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GENERAL INTRODUCTION
Dynamical processes of electronically excited atoms and molecules are one

of the fundamental subjects of the study of molecular reaction dynamics.
These excited speices have high reactivity and their behavior is variant; many
final channels giving different products are open and the branching depends
on the electronic state of the reactant. In particular, dissociative excitation is
one of the dynamical processes typical of the electronically excited molecules.
Dissociation of the molecules can be regarded as the latter half of the full
reaction. Therefore, studies on dissociative excitation can serve for under-
standing some aspects of the reaction dynamics of electronically excited
species. In the present study, dynamics of dissociative excitation is investi-
gated experimentally and theoretically. The present study consists of two
parts; in part I, dissociative excitation of molecules in collision with helium
metastable atoms, He(23S,), is discussed, and in part II, a theory for photo-
dissociation dynamics based on the time-dependent variational principle is
developed.

Helium metastable atom, He(23S,), is the helium atom in the lowest triplet
excited state, the electron configuration of which is (1s)!(2s)’, and has a very
long lifetime on the order of 10% s in the collision-free condition.’”® The
excitation energy of the He(23S,) atom is 19.81 eV ,'~3 which is higher than
the first ionization potentials of all the atoms and molecules except for He and
Ne. When the He(23S,) atom collides with the target molecule, the target
molecule is excited to a certain electronically excited state or ionized. The
latter process is generally called Penning ionization,* on which many investi-
gations have been made by means of electron spectroscopy of the ejected elec-
trons’ and optical spectroscopy of the product ions.® If the target molecule is
excited to an electronically excited state of the neutral species, the resultant

electronic states should be super-excited states, which are defined as the
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excited states having excitation energy higher than the first ionzation poten-
tial.” These super-excited states release their electronic energy through
autoionization and dissociation;’ the probability of the radiative decay of the
super-excited states is negligible. The fragments produced in the dissociation
of these highly-excited states are often electronically excited, and emission
from these fragments can be observed.

The electronically excited states located at about 20 eV can be classified by
their electron configurations: singly-excited states and doubly-excited states;
in the former, one electron is promoted to a vacant orbital, whereas in the
latter, two electrons are promoted. The singly-excited states located at about
20 eV are almost always high-Rydberg states converging to a certain ionic
state with a hole in an outer-valence molecular orbital, and usually bound
states, potential surfaces of which are similar to those of the corresponding
ionic state. On the other hand, the doubly-excited states located at about 20
eV may have either Rydberg- or valence-character and usually dissociative
because at least one antibonding molecular orbital is occupied. The singly-
excited states often predissociate to the dissociative doubly-excited states.
Therefore, these doubly-excited states play a crucial role in dissociative exci-
tation, and the participation of these doubly-excited states, which are located
near or above 20 eV, is one of the characteristics of the dissociation dynamics
in the energy range in question. However, direct excitation to the doubly-
excited states is optically forbidden unless certain singly-excited configurations
are mixed with them, whereas in the excitation transfer from He(23S,), it is
unknown whether or not such a selection rule with respect to the electron
configuration holds.

Dissociative excitation in collision with the He(2%S,) atom have not been

studied as much as those in collision with other rare-gas metastables, espe-
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cially those with Ar(®P;,) and Xe(*Py ,), on which many investigations have
been made.!™3 In the studies on the reaction of He(23S,), attention has been
focused mainly on Penning ionization. This trend can be partly ascribable to
the fact that a large portion of the reaction cross section of He(23S,) is carried
by Penning ionization, and this is a reflection of the nature of the super-
excited states; a large fraction of the super-excited states decay through
autoionization, and branching to dissociation is usually small. On the other
hand, systematic studies on the nature of the super-excited states itself, which
‘can be studied most effectively by optical spectroscopy in the extended-UV
region, is now in progress by utilizing synchrotron-radiation.® In this context,
studies on dissociative excitation in collision with the He(23S;) atom can pro-
vide valuable information on the behavior of these super-excited states, espe-
cially of the doubly-excited states, and this information can be complementary
to that obtained by optical spectroscopy because the optical selection rule does
not necessarily hold in the reaction of He(23S,). On the other hand, dissocia-
tion dynamics of the doubly-excited states is expected to be different from
that of the singly-excited states located below 10 eV, which are usually studied
through excitation by absorption of vacuum-UV photons®:!® and collision of
Ar-, Kr-, and Xe-metastables,! 3 because the potential surfaces of the
doubly-excited states are expected to have topograpy different from those of
the singly-excited states due to the difference of the electronic structures.

In the present study, emission from the electronically excited fragments
produced in the dissociative excitation in collision with the He(23S;) atoms is
observed by a flowing afterglow technique;' ™3 namely, the He(23S;) atoms
are generated in a discharge flow and the target gas is introduced about 15
cm downstream from the discharge region into the flow. Emission from the

reaction region is focused on the monochromator equipped with a photon-
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counting system. By analyzing the emission spectra in the UV-visible region,
internal-state distributions of the fragments are obtained. The flowing after-
glow technique has an advantage, in comparison with a beam technique, that
one can obtain emission strong enough to measure high-resolution spectra,
and has disadvantages that the pressure of the reaction region is rather high,
0.15-0.4 Torr in the present work, and that several active species other than
He(23S,), for example, He(2!S,), He™, He;, and thermal electrons, are
simultaneously contained in the flow.!~® The former disadvantage is not seri-
~ous in the present experiment because radiative lifetimes of the excited frag-
ments are short enough that the fragments emit photons before any relaxation
and secondary reactions take place. The latter disadvantage can be overcome
by making diagnoses on the active species responsible for the observed emis-
sion; such diagnoses can be achieved by measuring dependences of the emis-
sion intensity on the pressure of the flow and on the potential applied to the
retarding grids placed between the discharge region and the reaction region.
On the basis of the observed internal-state distribution of the fragments,
dissociation dynamics is discussed. In chapter 1, the rotational distribution of
NH(A3II,c!TT) produced from NHj is analyzed and the dynamics of the rota-
tional excitation is discussed from the viewpoint of the motion of the nuclei.
The mechanism of the rotational excitation is indicated to be different from
that in the photodissociation of NH; with lower excitation energy (about 10
eV). In chapter 2, the dissociative excitation of metal-complex molecules,
Fe(CO)5 and Fe(CsHs),, is studied. The electronic state distributions of the
Fe atom produced show that the motion of the electrons in the Fe atom
interacts strongly with the vibration of the ligands; namely, the ligands serve
as a heat bath attached to the Fe atom. In chapter 3, the n-distributions of

H(n) produced from H,0, D,0, and H,S are discussed. The formation of
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these excited hydrogen atoms is typical of dissociative excitation with high
excitation energy near or above 20 eV, and their n-distributions contain infor-
mation on the transient Rydberg states of the parent molecule. The rates of
dissociation and autoionization of the transient Rydberg states are discussed.
In chapter 4, the potential energy surfaces relevant to the dissociative excita-
tion of HCI in collision with He(23S,) are obtained by SCF-CI calculation,
and the mechanism of the excitation transfer is studied. The transient dissoci-
ative states of HCI are found to be doubly-excited states and the mechanism
- of formation of the doubly-excited states is discussed from the viewpoint of
the behavior of the electrons.

Theories, on which the experimental results such as final-state distribution
should bé explained, are at present composed of twb extremes: those theories
which consist of completely qualitative concepts, and those theories which
require a large amount of numerical calculation but provide only very limited
intuition on the essence of the dynamics. In consequence, the existing
theories cannot necessarily lead us to systematic understanding of experimen-
tal facts accumlated so far. Difficulties in the theories of dynamics partly ori-
ginate from the fact that application of the exact quantum-mechanical equa-
tions of motion to realistic dynamical processes of molecules requires a con-
siderable amount of calculation. Even when a certain quasi-classical approxi-
mation is employed, one needs thousands of classical trajectories in order to
obtain final-state distributions. The study presented in chapter 5 aims at
developing a theoretical method for obtaining approximately the final-state
distributions of photodissociation with a reasonable amount of numerical cal-
culation in such a manner that some intuition on the essence of the dynamics
can be obtained. In order to make a physical picture clear, it seems to be

effective to trace time evolution of the distribution function in the phase



space, especially for discussing the final-state distributions. In the present
study, time evolution of the distribution function in the phase space is approx-
imately described by using several variational parameters. The time depen-
dences of these parameters are determined from the time-dependent varia-
tional principle, which is generally called TDHF (time-dependent Hartree-
Fock) theory and has been employed in nuclear physics.!! An application of
the TDHF theory to dynamical processes of molecules has been proposed by
several investigators,!2~16 but the methodology has not yet been established.
In the present study, special attention is paid to the distribution function in
the phase space; the deformation of the distribution function in the course of
time evolution is expressed by a sequence of transformations in the phase
space. This method can give us some intuition on the time evolution of the

system.
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PART I
DYNAMICS OF DISSOCIATIVE EXCITATIONS OF MOLECULES
IN COLLISION WITH HELIUM METASTABLE ATOMS

Chapter 1
Rotational distribution of NH(A3II,c!II)

produced from NHj in collision with helium metastable atoms

ABSTRACT
The emission spectra of NH(A3-X3=") and NH(c!II-a!A) produced

from NHj in collision with He™(23S;) was measured by a flowing afterglow
experiment. The rotational distributions of NH(A3M;v=0,1) and
NH(c!IT; v=0) obtained from the spectra show intense rotational excitation of
the NH radical; the average rotational energies are found to range 0.3-0.5 eV.
The observed rotational distributions are analyzed on the basis of a statistical
model in which the rotational distribution is governed by the upper limit of
the impact parameter of the half collision, NH;»NH+H, or 2H. This upper
limit of the impact parameter, estimated from the observed rotational distri-
butions, is found to be less than 0.6 A. This implies that essentially axial
recoil of the H atoms takes place. Namely, the rotational excitation of NH is
caused almost exclusively by a torque exerted by the dissociating H atoms,
and the inversion motion of the transient NH; molecule does not significantly

contribute to the rotational excitation of NH.
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INTRODUCTION

The rotational distribution of the NH radical produced in dissociative exci-
tation of NH; molecule has been studied extensively by photoexcitation
involving single- and multiphoton processes,!”® electron impact,”® and
energy transfer from an argon metastable atom” !9 with excitation energy
ranging from the near-threshold up to 12 eV. Intense rotational excitation of
the NH radical has often been observed.? Such rotational excitation is inter-
preted to be induced by the inversion motion of the transient NHj
‘molecule.? The mechanism of the rotational excitation is essentially governed
by topography of the potential energy surface of the transient states of NHj.
Thereforg, different mechanisms are expected if one allows NH; molecule to
dissociate from excited states with very different electronic characters.

In order to gain further insight into this problem, a study has been made
in the present paper to excite NH; to highly excited states located about 20 eV
by energy transfer from a helium metastable atom He™(23S;) and to measure
the rotational distribution of the dissociation product NH(AZI, c!lI). The
excited states located at about 20 eV are likely to have doubly excited
configurations, and their potential energy surfaces to have very different
topography from those of singly excited states.

A simple way to describe the dynamics of rotational excitation of the frag-
ment NH is to use the impact parameter of the half collision,
NH;-NH+H, or 2H. Namely, if the inversion motion of NH; induces the
rotational excitation, the impact parameter should be equal to the N-H bond
length or larger; on the other hand, if the rotational excitation is caused by
axial recoil of the H atoms, the impact parameter should be much smaller.
This impact parameter has a certain distribution. However, the impact

parameter generally should have an upper limit because the velocity vector of
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the fragment cannot be changed at a large inter-fragment distance where the
interaction fades out. This upper limit of the impact parameter is considered
to be one of the quantities which characterize the dissociation dynamics. In
the present study, a statistical model in which the rotational distribution is
governed by the upper limit of the impact parameter®®11-13 is developed,
and mechanism of the rotational excitation of the fragment NH is discussed
by analyzing the observed rotational distribution on the basis of this model.
The analysis implies that the rotational excitation of NH is caused almost
“exclusively by a torque exerted by axial bond rupture, but that the inversion
motion of the transient NH; molecule has little effect. This dissociation
dynamics is very different from that in VUV-photodissociation,? in which
case the inversion motion induces rotational excitation. This difference can
essentially be ascribed to the difference in topography of the potential sur-
faces of the dissociative states. Discussion on the dissociative states indicates

that the most probable dissociative states are doubly excited states.

EXPERIMENTAL SECTION

A flowing afterglow method was employed.!* Helium gas was purified by
passing through molecular sieve cooled by liquid nitrogen and led into a
discharge region. Helium metastable atoms were generated by a microwave
discharge (2.45 GHz, 100 W) and admitted to a reaction tube, which was eva-
cuated by a mechanical booster pump (500 //s). Ammonia gas was introduced
into the flow 15 cm downstream from the discharge region. Commercial NH;
gas (Takachiho, 99.8% purity) was used without further purification.
Charged particles such as He® and thermal electrons generated in the
discharge were removed from the flow by a pair of grids biased at —10 V.
The pressures of He and NH; in the reaction region, measured by a Pirani

gauge, were typically 0.3 Torr and several mTorr, réspectively.
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The emission from the reaction region was observed through a quartz win-
dow, dispersed by a 1 m monochromator (Spex 1704) and detected by a pho-
tomultiplier (Hamamatsu R585) and a photon-counting system. The spectral
response of the monochromator and the detection system was calibrated by
using a standard lamp.

The emission spectrum was measured in the region of 200-500 nm; strong
emissions from NH(A3I) and NH(c'II) were observed. The spectra of the
NH(A3I-X327) 0-0 and 1-1 bands and the NH(c!II-a'A) 0-0 band were
recorded with a resolution of 0.03 nm (see Figure 1). The wavelength-range
where NH(d!=* —c!IT), NH,(A2A;—X?A,) and hydrogen Balmer-series emis-
sions were expected was scanned carefully, but none of these emission spectra
were detected.

The emission intensities of the NH(A-X) and NH(c-a) bands were found
to be independent of the potential applied to the grids. Hence, it was con-
cluded that no charged particles (He™ and thermal electrons etc.) produced in
the discharge contributed to the observed dissociation processes. Further-
more, the intensities showed the dependence on the He pressure from 0.15 to
0.6 Torr which was identical with that of the Nj (B-X) 0-0 emission band pro-
duced by Penning ionization, He(23S,)+N, -~ He+N; (B)+e. Therefore, it
was confirmed that the active species responsible for the production of
NH(A3I, c!lT) was the He(23S,) atom.

The spectral feature exhibited no distinct change as the He pressure was
varied from 0.15 to 0.6 Torr. This observation indicated that collisional
relaxation was insignificant. This finding is in line with the following obser-
vation reported by Sekiya et al.!9: The rotational distribution of NH(A,c)
obtained by an experiment of Ar flowing afterglow with an Ar pressure rang-

ing 0.2-0.5 Torr was identical with those obtained- by an experiment made
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under a collision-free condition where the Ar pressure was 1—3x 1073 Torr.
This implies that the radiative lifetimes of NH(A) and NH(c), about 400 ns,!>
are shorter than the relaxation time. One can expect that a similar condition
holds for the present experiment of He flowing afterglow because the cross
section for the rotational relaxation by collision with He is likely to be smaller

than that by collision with Ar.

ANALYSIS

The observed emission spectra were analyzed by means of a computer
simulation to determine the rovibrational distributions of NH(A) and NH(c).
The emission intensity of a transition from a (v',N') state to a (v'',N'') state
is represented by!6

LY =v3R,  Reyy Sy tyn POV ,N') (1)

where v is the transition frequency, R, is the Franck-Condon factor, R, |
is the transition dipole, Sy.y is the rotational line strength, 7,y is the
natural lifetime of the (v',N') state, and P(v' ,N') is the rate of formation of
the (v',N') state. The transition frequencies reported by Dixon!’ and by
Funke!® were used for the simulation of the A-X band, while the transition
frequencies for the c-a band were calculated from the spectroscopic constants
reported in ref.19. The Franck-Condon factors and the values of the transi-
tion dipole were taken from ref.20. The line strengths for the NH(A-X) tran-
sition were calculated according to the formula derived by Budé,?! by using
the spectroscopic constants reported in ref.19. Only the main branches were
taken into account, since the line strengths for the satellite branches were
negligible in comparison with those for the main branches. The line strengths
for the NH(c-a) transition were calculated by the Honl-London formula.!®
The values of 7,y reported by Smith et al.’> were used for the lifetimes. A

Gaussian slit function was convoluted into the rotational lines to calculate the
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spectral envelope (see Figure 1). The relative rate of formation for each rovi-
brational state was estimated by trial and error so as to reproduce the
observed spectrum. Uncertainties in the rates of formation were estimated
from the limiting values beyond which the discrepancy in the spectral fit

became apparent.

RESULTS

The rotational distributions for the NH(AS3I) v=0,1 and NH(c'II) v=0
states determined by the spectral simulation are shown in Figures 2 and 3,
fespectively. The rotational distribution for the NH(c) v=0 state can be
represented by a Boltzmann function with a rotational temperature of
T.5:=3600+300 K. On the other hand, the rotational distributions for the
NH(A) v=0 and 1 states cannot be represented by a single Boltzmann distri-
bution.

The vibrational distribution of NH(A) and the branching ratio of NH(A)
vs. NH(c) are estimated by summation of the rates of formation of all the
rovibronic states multiplied by their degeneracies (2K’ +1 for the c!ll state
and 3(2N’ +1) for the A3l state):

P(NH(A%M)v=1) / P(NH(A3)»=0)=0.3=0.1. (2)

P(NH(c!IT)) / P(NH(AN))=0.5. (3)
Only the lower limit of the branching ratio can be given in eq.(3), because the

contribution of the predissociative NH(c!II,v=1) states to P(NH(c!II)) cannot
be estimated properly.

The average rotational energies, <E,,,>, for the NH(A) v=0 and 1 states

are estimated by

SEy(2N'+1)P(v' ,N')
o
<E .,>=
rot E(QN’ + 1)P(V' ,N!) ’ (4)
N :
where Ey is the rotational energy. On the other hand, the <E,,> value for
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the NH(c) v=0 state is estimated simply by <E,,,> =T, in order to avoid
an underestimate of <E_,,> caused by the neglect of the contributions of the
higher rotational states which are not observed in the present experiment.

The values of <E,,,> thus obtained are listed in Table I.

DISCUSSION
A. Identification of the observed processes
The energetically accessible processes which lead to the formation of

NH(A®I, c'T) are listed in Table II. Processes (C)-(E) cannot be regarded as
dominant for formation of NH(A), because the higher rotational states which
cannot be prbduced via these processes are found to have sufficient distribu-
tions (see Figure 2). Process (A) is less probable than process (B), because
the excess energy in process (A) is so large (12.1 V) that the internal energy
distributed to the vibration of HZ(X12g+) is likely to exceed the dissociation
energy of H2(X12g+ ) (4.5 eV). This conjecture is supported by the analysis
of the rotational distribution described in subsection C. Accordingly, the pro-
cess of dissociative excitation responsible for the formation of the NH(A)
radical observed is likely to be process (B),

He(23S;)+ NH; - He(1'Sy)+ NH(A3ID) +2H(1s). (5)
As for the formation of NH(c), process (F) can be excluded, because this
process is spin-forbidden. It is also unlikely that the NH(c) fragment is pro-
duced mainly through a radiative cascade from NH(d), since the NH(d-c)
emission is not detected. Therefore, process (G) is possibly responsible for
the formation of NH(c),

He(23S,)+NH; - He(1'Sp) + NH(c'IT)+2H(1s). (6)
The fraction of the average rotational energy to the excess energy is estimated
in Table I for the NH(A) v=0, 1 and NH(c) v=0 states by use of the excess

energies of the above processes.
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B. Upper limit of the impact parameters of the fragments

As shown in Figure 2, the slope of the rotational distribution for
NH(A’M; v=0) increases with the rotational energy, and there is a sudden
change in the slope at N'=17. This trend indicates that formation of the NH
radical which has a large rotational angular momentum is suppressed by a cer-
tain dynamical constraint, ascribable to that on the impact parameter of the
dissociating fragments, as is often encountered in dissociation dynamics.?* In
the present analysis, the rotational distribution of NH is explained by a statist-
ical model in which this dynamical constraint is taken into account.

The impact parameter for the half collision, NH;~-NH+H+H, is subject to
the potential energy surfaces of the dissociative states: For example, a large
impact pérameter is expected if the inversion motion of NH; is excited in the
dissociation; on the other hand, the impact parameter is small if the H atoms
are recoiled coaxially with the N-H bond axis. In general the impact parame-
ter has an upper limit, because the velocity vector of the fragment cannot be
changed at a large inter-fragment distance where the interaction practically
vanishes. This limit of the impact parameter sets a maximum on the orbital
angular momentum, and this upper limit and the conservation of the total
angular momentum determine the maximum rotational angular momentum of
the NH fragment.

The rotational distribution of NH can be explained by a model that the
impact parameter has an upper limit. The details of this model are described
in Appendix. The model consists of the following three major assumptions:

Assumption (1): The translational motion of the helium atom does not
participate in the disposals of energy and angular momentum throughout the
collision. As far as the disposals of energy and angular momentum are con-

cerned, the dissociation dynamics can fully be described by the unimolecular
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dissociation of the parent molecule in a transient excited state, NH;**. Furth-
ermore, it follows that the rotational distribution of NH;** is the Boltzmann
distribution at room temperature. The present assumption is valid so far as
the translational energy of the outgoing helium atom is thermal.

Assumption (2): If one of the impact parameters of the fragments (two H
atoms or one H, molecule) exceeds a given upper limit, b,,,,, the dissociation
does not occur at all. The actual dynamics may not be so simple, and a cer-
tain distribution of the impact parameter must be considered. However, in
the present model the restriction on the impact parameter is treated in the
simplest way as stated above.

Assumption (3): All the final quantum states which satisfy the conditions
set on the impact parameter and the energy and angular momentum conserva-
tion are equally probable. This assumption does not necessarily mean that
complete energy randomization in NH;** takes place, but it is an analogue of
a prior distribution or a linear surprisal distribution employed in the informa-
tion theoretic approach to reaction dynamics.2*

A model calculation is carried out in the following four cases. Cases (1)
and (2) correspond to

NH;** - NH(A or ¢) + H(1s) + H(1s). (7)
The motions of the two H atoms are treated as independent in case (1),
whereas a certain correlation between the motions of the two H atom is
assumed in case (2), i.e., two H atoms are regarded as a single fragment
which has no rovibrational degrees of freedom. Cases (1) and (2) correspond
to "three-body dissociation” and "two-body dissociation," respectively. On
the other hand, cases (3) and (4) correspond to

NH;** - NH(A or ¢) + Hy(X'Z,"). (8)
In case (3), no restriction other than the conservation of angular momentum
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is placed on the rotation of H,(X), while it is assumed in case (4) that no

torque works on H,. The details of these cases are described in Appendix.

C. Analysis of the rotational distribution

The relative rates of formation, P(N"), are calculated acoording to the for-
mulas described in Appendix (eq AS, A12, A17, and A21), and the rotational
distributions thus obtained are fitted to the experimental ones by adjusting the
bmax parameter and the scaling factor which determines the magnitude of the
calculated P(N') as a whole. The parameters are determined independently
for the three vibronic states, A3[I(v=0, dand 1) and c'TI(v=0). The results are
shown in Figures 4-8.

The A%TI(v=0) state: The experimental distribution can be reproduced in
cases (1) and (2), but not in cases (3) and (4) (see Figure 4). Therefore, it is
unlikely that molecular elimination (processes (C),(D), and (E) in Table I)
takes place. This statement is consistent with the discussion in subsection A.
In case (1), the slope of the distribution at higher N’ is well reproduced,
although agreement is less satisfactory at lower N'. On the other hand, the
overall feature of the experimental distribution is well reproduced in case (2).
However, one cannot draw any definitive conclusion as to which of cases (1)
or (2) is to be favored. These mechanisms are two extremes, and the actual
mechanism may well be an intermediate. Namely, it is probable that the
motions of the two H atoms are neither purely independent nor strongly
correlated.

The ATI(v=1) state: The distribution can be reproduced by cases (1) and
(2) (see Figure 7). A good agreement is obtained with case (1), but for case
(2) the agreement is restricted to higher N'. Cases (3) and (4) cannot repro-
duce the experimental distribution. As in the case of the A3TI(v=0) state,

cases (1) and (2) are both acceptable, but case (1) '(independent motions of
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the H atoms) is clearly favored in this case.

The c'TI(v=0) state: A good agreement is obtained with cases (1) and (2).
Molecular elimination (process F in Table II), which corresponds to cases (3)
and (4), can be excluded by the spin-conservation rule (see subsection A), but
the distribution can also be reproduced for cases (3) and (4). In conclusion,
the number of experimental data is not sufficient for determining the mechan-

ism for production of NH(c).

D. The values of b, and the dissociation dynamics

The values of b,,, which result in the best fit for each vibronic state and
for each case are listed in Table III. The optimum values of b,,, are all very
small, i.c., they are even smaller than the N-H bond length for NH;(X), 1.0
A. Therefore, it can be concluded that essentially axial recoil of the H atoms
takes place. In this case, the two H atoms dissociate along the N-H bond
axis, and the rotational excitation of NH is ascribed only to the torque exerted
on NH by the N-H bond rupture. This means that the inversion motion of
the parent NH; molecule has little effect on the rotational excitation of the
NH fragment. This dissociation dynamics is opposite to that in the VUV-
photodissociation of NH;,! ™% in which case the inversion motion is believed
to play a crucial role in the NH rotational excitation.

One can consider two possible explanations for the axial recoil: (1)
Because of the large excess energy (= 7 eV) the H atoms dissociate along a
very steep repulsive wall of the potential surface, and therefore, the energy of
the inversion motion is negligible in comparison with that of the dissociative
motion along the N-H bond axis. (2) If the equilibrium structure of the tran-
sient NH;y** molecule is pyramidal, it is unlikely that the inversion motion is

excited significantly.
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E. Dissociative states
The electron configuration of the ground state NHj is
(1a1)(2a,)(1e)*(321)°.
The ionization potentials are listed in Table IV. No precise knowledge is
available on the neutral excited states located near the excitation energy of
He(23S,), 19.8 eV. The neutral excited states in this region are generally
classified into the following four types:

I valence-type singly excited states

II valence-type doubly excited states

IIT Rydberg-type singly excited states

IV Rydberg-type doubly excited states
In the present section, possible dissociative states are examined for each type
and it is shown that excited states of type II are the most probable dissociative
states.

Type I: The excitation energy, 19.8 eV, exceeds the ionization potentials
of the (3a;)~! and (le)~! ionic states. Therefore, the excited states of the
present type located near 19.8 eV should have one hole in the 2a; orbital.
This 2a; orbital is the inner-valence orbital and has a character of the 2s orbi-
tal of the N atom. Excitation to this inner-valence excited state by collision
with He(2°S,) reqires overlap of the 2a; orbital of NH; with the 1s orbital of
He(23S,).26 Since the electron density of the 2a; orbital is localized inside the
NH; molecle, the excitation to such an inner-valence excited state by collision
with He(23S,) is expected to be inefficient.

Type II: Possible excited states of this type located near 19.8 eV are those
states which are obtained by promoting two electrons from the outer-valence
orbitals, 3a;, and le, to certain antibonding orbitals. These excited states,

which are expected to be repulsive because two of the antibonding orbitals are
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occupied, are suitable candidates for the dissociative states in question.

Type III: The excited states of this type corresponds to the Rydberg states
converging to (3a;) !, (1e)~!, and (2a;) ! ionic states. The ionization poten-
tial of the (2a;)”! ionic state, 27 eV, is so high that the Rydberg states con-
verging to this limit are expected to be inaccessible at 19.8 eV. As for the
(3a,)"!, and (le)~! ionic states, an examination on the photoelectron spec-
trum indicates that the vibrational states of these ionic states are not accessible
by the vertical transition at 19.8 eV. Since excitation by collision with
He(23S,) generally follows the Franck-Condon principle,?’ excitation to the
Rydberg states converging to these ionic states is not expected to take place.

Type IV: Excited states of this type is formed when one electron is pro-
moted to a Rydberg orbital and another electron is promoted simultaneously
to a certain antibonding orbital. Excitation to the corresponding ionic states
also requires two-electron promotion, which is optically forbidden. In conse-
quence, the corresponding photoelectron bands are not found in ordinary
photoelectron spectra. However, the existence of such ionic states at about
19.8 eV is indicated by Kronebusch et al.?®: They found that the onset of for-
mation of NH™ by the dissociative photoionization of NH; ranged from 17.6
eV (thermochemical threshold) to 21.2 eV (minimum photon energy for
detection of NH™) and that the cross section for formation of NH™ was about
1/100 of those for formation of NH; and NH; . Since there are no ionic
states produced by one-electron promotion in the energy range of 17.6-21.2
eV, this onset indicates that the ionic state formed by the two-electron promo-
tion from NH;(X) is located in this region, and excitation to this state leads to
the formation of NH*. According to the ion-core model,?*3° however, exci-
tation to the Rydberg states converging to this ionic state gives NH radical in

the Rydberg-type excited states instead of the valence-type excited states such
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as A3l and c!IT; hence, these Rydberg states are not likely to be the dissocia-
tive states involved in the dissociation discussed in the present paper.

In conclusion, the excited states of type III can be excluded, and those of
types I and IV are considered to be unlikely. Therefore, the most probable
dissociative states belong to type II. Nevertheless, one cannot assign the dis-
sociative states in more detail because of the lack of further precise informa-

tion on the neutral excited states located at about 19.8 eV.

APPENDIX : Rotational distribution resulting from the upper limit of the
impact parameters

The presént model is based on the model that the rotational distribution of
the NH fragment is governed by the upper limit of the impact parameters of
the half collision of the fragments in the dissociation. According to the
difference in the motions of the two H atoms, the following four cases are

considered:

Case (1): One considers unimolecular dissociation of the transient excited
parent molecule, NH;** [Assumption (1) in Discussion B ],
NH;** - NH + H,+ H,. (A)
Conservation of the energy and that of the angular momentum leads to the
following relations:

Ea+ Eb +BNHN(N+1)=Eex’ (Al)
and

J=N+la+lb, (AZ)
where

E., = (excitation energy of He(235,):19.8 eV)
— (dissociation energy) — (vibronic energy of NH).
Here, J and N are the rotational angular momenta of NH;** and NH, respec-

tively, 1, is the orbital angular momentum of the relative motion of NH and
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H;, Byy is the rotational constant of NH, and E; is the kinetic energy of the
relative motion of NH and H;, where i=a,b. Since my/my<<1, where my
and my are the masses of the H and N atoms, respectively, 1; can be related
to the impact parameter, b;, of the relative motion of NH and H; by

;| = myvib;= (2myE;)"*b;, (A3)
where v; is the velocity of the relative motion of NH and H;, and the atomic
units are employed.

It is assumed that the impact parameter has an upper limit, b,,,,; namely,
b;=b.«(i=a,b) [Assumption (2)]. This condition places a restriction on I;:

il = BP®| = (2myE)) b e, (A4)
and this restriction sets a limit on N by eq (A2).

It is further assumed that all the accessible final quantum states are equally
probable [Assumption (3)]. A group of the dissociative states of NH;** hav-
ing energy E and angular momentum J are evolved into a group of final states
having energy EF and angular momenta N, l,, and l,, which satisfy eq (A2)
and (A4). The last assumption means that all the members of this group have
equal rates of formation. Therefore, the rate of formation, P(N), of the NH
fragment having a given rotational quantum number N is obtained by count-
ing the number of final quantum states having N which satisfies eq (Al),
(A2), and (A4). In this counting procedure, one needs to consider the initial
distribution of J, which originates from the rotation of NH;**, by introduc-

ing a weight factor g(J). Accordingly, P(N) is given by

P(N)o[ [AEdE,S 3 Ze()p(En)p(Ey), (AS)
D, (Ia1p0)eD;
where
D12E3+Eh=Eex-BNHN(N+1) and Eh,EbZO, (A6)
D2:{(la:lb!J)lla+1l)+N=J’ Ilils(zmHEi)wbmax} (i=a,b), (A7)

and
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p(E)=(E)* (i=a,b). (A8)

Here, p(E;) represents the energy dependence of the density of states of the

three-dimensional translation. It is assumed that the rotational distribution of

NH;** is a Boltzmann function with a rotational temperature T,,,=300 K it
therefore follows that

J
g(/) o= 3 exp[—{BJ(J+1)+(C—B)K*VkTo1], (A9)

K=-J
where B and C are the rotational constants of NH;, and K is the projection of

J onto the c-axis. It is noted that the (2/+1)-fold degeneracy with respect to
M; (z-projection of J) is automatically taken into account in the summation in
eq (AS).

Case (2): In this case; one considers the same unimolecular dissociation,
reaction (A), as in case (1) except that complete correlation between the
motions of the two H atoms is assumed. This assumption implies that the
momentum vector of one H atom is specified uniquely, if one specifies the
momentum vector of the other H atom. One possible physical picture is that
the two H atoms dissociate in such a manner that the plane of symmetry of
the system is conserved. In this case, one can regard the two H atoms as one
fragment with no rovibrational degree of freedom. Then, the conditions of
the conservation of energy and angular momentum are represented as

Ek+BNHN(N+ 1) = Eex- (AlO)
and

J=N+1, (Al1)
where Ey and | represent the kinetic energy and the orbital angular momen-
tum of the "fragment (H-H)," and the definition of E,, is identical with that in

case (1) (see eq (A1) and (A2)). Equation (AS5) is modified as follows:

PWN)<[ 3 Ze(Ip(Ex(N), : (A12)

(LDHeD
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where

Ek(N) = Eex_ BNHN(N+ 1), (A13)
and

DAMLDI+N=T, [l|=(4myE\)*bmax}- (A14)
The definitions of g(J) and p(E (N)) are the same as those in case (1) (see eq
(A8) and (A9)).
Case (3): The dissociation process,
NH;** - NH + H, , (B)
is considered in this case. Conservation of the energy and the angular
momentum is represented by

Ek+ Evib+ BHzK(K+ 1) + BNHN(N+ 1) = Eex ’ (AIS)

and

J=N+K+1], (A16)
where K is the rotational angular momentum of H,, E, and 1 are the kinetic

energy and the orbital angular momentum of the relative motion of NH and
H,, respectively, By, is the rotational constant of H,, E,;;, is the vibrational
energy of H,, and other notations follow case (1) (see eq (Al) and (A2)).

The orbital angular momentum, 1, is assumed to have the upper limit deter-

mined by b, (see eq (A4)), whereas no restriction is set on the magnitude

of K. The rate of formation, P(N), is represented by

PN)«<33 3 SeW)p(Ex), (A17)
v (J,,K)eD
where
Ey= Ey—Ej,(v)— By\uN(N+1) — By K(K+1), (A18)
and
D: {(LK,HI+K+N=], [l|=(4myE))*bpa}- (A19)

The definitions of g(J) and p(E}) are the same as those in case (1) (see eq
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(A8) and (A9)), and E.;,(v) is evaluated by

Eyiy(v)=we (v + %) - %)2. (A20)
The summation over v in eq (A17) is taken up to the dissociation limit of
Hy(X).

Case (4): In this case, one considers the process in case (3) except for the
additional assumption that no torque works on H; in the dissociation. With
this condition, K is always perpendicular to N, and the rotation of H, ori-
ginates only from that of the parent molecule. Conservation of energy and
that of angular momentum are the same as those in case (3) (eq (Al5) and

(A16)). The rate of formation, P(N), is expressed as

PN)=33 ¥ Zg()g (K)p(Ey), (A21)
v  (JLK)eD ‘
where
D: {(J,LK)I+K+N=J, K-N=0, [l|=(2myE\)*bnax}- (A22)

The definition of E; is identical with that in eq (A17), and the rotational dis-
tribution of H,, g'(X), is assumed to be the Boltzmann distribution at 300 K.
The condition that K:-N=0 is treated in the counting of quantum states as fol-
lows: If K-N=0, the vector sum, M, of N and K are given by

IMP= N2+ K. (A23)
The representation in which |[M[?, [NJ*, and [K[* are simultaneously diagonal
being taken, one obtains that

MM+1)=NWN+1)+K(K+1). (A24)
Since M, N, and K are all integers, eq (A24) is not satisfied except by chance.
Namely, the geometrical condition that N is parpendicular to K is meaningful
only in the classical limit, because the direction of the angular momentum is
not observable in quantum mechanics. In the present analysis, M is calculated

by solving eq (A24) with given N and K, and then this value is replaced by



the nearest integer.
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TABLE I
Partition of rotational energy to NH from NH; by impact of He(23S,).

states <E.>/eV?  E./eV” <E,0;>/Eex
NH(A) v=0 0.46(5) 7.6 0.060(6)
NH(A) v=1 0.41(4) 7.3 0.056(6)
NH(c) v=0 0.33(3) 6.0 0.055(6)

a) Average rotational energy obtained in' the present study. Values in
parentheses represent errors.

b) Excess energy, calculated by use of data in refs. 19 and 22.
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TABLE II

Energetically possible processes in the He(23S,)+NH; reaction forming
NH(A) and NH(c)

He(23S,)+ NH;- E./eV

He(1'S,) + NH(A') + Hy(X'Zy) 121 (A)
He(1'S,) + NH(A3M) + 2H(1s) 7.6 (B)
He(1!S,) + NH(AI) + Hy(B'S)) 0.9  (C)
He(1'Sp) + NH(AI) + H,(c’IL,) 03 (D)
He(1'S,) + NH(A®) + H,(a%%,") 03  (E)
He(1lSp) + NH(C'Il) + Hy(X'E;)® 104  (F)
He(1!Sp) + NH(c!IT) + 2H(1s) 6.0 (G)

a) This process does not conserve the spin angular momentum.
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TABLE III
Optimum values of b,,,, (in A).

cases
(1) (2) (3) (4)
Alllv=0 0.5 0.3 -5 -
Al v=1 0.6 0.3 —b) —b)

¢l v=0 0.5 0.3 0.05 0.1

a) The upper limit of the impact parameter is denoted as b,,,,. See Discus-

sion B and D.

b) No close fitting could be obtained in these cases.
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TABLE IV

Ionization potentials for NH;4

states (3a)) 7! (le)~! (2a;) 7!

IP/eV? 10.85 15.8 27

a) Ionization potentials taken from ref. 25
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Figure Captions

Figure 1: Emission spectra of the NH(A3I-X33") and NH(c'II-a!A)
bands. The upper trace is the spectrum obtained from NHj; in the He flowing
afterglow. The resolution was 0.03 nm (FWHM). The lower trace is a simu-
lated spectrum.

Figure 2: Rotational distributions of NH(A3II; v=0,1). The rates of for-
mation, P(N'), were normalized against that of NH(A3[l; v=0; N=1). The
distribution for v=0 can be represented by two straight lines with different
slopes; see Discussion B. The broken line represents a prior distribution for
NH(A3M; v=0).

Figure 3: Rotational distribution of NH(c'Il; v=1). The line represents a
Boltzmanﬁ distribution with a rotational temperature of 3600 K.

Figure 4: Rotational distribution of NH(A3II; v=0) calculated by a model

for cases (1)-(4) (see Discussion B and C): — corresponds to case (1) with
bmae = 0.5 A, --- to case (2) with b, = 0.3 A, —-— to case (3) with by, =
0.03 A, and —*-— to case (4) with b, = 0.05 A. Closed circles represent

the relative rates of formation obtained experimentally.

Figure 5: Rotational distribution of NH(A’Il; v=0) calculated by the
model for case (1) with three different values of b,,,,; — corresponds to b,,,
= 0.5 A, —toby, = 06A, and —— to b, = 0.4 A. Closed circles
represent the experimental data.

Figure 6: Rotational distribution of NH(A®I;v=0) calculated by the
model for case (2) with three different values of b,,,,; — corresponds to b,
= 0.30 A, - t0 by, = 0.36 A, and —-— to b,,, = 0.27 A. Closed circles
represent the experimental data.

Figure 7: Rotational distribution of NH(A3; v=1) calculated by the

model for cases (1)-(4); — corresponds to case (1) with b, = 0.6 A, - to



.37 .-

case (2) With bpex = 0.3 A, —-— to case (3) With by, = 0.05 A, and —--—
to case (4) with by, = 0.05 A. Closed circles represent the experimental
data.

Figure 8: Rotational distribution of NH(c!IT; v=0) calculated by the model
for cases (1)-(4); — corresponds to case (1) with b, = 0.5 A, --- to case (2)
with b, = 0.3 A, —— to case (3) with b, = 0.05 A, and —--— to case

(4) with b, = 0.1 A. Closed circles represent the experimental data.
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Chapter 2

Electronic State Distributions of Fe Atoms
Produced Fe(CO); and Fe(CsHjs),

ABSTRACT
Dissociative excitations of Fe(CO)s and Fe(CsH;s), in collision with

He(23S,) are investigated. The emission spectra of the excited Fe atoms pro-
duced in these reactions are analyzed, and the electronic-state distributions are
obtained. A statistical model is developed for interpreting these state distri-
butions, from which the energy partitioning between the Fe atom and the
ligands is studied. A consideration of the molecular-orbital correlation indi-
cates that the dissociative states are formed by electron rearrangement in the
transient excited states of the parent molecule primarily produced in the colli-
sion with He(23S;). The modes of nuclear motions of the ligands which
mainly participate in the energy partitioning are assigned by assuming that the
energy partitioning occurs in this electron rearrangement accompanied by the

vibrational excitation of the parent molecule.

INTRODUCTION

Electronically excited Fe atoms are produced in dissociative excitations of
Fe(CO)s; and Fe(CsHs), by various excitation methods such as photo-
excitation,!~!? electron impact,’® and collision with active nitrogen!* or rare
gas metastable atoms.!>”!® In the processes of dissociative excitation, a
metal-complex molecule can be regarded as a metal atom embedded in a heat
bath, between which the excess energy of the reaction is distributed. The

electronic-state distributions of the metal atom produced in these processes
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contain information on the interaction between the motions of the electrons in
the metal atom and the nuclear motions of the ligands.

In particular, excitation by collision with the He metastable atom,
He™(23S,), is characterized by the following features: The excitation energy
of the He™ atom, 19.8 eV, is sufficient to excite the target molecule to certain
superexcited states such as Rydberg states with an excited ion core. This exci-
tation mechanism differs from that in laser multiphoton dissociation,>”!° in
which the energy is poured into the parent molecule step by step; in each step
the ligands are dissociated, and no substantial energy may be stored in the
parent molecule. Excitation by He™-impact also differs from photo-excitation
at wavelengths corresponding to 19.8 eV!? in that it is not restricted by optical
selection fules. Therefore, two-electron-excited states can be produced in col-
lision with the He™ atom.!® These highly excited states, many of which are
located in the vicinity of 19.8 eV, are likely to take part in the processes of
dissociative excitation. An additional feature of the He™-impact excitation is
a steric effect, as observed typically in Penning ionization;?®?! in molecules
such as Fe(CO)s and Fe(CsHs),, the metal atom is "shielded” by the ligands
so that the He™ atom cannot fully interact with the metal atom. In conse-
quence, the ligands are first excited and then the energy is transferred to the
metal atom.

Several studies of the reactions of Fe(CO)s with rare gas metastable atoms
have been reported. Snyder et al. and Kobovitch et al. have observed the
emission from the excited Fe atoms produced from Fe(CO)s by impact of an
Ar™ beam.!”!® The electronic-state distributions of the Fe atoms produced in
the flowing-afterglow reactions of Ar™ ,Ne™, and He™ atom with Fe(CO);

have been analyzed in terms of a statistical model by Hartman et al.;>!6 an

"explosive dissociation mechanism" has been proposed, in which all the
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ligands dissociate at once. !¢

In the present work, the He™+Fe(CO)s reaction is re-examined, and the
electronic-state distribution is determined over many more electronic states
than in the previous work.!® The He™+Fe(CsHs), reaction, which has not
been reported s0 far, is also studied, and the reactions of these two molecules
are compared. A statistical model is developed for interpreting the
electronic-state distributions obtained, from which the number of effective
degrees of freedom of the heat bath is estimated. The dissociative states are
also studied on the basis of a molecular-orbital correlation scheme, and it is
found that the dissociative states are formed by electron rearrangement in the
transient-excited states of the parent molecule primarily produced in the colli-
sion with He™. The modes of the nuclear motions which contribute effec-
tively to the heat bath are assigned by assuming that the energy partitioning
between the Fe atom and the ligands occurs in this electron rearrangement

accompanied by the vibrational excitation of the transient molecule.

EXPERIMENTAL SECTION

A flowing afterglow method was employed.?? Helium gas, purified by
passing through molecular sieve cooled at liquid nitrogen temperature, was let
into a discharge region, where the He metastable atoms were generated by a
microwave discharge (2.45 GHz, 100 W), and then admitted to a reaction
chamber, which was evacuated by a mechanical booster pump (500 I/s). The
pressure of He in the reaction region was 0.15-0.4 Torr. Charged particles
produced simultaneously in the discharge were removed by a pair of grids,
one of which was biased at —10 V.22

The target gas was introduced 15 cm downstream from the discharge
region. Commercial Fe(CO)s (Alfa Ventron) and Fe(CsHs), (Wako Chemi-

cals) were used after degassing by several freeze-pﬁmp-thaw cycles. In the
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experiment on Fe(CO)s, the pushing pressure of the sample gas, typically 5
Torr, was always monitored. On the other hand, in the case of Fe(CsHs), a
sample reservoir and an inlet pipe were heated to about 100°C so as to obtain
a sufficient vapor pressure, about 10 Torr at 100°C.?*> The temperatures of
the sample reservoir and the inlet pipe were always monitored so as to keep
the pushing pressure constant. The pressure of the sample gas in the reaction
region was several mTorr.

The emission from the reaction region was observed through a quartz win-
dow, dispersed by a 1 m monochromator (Spex 1704), and detected by a pho-
tomultiplier (Hamamatsu R585) and a photon-counting system. The spectral
response of the monochromator and the detection system was calibrated by
use of a standard lamp.

The emission spectra were measured in the range of 250-550 nm; many
atomic lines of Fe(I) were observed, but no emission to be assigned to CsHjs
or CO was observed. The emission spectra of Fe(I) in the range of 340-550
nm, measured with a resolution of 0.05-0.1 nm, were used for the analysis.
A portion of the spectra of Fe(I) is shown in Figure 1.

The active species responsible for the production of the excited Fe atoms
was identified as He(23S,) in the following way:**> The emission intensities of
the Fe(I) atomic lines were totally independent of the potential applied to the
grids. Therefore, contributions of charged particles such as He™ and thermal
electrons to the reaction under consideration were found to be negligible.
The dependence of the emission intensity on the He pressure was identical
with that of the emission intensity of the N5 (B-X) 0-0 band produced by Pen-
ning ionization, He(2%S,)+N,. Therefore, it was confirmed that the excited

Fe atoms were produced by a single collision with the He(23S,) atom.

ANALYSIS
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A. Relative rates of formation
The relative rates of formation of the electronically excited states of the
Fe atoms are calculated as follows. The number density of the Fe atom in the

n-th electronic state, N,,, satisfies the relation

n @ n—=1

dt = 3 ApNp— (I AN, T8,R, (1)
m=n+1 =1

where A,,, is the Einstein A coefficient for the transition from the m-th to the

n-th state, g, is the multiplicity of the n-th state, and R, is the rate of forma-

tion of the n-th state. The electronic states are numbered in the order of

increasing energy. Under steady-state conditions, eq (1) leads to

Rn'_"Kn—Ln ’ (2)
where
n—1
Kn=( 2 Anl)Nn/gn (3)
=1
and
Ly= 3% AwNu/gy - (4)
m=n+1

Here, KX, corresponds to the total rate of formation of the n-th state, including
contributions from cascades, and L, represents the rate of formation of the
n-th state due to cascading from all the higher states (see Figure 2). The rela-
tive values of the number densities, N, and N,,, in eq (3) and (4) can be
estimated from the relative emission intensities of the observed transiti(;ns;
for example, the intensity of the transition from a given state n to a certain
lower state k can be estimated by
L=V ANy (5)
where v, represents the transition frequency and « is a constant.
The summation of A, in eq (3) is taken over the transitions ranging 200-

900 nm.?* Possible errors caused by the neglect of the transitions outside this
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range are estimated in the following section. The summation in eq (4) is
taken over those indices of m for which N,,’s are obtained. It is found that
the contributions of the cascades from upper electronic states to the state
under consideration, L,, do not appreciably influence the rates of formation,
R,, except for the three lower-lying excited states, z’D, a’F, and z’P (the

designation of the electronic states follows that in ref.25).

B. Random experimental errors in the rates of formation.

Random experimental errors are estimated from the fluctuations of the
data obtained from several runs of the measurement and from the scatter in
the rates of ‘formation of a given state estimated independently from different
transitions. The limits of error range from 10 to 50% of the rates of forma-

tion depending on the state of the Fe atom, as shown in Figure 3.

C. Systematic uncertainties inherent in the analysis.

The transitions with wavelengths longer than 900 nm are disregarded in
the present analysis, but they are expected to have only a trivial influence on
the summation of A, in eq (3), because their A coefficients are generally
smaller than those of the transitions in the UV-visible region. The A
coefficients of these transitions disregarded can be estimated by assuming that
the transition dipole matrix elements are constant for all the transitions and
the A coefficient depends only on v3. Under the assumption that there are
several transitions in the infrared region, the errors caused by the neglect of
these transitions are estimated to be about 30% of the rate of formation
obtained for all the states concerned.

The transitions with wavelengths shorter than 200 nm, which are also
disregarded in the present analysis, can result in a more serious underestimate

of the rate of formation of that state. Only the excited states above 6.2 ¢V
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(corresponding to the energy of 200 nm photon) are influenced by this source
of systematic error. The A coefficients of these transitions with wavelengths
shorter than 200 nm are generally larger than those of the transitions in the
range of 200-900 nm, because the A coefficient is proportional to v3. There-
fore, the neglect of the former transitions may have a strong influence on the
summation: For example, if the sum in eq (3) is composed of the A
coefficients for one transition at 170 nm and five other transitions near 400
nm but the transition at 170 nm is disregarded, the summation is underes-
timated to be about 1/70 of the true value. Therefore, the analysis of the
state distribution to be discussed in the following sections is based only on the
rates of formation of the states below 6.2 eV, which are free from uncertain-
ties undér consideration. Nevertheless, the rates of formation of the states
above 6.2 eV are also in good agreement with those predicted by the statisti-
cal model. Therefore, the systematic error mentioned above for these states

seems to be inessential.

RESULTS
A. Electronic-state distributions.

vThe quantum numbers of the observed excited states of Fe are L=0-0,
§=0-3, and J=1-7, and their electron configurations are 3d’4s, 3d®4s?,
3d%s4p, and 3d%4s5s. The relative rates of formation of these excited states
are plotted in Figure 3 as a function of their excitation energy. The rates
decrease uniformly with the energy, and the energy dependence of the rate
for Fe(CO)s is weaker than that for Fe(CsH;s),. The rates of formation of the
spin substates of the z7FJ state depend on their total angular momentum, J, as
shown in Figure 4, whereas the substates of all the other electronic states have
essentially equal rates of formation. As shown in the next section, the J

dependence of the z’F; state is explained as originating from collisional
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relaxation.

B. Collisional relaxation.

The relative rates of formation are found to be independent of the He
pressure from 0.15 to 0.5 Torr. This finding indicates that the observed rates
of formation are essentially free from collisional relaxation. The above state-
ment is supported by the following estimation of the time scales: The cross
section for collisional quenching of an excited Fe atom by the He atom is
estimated from the quenching cross sections of Hg(6P) by He?® to be on the
order of 0.1-1 A2. The relaxation time at 0.3 Torr is then estimated to be 1-
10 ps. On the other hand, the radiative lifetimes of the observed excited
states of Fe range 1-50 ns, and hence, almost all the excited states are essen-
tially free from collisional quenching under the present experimental condi-
tions. The three lower-lying states, z’D, z’F, and z'P, are the exceptions,
because they have lifetimes of 1-70 ps.2* However, the effect of collisional
quenching on the rates of formation of these states is estimated to be inessen-
tial in the following way: When the He pressure is varied from 0.15 to 0.5
Torr, the change in the rates of formation of these three lower-lying states is
found to be within the experimental fluctuation, which is about 10% of the
rates of formation. If one assumes that this change is ascribed to the colli-
sional quenching, the collision-free rate of formation obtained by extrapola-
tion to the zero-pressure limit amounts to about 1.04 times the rate of forma-
tion estimated at 0.15 Torr. Therefore, the effect of collisional quenching on
the rates of formation of these three lower-lying states, z’'D, z’F, and z'P, is
negligible.

On the other hand, the cross sections for relaxation within the spin sub-
states are expected to be several orders of magnitude larger because of the

exponential-gap law.?’” In a beam experiment of the Ar™+Fe(CO)s
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reaction!”"!8 the rate of formation is found to be independent of J for the z’F;
state, whereas in an experiment of Ar flowing afterglow at an Ar pressure of
2 Torr!¢ the rate is found to increase rapidly with J. Therefore, relaxation
among the spin substates can cause Jdependence, and the J dependence of the
rates of formation of the z’F; states observed in the present study can be
ascribed to the collisional relaxation within the spin substates. Nevertheless,
this relaxation does not alter the rate of formation averaged over the spin
substates. Therefore, the analysis of the state distribution discussed in the
following sections is based on the rate of formation of the z’F; state averated
over the spin substates. However, this type of relaxation is considered to be
negligible for any other electronic states, because their rates of formation are

found to be independent of J.

DISCUSSION
A. Statistical model.

The gradual and monotonic decrease in the rates of formation with the
energy of the excited Fe atom indicates that the state distributions are explica-
ble by a statistical model. The analysis is based on the following model: The
excess energy of the reaction is distributed among the motions of the elec-
trons in the Fe atom and the vibrational motions of the parent molecule. In
the dissociation limit the normal modes of the parent molecule are connected
to the translational, rotational, and vibrational motions of the ligands. There-
fore, these normal modes of the parent molecule can be grouped into the
translation-like, rotation-like, and vibration-like modes. The translation-like
modes correspond to the vibrational modes composed mainly of the motions
of the centers of mass of the fragments. The vibration-like modes correspond
to the vibrational modes of the fragments. The remaining modes of the

parent molecule are the rotation-like modes. The excess energy is assumed to
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be distributed, besides the electronic energy of the Fe atom, among the
translation-like, rotation-like, and vibration-like modes, which have N,, N,
and N, effective degrees of freedom, respectively; these modes act as a heat
bath attached to the Fe atom. If the Fe atom has an electronic energy of E,
the heat bath shares the energy of E.,—E, where E., is the excess energy

defined by

E.,= (excitation energy of He(23S;), 19.8 eV)

— (energy required separate all the ligands)
— (electronic energy of theseparated ligands). (6)
If one assumes that all the final quantum states are equally probable, the pro-

bability, P(E), of producing the Fe atom which has an energy E is propor-

tional to the density of states of the heat bath at E,,—E. By use of the rigid

rotor-harmonic oscillator approximation, P(E) is given by?82°
P(E)=const. X (E.,—E)" , (7)
n=%N,+N,+s)+N,—1, (8)

where s=2 if the centers of mass of the fragments have a linear configuration
in the parent molecule before the dissociation, and s=3 otherwise. The
parameter s originates from the degree of freedom of the orientation of the

parent molecule, which is unspecified in the present experiment.

B. Analysis of P(E).

The parameters, E., and n, are determined by fitting P(E) to the experi-
mental distributions. In this fitting procedure, the curvature of P(E) is
adjusted by choosing E,, from the possible excess energies of the energeti-
cally accessible processes listed in Table I, and the rate of decrease in P(E) is
adjusted by varying n. The best-fit curves are shown in Figure 3, and the
values of E,, and n which give the best-fit curves are listed in Table II.

In the case of Fe(CQO)s, the value of E,, is determined uniquely to be 7.8
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eV. If E,, is set equal to 13.8 eV, the graph of P(E) becomes a straight line
irrespective of the value of n, and P(E) cannot be fitted to the experimental
state distribution which has a certain curvature. On the other hand, if E,, is
set equal to 6.9 eV or smaller, the curvature of P(F) is too large for any
value of n to obtain a good fitting. Therefore, the value of n is determined
by adjusting the rate of decrease in P(E) after E,, is fixed at 7.8 €V.

In the case of Fe(CsHjs),, the graph of the experimental state distribution
is a straight line, and P(F) can be fitted equally well for E., ranging 13.4-8.0
eV, beyond which the curvature is too large to be acceptable. The value of n
is determined by adjusting the rate of decrease in P(E), which is insensitive to
the value of E., in the range of 13.4-8.0 eV.

From the value of E,, obtained, the electronic states of the separated
ligands can be identified. On the other hand, the parameter n provides infor-
mation on the degrees of freedom of the heat bath involved in the dissocia-

tion.

C. Estimation of the effective degrees of freedom.

The values of N,, N;, and N, are estimated from eq (8) by use of the
estimated value of n under the following constraints:

(1) N, N,, and N, do not exceed the available degrees of freedom, N?,
N?, and N9, respectively (see Appendix).

(2) N, is non-zero, i.e., it is assumed that the translational motions of the
dissociating fragments are always fully effective as the heat bath, because the
translational motions are the motions along the dissociation coordinates to
which the excess energy must be partitioned in order that the dissociation
takes place.

(3) Dissociation forming N; independent fragments involves 3N;—6 trans-

lational degrees of freedom (or 3N;—5, if the centers of mass of the
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fragments have a linear configuration in the parent molecule), because the
degrees of freedom of the relative motions of N; particles are 3N;—6 (or

3N¢—35). Therefore, it follows that

N,=3N;—6 (nonlinear configuration),

or

N,=3N¢—5 (linear configuration). (9)
By substitution of N, with N¢, eq (8) is expressed as

n=%(3Ns+N,—3)+N,—1. (10)

The dissociation mechanism can be determined from N¢. The efficiency of the
heat bath, 1, can be calculated by

n=(N,+N+N,)/(NO+N2+NJ) . (11)

The modes which contribute effectively to the heat bath are those modes

which are likely to share the excess energy with the Fe atom. Therefore,

these modes should interact strongly with the motions of the electrons around

the Fe atom in the dissociative states. In order to assign the effective modes,

one needs information on the vibronic interaction in the dissociative states.

D. Dissociative states and vibrobic interaction.

When a target molecule collides with He™, the target molecule is excited
by promotion of either one or two electrons from the occupied orbital(s);
these orbitals should have sufficient overlaps with the 1s orbitals of He™ in
order that the excitation takes place with an appreciable cross section.20-2!
This criterion, along with the consideration of the energetics, enables the
assignment of the electron configurations of the primary excited states.

Since various electronic states of Fe are produced in the reaction under
consideration, the primary excited states should decay into many dissociative

states, each of which correlates with a different electronic state of Fe. The

energy partitioning between the Fe atom and the nuclear motions occurs in
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this non-radiative electronic transition accompanied by the vibrational excita-
tion of the transient molecule. This electronic transition, in other words elec-
tron rearrangement, can be traced by considering the correlation between the
electron configurations of the primary excited state and the final products.
Then one can predict which vibrational modes are likely to be excited.
The probability amplitude, Tg, for this electron rearrangement with vibra-
tional excitation is expressed as
T=<de(r,Q)x:(Q) [V (r) [i(r,Q)x;(Q)> (12)
where ¢ and x are the electronic and vibrational wave functions, respectively,
r is the electron coordinate, Q is the normal coordinate, and V(r) represents
the Coulombic interaction among the electrons. After integration with respect

to r, one can rewrite eq (12) as

Ta=<x:{(QV(Q)xi(@)> (13)
where V(Q), the matrix element of the electron correlation for fixed Q, is
defined by

V(Q)=<ts(r,QIV () i(r,Q)>. (14)
The Taylor expansion of V(Q) about the equilibrium nuclear coordinates
leads to

= av
Tﬁ‘"V0<XfIXi>+2(E—)O<Xf|Qs|Xi>+"' - (15)
Ky 5

The second term represents the vibrational excitation induced by the electron
rearrangement; the vibrational modes that have large (ai/'/aQS)o values are
likely to participate in the energy partitioning under consideration. Express-
ing the Y’s by the products of MO’s, one can reduce (9V/3Q,), to the deriva-
tive of the matrix element represented in terms of- the bases of an individual
molecular orbital, ¢. Since V is the two-electron operator, the matrix element
in eq. (14) can be represented in terms of the four molecular orbitals which

are involved in the electron rearrangement. Therefore, it follows that
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(aags Jo= 32: <[Vl >
= aaQs <¢A¢plvl¢p¢o>' (16)

From eq. (16) with given electron configurations before and after the electron
rearrangement, one can predict which modes have large (af/aQ,)o values.
Such a model calculation is applied to the formation of the excited Fe atoms

from Fe(CO)s and Fe(CsHj),.

E. Reaction of He™ with Fe(CO)s.
E.1 Analysis of the electronic-state distribution.

The energetically accessible processes which lead to the formation of the
Fe atom are listed in Table I. By choosing E., from these values, and simul-
taneously varying n, the P(E) defined in eq. (7) is fitted to the experimental
state distribution (see section B.). The value of E,, is uniquely determined to
be 7.8 eV (see Table H). Therefore, the most probable process leading to the
formation of excited Fe atoms is estimated to be

He™+Fe(CO)s ~ He+Fe*+ CO(2%)+4CO(X!=™). (17)

On the other hand, the best-fit value of n defined in eq. (8) is 2+0.5 (see
Table II). Among the several possible combinations of N¢, N, and N, which
satisfy eq. (10), N¢ is restricted to 2 or 3 because N¢=3 from eq.(10) for n=2
and because N¢=2 by definition, and hence, N, has to be either 1, 3 or 4 from
eq.(9). Corresponding to these two possibilities for N, one can consider two
possible mechanisms: mechanism (1), where N;=2, and mechanism (2),
where N;=3 (see Table III).

In mechanism (1), two independent fragments can be assigned to the Fe
atom and a group of five CO ligands. This indicates that all the CO
molecules explode outwards with the same velocity, i.e., they dissociate along

the normal coordinate of the Fe-C breathing vibration. Several combinations
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of N, and N, are possible in this case (see Table III).

In mechanism (2), two fragments besides the Fe atom are involved. One
possibility is as follows: The translational motion of the CO(a*ll) molecule
and those of the explosive dissociation of the four CO(X!Z*) molecules are
involved in the dissociation. In this case, where N;=3, N, and N, are res-
tricted to be zero according to eq.(10), i.e., the rotation-like and vibration-
like modes are ineffective as the heat bath.

Both mechanisms involve explosive dissociation, and only a small number
of the degrees of freedom are effective as the heat bath. The efficiency, m,
ranges from 11% to 21%, as shown in Table III.

The present conclusion is essentially consistent with that obtained by Hart-
man et ai.w They concluded a completely explosive dissociation mechanism,
where N¢=2 and N,=N,=0, and hence, n=0.5 (see eq.(10)), for reactions of
Ar™, Ne™, and He™, with Fe(CO)s assuming that all the CO molecules were
produced in the ground state X!=*. In the present work, the rates of forma-
tion are obtained over many more electronic states than in the previous
work, !¢ and more detailed information on E,, and n is obtained: In summary,
one of the five CO molecules is found to be produced in the a3ll excited state,
and it is also found that a few degrees of freedom, besides those of the explo-

sive dissociation, can take part in the energy partitioning.

E.2 Dissociative states and vibronic interaction.

The reaction under consideration does not involve ionization because of its
energetics (see Table I). Therefore, if one-electron promotion is assumed,
the electron in question must be promoted from one of the orbitals which
have ionization potentials higher than 19.8 eV (the excitation energy of He™).
As mentioned in section D, this orbital should have a sufficient overlap with

the 1s orbital of He™. The orbitals which satisfy the above two criteria are
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the 4o-like orbitals which have high electron densities on the O-atom side of
CO (see Figure 5). The primary excited state is assigned to a Rydberg state
with an electron configuration of (4o —like)~!(Ryd)', because the energetics
requires that the primary excited state is one of the Rydberg states.

Since the 4c-like orbitals are nonbonding orbitals localized on the CO
ligands,30-31 a hole in the 4o-like orbital remains in one of the CO molecules
when the dissociation proceeds, and an electronically excited CO molecule
with a hole in the 4o orbital is formed. However, formation of CO*((4c)™ 1)
is unacceptable because of its energetics. Furthermore, an analysis of the
state distribution (section E.1) indicates that one of the CO molecules is
excited to the a1 state, which has the electron configuration of
(50)~1(2%)1.3 The formation of CO(a%Il) from Fe(CO)s with a hole in the
4o -like orbital can be explained by assuming the following electron rearrange-
ment: One electron in the So-like (or 3d-like) orbital fills the hole in the 4o-
like orbital, and simultaneously one electron in the 3d-like (or So-like) orbital
is promoted to a Rydberg orbital (see Figure 6). In consequence, a two-
electron-excited state with holes in the So-like and 3d-like orbitals is formed.
Dissociation from this state leads to the formation of an electronically excited
Fe atom, one CO(a*I]) and four CO(X'=") molecules.

The quantity (3V/8Q,), in €q.(16) corresponding to the above electron

rearrangement is expressed as

(aaQVS o= ags <bRya4clVIbseb3a>, (18)

where ¢ryq represents a Rydberg orbital, ¢4, a 4o-like orbital, etc. Since

b4gr Pso, and ¢34 orbitals are mainly localized on the O, C, and Fe atoms,
respectively, the Fe-C and C-O stretching vibrations are expected to influence
the matrix element strongly. Therefore, the normal modes which involve the

Fe-C and/or C-O stretching motions, i.e., the dissociative motion, which
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correspond to four translation-like modes, and the stretching vibrations of the
five CO ligands, which correspond to five vibration-like modes, are likely to
act as the heat bath. On the other hand, the normal modes which are mainly
composed of the Fe-C-O bending motions and the C-Fe-C bending motions
are expected to be ineffective as the heat bath; these modes correspond to all
of the rotation-like modes and four translation-like modes.

The present discussion is essentially consistent with the results obtained in
section E.1: The findng in Table III that only one half, or even less, of the
available translation-like degrees of freedom is effective as the heat bath can
be explained by the missing contributions from the available translation-like
modes of the C-Fe-C bending motions. The present discussion also predicts
correctly that the number of effective rotation-like degrees of freedom is very
small. As for the vibration-like modes, however, many fewer degrees of

freedom than those predicted by the present analysis are actually effective.

F. Reaction of He™ with Fe(CsHs),.
F.1 Analysis of the electronic-state distribution

By an analysis of the state distribution, the value of E,., is estimated to
range 8.0-13.4 eV. This energy corresponds to a process producing one CsHj
in the ground state and the other CsHj in either an excited state with energy
less than 5 eV or the ground state (see Table I):

He™ + Fe(CsHs), ~ He + Fe* + CsHs + CsHs(*), (19)
where CsHs(*) represents a CsHs radical in an electronic state with energy of
0-5 eV.

The value of n is estimated to be 153 (see Table II). Since N0=3 (see
Table IIT), N, is at most 3. From eq.(9) and the constraint that N,#0, it fol-
lows that N, is restricted to be either 1 or 3. On the other hand, N, should be

equal to or less than 3 because N%=3 (see Table TII). In consequence, the
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value of N, is limited in the range of 12-15 because of eq.(8) with n=15 (see
Table III). This means that effectively 6-8 vibrational modes per one CsHj
radical act as the heat bath. The efficiency, 7, given in Table III is found to
be higher than that for Fe(CO)s; in other words, the (CsHs), ligands provide

a more efficient heat bath than the (CO)s ligands.

F.2 Dissociative states and vibronic interaction.

The energetics analysis of the state distribution (Table I) indicates that the
reaction under consideration does not involve ionization. Therefore, if one-
electron promotion occurs the molecular orbital involved should have an ioni-
zation poteﬁtial higher than the energy of He™, 19.8 eV. The orbitals which
satisfy this requirement are the o orbitals (see Figure 7), which mainly consist
of the 2s orbitals of the C atoms.3®> However, the probability of the promo-
tion from a o orbital is expected to be small because the o orbitals do not
overlap sufficiently with the 1s orbital of He™. On the other hand, two-
electron promotion from the = orbitals is expected to have an appreciable
cross section because the w orbitals have larger overlaps, in which case the
energy required to promote the two electrons should be less than the excita-
tion energy, 19.8 eV: The states to which the molecule is excited primarily
are assigned to the Rydberg states with electron configurations of
(w)~Y(w")"}(Ryd)?, where 7 and ' orbital belong to the same CsHj ligand.

The excited CsHj; radical produced in eq.(19) should have one hole in a
orbital because its excitation energy is small (less than S eV). The m-like
orbital of Fe(CsHs), is mainly composed of the = orbitals of the CsHj;
ligands, and hence, the holes in the w-like orbitals are likely to remain in the
CsHj radical after the dissociation. Therefore, one of the two holes in the 7-
like orbitals should be filled by an electron of the Fe atom when the dissocia-

tilon proceeds. Namely, electron transfer from Fe to CsHj takes place. The
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other possibility of the product states of the CsHjs radicals, i.e., formation of
two ground-state Cs;Hs radicals indicates that two electrons are transferred

from Fe to the 7 orbitals of the ligand.
The quantity (8V/30,)o, given in eq.(16), corresponding to the above two

processes of electron transfer is given by

(o 0= 5 <xlVlbse> or (20)
= ags <¢rbq |Vdsabsa>- (21)

‘The Fe—(CsH;) stretching motions are expected to have large (aV/30,)o
values, because the overlap between a 7 orbital and a 3d orbital is strongly
influenced by these motions. The skeletal vibrations of CsHs are also
expected to have large (8V/3Q,), values, because the skeletal vibrations cause
a deformation of the w-electron cloud. Therefore, the dissociative motion
and the skeletal vibrations of the CsHs ligands are expected to be effective as
the heat bath. Since one CsHj; ligand has 9 skeletal modes, the present discus-
sion explains why 6-8 vibrational modes per one CsH;s ligand act as the heat

bath.

APPENDIX : Evaluation of the available degrees of freedom for the heat bath
The upper limit of the degrees of freedom of the heat bath is equal to the
number of the normal modes of the parent molecule. In practice, however,
not all of these degrees of freedom can contribute to the heat bath even in the
limit of completely statistical partitioning of the excess energy, because the
excitation of some degrees of freedom violates the conservation of the total
angular momentum. When one considers the conservation of the total angu-
lar momentum, it is necessary to take account of the coupling of the angular

momenta. The initial total angular momentum, which is composed of the rota-
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tional angular momentum of the parent molecule and the orbital angular
momentum of the incoming He™ atom, should be equal to the final total angu-
lar momentum, which is composed of the angular momenta of the motions of
the fragments, the electronic angular momentum of the excited Fe atom, and
the orbital angular momentum of the outgoing He atom.

The angular momenta carried by the rotation of the parent molecule and
the motion of the helium atom are small (at most several tens of #) because
these motions are thermal motions. The electronic angular momentum of the
excited Fe atom produced in the dissociation is found to range from % to 7#
(see Results A). On the other hand, the angular momenta of the translational
and rotational motions of the fragments can be much larger than those men-
tioned above, because the fragments may have translational energies of
several eV and may also be rotationally excited, whereas the vibrational angu-
lar momenta of the fragments are on the order of 7 even if they are vibration-
ally excited.3* Such large angular momenta of the translational and rotational
motions of the fragments cannot be cancelled by coupling with any other
angular momenta within the final system of the fragments. Therefore, it can
be assumed that the translational and rotational degrees of freedom which
have angular momenta do not contribute significantly to the heat bath. Fol-
lowing this assumption, the available translation-like and rotational-like
degrees of freedom, N? and N?, are here defined as those translation-like and
rotation-like degrees of freedom which have no angular momenta, respec-
tively. On the other hand, the available vibration-like degrees of freedom,
N9, are defined as the total vibration-like degrees of freedom. In order to
obtain N? and N?, one needs to assign which degrees of freedom have angu-
lar momenta.

A degenerate vibrational mode of the parent molecule which belongs to
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either translation-like or rotation-like mode may have a vibrational angular
momentum, which can be transmitted to the angular momenta of the transla-
tional or rotational motions of the separeted ligands as the dissociation
proceeds. Therefore, the degenerate translation-like and rotation-like modes
which have angular momenta are, under the assumption stated above, ineffec-
tive as the heat bath. In other words, for one doubly degenerate mode
belonging to the translation-like or rotation-like modes, only the vibrational
mode with zero vibrational angular momentum, /=0, is effective as the heat
bath, so that such a degenerate mode should be counted as one (instead of
two) available degree of freedom.

The above prescription is applied to Fe(CO)s and Fe(CsHs),. The sym-
metry spécies of the normal modes of the parent molecules, Fe(CO)s and
Fe(CsHs),, listed in Table IV, are grouped into the translation-like, rotation-
like, and vibration-like modes. The available degrees of freedom estimated

on the basis of this table are given in table III.
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TABLE 1

Energetically accessible processes

Process! E./eV?

HC(23S1) + FC(CO)S -

He + Fe + SCO(X!ZY) 13.8
He + Fe + 4CO(X!Z*) + CO(all) 7.8
He + Fe + 4CO(X!Z*) + CO(a'3=") 6.9
He + Fe + 4CO(X!Z¥) + CO(d’M) 6.1
He + Fe + 4CO(X!=*) + CO(A) 5.5
He + Fe + 4CO(X!=*) + CO(b’=™) 3.4

He(23SI) + FC(C5H5)2 -

He + Fe + 2C5H5 13.4
He + Fe + C5H5 + CSHS* ¢ 9.7
He + Fe + C5H5 + CsH5+ 4.8

a) A cyclopentadienyl radical and its ion in the ground state are represented
by CsHs and CsHs , respectively, and CsHs* represents a cyclopentadienyl
radical in the S; state.
b) Excess energy of the reaction defined by

(excitation energy of He(23S,), 19.8 eV)

— (energy required to separate all the ligands)

— (electronic energy of the separated ligands).
The values of the dissociation energy of Fe(CQO)s and Fe(CsHs), are taken

from refs. 35 and 36, respectively. For the excitation energies of CO, those
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listed in ref. 37 are used. The energy value of the S; state of CsHjs is taken
from ref. 1, and the ionization potential of CsH; is taken from ref. 38.
¢) This value corresponds to the formation of CsHjs in the S; state.! Excita-

tion energies for no higher excited states have been reported.
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TABLE II

Parameters for the statistical model®

E./eV n

Fe(CO)s 7.8 2+0.5¢
Fe(CsHs), 8.0-13.4 15.3x3¢

a) The values of E., and n which provide the best fit to the experimental
state-distributions. In the fitting procedure the values of E., is chosen from
the excess energies of the energetically accessible processes listed in Table I,

while the value of n is allowed to take any positive number.

b) The calculated state-distribution is not sensitive to E,,, and therefore, the
value of E., cannot be determined uniquely in the range indicated.
c) The uncertainty estimated from the limiting values of » beyond which the

fit apparently breaks down.
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TABLE III
The number of the degrees of freedom effective

as the heat bath

Fe(CO);
NP @ N,(i=t,r,v,total)?
(i=t,r,v,total) mechanism (1) mechanism (2)
trans.-like 8 1 3,4
rot.-like 6 0-2 0
vib.-like 5 0-2 0
total 19 2—4¢ 3,4
efficiency® 11-21% 16-21%
Fe(CsHs),
NO@ N D
(i=t,r,v,total) (i=t,r,v,total)
trans.-like 3 1,3
rot.-like 3 0-3
vib.-like 48 12-15
total 54 16—184
efficiency® 28-33%

a) Available degrees of freedom N?, NO, NO, and N0, (=NP+NP+N?),
determined by the prescription described in Appendix.

b) Effective degrees of freedom, N, N, N,, and N,o;;; (=N,+N,+N,), deter-
mined so that they satisfy eq.(8) when the value of n given in table 2 and the

constraints on the translation-like degree of freedom, N,, i.e., N;=3N;—6 (or
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3N¢—35) are used. In the case of Fe(CO)s, two mechanisms can be considerec
corresponding to two possible values of N,. See Discussion E.1.

c) Efficiency of the heat bath defined by eq.(11).

d) There is a correlation among N,, N, and N, because of eq.(8), and thi:
correlation is taken into account in the determination of N,y,. Therefore, the
upper and lower limits of N,y, are not equal to the sum of the upper anc

lower limits of the N, N,, and N, listed.
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TABLE IV

Classification of the vibrational modes of the parent molecule

FC(CO)S/Dy,

parent molecule® 4A7 +A', +6E’ +4A", +3E"’
trans. — like? 2A", +3E’ +2A", +E"
rot.—like Ay +2E’ Ay +2E"’
vib.—like 2A" +E’ +A',

Fe(CsHs),/Dsy, ©

parent molecule?

4A', +A'5+6E', +6E,+2A'', +4A'', +SE'', +6E'’,

trans. — like®
AYy +E’, +A",
rot.—like
E"; +A'" +E'";
vib.—like
3A’"; +A',+4E", +6E',+A'"; +3A'', +4E''; +6E'’',

a) Symmetry species of the vibrational modes

b) The vibrational modes of the parent molecule are grouped into the

of the parent molecule.

translation-, rotation-, and vibration-like modes.

¢) Ref. 39.
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Figure Captions

Figure 1: A portion of the emission spectrum of the Fe atom obtained in
the reaction of a) He™ + Fe(CO)s and b) He™ + Fe(CsHs),. The helium
pressure was 0.2 Torr, and the resolution was 0.05 nm.

Figure 2: Schematic diagram for the analysis of cascades. The total rate
of formation of the n-th state including contributions from cascades is deter-
mined from the emission intensities of the transitions from the n-th state to
the k-th states, I,;, and the radiative lifetimes of the n-th state, which are
estimated from the sum of the transition probabilities of the transitions from
the n-th state to the {-th states. The contributions of the cascades from the
m-th states are evaluated from the probabilities of the transitions from the m-
th states to the n-th state and the population of the m-th states, which are
determined from the emission intensities of the transitions from the m-th
states to the j-th states, I,,;.

Figure 3: Relative rates of formation, R,,, of the excited Fe atoms plotted
against their electronic energies, E,. The rates of formation are normalized
against the rate of formation of the z’Fs state. The closed and open circles
represent the data for Fe(CO)s and Fe(CsHs),, respectively. The rates of
formation of the state above 6.2 eV (indicated by a vertical broken line) have
large uncertainties (see Analysis C). The solid curves represent the best-fit
curves calculated on the basis of the statistical model (see Discussion A and
B).

Figure 4: Plot of the relative rates of formation of the spin substates of
the z’F; and the zF, states against their total angular momentum J. The
rates of formation are normalized against the rate of formation of the z'Fs
state.

Figure 5: Schematic diagram of the molecular orbital correlations between
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Fe(CO)s and Fe + 5C0.30:3! Thick correlation lines indicate principal com-
ponents of the relevant molecular orbitals.

Figure 6: Changes in the electron configurations of Fe(CO)s during the
dissociative excitation. The left column represents the initial state. The mid-
dle column represents the primary excited state with a hole in a 4o-like orbi-
tal, and dissociation from this state gives CO with a hole in the 4o orbital.
The right column represents the dissociative state after the electron rearrange-
ment, and dissociation from this state gives one CO molecule with a
configuration of (5¢)~!(2m).

Figure 7: Schematic diagram of the molecular orbital correlations between
Fe(CsHs), and Fe + 2CsHs.“0~42 Thick correlation lines indicate principal

components of the relevant molecular orbitals.
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Chapter 3

The n—distributions of H(n) Produced from H,0, D,0, and H,S

ABSTRACT
The Balmer-series emissions from the H(4=n=10) atoms produced in the

reactions of H,0, D,0, and H,S with He™(23S,) were observed by flowing
afterglow experiments. The emission intensities were found to be approxi-
mately proportional to n~ P, where the values of B were 2.37+0.04 for H,O,
2.24=0.08 for D,0, and 3.39%0.0S5 for H,S. This n-dependence is explained
by a model which correlates the 8 value with the branching ratio of the Ryd-
berg precursor states of the parent molecule to (pre)dissociation and autoioni-

zation.

INTRODUCTION

Excited hydrogen atoms H*(n) are produced when hydride molecules are
excited by absorption of EUV photons,! ™3 electron impact,*~7 and excitation
transfer from helium metastable atom, He™(235,).%:° These studies indicate
that the excited H atoms are produced by dissociation of parent molecules in
highly excited Rydberg states.* Many studies have been made on this subject,
but only a few of them have discussed on n-distributions of the product
H*(n).> The decay rates of these Rydberg states is expected to have essential
influence on the n-distribution of the product H*(n) atoms. Therefore, the
n-distribution of the H*(n) atoms carries vital information on the mechanism
of excitation and the lifetime of the transient Rydberg states.

The purpose of the present work is to observe and analyze the Balmer-
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series emissions produced in the reactions of H,0O, D,O, and H,S with
He(23S,) by helium flowing afterglow experiments. The n-distribution is
explained by a model calculation, and the branching ratios of the transient

Rydberg states to (pre)dissociation and autoionization are estimated.

EXPERIMENTAL SECTION

The flowing afterglow method was employed.® Helium gas, purified by
passing through molecular sieve cooled at liquid nitrogen temperature, was let
into a discharge region, where He metastable atoms were generated by a
microwave discharge (2.45 GHz, 100 W), and then admitted to a reaction
chamber, which was evacuated by a mechanical booster pump (500 I/s).
Charged particles produced simultaneously in the discharge were removed by
a pair of grids. The pressure of He in the reaction region was 0.07-0.4 Torr.

The sample gas was introduced 15 cm downstream from the discharge
region into the flow. For the experiment on H,O, distilled water was used
after deaeration by several freeze-pump-thaw cycles, while liquid deuterium
hydride (Merck, isotopic purity was 99.98%) was used for the experiment on
D,0. Hydrogen sulfide was obtained from a commercial gas cylinder (Taka-
chiho, 99.8% purity) and used without further purification. The pressure of
the sample gas in the reaction region was several mTorr.

The emission from the reaction region was dispersed by a 1 m monochro-
mator (Spex 1704) with resolution ranging 0.03-0.1 nm and detected by a
photomultiplier (Hamamatsu R585) and a photon-counting system. The spec-

tral response was calibrated by use of a standard lamp.

RESULTS
The Balmer-series emission and weak emission assigned to the OH/OD

(A2Z* = X2T) 0-0 band were observed in the experiments on H,O and D,O,
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while the Balmer-series emission and the SHY(A-X337) band were
observed in the experiment on H,S. Emissions from the excited H atoms
with principal quantum numbers » ranging 4—20 were observed, and their
relative intensities were measured. The intensity of the emission from
H(n=8) could not be measured because this line was accidentally overlapped
with a stray He(I) atomic line from the discharge region. Therefore, the
intensity of this emission was estimated by interpolation.

The intensities of the Balmer-series emission were found to be indepen-
~ dent of the potential applied to the grids; the dependence of the emission
intensities on the He pressure was linear and identical to that of the N5 (B-X)
0-0 band produced by Penning ionization. On the other hand, the He pres-
sure depéndence of the intensity of the OH(A-X) emission, which has been
ascribed to the electron-ion recombination,” was measured to be quadratic,
and the emission intensity decreased to about one half when the potential of
10 V was applied to the grids. Therefore, the active species responsible for
the formation of the excited H atoms was assigned to be the He(23S,) atom,
and contribution of electron-ion recombination to formation of the excited H
atoms was confirmed to be negligible.

The relative intensities of the Balmer-series emission are plotted in Figure
1 against the principal quantum number n of the upper state. Errors were
estimated from the fluctuation of the data in several runs of the measurement.
The relative emission intensities from H*(n=10) were found to be indepen-
dent of the He pressure from 0.07 to 0.4 Torr within experimental error.
Therefore, collisional relaxation was assumed to be negligible for H*(n=10).
Oh the other hand, the relative emission intensities of H*(n>10), normalized
against that of n=4, were found to decrease with the He pressure. This pres-

sure dependence is ascribable to collisional relaxation; its influence is expected
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to increase with n because the cross section for relaxation and the natural life-
time both increase with n. Therefore, the following discussion on the n-
dependence of the emission intensity is based only on those with n=<10.

The n-dependence observed for the D* emission was found to be slightly
weaker than that for the H* emission. Therefore, a slight isotope effect on

the n-dependence is present.

DISCUSSION
A. Dissociation pathways

From energetic considerations the observed processes can be assigned
uniquely to

He(23S,)+H,0(X) -~ He(1!S,) + OH(X2I) + H*(n) (1)
and

He(238)+H,S(X) -~ He(1'Sy) + SH(X2I) + H* (n) . (2)

The Rydberg H atom is considered to be produced by dissociation of the
parent molecule in Rydberg states, MH**, produced by excitation transfer
from the He(23S,) atom,

He(23S,)+MH - He+MH**(n') (3)

MH**(n') - M+H*(n), (4)
where M represents OH/OD or SH. Evidence for the formation of

MH**(n') with a certain n’-distribution is given in the following subsection

A.

A.1 Dissociation pathways of the He(23S,)+ H,0/D,0 reaction

The excited states primarily produced in the energy transfer should have
their excitation energies nearly equal to 19.8 eV (the excitation energy of the
He(23S,) atom). Possible candidates are limited to the Rydberg states con-

verging to the I§2B2 ionic state, whose ionization potential is 18.51 eV.!°
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Examination on the Penning ionization electron spectrum of H,O by
He(23SI)“ shows that zero electron energy corresponds to a certain vibration-
ally excited state of the BB, ionic state. Therefore, the vibrationally excited
Rydberg states converging to this ionic state, H,O**(n’) with n’ up to
infinity, can be produced by collision of H,O with the He(23S,) atom.

The dissociative decay channels of the B?B, ionic state have been investi-
gated closely,'?!3 and this ionic state is known to predissociate through the
A%A,, ?B,, and “B, ionic states giving H*+OH(X), H*+OH(X), and
- H+OH(X)* fragments, respectively. Therefore, the H,O molecule excited
to the Rydberg states converging to the B2B, ionic state predissociates via the
Rydberg states converging to the A2A; and 2B, ionic states, and produces an
H* atom. This process has been confirmed experimentally by the EUV pho-
toexcitation of H,O? and has also been supported by the systematic studies of
Ogawa et al. on the formation of H* from H,O by electron impact excita-

tion.®

A.2 Dissociation pathways of the He(23S )+ H,S reaction

The EUV photoabsorption of H,S has indicated that two excited ionic
states are located near 19.8 eV:!* the “A, state (18.2 eV) and the “B, state
(19.5 eV). Since these ionic states have electron configurations with one
singly-occupied antibonding orbital,!> these states are expected to be dissocia-
tive. Therefore, the primary excited states, H,S**, are expected to be the
Rydberg states converging to one of these ionic states, or both, from which

H* is produced through direct dissociation.

B. Analysis of the radiative cascades
The observed relative emission intensities may not represent the relative

rates of formation of H*(n) because of the presence of radiative cascades. In
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order to obtain exact relative rates of formation from the relative intensities,
one needs to know the [/-distribution of H*(n), because the transition proba-
bility depends on / as well as n. However, the cross sections for collisional /-
and m-mixings of H*(n) are so large that / and m are no longer good quan-
tum numbers when charged particles and polar molecules are present around
the H* atom. In fact, Wu et al. have shown that H(2s) and H(2p) are com-
pletely mixed in the gas cell where several mTorr of H,O vapor is present.!
Therefore, under the present experimental conditions the [- and m-
- distributions can be assumed to become uniform before any radiative transi-
tion takes place, even if some substates with specific / or m are preferentially
produced.

Undef the assumptions stated above, the number density of H*(n), N,,
satisfies the rate equation,

dn,
= —( 2 An—m)Nn+ 2 AN TR, . (5)

dt m<n k>n

Here, A, _,, represents the average A coefficient, and R, represents the rate of
formation of H*(n) summed over / and m. The steady-state condition leads

to

Rn':( 2 An-»m)Nn— > ANy . (6)

m<n k>n

On the other hand, the number density, N,, is related to the Balmer-series
emission intensity, 7,, by

Inzamn-2An-2Nn ’ (7)
where w,_, represents the transition frequency and « is a constant. By elimi-

nation of N,, and N, from eq.(6) by use of eq.(7), one obtains

_ ln _ Ik
Rn"( 2 An-rn)_—— DA (8)

m<n awn-ZAn-Z k>n awk~2Ak-2
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The relative rates of formation summed over [/ and m were estimated from the

observed emission intensities by use of this equation.

C. n-distribution of H*(n) /| D*(n)

The emission intensity, I,, and the rate of formation, R,, are plotted
against n in Figures 1 and 2. The n-dependence of I, and R, can be approxi-
mated by I,=const.Xn P and R,=const.Xxn~"Y for n ranging 4-7. The values
of the exponents are listed in Table 1. A similar observation has been
reported by Mohlmann et al.,’ who observed the Balmer-series emission from
H* produced by impact of 100 eV electrons on several target molecules
including HZO. and H,S. They could represent the n-dependence of I, by n™3
regardless of the parent molecule. Ibuki et al. also reported that the n-
dependence of I, could be represented by n~> in the He(I) photodissociation
of H,S.3 On the other hand, the n-dependence of I, observed in the EUV
photodissociation of H,O by Wu et al.! could not be represented simply by
n~PB. Thus the n-distribution of H* reflects the dynamics of excitation and

dissociation of the parent molecules.

D. Model calculation of the n-distribution

In order to explain the observed n-distribution, the following model is set
up: The H*(n) atom is formed from the parent molecule in Rydberg states,
MH**(n') (see subsection A). Since the Rydberg electron interacts very
weakly with the ion-core, MH™, the n-distribution is hardly affected in the
course of dissociation; Thus, the n-distribution of H*(n) is determined by the
n-distribution and the decay processes of MH**(n). Generally, Rydberg
states have two decay channels: (pre)dissociation and autoionization. There-
fore, R, can be represented by the following four factors,

Py(n)

Pi(n)+Py(n)+Py(n) (9)

anPex(n)
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where

P.,(n): the excitation probability to MH**(n),

P4(n): the rate of (pre)dissociation producing H*,

P4:(n): the rate of (pre)dissociation producing fragments other than H*,
and

P;(n): the rate of autoionization.
The n-dependence of Pi(n) can be approximated to be proportional to n~3.
On the other hand, P4(n) and P4 (n) can be assumed to be independent of »,
because the Rydberg electron is essentially a spectator in the dissociation of

the ion-core; in other words, the topography of the potential energy surfaces

does not depend on n. It therefore follows that

3 Py

n
=P 10
() S 6arr PatPy (10

Rn

where T represents the branching ratio of (pre)dissociation to autoionization,
F=(Pd+Pd:)/Pi(n=4). (11)

The excitation probability, P.,(n), can be estimated by the Landau-Zener
formula as follows: Since the vertical electron affinities of H,O and H,S are
negative, formation of the ion-pair, He™+H,O (or H,S™), can be disre-
garded. Therefore, it is likely that the potential energy surfaces of He™+MH
and He+ MH**(n) have crossing seams. It is assumed that the transition
from He™+MH to He+MH** is induced by the relative motion of the He
atom with respect to the parent molecule MH, and the internal motions of
MH are ignored. Then, the problem is reduced to a one-dimensional poten-
tial crossing. The transition probability, P,, at "the crossing point n" of

He™+MH and He+MH**(n) is represented by the Landau-Zener formula:

P,=1-exp(-2w|H',PrvA) , (12)
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where H', is the interaction matrix element, V is the relative velocity at the
crossing point, and A is the difference between the slopes of two diabatic
potential curves, and the atomic units are employed. Strictly speaking, V and
A depend on n, but these n-dependences are disregarded in the present calcu-
lation. The probability of producing MH**(n) is obtained by considering all
the possible paths which finally lead to the formation of MH**(n),

Pex(n)=Ps(°°9n+1)Pn(1—Pn)
-1
+['S PS(wo,n' +1)P2PS (' +1,n—1)IP,

n'=ng
+PS(°°’nO)PS(n0,n_1)Pn' s (13)
where
P(n,m)=exp(— ,En 2w|H P/VA) . (14)

k=n
Here, PS(n,m) represents the probability that the system survives on the

He™+MH curve at all the crossing points between n and m, and ng is the
principal quantum number of the lowest Rydberg state. In the following cal-
culation'no is set equal to 3, because the valence shell of H,O correlates to the
L shell in the limit of the united atom. The n-dependence of the matrix ele-
ment can be approximated by the overlap integral between the Rydberg orbi-

tal of MH**(n), &,;n, and the 2s orbital of He™, ¢y,,'¢

e §2I<d>nzm|<1>zs>IZIH’ml2 : (15)

m
where H' . represents the interaction matrix element of the core electrons
and is independent of n. The overlap integrals were calculated numerically,
the wave functions being approximated by the corresponding hydrogenic
wave functions. The distance between the centers of &,;, and ¢, was set to
6-12 atomic units. The n-dependence of H', is found to be insensitive to the

distance between ¢,,, and ¢, ranging 6-12 a.u.; it is also insensitive to the

choice of the parent molecule (the ion-core model).
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The n-distribution was calculated by using eq (10)-(15) to reproduce the
experimental data. The value of V was estimated to be the thermal velocity,
1.2X 103 m/s, and the value of |H'...* was assumed to be 10 meV.!® The
overlap integral in eq (15) was estimated at the distance between the centers
of ¢,,, and b, set equal to 12 a.u. The calculated n-distribution was fitted to
the observed one by adjustment of I" and A. It was been shown in the case of
H,0 that the n-distribution was reproducible by varying A in the range of
about 0.1-0.3 eV/A when T was taken in the range 0.04<T'<0.1. In the case
of D,0O, the acceptable range of I" was 0.03<I'<0.1. Since A, is expected to
be isotope independent, those for H,O and D,0O were set equal to each other;
then the value of I' for H,O was found to be larger than that for D,O. As
for H,S, good fitting was obtained when I'>0.3 by a suitable choice of A
(A<0.25 eV/A). It is noted that the absolute value of A has little sense
because this value depends directly on the estimation of |H',.[> (see eq
(12)). The orders of magnitude of " and A obtained above seem to fall in the
acceptable range. Therefore, the present model can be regarded as essentially
valid.

The value of T for H,S is larger than those of H,O and D,O; this indi-
cates that the branching ratio to the dissociation is larger for H,S** than those
for H,O** and D,O**. This is understandable in view of the dissociation
pathways of H,S** (see subsection A2), where H,S** is expected to directly
dissociate, whereas H,O** and D,0O** predissociate. On the other hand, the
observation that the value of T for H,O is larger than that for D,O can be
explained as follows: The predissociation rate is smaller for ID,O because the
vibrational motions are slower. On the other hand, the rate of autoionization
is expected to be isotope independent in the present case, because autoioniza-

tion of Rydberg states with an electronically excited ion-core is expected to be
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a purely electronic process. Such isotope effect on the branching ratio has
also been observed in the cross section of the formation of H* in electron

impact on the hydrogen-containing molecules.!”
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TABLE I

Exponents of the n-dependence of 7, and R, .¢

H,0 D,0 H,S

B 2.37(4)? 2.24(8) 3.39(5)
v 1.53(6) 1.33(11)  2.68(5)

a) I, and R, represent the relative emission intensities and the relative rates
of formation of H*(n), respectively. Their n-dependence are expressed by
I,=const.x 1~ and R, =const.xn ™7 (sec DISCUSSION C).

b) Numbers in parentheses represent standard deviations obtained in the

least-square fitting.
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Figure Captions

Figure 1: Log-log plots of the emission intensities of H*(n), I,. The
values of I,’s are normalized against /,. The values of Ig could not be meas-
ured because the corresponding Balmer line was accidentally overlapped with
a stray Hel line. The plots in parentheses represent /g obtained by interpola-
tion.

Figure 2: Log-log plots of the rate of formation of H*(n), R,. The
values of R,’s are normalized against R,. The lines represent the n-
 distributions calculated by a model (see DISCUSSION D) with A=0.25 eV/A
and the indicated values of I'. The definitions of I" and A appear in egs.(10)

and (12), respectively.
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Chapter 4
Mechanism of the Formation of Doubly-Excited States of HCI

ABSTRACT

The dissociative excitation of HCI in collision with He(23S;),
He(23S;)+HCI(X'=*)-He(1'Sy) + CI(*P) + H*(n>2),

is investigated by performing an SCF-CI calculation of the potential energy
hypersurfaces relevant to this reaction. The most likely transient excited
states of HCI are found to be the dissociative Rydberg states, 22X —4s and
14T1—4p, which have doubly-excited configurations, (3pw)~2(3pa*)!(4s)! and
(3po)~1(3pw) " 1(3pa*)! (4p)!, respectively. Mechanisms of the formation of
these doubly-excited states are studied. It is found that the formation of the
223* —4s state is induced by mixing of the inner valence hole configuration,
(3s0) " !(4s)!, into the 222" —4s state, while the 1°TI—4p state is produced by
mixing of a charge-transfer configuration, He™ + HCI™, with He(23S;)+HCI

and He+HCI(1*TI—-4p) as initial and final states, respectively.

INTRODUCTION

In the excitation-transfer reactions of He(23S,) with a target molecule, for-
mation of doubly-excited states of the target molecule has been suggested in
several experimental studies.!”3 Formation of a doubly-excited state is an
optically forbidden process unless singly-excited configurations are mixed
with the doubly-excited state in question. Similarly, no doubly-excited state

can be produced by the electron-exchange mechanism, which has been postu-
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lated for the excitation-transfer from He(23S)) to a target atom or molecule;*
namely, a singly-excited state of the target molecule is formed by electron
exchange, in which one electron of the target molecule fills the 1s hole of
He(23S,) and the 2s electron of He(23S,) is transferred to the target molecule.
However, doubly-excited states can be produced in excitation-transfer, as in
photoexcitation, by mixing of singly-excited configuration(s). Even when
such mixing of configurations does not occur, it is likely that the presence of
the He(23S,) atom perturbs the electronic structure of the target molecule and
enables formation of a doubly-excited state.

An example of the excitation-transfer reaction in which doubly-excited
states are expected to be produced is the dissociative excitation of HCl in col-

lision with He(23S,) ,3
He(23S;)+ HCI(X'=*)-He(1!Sy) + CI(*P)+ H*(n>2), (1)

in which the transient dissociative states of HCI are inferred to be doubly-
excited states for the following reason: In this reaction, HCI is considered to
dissociate via dissociative Rydberg states because a Ryberg hydrogen atom is
produced.® However, the singly-excited Rydberg states which converge to the
single hole states of HCIT such as X*M(3pw)~!, A?Z*(3po)~!, and
323*(3so)”! are unlikely to be located near the excitation energy of
He(23S,), 19.8 eV. Theoretical studies of the HCI™ electronic states suggest
that the ionic states with 2-hole-1-particle configurations are located in the
region of 20-25 eV.”-® This has been verified by the photoelectron spectrum®
and the electron-energy-loss spectrum!® of HCIl. Accordingly, the doubly-
excited Rydberg states converging to these ionic states are likely to be the
transient dissociative states involved in reaction (1). In order to confirm this

assignment and to study the mechanism of formation of doubly-excited states,

the potential energy surfaces of the He+HCI system relevant to reaction (1)
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were calculated in the present study by an ab initio SCF-CI method. The
transient dissociative states of HCl are indeed shown to be doubly-excited
Rydberg states. The possible mechanisms of formation of these doubly-

excited states are discussed.

CALCULATION
A. Potential energy curves of the excited states of HCI™ .

Program GSCF3!!:!2 was used for all SCF and CI calculations throughout
the present study. The contracted gaussian basis sets given by Dunning and
Hay!?® were employeq. For the chlorine. atom the (11s,7p)/[6s,4p] basis set
was augmented with a d polarization function (exponent a=0.75 ag 2), while
for the hydrogen atom the (4s)/[2s] basis set was augmented with a p polari-
zation function (exponent a=1.0 ag?). An SCF calculation was carried out
for the lowest 4II state of HCl™, and the resultant molecular orbitals were
used for the CI calculation.

In the CI calculations, single and double substitutions from all the
valence-type reference configurations were taken into account, where the exci-
tations to the lowest 14 virtual MO’s were considered. The lowest five occu-
pied MO'’s, which correspond to the K and L shells of chlorine, were kept
doubly occupied. All the CI calculations were carried out in the C,, subgroup
of the C,, molecular point group. The total number of the configuration

state functions was about 8000.

B. Energies of the Rydberg states

| The vertical excitation energies of the Rydberg states located near 20 eV
were calculated. The basis set on the chlorine atom described in subsection A
was further augmented with diffuse (Rydberg-like) functions, i.e., two s func-

tions («=0.015 and 0.005) and two sets of the p- function (¢=0.022 and
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0.004). These exponents had been optimized by monitoring the SCF orbital
energies of the vacant orbitals which correspond to the Rydberg orbitals
bound to the ion-core, HCI* (X?II). The molecular orbitals generated by the
SCF calculation for the lowest “II states of HCI™ were used for the CI calcula-
tion.

In the CI calculation, reference configurations were composed of all the
valence- and Rydberg-type configurations, and single and double substitutions
to the lowest four virtual MO’s were allowed, where the configurations in
which two or more electrons occupy the Rydberg MO’s were excluded. The
K and L. shells of chlorine were frozen. The total number of the
configuration state functions was about 8000.

On thc other hand, the energies of the 1% ionic states were calculated
with the CI calculation in which no Rydberg MO’s were occupied at all, and
the energies of the Rydberg states relative to that of the 1*II ionic state were
obtained. The excitation energies from HCI(X!Z") were determined from
these relative energies and the ionization potential of 1°Il obtained by the

more accurate calculation described in subsection A.

C. Potential energy surfaces of the He-HC! system

The basis sets for the chlorine and hydrogen atoms were the same as those
described in subsection B. For the helium atom, the (5s)/[3s] basis set was
augmented with diffuse s and p functions (¢ =0.05 and 0.22 respectively'?) in
order to describe the 23S, state of He which has a Rydberg character. In
order to estimate the energy gaps of the avoided crossings between
He(23S,)+HCI and He+HCI**, where HCI** represents the Rydberg states
with doubly-excited configurations located near 20 eV, the energies of these
states were obtained as different roots orthogonalized in a single CI diagonali-

zation. In order to avoid any bias in the relative accuracy of the
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He(23S,)+HCl and He+HCI** states, the molecular orbitals of
He+HCI" (A22 ) were used for the CI calculation.

In the CI calculation, the configurations obtained by distributing electrons
in the valence and Rydberg MO’s were taken into consideration, excluding
the configurations with two or more electrons in the Rydberg MO’s of HCI
and MOQO’s of He-2p character. The K and L shells of chlorine were frozen.

The total number of the configuration state functions was about 5500.

RESULTS
A. Potential curves of the excited states of HCI*

The calculated potential energy curves are shown in Figure 1. The total
energies are shifted to make the vertical ionization potential of the A%Z* state
agree with the experimental value, 16.28 eV.!> The calculated vertical ioniza-
tion potentials are listed in Table I. In Figure 1, many repulsive states are
found to be located at about 20 eV and all the states have doubly-excited
configurations with reference to HCI(X!=*). However, the 222" state, in
which the most significant configuration is (3pw) 2(3po*)!, is found to be
strongly mixed with the inner-valence hole configuration, (3so)”!. In fact,
this 22=* state can be produced substantially in photoionization through the
intensity borrowing from the (3so)~! state,”!© which is predominant in the
322* state. On the other hand, the doubly-excited states other than 227 are
not mixed with the inner-valence hole configuration, (3sa) !, because of their
different symmetries, and therefore, formation of these ionic states is essen-

tially optically forbidden.

B. Energies of the Rydberg states
The calculated vertical excitation energies of the Rydberg states located at

about 20 eV are listed in Table II. Only the 4s, 4p, Ss, and 5p states of each
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Rydberg series are considered, where the lowest principal quantum number
of the Rydberg state is tentatively assigned to be 4. The energy of the n/
state converging to a given ionic state increases with / when n is fixed. There-
fore, the Rydberg states with /=2 converging to the ionic states other than the
14T~ state are expected to be located at above 20 eV and energetically inac-
cessible in the reaction in question. On the other hand, the Rydberg states
with /=2 converging to the 14T~ state are possibly located at about the excita-
tion energy of He(23S;), 19.81 eV. However, these states are essentially

insignificant in the reaction under study; see DISCUSSION.

C. Potential' energy surfac‘es of the He-HC system

Typical sections and a three-dimensional plot of the potential surfaces are
shown in Figures 2-5. The asymptotic energies of the excited states of the
He+HCI system relevant to the reaction in question are listed in Table II.
The excitation energies are shifted to make the asymptotic energy of
He(23S,)+HCI equal to 19.81 eV. The excitation energies of HCI** are con-
sistent with those obtained by the calculation for the isolated HCl molecule
described in CALCULATION B (see Table II).

The potential energy curves which appear in the section with a fixed inter-
nuclear distance of H and Cl, r(H-Cl), are found to be repulsive as shown in
Figure 2. Avoided crossings appear in the section with a fixed internuclear
distance of He and Cl, R(He-Cl), and the energy gaps increases as R(He-Cl)
decreases. Details of the crossing seams are shown in Figures 3-5. In the
case of the collinear approach of He on the Cl end of HCI, one can observe
two avoided crossings as shown in Figure 3: Namely, He+HCI**(223 " —4s)
and He+ HCI**(1*I1-4p) have avoided crossings with He(23S,)+HCI. In the
case of the sideway attack shown in Figure 4, an avoided crossing can be

observed only between He(23S;)+HCI and He+HCI**(225 —4s), and the
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energy gaps of the crossings between the He(23S,)+HCI state and the
He+HCI** states other than He+HCI**(22Z " —4s) is too small to be observ-
able (less than 0.01 eV), although both states have the same total
symmetry,>A’. The origin of this phenomenon is discussed in the following
section. In the case of the collinear approach of He on the H end of HCI,
shown in Figure 5, an avoided crossing can be observed only between
He(23S,)+HCI and He+HCI**(22Z* —4s), as shown in the case of the side-
way attack (Figure 4), but the former energy gap is much narrower than the

latter.

DISCUSSION
A. Mecanisms of the transition from He(23S,)+HCI to He+ HCI¥*.

As mentioned in RESULTS C, the He(23S,)+ HCI state interacts only with
the He+HCI**(22=* —4s) state in the case of the sideway attack of He(2°S))
on HCI (Figure 4). This observation can be interpreted as follows: The most
significant configurations of the He+HCI** states are obtained by three-
electron excitation from the main configuration of He(23S,)+HCI, as illus-
trated in Figures 6 and 7, so that the Hamiltonian matrix elements between
these configurations vanish. Therefore, the avoided crossings shown in Fig-
ures 3-5 are considered to originate from mixings of certain intermediate
configurations into the entrance and excit channels. The 2?7 —4s state of
HCl was found to be mixed strongly with the (3so)~!(4s)! configuration,
which is predominant in the 322 % —4s state; this mixing originates from the
mixing in the ion-core state, 22", as mentioned in RESULTS A. Conse-
quently, the He+HCI**(22Z " —4s) state can interact with the He(23S,)+HCI
state through mediation of the He+HCI**((3sa) " !(4s)') configuration, as
illustrated in Figure 6. On the other hand, the doubly-excited states, HCI**,

other than HCI**(22Z* —4s) does not mix with the (3sa) " !(4s)! configuration
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because the symmetries of the ion-cores are different from 2", and conse-
quently, the avoided crossings between these He+HCI** states and the
He(23S,)+HCI state are very small. The above mechanism of the formation
of HCI** resembles that in the "shake-down" process in photoionization,!” in
which the 2°S7 ionic state is produced from the intensity borrowing from the
inner valence hole state, 323+ %10

In the case of the collinear approach of He(23S;) on the ClI end of HCI
shown in Figure 3, the He+HCI**(1°ll-4p) state as well as the
He+HCI**(222* —4s) state interacts with the He(22S,)+HCI state. The
avoided crossing between He(23S,)+HC! and He+HCI**(1*I1-4p) is con-
sidered to be caused by mediation of the charge transfer configuration,
He™ +HCI™, as shown in Figure 7. This is verified by examining the Hamil-
tonian matrix elements on the crossing seam: Namely, the value of
<flH|n><n|H|i>, where [i> and |f> represent the most significant
configurations of the He(23S,)+HCI state and the He+HCI** state respec-
tively, is the largest when |n> is the charge transfer configuration,
He™ +HCI™, in which the lowest unoccupied antibonding 3po* orbital of HCI
is occupied. The observation that the He+HCI**(1*II—4p) state has no sub-
stantial interaction with the He(23S,)+HCI state in the case of the sideway
attack of He(23S,) can be interpreted by a steric effect of the molecular orbi-
tal. Since the 3po* orbital of HCI has its electron density mainly on the HCI
molecular axis, the overlap of the 3pc* orbital of HCI and the 2s orbital of

He(23S,) is small in the sideway attack, and consequently, the mediation of

the charge transfer configuration is ineffective.

B. Reaction Path
On the basis of the calculated potential energy surfaces, the present reac-

tion can be interpreted by the following picture: When He(23S,) approaches



.93 .

HCI, the motion of the zero-point vibration of HCI causes the transition from
He(23S,)+HCI to He+ HCI** through the avoided crossings shown in Figures
3-5, and HCI** dissociates to produce H* +Cl and/or H+ Cl*. The energy of
the zero-point vibration is estimated to be about 0.2 eV from the vibrational
frequency of the isolated HCl molecule, 2991 cm~1.!6 Therefore, the
He+HCI**(222* —4s) state and the He+HCI**(1*II—4p) states are both
accessible. The He+HCI**(222* —4s) state is expected to be the dominant
final channel. This is because the energy gap of the corresponding avoided
~crossing is very large and the wave function of the vibration of HCI has its
maximum -around the avoided crossing between He(23S;)+HCI and
He+HCI**(2°2* —4s), which is located near the bottom of the potential
curve. The He+HCI**(1*II—4p) state is considered to be the second dom-
inant channel, but the probability of the transition to this channel is expected
to be much smaller than that of the transition to He+HCI**(2?2" —4s) in
view of the magnitudes of the energy gaps. The He+HCI** states with ener-
gies higher than He+HCI**(1*II-4p) may have avoided crossings with
He(23S,)+HCI at r(H-CI) larger than 1.4 A, but these channels are expected
to be less significant because the nuclear wave function is small around the
avoided crossing located at large r(H-Cl). On the other hand, the Rydberg
states with /=2 converging to the 1=~ state are possibly located near 19.8 eV
(see RESULTS B), and the corresponding He+HCI** states are expected to
have intersections with the He(23S,)+HCI state at r(H—Cl)<1.4 A. How-
ever, these states are not expected to be significant exit channel in the case of
the sideway attack, because the 3= " state does not mix with the 1°=~ state
on account of different symmetry. In the case of collinear attack, the
He+HCI**(1°Z~—nl) states have symmetries different from that of

He(23$,)+HCI, and therefore, they cannot be the exit channel.
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The potential curves of HCI' intersect with each other in a complicated
manner (see Figure 1). This indicates that the corresponding potential curves
of the Rydberg states, HCI**(222* —4s) and HCI**(14I—4p), intersect with
other Rydberg states with different ion-core states. Therefore, the electronic
state of the ion-core and the quantum numbers n and / are expected to change
in the course of the dissociation of HCI**. These intersections are considered
to govern the branching ratio of the products, H*+ Cl and H+ Cl*, and the

n-distribution of H*.
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TABLE I. Vertical ionization potentials of HC1™ (in eV).

state calc.? obs.

X211 12.08 12.75 and 12.85%9
AT 16.28 16.28°

142~ 20.82 -4

122~ 21.93 —a)

12A 22.83 -

1411 - 23.30 —d)
2zt 23.54 23.65%)

2211 25.03 -4

32zt 27.22 25.85¢

a) The present calculation of the ionization potential at r(H-Cl)=1.268 A (r.
of HCI(X)).!% The total energies were shifted so as to make that of the A2Z~
state equal to 16.28 eV.

b) Split due to spin-orbit interaction.

c) ref.15.

d) No experimental values have been reported.

e) ref.9.
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TABLE II. Excitation energies (in eV) of the Rydberg states

state I® I
145~ —4dp_ 18.81  19.27
145~ —Sp_ 20.03  20.54
125~ —4p_ 20.08  20.15
12A - 4s 20.10  19.81
14T - 4s 20.16  20.25
225* —4s 20.63  20.28
1410, —4p, 20.88  21.45
12A - 4po 20.18 -
141 - 4po 21.11 -
225% —4po 21.65 i
2211 4s 21.68 i
12A-5s 22.05 i
1411, - 5p. 22.12 .

a) Calculated on isolated HCI (see CALCULATION B).
b) Calculated on He+HCI (see CALCULATION C and RESULTS C). The
He atom is placed 6.0 A apart from the Cl atom on the Cl side of the molecu-

lar axis of HC].
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Figure Captions

Figure 1: Potential energy curves of HCI™ calculated in the present work
(see CALCULATION A and RESULTS A).

Figure 2: Three-dimensional plot of the potential energy surfaces of
He(23S,)+ HCI(X!Z*) and He(1!Sy)+HCI**(22=* —4s) in the case of the
sideway attack of He on the HCI; the Cl atom is at the origin, the H atom is
on the x-axis, and the He atom is on the y-axis.

Figure 3: A section of the potential energy surfaces in the case of the col-
linear attack of He on the Cl end of HCIl with the internuclear distance
between He and Cl fixed at 2.5 A. Thick curves represents the states with
3¥* symmetry, and thin curves represents the states with the other sym-
metries.

Figure 4: A section of the potential energy surfaces in the case of the
sideway attack of He on HCIl with the internuclear distance between He and
Cl fixed at 2.5 A; the Cl atom is at the origin, the H atom is on the x-axis,
and the He atom is on the y-axis. All the states shown have 3A’ symmetry.

Figure 5: A section of the potential energy surfaces in the case of the col-
linear attack of He on the H end of HCl with the internuclear distance
between He and Cl fixed at 3.5 A. Thick curves represents the states with
3%* symmetry, and thin curves represents the states with the other sym-
metries.

Figure 6: Mechanism of formation of the doubly-excited state
HCI**(222% —4s). The left, middle, and right columns represent the most
significant  configurations  of = He(23S,)+HCIX'="),  He(1'Sy)+
HCI**(32Z* —4s), and He(1!Sy)+HCI**(222* —4s), respectively. The most
significant configuration of the initial state, He(23S,)+HCI(X'Z ™), does not

interact with that of the final state, He(1!Sy)+HCI**(22Z™ —4s), because
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three-electron excitation is required for the transition between these
configurations. The most significant configuration of He(1!Sy)+
HCI**(322* —4s) can interact with those of the initial and final states, and it
is expected to be effective as a virtual intermediate configuration in the transi-
tion from the initial to the final state.

Figure 7: Mechanism of formation of the doubly-excited state
HCI**(1°II-4p). The left, middle, and right columns represent the most
significant configurations of He(23S,)+HCI(X'="), He*+HCI™, and
He(1!Sg)+HCI**(14I1—4p), respectively. The most significant configuration
of the initial state, He(2’S,)+HCI(X'Z"), does not interact with that of the
final state, He(1'Sy)+HCI**(1*II-4p), because three-electron excitation is
required for the transition between these configurations. The configuration of
He* +HCI™ can interact with those of the initial and the final states, and it is
expected to be effective as a virtual intermediate configuration in the transi-

tion from the initial to final state.
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PART II
TIME-DEPENDENT VARIATIONAL METHOD
FOR PHOTODISSOCIATION DYNAMICS

Chapter 5§
Vibrational Distributions of Fragments

Produced in Photodissociation

ABSTRACT :
A theory of photodissociation dynamics based on TDHF (time-dependent

Hatree-Fock) theory is developed. The density operator is propagated by an
approximate time-evolution unitary operator, which involves two or four vari-
ational parameters. The time evolution of these variational parameters is
determined from the time-dependent variational principle in accordance with
the prescription presented by Tishby and Levine; it can practically be obtained
from numerical integration of the TDHF equations, which requires a calcula-
tion comparable with that for integration of one or two classical trajectories.
The approximate time-evolution operator is shown to be connected to a
sequence of several transformations of the Wigner function in the phase
space. In the limit where the Wigner function is localized in the phase space,
the time evolution by this approximate time-evolution operator result in the
classical mechanics of a point mass, and the variational parameters are shown

to correlate to the classical dynamical variables. The formula for obtaining a
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vibrational-state distribution of a diatomic fragment produced in collinear dis-
sociation of a triatomic molecule is derived; this formula is expressed explicity
by the variational parameters. The vibrational distribution of the symmetric
deformation of CF3 produced in the photodissociation of CFsl is calculated
numerically by regarding CF;I as a pseud-triatomic molecule (F3)—C—1. The
general trend of the distribution agrees with that calculated by the coupled
channels method reported by Henning et al. by use of essentially the same

Hamiltonian.

1. INTRODUCTION

A theory of molecular reaction dynamics generally requires a large
amount of numerical calculation for solving the equations of motion derived
from the first principle. Even if such a calculation is managedable, it does not
necessarily lead us to an intuitive understanding on the essence of the dynam-
ics. The present study aims at developing a theoretical method for obtaining
approximately the final-state distributions of the reaction products with a
tractable amount of numerical calculation in such a manner that some intuitive
understanding on the dynamics can be obtained. In order to make the physi-
cal picture clear, it seems to be effective to trace the time evolution of the dis-
tribution function in the phase space itself, especially for discussing the final-
state distributions. In the present study, the density operator, p(z), is pro-
pagated by an approximate time-evolution unitary operator described by
several variational parameters, each of which is connected to the geometrical
transformation of the Wigner function (or the phase-space distribtuion func-
tion) in the phase space. The time evolution of the variational parameters is
determined from the time-dependent variational principle! ™3 as in the time-
dependent-Hartree-Fock (TDHF) theory on the density operator.®

In the present paper, attention is focused only on direct photodissociation,
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which can be regarded as one of the simplest cases in the dynamical processes
of molecules. In direct photodissociation, the potential energy surface of the
dissociative state is often so smooth that the wave packet (or the Wigner func-
tion) is hardly deformed. Therefore, it is expected to be effective to make
some approximation in estimating deformation of the wave packet. Namely,
the present method can be regarded as the wave packet theory based on the
TDHF theory on the density operator. However, the present theory differs
from the ordinary wave packet theories presented by Heller*> in the follow-
ing points: (1) The ansatz that the center of the wave packet moves along the
classical trajectory is not necessary in the present theory, in which the equa-
tions of motion are derived purely mathematically from the variational princi-
ple and tﬁe trial function of the time evolution operator; (2) the conservation
of the expectation value of the total Hamiltonian and the conservation of the
entropy, S=Tr{p Inp}, are guaranteed in the present theory; (3) mixed states
can be treated in completely the same manner as pure states; and (4) evolu-
tion of the Wigner function in the phase space can be represented simply by
transformation in the phase space.

The variational method employed in the present theory is based on the
formalism presented by Tishby and Levine.®” A heuristic introduction of the
approximate time evolution operator is as follows: The exact time evolution

operator, U, is given by
U(r)=e~'H", (1.1)
The Hamiltonian, H, can generally be expressed by a sum of the operators X,

as

H=Q]X1+(¥2X'_)+ AR +(1an. (12)
The U-operator in eq.(1.1) can be written as

U(t)=e~i(a1X1+aZX-_y+ et a,X )t
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=ei‘flx(f)Xlei'flz(f)Xz,,,ei'flu(f)XN; (1.3)

the last expression is so called "the product representation”, where
{Xy, .. .,Xy} is the smallest Lie algebra which involves {X;, ... ,X,} as a
subset and 7,(¢) is determined from the structure of the Lie algebra.5 How-
ever, N becomes infinity unless the Hamiltonian is very simple. In the
present approximation, the product representation of the U-operator in
eq.(1.3) is approximated by a finite number of the component operators,
£ MHDX,

;i.e.,

U(t)= eim(t)X1,..einm(r)Xm.

’

=T explin, (¢) X,], (1.4)

v=1

by which the density operator is approximately propagated as
p(6)=U(®)poU™'(2). (1.5)

The product representation of the U-operator (eq.(1.4)) indicates that the

time evolution described by U(f) can be expressed as a sequence of the

0% 60 the density operator. The approxi-

transformations represented by e
mate U-operator in eq.(1.4) can be expressed in "the sum representation” by
using time-ordered exponential as

f[ exp[in, ()X,]

v=1]
4 m -
=Texplifdt' 3 ,(') X,(n(*))], (1.6)
0 v=1
where the operator X, is defined by

aUu
9y
Equation (1.6) can be verified by differentiating both sides with respect to 7.

=iX,U. (1.7)

The operator X, can be expressed by a linear combination of operators X,;

- N
X,= 3 D, X, (v=1,...,m), ‘ (1.8)
p=l
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where X, (v=1,...,N(=m)) forms a Lie algebra, and the matrix, D, is a func-
tion of the parameters v, (v=1,...,m).5 From eq.(1.6), one can see that the
time evolution of the system described by the approximate U-operator in
eq.(1.4) is equivalent to the time evolution by a time-dependent effective

Hamiltonian,

Her()== 2 30(0%,(0) - (1.9)
The equations of motion of the parameters m, are derived in accordance with
the prescription presented by Tishby and Levine ;¢ the time evolution of 7, is
determined by the time-dependent variational principle!'? which leads to the

Euler-Lagrange equations,

Tr{}fv(%g——i[p,H])}=0 w=1,...,m). (1.10)
This equation can be rewritten as

N d<x > N

u:lD”‘*‘”‘d‘tu=iElDW<[H,XH]>,, (v=1,...,m), (1.11)

which is "a linear combination of Ehrenfest’s theorem for X u - Here, <>,

represents the expectation value evaluated by p(¢z) approximately propagated

by U(?) in eq.(1.4). From eq.(1.10), one can obtain the equations of motion,

. %( -1y I<H>,
=3 (o —
" v=1 e a'rlv

which determine the time evolution of m,. Here, o, is an antisymmetric

(w=1,...,m), (1.12)

matrix defined by

o =iTr{p()[X,, X,]}. (1.13)
The time evolution of the system is obtained by solving the initial-value prob-
lem of eq.(1.12), where the initial conditions are m,(0)=0 (u=1,...,m),
which are required from U(r=0)=1. It is noted here that the dimension of
the variational space, m, must be even in order that an antisymmetric matrix

o is invertible.
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In the present paper, the approximate U-operator for photodissociation
dynamics is studied, and the vibrational state distribution of a diatomic frag-
ment produced in collinear dissociation of a triatomic molecule is formulated.
The approximate U-operators employed in the present work are presented in
section 2, and the nature of the approximation is discussed in sections 3 and
4. Collinear dissociation of a triatomic molecule ABC into A+BC is formu-
lated in section S5, and the results of a numerical calculation are presented in

section 6.

2. APPROXIMATE U-OPERATORS

In the collinear photodissociation of a triatomic molecule, in which an
electronically excited molecule ABC dissociates into an atom A and a dia-
tomic fragment BC maintaining a linear configuration, the motions of the sys-
tem are described by the vibration of BC and the relative translation of A and
BC. The Hamiltonian of the dissociative state is expressed as |

H=%PE+%P2+%w?Q%+V(Qr,0;), (2.1)

where O, and Oy represent the mass-weighted coordinates of the vibration of
BC and the relative translation of A and BC respectively, P, and Py are the
momentum operators conjugate to @, and Oy respectively, and o is the vibra-
tional frequency of the fragment BC. The interaction, V(Qz,Q,), between the
translation and vibration is assumed to vanish in the dissociation limit, Qg-.
The final state is described by the vibrational quantum number, n, and the
momentum of the relative translation, p, and the final-state distribution is
given by <np [UpoU~np>.

The U-operator of the whole system is approximated by a product of the
U-operators of the vibration and the relative translation,

U=U,ibUtrans- (2'2)
The "one-particle U-operators," U,;, and U,,,,,, are expressed as
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m'

Uvib= H CXp[iT]va], (2'3)
v=1
m
Utrans= H exp[i'quv], (2-4)
v=m'+1

where [X,, X,]=0 if p=<m'<v. In consequence, the o-matrix is decomposed
into a direct sum of the o-matrix for U,;, and that for U,,,,, and the equa-

tions of motion is partly decoupled as

. _mo - d<H>, ,

'nll= 2 (0’ )p.v_—a_—— (p“=1,"'am ): (2.5)
v=1 T"U

. mo . A<H>, ,

.= 3 (o )*“'—6__ (p=m'+1,...,m). (2.6)
v=m'+1 Ty

The vibration and translation are coupled only through the expectation value
of the Hamiltonian. Namely, the present approximation belongs to the
mean-field (or Hartree) approximation. However, in the present approxima-
tion the density operator (or wave function) itself is not necessarily
represented by the Hartree product such as p=p,;,pyans- In €gs.(2.3) and
(2.4), the set of operators {X,} should be so chosen that at least the following
two conditions are satisfied: (1) The o-matrix is invertible, and (2) the final-
state distribution is independent of time. In the following subsections, several
possible choices of {X,} for describing photodissociaion dynamics are
presented: In subsections A and B an approximate U-operator with two
parameters, which corresponds to the approximation with the minimal dimen-
sion of the variational space, is considered for describing the translation and
vibration. In subsection C the dimension of the variational space of U,;, is

extended to 4.

2.A. Approximate U-operator with two parameters for translation: frozen wave
packet approximation
The simplest choice of {X,} is to choose a pair of operators canonically

conjugate to each other. For describing the translation, an approximate U-
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operator expressed by the position operator, Qp, and the momentum opera-
tor, P,,

Utrans = €xplinPrlexp[iEQg], (2.7)
is considered. The equations of motion for m and & are found to be (see

Appendix A)

. d<H>,
13
- 0<H>, 3<V(Qr—m, Usin@:Uyin)>0 _ _<ﬂg_ﬁ’_Qr)_>L (2.9)
am am 90r

These equations are analogous to the canonical equations in classical mechan-
ics; m corresponds to the position and § to the momentum. It should be noted
that the forms of eqs.(2.8) and (2.9) always hold when one employs any pair
of operators canonically conjugate to each other. The time evolution of the
expectation values of P and Q is given by

<P>=<U"PU>;=<P>,+¢, (2.10)

<Q>,=<U"1IQU>y=<Q0>;—1. (2.11)
On the other hand, the second-order moments of P and Q do not depend on

time; namely,
<(P—<P>)%>,=<(P-<P>,—£)*>,=<(P—-<P>y)*>,, (2.12)

<(@-<0>)%>,=<(Q-<Q>¢+1)*>,=<(Q-<0>)*>; . (2.13)
This implies that the present approximation corresponds to the frozen wave

packet approximation, as will be shown in section 3.

In the dissociation limit, the force <dV/dQz>, in eq.(2.9) vanishes, and
the asymptotic behavior of m(¢) and &(r) is found to be m(f)~mst and
£(t)~&., where m. and £, are constants. In this limit, the diagonal elements

of the density matrix can be reduced to

<np|UpoU~np>=<np lciwpeiE“Q UsinpoUsil € 4=Ce ™= Inp >
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— i ol £ - —i acQ —i ol
=g p<np|e'§ e UviprUvil} € : lnp>e o

=<np | U,ppoUsill € *Clnp>. (2.14)

Namely, the momentum distribution in the final state is independent of time.
On the other hand, if the U-operator in eq.(2.7) is used for U,;, the vibra-
tional distribution depends on time, because m and § oscillate in the disoccia-
tion limit, and because P is not diagonal in the eigenstate [n>. Accordingly,
the U-operator in eq.(2.7) is applicable to the relative translation but not to

the vibration.

2.B Appi'oximate U-operator with two parameters for vibration
In order that the vibrational distribution in the dissociation limit is
independent of time, the operator X, in eq.(1.4) should be the number opera-

tor, N, of the harmonic oscillator defined by

N=§1;-(P,2+m2Q,2), (2.15)
It would be desirable if a pair of operators, N and X, which satisfy
[N,X]=—i can be taken in the approximate U-operator as
U=exp[ibN ]Jexp[i{X], because the equations of motion of 6 and { have canon-
ical forms similar to those given in eqs.(2.8) and (2.9). However, no such
operator X can exist, because N has a discrete eigenvalue spectrum.®

In the present paper, the U-operator defined as

U,in=exp[iON]exp[iLP,] (2.16)

is considered. The equations of motion of 6 and { are found to be (see

Appendix B)

I<H> o<V>
=--—1——-——t-——w——1—- L (2.17)
o ¢ vpp 9
. I<H> o<V>
{= 1 r_ 1 ‘ (2.18)

g2 a6 L D) a6 ’
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where op=—w(<Q>p—{). In the dissociation limit, 6 and { behave as
0(t)~0.t and {(t)~{», Where 0, and {. are constants. The vibrational distri-

bution in the dissociation limit is shown to be independent of time as follows,

<np|UpoU~ llnp >=<np Ieiec'Neing UtransPOUt;a]ns e =Pl Inp >
=eie,m<np IeiéwP UtranspoUt;a]ns e—-ing ,np>e—~i6mm
(P - —il<P
=<np Ielg UtranspOUtralns e |np>. (2.19)
The expectation values of P and Q are given by
<P>,=<P>,c080+w(<Q>y—{)sind, (2.20)
<Q>,=(<Q>0—§)cos6—201—<P>Osin6. (2.21)

In photodissociation, where <P>;=0 and <Q@>,#0, <P>, and <Q>, oscil-
late, in the dissociation limit, about zero with amplitudes w(<Q>y—{.) and
<Q>y—{«, respectively. When {.=<Q>, the amplitudes vanish: Namely,
the center of the wave packet is fixed at the origin. In such a case, oy in
eqs.(2.17) and (2.18) vanishes and the equations of motion break down.
However, such a case is not expected to occur in the photodissociation in
which the fragment is vibrationally excited.
Another possible choicé is to use the U-operator, defined by
U=exp[i6N]exp[it’ 0], (2.22)
which leads to an approximation similar to that presented above; the equa-
tions of motion of 6 and {’ are found to be identical to eqs.(2.17) and (2.18),
respectively, except that oy,= —w(<P>,3—{'). However, o, vanishes at r=0
in photodissociation, in which case <P>;=0. Therefore, the U-operator in

eq.(2.22) cannot be used for describing photodissociation.

2.C. Approximate U-operator with four parameters for vibration

Approximation presented in subsection 2.B is expected to be improved to
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some extent by introducing two additional parameters in U,;, defined in
eq.(2.16). For describing photodissociation dynamics, the following operator

is considered to be effective:

Uyip=exp[i6N]exp[i{P]

X exp[—i<Q>Plexp[ixZ]exp[ikW]exp[i<Q>,P], (2.23)
where
1 p2_ 292
Z=5=(P*~w’Q?), (2.24)
W=—;—(PQ+QP). (2.25)

The reason for employing this U-operator is presented in section 3. The
equations' of motion of the variational parameters, 6, {, x, and k, are found

to be (see Appendix C)

. 1 a<V>,

0=—w-— , 2.26
012034 9¢ ( )

.1 9<V>, | 5<V>, a<V>, ) 7

{= P (o34 30 Tl g 3T ) (2.27)

. 1 a<V>, a<V>,

= — - 2.2

X 13058 14 51 top T ) (2.28)
1 I<V>, I<V>,

K=— o - , 2.29

012034( Y 2 a9y ( )
where
op=w(l—<0>(), (2.30)

and other matrix elements, o;;, are given in eqs.(C.11)-(C.16) in Appendix C.
In the dissociation limit, where all the derivatives of <V>, vanish, the
asymptotic behavior of the parameters is found to be 8(¢)~6.¢, {(#)~{x,
X(t)~X«, and k(t)~k, where 0., {», X«, and k.. are constants. Therefore,

the vibrational distribution in the dissociation limit'is shown to be indepen-
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dent of time by a calculation similar to that in eq.(2.19). When <P>;=0,
which always holds in photodissociation, the expectation values of P and Q
are given by (see egs.(C.9) and (C.10))

<P>,=w(<0>y—{)sind, (2.31)

<Q0>,=(<@>p—{)cosh, (2.32)
which are identical to those of U, with two parameters (eqs.(2.20) and

(2.21) with <P>=0). Therefore, o, is expected to be nonvanishing when
the fragment is vibrationally excited. Since o3, cannot vanish, as can be
shown by eq.(C.16), the denominators in the right-hand sides of the equations

of motion, eqs.(2.26)-(2.29), are expected to be nonvanishing.

3. TIME EVOLUTION OF THE WIGNER FUNCTION
In order to obtain some intuition in regard to the evolution of the system
described by a given approximate U-operator, the time evolution of the

Wigner function”! is studied. The Wigner function, f(p, ¢; t), is defined by

fo,q;0=[dr e‘i”’<q+%lp(t)lq—§>, (3.1)

or equivalently!0:1]

f,q;0)=Tr{p(P, 0;1) 8(p—P, q—Q0)}, (3.2)

where the 8 function is defined by

8(p =P, g=0)= 5 [da [dp expl~ifap~P)+B(a- Q. (3.3)
The Wigner function at ¢ can be expressed as
f, q;0)=Tr{U(t) p(P, Q; t=0)U"'(1) 8(p—P, g~ Q)}

=Tr{p(P, 0;1=0) 8(p U~ 'PU, g—U"'QU)} . (3.4)
Suppose that the U-operator transforms P and Q as

U WPU=u, P+u;Q+up , (3.5)
U™ 1QU=uy P+upn0+uy, (3.6)
where
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UpiUg — Ul = 1. (3.7)
The U-operators which consists only of the quadratic forms of P and Q
always transform P and Q as eqgs.(3.5)-(3.7). The delta function can then be
reduced as see (Appendix D)
8(p—U'PU, g=UT'QU) = 8(upn(p —up)—u1n(g—ug)—P,

—uy(p—up)+uy(g—ug)—0). (3.8)
Therefore, eq.(3.4) can be rewritten as

fp, q; )=Tr{p(P, Q;t=0) 8( usy(p—up)—u12(g—ug)—>P,
—un(p—up)tuy(g—ug)—0)}
=f(uz(p—up)—up(g—ugp),
—ugi(p —up)tuj(g—up); t=0), (3.9)
or inversely,

flunp +upgtup, uyip+ungtug; 1)=f(p, q;t=0). (3.10)

Equation (3.9) or (3.10) means that the evolution of the Wigner function can
be represented by an affine transformation in the phase space, (p,q), which
corresponds to the transformation of (P,Q) in eqgs.(3.5) and (3.6).
In the case of U,,,=exp[inPlexp[i£Q], the Wigner function is found to
be transformed as
fpsq;0)=5lp —&(1), g+m(1); 1=0); (3.11)
namely, it is the parallel translation along the p- and g-axes, represented by a
coordinate transformation in the phase space,
p-p'=p+§, (3.12)
g9~ q'=q—m. (3.13)
In the case of Uy;,=exp[iON |exp[i{P], the Wigner function at z is given by
f(p, q;t)=f( pcosd—wgsing, gcosd + L ging+ {; t=0). (3.14)
w
Namely, f(p, q;¢) is obtained from f(p, q;t=0) by the parallel translation

along the g-axis,
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p~p'=p, (3.15)

q-q'=q9-¢, (3.16)
followed by a special-linear transformation,

p'=p''=p'cosb+wq’sind, (3.17)

q' - q”=q’cos6—%—sin6, (3.18)

as illustrated in Figure 1. The latter transformation is equivalent to moving
any point of the Wigner function along the phase flow of harmonic oscillator.
When the U,,,,, and U, with two parameters are employed, only the position
of the Wigner function is taken into consideration, and deformation of the
Wigner function is disregarded (in the case of Uy,,,) or automatically deter-
mined by the position (in the case of U, ).

On the other hand, the effect of U,y with four parameters (eq.(2.23))
corresponds to the following sequence of transformations: (i) The center of
f(p, q;t=0) is moved to the origin of the phase space by a parallel trnaslation
along the g-axis,

p~p'=p, (3.19)

g-q'=qg—<Q@>p; (3.20)
(ii) a special-linear transformation,

p~p'=e "p, (3.21)

g~ q' =e"q, (3.22)
is made as shown in Figure 2.(a); (iii) a special-linear transformation,

p- p' =pcoshy+wgsinhy, (3.23)

g-q'= %p sinhy + gcoshy, (3.24)

is made as shown in Figure 2.(b); (iv) the center of the Wigner function is
replaced by that of f(p, ¢g;t=0) by the inverse transformation of eqs.(3.17)
and (3.18); (v) a parallel translation,

p-p'=p, (3.25)
q9-q'=q-1t, (3.26)
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is made; and (vi) a special-linear transformation in eqs.(3.17) and (3.18) is
made. In the above transformations (i)-(iv), deformation of the Wigner func-
tion is approximately taken into account by two special-linear transformations
(ii) and (iii), and in the last two steps (v) and (vi), which are identical to the
transformation made by U,;, with two parameters, the center position of the
Wigner function is described.

In summary, time evolution by approximate U-operators constructed by
operators quadratic in P and Q is represented by an affine transformation of
the Wigner function in the phase space. Therefore, one can examine the
choice of the operators to be involved in the approximate U-operator in accor-
dance with the geometrical picture of the transformation generated by the

operators.

4. LIMIT OF THE LOCALIZED WIGNER FUNCTION

The time evolution described by approximate U-operators involving two
parameters is analogous to that of calssical mechanics, as can be seen from
the equation of motion of the parameters and from the evolution of the
Wigner function. Especially, in the limit where the Wigner function is local-
ized in the phase sapce the time evolution by approximate U-operators is
expected to result in that of the classical mechanics of a point mass. In sub-
section A, the equations of motion of the expectation values, <P>, and
<Q@>,, are shown to be the canonical equations with a Hamiltonian <H>, in
the case of Uy, and U,;, with two parameters. In subsection B, the varia-
tional parameters are shown to be connected to the classical variables, and
their equations of motion are proved to be equivalent to that of the classical

mechanics in the limit of the localized Wigner function.

4.A. Equations of motion of <P>, and <(Q>,
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The time evolution of the system described by U, ., in €q.(2.7) and U,
in €q.(2.16) can be shown to result in the classical mechanics of the point
mass in the limit of the localized Wigner function. The time-derivative of
<P>, propagated by an approximate U-operator,

U=exp[inX]exp[itY], (4.1)
is found to be

d<P>, _9<P>, .3<P>,
= t§
dr am 13

L a<H>, 6<P>,+ g I<H>, d<P>,
=(o )12 3t am (0 )21 am €

(4.2)

Since the expectation value <H>, can be regarded as a function of <P>, and

<Q>,, it follows that

d<P>, 1 9<H>, d<P>, N I<H>, d<Q>, 9<P>,
dt o, a<P>, dt a<0>, ot am
L1 9<H> §9<P> §<H> 3<0> 3<P>,
0'12(6<P>, an 0<Q>, an ) 13
a<H>,
—{P,Q}ngm , (4.3)
where {P,0}, is the generalized Poisson bracket®'? defined by
1 8<P>, a<Q>, d<P>, 9<Q>
{P’Q}':]g: - ( : L : : )' (4‘4)
o dn 0§ a€ an
Similarly, the time-derivative of <Q>, is found to be
d<g>, d<H>,
—= Rt iy 4.5
de {Q.Phye a<P>, (4.5)

If {P,0},:=1, the equations (4.1) and (4.5) are exactly the canonical equa-
tions for <P>, and <Q>, with Hamiltonian <H>, which is a function of
<P>, and <@>,. In such a case, the equations of motion, eqs.(4.1) and

(4.5), are reduced to those of the classical mechanics of the point mass when
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the  Wigner function is so localized that the equation
<P"Q"> =<P>"<Q>" holds.

For U,..s=explinPlexp[itQ] (eq.(2.7)), the generalized Poisson bracket
{P,0},; is easily found to be 1 by using eqs.(2.10), (2.11), and (A.4). For
U,ipb=exp[i6N]exp[i{P] (eq.(2.16)), it can also be shown that {P,Q} =1 by
use of egs.(2.20), (2.21), and (B.3). Accordingly, the time evolution by
approximate U-operators Uy, in €q.(2.7) and U,;, in eq.(2.16) are shown to
result in that of the classical motions of the point mass when the Wigner func-
tion is localized in the phase space. Therefore, one can expect that the
approximations by these U-operators are applicable to the system in which the
wave packet is localized both in the coordinate and momentum spaces, such as
photodissociation from the vibrationally ground state, the nuclear wave func-

tion of which is the minimal-uncertainty wave packet.

3.B Relation between the variational parameters and the classical variables

For the U-operators U,;,, in €q.(2.7) and U,;, in eq.(2.16), which involve
two variational parameters, the variational parameters are shown to be con-
nected to the classical variables. In the case of U,,,,=exp[inP]exp[i§Q], one
can see from eqs.(2.11) and (2.12) that the parameters —m and § equal to the
canonical variables g(#)—g, and p(z)—p,, respectively, in the limit of the
localized Wigner function. The equations of motion of m and &, egs.(2.8)
and (2.9), has the same form as the canonical equations of motion in classical
mechanics.

In the case of U,;,=exp[i6N]exp[i{P], the parameters 6 and { are con-

nected with the classical variables by

p(t)=pocosd+ w(gp—{)sind (4.6)
q(t)=(go—¢)cosd— -:Tposine (4.7)
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in the limit of localized wave packet, as is derived from eqgs.(2.20) and (2.21).

Equations (4.6) and (4.7) can be inverted as

6=tan™ (2L 4 5in~1 £ ; 4.8
Cag@)) " G v &8
1 )

[6=gol=={p (1)*+ w?q(1)*~p3}*. (4.9)

In photodissociation, in which py=0, the above equations are reduced to

6=tan~1(-2L) 4.10
(1wq(t) ) (4.10)

6= gol=—-{p (1) + w?q (1)°}*. (4.11)

Namely, w/2—6 and -%—co({-—qo)2 are equal to the angle and the action vari-

able of the harmonic oscillator, respectively. In fact, it can be shown that the
equations of motions of 6 and {, eqs.(2.17) and (2.18), are equivalent to the
classical equations of motion of 6 and { as the classical variables defined in

eqs.(4.10) and (4.11).

5. VIBRATIONAL DISTRIBUTION
In the time-dependent treatment of photodissociation, the cross section
producing the vibrational state n is given by’
P(n ’Eph)=€Ephl(£I£|<n p(nExp)|UMD|¥ o>
=eEpplim<n p(n,Ep)lp(D)ln p(n,Epn)>, (5.1)
where E, is the energy of photon, [¥o> is the nuclear wave function of the
initial bound state, and € is a constant related to electronic transition moment.
In eq.(5.1), the final momentum p is uniquely determined from n and E,, by

energy conservation:

% 2=E ~Do—w(n+4), (5.2)

where D is the dissociation energy. By using eq.(2.2), eq.(5.1) can be writ-

ten as
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P(" aEph)= IEZfdp' <nlUvib(°°)ln' ><p |Utrans(°°)lp' >

n'm
<p'lm><n'm|¥,>], (5.3)
where <p’|m> represents the wave function of a harmonic oscillator with an

arbitrary frequency and an arbitrary equilibrium distance, which may be
chosen for the convenience of the calculation of the Franck-Condon factors.
By substituting the matrix element of U,,,(®) by eq.(A.8), eq.(5.3) is

further reduced as

P(n,Ep) =[S <n|Uyin(®)|n' ><p' = {olm><n'm|[¥o>[. (5.4)
n' m
The matrix element of U,;,(«) is given in Appendices B and C for U,;, with
two paraineters and U,;, with four parameters, respectively.

A model Hamiltonian

H=%’P}%+'%'(P,?+Q)2Q,.2)+Voe-akgk+a'Q’ (5.5)

is considered. The expectation value of the interaction <V0e—°‘RQR+“’Q’> ;
and its derivatives with respect to the variational parameters can be obtained
in explicit forms (see Appendix E). Therefore, equations of motion of the
variational parameters can be written explicitly. Accordingly, the procedure
for obtaining the vibrational distribution is as follows: calculation of the
Franck-Condon factor in eq.(5.4), integration of the equations of motion of

the variational parameters, calculation of the U-matrix element, and then,

multiplication of the matrices in eq.(5.4).

6. EXAMPLE
A numerical calculation was made on the photodissociation of CF;I(X)!?
in the vibrationally ground state,
CF;l - CF(X)+I(Py), (6.1)
by a collinear model, in which the symmetric derformation of CF; and the C-1

stretching motions are taken into consideration. The results are compared
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with the exact one reported by Henning et al.’* by a coupled channels
method, in which essentially the same Hamiltonian is employed. Since the
aim of the present calculation is to test the validity of the present approxima-
tion, the Hamiltonian used may not be sufficiently realistic to explain the
experimental results; for example, the excitation of the stretching and degen-
erate deformation modes of CF; are left out, and non-adiabatic transitions to
the other potential surfaces are ignored.

The wave function of the bound state, CF;I(X), is approximated by that
of the two-dimensional harmonic oscillator whose frequencies, w; and w,, and
normal coordinates are calculated from the potential surface of CF;(X)
employed by Henning et al.!* The frequences are w;/2mc=745cm™! and
wy/2wc=287cm™!, the corresponding spectroscopic values being
w/2mc=741cm™! ( v,: CF; symmetric deformation) and @,/2wc=286cm ™! (
v4: C-I stretching).!®> The transformation between the normal coordinates of
CF;l, (Q;, @), and the mass-weighted Jacobi coordinates, (Q,, Qr), defined
in section 2, is found to be

0,=+0.98494 0, + 0.17290 @, + 18.2979, (6.2)

Or=-0.17290 0, + 0.98494 Q, + 1362.77, (6.3)
in atomic units.

Following Henning et al.!4, the functional form of eq.(5.5) is used for the
Hamiltonian of the dissociative state; the interaction is assumed to be the

~@Re-1 The values of the constants

repulsion between C and I atoms: V=Ve
are as follows: w/2wc=705cm™!, V;=1945.0, and a=2.2. These values lead
to ap=7.707%x1073 a5 ! and «,=0.01309 a5 !. The dissociation energy, Dy,
is 0.1176 e%ag’!. The expectation value, <H>,, is calculated by the formula
given in Appendix E.

In the calculation of the Franck-Condon factor, eqs.(6.2) and (6.3) are
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approximated by

0,=0,+18.2979, (6.4)
Qr=0,+1362.77. (6.5)
Then, it follows that

<nm|¥o>=[dQ, [dog ¥§P(Q,) U (Qr) WEV(Q1) ¥EP(Q2)

~[d0, ¥{(0,) W (Q,+4,)
Ja0r WP (Qr) W67 (Qr+dg). (6.6)

The equilibrium distance and the frequency of the harmonic oscillator wave
function ¢$®’, which can be chosen arbitrarily (see eq.(5.3)), are set equal to
those of Y{?; then, the second integral in €q.(6.6) becomes 8,. The first
integral is estimated by using the recursion formula.!®

The equations of motion of the variational parameters is integrated
numerically by means of the Runge-Kutta method. The U-matrix elements
are calculated by use of the expression given in Appendices B and C. |

The results of the calculation by using U,;,,, in €q.(2.7) and U, with two
parameters (eq.(2.16)) are shown in Figure 3, in which the exact solution by
the coupled channels method reported by Henning et al.!* is also shown. The
peak of the vibrational distribution is shifted towards larger » when the pho-
ton energy is increased; the position of the peak is well reproduced by the
present calculation, though the distributions are wider than the exact ones.
This trend is reasonable because the present approximation, in which the U-
operators with two parameters are employed, corresponds to the "frozen"
wave packet approximation, and the deformation of the Wigner function is
not fully taken into account.

In order to make a more severe test, a numerical calculation is performed
by use of a more complicated potential, presented also by Hennning et al.'4;

namely, the harmonic potential in eq.(5.9), %—sz,?, is replaced by the poten-
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tial in which the equilibrium distance and the frequency depend on the C-I

distance:

H= 2 PR+ +P2+ 2 2(05)0%(Q,— A(QR)V+Voe 02, (6.7)
where the functional form of Z(Qg) and A(Qg) are given in eqs.(F.1) and
(F.2). The expectation value of the Hamiltonian is given in Appendix F,
where an approximation is made in evaluating the expectation values of
Z(Qg) and A(Qg). The results are shown in Figure 4. The position of the
peak is reproduced, but the distribution is narrower than the exact one. The
distribution calculated by U,;, with four parameters is wider, i.e., closer to
the exacf one than that calculated by U, Yvith two parameters; the level of
approximation is indeed improved by extenéion of the variational space. The

remaining desagreement can be ascribed to the limitation of the frozen wave

packet approximation for the translation and the mean-field approximation.

APPENDICES
APPPENDIX A: EQUATIONS OF MOTION AND MATRIX ELEMENT FOR

Urrans

One can obtain P by differentiating U by m,

-g—%= Pe'"PeitC=ipy. (A.1)
By definition (eq.(1.7)), it is obvious that P=P. Differentiation by & gives

_:99_(&]_: je"PQeitl=(Q+m)e " eitC, (A.2)
namely, =Q+m . Here, the last equality in eq.(A.2) can be derived from

the Kubo identity

1
X, eY]=fe‘Y[X, Y]e Y ds €. (A.3)
0

Then, the o-matrix is given by
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o, = i<[P, 0]>, = i<[P, Q+n]>, = L (A.4)
The transformation, U~!PU and U~!QU, can be calculated by using the
Baker-Hausdorf expansion,
eXYe X=giXy=3 %(ad X)"Y, (A.5)

n=0

where (ad X)Y=[X, Y]. For example, U™ !PU is obtained as

U’-IPU:e-i ad §Qe-—i ad 'nPP
—¢~iad E0p

=P+§. (A.6)
The expectation value of the kinetic energy operator is given by

< -%—P2>,=Tr{UpoU“1 —3—?2}

=Tr{pg U~ 1—;—PZU}

=Tr{po 5 (U"'PUY}
=_21-<(P+§)2>0=—%—<P2>0+§<P>0+ —%—52- (A7)
Accordingly, one obtains the equations of motion of n and §, eqs.(2.8) and
(2.9).
On the other hand, the matrix element of U,,,s in the momentum
representation is obtained, by recalling that the effect of the operator e'¢€ is a

shift of the momentum by &;

<prIeinPeiEle>=ei'qp'8(p_p'+§). (AS)

APPENDIX B: EQUATIONS OF MOTION AND MATRIX ELEMENT FOR U,
WITH TWO PARAMETERS
The operator N is given by N=N. Differentiation of Uy, (eq.(2.16)) by {

leads to

aU,ip

14
It follows that

= je!ONPeilP = PeiON il (B.1)




-123 -

P=e!%pe=i0N=pcos—wQsind. (B.2)
The o-matrix is obtained as follows:
0'12=i<[1\7,ﬁ]>,
=i{<U” [N, NplUu>,
=j<eitad Pg=ibad N[y oibad Np]>
=i<[e” %4 PN P]>,
=i<[N—§wQ+%mC2,P]>O
The expectation value of N is given by
<N>,=<U"NU>j=<e 4 PN>,
" =<N>O—§¢»<Q>(,+-;—§2 (B.4)
Accordingly, the equations of motion, eqs.(2.17) and (2.18), are obtained.
On the other hand, the matrix element of U,;, is given by
<n|Uypjm>=<nle'®Ne'tP |m>

=e'<nle’tP|m>. (B.5)
The operator P can be expressed by anihilation and creation operators, ¢ and

a’, as

P=i(%’—)’/’(a+ -a). (B.6)

By using the above expression, it follows that

<nle®Pn> = <ple~UDXT=0) |y
= <n|e—C(w/2)*a*e€(w/2)“ae—(m/4)gzlm>

_ e—(w/4)§2 min(#n,m)

<nIe—L(w/Z)*a+|l><lleC(w/2)"‘a|m>

1=0
a2 ™ (= 0(@/2) ! ml v e (@/2) ! ml

= o~ (0/4){ Eo (":’_1)! .{;_!_)% Eﬂm_m 17' )

— —(w 2 min(n,m) { — /2 %}"-1 /2)%}]n—]

= (nlm!)%e (/2 ,Z:O { g(m(n)—l)!(:ig—(glll . (B.7)

Namely, the matrix element is given by a polynomial of {.

This U-matrix element can be shown to have a functional form similar to
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that of the forced harmonic oscillator. For example, the squared modulus of

the matrix element <n|U|0> is given by

o .2
-

[<nlujo>P=—(Spye 2 (B.8)
which equals to |<n|U|0>[? of the forced harmonic oscillator with a mean
vibrational quantum n=%w{?. However, the present approximation is not
completely equivalent to the forced harmonic osicllator, because the effective
Hamiltonian in eq.(1.9) is found to be

H = —ON — [ (Pcosb — wQsinb), (B.9)
which is different from the Hamiltonian of the forced harmonc oscillator in

that H ¢ involves the operator P.

APPENDIX C: EQUATIONS OF MOTION AND MATRIX ELEMENT FOR U,
WITH FOUR PARAMETERS

The effects of the U-operator on P and Q are considered first. Each com-

ponent of the U-operator transforms P and Q as follows:

e"1ad8Np = Pcosh+wQsind, (C.1)
e iadbNp — —--:TPsin6+QcosG, (C.2)
e i@ tPp=p, (C.3)
e—iad I;PQ=Q_C, (C.4)
e ! % XZp = pcoshy — wQsinhy, (C.5)
e"iadxZg=— %Psinhx+ Qcoshy, (C.6)
e~ ad kWp=oxp (C.7)
e-i ad KWQ=e—KQ, (C.S)

which are obtained by using the Baker-Hausdorf expansion (eq.(A.5)). The

effect of the whole U-operator on P and Q are given by

U~!'PU =Pe*(cos@coshy —sinfsinhy)
—w(Q0—<Q>g)e” *(cosbsinhy —sinBcoshy)
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—w({—<Q>g)sind, (C.9)
U~1QU =(Q—-<Q>p)e~*(cosbcoshy + sinfsinhy)
- —(%)—Pe *(cos@sinhy +sin6coshy)

—({—<0>()cosh. (C.10)
The o-matrix elements are given by

Tp=w(l—<0>p), (C.11)
o33= %{<P2>0e2"+w2<§2>o€—2'<}8inh2x, (C.12)
0= -;)1—{<p2>0e2’<—m2<§2>0e“2"}cosh2x, (C.13)
053=0, (C.14)
0240, (C.15)
034=-(%-{<P2>062K+0>2<Q_2>oe_2'<}, (C.16)

where Q_éQ—< 0>, and the initial condition of photodissociation, <P>, =
<PQ+QP>, =0, has been used; the condition <PQ+ QP>; =0 holds when
the nuclear wave function of the bound state is a product of those of har-

monic oscillator. The expectation value of N is given by

1
2w

+i§—(g—<Q>0)2. (C.17)

<N>,==——{<P?>ye%+ 02< 0> e "*}cosh2y

The equations of motion are obtained from egs.(C.9)-(C.17) as egs.(2.26)-
(2.29).

In the calculation of the matrix element of U, in eq.(2.23), the matrix
element of each component, e!*”, ¢*2, and e*V, are calculated from the
analytical expression, and the matrix element of the whole U,;, is obtained by
numerical multiplication of each component matrix. The analytical expres-
sions of the matrix elements of e*? and ¢’*% are obtained as follows: The
matrix element of the former is considered first. By use of the anihilation
ixZ

and creation operators, ¢'X“ is expressed as

eiXZ = g~ i(x/2)(aa+aa") (C.18)
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The normal product representation, in which the anihilation operator is col-
lected on the right-hand side of the operator, the right-hand side of the above
equation is obtained by the following procedure: The normal product
representation of the operator

U=eas(aa+a+a*)’ (C.19)
is expected to have the form

V=eA(9)B(5)a"a” ,C(s)a"a,D(s)aa (C.20)

The derivatives with respect to the parameter s of U and V are given by

%(si=a(aa+a+a+)v, (C.21)
and 4

dV= dA  dB . ., dC, . _ + .+

s [ds+dsaa+ds{aa 2B(s)a"a™}

* %%e ~2¢(){aa—4B(s)(a*a+ %) +4B(s)’a*a*}lv.  (C.22)

If A(0)=B(0)=C(0)=D(0)=0 and a(aa+a*a™) is equal to the interior of
the bracket in eq.(C.22), the operator V is equal to the operator U. Equating

a(aa+a*a™) to the interior of the bracket in eq.(C.22), one obtains

A—2DBe~2¢=0, (C.23)
C—4DBe™2¢=0, (C.24)
De 2C=q, (C.25)
B—2CB+4B2De X =q, (C.26)

where the dot represents the derivative with respect to s. The solution of the
above differential equations under the initial conditions that

A(0)=B(0)=C(0)=D(0)=0 are given by

A=— -;—lnlcos(Zas) l, (C.27)
B= -;—tan(Zas), (C.28)
c= %A, (C.29)
D=B8. (C.30)

By putting s=1 and a= —(i/2)x, one obtains
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X2 = e—(i/2)tanhx°a+a+e-—ln(cosx) (aTa+%)
g —(i/2)tanhx aa_ (C.31)
The matrix element can be obtained as

<nle*?|m>
— mm%,m)<n leBa"'a"'Inf >eCn' +%) <y IeBaa lm>
'=0

i ( ’ ) C n' —-n' —-n'
YkeCrRplm+m1 "“"E" ™ (e~/B) 7 {(% 2" )g(mzn )1}, (C.32)

where the matrix element is nonvanishing only if m and » are both even or

=(m!n!
( a0 n'!

odd, and the summation over n’ is taken for even (odd) n’ when m and n are
even (odd).

On the other hand, the normal product representation of the operator

gixW = gk(aa—aa™) (C.33)
is given by

ex(aa—a"a") = ,B'a*a" ,C'(a%a+ %)y~ B'aa (C.34)
where

B'=— -;—tanh(zx), (C.35)

C' = —In{cosh(2k)}. (C.36)

The matrix element is given by
<nle'*¥|m>
= (m!n!)%eC'/ZBl(m+n)/2

in(n,m) 2 (eC /B —n'y(mon
mmzn m (= 1) 2 (e /ﬁ ) /{(n 2n )'(m 212 M, (C.37)
n=0 n.:

where the matrix element vanishes unless m and n are both even or odd, and

the summation over n' is taken for even (odd) n’ when m and n are even

(odd).

APPENDIX D: A PROOF OF EQ.(3.8).
By definition, the left hand side of eq.(3.8) is expressed as
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8(p—UT'PU, g—U1QU)
= 4—1172‘fd°‘deeXP[‘i{°‘(P"uuP—uuQ—uP)
+B(g—us P —unQ—up)}l
- #fdafdﬂexp[—i{(p —up)o—P (w01, B)
+(g—ug)B—Q(una+uxnp)}. (D.1)

Changes of the integration variables,

a'=u11a+u213, (D.Z)
B =upa+tuynp, (D.3)
lead to

S(p—U"'PU, q—-UQU)

= 4—1172fda’fd8'exp[-i{(p—up)(uzza’—uzlﬁ’)—Pa’
+(g—ug)(—upa'+u;f')-06'}H

= #Ida'fdﬁ’exp[—i(a’{un(p—up)—uu(q—uQ)—P}
+B'{—uxlp—up)+tuy(g—ug)— 0}l

=8(ugp(p—up)—u(g—up)—P,

—uy(p —up)tuy(g—ug)—0Q), (D.4)
which is to be proved.

APPENDIX E: THE EXPECTATION VALUE OF THE HAMILTONIAN IN
EQ.(5.5)

The expectation values of the kinetic energy operator, -;—PJ%, and the Ham-

iltonian of harmonic oscillator, wN, are given in Appendices A, B, and C.
The expectation value of the interaction is given by
<V>,=<U e 000y

=<exp[-— O‘RUt—;alnsQr Urans arU\El} 0. Uvin]>0- (E.1)
The transformation of Q, is given by

Ut;alnsQrUtrans =0,—, (E.2)
and the transformation of Q, by U,;, with two parameters and U,;, with four
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parameters can be expressed as

UsinQrUyip=u21 P+ ugnQ,+ug. (E.3)
Substisution of eqs.(E.2) and (E.3) into eq.(E.1) leads to

<V>,=<exp[—arQOr+a,(us1P;+u30,)]>0 explagn+o,up]l. (E.4)
For the initial wave function, by which the expectation value < >, is calcu-
lated, the ground state of a two-dimensional harmonic oscillator is considered.
The normal coordinate of the bound state (Q; @,) and the Jacobi coordinates

(Q,,0r) are connected by an orthogonal transformation,

Q,=s11Q1t5120,14,, (E.S)

Or=5010Q1152Q,+dg. (E.6)
It follows that

P.=s51 Pt s52)P), (E.7)

Pp=s1P+592P,, (E.8)

where P, and P, are the momentum operator canonically conjugate to 0 and

0, respectively. Then, eq.(E.4) can be reduced to

<V>‘___<eA1P1+BlgleA2P2+BzQ2>Oear(uQ+szdr)+°LR('ﬂ‘dR)’ (E.9)
where

Aj=aur18q;, (E.10)

Ay=a, U571, (E.11)

Bi=0,u381~ QRS (E.12)

By=0,up812— agsy). (E.13)

When the normal frequencies of the bound state harmonic oscillator are w;
and w,, €q.(E.9) can be reduced to
<V> = exp[ = (B} +@fA})lexpl—=—(B3 +@343)]
4(01 40.)2

expla, (ug +usd,)+ag(n—dg)]. (E.14)
The derivatives of <V>,, which are required for obtaining the equations of

motion, can be obtained explicitly; for example, in the case of U,;, with two

parameters, the derivatives are given by
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a<V>, _ 6<V>, 6u21 6<V>, au22 6<V>, auQ

a6 du,; 06 duy; 96 dupg 90
e, 1
== —2—(0.)1811 +0)2S12)”21<V>r;'(3086

- {—l—arSuB 1t _}.'ars1232+ o, d,}<V>siné
wq 20,
+a,<V>{sind, (E.15)

I<V>, 9<V>, dugy
oy oug 9L’
=—qa,<V>sinb, (E.16)
and the derivatives with respect to m and § are given by

A<V>,

e (E.17)
I<V>,
TI (E.18)

Thus, the equations of motion of 7, &, 6, and { can be written in an explicit
form. The equations of motion of 7, &, 6, {, k, and x can also be expressed

in an explicit form.

APPENDIX F: THE EXPECTATION VALUE OF THE POTENTIAL IN EQ.(6.7)
The functional forms of Z(Qy) and A(Qy) in eq.(6.7) are given by

Z(QR)=[tanh{;l%&-(QR—dR—Zao)}+x+ /(x+2), (F.1)
A(Qr)=up*{1-Z(QR)}, (F.2)

where M =mcgmi/mcp,, w=mcmg/mcr,, and dg is a position of the center of
the wave packet at rt=0 (see eq.(E.6)). The value of the constant, x, is
chosen to be 1.9 so that the Z(Qp) satisfies the relations, Z(dz)=1/2 and
Z()=1. The value of u is set equal to 0.8. The third term of the right-hand

side of eq.(6.7) can be reduced to

2 2(08) X0, ~A(Q)P
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F0703+ 7 {2(08) - 0?0}

~Z(Qg)* 0’ u{1-Z(QR)}0,
+ —;-Z(QR)ZmZuuz{l—Z(QR)}z. (F.3)

The harmonic part, -;—wzQ,Z, is combined with %P,Z to make wN. The expec-

tation value of the remaining part, the second to fourth terms in eq.(F.3), is

approximately evaluated by
1
2 12(< 0> - Tjo?<0}>,

—Z(<Qp> Volp u{l-Z(<Qr>)}<0,>
-+ TZ(< Q> Potuu{1-Z(< 0> )}, (F.4)
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Figure Captions

Figure 1: Transformations of the Wigner function in the phase space by
U,ip With two parameters in eq.(2.16): (a) a parallel translation along the g-
axis represented by the transformation in egs.(3.15) and (3.16), and (b) a
special-linear transformation given in eqgs.(3.17) and (3.18).

Figure 2: The deformation of the Wigner function described by U,;, with
four parameters in eq.(2.23): (a) the transformation given in egs.(3.21) and
(3.22), and (b) the transformation given in eqs.(3.23) and (3.24).

Figure 3: Vibrational distributions of the symmetric deformation of
CF3(X) "produced in photodissociation of CFsI(X) at the excitation
wavelengths indicated in the figure. The closed circles represent the results of
the calculation in the present study by employing the approximate U-
operators, Uy, in €q.(2.7) and U,;, with two parameters in eq.(2.16). The
open circles represent the results of the close-coupling calculation reported by
Henning et al.'* The same Hamiltonian (eq.(5.5)) is used in these calcula-
tions; the CF;I molecule is regarded as a pseudo-triatomic molecule
(F;)—-C-1.

Figure 4: Vibrational distribution of the symmetric deformation of CF; (X)
produced in the photodissociation of CF;I(X) at the excitation wavelengths
indicated in the figure. The triangles represent the results of the calculation in
the present study by employing the approximate U-operators, Uy, in
€q.(2.7) and U,;, with two parameters in eq.(2.16), and the closed circles
represent the results by employing U, in eq.(2.7) and Uy, with four
parameters in eq.(2.23). The open circles represent the results of the close-
coupling calculation reported by Henning et al.'* The same Hamiltonian
(eq.(6.7)) is employed in these calculations. The squares represent the exper-

imental results reported by van Veen et al.!®
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