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1 Introduction

In this thesis, nuclear magnetic moments and magnetic form factors are
studied within the framework of the relativistic o-w model. We focus on
the simplest systems available for this purpose, that is, nuclei with an LS
closed core plus or minus one nucleon. These systems are simplest.in the .
sense that, in traditional nuclear physics, we can expect the extreme single

particle picture to work well for them. In fact, magnetic moments of these

nuclei are one of the experimentally most accurately determined quantities,

and theoretically the extreme single particle values, the Schmidt values, for

isoscalar magnetic moments fall quite near the experimentally measured
values [1]. Corrections theoretically expected, such as exchange currents,

configuration mixing and the A-hole excitation, turn out to be small for

isoscalar magnetic moments. (For isovector magnetic moments, the small

deviations from the Schmidf values result from cancellations between pion

exchange currents and configuration mixing effects [1].)

To discuss the small deviations of isoscalar magnetic moments from the
Schmidt values, we previously calculated heavier meson exchange currents
which had been believed to be less important than the second order config-
uration mixing effects [2,3]. We found, contrary to this belief, contributions
from exchange currents whose order of magnitude are comparable to those
from configuration mixing. In the course of the calculation, however, we
encountered certain theoretical ambiguities. That is, several parameter
sets, which were proposed so as to describe the nuclear force, gave different

answers. The ambiguity was severe because many processes gave contri-



butions which were canceling one another. We had no principle to select
the most appropriate parameter set. This frustrating situation is inherent
to the approach that we took at that time: To derive two body exchange
current operators explicitly from meson exchange processes, and then to
evaluate the expectation values using the shell model wave functions of nu-
clei. We had no internal relation between the nuclear wave function and
the magnetic moment operators, although both of them can be thought to
6rigina.11y arise from meson exchange processes of the same nature. ‘
Many authors share this uneasy feeling on this (in)consistency between
operators and wave functions (for example, concerning isoscalar magnetic
moments, see [4]). Most of them try to extract information on two body
current operators from conventional two body potentials determined so as
to reproduce NN scattering data and the deuteron properties. Though it is
true that the current conservation imposes a condition on the longitudiﬁal
part of the current, we think that this approach suffers from the following
defects: (1) We cannot reproduce properties of finite nuclei from realistic
two-body potentials using the many-body techniques at the present stage.
Finally one has to resort to harmonic oscillator shell model wave functions.
So this approach in fact does not solve the present consistency problem.
(2) When we use two-body NN potentials in nonrelativistic quantum me-
~ chanics we have lost some information on the underlying meson exchange
processes. This loss of information is caused by elimination of meson de-
grees of freedom and by casting the expression, which represents an essen-
tially relativistic meson exchange phenomenon, into a nonrelativistic form.

Therefore we cannot expect that we can extract full information on meson



exchange currents from the two-body potentials commonly used in nuclear
physics.

This is why we turned to the apparently unrealistic relativistic o-w
model [5]. In this model, the medium range attraction between two nucle-
ons is described by the exchange of the fictitious o meson, which is thought
to simulate the 27 exchange to some extent, and the short range repulsion
arises from w meson exchange. This model, when treated in the Hartree
approximation, is simple enough to allow a theoretically consistent (in the
meaning indicated above, and discussed more profoundly later) treatment
of strong and electromagnetic interactions, and capable to reproduce var-
ious ground state properties of closed shell nuclei fairly well. We treat
meson degrees of freedom explicitly, and if we include the electromagnetic
interaction at the lagrangian level we do not encounter the information
loss problem stated above. The masses of the ¢ and w mesons and their
coupling constants to the nucleon field are not very far from, for exam-
ple, those found in the Bonn OBEP [6,7], and therefore we may regard
the model as a schematic model of the relativistic Briickner-Hartree-Fock
approaches based on the realistic OBEP [8,9,10].

We first solve the Hartree equations for LS closed nuclei, that is, ¥0O
and *°Ca. Then we can use the wave functions thus obtained to define the
electromagnetic current of systems with an LS closed core plus or minus
one nucleon. As a first approximation (impulse approximation) one usually
assumes that the current is carried entirely by the valence particle or hole.
However, since the valence particle interacts with all nucleons in the Fermi

sea, it feels some average potential (self energy). Generally, once we adopt
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a model for this self energy, the model for the current is fixed, too. This
intimate connection between self energy and currents is formally described
by the Ward-Takahashi identity [11,12]. In the case of the Hartree approx-
imation for the self energy, the proper current includes the RPA type (ring
sum) vertex correction in addition to the single particle current. The fact
that we are able to construct explicitly such a current is the strongest point
of our approach. In our approach adopted here, however, the vertex correc-
tions are purely isoscalar. This is because we take only isoscalar mesons into
account and calculate the RPA type vertex correction around an isoscalar
core (we do not include the Coulomb interaction between nucleons). We use
the current to calculate isoscalar magnetic moments, which are determined
by the currents for momentum transfer near zero. We further study nu-
clear magnetic form factors in order to investigate also responses to external
fields with finite momentum transfer.

We have stated our motivation to investigate magnetic moments from a
theoretical side. There is also a more practical side, however, for this. Mag-
netic moments of nuclei with an LS closed core plus or minus one nucleon
were calculated by some authors in the relativistic approach employing the
impulse approximation [13,14,15]. The reported values of magnetic mo-
ments, especially of >N, were very far from the Schmidt values (table 1 is
an example of such calculations taken from ref. [13]), contrary to the naive
expectation that the typical single particle picture should work for these
systems.

The deviation from the Schmidt values is attributed to an enhancement

of the Dirac part of the current and the magnetic moment. This enhance-



ment can be shown to be mainly due to the small effective mass of a nucleon
in the nucleus. This problem was considered as serious since many successes
of the relativistic approaches are considered to be due to the smallness of
the effective mass.

Taking one of the conclusions of this thesis in advance, it is now widely -
recognized that the RPA type vertex corrections rescue the difficulties [16,17,18,19]
due to several works including ours. We stress that the vertex corrections
are a natural consequence of gauge invariance of the electromagnetic inter--
action, and not an ad-hoc, arbitrarily chosen correction.

Relativistic field theoretical models give rise to effects which are com-
pletely absent in the nonrelativistic models: Vacuum fluctuations. In the
relativistic approach, a common feature are the very strong scalar and vec-
tor potentials for the single nucleon motion. This causes density-dependent
quantum fluctuations, which modify the vacuum structure, especially the
antinucleon levels, and therefore are expected to affect nuclear properties.
Since the presently used o-w model is renormalizable, these effects are in
principle calculable in a well-defined way. For the renormalization of the
nucleon self energy we will follow previous works [20,21]. As for the electro-
magnetic interaction, we propose the extended VMD (vector meson domi-
nance) model to renormalize the RPA type vertex corrections and applied
it in the LDA (local density approximation) to calculate the effect on mag-
netic properties of finite systems. We are aware of a conceptual problem
appearing here, namely that the nucleon is by no means a Dirac parti-
cle. Therefore requiring renormalizability of the adopted model lacks solid

physical ground. However, we emphasize that we can calculate the effect



of the change of vacuum structure on physical quantities in this model.
‘This thesis is organized as follows: In section 2 the relativistic o-w
model is introduced and used in theiHa.rtree approximation to describe the
ground state properties of 10 and ““Ca. We also discuss how to include
vacuum fluctuation effects on the nucleon self energy. In section 3 the
necessity of vertex corrections and the procedure how to implement them
in our model is discussed. The important matter is how to renormalize
the vertex correction, which is covered in section 3.3. This formalism is
applied to the calculation of nuclear magnetic form factors and magnetic
moments in section 3.3.3. Section 4 presents the numerical results both for
magnetic moments and for magnetic form factors. There the calculations
with and without the effects of vacuum fluctuations are compared. Section 5
is devoted to various discussions. The last section 6 is the summary and

conclusion.
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2 Relativistic o-w Model

In this chapter we introduce the model and discuss how to treat it to obtain
nuclear wave functions. We also discuss the prescription to include the effect

of vacuum fluctuations on the nucleon self energy.

2.1 Model Lagrangian

The o-w model is a renormalizable, relativistic field theoretical model of
nucleons interacting via exchange of scalar and vector mesons. With the
conventions of Bjorken-Drell [22] its lagrangian is given by

L = PGid— M)y + %(30)2 - %mgaz - %G,‘,G’“’ + %mzwuw“

+ ga;ﬁ—fﬁa - ng’Ypl‘bw“' (21) |

Here 9, 0 and w* are the field operators for the nucleon, the ¢ meson
and the w meson with masses M, m, and m,, respectively. The field
strength tensor of the w meson is defined by G* = 9¢w” — dw*. Since we
did not include the tensor coupling between the nucleon and the w meson
(oG, ), the model is renormalizable. This feature will enable us to
discuss the effects of vacuum fluctuations in later sections.

This model lacks the 7 and p mesons. At first sight this seems a serious
defect since the m meson is believed to play the most important role in nu-
clear forces and exchange currents. However, when specifying the model,
we anticipate the approximation scheme which we take and the object to
which we apply the model. In this particular case, we resort to the Hartree

approximation, that is, we retain only direct terms to calculate the self
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energy of the nucleon, and we attempt to describe nuclei with an isoscalar
core (having the same number of protons and neutrons). In such kinds of
nuclei, the pion field may be vanishing in average, and is expected to be not
very important for the bulk properties of ground states. However, when
we consider vertex corrections to the electromagnetic current in the next
chapter, the ring sum type vertex corrections give only isoscalar contribu-
tions, which is a direct consequence of the model lagrangian (2.1) and the
restriction to the Hartree approximation. To improve this point we have
to improve not only the approximation (Hartree-Fock approximation, for

example) but also the model itself (inclusion of isovector mesons).

2.2 Hartree Approximation
2.2.1 Mean Field Approximation

We use the model just described to construct the wave functions of 60
and “°Ca. The calculational procedures of treating finite closed shell nuclei
are thoroughly discussed in the comprehensive review [5]. Here, for com-
pleteness, we briefly describe the method and thereby define notation and
terminology.

In the Hartree approximation, the self energy of a nucleon is calculated
from the tadpole diagram shown in fig. 1, which plays the role of the average
potential used in the Dirac equation that determines the single particle
motion. The nucleon line which appears in the loop of fig. 1 should be
understood as a propagator which is composed of the fully self-consistent
solutions of the present model.

In principle, positive energy occupied states and negative energy anti-
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nucleon states should be included in the loop of fig. 1. In this subsection,
however, we drop the latter contribution, which is divergent. Since this
prescription gives the same answer as the mean field approximation in nu-
clear matter [23,20], we use this terminology in the following. Handling the
divergent parts will be discussed in the next subsection. When we discuss
magnetic moments and magnetic form factors in later sections, we will al-
ways compare the results obtained in the mean field approximation to those
obtained by including the vacuum fluctuation.

In the mean field approximation we should solve the Dirac equation
[~ia- V + B(M + Z,)lp = (E - I\ ) (2:2)

with the scalar and vector self energies

: e~ me|T-T|
S(z) = /d3 e ) (2.3)

—mwla! ' |

() / o el (2.4)

It

where p; and p, are the scalar and vector densities which depend only on

= |&'|, respectively:

) = g2 T+ DF) - GiE) (2.5)
pu(e) = 1 T2 + DEE) + BE) = pp(). (26)
A€h

F\(z) and Gx(z) are the radial parts of the upper and lower components

of the Dirac spinor:

_ [ F(=2)xk(@)
Yau = ( iGA(z)x" <(2) ) : (2.7)
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and A = (n, k), where n is the principal quantum number and the nonzero
integer x determines j and £. (j = |s| - },=Kk—1fork >0and L= —«
for k < 0.) The x* are spin spherical harmonics with magnetic quantum
number g. The summation in egs. (2.5) and (2.6) runs over all positive
energy occupied states h. The quantity M* = M + X, plays the role of a
mass pa.raxﬁeter in the Dirac equation. (Note that X, is negative.) It is
usually called the “effective mass” though it is different from the one used
in the nonrelativistic theory. The vector density is equal to the baryon
density pg, as indicated in eq. (2.6).

This theory has essentially three parameters if we employ the experi-
mental values for the masses of the nucleon and the w meson. We use the
parameter set given in ref. [24] (shown in table 2 under the title “MF”). This
parameter set reproduces the nuclear matter saturation properties and the
rms charge radius of “Ca. Using these values we solved the equations (2.2)
to (2.6) by iteration until self-consistency is achieved to obtain the single
particle wave functions for 0 and %°Ca. The calculated scalar and vector
densities (see egs. (2.5) and (2.6)) are shown by the dashed lines in figs.2
and 3.

2.2.2 Inclusion of Vacuum Fluctuations

Next we present a prescription to take the antinucleon excitations into
account in the calculation of the nucleon self energy.

There have been several attempts to treat the problem of renormaliza-
tion in relativistic field theoretical models of nuclear structure. In ref. [20]

Chin discussed the procedure to handle vacuum fluctuation effects on the
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scalar density in the Hartree approximation in infinite nuclear matter.
Horowitz and Serot [21] used Chin’s results to estimate the importance
of vacuum fluctuations on the properties of finite nuclei in a local density
approximation. Recently Perry [25,26] developed a treatment of the vac-
uum fluctuations without introducing the local density approximation. In
this paper, however, we employ the method of ref. [21] to construct the
single particle wave functions. An exact treatment of the vacuum fluctua-
tions including their effects on magnetic moments and form factors seems
prohibitively complicated at present.

In nuclear matter, the contribution of vacuum fluctuations to the scalar
density is given by [20,21]

1 M~\* M* 1 3M* M=\?* 11 /M*\?
he= 02 [M 63 T3 331 T\ s 6 \ M |
(2.8)

As discussed in ref. [20], this result is obtained by adding to the lagrangian (2.1)

the four counterterms ¥4 _,(a,/n!)o™, which are required to cancel the one-
loop contributions to the Green’s functions with one, two, three and four
external o meson lines with momenta equal to zero. That is, the renormal-
ization point for the Green’s functions with external o meson lines is chosen
as g2 = 0. Different prescriptions, especially ones where the renormalized
self couplings of the o meson do not vanish at zero momenta, give differ-
ent nuclear matter properties such as the compressibility [27]. We do not
discuss this possibility in this thesis. If we renormalize also the w meson
propagator at ¢? = 0, there are no explicit vacuum fluctuation corrections
to the vector density. (The case of arbitrary renormalization point for the

w meson will be discussed in section 3.3.3.)
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In the local density approximation we make the replacement M* —
M*(r) in eq. (2.8) and add this piece to the valence nucleon (positive en-
ergy occupied states) contribution given by eq. (2.5). Since now the scalar
density itself depends explicitly on the scalar potential through the effec-
tive mass M*, equation (2.3) now appears as an integral equation which we
solve by iteration again.

We use the parameter set determined in ref. [21] to reproduce the nu-
clear matter saturation point and the rms charge radius of “°Ca as in the
previous subsection (shown in table 2 under the title “VF”). Note that
both coupling constants become much smaller as compared to their val-
ues in the mean field approximation. m, is also reduced, which results
in a longer range attractive force, compensating to a certain extent the
smaller coupling constant. From the nuclear matter picture one can expect
that these changes will not affect the isoscalar magnetic moments seriously,
since those are determined essentially by the binding energy per nucleon
(see section 3.1).

The scalar and vector densities including the vacuum fluctuation effect
are shown by solid lines in figs.2 and 3. Note that the vacuum fluctuations
modify the vector density only through the change in the wave functions.

In the following part of this thesis, we develop the formalism to calculate
the RPA type vertex corrections using the wave functions created in this
section and apply it to isoscalar magnetic moments and magnetic form

factors.
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3 Vertex Corrections

In this section, we develop the formalism to calculate vertex corrections
which make the electromagnetic current satisfy the Ward identity within
the range of our model, and apply the current, including the impulse one,
to calculations of nuclear isoscalar magnetic moments and magnetic form
factors. We hereby try to take the effect of vacuum fluctuation into account

using the extended vector meson dominance approach.

3.1 General Considerations

The importance of the RPA type vertex corrections in the relativistic ap- -
proach is now widely recognized. Many authors favor the interpretation of
the vertex corrections as the “backflow” current in the Fermi liquid theory
due to Landau (see, for example, [28,17]). However, we are on a somewhat
different standpoint, which clairris that the necessity of the vertex correc-
- tion derives from a géneral consideration based upon the Ward-Takahashi
identity in the nuclear medium. This point of view is established by Bentz
et al. [29] (see also [1]). Instead of reproducing their formal discussion
here, we discuss the necessity of the RPA type vertex corrections for our
particular case.

When we express the quasiparticle current j* as

7*(p'sp) = Np F(e')T*(¥/, ) F(2) N,
with f(p) the solution of the Dirac equation including the nucleon self

energy

ST f(p)=[p—M - 2(p) f(p) =0
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(we follow the conventions of ref. [22]), where the nucleon self energy
Y = X, + 70X, in our model (see eq. (2.2)), the electromagnetic vertex
I'* satisfies the following identity:

(' = W3, p) = =572 [$716) — 579 (3:)

This is the Ward-Takahashi identity [11,12]. It is satisfied by the bare vertex
7* and the free propagator Sr(p) = (p — M)™! trivially. Subtracting the
free vertex I3 = y#3t%= from I'™* we have the irreducible vertex correction
A*, which satisfies the identity:

147
2

(@' = p)ud(p',p) = - (Z(") - Z(p)]. (3.2)

The identities (3.1) and (3.2) hold due to the gauge invariance properties
of the underlying field theory without resorting to any perturbation theo-
retical argument. Here, however, we remember the perturbative proof of
the identities to convince ourselves that, as we repeatedly emphasized, we
need the RPA (ring sum) type vertex corrections when we take the Hartree
approximation to nucleon self energy Z'(p). The key is the very simple ob-
servation that A*(p’, p), obtained from —X(p) by inserting I} which brings
in the momentum p’ — p into any bare fermion propagator and by summing
up all possible insertions, satisfies the identity (3.2). (For its graphical il-
lustration, see p. 301 of ref. [22].) Now that we have X(p) as composed of
the tadpole diagram with the self-consistent nucleon wave functions (fig. 1),
what we obtain as A* by this procedure is of ring sum type (fig. 4).

The advantage of this approach is that, once we decide which approxi-

mation we apply to the calculation of ¥, we have determined the explicit
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form of A. For example, if we take the Hartree-Fock approximation to
XY, we know we have to calculate very complicated diagrams following the
same reasonings in order to keep theoretical consistency. They cannot be
summarized to any simple form such as the RPA type one. (It is more
complicated than the RPA with exchange terms in the interaction.)

In fact, in the Hartree approximation, the vertex correction is not
needed for eq. (3.2) to be satisfied, because the nucleon self energy X(p)
does not depexid on the momentum of the nucleon p in this approximation.
However, when we consider the limiting case in which the momentum trans-
fer ¢ = p’ — p goes to zero, or when the Ward, rather than Ward-Takahashi,
identity is to be satisfied, the vertex correction is necessary even in the
Hartree approximation.

For the general argument concerning this point, we refer to [29] again,
and quote the main results. In the nuclear matter model, care should be
taken when the limit ¢ — 0 is taken. In order to simulate the fact that
there are energy gaps between discrete levels in a finite system, we should
first let ¢ go to zero, and then move ¢° to zero. Following this procedure
one obtains for the space part of the current at ¢ = 0, using (3.1) and the

foregoing definition of the current,

H(g=0)= qloiinm qlli—%j(Q) = Jvel + Tback (3.3)
with
. 1+,
Jvel = VPE:P__Z——

2
. ~ D
Jback = P’375(f1+7'zf1’)-
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Here f; and f] are two Landau-Migdal parameters [30] characterizing the

= 1 isospin-independent and isospin dependent part of the spin indepen-
dent quasiparticle interaction, and €p is the quasiparticle energy. The sum
can be rewritten as

pl+r.

j(q=0)=e— >
4

P’ .
- P’G'g;(fl - fi)-

Note that the isoscalar part of j is determined solely by the quasiparticle
energy. From the above form we can further show [29] that the isoscalar
part of g,, the orbital gyromagnetic ratio, is given by

© _ 1 Ep 3.4

where prp denotes the Fermi momentum and E, = +/p?+ M?2. Since the
binding energy per nucleon in nuclear matter is somewhere around 15 MeV,
g§°) should be very close to %

In the Hartree approximation to the o-w model we have ¢, = E; + X,

with E = Vp? + M*2. Therefore, the impulse current coincides with

. _pl4r,
]vel—E; 2 ’

and jy,q corresponds to the contribution of the RPA type vertex correction

due to nucleon-antinucleon polarization insertions (see fig. 4).

3.2 RPA in the Mean Field Approximation

We use the single particle wave functions obtained in section 2 to con-
struct the electromagnetic current of the valence nucleon or hole outside

the A = 16 and A = 40 core. The current consists of two parts: the impulse
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part and the vertex correction. When calculating the RPA type vertex cor-
rection, we pay as much respect to the finite geometry as possible. In order
to realize this goal, we develop a two-étep approach: First, we treat the
explicitly density-dependent part of the polarization insertions using the
wave functions obtained in section 2.2.1 by the finite system calculation in
the Hartree approximation. The calculation of vertex corrections in this
step is consistent with the mean field approximation in section 2.2.1, there-
fore the terminology is applied here too. Next, we incorporate the vacuum
fluctuation effects in the framework of a local density approximation. In
this step, we use the wave functions obtained in section 2.2.2. By taking
this two-step approach we can compare the results of two calculations, one
in the mean field approximation and another including the vacuum fluctu-
ation effects. In this subsection we present the outline of calculation of the
RPA type vertex corrections in the mean field approximation.

In RPA the current has the form

Fead®) = [SYBr(@)M(y, 2)ruly), (3:5)
where
I'“(y,z) = I ()6 (y - 2) + A%(y, ) (3.6)
is the electromagnetic vertex including the free vertex
T§(y) = ev* + 522 B, 0, (3.7)
(3,=0. + d.)

and the RPA type vertex correction

Ay, 2) = —igurs (A"“(y,z)+ / daxﬁ")\(y,a:)/l’\“(:c,z)> (38
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In eq. (3.7), e is the charge and s the anomalous magnetic moment of
a free nucleon. Disregarding the second term in eq. (3.6) constitutes the
impulse approximation as used in this work. The quantities in eq. (3.8) are

defined as

I(y,2) = I*(y,2) + [€2 05,20 (z,2)  (39)

with
I*(y,z) = / &Sz il (y — 2)I%,(2, 2), (3.10)

and
AP (y, z) = / Eridhy(y — 2)I(2, ). (3.11)

AfY in eq. (3.10) and (3.11) means the free w meson propagator in lowest
order, i.e., without polarization insertions. Eq. (3.9) is an integral equation
for the ww correlation function in the ring approximation. (Note that both
IT* and IT* include one external w propagator Af”.)
In order to introduce the mean field approximation, we split up (see
fig. 5)
I,y =T + I e (3.12)
with JT¢) n being that (finite) part of the ww-polarization operator I,
which explicitly depends on the Fermi distribution function. More precisely,

starting from its definition, we have the following expression for II, (“:w) [31]:

v © de Y
ag, = /_w%tr [I’"S(;c,z,e)F S(z,a:,e—qo)]
. TPug(@)To(2) M up(z)ug(x)
= z;tr[ Ptep—coti
Dy (@) (22 p(z)
Eu — q° — Eﬁ + 25

(1 —na)ng

— ng)Ng
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It uy(z)ua(2) ™ ve(2)vs(x)

+ q® —Es—€q +16 (1 =na)
Thoa(2)Ta(2) M up(z)up(x),
- 3.13
+ - - qo — €5 + 6 \1 nﬁ)] ( )
. < h|I'*(=)|p >< plI™(z)h >
— "[Z( I E)-l)-lp — I g )I
oh " +en—ep+1
+ < p|*(=)|h >< h|I™(z)|p >)

en—¢q° —ep +16
< p|I*(=)|N >< N|I(z)|p >
b SSEEN >< M)
Np ¢ +E& —¢en+1
< N|I'*(z)|p >< p|I™(2)|N >

T R
< p|I'*(z)|h >< h|I™(2)|p >
- 2 0 —g5—en+1i6
hp q P~ énT?
" -— -— v
L < h| ()5 >< p|I(z)h 3. (3.14)

—F5—q°—en+16
Here S is the nucleon propagator, u,(z) and v,(z) stand for the Dirac
spinors with eigenvalues £, > 0 and Z, < 0, respectively, and n, is one
(zero) if the state a is below (above) the Fermi surface. I'* = —ig,v*

denotes the w-nucleon vertex. In eq. (3.14) we used the simplified notation
< a|ll'(x)|f >= Tu(2) [ up(x)
and
< pIl*(2)|8 >=v5(z) Mup(x).
The terms in the first and the second line of eq. (3.13) correspond to
particle-hole excitations, which are rewritten to the first and second line

of eq. (3.14). The terms in the last two lines of eq. (3.13) correspond to

particle-antinucleon excitations. A naive calculation of the latter diverges
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because of the infinite summation of the particle and antinucleon states. To
deal with these terms we devise the following procedure. The sum over the
particle states can be divided intd two kinds of terms, one involving a sum
over all positive energy states N (for nucleon, as opposed to antinucleon)
which is given in the third and forth line of eq. (3.14) and will be denoted
by IT ("L)F, and one involving a sum over occupied positive energy states
h (for “hoie”) given in the last two lines of (3.14). The terms involving a
sum over h make up II{J = I, — I, r- They are characterized as
the explicitly density-dependent terms, since each of them depends on the
Fermi distribution function n, explicitly and vanishes as the latter goes
to zero. I (‘ZL)D is finite because the summation over h runs only over a
finite number of states. When ¢° is small enough not to cause real NN

excitations, IT(,p is expressed in a relatively compact form [32]:
H(’::'w)D = 1Yy {u(x)*S(z,2,¢° + en) [ un(z)
h
+ [@(e)*S(z, z,—¢° + en) M un(2)]*}- (3.15)

Here S is again the nucleon propagator and the sum extends over the
occupied positive-energy states h. Because ¢° = 0 for the calculation of
magnetic moments and elastic magnetic form factors, IT (“:w)D is simply de-
termined by the real part of the first term in the bracket of eq. (3.15).

The treatment of the divergent term IT (‘(“:’W)F (the “Feynman part”) in
an infinite system will be discussed in the next subsection.

Similarly to eq. (3.12) we split up the wy polarization operator into its

explicitly density dependent part and Feynman part (fig. 6)

iy = Tz + Ty (3.16)
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where the former is used to construct the quantity A* of eq. (3.11). All

two-point functions (P(x,¥)) in egs. (3.9), (3.10) and (3.11) are defined
by P(z,y) = P(2,¥,90 = 0), where P(z,y, qo) is the Fourier transform of
P(z,y) with respect to (z° — ¢°).

* The vertex correction (3.8) is graphically shown in fig. 4. ! Note that in
the definition of the vertex correction there enter only the explicitly density
dependent parts of the polarization operators. Within this apprbximation,‘
which is consistent with the mean field approximation adopted for the nu-
cleon self energy, the positive and negative energy continuum states can
be treated exactly (“continuum RPA”). Calculational details are collected
in Appendix A. The Feynman parts of the polarization operators will be

re-included into the calculation in section 3.3.3.

In eq. (3.8) we already used the fact that for an external magnetic field (M1, M3,...)

only the w meson (and, in particular only its space component w*) contributes to the
vertex correction.
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3.3 Renormalization

Anticipating the application to the RPA type vertex corrections, in this
section we discuss the renormalization of nucleon loop diagrams associated
with the w meson exchange processes. As discussed later, only the space
components of the w meson contribute to ring diagrams for elastic magnetic
processes. We first discuss the renormalization of the w meson propagator,
and then proceed to the case where the electromagnetic interaction is turned
on. The common procedure to handle renormalization and to assess its
effects on nuclear properties is as follows: Renormalization is performed in
the vacuum. That is, counterterms which render physical quantities finite
are determined in the vacuum. Then the density dependence is evaluated
in the nuclear matter model. And at last, the calculation in finite systems
is done by employing a local density approximation. Details of this last

procedure for vertex corrections will be discussed in the subsection 3.3.3.

3.3.1 w Meson Propagator

In this subsection we discuss the renormalization of the w meson prop-
agator. The divergent part of the polarization insertion caused by NN
excitation has, in nuclear matter, the same form as in free space with the
nucleon mass replaced by the effective nucleon mass M*:

R B —
e O N R By
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An overall factor 2 accounts for the isospin multiplicity. In the dimensional

regularization scheme we have [33]

2 BV
v 9w v, 14
Hormeg(®) = =73 (-9“ o ) ¢
1 1 1 M*? —z(1-1z)¢®
[-6—; -7~ -/o dzz(l1—z)log 32 ]3;.17)

where € = (4 — d)/2 with d the number of dimensions, 4 is the Euler
number, and A is an arbitrary mass scale which appears in the procedure
of dimensional reguia.rization.

To cé,rry out the renormalization in the omega-nucleon sector of our
model, we interpret as usual all quantities in the lagrangian (2.1) as un-
renormalized ones (characterized by a subscript 0) and make the scale trans-

formations

m?2 + ém?
w&)) =\ 2w, Y) =\ Zny, mf,o = T \/_ZN (3. 18){

Here Z, is the wave funcion renormalization constant and §m? the mass
counterterm for the w meson, and Z; is the wNN vertex renormalization
constant. Since in the present Hartree model there is no correction to
the nucleon propagator for zero density, the wave function renormalization
constant Zy for the nucleon is equal to one. Putting eq. (3.18) into eq. (2.1)

we obtain the lagrangian in the omega—nucleon sector,
m2,
'CwN = 'l,b(’ta M)¢ - _GuuGuu + —2—64)“(.0 - (Z 1)G#VGuV
2

om? _—
5 wpw” = Zygubyupwt. (3.19)

_l_

The renormalized polarization IT (‘::w)p’r is now obtained by adding the

wave function and mass renormalization counterterm contributions —(Z,, —
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1)(g#g” — g**q*) — dmZg" to eq. (3.17) and replacing g, — Z,g.:

Hyu ( — ny qpqu H ( 2 quué_ 2 (3 20)
(ww)For q) = -9 + —-—q2 ww)(g7) = —-——q2 m,, .

with
a _ 21 1 _ M*? — z(1 — z)¢?
Mww(a?) = —q 2 [66 g7 ./o dz z(1 — z)log 32
— (2, - 1)g* + 6m2. (3.21)

The w meson propagator including the Feynman part of the polarization

operator is then obtained from Dyson’s equation as

v . ¢ n , "9 1
B = [ —g* 19 .22
4*(q) (y + qz)A(q)+ Py (3.22)

1
A(qz) = @ —m2 — U(w)(qz)'

This propagator is graphically represented by fig. 7. Denoting the renor-

(3.23)

malization point by u? we impose the conditions

Twu) (@)l g2mpe ro=e = 0

O ..)(q?
-_ia—q);illqz=u2,M'=M = 0,

from which Z,, and ém? are determined as

M? — z(1 — z)p? _c

_ (guZ? 1 1 !
Z,—1= -~ 67—/0 dz z(1 — z)log

| 6Be A2 “
(3.24)
§m2 = —p2C, (3.25)
with
2(9525)* [ {z(1 - =)}
_ , 3.26
Co=n w? /o do M? — z(1 —z)p? (3:26)
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Note that ém? is finite. This can also be shown by a more formal
discussion given in Appendix C of ref. [34]. As is clear from eq. (3.18),
however, the bare w meson mass is infinite since ZJ! diverges. To fix the
remaining renormalization constant Z, we follow ref. [35]. We define g,
in such a way that the wNN source vertex I'.5(q) for ¢ — 0, zero density
(p = 0) and on mass shell external nucleon legs with momenta p' = p

satisfies
Ils()lp=0 — —ig,1" as ¢ = 0, p — M. (3.27)
The source vertex is defined via the total WNN Green’s function with am-

putated nucleon lines I'*(g) by

I(g) = id0.(9)Is(9), (3.28)

where Ag”(q) is the free propagator in lowest order (i.e., eq. (3.22) with
Iy = 6m? = 0). With the requirement (3.27), the Ward-Takahashi
identity for baryon current conservation gives the following relation between

the renormalization constants

dm?
2, = Zn (1 + 2 ) , (3.29)

w
which corresponds to eq. (3.11) of ref. [35]. For the proof, see Appendix B.
In our case Zy = 1, and Z, is completely determined by mass renormal-
ization. In our present Hartree model, Il is modified due to the RPA
type vertex corrections, and eq. (3.29) ensures the validity of (3.27) and
the conservation of the baryon current. Note that g, is not the observed
wNN coupling constant, which is defined via the source vertex at ¢> = m?2

rather than ¢* = 0 [36]. The resulting renormalized transverse vacuum
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polarization is obtained from egs. (3.21), (3.24), and (3.25) as
H(ww)(qz) = Cw(q2 - l‘2) + q2Z_qP(q2) (3.30)

with
M*? — ¢®z(1—-z)
M? — y2z(1—2z)°

Due to egs. (3.25) and (3.29) we can write the transverse part of the prop-

2
2 ngQ 1
=2 — 3.31
P(g*) = 232 ['dzo(1 - z)log (3.31)
agator (3.23) as
1 1
Zo g2 —m2 - ?P(¢?) - $0* (1 - &)

Note that the last term in the denominator of eq. (3.32) is zero if we choose

(3.32)

g2 = m2 or u? = 0 which gives zero to C,,.

It is easy to see that the w meson propagator (3.32) has an unphysical
pole at spacelike g2 < 0. The same pole occurs in QED and is sometimes
referred to as “Landau ghost” [37]. It implies a breakdown of perturbation
theory for high |¢%|. While in QED this pole occurs for extremely high [¢?],
the problem is much more serious in our case due to the large coupling
constant. Thus, finally we will have to introduce a phenomenological wNN
vertex form factor to dump IT(..)(¢?) at high |¢?|. The determination of
this vertex form factor as well as the choice of the renormalization point u?

will be discussed in section 3.3.3.

3.3.2 Electromagnetic Interactions

In the previous subsection we discussed the renormalized form of the w

meson propagator. We now turn to the renormalization of the meson-

Ny

photon polarization IT ()

shown in fig. 6. The vacuum fluctuation effects to
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be discussed below will eventually be incorporated into a density dependent
form factor F,(¢?) (see eq. (4.1) below), which is folded into the isoscalar
Dirac part of the free vertex in (3.6), i.e.,

L us®(y — g 1 uf (¢ expiq- (y
370w =2 - [ G R emia- (-2 (339)

This modified vertex is then used in the impulse approximation as well as
in the RPA type vertex correction. Thus, our aim is to replace the isoscalar
Dirac form factor of a free nucleon by the density dependent form factor
Fy, calculated within the present model. Since due to gauge invariance the
present Hartree model does not allow for any vertex corrections besides the
RPA type one, one might calculate the nucleon form factor by summing
up the diagrams shown in the first row of fig. 8, i.e., those pieces which are
obtained from the zero density expressions by the replacement M — M*.
However, as we will see later, the form factor calculated in this way behaves
as a constant for |¢?] — oo and therefore is unable to account for the
properties of a free nucleon. This is one of the reasons why in this work
we follow the generalized vector meson dominance model (GVMD) [35,36]
and include the possibility of a direct wy coupling, which gives rise to the
diagrams shown in the second row of fig. 8. A further advantage of this
model is that the renormalization prescription discussed in the previous
section for the strong interaction determines also the electromagnetic vertex
of fig. 8 without introducing any further conditions.

The photon-nucleon vertices in the diagrams of fig. 8 are understood to
contain the Dirac part only. In this way this set of diagrams renormalizes

the Dirac part of the current by multiplying a form factor which in free space
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reduces to the Dirac-Pauli form factor Fi,. In the present Hartree model
we cannot generate the anomalous magnetic moment coupling consistently.
In the mean field calculation of the vertex correction, this coupling may be
introduced phenomenologically. This method cannot be applied here, since
this coupling term would make the theory unrenormalizable. However,
the contribution of the isoscalar anomalous magnetic moment term to the
corrections to nuclear magnetic moments and to the nuclear form factors
is small. Thus, for our purpose, the inadequacy of the present model to
generate the isoscalar anomalous magnetic moment coupling has no serious
consequences. Qur concern therefore is to use the diagrams of fig. 8 to
calculate the free space Dirac-Pauli form factor Fy,, which is associated
with the isoscalar Dirac part of the current, and to investigate how it is
changed in the nuclear medium.

Following ref. [35], we extend our lagrangian (3.19) to obtain the la-

grangian in the omega-nucleon-photon sector:

CwN‘y = £wN + cea

where, in terms of unrenormalized quantities,

1 v —_ €o v
Le = —Z'F(O)#VF (%) - 60i/)(o)’7u¢(0)‘4?o) - 2g—OF(0)WGé‘0). (3.34)
Here F¥ = Q*A” — 0¥ A* is the electromagnetic field strength tensor. The
second term in eq. (3.34) describes the nucleon-photon coupling and the
third term, which is gauge invariant by itself, the omega-photon coupling.

This special form of the coupling has been chosen to reproduce the current-

field identity (CFI), as we will see later. Since in our present calculation we
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do not take into account the electromagnetic field renormalization (which is
of order €? or higher), we have Afg) = A* and eo = e. The other quantities

in (3.34) are renormalized according to eq. (3.18) and we obtain
1 y — e , € v
£e = —ZF“,,F“ —CZN'l/)‘)/“l/)A“— aFﬂyG“ —E(Zw—l)F,wG“ . (335)

Here we introduced the constant

ZwZN mf,
Zow = 7 = (3.36)

where the second equality follows from eq. (3.29) and (3.18). In the actual
Hartree calculation we have again Zy = 1.
The CFI can now be shown as follows: From L, of eq. (3.19) we derive

the w meson field equation
0,G* +miw” = jis (3.37)
with the renormalized source
Jis = 9uZNPY'P — (Zow — 1)0,G*". (339)

Here we used again the relation (3.29). We therefore can: write £, in the

form

1
Lo= = gFuP = < (ifs,+ 5FuG™), (3.39)

where we left out a total derivative term. From eq. (3.39) follows the
Maxwell equation
2

O = (it = 0,G") = o7t = 2eft, (3.40)

w
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which establishes the CFI
2

it =g (3.41)
between the isoscalar electromagnetic current j¥ and the w meson field.
The CFI (3.41) together with the field equation (3.37) gives the following
relation between the matrix elements for arbitrary states A and B

1 -m
29, ¢ — m?2

< B|jt|A >= < BljlslA > . (3.42)

where ¢ is the difference between the total momenta of A and B.

Let us now calculate the RPA type vertex shown in fig. 8 using the
lagrangian L N, given by the sum of eqgs. (3.19) and (3.35). The new ingre-
dient is the Feynman part of the wy polarization which has the renormalized

form (cf. eq. (3.20))

Ty (o) = (o + £ M) (3.4
with
2 _ _29wdy |1 1 _ M*? — z(1 — 2)¢?
Tn(e) = -7 [66 57— /dwx(l z)log v
dm?] ¢*
[(Z -1)- ]ng (3.44)

The counterterm contributions in eq. (3.44) have been derived from the

lagrangian (3.35) using

1 dm?
Zow—l—-'Z—g[(Z —1)_ m }7

w

as follows from egs. (3.36) and (3.29) with Zy = 1. The wave function and

mass renormalization constants have been determined in egs. (3.24) and
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(3.25). Using these forms we obtain (cf. eq. (3.30))

Ory(a®) = -Zi (g—: (1 - -g;) + P(q’)) : (3.45)

where C,, and P(g?) are given by eqs. (3.26) and (3.31). We now add the
contribution due to the direct wy coupling, which is derived from the third
term of eq. (3.35) as

_g#V + .q__“qu) __q2

@ ) o

to obtain the total renormalized wy interaction

(w‘v)(q) ( q : )Q(w)(q ) (3.46)
with

1 2
2y _ _~ 2 2y _ _®
Qun(g) = g ( — P(q°) Z (1 mZ,)) : (3.47)
Using this result together with the w meson propagator as given by egs. (3.22)
and (3.32) we are now able to calculate the isoscalar part of the RPA type

vertex shown in fig. 8:

i vo
Lo =-3 {++9.27.4 Qo)

= %{7 —-(’r ——?)ZA(q?)q ( P(qz)—g—:(l—:l—;»}
with
Fiy(d®) = -Z;mlA(g) 2
- —My . (3.49)

=P G (1= )
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In the last step of eq. (3.48) and in eq. (3.49) we used the form of A as
given by eq. (3.32). Eq. (3.49) constitutes our result for the isoscalar Dirac-
Pauli form factor in the medium, which is an extension of the well-known
vector meson dominance result —m2 /(g2 — m2) to include the contribution
due to the RPA type ring sum. Note that if we do not include the direct
w~y coupling (i.e., the graphs in the second row of fig. 8), the numerator of
eq. (3.49) gets an additional term ¢*.

We can also see that the result (3.48) is consistent with the CFI (3.41):

The source vertex of the w meson can be expressed by inverting eq. (3.28):

Ii(q) =i (D2(q)(* —m2) - ¢“q.T), (3.50)

where the WNN Green’s function I'¥ is given by the diagrams in the first

line of fig. 8 with the photon line replaced by an w meson line, i.e.,

Ih = guZg7, AL (3.51)

Using eq. (3.51) and {3.22) in (3.50) we obtain for the source vertex

. q“ 73
Tis(q) = (—i)gw { (7“ - —qg) Z,A(¢*)(¢* —md) + %134} . (3.52)
Comparing eq. (3.52) with (3.48) we see that the longitudinal parts of both
the isoscalar YNN vertex and the wNN source vertex are not renormalized,

while their transverse parts satisfy

1 —m?

Fs‘,l‘t(Q) = gqg _ ;;;2 FﬁS,t(Q) (353)

in accordance with CFI.
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3.3.3 Application to Magnetic Form Factors

In this section we describe our method to implement the vacuum fluctuation
effects discussed in the last two sections into the finite system calculation
of magnetic form factors and magnetic moments.

Before presenting the implementation of the vacuum fluctuation effects
into the vertex correction calculations, we discuss two points which were
left out in the previous subsection. Let us consider the choice of the renor-
malization point. For the o meson we followed previous works [20,21] and
used g% = 0 as the renormalization point. For theoretical completeness, we
discussed the rencrmalization in the omega-nucleon-photon sector of our
model for arbitrary renormalization point p?. Ia this scheme, the vector
density is related to the baryon density by

py = (1 + 57213’) P (3.54)

w

instead of p, = pp as in eq. (2.6). In the vector self energy (2.4) this means

effectively to replace
gf, - ggf, (3.55)

on account of eq. (3.29). The replacement (3.55) is also evident following the
more formal discussion given in Appendix C of ref. [34], where it is shown
that in nuclear matter the vector self energy becomes g2 Z,pg/m?2 and the w
meson contribution to the Hartree energy density becomes g2Z,p3/(2m?).
In previous works in the literature [20,21] the renormalization point was
chosen as p? = 0. In this case we have §m? = 0 and Z, = 1 from egs. (3.25)

and (3.29). Thus, the coupling constant g, us of ref. [21] is related to our
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9w by

ons = Zg* 9o (3.56)
If we renormalize at the physical w meson mass (u? = m?2) and use g2 ys =
102.77 from ref [21], we obtain Z, = 0.78 and ém2/m2 = —0.22 from
eqgs. (3.25) and (3.26). In our numerical calculations we will choose 4 = 0
for the following reasons, though: First it facilitates the comparison with
previous works [20,21)], and second many formulae given in the previous sec-
tions simplify. We note that with this choice the w meson propagator (3.32)
in free space does not have a pole at ¢> = m2.

The second point we wish to discuss is the unphysical pole at spacelike
g® < 0 of the w meson propagator (3.32) and the form factor (3.49). As
mentioned in section 3.3, a pole of the same kind, but of course at much
higher —¢?, occurs in the photon propagator of QED. Since our applications
here will require the Fourier transform of the w meson propagator into the
coordinate space, we have to avoid this pole by damping the self energy at
high —¢?. This will actually be done by introducing an ad-hoc wNN form

factor f4(q¢?), which, due to our renormalization condition (3.27), should

satisfy f4(0) = 1. We choose the dipole form

1
2
= —— .57
fa(a) (1—q2//12> (3.57)
and modify the w meson self energy (3.30) by multiplying it with f3, i.e.,
Mw(9*) = Ty (9*) F4(2%) (3.58)

In addition, due to the coupling to the external nucleon line, the transverse

part of the wNN source vertex should be multiplied by the same f4(¢?). Due
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to the CFI, which requires eq. (3.53) to be valid, we must also multiply our
form factor (3.49) by fa(g?). Physically this means that we use the same
“intrinsic” form factor for the wNN and the yNN coupling.

Combixﬁng our discussions up to this point, we will use the following
forms for the transverse part of the w meson propagator and the isoscalar

Dirac-Pauli form factor:

1

Aeh) = = g NP (3.59)
Fi(q*) = —fa(g)m2 A(¢?) (3.60)

and
T)(9*) = ¢*P(*) fA(d) (3.61)

where P(g?) is given by eq. (3.31) with u?> = 0 and Z, = 1. The tilde is to
distinguish these forms from the original ones (egs. (3.32) and (3.49)). In
the section 4.2 we will détermine the cut off mass A by requiring that the
form factor (3.60) for zero density (M™* = M) reproduces the experimental
slope at ¢> = 0 of the isoscalar Dirac-Pauli form factor Fis(¢?) of a free
nucleon. We note that the introduction of “intrinsic” form factors seems
inevitable in all studies of the free nucleon form factors based on the vector
meson dominance principle [38,39] in order to fit the experimental data.
"This is because the form factors in the vector meson dominance model fall
off with q~2%, while the experimentally observed ones show a ¢~* behavior.

In order to use the results (3.60) and (3.61) in finite nuclei, we use a

local density approximation (LDA). In finite nuclei the effective mass M*
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is position dependent. We will use the average
<M* >,= / “r2dr M*(r)p%y(r), (3.62)
0

where p2,(r) = 2(2j. + 1)(F2 + G2) is the probability distribution of the
valence nucleon in the state a, in eq. (3.31) to obtain the w meson prop-
agator and the single nucleon form factor to be used for the finite system
calculation. Though we will not indicate it explicitly, the quantities (3.60)
and (3.61) then depend on the state of the valence nucleon.

We have now all ingredients to implement the vacuum fluctuation effects

into the finite system calculation. We employ the following recipe:

1. Add the vacuum fluctuation correction §p, of eq. (2.8) to' the valence
nucleon contribution of eq. (2.5) and use eq. (2.3) (together with
M* = M + %) to calculate the scalar self energy. This is then used
in the Dirac equation (2.2) to obtain the new single particle wave

functions.

2. In the calculation of the RPA type vertex (3.6), replace the low-
est order w meson propagator Af“(x) in egs. (3.10) and (3.11) by

—g**A(x), where A(z) is the Fourier transform of eq. (3.59) for-

2 2

g¢° = —q*. Graphically this means to replace the dashed w meson

lines in fig. 4 by the propagator shown in fig. 7.

3. Fold the single nucleon form factor (3.60) into the isoscalar Dirac
part of the elementary vertex according to eq. (3.33). Graphically

this means that the bare yNN vertex in the impulse approximation
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and the vertices at point z in fig. 4 are replaced by the vertex shown
in fig. 8.

It is not difficult to convince oneself that due to points 2 and 3 the
RPA type vertex correction will finally include all possible combinations
of explicitly density dependent piecés (D) and vacuum fluctuation pieces
(F) of the polarization insertions. We finally must add some comments -

here: First, in the present framework we can only generate the isoscalar

Dirac part of the current and its associated form factor (Fis). In the ac- -

tual calculation we therefore continue to use the form factors determined
semi-phenomenologically in ref. [39] except for Fy,, which we replace by the
density dependent form factor (3.60). As we show in the next section, for
zero density (3.60) reproduces Fi, of ref. [39]. Secondly, the prescriptions 2
and 3 given above imply that the terms ~ ¢*¢” in the w meson propaga-
tor (3.22) or the terms ~ ¢*¢ in the single nucleon vertex (3.48) can be
dropped. These terms do not contribute as we explain in Appendix A. Our
third comment concerns the use of the average value of the effective rhass,
eq. (3.62). There is an ambiguity, among others, since instead of using an
average value one can also choose a suitably fixed position at which the
value of M* is calculated. Some authors [40,17] have chosen the point y in
lﬁg. 4 for a LDA to the total vertex correction in the mean field approxima-
‘tion. Applying an analogous prescription to the quantum fluctuation pieces
would lead to a single nucleon form factor which is inevitably position de-
pendent and therefore somewhat inconvenient to handle and to interpret.
In order to avoid these and similar complications in the w meson propagator

we will use the average value (3.62). These ambiguities in the prescription
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to implement the LDA should not influence the results seriously due to the

short range nature of the w meson exchange process.
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4 Numerical Results

In this section we present numerical results of our calculation of isoscalar
magnetic moments and magnetic form factors. We present first the results
in mean field approximation, that is, those calculated by using only the
explicitly density dependent terms in the loops in the RPA diagrams and
in the nucleon self energy of fig. 1. Then we show the results of our “full”
calculation taking the vacuum fiuctuation effects into account, and compare

the two.

4.1 Mean Field Approximation

We first discuss our numerical results on isoscalar magnetic moments in
the mean field approximation. As already pointed out the vertex correc-
tion eq. (3.8) is purely isoscalar. The results for the isoscalar magnetic
moments are listed in table 3. In this table we list the single particle (im-
pulse) values which are obtained by neglecting A* in eq. (3.6), the RPA type
vertex corrections, the sum of these two contributions and the nonrelativis-
tic Schmidt values. Contributions due to the Dirac part and the anomalous
ipart of the magnetic moment operator are shown separately. A detailed
discussion of these results using the LDA will be given in the section 5.1.
Here we just note that the effect of the vertex corrections is to cancel the
large enhancements relative to the Schmidt values which appeared in the
impulse approximation. These corrections arise almost entirely from the
particle-antinucleon (pN) parts of the polarization insertions in fig. 4. In a

nuclear matter picture, these corrections reduce the isoscalar current from
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the impulse value (= velocity) ~ p/M* to p/e,, where p is the momentum
of the particle and ¢, its energy, and thus correspond to the “backflow”
in the Landau Fermi liquid theory [28]. The vertex correction does not
affect the anomalous part much. In fact, these contributions vanish if cal-
culated in the nuclear matter model. The resulting differences between the
nonrelativistic Schmidt values and our final results including the vertex cor-
rections roughly correspond to the effect of exchange currents due to o and
w mesons in the nonrelativistic treatment [31,2] (There is, however, a deli-
cate difference in finite systems due to the radial dependencies of the scalar
self energy, see section 5.2). The present calculation results in isoscalar
magnetic moments which in most cases are extremely close to the Schmidt
values or even smaller. This result disagrees with the nuclear matter picture
or with usual exchange current calculations performed in the nonrelativis-
tic framework (2], where always an enhancement is obtained. We discuss
this point further in section 5.2. The isovector magnetic moments can be
obtained from the isoscalar ones of table 3 by multiplying the contributions
“Anomalous” in the impulse approximation by —3.7/0.12 = —30.83 while
leaving the Dirac part unchanged, and setting the vertex corrections equal
to zero. For convenience we also list these values in table 3.

Next we turn to the magnetic form factors. In the actual calculation
we employed the single nucleon form factors determined in ref. [39] in the
impulse approximation as well as at the photon vertices of fig. 4. In the
region of g relevant for our purposes, the parameterization of these form
factors is based on the vector meson dominance principle supplemented by

“intrinsic” form factors. The results for *N, 17O and *K are shown in
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ﬁgs.. 9, 10 and 11, respectively. We show the results of the impulse approx-
imation (dashed-dotted curves) as well as the results obtained by adding
the RPA type vertex corrections (full curves). For comparison the results of
the nonrelativistic impulse approximation using harmonic oscillator wave
functions [41,42,43,44] are also shown (dotted lines). Consider first the pro--
ton hole states 1°N and 3°K. The difference between the nonrelativistic and
the relativistic impulse approximation results can be partially attributed
to the enhancement of the relativistic impulse current due to the small ef-
fective mass. For ¢ <1 fm™! the RPA type vertex corrections cancel these
enhancements in the isoscalar part of the current and thus bring the form
factors closer to the nonrelativistic results. As in the case of the magnetic
moments, the pN excitation processes in the polarizations of fig. 4 are re-
sponsible for this cancellation. For higher momentum transfer, however,
the particle-hole (ph) excitation processes become increasingly important
and enhance the impulse current. This point, which has also been noted
in ref. [18], will be discussed in more detail in the next section. Note that
for both ®N and ¥K the RPA type corrections vanish in the momentum
region around the maximum of the form factors (¢ ~ 1 fm™'). Next let
us turn to the neutron-particle state 17O. In this case the impulse current
has no Dirac part, and the difference between the relativistic and the non-
relativistic results can be partially ascribed to relativistic correction terms
proportional to G? (G is the radial part of the small component), see the
discussion in the section 5.1. The RPA type vertex corrections involve also
(and mainly) a Dirac part and enhance the relativistic impulse value for

low ¢ in accordance with the enhancement of the magnetic moment of }O
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(see table 3). For ¢ ~ 1 fm™" the vertex correction changes sign for the
same reason as discussed above. In the momentum region around the sec-
ond maximum the vertex correctién contributes only little. Note that in
the magnetic form factors shown here, isoscalar and isovector contributions
are not separated. As in the case of the magnetic moments, the present
model is certainly not refined enough to make a meaningful comparison
with experiment. In paﬁicula.r the second order core polarization, which
plays an extremely important role for nuclear magnetic properties [1,45), is

absent in the present calculation.

4.2 Effects of Vacuum Fluctuations

Now we present the numerical results for magnetic moments and form fac-
tors including the effects of the vacuum fluctuations. According to our
recipe given in section 3.3.3, the vacuum fluctuations change the results of
the previous subsection in three respects: The single particle wave functions
are changed, the w meson propagator is modified by self-energy insertions,
and the single nucleon form factor becomes density dependent. Let us first
discuss these three points separately. |

As mentioned earlier, the inclusion of the term (2.8) in the scalar density
leads to a rather drastic reduction of the coupling constants (see table 2)
in order to fit the nuclear matter saturation point and the rms charge
radius of “°Ca [21]. The calculation shows that the self consistent scalar
and vector potentials for 0 and “°Ca show a radial shape very similar to
the one in the mean field approximation while their magnitude is reduced.

We can thus expect that both the deviations of the relativistic impulse
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approximation results from the nonrelativistic ones and the magnitude of
the RPA type vertex corrections will be reduced as compared to the mean
field approximation.

Consider next the single nucleon form factor (3.60) in free space, which

for go = 0 can be written in the form

Fula®) = fala) =3 : . (1+”‘°“’(“2,)) (41)

q?+m,

with g2 = —q?. The derivative at g2 = 0 takes the form

. 1 2 I, 0
Fl,s(o)=— (_—+ A2+(—m)_2_

w

_ 1 2 1/ go \%, M*
__( +A2—3(W) log M). (4.3)

Due to our renormalization prescription the last term in (4.2) vanishes for

(4.2)

zero density. If we fix the cut-off mass so as to reproduce the experimental
value of the slope of Fy, at ¢*> = 0, which is —0.092 fm?, we obtain A =
1.65 GeV. The resulting form factor for zero dénsity is shown in fig. 12
in comparison with the one of ref. [39] (dashed line) which we used in the
calculation of section 4.1. >We see that the two form factors agree very
well in the range of momentum transfers considered here, in spite of their
different analytical forms. By varying the derivative at ¢> = 0 freely even
a better overall agreement could be attained. We also show the result of
the analysis of ref. [38] (dotted line) which includes small contributions due
to the ¢ meson®. Note that with the present choice of g,, the last factor

24 is a vector-isoscalar meson with a mass of 1020 MeV. Both wand ¢ mesons are often
included in the phenomenological analysis using the vector meson dominance model.
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in (4.1) for M* = M differs from unity only by a negligible amount, at least
in the raxige of q? relevant for our purposes. This is shown by the dashed
line in fig. 13.

The form factor (4.1) depends on the density via the average effective

mass < M* >. Due to
ﬁ(w)(q2)|M‘<M > ﬁ(ww)(q2) IM‘=M7

the form factor is quenched in the nucleus. This is shown in fig. 13, where
we plot the last factor in (4.1) for the case A = 15 (M*/M = 0.85) as well
as its ratio to the value for zero density. This ratio, which is shown by the
solid line in fig. 13, is the quenching factor of the single nucleon isoscalar
Dirac form factor due to M* < M. The resulting single nucleon form factor
for A = 15 is shown by the dashed-dotted line in fig. 12. Associated with
this quenching is an enhancement of the slope at ¢ = 0, as is clear from
eq. (4.3). This can be interpreted as a change of the “isoscalar charge

radius” < r? >, defined by

w 1 s
F(0) = —% < r? >, -

YSYE (4.4)

with £, = —0.12 and
<r?>=<ri> +<ri>,. (4.5)

Values for the isoscalar charge radius are given in table 4.
Once we have fixed the value of the cut-off mass as described above,
we can calculate the w meson exchange potential in coordinate space by a

Fourier transformation of A(g?), eq. (3.59). The results are shown in fig. 14,
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where we compare the Yukawa form used in section 4.1 with the potential
for zero density (M* = M, dashed-dotted line), A = 15 (M*/M = 0.85,
dotted line) and A = 17 (M*/M = 0.91, dashed line). The asymptotic
form of the potential is determined by the pole of (3.59) for timelike real
g?. The values of the pole positions are listed in table 4 in the entry “m,*”.
Note that since the renormalization point has been chosen as u? = 0, the
self energy in (3.59) causes a shift of the pole position also for zero density.
For ¢ > 0 the self energy (3.59) is negative and becomes smaller as M*
decreases. Therefore the shift of the pole position is largest for the smallest
M*, ie., for A = 39 in table 4. According to this shift, the w meson
exchange potential has now a longer range, as can be seen from fig. 14.
For distances between 0.5 and 1 fm the potentials of fig. 14 drop below the
Yukawa curve. This can be understood from the fact that the integral of
A(r) over the whole space must be equal to 1/m,2, since the self energy
vanishes at ¢ = 0.

The results for the isoscalar magnetic moments are listed in table 5,
which should be compared with the mean field results of table 3. We see
that due to the weaker scalar potential the magnetic moments in the im-
pulse approximation are less enhanced than in the mean field model. Nev-
ertheless, the impulse values considered alone are still unreasonably large
especially for hole states, and the RPA type vertex correction continues to
play an essential role in reducing them to reasonable values. For these ver-
tex corrections we listed in parenthesis also the results obtained by using
the Yukawa form for the w meson exchange potential. Therefore the differ-

ence between the values in parenthesis in table 5 and the ones in table 3
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is only due to the difference in the scalar and vector potentials. We see
that this difference in the one-body potentials has almost no influence on
the final results for the isoscalar magnetic moments of the particle states,
while it leads to a 4 % reduction for A = 15 and a 2 % enhancement for
A = 39. The effect of the vacuum fluctuations in the w meson exchange
potential is to decrease the vertex corrections in magnitude and thereby to
enhance the isoscalar magnetic moments by some small amount, typically
1 to 2 %. This small reduction of the vertex correction has its origin in
the depression of the w meson exchange potential for distances below 1 fm
as compared to the Yukawa form (see fig. 14). Altogether, the inclusion of
vacuum fluctuations leads to a decrease (increase) of the isoscalar magnetic
moment of A =15 (A = 39) by about 3 %, while the values for A = 17 and
A = 41 are enhanced by a smaller amount.

We see from the above discussion that the inclusion of vacuum fluctu-
ations leads only to minor changes of the overall picture concerning the
isoscalar magnetic moments in the present model. This was anticipated al-
ready in section 3.1. Although the results differ in details from the intuitive
expectations based on the nuclear matter picture, the overall éonclusion is
that a consistent description leads to isoscalar magnetic moments which
differ from the Schmidt values by not more than a few percent, which is in
accordance with the results based on the more traditional concept of meson
exchange currents.

We now turn to discuss the results for the magnetic form factors in-
cluding the vacuum fluctuation effects. The magnetic form factors of N,

170 and *K are shown in fig. 15, 16 and 17, which should be compared
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with the results based on the mean field approximation (figs. 9, 10 and 11).
Consider first the proton hole states *N and K. Figs. 15 and 17 show
the enhancement of the form factor in the relativistic impulse approxima-
tion (dashed-dotted line) relative to the nonrelativistic one (dotted line),
which is partially due to the enhancement of the isoscalar Dirac part of
the current. The RPA type vertex corrections reduce the form factors for
q S 1fm™" but give rise to an enhancement for larger ¢. This is qualitatively -
the same situation as observed in the mean field approximation. Quanti-
tatively, however, both the deviations caused by the enhanced isoscalar
impulse current and the corrections due to the RPA type diagrams are
much less significant than in the mean field approximation. Figs. 18 to
20 show a comparison between the form factors including the effect of the
vacuum fluctuations (full lines) with those based on the mean field approxi-
mation (dashed lines). We see that the form factors of both *N and %°K are
considerably reduced in magnitude when the vacuum fluctuations are in-
cluded. In order to understand the reason for this difference from the mean
field results, we have also carried out a calculation including the vacuum
fluctuation effects only in the single particle wave functions but not in the
single nucleon form factor Fis and in the w meson propagator. These re-
sults, which differ from the mean field results only due to the smaller scalar
and vector potentials, are shown by the dashed-dotted lines in figs. 18 to
20. We see that almost the whole difference to the mean field results comes
from thg difference in the single particle potentials. Moreover, as is clear
from figs. 9, 11 and 15, 17, the vertex corrections are very small around the

maxima of the form factors. Therefore, in this region of ¢, the reduction of
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the form factors shown in figs. 15, 16 and 17 is simply due to the fact that
according to the smaller scalar potential the impulse approximation leads
to less enhancement of the form factors when the vacuum fluctuations are
taken into account.

For the case of !0, the Dirac part of the current does not contribute
in the impulse approximation, and therefore the difference in the scalar po-
tential does not change the impulse approximation result very much. This
is seen by comparing figs. 10 and 16. As we discussed previously, the RPA
type vertex corrections enhance the form factor around the first maximum
but are almost zero around the second maximum. Due to the weaker scalar
potential, this enhancement around the first maximum becomes weaker
when the vacuum fluctuations are included. Fig. 19 shows the comparison
to the result based on the mean field theory and also demonstrates that
almost all of the difference comes from the change of the single particle
potentials.

The above discussion shows that among the three effects caused by the
vacuum fluctuations mentioned at the beginning of this section, only the
first one, i.e., the change of the single particle potentials, shows up signifi-
cantly in the results for the magnetic form factors and leads to a quenching
of the form factors fof all three nuclei (except for 17O in the high ¢ region).
As for the other two effects, we have confirmed that the small differences
between the dashed-dotted and the full lines in figs. 18, 19 and 20 come
from the quenching of the isoscalar Dirac-Pauli form factor Fy, (see fig. 12),
while the effect due to the renormalization of the w meson propagator (see

fig. 14) is completely negligible in the present context. The former effect
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leads to a reduction of the isoscalar Dirac parts of the total nuclear form
factors (impulse plus vertex corrections) by a g-dependent factor shown
by the full line in fig. 13. Due to the presence of the large contributions
from the anomalous term, however, this quenching cannot be seen directly
in the nuclear form factors, and in fact is hardly visible on a logarithmic
scale. Thus, while these two effects caused by the vacuum fluctuations
are of physical interest by themselves and must be taicen into account to
achieve theoretical consistency within the preseht framework, they actually
contribute only little to the nuclear magnetic form factors. Their role in
different contexts, for example in the quenching of the Coulomb sum rule,

remains to be investigated.
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5 Discussion

The aim of this section is to gain more understanding of our results for
the magnetic moments and form factors in the mean field approximation
presented in table 3 and figs. 9, 10 and 11. In the first subsection 5.1 the
conﬁection between the present calculation and the nuclear matter model
is investigated. A comparison with the exchange current effects in nonrel-

ativistic treatments is presented in subsection 5.2.

5.1 Connection to the nuclear matter model

Let us briefly recall some results obtained in nuclear matter [29,31]. Let
J¢, J1 and J be the isoscalar currents for zero momentum transfer of a free
nucleon, a bound nucleon in the impulse approximation, and of a bound
nucleon including the vertex corrections.®> Then we have the following re-

lations,

1= E;Jfl’ M*Jf (5.1)

Jj= %jl = %jf = "Agl‘.?f (5.2)
Here E, = /M? + p?, E; = VM2 + p?, ¢, is the quasiparticle energy, and
€ = €p=0. Eq. (5.1) shows the enhancement of the impulse current by a
factor M/M*, while eq. (5.2) tells that the total current is only slightly
enhanced (e S M ). As discussed in ref. [29], the same relations hold for

the isoscalar angular momentum g-factor. For the special case of the o-

3In this section, all currents () and magnetic moments (m) refer to the isoscalar Dirac
parts only. The current j (without arguments) stands for the nuclear matter result at
¢ =0 (5 = j(¢g = 0)), while j(z) denotes the current in a finite system.
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w model in the Hartree approximation, however, analogous relations hold
also for the isoscalar magnetic moments m (including the spin part) for
the following reason: First, the current j;(g) for finite ¢ is obtained from
J¢(q) by replacing M — M*. Thus, a relation analogous to (5.1) holds
between mj and myg. Second, since the w meson couples to the nucleon in
the same way as the photon, the current j(g) including the RPA type vertex
correction of fig. 4 is obtained from j{(g) by multiplying a form factor F((¢?)
with F(0) = E;/e,. Explicitly, the transverse part of the current, including

the vertex correction caused by the space components of the w meson field,

becomes
i(a) = 3u(e) - F(q*) (5.3)
with ]
2 g’ + m,’
F(q%) = T tmi T (e a) (5:4)

where II, is the transverse (with respect to the three vector q) part of IT (iiw)D
and is given analytically in ref. [46]. In eq. (5.4) we left the go-dependence
in II;, since the limit ¢ — 0 must be taken by letting first ¢ — 0 and then
go — 0. Since the g-dependence of this form factor does not enter into the
magnetic moment (m = —i[V, X j(¢)]s=0), a relation analogous to (5.2)
holds between m, m; and m;.

Let us compare these results with our values for the isoscalar magnetic
moments obtained in the previous section. In the first row of table 6 we list
the expectation values of M/M*(r) for the various single particle states,
and in the second row we reproduce the ratios mj/ms, where mg is the

Schmidt value, from table 3. We see that for hole states this ratio is larger
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than < M/M* >, while for particle states it is smaller. This fact can
be explained as follows: Using the Dirac equation (2.2) we can perform a

Gordon decomposition of the isoscalar impulse current with the result

Jilr) = GBI = Fmyiel) (55)

with
§i(r) = BE)F ~ B+ Y xDW(r). (56)

- — -

Here p= —i 3, V=V + V, and X is the Dirac matrix

==(72)
'j¢(r) has the same functional form as the current of a free nucleon. Eq. (5.5)
now corresponds to eq. (5.1) for the nuclear matter model. However, the
magnetic moment calculated from eq. (5.5) becomes (in unit of e/2M)

mp = M/d3rr x 31(r)

3ot s (1 1000)
V81

6

[ro(s) x 50) 100y, (5.7

where L = r X p, and (M*)' = dM*/dr. We see that, in addition to one
piece which shows the characteristic enhancement factor M/M*, there are
certain spin dependent terms which arise from the radial dependence of the
scalar potential. Further explicit evaluation for a single particle orbit with
angular momentum j gives, using the spinors (2.7),

M(M*)I

o (5.8)

mr=mp+ ]—-——- 0007’3(217‘ (F2 -+ G2)
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with
~ _ 1 3 M —
Fy = 2/d r o b(Lo + S

b M i+1\%
= ms/o rdr e (F ( 7 ) G ) . (5.9)

Here ms is the isoscalar Schmidt value (which is equal to 2(j+3) for j = £+3
and {2 for j = £—1), and @ = —1(+1) for j = £+ }(£— }). The values
for y/m, are listed in the third row of table 6. They are close to the values
for < M/M* >, being somewhat smaller due to the term proportional to
G? in eq. (5.9). (Thus, it is eq. (5.9) with M/M* replaced by 1, rather than
the nonrelativistic Schmidt value, which corresponds to m; of our nuclear
matter discussion.) The most important point to note, which we mentioned
already in section 3.3.3, is that due to (M*) = (X,) > 0 in the average
(the scalar potential goes from negative values to zero for increasing r),
the second term in eq. (5.8) gives a positive (negative) contribution for
hole (particle) states. Thus, the fact that in finite nuclei the relativistic
impulse value of the magnetic moment is enhanced by a factor larger than
< M/M* > for hole states and smaller than < M/M* > for particle states
is due to the radial dependence of the scalar potential.

Nexl} we turn to a discussion of our final values for isoscalar magnetic
moments including the vertex corrections. In the fourth row of table 6
we list the expectation values of M/e(r) (e(r) = M*(r) + XZy(r) in the
present model), and below that we reproduce our values for m/msg from
table 3. We see that the latter ratio is practically equal to 1 and therefore
less than < M/e >, except for the case A = 15. In order to investigate

the reason for this, let us first try to understand our values for m/mg in
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terms of a simple local density approximation (LDA). The nuclear matter

relation (5.2) suggests the use of the following current [17,40]:

Jipa(r) = Meg—r(:;_)jl(r)’ (5.10)
where j;is given by eq. (5.5). The choice (5.10) for the current is not unique,
since one can fix the point at which the correction factor M* /e is calculated
anywhere “between” y and z of fig. 4. This ambiguity, however, should not
influence the results seriously since the w meson exchange process is of
sufficiently short range. The magnetic moments myp, calculated by using
the current (5.10) are listed in the last but one row of table 6. We see
that except for A = 15 the values agree very well with the results of the
exact calculation. Following now the same steps which lead from eq. (5.5) to

(5.8), we obtain the following expression for the isoscalar magnetic moment
in the LDA:

2j+1w [
j+1 8 Jo

Me'
mipa = T‘hLDA + T’3d7' (F2 + GZ)—G::— (511)

mLpa = —;-/dars—(ﬂ—f—)J(Lz + )

= mg /()oor2dr M (F2 — (‘7j—1>w G2> (5.12)
with €/ = de/dr. The values for myps/ms are listed in the last row of
table 6. We see that the corresponding values in the last two rows of table 6
are very close to each other, which tells that the second term in eq. (5.11) is
very small. Therefore we see that if also the w meson is taken into account

in the magnetic moment, the radial dependence of the combined potential
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Ys + X, has only a very small effect on the magnetic moment. In other
words, &' = X! + X, R 0 in the average. The fact that the ratio mypa/ms
is smaller than < M/e > can then be simply traced back to the presence
of the last term in eq. (5.12), which arises from the small components. In
this way one can see that m/m; is smaller than < M/e > due to relativistic
effects for all cases except for A = 15, where the LDA does not seem to
work well. We do not have a good explanation for this case. The above
discussion shows that the RPA type vertex corrections cancel not only the
enhancement of the magnetic moments due to the small effective mass, but
also the large contributions from the second term in eq. (5.8), which is
“related to the LS-force [47].

A similar comparison between the results including vacuum fluctuations
presented in section 4.2 and the expectations based on the nuclear matter
picture is presented in table 7, which can be compared with table 6 for the
mean field case discussed above. Again we list the expectation values of
M /M* and compare them with the ratios of the relativistic impulse approx-
imation values to the Schmidt values. (Note that all magnetic moments in
table 7 refer to the isoscalar Dirac part énly.) These latter ratios are larger
(smaller) than < M/M* > for hole (particle) states, which is ascribed to
the second term in eq. (5.8). The first term in (5.8) leads again to mag-
netic moments which are close to (but smaller than) < M/M* > times the
Schmidt value. The expectation values of < M /e > are close to the mean
field values shown in table 6, which is due to the fact that both parameters
sets employed in the two calculations lead to the same binding energy per

particle in nuclear matter. Below the values for < M/e > we reproduce

59



from table 5 the ratios of the isoscalar Dirac parts m/ms, and in paren-
thesis the ratios calculated by neglecting the vacuum fluctuations in the w
meson potential. Except for A = 15, these latter values are smaller than
< M/e >. The results of a LDA based on egs. (5.11) and (5.12) are given
in the last but one row and seem to reproduce the values in parenthesis
quite well except for A = 15. The last row in table 7 demonstrates again
that the magnetic moments in the LDA are determined mainly by the first
term in eq. (5.11) and are therefore somewhat smaller than < M/e > times
the Schmidt value due to the term involving G? in eq. (5.12).

Let us now turn to discuss the results for the form factors ‘in the mean
field approximation shown in figs. 9, 10 and 11. In order to keep the discus-
sion as parallel as possible to the magnetic moment case, let us introduce a
quantity p”/(g) which for J =1 and ¢ — 0 becomes the magnetic moment.
p?(q) is related to M7 in Appendix A by the formula:

_ G+ +1) g
M’ = \/ ; gM\/g;-“J(Q)

Corresponding to eq. (5.11), the form of p7(¢) in the impulse approximation

is:

i (q) = () + €] (27 +1) [ e Fr 4 G?)jJ(qr)e% + pa(9)
(5.13)

with

ﬂ&@)=Cﬂ2r+n4mﬁ¢eﬁéup%+ampqmm(1— WJ)

%+ 1
w(J +1)

ssan(ar) (14 ZED )] 263+ ds-alar), (539
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pia(e) = —Clraw '/ooor2dr {(F? + G¥)[jsr(qr)(J + 1) (1 - -2—%)
~isaten)? (14 Z2ED)
+@ 22D Gy o)+, (519)
and
3j

1
] < J]02|12

Ci =2 +1) [2(;‘ T DI+ DT ¥ 1)

Here e = 1—"',;,—" is the charge and kA the anomalous magnetic moment of

the valence nucleon. jj(z) is the spherical Bessel function of J-th order.

The first two terms in eq. (5.13) are due to the Dirac part of the current -
and the last term is due to the anomalous part. For J = 1 and ¢ — 0

the isoscalar Dirac part of (5.13) reduces to (5.8). The expression for the

nonrelativistic impulse approximation is obtained by replacing M/M* by

1, (F? + G?) by the square of the nonrelativistic wave function and setting

the terms proportional to G? equal to zero.

Within the LDA, the quantity u’(q) including the effect of the RPA
type vertex correction can be obtained from the expressions (5.13), (5.14)

and (5.15) by the replacements

M 1 M M
MG 2 (e(q SRS )) (5.16)
M(M*)' _1_ Mé(q? ,r) M(M*)'
“ary T3 ( g T OIG ))2) (5:17)
with
M M )
e(qz,,r) = M"‘(r) : F(q ,T’), (518)
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where the form factor F(g?,r) is obtained from the nuclear matter re-
sult (5.4) by replacing M* — M*(r). With the effect of the vertex cor-
rections introduced according to (5.16), the isoscalar Dirac part of p!(0) is
identical to (5.11) provided that we replace again F(0,r) = Ej _(r)/ep:(r)
by M*(r)/e(r).

Egs. (5.13) to (5.18) can be used to get an understanding of the numer-
ical results show in figs. 9 to 11. Let us first discuss the proton-hole state
15N. In this case we have J =1, j =1, w =1, 7, = 1 and ks = 1.79. The
dotted line in fig. 21 shows the form factor obtained by setting M™* = M
and neglecting the terms proportional to G? in eq. (5.13), (5.14) and (5.15).
When we include the factor M/M* in eq. (5.14) we obtain the result shown
by the dashed-dotted line. In the present case the coefficient of (F? 4+ G?)
in eq. (5.14) is 7(jo + 4J2), and this term gives a positive contribution to
the integral for all values of q. The dashed line shows the result when the
terms proportional to G? are included. These terms give a negative contri-
bution to pr(g), and their effect is appreciable especially for higher values
of ¢q. Finally, the full line shows the result obtained by including also the |
second term in eq. (5.13). For low and medium g, this term is positive‘
and reinforces the M /M* enhancement in the same way as for the isoscalar
magnetic moment. For ¢ > 2.1 fm™!, however, it becomes negative due to
the presence of j;(¢r). The full line in fig. 21 is the total relativistic impulse
form factor and is the same as the dashed-dotted line in fig. 9. Altogether,
we see that the relativistic correction terms in eq. (5.13), (5.14) and (5.15)
enhance the form factor for low and medium values of ¢, but at higher ¢ the

M/M* enhancement is canceled by the terms proportional to G? and the
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term involving (M*)' in eq. (5.13). In this way one can understand why the
relativistic impulse approximation result in fig. 9 approaches the nonrela-
tivistic one after the maximum. (Note, however, that after the maximum
the dotted lines in fig. 9 and 21 differ appreciably.)

When we now introduce the replacement (5.16) to account for the vertex
corrections, the term fij, is changed qualitatively as follows: For low g,
where the pN contributions to the w meson self energy are dominant, we
have IT, > 0 in eq. (5.4) and hence F < 1, i.e., the form factor in eq. (5.18)
reduces the enhancement caused by the small effective mass. For higher ¢
the ph terms in the w meson self energy become important such that beyond
some value of ¢ we have II; < 0 and F' > 1. Thus, the modification (5.16)
causes a quenching (enhancement) of jij, below (above) some value of g.
The replacement (5.17), when inserted into the second term in (5.13), works
into the same direction. This is the reason for the crossing between the
relativistic impulse approximation curve and the full result in fig. 9. The
vertex correction changes sign at ¢ X 1fm™'. The LDA form factor (5.4)
predicts this sign changes at too low values of ¢ [18], which is an indication
of the fact that ph excitation processes cannot be described well in the
LDA. Moreover, a finite value of ¢ is needed in the LDA form factor in
order to account qualitatively for the result in finite nuclei. We therefore
refrain from giving more quantitative discussions on the role of the RPA
type vertex correction for finite g. We wish to point out, however, that with
a realistic residual interaction this ph excitation process mentioned above,
which is nothing but the well known first order core polarization or the

Arima-Horie effect [1], gives rise to a quenching of the form factor instead
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of an enhancement [41,42,43,44 45] for all the cases *N, 170 and *K.

For the proton-hole state 3°K we have to use j = %, w=171,=1,
ka = 1.79 and J = 1, 3. It turns out that for this case we have almost
exactly the same situation as discussed above for *N: For low and medium
g the relativistic correction terms give rise to an enhancement of the form
factor, while for higher ¢ they tend to cancel each other. Also the role of
the RPA type vertex correction is similar: It introduces a quenching up to
¢ ~ 1 fm™" and beyond that an enhancement. This explains the qualitative
features shown in fig. 11.

For the neutron-particle state 17O we have to use j = %, w = —1,
T, = —1, kA = —1.91 and J =1, 3, 5. In the impulse approximation the
form factor is determined by the anomalous term (5.15). The second term
in this expression, being proportional to G2, reduces the contribution due
to the first term somewhat for all three values of J. However, this effect
turns out to be quite small and cannot explain the full difference between
the relativistic and nonfelativistic impulse approximation results shown in
fig. 10. If the RPA type vertex corrections are introduced according to
egs. (5.16), (5.17) and (5.18), also the Dirac parts in (5.13) contribute. For
low g, the expression on the right hand side of (5.16) is negative and thus
gives a negative Dirac contribution when inserted into (5.14). Since the
anomalous contribution (5.15) is also negative, the absolute value of the
form factor becomes enhanced at low ¢ due to the vertex corrections. This
enhancement is reduced somewhat due to the modification (5.17), which
gives a positive contribution when inserted into the second term of (5.13).

The enhancement of the form factor for low ¢ is completely analogous to the
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enhancement of the magnetic moment of 170, as can be seen from table 3.
For reasons discussed above, the right hand side of (5.16) becomes positive
at some value of ¢, which leads to a sign change of the vertex correction and
to the crossing between the relativistic impulse curve and the full result in
fig. 10 around ¢ ~ 1 fm™'. In the region around the second maximum the

vertex correction is very small.

5.2 Connection to exchange currents

In this subsection we discuss the connection between the relativistic frame-
work used in section 4.1 and the concept of meson exchange currents used
in nonrelativistic calculations. We shall restrict ourselves to study the im-
plications for magnetic moments.

In a nonrelativistic treatment of isoscalar currents, the starting point is

the Schrodinger current
1 -
s (NR)(, N — _~ g+ (2%
§(r) = vt (B -5+ Y xo) 9. (5.19)

Corrections to this current are conventionally calculated in lowest order
perturbation theory by averaging the two-body pair current operators [2,1]
due to ¢ and w meson exchange with respect to one of the two nucleons
over all states in the Fermi sea. Let us briefly recapitulate the forms of the
resulting currents in nuclear matter at ¢ = 0 [2,1]: The pair current due to

the o meson gives the effective single particle current

X
#(NR) _ _ “s . (NR)
o ﬂ[Jf )
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and therefore we have
I\ .
jr (NR) = j, (NR) J(NR) (1 M) J‘(NR)’ (5.20)

which agrees with eq. (5.1) in lowest order perturbation theory. The pair

current due to the w meson gives

. 2.
‘(JNR) =-2 Jf(NR)’

and therefore

Yy X
{(NR) = + (NR) | +(NR) _ ( s _) (NR) 21

in accordance with eq. (5.2). As explicitly shown in ref. [2], analogous
results hold for the isoscalar magnetic moments as well. Thus, in nuclear
matter, the exchange current approach and the fully relativistic approach
agree (besides kinematical corrections) to lowest order perturbation theory.
However, differences occur in finite systems: If we use the direct terms of
the two-body pair current operators given in ref. [2], we obtain the effective

single particle currents

(NR)( ) — ZJ\(IT) (NR)( )-|‘ 4M2 (¢+a.¢) x VZS(T) (5.22)
J&N(r) = —_A}/f [r 3R )5, 7). (5.23)

Here the nonrelativistic scalar and vector potentials have the same forms as
the relativistic expressions (2.3) and (2.4) with p,(r) = py(r) = Tocc Wi (r)i(r),
and X, (r,v’) is defined by

Z(r)= /d3r' Zy(r, 7).
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Let us first discuss the 0 meson contribution (5.22). We see that the re-

sulting nonrelativistic impulse current

D) = 5N + 580 = (1- 22) ) +

1
4M?

(v+ov) x vz,

(5.24)
disagrees with the lowest order term of the relativistic impulse current (5.5)
due to the last term in (5.24). One can, however, easily show that the last
term (67) in (5.24) does not destrey current conservation, i.e., V- 63 =0

for diagonal matrix elements. The magnetic moment due to ;™) becomes

m™ = M / d&rr x 3, N(r)

- 3fer (FED) v raun 6
Comparing egs. (5.5) and (5.24) for the currents and egs. (5.7) and (5.25)
for the magnetic moments, we see that in the relativistic approach it is
the current while in the nonrelativistic exchange current approach it is the
magnetic moment which shows the M/M* enhancement. Thus, except for
higher order terms in the perturbation expansion, the ¢ meson contribu-
tions in the exchange current approach give a M/M* enhancement of the
magnetic moment, which is less (more) enhancement for hole states (parti-
cle states) than in the relativistic approach.

.The w meson contribution (5.23), on the other hand, corresponds di-
rectlyto the first term on the right hand side of our vertex correction (3.8).
It can be obtained from the expression for IT (’f;/)D (eq. (A.1)) by replacing
the full propagator S of eq. (A.1) by the negative frequency part of the

Feynman propagator in free space and retaining only terms of lowest order

in 1/M.
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From the above discussion we conclude that while the w meson con-
tributions are basically equivalent in the relativistic calculation and the
nonrelativistic exchange current approach, differences occur for the o me-
son.

In nuclear matter j (NP

ca.h be considered to arise from the admixture of
free negative energy solutions into the wave function of the valence nucleon
due to the interaction with the nucleons in the core [2,1}, i.e., in lowest order
perturbation theory the solution to the Dirac equation can be written in
the form f(p) = u(p) + S-(p)Zs(p)u(p) with u(p) the free solution. The
differences mentioned above are due to the fact that in a finite system it is

strictly speaking not possible to express the solution to the Dirac equation

in an analogous form.
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6 Summary and Conclusion

In this work we attempted a theoretically consistent description of magnetic
properties of nuclei with an LS closed core plus or minus one nucleon in
the framework of a relativistic field theoretical model. The model, where
nucleons interact via the exchange of scalar and vector mesons, was treated
in the Hartree approximation.

As a first step, we used the mean field approximation to the explicitly
density-dependent part of the polarization insertions in the RPA type ver-
tex correction so as to account fully for the finite geometry of the system.
At this stage the calculation is consistent with the mean field approxima-
tion applied to the Hartree calculation of nuclear wave functions. The RPA
type vertex correction was found to play an essential role in reducing the
isoscalar magnetic moments to reasonable values. For the magnetic form
factors of actual nuclei the-effect of the vertex correétion is less well pro-
nounced, since first, it does not affect the isovector part of the current, and
second its magnitude decreases as we move away from the photon point
and.evén chahges its sign at ¢ o 1 fm™ for the cases considered here.
As a result, the magnetic form factors of **N, 70 and 3K around their
maxima are practically unaffected by the vertex corrections and therefore
are still enhanced considerably in comparison to the nonrelativistic result.
In section 5 we discussed in detail how the large differences between the
relativistic and the nonrelativistic impulse approximation results can be un-
derstood from the average value and the radial dependence of the effective

mass. There we also compared the relativistic mean field calculation with
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the nonrelativistic exchange current approach and pointed out that, while
the two approaches agree in nuclear matter in lowest order perturbation
theory, differences occur in finite systems.

We then continued to include the effects of the vacuum fluctuations
by using a local density approximation. We pointed out that the vacuum
fluctuations change the results based on the mean field approximation in
three respects: First, the single particle potentials and accordingly the
single particle wave functions are changed due to an additional term in the
scalar density which describes the antinucleon contribution in the loop of
fig. 1. After readjusting the parameters of the model in order to reproduce
the nuclear matter saturation point, the single particle potentials are found
to be much weaker than in the mean field approximation. Second, the
isoscalar Dirac part of the single nucleon form factor (Fs) calculated in the
ring approximation becomes reduced in the nuclear medium (see fig. 12),
which in particular leads to an enhancement of the “isoscalar nucleon charge
radius” inside the nucleus. To calculate this modified single nucleon form
factor, we followed the vector meson dominance principle and included a
direct wvy coupling term in the lagrangian. Note that our present definition
of the “single nucleon form factor inside the nucleus” includes only the
effects of vacuum fluctuations; the other contributions, which come from
the “density parts” of the polarization operators, are already included in
the mean field calculation.- Since there is no definite or natural definition
of the nucleon radius in nuclei, we by no means claim that our results of
the enhancement of the isoscalar nucleon charge radius stated above can

be considered to be valid in other contexts. (We believe our definition is
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quite natural in the context of our discussion, though.) Third, the w meson
propagator used in the calculation of the RPA type vertex correction is
modified by vacuum polarizations, leading to a depression of the propagator
at distances r 5 1 fm and to an enhancement for larger distances according
to the reduced effective mass of the w meson in the medium (see fig. 14).
We found that these vacuum fluctuation effects have only little influence
on the isoscalar magnetic moments, since those are determined roughly
speaking by the binding energy per nucleo;1. The overall corrections we
found were about 3 % for the hole states (A = 15 and A = 39) and less for
the particle states. The magnetic form factors, however, were found to be
considerably quenched, see figs. 18, 19 and 20. We pointed out that most of
this reduction is simply a consequence of the larger nucleon effective mass.
The effect of the reduced isoscalar single nucleon form factor works in the
same direction for A = 15 and A = 39, but finally leads to no significant
corrections to the form factors of 1*N, 170 and K which include also the
isovector contributions. Even less contribution comes from the modification
of the w meson propagator used in the calculation of the vertex correction.

We emphasize again that the present investigation should be considered
merely as a first step in the description of nuclear magnetic properties in
the framework of a relativistic field theory. The results show how far one
can account for magnetic moments and form factors of nuclei with an LS
closed core plus or minus one nucleon in the Hartree approximation. The
present description is still too simple-minded to allow a meaningful compar-
ison with experiment. For this, one should at least include the Fock terms

both in the single particle potentials and in the electromagnetic vertex in
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a manner consistent with gauge invariance. Furthermore, higher order cor-
rections like the second order core polarization, which is known to be very
important from nonrelativistic studies, should also be included in relativis-
tic descriptions. Within a renormalizable model the divergences associated
with these higher order corrections can be handled in a well defined way.
One advantage of using relativistic models is that it is in principle possible
to achieve consistency betwéen the single particle potential and the electro-
magnetic vertex in the sense that one employs the same meson exchange
mechanisms to account for both. This guarantees that the calculation is
consistent with gauge invariance. We regard this fact as one of the most
important motivations to pursue and extend the study of nuclear magnetic

properties in models based on relativistic field theory.
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Appendices

A Explicit formulae for the calculation of
magnetic moments and magnetic form fac-
tors

In this appendix we show explicit formulae to calculate the RPA type vertex
correction in the mean field approximation. We start from egs. (3.5) to
(3.11) of the main part. The explicitly density-dependent part of the w~y

polarization operator has the following form (see eq. (3.15))
H(lg”l)D(‘c’ z) =1 zh:{ﬂh(z) (—igu7") S(z, 2, 90 + en) I (2)un(2)
+ [En(e) (—igu7*) S(=, 2, g0 + en) I3 (2)un(2)]"}(A.1)

where the spinors uy() for the occupied positive energy states h- satisfy
the Dirac equation (2.2) with eigenvalues ¢y, and the Hartree propagator

S is a solution to
(e+ia -V, —B(M+ X)) - %,) S(z,z,¢) = 6O (x — z) (A.2)

with the continuous energy variable €. The ww polarization operator I, (‘;w)D
is obtained from eq. (A.1) by replacing the free electromagnetic vertex I'}(z)

(see eq. (3.7)) by (—tg,7"). By using (2.2) and (A.2) one easily verifies that
QOH(OJW)D("%Z) + ivxiﬂ(i:,,y)D(-’B, z) =0, (A.3)

and similar for Iy} \r,. From this equation it follows that the terms pro-

portional to ¢*¢” in the w meson propagator A}” do not contribute in
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eqs. (3.10) and (3.11), as is verified by performing a partial integration.
Therefore in the actual calculation we can replace Ag”(x) — g**Ao(x)
with the Yukawa function Ag(z) given in eq. (A.9) below. For the same
reason we can drop the second term in the w meson propagator (3.22) when
the vacuum fluctuations are included. Also, the terms proportional to g*¢
in the vertex (3.48) do not contribute when used in the calculation of the wvy
polarization operator (A.1). The Hartree propagator S can be expressed by
using the regular (1.,) and irregular (1{})) solutions of the Dirac equation

as follows:

S(x’z,s) = —(0(3: Z)Z W( ) (+)(2: 6)¢Np(z 6)
+6(z-2)Y W( TV b (2,2)). (A4

The solutions ¢ and %{*) can be written in the form (2.7) with the radial
functions f.(r,€), g«(r,€) and f(*)(r,e), ¢{*)(r,e). The wronskian W, is
given by

We(e) = r? (£$9(r,€)gx(r, €) — g5 (r,€) fu(r, ) (A.5)

independent of r. By writing the propagator in the form (A.2) it is possible
to treat the positive and negative energy continuum states exactly.
Magnetic moments or elastic magnetic form factors with multipolarity

J are obtained‘frorn the matrix element

< /\ulTMJJ(q)])\p >= /d%j)\u,)\u(w) . YJJl(x)]J(qx), (A.6)

where the current of the valence nucleon is given by (3.5), and the single

particle state is characterized by A = (n,x) with corresponding angular
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momentum j = || — I, and the magnetic quantum number g. In the

following we give formulae for the reduced matrix element
MY(q) =< AT (9)IIA >= M{(q) + §M7(g). (A7)

The contribution due to the impulse approximation is

m (= SENEED I (g i) (Asa)
with
pib(g) = %ijw(lf + 1)e /Ooorzdr F-Gjys(qr), (A.8b)

and pfy(q) given by (5.15). The factor Cj is given below eq. (5.15), and
w = -1 (+41)for j =€+ 1 (£—1). Using the relations

2(F2 + GZ)]I _ Kr

2 ___[7'
rF-G aM~ oM~

(F = G%), k= —2(2j +1),

one can show that the Dirac part (A.8a) is equivalent to the first two terms
on the right hand side of eq. (5.13) in the main text. In order to calculate
the contribution of the vertex correction (6M7(g)), one expresses the w
meson propagator g** A(x) in terms of combinations of the spherical Bessel
and Hankel functions in the usual way:

Alx—z') = ?41?21—:—:%;—'
= imy 3 jelimuz RS (imuzs )Y (2)YE(E). (A.9)

tm

The nucleon propagator has already been expanded in eq. (A.4). The actual
calculation is considerably simplified due to the fact that only the space

components of the w meson propagator with multipolarity J contribute.
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In other words, the intermediate states containing one w meson in fig. 4
have all the same multipolarity J. In this way we obtain the following

contribution due to the vertex correction A of eq. (3.8):

6M7(q) = /0 ydy /0 22 dz A7 (y, 2)j1(qz), (A.10)

where

Fy,2) = —ige <m@I [Y7@) x 1) lua@) >
x (A"(y,z)-}- /oooz2d:cﬁ"(y,z)AJ(x,z)), (A.11)

I (y,z) = I (y,z) + /oo 22dz T (y, 2) 17 (2, x), (A.12)
0 .

Aly,z) = 2mugubrs) Y, /0 y?dy’ jr(imay< )R (imuys)
h o

x gy (-0 Rl - L2 <)) 17 x00) ) >
x < Tl [YE x IO [fun(z) >
0(z — v
S22 @l [ x ) ey >

x <T@ Y2 x IO) flun(z) >] (A.13)

and ITY is given by replacing the free electromagnetic vertex Fél) by —ig,yV
in eq. (A.13). In eq. (A.13), for every fixed occupied positive-energy state h
the sum over « runs over all states allowed by angular momentum conservation®.
Y< (y>) means the smaller (larger) of the variables y, y’. The reduced ma-

trix elements in eq. (A.13) are easily evaluated by first expressing them in

4Performing the sum over the isospin quantum numbers means simply to replace Fél)
by its isoscalar part and to multiply a factor 2.
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two-dimensional Pauli spinor space and them applying the standard com-
position formulae for reduced matrix elements. I and A’ defined above
are the building blocks of the RPA calculation. The Dyson equation (A.12)
is solved by matrix inversion, discretizing the coordinate variables into 15
Gauss points. From IT/ we obtain A7 and M from egs. (A.11) and (A.10).
We employ the single nucleon form factors of ref. [39]. For this we first
split up M into the Dirac and anomalous parts, and M furthér into the
isoscalar and isovector parts, and then multiply the single nucleon form
factors Fys, Fiy, F3s or Fy, separately. Using the “bare bone” form factor
M thus obtained we calcula’qe the nuclear form factor F/ by the following

formula:

b? 4r 1
)2 J0o\2 am
PP = M P (377 rgey (A9

where the exponential factor is the conventional center of mass correction
with b the b-parameter of the harmonic oscillator shell model. Summing
finally over all values of J allowed by angular momentum conservation,

the transverse form factor |Fr(gq)|? is obtained. The magnetic moment is

related to M7=! by

p=2M -6r

\/(J + 1)(2; +1) q'_.o iq M'(q). (A.15)

B Conservation of the baryon current

In this appendix we present the proof of eq. (3.29) making use of the Ward-
Takahashi identities for wNN vertices which follow from baryon current
- conservation. For definiteness we refer to the lagrangian (2.1) (or (3.19)

after renormalization). The discussion applies for nuclear matter.
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Consider first the identities for unrenormalized quantities (denoted by
a subscript (0)). We define, as usual, the wNN Green’s function F:(o) with

amputated nucleon legs by

<0[T (1/’(0)(-'”)-"5(0)(33’)”&))(3!)) 0>
= /d‘*u /d4u'5(0)(x' — )l —y,u—y)Se(u—-=z). (B.1)

Here S is the nucleon propagator. Operating on (B.1) with 8/0y* and
using the definition of the T-product we encounter equal time commutators
of the form [w(y)(2), $(0)(2')], which can be evaluated as follows: From the
equation of motion derived from the lagrangian (2.1) with unrenormalized

quantities we have

(9078 ~ B:GY)) (B.2)

oo L
(0) m2,

with the baryon current
78 = Y 1*¥(0)- (B.3)

The physical degrees of freedom are the fields w* and 3 with their conjugate
momenta E' = G*° and ¢*. Therefore E* commutes with the nucleon field,

and we obtain from (B.2)

[w?o)(:z), ¢(0)(-”3')] ==

9uwo 3 '
5@ (g —
m£o¢(°)($) (z—2')
at equal times. Using further the transversality condition B“wé‘o) = 0 which
follows from baryon current conservation, we arrive at the Ward-Takahashi

identity in momentum space

0P p) = 22 (SG(2) — Sgi(p)) - (B.4)

0
Myo
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Here ¢ = p'—p. Renormalizing the fields and the propa,gator Sy ineq. (B.1)
by applying eq. (3.18), and defining the renormalized Green’s function I}
by an equation similar to (B.1) without the subscripts (0), we obtain

‘/Z“’F“

I —
w(0) — Zn w*

Therefore, eq. (B.4) reads in terms of renormalized quantities

/ Z w — (2 —
a.T8(,p) = ﬁmT%W (s7'@) - 57 (»)) - (B.5)

Using eq. (3.50) we then obtain the identity for the wNN source vertex

GI(F D) = —it g T (S0 - 57) . (B9)

The differential form of this identity in free space and the renormalization
prescription (3.27) then gives the relation (3.29) between the renormaliza-

tion constants:

dm?
Zg = 2ZN (1 + — ) . (B7)

w

(Note that in the Hartree model Zy = 1 and S~!(p') — S~(p) = ¢.)
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Table captions

1. Miller’s calculation of magnetic moments in the relativistic approach.

Taken from ref.[13].
2. Various parameters. For explanation, see text.
3. Magnetic moments obtained in the mean field approximation.

4. Nuclear isoscalar charge radius as determined from eqgs. (4.4) and

(4.3), and the pole position of the w meson propagator (3.59).

5. Magnetic moments including the effects of vacuum fluctuations. The
values in parenthesis show the results when the vacuum fluctuation

effects are included only in the single particle wave functions.

6. Isoscalar Dirac parts of the magnetic moments in the mean field ap-
proximation in comparison with the expectation values of M/M*(r)
and M /e(r) between single particle states (e(r) = M*(r)+ Xy (r). For

explanation, see text.

7. Same as table 6 when the vacuum fluctuations are taken into account.

Figure captions

1. Self-energy of a nucleon in the Hartree approximation.
The dashed line represents the exchanged meson (¢ or w). All states

below the Fermi surface (positive and negative energy) are counted
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in the loop. In the mean field approximation, however, only positive

energy occupied states are retained.

. Scalar density of 0 calculated using the wave functions obtained by
the self-consistent calculations.

The dashed line is the result in the mean field approximation, and the
full line is that includes the vacuum fluctuation effects. For the latter,
the valence nucleon contribution ((2.5)) and that from the vacuum
fluctuation ((2.8)) in the local density approximation are displayed
separately (dot-dashed line for the former, and the dotted for the
latter with the sign changed).

. Vector density of %0 calculated using the wave functions obtained
by the self-consistent calculations.

The dashed line and the solid line are the result in the mean field
approximation and the result of the calculation including the vacuum
fluctuation effects. The difference comes only from the change in the

wave functions.

. Graphical representation of the RPA type vertex correction eq. (3.8).
Symbols for the polarization insertions are defined in figs. 5 and 6.

The dashed line represents the free w meson propagator in lowest

order (A§”).

. ww-polarization operator IT (‘f:w).
It is splitted up into two parts as in eq. (3.12). For explanation, see

text.
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10.

11.

. wy-polarization operator IT (”;,1).

It is splitted up into two parts as in eq. (3.16).

Graphical representation of the w meson propagator eq. (3.22) includ-
ing the Feynman part (F) of the polarization operator.
This propagator will replace the lowest order one (dashed lines) in

the vertex correction fig. 4 of the mean field model.

. Electromagnetic vertex of a nucleon including the Feynman parts (F)

of the polarization operator (see eg. (3.48)).
This vertex will replace the bare YNN vertices at point z in fig. 4 and

in the impulse approximation.

. Magnetic form factor of *N in the mean field approximation.

The dashed-dotted curve is the result of the relativistic impulse ap-
proximation, while the full curve includes the RPA type vertex cor-
rections. For comparison we also show the result of the nonrelativistic
impulse approximation using harmonic oscillator wave functions (dot-

ted line). The experimental data are taken from ref. [48].

Magnetic form factor of 170 in the mean field approximation.
For explanation of the curves, see the caption to fig. 9. The experi-

mental data are taken from ref. [49].

Magnetic form factor of *K in the mean field approximation.
For explanation of the curves, see the caption to fig. 9. The experi-

mental data are taken from ref. [50].
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12.

13.

14.

15.

16.

Isoscalar Dirac part of the single nucleon form factor (Fis).

The full line gives the form factor (3.60) for zero density, while the
results of refs [39] and [38] are shown by the dashed and the dotted
lines, respectively. (The dotted line refers to the fit with g, = 0.112
in table 1 of ref. [38].) The dashed-dotted and dashed-doubledotted
lines show the form factor (3.60) for A = 17 and A = 15, respectively.

The dashed and dashed-dotted lines show the last factor in eq. (4.1)
for zero density aﬁd for A = 15, respectively, while their ratio is shown
by the full line.

The full line represents the quenching factor of the isoscalar Dirac

part of the single nucleon form factor.

The w meson exchange potential as determined by a Fourier trans-
formation of eq. (3.59) for go = 0.

The results for zero density, A = 15 and A = 17 are given by the
dashed-dotted, the dotted and the dashed lines, respectively. The

full line shows Yukawa form.

Magnetic form factor of '*N including vacuum fluctuation effects.

The dashed-dotted curve is the impulse approximation. The solid
curve includes the RPA type vertex corrections. The dotted curve is
the nonrelativistic impulse approximation using harmonic oscillator

wave functions.

Magnetic form factor of **O including vacuum fluctuation effects.
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17.

18.

19.

20.

21.

Legends are the same as of fig. 15.

Magnetic form factor of 3K including vacuum fluctuation effects.

Legends are the same as of fig. 15.

Comparison of the magnetic form factors of 1°N obtained in the mean
field approximation (dashed line) and including vacuum fluctuation
effects (solid line).

The dashed-dotted line shows the results of a calculation where the
vacuum fluctuation effects are included only in single particle wave
functions. The dotted line is the nonrelativistic impulse approxima-

tion.
Same as fig. 18 for 70
Same as fig. 18 for ¥°K

Various contributions to the magnetic form factor of ®N in the im-
pulse approximation based on egs. (5.13).

The dotted line shows the result obtained by setting M* = M and
neglecting the terms proportional to G? in egs. (5.13), (5.14) and
(5.15). When the factor M/M* in eq. (5.14) is included, one obtains
the dashed-dotted line. The dashed line shows the results when the
terms proportional to G? are included. The total form factor in the

impulse approximation is given by the full line.
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Table 1

15N 150

Dirac Anomalous Sum Dirac Anomalous Sum

Calc. 0.716 -0.623 0.093 0 0.665 0.665

Schmidt 0.333 -0.598 -0.265 0 0.637 0.637

Exp. -0.28 0.72

Table 2

MF VF
g2/4n 8.72 4.32
g2 /4m 15.15 8.18
m, [MeV] 520 458
m,, [MeV] 783 783
M [MeV] 939 939
reference  [24] [21]
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Table 3

A 15 17 39 41
1. Isoscalar
Impulse
(Dirac) 0.3308 1.6430 0.9939 2.3379
(Anomalous) 0.0209 -0.0597 0.0367 -0.0597
(Sum) 0.3517 1.5833 1.0306 2.2782
RPA type vertex correction :
(Dirac) -0.1457 -0.1466 -0.3888 -0.3458
(Anomalous) 0.0001 -0.0001 0.0003 0.0000
(Sum) -0.1456 -0.1467 -0.3885 -0.3458
Impulse + RPA type vertex correction
(Dirac) 0.1851 1.4964 0.6051 1.9921
(Anomalous) 0.0210 -0.0568 0.0370 -0.0597
(Sum) 0.2061 1.4366 0.6421 1.9324
Schmidt values
(Dirac) 0.1667 1.5 0.6 2.0
(Anomalous) 0.0200 -0.0600 0.0360 -0.0600
(Sum) 0.1867 1.4400 0.6360 1.9400
Experiment

0.2179 1.4141 0.7066 1.9206
2. Isovector
Impulse
(Dirac) 0.3308 1.6430 0.9939 2.3379
(Anomalous) -0.6444 1.8407 -1.1316 1.8407
(Sum) -0.3136  3.4837 -0.1377 4.1786
Schmidt values
(Dirac) 0.1667 1.5 0.6 2.0
(Anomalous) -0.6167 1.8500 -1.1100 1.8500
(Sum) -0.4500 3.3500 -0.5100 3.8500
Experiment

-0.5000 3.3065 -0.3142 3.5073
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Table 4

A free 15 17 39 41

J<r>, (fm) 0.74 088 0.82 090 0.6

m,, (MeV) 666.9 534.7 576.7 519.4 546.0
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Table 5

A 15 17 39 41
1. Isoscalar
Impulse
(Dirac) 0.2410 1.5639 0.7834 2.1630
(Anomalous) 0.0206  -0.0598 0.0364  -0.0598
(Sum) 0.2610 1.5041 0.8198 2.1032
RPA type vertex correction
(Dirac) -0.0625 -0.0618  -0.1559  -0.1392
(-0.0643) (-0.0660) (-0.1671) (-0.1570)
(Anomalous) 0.0001 0.0000 0.0002 0.0001
(0.0001) (-0.0000) (0.0002) (0.0000)
(Sum) -0.0624  -0.0618 -0.1556  -0.1391
(-0.0642) (-0.0660) (-0.1669) (-0.1570)
Impulse + RPA type vertex correction ,
(Dirac) 0.1785 1.5021 0.6275 2.0238
(0.1767) (1.4979) (0.6163) (2.0060)
(Anomalous) 0.0207  -0.0598 0.0367  -0.0597
(0.0207) (-0.0598) (0.0366) (-0.0598)
(Sum) 0.1992 1.4423 0.6642 1.9643
(0.1974) (1.4381) (0.6530) (1.9463)
Schmidt values
(Dirac) 0.1667 1.5 0.6 2.0
(Anomalous) 0.0200  -0.0600 0.0360  -0.0600
(Sum) 0.1867 1.4400 0.6360 1.9400
2. Isovector
Impulse
(Dirac) 0.2410 1.5639 0.7834 2.1630
(Anomalous)  -0.6352 1.8438  -1.1122 1.8438
(Sum) -0.3942  3.4077  -0.3288  4.0068
Schmidt values
(Dirac) 0.1667 1.5 0.6 2.0
(Anomalous)  -0.6167 1.8500  -1.1100 1.8500
(Sum) -0.4500 3.3500  -0.5100 3.8500
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Table 6

A 15 17 39 41
< M/M*> 1375 1.221 1.455 1.330
mi/ms 1.985 1.097 1.658 1.169
1/ ms 1.195 1.191 1.312 1.285
<MJe> 1.044 1.031 1.053 1.043
m/ms 1.110 0.997 1.008 0.996
mipa/ms  1.008 0.996 0.998 0.996
fpa/ms  0.941 1.005 0.969 1.007
Table 7
A 15 17 39 41
<M/M*> 1.191 1.110 1.226 1.166
my/ms 1.446 1.044 1.306 1.082
1/ ms 1.111  1.086 1.161 1.133
< MJe > 1.040 1.027 1.047 1.039
m/ms 1.071  0.962 1.046 1.012
(1.060) (0.999) (1.027) (1.003)
mypa/ms 1.020 0997 1.017 1.000
MLpa/ms 0.978 1.005 0.996  1.008
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