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Chapter 1
Introduction

1. In this paper, we consider a boundary value problem for
a system of ordinary differential equations of first order in the

interval (0, 1)

Ve

duz(x)
_d;(-——— + pll(x)ul(x) + plz(x)uz(x) = Zul(x)
dul(x)
—F— + p21(X)U1(X) + pzz(x)uz(x) = AUZ(X)
(1) 9 (0 £ x g 1)
~u2(0) + hul(O) =0
u2(1) + Hul(l) =0
Here p.,. (1 s i,j £ 2) are real-valued functions on [0, 1]

1]
with appropriate regularity, and h, H are real constants.

Moreover the parameter 1 corresponds to the eigenvalue.

The boundary value problem (1) describes vibrations for
various phenomena such as an electric oscillation in a
transmission line, a vibration of a string with viscous drag,

a longitudinal vibration in media with discontinuities.

Let us assume that pij (1 <1i,3 £ 2), h and H are
given. Then a problem of finding eigenvalues of (1) is one of
what are called forward problems, and such a problem is closely
related to determination of eigenfrequencies. Thus the forward
problem for (1) is important from both mathematical and practical

points of view.



On the other hand, the following two problems are
significant also from the practical viewpoint
1. the uniqueness of physical systems which realize the specified

characteristics of vibrations (eigenfrequencies, for example).
2. the construction of an algorithm of such a physical system.
The former is an identification problem and the latter is a
synthesis problem. In the identification problem and the
synthesis problem for (1), assuming that the eigenvalues are
given, we determine the coefficients pij(x) (1 £ 1i,J £ 2) and
the real constants h, H. Thus in contrast with the forward
problem, the identification problem and the synthesis problem are
ones of inverse problems, or in particular, inverse spectral
problems in our case.

The purpose of this paper is to study the identification
problem and the continuous dependence problem for (1). Here by
the continuous dependence problem we understand a problem of
discussing in what sense do coefficients of the equations in (1)
determined from the eigenvalues, depend continuously upon the
eigenvalues. We note that the continuous dependence problem is
associated with the synthesis problem.

As the theoretical features of the inverse spectral problem,
we can point out the nonlinearity and the ill-posedness. That
is, let an operation of determining the coefficients pij(x)

(1 g£i,j £ 2), etc. of (1) from the specified sets of eigenvalues
can be defined. Then the operation is nonlinear, although the
original problem (1) is linear in (ul, u2) . Furthermore it is
not certain whether this operation is continuous with respect to
the metric introduced naturally in terms of the asymptotic
behavior of eigenvalues, and this fact suggests that our inverse

problem is not well-posed in the sense of Hadamard.



These nonlinearity and ill-posedness make the analysis of
the problem difficult and interesting.

Thus the mathematical analysis of the inverse spectral
problem for the boundary value problem (1) is significant from
the practical viewpoint as well as the theoretical one.

On the other hand, as for the identification problem in
terms of evolutionary systems, we can refer to Kitamura and
Nakagiri [24], Nakagiri [37], Nakagiri, Kitamura and Murakami
[38], and, Nakagiri and Yamamoto [39], for instance. In these

papers, they consider an abstract evolution equation

%H+Au(t)=0 (t 2 0)

u(0) = Ug

in a Banach space and study an identification problem on the
unique determination of the operator A from observations over a
time interval of the solution u(t). Therefore the
identification problem in [24], [37], [38] and [39] differs from
the one for an eigenvalue problem as is considered in the present
paper.

As for the synthesis problem on design of distributed

parameter circuits, we refer to Heim and Sharpe [11].

2. As for the Sturm - Liouville problem

2
- Q_Higl + p(x)u(x) = Au(x) (0 £ x5 1)
dx
(2) 4 d—3}£—1 - hu(0) = 0
d—é‘é—l—l+ﬂu(1) =0
\

the inverse spectral problem has been considered in detail. For

instance, we can refer to Ambarzumian [1], Borg [2], Gel'fand and
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Levitan [5], Hald [7, 8, 9, 10], Hochstadt [12, 13, 14, 15, 16],
Hochstadt and Lieberman [17], Isaacson, McKean and Trubowitz
[18], Isaacson and Trubowitz [19], Iwasaki [20, 21], Levinson
[27], Levitan and Gasymov [28], Marchenko [30], McLaughlin [33],
Mizutani [34], Murayama [35], Suzuki [46, 47, 48, 49, 50, 51],
Willis [55], and Zikov [59].

On the other hand, as for the inverse spectral problem for

2m
equations of higher order such as (-1)™ Q__%%ﬁl + p(x)u(x) =
dx

lu(x) (0 s xg1;m-=1,2,3,...), we refer to Leibenzon [26],
McLaughlin [31, 32], Sahnovid [44, 457, and Uchiyama [54].

However, in spite of practical importance and the
interesting features because of the fact that multiple
coefficients in the system (1) have to be considered, as for the
inverse spectral problem for systems of ordinary differential
equations such as (1), there has been little work. This
situation is the author's motivation for this research.

Of course, by eliminating u, or u, in the system (1) so
as to get a single equation of second order, it is impossible to
reduce our problem (1) to the Sturm - Liouville problem, except
for particular cases such as pll(x) = p21(x) = pzz(x) =0 (0 g
x £ 1) h =H=0. Moreover we note that (1) is a generalization
of the Sturm - Liouville problem (2). That is, as is seen in $5
in Chapter 3, the problem (2) can be transformed to (1) in an
appropriate manner, in the cases where the boundary conditions at
x = 0, 1 are the homogeneous Dirichlet condition or the

homogeneous Neumann condition.



3. This paper consists of four chapters including the
present chapter.

In Chapter 2, we define the sets of eigenvalues which are’
given in order to determine the coefficients, etc. in (1) and we
formulate our identification problem in the most general form
(Definition 2 in $1). That is, let us introduce another boundary

value problem (1)', where the boundary condition u2(1) + Hul(l)

=0 in (1) is replaced by u,(1) + H*ul(l) =0 (H#H) :

duz(x)

—ax__ + pll(x)ul(x) + plZ(x)uZ(x) = }.ul(x)

dul(x)

¢ p21(x)u1(X) + p22(x)u2(x) = luz(X)
(1) J (0 £ x 1)

u2(1) + H’u 1) =0 .

1 (

\

Throughout this paper, we adopt the spectra of both (1) and
(1)' as the specified sets of eigenvalues given for the
determination of the coefficients, etc.

The reason why we have to introduce another boundary value
problem (1)' is because the spectrum of a single boundary value
problem is not sufficient for the determinaion of the
coefficients. Originally this formulation of the inverse
spectral problem has been considered for the Sturm - Liouville
problem since Borg [2]. On the other hand, it is natural to
consider two kinds of boundary conditions at x =1 from the
realistic point of view, because such replacement is often easy,
especially for our vibrating systems. In fact, in order to

realize replacement of boundary conditions for electric

_5_



oscillations in a transmission line, we have only to insulate or
earth the ends of the line, for example. (See Remark 6 in $6 of
Chapter 3.)

Furthermore in the same chapter, we characterize the
boundary value problems which possess the same specified sets of
eigenvalues (Theorem in $1 in Chapter 2). Actually we consider
two pairs such that each pair is composed of two boundary value
problems in the forms (1) and (1)'. Then these two pairs possess
the same sets of eigenvalues defined above if and only if we have
four nonlinear equalities with respect to the coefficients of the
equations and the constants of the boundary conditions in the two
pairs of boundary value problems. The nonlinearity of these
equalities corresponds to the above-mentioned one. Moreover

these equalities are crucial in the succeeding chapters.

In Chapter 3, we consider the following three types of
identification problems : Let us assume that in the coefficient

Pi1(x)  pyy(x)

matrix of the equations in (1), one
Py (%)  pyy(x)

diagonal component and one nondiagonal component, two nondiagonal
components and two diagonal components are known, respectively.
In the respective three cases, we discuss the identification
problems of uniquely determining the other components from the
sets of eigenvalues defined in Chapter 2. For convenience, we
will call these three problems Type-I, Type-II and Type-III,
respectively.

The reason why we have to restrict our identification
problems to the determination of two components of the
coefficient matrices is the following characteristic points of
systems of ordinary differential equations under consideration
1) Let us consider two pairs such that each pair is composed of

-6 -



two boundary value problems in the forms (1) and (1)', and let
these two pairs possess the same sets of eigenvalues defined
in Chapter 2. Then by the main theorem in Chapter 2, we can
obtain at most four equalities in the coefficients, though we
have unknown eight coefficients in both pairs. (We note that
each pair has four coeffictients.) In this sense, it turns out
that the sets of eigenvalues obtained by considering two kinds
of boundary conditions at x = 1, are not sufficient for the
tdentification of all the coefficients.

2) We cannot get more data than data of the sets of eigenvalues
as ts defined in Chapter 2, even though we further replace
boundary conditions to consider a pair composed of three
boundary value problems. In this sense, the sets of
eigenvalue obtained in Chapter 2 contain the maximum data for

the tdentification problem.

Now we determine the sets of coefficients and constants
which satisfy the four equalities derived in Chapter 2, so that
for the uniqueness in the problems of Type-I1, Type-I1 and
Type-I1I, we can get the affirmative result (Theorem 1 in $2.1 in
Chapter 3), the partially affirmative one (Theorem 2 in $2.2) and
the negative one (Theorem 3 in $2.3), respectively. In other
words, these theorems mean that there exist components easy to
identify and components difficult to identify in the coefficient
matrix. This fact is one of notable features of our inverse
problem.

Furthermore, as applications of the results for Type-I and
Type-11, we consider the uniqueness in the identification
problems concerning proper vibrations of a string with viscous
drag and electric oscillations in a transmission line,

respectively.



In Chapter 4, we study the continuous dependence problem for
the identification problem of Type-I. In view of Theorem 1 in
Chapter 3, we can define the mapping which transforms the sets of
eigenvalues defined in Chapter 2 into the one diagonal and the
one nondiagonal components of the coefficient matrix, and we can
show the result (Theorem 2 in $1), which asserts that if we
introduce a stronger metric than the one matching with the
asymptotic behavior of eigenvalues, then this mapping is
continuous with respect to the introduced metric of the specified
sets of eigenvalues and to an appropriate norm of the
corresponding coefficients. Here as a norm of the coefficients,
we take the maximum norm, for instance. This fact is associated

with the ill-posedness as is mentioned above.

4., The main features of the method adopted in this paper
are the following two.

1) The integral transformation between eigenfunctions : We
can construct an integral operator which transforms each
eigenfunction of a problem (1) to an eigenfunction of a problem
of the same type with a different coefficient matrix.

Furthermore we find the kernel functions of the integral operator
as the solution to a hyperbolic system of partial differential
equations of first order. This method is used in the inverse
spectral problem for the Sturm - Liouville equation by Gel'fand
and Levitan [5], Suzuki [46, 47], etc.

While a single coefficient has to be considerd in the Sturm
- Liouville problem, there appear four coefficients maneuvearble
in our problem. Therefore we need an appropriate device for its
construction. Then the equalities in the main result in Chapter 2

can be derived from the boundary conditions imposed on the

-8 -



above-mentioned hyperbolic system.

2) The hyperbolic system stated in 1) as the alternative to
the Gel'fand - Levitan equation : For the Sturm - Liouville
problem, the kernel function of the integral operator as in 1) is
the solution to a hyperbolic differential equation of second
order, and at the same time, also the solution to some integral
equation called the Gel'fand - Levitan equation. By using this
fact, it is possible to solve the continuous dependence problem
for the Sturm - Liouville equation (Iwasaki [20]).

On the other hand, for (1), an equation corresponding to the
Gel'fand - Levitan equation is not derived. However we can solve
our continuous dependence problem by the fact that the solutions
to the hyperbolic system, satisfied by the kernel functions,
depend upon boundary data continuously in an appropriate sense.
All these proof is carried out in Chapter 4. For the proof, the
following two facts are crucial :

(i) a priori estimates on solutions to the hyperbolic systems.

(ii) results on perturbation of some basis called a Riesz basis.



Chapter 2

Preparation for the Identification Problem :
Characterization of Boundary Value Problems in Terms of
Eigenvalues

$1. Formulation and the result. We consider a system of

ordinary differential equations of first order in the interval

(0, 1)
P

duz(x)

———‘dx + Pll(X)ul(X) + plZ(X)UZ(X) = lul(x)
(1.1) 3

dul(x)

— ¢ le(x)ul(x) + Pys(x)uy(x) = Au,(x)

(0 £ x 1)

\

with boundary conditions

(1.2) u2(0) + hul(O) =0
and
(1.3) uz(l) + Hul(i) =0

Here let pij(x) (1 £ 1,j £ 2) be real-valued Cl—functions
defined on [0, 1] and, let h, He RV { = }

Throughout this paper, if h = « and H = in (1.2) and
(1.3), respectively, then we regard (1.2) and (1.3) as ul(O) =0

and ul(l) = 0 , respectively (cf. Remark 3 below).

In this paper, we discuss the following problem called the

ij(x)

(1 £ i, j £ 2) and the constants h and H from some knowledge

inverse spectral problem : to determine the coefficients p

of the eigenvalues of the boundary value problem (1.1) - (1.3).

- 10 -



The purpose of Chapters 2 and 3 is to discuss the
identification problem, that is, whether the coefficients pij(x)
(1 £ i,j £ 2) 1in the equation (1.1) and the constants h, H in
the boundary conditions (1.2) and (1.3) are uniquely determined
from the sets of eigenvalues obtained in the manner stated below.

Chapter 2 is devoted to a preparation for Chapter 3 where the

identification problems of three types are considered.

As for the inverse Sturm - Liouville problem

d%u(x)
(1.4) - —E—i—— + p(x)u(x) = 2u(x) (0 £ x £ 1)
X
and
/
9%5{—1 - hu(0) = 0
(1.5) 1

%1—2- + Hu(1)

[[]
o

\

according to the result in Borg [2], Levinson [27], etc., one set
of eigenvalues associated with given boundary conditions does not
determine the potential p(x) and, if in addition we give a set
of eigenvalues associated with another boundary conditions, we
can determine p(x) wuniquely.

Also for our problem, we adopt a formulation similar to the
one in Borg [2], Hochstadt [13], Levinson [27], and Suzuki [46,

517.

Remark 1. For the inverse Sturm~Liouville problem, we have
two other formulations. That is, in Hald [10], Hochstadt and
Lieberman [17], Suzuki [46, 51], and Willis [55], it is shown

that one set of eigenvalues associated with one pair of boundary

- 11 -



conditions at x = 0, 1 determines p(x) uniquely on the whole
interval [0, 1] on condition that p(x) is known on the "half"

interval [O, % ].

On the other hand, in Borg [2], Hald [7, 8], Hochstadt [13],
Levinson [27], and Suzuki [46, 48], on the assumption that p(x)
in the Sturm-Liouville problem (1.4) is spatially symmetric (that
is, p(x) =p(1 - x) for O < x g 1), the same conclusion as the
one above stated holds. As for the spatially symmetric
potential, we can further refer to Iwasaki [20], and Suzuki [49,
50].

Also for our system (1.1), under formulations similar to the
ones stated above, we can discuss the inverse spectral problem to

obtain the corresponding results.

In this section, we give the formulation and state our
result, which is crucial for the identification problems in

Chapter 3.

Let L2(0,1) be the Hilbert space of square integrable
complex-valued functions in the interval (0, 1) and let
{ L2(0,1) }2 be the product space. As is well-known, the space
{ L2(0,1) }2 ié a Hilbert space with an inner product defined

by (1.6) :

(1.6) (u, v) = (u, v)
{L?(0,1))2

1/2

1 1
= ( J Ul(X)VIZXS dx)z + ( J UZ(X)VZZX) dX)2
0 0

- 12 -



(u = , v o= e { L%(0,1) }* ),

where & denotes the complex conjugate of a € C .
Henceforth let pij and qij (1 <1, j £ 2) be
real-valued Cl-functions defined on [0, 1] and let h, j, H,

* * .
H,J,J € RV {e«} . We set

py(X)  py,(x)

POx) = (P50 )1gs, 32 = :
le(X) pzz(x)
qll(x) qu(X)

Q(X) = (qij(x))léi,jsz = ’
a4 (%) ay5(x) ’

and
0 1
B =
1 0

We introduce
Definition 1. We define an operator AP h.H in

2

{ L2(0,1) }2 by the realization in { L2(0,1) } of a

differential operator B %é + P(x)- with boundary conditions

uz(O) + hul(O) = 0 and uz(l) + Huz(l) = 0 . That is,

(1.7) (AP,h,Hu)(x) = B Qgéil + P(x)u(x) u € Q(AP,h,H)
u
9(ap ) = { v [ u; ] e {H(0,1)}) % ;

UZ(O) + hul(O)

o, u2(1) + Hul(l) =0 }

- 13 -



Here Hl(O,l) denotes the Sobolev space and { Hl(O,l) }2 is

the product space. Similarly we define the operators A *
P,h,H

A s » €tc.

AL . ’
Q’J,J Q)j’J

Remark 2. Throughout this paper, we can assume that
(1.8) h # « ,

in the boundary condition uZ(O) + hul(O) =0

1}
o

In fact, let h = « , that is, the boundary condition at x

be ul(O) = 0 . Then, defining v by

we have a system

dv,(x)
—E— 4 Dy () (x) + Dy (x)v,(x)

|
>~
<
-
Q)

(1.1)" J

dvl(x)
—ax * plZ(X)Vl(x) + pll(x)VZ(x) = 2 VZ(X)

with the boundary conditions

(1.2)° VZ(O) + O'vl(O) =0
and
(1.3)' vy(1) + fovy(1) =0

The system (1.1)' with (1.2)' and (1.3)' is the one obtained by

T

in (1.1) - (1.3) replacing h and H by 0O and

respectively.

- 14 -



Henceforth let O(AP,h,H) denote the spectrum of the
operator AP,h,H . As for G(AP,h,H) , the following result is
known (Russell [42, 43], for example)

Proposition 0. Let h e R\ { -1, 1} and H e RV { =}
\ { -1, 1}

(I) The spectrum of the operator AP,h,H consists entirely of
countable eigenvalues ln and the multiplicity of each 1

n

18 one. That is, dim Ker (An - A =1

P,h,H)

Let us set

(1.9) (B n) = {2} n ey

(II) (the asymptotic behavior of the eigenvalues) We put
(

1 (1 + h)(1 - H) . .
> log (T - n)(1 H) ° if H # .
(1.10) y = 3
1 h + 1 . - -
E log H—:_T N if H = ’
\
and
1 1
(1.11) 6= 3 o (py4(s) + py5(s)) ds ,

where in (1.10) we take the principal value of the logarithm.
Then we have
(1.12) Xn =y + 60 + nav-1 + 0 ( % )

(as  |n] - =)

(III) (the completeness of eigenvectors) Let us denote an
etgenvector associated with the eigenvalue ln by ¢n(-) =
i8S a "Riesz basis” in

¢(+y 4)) . Then the system { ¢} . 4

- 15 -



the Hilbert space { L2(0,1) }2 , that ts, each [ u ] €

{LZ(O,l)}2 has a unique expansion

(1.13) [ o ] = 3 c
and furthermore we have

(1.14) m-ls ENE || ( u ]
{L2(0,1)}2

2
s M 3 le, |
N = =

for some positive constant M 1independent of [ 3 ]

From now on, for simplicity of our discussion, we suppose

the following assumption on the real constants in the boundary

conditions.
Assumption.
~
h,jGIR\{-l,l} ’
(1.15) 7
» * *
H, H , J, J e RV {«}\{-1,11},and H # H
\
» » .
In particular, H # H implies that either H or H is
finite.

- 16 -



Now our inverse spectral problem or identification problem
can be stated as follows

Problem A. Do the conditions

r

o(Aq,5,3) = 9Bp y u)
(1.16) <

Q,j,J P,h,H

\
*

*
imply Q(x) = P(x) (0O s x<1), j=h, J=H, and J =H ?
As is seen from Theorem below, the answer for Problem A is

negative. Thus in this chapter, we concentrate upon

*
Problem B. To characterize (Q, j, J, J ) such that

o(A *) = (A *)
Q,j,J. P,h,H

(A = o(A

Q,j,J p,n,u) and

In order to consider Problem B, we introduce

Definition 2. Let P = (p..) e | Cl[O,lj }4

ij’1 £ i, s 2

*
and h, H, H be fixed such that h e R\ { -1, 1} , H, H e

RU {=)}\{-1,1), and H # H

We set

(1.17)  M(P,h,H,H )
= 1! (Q,5,3,37) 5 Q= (a.,.) e { clro,17 3"
- rJd ’ t3 qij 1 < i, j < 2 ’ ]

jeR\{-1,1}, 3,3 eRU{=}\{-1,11},

and
o(Aq,5,5) = *(8p n 1)
oA ) =o(a ) b
Q,j,J P,h,H



and

(1.18)  M(P,h,H,H )
= : *y . q = 1 4
= { (Q,J’J’J ) ’ Q - (qu)l < i, j < 2 € { C [Oyl] } ’

jeR\ {-1,1}, J,J eRU {=}\{-1,1]},

and

7(8,5,5) 2 o8 pn,u)

(A ) oA 4 . } .
Q,j,Jd P,h,H

*
In other words, M(P,h,H,H ) denotes the totality of

operators AQ 5,3 and A » whose spectra coincide with the
T Q,Jj,J

spectra of the operators A and A » » respectively.
Poh,H Q,3,3

* *»
It is obvious that (p,h,H,H ) € M(P,h,H,H ) . If we had
* *
m(p,h,H,H ) = { (P,h,H,H ) } , then the two sets of eigenvalues

would determine the operators A and A « uniquely.

P,h,H
(That is, the answer for Problem A would be affirmative.) Thus,

P,h,H
for the discussion of the uniqueness or the nonuniqueness in our

inverse problem, it is sufficient to determine the set

*
M(P,h,H,H ) .

- 18 -



Moreover, throughout this paper, we note

Remark 3. Henceforth we set

(1.19)  +=H =180 ur oH-a

Then, for example, in (1.10) of Proposition 0, we always get

Ei u ﬁggi - gg for each HeRU { =} \ { -1, 1}

Furthermore, throughout this paper, we use the following :

(1.20) Let a, B8 €e R. If H =« , then the equality

a + f§ H=0 means g = 0.

Then, without distinguishing the cases H = « , J = «, etc. from
the cases H # =« , J # =, etc., we can formally write and
mathematically follow all our discussion in this paper. For

example, H = =« means ul(l) =0 in (1.3).

*
As a characterization of M(P,h,H,H ) , our main theorem in
this chapter can be stated as follows.

Theorem . (I) We have

(1.21) M(P,h,H,H ) = M(P,h,H,H ) .
(II) We have

(1.22)  (Q,3,3,3) M(P,h,H,H )

m

if and only tf (1.23) (1.26) hold :

- 19 -



(1.23) = Cag00 + ag,(x) = ayy(x) = ayy(x)

- pll(x) + plz(x) - p21(x) + pzz(x) )
+ } : A ( qll(x) = qlz(x) + q21(x) - qu(X)

= pll(x) - plz(x) + p21(x) + pzz(x) )

X
x exp( J O(qll(S) * dy5(s) - pyq(s) - pys(s))ds) = 0

(0 g xg 1),

(1.28) = Cay(x) + ap,(x) = 4y, (x) = ayy(x)
+ pll(x) = p12(X> + p21(x) = pzz(x) )
+ %—E—% ( = qll(x) + qlz(x) = qu(X) + qu(x)

+

- pll(x) - plz(x) p21(x) + pZZ(X) )

X
x exp( J O(qll(s) * Ay5(s) = pyi(s) - py,(s))ds) =0

(0 g xsg 1),

~
(1+h)(1-H)(1-4)(1+3) , ,
(1 -h)(1 + H)(1 + j)(1 J) !
(1.25)
(1 + h)(1 - H)(1 - 3)(1 + )
Log (T =) (T + B)(1 = 3)(1 = J)
1
= J o(qll(s) + qZZ(S) = pll(s) = pzz(s))ds ’
.
- » ) »
(1 + h)(1 - H’)(l - )+ J*) > 0,
(1 - h)(1 +H )+ j)(1-73)
(1.26) < . .
Jog Lr M)A =BG - 5)(1 + 3T)
(1 - h)(1 +H )+ 3)(1 -3)
1
= J O(qll(s) + qZZ(S) - pll(s) - PZZ(S))dS .
|\
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From the fact that the equalities (1.23) and (1.24) can be

regarded as two nonlinear integral equations of four unknown

functions qij (1 «4i, j £ 2) , we can show that there are

infinitely many Q = (g

ij)1 si,j 52 satisfying (1.23) and

(1.24). That is, the answer for Problem A is negative.

This chapter is composed of three sections and three
appendixes. In $2, we derive a formula ( a "deformation formula"
according to the terminology in Suzuki [46]), which is a key in

the later discussion. In $3, we prove Theorem.



$2. Deformation formula. We begin this section with the

following proposition on a system of hyperbolic equations. Let
(2.1) Q={(x,y);0<y<X<1} )

0 1
and we recall that B =
1 0

Proposition 1. Let P = ( and Q =

Pijli1 < 4,§ 5 2
( be given in { C1[0,1] }4 y and let h be a

given real number satisfying |h| # 1 . Then, for each r

94301 < 1,5 < 2
1 2
€ 01[0,1] , there exists a unique K = K(x,y) =

(Kys(69)) | o552 €4 cl@ Y satispying (2.2) - (2.5)

(2.2) B IV L qR(x,y) - K(x,y)P(y) = - EZY) 5

( (x,y) ¢ Q@ ).

(2.3) KlZ(X,O) = hKll(X’O)

' KZZ(X’O) = hKZl(x’O) (0 g x 1)
(2.4) K12(x'x) - Kzl(x,x) = rl(x) (0 g x g 1)
(2.5) Kll(x,x) - K22(x,x) = rz(x) (0 g x5 1)

Proposition 1 is proved by reducing (2.2) - (2.5) to a
system of Volterra's integral equations (cf. Petrovsky [40] and

Picard [41]) and we carry out its proof in Appendix I.
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Let P =(p3j3)y 4,5 c2 @d Q=(a54)y o 4,552 De

given in { Cl[O,l] }4 and let h, j € R satisfy |h|, |j| # 1.

Then we set

X
(2.6) 6,(x) = % f o (ay,(s) + g51(s) = py,(s) - pyy(s))ds
(0O g x < 1),
1 X
(2.7) 0,(x) = 5 (a;,(s) + a55(s) - pyy(s) - p,5(s))ds
2 2) 5 11 22 11 22
(0 s xs1),
and
(o = 1-
1 1 -nh
(2.8) 4
1 + j
8 = T

Moreover let us put

(2.9)  atx) = 3 { a exn(- 0,(x) - 0,(x) )

a, exp(- 0,(x) + 6,(x) ) } 0 sxs 1),

(2.10)  b(x) = % { a, exp(- 6,(x) - 0,(x) )
- a, exp(- 0,(x) + 6,(x) ) } (0sxs1),
and
[ a(x)  b(x) ]
(2.11) R(x) = (0 g x g 1).
b(x) a(x)
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Now we get to state a "deformation formula" in our case ;
Lemma 1. (I) For given P, Q e { C1[0,1] }4 and h, j e

R such that |h|, |j| # 1 , there exists a unique K = K(x,y)

= (Ky0ay) )y g5 .0 ¢ (CM@® VY sarisrying (2.12) -
(2.15) :
(2.12) B BEYD 4 Qa)K(x,y) - K(x,y)P(y) = - ElEa¥) g
( (x, y) e Q).
)
KIZ(X’O) = hKll(x,O)
(2.13) 1

K22(x,0) = hKZl(x,O) (0 = x 5 1).

(2.14) Klz(x,x) - KZl(x,x) =
72, exp (- 6,(x) - 0,(x))

x (a1(x) + a;,(x) = ayy(x) - q,,(x)
= Py (%) + pyo(x) = pyy(x) + pys(x) )
¢ §ay exp (- 8,(x) + 0,(x))
x (ag9(x) = a,(x) + q5y(x) - q,,(x)

= pll(x) = plz(x) + p21(x) + pZZ(X) ) (O £ X = 1)°
(2015) Kll(x’x) - Kzz(xyx) =

T8y exp(- 8,(x) - 0,(x))
x (qll(x) + qu(x) - qu(X) = q22(x)

+ pll(x) = plz(x) + p21(X) - pZZ(X) )

¢ 4 ay exp(- 8;(x) + 6,(x))
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X (- qll(x) + qlz(x) - qu(X) + q22(x)

= pll(x) - plZ(X) + p21(x) + pzz(x) ) (0 L X g 1)-

(II) (a deformation formula) If, for 1 € C , the function
¢(-) = ¢(+,1) e { c[0,1] }? satisfies

(2.16) B 92X) | pix)e(x)

ax 1p(x) (0 g x5 1)

and

1
(2.17) $(0) = [ ] ,
-h

then w(-) = p(-,1) € { cl[0,1] }% defined by

X
(2.18) p(x,2) = R(x)¢(x,1) + J 0 K(x,y)p(y,4)dy

(0O xxg 1),
satisfies
(2.19) B HEL L Qx)p(x) = ap(x) (0 5 x 5 1)

’

and

1
(2.20) p(0) = { . ]
-J
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Remark 4. As for the Sturm - Liouville problem, a formula
of the type of (2.18) is derived in Suzuki and Murayama [52],

which is stated as follows ; Let p, q € Cl[O,lj , and h, j € R

be given. Then there exists a unique L = L(x,y) € Cz(ﬁ) such
that
2 2
d y d"L(x,
—Lia%_ﬂ - —a‘%ﬂ + p(y)Lx,y) = a(x)L(x,y)
X Y

( (x, y) e2),

X
L(x,x) = J - h + % J o (a(s) - p(s))ds (0 = x=<1),

and

dL(x,0)
ay

)
2
%
e

(0 £ x 1)

Furthermore, if f£(-) = £(-,1) e C°[0, 1] satisfies

42

(p(x) - =—,)f(x) = 2f(x) (0 £ x 1)
dx

£(0) = 1, Qgﬁ—l = h , for i1 ¢€R,

then g(-) = g(-,1) € C°[0, 1] defined by

X
(2.21) g(x) = f(x) + I o L(x,y)f(y)dy (0 = x < 1)

satisfies
d2
(a(x) - =—5)eg(x) = 1g(x) (0 2 x s 1)
dx
dg(0 .
g(0) =1, dgl0) _

In particular case, the formula (2.21) is shown in Marchenko

[30], or Gel'fand and Levitan [5].
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The formula (2.21) is a key for the inverse Sturm -
Liouville problem.

On the other hand, in Gasymov and Levitan [4] (cf. Levitan
and Sargsjan [29]), a similar formula is shown for the one -

dimensional Dirac's system.

Remark 5. In our systems (2.16) and (2.19), we note that
there are four coefficients to be "deformed" (namely, pij —_—
qij for 1 < 1i,j £ 2 ). Thus we need to introduce R(x) in our
formula (2.18) as a modification factor.

Moreover, also as for more general systems involving N

functions on the interval [0, 1], we can show formulae similar

to (2.18).

Proof of Lemma 1. The part (I) of this lemma is seen by
Proposition 1.

The part (II) follows by elementary computations including
integration by parts. In fact, we can prove the part (II) as
follows.

In (2.18), we get
(2.22) B d—ﬁé{ﬂ

B_R(zl¢x)+BR(x)QM

dx
X
+ BR(x,x)¢(x) + J . ° ;IxY) g(y)ay

B 9B 5(x) + r(x)B 22LEL | BR(x,x)p(x)

X
+J [- axg;:}, ) Bg(y) + (K(x,y)P(y) -
0 ,

Q(x)K(x,y))o(y) ]dy
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(by BR(x) = R(x)B and (2.12) )

= 8 B 50 4 r(x)B 92D L Br(x,x)p(x)
y=x X

+ [ - K(x,y)Be(y) ] + J K(x,y)B Q%%xl dy
y=0 0

X

X
J . K(x,y)P(y)e(y)dy - Q(x) J OK(X,Y)¢(Y)dY

+

(by integration by parts)

B BX) 5(x) + R(x)(1 - P(x))0(x)

+

( BK(x,x) - K(x,x)B)¢(x) + K(x,0)B¢(0)

X

X
J o K(x,y) (42 - P(y))o(y)dy + J OK(x,y)P(y)¢(y)dy

+

X
- Q(x) J OK(x,y)¢(y) dy (by (2.16) )

[ B BX) _ g(x)p(x) + BK(x,x) - K(x,x)B }-cp(x)

+

AR(x)¢(x)

X

(2 - Q(x)) J o K(x,y)¢(y) dy

+

In the last equality, we use K(x,0)B¢(0) = 0 by (2.3) and
(2.17).

Having

X

Q(x)w(x) - 1p(x) = Q(x)R(x)p(x) + (Q(x) - 2) J OK(X,Y)¢(Y)dy
- 1R(x)¢(x) by (2.18) ,

we obtain

B L q(xyp(x) - p(x)
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- |B Qlﬂd% + Q(x)R(x) - R(x)P(x) + BK(x,x) - K(x,x)B|-¢(x)

Since, by (2.9) - (2.11), we see

B Mf*dgl + Q(x)R(x) - R(x)P(x) + BK(x,x) - K(x,x)B = O ,

we reach the equality (2.19).

Finally, as to the initial condition (2.20), we have only to

note that a(0) = l—:—i% , b(0) = h—:—iz , and therefore,
1 -nh 1 -h
1 a(0) b(0) 1 1
R(O) = =
-h b(0) a(0) -h -3
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$3. Proof of Theorem . In order to prove Theorem, we have
only to show

Proposition 2. We have
. * . *
(3.1) (Q,3,3,3) ¢ M(P,H,H,H )

if and only if the equalities (1.23) - (1.26) hold.

In fact, let Proposition 2 be proved. Then we can deduce Theorem
as follows :

As for the part (II) of Theorem, firstly assuming that

(Q,3,3,3°) ¢ M(P,h,H,H ) , we have to show (1.23) - (1.26). To
this end, we note that M(P,h,H,H*) c M(P,h,H,H*) by the
definitions (1.17) and (1.18). Hence we have (Q,j,J,J*) €
M(P,h,H,H ) , which implies the equalities (1.23) - (1.26) by
Proposition 2.

Conversely we suppose that the equalities (1.23) - (1.26)
hold. Then we have to show that (Q,j,J,J*) € M(P,h,H,H*). Its
proof is carried out in the following manner.

By Proposition 2, we get (Q,j,J,J’) € M(P,h,H,H’)

On the other hand, we can easily derive the equalities (3.2) -

(3.5) from the equalities (1.23)

(1.26), respectively :

(pll(x) + plz(x) - p21(x) - pZZ(X)

+

- qll(x) + qu(x) - q21(x) QZZ(X))
1 + h
+ T_:_F (pll(x) = plz(x) + p21(x) - pZZ(X)

= qll(x) = qlz(x) + qu(x) + qu(x))

X
x eXP(J . (pyq(s) *+ py,(s) - a;y(s) - g55(s))ds) =0

(0O s x 1),
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(3-3) %_E_% (pll(x) + plZ(x) = p21(x) - Pzz(x)

+ qll(x) = qlz(x) + qu(X) - QZz(x) )
1 h

+ T_%_F (-pll(x) * plz(x) - p21(x) + pZZ(X)

= qll(x) = qlz(x) + q21(x) + qu(x) )

X
x exp(J 0 (Py1(8) + pys(s) - qy;(s) - a,,(s))ds) =0

(0 g xg1),

and
(3.5) log (1 + j)(1 - J*)(l - h)(1 + H’)
(1 - jJ)(1 +J )(1 + nh)(1 -H)
1
o (P11(s) + pys(s) = q4,(s) - q,5(s))ds
Since (3.2) - (3.5) are nothing but the equalities obtained in

(1.23) - (1.26) by replacing P ; (1 <1i,j £ 2), h, H and H*

J

»
j (1 <1i,j < 2), j, J and J , respectively, we get

by q;
» »
(P,h,H,H ) ¢ M(Q,j,J,J ), again by Proposition 2.
* *
Therefore we prove that (Q,j,J,J ) € M(P,h,H,H ) , which
shows the "if" part of (II) of Theorem.
Finally the part (I) of Theorem follows from the part (II)

and Proposition 2.
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Next we proceed to

Proof of the "if" part of Proposition 2. Let us assume that
the equalities (1.23) - (1.26) hold. Then we have to show that
. * »
(Q,j,J3,3 ) e M(P,n,H,H ).

We recall that ¢(-) = ¢(-,2) € { C[0,1] }° satisfies

(3.6) B 920%) |, p(x)p(x) = 19(x) (05 x5 1)

dx
and
1
(3.7) ¢(0) =
-h
For ln € a(AP h H) , wWe set
wél)(X)
(3.8)  y (x) = = R(x)p(x,2) ,
- (2)
¥y (%)

where R(x) is the 2 x 2 matrix given by (2.11). By (1.23) -

(1.26) we can see by direct computations

dy, (x)
B —gx— * Ux)y (x) = 2y (x) (0 £ xx51),
1
p,(0) = g ,

and
vy )« ol =0

Here we note also Remark 3 stated in $1. These imply An €

O(AQ,j,J) . That is, we see that o(A c O(AQ,j,J)' We

P,h,H)

can similarly show that o(A «) € oA «) and therefore,
P,h,H Q,j,J
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*» *
we see that (Q,j,J,J ) € M(P,h,H,H )

Proof of the "only if" part of Proposition 2. We can show
the "only if'" part along the line of the argument in Suzuki
[46, 51].

Assume that

(3'9) O(AP’h,H) C G(AQ'J"J)

and

(3.10) o(A s) € o(A )
P,h,H Q,j,J

Then we have to prove the equalities (1.23) - (1.26).

Let us set

(3.11) U(AP,h,H)

and
(3.12)  o(Ay 5 5) = {m by ¢ g

Firstly we see, by (3.9), that for each n € Z , there

exists some m(n) € Z such that 1lim |m(n)| = =« and

I~

(3-13) ln = Mm(n) (I‘l € Z)

Therefore it follows from (3.13) and the asymptotic behavior of

the eigenvalues ( (II) of Proposition O in $1) that we get

1
(3.14)  Flog MU= . 1 J (P11(5) + pyp(s))as

+ nr vy -1 + 0Of % )

—~
[y
+
<
~—]

1
.;(1 -3, % J O(qll(S) * q,,(s))ds
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+ m(n) ay -1 + 0Of 1 ) (n € Z)

m(n)
Since we have

1 1
%Jo(p“(s)' + D,,(s))ds , %JO(qM(s) + ay,(s))ds € R
and
1 (1 + h)(1 - H) 1 1+ 3)(1 -3 _
Im 5 o8 (T -—w) (1 +H) @ Im3log §1 - 3)§1 ¥ J§ =0
or % /4 , we see that

lim (m(n) - n)ay -1 = 0 ,

NnN|=— oo

which implies

1
(3.15) 3 log prplio AL L L (P11(s) + Ppy(s))as
. (1
= % log %i - gggi n 3; * % 0(qll(s) * 455(s))ds .

This equality is nothing but the equality (1.25). Similarly we

can see (1.26).

Secondly, in order to show (1.23) and (1.24), we apply
Lemma 1 in $2. Let K = K(x,y) € { Cl(ﬁ) }4 be the solution
to (2.12) - (2.15) in Lemma 1 and let R(x) be defined by
(2.11). We put

vy (x,1)
(3.16)  w(x,1)

py(x,1)

X
R(x)p(x,1) + J OK(x,y)¢(y.l)dy (0 £ x 1)

Then, by Lemma 1 , we have
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B L2UGA) 4 qG)p(x,1) = dp(x,2) (0 5 x 5 1)

(3.17)

p(0,2) =

On the other hand, by the assumption (3.9) and the fact that
each eigenvalue ln is simple, we see that w(-,ln) is an
eigenvector of AQ 3,3 associated with ln . Therefore, from

, ,

the boundary condition at x = 1 , we get
(3.18) wo(Ll,2.) + Iy (1,2) =0 (n e zZ)

Here we recall that (3.18) means wl(l,ln) =0, if J = = ,

Henceforth let
» »
(3.19) H, H, J, J # =

Otherwise we can similarly proceed and in Appendix II, we give
*
the discussion in the case of H # « , H = , J = » , and

*
J # = , for example.

Substituting (3.16) into (3.18), we obtain

(3.20) (J - H)a(1) + (1 - JH)b(1) + Kz(ln) + JKl(ln) =0

(n € Z)

Here and henceforth, we put

1
(3.21) K,(2) J O(Kll(l,y)¢1(y,1) +* K5 (1,y)e5(y,2))dy

and

(3-22)  K,(4)

1
J O(K21(1,y)¢1(y,1) + Kys(L,y)e5(y,2))dy

...35_



and we recall that a(x) and b(x) are given by (2.9) and
(2.10), respectively.

By the assumption (3.10), we similarly get

(3.23) (37 - H)a(1) + (1 - IH)B(1) + Ky(2))
. J’Kl(x;) =0 (n e Z)
Here we set o¢(A «) = { 1; } nez

As is easily seen, the equalities (1.25) and (1.26) imply

p
(J - H)a(l) + (1 - JH)b(1) = 0

(3.24) J
(3" - BN)a(1) + (1 - 35" )b(1) = 0

\.

Hence by (3.20), (3.23) and (3.24), we reach

(3.25) Ko(2,) + JK (1) =0 (n e2z),
and
(3.26)  K,(A ) + J'K (1)) = 0 (n e Z)
Since the system { ¢(-,2)) } . z and { ¢(-,1;) hh e 2

are complete in ({ L2(0,1) }2 , respectively ( (III) of

Proposition O in $1), the equalities (3.25) and (3.26) imply

P

!
o

KZl(l,y) + J'Kll(l’y) =
(3.27) <
0 (0 sy s 1)

*
Ky (1,y) + J K (1,y)

and



-
K22(19Y) + J'Klz(lvy) =0
(3.28) 4
| Kpa(1iy) 37Ky ,(1,y) = 0 (0 sy s 1)
Now, by (1.25) and (1.26), we have
* »*
(1 -H)(1+J) _ (1 -H)1+J)

(3.29)  HFHEIT=T (1 + H)(1 -3

*
Since we assume that H # H (Definition 2 in $1), the equality

(3.29) implies
(3.30) J#J

Therefore by (3.27),(3.28) and (3.30), we obtain
(3.31) Kij(l,y) =0 (1 i, js2, 0gyz<1)

As is proved in Appendix III, we have a result on
uniqueness of solutions to a hyperbolic system :

Lemma 2. Let K = K(x,y) satisfy

(3.32) B QEL%;xl + Q(x)K(x,y) - K(x,y)P(y) = - QK(§§x) B

((x, y)e),

-
Klz(x,O) = hKll(x,O)
(3.33)
KZZ(X’O) = hKZl(x,O) (0 g xg1),
and
(3.34) Kij(l,y) =0 (1L si, js2,0sys1).

Then the identity



(3.35) K(x,y) = 0 ( (x, y) e Q)
holds.

We return to the proof of the "only if" part. By Lemma 2

and (3.31), noting (2.12) and (2.13), we reach

(3.36) K(x,y) =0 ( (2, y) e Q)

Thus (3.36), (2.14) and (2.15) imply (1.23) and (1.24).

The proof of Proposition 2 is completed.
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(I.1)

we can rewrite (2.

(I.2)

(I.4)

and

Appendix I.

9

-
Ll(X’Y) =

Ly(x,y) =

L3(x,y)

I—‘q(x’y)

~

[ oL, (x,y)
ox

L, (x,y)
0x

6L3(x,y)
ax

an(xvY)
ax

L,(x,0)

Lq(X,O)

Proof of Proposition 1.

Kio(x,y) +

L, (x,y)
ay

L, (x,y)
ay

3L3(x,y)
dy

+
1]

an(xvy)
ay

+
[l

k-Ly(x,0) + ¢-L,

-i-Ll(x,O) - k-L2

..39_

= K21(X9y)

- Kzz(x9y)
K22(X’Y)

K21(X’y) ’

2) - (2.5), so that we get

fl(x9Y1 le

fz(x9Yv le

f‘3(x,y, Ll’

fq(x,y, Ll’

(x,0)

(x,0)

(0

Setting

£ xs 1)



(I.5)

Here and henceforth we put

(I.6)

K

Ll(x,x) =

Lz(x,x) =

I

s
\V]

i

fl(x,y, Ll’ LZ’
-3 )
-3 () -
- % ( pyy) -
-2 (- py(y) +

f,(x,y, Ly, Ly,
1

-E( pll(Y) +
1

- Z ( plZ(Y) +

+ 3 (= pp,(y) +
2 Pio\Vy

- % (- pyq(y) +

2 (= by (y) +
+ 30 pyyy)
230 p(y) +
+ % ( pyy(y) +

Ly, Ly) =

Py (V) + aq,(x)
Py (y) - qyq(x)
Pos(y) = ayq(x)
Py (¥) = a;5(x)
Ly, Ly) =

Poso(¥) = g4 (x)
Py (¥) + a;,(x)
Pyy (¥) + qy5(x)
Py (y) = qqq(x)
Ls, Ly) =

Poo(y) = qq4q(x)
Py (¥) + ay,(x)
Py (¥) = qy5(x)
Pos (V) - qq4(x)

(0 £ x 5 1)

a4 (x))L, (x,y)
a,, (x))L,(x,y)

q21(x))L4(x,y)

a5, (%)L, (x,y)
454 (x))L3(x,y)

q22(x))L4(x,y)

a5 (%)L (x,y)
a5 (x))L,(x,y)
451 (x))L3(x,y)

q22(x))L4(x,y)



and

(1.7)

fq(X,y, L19 LZ’ L3’ Lq) =
% (— p12(Y) + p21(Y) + qlz(x) - q21(x))L1(x,y)

+ % ( pll(y) = pzz(y) - qll(x) + qu(X))Lz(X’Y)

+ % ( pll(Y) + pzz(y) = qll(x) - QZZ(X))L3(Xry)
+ % ( plZ(y) + p21(y) - qlz(x) - q21(x))Lq(X,Y>
( (x, y) e 2),
N~
’
- 2h
Kk = —=0_
1 - n
2
1 + h
{ = =0
1 - h

N~

First we can integrate (I.2) with (I.5) along the

characteristic curve y + x = const. , so that we get integral

equations (I.8)

(1.8)

r
X+y
2

L, (x,y) = fi(-s + x +y,s, L
y

1» Loy Ly Ly)ds

X+ Yy )

+ rl( >
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2

L2(X9Y) = fz(-s + X +Yy,s, Ll’ LZ’ L3y Lq)dS
Yy

+r2(x—'%z) ( (x, y) e Q).

Second we integrate (I.3) along the characteristic curve

y - x = const., so that we obtain

y
Li(x9Y) = J’ofi(s"'x-Y9so Ll’ LZ’ L3’ Lq)dS + Li(x-y,O)
(i = 3,4).

Therefore by (I.4) and (I.8), we get

%

P

y
L3(x,y) = J o f3(s *+x -y,s, Ly, Ly, Ly, Ly)ds

r XTY
2
+ ( k'fl(-S + X - V¥,s, Ll’ L29 L3v LLI_)

0]

+ t-fz(-s + X -Y,S, Ll’ L2, L3, Lq) )ds

len (R b (E5Y )
(I.9) A
Yy
Lq(X,Y) = 0 f]_}(s * X -V,Ss, Ll’ LZ’ L39 Lu)dS
=y
2

- ( i'fl(' S + X = ¥,S, Ll’ L27 L3’ Lq)
0

+ k-fz(-s + X - y,s, Ll, LZ, L3, Lu) )ds

X =- X -
-t (B ) - kery (25

( (x, y) € Q)
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Thus, on condition that ry, r, € Cl[O,l] and P, Q €
{ Cl[O,lj }4 , the problem (I.2) - (I.5) is equivalent to the
Volterra's integral equations (I.8) and (I.9), if L € {Cl(ﬁ)}u
is proved.

The unique solution L = L(x,y) € { C to (I.8) and
(I.9) is given by the following iteration method : Let us define
approximation sequences { L§n)(x,y) } n s 0 (1 <1< 4) by

(I.10) - (I.12)

(1.10) Ly =0 ((x,y) €T, 1cisch),
f,
Lin)(XrY) =
Xty
2
£, (-sexey,s, LPTH), pfemh) o int) o inml)ygg
y
P CEEE
(I.11) <
i (x,y) =
x+y
2
fz(‘S"’X"'y,‘S, L](.n—l)y Lén-l), Lén-l), Ll(‘n-l))ds
Yy
+ ry( 25T ( (x,y) e @ , nz21l),
\
and



L{™ (x,y) =
d Of3(s+x-y,s, Lin_l), Lén-l), L§n_1), Lﬁn-l))ds
[ x-y
>
e | ket (msexmy,s, L{PTH)pinmt) pinet) oy (nml)y
] o
+ Lof,(-s+x-y,s, Lgn-l), Lé“'l), Lén—l), Lﬁ“'l)) )ds
+ k.rl( X_;-Z:l ) + .{.rz( L_g_l )’
(I.12) 9
L{™ (x,y) =
[ v (n-1) (n-1) . (n-1) | (n-1)
fq(s+x-y,s, L1 , L2 , L3 , Lq )ds
[ x-y
>
- | et (sexmy,s, LT pinmt) o tnnt) L{n~t))
] o
+ kef,(-s+x-y,s, L§“‘1), Lén‘l), L§n’1), Lﬁ"'l)) )ds
- {‘rl( X -2. ) - k.rz( .)5_%_& )
( (x,y) e &, nz21 )
\
We set

M= 8(|k|] + |¢] + 1)-max { max | Pjj - ,
1<i,j g2 c’[0,1]

max I .. | } .
1¢1i,5s2 17 ¢%%o0,17

Then, by induction, we can see the estimates

T



(1.13) | L™y - L gy

n-1 n-1
M (1 + x)
< = — (k[ + [¢] + 1)(| ¢, | +
(n 1) ! 1 00[0’1]
el 1 ) () e B, 1sizh),
c’[o,1]
for each n =2 1
Thus Li(x,y) = 1lim L§n)(x,y) (1 £1i < 4) exist
n - =

uniformly in (x,y) € £ and we see that Li(x,y) (1 1< 4)

satisfy (I.8) and (I.9). Furthermore we can get similar

. oL{™ (x,y) oL{" 1) (x,y)
estimates on % - 7% and
n-1
8L§n)(x,y) 8L§ )(x,y)
3y - 3y y by induction, and therefore we

see also that L € {Cl(ﬁ)}4

The uniqueness of solutions is also shown by (I.13).

Thus the proof of Proposition 1 is completed.
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Appendix II. Derivation of (1.23) and (1.24) in the case of
»* *
H#2 , H =« ,J == and J # « in the proof of

Proposition 2. In this appendix, assuming that
*
(II.1) H# ©»  H =« |, J = o and J # =

we derive (1.23) and (1.24) in the proof of the "if" part of

Proposition 2.

Here we recall that

py(x,1)
(I1.2) p(x,1) =
p,(x,1)
X
= R(x)¢(x,1) + J o K(x,y)p(y,2)dy (0 = x s 1),
(O(AP,h,H ={1, ez
(IZ.3) <
9(Ap p,o) = { ’1; Ynez
and
1
K, (1) = J O(Kll(l,y)¢1(y,l) + K 5(1,y)¢5(y,2))dy
(II.4) Ao
1
Kz(l) = J O(KZI(I’y)¢1(y’2) + K22(19Y)¢2(y91))dy
\

for 1 € C ,

and by the boundary conditions for ¢1 and ¢2 , and H # « ,

- 4§ -



H = « , we note that

(1I1.5) 6,(1,1 ) + Hep (1,1.) = 0 (n e Z)
and
(I1.6) ¢1(1,z;) =0 (n e Z)

Furthermore we have already derived (1.25) and (1.26), and

we have obtained

(I1.7) wl(l,ln) =0 (n e 2) |,
and

*» * »
(II~8) wz(l'»ln) + J .Wl(l’ln) =0 (n € Z)

Then, in order to derive (1.23) and (1.24), we have only to

prove

(11.9) Kij(l’y) =0 (1<i, 2, 0sgsyzs1),

in view of Lemma 2.

Substituting (II.2) into (II.7) and using (I1.5), we get
(11.10) (a(l) - Hb(l))¢1(1,ln) + Kl(ln) =0 (n € Z)

On the other hand, as is easily checked, the equality (1.25)

implies a(1) - Hb(l) = 0 . Therefore by (II.10), we obtain
(I1.11) Kl(ln) =0 (n € Z)

Next, substituting (II.2) into (II.8) and using (II.6), we

get
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(11.12) (a(1) + 37D(1))p,(1,27) + (Ky(20) + 3k, (20)) = 0
(n € Z)

Since we see by direct computations that the equality (1.26)

*
implies a(l1l) + J b(1) = 0 , we obtain
* * *
(I1.13) Kz(ln) + J Kl(ln) =0 (n e Z)

by (II.12).

*
Since the systems {¢(-,2)} | ., and {¢(-,2)} _ z

are complete in { LZ(O,l) }2 » respectively, the equalities

(II.11) and (II.13) imply

(II.14) Ky (1,y) = K,(1,y) = O 0sys1) ,
and
L 2
K21(19y) + J °K11(1’y) =0
(II.15) T
»
| K22(17y) + J 'K12(19y) =0 (O £y s 1) ’

respectively. Thus we prove (I1I.9).
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Appendix III. Proof of Lemma 2. By an argument similar to
the one in Appendix I, we have only to show the following : If

Ly (1 i s 4) satisfy (I.2) - (I.4) and

(I1II.1) Li(l,y) =0 (0O ys1l,1<izgh)

hold, then we have Li(x,y) =0 ( (x,y) e @, 1<c1izsgsh)

Let us set

o]
"

<x<1}

N

1 {(x,y);l—X<y<x,
(I11.2) !

o
i

> 9\91\{(x,y);1-x=y}

Then, by a result on uniqueness of solutions to the Cauchy
problem for hyperbolic systems (for example, Petrovsky

[40, p.68] ), we see
(I1II1.3) Li(x,y) =0 ( (x,y) € 51 , 1 g1 g 4)

from (I.2), (I.3) and (III.1).

By (III.3), we have

(II1.4) Li(x,l -x) =0 ( s xs<1,1<1ighb)

N

Since L, (1 21igl) satisfy (I.2) - (I.4) and (III.4), we
obtain the integral equations (III.5) and (III.6) in Li by a

discussion similar to the one in Appendix I



Ll(xoy) = = ofl(-S+X+Y9sy Ll, LZ’ L3’ Lq) ds
[ 1-x-y
2
+ (k'f3(S+X+y’Sy L19 LZ’ L3, Lu)
J 0
+ t-fq(s+x+y,s, Ll’ LZ’ L3, Lq) )ds
(III.5)1
Lz(x$y) = - sz(-S+X+y’59 Ll’ LZ’ L39 Lq) ds
[ 1-x-y
2
- (i'f3(S+X+Y9S9 le L29 L39 Lq)
J 0
+ k-fq(s+x+y,s, Ll’ L2, L3, Lu) )ds
~ ( (x,y) ¢ 2, )
and
r l-x+y
2
L3(X9Y) = - f3(S+X_Y:S: Ll’ L29 L39 Lq)ds
y
(II1.6)<
1-x+y
2
Lq(x,y) = - fq(s+x—y,s, Ll’ LZ’ L3, Lq)ds
y
. ( (x,y) e 2, )
Setting
m(x,y) = max | Lij(x’y) | ’
1 <i,j g2 ‘
and
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M= 8(lk| + |£| + 1) max { max | p. . ,
15i,js2 H c%ro,1]

max | a,. | }
151,53 «2 7 ¢%o0,1]3

we inductively deduce the estimates

n-1 n-1
(II1I.7) m(x,y) = 2 (él_—1§)! clm 0 (p-

( (x,y) ¢ 2,) ,

for each n z 1 . Since n 1is arbitrary, the estimates (III.7)

prove

m(x,y) = 0 ( (x,¥) ¢ &, )

Thus the proof of Lemma 2 is completed.
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Chapter 3

Identification Problems of Boundary Value Problems
in Terms of Eigenvalues

$1. Introduction. Let us consider

-
duz(x)
T + pll(x)ul(x) + plZ(X)uZ(X) = 1u1(x)
(1.1) |
dul(x)
T + p21(x)u1(x) + pzz(x)uz(x) = ).UZ(X)
\ (0O g x< 1),
with boundary conditions
(1.2) uz(O) + h-ul(O) =0
at x = 0 , and either
(1-3) uz(l) + H°U1(1) =0 ’
or
(1.4) u,(1) + H -u (1) = 0 (H#H )

In the preceding chapter, we show the theorem which

characterizes the coefficients p,.(x) (1 g5 i,j s 2), etc. of

ij
(1.1) by the two sets of eigenvalues associated with two boundary
value problems (1.1) - (1.3) and (1.1),(1.2),(1.4), respectively.
In virtue of Theorem in Chapter 2, we can get the following
proposition. Here let us recall that AP,h,H is the operator

given in Definition 1 of Chapter 2 and that o(AP h H) denotes
? ,
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the spectrum of AP,h,H

Proposition 1. Let h e R\ { -1, 1} and H, H* €

RY {=}\{-1,1} . If Q= (q

i1 1,552 ¢

{ 01[0,1] }4 satisfies

(o(AQ,h,H) = o(Ap hou)
(1.5) 9§
o (A s) = o(A ) ’
L Q,h,H P,h,H
then the relation
G(AQ,a,ﬁ) = O(AP,a,ﬂ)

holds for each a € R\ {-1, 1} and B e R UV { = } \ {-1, 1} .

In Appendix I, we will prove Proposition 1.

This proposition asserts that in our inverse spectral
problem, only two sets of eigenvalues obtained above give
"independent" knowledge in the determination of the coefficients
of (1.1).

On the other hand, as is seen by Theorem in Chapter 2, we
cannot uniquely determine all the four coefficients of (1.1) by
those two sets of the eigenvalues. (In fact, we get only two
equations (1.23) and (1.24) in Chapter 2, whereas there are four

unknown functions q. (1 £ x5 2) .)

ij
Thus, in this chapter, we are restricted to three types of
identification problems to determine the other coefficients and
the boundary conditions at x = 1 provided that some of the four
coefficients pij(x) (1 £ 1i,j s 2) and the boundary condition

at x = 0 are known in advance. That is, we consider the

identification problems of the following three types :
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Type-1 : Determination of "one diagonal" component and "“one

nondiagonal" component of P = ( and of

Pij) 1<i,342
two boundary conditions at x = 1.
Type~-I1 : Determination of "two diagonal'" components of

P = (p.

1j) 15i,js2 and of two boundary conditions at

x = 1.
Type-I1I : Determination of "two nondiagonal' components of

P = ( and of two boundary conditions at

Pii) 14i,is2
x = 1.

This chapter is composed of six sections and three
appendixes. In $2, we state our results for the three types and,
in $$ 3 and 4, we prove them. In $$ 5 and 6, as application of
the results in $2, we consider identification problems for a

vibration of a string and for an ellectric oscillation.



$2. The three types of identification problems
$2.1. The result for Type-I. In this case we can answer Yes for
the uniqueness. That is, as is stated in Theorem 1, the two sets

o (A ) and o(A o) (heR\ {-1, 1}, H, H eRU { = }
P,h,H b hH

. v
\ {-1, 1} and H # H ) wuniquely determine one diagonal

*
component and one nondiagonal component of P and H, H

Throughout this chapter, let

[ heR\ (-1, 1},
(2.1) <
H, H, J, J €eRU { =} \ {-1, 1} , H=#H
and ;
(2.2) P, Q  {clfo, 11}, real-valued.

Theorem 1. Let us assume that

r

of a(A

Aq,h,3) = o(8p 4 y)

(2.3) -

a(A ) = o(A

» )
Q,h,J

»
P,h,H

“

If either of (2.6) - (2.9) holds, then we have

(2.4) Q(x) = P(x) (0 £ x g 1)

and

(2.5) J=H and J =H

(2.6) A9 (x) = pyy(x) and q,,(x) = p,,(x) (0 x5 1)
(2.7) q;,(x) = py,(x) and q,,(x) = pys(x) (0 < x < 1)
(2.8) q;4(x) = py (x) and aqy(x) = pyy(x) (0 < x < 1)
(2.9) q,,(x) = pyy(x) and q;,(x) = py,(x) (0 s x5 1)

In $3, we will prove Theorem 1.
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$2.2. The result for Type-II. In this case we can answer Yes
under some additional conditions, for the uniqueness.
For the statement of Theorem 2, our main result for Type-II,

let P = ( € {Cl[O, 1]}4 be known and let us

Pij) 1¢1,j22
introduce the notation used throughout this chapter

.
’

*

(2.10) M(pyqsP,, 3 H,H )
= { (Q’thyJ’) y Q =

1
dy10 95, € c'[0, 1], real-valued ,
»
J, J e RV { =} \ {-1, 1}

and
o(Bq p,g) = olap 4 y)
o(A L) = o(A o) . } .
Q,h,J P,h,H
([ a(x) = py (%) - pyy(x)
(2.11)
ﬂ(X) = plz(x) = p21(x) (O £ X s 1) N
(2.12) S={xe[0, 1] ; |la(x)| = |8(x)] } ,
da(x) : dg(x)
—==B(x) - a(x)-
(2.13) r(x) = —3%¥ . . azx dx for x ¢ S,
a”(x) - B°(x)
and
Pyo(x) + r(x) Pq5(x)
(2.14) P(x) =
Py (%) Pyq(x) + r(x)
for x ¢ S



Here we note that if a , B € Cz[O, 1], then r e Cl([o, 11 \ S)
and therefore, P e { c([0, 11\ §) }* .

If we had M(pll,p22 : H,H.) = { (P,h,H,H*) } , then the two
sets of eigenvalues would uniquely determine the two diagonal
components of P. However, in general, it is impossible as is

shown in the main result for Type-I1

Theorem 2. Let us assume that
(2.15) S consists entirely of isolated points.

Let [&, '] < [0, 17.

*

»
Then each (Q,j,J,J ) € M(pll,p22 ; H,H ) satisfies (1) -

(4)
(1) Let
(2.16) a(x) # 0 (6 s x5 6")

Then the following facts (a) and (b) hold :

(a) We have either

(2.17) Q(x) = P(x) (6 s xx6') ,
or
(2.18) [6, '] nS =¢ and

Q(x) = F(x) (6 s x5 8")

Moreover we get
(2.19) P(x) # P(x) (xe[8,8']\S)
(b) If (2.18) holds, then we get

(2.20) b B(x) | > | a(x) | (6 sxsg8") |,

and
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da , _ .ds 1 ,
(2.21) = B a3 € C [s, 6']

(2) (the property at a zero of a ) Let y
isolated point in a set { x € [0, 1] ; a(x)

the following three cases :
(a) If for some € > 0 , we have

(2.22) Q(x) = P(x) (y — e <x <y + &)

then r € Cl(y - &, Y + €)

(b) If for some € > 0, we have

(2.23) P(x) =

P(x) (7 s x <7+

then r € Cl[y, y + €) and moreover we have

(2.24) 1im Lrx) (i =0, 1)

X -9y +0 dxi

(c) If for some ¢ > 0 , we have

r?’(x) (y - ¢ <x gy
(2.25) Q(x) =

P(x) (y s x <7 + ¢

\

them r € Cl(y - ¢, y] and moreover we have

i
(2.26) 1im £z _ o (i =0, 1)
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P(x) (y-e<xs5s7y)

)

)

)

(0,
0}

b

14

1)

be an

. Then we have



(3) Let

(2.27) a(x) =0
Then we get

(2.28) Q(x) = P(x)

and further

(6 s x5 6")

(2.29) J z (a1(s) + a,,(s) - pyy(s)
(4) (the property of Q near x = 0)
(2.30) a(x) # 0 (0 s x<3s6") ,
then we get

(2.31) Q(x) = P(x) (0 s xg6') .
(5) (the property of Q near x = 1)
(2.32) a(x) # 0 (6 < x g 1)

and, either

(2.33) J=H

or

(2.34) J=4H",

then we get

(2.35) Q(x) = P(x) (6 £ x g 1)
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(6) (the determination of J and J*)

(a) Let us assume that for any sequence { X } c [0, 1]

nx1
such that 1lim X, = 1 and ﬁ(xn) + a(xn) # 0, the limit

N—ooe

Bk - alxy)
(2.36) aa BT el

does not exist, or that even if the limit k of (2.36) exists

}

and ﬂ(xn) + a(xn) # 0, we have either

Jor some sequence { x c [0, 1] such that 1lim x =1

n-ee

n ’‘n21

(2.37.1) k<0 |,
or
(2.37.2) k =1
Then we get
r J=H
(2.38) )
* *
J =H

Furthermore, if

(2.39) a(l) #0 ,

then we have

(2.540) Q(x) = P(x) (1 - ¢ s x5 1)

Jor sufficiently small ¢ > O .

(b) Let us assume that the limit k of (2.36) exists for some

}
a(xn) # 0, and that

sequence { x c [0, 1] such that 1lim x =1 and ﬁ(xn) +

n-ee

n ‘nz1
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(2.41) k >0 and k # 1

r J = H
Then we get either < or
»* *
J =H
rk(l + H) + H - 1 . H-1
k(L + H) + 1 - H ’ ok F g
(2.42.1) J = S
. _H -1
’ ko= gT
.
and
r
k(1L +H) + H -1 H - 1
¥ * if k # —5——
k(1 +H ) + 1 -H H + 1
L J
(2.42.2) J = 9
H‘I'
o 9 ifk=*—
H + 1

Furthermore, if

(2.43) a(l) #0 ’
then we have the two cases :

(i) (2.38) and Q(x) = P(x) (1 - ¢ £ x < 1).

(i1) (2.38) or (2.42), and Q(x) = B(x) (1 - ¢ £ x 5 1).

Here ¢ > 0 1is sufficiently small.

*
Here, if H =« and H = « , then the equalities (2.42.1) and

k + 1

*»
and J = /73

(2.42.2) mean J = y respectively.

k -1

In $4, we prove Theorem 2.
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Now we give several remarks on this theorem.

Remark 1. In Theorem 2, the assumption (2.15) is essential.
That is, if S contains an interior point, then in S , there
*
are infinitely many Q such that (Q,j,J,J ) €

*
M(pll,p22 ; H,H ) . For example, let given P(x) have the form
p(x) q(x)

q(x) p(x)

for any p , q € C1[O, 1]

Let us take any g e Cl[O, 1] such that

1 »
exp( 2 J (p(s) - g(s))ds ) # g — i , # E;—:—l and let us

0 H + 1
1
set k = exp( 2 J (p(s) - g(s))ds ) . Then we have
0
(2.44) ( g(x) alx) n o K(1+H)+H-1 k(1+H )+H -1

* k(1+H)+1-H’

a(x)  g(x) K(1+H )+1-H

»

M(pyq,P,, 3 H,H )

m

In fact, the relation (2.44) follows directly by checking that
each element at the left hand side of (2.44) satisfies the

equalities (1.23) - (1.26) of Theorem in Chapter 2.

Remark 2. In view of the part (6) of Theorem 2, we see
the following facts

(1) Let us assume that

(2.45) (1) + a(1l) # 0
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- 8(1) a(l)
and let us set k = B(1) a(1)

+
(a) If we have either
(2.46) k€0 or k=1 |,

then we get (2.38).

(b) If (2.46) does not hold, then we get either (2.38) or
(2.42).

(2) Let us assume that
(2.47) (1) + a(1) =0

Then,
(a) The condition g(1) - a(1) # O implies (2.38).
(b) If B(1) - a(l) = 0 , then we have no knowledge of J and

*

J

Remark 3. We give an explanation of Theorem 2 with an

illustration. Let P(x) = (p..(x)) . be given such
ij 1 <41, £ 2

that the number of zeros of a(x) = pll(x) - p22(x) is finite.

We denote the set of zeros of a by { Tk } $=1

» *»
Let (Q,j,J,J ) € M(pll’pZZ s HLH ) . Then, according to
the part (1) - (a) of Theorem 2, the two branches P(x) and

B(x) cross each other only at x = (1 £ k £ m) (in fact,

Tk
P(x) # P(x) for each x # 7y )

The part (1) - (a) asserts also that the possible branches of Q
are either P and P in the intervals (yk, Tk + 1) (1 £ k <

m - 1)' (Ov 71) and (7 ’ 1)

m
Moreover, the coefficient matrix Q changes the branches

from P to P , or from P to P , if and only if at x = Ty o

the two branches P and P connect smoothly in the sense stated
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in the part (2) of this theorem.

If a(0) # 0 , then it follows from the part (4) that Q(x)
= P(x) (0 g x s 71) .

For example, let m = 6 and we consider P and B
illustrated in Fig.l1l, where the bold line and the broken line
indicate P and P , respectively. Let P and P connect only
at x = 75 , 7y and Y6 smoothly in the sense of the part (2).
Then the bold line in Fig.2 indicates a possible branch as Q ,
while the broken line in Fig.3 indicates an impossible one.

Furthermore, in Appendix II, we determine the set
M(pll,p22 ; H,H*) on condition that a has a single zero in the

open interval (0, 1).

Now we conclude this subsection with the following
corollary, which is easily derived by the parts (1) and (4) of
Theorem 2 :

Corollary 1. Let us assume that

(2.48) S

1]
_

and that the set { x € [0, 1] a(x) = 0} consists of finite

we

points Tk (1 £ k £m) . Let us set =1. If for

"m+1
1 <k gm, there is some Xy, € (7k, Tk + 1) satisfying

(2.49)  Q(x) = P(x)

then Q(x) = P(x) (0 £ x g 1) follows.
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$2.3. The result for Type-III. In this case we can completely
answer No for the uniqueness.

Setting

*

(2.50) M(py5,Pyq 3 HyH )
*
= { (Q9h9J'J ) 7 Q =

Q150 9p1 € Cl[O, 1], real-valued ,
*

J, J e RV { «} \ {-1, 1}

and

o(Ag n,g) = 9(8p 4 )

s(A  4) =o(A ) }
Q,h,J P,h,H

we get
Theorem 3. The relation

*

(2.51) M(py5sP,y 3 H,H )

P11 d + Py - Py .
{ ( ’h’H’H ) ;

d Po>

d e cl[o, 1], real-valued }

holds.

*
We note that the set M(plz,p21 ; H,H ) contains an
indeterminate element d in the coefficient matrix, while the
boundary conditions at x = 1 are uniquely determined.

A proof of Theorem 3 is given in $3.



Remark 4. We can discuss identification problems of other

types. For example, let us set

(2.52)  M(py, ; h,H,H )
- { (Q,3,3,3°) ; Q =

Q5 € Cl[O, 1], real-valued ,

jeR\ {-1, 1}, 3,3 e€RU { =} \ {-1, 1}

and
o(Aq,n,3) = o8 h,n)
oa  D=oa o .|
Q,h,J P,h,H

L g
Then M(p12 ; hH,H ) can be given in Table 1. Here let us
recall that the functions a« and B are defined by (2.11) and,
*
as for the determination of J and J , we understand that
A - X 1 1 1

ix -1 = "1 @&and ¢ = 0 if x = =, and == if x=0.

In a forthcoming paper, we fully discuss identification

problems of other types including the present one.
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Table 1. Determination of M(p12 s h,H,H*)

*
a # There exists 1 € R such B #0 M(Plz ; h,H,H )
that 4 # 0, # 1, # -1,
ih # 1, and B = 1a
» P 2p,,-p - - .
YES YES or NO {(P,h,H,H ), tH SR ihfl, iﬁﬁl. ) }
P2y P22 AH -1
YES
NO YES or NO {(P,h’H,H’) | }
» o 2p,,-p
{(P,h,H,H y, (| 1 el R )} , if h#0 .
YES or NO YES Psq Pos H -
. _
NO {(p,h,H,H ) } , if h=0.
YES or NO NO » »
{(P j H-h+ j(1l-hH) H -h=+ j(1-hH ) . 15] # 1 }
rJdy 3 - - ’ * » ’




$3.

Proof of Theorems 1 and 3.

Let us set

(3.1) M(py5sP51+P5, 3 H,H )
. P11 9,
- { @n,3.9% 5 a-
931 472
q12’ q21, q22 € Cl[O, 1], real-valued,
*
J, J €eRV { =} \ {-1, 1}
and
f"(AQ,h,J) = °(Ap n,u)
La(A L o=o(A L) } :
Q,h,J P,h,H
and
»
. 991 992
- { @na9h s a-
921 Poo

Q110 9120 924
*
J, J € RV {
and
9(Aq n,s)
a(A

Then, for the proof of Theorems 1 and 3, it is sufficient to

verify

8

= o(A

(A

Cl[O, 1], real-valued,
} \ {'la 1}

P,h,H)



Proposition 2. We hauve

*

(3.3) M(Py5,P51+P55 3 H,H )
"Pyg d + Pip = Py .
= { ( , h,H,H ) ;
d P22

d e cl[o, 1], real-valued. } ,

and
»
(3.4) M(py1sP15sP5y 3 H,H )
Piy d *+Pyp - Py .
= { ( y h,H,H ) ;
d P22

d e Cl[O, 1], real-valued. }

Proof of Proposition 2. Let us denote the set given by the

right hand side in (3.3) by M1
» »
Let (Q,j,J,J ) € M(plz,pZI,p22 s HLH ) and let us set d =

5y - Then, by Theorem in Chapter 2, we have
(3-5) (qlz(x)-d(x)+p12(x)-p21(x)-(qzz(x)~p22(x) ))
+ ('(qlz(x)-d(x)*’plz(x)-le(x) )'(qu(x)"pzz(x) ))
X
-exp J O(qzz(s) - Pyy(s))ds ) =0 (0 sxs1),

(306) (qu(X)"(d(X)+p12(X)'p21(X) )"'Zpll(x)_qzz(x)'pzz(x))
+ (qlz(x)-(d(x)"'plz(x)"le(x) )_Zpll(x)+q22(x)+p22(x))

X
~exp( J o(qzz(s) - Pyy(s))ds ) =0 (05 xs1),
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(3.7) log gi p §§§} = j; = J o (a,5(s) - pys(s))ds ,
and
(1-w)@a 3 _ 1!
(3.8) log 1+ 8 -1 J o (a,5(s) - py,(s))ds .
Setting
(3-9) f(X) = qu(x) - pZZ(X)

and
(3.10) a(x) = qy,(x) = d(x) + py5(x) - pyy(x)

we can rewrite (3.5) as
X
(a(x) = f(x)) + (-a(x) - f£(x))-exp( J Of(S)dS) =0

(0 s xg1) |,

which is equivalent to

1 - exp( f(s)ds)

(3.11) £f(x) = a(x)-

(0 s x<1) .
f(s)ds)

O X|O X

1 + exp(
o

Since qz; By € clfo, 11 (1 £ 1i,j 5 2) , we have
m, £ f(x) g m, (0 s x5 1)
and
| a(x) | < mg (0 £ x ¢ 1)
for some constants my, my and m3 . Therefore we obtain



b |my |+ |m, | X
(3.12) |exp( Of(s)ds) -1 = e . Olf(s)lds
(0 £ x 5 1)

by the mean value theorem, and
X

(3.13) exp ( f(s)ds) + 1 > 1
0

Estimating the right hand side in (3.11) in view of (3.12)

and (3.13), we have

| £(x) | = m3-elm1l+|m2| . J le(s)lds (0 s xg1),
0

which implies
(3.14) f(x) =0 (0 £ x g 1)
by Gronwall's inequality. Thus we see
(3.15) d5,(%) = pys(x) (0 x 1)
Substituting (3.15) into (3.6) - (3.8), we obtain
(3.16) qpp(x) = d(x) + py,(x) - pyy(x)

(3-17) J = H ’
and
*

(3.18) 3 =H

Here in the derivation of (3.17) and (3.18), we note also that

»
*»
L+ J .1 and 129 .1 imply J=» and I =« ,
1 -J
1 -3
respectively.
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The equalities (3.15) - (3.18) imply that M(plz,p21,p22 H
»
H,H ) c M1
On the other hand, by direct computations, we can show that
each (Q,j,J,J*) € My satisfies (1.23) - (1.26) in Theorem of
Chapter 2, provided that pll(x) = qll(x) (0 £ x g 1)
Therefore we see that M
(3.3).

As for (3.4), we can proceed similarly.

*
1 < M(P12,921,P22 sy H,H ) . This proves

This completes the proof of Proposition 2, so that both of

Theorems 1 and 3 are proved.
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$4. Proof of Theorem 2. For the proof, Theorem in Chapter

2 is a key.

»*
Let us assume that (Q,j,J,J ) € M(pll,p22 H H,H*) . Then,

by (1.23) and (1.24) in Theorem of Chapter 2, we obtain

(4.1) (m(x) - a(x) + 28(x)) +
(m(x) - a(x) - Zﬂ(x))-ee(x) =0 (0 g xg 1),

and
(4.2) (m(x) + a(x))(e?(®) 2 1) = 0 (0 xs1).

Here we set

(4.3) m(x) = qq1(x) - a5,(x) (0 s xx<1),
and
X
(4.4) 6(x) = J O(qll(S) *+ G55(s) = pyq(s) - pyy(s))ds

(0 g xsg1),

and we recall that a« and g are given by

-

a(x) pll(x) - pzz(x)

(4.5) )

ﬁ(X) plz(x) - p21(x) (O £ X s 1) .

\

Further we set

Ky = { x € [0, 1] 3 m(x) + a(x) = 0, m(x) - a(x) # O } ,
(4.6) 1 K2 = { x e [0, 1] ; m(x) + a(x) # 0, m(x) - a(x) =0} ,
K3 = { x e [0, 1] ; m(x) + a(x) = 0, m(x) - a(x) =0 } .
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We prove Theorem 2 by applying (4.1) and (4.2). To this
end, we prepare Lemmas 4.1 - 4.7, which constitute essential

parts of Theorem 2.

Lemma 4.1. If y € Ky then we have

(4.7) y ¢S,

and

(4.8) (aly) - B(y)) + (aly) + 8(y))-?¥) =0

Proof of Lemma 4.1. Since y € K, dimplies
m(y) + a(y) = 0 , we have (4.8) by (4.1).
Next we proceed to the proof of (4.7). To this end, let us

assume that

(4.9) a(y) + B(y) =0
Then in view of (4.8), we get
(4.10) a(y) - B(y) =0

The equalities (4.9) and (4.10) imply a(y) = O , which
contradicts y € K, . Here, by the definition (4.6) of Ky » we

note that a(y) # 0 for y € K1

This contradiction shows

(4.11) a(y) + B(y) # 0O

Hence, again by (4.8), we get

(4.12) a{y) - B(y) # 0

By (4.11) and (4.12), we see (4.7).
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Lemma 4.2. Let [, 6'] c [0, 1] .
(1) If

(4.13) (6, 8'1 <k, ,
then we have

(4.14) [6, '] nS =g

and

(4.15) Qx) = B(x) (6 sxs6') .
(2) If

(4.16) [s, '] ck, |,

then we have

(4.17) Q(x)

P(x) (6 s x5 6")

and

(4.18) 6(x)

0 (6 s x5 48")

Proof of Lemma 4.2. (1) Let (4.13) hold. First by (4.7)
in Lemma 4.1, we see (4.14).

Next we have to show (4.15). By (4.8) in Lemma 4.1, we have
(4.19)  (a(x) = B(x)) + (a(x) + A(x))-e? () =0 (5 cx <.
Differentiating (4.19), we get
(4.20) (a'(x) = B'(x)) +

(a'(x) + B'(x) + 6'(x)-(a(x) + (x)))-e2X) 2 ¢
(6 s x5 8").
Here and henceforth, we use the notation a'(x), B'(x), etc. in
place of ggiﬁ) , Qg%&l
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6(x)

By eliminating e in (4.19) and (4.20), we reach

(4.21) 07 (x)(a®(x) - B%(x)) = 2(a'(x)B(x) - a(x)8'(x))

(6 s x < 6').

Since 6'(x) = qy (%) + gy,(x) - pyy(x) - pyy(x) (0 5 x 5 1),
the equality (4.21) implies

(4.22) Ay9(x) + ay5(x) = pyy(x) + pyy(x) + 2r(x) (6 s x < 8').

Here we note that [é, 6'] n S =g (by (4.14)), and therefore
r is well-defined on [4, 6'].
On the other hand, by (4.13), we have m(x) + a(x) = 0

(6 £ x £ 8'), namely,

(4'23) qll(x) - qZZ(X) = pzz(x) = pll(x) ((5 £ X < 6')'

Combining (4.23) with (4.22), we see (4.15).
This completes the proof of (1) of this lemma.

(2) Let (4.16) hold. Then, since m(x) + a(x) # O

(6 s x g 68'), we get
ee(x) -1=0 (6 s x g 6")
by (4.2) and hence we obtain (4.18).
Next we have to show (4.17). By (4.18), we have

(#.24) " ay (%) + qy5(x) = pyy(x) + pyy(x) (8 5 x5 68')

On the other hand, (4.16) implies m(x) - a(x) =0 (6 < x s &8'),

namely,

(4°25) qll(x) = qzz(x) = pll(x) - pZZ(X) (5 £ X s 5')'

Combining (4.25) with (4.24), we reach (4.17).

Thus the proof of Lemma 4.2 is completed.
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Lemma 4.3. We have

(4.26) K, VK, U K3 = [0, 1]
Further K, and K, are open sets in [0, 1].
Proof of Lemma 4.3. By eliminating eB(X) in (4.1) and
(4.2), we get
(4.27) (m(x) + a(x))(m(x) - a(x)) =0 (0 £ x £ 1)

Therefore the relation (4.26) follows.

Next we have to show that K is an open set. Let us

1
assume that there exists X4 € Kl such that x0 is not an
interior point of K1 . Then there exists X ¢ K1 (n 2 1)
satisfying
(4.28) lim xn = XO
Nn = o

Further, by X, ¢ Kl » We have

(4.29) m(xn) - a(x.) =0 (n 2 1)

n
Hence by the continuity of m - a , we get m(xo) - a(xo) =
lim (m(xn) - a(xn)) = 0 , which contradicts x, € K, . This

L 0 1

contradiction shows the openness of K Similarly we can prove

1°
the openness of K2

Lemma 4.4. Let [6,-6'] c [0, 1] and let
(4.30) a(x) # 0 (6 s x5 48').
Then we have either

(4.31)  [3, 8'] < K \'S,

or
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(4-32) [69 6'3 CKZ

Proof of Lemma 4.4. Since (4.30) implies [6, &6'] n K3 =g,

we have

(4.33)  [6, 8'1c K, VK,

by Lemma 4.3.
Then & 1is an interior point of either K1 or K2 by the
openness of K1 and K2 . Let us assume that &6 is an interior

point of K, . Then we have to show (4.31).

To this end, let us put
(4.34) s(é) =sup { 7 ; (8, n) cKy , 7 <8"}

Since K1 is an open set by Lemma 4.3, the number s(6) is

well-defined. Then we can show
(4.35) s(é) = &'

In fact, assume that s(8) < é' . By (4.33), there exist two

sequences {xn} and

ns 1 {yn} ns1 such that

lim X, = s(6), and x_ € K

R n < f1o
(4.36)

6 < x_ s s(4) (n 21) ,
and

lim Yo = s(d), and Y, € K2 ,
CIE N

s(é) s Yo < 8! (n 2 1)

§

By (4.36) and (4.37), we get m(xn) + a(xn) = 0 and
m(yn) - a(yn) =0 (n 2 1), which imply m(s(é)) + a(s(é)) =0
and m(s(d8)) - a(s(é)) = 0 in view of the continuity of m

and a. Thus we show that a(s(8)) = 0 for &8 < s(é) < &' ,
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which contradicts our assumption (4.30). Hence we get (4.35).

Now we return to the proof of (4.31). In virtue of (4.35),

we obtain

(4.38) (8, s(8)) = (8, 8") €K,

On the other hand, we can see that

(4.39) d' € K1

In fact, since é' € K3 implies a(d6') = 0 , which contradicts
the assumption (4.30).
Further, if &' € K2 , then the openness of K2 contradicts
(4.38). Thus we see (4.39).

Combining (4.39) with (4.38) and recalling 6 € Kl , we show
that [d, 8'] ¢ K1 . Moreover noting K1 NS =¢g by Lemma 4.1,
we see (4.31).

In the case where 6 1is an interior point of K2 , We can

similarly proceed to see (4.32).

Thus the proof of Lemma 4.4 is completed.

Lemma 4.5. Let

(4.40) a(x)

0 (6 s x < 48")

Then we get

(#.41) Q(x)

P(x) (6 s x g 8")
and

X
(4°42) G(X) - J' o(qll(s) + qZZ(S) - pll(s) = 922(3))ds =0
(6 s x < 6")

Proof of Lemma 4.5. In view of (4.40), the equalities (4.1)
and (4.2) are seen to be
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(4.43) (m(x) + 28(x)) + (m(x) - gﬁ(x)).eg(x) =0

(6 s x5 6"),
and

(4.44)  m(x)(ef(X) _

1) =0 (6 s x5 6') .

If m(x) # 0 , then we have
(4.45) SPX) g

in view of (4.44).

On the other hand, if m(x) = 0, then we get
(h.46)  p(x)(e?X) -1y =0

by (4.43).

Since { x € [é, 6'] ; B(x) =0} =
{ x e [6, '] 5 a(x) = B(x) = 0} in view of (4.40), we have
{ x e [, 6'] ; B(x) =0} cS, sothat { x e [6, 8'] ; B(x) =
0 } also consists entirely of isolated points by the assumption
(2.15) of Theorem 2.

Therefore, by (4.46) and the continuity of ee(x) -1, we
again get (4.45).

Thus we see that (4.40) implies (4.42).

By substituting (4.42) into (4.43), we obtain m(x) = O

(6 s x £ 8') , namely,

(4.47)  ay (%) = ayp(x) (6 <xx<d') .

In view of (4.42), we have

(4.48) a9 (%) + ay5(x) = pyy(x) + pysy(x) (8 s xx28"),

and in virtue of (4.47), (4.48), and (4.40), we reach qll(x) =
pll(x) and q22(x) = p22(x) (6 s x5 8').
This shows (4.41).
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Lemma 4.6. (1) Let us assume that there exists some

}

sequence { x 1 © [0, 1] such that

n n 2z

(4.49) x, €K (n 2 1) and nlim°° x =1

Then we have

(4.50)  B(x_) + a(x) # 0 ,

ﬁ(xn) - a(xn)
(4.51) The limit k = 1lim

exists,
no e Blxy) +alx)

(’4.52) k >0 ’
and
(4.53) (Vs

(2) In particular, if 1 e Kl , then we have

' - B(1) - a(1)
(451" k= Oy T o)
as well as (4.52) and (4.53), and furthermore
(4.54) Q(x) = B(x) (1-esxsg51)

Jor some ¢ > 0 .

Proof of Lemma 4.6. (1) Since x €Ky (n 2 1) , we have

(4.50) and
H(Xn)
(4.55)  (a(x)) = B(x) + (a(x) + B(x_))-e =0 (n
in virtue of Lemma 4.1.
Hence we get
6 ( - af
(4.56) e *n) _f *n) = (%) (n 2 1) .

Blx,) + alx)
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6(x_)
Since in (4.56), lim e n exists, we see that also
n - =

L Blxg) - aley)

AP BGx) v alx,)

exists and that its limit is equal

eG(l)

to for every sequence { x satisfying (4.49).

n } nz1
This fact shows (4.51) - (4.53).

(2) Let 1 € K1 . Setting X = 1 (n 2 1), we see that this

sequence { x satisfies the condition (4.49) and

n } nz1
therefore we have (4.50) - (4.53).

On the other hand, since 1 € K1 implies 1 ¢ S by
Lemma 4.1, we see f(1) + a(l) # O . Thus (4.51) implies (4.51)"
in the case of 1 € Kl

Finally we have to show (4.54). 1In view of 1 e K, and the
openness of Kl , we have [1 - ¢, 1] c K1 for some ¢ > 0.
Therefore by Lemma 4.2 (1), we see (4.54).

Thus we complete the proof of Lemma 4.6.

Lemma 4.7. (1) Let us assume that there exists a sequence

{ x_} ; [0, 1] such that

n n =2

(4.57) x €K, (n 2 1) and nlim°° x =1

Then we have
(4.58) J =H and J =H

(2) In particular, if 1 € K2 y then we have (4.58) and

therefore
(4.59) Q(x) = P(x) (1 -¢sxsxsg1)

Jor some ¢ > O
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Proof of Lemma 4.7. (1) Putting x = x in (4.2) and

n
. 6(x,)
noting that m(xn) + a(xn) # 0 by X € K2 , Wwe get e =1
(n 2 1), namely, 6(xn) = 0. Hence we have
(1) = 1lim 6(x_) =0
n —» oo n

In view of (1.25) and (1.26) in Theorem of Chapter 2 with j = h,

we obtain (4.58).
(2) Let 1 € KZ . Then, setting X, = 1 (n 2 1), we see that

this sequence { X } nai satisfies the condition (4.57), and

therefore (4.58) follows.

Finally, 1 € K2 and the openness of K2 imply
[1 - ¢, 1] c K2 for some ¢ > 0. Therefore, in view of
Lemma 4.2 (2), we get (4.59).

Thus we complete the proof of Lemma 4.7.
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Under these preparations, we proceed to a proof of
Theorem 2.

Proof of (1) - (a). We have to prove that either
(4.60) Q(x) = P(x) (6 s x5 8")
or

(4.61) [6, '] nS=¢ and Q(x) = B(x) (6 £ x5 6').

Since a(x) # 0 (6 s x £ 6') , we get either

(4.62) [6, 6'] ¢ K, ,

or

(4.63) [5, 8'] < K, ,

in view of Lemma 4.4.

Firstly let (4.62) hold. Then we have (4.61) by
Lemma 4.2 (1).

Secondly let (4.63) hold. Then we have (4.60) by
Lemma 4.2 (2).

Finally the relation (2.19)

P(x) # P(x) (x € [8, 8']T\ S )

follows from a(x) # 0 (8 s x £ 6'). In fact, assume that
P(xy) = P(xg), namely, py;(x5) = pys(xy) + r(xy) and p,,(xy) =
pll(XO) + r(xo) for some Xy € [, '] \ S . Then we have

pll(xO) = p22(x0) , which contradicts a(xo) # 0

Proof of (1) (b). Let us assume (2.18), that is,

let [, 6'] nS =¢g and Q(x) = B(x) (6 s x s 8')

Then we have to show (2.20) and (2.21)

| B(x) | > | a(x) | (6 s x5 6")
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and

Since Q(x) = P(x) implies m(x) = qll(x) - qzz(x)

= Pyyo(x) - pyq(x) = -a(x) (6 s x s 8") , we get

(4.64) m(x) + a(x) =0 (6 s x 2 6")

By substituting (4.64) into (4.1), we obtain

(4.65)  (a(x) - B(x)) + (a(x) + B(x))-e?X) =0 (5 cx<s).

Then, since [é, '] n S =¢ by (2.18), we have

(a(x) + B(x))(a(x) - B(x)) # 0 (6 < x < 6') , so that we obtain

(4.66) ee(x) = ggi; - Zgi; (6 s x 5 6")

6(x)

Hence we get (2.20) in view of e >0 .

Finally (2.21) follows from (2.18) and r e Cl[s, 6']

Proof of (2). First let us consider the case (2) - (a).

That is, assume (2.22):
Q(x) = B(x) (7 -¢e<x<y+e)
Then, since Q e { Cl[O, 1] }4 , Wwe see that
P e { Cl(y - &, y + ) }4 and, in particular, also that
r e Cl(y - &, 7 + ¢€)

Next let us consider the case (2) - (b). That is, assume

(2.23):
[.P(x) y - € <X £ 7
Q(x) =

[ ?(x) Yy £ X <y + €

Then, in view of Q e { Cl[O, 1] }4 , we see that
r € Cl[y, 7 + €). Moreover, since Q is 1-time continuously
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i
differentiable also at x = y, we get lim Q_Eiﬁl =
X - y+0 dx™

i
lim Q—Bi%l (i =0, 1) . The last equality is equivalent to
x = y=~0 dx
(2.24):
i
um  $EE Lo (5 -0, 1)
x = y+0 dx
Thus we see the case (2) - (b).
As for the case (2) - (c), we can similarly proceed.

Proof of (3). This part is nothing but Lemma 4.5.

Proof of (4). Let us assume (2.30):
a(x) # 0 (0 £ x <48")
Then we have to show (2.31):
Q(x) = P(x) (0O s x5 6")
First for arbitrarily small ¢ > 0 , we can see
(4.67) [0, 8" - ] c K,

In fact, let us assume that (4.67) does not hold. Then, since

a(x) #0 (0 g x5 8" -¢) , we have
(4.68) [0, 6' - €] c Ky \ S

in view of Lemma 4.4. Therefore by the definition of Ky » we

have
(4.69) m(0) + a(0) =0 ,

and by setting x = 0 in (4.1) and noting 6(0) = 0, we obtain
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(4.70) m(0) - a(0) =0

The equalities (4.69) and (4.70) imply a(0) = O , which
contradicts our assumption (2.30). Thus we see (4.67).

Therefore, by Lemma 4.2 (2), we get
Q(x) = P(x) (0O s x5 6" - ¢ )

Since & > 0 1is arbitrarily small, we reach (2.31).

Proof of (5). Let us assume (2.33) : J = H or
* *
(2.34) : J =H . Then, on the assumption (2.32) : a(x) # O

(6 < x g 1) , we have to prove (2.35) : Q(x) = P(x) (6 £ x 5£.1).

Since either (2.33) or (2.34) holds, we get by (1.25) or

(1.26) in Theorem of Chapter 2,
(4.71) 6(1) =0

In view of (4.71), we can show this part by the same way as
the one in the proof of the part (4).

In fact, assume that

(4.72) [6 + ¢, 1] c Ky \ S

for arbitrarily small ¢ > O . Then we have

(4.73) m(1l) + a(1) =0 ,

and by setting x = 1 in (4.1) and noting (4.71), we obtain

(4.74) m(l) - a(1) = O

The equalities (4.73) and (4.74) imply a(l1) = O, which

contradicts our assumption that a(x) # 0 (8 < x 5 1).

Thus in view of Lemma 4.4, we have [6 + ¢, 1] ¢ K, , so
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that by Lemma 4.2 (2) we see Q(x) = P(x) (6 + ¢ 5 x < 1).
Taking ¢ - 0+0, we reach (2.35), our conclusion.
Now we prove the part (6) only in the case of
*
(4.75) H# « and H # «

because we can similarly proceed also in the two cases of H

* *
and H # o, H#« and H = «
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Proof of (6) - (a). Let us assume that for any sequence

}

{ x 1 [0, 1] such that 1im x_ =1 and

noe O

n "'nz

ﬂ(xn) + a(xn) # 0, the limit

B(x,) - a(x))

Blx ) + a(x))

lim

n - e

(4.76) k

does not exist, or that even if k exists for some sequence
{ x_} c [0, 1] such that 1lim X = 1 and ﬁ(xn) + a(xn)
n-ee

# 0 , either k £ 0 or k =1 holds. Then we have to show

(2.38)

n ‘nzl

(6) - (1) 1ek,
(6) - (ii) 1ek, |,
or

(6) - (iii) 1 e K3

Therefore we consider the respective three cases ;

Case (6) - (i). By Lemma 4.6 (2), the 1limit k in (4.76)

exists, and we obtain
(4.77) k >0 and e?(1) = g

Thus the condition k £ O in the case (6) - (a) impliy k =1
Hence (4.77) implies 6(1) = O

However 6(1) = 0 and 1 € K are not compatible.

1
O into (4.1), we obtain
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m(l) - a(l) = 0 , which contradicts 1 € Kl by the definition
(4.6) of K1
Thus we see that Case (6) - (i) is impossible in (6) - (a).
Case (6) - (ii). By Lemma 4.7 (2), we immediately obtain

(2.38).

Case (6) - (iii). By the definition (4.6) of K3 , we get
either (4.78) or (4.79)

(4.78) a(x) = m(x) =0 (1-¢sxs x5 1) for some

sufficiently small ¢ > 0 ,
or

(4.79) there exists { x

} c [0, 1] such that

n nz1

x ¢ K3 and n1_1)m°° x =1

First let (4.78) hold. Then, since a(x) =0 (1 - ¢ 5 x
< 1), we obtain 6(1) = 0 by (4.42) in Lemma 4.5. Therefore in
virtue of (1.25) and (1.26) in Theorem of Chapter 2 with j = h
we . reach (2.38).

Next let (4.79) hold. Then, if necessary, by taking a

subsequence of { X } n s 1 ° We can assume either

(4.79.1) x, €K, (n 2 1) and 1lim x, =1,
n - «

or

(4.79.2) x €K, (n 2 1) and nlimw X, = 1

Firstly let (4.79.1) hold. Then, by Lemma 4.6 (1), we see

} and k > 0

that the limit k in (4.76) exists for { x

n ‘nzl

Hence, by means of the assumption (2.37)
k <0 or k=1
we see k = 1. That is, we get

- 89 -



(4.80) 6(1) =0

Therefore (4.80) with (1.25) and (1.26) in Theorem of Chapter 2
imply (2.38).

On the other hand, let (4.79.2) hold. Then we
immediately obtain (2.38) by Lemma 4.7 (1).

Hence, in this case, we see that 1 € K3 implies (2.38).
Thus, in the case (6) - (a), we always obtain (2.38).

Proof of (6) - (b). Let us assume that the limit k in

}ngl
lim X, = 1 and ﬁ(xn) + a(xn) # 0, and that k > 0 and k # 1

N=oo

(4.76) exists for some sequence { x c [0, 1] such that

n

Then we have to show either (2.38)

(5-n
* »
1 J =H
or (2.42)
[ k(1 + H) + H -1 . H - 1
k(I + H) + 1 - H * if k# gL
J o= 9
. _H -1
§ oo , if k = q 1
and
f * * *
k(1 + H*) + H - i , if k # H* -1
k(1 +H ) +1-H H + 1
L
J =
»
- , if k= H_=
. H + 1
In the same way as the proof of (6) - (a), we have either
(6)_(1) leKl ’
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(6) - (ii) 1 € K

> ’
or
(6) - (iii) 1 e K3

Now we consider

Case (6) - (i). In view of Lemma 4.6 (2), we obtain

(4.81) (1) -y

On the other hand, in view of (1.25) in Theorem of Chapter 2, we

have

6(1) _ (1 -H)(1 + J)
(#.82) e el GOy G

Here if J = « , then we set

By (4.82) and (4.81), we see

(4.83) K = (1 -H(1+ J)

First let k # g - i . Then, noting the conditions

k(1 + H) + H - 1
k(L + H) + 1 -H

|[H| # 1, k>0 and k # 1, we see J =

e R\ {-1, 1} , from (4.83).
Next let k = g—:—l . Then by (4.83), we have

1
i : 3 = -1, which means J = = ,

This shows (2.42.1). Similarly we can obtain (2.42.2).
Thus we obtain (2.42) in Case (6) - (i).

Case (6) - (ii). We immediately see (2.38) in view of
- Lemma 4.7 (2).

Case (6) - (iii). As in Case (6) - (iii) of the part (6) -
(a), we have either (4.78), (4.79.1) or (4.79.2).
Firstly let (4.78) hold. Then we can proceed in the same
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way as the one in the corresponding case of the part (6) - (a).
Actually, since 6(1) = O by Lemma 4.5, the equalities (1.25)
and (1.26) of Theorem in Chapter 2 imply (2.38).

Secondly let (4.79.1) hold. Then, by Lemma 4.6 (1), we see
e = k . Therefore we can proceed in the same way as the one
in Case (6) - (i) of this part and we can see (2.42).

Thirdly let (4.79.2) hold. Then we obtain (2.38) in view of
Lemma 4.7 (1).

Thus in (6) - (b), we get either (2.38) or (2.42).

Finally we have to show the latter part of (6). Assume that
a(l) # 0 . The condition a(1) # O implies 1 ¢ K3
Therefore, by applying Lemma 4.6 (2) and Lemma 4.7 (2), we can
show the latter part of (6) along the line of the proof of the

former part.

Thus we complete the proof of the part (6) of Theorem 2.
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$5. The identification problem for a modeled equation
describing small vibrations of a flexible string : an application
of the result for Type I. A small transverse vibration of a

flexible string is governed by

2
(5.0 o) I (BBt L 2R L

with the displacement u(x,t) . Here x and t denote the
space variable and the time variable, respectively. Furthermore

p and E are the linear mass density and the modulus of

du(x,t)
at

corresponds to some viscous drag (Timoshenko [53], for example).

elasticity, respectively and the term k(x)-

Let us assume that

p, E € C2[0, 1]
(5.2) k e cl[o, 1]

p(x) > 0, E(x) >0 (0O xsg1) .

We consider (5.1) with either

(5.3) u(0,t) = u(1,t) = 0
or
(5.4) u(o,t) =0, 2u0.t) _ 45

ax

as boundary conditions.
(The boundary condition (5.3) corresponds to fixed ends at x =
0, 1 , whereas (5.4) corresponds to a fixed end at x = 0 and

an end free to move in the direction of the u-axis.)

Here we consider proper vibrations for (5.1) with (5.3) or
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(5.4). That is, we suppose that u(x,t) has the form

it

(5.5) u(x,t) = e”""v(x) (2 eC)

Then v = v(x) 1is the solution to (5.1)p with (5.3)p or
(5.4)p.

(5.1) %;(E(x)%%) - Ak(x)v = 1%p(x)v (0<xz<1),

with

"
<
[y

"
o

(5.3)p v(0)

or

(5.4),  w(o) = &Ll .o

Now, by a change of independent variable

X 1/2
) o(&)
(5.6)  z J i e I G

the systems (5.1)p with (5.3)p and (5.1)p with (5.4)p are
transformed to certain standard forms (5.7) with (5.8) and (5.7)

with (5.9), respectively :

(5.7) széél + a(z)- 22 L an(z)u(z) = 22u(z) (05 z 5 ¢),
with

(5.8) u(0) = u(¢) =0 ,

or

(5.9 u(0) = [l - o

Here we set
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n
~~
[~
e
e
~
(o
vy

(5.10) 1

and we define wu(z), a(z) and b(z) by

(5.11) u(z) = v(x)

dEdi B(x)< éi) - p(x)dEdi

n
+

(5.12) a(z)

b

2(p3(x)E(x)) 1/

and

(5.13)  b(z) = - &x)

for 2z =

Furthermore we note that
(5.14) a, b e cl[o, ¢]

by the assumption (5.2).

In order to avoid technical difficulties, we are restricted
to discussing the equation of the form (5.7) with (5.8) or (5.9).
In a forthcoming paper, we will consider an identification

problem for the original form (5.1).

Remark 5. We understand an eigenvalue of (5.7) with (5.8)
by 1 for which there exists a non-zero function u(z)
satisfying (5.7) with (5.8). An eigenvalue of (5.7) with (5.9)

is understood similarly.

Then, as application of Theorem 1, we have
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Theorem 4. If all the eigenvalues of (5.7) for each of the
boundary conditions (§.8) and (5.9) are given, then a(z) and
b(z) are uniquely determined on [0, t] provided that a, b €
Cl[O, t] . That is, let

and let us consider the system (5.15.7) with (5.16.7) or (5.17.7)

. du.(z) du;(z) 2
(5.15.3) ——giz—— + aj(z) ——%E—— + lbj(z)uj(z) =1 uj(z)

(0 z <5 t) ,

with

(5-16°j) UJ(O) = uj({) =0,

or
du.(?)
(5.17.3) uj(o) = ._%E_. =0

If all the etigenvalues of (5.15.1) with each of (5.16.1) and
(5.17.1) coincide with the ones of (5.15.2) with each of (5.16.2)
and (5.17.2), respectively, then

(a,(2) = ay(2)
(5.18) 1

b, (z)

b,(z) (0 gz 5 1)

.

holds.

Proof. We prove this theorem by reducing (5.15.j) with
(5.16.3) and (5.15.3) with (5.17.3j) to systems in the form (1.1)
with boundary conditions (1.2) and (1.3), and (1.1) with (1.2)
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and (1.4), respectively.

Without loss of generality, we assume that

(5.19) t=1 ,

and, for simplicity, we denote the independent variable again by

X , instead of 2z . Then we set
¢§1)(x) du.(x)
(5.20)  ¢4(x) = - ax (3=1,2),
#$2) (x) hu, (x)
and
0 1
(5.21) B = ,
1 0

so that the systems (5.15.j) with (5.16.j) and (5.15.j) with
(5.17.3) are transformed to systems (5.22.j) with (5.23.j) and

(5.22.3) with (5.24.3), respectively :

0 0
de¢.(x)
(5.22.3) B-—fp— + b5(x) = 195 (x)
aj(x) bj(x)
(0 £ x g 1)
(5.23.5) #$?)(0) = 9§ (1) = 0
(5.24.3) {2 (0) = 9§tV (1) = 0

The system (5.22.j) is nothing but a special form of (1.1).
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Furthermore we get (5.23.j) by putting h = H 0 in (1.2) and

(1.3), while we obtain (5.24.3j) by putting h 0 and H* =

in (1.2) and (1.4), respectively.

Therefore, in order to show Theorem 4, we have only to prove
the following lemma. (In fact, then the result on the
determination of M(p21,p22 5 H,H*) implies Theorem 4, because

the condition (2.9) in Theorem 1 holds.)

Lemma 5.1. Let us assume that all the eigenvalues of
(5.15.1) with (5.16.1) coincide with the ones of (5.15.2) with
(5.16.2). Then also all the eigenvalues of (5.22.1) with
(5§.23.1) coincide with the ones of (5.22.2) with (5.23.2). As
for the eigenvalues of (5.15.7) with (5.17.7) and (5.22.7) with
(5.24.7), the same result holds.

A proof of this lemma is given in Appendix III.



$6

. The identification problem for a telegraphic equation :

an application of the result for Type-II. From a telegraphic

equation (Johnson [22], for example), in a way similar to the one

in $5, we can deduce an equation describing proper vibrations for

an ellectric oscillation in a transmission line.

The proper vibrations are governed by

(6.1)

.

avix) | gx)i(x)

dx -AL(x)1i(x)

dilx) | c(x)v(x)

L ix -1G(x)v(x) (0 g x5 1)

with the voltage v(x) and the electric current i(x) . Here we

assume that the length of a transmission line is 1 wunder

appropriate normalization, and x denotes the space variable.

Further

R(x), L(x), C(x) and G(x) are the electric

resistance, the inductance, the electric capacity, and the

conductance of the line, respectively.

Here we consider two types of boundary conditions

(6.2)

and

(6.3)

i(o0)

n

=
—
[uy
~

]
(@]

i(o)

"
<
-
]
(@

Remark 6. The boundary condition (6.2) corresponds to

insulated ends at x = 0, 1 , whereas the boundary condition
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(6.3) corresponds to an insulated end at x = O and an earthed

end at x =1

Throughout $6, let us assume that
(6.4) R, L, C, G e C°[0, 1]

On condition that L and C are known, we consider
determination of R and G from a pair of eigenvalues of (6.1)
with (6.2), and (6.1) with (6.3). That is, we obtain

Theorem 5. Let

2 o
(6.5) Rj» Lys Cy» Gy € C°[0, 1] and Ly, C; >0 (=1, 2)

and let us consider the systems (6.6.7) with (6.7.7) and (6.6.7)
with (6.8.7) (j =1, 2)

[ av.(x)
_Z%Ei_ + Rj(x)ij(x) = -le(x)ij(x)
(6.6.3)
di.(x)
o= + Cj(x)vj(x) = -ZGj(x)vj(x)
\
(0O s xs< 1) |,
with
(6.7.3) ij(O) = ij(l) =0 ’
or
(6.8.3) ij(O) = vj(l) =0

Let us assume that
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‘Ll(x) Lz(x)

(6.9)

C (x) = C,(x) (0 5 x < 1) ,

and furthermore that

(6.10) all the eigenvalues of (6.6.1) with each of (6.7.1)
and (6.8.1) coincide with the ones of (6.6.2) with

each of (6.7.2) and (6.8.2), respectively.

Then we get all the conclusions of Theorem 2 in $2.2, where Pqq>
G1 R1 G2
o) q and q are replaced by - = , - — , = =— and
22 211 22 C1 L1 C2

R
- Eg y respectively and the definition (2.11) of a and B 1is
2

replaced by

( _ Rl(X) Gl(X)
a(x) = Ll(—‘x) - Cl(X)
(6.11) A
B(x) = 1 ,{ g 9 x) dLl(x)}
2(Ly (x)C, (x)) /2 C,(x) dx L (x) ~ dx
k (0 £ x g 1)
Let us recall that
(6.12) s = {x [0, 1] la(x)| = [8(x)] }

Moreover we have

Corollary 2. Let us assume that

(6.13) S

]
S

and the number of the zeros of a 1is finite. Let us set all the
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zeros of a by { Yk } ﬁ =1 ° If we have (6.10) and moreover,

tf for 1 s k s m - 1, there is some X, € (7k, Tk « 1) such

that

Rl(xk) B RZ(Xk)
(6.14)
then we have

r

Rl(x) = Rz(x)
(6.15) <

Gl(x) = Gz(x) (0 £ x £ 1)

Corollary 3. Let

(6.16) Rl(x)Cl(x) = Ll(x)Gl(x) (0 £ x g 1)

If we assume (6.10), then we obtain (6.15).

Remark 7. A transmission line satisfying (6.16) is called a

distorsionless line (Johnson [22, pp.48 - 50], for instance).

Proof of Theorem 5. We prove the theorem by reducing
(6.6.j) to a system considered in $2.2.
Introducing a change of independent variable

X

(L (8)c (et as
0

(6.17) z

under the assumption (6.9), and setting
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#$1) (2) 3 vy Ly (072
(6.18)  95(z) = -
#3%)(2) - 3 15(x)cy(x) /2
(G=1,2 ,

and

1
(6.19) ¢ = J (Ly(§)C, (6 2a8
0]

the systems (6.6.J) with (6.7.j) and (6.6.j) with (6.8.j) are
transformed to (6.20.j) with (6.21.j) and (6.20.3j) with (6.22.3),
respectively :

6.20.3 dr5t=)
(6.20.3) B —hL— + P(2)py(2) = 19.(z) (O<z<1) ,

with

(6.21.5) ¢$2)(0) = 9{¥(e) =0,
or
(6.22.5) ¢$2)(0) = p{t)(0) = 0 (i =1, 2)

Here we put
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1 .de(x)

2(Lj(x)Cj(x

;
) G.(x)
C.(x)
J
(6.23.3) Py(z) =
1
2<Lj<x>3cj(x>>
L

Now, without loss of generality, we can assume <{

.dLj(x) ) R.(x)
1/2°7 dx Lj(X)
J
(J =1, 2)
=1

Furthermore, the boundary condition (6.21.j) is obtained by

setting h 0

*
obtained by setting h 0O and H

Thus,

in (1.2) and (1.3), while (6.22.j) is

oo

in (1.2) and (1.4).

in view of Theorem 2 in $2.2, we show Theorem 5.

Noting that (2.33) and (2.34) hold in the part (5) of

Theorem 2 (in fact, J
Corollary 2 by Corollary 1 in $2.2.

from the part (3) of Theorem 2.

L 3
O and J

=), we see

Moreover Corollary 3 follows
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Appendix I. Proof of Proposition 1. Let us assume that

Q = (q..) e { cl[o, 1] }4 satisfies

ij71 21,5 5 2
.
9(Ag,n,u) = o(8p p y)

(I.1) 4

Then we have to show

(1.2) G(AQ,a,ﬁ) = O(AP,a,ﬂ)

for each ¢ e R\ { -1, 1} and B eRUV { «} \ { -1, 11} .

Since by (I.1), the equalities (1.23) - (1.26) hold by

*

»*
Theorem in Chapter 2 with j =h, J =H and J =H

(I.3) (qy(x)+qy,(x)=a5, (X)=a5,(x)-pyq (x)+P; 5 (%) =poy (X)+pP,5 (%))

+ (qll(X)_qlz(x)+q21(x)_qzz(x)-pll(x)-plz(x)+p21(x)+p22(x))

X
x exp( J (a;,(s)+ay5(s)=py4(s)-p,,(s))ds) = 0
0

(O s X £ 1)9
and
(I‘u) (qll(x)+q12(x)—q21(x)—qZZ(x)+p11(X)_pIZ(X)+p21(X)-p22(X))

+ (-qll(X)+q12(x)-q21(X)+q22(x)—pll(x)—plz(x)+p21(x)+p22(x))

X
x exp( J (a;(s)+ay5(s)-p; (s)-p,y5(s))ds) =0
0

(0 g x5 1),
and
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1

(I.5) (a1;(s)+a,5(s)-py4(s)-p,5(s))ds = 0
0

Let a, B € R be given such that a € R\ { -1, 1 } , B €
RV {e«}\{=-1,1}, and B # H . Then, applying the
sufficiency part of Theorem in Chapter 2, we have, by (I.3) -

(I.5),

m

(I.6) (Q,a,8,H) € M(P,a,B8,H) ,

that is, O(AQ,a,H) = G(AP,a,H) and G(AQ,a,ﬂ) = U(AP,a,ﬁ)
(B # H). This proves (I.2).

Thus we complete the proof of Proposition 1.

- 106 -



*
Appendix II. Example of M(p,;, Py, ; H, H ) In this

*
appendix, we determine the set M(pll’ P, 3 H, H ) in the case

where (II.1) - (II.3) hold :

a(x) # 0 (0 < x <y y YA < X < 1) ,
0 0

(II.1) { a(0) =0 |,

a(yy) = 0, and a e c%[0, 1]
\
Here 7o € (0, 1) is fixed.

(II.2) B(x) >0 (0sx<1) and g e Cc3[0, 1] ,
and

*
(I1.3) H# ~ and H # =

Here we recall that

,

a(x) = pll(x) - p22(x) (O £ X = 1)
(II.4)
ﬂ(X) = plz(x) = p21(x) (0 £ X g 1) ’
\
da(x) dg(x)
= B(x) - a(x)
(II-S) r(x) = dx > > dx
a”(x) - B7(x)
for x ¢ S ={ x e [0, 1] ; |a(x)]| = |8(x)] } ,
and
Pyo(x) + r(x)  py,(x)
(II.6) B(x) =
P,y (%) Py (x) + r(x)
for x ¢ S
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Henceforth we set

fﬁ(x) (0 s x 2 74)
(I1.7) P (x) =
P(x) (70 < xs1)
( P(x) (0 £ x ¢ yo)
(11.8) Pz(x) =
B(x) (rg £ x s 1)
and
(11.9) P3(x) = P(x) (0 £ x g 1)

provided that the right hand sides can be defined. Further we

put
(II.10) k = 1lim B(x) - a(x) ’
x »1-0 B(x) + a(x)
B(x)+a(x)#0
if the limit exists, and we set
g r
k(1+H)+H-1 . H -1
k(l + H) + 1 - H ’ if k # i 1
ﬁ: 3
. _H-1
\ oo ,lf k-H"'l’
(I1.11) < ,

» » » 1
k(l‘l‘H’)«PH-%, ifk#H*
k(1+H)+1-H H+1

»
B = |
*
= , if k=821
~ H + 1

*

Then we can give possible elements of M(pll’ Pos 3 H, H )
in view of Theorem 2 - (1), and furthermore, by checking the
conditions (1.23) - (1.26) in Theorem in Chapter 2, we can show

that those possible elements actually belong to
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*

Now the result can be stated in Table 2.
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Table 2. Determination of M(pll,p22 : H,H*).
1) 2) . -
M{pPy1» Py 5 H, H)
[B(x)[>]a(x)|| |B(x)]>]a(x)] a'(ry)= [The limit k in (I.10)
3)
(0 £ x 2 7,) [(74 £ x < 1) a''(y~)=0| exists and k > O.
O O Q * 5) * » ﬁ ﬁl-
4) yves {(P, b, H, H), (P, h, H, H), (P,, h, ¥, "), (Py, h, A, ")}
* *
S YES NO {(p, h, H, H ), (gl’ h, H, H ) }
YE < -
YES {(P, h, H, H), (Py, h, H, H))
NO ¥
YES NO {(P’ h, H, H ) }
* K
YES YES or NO {(P9 h, H, H ); (Plo h, H, H ) }
NO .
NO YES or NO {(P, h, H, H) }
*
YES {(P, h, H, H), , (P,, b, §, B") }
YES
YES NO . }
NO YES or NO {(P, h, H, H )
NO
NO YES or NO YES or NO




Notes to Table 2.

1) The condition [B(x)| > |a(x)| is necessary for Q(x) = P(x)
(Theorem 2 - (1) - (b) ).

2) The equalities a'(yo) = a"(yo) = 0 are the "continuation
conditions" (2.24) and (2.26) at the zero vg ©of a (Theorem 2

dZa(x)
de

da(x)

ax and

- (2)). Here a'(x) and a''(x) denote

3) This condition corresponds to (2.41) in Theorem 2 - (6).

4) Firstly let

P

B(1) + a(1) # O
(I1.12)

(1) -
(1) + (1) >0, and # 1

\

hold. Then we have "Yes" in this column and hence we get either

J =H J =N
, or
» » » ~a
J =H J =H
Here we note that (II.12) is equivalent to the case (1) - (b) in

Remark 2 in $2.2.

Secondly, if either

( B(1) + a(1) # O
(I1.13) ]
g(1) - a(l)
B+ () < 0 o
or
( (1) + a(1) =0
(II.14)

\
holds, then we have "No" in this column, that is, we have
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Finally, if

g
(II.15) 8

e~

1) °a(1) = 1

1) + a(1)

holds true, then we obtain
J =H

* *

H

J

L

*
In fact, by (II.15), we have N =H and H = H

We see that either (II.13), (II.15) or (II.14) holds if and
only if we have either the case (1) - (a) or (2) - (a) in Remark
2 in $2.2.

5) Since, in view of a(0) = 0 , the condition (2.30) in

Theorem 2 - (4) does not hold for x = 0 , both P and P3 are

1
possible in (O, yo)
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Appendix III. Proof of Lemma 5.1. (1) First, we prove

Assertion I. Let 1 # O . Then, for j =1, 2, a complex
number 1 is an eigenvalue of (5.15.7) with (5.16.7) if and only
if 4 1is an eigenvalue of (5.22.7) with (5.23.7). For the
eigenvalues of (5.15.7) with (5.17.7) and (5.22.7) with (5.24.7),
the same assertion holds.

Proof of Assertion I. Assume that 1 1is an eigenvalue of

(5.22.3) with either (5.23.j3) br (5.24.3).

Let us denote an eigenvector associated with 1 by

(1)

oM
J
¢j,l = ¢j = (2) Then, since ¢j satisfies
?3
(2)
do:"' (x)
(111.1) —L—" = lqﬁj(l)(x)

in view of (5.22.j), we see ¢§2) # 0. (In fact, if ¢§2)(x) =
0 (0 £ x < 1), then by (III.1) and 21 # 0, we have ¢§1)(x) =0
(O £ x £ 1) . This contradicts that ¢j is an eigenvector.)

Therefore, putting uj(x) = %¢§2)(x) , We see
(111.2) u'j # 0

Further we get
(III1.3) u.(0) = u,(1) =0

in the case where (5.23.j) is considered, whereas we get by

(III.1)
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du.(1)

(III.4) u(0) = ——%;—— =0

in the case where (5.24.3j) is considered.

(1)

By eliminating ¢ in (5.22.j), we obtain

J
2. (2) (2)
d%¢:°7 (x) de:~’ (x)
Tl e 0=+ vjeP 00 = 20§ (0
(0 g x<1) |,
which is equivalent to
2
d"u.(x) du,(x)
(111.5) —L— a(x) - —a— + b (x)u(x) = lzuj(x)

dx
{0 £ x g 1)

When (5.23.j) is considered as the boundary condition, in
view of (III.2), (III.3) and (III.5), uj is an eigenvector of
(5.15.3) with (5.16.j) associated with the eigenvalue 1 . On
the other hand, when (5.24.j) is considered, in view of (III.2),
(III.4) and (III.5), uj is an eigenvector (5.15.j) with (5.17.3)
associated with the eigenvalue 1

This shows the "if" part of Assertion I.

On the other hand, a proof of the "only if" part of

Assertion 1 is straightforward by (5.20) introduced in deriving

(5.22.3).
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(2) We show

Assertion II. (i) Zero is an eigenvalue of (5.22.7) with
(5.23.7).
(11) Zero is not an eigenvalue of (5.22.7) with (5.24.7).

Proof of Assertion II. (i) Putting
% \

X
exp( - J a.(s)ds)
0 J

¢.(x) = (0 g x s 1) ,

\ J
we see by direct computations that ¢j is an eigenvector of

(5.22.3) with (5.23.j) associated with the eigenvalue O

_ ¢, (x)
(ii) Let ¢(x) = satisfy
¢, (x)
0 0
(1r1.6) B.98x) #(x) =0 (05 xzs1)
aJ(x) bj(x)

and

(IIT.7)  $,(0) = ¢,(1) = O

Then we have only to show ¢(x) =0 (0 g x £ 1) for the proof.

The equalities (III.6) are equivalent to

d¢2(x)

i =0 (0 g x5 1)

and
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8¢, (x)
—_d;(_ + aJ(X)¢1(X) + bJ(X)¢2(X) =0 (O £ X =< 1) [}

which imply ¢2(x) =0 (0sxsx51) by ¢2(O) = 0 and
Vel

d¢, (x) |
—a— * 85(X)¢(x) =0 (0 s xs1)

(III.8) )

Thus we see ¢1(x) =0 (0 g x < 1) in virtue of the uniqueness
of solutions to (III.8). This shows that ¢(x) =0 (0 £ x g 1),

so that zero cannot be an eigenvalue.

(3) In view of Assertions I and II, we can see Lemma 5.1.
In fact, let us assume that all the eigenvalues of (5.15.1) with
(5.16.1) coincide with the ones of (5.15.2) with (5.16.2). Then
Assertion I implies that all the non-zero eigenvalues of (5.22.1)
with (5.23.1) coincide with the non-zero ones of (5.22.2) with
(5.23.2). Furthermore, by Assertion II, zero is an eigenvalue of
(5.22.3) with (5.23.j), for j =1, 2.

Therefore all the eigenvalues of (5.22.1) with (5.23.1)
coincide with the ones of (5.22.2) with (5.23.2).

Similarly we can prove the latter part of this lemma and we
omit its proof.

Thus the proof of Lemma 5.1 is completed.



Chapter 4

Continuous Dependence of the Boundary Value Problem on
Eigenvalues

$1. Formulation and the main result. We consider a system
(1.1) of ordinary differential equations of first order in the

interval (0, 1) with boundary conditions (1.2) and (1.3)

(du, (x)
_dx— + pll(x)ul(x) + plz(x)uz(x) = Zul(x)
(1.1) 1
dul(x)
—'&'}'{'— + p21(x)u1(x) + pzz(x)uz(x) = luz(x)
\
(0 g x5 1)
(1.2) u,(0) + hu (0) = 0
(1.3) u,(1) + Hul(l) = 0

In Chapters 2 and 3, we consider another boundary condition

(1.4) uy(1) + Hou,(1) = 0 (H#H) ,

1 (
and discuss the inverse problem to determine the coefficients
pij(x) (1 £1i,j £ 2), etc. from the two pairs of eigenvalues of
(1.1) - (1.3) and (1.1), (1.2), (1.4), so that we obtain the

results on the uniqueness of coefficients and boundary

conditions.

- 116 -



Next we will study a problem on the well-posedness. That
is, the purpose of this chapter is to discuss

Problem. Let

( .
5(A ) = (1l
Pi’hi’H n nezZ
(1.5) <
o(a o o= Py (1 =1, 2)
P.,h,,H
i
\
Then, in order to assure that | P, - P, | + |hy - hy|

ctro, 173"

* *
+ |H1 - H2| + |H1 - HZI is small, in what sense should

{ {lél)}nez’ {“él)}nez } be close to { {l£2)}neZ’ {”52)}n62 } ?

Here and henceforth, we define

f I P =P, = max D, . (x)
c®r0,17)" c0 lsi,jszl 13 |
O;x;l
(1.6) 1
| P | =] P |
{ctro,133" ct
dp. . (x)
= max max I pi.(x) I , max | ——%%——— ] ,
15i,js2 J 1gi,js2
O<x<1 O<x<1
L $xg X3
for P = (p..) e (clto, 11% . as for p e {clfo, 1732
ij’1gi,js2 ’ ’ ’

etc., we adopt similar notation.
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Remark 1. Let us recall that A is given in
P,h,H

Definition 1 in Chapter 2. Moreover, for the operator AP h.H ®
] ’

»
we can define AP,h,H , the adjoint operator of AP,h,H y by
v

1

(1.7 9ap ) = { v = e { H'(0,1) }® ;

v5(0) - hv,(0) = 0 and wv,(1) - Hv (1) = O }

and
»
(1.8) (AP,h,HV)(X) = -B Q%iﬁl + tP(x)v(x)
*

for each v € g(AP,h,H)

0 1 t
Here we recall B = and P(x) denotes the

1 0

transpose of the matrix P(x) (that is,

t _ _
PO = | pio(x) pap(x) | FOF PR = o (k) by, (x)
Furthermore we obtain
(1.9) (Ap o wu, V) = (u, Ay, V)
P,h,H (L2(0,1)}2 P, HY (1200 1)32

*

for each u € g(AP,h,H) and v € Q(AP,h,H)

Remark 2. For the Sturm - Liouville equation, a problem on
the well-posedness is considered in Hochstadt [16] and Iwasaki
[20]. In the latter paper, potentials under consideration are
assumed to be spatially symmetric. Further we can refer also to

Mizutani [34].
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When we formulate our problem on the well-posedness for the
system (1.1), as is seen from Theorem in Chapter 2, we encounter
the following difficulty : we cannot uniquely determine P, h, H
and H* by the two sets of eigenvalues obtained by (1.1) - (1.3)
and by (1.1), (1.2), (1.4). This difficulty is because of the
fact that there are too many coefficients that should be
determined, compared with the data on eigenvalues. This is not
the case in the Sturm - Liouville problem.

On the other hand, as is shown by Proposition 1 in
Chapter 3, we see that only the two sets of eigenvalues obtained

above give "independent" data.

Therefore, in this chapter, we are restricted to the
coefficient P(x) in the form
a(x) b(x)

(1.10) P(x) = (0 s x< 1),
P (x)  Dpy(x)

where a and b are fixed, and furthermore the boundary
condition at x = 0 1is known. That is, we introduce

Definition 1. Let us arbitrarily fix a, b € cl[o, 1], and
let us define a set A(a,b) by

a b

(1.11) A(a,b) = { ’ p19 pZ € C1[09 1]

Py P

and Py» Py ¢ real-valued } .

Throughout this chapter, let us assume that all the coefficients
of equations under consideration belong to A(a,b).
Then the system is determined uniquely by the two sets of

eigenvalues, in view of Theorem 1 in Chapter 3. That is,
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*
Theorem 1. Let h, H, H e R \ {-1, 1} and H # H

’

P € A(a,b). If

f' 9(Aq,n,3) = (8 ph.u

d(A «) = o(A »
Q,h,J P,h,H

)

holds for Q € A(a,b) and J, J’ e R\ {-1, 1} , then we have
Q(x) = P(x) (0 £ x5 1)

and

» *
J=H and J = H

In order to state our main result, we prepare

Proposition 1. Let G(AP,h,H) = {ln} nez Then,
(I) The set o(A ) n R 1is a finite set.
P,h,H

(II) A, € “(AP,h,H) if and only if 7; € G(AP,h,H)

We recall that a denotes the complex conjugate of a € C .
In Appendix I, we prove this proposition.

Throughout this chapter, let P € A(a,b) and h, H, H’ €
R\ {-1, 1} be arbitrarily fixed.

By Proposition 1, we can number all the eigenvalues of

O(AP,h,H) in the following manner :

Let us denote the number of elements of the set a(AP h H) n R
by NO . Then we set
(1.12.1) O(AP;h,H) nR = { 1_NO/2,..., 1_1, PRI lNO/Z }

(1.12.2) a(A Imz >0} = {1

P,h,H) n{z; n } nzNo/Z + 1

(1.12.3) 2, = 1_, (n g -Ny/2 - 1)
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(1.12.4) 1Im 2 z Im 2 (n 2 No/2 )

n+1

if NO is even,

and

(1.13.1) o(AP’h’H) nR = { 1_(NO_1)/2,..., A_gs Ags g,
’l(No-l)/Z }

(1.13.2) O(AP,h,H) n{z;Imz>01} = { ln } nz(No+1)/2

(1.13.3) 1 = I:; (n 5 - (NO + 1)/2)

(1.13.4) 1Im 1n+1 2 Im ln (n 2 (NO -1)/2) ,

if No is odd.

The numbering is not unique for the whole but

{2, } qez o
it is so for sufficiently large n , in view of the asymptotic

behavior of ln (Proposition 0 in Chapter 2).

For o(A «) = { 7 } nez ° We can number all the
P,h,H
elements in a similar manner. To sum up, for a(AP h H) =
14 b4
{ ln }nez and o(A «) = { [ } nez °® there exist some
P,h,H
Ni» N2 € NV {0} such that

(1.14.1) 1, ¢R (—N1 £ ng Nl)

n l-n (n £ -N

(1.14.2) 12 - 1)

1

(1.14.3) Im An+1 2 Im An (n 2 Nl) ,

and

(1.15.1) By € R (-N2 £ ng NZ)
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(1.15.2) By = B_p (n < -N, - 1)
(1.15.3) Imp ;= Imp (0 z N,)

Here and henceforth, if N1 and N2 are even, then the suffix
"0" of 2, and pu_,Z is skipped, respectively.

Similarly let us number a(AQ h J), a(A =), etc.
] ?

Now we are ready to state our main result

»

*
Theorem 2. Let P, Q € A(a,b), h, H,L, H, J, J €

R\ {~-1, 1} and let us set

( -
oldp pw) =12, ) 1z
(1.16) 1
O(AP’h’H’) = { ,un } nez
and -
4 »
(Ag n,3) =12, ) 1z
(1.17) \
*
: O(AQ,h,J.) = { B } nezZ ‘
«
Ir 3 (IA; - A, [ + lp; - Wy [) is sufficiently small for
n=-c

*
P, h, H and H , then we have the estimates
* *
(1.18) |[H-J| + |[H - J |

® »

*
s C-3 (1A = Ay |+ oy =, 1)

Nn==o0

- 122 -



and

1.19 P -Q .
( ) | | {03[0’1]}4

-]

scs (b el - e e - e D)

NnN=-=x

where C 1is some positive constant depending on P, h, H and
»

H

Actually we can obtain Theorem 2 from Proposition 2, which

L 2
assures the existence of Q € A(a,b) , J, J € R\ {-1, 1}

* *
satisfying G(AQ,h,J) = { ln } nez and o(AQ N J,,) = { By } nez
? ’

e »

*
provided that 3 (12, =2, | + oy - sy |) is sufficiently

n==—o

small. That is,

*
Proposition 2. Let P € A(a,b) and h, H, H € R \ {-1, 1}

be fixed, and let (A { 2 and (A .) =

}
n nezZ P,h,H

P,h,H) =

{ 7 } nez satisfy (1.14) and (1.15), respectively.

» *
If two sets of complex numbers { Zn }neZ and { By }nez

satisfy

(1.20.1) 2_ € R (-N1 £ nzg Nl)

(1.20.2) An =2 (n £ -N, - 1)

1
(1.20.3) Im 2., = Ima. (naN),
and

(1.21.1) p, € R (-N2 £ns Nz)
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*

»
(1.21.2) By = P_p (n < -N, - 1)
* *
(1.21.3) 1Im Bneq * I 7 (n 2 NZ) ,
respectively, and the inequality
e » »
(1.22) 23 Inf-(la, =2 | + Jpu, -p,|) <=

nN==o
holds, then there exists a unique (Q,J,J*) €

A(a,b) x ( R\ {-1, 1} )° such that

f *
9(Aq,n,3) = {1y} nez
(1.23) A
*
O(AQ’h’J’) - { .u'n } nezZ ’
-
provided that 3 (IA; - i, | + |u; -y |) is sufficiently
N=<=o00

»
small for P, h,,H and H

If P e {CI[O, 1]}4 and |h|, |H| # 1 , then according to
Proposition O in Chapter 2, for ln € o(AP h H) , we have the

asymptotic behavior

(1.24) A, =7+ 0 +nxv -1+ o( % ) (as |n| - =)

Here y and 6 are the constants given in the proposition.
Therefore, in general, the relation P, Q € {Cl[O, 1]}4 does not
imply the convergence of the series at the right hand side of
(1.19). 1In other words, Theorem 2 suggests that our inverse
problem is ill-posed by the fact that the topology in

a(A x a(A «) introduced in order to assure the

)
P,h,H P,h,H
continuity of the mapping

{ Gplnez » badnez } —— P < Alad)  (c'fo, 11}*,

is too strong in comparison with the asymptotic behavior (1.24).
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We can observe the ill-posedness of this kind also in the
results for the Sturm - Liouville problem (Hochstadt [16] and

Iwasaki [20]).

This chapter is composed of three sections and eight
appendixes. In $2, we prove Proposition 2, while we postpone
proofs of the technical lemmas required there to Appendixes II -
VIII. In $3, we give a proof of Theorem 2 on the basis of
Proposition 2. Appendix I is devoted to a proof of Proposition 1

in $1.
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$2. Proof of Proposition 2. 1In this section, we prove
Proposition 2, by construction of (Q,J,J*) €
A(a,b) x (R \ { -1, 1 })2 satisfying (1.23) as a fixed point of
a contraction mapping. To this end, in subsections $$2.1 - 2.5,
we define a contraction mapping G.

First let us consider a domain where our operator is
defined.

$2.1. Definition of the domain. We can choose a small

constant M so that

H-1 H -1 -M M
(2.1) H+1°' . g Le  , e ]
»
In fact, since g : i , H, =1 4 , we can see the existence
H +

of M satisfying (2.1).
Henceforth let us fix M satisfying (2.1).

As the domain, we define a set dM by

(2.2) dy = { (ags ap) € ( %0, 1112 ;

|l ¢, - p, | v | a5 - po | s M }
1 11 000,17 2 2 1004 47

Here in dM ,» We introduce the same norm as the one in

{ o, 1112

max { | u

(2.3) | (ug, up) |

» )

1 Il00[0,1] I|co[o,1]

- 126 -



Next let us define an operator on dM by composing Gi
(1 £is 4) given in $$2.2 - 2.5, that is, the operator to be

constructed is defined by

(2.4) G = Gq o Gy o G2 e

3 1

Notation. Let O(AP,h,H) = { ln } nez and o¢(A ) =

P,h,H
* *
{ Bn }neZ , and let { ln }neZ and | 7 }neZ be given such
that (1.20) - (1.22) are satisfied.
Then we set
* » »
(2.5) 8y = 2 o C Ay = aph ey = ougl)
and
® » »
(2.6) 8 = 3 (Inl + DU = Ag] + lug = D)
Moreover let us denote the solutions to (2.7) and to (2.8)
¢1(°"1) 1 5
by ¢(-,1) = e { C°[0, 1] } and
¢2("1)
*»
- ¢1('9l)
¢ (-,1) = - e { Cl[O, 1] }2 , respectively ;
¢2(':1)
-,
B2{A) o p(x)p(x,1) = 2p(x,2) , 0 5 x 5 1
(2.7) S
1
¢(011) =
-h
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4

*
* *
(2.8) 4
* 1
¢ (0,2) =
h
L
0 1 ¢
Here we recall that B = and P(x) is the
1 (O
| t a(x)  py(x)
transpose matrix of P(x) (that is, P(x) =

b(x)  p,(x)

For example, ¢(:,2_.) is an eigenvector of A associated
n P,h,H

with 1_ € o(A

n P,h,H)'

Henceforth Mi (1 £ i £ 32) denote positive constants
*»
depending on P, h, H, H , 60, 6 and M , and further each Mi

is bounded as 60 1 0

For simplicity, we adopt notation | P | o etc. in place of

| P | .
cro, 173"
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$2.2. Definition of Gl' We define G1 which transforms
each element q = (ql, q2) of dM to two sequences

{ a (q), b_(q) } of complex numbers in the following manner

n n nez
2exp( 3 fl (a,(s)-p,(s)+p;(s)-q;(s))ds)
-2exp( = a,5(s)-p,(s)+p,(s)-q,(s s
(2.9) o (a) = 2 Jo %2 2 1 1
(H + l)exp(fo (a,(s)-p,(s))ds) + 1 - H
x (p,(1,47) + Hp,(1,17)) (n e 2)
and

1
~2exp( = |~ (a,(s)-p,(s)+p,(s)-q,(s))ds)
2 JO 2 2 1 1

(2.10) b (a) = — T -
(H + l)exp(f; (ay(s)-p,(s))ds) + 1 - H

x (¢5(L,u)) + H g, (1,u7)) (n e 2)

Then we set

(2.11) Gy(a) = { a (a), b (a) }, .z

In (2.9) and (2.10), in view of (2.1), we can see that there
exists some positive constant M1 such that

1

I(H + 1)exp( J 0(qz(s) - pz(s))ds) + 1 - H| 2 M1

(2.12) §
* 1 .
I(H + 1)exp( J O(qZ(S) - p2(s))ds) + 1 -H l z M

1

\
for each (ql, qZ) € dM .
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1
In fact, since e M s exp( J (qz(s) - p2(s))ds) < eM , we have
0

1
(H + 1)exp( J O(qZ(S) - py(s))ds) + 1 - HI

2 |H + 1|-min { IeM - 1' , Ie-M S 1| } > 0

Similarly we can see that

* l *
(H + 1)exp( J (a,(s) - p,(s))ds) + 1 - H
0
* * *
: |H + 1]|-min { IeM - E;—:—ll , le-M - E;—:—l } > 0
H + 1 H +

Moreover we have
Lemma 1. Let q € dM and let an(q) and bn(q) (n € 2)

be defined by (2.9) and (2.10), respectively. Then we get

(2.13) 2 (lag(a)] + Ib(a)]) = M,a,

Nn==oo

and

(2.1%) 2 (In] + D)(Jay(@)] + [o (a)]) = M,8

Nn==o0

Jor some positive constant M2

Here we recall that 60 and 4 are given-by (2.5) and
(2.6), respectively.

In Appendix II, we prove this lemma.
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$2.3. Definition of G2. For the definition, we prepare

Lemmas 2 and 3.

Lemma 2. Under all the assumptions of Proposition 2, we

. *
have the following facts on ({ ¢(-,ln) }nez

(I) (the completeness of | ¢(~,l;) }neZ ) The system

*

{ ¢(+,2_) }nez 18 a Riesz basis in { L

2
n (

0, 1) }2 .

(II) (the existence of a complete biorthogonal system to

(1),

*»
{ ¢(-,1n) }neZ ) There exists some system { vy

n nezZ
satisfying (2.15) - (2.19).
(2.15) it e {clro, 17 )2 (n < z)
w(l) : real-valued (-N, £ n g N,)
n : 1 1
(2.16) 1
wélj = wfi) (n 2 N, o+ 1)
\.
.
(1) M
Pl opo,ip2 ™
(2.17) <
(1) Mo(In] + 1)  (nez),
\ “ Yn “{Cl[o,lj}z < 3 Inl n €

for some positive constant M3 .

-131_



(1)
(2'18) (¢('92 )’ Y )
nttTm T412(0,1))2

0O, if n # m

1, if n=m

- c 15y, (1)
(2.19) u =2 n=£:’ ¢(+0a,)) v ’
for each u € {LZ(O, 1)}2 .
Here the series at the right hand side of (2.19) is convergent in

(L3(0, 1)}2 .

*
Furthermore, as for the system {¢(-,un)} nez * similar

facts hold. That 1is,

(I)" The system {¢(',p*)} is a Riesz basis.

n nez

(II)" There exists some {w£2)} satisfying

nez

(2.15)"  {2) e (c'[0, 11}?2  (n < 2)

v{2) : reail-valued (-N, s n s N, )
(2.16) "
p(2) = (2 (n 2N, + 1)
:
I WAZ)u{co[o,lj}z < Mg
(2.17) "
k u w’(‘Z)"{cl[o,lj}Z suy(n| +1) (nez),

for some positive constant M

3
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(2.18)"  (p(-.u0), pi2)) - s
Hn Ym {LZ(O,l)}Z nm

(2.19)"  uw=3  (u, p(.p) )opl?)
NN==~oco

2

’

in the topology in {LZ(O, 1)}

for each u e {L%(0, 1)}2 -

Lemma 3. Let M satisfy (2.1) and let q = (ql, qz) €

dM . Then, setting
1
(2.20) J =J(q) = |(H + l)exp(J O(qz(s) - py(s))ds) + H - 1

1 -1
x [(H + 1)exp(J 0(q2(8) - pz(s))ds) + 1 - H]

* L 1 *
(2.21) J=J(q) = [(H + l)exp(Jo(qz(S) - py(s))ds) + H - 1}

* 1 )1
X {(H + 1)exp(J éqz(s) - py(s))ds) + 1 - H ] ,

we have

(2.22) JeR\ {-1, 1} ,
(2.23) 3" eR\ {-1, 1} ,
and

(2.24) J#J

In Appendixes III and IV, we prove Lemmas 2 and 3, respectively.
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Now, as is seen by Lemma 4 stated below, for

{ an(q), bn(q) } nez given by (2.9) and (2.10), we can set

(2.25) = —I 5 (v Ty
Clz(y’q) J-J n=—oe
- b (@)v{Z (v))
and
c5q(v,q) - .
(2.26) = =2 — 3 ety
czz(YvQ) J -J N==e
- (v (y)

» *
where J = J(q) and J = J (q) are given by (2.20) and (2.21).

Let us set C(-,q) = (cij(-,q)) 1si,js2°

Lemma 4. (I) On all the assumptions of proposition 2, we
have
(2.27) C(+,q) : real-valued.
1 4
(2.28) c(-,q) € {C[0, 1]} .

(2.29) | c(-,a) | )
(cOro,ap*t T W0

(2.30) | c(-,a) | sm

1
(ctro,appt
for some positive constant M4 .

(II) For q(i) = (qgi), qéi)) € dM (i =1, 2), we have the

estimate
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(2.31)  fct,a)y - e,a@y "
(c®ro,11)

1)_ 4(2)

s w0 alt)- g

{c%r0,1132

In Appendix V, we prove this lemma.

Then we define an operator G2 by

(2.32) Gz({an(Q)a bn(Q)} nez ) = Cc(-,q)

By Lemma 4, the operator G2 sends {an(q), bn(q)} nez to the

four real-valued Cl-functions c.:(*,a) (1 s54i,j £ 2) on

1J
o, 1].
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$2.4. Definition of G3. Let us recall B = [ ?

)

and henceforth let us set
(2.33) Q={(x,y) 0<y<x<1}
For the definition of G3 , We need

Lemma 5. Let

(2.34) P e A(a,b) ¢ {clfo, 173} ,
and
a b
(2-35) Q = y Where (ql’ q2) € '94M .
9 942
(I) For givem D = (dij)l <i,js2 € {Cl[O, 1]}4 , there

exists a unique solution K = K(-,-, P,Q,D) € {Cl(ﬁ)}4 to (2.36)
- (2.38) :

(2.36) B V) L qa)k(x,y) - K(x,y)P(y) =

_ 9K(x,

Gy B ( (x,y) eq)
[ K,,(x,0) = hK,, (x,0)
(2.37)
1 Kzz(x,O) = hKZl(x,O) (0 s x51)
(2.38) K(1,y) = D(y) (0 sy < 1)
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Furthermore the estimates

(2.39) | K | _ s M| D |

(c%(@))" 5 {c°ro, 113"
and
(2.40) | K | _ s M| D |

@t 5 clro, 113"

hold for some positive constant M5 .
(II) For given Q1 , Q2 in the form (2.35) and

Dl’ D2 € {Cl[O, 1]}4, we have the estimate

(2~41) " K('9°,P7Q1,D1) - K(°"9P’Q2vD2) "

< MS( I D

, 1

y 19 =% 1 y

(c%ro, 11} c®ro, 17}

+||D1-D

o | s )

{c®ro, 11}

In Appendix VI, we prove this lemma.

In (2.38), let us substitute C(-,q) = (cij(~,q))1 < i,is 2
given by (2.25) and (2.26) into D(+) . Then, by Lemma 5, we can

define G3 by

(2.42) Gy(C(-,q)) = K(-,-,P,Q,C)
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$2.5. Definition of Gu . Let us set

(2.43) A(x) =

-a(x)=b(x)+p; (x)+p,(x)  a(x)+b(x)=p, (x)-p,(x)

N

~a(x)+b(x)-py (x)+p5(x)  a(x)-b(x)+p,(x)-p,(x)

(0 £ x 1)
and let us consider the initial value problem (2.44) and (2.45)

for ordinary differential equations :

d u(x) u(x)
(2.44) = = A(x) +

dx | () v(x)

Kll(x'x)_KZZ(X’X)+K12(X’X)—K21(X’x)

(0 g x<1) .
\ Kll(X,X)—KZZ(X,X)+K21(X,X)-K12(X,X)
p
u(0) 1
(2.45) =
v(0) 1

Here K = G3(C(',Q)) .

Then we have

Lemma 6. (I) There exists some positive constant M6 such

that, if

(2.46) 8y s Mg,

then the solution [ 3 ] to (2.44) and (2.45) satisfies
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(2.47)  u(x), v(x) = 5 (0 < x5 1)

(II) On the condition (2.46), we can define real-valued

Cl-functions ry, r, by

( 1 du( 1 dv(x)
ry(x) = py(x) - u(x) udil T I(X) Véi
(2.48) 3
_ 1 du(x) 1 dv(x)
ro(x) = py(x) - u(x) uéi MERTE) Vdi

(0 £ x5 1)

Furthermore the following estimates hold :

(2.49) | py = r, | » I py =, |
1 1 1000, 13 27 "2 loopy g
s M max | K, . (x,x) |
T 1 ¢1,552 1
0 £ X2 1
(2.50) l p; - o, | s b e, =, |
1 1 leito, 13 2 2 V1o, 43
s M, max max | K,.(x,x) | ,
7 1gi,js2
0 $ X g 1
dKi.(x,x)
max gx
1 <i,j < 2
0 < x 2 1

(III) For q'i)= (ql(i), qz(i)) e sy (i=1,2), let us put
k(1) - (G3 * G, Gl)q(i) (1 = 1,2)

On the assumptions (2.46), let ( u(i), v(i) ) (i =1,2) be the

solution to
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d u(i)(x) u(i)(x)
(2.51) = . = A(x) . +

[ kiT) (o) k52 () ok (5D ey -k ) () ]

Kii)(x’x)_xéé)(x’x)*Kéi)(X,X)-Kgg)(x,x)

(i =1,2, 05 xxg 1)

and

| MENTY 1 (
2.52 . = i =1, 2) ,
( v(l)(O) . 1 )

and moreover, let us set

( (12 1 du(lzx) 1 dv(le)
rio(x) =py(x) - &Tlex) dx - V(lax) dx
(2.53) 9
. (i (i
(1)) . 1 aulllx) 1 avix)
riHx) = py(x) - o Y i e
\

Then the estimate

(2.54) | oV

= | -r I
L cCro, 1] 2 2 7o, 13
1) (2)
< M max | k{Y (x,x) - k. () (x,x) |
7 1 <i,j g2 1d ’ 1J
0 < x 2 1
holds.

In Appendix VII, we carry out the proof of Lemma 6.
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Now we proceed to the definition of Gq . Under the

assumption (2.46) of Lemma 6 (I), let us define G4 by
(2-55) GL}(K('y'ypr’C)) = (rl' rz) [y

where K(-,-,P,Q,C) and (rl, r2) are given by (2.42) and

(2.48), respectively.

Thus we complete the definitions of Gl’ GZ’ G3, and GQ
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$2.6. Reduction to a fixed point. In this subsection, we
show Lemma 7 which asserts that a fixed point (ql, qZ) of the
mapping G gives the functions satisfying all the conditions in
Proposition 2. That is,

Lemma 7. On all the assumptions of Proposition 2, let q =

(ay, a,) € { 0, 11}% satissying

(2.56) q = Gq

Then we have

(2.57)  q, € clfo, 1] (i =1, 2) |,

1

and furthermore

»
oAy n,3) =123} ez

&

(2.58)
G(AQ,h,J') = { #n } nez
for
a b
(2.59) Q =
9 a4z

and J, J’ defined by (2.20) and (2.21).

Proof of Lemma 7. Let us assume that q = (ql, q2) €
{ Lo, 11}% satisfies (2.56).

First we prove (2.57). To this end, we have only to prove
1 2
(2.60) Gq € { C°[0, 1]} ,

in view of (2.56). Since, by Lemma 5 (I), the relation (2.28)
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1,= 4 a b
implies that K(-,-,P,Q,C) € {C (Q)} , where P =

Py Py

a b
and Q = , Wwe see (2.57) from the definition of G
q q
1 2

and a, b, Py» P, € Cl[O, 17 .

Now, for the unique solution K = K(.,-,P,Q,C) to (2.36) -

(2.38), the solution ( u, v ) to (2.44) and (2.45) satisfies

( 1 du(x) 1 dv(x)
qy(x) = py(x) - u(x) udz T v (x) Vdi
(2.61)
_ 1 du(x) 1 dv(x)
qz(x) - pZ(X) T ou(x) udi * v(x) de

\
(0 g x g 1)

Noting (2.47) and (2.45), we integrate (2.61) with respect to x,
so that we get

.
X

(py(s) - q;(s))ds = log u(x) + log v(x)

0

[ x

(py(s) - a,(s))ds = log u(x) - log v(x)

o)

which imply

r~

X
u(x) = exp( % o (py(s)+p,(s)-q (s)-q,(s)ds )
(2.62) 1 g
X
v(x) = exp( % o (P1(8)-p5(5)-a; (s)+ay(s)ds )

(0 g x5 1)
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Substituting (2.62) into (2.44), we obtain

(2~63) Klz(xyx) - K21(x9x)

1 -61(x)—62(x)
T e (2b(x)-q; (x)-q,(x)-p; (x)+p,(x))

1 -Gl(X)"‘eZ(X)
*ge (=2b(x)+q,(x)=-q5(x)+p; (x)+p,(x))

(0 £ x £ 1)
and

(2.64) Kll(x,x) - K22(x,x)

1 -Bl(x)-ez(x)
= E e (Za(x)-ql(x)-qz(X)+pl(X)'pZ(X))

1 -61(x)+62(x)
+ T e (-Za(x)-ql(x)+q2(x)+pl(x)+p2(X))

(0 £ x < 1)

Here and henceforth, we put

o

X

(2.65) 6,(x) O(ql(S) - py(s))ds (0 g xxg 1),

N
e

[ x
O(qZ(S) - py(s))ds (0 2 x s 1),

N

(2.66) 02(x)

and
(2.67) R(x) = e-Gl(x) cosh 02(x) -sinh Gz(x)
-sinh 62(x) cosh Bz(x)
(0 £ x 5 1)
V’l(°,}')
Defining w(-:,1) = by
'PZ('J)
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X
(2.68) p(x,1) = R(x)¢(x,1) + J OK(X,y)¢(y,l)dy (0 s x5 1),

in virtue of (2.36), (2.37), (2.63) and (2.64), we can apply

Lemma 1 (II) in Chapter 2, so that we see that

.
B 2OA) | o(x)p(x,2) = dp(x,1) (0 5 x 1)
(2.69) |
1
V’(O"l) =
-h
L

L J
Then we can prove that for J and J defined by (2.20)
and (2.21),

(2.70)  w,(1,1)) + Iy, (1,10) =0 (n e 2)
and
* L 2 *
(2.71) yo(l,p ) + 3 v (l,p)) =0 (n €Z) |,

in the following way.

First we have

O I T W I R TRV B C N
= (oC2) i) =8 by (2.18)

that is, we get

(2.72) V) L el y = s
Similarly we get
(2.72)" w2 L el ) = s

Second by the boundary condition (2.38) for K, we see
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K (19y) hed
(2.73) 1 = —1 5 5 (e (@
Ky5(1,y) J-J n=-e

(2
- b (a)y, "(v) )

and

Kyy (1,) = e T
(2.74) 21 = = 3 (e (P
K22(1,y) J -J n=-c

- 3 (v ),

where the right hand sides of (2.73) and (2.74) are convergent in

(20, 1)}? .

Thus, by using (2.72), the equalities (2.73) and (2.74)

imply
K (1’°) ry
(2.75) [ Kll(l | ] o B(,2))
e (L2(0,1))?
_ an(Q) 1 it 2) *
B 2 m:-mbm(Q)(wm (-) 5 ¢(-,2) )
(n e Z) |,
and
K,,(1,-)
(2.76) [ K21(1 | ] p(+1)
22 (L2(0,1))?
J’a (Q) J had (2)
= - Tt o I ka0 L ) )
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Now we have, for n € Z ,

» »
wz(l,ln) + le(l,ln)

-61(1) ) »
= e (J+-cosh 02(1) - sinh 62(1)) ¢1(1,1n)
-91(1) . : »
+ e (cosh 02(1) - J+sinh 62(1)) ¢2(1,1n)
K, (1,-) —_— K, (1,-) —_—
. 21( S RN t o (e,A0)
K 1,' K (19')
22 L2 12 LZ
by (2.68)
62(1)—81(1)
Ze L *
= 20 (1) ¢ (¢2(1y1n) + H¢1(192n)) + an(q)
(H + 1)e 2 + 1 -H
by (2.20) and (2.75), (2.76)
= 0 by the definition (2.9) of an(q) .

That is, we see (2.70).

As for (2.71), we can similarly proceed in view of (2.72)',
(2.73), (2.74), (2.68), (2.21) and (2.10).

Thus we complete the proof of (2.70) and (2.71).

Since wy(-:,1) satisfies (2.69), the relations (2.70) and
(2.71) imply

(2.77) {ag ) pgc olagy )

and

(2.78)  {uy} ez oA ),
Q,h,J

respectively.
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Finally we have to prove that

»
(2.79) (1) pz2 olAgy )
and
(2.80)  { p- ) (A )
. U > ¢
n nez Q,h,J*
To this end, we have only to show
Lemma 8. Let us denote the solution to (2.81) by
*
ry wl(’vl)
y ('al) = »
‘PZ("'I)
~
*
B ) L t(a)y (x,0) = pT(x,1) (02 x < 1)
(2.81) <
. 1
y (0,1) =
h
\
Then,
(I) The equalities
» % » —
(2.82) wz(l, -ln) - le(l, -ln) =0 (n € Z2)
» = »
hold. That is, v (-, -ln) 18 an eigenvector of A , the

Q,h,J
adjoint operator given as in Remark 1 in S1, associated with the

3
etgenvalue ln

(II) For each u = e {L(0, 1)}° , we get
2

(2.83) u=73 m w(-,/l;) ,
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where the right hand side is convergent in {LZ(O, 1)}2 and we

set
» » 3
e, = (w(-52), v (-, =1))
*
Moreover, as for { w(-,yn) } nez » We obtain similar
results :
* * . . * . .
(r)’ v (-, —“n) is an eigenvector of A « assoctated with
Q,h,J

—

the eigenvalue [
' 2 2

(II) For each u € {L°(0, 1)} , we get

- (u, ¥ ( Y

U, ¥\ =, »

(2.83) us=> . ARV IS0 B

Nn==—o
. 2 2
in {L°(0, 1)} . Here we set

* » %
ﬁn=(1P(‘,ltn),1P(‘9 '/l'n)) .

In Appendix VIII, a proof of this lemma is given.

Now we return to the proof of (2.79) and (2.80). Assume

that there exists X e o(A ) such that
Q,h,J
*
(2.84) 7T # A, (n € Z)

Let u # 0 be an eigenvector of AQ associated with ¥ .

,h,J
Since, for n € Z,

Yu, v™(-) -20) )

= (Aq,n,a% v (e, =10) ) (by Ag p gu = Tu)

»

» *
(uo AQ,h,JW ('v "'ln) )
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= 1;(U, w*(-. :;:) ) (by Lemma 8 (I) ) ,
we get
(2.85) (u, tp*(-, -_/1;) ) =0 (n € Z)

by (2.84). Therefore it follows form (2.83) that u = 0, which
contradicts that u # O.
Thus we see (2.79).

Similarly we can prove (2.80).

This completes the proof of Lemma 7.
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$2.7. Completion of the proof of Proposition 2. Applying
the principle of contraction mappings (Kolmogorov and Fomin
[25, p.66], for instance), we complete the proof of
Proposition 2. To this end, provided that 60 is sufficiently
small, we have only to verify
(I) G 1is a contraction mapping, that is, there exists some

constant 0 g » < 1 such that

| 6ot - cqaf?) , 5« faft) - o2

(c®o, 11} <%0, 11}2

for each q(l), q(2) € dM .

(II) GdM c dM .

In fact, if (I) and (II) are proved, then since dM is a closed
set in {CQ[O, 1]}2 by the definition (2.2), we can apply the
principle of contraction mappings, so that we see the unique

existence of fixed point q = (q(l), q(z)) of G . Therefore,

a b »
in view of Lemma 7, Q = and J, J given by
9 q

(2.20) and (2.21) for the a9 satisfy (1.23).

Proof of (I). For q(i) = (q(i), q(é)) e dy , let 1)
Gq(i) where r(i)= (r(i), r(g)) (i =1, 2). Henceforth we set
a b ( 2)
Q. = . i=1, .
i NESRMEY

Then, by the estimate (2.41) of Lemma 5, we have
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" K(',',P,Q 90('7q(1))) - K('y'erQ 9C('9q(2))) "
1 2 {CO(E)}ﬂ

(2)
M ( C(" ) 1Q, - Q +
“ M5 (IC(0a “{00[0, 173 19, - %l cro, 113"

lct-,aM) - c,a@h ) )
(c°ro, 11

Thus, by the estimates (2.29) and (2.31) in Lemma 4, we get
(2.86) | k) ok
(@
(1) (2)

< 2M,M_4 -
4"s O" q q " {CO[O, 1]}2

Here and henceforth, for brevity, we put

K(i)(x9y) = K(x,y,P,Qi,C(°,q(i)))

j; (x,y) = Kjk(x9y’PoQiyc("q(i)))

2, 1sj,ks2, (x,y)ed)
)y = gy k(i) (1 =1, 2)

e - e e D) 2y
(1) (2)
M K K
e (@

with which we combine (2.86), so that we arrive at

(2.87) | (1) - (20
{c%ro, 1332

(1) (2)
2M, M_M_ 48 -
s 45N o“ q q | {CO[O, 1]}2

Therefore, if 60 is sufficiently small so that

5M750 <1,
then we see that G 1is a contraction mapping.
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This shows the assertion (I).

Proof of (II). Let q = (ql’ q2) € sy . Since cij
(i £ i,j £ 2) are real-valued functions by (2.27), the solution
K to (2.36) - (2.38) with D = C is also real-valued.

Therefore we see that Gq 1is real-valued.

Let us assume that 4, = > (lxn - lnl + Iyn - ”nl) is

N==o00
sufficiently small. Let (rl, rz) = Gq . Then we have to prove
that
|y -p, | s M
(2.89) <
| 5 -, | s M
2 2 CO[O, 1]

Firstly, by the definition (2.55) of G4 and the inequality

(2.49) of Lemma 6, we see

(2.90) max { | r, - p, | s Il v, -p, |

1 1 CO[O, 1] 2 2 CO[O, 1]

< M max X,  (x,x,P,Q,C)|
7 1<i,js2 i3 ’
O;x;l

a b a b
Here we put P = and Q =

1 P, q a5y

Secondly, by the definition (2.42) of G, and the

3

inequality (2.39) of Lemma 5, we have

(2.91) | K(-,+,P,Q,C) | —
(@t

Ml c(-,q) | \

{c%ro, 17}

Finally, by the definition (2.32) of G and the estimate

2
(2.29) of Lemma 4, we have
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(2.92) | C(-,a) | )
(Pro, 113 TR0

Therefore, combining (2.90), (2.91) and (2.92), we reach

(2.93)  max { | v, -p, | v, -p, |

c%ro, 13 c%ro, 1]

< M4M5M760
Thus, taking a sufficiently small 60 , so that

(2.94) MMM 8 s M,

we see (2.89).

Therefore we complete the proof of the assertions (I) and

(II), so that Proposition 2 is proved.
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$3. Proof of Theorem 2. We consider a proof separately in
the two cases
e » »
Case 1. 6 =3  (In| + 1)(I2, - 2| + |u) = wyl) < =

NnN==oco

Case 2. 6 = =

Proof in Case 1. Let Q € A(a,b), J, J’ e R\ {-1, 1} and

let
4 *
o{Ag h,3) = 1 4, Jhez
(3.1) )
*
\ U(AQ,h,J’) = { #n }neZ
If
= » »
(3.2) 8y = 2 nz_”(lln =l ey -l

»*
is sufficiently small for P, h, H and H , then in virtue of

a
Proposition 2, there exist @ = N N € A(a,b) and
91 )

*»
J, ¥ eR\ {-1, 1} such that

a,h,j { xn }neZ

*

U(Aa 0 34) = { b“n }neZ
Moreover, in view of the estimate (2.93), we get

(3-3) " a‘l = pl II 0 ll 32 - PZ "CO

10,11 (0,13

< M86O ,
and, combining the estimates (2.30), (2.40) and (2.50), and
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proceeding in a way analogous to the one in getting (3.3), we can

obtain

(304) " a'l = pl + " az = p2 " 1

I 4
c [0,1] c*[0,1]

< M85

*
On the other hand, since J and J are given by (2.20)

and (2.21), by noting (2.12), it follows from (3.3) that
* »
(3.5) [H -3« [H -3F| < Mgs,

Now, by Theorem 1 in $1, the relations (3.1) and (3.1)'

imply

a;(x), dy(x) = ay(x) (0 s x s 1)

o]

[EY
b
"

(3.6) 1

Thus we can obtain (1.18) and (1.19) by (3.3) - (3.6).

This completes the proof of Theorem 2 in Case 1.
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Proof in Case 2. In this case, we have to prove

*» L 2
(3.7) [H-J| + |H -J| s« Mg3,
and
(3.8) I a; - p,y | + | a5 - p, | s Mgé
1 1 16000,1] 2 2 1:000,171 8°0

Without loss of generality, we may assume that 60 < ®
Along the line of the proof of Proposition 2, we can carry out

the proof as follows.

1) In this step, we derive

-
( -1 \
J = | (H+ 1)exp( | O(qz(S) - py(s))ds) + H - 1
r 1 -1
x | (H + 1)exp( O(qZ(S) - py(s))ds) + 1 - H
(3-9) 9 ‘
» L 1 *
J = | (H+ 1)exp( J o(qZ(S) - py(s))ds) + H - 1
. 1 7
x | (H + 1)exp( J 0(qz(S) - py(s))ds) + 1 - H
~ *® » *
Derivation of (3.9). Since (IAn - lnl + Iyn - “nl)

n==oco

»

»
< = , we have lim (2 - ln) = 0 and lim  (m, - #,) = 0,

In] - = In] - =
which imply
(3.10) nTiT 3 (6 + 7, + (n -m(n))av-1) =0
and
(3.11) 1lim (8 + 7, + (n - mz(n))nV:T ) =0

n] > =
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in view of Proposition O (II) in Chapter 2.

Here we set

1
(3.12) 6= 3 J , (32(8) - py(s))ds
and
p
1 (1 + h)(L - J) (1 + h)(1 - H)

1% 2 { log T —my(1+J) " 8 (T -n)(1 +H) }
(3.13) ; . .

, - 1 { log (LMl -J) ,  (1+h)(1-H) }

2 2 (1 - h)(1 +3) (1 - h)(1 + H)

\
and mj(n) (j = 1,2) denote some strictly increasing sequences
of integers, and moreover, in (3.13), we take the principal value
of the logarithm.

»

»
Since h, H, H , J, J € R\ {-1, 1} , and 6 € R, we have

Im (6 +.71) =0 or ln, or - %n

- 1 -1
Im (6 + 72) =0 or 5%, or 57

Therefore (3.10) and (3.11) imply 6 + vy = 6 + 7, = 0 , that is,

we reach (3.9).

2) In this step, we prove Lemma 9, which is a converse of
Lemma 7

Lemma 9. Let

*

8o = 2 (12, = 2,0+ my - wyl)

be suffictently small. If q = (ql, qz) € {cl[o, 1]}2 satisfies

s(Bgn.3) = {2, ) 1z
(3.14) =

(A o= { ) :
ko Q,h,J “n nezZ

then q is a fixed point of the mapping G defined in $2.
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Proof of Lemma 9. By Lemma 1 (I) in Chapter 2, there exists

a unique K = K(x,y) € {Cl(ﬁ)}u satisfying (3.15) - (3.18) :

(3.15) B LY L q(R(x,y) - K(x,y)P(y) = - L) 5

( (x,y) e @)

K,,(x,0)

12 hKll(x,O)

(3.16)

A

hKZl(X’O) (0 s xg1) .

(3-17) Klz(xvx) - K21(x9x)

-Bl(x)-GZ(x)

=fe (2b(x) = a;(x) = ay(x) = py(x) + py(x))
1 -61(X)+92(x)

tge (-2b(x) + q,(x) - q,(x) + py(x) + p,y(x))

(0 £ x5 1)
(3018) Kll(x’x) = KZZ(X’X)

1 -ol(x)—GZ(x)

=fe (2a(x) - qq(x) - ay(x) + p;(x) - py(x))
1 -61(X)+62(x)

tge (-2a(x) = q(x) + a,(x) + py(x) + py(x))

(0 g x5 1)

Here we recall that 81, 02

(2.66) and (2.67), respectively.

and R are defined by (2.65),

Wl(',l)

Then, w(-,1) =
wz('vl)

] defined by (2.68) satisfies
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-

B IX) L q(x)p(x,1) = ap(x,1) (05 x5 1)
] 1
p(0,1) = )
-h

in view of Lemma 1 (II) in Chapter 2.

» *
Therefore, since G(AQ,h,J) = { ln } and ln is a simple

nez

*
eigenvalue, we see that w(-,ln) is an eigenvector of AQ h.J
14 1

*»
associated with ln y» SO that we get
* L 2
(3.19)  w,(1,2)) + Jp (1,2 ) = 0 (n € 2)
Similarly we can get

* * *
(3.20) Yollop ) + I p (1)) =0 (n € Z)

Now, substituting (2.68) into (3.19) and (3.20), we obtain

(K + JK 1,-)

11)¢

(3.21) (K21 o | B(,1) = a (q)
22 12 ’ {LZ(O, 1)}2
(n e Z)
and
(Kpyy + 3Ky )(1,) .
(3.22) o (e n) = b (a)
(Koy + I Ky5)(1,0)

{L2(0, 1)}2
(n € Z)

Since cij(-,q) (1 <i,j £ 2) are given by (2.25) and (2.26),

the equalities (3.21) and (3.22) imply
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(3.23) Ki5(1,y) = ¢y5(v,a) (1<£i,j£2,0sys1),

by direct computations. Here we note that since 60 is
sufficiently small, Lemma 2 holds true.
Considering the problem (3.23) with (3.15) and (3.16), in view of

the uniqueness of solutions to the problem (Lemma 5), we see that
(3'24) K = (G3 ° G2 ° Gl)(Q)

Here we recall that Gl' G2 and G are defined by (2.11),

3
(2.32) and (2.42), respectively.

As is seen by direct computations, the equalities (3.17) and

(3.18) imply the following : ¢ given by
, v
fl ’x
u(x) = exp| 5 épl(s)+p2(s)-q1(s)-q2(s))ds
(3.25) A ‘ }
( . \
X
v(x) = exp % épl(S)—pZ(S)-ql(S)+q2(S))ds
\ * J
\ (0 £ x 5 1)
is the solution to
26y & | UL a] ™
. - = X +
dx v(x) v(x)

Kll(X,X)-KZZ(X,X)+K12(X,X)—K21(X,X)
Kll(x,x)—KZZ(x,x)+K21(x,x)-KlZ(x,x)
(0 £ xg1)
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and

(3.27) =

Here let us recall that A(x) is defined by (2.43).

By (3.25), we get

-
1 d 1 d
ql(x) = pl(x) T ou(x) g£X) T ov(x) Véi)
(3.28) 1
1 d 1 d
a,(x) = py(x) - Fy ulx) , 63 vix)
\
(0 g x £1)

Therefore we get
(3-29) q = (ql’ q2) = GqK .

Here G, is defined by (2.55).

The relations (3.24) and (3.29) imply that q = (ql, q2) is a
fixed point of G = Gq ° G3 ° G2 ° G1
Thus we complete the proof of Lemma 9.

3) By the final stage of the proof of Proposition 2, we see
that if 60 is sufficiently small, then G possesses a unique
fixed point (al, 32) and furthermore, the estimate

~N ~N
(3.30) " 4 - Py " CO + “ a - P, " CO £ M850
holds.
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Lemma 9 and the uniqueness of fixed points imply qI = 44

and az =4q, , SO that we obtain (1.19) for j = 0

On the other hand, the estimate (1.19) for j =1 is
trivial by 6 = = .

In a way similar to Case 1, we can prove (3.7) by using
(3.8).

Thus we complete the proof of Theorem 2.
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Appendix I. Proof of Proposition 1. In view of

Proposition O in Chapter 2, we see that for i, € o(AP h H), we
’ ’
have
1
(I.1) A, =7y + 85+ nm V-1 + O = ) (as |n| - = )

Here we set

(the principal value of the logarithm)

and
e
0y = 3 o(a(s) + p,y(s))ds

The relation (I.1) implies ln ¢ R for sufficiently large
|In| , so that we can immediately see the part (I) of

Proposition 1.

Now we proceed to a proof of the part (II) of this

proposition. Let us assume that 1_ € o(A ), and let
n P,h,H

¢1("1n) .
¢(-,2.) = be an eigenvector of A
¢2(’91n)

P.h.H associated
9, b

with ln . That is, we have

0 1| dg(x,2.)
—g— * P(x)e(x,2 ) = 2 -¢(x,2.)

1 0
(I.2) ¥ (0 £ x5 1)
$,(0,2 ) + h-¢, (0,2 ) = 0
$,(1,4) + Hep (1,4 ) = 0
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Since P 1is real-valued and h, H € R , the equalities

(I.2) are equivalent to

0 1 d¢ix,ln$

Lo = + P(x)¢2x,ln5 = 7n°¢ix,ln$

(I.2)" §

(0 £ x s 1)
$,(0,2_) + h-$,(0,2_) = 0
$,(1,2 ) + H-§ (1,2 ) =0 ,

\

which implies that ¢Z-,1n) is an eigenvector of AP h.H

’ ’

associated with An . That is, we see that ln € G(AP,h,H)

implies 7; € o(A

P,h,H)
Similarly we can show that ln € O(AP,h,H) implies

i€ o(A

n P,h,H)

Thus we complete the proof of Proposition 1.
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Appendix II. Proof of Lemma 1. First, we show the

following Lemmas II.1 and II.2, which are useful also in Appendix

III.
Let us recall that
1 0
B = and Q = { (x,y) 0 <y <x <1}
0 1
Lemma II.1. (I) For given P = ] € {C [o, 1]}4
and h € R\ {-1, 1} ,there exists a unique = U(x

= (U Y) )y g g € ct@n® satispying (II1.1) -

(II.4)
(11.1) B Yy p(x)u(x,y) = - BBV 5 (((x,y) € D)
( U,,(x,0) = hU,,(x,0)
127 11
(II.2) -
U22(x,0) = hUZl(x,O) (0 £ x5 1)

(II.3) Ulz(xsx) - UZI(X’X) =
L exp (-1, (x)-7,(x)) (a(x)+b(x)-p, (x)=p,(x)) +

exp (-7, (x)+9,(x)) (a(x)-b(x)+p, (x)-p,(x)) (0 5 x 5 1).

=i
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(I1.4) Ull(x,x) - U22(x,x) =
§ exp (= (x)=n,(x)) (a(x) +b(x)=p (x)-p,(x)) +
§ exp (=1, (x)+7,(x)) (~a(x)+b(x)-p, (x)+p, (x))
| (0 £ x g 1) .

Here and henceforth, we put

-

1 X
7,(x) = 5 O(b(S) + py(s))ds
(I1.5)
1 X
ny(x) = 5 0(a(S) + py(s))ds (0 < x s 1).

\

(II) For the solution U (U;.)

ij’ 1 <14i,j <

> 1 We have the

estimates
(11.6) | u | _ s M (| P | » h)
(@nt " {c%co, 13"
and
(II.7) U M,~( | P , h) .
LUl (ctapt o | "{clto, 13

(III) For 1 € C , let us set

fl(x,l) cosh Ax - h sinh 1ix
(II.8) f(x,l) = =
fz(x,l) sinh 1x - h cosh i1x

and
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(11.9)  S(x) = o 11F) | cosh () -sinh 7, (x)
-sinh nz(x) cosh nz(x)

(0 £ x £ 1)

¢1("l)
Then ¢(-,4) = defined by
¢2('~1)

(II.10) p(x,1) = S(x)f(x,1) + J :U(x,y)f(y,l)dy (0 g x g 1)

2

belongs to {Cl[O, 1]} and furthermore satisfies

(II.11) B Qﬁégéil + P(x)p(x,2) = 16(x,1) (0 g x 5 1)

and

1
(11.12) $(0,1) =
-h
In particular, ¢(:,1) is nothing but the function given by

(2.7).

Similarly the following facts hold :

, . . _ _
(I) There exists a unique V = V(x,y) = ( Vij(x'Y) )1 < i, 52

4

€ {Cl(ﬁ)} satisfying (II.1)' - (II.4)' :

(11.1)" B I Cpuin,y) = - V) 5 ((x,y) €7 ) .

(

V,,(x,0)

12 -thl(x,O)

(I1.2)'<

V,,5(x,0) -hVv

x,0) (0 £ x g 1)

22 21
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(I1.3)° Vlz(x,x) - V21(x,x) =
§ exp(ny (x)+n,(x)) (=a(x)+b(x)=p, (x)+p,(x)) +
T exp (g (x)=1,(x)) (=a(x)=b(x) +p, (x)+p, (x))
(0 g x 1) .
(II.4)" Vi (x,%) = Vy,(x,x) =
7 exp(ny(x)+n,(x)) (~a(x)+b(x)-p, (x)+p,(x)) +

7 exp (7 (x)=1,(x)) (a(x)+b(x)=p, (x)-p,(x))

(0 s x 1) .
(II)' The estimates
(11.6)" Y s M (| P , h)
PVl oyt # Mt TP Lcogy, 1y
and
(1I1.7)" v s M, ( P , h)
PVl crap Mot TR Teary gy
hold.
(III)' Let us set
» [ fI(x,l) ] [ cosh ix + h sinh 1x ]
(11.8)" f (x,2) = . = ’
f2(x,1) sinh i1x + h cosh 1ix
and
(x) osh 7,(x) inh 7,(x)
(1I1.9)" T(x) = eﬂl X cosh 7,(x sinh 7,(x
sinh nz(x) cosh nz(x)

(0 s xs1) .
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Then ¢*(-,l) = . defined by

*

(I1.10)' ¢ (x,1) = T(x)f (x,1) + J Wiz, et (va2)dy
0

(0 £ x g 1)

2

belongs to {Cl[O, 1]} and furthermore satisfies

(11.11)r B 9B eyt (x,1) = 297 (x,2) (0 s x5 1),
and

(I1.12)' ¢ (0,1) =

In particular, ¢*(-,1) 18 nothing but the function given by
(2.8).

Proof of Lemma II.1. The parts (I) and (III) follow
directly from the parts (I) and (II) of Lemma 1 in Chapter 2,
respectively.

On the other hand, we can show the estimate (II1.6) by means
of the inequalities for the iterative approximate solutions for
(II.1) - (II.4) derived in the course of the proof of Proposition
1 in Chapter 2. (See Appendix I to Chapter 2.) Similarly the

estimate (II.7) can be obtained and so, we omit the detail.
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Lemma II.2. For n € Z, we have

49

(11.13) | 6(-,2) = ¢(-,2) | cmy |2t - 2|
n n {Co[o’ 1]}2 11l n n
and
(I1.18) | @C ) = ¢(opy) | < My lug - gl
n n {CO[O, 1]}2 11'"n n
Here M, 1is a positive constant depending on | P |
{c’[o, 1]}

*
h, H, H , 60 , and moreover M11 remains bounded as 60 18
bounded.

Proof of Lemma I1I.2. First we prove

(I1.15) | £(-,2.) - £(-,

) Mot An - A
n “ {CO[O, 1]}2 £ 11l n nl

(n € Z)

for a positive constant Mli with a property similar to Mll‘

To this end, we have only to prove

A x A X

< M, ! |2) -2

(I1.16) RN N

(n € Z)

By the mean value theorem, we get

* »
1 x A_x ti_x + (1-t)i_x
(I1.17) e -t < 2 max e B n,
0O0sts 1
*
x |2.n- 1n|
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On the other hand, we can obtain

a

(1I1.18) i = yy + nn V=1 + nn (as |n| » = ),

where a € €C (n € Z) satisfy

(I1.19) a = sup |an| < o
nezZ

and

1 - H . .
5 log (1 = h) (L + H) (the principal value of the

logarithm) by Proposition O in Chapter 2.

* *
Furthermore, by 46, = > r1=_m(|,1n - lnl + I“n - “nl) , we note
*
(11.20) |1, - 2| s & (n € Z)
*
tlnx + (1—t)2hx
From (II.18) - (II.20), we can see e <

exp(ZlyHI + 2a + 60) (0O t, xg1), and therefore, we see
(II.16) by (II.17).

Now, by applying the estimates (II1.15) and (II.6) in
(II1.10), we reach (II.13), the conclusion.

Similarly we can prove (II.14).

Thus Lemma II.2 is proved.

Now we return to the proof of Lemma 1. Since 1_ €

U(AP,h,H)’ we have

¢2(1o1n) + H¢1(1vln) =0 (n e Z)

Therefore we get, for n € Z,
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[¢5(1,2°) + Hp, (1,20)]

|¢2(1)1n) - ¢2(1’ln) + H(¢1(1’ln) = ¢1(1”1n))|

n

16,(1,2) = @,(1,2.) ] + [H]|¢;(1,27) = ¢, (1,2)]

[

(1 + [H])] ¢(-,2) - ¢(-,2_)
[H]) n ¢ 2 (%0, 17)2

Thus Lemma II.2 implies
» * *
(I1.21) |¢2(1,1n) + Hp (1,2 )] s My, [2 - | (n € Z)

Similarly we can get

(11.22)  [¢,(1,p) + H ¢ (Lu )] < My lps = u | (0 e2z).

Noting the inequalities (2.12) and recalling that

* *
b= T (125 = agl v lup - wyl) and

n=-o

* »

*
8 =2 (In] + 1)(12, - 2| + oy - pol) , we see that the

NnN=s=—=o

inequalities (II.21) and (II.22) imply the estimates (2.13) and

(2.14), the conclusion of Lemma 1.
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Appendix III. Proof of Lemma 2.
Proof of the part (I). A theorem on perturbation of Riesz
bases by K.Bari (Gohberg and Krein [6]) is a key. That is, in

*
order to prove that {¢(-,1n)} is a Riesz basis in

nezZ
{LZ(O, 1)}2 » Wwe have to show the following two facts
(III.1) 2 | ¢(°,1n) - ¢(°,1n) I 2 2 < =
n=-—ow {L (09 1)}
* »
(I11.2) > cn¢(x,ln) =0 almost everywhere in [0, 1]
n=-—o
implies c, = 0 (n e Z)

Proof of (III.1). In view of (II.13) of Lemma II.2 in
Appendix II, we get

o 2

.,1’ - e,
L R T O I
T e — ey 1
e, - e,
< 2 et metn, (c%o0, 1)}2

- -] (- ] 2
2 * 2 2 * 2 .2
s M7, 2 n=-w|1n- Anl s M > n=—~|l -1 s MT.6

This proves (III.1).

Proof of (III.2). Let us assume that

*»
> c,¢(x,2 ) = 0 almost everywhere in [0, 1]
n=-c
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Then we have

oo [~ -]

(I11.3) =3  cua(xa) =3 c (#(x,2,) - ¢(x,2_))

n=s—o n==—-cw

almost everywhere in [0, 1]

On the other hand, since ({ ¢(o,1n) } is a Riesz basis in

nezZ

2

{LZ(O, 1)} by Proposition O in Chapter 2, there exists some

positive constant M12 such that

II1.4 M ) (x,2
( ) 12“ 2 n:-mcn(p X n) “ {LZ(O, 1)}2

. 1/2
2 [ 2 Icnl2 ]

Applying (III.4) in (III.3), we have

-1 = 2 1/2 -
wit {3 e, | s |3 R SASEEN "{LZ(O, 112

IS ey (8(+,20) = ¢(-,2)) |

n=-e

{L%(0, 1)}?

'71‘) - '91 )
s 3 n=_“lcnlll o0 ¢+, “{co[o, 17)2
s M, §n=_m|cn]|a; -1 (by (II.13))
oo 1/2 had » 1/2
s Mu[ T lel ] [zn=_|zn - 2,12

Therefore if 60 is so small that M11M126O < 1 , then we
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= 0 , which implies (III.2).

Nn=-—oo

see ( > Icnl

Proof of Part (II). We divide the proof into the following

five steps.

1) In this step, we prove

Lemma III.1. Let us set

(III.5) »

CA), 6 (-, TIC zZ).
L= Celea), o (+,71) (20.1))2 (n € 2)

Then we have

n
s
[
o)

(II1.6) »p

and
(I11.7)  [p,l = Mg
for some positive constant M13

Proof of Lemma III.1. First we note that ¢(-,ln) and

.
¢ (-,—ln) are given by (II.10) and (II.10)', respectively.

In (II.10), by integration by parts, we can get

X
(III.8) J O(Uil(X.y)fl(y,ln) + U (x,y)f5(y,4,))dy

1 [ % Ay
= z O( (1 - h)(Uil(X,Y) + Uiz(x,Y))e
_lny
+ (1 + h)(Uil(x’y) - Uiz(x1Y))e )dy
- }1—; alt) (x) (i=1, 2, nez)
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Here and henceforth we set

(II1.9) déi)(x)

lnx
(1 = h)(Uil(x’x) + Uiz(x,x))e =

N

' —lnx
(1 + h)(Uil(x’x) - UiZ(X,X))e =

(1-h) (U} (x,0)+U; 5 (x,0)) + (1+h) (U, (x,0)-U,,(x,0))

X au. ., (x,y) aU. ,(x,y) -1y
1 2
+ J O e - —5 e T -
UL, (x,y) AU, (x,y) Ay
(1-n) ( o+ —22"" )e™™ Hay

Similarly we can get

X » R » —_
(III°1O) f O(vil(x9Y)f1(Y9‘1n) + Viz(x7Y)f2(yy-1n))dy

= 1 )iy (i=1, 2, n e z) ,

where

(III.11) eéi)(x)

N

Tx
[(1 = h)(vil(x’x) = Viz(x,x))e =

-an
(1 + h)(vil(xax) + Viz(x,x))e =

(1-h)(Vi1(x,O)-V12(x,O)) + (1+h)(vil(x’o)+viz(x’o))

X v, . (x,y) V., (x,y) -1y

1 2 :
+ J S () —S5e— + —57 e "
- (1-n)( v, (x,y) ) V. 5(x,y) )elny \dy

oy oy
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Substituting (III.8) and (III.10) into (II.10) and (II.10)',

respectively, we have

1 B I R—
(III.12) J ; t¢(x,ln)¢ (x,=7)dx

where

(I11.13) Cl,n(x)

-7, (x) )
= e (£ (02, )cosh ny(x)-£,(x, 2 ) sinh 7,(x))el ) (x)

=71 (%) . RET
e (—fl(x,ln)31nh nz(x)+f2(x,ln)cosh nz(x))en (x)

+

ﬂl(x) » » (1)
e (fl(x,-ln)cosh nz(x)+f2(x,-ln)sinh 172(x))dn (x)

+

ﬂl(X) » . » (2)
e (fl(x,-ln)81nh nz(x)+f2(x,-ln)cosh qz(x))dn (x)

+

(0 £ x g 1)

and

(III.14) ¢, ,(x) = dél)(x)eélj(X) + déz)(X) (2) (x)

e X
n

On the other hand, in view of the asymptotic behavior of ln

(Proposition 0 in Chapter 2), we have
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(III.15 £(-,1_) < w 4
) sup H n "{CO[O,IJ}Z an
f ( ) < oo
nez | | {c%r0,173%

Therefore, by means of the estimates (II.6), (II.7), (II.6)' and

(II1.7)' in Lemma II.1, and the asymptotic behavior of 1_ , we

n

see

sup | alt () | <=

nez c[0,1]

sup " e(i)(o 0 < o (l = 1, 2) ’

nez c’[0,1]
that is,
(II1.16) sup | c, _(-) | < e (1 =1, 2)

nez 1,0 CO[O,l] ,

Again, in view of the asymptotic behavior of ln , we have

(III.17) %— = O % ) (as |n| - =)
n

Applying (III.16) and (III.17) in (III.12), we reach

. Co(x,1 )¢ (-, T Jax = 1 - b2+ o( 2 )

which proves (III.6).

Next we proceed to a proof of (III.7). To this end, we note
* PR
(III1.18) (p(-42.) ¢ (+,=2.)) # 0 (n € Z)
In fact, assume that

(I1II.19) (¢(-,1n0), ¢ («,-lno)) =0 for some n, € YA
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Then, by means of the definition (II.10) and (II.10)' of ¢(-,1)

» — »
and ¢ (-,42) , and ln € O(AP,h,H)’ 1“0 € U(AP,h,H) , we see

In(#(-a3g)s 97 (7T )

(AP,h,H¢("1m)’ ¢ (',—lno)) = (¢(.’1m)’ Ap,h,H¢ (‘,:I;;))

(¢('11m)v 7;; ¢ (”-ln )) ’

o)

so that we get

(II1.20) ($(-,4_), ¢’(-,1156)) = 0

for each m # ny - Combining (III.19) with (III.20), we have

(I11.21) (¢(+42_ ), ¢ (+,=2_)) =0

for each m € Z.
. . . . s 2 2
Since { ¢(~,1m) } mez s a Riesz basis in {L“(0,1)}° , the

equalities (III.21) (m e Z) imply ¢*(~,—1

) = 0, which is a
"o

contradiction.

Thus we see (III.18).

We return to the proof of (III.7). The asymptotic behavior

(II1.6) and |h| # 1 imply that

(I11.22) Ipnl : M, >0

13

for each |[n]| 2 No » where N, is sufficiently large.

Since ié = min Ipnl >0 by (II1.18), we have only to set
|n|<NO

M13 = min { Mi3 , Mié }

This completes the proof of Lemma III.1.
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2) In this step, we show

Lemma III.2. For n € Z, we have

(I11.23) | o(-,2_ ) | s M
(III.24) (e 20) = 6(,1) M., A - 2

I ¢ n ¢ ) | {CO[O,1]}2 = 14‘ n nl
(II1.25) | ¢(-,4.) = ¢(-,4 )

| n ¢ n) | (clro.17}2

»*
= M14(|n| + 1)|1n - lnl

(III.26) "(ea-20) M
e o) 1iopo,1py2 * Mt

and

(I1I.27) *(e,-1.) M., (|n| + 1)
" ¢ n "{Cl[O,I]}Z < 14 ‘nl

Proof of (III.23). First we recall (I1.10). Then we
immediately get

('91 )
Lotn) | (c®r0,11}2

s 1RD o w0 £C,a) |
0@yt n® by

< 2(] s |
{c%ro,173" (c

c®r0,17)2
(n € Z), and therefore

(111.28) Jo(-,2)l s My l£(-,2)] , (n e 2),

{10,132 (c°r0,11}
in view of the definition (II.9) of S(x) and the estimate

(I1.6). Combining (III.28) with (III.15), we obtain (III.23).
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Proof of (III.24) and (III.25). The inequality (III.24) has
been proved in Lemma II.Z2.

Since ¢(-,1) satisfies the differential equations in (2.7),

we See
]
(8, (x,20) = 5 (x,2))
dx*'"1'" ' n 17" n
= -pl(X)(¢1(x,1;)-¢1(x,ln))-pz(X)(¢2(x,l;)-¢2(x,ln))
2 (8,(%,40)=6,(x,2.)) + (27 = 1 )¢, (x,1_)
(III.29)«

(B (x,20) = p,y(x,2))

—a(x) (¢ (6, 20) =9, (3,4,) )b (x) (4, (%, 17) =4, (x,1_))

+

Ao (9 (6,200 =p, (x,2)) + (A1 = 2 )¢, (x,1)

\ (n € Z)

»
Furthermore ln (n € Z) have the forms

a

1 * n
(II ’30) ln - ﬁn + nn -1 + —n-— ,
where
" sup |a_|
sup |a < =
nezZ n
»
(III.31)5 ﬂn =y * ln - i
sup B | s yy + & ,
L nez n H 0

as is seen by the asymptotic behavior of (II.18) of ln and

(I1.20).

Applying (III.23), (III.24) and (III.30) at the right hand side

of (III.29), we get
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g- ¢l('yl
¢2("l

) - ¢1(°71n)
dx

g %3 %

) - ¢2(‘,2n) {CO[O,1]}2

*
s My, (In| + 1)[2 - 2| (n ez,

from which we see (III.25).

Proof of (III.26) and (III.27). We can prove (III.26) by a
way analogous with the one in the proof of (III1.23), noting
(1II.10)" and (II.6)'.

*
Next we proceed to a proof of (III.27). Since ¢ (x,—ln)
satisfies (II1.11)', the equalities
(.
d¢1(X,-ln)
dx

b(x)6; (%, )+D,(x) ¢, (x,=1_)=1_¢5(x,-1_)

.

(II1.32)<

»
d¢2(X,-1n)
dx

a(x)y (x,=1_)+p; (), (x,=1_)=2_¢5(x,~1)

(n € Z)

hold. In (III.32), we apply (III.26) and the asymptotic behavior

(I1.18) of ln , SO that we have

¢.('9°1 )
%; ¢i( zn) < M14(|n| + 1) .
22’ 'n {c®10,17}2

This completes the proof of (III.27), and so, Lemma III.2 is

proved.
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3) We set

(I1I1.33) 2Z(x,y) (Z

ij(x’y))l <i,js2

o ¢(X’1;) = ¢(X9ln)

n=-co Pn

= 2

t *
* ¢ (yy-ln)
2
( (x,y) € [0, 1]7 )
Then Z(x,y) is well-defined and has the following properties :

(III.34) z(-,-) e {c}([0,11%)}"

(I111.35) 2Z(x,y) : real-valued.
. 1
(II1.36) ¢(x,2 ) = ¢(x,2,) + J o Z(x,y)¢(y,2,)dy

(neZ, 0gx 5 1)

The purpose of this step is to verify (III.34), (III.35) and
(I11.36).

First by (III.7) of Lemma III.1, we see that

s LI

(III.37)
M3

i
pn

Verification of (III.34). From (III.25), (III.27) and
(III.37), we have

(6(-022) = 6(-,2)) % (+,-1)
pn

(ct(ro,11%)1*
* t *

(¢i(x’1n) - ¢i(x’ln)) ¢i(Y9'1n)

Py ’

= max max
1gi,jsg2
O;x,ygl

»
¢i(x’ln) = ¢i(x’ln)
pn

&1°

max
1<i,js2
Ogx,ysl

t »
¢ ¢j(Yy-ln) ’
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* *
¢, (x,1.) - ¢.(x,4) d %p.(y,-2
max i n i n J n)

1gi,js2 Py dy
Ogx,ygl

2

£ Mgy MI% (In| + 1)|1; -1 (n € Z)

al

»
Thus the relation 3 (In| + 1)|,1n -1

Nn==o

< o m
nl €8 eans

that the majorant series for the right hand side of (III.33) is

convergent. This proves (III.34)

Verification of (III.35). We prepare Lemma III.3, which is
useful later.

Lemma III.3. The equalities

(I1I1.38) ¢(x,2) = ¢(x,2)

and

(II1.39) ¢ (x,2) = ¢ (x,7)

hold for 1 € C .
Proof of Lemma III.3. Let us recall (II.11) and (II.12).

That is, ¢(x,2) satisfies
B QﬂégLil + P(x)p(x,1) = Ag(x,1) (05 x5 1)

$(0,1) = [ Eh]

Since P(x) 1is real-valued and h € R , we have
f
B 9§§§I![ + P(X)F(X,7) = 1 (=, T) (0 < x s 1)

(III.40)<
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On the other hand, by the definition, also ¢(x,2)
satisfies (III.40). Therefore the uniqueness of solutions to the
initial value problem (III.40) means (III.38).

Similarly we can prove (III.39).

Now we return to the verification of (III.35). By Lemma

IITI.3, we have

¢("A

*
n

(ITI.41) ¢(-,1;) ) (nzN, + 1) ,

1

(III-QZ) ¢ "ln ¢('v7;) (n 2 Nl + 1) ’

and

(III.43) ¢ (+,-2) =¢ (-,712)  (n 2 N, + 1)

1

Since ln = l-n and ln = l-n (n 2 N1 + 1) by the assumptions

(1.14.2) and (1.20.2), the equalities (III.41) - (III.43) imply

(III.41)" ¢(-,2)) =@(-,4.) (nzN +1),
(I1I.42)" ¢Z-,1n§ = ¢(-,1_n) (n 2 N, + 1) ,

and

(ITT.43)" ¢ (+,=a) =¢ (-,=1_) (nz N, +1),

* —_—
respectively. Further since Py = ( ¢(-,1n), ) (-,-An) ) , we

see by (III.42)' and (III.43)' that

(ITI.44) Z; =p (n 2 N, + 1)

-n 1

On the other hand, it follows from (1.14.1) and (1.20.1)
»* »
that ¢(x,1n), ¢(x,1n) and ¢ (x,-xn) (-N1 £ng Nl) are
real-valued, and, again by zn € R (-N1 £ng Nl)’ we see that
P, € R (-N1 £ng Nl)’
Since the series at the right hand side of (III.33) is
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absolutely convergent as is seen in the course of the

verification of (III.34), we have

» »
N (p(x,2_) - ¢(x,1)) %o (v,-2
Z(X,Y) = 2 1 n p n ¢ (y n)
n=-N1 n
N vl* = ,l ty" ,-l
. 1im S (¢(x ‘n) $(x,2.)) "¢ (v,-2,)
N-oo n=N1+1 Pn

(6(x,27) = #(x,2.)) %" (v,-1_)

p

+

n
( by (III.41)' - (III.43)' and (III.44) ),

from which we can verify (II1.35), noting also that the

(p(x,22) = ¢(x,2)) % (v,-1_)

P are real-valued for

functions
n
-N1 £ n g N1

Verification of (III.36). We have

1
J OZ(x,y)¢(y,1n)dy

= (p(x,20) - $lx,1))

m==-c P

1, o
o ¢ (v,-2)e(y,2 )dy

(because the right hand side of (III.33) is
uniformly convergent in {Cl([O,l]Z)}4 )

= (p(x,2)) - ¢<x,zn)>[ >

Ly
J o (v,-2)¢(y,2)dy | (n e 2).
n

0

Here we use the equalities

1
to" (v,-1 A )dy = 1), b (x,TT
I L P Wma)e(yaady = (0g), ¢TI ) 20112

=0 (n # m)

which are nothing but (III.20).

Noting (III.5), we obtain
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1 .
(111-45) J Oz(x’y)¢(y'9zn)dy = ¢(X92~n) - ¢(X7Zn)
(nez, 0gxx1)

This proves (III.36).

4) Let us define an operator F from {CO[O,1]}2 into

itself by
1

(III.46) (Fu)(x) = J 2y, x)uly)dy (0 s x 5 1)
0

Henceforth, <(X) denotes the set of bounded linear operators
defined on a Banach space X to itself.
The purpose of this step is to show that (1 + P‘)-1 €

2({C1[O,1]}2) . To this end, we prove the facts
(I1I.47) F 1is a compact operator in {Cl[o,l]}2

(II1.48) -1 1is not an eigenvalue of F

Verification of (III.47). Let us consider any sequence

{un} ns1 © {Cl[O,l]}2 such that

(III.49) | u < M

o ! el M

Then we have to prove that {Fun} contains a subsequence

nx1
convergent in {01[0,1]}2 . To this end, by the Ascoli - Arzela

theorem, it is sufficient to verify
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(II1.50) | Fu_ | s M! (n 2 1)
1
n 7 gclro, 118 1
and
d(Fun)(x)
(III1.51) — i is equi-continuous in n , that is,

d(Fun)(x) d(Fun)(x')
dx - dx

lim sup
e-»0 nz21
|x-x"|<e

By %z e (c1([0,1]%)}" , we immediately see (III.50).
As for (III.51), we have

d(Fun)(x) d(Fun)(x') ) J 1 atZ(y,x) atZ(

ax Ix v221) )y (y)dy ,

(
0 X dx

and so

d(Fu_).(x) d(Fu_).(x'
(III.52) max n 1 -

i=1,2 dx dx
t t '
< 2  max 07Z;5(y,x) 37Z;4(y,x
1<i,jg2 9x ox
0cgyzs1
(n=z21),
(Fun)1
where we set Fun =
(Fun)2
at2(y,x t
Since 3% L is uniformly continuous in x by Z €

(c1(10,13%)1* , the left hand side of (III.52) tends to O
uniformly in n as |x - x'| - 0O

This proves (III1.51) and therefore (III.47) is verified.
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Verification of (III.48). Let us define an operator E

from {LZ(O,l)}2 into itself by

1
(III.53) (Eu)(x) = J o Z(x,y)u(y)dy

Obviously E € 2({L?(0,1)}%) . Regarding F defined by (III.46)
*
as an operator on {L2(0,1)}2 , we can easily see that E = F ,

*
where E is the adjoint of E e 2({L2(O,1)}2) . Therefore we

have o(E) = o(F) . Thus it is sufficient to show that

(ITII.54) u + Eu = 0 implies u =0 |,

in order to verify (III.48).

. ' . . . 2 2
Since { ¢(-,ln) } nez 1S a Riesz basis in {L=(0,1)}
(Proposition O in Chapter 2), we get

(III.55) u =3 c d(-,4,)

Nn==oo
for some c, € €C (n e€ Z) . Here the series in (III1.55) is

convergent in {LZ(O,l)}2 . Therefore we have

(1+Eju=3 ¢ (1+E)p(-,2)

Nn==o

(III.56) O

(by the boundedness of 1 + E )

2 cn¢(-,1;) (by (III.36) ).

Nn=-—oo

Since as is proved in the part (I) of this lemma,

{¢(+,27)} __, is also a Riesz basis in {L%(0,1)}?

, 1t follows
from (III1.56) that c, =0 (n € Z) , which imply u = 0 by
(I11.55).

This proves (III.54).
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Now by the Riesz-Schauder theorem (Yosida [58, p.283], for
instance), these facts (III.47) and (III.48) imply

(111.57) (1 + F)"' e 2({cl[0,11}%)
Similarly we can prove that

(II1.57)' (1 + F)™ e 2({c%[0,11}?)

5) Let us set

(r11.58) i) = Lo (1« m)Tl7( T (n e 2).
prl
Then we can verify that wgl) satisfies (2.15) - (2.19).

Verification of (2.15) and (2.17). In view of the estimates
(I11.26) and (III.27) in Lemma III.2 and (III.7), (III.57),
(I11.57)', we.immediately see (2.15) and (2.17). _

Verification of (2.16). Let us consider {C1[0,1]}2 as a
real Banach space of all real-valued Cl-functions. Then, by
(II1.35), we can regard F as an operator from the real Banach
space {Cl[O,l]}2 to itself. Therefore (1 + F)'lu is
real-valued for real-valued u € {01[0,1]}2 . In particular,

* ———
since p_ € R and ¢ (x,-ln) € RZ

(1)

n

(-N1 £n g Nl' 0 gxs 1),

also wp is real-valued for -N1 £ng N1

» 1 » PR,
o7 (- TID) + =" (-, 7T
n Pon

is real-valued for n 2 N1 + 1 in virtue of (III.43)' and

On the other hand, since

b'lb—n

(III.44), we see that wél) + wfé) = (1 + 1")-1 fé: ¢*(°,:7;) +

Pn

1

p-—n

-n

¢’(°, ) (n 2 N

1t 1) is also real-valued and so,

we get (2.16).
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Verification of (2.18). Since we can easily see that
*»

F =E , we get
(111.59) ((1 + H™H" = (1 4+ )7L,
(Kato [23, p.169], for example). Now we have

* 1
(p(+,20), vit))

{L%(0,1)}2
= (p(-,20), == (1 + F)"3"(-,71) )
pm
- ey, 6T ) by (11159) )
= %;(¢(-,zn>, ¢ (+,71)) (by (III.53) and (III.36) ).

Therefore, since p_ = (¢(o,ln), ¢.(-,:7;)) ( (11I.5) ), in

order to verify (2.18), we have only to prove
(II1.60) (¢(-,2.), ¢ (+,717)) =0  (n #m) .

As is seen by the definition (2.7), (2.8) and A, e o(AP h H)’

*

lm € O(AP,h,H)’ we have

Ap nopt(ahy) = A(,2)
Ap nopt (07T0) = To" (4,710
Thus we get

10000 0) 0 9 (LTI = (Ap p we(,20), @ (+,7T0)
= (#(-22y)s Ap o (1 TT)) = 4,(6(+,2.), ¢ (+,7T)) ,  that is,
(2, - 2.)(p(-,2), ¢°(+,717)) =0 . Since n #m implies 1_ -

1m # 0, we obtain (III.60).
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*
Verification of (2.19). Since { ¢(-,1n) } nez

is a Riesz
basis in {LZ(O,l)}2 from the part (I) of Lemma 2, the

biorthogonality (2.18) implies that { wél) } is also a

nezZ
Riesz basis in {L2(0,1)}2 (Gohberg and Krein [6, p.310]).
Therefore, for each u € {LZ(O,I)}Z, we have
(III.61) u =3  c pl1)
m’m

m==-o
for appropriate Cp € €C (m e Z) . Here the series at the right
hand side of (II1.61) is convergent in {LZ(O,l)}2

Then we get

-]

2 cm( wél)’ ¢('91;) )

(u, ¢(+,2))

mn==o

=3 e 8 (by (2.18) )
m=-o

= cn

This proves (2.19).
For the results (I)' and (II)' of Lemma 2, we can proceed
similarly.

Thus we complete the proof of Lemma 2.
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Appendix IV. Proof of Lemma 3. First we have

1
(H + 1)exp[ J O(qz(s) - py(s))ds +1=-H=#O0

in view of the inequalities (2.12). Consequently we see that
H* €e R . Moreover, since |H| # 1, we can show by direct
computations that |J| # 1 . Thus we prove (2.22).

Similarly we can prove (2.23).

Moreover we have

*

J =-J

(

-1
1
= 4.1 (H + 1)exp( [ O(qz(s) - p,y(s))ds ] +1-H ]

\

. (1 Ot
(H + 1)exp J O(qZ(S) - pz(s))ds ] + 1 -H J

\ \

. 1
(H - H )exp[ O(QZ(S) - py(s))ds ]

J
*
£ 0 (by H#H ),

which is (2.24).

Thus we complete the proof of Lemma 3.
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Appendix V. Proof of Lemma 4. (I) Proof of (2.27) -
(2.30). We have

I a (v () - b (@9l () |

{c%r0,11}2

(la (@) + [b_(a)])-max { Jp{!)| . 1wl )
< Ueg(@ b dvgt@Demax Ul o qy2n e copg 4)2

s My(lag(@)] + b (a)])

by (2.17) and (2.17)' in Lemma 2.

Therefore we get, for 0 gy s 1 ,

(V.1) S la (@) - b (@l (y) |
n—-oo
< M En__w'an(Q)' b)) s MMag

by (2.13) in Lemma 1.

On the other hand, since the equality

1

*

-7
( 1
(H + 1)exp{ J O(qZ(S) - p2(s))ds ] +1-H ]

. 1 .
(H + 1)exp[ J O(qz(s) - py(s))ds J +1-H ]
\

1
1
. - - d . 5
eXP[ J o(qZ(S) p,(s))ds ] ——

J
1
I
\
(

holds, we have

1
»
J-J

(v.2)

s et 1-n]) (1 +1] @M 10 e

= Mg ’
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noting that | a5 - Py I s M.

c%ro,1]
Combining (V.1) with (V.2), we see that the inequalities (2.29)

hold for €11 and Cip -+ Similarly we can show (2.29) for Csq
and Css
In a manner analogous with the one in (V.1), we get
= (1) 2)
(v.3) 13 (ag@piP ) -b @i 1 2
n=-—eo {C [091]}
s M2M36 ’
in virtue of (2.17), (2.17)' and (2.14).
The inequalities (V.2) and (V.3) imply (2.28) and (2.30) for cqq

and Ci1o - As to Coq and c22 , We can proceed similarly.

Next we have to prove (2.27). From (V.1), we see that the
series at the right hand sides of (2.25) and (2.26) are
absolutely convergent.

Therefore we can rewrite (2.25) as

cq4q(y,a) Ny
(V.4) 1 - 153 eg@v P n-b (0wl (v))
c12(y9Q) J-J n=‘N1
N 1
+ 25 lin 3 (an(q)wil)(y)+a_n(q)w£i (¥))
J-J N - = n=N1+1
- (o (@ )o@ (y) )
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Applying (III.41)' in the definition (2.9) of an(q) , we have

(V.5) a (q) = a__(q) (n 2 Ny + 1)

Similarly we can get

(V.5)" b (q) = b__(q) (n 2N, +1)
and moreover

(v.6) an(q), bn(q) € R (-N1 £n g Nl)

Using (V.5), (V.5)', (V.6) and (2.16), (2.16)' of Lemma 2, we
conclude that €11 and ¢y, are real-valued functions.

As for Coq and Cy5 » We can proceed similarly, so that we
complete the proof of (2.27).

Thus the part (I) of Lemma 4 is proved.
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(II) Proof of (2.31). By (2.25), (2.26) and (2.9), (2.10),
(Ir.21), (1r.zz), (v.2), in order to prove (2.31), we have only

to show that

1
(v.7) 2exp( & J O<q§1)<s)-p2(s)+q§1)( )-p,(s))ds )
-1
x [(H + 1)exp( J (aft(s) - py(s))as ) + 1 - H ]
— 2exp( % J (q(z)(S)-pZ(S)+q§2)—p1(s))ds )
-1
x [(H + 1)exp( J (qéz)(s) - pz(s))ds ) + 1 - H ]
(1) _ (2)
M -
< 17" q q “ {CO[O,1]}2
(V-8) L » - 1 * l
| @'ty - 57 ') 3(a'?)) - 5% (%))
(1) _ (2)
M -
£ 17" q q " {CO[O,1]}2
(V.9) 13(a)) - 3@y, 197 - 57 @3
(1) _ (2)
= M17“ q q “ {00[0,1]}2
(v.10) 3@, 13 (@] < uy,
for each q(l), q(z), q € dM ’

. *
and the equality (V.7)' which is obtained by replacing H by H
in (V.7).

Proof of (V.7). We have
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[the left hand side of (V.7)]

-1
< [(H + 1)exp( J o( (1)(5) - pz(s))ds ) + 1 -H ]

(

x |(H + 1)exp( J o(q(z)(s) - pZ(s))ds ) + 1 - H ]

\

-1

(

x | 2(8 + 1)exp(3 J (a$M (s)+af?) (s)-p, (s)-3p,(s))as)

\

1
x {exp(§JO<q§1’( )+al?) (s))as) - exp<2J0< (2 (s)+aft) (s))as)}

1
+ 2(1 - Hlexp(- 3 J ,(P1(s)+py(5))ds)

1
x {exp(%Jo(q§1)(s)+q§1’<s)>ds)-exp<zj (q(2)<s)+q§2)<s))ds>}] I

-2
< mp?( 2t lexp(2Melpy ] ot lpyl o) + 2] 1-Hlexp(welpy] o+lp,l o) )

1 o1 (2)
| q q | (%00.17}2

by (2.12) and the mean value theorem for e%

This shows (V.7). Similarly we can prove (V.7)'.

Proof of (V.8). By (2.20) and (2.21), we have

1 1
@'Yy - 3Tty 3(qt?)y - 372 l

1
4|H - H |

1
x [exp(JOQ£ )(S)dS) exp(Jo (2)(s)d3)]
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(H+1)(H +1)exp(-JOp2(s)ds)



. 1
+ (H-1)(H -l)exp(JopZ(s)ds)

1 1
X [exp(-Joqél)(S)dS)-exp(-Joqéz)(S)dS)]

-1 + Y, . (1) _ ,(2)
e [ Taen ) jexo(2lpyl g lalt) - af | o

*
+ | (H-1)(H -1)lexp(2Hp2Hc0+M)Hq§1) - qéz)ﬂco ) ,
by the mean value theorem.
This shows (V.8).

Proof of (V.9). We have

13(a{1)) - 3(qf?)]

-1

e
(H + 1)exp( O(q2 (s) - py(s))ds ) + 1 - H

~ 1 (2) “1
x | (H + 1)exp( O(q2 (s) - py(s))ds ) + 1 - H
J
2 * ey t(2)
x 2|(1-H")exp(- Opz(s)ds) exp( 22 (s)ds)-exp( 032 (s)ds)
s zm;2|1—H2|xexp(znp2nco+m>nqgl) - q§2>uco :

by (2.12) and the mean value theorem.

* (1) * (2) L e
As for |J (q ) = J (q )| , we can similarly carry out a
proof.

This completes the proof of (V.9).

Proof of (V.10). By using (2.12) in the definition (2.20)

of J(q) , we get

1
1 (H + 1)eXP(JO(q2(s) - py(s))ds) + 1 - H

|3(a)| s My
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< MIl(lH + 1|eM + |1 - H|) ’

which implies (V.10) for |J(q)|

*
As for |J (q)| , we can proceed similarly.

Thus we complete the proof of Lemma 4.
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Appendix V1. Proof of Lemma 5. let us set

(Vi.1) Q { (x,y) 31 - x <y < x, <x <1}
1

(ST

and

(VI-Z) QZ Q \ Ql \ { (x,y) ’ 1 -x= N }

As in Appendix I to Chapter 2, putting

-

Ll(x,Y) Ll(xvy9qlqu9D) = Klz(x’Y) - K21(x7y)

Lz(x,y) = Lz(x9Y9ql’q2yD) Kll(x’y) = K22(X’y)

(VI.3)

+

Ly(x,y) = L3(%,¥,4;,9,,D) = Ky, (%,y) + K;5(x,y)

+

Lq(x’y) Lq(x’yoql’qZ’D) = Klz(x,y) KZI(X’Y)

( (x,y) e @),

we can rewritel(2.36) - (2.38), so that we obtain (VI.4) -

(VI.T7)

aL,(x,y) 3L (x,y)
ax T oy = £y, 5 Lo, L Ly)
(VI.4) J
aL,(x,y)  aL,(x,y)
X = oy = fz(x9y,L1’L2’L3’Lq)
\
. ( (x,y) e2) ,
dLg(x,y)  dLy(x,y)
ax + ay = fB(X’y’Ll’LZ’L3’L4)
(VI.5)
aLu(X9Y) aLu(x,y)
L X + oy = fq(x9y,L1’L29L3vL4)
( (x,y) e2) ,
Ll(X,O) = -kL3(X,O) - qu(x,O)
(VI.6) {
LZ(X’O) = £L3(x,0) + qu(x,O) (0 s x 1) ,
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and

(VI.7)

Li(

1,y) = r;(v,D)

where we set (VI.8) - (VI.11) :

(VI.8)

(VI.9) A

(1L sis<sb4,0scsys<1),

fi(x’y’Ll’LZ’L3’L4) = fi(x7y)L1’L2’L3’Lq?ql)qz)

323(X’Y)

(x,y)Lj(x,y)

= a,,(x,y,9,,95)

a;,(%,¥,94,95)
a;3(x,v,9,,95)
a;(x,¥,91,95)
a5, (x,y,q1,95)
a5,5(x,v,49,,95)
ay3(x,y,44,49;)
ary(x,y,a;,4a5)
ag; (%,¥,9;,05)
a3,(%,¥,44,9;)
ag3(x,y,9:,95)
agy(x,¥,94,45)
ayq(x,¥,44,95)
ay,(x,y,41,95)
ay3(x,¥,9,,4;)

aqq(x9y’q19Q2)
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( (x,y) € 2) .

_%(b(y)+pl(y)+b(x)+ql(X))
-%(a(y)+p2(y)-a(x)-q2(x))
~3(a(y)-p,(y)-a(x)+a,(x))
-%(—b(y)+pl(y)-b(x)+q1(x))
a;,(x,v,4;,9,)
a;4(x,v,49;,a,)
%(-b(y)+pl(y)+b(X)'q1(x))
-%(-a(y)+p2(y)-a(X)*q2(x))
-a5, (%,¥,47,9,)
a;y(x,v,9;,95)

2(b(y)+p, (y)-b(x)-q, (x))
-a,5(%,v,44,9,)
ay3(%,¥,44,4;)
~ay3(x,y,44,49;)
-a;5(x,v,9;,9,)

a33(x,¥,47,q;)



-2h
SRR
(VI.10) -
2
1 +h
{ =
\ 1 - n?
~
ri(y) = rl(ny) = dlZ(Y) = d21(y)
rz(Y) = rz(y’D) = dll(y) = d22(y)
(VI.11) <
ryy) = r3(y,D) = dy (y) + dyy(y)
rq(Y) = rq(Y9D) = dlz(Y) + d21(y) (O £y < 1)

\

We will prove Lemma 5 in each of @, and @ In Q

1 2 1
our problem (VI.4), (VI.5) and (VI.7) is a standard Cauchy
problem and, as for the unique existence of solutions, we can
refer to Petrovsky [40, pp.67 - 73] and Nagumo [36], for
instance. ‘However, in this lemma, we have to prove the estimates
for solution , and so we will review the argument used in [40],

for completeness.

Proof of Lemma 5 in ﬁ; . First we prepare

Lemma VI.1. Let f(x,y) and Qﬁi%§Xl be continuous

functions on ﬁ; and satisfy

p
|£(x,y)| s g(x)

(VI.12) S
| 2Efxs) | s a0 ( (x,y) € B0 )

ay
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for some g, h € CO[ %, 1] . Then, for each a € Cl[O, 1], there

exists a unique solution u € Cl(ﬁz) to each of

.

qulxay) - WGV op(xy)  ( (xy) € 77 )
(VI.13) < |

u(l,y) = a(y) (0 sy s 1)
and

.

quley) .- BV £,y)  ( (xyy) € B )
(VI.13)"'4

u(l,y) = a(y) (0 gy < 1)

.

Moreover the solution to each of (VI.13) and (VI.13)' satisfies

1
(VI.14)  Ju(x,y)] s | a “co + J g(s)ds, ( (x,y) €2, )
X

and
1
(VI.15) I 32%3431 I s | a "Cl + J . h(s)ds, ( (x,y) € 2, ).

Proof of Lemma VI.1. Since the solutions u to (VI.13) and

and v to (VI.13)' are represented in the forms

X
u(x,y) = a(x+y-1) + J 1f‘(s,-s+x+y)ds ( (x,y) € 2,)
and
x —
v(x,y) = a(l-x+y) + J 1f‘(S.s-X+y)ds ( (x,y) e ),

respectively, we can immediately see this lemma.

In 5; » as is proved below, the solution L, (1 g1 )
to (VIi.4), (VI.5) and (VI.7) is given as the limits of uniformly

convergent sequences Lin) (1 £1isg 4, nz2 0) defined
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inductively by (VI.16) and (VI.17)

L{%) (x, (x,y) € 27 )

(VI.16) i y) = 0 (1 <1< 4,

(VI.17) Lﬁn) (1 i< 4) is the solution to

aL{™ (x,y) aL{™ (x,y)
ax * 6i ay
- (n-1) ;(n-1) . (n-1) ,(n-1) =—
= £ (x,y,Lg L5 »L3 'Ly ) ((xy) e Q)
L™ (1,y) = . (v) (0xys1)
i i
Here and henceforth we set
-1, if i =1 or 2
(VI.18) éi =
1, if i =3 or 4.
Obviously the sequences { L§n) } ns0 Cl(ﬁz) (1 £41i<4) are

well-defined in view of Lemma VI.1. Furthermore for 1 < i < 4,

we can see the estimates

(n+1) (n) M?S(l-x)n
(VI.19) L; (x,y) - L; (x,y)l < o7 ‘Mg (n20)
™y aMey|  wlg-o®
(VI.20) 3y - 3y £ 7 'MZO (n 2 0),
where we set
( 5 (ay] Py
M., = max (la. . o+ )
18 7 ygigh < g=1 @ 1 c%(a;) wollc®@
(VI.21) ¥ M,, = max | r;
19 ygigh c®ro,17
M,, = max | r;
\ 20 1gigh Cl[O,l]
dq
Here we see that M is independent of 1 and
18 dx CO
fo,1]
94 b £ the f (VI.9) of a
I CO[O ' y means o e forms . ij
(1 £1,j < 4). That is, for (qq, q,) € o, , we have
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(VI.22) M,q = M,o(M, | P |
18 = "18 (ctro,1y"

For n = 0, we immediately see (VI.19) and (VI.20). Assume

that (VI.19) and (VI.20) hold true for n = m . Then since

(m+2) (m+1) (m+2) (m+1)
a(Li - L. )(X7y) a(L- - L; )(va)
(VI.23) — 1 + 8 1 75 1
4 (m+1) (m)
=3 13 (%) (L] (x,y) - Li™(x,y))
j=1 J

(1 <1isb, (x,y) €8 )
and
(L§m+2) - L§m+1))(1,y) =0 (1 sislb, 0csyz=<1),

we get, by Lemma VI.1 and (VI.19), (VI.20) for n =m ,

wi.2t) | L™ gy - L™ (x,y)
1 m+1(1 s) m+1(1_ )m+1
< Mg ds = Mig -
x mf (m+1)! 19
and
oL{™ (x,y)  a{™Y (x,y)
(VIi.25) 3y - 3y
r 1 m+1(1 s)m m+1(1_x)m+1
< M20 ds = Mig "
X m! (m+1)! 20
| Mig " (1-x)" M Mig
Here we note that g(x) = o and
M7t (1-x) ™M,
h(x) = — in the estimates (VI.14) and (VI.15).

Thus we see that the estimates (VI.19) and (VI.20) hold true
also for n =m + 1 , so that we obtain these estimates for each

n 2 O , by induction.

By (VI.19) and (VI.20), for 1 < i g U4, the series
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+1
5w ix,y) - L (x,y)) ena

n=0
n+1
= ™ Uixy) oM (x,y)
> - 3y - 3y are absolutely convergent
L, (x,y)
to Li(x,y) and 5y respectively, and moreover the

convergences are uniform in (x,y) € EI . Therefore, we see that

O@)

By the definition (VI.17) of L§n) , &S n - «, also

oL{™ (x,y)

dx

(1 <i< l4) are convergent uniformly in (x,y) €

Q

satisfy (VI.4), (VI.5) and (VI.7).

» so that L, e Cl(ﬁz) (1 i< 4) and Ly (1 <15 4)

Further, from (VI.19), (VI.20) and (VI.4), (VI.5), for 1 g

i < 4, we get the estimates

6) L, | 18 u
(VI.26) L, __ s e - max r. |
17 Om) 1gish -+ 7 ¢%0,1]
aL. M
(.2 It o se . omax e |
c(Q 1gigh c [0,1]
and
aLi
(VI.28) —=* .
ax CO(QI)
= ||
s A -t f-('9°’L yL,,L oL) " -
3y (@) i 12t b oo g
M M
<e 18 max | ro |4 + M ge 18 ax I r; 1, .
1gigh Cc [0,1] 1gigh c’[0,1]

The estimates (VI.26) - (VI.28) show the corresponding

inequalities in ﬁ; to (2.39) and (2.40).

Next we proceed to the proof of (2.41). To this end, we

have only to prove
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(VI-29) l Li('i"qgl)9Q§1)9Dl) = Li('9'9Q§2)9q§2)’D2)|| 0, —
C (Ql)
(1) _,(2) (1)_ ,(2)
M D ( - + -
= 5[ 1D, %017 la; ™' -qq "CO[O,l] las™'- a5 HCO)
+ |[D, - D
P2 = P2l copg, 1y

for (Q§m), Qém)) € dM (m = 1,2) . Here and henceforth, we set

(m) 4(m)
d d
11 12
D, = Sm) g (m) (m =1,2) , and
21 22

(VI.30) L ;(x,y) = L, (x,v,a{™ ,q{™ p )

(1s1ish, m=1,2, (x,y) €2 ),

for brevity.

Since for m = 1,2, the functions Lm i (1 g1 b)

?

satisfy

aL_ . (x,y) aL_ . (x,y) 4

m,i‘'"?’ m, i (m) (m)
+ 8, 2 =3 a..(x,v,q as )L L (x,y)
ox i ay j=1 ij 1 =2 m,Jj
(1sish, (x9) €0 )

and

Lm’i(19Y) = ri(y’Dm) (0 Sy s 1) ’

we have equations in Ll,i - L2,i (1 g1z b)

a(Ll,i- Lz’i)(x’Y) . a(Ll,i- Lz’i)(x7Y)
ax i ay

y
=3 ayymyal a1, D)

i=1
y

(VI.31)

+ 2 (aij(x,y,qgl).qgl))-aij(x,y,q§22q§2))Lz’j(x,y)

3=1

(1sish, (xv)e€2 )

and
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(VI°32) (L > = LZ,i)(l’Y) = ri(y9D1) = ri(y’DZ)

1,1

(1 sis<b4,0sys<1)

Thus, by the estimate (VI.14) of Lemma VI.1l, we get

(VI°33) 1max | Ll,i(x’y) - LZ,i(x’Y) I
-XSy<X
< | r,(-,D;) = r.(-,D,) |
i 1 i 2 00[0’1]
1
+ MIBJ max max ILl'j(s,y) - Lz'j(s,y)\ds

x 1<js4 1-sgyss

4
+ 2 na'°('9'7Q§1)9q§1))—a"('7"q§2)’Q§2))"CO

j=1 ” (2))
x max | L, . | . (1 <1< 4)
1gsjsh 2, CO(Ql)
Here we note that as g(x) in (VI.14), we can choose
M max max IL, . (x,y)-L, .(x,y)]
18 1<js84  1-xgysx 1,3 2,3
4
1) (1) (2) (2)
+ 2 “a--('r"q( »Q )'a"('9°’q »q )“ S
j=1 ij 1 2 ij 1 2 CO(Ql)
«max | Ly . | o
1<jsh 2, CO(Ql)
Let us set 7(x) = max max |[L, .(x,y) - L, .(x,y)]|.
1gsigh 1-xgysgx 1,1 2,1
Applying (2.39) and (2.40) in (VI.33) and noting
(1) (1) _ L. o2) (2)
"aij('o ’ql ’qZ ) aij( ’ ’ql 9q2 )"Co(ﬁz)
1 (1)_ _(2) (1)_ ,(2)
s 5 (lay3™ "= a;7’| + Jas7= a5’
2 " 1 1 CO[O,l] 2 2 CO[O,l]
we get
n(x) s max |r.(:,D,) - r.(-,D,)] +
15ish 1 * 2 CO[Oyl]
(1) (2) (1) (2)
2M_||D (la - q + Jas7 /= a5
+ 5" 2"{CO[O,1]}4 I 1 1 "CO[O, I 2 2 CO
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1
+ Mg J . n(s)ds ( % £ xs 1)

which implies by Gronwall's inequality,
(VI.34) n(x)

18 u n
s e max r.(«,D,) - r.(-,D,)
1gic  + 71 1 2 00[0,1]

(1)

- g(2)
+ 2Mg|D y(layg q "co

N + Jaft) - q§2>nco

{c"[0,1]} (0,1]

1
( 5 5 X% 1).

This inequality is equivalent to (VI.29), the conclusion.

Thus in 91 y we complete the proof of Lemma §5.

Proof of Lemma 5 in 2, . In @, , we have to consider a
little nonstandard hyperbolic problem (VI.4), (VI.5), (VI.6) and

[ L3(x,1-x) = b3(x)

(VI.35) A
Ly (x,1-x) = by (x) (3<xs1)
"
Here and henceforth we set
(VI.36) b,(x) = L.(x,1-x) = lim L.(x',y')
J Jd X"')X, y'-»l—x J
(x',y') € @
(3=3.4, 3sxs1),

where Lj € Cl(ﬁz) (1 £ j<4) is the solution to (VI.4),
(VI.5) and (VI.T7).
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As the approximate sequences for the solution in ﬁ; , let

us inductively define Lﬁn) (1 <1< 4, n=z20) by (VI.37) -
(VI.39)
v1.37) L{xy) =0 (sish, (xy) €3 ).
(n+1) _ 1+x-
Ly" (x,y) = by (=57 )
+ J * f3(s,s-x+y,L§n),L§n),Lén),Lﬁn))ds ,
1+x~-y
2
(VI.38)«
L™ (x,y) = by ( XY
+ J * fq(s,s—x+y,L§n),Lén),Lén),Lﬁn))ds
1+x—z
2
L (n 20, (x,y) € 2,)
-
L{m ) (x,y)

= J Y (-kf3(s,s-x—y,L§n),L(n),Lén),Lén))

l+x+y 2
2
- tfu(s,s—x-y,Lin),Lén),L§n),L£n)))ds

1+x+ 1+x+
- Kby (T ) - amy (S

+ J * fl(s’-s+X+y’L§n)’L(n)9L§n),L£n))ds

X+y 2
(VI.39)
L§“+1)(x,y)
= J zlziétf3(s,s-x-y,L§n),Lén),Lén),Lﬁn))
2 + qu(s,s-x-y,Lgn),Lé“),Lén),Lﬁ“)))ds

v by ( LE ) sipy (S
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X
[ ratsimn a0 1

(n 20, (x,y) € 2, )

Obviously we see that ({ L(n) }

i ns0 (1 i< 4) are

well~-defined and Lﬁn) € C1(§Z) . Moreover, by induction, we can

obtain the estimates

Mgl(l-x)n

n! "M

(VI.40) | Lﬁ“*l)(x,y) - Lin)(x,Y) | 22

(1 sis b4, nz20, (x,y) € ﬁz )

and

M35 (1-x)"
(n-1)!

6L§n+1)(x,y) aLin)(x,y)
oy oy

(VI.41) 24

(1L i< l,nz1, (x,y) € 5; )

Here and henceforth, we set

(. (Ix|+]¢] 2 X la; ;]
M = kKi+[L]|+1)- : s ’
21 ) 125el j=1 %13 co(ﬁg)

Mgy = (lkl+]ele) max {Iogl oo Moyl o)
: z”u |
M = max M,,, { = max
23 21 2 12igh %1 cO

1gigh j 1

+ max 2 la; ;]
15igh < 3=1 1310
lk|+] ] 3 5 X la. .|
ML, (|k|+]|<¢ +1){ max a. .
21 2 1gig4” 321 10

+ max » ll |l
1gigh  j=1




+ (|k|+|¢|+1) max la, .

1gigh < j=1 lJ"co
(VI.42) <
M24 = max M22 ’
(Jk]+]¢]+1){3 24" I {lo4] oy
kj+|t]+1 {— max a, . ‘max{|b y |Ib }
2121k © =1 1370 301 TR
s || Bzt || gnantingl g 1oyl
+ max max{||b , b }} ,
1gigh < =1l WY 1O 3707 TR0

{(ilk|+ 31¢+1) max S : la. .|
2 2 15igh © 3=1 1d°¢0

da, . |I
9y CO

< (ke elelen) max {155l o0 Toy] o)

4
+ (|k|+]|£|+1) max 3 ‘
1<igh j=1

4

2
s URllelime S o] grexivg] g [oy] )

-

In (VI.42), by the forms (VI.9) of a, . (1 £1i,j s 4), the

dq
. 1
constants M21 and M23 are independent of l’ ax |'c° and
da, :
Ix O That is, for (ql, qZ) € oy , We see
fM = M,, (M, [P] » h)
| C R
(VI.43)
Myn = My (M, [P » h)
[ 3 3 (c*ro,1y*

Thus, the series 2 ( L§n+1)(x,y) - L§n)(x,y) ) and

n=0
n
. = aL§“*1)(x,y) 3L§ ) (x,y) colutel
- are absolutely
oy y
n=0
L (x,y) _
convergent to Li(x,y) and 5y respectively, and the
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convergences are uniform in (x,y) e EE , SO that Li , a; €
Co(ﬁg) (1 =15 4)
oL,
Moreover the definitions (VI.38) and (VI.39) imply ‘3% e

Co(ﬁz) , and therefore Li (1L s1isg 4) satisfy (VI.4) - (VI.6)
and (VI.35) in Eg .

Thus we have constructed Li (1 £ isg 4) in the respective
domains of Ql and 92 , SO0 that we see that there exists a
‘unique solution L; (1 £1i< 4 to (VI.4) - (VI.7). 1In fact,

all that we have to do is to verify that L, (1 £1i<4) are

actually C1 on ﬁ; u ﬁ; . In order to verify this fact, we
have only to note that L, (1 i< 4) satisfy the following
integral equations :

[ X

Li(x,y> ri(X+y-1)+Jlfi(s7-S+X+y1L17L2vL37L4)dS

———

1’2 ’ (X)Y) € Ql ) ?

3 (i

X

ri(—x+y+1)+J

Li(x,y) fi(s,s-x+y,L1,LZ,L3,L4)ds

1

3.4, (x,y) e 2, )

(i

and

- .

L, (x,y)

X+y

-(kf,+¢f,)(s,s-x-y,L,,L,,L,,L) )ds
| xayger 377H 17727"30 )

2
X
+ f.(s,-s+x+y,L,,L,,L,,L,)ds
] x+y 1 172 '3 4

.

- kb ( BEW ) - ogp, ( BE ) ((x,y) €T, ),

3(
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[ x+y
Lo(x,y) = (¢f4+kfy)(s,s-x~-y,L,,L,,L,,L, )ds
2 | geger 3 107227300y
2
[ x (
+ f,(s,-s+x+y,L. ,L,,L,,L,)ds
,,X+y2 172273~y
2 abg(FEY ) o, (BEY ) ((x,y) €T, ),
X
l+x-
L.(x, = f.(s,s-x+y,L,,L,,L,,L,)ds + b, ( —>-Y )
1(%5¥) J Lex—y & M Rl R St i 2
2
t (1 = 3,4 (x,y) € ﬁz ).
Using (VI.40) and (VI.U41), we see also the estimates (VI.U44)
and (VI.45) :
(vi.s4) | L, | __ & M, (M, |P]| , h)
100y T (ctro,1npt
x max {[by] 4, [byl 4} (1 =1 < b) .
3 CO L cO
(vi.45) | L, | s M (M, |P| » h)
0l 25 (ctro,1n*

X

max {|bo] 4, Iyl ;3 (1 <1< 4).
3 cl 4 Cl
Now, combining (VI.44), (VI.45) with (VI.26) - (VI.28), we obtain

(vi.46) | L, | ¢ (7) < My (M, [P] h)

ctro,13®’

x max | r; I 0 (1 <1< b)),
1gigh c-[o0,1]
and
(vi.u7) | L, | _ s M, (M, [P] » h)
iVl © 725 (ctro, 1t

x max | r,

I - (1L <1isb4),
1gigh  * clro,1]

which imply (2.39) and (2.40), respectively.

- 216 -



Finally, in order to complete the proof of Lemma 5, in view

of (V1.29), we have to prove

(VI'QB) “ Li(' 9qgl)’Q§1) Dl) - Li(".’ § )’Q§2)9D2) " 0,—
C(2,)
s M max "r “
26 | qgigy 3 0[o 1
I a{t)- q{2) o ) adt- ol )
! 0,1 1927 %2 eoge g
(1) (2) (1)_ ,(2)
+ | b37 - b7 + | by - by
303 T AR B
(1 <1 s b)
for each (q(m), qém)) M (m = 1,2) . Here and henceforth we
put
b{™ (x) = L30x,1-x,a{™ ,a{™ D)
o{™ (x) = L, (x,1-x,a{™,a{™ D) (Fxs1)
and
- (m) _(m)
Lm,i(X’Y) - Li(xay’ql 9qZ va)
(1<ish,m=1,2, (x,y) €2, ).
We prepare
Lemma VI.2. Let f(x,y) and 2£%§4Xl be continuous
functions in ﬁ; and satisfy
(VI.49)  |f(x,¥)| < &(x) ( (x,y) €0, ),

Jor some g € CO[O, 1].
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Then,

(I) Let a € Cl[ %, 1] and let u e Cl(ﬁg) be a solution to

raugz,y) + au§§,Y) = f(x,y) ( (x,y) € ‘55 )
(VI.50) <
u(x,1-x) = a(x) ( % £ x g 1)
Then we have
l+x-y
(vI.51)  Ju(x,y)| s | al 44 + J g(s)ds
C [2,1

( (x,y) €T, ).

(II) Let a € Cl[O, 1] and let u € Cl(ﬁg) be a solution to

)
ulx.y) - Julxy) - r(x,y) ( (x,y) € Dy )
(VI.52) Ao
u(x,0) = a(x) (0 < x g 1)

Then we have

X+y L
(VI.53)  |u(x,y)| s |a(x+y)| + J g(s)ds ( (x,y) € 2, ).
X
Pooof of Lemma VI.2. By integrating the equations along the
characteristic curves, we can easily prove it. That is, since

the solutions u to (VI.50) and v to (VI.52) are represented

in the forms

X
u(x,y) = a( ¥5X ) 4 J f(s,s-x+y)ds  ( (x,y) € Q)
l+x-y
2
and
x ——
v(x,y) = a(x+y) + f(s,-s+x+y)ds ( (x,y) e, ),
X+y

respectively, we can immediately see Lemma VI.2.
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We return to the proof of (VI.48). Since in ﬁ; , the

functions L1 I L2 i (1 =3, 4) satisfy the equations (VI.31)
9, 9,

and

(VI.5H) Ly ;(x,1-x) = L, ;(x,1-x) = {1 (x) - b{2)(x)

(i = 3,4, % s xsg1) ,

we can see in view of Lemma VI.2 (I) and (VI.46) that for i =

3,4’

(VI.55) max L, (x,y) = L, .(x,y)]
O<ysmin{x,1-x} 1,1 2,1

s max ] b{t-p{?)y

1=3,4 cr3,11
l+x-y
2
+ M max |ILy ;(s,s-x+y)-L, .(s,s-x+y)]|ds
27 % 1§j§4 1’J 2’\]

Ogs-x+ysmin{s,1-s}

1) (2) (1) (2) (2)
+ o ( Jait)o q{3) s ladt- al@] ) max {2

27" T 1 "¢Cr0,11 72 2 70" gggqy 3T O
Henceforth we set

Ve
7,(x) = max max L, <(x,¥) - L, .(x,y)]
1 i=3,4 Ogysmin{x,1-x} 11 2,1

(VI.56)<

7(x) = max max |L (x,y) - L (x,y) |
1gig4 Osysmin{x,1-x} 1,1 2,1

\

Then we can rewrite (VI.55) as
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2)
(VI.57) 7.(x) s max | bit)- {23y
1 =34 i i COE%,lj
s (1adP - al2 ) v gadt o$P ) ). max 22
27 1 1 CO 2 2 CO 155k J CO
1
+ M27 J n(s)ds (0 s x g 1)
X
Next, since in ﬁz , the functions Ll,i - LZ,i (i = 1,2)

satisfy the equations (VI.31) and

-

Ll,l(x,O) - LZ,l(x’O)

= -k(L1’3(X,O)—L2,3(X,O))-f(Ll’u(X,O)‘Lz,u(X,O))
(VI.58)-

Ll’z(x,O) - LZ,Z(X’O)

= i(L1’3(X,O)-L2,3(X,O))+k(Ll’q(X,O)-L2,4(X,O))

\ (0O g xsg 1) ,

in virtue of Lemma VI.2 (II) and (VI.46), we get for i = 1,2

(x,y) ]

(V1.59) max |L1,i(x,y) - LZ,i

Osysmin{x,1-x}

s (|k|+|{|)imgquLl,i(X+Yvo) - Lz’i(X+Yvo)|

?
X+y
+ M27 max ILl’j(s,-s+x+y)-L2,j(s,-s+x+y)lds

1<jsh
Oz-s+x+yzmin{s,1-s}

(2) (1) (2)
+ M27 1max "rj “CO[O,I ( “ql - q uco

<jsh [0,1]

(1) - o(2)
1o - of?l o 0
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< ([k|+[<])nq (x+y)

(2) (1) (2) (1)_ ,(2)
* Mo mex 152 o (afP= af g 1afD- a2 )

1<j<y
1
+ M27 . n(s)ds by (VI.56)

(1) (2)
< k|i+|1|) max b} b.
( I I l | . , " i i " O , ]

2 1 2) (1)__(2)
: M27(lk|+ltl+1)iz?zqﬂr§ ’uco<nq{ ) g o+ la5-afi o)

1
+ M27(|kl+l£|+l)J xn(s)ds (0 s x 1) .

In the last inequality, we use

n,(x+y) s max Hbﬁl) - b§2

N
i=3,4 C

e R R S e PR TH T Y

1
+ M27 7(s)ds by (VI.57)
X+y

£ max ﬂbﬁl) - b§2

. 1 o
i=3,4 C

+ My i??iu"”§2>"00‘“qil)'q§2)“c° : qul’-qu’uco>

1
+ M27 J . n(s)ds by =x+y 2 x
By (VI.59) and (VI.57), we reach

2)
(x) = M,q max [bl1) - p(2))
i 28i=3,4 i i Co[o’l]

2) (1)_,(2) (1)_ ,(2)
: M281:§§uur§ | otla-ai*1 o + 1ag")- a1 o)

1
+ M28 j xn(s)ds (0O s xg 1),
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which implies

M
(VI.60) 7(x) s Myg-e 28 "bél) - b§2)llCo + Hbﬁl) - bﬁz)ﬂco

(2) (1)_,(2) (1)_,(2)
+max i) J(lay 7/ =a7 ) 5+ las ' -a5°" ] )
1<jsh J CO 1 1 CO 2 2 CO
(0 sxsg1) |,
by Gronwall's inequality.
Since max 7(x) =
Osxxgl1
1) (1) (2) ,(2)
max ||L-('9"q( e ’D ) - L-(°y'9q »d 9D )" _ ’
1gigh 1 1 2 1 i 1 2 2 CO(QZ)

the inequality (VI.60) means (VI.48), our conclusion.

Thus we cdmplete the proof of Lemma 5.
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Appendix VII. Proof of Lemma 6. Let &(x) be a

fundamental matrix for the linear homogeneous system

(VII.1) %; [ u ] = A(x)[ u ] (0 £ x5 1)
That is, @¢(x) is a 2 x 2 matrix and satisfies
42(x) - A(x)(x) (05 x5 1)
and
det #(x) # O (0 g x g 1)

(Coddington and Levinson [3, p.69], for example).

Here let us recall that

A(x) = -a(x)-b(x)+p (x)+p,(x)  a(x)+b(x)-p;(x)-p,(x)

Nl

-a(x)+b(x)-p, (x)+p,(x)  a(x)-b(x)+p,(x)-p,(x)

(0 g x 1)

Then the solution [ 3 ] to (2.44) with (2.45) is given by

(VII.2) u ] = [ } ]

r~

X Kll(y9Y)-K22(y’Y)+K12(Yty)—K21(yyy)

+ ®(x) ¢_1(y) dy
J 0 Kll(y9Y)-K22(y9Y)+K21(y7Y)'K12(y’y)

(0 g xg1),

([3, p.74], for instance).

Now we proceed to
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Proof of the part (I) of Lemma 6. By (VII.2), we have

(ViI.3)  |u(x) - 1], |v(x) - 1]

1

< 16] o | -
(%o, 173" (c°ro, 173"
max K. .(x,x) (0 g x g 1)
1gi,js2 1J
ng;l

On the other hand, in view of (2.29) and (2.39), we have

(VII.4) | K | _ s M,M_4
@yt TS

Therefore, if

-1 -1

(VII.5) &, < | 32M,M_(|®] ey . 1) ,
0 5 00,103 (%o, 13"

then we obtain

(VII.6)  |u(x) - 1], |v(x) - 1] s % (0xs1) ,

which is the conclusion in the part (I).

Proof of the part (II) of Lemma 6. Since by

A(x)[ i ] = [ 8 ] (0O £ x £ 1), the equation (2.44) is

equivalent to
R PRI Ry

K,,(x,x)=-K,,(x,x)+K, 5 (x,x)-K,, (x,x)
. 11 22 12 21 (0 g xs1),

Kll(x,x)-KZZ(x,x)+K21(x,x)-KlZ(x,x)
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we have

du dv
wize) || & | &
< M max { Ju-1] o, [v-1] 5 } + max K, .(x,x) I]
29 [ cO c0 1gi,jz2 | 1
Ozxg1
< M max I K..(x,x) l by (VII.3)
30 151,552 | 13
O;x;l

Next, differentiating the both hand sides of (VII.7) with

respect to x , we get

dx v(x) dx | v(x)

2 (
o [ ue ] _ dA(x) [u<x> -1 ] . A L [u(x) ]

(
d Kll(X,X)“KZZ(X,X)+K12(X,X)-K21(X,X)

\ Kll(X,X)-KZZ(X,X)+K21(X,X)-K12(X,X)

(0 £ x £ 1)

Therefore by a way similar to the one in (VII.8), we have

2 2
d"u d™v
(VII.9) —— Y —
dx2 Co dx2 CO
dK. .(x,x)
< M31 max { max Ki.(x,x)l, max l——£%§——__ }

1gi,js2! *d 15i,js2
ng;l O;x;l

Estimating I and P, - T, in the definition (2.48)
by using (VII.6), (VII.8) and (VII.9), we reach (2.49) and

(2.50). 1In obtaining (2.50), we note also that

IE I
dx CO dx CO

< M3g max I Ki.(x,x) |2 < M32 max Kij(x,x) ’
15i,js2 J 15i,j<2
Ogxg1 O<x<l
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because we see Kij(x,x) <1 (1 <1i,j £2, 0 x5 1) by

(VII.4) and (VII.5).

Proof of the part (III) of lemma 6. We have only to prove

(1) (1)
du dv .
(VII.10) II i Ico , || S ICO s Mg, (i = 1,2)
and
(vir.11) | uott) - W@y R A I
c-[o,1] c [0,1]
(1) (2)
< M32 12?Tj§2 Kij (x,x) Kij (x,x)
Ogxgl

Then, from (VII.10), (VI.11l) and (2.47), we can derive (2.54),
the conclusion.

Verification of (VII.10). For q(1) e dy (i=1,2) , we
get

(vir.12) | k(1) | s MyM_b
{CO(Q)}q 47570

by (2.29) and (2.39). Combining (VII.12) and (VII.8), we

immediately obtain (VII.10).

Verification of (VII.11). Since (u(i), v(i)) is the
solution to (2.51) and (2.52) (i = 1,2) , it follows that

(u(l)- u(z), v(l)- v(z)) satisfies

d (u(l) u(Z))(x) ) (w1 - {2y (x)

(VIT-13) ax | (1) o) 5 | = A ) - 0@ 0

+ d(x) (0 s x 1)

and

- 226 -



(1) (2)
VII.1l4 (u -uwm)(0) | . [
( ) [ (v(l) _ v(2))(o)

Here we set

)

( | " ( K(l)(x X)- K(Z)(x x)- (K(l)(x x)- K(Z)(X %)) 3
VII.15 d =

( Kgé)(x x)-K gg)(x x)- (K(l)(x x)- K(Z)(x x)) |

| k§E) o) -kE2) (o) - (K(1)(x,x) §§>(X,x)) )
(0 £ x g 1)

In view of the fundamental matrix &(x), we have

(1) _ (2) X
(u(l) u(z))(X) = o(x) o Ny)a(y) dy (0 s x 5 1),
- v ") (x) 0

so that we can easily reach (VII.1l1l) in a manner similar to the

one in obtaining (VII.8).

Thus we complete the proof of Lemma 6.
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Appendix VIII Proof of Lemma 8. Since l; € o(AQ h J)
*
. =
(n € Z) by (2.70) and aZAQ’h’JS G(AQ,h,J) , We see that
* * *
v (+,=2_) 1is an eigenvector of A associated with the
n Q,h,J

*»
eigenvalue 1 (n € Z) , by the definition (2.81) of y (-,1).
*
Here we recall that (AQ h Ju)(x) = -B Q%iél + tQ(x)u(x) and

u
g(AQ,h,J) = { u = [U;] € {Hl(O, 1)}2 H UZ(O) - hul(O) = 0 and

uy(1) - Ju (1) = 0 }

Thus the part (I) of this lemma is proved.

Next we proceed to a proof of the part (II) of this lemma.

To this end, we prove that the transformation T in {LZ(O, 1)}2

given by (VIII.1) has the bounded inverse T-1 5
X
(VIII.1) (Tf)(x) = R(x)f(x) + J 0 K(x,y)f(y)dy (0 £ x 5 1)
Here R(x) and K(x,y) are defined by (2.65) - (2.67) and the
solution to the problem (2.36), (2.37), (2.63), (2.64),
respectively.
Since R(x)"1 exists for 0 < x <1 and K € {Co(ﬁ)}u , by

applying the routine argument for Volterra's integral equations

of second kind (for example, Yosida [57]), we can show that 71
exists and is bounded in {LZ(O, 1)}2 . In fact, setting
1 -1
k() (x,y) = - R(x)7IR(x,y)
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k(™) (x,y) = - J "R R (x, )k (£,y)dt (0 2 2) ,
y

o0

we see that the series K(n)(x,y) converges absolutely and
n=1

uniformly in (x,y) € @ . Let us put TI(x,y) =3 K(n)(x,y)
( (x,y) € @ ) . Then we have

-1 _ -1 X -1
(T "f£)(x) = R(x) "f(x) + r(x,y)R(y) "f(y)dy (0 = x < 1).

* *
On the other hand, since w(-,ln) = T¢(-,ln) (n € Z) by
*
(2.68) and { ¢(-,ln) } nez 1S a Riesz basis in {L2(O,1)}2 by
Lemma 2 (I), it follows from the result in Gohberg and Krein

*
[6, p.309] that { w(-,ln) } nez @lso forms a Riesz basis in

2 2
{L=(0,1)}" .
Therefore all that we have to do is to prove the expression

(2.83). First we can obtain

VIII.2) LAY, (e -A = 0,
( GCag)s ¥ Coa) o

L ] * *
if n#m . In fact, since AQ,h,Jw(°’lm) =2, v(,2.) (me 2)

» » ) B *
and AQ,h,Jw (-,—zn) =y (-,-ln) (n € Z) , we have

lg(w("l;)' W.("-l;)) = (AQ,h,J W('vl;)’ W.('v'l;))

—— ——

L 2 * * * »* * *
( W('91m)9 AQ,h,Jw ("'ln)) = ( W("lm): ln L'4 (”-l

*

n

))

L J L J * . . * *
), (-,-ln)) , SO that in virtue of ln # lm

*»
xn ( W('vl
(m # n), we get (VIII.2).

m
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Further we have o = (w(-,lg), w*(',-l;)) # 0 (n e Z)

» * *
In fact, assume that ( w(-,ln )s v (+y=2_)) = 0 for some
0

Do

n, € Z . Then, by (VIII.2), we have (p(+,2 ), v (-,=1
n no

*
for each n € Z, which implies p (+,-2_ ) = 0 by the
0

*
completeness of { w(-,zn) } nez This contradicts the

n

L J
definition (2.81) of w(',ln) . Thus we see a # 0O (n e Z).

Let us return to the proof of (2.83). Since {w(-,lg)}nez

is a Riesz basis, we get, for each u € {L2(0,1)}2 ,

(VIII.3) u =3 cnw(-,lg)

NnN==ow

with appropriate c, © C (n e Z)

Applying (VIII.2) in (VIII.3), we obtain

s T % -1
c, = (u, v (+,-2.))-a, (nez) |,
which implies (2.83), our conclusion. Thus we complete the proof
of the part (II) of Lemma 8.
As for (I)' and (II)' of this lemma, we can proceed
similarly.

Therefore Lemma 8 is proved.
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Concluding Remarks

We will give four general remarks and views.

1. In Chapter 3, we get the three results on identification
problems for our eigenvalue problem and show two applications of
them. In order to solve such identification problems, the method
based on the integral operator stated in Paragraph 4 in Chapter 1
is very effective. In fact, if such an integral operator can bhe
constructed for systems under consideration, then we can discuss
the uniqueness in the identification problem, along the line of
the argument in Suzuki [46, 47, 51].

On the other hand, the existence of such an integral
operator crucially depends on the order of ordinary differential
equations in eigenvalue problems. For example, it is known that
in general, there cannot exist such an integral operator for
Qﬁg&%l + p(x)u(x) = 2u(x) , (Macaev, V.I., On the existence of
trgﬁsformation operators for differential equations of higher
order (English translation), Soviet Math. Dokl. 1 (1960), 68 -
71).

Thus Lemma 1 in Chapter 2 enables us to expand the effective
range of the "integral operator method" to systems of ordinary

differential equations of first order.

2. In engineering, it may be more realistic to consider the

identification problem for evolutionary problems, as is mentioned

_231_



in Paragraph 1 in Chapter 1, rather than for eigenvalue problems.

Actually the evolutionary system for our eigenvalue problem
/

aul(x,t) auz(x,t)
—a—E—— = ——ax_—— + pll(x)ul(x,t) + PlZ(X)UZ(X’t)
(1) 1
auz(x,t) aul(x,t)
——ét——_ = ——a-x———— + pZI(X)Ul(X,t) + p22(x)u2(x’t)
L (Osxsg1, t=0) ,

contains equations describing evolutions in time t for
vibrating systems, for instance, vibrations of a string, and
electric oscillations in a transmission line (cf. $$ 5 and 6 in
Chapter 3). As for the identification problem for (1), we refer
to Yamamoto [56], and moreover a full length paper is in

preparation.

3. In Chapter 4, we get the result (Theorem 2) on the
continuity of the mapping which transforms the specified sets of
eigenvalues to the coefficients and the real constants in our
eigenvalue problem. The continuity in the result is the
Lipshitz one, while it is "weak" compared with the metric
introduced naturally in an appropriate space of eigenvalues, and
is "local" in the sense that the Lipshitz constant in the
estimate is not uniform in each fixed system. (That is, the
constant depends upon the coefficient matrix P and the real
constants h, H, H* in each fixed system.)

The weakness of the continuity is one of inevitable features

in the inverse problem as is mentioned in Paragraph 1 in



Chapter 1. On the other hand, the local continuity is probably
overcome by constructing a theory similar to the one by Gel'fand
and Levitan for the Sturm - Liouville problem [5] and by applying
its theory to our case along the line of Levitan and Gasymov
[28].

To this end, it is one of essential parts whether for our
system we can derive an integral equation corresponding to what
is called, the Gel'fand - Levitan equation ([5]) for the Sturm -
Liouville problem. As for a version in our case of the Gel'fand
- Levitan theory including the Gel'fand - Levitan equation,
the author has completed the argument in spite of complication
and difficulty because of the facts that our eigenvalue problem
involves simultaneous ordinary differential equations and is not
symmetric. Here the nonsymmetry is that of the operator
associated with our boundary value problem (Definition 1 in
Chapter 2). In a forthcoming paper, we will give full
construction of the Gel'fand - Levitan theory in our case.

On the other hand, as for the application of the
corresponding "Gel'fand - Levitan theory", we are advancing

discussion.

L, Finally we note that the eigenvalue problem discussed in
this paper is effective also in the consideration of a one
dimensional proper longitudinal vibrations in media with
discontinuities, as is mentioned in Paragraph 1 in Chapter 1.

Such a problem with discontinuities is important also in a field
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called the terrestrial spectroscopy of geophysics (cf. Hald
[10]).

Let us consider for example, a rod of length 1 with free
ends and the rod is composed of several parts with inhomogeneous
Young's moduli E(x) >0 (0 5 x5 1). AThen eigenfrequencies of
proper longitudinal vibrations of the rod are given in terms of

the eigenvalues of

(2) - LR < ay(x)

0 xs 1, x # dj (1 < j £ m)
du(0) _ du(l) _

(3) dx dx 0

(1) u(dj+) = u(dj-) (1 £ j £ m)
du(d.+) du(d.-) '

(5) E(dj+)——a§l—— = B(dj')_—ail—_ (1 £ J < m)

Here we assume that the density is 1 over the whole rod, for
simplicity and dO = 0 < d1 < eee < dm < 1 = dm+1 ’
E e Cz[dj, dj+1] (O£ j £ m), and dj (1 £ j £ m) correspond to
the interfaces of the adjacent inhomogeneous parts. Furthermore
we set u(dj+) = elimou(dj+ ) , u(dj—) = elimOU(dj— e) , etc.
We note that the "continuation conditions" (4) and (5) at the
~discontinuities mean the continuity of the displacement and the
stress, respectively.

In the case where there are no real discontinuities, namely,

E e C2[O, 1], we can reduce (2) - (5) to the usual Sturm -

2
Liouville problem for Liouville's normal form - Q_Xigl +
dz

q(z)v(z) = 2v(z) as is treated in [5], by means of appropriate
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changes of independent variable and dependent one, called
Liouville's transformation. However, if there are really
discontinuities, then continuation conditions (5) become more
complicated by Liouville's transformation, so that it is very
hard to apply the method based on the integral operator to
identification problems.

On the other hand, by the following transformation, we can
reduce (2) - (5) to a system of ordinary differential equations
of first order as considered throughout this paper : Introducing
change of independent variable and dependent one

x &
z = z(x) = — 1 = z(1)
J o E(&)/?

( + %lv -1 u(x)
¢, (z) =
+ % (E(x))l/z dgix}

E(z) = E(x),
d. = z(dj) (153 sm |,

we can get an equivalent eigenvalue problem to (2) - (5)

~

0 1 |de, (2) 0 Qgégl/zﬁ(z)
—az ¢ 9,(2)

1 0] 0 0

=z v -1 ¢t(z) (0O sz €, z # aj y 1 £ j < m)
2{?)(0) = ¢{®) (1) = 0

172 (2) oy Ly - 172 (2),x _ :
B(A )77 0,70 (@50) = B(E-) 77 0,77 (d5-) (153 s m).

.
Then we can modify the continuation conditions (5) so that the

reduced system (6) is suitable for the construction of
the integral operator.

As for the inverse spectral problem for (2) - (5) of the
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type as discussed in Hochstadt and Lieberman [17], we can refer
to Hald [10] and Willis [55]. In these papers, the reduced
system (6) is not adopted and the integral operator is not
constructed by our method.

We are preparing a paper where the uniqueness for the
inverse spectral problem of the type of Gel'fand and Levitan [5]

is solved by means of the integral operator.
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