first term of the left-hand side of Eq.(3-5-16) being a
known vector, this equation gives another matrix equation by which we
can obtain the partial derivative of the electromagnetic potential.

This can be written as:

Ju
A - = c (3-5-17)
dP;
where ¢ = -9 A/9ps * u. The vector ¢ can be regarded as the source

field generated by a perturbation of the j'th conductivity. It is ob-
vious that, if the i'th node of the finite element model is outside of

the j'th inhomogeneity, the i'th component of ¢ is null.
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Let us consider the physical meaning of Eq.(3-5-17). The partial
derivative 9 u/d ps can be regarded as the perturbation field by a
small deviation of j'th conductivity. Since the characteristic matrix,
A, is the same as that of Eq.(3-5-15), the perturbation field also
follows the induction equation. The source of the perturbation field,
¢, takes non-zero value at each node consisting j'th element of the
model. The perturbation field generated by this source propagates in
the earth following the same induction equation as controls the
electromagnetic potential u. Thus, we can obtain the partial deriva-
tive of the electromagnetic potential by solving the matrix equation
similar to that for the potential itself.

From the partial derivative of the electromagnetic potential, we
can evaluate those of the other field variables. As shown in the pre-
vious section, x-component of the electric field is the potential in
E-polarization case and y- and z-components of the magnetic field can
be obtained by performing spatial differentiation of the potential. In
H-polarization case, y- and z-components of the electric field are the
spatial derivatives of x-component of the magnetic field. Here we
denote y- and z-components of the secondary field variable by vy and
V>, respectively.

Following Egqs.(3-4-8)-(3-4-11), we can write the partial deriva-

tives of vy and v, with respect to p; as:

A Vy d du dh Jdu

= -{ h- ~ [ ] + } (3-5-18)
A Pa Jdz J P dpPs Oz
avz a du dh du

= { h- ~ [ ] + } (3-5-19)

d Py JYy d P dpPs VY
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where h is the same quantity as that in Eq.(3-4-3) or in Eq.(3-4-6).
Note that the order of differentiation is exchanged in above equa-
tions. Since the conductivity is uniform in each element, this ex-
change is certainly possible. The transfer function and the impedance
can be derived at each data points as:

Tq Vz.a / Vy.a (3‘5‘20)

Z = Ux, ¢ / Vy.t (3-5-21)

for E-polarization case. For H-polarization case, the impedance is

given by:
Z1 = Vy.1 / Ux. 1 (3-5-22)

where the suffices q, t and 1 correspond to each frequencies at each
observation sites where the transfer function and the impedance were
obtained. By differentiating equations (3-5-20), (3-5-21) and (3-5-22)
by ps, we can obtain the expressions for the partial derivatives of

the theoretical response functions:

O Vz.a O Vy.a
- Vy.a T Vz,a — T
ddr.a 0 Ta JDPs A Pi
= = (3-5-23)
O Pa d P; Vy.a”
O Ux. ¢ A Vy.e
T Vy.,.t¢ T Ux.t
ddz.« 9 log(Z¢) O Ps A Pi
= = (3-5-24)
d Pi A Ps Ze + Vy. 2

for E~-polarization case, and,
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O Vy.1 O Ux,1

Jdd=z.1 d log(Zy) dPs JdDPs
- . (3-5-25)

O Pa dPs Zy * Ux.,1?

for H-polarization case.
The Jacobian matrix of Eq.(3-5-6) can be obtained by assembling
these partial derivatives. Then, we can eXecute the direct inversion

by use of the iterative formula of Eq.(3-5-5).

3.5.3 Remarks on actual usage of the inversion method

The covariance matrices of the a priori information, Cygoao and

Copopo, take the following form in actual case:

Caoao = Tsa-l (3-5-26)
Si.a = Ti.a” (3-5-27)
Cpopo = Tsp-l (3-5-28)
Ss.o = Tsy.n” (3-5-29)

where 1 is the identity matrix. ri.a and r;,,» are the observation er-
rors in the i'th data and the ambiguity in estimation of the j'th
parameter, respectively.

Since the data vector for impedance, dz, takes the logarithmic
form as shown in Eq.(3-5-10), the observation error in Eq.(3-5-27)
should be the relative error in estimation of the impedance. The ob-
servation error works as a weight of each observed data in the itera-

tive process Eq.(3-5-5); i.e. data with smaller error will make larger
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contribution in the feed back system.

The covariance Caoao WOrks as a weight function for tangent
linear projection in Eq.(3-5-5). The evaluation of the covariance
matriXx Cpopo is a little more complicated, because we guess the start-
ing model of the conductivity structure by taking into account not
only electromagnetic, but also other geophysical and geological
evidences. Nevertheless, its evaluation has a significant effect on
the iterative process of Eq.(3-5-5). The term -Cpopo - {(Px-Po) in
Eq.(3-5-5) will stabilize the solution, as shown schematically in
Fig.3.15. Consider an extreme case where r;,n>-—> o for all j. This
means that the a priori constraints on parameters are infinitely weak.

In this extreme limit, Eq.(3-5-5) will be written as

Pk+1 = Px *+ (TGk*Cavcao 1 Gk)™*

*TGk*Cacao ' {do-8(Pxk)} (3-5-30)

which coincides with the formulation of the classical non-linear least
squares problem by linearization (Tarantola and Valette,1982). This
implies that, if the nonlinearity of the problem is sufficiently weak,
the iterative process will be stable independent of the a priori con-
straints on the parameters and give the exact solution. For the
present problem of the electromagnetic induction, however, the non-
linearity is usually so strong that the stability of the iterative
process is highly dependent on the a priori constraints. Therefore, we
have to be careful in the estimation of Cpono.

The a posteriori covariance matrix in the least squares can be

given as:
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Cpp = (TG’Cdodo_l‘G + c]:)Opoal)--1 (3-5-31)

Since this definition is valid only for linear cases, the covariance
matrix of Eq.(3-5-31) would not be of great interest. If the non-
linearity is strong, a posteriori errors will be far from Gaussian.
However, we can recognize some information in the a posteriori
covariance. The first term in the right-hand side of Eq.(3-5-31)
describes the propagation of error from d-space to p-space. If a
parameter is purely unresolved, the propagated error would be in-

finitely large. In general,

(Coplss = (Copopolis (3-5-32)

equality holds only for an unresolved parameter. Thus the ratio of a
posteriori to a priori variance will work as an indicator of con-
fidence. The larger the ratio means that the more definitely the
parameter is determined. More details about the reliability of the
solution, evaluation of a priori covariance, etc. will be discussed in
the following section. Examples of numerical experiment will also be
presented by using simple models.

The formulation of the iterative process has been made in a
general form: i.e. using both E- and H-polarization cases together.
However, we limited only E-polarization response functions for data in
actual application of the present method. This is because of two
reasons as followings.

(1) In actual case, each polarization may reflect different induction
effect within the earth. The real structure has generally a three-
dimensional nature. We can determine an equivalent structure at a two-

dimensional approximation. Moreover, subsurface conductivity may, in
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some case, have intrinsic anisotropy as has been discussed in the

seismic velocity structure.

(2) The element matrices for the two polarization cases are different
with each other because they are constructed under different boundary
conditions. This means that the usage of the two polarization cases
requires twice as much computer storage as that for single polariza-
tion case.

The essence of the present formulation lies not in the usage of
the two polarization, but in the combination of the transfer function
and the impedance in the direct inversion. This can be achieved if we
use E-polarization response functions. In the following section, per-
formance of the present scheme will be presented by some numerical ex-

periments using simple models.
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3.6 Numerical experiments on the direct inversion method

Before the actual application of the two-dimensional inversion
method presented in the previous sections, several numerical experi-
ments have been made by using simple conduclivify models. It will be
helpful for actual interpretation to see the spatial and period depen-
dences of the partial derivatives of the electromagnetic responses,
from a simple conductivity inhomogeneity. In the numerical experi-
ments, we examine the stability of the inversion process of Eq.(3-5-
5). It is particularly important to get information about the optimum
range of the covariance for a priori value of the parameter, Cgopo, in

order to stabilize the iterative process.

3.6.1 Data preparation

Electromagnetic responses were calculated for the configuration
as illustrated in Fig.3.16, which consists of 2 inhomogeneities A and
B and the host medium C. Numerical calculations were made according to
the applied conductivity values to the inhomogeneities as shown in
Table 3.1, for the period of 15 and 120 minutes for each model. The
finite element network given in Table 3.2 is adopted for each numeri-
cal calculation.

Model I is the simplest, which consists of one buried in-
homogeneity, whose conductivity is 10™* S/m, with a rectangular cross
section in a homogeneous host medium with conductivity 10°2 S/m. The

effects of ocean on geomagnetic induction are simulated by model II .
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In model Il , the electromagnetic coupling will be of interest between
the ocean and the buried inhomogeneity. The conductivity of sea water
is taken as 4 S/m.

Theoretical responses from model I on the earth's surface are
given in Figs.3.17(a) and (b). Since the model structure is completely
symmetric, the resulting responses show symmetric features within er-
rors in numerical evaluation. The apparent resistivity, either for E-
polarization (p «-E) or for H-polarization (p a-H) , takes minimum
just above the conductive body. On the other hand, the amplitude of
transfer function has two maxima above the side edges of the body. In
general, p «—-H reveals a clear contrast between the subterranean in-
homogeneities, while p «-E gives an averaged conductivity in a volume
corresponding to the skin depth. The anti-symmetric distribution of
the phase of the transfer function indicates that the induction vector
points to the direction of the conductive inhomogeneity on both sides
of it, which is a well-known character of the induction vector. The
distribution of the response functions tends to have the longer spa-
tial wavelength for the longer period of electromagnetic field varia-
tion. This character of spatial distribution may work as a key to
reveal the depth of the unknown conductive inhomogeneity.

Figs.3.18(a) and (b)) give the distributions of theoretical
responses from model I . The theoretical evaluations were made on
seafloor-land profile. Due to the highly conductive sea water, the
response shows quite anomalous feature particularly around the con-
tinental shelf. The E-polarization apparent resistivity (p a—-E) does
not take minimum just above the conductive body, but some maximum on
the shelf. This is considered to be caused by the concentration of the

induced electric current in the sea water. On the other hand, the H-
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polarization apparent resistivity (p a-H) shows a large contrast be-
tween land and seafloor: i.e. P «a~H on land is more than 2 order of
magnitude resistive compared with that on seafloor. This variation oc-
curs abruptly at the coast. In the H-polarization case, a charge
separation will occur on the interface of the inhomogeneity, which
causes the discontinuous variation in p a-H around the shore line. The
current concentration creates a large vertical component of the mag-
netic field variation not only on the seafloor but also on the coastal
area inland. Transfer function is in-phase (between -90 and 90
degrees) on the right-hand side of the position of the current con-
centration and out-of-phase on the left-hand side. These features in-
dicate that the induction vector points to the position of highly con-
ductive region where a concentration of induced current occurs. Hence,
the induction vector in the coastal area points to the ocean. This
phenomenon is called the geomagnetic coast effect on which many inves-
tigations have been made (e.g. Parkinson 1951; Rikitake 1972). Most of
the geomagnetic coast effects can be, at a first order approximation,
attributed to the induction effect by the highly conductive sea water.
However, electromagnetic field variation has definite information on
the deeper structure. Figs.3.19(a) and (b) give theoretical responses
from model I ,i.e. uniform earth model except ocean. The response
functions in Figs.3.18(a) and (b), particularly on seafloor, differ
from those of model II in the absence of the subterranean conductive
body (Figs.3.19(a) and (b)). These discrepancies are undoubtedly due
to the existence of the conductive body beneath the seafloor. As
clearly seen in these results, the induction effect from an in-
homogeneous structure can't be obtained by simple superposition of

response from each inhomogeneity. For example, the response of model



Il can never be expected by adding the responses from models I and II

Since the situation is thus complicated, the electrical structure
beneath seafloor is sometimes difficult to determine even with
seafloor data (Fischer and Weaver 1986).

In the electromagnetic induction studies, most of the interest
is focused on the determination of the deep electrical conductivity
structure in the earth. Next we check the direct inversion scheme
against the conductivity models I and I . We prepare synthetic data
sets for its purpose. Fig 3.20 shows the distribution of the data
point where observational data is synthesized. These are possible con-
figurations in actual array studies. As previously stated, we perform
the direct inversion only for E-polarization case. Data sites denoted
by triangles correspond to those of magnetovariational observations
where only the geomagnetic transfer functions are obtained, while
those denoted by diamonds to those of magnetotelluric observations
where the impedances, as well as the transfer functions, are obtained.
Both theoretical data were synthesized from the result of the
theoretical calculations by adding scatters of * 10 % random error as
well as observational errors of also * 10 % random error.

Synthesized data sets for the model I are given in Tables
3.3(a) and (b) along the earth's surface. In case of the model Il , we
make preparations of synthetic data along two traverses: i.e.
traverses along seafloor-land and along sea surface-land. The formers
are given in Tables 3.4(a) and (b)), and the latters in Tables 3.5(a)
and (b). Complex data to be evaluated in the iterative process in
Eq.(3-5-5) can be directly derived from the real quantities in these

tables, i.e. the complex transfer function, T, is given by
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T = Amp(T)-expli¢ 1, (3-6-1)

where Amp(T) denotes the amplitude of the complex transfer function T,
and ¢ + the argument of T. The complex impedance, Z, will be written

as

Z = [paw iyl %-explio 21, (3-6-2)
where p o denotes the apparent resistivity, and ¢ > the phase dif-
ference between the electric and the magnetic fields.

The observation errors in the tables are used in construction of
the a priori covariance of data, Cyoao, following Eqgs.(3-5-26) and (3-

5-27).

3.6.2 Inversion of the conductivity of a buried inhomogeneity

Here we carry out the direct inversion for the synthetic data
sets from models I and I, in such a case that we know perfectly the
shape of the buried inhomogeneity. Model setups are denoted by Tl and
T2 in Table 3.6, respectively. In Tl, we determine the conductivity of
the inhomogeneity buried in a homogeneous half space by use of data
from land sites, while we treat an inhomogeneity beneath the sea in T2
with data set from seafloor sites as well as land sites.

There are many difficulties in the inversion of induction
problem. One of them may lie in the fact that we can not expect a
‘standard structure' appropriate for an initial model, po. Therefore,
applied initial model may happen to be apart from the optimum one by

orders of magnitude. In other word, the iterative process should be
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stable for an initial model several orders of magnitude apart from the
true one. The stability check was made by Tl, the simplest model,
against the initial values up to 2 orders of magnitude more and less
conductive than the true conductivity. Results of the direct inversion
for Tl are tabulated in Table 3.7. As shown in the table, each itera-
tive process converged to the conductivity value sufficiently close to
the true one. Although the iteration of 6 cycles was made to get each
result, it is found that at most 4 cycles are enough for sufficient
convergence .as shown in Fig.3.21. Fig.3.22 shows how improved the
parameter is by the iteration, by comparing the observed p a—-E with
the theoretical one from the initial conductivity of 1x10°% S/m
(above) and the final conductivity (below). The initial model is the
perfectly homogeneous one, and therefore, the calculated apparent
resistivity is constant everywhere in spite of the large variation in
the observations. After 6 cycles of iteration, however, the model is
so much improved that the final model well explains the observation.
X 2 of the impedance has reduced by more than two orders of magnitude
as shown in Table 3.7. Fig.3.23 gives the same comparison for the
transfer function. In the initial homogeneous model, the amplitude of
the transfer function is null anywhere(above) since no vertical com-
ponent of the magnetic field is produced, while the final model gives
a good agreement between the observation and the calculation(below).
¥ 2 of the transfer function has also reduced by nearly three orders
of magnitude by the iteration (Table 3.7).

In case the initial value apart from the true one by one order
of magnitude,i.e. 1 S/m and 1x10°2 S/m, the process is considered to
be quite stable since convergence has been achieved for a priori

covariance, Cpomo, as large as 8. This means that the nonlinearity is
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weak for this case, according to the discussion in section 3.5.3. On
the other hand, the cases of initial values with more and less conduc-
tive by two orders have not converged until Cgopo as small as 5 x 1072
and 1 x10~' have been applied, respectively. In these cases, the non-
linearity of the process becomes so severe that the next point in each
iteration step given by Eq.(3-5-5) is sometimes quite far from the
solution. Thus, large constraints on the initial parameters are
required in order to stabilize the process.

Figs.3.24(a) and (b) give the distributions of the partial
derivatives of dz and dr with respect to the parameter, p:1 = loglo 11,
when the conductivity of the inhomogeneity o , is taken as 1072 S/m.
The partial derivative at each observation site gives the information
on the sensitivity for the structure. At a site with a large partial
derivative, we can expect a significant change in the response func-
tions for a slight change in the conductivity of a given structure.
This means that the site is sensitive to the conductivity of the
structure. On the other hand, when the partial derivative at a site is
quite small against the conductivity of a given structure, the site is
called quite insensitive to the structure, because the response func-
tion will be almost the same for any values of the conductivity. As
clearly seen on these figures, the absolute value of O dz/9d p.1 becomes
maximum just above the inhomogeneity, while that of 3 dr/d p. has two
maxima corresponding to the side edges of the inhomogeneity. These
figures clearly show that the impedance obtained at a site is the most
sensitive to the conductivity of the inhomogeneity just below the
site, while the transfer function is sensitive to the conductivity
contrast, or lateral heterogeneity, in the subsurface structure.

The amplitude of the partial derivative at each observation
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point indicates how largely the observed data is fed back to the next
iteration of the parameter in Eq.(3-5-5). If the observations were
made without errors, the iterative process will always converge
(Tarantola and Valette 1982). Otherwise, convergence depends on both
the partial derivatives and the initial covariance. If the derivatives
are quite small everywhere and if the initial covariance is small,
then the next points never move away from the initial point, because
the iterative process is perfectly controlled by the set of initial
parameters.. On the other hand, if the initial covariance is very
large, the process will become unstable because each next point of the
parameter assigned by tangent linear projection at each observation
point will have large scatter due to the observation errors. Thus, the
partial derivative and the a priori covariance are both important in-
formation on the stability and the reliability of the inversion
process. Discussion will be held later again.

In case of the existence of the sea, the nonlinearity becomes
somewhat larger. Table 3.8 gives the results of the direct inversion
for T2: i.e. the same inhomogeneity lies below the seafloor. Numerical
evaluations were made for the initial values with one order of mag-
nitude more and less conductive than the true conductivity (1x107*%
S/m). In either case, the iteration has converged stably to the value
sufficiently close to the true one after 6 cycles. x 2's, both for the
impedance and the transfer function, have been reduced by more than
two orders of magnitude by the iteration (Table 3.8), i.e. the same
level as in the previous result. However, the initial covariances in
Table 3.8 are found to be about one order of magnitude smaller than
those for the same initial parameters in the previous example (Table

3.7). This difference indicates that the electromagnetic coupling be-



tween the highly conductive sea water and the buried inhomogeneity
below enhances the nonlinearity of the problem.

Fig.3.25(a) gives the distribution of the partial derivative of
the impedance along the seafloor-land traverse. Similar to the case of
homogeneous host medium (model T1), the absolute value 0f3d dz/3 dp:
has maximum above the inhomogeneity. But the distribution is not sym-
metric. The derivative tends to remain large in the offshore side com-
pared to the inland side. This indicates that the seafloor measurement
is more sensitive to the inhomogeneity beneath sea than the land
measurement. The derivative of the transfer function, 9 dr/9J pPi,
(Fig.3.25(b)) has quite different behavior from one for model T1. It
has only one maximum on the deepening slope. The position, where the
derivative is maximum, moves offshore for longer period, and does not
coincide with the position where the transfer function becomes maximum
(Cf. Fig.3.18(a) and (b)). Thus, we can not always guess the most sen-
sitive position for an unknown structure only by referring the dis-
tribution of the amplitude of the expected response functions. Anyway,
the derivatives in models Tl and T2 has large amplitude enough to
provide sufficient amount of feed back in the iterative process Eq.(3-

5-5), and thus stable nature of the iteration process can be expected.
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3.6.3 Direct inversion with unknown block configurations

The previous results have shown some examples of the application
of the present method, in the simplest case where the shape of the in-
homogeneity with an unknown conductivity is perfectly known. In actual
applications, we can obtain the information on the shape of the bound-
ary with reference to not only electromagnetic but also other
geophysical, geological and geochemical investigations. If such infor-
mation is not sufficient to get complete description of the subsurface
structure, however, we have to carry out the inversion with unknown
block configurations. Here we check such a case by numerical experi-
ments with the same data sets as those in the previous section.

When the shape of the inhomogeneity of model I 1is not given,
one of the possible configuration may be presented by Fig.3.26 (above)
with 4 blocks denoted by numbers from 1 to 4, whose conductivities are
unknown. If the inhomogeneity exists below ocean, i.e. model M, con-
figuration of the array will be given by Fig.3.26(below). We consider
three cases here, i.e. models T3 with homogeneous host medium, and T4
and T5 with ocean, with observations along seafloor-land and sea
surface-land traverses, respectively.

In model T3, the initial conductivity of 1x107% S/m, which is
one order of magnitude higher than the true value, has been adopted to
both blocks No.l and 4. On the other hand, 1x1072 and 1 S/m have been
applied for the initial conductivities of the blocks No.2 and 3 whose
true conductivities are both 1x10™* S/m. Table 3.9 gives the results
of the two cases for model T3. Here again sufficient convergence has
been obtained by six cycles of iteration for each case. ¥ 2's of the

impedance and the transfer function for the final model are by more
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than two orders of magnitude smaller than those for the initial model
in either case. Therefore, these final models can be considered to ex-
plain the observation to similar extent to those of model Tl. The con-
ductivities of the conductive blocks, No.2 and 3, are estimated con-
siderably close to the true values. However, those of the resistive
blocks, No.l1 and 4, are apart from the true values by factor of about
five for each, in spite of the stable behavior of each parameter in
the iteration process (Fig.3.27). The relatively small values of the
initial to final covariance ratio, Cgopo/Cop less than 2, indicate
that the present method has weaker resolving power for the resistive
structure. This seems a quite reasonable result, for the more conduc-
tive structure will have the stronger induction effect. Thus, the ini-
tial to final covariance ratio reveals the information on the resolu-
tion of each unknown.

Figs.3.28(a) and (b) show the distribution of the partial
derivatives of the impedance and the transfer function with respect to
the conductivity of block No.l (shaded area), while Figs.3.29(a) and
(b) give those with respect to the conductivity of block No.2, in case
the same initial conductivity 1 S/m is assigned to blocks 2 and 3.
Figs.3.30(a), (b) and Figs.3.31(a), (b) are the same plot in case of
the initial conductivity of 107% S/m for all blocks. The derivatives
with respect to the blocks no.3 and 4 are not presented here because
their distributions are easily obtained from these figures because of
the perfect symmetricity of the model.

In a linear problem, the partial derivative with respect to p:
should be the same as that to pz regardless of the assigned conduc-
tivity or the surrounding structure. However, as shown in these

figures, the derivative with respect to an inhomogeneity depends not
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only on the surrounding conductivity structure, but also on the con-
ductivity of itself. Hence, different distribution of conductivity
results in different distribution of the partial derivatives, even if
the block configurations are completely the same, particularly when
the conductivity contrast is large as shown Figs.3.28(a) and 30(a).

When the structure with an unknown block configuration lies
below ocean, the problem becomes much more difficult because of the
inductive coupling between the sea water and the conductive structure.
Table 3.10 gives the result of the inversion for model T4 with obser-
vations along seafloor-land traverse. Here, we show only one example
with the initial conductivity of 107® S/m for each block No.1-4. The
iterative process has converged after as many as 16 cycles of itera-
tion. Rather complicated behavior of each parameter during the itera-
tion (Fig.3.32) suggests that the process affects strong non-linear
effects. The final conductivity of each block, however, is as close to
the true value as that in the model T3. Having similar values of ini-
tial to final covariance ratio to those in Table 3.9 indicates that
the block conductivities have been resolved to similar extent to that
in model T3 without ocean.

The inversion could not be stabilized unless we applied the ini-
tial covariances of the parameter of submarine blocks, No.l and 2, to
be half of those below the shallower sea, No.3 and 4. This indicates
the non-linear effect is more severe beneath the deeper ocean, in
determination of the parameter. Figs.3.33(a), (b), (¢) and (d) give
the distributions of the partial derivatives of impedance, while
Figs.3.34(a),(b), (c¢) and (d) those of transfer function, with respect
to the conductivities of the blocks No.l, 2, 3 and 4, respectively. In

this case, the distributions of the derivatives with respect to p. and
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p2 are not symmetric to those to ps and ps, respectively, as was the
case in the previous example. However, each derivative having the
similar amplitude indicates that the synthetic observations have
similar resolving power against each block. Hence, with the seafloor
data, the parameters of the blocks beneath ocean can be successfully
determined.

On the other hand, determination of the same conductivity struc-
ture with data sites along sea surface-land profile becomes sometimes
quite difficult. Table 3.11 gives the result of direct inversion of
the same situation as given in Table 3.10 without seafloor data but
with sea surface data (T5). As shown in the table, the conductivities
of the blocks No.l and 2 have scarcely been improved by 6 cycles of
iteration, for their final values are almost the same as their initial
ones. The weaker resolution is also indicated by the values of
Cpopo/Cpp nNearly equal to unity, which is about one order of magnitude
smaller than those of blocks No.3 and 4. The corresponding partial
derivatives are shown in Figs.3.35Ca), (b)), (c) and (d), and
Figs.3.36(a), (b)), (c) and (d) with respect to the conductivities of
blocks No.l, 2, 3 and 4, respectively. The derivatives have similar
amplitude against the blocks no.3 and 4 to those in the previous ex-
ample. However, those against the blocks no.l1 and 2 are about one or-
der of magnitude smaller even for the maximum value. The small value
of the partial derivative means the small amount of the feed buck in
the iterative process. Therefore, the conductivities of these two
blocks have been determined unsuccessfully, although they behaved
quite stably in the iteration (Fig.3.37). The maximum values of the
derivatives are less than 1072 both for impedance and transfer func-

tion, while they exceed 1072 in the above examples. Thus, one of the
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requirements for the reliable convergence may be stated as having the
partial derivative exceeding 1072,

Above result clearly shows the importance of the seafloor data
in determining the conductivity structure below ocean. Observation on
the sea surface, though actually not practical, is not sufficient for
the purpose, because partial derivative is much attenuated on the sur-
face through the conductive sea water. Ocean with 4 km depth will
provides difference of one order of magnitude in the amplitude of par-
tial derivative between the bottom and the surface as shown in
Fig.3.38.

30 data points have been used in the above experiments: i.e. im-
pedances at 5 sites and transfer functions at 10 sites, for the
periods 15 and 120 min. On the other hand, the number of blocks able
to be determined by the present method seems to be at most 4 or so,
because the experiment on the model T4 with 8 blocks was found to be
unstable for the initial model one order of magnitude apart from the
true one. This maximum number may seem too few compared with the total
number of data. However, the maximum number can be considered as
proper one for the number of blocks, by taking into account the fol-
lowing facts:

1) Data at one period obtained at a site does not provide information
completely independent on data at other periods. As previously ex-
plained, electromagnetic response function contains information on the
subsurface structure as a sort of volumetric average. The longer the
period is, the larger the volume of averaging becomes, i.e. each
response gets information on the deeper and wider structure.

2) Nearby site provides similar response functions to each other and,

therefore, not independent. This is also because of the same reason as
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before: i.e. the response function is derived from a sort of average
in a volume.

3) Each data has not a unity weight in the iterative process given by
Eq. (3-5-5). The weight of each data point is defined as a reciprocal
of the squared standard error following Egqs.(3-5-26) and (3-5-27).
Thus, sum up of the contributions from all data points in the itera-
tion does not equal to the number of points, but far less than that.
Besides, each data has, as well as the observational error due to in-
strumental and stochastic origins, bias error or scatter in the es-
timated value. The present method will give an optimum model, which
explain the observations, by the least squares.

4) The partial derivative is the solution of the matrix equation given
by Eq.(3-5-17). As previously stated, the matrix equation represents a
induction equation with a source term vector c=-9 A/9d ps-u, where A
denotes the characteristic matrix of the induction equation and u the
solution vector of the induction equation with an external uniform
source. Considering the nature of the induction equation, the
amplitude of the solution 9 u/o ps; will depend on both the volume and
the depth of the unknown block;i.e. the amplitude of the derivative
will be enlarged with increasing volume of the block at the same
depth; it will be reduced with increasing depth of the block with the
same volume. Hence, the present method can not be applied to such a
small block division that creates derivatives with amplitude less than

1072,



3.6.3 Summary of the numerical experiments

Several numerical experiments have thus clarified some charac-
teristics of the present inversion method. Some criteria relating to
the reliability of the solution have also been established, which will
be summarized as follows: |
1) It is shown numerically that the impedance gives information on the
conductivity of the structure just below the observation site, while
the transfer function provides high sensitivity to the lateral
heterogeneity of the structure.

2) The relation between the degree of freedom of the model and the
stability of the inversion has been established. Letting the number of
unknown conductivities S and the minimum number of data M, the criti-

cal ratio can be empirically given as

M/ S~ 8 (3-6-3

3) The maximum amplitude of the partial derivative is found to work as
an important key on the convergence and the reliability of the solu-
tion. The initial to final covariance ratio has also information on
the reliability. The amplitude of the partial derivatives both of im-
pedance and transfer function should be greater than about 1072 for
reliable solution. Solutions, with the covariance ratio less than
about 1.5 should be regarded as unreliable ones even if the conver-
gence seems apparently stable.

4) The present method is found to provide the higher resolving power
for the more conductive structure. This seems a proper result because

the larger induction effect is generally expected from the higher con-
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ductive structure.

5) The numerical experiment has definitely revealed the importance of
the seafloor data in determining the structure below ocean. Resolution
will be much reduced if the inversion is performed even with data on
the surface of ocean.

6) Perturbation field is sometimes enhanced on the continental shelf
and slope, and the enhancement brings large amplitudes of partial
derivatives in these area. The model experiments indicates that the
electromagnetic measurements on and around the continental shelf area
are of particular importance in the inversion of structure beneath the
ocean-continent transition zones.

7) The a priori covariance Cpopo is applied rather empirically in the
present method. At first, each diagonal element Cpono(i,i) is equally

given by

CpOpO(i,i) = CO ¢ 2—(5_1) (3—6_‘4)

where S is the number of blocks with unknown conductivity. Co takes
the value between 1 and 10, depending upon the complexity of the 'host
medium' and the error level in the observational data. In the eXxtreme
case with data set without error, Co may be as large as infinite to
converge the process, which is called the purely overdetermined
problem. If the host medium contains a highly conductive layer near
the surface, such as the ocean, appropriate value of Co will be about
1. If large scatter is recognized in data, smaller value should be ap-
plied to Co. Then, for the applied initial model, a few steps of
iteration are carried out. If the expected value of a parameter seems

too stable, its initial covariance is doubled. When a parameter varies



by orders in each iteration step, value given by Eq.(3-6-4) is re-
placed by its half. For moderately changing parameters, several fac-
tors in each step, no action is taken. This procedure is repeated un-
til a set of optimum value 0f Cpono'S is obtained. After making sure
of the stability of each parameter, total inversion of Eq.(3-5-5) is
performed. Convergence of the process is confirmed by referring the
variation of each parameter, as well as the residual x 2's of both im-
pedance and transfer function between observed and calculated values.
The iterative process is terminated when few change is recognized in

either each parameter or each x 2.
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Fig.3.8 The e*‘th element of the finite element network.
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Fig.3.10 The initial step of the mesh division. Entire space is
divided into 10 rows and 11 columns.
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Fig.3.11(a) Two ways for separation of a rectangle into two triangles

by a diagonal line.
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(left down)
(right down)
(both down)

( both up)

Fig.3.11(b) Four modes for separation of rectangles in a row.
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Fig.3.13 A mesh network for the cross section of central Japan.
Note that the subductinz Philippine Sea Plate (thick line) is repre-
sented by smooth line.
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Fig.3.14 A schematic cross section of a conductivity model for the

two dimensional inverse problem. Inhomogeneities with unknown conduc-
tivity are numbered from 1 to s.
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Fig.3.20 Distribution of synthetic data sites along the earth's
surface (above) and seafloor-land traverse (below). Triangles denote
magnetovariational (MV) sites where only transfer functions are calcu-
lated. Diamonds correspond to magnetotelluric (MT) sites where and im-
pedances, together with transfer functions, are calculated.
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Fig.3.22 Comparison of apparent resistivity and phase of the syn-
thetic data (bars) and of calculated values (dots) from initial
(above) and final (below) models of Tl. Inifial conductivity of 10°°
produces constant apparent resistivity everywhere, while the theoreti-
cal responses almost coincide with the observations within their error
bars after 6 cycles of iteration.
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explain the data (below)
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The conductivity of the inhomogeneity no.l1,0 ., is taken as 1072 S/m.
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Model configurations of 4 block divisions with observation
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Table 3.1 Conductivity mudels for the calculations of typical

responses. Conductivity i1s given in S/m.

Model G A Jd B g «
I 1 x 107° 1 x 1077 1 x 1077
i 4 x 10° i x 10°° 1 x 10°°
m 4 x 10° 1 x 10°% 1 x 107°
Table 3.2 Finite element network for the numerical experiments on a
simple models I , O and II.
Number of nodes 1080
Number of elements 2030
Upper boundary -150 km
Lower boundary 1500 km
Side boundary (left) -800 Kkm
Side boundary (right) 800 Km

size of element matrix 38 x 1080
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Table 3.3(a) Synthesized data for numerical experiment of the direct
inversion for the model T1,T3 and T6 (Traverse on land} {for the period
of 15 min. Amp(T), ¢ T and &€ T denote respectively amplitude, phase
and obsevation error of{ the transfer function. p a, ¢ Z and &€ Z denote
the apparent resistivity, phase of the impedance and observation error

in pa, respectively.

Y(km) Z{km) Amp (T ¢ o (deg) £ T 0 a(Q -m) ¢ z(deg) £ =z
-180 0 0.365 170.0 0.072
-840 G G.53G 176.0 0.08% 133.0Q 40.0 30.0
-70 0 0.510 TTT L0 ¢.078
-50 O 0.400 177.0 .091 65.0 34.0 12.0
-20 0 0,122 174.0 0.072
20 O 0.125 -4 .0 0.064 33.0 30.0 8.0
30 Q 0.233 -3.5 0.081
60 0 (0.438 -3.1 0.078 67.0 35.0 15.0
90 0 0.527 -4.0 0.085
160 0 0.385 -7.5 0.075 350.0C 48.0 45.0

Table 3.3(b) Synthesized data for numerical experiment of the direct

inversion for the modei Tl and T3 (Traverse on land) for the period of

120 min.
Y(km) Z(km) Amp(T) ¢ rt{deg) € T 0 &l -m) ¢ z(deg) £ z
-180 0 0.260 ~132.0 0.055
-80 0 0.445 -140.0 0.077 450.0 44.0 84.0
-70 0 0.443 -144.0 0.064
-50 0 0.365 -148.0 0.078 310.0 35.0 75.0
-20 0 0.133 -155.0 0.068
20 0 0.115 24.0 0.056 150.0 28.0 30.0
30 0 0.205 24.5 0.079
60 0 0.387 30.0 0.094 294.0 36.0 77.0
90 0 0.420 38.0 0.088
160 ' 0 0.294 44 .0 0.062 630.0 55.0 95.0
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Table 3.4(Caj Synthesized data for numerical experiment of the direct
inversion for the model T2 and T4 (Traverse on sea floor-land} for the

period of 15 min.

Y{km) Z{km) Amp(T) ¢ r(deg) £ T P alQ -m) ¢ z(deg) £ =z
-180 4.0 0.084 119.0 0.070
-80 4.0 0.327 117.0 0.080 45.0 -92.5 8.2
-70 4.0 0.397 129.0 0.072
-50 4.0 0.676 -178.3 0.111 26.2 -105.0 6.8
-20 2.8 3.330 -86.0 0.342
20 1.2 2.160 16.7 0.261 80.0 59.0 11.2
30 0.8 1.770 13.8 0.181
60 0 0.970 -3.3 0.110 58.0 48.2 15.0
90 0 0.822 -6.8 0.088
160 O 0.536 -14.5 0.074 325.0 61.7 45.0

Table 3.4(b) Synthesized data for numerical experiment of the direct
inversion for the model T2 and T4 (Traverse on sea floor - land) {for

the period of 120 min.

Y(km) Z(km) Amp(T) ¢ r(deg) £ 1 P al(Q -m ¢ z(deg) € z
~180 4.0 0.626 103.8 0.055
-80 4.0 0.959 122.9 6.087 161.0 161.0 24.0
-70 4.0 1.075 125.0 0.122
-50 4.0 1.590 129.8 0.178 156.0 156.0 27.0
-20 2.8 3.122 72.5 0.366
20 1.2 1.751 23.1 0.188 91.0 44.0 16.0
30 0.8 1.520 19.2 0.143
60 0 0.994 12.0 0.094 62.2 41.3 13.2
90 0 0.829 13.0 0.088
160 0 0.561 13.3 0.062 145.0 57.6 29.5
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Table 3.5(a} Synthesized data for numerical experiment of the direct

inversion for the model Tb (Traverse on seafloor-land) for the period

of 15 min.

Y(km) Z(km) Amp(T) ¢ r{deg) £ P a(Q -m) @ z(deg) £ =
-180 0 0.0025 -164.2 0.040
-80 0 0.0301 -159.2 0.081 0.44 4.0 0.13
-70 0 (0.0433 -145.2 0.070
-50 O 0.0987 -103.5 0.091 0.52 0.0 0.18
-20 Q 0.2566 -58.3 0.120
20 0 0.508 -27.4 0.160 4.18 16.7 1.21
30 0 0.639 -20.0 0.180
60 O 0.970 -3.3 0.112 58.3 49.1 19.2
90 0O 0.822 -6.8 0.088
160 0] 0.536 -14.0 0.075 325.0 61.7 45.0

Table 3.5(b> Synthesized data for numerical experiment of the direct

inversion for the model Tb (Traverse on seafloor-land) for the period

of 120 min.

Y(km) Zkm) Amp(T) ¢ r(deg) € T P a(Q -m ¢ z(deg) € =
-180 ¢ 0.066 -62.5 0.056
-80 0 0.176 -35.6 0.087 5.21 4.7 2.33
-70 O 0.202 -31.2 0.122
-50 O 0.286 -17.3 0.108 5.43 6.2 2.47
-20 0 0.499 -11.8 0.126
20 0 0.774 -2.2 0.128 17.3 19.7 7.31
30 0 0.860 2.0 0.143
60 0 0.994 12.0 0.095 62.2 41.3 13.2
90 0 0.829 13.0 0.088
160 0 0.561 13.3 0.065 145.0 57.6 29.5



Table 3.6

version scheme.

model

host medium

inhomogeneity A

unknowns

T1
T2
T3
T4
TS

1x1072(S/m)
1x1072(S/m)
1x10°2(S/m)
1x1072(S/m)
1x1072(S/m)

1x1072(S/m)
4x10° (S/m)
1x1072(S/m)
4x10° (S/m)
4x10° (S/m)

B R e
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Setup of models for numerical experiments on th direct

in-
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Table 3.7 Results of direct inversion for the model TI1.
No. Initial(S/m) Cpopo Final(S/m) Cuxn True($/m) Coopo/Coo
1 1x107 5x107% 1.162x10°* 1.5x10°° 1x10°1? 3.3x10%
[teration cycles 6
Initial x 2(dz) 7.082 x 10°
Final X 2(dz) 1.520 x 1072
Initial x 2({dx) 2.097 x 10°1%
-~ Final X 2(dr) 2.163 x 1073
No. Initial(S/m) Cpopo Final(S/m) Cpp True(S/m) Cropo/Cox
1 1x10° 8x10° 1.013x10°* 2.8x10°%2 1x1071? 2.9x10%
[teration cycles 6
Initial x ®(dz) 3.530 x 10°
Final X 2(dz) 7.017 x 10°%
Initial x 2(d+) 1.528 x 1071
Final X 2(dr) 5.192 x 10°*
No. Initial(sS/m) Cgpopo Finald(S/m) Cup True(S/m) Cpopo/Cop
1 1x10°2 8x10° 9.983x10°%* 5.3x10°%2 1x10°? 1.5x107%
Iteration cycles 6
Initial x 2(dz) 1.991 x 10°
Final X 2(dz) 7.053 x 10°*
Initial x 2(dt) 1.676 x 1071
Final X 2(dx) 5.143 x 107°%
No. Initial(S/m) Cpopo Final(S/m) Cup True(S/m) Cpopo/Cop
1 1x10°° 1x10°™* 9.463x10°%2 1.6x10°° ix10™* 6.3x10%2
Iteration cycles 6
{
Initial x %2(dz) 2.822 x 10°
Final ¥ 2(dz) 5.021 x 1073
Initial x 2(dx) 2.502 x 1071
Final X 2(d1) 5.231 x 10°%
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Table 3.8 Results of direct inversion for the model T2.
No. Initial(S8/m) Cpopo Final(S/m) Cup True(S/m) Cropo/Crn
1 1x10° 1x1G° 1.024x10°Y  7.8x107°%2 1x10™* 1.3x10*
[teration cycles
Initial % 2(dz) 3.629 x 10°
Final ¥ 2 (dz) 5.9828 x 10°°
Initial x *(dp) 1.9 x 10°
Final ¥ 2 (dg) 3.424 x 1072
No. Initial(S/m) Cpopo Final(S/m) (oo True(S/m) Cpopo/Cop
1 1x1072 1x10° 9,112x1072 9.3x10°% 1x10°1* 1.1x107
I[teration cycles 8
Initial x 2(dz) 2.9596 x 10°
Final X 2(dz) 5.491 x 10°°
Initial x %(d+) 1.634 x 10°
Final % 2(dr) 3.242 x 10°%
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Table 3.9 Results of direct inversion for the modeil T3.

No. Initial(S/m) Cgowo Final(S/m) Cyup True(S/m) Coopo/Cop
1 1x10°2 1x10° 4.744%x1072%  4.7x10717 1x10°° 2.1x10°
2 1x10° 1x10° 8.102x10°2 .5x10°2 1x107*% 4.0x10°
3 1x10° 1x10° 1.076x107* 2.5x10°% 1x1077 4.0x107
4 1x10°2 1x10° 5.042x10°% .2x10°1 1x10°° 8§.3x10°

Iteration cycles 6

Initial x *(dz) 1.611 x 10°
Final X 2(dz) 4.274 x 10°°
Initial x %2(dy) 1.659 » 1077
Final ¥ 2(dr) 3.172 x 1073

No. Initial(S/m) Cpopo Final(S/m) Cpn True(S/m) Cpopo/Cop
1 1x1072 1x10° 411.7_44X10"3 3.6x10°1 1x10°3 2.8x10°
2 1x1072 1x10° 8.102x107% 2.1x1067% Ix10°7" 4.8x107
3 1x10°2 1x10° 1.076x10°%  1.0x10°% 1=1071 1.0x10%
4 1x10°2 1x10° 5.042x10°%  7.3x1077 Ix10°° 1.4x10°

Jteration cycles 6

Initial x 2(dz) 1.557 x 10°
Final x 2(dz) 1.666 x 10°°
Initial x %{dt) 1.519 x 1071
Final ¥ 2(d1) 3.242 x 10°°
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Table 3.10 Result of direct inversion for the model T4.

No. Initial(S/m) Cgpopo Final(S8/m) Cgppn True(S/m) Coopo/Con
1 1x10°2 5x10°* 5.242x10°° 2.2x10°1 1x10°° 2.3x10°
2 1x10°%2 5x107 1 1.527x10°% 2.6x10°% 1x10°? 1.9x107
3 1x10°%2 1x10° 9.961x10°* 3.7x10°% 1x10°1? 2.7x101
4 1x10°2 1x10° 8.994x10°% 7.2x10°1 1x10°% 1.4x10°

Iteration cycles 16
Initial ¥ 2(dz> 1.031 x 10°
Final X 2(dz) 1.796 x 10°*
Initial x 2{dr) 1.253 x 10°
Final w 2(dy) 2.972 x 1071
Table 3.11 Result of direct inversion for the model T5.

No. Initial(S/m) Cpopo Final(S/m) Cgp True(S/m) Cropo/Croyp
1 1x10732 5x10°1* 1.155%x107%  4.9x10°* 1x10°3 1.02x10°
2 1x10°% 5x10°° 1.419x1072  4.8x107°% 1x10° 1 1.04x10°
3 1x10°2 1x10° 1.029x107% 4.2x10°%2 1x10°*% 2.3 x10*
4 1x10°2 1x10° 7.141x10°% 6.5x10°1 1x10°° 1.53x10°

Iteration cycles 6

Initial x 2(dz) 3.597 x 1072
Final X 2(dz) 4.262 x 10°°
Initial x %(dt) 1.096 x 1072
Final ¥ Z(drt) 9.119 x 10°°
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4, VLF-ELF Magnetotelluric Measurements

The aim of this study lies in determination of deep (lower crust
and upper mantie depth) geoelectric structure of the earth. However,
this does not mean that information on the shallower structure is un-
necessary. The near-surface structure of the earth is considerably
complex. It is known that the surface geology sometimes causes sig-
nificant geomagnetic and geoelectric variation anomalies (e.g. Porath
and Dziewonski, 1971) even at fairly long periods.

Since the field penetration depth, or the skin depth of the
electromagnetic variation increases with the period of the variation,
higher frequencies (shorter periods) are preferred to determine the
structure at shallower depth. An artificial electromagnetic wave at
VLF range and natural electromagnetic phenomenon at ELF range can be
used for this purpose. The former is the signal for communication use
with 17.4 kHz frequency which is always transmitted from the radio
station at Yosami, Aichi Prefecture, Japan. The latter is the
electromagnetic resonance in the cavity bounded by the earth and the
ionosphere, which is known as the Schumann Resonance (Schumann, 1953).

Since these are signals at relatively high frequencies, the
measurement is a little different from the ordinary geomagnetic obser-
vation. Field techniques and methods of data processing will be shown

in this chapter.
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4.1 VLF magnetotelluric measurement

VLF magnetotelluric (MT) method was first developed for the pur-
pose of sounding the thickness of the permafrost. Since then, because
of its easiness in measurements, it has been applied to many fields of
geophysical exploration; mineral exploration, geothermal exploration,
etc.. Sometimes this technique has been used for volcanological re-
searches (Zablocki, 1978; Utada, et al., 1984) or research of the
structure of active faults (e.g. Yukutake, 1985).

There are eight VLF stations in the world transmitting VLF sig-
nals. Among these signals, 17.4 kHz from Yosami (NDT), Aichi Prefecture
is always detectable in Japan except in the period of the maintenance
of transmission apparatus. The signal of 20.2 KkHz from Northwest
Cape(NWC), Australia can also be detected sometimes, but the signal is
much weaker than 17.4 kHz signal. Therefore we mostly use the 17.4 kHz
signal from Yosami.

The skin depth of 17.4 kHz signal in a homogeneous medium is es-
timated as, from Eq.(3-2-5), about 12 m and 120 m assuming the resis-
tivity of the medium to be 10 Q m and 1 kQ -m, respectively. These
sounding depth seem to be sufficient to measure the conductivities of
the surface sedimentary layer, outcrop of basement rocks and other
geological structures.

A VLF measuring apparatus EM16-EM16R of Geonics Corporation,
Canada, was used for VLF MT measurements. Fig.4.1] shows the conceptual
block diagram of VLF MT measurement by use of the apparatus. The mag-
netic field of the VLF wave is detected by loop antenna. The electric
field is measured by use of a pair of stainless electrodes grounded 5m

apart. Both fields are once amplified and sharply filtered, and then
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the phase of the electric field signal is shifted by the phase
shifter. If the electric field signal is adjusted to be in-phase to
the magnetic field signal, one can make the final output to be null by
varying the gain of the electric field amplifier. The impedance,
which is the ratio of the magnetic to the electric field intensity,
can be obtained since the gain of the amplifier, electrode spacing and
the sensitivity of the antenna are known. By using EM16-EM16R ap-
paratus, the apparent resistivity and the phase difference can be
directly read on a scale without any conversion. The measurement can
be done easily and highly efficiently; it takes a few minutes for one
measurement.

Usually the VLF MT measurements are conducted together with the
ELF MT measurements (Section 4.2). Several VLF measurements are done
at one ELF MT site and the average is used as the representing value
of the site.

The purpose of the VLF measurement is to determine the conduc-
tivity at the shallowest depth. Since the field penetration depth of
VLF signal is very shallow, there is a possibility of daily or
seasonal variation in the VLF apparent resistivity due to, for ex-
ample, effects of temperature or precipitation. If these effects cause
a significant variation, the measured value can not be used as a
characteristic value or the time independent response function to
determine the subterranean structure.

Another apparatus was newly developed for the purpose of a con-
tinuous recording of VLF data (Utada and Yukutake, 1983). This ap-
paratus enables us an automatic recording of the data, including the
intensities of electric and magnetic fields, the apparent resistivity

and the phase, in the cassette magnetic tape in every minutes. By use
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of the new apparatus, the presences of the daily and the seasonal
variations were examined.

A typical record of 1 day's duration is given in Fig.4.2, which
was obtained at Fujinomiya(FJM), Shizuoka Prefecture. The measurement
began in March, 1984, and is still carrying on. A typical daily Varia—
tions are recognized both in the electric and magnetic field inten-
sities. Generally, the level of the field intensity is high and fluc-
tuates at night, but is low and rather stable in daytime. These varia-
tions is supposed to be due to the ionospheric effect. Since the D-
layer of the ionosphere disappears at night, the level of sky wave in-
creases compared with that in the daytime. This is the principal cause
of the high level and the fluctuations at night. Though the fluctua-
tions looks random in both field intensities, they are almost in
parallel. Therefore, these features can be subscribed to the change in
the wave propagation condition of ionospheric origin. The largest
variation is seen at dawn and dusk. This feature also implies that the
variation is due to ionospheric effect. Anyway, there is a variation
of about 20 Q ‘m in the apparent resistivity. This variation cor-
responds to only about 2 % of the measured value of about 1000 Q -m,
so that we can reasonably regard the daily variation in the apparent
resistivity as negligible. The daily variation in the phase difference
can also be regarded as insignificant, since the amplitude amounts to
no more than 2 degrees or so.

Fig.4.3 is a plot of daily means of the apparent resistivity and
the phase measured at FJM. The apparent resistivity decreases in sum-
mer, during June to August.This apparent annual variation is amounting
to 300 Q m. The variation in the phase difference is about 5 degrees.

Since the decrease in the apparent resistivity begins in June,



/6€

precipitation is the most probable cause of this wvariation.

Such continuous observation of VLF MT has not been conducted
elsewhere, so it is quite uncertain that the annual variation as shown
in Fig.4.3 is a general feature of the VLF MT measurement. In general,
the conductivity of the earth's surface varies by orders of magnitude
from place to place. Therefore this annual variation of up to 30% in
apparent resistivity can not exert an significant influence on the
determination of the earth's structure, particularly in case of the
investigation of large scale structure. In this study, we use the VLF
MT results as time invariant responses of the shallow subsurface

structure.
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4.2 ELF magnetotelluric measurement

The Schumann resonance (Schumann, 1953), an electromagnetic
cavity resonance in a space between the earth and the ionosphere, lies
at the lowest part of extremely low frequency (ELF) range. Since it is
activated by lightning flashes which occur all over the world, this
resonance field is always detectable as is shown schematically in
Fig.4.4. Moreover, its spectral characteristics are very typical and
have been well studied; the resonance frequencies are 8, 14, and 20 Hz
for three fundamental modes, and their Q-factor (reciprocal of the
damping coefficient) is about 3-6 (Balser and Wagner 1960; Ogawa and
Tanaka 1970; Handa 1971). The skin depth at the frequency of the fun-
damental mode will be about 2 km when the resistivity of the medium is
1 kQ -m.

Above mentioned natures imply that the Schumann resonance is a
good source field for induction methods to study earth's conductivity
structure at shallow depths. In Japan, there are many sources of the
artificial electromagnetic noise in ELF range such as electric rail-
ways, power lines and telephone lines, and therefore measurement is
usually restricted to the frequency wup to its third fundamental mode,
20 Hz. Recently, many MT measurements in this frequency range have
been carried out for investigation of active faults (e.g. Handa and
Sumitomo,1984) and volcanoes (e.g. Utada, et al.,1984) in Japan, and
the method is called the ELF-MT method. Since the measurement of ver-
tical component of magnetic field is difficult and time consuming for
ELF range, the MT analysis is common by means of measurement of
horizontal electric and magnetic fields.

The magnetic field data were measured by orthogonally oriented
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induction coils with parmalloy cores whose effective cross sections
are both about 3 x 10® m?. The frequency characteristic of sensitivity
of the sensor is given in Fig.4.5. The output voltage from the sensor
is amplified and filtered by a so-called ELF amplifier whose block
diagram is shown in Fig.4.6. This instrument can achieve maximum gain
of 100 dB in total: 35 dB first, 65 dB after filtered. Notch filters
(fo =50/60,100/120Hz) are used in order to reject the noises from com-
mercial power lines. We use low pass filter of third order Butterworth
type (fo =32Hz) for eliminating the artificial noises at higher
frequencies , whose levels in Japan are so high as to often exceed the
signal levels of the Schumann resonance fields.

The electric field signals are detected by using graphite or
brass electrodes grounded 30-50 m apart in N-S and E-W direction.
Amplifiers and filters have the same characteristics as those of mag-
netic fields except the total gain is 90 dB in this case. A co-axial
cable is used for electric field measurement. The shield is attached
to the ground point of the electric circuit, which is very effective
to eliminate the electrostatic noises in the record.

An analogue data recorder is used for recording the signals in
cassette magnetic tape. At one site, measurements is carried for 5 to
10 minutes duration, which is sufficient for reliable estimation of
the impedance tensor, unless the noise level is comparable or exceeds
the signal level. The reliability of the impedance estimates will be
discussed in the last section. Analogue records are digitized with
sampling frequency of 200 Hz, or sampling interval of 5 msec, and each
data set is stored in the 9 truck magnetic tape. The data set may con-
tain noises and, at some portions, the signal level may be too low to

detect spectral peaks of the Schumann resonance. In the next section,
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a simple and effective method will be shown for the estimation of the

surface impedance at ELF range.

4.3 Processing of ELF magnetotelluric data

The Magnetotelluric impedance Z is defined by the linear equation

(e.g. Hermance 1973):

E(f) = Z(f) H({) (4-3-1)

where E(f) and H(f) are Fourier transforms at a frequency f of ob-
served horizontal electric and magnetic field vectdrs, respectively,
and Z(f) is 2x2 tensor called the impedance tensor.

Instead of measuring the magnetic field variations , however,
their time derivative were measured in ELF MT method by using induc-
tion coils. Therefore impedances were calculated on the basis of fol-
lowing equation , which is obtained by rewriting Eq.(4-3-1), with the

replace of the time derivative by -iw :

E(f) = -Z(HOH(E)/iw (4-3-2),

where dot denotes the time derivative. The impedance estimates can be
obtained for observed time series in the least square sense by cal-
culating four independent estimates E(f) and H(f), applying spectral
analysis technique (e.g. Vozoff, 1972).

As has been mentioned in the previous section, data set from one



observation site has time duration of 5 to 10 minutes with a sampling
interval of 5 msec. First, observed time series are divided into 10 to
18 subsets, each of which has 5120 data points (25.6 sec in length).
From each data subsets, band averaged power and cross spectra of
electromagnetic fields are calculated by conventional F.F.T. scheme.
Here, we take the degree of freedom for spectral smoothing as 40,
resulting the frequency resolution to be 0.78 Hz. As investigated by
many workers previously referred, the Q@ factors of the Schumann
resonance fields take values between 3 and 6, so that the band width
of the spectral peak is between 2.7 and 1.6 Hz for the fundamental
mode of 8Hz. Even if the Q factor takes the lowest value, frequency
resolution applied here is sufficiently high to estimate unbiased
spectra of the Schumann resonance phenomena.

If the nature of observed magnetotelluric fields were considered
to be of stationary and random process, tensor impedance estimates
should be, within their standard errors of means, time invariant
responses depending only on the resistivity distribution of the
earth's interior. This is not true, as will be discussed in the next
section. A stacking method is adopted to obtain final impedance es-
timates for each data set.

Eq.(4-3-1) is an equation of linear system with input H({f) and
output E(f), whose transfer function is Z(f). The standard error of
the impedance for this linear system can be written as (Bendat and
Piersol,1976):

4 (1-coh®*(E;y)) P(Ey)
F(N,4,a ) -

2
) G

(2N-4) (1-coh®*(xy))*”? P(Hy)
(4-3-3)

(i = x,y , 1 = X,y
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where coh®(E;) and coh?®(xy) are multiple coherency between i'th com-
ponent of the electric field and the horizontal magnetic fields, and
the coherency between orthogonal magnetic field components,
respectively; N is the degree of freedom of spectral analysis; F(N,4,
a) is a percent point of F-distribution; P(E;) and P(H;) are power
spectra of i'th and j'th components of electric and magnetic field,
respectively.

Final estimate is taken as an ensemble average of all the data

subsets with. the averaging weight as follows:

Zis(f) = 1/W L Wi Zis () (4-3-4),
k
where,
W =1 wk (4-3-5)
k

and we take,

Wk = 0 (4-3-6)

in case without peak at resonance frequency, otherwise,

Wi = l/r(K’iJZ (4-3-7)

where r<*>,; is the standard error of the impedance estimate from k'th
data subset given by Eq.(4-3-2). The definition of the weight function
given in Egqs.(4-3-6) means that the impedance of a data subset, whose

spectrum has no peaks at the Schumann resonance frequencies, should be
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excluded first from averaging. Usually we can detect steep spectral
peaks at the resonance frequencies as shown in Fig.4.7. Non-existence
of the peak implies that the data contains high level noise, or the
thunder storm activity in the world was remarkably low at the record-
ing instance. Both are thought to cause instability of the least
squares method of impedance estimation.

This averaging effect on final impedance estimates is that the
larger the standard error of estimated value is, the smaller the
weight on resulting average becomes. Since the standard error is writ-
ten as Eq.(4-3-3), estimates with large values of the coherency be-
tween electric and magnetic fields have large weights, while those
with high coherencies between two horizontal magnetic fields have

small weight.

4.4 Reliability of the impedance tensor estimates at ELF range

Since the duration of measurement is less than 10 minutes for
the ELF-MT method, we cannot use the impedance in order to determine
the earth's resistivity structure, if the source field nature of the
schumann resonance varies with time, and therefore, the impedance es-
timate is time dependent. In this section, we examine the reliability
and the stability of the impedance estimates based on observational
results.

First, we examine the existence of local time dependence in the
magnetotelluric response functions. The ELF data were used for the

purpose, which were observed on Nov.17-18, 1981, at Yatsugatake
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geomagnetic observatory, Earthquake Research Institute.

The first measurement was performed at 11h30m, Nov.17,1981 with
10 minutes' duration. After that, measurements had been repeated once
every one hour with a duration of 4 minutes and a half until 16h00Om of
the next day. The whole measurements were performea automatically con-
trolled by timer system.

Fig.4.8 shows the normal run magnetogram with electric field
record observed at the observatory during the two days of the ELF
measurement. The solid triangle above the magnetogram denotes each
period of ELF measurement. As is seen on thé record, the noise level
in the electric field is highly elevated at night, in fact, more than
60 dB higher than that in the daytime. This noise has, of course, no
relations to geomagnetic activities, and, unfortunately enough, seems
to exist within very wide frequency range including ELF band. Because
of this noise contamination, we were obliged to analyze the data col-
lected only in daytime (between 8 and 16 o'clock). Unused portions are
denoted by open triangles in Fig.4.8. A typical record of the Schumann
resonance fields is given in Fig.4.9, while Figs.4.10 shows the same
record after band-pass filtered.

Fig.4.11 shows the power spectra calculated at 8, 14 and 20 Hz
from 18 data subsets from the first measurement. It is obvious that
there is a significant variation in the electromagnetic field inten-
sity for the Schumann resonance frequencies. The variation in the
source field intensity may cause an error in the estimate of the im-
pedance. Usually, the coherency between electric and magnetic fields
is used for an indicator to decide how reliably the impedance is ob-
tained (Vozoff ,1972). In spite of each data subsets having coherency

of almost same value (between .85 and .92), except the noise contain-
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ing 10'th subset, and therefore all the estimates can be acceptable in
usual means (e.g. Vozoff, 1972), the impedance varies from one to the
other subset as shown in Fig.4.12.

This implies that the ELF data can not be regarded as perfectly
stationary random time series. Therefore, the stacking method put for-
ward in the previous section is considered to be effective., Fig.4.13
presents efficiency of the stacking method. Here, open circle denotes
the impedance estimate from each data subset, with each radius being
proportional to the standard error. It is clearly seen that the final
estimates (hatched circles) situate in the middle of reliable en-
sembles (small circles) and far from those with large errors (large
circles). By using this method, a standard error of less than 10 % is
usually attained if noise level is not extremely high.

From all data sets except those at night, tensor impedances were
calculated. Figs. 4.14 and 4.15 show the behaviors of the amplitudes
and the phase deferences of off-diagonal elements of the complex im-
pedance against the local time for three fundamental modes of the
Schumann resonance. Error bar is taken to be one standard error of
mean; i.e. 67 % confidence interval.

Amplitudes are generally stable and few of them seem to vary
beyond the confidence intervals. Seeing in detail of the variations,
a data point with a large standard error tends to move downward from
the mean value. For example, values of Zxy at 13h00Om of Nov.18 have
large error bars and go downward for all the three frequencies, while
those of Zyx are well estimated and stable. This can be regarded as
the bias error (Goubau et al. 1978; Gamble et al., 1979) due to noise
in Y-component of magnetic field record.

Next, we check the local time dependence of other impedance re-
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lated parameters; i.e. direction of the principal axis, minimum to
maximum impedance ratio and skew. Tensor impedances were rotated into
the principal axis ( Swift, 1967 ). Again, direction of the principal

axis which satisfies:

‘ zx,1 z2 4 i z,x’ 2 = pax. (4-4-1)

and ratio of maximum to minimum impedance are plotted against the lo-

cal time in Figs. 4.16 and 4.17, respectively. The skewness parameter

Skew = [Zxx+Zyy]/[ny—Zyx1 (4_4'2)

is a measure relating to the 2 or 3 dimensionality of subsurface
structure. Fig.4.18, which is the same plot of skew as the previous
ones, shows that the skew values vary crossing the dashed line which
corresponds to the value of 0.2. The skew value of less than 0.2
usuvally implies one or two dimensionality of the structure. The be-
havior of the skew shown in Fig.4.18 may seem queer, because it is un-
likely that the 2 dimensional structure changes to 3 dimensional one
in such a short time. This is pbssibly due to the fact that the skew
is a noise dependent estimate, but depends especially on noise con-
tained in the diagonal elements of the impedance tensor. In other
word, if there is common mode noise in the same components of electric
and magnetic fields, then the estimates of diagonal elements are
biased above the noise free level, resulting in the increase of the
skew value. The direction of the principal axis of impedance tensor
has a similar noise dependence. When common mode noise are high and
calculated diagonal elements are large, the principal direction cannot

be well determined. In this case, rotated maximum and minimum im-
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pedances are no longer reliable.

As a brief conclusion, following three results should be
remarked here:
1) The amplitudes of off-diagonal elements of the impedance tensor can
be estimated with sufficient reliabilities, with relative error of
less than 10%. Off-diagonal elements are also satisfactory stable
against the local time.
2) The error of the phase estimates of the off-diagonal elements is
about 5 degrees. The phase is also a stable estimate against the local
time.
3) The diagonal elements can be estimated less reliably and stably
than the off-diagonal elements. This is possibly because the noise ef-
fects on the diagonal elements are much enhanced compared with those
on the off-diagonal elements. The impedance related parameters, skew,
direction of the principal axis and the maximum to minimum impedance
ratio are also noise dependent. Therefore, skew of lager than .2 dose
not always mean that the structure is three dimensional unless noise

free condition is proved.
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Fig.4.2 Daily variation of VLF signals and the magnetotelluric
responses during Mar.13-16, 1983. Electric field intensity, magnetic
field intensity, apparent resistivity and phase are illustrated.
Scale is presented by bar on the right-hand side of each diagram.
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Source

Fig.4.4 A sketch showing the propagation of the Schumann
resonance field from the lightening flash (large arrow) in the
cavity bounded by the earth and the ionosphere.
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Fig.4.11 Power spectra of the northward (closed circles) and

eastward components of ELF magnetic field variation for 18 data sub-
sets.
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5. Measurement and Data Processing of the Electromagnetic Field Varia-

tions at ULF Range on Land

The ultra low frequency (ULF) range covers the lowest frequency
band, lower than 1 Hz, of the electromagnetic waves. For the purpose
of the electrical investigation of the earth's crust and the upper
mantle, the frequency range between 10™* and 10™* Hz (10 second and
several hours of period) is usually used. In the present study, the
direct inversion method is applied by use of the electromagnetic
responses at the lower band of ULF. Data at the higher frequency bands
such as micropulsation band, ELF and VLF signals are used as sup-
plementary information; i.e. giving the one-dimensional model or sur-
face conductivity distribution.

The corresponding field penetration depth (skin depth) becomes
as deep as several hundreds kilometers for the lower ULF in
homogeneous earth with the conductivity 10™% S/m as shown in Fig.5.1.
By making use of the electromagnetic responses at this frequency band,
we attempt to reveal the conductivity structure in the lower crust and
the upper mantle.

Since the amplitude of the geomagnetic field variation at ULF
range varies by several orders with frequency, observation was made by
two different kinds of instruments. One covers the period range longer
than several. minutes, and the flux-gate magnetometer is used for the
magnetic field measurement. The other apparatus covers shorter period
band between several seconds and a few minutes, by use of induction
coil as a magnetic field sensor. In this chapter, techniques of
measurements at these period ranges will be given, as well as the

method of data processing.
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5.1 Measurement of electromagnetic field variations at ULF range

The electromagnetic fluctuations at ULF range are of magnetos-
pheric or ionospheric origin. Typical values of magnetic field inten-
sity are given in Fig.5.2 for the frequency ranges of most typical
events. The sudden commencement of the geomagnetic storm (ssc) ac-
tivates electromagnetic waves in a fairly wide range of frequency.
One of the longest period variation has typical period of a few to
several hundred minutes, accompanying the main phase of the geomag-
netic storm. Geomagnetic bays observed at the substorm time have also
durations of 30-60 minutes. At periods shorter than several minutes,
geomagnetic micropulsations are widely observed not only for the in-
vestigation of the earth's interior but also for the ionospheric and
magnetospheric studies. Three types of pulsations are given in
Fig.5.2, i.e. Pc-5, Pc-3 and Pc-1. These are classified as continuous
pulsations which are characterized by sinusoidal wave forms. Al though
Pc-1 covers the highest portion of the ULF range, it is quite dif-
ficult to measure particularly in Japan. This is because of the exist-
ence of 1 Hz stepwise noise through ground points of commercial
telephone lines. Pc-3, whose period ranges between 20 and 40 seconds,
is frequently observable at middle latitude like Japan. There is
another type of micro pulsations called Pi's (pulsations irregular).
Pi-2 is often observed accompanying the geomagnetic bays which appears
at midnight to dawn. At the geomagnetic storm time, pulsations (Psc)
appear with relatively large amplitude, not only in the prescribed
period range, but also at each frequency corresponding to that of

Pc's.
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The storm time fluctuations has amplitude of several tens of nT
in horizontal magnetic field variation. Magnetic field intensity of
Pc-5 is 1-5 nT at middle latitudes. The amplitude of Pc-3 varies be-
tween 0.1 and 1 nT depending on the geomagnetic activity. Fig.5.3
presents an example of magnetogram at the geomagnetic storm time ob-
served at Yatsugatake Geomagnetic Observatory. An example of Pc-3
micro pulsation is also given in Fig.5.4, which was observed at a tem-
poral observation site Narugo(NRG), Miyagi Prefecture, Northeast
Japan.

Since the amplitude of geomagnetic variation varies by several
orders of magnitude in the ULF range, the whole range (i.e. 107'-10"%
Hz) is divided into two bands in usual. Measurement is made by use of
a different instrument for each band. The lower band instrument covers
the period range between several hours and a few minutes. The flux-
gate magnetometer is used to measure the magnetic field variation for
the lower band which has a linear sensitivity to the applied magnetic
field intensity. The noise level of the flux-gate magnetometer lies at
about 0.1 nT, as shown in Fig.5.2, which provides a sufficiently high
signal to noise ratio throughout this frequency band. However, the
signal level, at frequencies higher than 1072 Hz, becomes comparable
or even lower than that of the noise level of the flux-gate mag-
netometer. Therefore, we have to use other instrument, the induction
magnetometer, to measure the magnetic field variations of higher
frequencies.

The induction magnetometer consists of the sensor coil with a
highly permeable metal core and the amplifier. This type of mag-
netometer is also used for ELF measurement as described in the pre-

vious chapter. The output voltage induced between both end of the sen-
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sor coil is suitably amplified, filtered and then recorded. The in-
duced voltage, Vo, equals to the negative of the time change rate of
the total magnetic flux crossing the coil, ® +: i.e. the well-known

Faraday's theorem tells,

Vo = - 0% /0t (5-1-1).

Letting the effective area of the sensor coils as Ae, and the applied
magnetic flux density parallel to the coil's axis as B, Eq.(5-1-1) is

rewritten as:

Ve =~ Aer O0B/Ot (56-1-2)

If we assume a sinusoidal variation with time term expl-iw tl, Eq.(5-
1-2) gives the relation between the applied magnetic field and the

output voltage at frequency f,

Ve(f) = iw +Ae-B(f) (5-1-3)

where ® =27 f. Thus, the induction magnetometer has a sensitivity
proportional to the time change of the magnetic field. The sensor coil

2 up to

used in this study has the effective cross section of 2x10* m
about 1 Hz (see Fig.5.5). The noise level of the amplifier of the in-
duction magnetometer is as low as 0.1 u V, reduced to the input volt-

age. With Eq.(5—1-3), we have the frequency dependent noise level of

the induction magnetometer, Bn(f), as:

Ba(f) = 0.81 / f x 107°% (0D (5-1-4)

The noise level given by this equation is sufficiently lower than the
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signal level of the micropulsations throughout the range as shown in

Fig.5.2.

The electric field variation is measured by use of a pair of
electrodes and amplifier. Here, different sets of instrumentation are
used for the corresponding frequency bands. Moreover, the measurement
of the electric field variations requires more considerations because
their amplitudes vary by several orders from place to place depending
on the subsurface conductivity distribution. The relation of apparent
resistivity and impedance, Eq.(3-2-11), gives the rough estimate of
the electric field intensity, E, against the magnetic field variation,

H, at a proper observation site

E=([{wiopal*? - H (5-1~5)

When the magnetic field variation of 1 nT is applied at the period of
30 seconds (i.e. Pc-3 pulsation), the expected intensity of electric
field will become about 0.4 u V/m (mV/km) with an apparent resistivity
of 10 Q m. If the observation site situates in the rather resistive
area with an apparent resistivity of 1000 Q -m, 4 u V/m of the
electric field will be induced. For the variation of 30 minutes
period, on the other hand, corresponding electric field variations
have the intensity of about 1.6 4 V/m and 16 u V/m, for the specific
values of the apparent resistivity 10 and 1000 Q -m, respectively.
Thus, the gain of the amplifier and spacing of the electrodes should
be selected properlv for corresponding frequency band, by taking into
account the subsurface conductivity distribution. Result of VLF and

ELF Magnetotelluric measurements often works as a reference of the
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rough estimate of the apparent resistivity.

Lead bar or lead-lead chloride (Pb-PbCl:) electrodes are used
for the electric field measurements at ULF range. The latter is one of
the chemical equilibrium electrodes, which provides a electrochemical
equilibrium at the interface between the surface of the electrode and
soil, and therefore a long time stability can be expected. Though the
former is not a chemically balanced electrodes, it is often used for
its easiness to handle and relatively high stability.

For the measurement of each component of electric field, a pair
of electrodes are buried about 1 m deep with a spacing of about 100 m.
Each electrode is connected to the amplifier by shielded co-axial
cable. An Instrumentation amplifier of parallel input is used as an
receiving amplifier (Fig.5.6). The input voltage between the electrode
pair is suitably filtered and amplified after D.C. component of the
voltage is compensated if necessary. The shield of the co-axial cable
have to be connected to the ground of the circuit. This is found to be
effective to eliminate the induced voltage between the both ends of
the cable (electrostatic shield).

The filter is indispensable for an electric field amplifier at
ULF range, because the level of the electric field of ELF range
usually exceeds that of ULF range. Moreover, in order to reject the
artificial noises at 1 Hz from telephone lines and 50 or 60 Hz from
power lines, a suitable set of filter is required for a precise
measurement. The filter system for the higher band of ULF (pulsations)
consists of three parts:i.e. a band pass filter between 300 and 10
seconds and notch filters at 1 and 50 or 60 Hz. The lower band instru-
ment has also three filters such as a low pass filter with a cut-off

period of 3 minutes and two notch filters. These filter systems are
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necessary particularly when the digital recordings are made, in order
to eliminate the so-called aliasing effect.

Electric and magnetic field data, 5 components in all, is digi-
tally recorded in a cassette magnetic tape or solid state memories
with 12 bits resolution. In some data acquisition system, differences
from the previously measured value are recorded with 8 bits resolution
in order to save the data storage. Sampling interval is 1 second for
the higher frequency band and is 1 minute for the lower band. By use
of cassette tape, 15 days and half a day of recording are possible for
the lower and higher bands, respectively.

Occurrence of the geomagnetic storm is closely related to the
solar activity with a typical period of 27 days. Therefore, lower band
observation should be carried out for at least one month, which
requires tape change at least once a field operation. The solid state
memory, EP-ROM, enables us a fairly long time recording. This record-
ing system is used only for flux-gate magnetometers at present, both
for land use and ocean bottom magnetometer (OBM), by which a con-
tinuous measurement as long as one and a half months is possible with

sampling interval of 1 minute by battery operation.
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5.2 Data processing

In this study, two kinds of response functions are used in order
to investigate the conductivity structure of the earth. One is the
geomagnetic transfer functions, A and B, which relate the vertical
component, Hz, to the horizontal components, Hx and Hy, of geomagnetic

field variation in the frequency domain as:

Hz(f) = A(f)+Hx(f) + B(£f)-Hy,(£f) (56-2-1)

This equation describes that the vertical component variation is
proportional to the north component and/or the east component. In
other word, the geomagnetic field variation is restricted within a
plane whose normal vector is determined by A(f) and B(f), which is
well-known as Rikitake-Yokoyama Plane (Rikitake and Yokoyama 1953).
The other is the impedance tensor as is already shown in the previous
chapter. The impedance describes the relationship between the electric
and the horizontal magnetic field variations as given by Eq.(4-3-1).
Here, the linear relationship is rewritten explicitly with the com-
ponents of the electromagnetic field as:

Ex(f) Zxx(f) *Hx(f) + Ziy (£f)-Hsy(f)

(5-2-2)

Ey (£) Zyx(f) Hax(f) + Zyy (£)-Hy (f)

When the magnetic field is measured by use of the induction mag-
netometer, each component can be replaced by its time derivative like

Eq. (4-3-2).
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Eqs.(5-2-1) and (5-2-2) are of the same type of linear formula.
Therefore, we are going to express these relationship in a general
form hereafter as following which describes a relationship between two
inputs I, and I and an output O of a linear system with response

functions R; and Rz:

O(f) = R (£)-T1(f) + Ra(f)-12(f) (6-2-3)

In the actual observation, a set of data from k'th subset,
[0k (£f),11(f),l2k(f)], does not completely satisfy the relation Eq. (5-

2-3), but yield some error or discrepancy, 6 x(f):

O k(f) = Ox(f) - [Ri(f) - Tanx(f)+R2(f)-T12x(f)] (5-2-4)

If this unfitness can be assumed as random for each data subset, we
can determine the set of response functions [R:(f),R2(f)] by means of

the least squares under the condition of

Y 8§ ()% = min. (5-2-5)
k

Then, the response function can be obtained with sets of observations

as follows:

<Iz'*12>’<0'*11> - <Iz‘*11>'<0‘*12>

Ry (£) (5-2-6)

<Il'*11>'<12‘*12> e <I1'*Iz>'<12’*11>

<Il'*I1>‘<O'*Iz> - <I1‘*Iz>’<0'*11>

Rz (f) (5-2-6)

<11’*11>'<Iz‘*12> - <I1‘*Iz>’<12'*11>
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where <> denotes an ensemble mean such as

1 N
<Il'*Iz> = "’_E I1k(f)'*12k(f)
N k=1 (6-2-7)

where % denotes a complex conjugate. Eq.(5-2-7) is equivalent to the
definition of the cross spectrum estimate with time series of finite
data length (e.g. Hino 1978). Hence, ensemble means in Egs.(5-3-5) and
(6-2-6) are often replaced by estimates of power and cross spectra
(e.g. Everett and Hyndman 1977). The standard error in the estimate of
R1(f), for example, can be given in a similar form to Eq.(4-3-3) fol-

lowing Bendat and Piersol (1976),

4 (1-coh®(0)) P(O)
F(n,4,a )- >
2n-4 (1-coh?*(12)) P(Iy)

ri(£)* = (56-2-8)

where P(0O) and P(Ii) denote power spectra of O and I:i, respectively;
F(n,4,a ) gives a percent point of F-distribution with a degree of
freedom n; coh?(0) and coh?(12) are the multiple coherency between O
and [I,,I12], and the coherency between I: and I., respectively.

The multiple coherency, coh®(0), can be obtained as:

coh®(0) = 1 - P(&)H/P(O) (5-2-9)

where P(8 ) denotes the power spectrum of the unfitness for & (f)

given in Eq.(5-2~-4). When the output, O(f), can be perfectly predicted

by the linear relationship Eq.(5-2-4), P(8§ ) will be diminished and
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therefore the multiple coherency will become unity. If the relation-
ship cannot be described well by the linear equation Egq.(b-2-4), on
the other hand, the unfitness, & (f), will have almost equal power to
that of the output, O(f). In such a case, the multiple coherency be-
comes quite small.

The coherency between I; and Iz is given by

coh®(12) = [P(12)1%3/(P(11)-P(12)} (5-2-10)

where P(12) denotes the cross spectrum of I1(f) and I2(f). It is ob-
vious that, when I,(f) is proportional to I2(f), the coherency becomes
unity. We can see one of such examples in linearly or circularly
polarized electromagnetic field variation. In this case, we can not
determine the response functions together, because the each
denominator in Eqs.(5-2-5) and (5~2-6) becomes null, by use of such
data set with unity coherency. Eq.(5-2-8) tells a simple relations be-
tween the estimation error of the response function and the
coherencies: error decreases with higher multiple coherency, coh®*(0),

and with lower coherency, coh®(12).

In actual data processing, we have to plot the whole record to
select portions appropriate for the time series analysis. In order to
obtain a reliable result, time series analysis requires a data set
with a sufficient length. In usual, a record of the geomagnetic storm
with several days of duration is selected for the analysis. Total num-
ber of the data points of a data set, M, and of each data subset, L,
should satisfy the following condition for stable power and cross

spectra (Bendat and Piersol,1974):
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N = M/L = 10 (5-2-11)

where N is the number of data subsets. Therefore, if we are going to
determine the response function up to 120 minutes of period, data set
with length of at least 1200 minutes is necessary to obtain a reli-
able estimates. Actual procedure is summarized as followings.

1) Select a data set of high geomagnetic activity. Missed data or ob-
viously erroneous data, if any, are suitably interpolated.

2) Remove a trend by the least squares for each 5 component.

3) Apply a numerical band pass filter. Recursive filter of Butterworth
type (Saito, 1978) is used twice:i.e. once forward and once backward.
The shorter cut-off period is determined so as to be equal to the
double of the nyquist period, while the longer cut-off is coincide
with the length of each data subset.

4) Since filtering causes large scatters at the initial and last por-
tions of data set, such portions are abandoned. Length of data to be
abandoned, na, can be determined by corresponding length of filter

coefficients, ne¢, as:

Na = 20 ng¢ (56-2-12)

5) Each data subset is Fourier transformed by use of FFT method, and
then smoothed power and cross spectra are estimated by ensemble
averaging of Eq.(5-2-7).

6) Geomagnetic transfer functions and impedances, as well as their
standard errors, are calculated by use of the equations presented

above.
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Fig.5.2 Amplitude spectrum of natural magnetic field variation.
Thin line (FG), long dashed line (IU) and short dashed line (IE) in-
dicate the noise levels of flux—-gate magnetometer, induction mag-
netometer for ULF and induction magnetometer for ELF, respectively.
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