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Abstract

We introduce a new method by which to compute global postseismic deformation in a self-
gravitating, spherically symmetric, non-rotating, viscoelastic and isotropic (SNRVEI) Earth
model. Previous methods are based on too simplified Earth models that neglect compressibil-
ity and/or the continuous variation of the radial structure of Earth. This is because the previous
mode summation techniques cannot avoid intrinsic numerical difficulties caused by the innu-
merable modes that appear in a realistic Earth model that considers such effects. In contrast,
the proposed method enables both of these effects to be taken into account simultaneously.
We carry out numerical inverse Laplace integration, which allows evaluation of the contri-
bution from all of the innumerable modes of the realistic Earth model. Using this method,
a complete set of Green’s functions is obtained, including functions of the time variation of
the displacement, gravity change, and the geoid height change at the surface for strike-slip,
dip-slip, horizontal and vertical tensile point dislocations. As an Earth model, we employ the
Preliminary Reference Earth Model (PREM) and a continuously varying viscosity profile. We
further elucidate the effects of fine layering and compressibility on the postseismic deforma-
tion rate for large earthquakes (Mw ~ 8). The result shows that the difference between the
Earth model employed in this study and those used in the previous studies is detectable with
modern observational techniques such as GPS. This means that there is a possibility that we
should re-examine a role of viscoelastic relaxation as a mechanism of postseismic deforma-
tion. As an example, we apply the method to the postseismic deformation due to the 2003
Tokachi-Oki Earthquake (Mw = 8.0) and show that the observed postseismic deformation can
be explained by viscoelastic relaxation. This serves as a counterevidence against the results
which explain the deformation purely by afterslip. In conclusion, the effects which have been

neglected so far should be considered for theory to meet observational accuracy.
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1 INTRODUCTION: TOWARD THE ESTABLISHMENT OF A NEW METHOD FOR
COMPUTING GLOBAL POSTSEISMIC DEFORMATION BASED ON A

REALISTIC EARTH MODEL
1.1 Observation and theory of global deformation caused by earthquakes

It is known from various geodetic observations and theoretical studies that earthquakes generate
local and regional crustal movement (e.g., Steketee 1958; Matsu’ura 1977; Bock et al. 1993;
Massonnet et al. 1993; Tsuji et al. 1995; Nishimura et al. 2003). Crustal deformations induced by
large earthquakes (M ~ 8) with spatial scales exceeding 100 km have also been detected along the
circum-Pacific seismic zone (Melbourne et al. 2002; Zweck et al. 2002; Hetland & Hager 2003;
Ueda et al. 2003; Vergnolle et al. 2003) from early geodetic survey data (Fujii & Nakane 1983;
Matsu’ura 1983) and recently developed global observational networks that use space geodetic
techniques such as the Global Positioning System (GPS) (e.g., Seeber 2003). A remarkable ex-
ample of such large-scale crustal deformation is that caused by the Sumatra-Andaman Islands
Earthquake (M=9.3) on December 26, 2004. Figure 1 shows time series data of daily horizon-
tal coordinates before and after the event at continuous GPS observation stations operated by the
International GNSS (Global Navigation Satellite Systems) Service (Beutler et al. 1999). Analy-
sis results of the coordinate data are provided by the Scripps Orbit and Permanent Array Center
(SOPAC) via the internet (http://sopac.ucsd.edu/). The coseismic jump and subsequent rate change
are observed even at sites with an epicentral distance in excess of 1,000 km.

To calculate such large crustal motions using a geophysical model, spherical Earth models
should be used to ensure higher accuracy (Sun & Okubo 1993; Piersanti et al. 1995; Pollitz 1997;
Wang 1999), rather than the flat-Earth approximations that are commonly used in computations
of local and regional deformation (Sato & Matsu’ura 1973; Matsu’ura et al. 1981; Rundle 1982;
Okada 1985). We can define such theories that consider the Earth’s curvature as ‘theories on global
deformation’. We can also term crustal deformation at spatial scales in excess of approximately
100 km as ‘global deformation’. |

In the present thesis, we deal with theories on global deformation caused by large earthquakes,
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including coseismic and postseismic deformations. We develop a new computational method that
enables us to consider effects that have been neglected in previous theories on global postseis-
mic deformation. The conclusion of the present study is that differences between the new method
and conventional methods can amount to 50-60% at the maximum displacement rate, which is
detectable with current observational techniques. In the rest of this chapter, we explain the back-

ground and purpose of this research in more detail.

1.2 Postseismic deformation as observational facts

We begin by defining the term postscismic deformation as used in the present thesis. Postseis-
mic deformation is the transient motion observed following coseismic deformation, showing a
gradually decaying displacement rate over a wide range of characteristic time-scales from a few
weeks to more than 10 yrs. Tide gauge records and leveling data reveal that large earthquakes tend
to cause postseismic deformations at longer time-scales (> 10 yrs.) (Thatcher & Rundle 1979,
1984; Barrientos et al. 1992; Larsen et al. 2003). In addition, the recent advent of space-borne
- geodetic techniques has successfully led to the detection of deformations caused by large events
that occur at shorter time-scales (e.g., Bock et al. 1993; Deng et al. 1998; Heki & Tamura 1997,
Jonsson et al. 2003).

As an example of postseismic deformation observed using GPS, we examine postseismic de-
formation caused by the 2003 Tokachi-Oki Earthquake (M8.0). Figure 2 displays a sequence of
daily displacement data for the period from 8 yrs before the event until 2 yrs after the event, as
measured at a station of the GPS Earth Obscrvation Network in Japan, GEONET (Tsuji et al.
1995). The location of the source and the two GPS stations, including a fixed point, are shown in
Fig. 3. Site 960532 is located approximately 100 km from the source. The baseline change, in-
volving horizontal and vertical displacements of station 960532 relative to the fixed point 950154,
clearly shows the instantaneous coseismic step and subsequent postseismic deformation that de-
cays exponentially with time (Fig. 2). The secular trend 1.5 yrs after the event has yet to recover
to that prior to the event, indicating that postseismic deformation is ongoing. The GEONET net-

work also detected postseismic deformation in the same manner at inland stations with epicentral
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distances in excess of 100 km (see Chapter 5). Changes in horizontal displacement velocity of a

few millimeters per year is sufficient to be detected by the GPS network for an observation period
of several years.

Several mechanisms have been proposed to explain different spatial and temporal patterns of

postseismic deformation. Therefore, we define postseismic deformation only in terms of observa-

tional facts here, and will discuss mechanisms of postseismic deformation later in the text (Section

1.4).

1.3 Why spherical theory?

We have observed examples of global coseismic and postseismic deformation. To model such
deformation, we need to consider the curvature of the Earth. By comparing theories based on
spherical geometry with those based on a half-space medium, we show that the effect of neglecting
Earth sphericity is not negligible for modern observational techniques.

A very small change in coseismic gravity related to the 2003 Tokachi-Oki Earthquake was de-
tected by superconducting gravimeters to a precision of ‘sub-micro gal’ (1 micro gal = 10%m/s?)
at an observation site located approximately 1,000 km from the epicenter (Imanishi et al. 2004).
Figure 3 illustrates the observational array of the superconducting gravimeters (indicated as SG).
The triangle and circle symbols in Fig. 4 denote the observed and computed gravity change for the
spherical Earth model, respectively (Sun & Okubo 1993; Imanishi et al. 2004). We added a gravity
variation computed for the same fault model as that used by Imanishi et al. (2004), using Okubo’s
theory for a flat-Earth model (Okubo 1992) (indicated by squares in Fig. 4). The error bars of the
observed gravity change are too small to show in the figure (0.005 ~ 0.009 microgal). Clearly, the
effect of Earth sphericity should be considered because the difference between the two approaches
is far in excess of the observational error involved in detecting coseismic change.

The effect of the curvature increases even more for postseismic deformation. Nostro et al.
(1999) undertook a comprehensive study of the effect of sphericity on coseismic and postseismic

deformation. The authors showed that the effect is significantly amplified in postseismic defor-
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mation (Fig. 5). Antonioli et al. (1998) also recommended consider the effect of curvature for
computations of postseismic stress diffusion associated with major earthquakes.

In addition to evaluating postseismic deformation in the far-field, spherical models are indis-
pensable for investigating global deformation such as variations in Earth flattening and rotation, as
large earthquakes necessarily perturb lower-degree spherical harmonics of the Earth’s gravity field
(Chao & Gross 1987). The lower-degree gravity field is precisely monitored by satellite gravity
measurements such as the Gravity Recovery and Climate Experiment, GRACE (Dickey et al. 1997;
Tapley et al. 2004), with accuracy of a few millimeters in determining the geoid height at a spatial
resolution as small as 400 km. Changes in the lower-degree coefficients due to large earthquakes
are routinely computed by the National Aeronautics and Space Administration (NASA), USA.
For example, the detectability of the effects of the 2004 Sumatra-Andaman Islands Earthquake is

discussed by Chao & Gross (2005).

1.4 Possible mechanisms of postseismic deformation and their determination

Coseismic crustal movements caused by earthquakes are well explained within the framework of
elasticity dislocation theory, as introduced by Steketee (1958). In contrast, the possible mecha-
nisms that cause postseismic deformation remains a controversial topic.

One mechanism is viscoelastic relaxation in the asthenosphere (e.g., Piersanti et al. 1997; Deng
et al. 1998; Pollitz et al. 2001). This mechanism is based on the concept that the asthenosphere be-
neath the elastic lithosphere behaves as a viscous liquid over geological time-scales of more than
several thousands of years, which is evident in postglacial rebound (Haskell 1935) and the con-
cept of mantle convection (Richter & Parsons 1975). Physically, viscoelasticity can be modeled by
combining a spring and a dash pot, with Maxwell time (ratio of viscosity to rigidity) representing
the relaxation time. This means that the time-scale of a viscoelastic deformation is proportional
to viscosity in the asthenosphere. Therefore, to model postseismic deformation having time-scales
that range from several years to several tens of years, we have to assume that viscosity in the
asthenosphere is a few orders of magnitude less than the value derived from observations of post-

glacial rebound. It follows that the existence of a lower-viscosity layer is indicated by employing
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this mechanism, which is reasonable when we consider viscoelastic structure in plate boundary
zones (see Chapter 5). Theories on global postseismic deformation, which adopt viscoelastic re-
laxation, are typically used to model long-lasting postseismic deformation over decades caused by
large earthquakes in such plate boundary zones (e.g., Piersanti ct al. 1997).

A second mechanism of postseismic deformation is afterslip (Heki & Tamura 1997; Miyazaki
et-al. 2004; Ozawa et al. 2004), which is commonly used to explain rapid postseismic deforma-
tions that take place from several days to several years following an event. In this mechanism,
postseismic deformation is considered to be caused by slow fault slip that occurs around asperi-
ties (areas with large coseismic slip), without seismic radiation. We term such fault slip afterslip.
This mechanism is supported by combining the following two facts. First, it is known from nu-
merical simulations based on the results of rock fracture experiments that differences in frictional
properties in the asperity compared to the non-asperity cause instantaneous slip in the former and
peripheral afterslip in the latter (Tse & Rice 1986). Second, postseismic fault slip inferred from an
inversion method using actual geodetic data distributes around the asperity (Ozawa et al. 2004);
however, we note that the dynamic equation incorporating the frictional law employed in Tse &
Rice (1986) is not solved in the inversion.

Inversion methods used to infer slip distribution, as in afterslip, are commonly used to account
for other transient events that release stress without an abrupt coseismic slip event (Kawasaki et
al. 1995; Dragert et al. 2001; Ozawa et al. 2002; Sagiya 2004).

Poroelastic deformation is also a possible mechanism of postseismic deformation, accompa-
nied by liquid transfer induced by a coseismic stress change (Jonsson et al. 2003). This model
is basically applied to explain transient motions at time-scales of several months (Jonsson et al.
2003).

In principle, we can determine the dominant mechanism of postseismic deformation by com-
paring the above three models with an observed postseismic deformation, as the theoretically
predicted deformation patterns and characteristic time-scales are different for each of the three
models. In practice, however, we cannot identify the dominant mechanism if we continue to use

previously proposed methods of global viscoelastic relaxation, as the postseismic relaxation pre-
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dicted by existing theories is based on unjustified assumptions and is therefore unreliable. This is

considered in detail in the next section.

1.5 Existing theories of global postseismic deformation and their intrinsic limitations

In this section, we first review previous theories of global postseismic deformation, and then high-
light the unjustified assumptions on which these theories are based.

In theories of global postseismic deformation, spherically symmetric Earth models are com-
monly used that employ radial variations in density, elastic constants, and viscosity. In addition,
all such theories are based on ‘the normal mode method’, which is considered in detail in Chap-
ter 2 (Table 1). Pollitz (1992) solved global postseismic deformation in a spherically symmetric,
non-rotating, viscoelastic and isotropic (SNRVEI) Earth for the first time in the absence of self-
gravitation, and approximately incorporated the effect in his subsequent theory (Pollitz 1997). The
error of this approximation, however, exceeds 10% for deformations with wavelengths longer than
400 km (Pollitz 1997). Furthermore, his model consists of a limited number of layers, in which
the allowable radial structure of density and gravity in the unperturbed state is restricted by the ar-
tificial constraint of p(r)g(r) = @;S—’ In addition, time variations in gravity changes are assumed
to be zero from the beginning. Piersanti et al. (1995) developed a computational method assuming
only incompressibility. This method has been widely used to explain observed postseismic defor-
mation and its effect on polar motion (Piersanti et al. 1997; Boschi et al. 1997; Soldati et al. 2001).
Wang (1999) considered compressibility by combining the normal mode method and reciprocity
theorem (Okubo 1993). The Earth model in this method, however, is again oversimplified, with
just 11 layers. Therefore, previous studies have used approximations of negligible compressibility
and/or an oversimplified viscoelastic structure of the Earth (Table 1).

If we could practically neglect the effects of compressibility and the continuous radial structure
of the Earth, there would then be no scope for improving the theory; however, these assumptions
are not necessarily valid. By comparing their incompressible model with Okada’s (1985) flat-Earth
model, which includes compressibility, Nostro et al. (1999) demonstrated that the effect of com-

pressibility in the near-field can exceed 10% of coseismic displacement. Sabadini & Vermeersen
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(1997) used incompressible theory (Piersanti et al. 1995) to demonstrate that the effect of stratifi-
cation has a major influence on postseismic deformation. For example, postseismic displacements
for a ten-layer model and a four-layer model differ by a factor. These results indicate that the as-
sumptions outlined above are not valid, even in the above limited cases. In other words, the effects
of compressibility and a continuously varying Earth structure on postseismic deformation have yet
to be assessed.

The reason that such assumptions have been employed despite evidence that the assumptions
are invalid is that intrinsic numerical difficulties arise in the absence of the assumptions. These
difficulties stem from two kinds of singularities in the computation; assumptions of negligible
compressibility and simplified viscoelastic structure are therefore employed to prevent the singu-
larities from occurring. In Sections 2.2 and 2.3, we illustrate how the numerical difficulties occur
and how existing theories have coped with these difficulties.

In fact, similar numerical difficulties to those discussed above occur in the computation of
postglacial rebound, which has a common theoretical origin to that of postseismic deformation
(Han & Wahr 1995). In the field of postglacial rebound, several authors have developed com-
putational methods to deal with these difficulties, including analytical approximations and direct
numerical approaches (see Section 2.4). In the realm of global postseismic deformation, however,

such computational methods have not been employed, as far as the author knows.

1.6 Aims of the present study

We have documented that unjustified assumptions have been employed in previously proposed
theories to avoid intrinsic numerical difficulties; however, these assumptions prevent us from dis-
tinguishing the dominant mechanism of postseismic deformation. These two facts give rise to the

following two aims for this study.

1.6.1 Aim I - Remove unjustified assumptions concerning global postseismic deformation-

First, we develop a new method to calculate viscoelastic deformation without the assumptions

described above. We also comprehensively document the effects of these assumptions on previous
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calculations. It follows that we will obtain a global postseismic deformation for a spherically
symmetric, self-gravitating, compressible, and realistically stratified Earth model, such as PREM
(Dziewonski & Anderson 1981), for the first time.

In addition to enabling us to estimate a more reliable global postseismic deformation, the new
method enables us to infer a more plausible viscosity profile. In viscoelastic relaxation theory, pre-
dicted deformation rates are in inverse proportion to viscosity. Therefore, we can use an inversion
method to infer the optimum viscosity profile that best explains the observed deformation rate.
Using an unreliable theory leads us to overestimate or underestimate viscosity. This means that
viscosity profiles estimated using existing theories of global postseismic deformation are likely to
be inaccurate. As discussed later, the differences in postseismic deformation rate predicted by our
method and existing methods can amount to 50-60%, which is not negligible in terms of current
observation techniques (see Chapter 4). It follows that our method provides an improvement in the
theoretical accuracy of estimating viscosity to the same extent.

Determining the viscosity profile is important in a geophysical sense because the profile gov-
erns the speed of the time-evolution of viscoelastic deformation and viscous flow. Despite this,
there are few other methods that provide constraints on the viscosity profile; exceptions include
estimating postglacial rebound and reproducing the current geoid undulation with a mantle con-
vection model (e.g., Ricard & Wuming 1991). To determine the viscosity profile in an island arc
setting at low latitudes, the detection and modeling of postseismic deformation is indispensable,

as the effect of postglacial rebound is less dominant in such regions.

1.6.2  Aim II - Identify the mechanism of postseismic deformation-

The theoretical improvements involved in our new method provide grounds for re-examining the
dominant mechanism of postseismic deformation. If our improved theory of viscoelastic relaxation
explains all or part of the observed postseismic deformation that has previously been explained
purely in terms of afterslip, we might find that the distribution and duration of the afterslip has
been overestimated or underestimated. Overestimate or underestimate of the afterslip affects how

stress accumulation from plate motion is balanced by coseismic and postseismic stress release
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during an earthquake cycle (Miyazaki et al. 2004). The continuation of afterslip indicates that fault
strength around the asperity has not yet recovered. Therefore, if viscoelastic relaxation explains
observed postseismic deformation better than afterslip, the recovery of fault strength is more rapid
than previously thought.

In addition to the possibility that the calculated contribution of afterslip may change with
the application of the new method, there is an intrinsic difference between employing afterslip
and employing viscoelastic relaxation. Viscoelastic mechanisms predicts the time evolution of
a postseismic deformation using only the initial condition (coseismic moment). On this basis,
once we determine the viscosity profile at the target region, we can predict the relaxation rate of
interseismic stress accumulation, as well as postseismic deformation that will occur in the same
area. In contrast, the time-evolution of postseismic deformation cannot be predicted by inferring
the optimum space-temporal distribution in each period via inversion unless we solve the dynamic
equation involving the frictional law. Valuable information concerning viscosity is not obtained,
either.

In the following chapters, we explore the theoretical background of existing methods of global
postseismic deformation and the mechanism of numerical instabilities (Chapter 2). We then intro-
duce our new approach that is designed to avoid such instabilities (Chapter 3). In Chapter 4, we
show a computational result obtained using the proposed method and discuss whether the effects of
compressibility and continuously varying viscoelastic structures are distinguishable using current
observational techniques. Finally, in Chapter 5, we show that far-field postseismic deformation as-
sociated with the 2003 Tokachi-Oki Earthquake is largely explained by viscoelastic relaxation. We

also estimate global gravity variation resulting from the Sumatra-Andaman Islands Earthquake.
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2  EXISTING THEORIES OF GLOBAL DEFORMATION MECHANISMS

2.1 Overview of theoretical framework of global deformation

In this section, we review the mathematical relationship of theories on global postseismic defor-
mation with those on other global deformations such as postglacial rebound.

In theories of global deformation, spherically symmetric, non-rotating, elastic and isotropic
(SNREI) or viscoelastic (SNRVEI) Earth models are commonly used. Such models can be cate-
gorized in terms of two key components: the constitutive law of the medium, and boundary condi-

tions. Table 2 shows the different categories of models and corresponding geophysical phenomena.

2.1.1 Global elastic deformation

First, we consider global deformation where elastic constitutive law is employed (Fooke’s law,
the upper law in Table 2). The theoretical framework of global elastic deformation is given by
Love (1911) and Pekeris & Jarosch (1958), who solved the free vibration of an clastic uniform
sphere and a radially heterogeneous sphere, respectively. According to this framework, most global
deformations are obtained by solving the sixth-order ordinary differential equation under certain
boundary conditions (see also Section 2.2.4). For example, tidal deformation occurs when the
free surface condition and gravity attraction from the motion of other celestial bodies are applied
to the Earth’s surface and body, respectively (Love 1911). In addition, béundary conditions of
surface load and traction are used to express deformation caused by changes in ocean mass and
atmospheric pressure etc. (Longman 1962; Farrell 1972; Van Dam & Wahr 1987; MacMillan &
Gipson 1994),

When a point dislocation is given in the internal Earth together with a free surface condition,
free oscillation occurs and is observed as seismic wave propagation (normal modes) (Alterman et
al. 1959; Saito 1967; Takeuchi & Saito 1972). ‘Coseismic’ crustal deformation is here defined as
the permanent deformation obtained by neglecting the inertia term in the differential equation used
to calculate free oscillation. Recently, Okubo ( 1993), Sun & Okubo (1993), and Sun et al. (1996)

developed a theory in which coseismic deformations are derived from deformations for the former
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boundary conditions (upper left-hand box in Table 2, i.e., surface traction, etc.) (see also Section

3.5).

2.1.2  Global viscoelastic deformation

Next, we consider global deformation where viscoelastic constitutive law is adopted, such as the
Maxwell and Kelvin models (Pollitz 2003a) (lower law in Table 2). The theoretical framework of
global viscoelastic deformation is given by Peltier (1974), who calculated deglaciation-induced
relaxation processes using a spherical Earth model.

As for elastic deformation, two types of boundary conditions are considered (Table 2). The
boundary conditions of the surface load have been used to describe postglacial rebound and its
effects on polar wander (e.g., Peltier 1974; Wu & Peltier 1982; Yoder et al. 1983; Sabadini & Yuen
1989). Internal point dislocation with Heaviside source-time function, together with free surface,
is used to model postseismic deformation (Pollitz 1992; Piersanti et al. 1995; Wang 1999).

We can derive the above viscoelastic deformations from theories on global elastic deforma-
tions for the corresponding boundary conditions (Table 2). It follows that we can obtain global
postseismic deformation using the theory on free oscillation or global coseismic deformation.
This mathematical technique, attributing viscoelastic problems to elastic ones, is known as the
correspondence principle, and was first introduced into the field of global viscoelastic relaxation
by Peltier (1974). As the theories associated with elastic deformation caused by earthquakes are
based on the normal mode method (e.g., Takeuchi & Saito 1972), we also term Peltier (1974)’s
method ‘the normal mode method’. In the next section, we describe the theory on global postseis-

mic deformation based on the normal mode method.

2.2 Normal mode method
2.2.1 Correspondence principle
In Peltier (1974)’s theory, Maxwell’s constitutive equation is employed:

. 1 . .
Tij + %(Tij - ngk(Sij) = Aégrij + 2645, (1)
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where 7;; and e;; denote the components of the stress and strain tensors, respectively, A and p are
Lame’s constants, and 7 is viscosity. A dot above a variable denotes its derivative with respect to

time. The Laplace transform of Eq. (1) yields

7',} = )\( )Pk]\(s,] -+ 2#( ) (2)

where

(Ti(r,5), €ij(r,s)) = /OOC(T/:J‘(T: 1), e t))e "dt 3)
_ As+pK/no 2

)‘(8) - 5 -+ u/77 s ]\ - /\ + 3[1 (4)
_ b

u(s) = St (5)

Equation (2) is of the same form as that of the elastic global deformation. Therefore, we can easily
obtain the solution in the Laplace domain with theories on global elastic deformation. It follows

that the viscoelastic solution is given by taking its inverse Laplace transform.

2.2.2  Spherical expansion of the solution

Next, we expand the deformation in the time domain with spherical harmonics. In the subsequent
derivation, we use the notation of Takeuchi & Saito (1972), Sun & Okubo (1993), and Okubo

(1993). The displacement u, stress tensor T, and potential 1 are expanded as follows:

u(r,0.0.t) =3 _[yi(r. ;0. m)RT (0, ¢) + y3(r, 0, m)ST(0. 6) + i (r, 1,0, m)T7H(6, 9)]  (6)

n,m

T(r,0.6.) -, = Y [yalr, i m)RI(6, 6) + s (. s, m)ST(0, 6)

. Lt )T, ) ™

D(r,0,0,1) = D ys(r,t;n, m)Y;" (6, ¢) ®)
where v

R™0,¢) = e Y™0,¢) 9)

S70.0) = fengy + eoriry pu 0.9 (10)
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1 0 9 \eom
Y™, 4) = P™(cos®)e™?, m=0,+1,42,.. +n. (12)

Here, (7,0, ¢) and e; are the conventional polar coordinates and unit vectors, P (cos#) is the

unnormalized Legendre’s function, and
P m(cos0) = (—1)™P™(cos6). (13)

i (r,t;n,m), ys(r,t;n,m), and ys(r,t;n, m) are the radial functions representing the vertical
and horizontal displacements and the potential change, respectively, for the spheroidal mode that
includes volumetric change and gravity variation. An additional function yg(7) is introduced to aid

mathematical handling of the free boundary condition at the surface (Eq. (17)):

d n+1
ye(r) = % — 4nGpyr + " Ys (14)

where p is density and G is Newton’s constant (= 6.672 x 107" Nm?kg~?). 47 (r,t;n, m) and
Y1 (r,t;n, m) express displacement and the stress field, respectively, for the toroidal mode com-
prised of only horizontal motions. In the following section, we derive the equivalent elastic solution

in the Laplace domain for each mode.

2.2.3  Spheroidal mode

By replacing {y;(r,t; n, m), i=1, ..., 6} with their Laplace transform, we define the apparent elastic
deformation as {7;(r, s;n,m), i=1, ..., 6}. The apparent elastic deformation at a Laplace variable
s satisfies the following differential equation, which is governed by the linearized equations of

equilibrium, the stress-strain relation, and Poisson’s equation:

d~,' .Srn,m ~ & .
y_(fr_(_]s_n_”m) =3 A;j(r, s;n)g;(r, sin,m) + Si(syn, m) (j=1,...,6) (15)
Ir — :

J

where the coefficients A;; are given in Appendix Al. The inhomogeneous term S, = Ui(rs +
0,s;n,m) — g;(rs — 0, s;n,m) represents the excitation by a point dislocation at r = r4 (Saito

1967). The source time function is Dirac’s delta. The solution of Eq. (15) can be written as

Gi(r, s;m,m) = Qrya (r, ssm,m) + Qayia(r, sin,m) + Qsyis(r, s;nym) + §2(r, s;n, m) (16)
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where {Q;, i=1,2,3} are coefficients that will be determined later by a boundary condition and
{v:;, j=1,2,3} are three independent solutions of the homogeneous equation of Eq. (15) that are
regular at the center of the Earth (Appendix Al). The term 3 denotes a particular solution that is

obtained by numerically integrating Eq. (15) from r; to the surface a with the initial value

{

Note that no deformation occurs for [m| > 2.

gi(rs) = Si(s;n.m). m = 0,41, 42

gi(r <rs) =0.

The boundary condition of the free surface is imposed as

G2(a) = gaa) = gs(a) = 0 (17)

(Takeuchi & Saito 1972). Substituting Eq. (16) into (17) gives

o gl (T7 SN, m)

Gi(r, s;n,m) =
where

A(s) = det M, (19)

(e Yoo () y:zs(a)

M= yu(a) yila) ysla) (20)
ysi(a) ye2(a) yesla)
Gl sinm) = S8 50, m) A (5)iig (r, 57, m)
J
+ 71(5) Agj(8)Gij(r, s:m,m)
+ g (a, s;m,m)Agj(s)giy (r, s;n,m), 21)

and A;;(s) is the co-factor of M (Eq. (20)). Thus, we obtain the equivalent spheroidal solution for

a given Laplace variable s.

2.2.4 Toroidal mode

The same manipulation is performed for the toroidal mode. The apparent elastic deformation
{47 (r, s;n,m), i=1, 2} at a Laplace variable s satisfies the following differential equation:

dyl (r, s;n,m)

I = %;Bj;(r, ;)] (r,s;n,m) + ST (s;n,m) (22)
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where the coefficients B;; are given in Appendix A2. The inhomogeneous term ST = §7 (r, +
0,s;n,m) — 3! (rs — 0, s;n,m) is given in Takeuchi & Saito (1972). The solution of Eq. (22) can

be written as
gl (r,s;m,m) = QTy) (rosin,m) + 977 (r, s:n,m) (23)

where Q7 is determined from the free surface condition below (Eq. (24)) and ], is the solution
obtained by integrating an initial value at the core-mantle boundary upward (Appendix A2). The
term §j;” denotes a particular solution that is obtained by numerically integrating Eq. (22) from r
to the surface a with the initial value

{ 97 (ry) = ST (s;n,m)

(Takeuchi & Saito 1972). Note that toroidal mode is not excited for m = 0.

m =41, 42

i

yA:fT(r <rs) =0

The boundary condition of the free surface is imposed as
7 (a) =0 (24)

(Takeuchi & Saito 1972). Substituting Eq. (23) into (24) gives

_gi (r,s;n,m)

ii (r,s;m,m) = A (smm) + 957 (r, 8:m,m), (25)
where

A(s)" = y3i(a, s;n,m), (26)
and

gl (r,s;m,m) = 437 (a, s;n, m)yh (v, s;m, m). 27)

Thus, the equivalent toroidal solution for a given Laplace variable s is obtained.

2.2.5 Normal mode expansion and the eigenvalue problem

Having obtained the solution for the equivalent elastic problem (Eqgs. (18)-(21) for the spheroidal
mode and (25)-(27) for the toroidal mode), we can obtain the viscoelastic solution in the time

domain by taking its inverse Laplace transform:

s

1 c+ioc R e’
yi(r,t;n,m) = — / gi(r, s;m,m)—ds, 1 =1, ..., 6, (28)
271 Je—ico S
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1 c+ioc esl,
yl (r.t;n,m) = o g, (r,s;m,m)—ds, i =1,2. (29)
s

T Je—ioc
Here, s appears in the denominator assuming Heaviside’s step function for the source time func-
tion.
For the spheroidal mode, substituting the right-hand side of Egs. (18) and (21) into (22), and
after some calculation, we obtain the viscoelastic solution in terms of normal modes (Takeuchi &

Saito 1972):

1 petico gi(r, s;n, m) e
(rtinm) = —— YRS Me 30
bulr, b, m) 273 ./c—ioo A(s) s (30)
N ye(r, sp;m,m) ettt a1

= T2 AW
The derivation of Eq. (31) is carried out by considering that sy, a root of the characteristic equation
A(s) = 0, acts as a first order pole in Eq. (30) (N represents the total number of the roots), and that
y; coincides with the eigenfunction y;, satisfying the free surface condition (Eq. (17)) at the limit
of s — s;. Thus, the viscoelastic deformation is represented by the superposition of the normal
modes. The same derivation holds for the toroidal mode.
To evaluate Eq. (31), all the roots should be searched numerically by computing A(s). Figure
6 shows an example of the numerical search, in which the zero-points correspond to eigenvalues.
The residue, which represents the strength of each mode, is computed using the energy integration
and the variational principle (Takeuchi & Saito 1972). Information concerning the geometry of
the point dislocation S; (Eq. (15)) is included in the representation of the residue. The meaning of

each eigen mode is described in the following section.

2.2.6 Viscoelastic modes

One benefit of normal mode theory is that we can identify the origin of viscoelastic deformation by
dividing the total response into eigen modes. Wu & Peltier (1982) undertook a detailed mode anal-
ysis to address the postglacial rebound problem. According to their study, each mode originates
from contrasts in the density and/or viscoelastic structure in the employed Earth model. It follows
that excited modes differ for different Earth models. The origins of eigen modes are listed in Table

3. The amplitude and radial profile of internal deformation for each mode varies for each degree
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of spherical harmonics (e.g., Wu & Peltier 1982; Tromp & Mitrovica 1999b). As an example, we
show Wu & Peltier (1982)’s result for a compressible Earth model with the density and elastic
constants of 1066B (Gilbert & Dziewonski 1975), including the Mohorovicic, 420 km, and 670
km discontinuities, core-mantle and inner-outer core boundaries, viscosity contrast of the elastic
lithosphere of 120 km thickness, and inviscid core (L1 model of Wu & Peltier (1982)). The CO
mode associated with the core-mantle boundary (Table 3) has a relative amplitude of 40% in the to-
tal surface deformation for n=2, but just 5% for n=6, indicating that the lower-degree deformation
reflects the deep structure. On the whole, however, the largest contribution to the surface deforma-
tion is from the M0 mode (90% for n > 15 (Wu & Peltier 1982)). Figure 6 shows the characteristic
times and relative strengths of the modes for n=6 (indicated by values in parentheses).

In Fig. 6, the value of the characteristic equation is not provided in the area between the dashed
vertical lines. In fact, innumerable zero-crossing points exist in this region due to compressibility
(D mode in Table 3). In the next section, we discuss the intrinsic difficulties involved in the normal

mode method that are related to these innumerable poles.

2.3 Numerical difficulties in the normal mode method

Considering the continuously varying viscoelastic structure of the Earth and/or compressibility
produces densely distributed poles. This precludes using the algorithm to determine the numerical
root (Parsons 1972; Han & Wahr 1995; Fang et al. 1995; Sabadini & Vermeersen 1997; Ver-
meersen & Sabadini 1997). These roots appear in two regions along the s axis, corresponding
to the effects of innumerable layers and compressibility, respectively (Han & Wahr 1995). Fur-
thermore, the numerical search algorithm can detect an apparent eigen value due to an irregular
change of sign of the characteristic function. In the following text, we summarize the mathematical

mechanisms that cause these numerical difficulties.

2.3.1 Multilayer-induced problem

In the first region, in which —s ~ u/7, the number of poles increases as the number of layers

increases, unless 1/n remains constant between two adjacent layers (T modes in Table 3). There-
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fore, the smoothly varying viscoelastic structure of the Earth model generally generates innumer-
able poles. A serious numerical instability then occurs. It is necessary to integrate the ordinary
differential equation using the Runge-Kutta propagation technique (Eq. (15) or (22)) to compute
an eigen mode from the bottom to the surface; however, y(s) becomes singular for a certain depth
(Eq. (5)) (Fang et al. 1995; Han & Wahr 1995). If the number of layers is small, the singularitics
can be removed before the integration (Piersanti et al. 1995; Boschi et al. 1999). For a continuously
changing structure, however, it is impossible to continue the computation because the integrand
becomes continuously undefined. This difficulty is common to both the spheroidal and toroidal

modes.

2.3.2  Instability due to compressibility

ki

In the second region, in which —s ~ ﬂ—é where 3 = A + 2pu, the characteristic function for the
spheroidal mode (Eq. (19)) oscillates very rapidly due to compressibility (Han & Wahr 1995),
crossing the real axis of s. This oscillation is generated as follows. The first two of three indepen-
dent solutions used as initial values for the basic differential equation include the spherical Bessel
function of the first kind, j, (k7) (Appendix A1), where k2 o< (8s + kp1/1)~'. When s approaches
— % k(s) becomes very large and j,(s) behaves as sin(kr)/kr. Therefore, the initial values, in-
cluding j,(s), change vary rapidly for a small change in s. Consequently, the determinant (Eq.
(19)) obtained by integrating these initial values oscillates very rapidly in the region of s.

Additional problems stem from the combined effects of compressibility and a finely-layered
structure. Innumerable poles degenerate into inverse Maxwell time z2/7) at the incompressible limit
(Vermeersen & Sabadini 1996). It follows that a single value of 11/ corresponds to one compress-
ible mode. This indicates that the number of compressible modes increases markedly if we employ
a multi-layer model with different values of p/7.

The numerical search algorithm cannot determine the positions of such continuously dis-

tributed poles. To do so requires that the interval of s used to compute the sign of the determinant

along the real axis must be infinitely small, which is numerically impossible.
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2.3.3  Apparent eigenvalues

For the spheroidal mode, the sign of the characteristic function can suddenly change even if it is not
related to an eigenvalue (apparent zero-crossings) (Han & Wahr 1995). This phenomenon stems
from the necessity to modify the expression of the wave number in the two independent solutions
to ensure that the sign of the content in the square-root is positive (Eq. (A14) in Appendix Al).
The expression is divided into five cases according to the value of s (Wu & Peltier 1982). When the
wave number switches from one to another at a certain s, the apparent zero-crossing occurs. The
automatic numerical search cannot distinguish such apparent eigenvalues. This sign change does
not occur when incompressibility is assumed because the two independent solutions are substituted

by linear combinations with the power of r.

2.4 Avoid the numerical difficulties using the unwarranted assumptions

We have demonstrated that the normal mode method suffers from intrinsic numerical difficulties.
In this section, we first review steps to avoid those difficulties in the computation of postglacial
rebound.

The difficulties associated with multi-layered models can be avoided by either of the follow-
ing two procedures. The first is to reduce the number of layers via the volume-averaged method
(Vermeersen & Sabadini 1997). To assess the validity of this approach, the authors developed
an analytical expression for multi-layer models and studied the effect of increasing the number
of layers for the loading problem. The results indicate that the effect was saturated for an Earth
model with several tens of layers. Secondly, we can use Fang et al. (1995)’s method of evaluating
contributions from innumerable poles for incompressible Earth models.

The difficulty related to compressibility is circumvented by simply neglecting the compressible
modes when taking the summation (Eq. (31)) or assuming incompressibility so that the innumer-
able poles degenerate. The latter solution is the standard method employed in computations of
postglacial rebound because it simultancously ensures that miscounts of apparent eigenvalues are
avoided (Section 2.3.3). Once we assume incompressibility, we can theoretically predict the total

number of modes by taking into consideration their origin and a given viscoelastic structure of
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the Earth model (Section 2.2.6). By comparing the predicted number of modes with the number
of numerically detected modes, we can assess whether all the modes have been found. Another
method is to approximately evaluate the contribution from compressible modes via an analyti-
cal formula (Vermeersen & Sabadini 1996); however, this method remains invalid for fine-graded
Earth models because of the difficulties described in Section 2.3.1.

To avoid the difficulties described above, recent studies in the field of postglacial rebound have
taken to using time-domain approaches (¢.g., Paulson et al. 2005).

In the field of global postseismic deformation, assumptions concerning compressibility and
the fine structure of the Earth continue to be used (Table 1). The effects of these assumptions on
the accuracy of calculations have yet to be sufficiently examined, as stated above (Section 1.5).
In the next chapter, we therefore propose a new computational scheme that avoids computational

difficulties without the need for making unwarranted assumptions.
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3 ANEW METHOD FOR COMPUTING GLOBAL POSTSEISMIC DEFORMATION
3.1 Principles of the method

The normal mode method provides a clear physical model (Section 2.2.6) but suffers from the
intrinsic numerical difficulty that we cannot add up all the modes of realistically stratified and/or
compressible Earth models (Section 2.3). In this chapter, we propose a new method that is intrin-
sically immune to this difficulty.

A fully numerical approach, such as a finite element method in the time domain, is a possible
solution to the above problem, however, we propose a different method that in part uses the analyt-
ical expression in the normal mode method. As discussed in the previous sections, the weakness
of the normal mode method is that we cannot isolate innumerable modes (Eq. (31)). To address
this problem, we perform a numerical inverse Laplace integration that enables us to estimate the
contribution from all modes at a set time (Egs. (28) and (29)). In other words, we avoid all the
difficulties described in Sections 2.3.1-2.3.3 by using a path on which no singularity of innumer-
able poles occurs. This means that the singularity caused by multi-layered models does not occur
because s 1s now a complex number and the denominators of Egs. (4) and (5) do not become zero.
In addition, compressible modes do not cause rapid oscillation of the integrand on the path (see
Section 3.3), and contributions from all the poles are automatically counted without the risk of
miscounting apparent eigenvalues.

An important question here is the path that should be employed. In principle, we can select any

path that encloses all of the poles. Modifying the integration path in Egs. (28) and (29), we have

sl

1 e’
yi(r, t;m,m) = — %f rysn,m)—ds,1=1,..,6
yilr,n,m) = o— ¢ Gi(r, 510, m)—ds, /

(32)

i

st

1 : o8t ,
yl (r.t;n,m) = — %gf(r, s;n,m)—ds, i =1,2. (33)
: 2m0 7 S

Here, the integrand is evaluated at s on the complex plane. In practice, however, the accuracy of the
integration decreases rapidly unless an appropriate path is chosen. In fact, Fang & Hager (1994)
employ a similar approach using a half-round path for the loading problem with incompressible

models. Their method, however, encounters a numerical instability at large ¢ (> 5,000 yrs). In
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contrast, the path that we propose does not cause such an instability. We will describe the process

of choosing such a path in the next section.

3.2 Determination of the appropriate path

Based on the fact that all of the poles appear on the real axis of s (see Appendix B), we can set a
‘rectangular’ path once we determine the positions of the largest and smallest poles (Fig. 7). Note
that the positions change for different Earth models and for each degree n. We set s1=2.2E-14,
$o=1E-11, and s3=-3.5E-10 (sec.”") for all calculations in this thesis to avoid the need to modify
the path according to changes in degree .

The reason that we employ such a rectangular shape is explained as follows (the reason for
employing a symmetric path about the real axis is discussed in Section 3.2.1.). To maintain as
high an accuracy of the integration as possible, we consider the following trade-off so that neither
9:(r, 8;m, m) nor P—; in Egs. (32) and (33) varies rapidly:

Condition 1:  ¢;(r, s;n,m) is smoother on the path, requesting a greater separation from the
real axis (larger |s>|) (Fig. 7).

Condition 2:  The cancellation of significant digits in the integration along intervals B and C
(Fig. 7) should be avoided, requesting a smaller separation from the real axis (smaller |s3]).
Condition 1 is visualized in Fig. 8. It shows 7, (a, s;n = 2, m = 2) along an interval on the path
parallel to the real axis (solid line in the lower figure) for a continuously layered compressible
Earth model with a convex viscosity profile (Model 1 in Fig. 10). The small dots on the real axis
represent the densely distributed poles. It is evident that when s, is small, g1 (a, s;n = 2, m = 2)
varies rapidly due to singularities (white circles). Choosing a larger so(= 107 ""[sec™!]) means that
no singularities occur along the path (black circles). Condition 2 is necessary because frequent
oscillation of "—“’@ has to be avoided. The sign of the integrand along interval B alternates fifty
times for the value of so at /=10° yrs; exp(isat) = exp(2miss/(2)) = exp(2mi x 50). In solving
real problems, estimating postseismic deformation for periods of up to 10° yrs would be sufficient.
For # < 10° yrs, the number of alternations is at most several times. Thus, the cancellation of

significant digits is avoided. An approximate indication in determining s» from the viewpoint of
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Condition 2 is therefore so/(2%) < O(10). Taking these conditions into account, we search for an

appropriate value of s, by trial-and-error so that the numerical integration converges for smaller
integration steps.

In determining s; and $3, we only have to consider that all the poles are included and that s3 is

sufficiently small in case exp(st) in Egs. (32) and (33) becomes infinite.

3.2.1  Minimizing computation time

For numerical Laplace integrations, the integration step along the path is set to ~ 10~ ¥sec™". It
follows that a computation of ;(a, s;n,m) is carried out more than 10* times for each degree of
spherical harmonics. Although computation time depends on the specifications of the computer, it
is useful to introduce the following techniques that reduce the computation time of the integration.

(1) Select a symmetric path about the real axis (Fig. 7) to reduce the computation time for the
integration along the real axis by 50%.

(2) Use the reciprocity theorem (Okubo 1993) to compute 3;(a, s; n, m) (see also Section 3.5).
This theorem saves computation time for different source depths (Okubo 1993). Therefore, the
computational time required to calculate a surface deformation using a finite fault model expressed
by assembling point sources with different depths is greatly reduced.

(3) Interpolate g;(a, s;n, m) in Egs. (32) and (33) before exp(st)/s is multiplied, rather than

the entire integrand. For this we use the ordinary spline function.

3.3 Visible effects of compressibility on the integrand

Compressibility does not affect the integrand in such a way that the accuracy of the integration
deteriorates on the appropriate path. Figure 9 shows ¢1(a,s;n = 2,m = 2) and ¢;(a,s;n =
1000, m = 2) on the path for the compressible and incompressible models, respectively. To com-
pute the solution for the incompressible model by the proposed method, the Lame constant ) is
replaced by oc in the compressible Earth model (Piersanti et al. 1995) (see also Section 4.1.2).

y1(a, s;n, m) along the intervals B and C on the rectangular path is also smooth. The effect of
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compressibility is clearly evident in the difference between the two 7;(a, s;n.m)s as an ‘offset’.

yi(a, s;n, m) for higher harmonic degrees (n > 1, 000) remains smooth in a similar fashion.

3.4 Growth mode

It is worth noting that positive roots appear when both self-gravitation and compressibility are con-
sidered (Plag & Juttner 1995) for realistic Earth models such as PREM (Dziewonski & Anderson
1981) and 1066A (Gilbert & Dziewonski 1975); The contribution of positive poles to postseismic
deformation is negligible at geologically short time-scales (Vermeersen & Mitrovica 2000) (times
of more than 10 Ma). In our computation, however, positive roots are included in the path because
the coseismic changes at ¢+ = 0 that are calculated without the positive poles do not agree with
those computed using elastic theory (Sun & Okubo 1993). The neglected second-order terms in

the linearized basic equation must be considered for such a time-scale (Plag & Juttner 1995).

3.5 Formulation of the new method

Having explained the principle of the new algorithm (Sections 3.1 and 3.2), we next derive the
specific expression used to compute the integration (Egs. (32) and (33)). Finally, we will express
equations (32) and (33) with a non-dimensional viscoelastic Green’s function that corresponds to
cach dislocation type. We compute the Green’s function at the surface, as observers are generally

located at the surface.

3.5.1 Vertical displacement, gravity, and change in geoid height

Only the spheroidal mode causes deformation in the vertical direction (Egs. (6)-(12)). We begin
with the expression for the radial functions ¢ (a,t;n,m) and gs(a,t;n,m) in Eq. (32). These
functions are equivalent to the solution denoted by Eqgs. (18)-(21) at #=a for a complex s on the in-
tegration path. In the actual computation, however, we use the reciprocity theorem (Okubo 1993)
to convert the 9;(a, s;n,m) into &;(rs, s;n, m), viscoelastic deformations obtained for surface
boundary conditions (see Table 4 and Egs. (37)-(40)). According to the theorem, deformation at

the surface that is caused by an internal dislocation is expressed as a linear combination of the
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deformation at the source depth caused by a potential change, load, and traction applied at the sur-
face. With this mathematical relationship, there is no need to integrate the last term in Eq. (18) that
is associated with the source condition. Because of this, accuracy is preserved in the integration of
the basic equation for higher-degrees of spherical harmonics for shallow earthquakes.

Substituting the Laplace transform of Egs. (43)-(52) in Okubo (1993) into Eq. (32) of the

present thesis gives the following for the surface displacement (i = 1):

yi(a,t;n,0) = [(my + nawe) Fl (t;0) + nas F2(t;n)|UdS (34)
yi(a, t;n, +1) = [£(nan + mvs) — i(navs + nawe)]F2 (4 n)UdS (35)
yi(a, t;n, £2) = [(=nivy + navn) £ i(mve + nowy)|F2(t;n)UdS (36)

where we define

E} (t, n) = _L_G’_ 3/\(7151 8) + QM(TS? 8) _1_)(137‘633(7,37 S; n)
‘ 2mi goa [ Mrs, s) + 2u(rs, 8) 7
AT, s) Press et
: 25 "% (ry, 8;m)]—ds 37
Mrs, s) + 2u(rs, s) 2 (rs, sim)] s 37)
1 /sl,
F(t:n) = ——,E xS (r, s;n)ids (38)
27 goa . S
1 G _ est
F3(t;n) = ~Smioga 74 x5 (1, 5 n)—s—ds, 39)
and
1 G est
Fi(t;n) = — § e (o sim) S ds. 40
u(tin) 271 2goar, . vy (1, 5im) P (40)

Here, ¢y, 1, and v denote gravity at the surface, a unit vector normal to the infinitesimal fault
surface dS, and a unit dislocation vector, the norm of which is U (Fig. 11), respectively. In Fig. 11,
the axes 1 and 2 are within the horizontal surface and axis 3 denotes the vertical axis. 277 is the
solution of the homogeneous version of Eq. (15) on the surface boundary condition (Table 4) and
X FPress = 9pPress _ p(n 4 1)257¢% (Okubo 1993).

For the surface potential change (7 = 5),

ys(a, ;m,0) = [(ny + nawo) F(t;n) + ngws i (t; n)|UdS (41)

ys(a, tn, £1) = [E(ngvy + mvs) — i(novs + Tl3V2)]F$(t% n)UdS (42)



30

ys(a, t;n, £2) = [(—nivy + novs) £ i(nivae + noy )]F;’(f n)UdS (43)

where Fu’z is obtained by replacing X 7% and 2:77¢** in Eqs. (37)-(40) with X7 and zTide
(Okubo 1993), respectively.

Using the above representation, we derive the final expression for postseismic deformation
using the viscoelastic Green’s function that includes the dependency on the angular distance 6.
Substituting Eqs. (34)-(36) and (41)-(43) into Egs. (6) and (8), respectively, the vertical displace-

ment is written as
ur(a,0,0.1) = {(nyvy + nown)GL(0, 1) + navsGZ(, 1)

+[(nivz + navy) cos @ + (navs + nais) sin ¢]G3 (0,1)
UdS

+[(nan — nar) cos 2¢ + (n1vs + navy) sin 2¢}G’4(9 1)} —— p (44)

where

G, (0.1) = >~ a®F(#:n) Py (cos ) (45)
n=0

G2(0.1) = 3 a’F2(t;n)PY(cosf) (46)
n=0

Gi(0,t) = > 2a°F(t:n)P, (cos f) (47)
n=1

and

G0, 1) Z 20 F2 (t;n) P2 (cos ). (48)

Here, the factor a? is inserted to make G?, dimensionless. The same manipulation is performed
by Sun & Okubo (1993). Note that the normalization factor of the Green’s function is arbitrary
because we assume a point dislocation. The gravity potential ¥ (a, ) is obtained by replacing u

with ¢/ in Egs. (37)-(40). Finally, the gravity change at a point fixed on the free surface is given by

v(a, 0, ¢.1)
da
where 3 = 2¢y/a (Sun & Okubo 1993).

(5‘(]((1,, 9: éa f) = - (/3 - 47er)uT (0’7 83 (bt t) (49)

The physical meaning of G, » (=1, ..., 4) associated with the geometry of a point source (n;, v;)

is shown in Table 5. G}, . 1s an isotropic component (m=0) of a vertical tensile fault (Eq. (37)).
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Giw, Gi,w and G?L,w represent responses to a horizontal tensile, a vertical dip-slip on azimuth

¢ = 0°, and a vertical strike-slip on azimuth ¢ = 45°, respectively.

3.5.2  Horizontal displacements

For horizontal displacements, we combine the spheroidal and toroidal modes. Strictly following
the same procedure as in the vertical deformation, we derive the expression for the radial func-
tions g3(a. t;n,m) and §! (a, t; n,m) in Egs. (32) and (33). These functions are equivalent to the
solutions described by Eqs. (18)-(21) for 73 and (25)-(27) for ! at r=a for a complex s on the
integration path. We use the reciprocity theorem (Okubo 1993) to convert the y3(a, s;7n,m) and
7l (a, s;n,m) into 74 (r,, s;n,m) and 77 (r,, s; n, m), respectively. The boundary conditions

applied at the surface to obtain ;"¢

and 7! are listed in Table 4. Substituting the Laplace trans-
form of Eqgs. (53)-(56) and Eq. (63) in Okubo (1993) into Egs. (32) and (33) of the present thesis,

respectively, gives the following for the surface horizontal displacement:

ya(a, t;n,0) = [(mvy + nowy) F) (4;1) + ngvs F2(t:n)|UdS (50)
yz(a, t;n, £1) = [F(nsvy + nvs) — i(novy + naws)|F3 (4 n)UdS (51)
ys(a, t;n, £2) = [(=nivy + natn) Fi(nive + nowy )| FHt:n)UdS (52)
yl (a,t:n, £1) = [F(novs + navy) — i(ngvy + nqaws)]F) (t:n)UdS (53)
yi (a1 :n,£2) = [(mvn + o) £ i(nan — nowy)|FE(t;n)UdS (54)

where we define F' by replacing X "7¢** and 277¢** in Egs. (37)-(40) with X 5#¢ and pShear

(Okubo 1993), respectively, and

1 G e’ '
F[,] (t 77,) = 2—7”207 % ."(?;/1(7’3./ S n)?ds (55)
1 G plrs,s) oSt
F2(t:n z-——_f—“—ﬁ . sim)—ds. 56
(tin) smizmat . (75, 8;m) 45 ( )7

The final form of postseismic deformation using the viscoelastic Green’s function that includes
dependency on the angular distance € is derived as follows. Substituting Egs. (50)-(54) into Egs.

(6) and (8), the horizontal displacement in the direction perpendicular to the plumb line, within
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the plane of ¢ = constant, is written as

+[(nyv + ngry) 8in 2¢ 4 (N — navy) cos 229G (6, 1)

where

G, 1) =

G3(0,1)

G3(6,1)

Gy(6.1)

and

U/O(a, 9: qﬁ: f) =

Z a’F)(t
Z aQFQ

o
jg: 20°F2(t

Z 2(12F4 t

oc

= 2d°F/(t
n=1

{(mvy + nova)GY(0, 1) + ngvsGy(0, 1)
+[(n1v5 + nawy) cos ¢ + (navs + ngwm) sin |G (6, 1)
+[(n11 = nowy) cos 26 + (nivs + novy ) sin 2¢]G (6, 1)

+[—(nav3 + nzva) sin ¢ + (ngvy + nqvs) cos qﬁ]G’&] (0,1)

LdS

a’Pf,’(cos 0)
db

dP,?(cos 0)

df

dP,l (cos )
de

(]Pg (cos )
do

1{ rna
) P)(cos8)

sin f

~ PZ(cost)

= 4a’F}(t;n)
n=2

sinf

(57)

(58)

(39)

(60)

(61)

(62)

(63)

The horizontal displacement in the direction perpendicular to the vertical and perpendicular to the

plane of ¢ = constant is written as

ug(a,0,¢,t) = [—(nivs + nzvn) sin ¢ + (navs + ny1) cOS do]G:D(F), t)

+[(nyve + navy) cos2¢ —

where

GL(0,1) =

+[=(mv — nawy) sin 2¢ + (nyve + nowy) cos 2¢]G3)(9., 1)

—[(navs + nave) cos  + (ngvy + nyvy) sin ¢JGY (6, 1)

Z 2(12Fg

PT (cosf)
sin(H)

(n1vy — Maw) sin 2¢}G’2 8, 7‘)}——

(64)

(65)
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x P?(cos )
20.1) = S 462 F () 208D
G5(0.1) 7,,2::240 (t:n) cos () (66)
Gg(0.1) = 2 2a°F) (t:n) 7 (67)
and
X 1P?(cos 0
G2(6.1) = 3 242 F2 (4 m) om0 0), (68)

n=2 df
The physical meaning of G/(':)./@ associated with the geometry of a point source (n;, ;) is shown

in Table 5.

3.6 Summary

The following points summarize the entire computational process.

(1) Search the largest and smallest poles to determine the complex path for each degree » and

determine the appropriate path

(2) Calculate a complex viscoelastic deformation on the boundary condition (Table 4) that cor-

responds to the Laplace variable s on the path (Fig. 7)

(3) Carry out the numerical integration in Egs. (32) and (33) for each degree »

(4) Calculate Green’s function with spherical harmonics (Egs. (45)-(48), (58)-(63), and (65)-
(68))

(5) Obtain the final response with the Green’s function and given geometry of a dislocation

(Egs. (44), (57), and (64))
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4 COMPUTATIONAL RESULTS

In this chapter, we first confirm the validity of the numerical algorithm (Section 4.1) before de-
scribing the Green’s function obtained with the new method (Section 4.2) and considering the
physical mechanism of the time variation (Sections 4.3 and 4.4). Finally, we evaluate differences
in the result obtained from the present method with that obtained from previously published meth-

ods (Sections 4.5 and 4.6).

4.1 Confirmation of the algorithm
4.1.1 Coseismic responses

To confirm that the contributions from innumerable modes are calculated correctly, we first checked
coseismic responses. We compared the elastic deformation computed by our method with that of
Sun (1992).

We calculated the Green’s functions for the 1066A Earth model (Gilbert & Dziewonski 1975)
for four dislocation types. The vertical displacements for the source depth of 100 km at 7 = 0+ yr
coincide with the elastic solution listed in Tables E.1-E.4 in Sun (1992) (Fig. 12). We also found
good agreements for other source depths and horizontal deformations.

In addition, the coseismic changes for different viscosity models (Models 1 and 2 in Fig. 10)
were in agreement (e.g., Fig. 18 and Fig. 21, Ds=10 km), reflecting that the coseismic part of
the deformation was calculated correctly, as elastic responses depend only on elastic structures in

Maxwell rheology.

4.1.2  Viscoelastic response

Next, we examined the viscoelastic responses. Because there are no previous results in which
compressibility and a large number of layers have been considered simultaneously, we undertook
comparisons using an incompressible Earth model by setting A = oc in the Earth model (Piersanti
et al. 1995). In our calculation, we set A =100 p. Figure 13 shows the postseismic displacement

for a vertical strike-slip source with the relatively simple Earth model P2, as used in Piersanti
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et al. (1995) (Fig. 14). The source depth is 100 km. The results are in good agreement. Thus, it is

confirmed that the viscous part is also computed correctly.

4.2 Green’s function
4.2.1 Green'’s function for a globally averaged viscosity model

We computed the Green’s function for four source depths: 10 km, 32 km, 100 km, and 200 km.
The PREM (Dziewonski & Anderson 1981) was used as an Earth model for the density and the
elastic constants (Fig. 10). The model consists of approximately 2000 layers in practice. The P-
and S-wave velocities of the surface liquid layer, however, were replaced by those of the crust
below the surface layer so that the boundary condition at the surface was given appropriately by
the reciprocity theorem (Section 3.5). For a viscosity profile under the lithosphere, a convex profile
(Ricard & Wuming 1991) was interpolated with a fourth order polynomial. The same viscosity
profile was used to study the effects of stratification on the relaxation process (Vermeersen &
Sabadini 1997). The thickness of the elastic lithosphere was assumed to be 120 km (Model 1
in Fig. 10), representing a globally averaged value including the continental crust. We take this
viscous profile as a reference in the following discussion.

Figures 15-18 portray time variations of the Green’s functions for different dislocation types
(Table 5) and source depths (Ds) of 10 km, 32 km, 100 km, and 200 km, at # = 0+ yr (immediately
after an event), 1 kyr, 10 kyr, and 100 kyr, respectively. The magnitude of the deformations are
normalized by UdS = 10'"m? (equivalent to Mw ~ 8.3 when /i is 30 GPa). (a)-(e) in Figs. 15-18
indicate the vertical displacement u,, gravity change, geoid change, horizontal displacement .,
and u,, respectively. Note that the change in geoid height N = 1)/gq is shown in place of the
gravity potential.

Assembling the four Green’s functions, a postseismic deformation raised by an arbitrary point
source 1s computed. Figures 19 and 20 show the deformations for vertical tensile and dip-slip

dislocations, respectively.
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4.2.2 Use of the Green's function

As an example, we illustrate the procedure used to calculate a postseismic vertical displacement
caused by a dip-slip point dislocation with a dip angle of 45°. We compute the displacement at =0+
yr and =10 kyr when Ds = 100 km, U =1 m, dS = 30 km x 30 ki, and the observer is located at
f = 1°,¢ = 0°. First, the geometry of the source (n and v) is determined (see Fig. 11 and Table
5). Substituting these vectors into Eq. (44), the necessary Green’s functions are determined. In this
case, they are G} (0,1),G%(0,t), and G2 (8,1). Figure 20 (a) shows the assembled displacement
on ¢ = 0 at arbitrary angular distance. The dependency of these Green’s functions on angular
distance is shown in Table 5. We read the normalized displacement at # = 1° at # = 0+ yr and
10 kyr = 0.067 m and 0.53 m, respectively. The actual displacement is given by multiplying both
0.067 mand 0.053 m by 1 x 30 x 30/10 x1002. Finally, the displacements at = 0+ yrand = 10
kyr are 0.6 mm and 4.8 mm, respectively. The horizontal displacement, geoid height, and gravity
changes arc estimated in the same manner. Responses to various source depths at arbitrary times

can be computed by interpolating the Green’s function with respect to depth and time.

4.2.3  Comparison with a thin-lithosphere model

To assess the effect of the thickness of the lithosphere, we computed the Green’s function for
a viscous profile with a thinner lithosphere (Model 2 in Fig. 10). In this case, thickness of the
lithosphere was 30 km, assuming a plate boundary zone. The viscosity at depths between 30 km
and 120 km was set at 3 x 10?° Pas, the same value at the depth of 120 km in Model 1 (Fig.
10). Figures 21-23 show results for vertical strike-slip, tensile, and dip-slip (a dip angle of 45°)

dislocations, respectively.

4.3 Behavior of Green’s function

The Green’s functions show diverse spatial and temporal changes according to source depth and
dislocation type. In the following text, we summarize the characteristics of the Green’s functions.
(1) The characteristic time is several thousands of years (Figs. 15-20). This is natural because

the viscosity in the asthenosphere used here is approximately 10?' Pas on average, the same order
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of magnitude as the value derived from observations of postglacial rebound (e.g., Mitrovica &
Forte 1997). We confirm that the characteristic time diminishes by a factor of 100 when the
viscosity is replaced by a value that is two orders Qf magnitude less; this is reasonable considering
the rheology (Eqgs. (4) and (5); % o 7). The spatial change, however, does not vary, indicating that
the viscosity under the lithosphere affects the time-scale of the deformation.

(2) The deeper the source depth relative to the thickness of the lithosphere becomes, the larger
the magnitude of postseismic deformation relative to the coseismic deformation tends to become.
Furthermore, the area in which distinct postseismic deformation occurs is extended (e.g., Figs. 18
(a) and 21 (a); Ds =10 km). This is because with a deeper source the coseismic stress change in
the asthenosphere is larger, resulting in greater deformation corresponding to spherical harmonics
of lower-degrees that reflect the viscous structure of the asthenosphere. As a consequence, defor-
mation with longer wave lengths occurs and is observed in the far-field. In the near-field, strong
postseismic deformation does not occur for shallow earthquakes because the near-field deforma-
tion corresponds to spherical harmonics of higher-degrees that reflect only the elastic structure in
the lithosphere.

(3) The occurrence of marked increases or decreases in initial coseismic displacements at the
surface is dependant on source depths and angular distances. For example, the coseismic uplift
caused by the dip-slip dislocation (Fig. 20 (a)) increases in the near-field for Ds = 100 km but
decreases for Ds = 32 km, and vice versa in the far-field.

The above features (1)-(3) are consistent with the known characteristics of incompressible
models (e.g., Piersanti et al. 1995).

(4) The amount of postseismic displacement relative to coseismic displacement is proportional
to the postseismic gravity change relative to coseismic gravity change (Figs. 15a, b-18a, b); how-
ever, the rate of change in the height of the postseimic geoid relative to the coseismic geoid is
several times greater than the rate of change for the displacement and gravity change (Figs. 15¢c-
18c). This tendency is more pronounced for deeper earthquakes (Figs. 15¢-18c). For example,
the postseismic geoid height change for Ds = 100 km approaches that of the coseismic geoid for

Ds = 10 km after a certain time (Fig. 18c, Ds = 10 km and 100 km). This discrepancy between
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rates indicates a large-scale mass transport beneath the lithosphere that cannot be inferred from
displacements and gravity changes at the surface.

The above observations give rise to three important aspects of postseismic deformation . First,
the thickness of the lithosphere and the source depth relative to lithosphere thickness are prime
factors that affect the diverse patterns of postseismic deformation. Second, postseismic deforma-
tion associated with deeper earthquakes can approach the deformation associated with shallow
earthquakes (here, deep means that the source depth is sufficient for the coseismic change to cause
significant deformation within the asthenosphere). This is more pronounced in terms of potential
change. Finally, in the far-field, the rate of postseismic deformation relative to coseismic deforma-

tion tends to be large, even if the coseismic deformation is much smaller than that in the near-field.

4.4 Mechanisms that govern various patterns of postseismic deformation

The diverse patterns of postseismic deformation resulting from varying source depth and epicentral
distance are reasonably explained by stress relaxation within the asthenosphere. We can confirm
this without the need to directly compute the internal stress field (the new method proposed in
this thesis is currently able to compute only surface deformation. Internal deformation can be
computed with minor modifications). Postseismic deformation at 10° yrs after the event almost
converges (note the interval of displacement at each time step in Figs. 15-20). This limit is in
agreement with the elastic deformation for an Earth model in which p is replaced by a very small
value (m,]W ). This means that after a sufficient time, the asthenosphere will behave as a liquid
and that stress within the asthenosphere will reduce to zero. Therefore, postseismic deformation
for vertical dip-slip and strike-slip dislocations in the asthenosphere are shown to approach zero
because shear dislocations do not occur within liquid (Figs. 17 and 18, Ds=200 km). The fact that
these dislocations in the asthenosphere do not contribute to surface deformation is also noted by
Sato & Matsu’ura (1988). In the vertical and horizontal tensile cases, however, the large isotropic
component (m = 0) does not vanish at the limit of liquid (Figs. 15 and 16, Ds=200 km).

We can also explain the deformation pattern intuitively from the result in Section 4.3 (2). As

an example, we consider horizontal displacement u, for a vertical strike-slip dislocation (Fig. 21
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(d), Ds=20 km and 30 km). We can infer from the time variation of u, at the surface for Ds=30
km that a viscoelastic flow occurs immediately beneath the lithosphere to the left in the near-field
and to the right in the far-field. In contrast, when the source is shallow (Ds=20 km), only the right-
hand flow is observed in the near and far-fields. This indicates that the near-field deformation that
occurs for Ds=30 km disappears in the case of Ds=20 km. As the source depth becomes shallow,
the deformation corresponding to the spherical harmonics of higher-degrees raises only elastic
deformation (Section 4.3 (2)); consequently, no left-hand flow occurs in the asthenosphere. As a
result, only the right-hand flow, corresponding to the lower-degree, is observed at the surface.
The same explanation holds for the dip-slip fault (Fig. 23 (d)). The right-hand flow seen for
Ds=30 km 1n the near-field gradually decreases for shallow earthquakes (Ds=20 km and 10 km).

4.5 Effect of fine layering

We have demonstrated that the new method enables us to precisely and readily compute the total
strength of innumerable modes (Sections 4.1 and 4.2). In contrast, when using the normal mode
method it is possible but laborious to determine a large number of modes associated with a finely-
layered model. Therefore, it is important for users of the normal mode method to know whether
the Earth’s viscoelastic structure can be well approximated with a smaller number of layers. To
test the approximation, Vermeersen & Sabadini (1997) assessed the effect of increased number of
layers on relaxation processes for surface load and tidal forcing with incompressible Earth mod-
els. They showed that models with approximately 50 to 60 layers reached continuum limits at
all time-scales and for all harmonic degrees up to 150. The authors also showed that fine-graded
stratification of shallow layers is important for higher-degree deformation. The effects of strati-
fication on postseismic deformation have been studied by Sabadini & Vermeersen (1997) using
4-layer and 10-layer models. The authors found that elastic stratification within the lithosphere
has a major influence on estimating postseismic deformation associated with large earthquakes. In
this section, we perform a similar analysis to that of Vermeersen & Sabadini (1997) to confirm that
their saturation findings occur in postseismic deformation using compressible models. In addition,

we discuss the detectability of the effects of fine layering.
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We computed postseismic deformation associated with a vertical strike-slip fault and a dip-slip
fault with a dip angle of 20° for four Earth models of differing numbers of layers (Figs. 10 (Model
1), 24, 25, and 26.). Figures 27 and 28 show time series data for an epicentral distances of 100
km and 200 km in the direction where the maximum change is expected, i.c., ¢ = 45° for the
strike-slip and ¢ = 0 for the dip-slip fault. The moment is the same as that used to compute the
Green’s function; however, we rescale the time variation assuming that the viscosity is just 1%
of the values shown in the figures for the four Earth models (10'~ "9 Pas immediately below the
lithosphere). The purpose of this rescaling is to make the predicted postseismic deformation rates
more realistic. The validity of the viscosity value is shown in Section 5.1.3.

The result clearly shows that the effect of fine layering is saturated at 60 layers throughout
all time-scales, as noted by Vermcersen & Sabadini (1997) (Figs. (27) and (28)). This means
that a continuously-layered viscoelastic structure below the lithosphere can also be replaced by a
discrete structure with approximately several tens of layers in the case of compressible models.
Time variation for the 11-layer model of Wang (1999) still shows a remarkable difference from
the finely-layered model, especially for deeper earthquake (Figs. (27) and (28), Ds=100 km).

Next, we examine whether differences in deformation rates for the four Earth models over
the first 30 yrs after the event are detectable using current observational techniques such as GPS.
Figures 29 and 30 show the averaged rates over each period. For shallow earthquakes (Ds=32
km), the difference between the trends for the 60-layer model and that for the 11-layer one is
approximately 1 cm/yr over the first 10 yrs in both the horizontal and vertical components for the
two dislocation types. Surprisingly, the difference in velocities for deep earthquake (Ds=100 km)
also reaches 1 cm/year (Figs. (29b) and (30)). This result indicates that we should use Earth models
with several tens of layers to calculate postseismic deformation caused by events of magnitude ~
8, considering the accuracy of GPS, VLBI etc. The differences of the four models over the first 10

yrs, however, are too small to detect (~ 1 mm/year).
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4.6 Effect of compressibility

Having confirmed the necessity of a finely-layered Earth model or an Earth model with several
tens of layers, we next explore the effects of compressibility. The evaluation is carried out in the
same manner as that described in the previous section.

Figures 31 and 32 show time series data of postseismic deformation for strike-slip and the
dip-slip mechanisms, respectively. The Earth model is the finely-layered model (Fig. 10 (Model
1)). Incompressible deformations are computed using the method described in Section 4.1.2. Com-
parison of the time series indicates that the effects of compressibility for shallow earthquakes is
mostly elastic (i.e., only initial offset occurs), except for change in the geoid height. For deep
events, however, significant differences are observed at time-scales ranging from 1 yr to 1,000 yrs.
These differences are more pronounced in terms of vertical motion (Figs. (31) and (32)). In addi-
tion, a difference more than 50% is seen in terms of permanent deformation (= fluid limit minus
elastic limit) (Figs. (31) and (32), ¢+ = 10® and 10 yrs). This illustrates the importance of con-
sidering compressibility when calculating long-term deformation such as landform development,
gravity anomalies, and geoid height.

Next, we estimate deformation rates to assess if they are detectable (Figs. (33) and (34)).
Differences between compressible and incompressible models vary from several mm/yr to 1 cm/yr
over the first 10 yrs for both dislocation types and source depths. These differences are sufficiently
large to be observable using modern observation techniques. In addition, we note that the effect
of compressibility retains a detectable rate difference (several mm/year) for up to 25 yrs after the
event (Fig. (33) and (34b), Ds=32 km). This mid-term effect of compressibility is more pronounced
in terms of vertical motion. Our results indicate that neglecting compressibility affects evaluations
of sea level change from tide gauge records (Melini et al. 2004). The rate difference for times in

excess of 25 yrs after the earthquake is too small to be detected.

4.7 Summary

The following points summarize the main findings of this chapter.
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(1) The Green’s function was obtained for the first time using an Earth model that simultane-
ously considers continuously varying viscoelastic structure and compressibility.

(2) The mechanism of the diverse pattern of postseismic deformation is explained by stress
relaxation in the asthenosphere.

(3) The effect of fine layering is saturated at several tens of layers, as indicated by Vermeersen
& Sabadini (1997); however, the difference between the 60-layer model and Wang’s (1999) 11-
layer model is detectable for the event (M=8.3).

(4) The effect of compressibility on postseismic deformation rate in the first few decades after
the event exceeds a few mm/yr in both horizontal and vertical components, which is observable.
Furthermore, the effect of compressability on permanent deformation for 1,000 yrs after the event
reaches 10-20% for shallower earthquakes and more than 50% for deeper ones.

The above results (3) and (4) strongly indicate the need to consider a finely-layered viscoelastic
structure and compressibility when estimating global postseismic deformation, except for those

cases where accuracy is not required.
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5 APPLICATION OF THE NEW METHOD

- We have demonstrated that the effects neglected in existing methods are detectable (Sections 4.5
and 4.6). In this chapter, as an actual application of our new method, we use the obtained Green’s
function (Section 5.1) to estimate the postseismic deformation associated with the 2003 Tokachi-
Oki Earthquake (Mw = 8.0). As an example of truly global-scale deformation, we also compute the
variation of Earth’s flattening due to the Sumatra-Andaman Islands Earthquake of 26 December

2004 (Section 5.2).

5.1 The 2003 Tokachi-Oki Earthquake
5.1.1 Purpose of this case study

The goals of this section are (1) to apply the new method to observed data to verify the validity of
the method, and (2) to evaluate the contribution of viscoelasticity to postseismic deformation. The
2003 Tokachi-Oki Earthquake is suitable for this purpose because there is a large amount of GPS
data on the event and previous studies have explain these data in terms of afterslip (Miyazaki et al.
2004; Ozawa et al. 2004); here we present a countereview to the findings of these earlier studies.
To achieve the above goals, we employ a simple point-dislocation model to calculate the vis-
coelastic deformation. In other words, we make a forward calculation with a given fault parameter
and a viscoelastic structure. We do not determine the best-fit viscosity profile and falut parameter
to fully explain the observation by inversion, as this is beyond the scope of this study. We focus on
far-ficld deformation and use point sources so that we can ignore the complex shape of the fault
plane. Despite the simplicity of the model, we produce an excellent agreement between the theory

and observation (Section 5.1.5).

5.1.2 Observation data

The 2003 Tokachi-Oki Earthquake occurred on 26 September 2003 southeast of Hokkaido, Japan,
where the Pacific Plate is subducting beneath the Eurasian Plate (Fig. 3). The magnitude of the
carthquake was 8.0 according to the Japan Meteorological Agency, and had a dip-slip mechanism.

Here we use the daily coordinate data of GEONET, the Japan-wide GPS observation network
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operated by the Geographical Survey Institute (GSI) since 1994. There are approximately 200
GEONET stations on Hokkaido Island. The average distance between stations i1s 25 km. Daily
coordinates, based on the International Terrestrial Reference Frame (ITRF2000) (Altamimi et al.
2002), are routinely calculated and published be the GSI (Hatanaka et al. 2003). Using these daily
data, Ozawa et al. (2004), for example, inferred the slip distribution along the plate boundary for
coseismic and postseismic deformation related to the Tokachi-Oki event.

Figure 35 shows horizontal coseismic displacement detected at selected continuous observa-
tion stations in the far-field. We chose those stations with the longest observation period. The
coseismic displacement vectors relative to the fixed site O, where no significant deformation was
recorded, are obtained by subtracting the average daily coordinates for two weeks before the event
from those after the event. Figure 35 also displays the rectangular fault determined by the GSI
from a displacement inversion based on Okada (1985); this provides the realistic size of the fault.

Figures 36 (a) and (b) show the time series of displacements before and after the earthquake.
We removed the secular trend and annual and semi-annual variations from the time serics by using
the data for the 7 yrs preceding the earthquake (May 1996 to May 2003) and the conventional least
squares method with linear and sinusoidal functions.

From the above figures, we can summarize the observational results as follows.

(1) The coseismic change amounts to several cm to ten cm in horizontal displacement for an
epicentral distance of 100-200 km (Fig. 35).

(2) Postseismic deformation in the region is approximately 2-3 cm/yr (Fig. 36).

(3) The postseismic trend consists roughly of two characteristic times. The rapid change during
the period several tens of days after the event seems to have already converged. The trend after
that, however, has not yet returned to zero, at least not as of September, 2005 (Fig. 36).

(4) In terms of vertical displacements, seasonal variations obscure even coseismic change,

except at station H.
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5.1.3 Viscoelastic structure of the lithosphere and the asthenosphere

For elastic structure, we employ the PREM as in previous sections. For viscous structure, we
adopt a lithosphere of 30 km thickness (Model 2 in Fig. 10), as the event occurred in a subduction
zone (Fig. (37), upper figure). We also replace the viscosity beneath the lithosphere with a value
that is just 1% of the original value. It follows that the value of the viscosity just beneath the
lithosphere is 3 x 10'® Pas. This value is reasonable for subduction zones like the Japan island
arc because it is usual in computations of postseismic deformation to assume low-viscosity layers
in the lower crust or upper asthenosphere. For example, Ueda et al. (2003) explained postseismic
deformation related to the 1993 Hokkaido Nanseioki Earthquake, northern Japan, assuming a 40-
km-thick low-viscosity layer under the lithosphere with a value of 4 x 10'® Pas. Ueda et al. (2003)
demonstrated that the low-viscosity layer corresponded to the high- temperature zone of the mantle
in the region. Matsu’ura et al. (1998) explained interseismic leveling data along the Nankai Trough,
Japan, assuming lithosphere with a thickness of 30 km and the viscosity value of 5 x 10'® Pas in
the asthenosphere. Melini et al. (2004) estimated the contribution from past large earthquakes to
long-term sea level variation assuming a 200 km low-viscosity asthenosphere with a viscosity of

10" Pas.

5.1.4  The fault model

Figures 35 (bottom figure) and 37 (upper figure) illustrate the fault model used for the forward
calculation. We construct a ‘two point-source’ model. The reason that we do not employ sin-
gle point dislocation is that we cannot explain the postseismic trend very well. The proposed
model is justified as follows. This model is based on a coseismic slip distribution determined
from seismic data (Fig. 37, lower figure) (Yamanaka, 2003, available at http://www.eic.eri.u-
tokyo.ac jp/EIC/EIC News/030926.html, Earthquake Research Institute). We note that the direc-
tion of slip is subvertical near the surface but eastward at depth. Therefore, we assume two point
sources (S1 and S2) with different slip directions (Fig. 37, upper-right figure). The depths of the
two sources are 20 km and 30 km, allowing us to employ the Green’s function used to draw Figs.

21-23. Source parameters are listed in Table 6; the strike and dip angles of S1 and S2, rake angle
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of S2, and sum of the moment magnitude of the two sources are the same as in Yamanaka’s (2003)
model. The horizontal positions of S1 and S2 are determined geometrically from the source depth

and dip angle.

5.1.5 Results and consideration of the mechanism of postseismic deformation

The calculated coseismic and postseismic deformations are superimposed in Figs. 35 and 36 using
red vectors and lines, respectively (see Appendix C for a computation at an arbitrary latitude and
longitude). On the basis of these figures, we discuss the contribution of viscoelastic mechanisms
to the postseismic deformation.

First, we note an excellent agreement between the theory and observations in the coseismic
horizontal displacement (Fig. 35). This indicates that the fault parameter and the elastic model
used for the forward calculation are reasonable, at least in terms of coseismic deformation.

Next, we compare the time series of observed postseismic deformation with trends predicted by
the above model (Fig. 36). Note that we give only the initial coseismic moment. Nevertheless, the
predicted trend fits remarkably well with the observed rate, except for the north-south component
at Site A and the cast-west component at Site F (Fig. 36). This agreement strongly suggests that
the viscoelastic mechanism has already begun to work on the postseismic deformation with a
detectable signal level, provided the value of the viscosity is true. There is therefore scope to re-
examine results that explain the postseismic deformation during the period purely by afterslip,
such as Ozawa et al. (2004). The short-term deformation for several tens of days after the event,
however, cannot be explained by viscoelastic relaxation because such an explanation requires an
unreasonably low viscosity (~ 10'7 Pas). Therefore, our result does not rule out the possibility
of short-term afterslip, as shown by Miyazaki et al. (2004). If the viscosity value is higher than
10" Pas, on the other hand, it is difficult for viscoelastic mechanisms to account for the trend,
as the displacement rate becomes too small to be observed. In this case, postseismic deformation
is purely explained by after-slip (Ozawa et al. 2004) or other mechanisms. It follows that we
must wait until longer-term data accumulate before evaluating the contribution of viscoelastic

mechanisms.
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The vertical deformation predicted by the theory is only a few mm in scale, which is smaller
than the observation noise (Fig. 36). To distinguish viscoelastic deformation from after-slip, how-
ever, vertical motion is important. Figure 38 shows the pattern difference of the coseismic and
postseismic vertical displacements according to epicentral distance. At all stations, the coseismic
change is uplift. Postseismic change, in contrast, changes to subsidence with increasing epicentral
distance (A, B, C, and F in Fig. 38). In the case of after-slip, however, the direction of postseismic
vertical deformation at all stations is expected to be uplift because the afterslip area is viewed the
same as the coseismic slip area from far-field stations (~ +100 km around the epicenter (Ozawa
et al. 2004)). We can therefore determine the dominant mechanism of postseismic deformation
by carefully studying the far-field vertical displacement rate. As the signal-to-noise ratio in the
vertical motion is small, an observation period of at least several years is necessary. In addition,
techniques to correct the secular trend due to plate subduction and seasonal effects are important
in extracting the postseismic trend.
Thus, we have confirmed the validity of our method and demonstrated the necessity of recon-

sidering the mechanism of postseismic deformation.

5.2 The Sumatra-Andaman Islands Earthquake of 26 December 2004
5.2.1 Jy representing the Earth’s flatness and earthquakes

Chao & Gross (1987) was the first to compute changes in Earth flatness caused by earthquakes.
Figure 39 presents their model of how an earthquake changes the Earth flatness. In this model,
large earthquakes tend to make the shape of Earth more spherical because they accelerate plate
subduction at mid to low latitudes, thus pulling cool and heavy masses downward.

The theory of such a model is explained in the following text. The flattening of Earth, f, is
defined as the flatness of the mean ellipsoidal surface that best approximates the equipotential
surface of Earth’s gravity field (e.g., Seeber 2003). f is represented by the degree-two and order-
zero coefficient of the potential field expanded with spherical harmonics, J,, and a term that is

dependant on the rotational velocity of the Earth, m:
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3 ,
f= §JQ + 7_277_ + O(J3, Jym, m?) e

(e.g., Seeber 2003). The higher-order terms are approximately 1/1,000 that of the first term in
magnitude. Since we may consider m as a constant, it follows that only changes of .J, account
for the variation in flatness. Furthermore, from the orthogonality of the spherical harmonics, the
degree-two and order-zero components of the potential variation caused by an earthquake con-

tribute to the change in .J;. Therefore, from Eq. (41), we have

GM
+(ngvs) Fy(t;n = 2)] x UdS. (70)

via, t;n=2,m=0)=— [(niny + nowe) Fj(tn = 2)

a
0.2 T GM

Thus, we obtain the relationship between variations of flatness and potential changes caused by

earthquakes.

5.2.2  Observations of J,

The average rate of .J, currently observed using space geodetic techniques is —2.8 x 10~ !"/year
(Cox & Chao 2002), which can largely be explained by postglacial rebound (Han & Wahr 1995).
The amplitude of the seasonal fluctuation of ./, amounts to 3.2 x 107'%, mostly driven by mass
redistribution in the atmosphere, oceans, and continental water (Nerem et al. 2000). Earthquake-
induced changes in Js, in contrast, are considered to be difficult to detect. According to Chao &
Gross (1987), contributions from events of magnitude ~ 8 are estimated to be in the order of
10713, equal to approximately 1% of the observed secular trend. Even the change caused by the
Sumatra-Andaman Islands Earthquake (Mw = 9.3) (Stein & Okal 2005) is —9 x 10~'2, which
is barely detectable given the current observational precision of SLR (~ 10~'") (Chao & Gross
2005). Therfore, a postseismic change of .J; related to the Sumatra-Andaman Islands event has yet
to be reported, because it is considered to be too small a change to detect. In the next section, we

compute this postseismic deformation from a theoretical interest.
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5.2.3 Model and result

For this calculation we employ the Earth model shown in Model 1, Fig. 10, considering a globally
averaged viscoelastic structure. As a fault parameter, we use the result of Yamanaka (http://www.eri.u-
tokyo.ac.jp/sanchu/Seismo _Note/2004/EIC161e.html; Earthquake Research Institute, 2004); the
source depth, dip, and rake angles are 32 km, 8° and 90°, respectively. Substitutingn = (—sin d. 0, cos §),
v = (co0sd,0,sind), where § = 8 and UdS = 3 x 10"?m? (Mw=9.3 for 1 = 30 GPa), and the
y-functions at each time, which were used to calculate the Green’s function in Figs. 15 (¢) and 16
(¢), into Eq. (70), we obtain the time variation of §./5.

Fig. 40 shows the computed time variation of §.Jo. The coseismic mass redistribution acts to
make the Earth round, as expected; we obtained the same value of coseismic mass redistribution
as that of Chao & Gross (2005). This coseismic offset remains unchanged for up to 1,000 yrs after
the event. From 1,000 to 10,000 yrs, however, the Earth begins to recover its original shape. After
10* yrs, it starts to become more spherical again.

Variation obtained via the incompressible model using the method described in Section 4.1.2 is
superimposed on the compressible trend in Fig. 40. Difference in the two trends up to the first 1,000
yrs are too small to be detected. The maximum difference, however, amounts to approximately
30% at t=10,000 yrs.

In conclusion, postseismic variation in Earth flatness associated with the Sumatra-Andaman
Islands Earthquake event is not detectable using current observational techniques, even if we con-

sider compressibility.
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6 CONCLUSIONS

This study presents the first calculations of viscoelastic deformation caused by earthquakes in a
spherically symmetric self-gravitating Earth model without the need for unjustified assumptions.
The new computational scheme employs the numerical inverse Laplace integration and reciprocity
theorem, which enables compressibility and the continuous radial structure of the Earth to be
considered simultaneously. This is in marked contrast to previous methods that required such
assumptions to avoid computational difficulties.

Using the new method, a complete set of Green’s functions for an arbitrary point disloca-
tion was computed using the PREM and a convex viscosity profile. The behavior of the obtained
Green’s functions is physically reasonable, indicating the validity of the numerical algorithm. We
also revealed the effects of a fine-graded viscoelastic structure and compressibility on the postseis-
mic deformation rate in the far-field for strike-slip and dip-slip sources. The effect of fine layering
was saturated at approximately several tens of layers, as indicated by Vermeersen & Sabadini
(1997). The difference between Wang’s (1999) 11-layer model and the finely-layered model with
60 layers, however, is detectable with current observational techniques such as GPS. The effect of
compressibility amounts to 10-20% of the horizontal displacement velocity in the first few decades
after the event and 50-60% on the vertical scale on average. These rate differences are also observ-
able. The above results strongly indicate the need to consider effects that have been previously
neglected if the theory is to achieve observational-type accuracy.

The fact that these effects are not negligible suggests that we should re-examine the role of
viscoelastic relaxation as a mechanism of postseismic deformation. As an example, we estimated
the coseismic and postseismic deformation associated with the 2003 Tokachi-Oki Earthquake
(Mw=8.0). The predicted deformation rate is in good agreement with that observed by GPS. This
result contradicts previous studies that explained the postseismic deformation for approximately 2
yrs after the event purely in terms of afterslip; however, the short-term afterslip for the month fol-
lowing the earthquake, as shown by Miyazaki et al. (2004), cannot be explained by the viscoelastic
model.

Finally, we computed the postseismic change of the Earth’s flatness due to the Sumatra-
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Andaman Islands Earthquake (Mw=9.3) as an example of truly global-scale deformation. Al-
though the variation is not detectable with present observational techniques, we confirmed that the
effect of compressibility produces a 30% difference in deformation over geological time-scales
such as several tens of thousands of years.

The new method can be applied to a wide range of applications, such as modeling interseismic
deformation within plate boundary zones (Savage 1983; Sato & Matsu’ura 1988) and correcting
uplift/subsidence at tide gauge stations for detecting sea level change (Melini et al. 2004). In such
applications, we may have to examine the effects of lateral variations in viscosity, topography, and
crustal thickness etc. (Suito & Hirahara 1999). To accommodate the effects of lateral variations,
a direct numerical approach may be the only versatile method available, as recently used in the
computation of postglacial rebound. Even considering this, our semi-analytical method provides a
benchmark for a spherically symmetric, compressible Earth model with an arbitrary viscoelastic

structure.
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APPENDIX A: NUMERICAL SOLUTION OF THE DIFFERENTIAL EQUATION
Al Spheroidal mode

We explain how to obtain the numerical solution of Eq. (15) when the equation does not include

exciting terms:

dii N
d—‘:{(r, sim,m) = A(r, s;n)g(r, s;n, m). (AD

(Al) is specifically written as

43 S ~
— = — =29 —n{n+1 . A2
I )\+2u(?/2 7’[ g1 —n(n -+ 1)73]), (A2)
dys 2 - 2 dyy
99 _ _ 24
I sSpi + (A = 1)
1,2(A—p . N
OB g — it 1)
nn+1)_ N n+1._ 2q _
*“(7—“)?/4 ~ oo = 75 + —ih): (A3)
djs 1. 1, |
o M?J4 + T(?Js W), (A4)
dj NG A+ 2 )
7; = —5pjs — ;% - —72—“[2y| —n(n+ 1)y
2u, 3. p. .
—_ —_ —_ = - p— 7 . 5
T (51 = 0s) U r(y5 99), (AS)
dys . N n+1._
=B = o + 4nGpj — 1, (A6)
dge n—1 dnGp

= (U6 + 4G pin) + 297 — n(n + 1)73]

dr r

(A7)
where A = A(s) and = pu(s) (Egs. (4) and (5)), and ¢ = |g(r)| denotes the magnitude of the
gravity (Takeuchi & Saito 1972). We integrate the sixth-order ordinary differential equation up-
ward from the initial value at r—(0. We obtain the initial value by regarding the innermost core
(r < ¢) as homogenecous (Takeuchi & Saito 1972) using the analytic solution for a uniform, com-
pressible and self-gravitating sphere (Love 1911; Pekeris & Jarosch 1958). The three independent
solutions that are regular at » = ( are reported to be as shown below.

Two of the independent solutions {y;1, Y0, i=1, ..., 6} are

™ (T) = nh?n('r) — fZTJni (T) (A8)
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rfya(r) = —(A + 2u) f2* jn(x) +

2 = 1)hju() + [2f + n(n + D]ajne (). . (A9)

rys(r) = hjn(2) + 2jnia (1), (A10)

rPy(r) = pla’a(z) +

2(n = 1hjala) — 20 + 1)ajns ()], (Al1)
Ys(r) = 3vfjn(x), (A12)
rye(r) = (2n 4+ 1)ys(r) — 3nvhj,(z) (A13)

where 7, is the spherical Bessel function of the first kind and x stands for kr, & and [ are the

compressional and shear velocities, respectively, and

1 w44y w? w? w4y
k2= Yo - 2
dn(n + 1)~?
BT (A1)
v=4rGp/3, (A195)
52 ) wQ
=2 -, h=f—(m+1). (A16)
g B
The third solution {y;3, i=1, ..., 6} is given by
() = mn, (A17)
r’ya(r) = 2pn(n—1)r", (A18)
rys(r) = " (A19)
r2ya(r) = 2pu(n - 1)r", (A20)
ys(r) = (ny—w?)r" (A21)
rye(r) = (2n+1)ys(r) — 3nyr™. (A22)

The values of these three solutions ((A8)-(A22)) at r = ¢ are used as the initial value for

integrating Eq. (A1). Thus, we obtain three numerically independent solutions for (A1) (See Eq.

(16)).
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A2 Toroidal mode

Eq. (22) without exciting terms is solved as follows:

(@T % =T
W(T’ sin,m) = B(r,s;n)g' (r,s;n,m). (A23)

(A23) is specifically written as

dgT 1. 1.

WL g g, (A24)
dr 7 I

djl (n—1)(n+2)u

=

3
7 + 80— 0 (A25)

dr
(Takeuchi & Saito 1972). This time, we integrate the second-order ordinary differential equation
upward from the initial value at the core-mantle boundary (r = b) because the troidal mode is not

excited in the liquid core:

?)T(bz Syn, m) = 17
g (b, s3m,m) = 0. (A26)

Note that no other independent initial value than (A26) exists for obtaining the non-trivial solution.

Thus, we obtain the numerical solution for Eq. (A23) (See Eq. (23)).

APPENDIX B: PROOF THAT SIS A REAL NUMBER

Through the following two steps, we prove that the solution of the characteristic function is a real
number.

First, we show that if y;(sy,) is the eigenfunction for an eigenvalue s = si, then s = s} is also
an eigenvalue and the corresponding eigenfunction is y,(s;) = v (sx). The asterisk indicates the

complex conjugate. The eigenfunction v;(s;) satisfies the homogeneous terms of Eq. (15):

d

E;l/v:(s = si) = Aij(A(sx),s u(5x))y5(sk) (B1)

where tildes are omitted. We confirm that
A(sz) = A (sk) (B2)

p(s3) = 1" (sk). (B3)
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Therefore, taking the complex conjugate of Eq. (B1),

d , ‘
(s = 52) = Ay (3 (s, (5w (s0) (B4)

= Ay (A3 w5 (50 (B)
This means that y;(s,) satisfies the ordinary differential equation for s = s}. Furthermore, y; (s)

satisfies the boundary condition at the surface (Eq. (17));

ys(a, sx) = [ya(a, s)]" = 0 (B6)
yi(a, sk) = ygla, sg) = 0. (B7)

Thus, it is proved that y/;(s;) is an cigenfunction.

Second, using the above result, we prove that the complex part of u(s = s;) = 0. We first

modify the Lagrangian (Takeuchi & Saito 1972) using Eq. (B1):

d
Ly = —(r?[zys + n(n 4+ Dasys + (4rG)  asy6))

dr
= K(s)[ran + (221 — n(n + Das)][rin + (2 —n(n + 1)ys)]
+N(;k) {[2rd, — (22, = n(n + Da)][2r) — (291 — n(n + 1)ys)]
+n(n+1) 1* (raa)(rya) + n(n® = 1)(n + 2)p(si) T3y
ﬂ(*k)

R (B8)

where the tildes above x; and y; are omitted, and » denotes real terms. When the set of 2, i=1, ...,

6ory,;,i=1,..,6is equivalent to the eigenfunction,

[
/ Ladr = 0. (B9)
Jo

Here, K (s does not depend on s.
Next, we substitute the two sets of eigenfunctions into z,; and ;.
(1) y; (sx) as 7; and yi(sk) as y;

In this case, after some algebra, we obtain
Ly = Klrgn(se) + 21 (sk) — n(n + ys(si)

+u(sk){%|2ry1 (sk) — (2y1(sk) — n(n + D)ya(sp))|”

n(n+1)

m!m(skw +n(n? = 1)(n+ 2)|ys(se)]?}

-+
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+R (B10)
where R’ denotes the real term.
(2) yi(sx) as x; and y; (sx) as y;
In this case, because the eigenvalue is s;, A = A(s}) and p = p(s;), we obtain
Ly = Klrji(sp) + 2yi(s3) — n(n + Dys(sp)[”

Pl 51200 (55) — @ur(st) — nln + Dy ()P
n(n+1)

s Ty (SO + n(n® = 1)(n+ 2)lys(s7)1%}
|u(si)l

+R. (B11)
Subtracting Eq. (B10) from Eq. (B11) and using the result of the first proof, we obtain
0—0=[m(u(sx)) — Im(u(sp))] x P (B12)
where P is a positive real number. Thus, we obtain
Im(u(sg)) = 0. (B13)

Finally, using Eq. (5), Im(s;) = 0 is shown.

APPENDIX C: POSTSEISMIC DEFORMATIONS AT AN ARBITRARY POINT

We illustrate how to calculate the deformation at an arbitrary point using Fig. 41. The location of
the source and the observation point are indicated as S with the latitude ¢, and the azimuth ¢, and
O with #, and ¢, respectively. N denotes the north pole. We need the angular distance from the
epicenter ¥ and the azimuth angle vy from the strike © for using the Green’s function. The angular

distance W is calculable by the spherical trigonometric formula for the NOS:
cos(U) = cos(g —6) cos(g —0,) + sin(g — 91)sin(g — 63) cos(pa — ¢). (Cl)

a is computed with the formula as

_ sin(¢gy — ¢y) . 7

sin(a) Sin(0) 8111(5 —6,). (C2)
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Substituting v = © — « into ¢ in Eq. (44), (57) or (64), and referring to the angular distance W
as 0 in the Green’s function, we compute the deformation at point O. For more general cases, see

(Sun & Okubo 1993; Sun et al. 1996).
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Table 1. Representative methods for postseismic calculation

Author(s) Basic algorithm Compressibility  Radial structure
Pollitz (1997) NMM Y 3
Piersanti et al. (1995) NMM N 4-5
Sabadini & Vermeersen (1997) NMM N 10
Wang (1999) NMM & RPT Y 11
Present study RPT & NIL Y No limit

NMM: Normal mode method (Peltier 1974) RPT: Reciprocity theorem (Okubo 1993)

NIL: Numerical inverse Laplace integration

65
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Table 2. Classifying theories on global deformation

Boundary conditions

surface stress/potential change

Constitutive laws

elastic

tidal deformation

deformation due to atmospheric
pressure / ocean tide loading

free oscillation

coseismic deformation

postglacial rebound

polar wander

postseismic deformation

(This study)




Table 3. Viscoelastic normal mode
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Label Cause Boundary
MO density contrast the surface (the earth and the space)
M1 670 km discontinuity (upper / lower mantle)
M2 400 km discontinuity (shallow upper mantle / mantle transition zone)
Mi other discontinuity of density
Co core-mantle boundary
Cl inner-core boundry
Ti Maxwell time’s contrast ~ discontinuity of the ratio of rigidity and viscosity
(two modes for each boundary)
LO viscosity contrast elastic lithosphere and viscoelastic asthenosphere
Di compressibility innumerably degenerating eigenvalues into inverse Maxwell time

for each layer are unlocked

Based on Wu & Peltier (1982); Vermeersen & Sabadini (1996)

Table

4. Boundary conditions for

xPress.‘ xTzde’ .,II.Sh.ear and .TT

Superscript  x9(a,8;n)  x4(a,sn)  x6(a, s;n)

Press
Tide
Shear

T

_ (2n41)g0
47 Ga 0 0
2n41
0 0 -
(2n+1)go
0 drGan(n+1) 0

(2n+1)go
drGan(n+1)
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Table 5. Relationship between Green’s functions and geometry of point sources

Uy OF U (ny1,n9,n3) (1, 19,v3)  Dislocation type
Uy (figure #)

Uo

G:l,.,’l‘f’(97 t) (1,0,0) (1,0,0) isotropic component
G)(0,1) of vertical tensile
0 (15a,b,cd)
G, (0.1) (0,0,1) (0,0,1) horizontal tensile
G%(0.1) (16a, b, c, d)

0

G5 ,(0,1) cos(¢) (1,0,0) (0,0,1) vertical dip-slip
(G3(0,1) + G5 (6,1)) cos() (17a,b, ¢, d, e)
—(GL(0,t) + GQ (0,1)) sin(o)

G;‘W(FL t) sin(2¢) (1,0,0) (0,1,0) vertical strike-slip

(G(0,1) + G (8.1)) sin(2¢)
(GZ(0,1) + G2(0,1)) cos(20)

(18a, b, ¢, d, e)

G},.x,/)(a, t) + Gi}w(e, t) cos(2¢)

Gp(0.1) + (GH(0,1) + G(0,1)) cos(26)
—(G3(0,1) + G2(6,1)) sin(2¢)

(1,0,0) (1,0,0)

vertical tensile

(19a,b, ¢, d, e)

—3Gp(0.1) + 5GL ,(0.1) — 3G, (60,1) cos(20)

—5GH0. 1) + 1G3(0,1) — T(GH(B,1) + GE(6.1)) cos(26)
HG2(0,1) + G2(6,1)) sin(26)

(_

S

dip-slip with 45°
(20a, b, ¢, d, e)
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Table 6. The source parameter

source longitude (deg) latitude (deg) dpeth (km) UdS (n’) strike (deg) dip(deg) rake(deg)
S1 144.15 41.85 20 2.1 x10'0 230 20 90
S2 143.9 42.1 30 2.1 x10'° 230 20 110
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Figure 1. The coseismic and postseismic deformation observed with GPS in the far-field. The red box in
the upper figure shows the fault. The GPS analysis result is derived from the Scripps Orbit and Permanent

Array Center (SOPAC).
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From 1 Apr. 1997 to 24 Jun. 2005, 950154 to 960532

(baseline) {North-South)

Tokachi-Oki earthquake
26 Sep. 2003
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Figure 2. Postseismic deformation observed with GPS. Annual and semi-annual variations are being re-

moved by fitting sinusoidal functions.
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Location of the GPS and SG stations
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40 (fixed) . SG1
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/ plate |

30

125 130 135 140 145 150

Figure 3. The location of observational points. The star denotes the epicenter. The vectors show the direction

of plate subduction.
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Comparison of the coseismic gravity change
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e \ A Observed with SG
£ |
q) \
3 0.6 R -
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Based on Imanishi et al. (2004)
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Figure 4. The effect of the curvature on a coseismic gravity change
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Figure 5. The effect of the curvature on a postseismic deformation (Nostro et al. 1999). A horizontal dis-
placement for a strike-slip dislocation is shown. The dotted and the solid lines denote the displacement for

a semi-finite medium and a spherical one, respectively.
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Figure 6. Viscoelastic normal modes
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Figure 7. The integration path surrounding innumerable poles
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which ¢y (a, s;n = 2,m = 2) (Eq. (18)) is calculated.
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Figure 9. Visible effect of compressibility on the integrand. The solid line in the lower figure shows the

interval on which ¢ (a, s;n = 2,1000, m = 2) (Eq. (18)) is calculated.
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Figure 10. The elastic Earth model PREM and the viscosity profile used to compute the Green’s function.
Density p and P- and S-wave velocities (VP and VS) are shown. The viscosity equals to infinity (i.e., perfect
elastic body) up to a depth of 120 km for Model 1 and 30 km for Model 2. The shallow part of the profile is

magnified to the right. Perfect solid body is also assumed in the inner core.
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Figure 11. Diagram of the source
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14- N % :
Q o |
€ 121 d it Q9o ]l |
3 enaty =21 100 km
w104 L > 1
> = |
o g B 8 '
= v o |/ :
6t ___ . 2 | | |
“c > 204-- . -
O 4 R - 0 )
> density | 0 |
2 | B _ |
a | X
0 . ' . T ——— — 1
0 2000 4000 6000 0 670 20|OO 4000 6000
Depth [km] Depth [km]

Figure 14. The incompressible earth model P2 (Piersanti et al. 1995). VS in the left-hand diagram denotes

the S-wave velocity. VP is infinity in incompressible models and so is not shown.



Computing global postseismic deformation without artificial assumptions 83

T 40 : —
- ]
)
GE) 20 - ]
O 4
S ]
a
L2 0
S N
m r
O
o 207 ; |
> 4
0.001 0.01 01 0.001 0.01 0.1 1 10 100
E ' L ' ' 0.4 et '
o] e X
S 1 » v
5] ‘ " |
2 5] S a 0.2 ) a
Q. [ \
.S PRSR / )
T -3 - 1 - \
© i v I ] \\ |
O 4 /" Ds=100km | Ds=200km \
= el ! 0.0 = -
)
> -5 | T i | I i 1
0.0071 0.01 0.1 1 10 100

0.001 0.01 0.1 1 10 100

Angular distance [degree] Angular distance [degree]

t=Tkyr ----- t=10kyr — — — t=100kyr

Figure 15. (a) Vertical displacement G, (6, ) (isotropic component of vertical tensile. See Table 5.). Nor-

malized by UdS = 10 m x(100 km)’. 7 denotes the time after an event. Events at /= 0 yr indicate coseismic

jumps. The Ds denotes the source depth.



x©
N

Gravity change [microgal]

Gravity change [microgal]

-12000-

160001

-200

0.001 0.01 0.1 1 10 100

1 1 ] i

6001 °""""7"3 Ds=100km |

400 - \ -
froeees e \\ i

200 A 4 i
. \\\ \\ I

0.001 0.01 0.1 1 10 100

Angular distance [degree]

O_

-10004

-2000

1 Ds=32km

-3000 T T T T
0.001 0.01 0.1 1 10 100

I | | !

04 Ds=200km B
:————————~—~\\,/4f’_—__i

-40 - / -

| i ,

.80 1 f N
] / i
2120 1 7 5

0.001 0.01 0.1 1 10 100
Angular distance [degree]

t=0yr oo t=1kyr -

-~ t=10kyr — — — =100kyr |

Figure 15. (b) Gravity change (isotropic component of vertical tensile)



Computing global postseismic deformation without artificial assumptions

Geoid height change [mm]

Geoid height change [mm]

&5

Figure 15. (¢) Geoid height change GL}((), t)/go (isotropic component of vertical tensile)

40 - h
20 1
O -
-20
T T 1 I '40 1 T I I
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
_________ LA
24— — — — R -
"""""""""""" \\‘\\\
0 ] < =
2 x
-4 Ds=200km [
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr  --------- t=1kyr ----- t=10kyr — — — t=100kyr



o]
[o)

Horizontal displacement [m]

Horizontal displacement [m]

40: ]I IIZ)s:1Okm I
20- '
0- !
0001001 01 1 10 100
0.6 1 L

0.001 0.01 0.1
Angular distance [degree]

1 10 100

Ds=32km

0.001 0.01 0.1

0.12
0.08-
0.04

0.00

Ds=200km

0.001 0.01 0.1
Angular distance [degree]

1

10 100

t=0yr

--------- t=Tkyr -----t=10kyr — — — t=100kyr

Figure 15. (d) Horizontal displacement G}(8, t) (isotropic component of vertical tensile)



Computing global postseismic deformation without artificial assumptions

——a

600 : :

I 1

400

200

O_

Vertical displacement [m

Ds=10km

0.001 0.01 0.1

O_

Vertical displacement [m]

0.001 0.01 0.1

1 10 100

Angular distance [degree]

87
1 i { |
60 - Ds=32km
40 - 2
20 - :
O . =
0.001001 01 1 10 100

0.8
0.4 1

0.0

0.001 0.01

0.1

1 10 100

Angular distance [degree]

t=0yr

--------- t=1kyr

————— t=10kyr — — — t=100kyr

Figure 16. (a) Vertical displacement G2 (6, t) (Horizontal tensile component. See Table 5.). Normalized by

UdS = 10 m x(100 km)?. ¢ denotes the time after an event. Events at 7 = 0 yr indicate coseismic jumps.

The Ds denotes the source depth.



8

8
%‘ I L 1 | | | 1
(@))
o 0 0 -
©
= ] ]
‘6‘ -40000- - -4000 -
g) 1 ]
© -80000 - -8000 B
R
(@] 1 ]
> ] _ ]
E 120000 Ds=10km 12000 Ds=32km
= ] ]
(9 -160000 ; : : ] -16000 ] r— .
0.001 0.01 0.1 1 10 100 0.001 0.01 01 1 10 100
T
(@) | ] | Il L | | |
o
© 0 1 B 0 -
£ ]
&, 4007 I 1001 -
= I el
< 8004 ... -
o , -200 - / -
£ 1200+ Ds=100km{ 1 / Ds=200km |
o . : . . -300 [ . : .
O 0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
| t=0yr  -oooooee t=Tkyr -----t=10kyr — — — t=100kyr |

Figure 16. (b) Gravity change (horizontal tensile component)



Computing global postseismic deformation without artificial assumptions 89

160 1 I |
1201 Ds=10km |
80 - -

40 i

0-

Geoid height change [mm]

0.001 0.01 0.1 1 10 100

Ds=100km

N
o
]

o
|
|
|
I
J

Geoid height change [mm]
>

I 1 !

0.0010.01 01 1 10 100
Angular distance [degree]

Ds=32km

I !

0.001 0.01 0.1 1 10 100
Angular distance [degree]

t=0yr  --------- t="Tkyr

_____ t=10kyr — — — t=100kyr

Figure 16. (c) Geoid height change Gﬁ)((), t)/go (horizontal tensile component)



O
o)

Horizontal displacement [m]

Horizontal displacement [m]

200 +——
150 -
100 ]
50 1

0 -

Ds=10km

0.001 0.01

2.5 :

100

2.0
1.5-
1.01

Ds=100km |

0.001 0.01

T

0.1

T

1 10 100

Angular distance [degree]

Ds=32km |

T

0.001 0.01 0.1

Ds=200km

0.4
0.2

0.0 1

0.001 0.01 0.1

1 10 100

Angular distance [degree]

t=0yr

--------- t=1kyr

_____ t=10kyr — — — t=100kyr

Figure 16. (d) Horizontal displacement G%(é)., t) (horizontal tensile component)



Computing global postseismic deformation without artificial assumptions 91

E 160 - | . 18 1 1 I | |
= : [ 157 )
Q 1204 Ds=10km [ ] Ds=32km
£ - - 12 1 -
O} ] i
wn ] E
© ] [ 6 - -
o 40 - - ]
.§ ﬁ [ 3] -
g 0 ] I 0 B
0.0010.01 01 1 10 100 0.0010.01 01 1 10 100
- 0.4 ! I | |
.g. 2 I 1 ~ L ]
5 Ds=100km /) ’ Ds=200km
£ A, ' |
5 A\
&)
—g_ 1 - . 0.2 -
2
©
©
S ]
g 0 T T T T ] 0.0 e ;
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr  ---------t=Tkyr - ---- t=10kyr — — — t=100kyr

Figure 17. (a) Vertical displacement G3 (6, ) (Vertical dip-slip component. See Table 5.). Normalized by
UdS = 10 m x(100 km)?. 7 denotes the time after an event. Events at # = 0 yr indicate coseismic jumps.

The Ds denotes the source depth.



O
[\

1 10 100

8, 5000 ——t—t—"t—! L
o 0
S ] 0
£ -50001 - _
%-10000—_ - -1000-
% -1 5000'_ - 1
S -20000- r -20007
> -25000- - |
= . -3000 -
= -30000- Ds=10km } ]
(3 -35000 — -4000 —
0.0010.01 0.1 1 10 100 0.001 0.01 0.1
— I I
48] ] ) 1 |
S o 0]
kS, 4
E 4
= .100 - -20 -
Q ]
(@)
S -200- *
< 40
(_) p N
2-300 N -
o | Ds=100km 60-] Ds=200km
(D '400 i 1 I I T 1
0.0010.01 01 1 10 100 0.001 0.01 0.1

Angular distance [degree]

1 10 100

Angular distance [degree]

t=0yr

--------- t=1kyr

_____ t=10kyr — — — t=100kyr I

Figure 17. (b) Gravity change (vertical dip-slip component)



Geoid height change [mm]

Geoid height change [mm]

Computing global postseismic deformation without artificial assumptions

Ds=10km

12

0

0.001 0.01 0.1 1

1IO 100
Angular distance [degree]

93

24 1
20
16 -
12

Ds=32km

0.001 0.01 0.1 1

Il I | !

Ds=200km

1
0.001 0.01

T I 1

0.1 1 10 100
Angular distance [degree]

t=10kyr — — — t=100kyr

Figure 17. (¢) Geoid height change G%(H., t)/go (vertical dip-slip component)



No)
=

200 1

160 ]
120—i
80 ]
40

01

Horizontal displacement [m]

0.001 0.01 0.1 1 10 100

N

—_
TATIE RS A AT

0-

Ds=100km

Horizontal displacement [m]

1

0.001 0.01 0.1 1 10 100

1 LI T L

Angular distance [degree]

Ds=10km |

5]

Ds=32km}

0.001 0.01 0.1 1 10 100

I 1 1

1 I | |

0.4-
03-
02
0.1-

]
0.0

Ds=200km

0.001 0.01 0.1 1 10 100

Angular distance [degree]

t=0yr  --------- t=Tkyr

_____ t=10kyr — — — t=100kyr

Figure 17. (d) Horizontal displacement G (6, t) + G4/ (6, ) (vertical dip-slip component)



Horizontal displacement [m]

Horizontal displacement [m]

Computing global postseismic deformation without artificial assumptions

120 o '
30 4 Ds=10km [
40 - i

0 i

0.001 0.01 0.1 1 10 100

1.0 F————
0.001 0.01 0.1 1 10 100
Angular distance [degree]

95

Ds=32km

0.001 0.01 0.1 1 10 100

0.2
0.1 1

0.0 1

Ds=200km {

-

0.001 0.01 0.1 1 10 100

Angular distance [degree]

_____ t=10kyr — — — t=100kyr

Figure 17. (e) Horizontal displacement —(G}(6, 1) + G (6, 1)) (vertical dip-slip component)



\O
(@)}

B — 5 1
= 40 | | .
é ] Ds=10km | 4 Ds=32km |
30 B |
2 3 -
3 20- ~ —
i | ° ]
©
< 10 - 1
=2 ] ]
£ 01
) .
< 0 1 ]
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
é 0.8 ] | L | J i I I I |
5 1 ps=1o0km /0 , Ds=200km
£ 06- ) - 0.081 . I
® 1 ;O ,
®
= 0.4-
._g 0.04 1 -
B ]
‘g) 0.0 0.00- - 5
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr  --------- t=1kyr ----- t=10kyr — — — t=100kyr

Figure 18. (a) Vertical displacement G (0, t) (vertical strike-slip component. See Table 5.). Normalized by
UdS = 10 m x(100 km)?. ¢ denotes the time after an event. Events at 7 = 0 yr indicate coseismic jumps.

The Ds denotes the source depth.



Computing global postseismic deformation without artificial assumptions

F_é; ! 1 | |

e 07 -

kS -

£, -2000- -

>

2 -4000+ -

©

e

S -6000 - -

2 .

& -8000+ Ds=10km |-

(B I I ¥ J [
0.0010.01 0.1 1 10 100

% I 1 |

o

o 07

XS] j

E 301

g ] .

£ -60 1

= _ \/

e | Lo

> 907 % |

S | Ds=100km \ ! -

© -120- . -

(@) T T T T
0.0010.01 0.1 1 10 100

Angular distance [degree]

97
200

01—
-200 1
-400

-600

800 - Ds=32km

0.001 0.01 0.1

Ds=200km

'16 I I ] 1
0.001 0.01 0.1 1 10 100

Angular distance [degree]

t=0yr

t=10kyr — — — t=100kyr

Figure 18. (b) Gravity change

(vertical strike-slip component)



\O
o0

Geoid height change [mm]

Geoid height change [mm]

18 1 | I | 1
199 Ds=10km |
I T T i : ‘6 | T 1 I 1
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
10 | | l I ‘
] /\ L :
g4 Ds=100km /) \\ s 104 Ds=200km B
' [ i "
I 0.51 i
0.0 -
0.001 0.01 0.1 1 10 100 0.001 0.01 01 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr  --------- t=1kyr ----- t=10kyr — — — t=100kyr

Figure 18. (c) Geoid height change G,"u‘)(ﬁ7 1)/ go (vertical strike-slip component)



Computing global postseismic deformation without artificial assumptions 99

60 '
50 -
40 -
30 -
20 -
10 -
0

Ds=10km

Horizontal displacement [m]

0.001 0.01 0.1

0.8 ' ‘

Ds=100km

0.4 1

0.0

0.1

Horizontal displacement [m]

0.001 0.01

1 10 100

Angular distance [degree]

-0.04
0.001 0.01

Ds=32km

0.001 0.01

T

0.1

0.12-
0.08 -

0.04

Ds=200km

0.00-

0.1

1

10 100

Angular distance [degree]

t=0yr

--------- t=Tkyr

,,,,, t=10kyr — — — t=100kyr

Figure 18. (d) Horizontal displacement G‘(‘,(f), t) + G(0,t) (vertical strike-slip component)



100

[m]

isplacement

Horizontal d

Horizontal displacement [m]

50
10
30
20
10

04

Ds=10km

-10

0.001 0.01 0.1 1 10 100

! L L [

1.0
0.5+

0.0

| Ds=100km /{,’q\\

7

0.001 0.01 0.1 1 10 100

Angular distance [degree]

Ds=32km

-2

0.001 0.01 0.1 1 10 100

! . | |

0.12+
0.08 1

0.04 -

Ds=200km

-0.04

T

0.001 0.01 0.1 1 10 100

Angular distance [degree]

_____ t=10kyr — — — t=100kyr

Figure 18. (e) Horizontal displacement G (0, 1) + G'2(6,t) (vertical strike-slip component)



Computing global postseismic deformation without artificial assumptions 101

80 : ' | L |

T
N

60 - Ds=10km 121 7, Ds=32m

Vertical displacement [m]
N
o

20
"40 | | I [ ‘4 | | I I
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
£ .
- 04 =7 l
C ] - A
) v
E 4
() M
&) 1 \\‘t
-8 0.2 1 \ B
L ] [
T |
_g 4 J/ Ds=100km | Ds=200km
2 ) - - - - 4 0.0 B
;} T | I I [ T | I
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
——t=0yr  --------- t=1kyr ----- t=10kyr — — — t=100kyr

Figure 19. (a) Vertical displacement on ¢ = 0 (vertical tensile. See Table 5.). Normalized by Ud.S = 10 m
% (100 km)?. ¢ denotes the time after an event. Events at = 0 yr indicate coseismic jumps. The Ds denotes

the source depth.



—
=3
[\

Gravity change [microgal]

5000 : L L . I 1 L L
0 - - 07 i
~5000 == 11000- -
-10000- -
-15000- - -20007 -
-20000+ Ds=10km [ -3000
‘25000 ] I 1 1 i I | |
0.0010.01 0.1 1 10 100 0.0010.01 01 1 10 100
g - Ds=200k
— - .= 0 S= m B
S 600+ "X Ds=100km [
2 )
E, 400+ \ - 40 4 i
% ------------- \\ .
c 200 \\‘ \\\ B ,F
& | | 80 - £ .
&) ] ! 0"
z ] /
E 2200 N0 e i
o T T I I I T T I
0.0010.01 01 1 10 100 0.001001 01 1 10 100
Angular distance [degree] Angular distance [degree]
| t=0yr e t=1kyr - - - - - t=T0kyr — — — t=100kyr |

Figure 19. (b) Gravity change on ¢ = () (vertical tensile)



Computing global postseismic deformation without artificial assumptions 103

’_Eq 1 | 1 |
E 607 » 60 ‘ |
S 407 N : " 2 '
1 // BN [ 40 ] \ B
é 20—- /’/“~ TN\ | 1 VAN \ [
o 07 / - 204 — — —/ \\\ i
£,-20- ; ot S|
g 40 ] I 20 _ _
D 60 Ds=10km [ R Ds=32km
8 ‘80 I I | I ‘40 i I [ 1
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
B
é 20 | | | | 4 | | 1 |
<) ] R ! F----o— -~ IR I
2 0- " ) I i
© J |
£~ E S -
Q o | 0 B
= -20 A / ]
2 T / 2 - |
2 40- / - - :
2 " Ds=100km| 4 Ds=200km |
S |
Q ‘60 [ I [ I l T I I
O 0.001001 01 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr  ----ooee- t=1kyr ----- t=10kyr — — — t=100kyr

Figure 19. (c) Geoid height change on ¢ = 0 (vertical tensile)



—_
)
S

Horizontal displacement [m]

Horizontal displacement [m]

100 B

80i
60
40-
20 -

O__

T

Ds=10km

0.001 0.01 0.1 1 10 100

1.2

| 1 1 1

4

0.8
0.4

Ds=100km

1

0.001 0.01 0.1 1 10 100

Angular distance [degree]

0
0.001 0.01 0.1 1 10 100

! ! |

0.2

Ds=200km —

0.1-

0.0

I I

0.001 0.01 0.1 1 10 100
Angular distance [degree]

t=0yr  --------- t=Tkyr

_____ t=10kyr — — — t=100kyr

Figure 19. (d) Horizontal displacement uy on ¢ = 0 (vertical tensile)



Horizontal displacement [m]

Horizontal displacement [m]

Computing global postseismic deformation without artificial assumptions 105

0 -
5~
-10

?
15

Ds=10km

-20

T 1 1

0.0010.01 0.1 1 10 100

1 |

0.081
%

© ©

o o

o ~
| !

-0.041

Ds=100km ]

-0.08-

0.001 0.01 0.1 1 10 100

Angular distance [degree]

Ds=32km |

0.001 0.01 0.1 1 10 100

0.04 . ' ' '
1 Ds=200km

0.021 S i

0,00 o]
| RVl

0.001 0.01 0.1 1 10 100
Angular distance [degree]

_____ t=10kyr — — — t=100kyr

Figure 19. (e) Horizontal displacement 1y on ¢ = 45° (vertical tensile)



—_
)
N

E 300 — ' L
c 1 i
GEJ 250- Ds=10km }
o 200 B
% ] |
é‘ 150‘_ i
3 907 ]
E O ] 1 I i 1
0.001 0.01 0.1 1 170 100 0.001 0.01 0.1 ] 10 100
E 1 I | | 1 1
é 3 \\ Ds=100km | 0.6 Ds=200km [
8 \\ L 4 L
S 2 0.47 ----------------- B
2 ] ‘
S 1 0.2 3
C—U ———————————
2 0- 00 — = = = = -
g T 1 1 i I I i 1
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr  -—------- t=1kyr ----- t=10kyr — — — t=100kyr

Figure 20. (a) Vertical displacement on ¢ = 0 (dip-slip with dip angle 45°. See Table 5.). Normalized by
UdS = 10 m x(100 km)?.  denotes the time after an event. Events at = 0 yr indicate coseismic jumps.

The Ds denotes the source depth.



Computing global postseismic deformation without artificial assumptions 107

Gravity change [microgal]

| | | I
O 1 — O ) A B
20000+ - 20004 i
40000+ - 4000 4 i
1
-60000 Ds=10km - -6000 - Ds=32km |-
I lj ) T T 1 L I
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
:_("; 1 I} I {
87 I | | 1
5 0 O i -
é ]
@ -200 -40 - -
(@)
e L N S —
£ -4004 -80 1 -
(]
Pn 1 [ 1
= 600 T Ds=100km -1201 Ds=200km [
6 1 I T | T T I T
0.001 0.01 01 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
| T t=Tkyr ----- t=10kyr — — — t=100kyr |

Figure 20. (b) Gravity change on ¢ = 0 (dip-slip with dip angle 45°)



—_
]
oo

| 1 |

120

80 1

40

0_

Ds=10km

Geoid height change [mm]

0.001 0.01 0.1 1 10

10

o
T

-10

Geoid height change [mm]

0.001 0.01 0.1 1

! I

10100
Angular distance [degree]

220

Ds=32km

Ds=200km}¥

0.001 0.01 0.1 1

1|0 100
Angular distance [degree]

t=0yr  --------- t="1kyr

_____ t=10kyr — — — t=100kyr

Figure 20. (c) Geoid height change on ¢ = 0 (dip-slip with dip angle 45”)



Horizontal displacement [m]

Horizontal displacement [m]

-30 T T T
0.001 0.01 0.1 1 10 100

0.5- . .
0.0010.01 01 1 10 100

Computing global postseismic deformation without artificial assumptions 109

90
60 1
30 -

O_

| | | I

1.0
0.5{

0.0

| Ds=100km |

|

Angular distance [degree]

Ds=32km

Ds=200km

A

0.2

0.1

0.0-

'01 I T [ I
0.001 0.01 0.1 1 10 100
Angular distance [degree]

t=0yr  --------- t="Tkyr

_____ t=10kyr — — — t=100kyr

Figure 20. (d) Horizontal displacement w4y on ¢ = 0 (dip-slip with dip angle 45°)



110

Horizontal displacement [m]

Horizontal displacement [m]

Ds=10km

0.001 0.01 0.1 1 10 100

o

o

S
!

-0.02- N
Ds=100km |/

'0.04 J 1 I I
0.001 0.01 0.1 1 10 100

Angular distance [degree]

1 | |

1.2-
0.81
0.4

0.0

Ds=32km

0.005 1

0.000
—0.005-—
-0.0102
-0.01 5-_

-0.020

Ds=200km . -

1 I 1

0.001 0.01 0.1 1 10 100

Angular distance [degree]

t=0yr  ----eeo- t=1kyr

_____ t=10kyr — — — t=100kyr

Figure 20. (¢) Horizontal displacement v, on ¢ = 45° (dip-slip with dip angle 45°)



Computing global postseismic deformation without artificial assumptions 111

— I ! |- | : [:
% 40 9 : Ds=20km [
- | _ [
&} ] X
£ 30 . .
8 ] 6
L 20 A - ]
Q_ _
i ] ]
T 10 . 3]
© . ]
£ 04 - ]
L : 0
> '10 T T I 1 i 1
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1

B
—_— 1 ! l ! i | 1 1
IVE /" Ds=30km | 1.29 Ds=60km [
E \\\ ! ] s
S 181 I - 0.8 8
© ] Sy :
3 12 ‘ :
O ] ! 0.4 B
‘@ 61 -
L ] i
a O . 1 [ ¥ I - OO_ I | 1 1 ]
= 0.007 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100

Angular distance [degree] Angular distance [degree]

t=0yr  --------- t=Tkyr ----- t=10kyr — — — t=100kyr

Figure 21. (a) Vertical displacement (vertical strike-slip). The same as Fig. 18 but for the viscous model 2
in Fig. 10 (the thickness of the lithosphere is 30 km). Normalized by UdS = 10 m x(100 kmY. The Ds

denotes the source depth.



1

—
[\

Gravity change [microgal]

Gravity change [microgal]

-2000+ | .
0.001 0.01 0.1 1

0
500
110001

-1500

0 - 07 ]
\ /
2000 Log ‘
\ I,/' -100 -
_ \ v
4000 " - ~
' \/  Ds=30km | -2001 Ds=60km |
-6000 ————— ——
0.0010.01 0.1 1 10 100 0.0010.01 01 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr oo t=Tkyr - ---- t=10kyr — — — t=100kyr |

Figure 21. (b) Gravity change (vertical strike-slip)



Computing global postseismic

| I 1 |

Ds=10km

Geoid height change [mm]
o

T

0.001 0.01 0.1 1 10 100

(@]
o

(o))
o
I

j

EAN
(&}
!

N
o
M

0

/\
DS:30km /I/ \\\‘

i

Geoid height change [mm]

0.0

01001 01 1 10 100
Angular distance [degree]

deformation without artificial assumptions 113

T T
0.001 0.01 0.1 1 10 100

Ds=60km i

0.001 0.01 0.1 1 10 100
Angular distance [degree]

t=0yr  --------- t="Tkyr

_____ t=10kyr — — — t=100kyr

Figure 21. (c) Geoid height change (vertical strike-slip)



—
—_
IS

Horizontal displacement [m] Horizontal displacement [m]

0.001 0.01

0.1

T

1

10 100

Angular distance [degree]

-0.4

20—
15 -
10—?
5 4

0*_

Ds=20km

0.001 0.01

0.1

2.0 '
1.6
1.2

Ds=60km

I
0.001 0.01

0.1

T

1

10

100

Angular distance [degree]

t=10kyr — — — t=100kyr

Figure 21. (d) Horizontal displacement gy on ¢ = 45° (vertical strike-slip)



Horizontal displacement [m]

Horizontal displacement [m]

Computing global postseismic deformation without artificial assumptions 115

l : i | 1
04 5 i
-10 A
-9 _ v [
'20 i I i I 1 I I lj [
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100

! 1 T L L L
0 T~  f OO == =7 I
N ;
4 _ \ / [
Voo : 0.1 .
5 Vo z
8 b i
\\// Ds=30km 0.2 Ds=60km i
'12 ] I I I I - i T I i
0.001 0.01 0.1 1 10 100 0.007 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr  --------- t=1kyr ----- t=10kyr — — — t=100kyr

Figure 21. (e) Horizontal displacement u4 on ¢ = 0° (vertical strike-slip)



—
—_—
[@)

'g‘ 120 1 ! 1 !

= A "\

g 1001 /\ "~ Ds=10km

5} £ |

= o\

o I\

Q . B

<

= [

1)

-D -

©

O

SG—J - =

=40 —_—
0.001 0.01 0.1 1 10 100

E‘ ] 1 | |

= ] [

(D] 1 PN -

E O_—/WQ_&_‘**

S ] ) I

O 1 s i

E /l 7

& 100 ’,’ i

© /

— ’ Ds=30km }

fD 1 7/ 5

O 1____ 7

£ 200 == -

GJ I I I i

= 0001001 01 1 10 100

Angular distance [degree]

Ds=20km ‘

Ds=60km [

T I

0.1 1
Angular distance [degree]

0.001 0.01

10 100

t=0yr

————————— t="1kyr

_____ t=10kyr — — — t=100kyr

Figure 22. (a) Vertical displacement (tensile). The same as Fig. 19 but for the viscous model 2 in Fig. 10
(the thickness of the lithosphere is 30 km). Normalized by U7dS = 10 m x(100 km¥. The Ds denotes the

source depth.



Gravity change [microgal]

Gravity change [microgal]

Computing global postseismic deformation without artificial assumptions

117

] 50007 Ds=20km
- 6000 -
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
40000 ———t—1—1 I
1 7 ) Ds=30km 01 Ds=60km i
300001 )\ - {
Y -400 -
200004 --------- - - ]
10000 ] L 8007 ¥ 5
] “. \ [ [ —/7
0 W\ a -12004 . s -
| V| oz
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
L t=0yr oo t=Tkyr - - - - - t=10kyr — — — t=100kyr

Figure 22. (b) Gravity change (tensile)



—
—
o0

€

E

)

o i

cC

CU -

L

&)

E =

D 1 /

O - = . -

< 60 | Ds=20km |

O : /

2 - -80 . -

8 -80 - T T T T ; —— - T T T

Qo 0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100

E I . L 1

£ 100 = - 10 e

qg)j 0 _h__/;/‘L‘\A——_ 5 “‘_ =, g \\ [~

5 1004 iy - of - ]

© ‘200‘_ / - 1 -

= : I / -5 -

=y -300_ /7 i B

2 400- ) - 104 3

_'g _5005 ______ 7 Ds=30km _ 15 Ds=60km |

& -600 F¥—————+ 20—+
0.001 0.01 0.1 1 10 100 0.001 0.01 01 1 10 100

Angular distance [degree] Angular distance [degree]
t=0yr  --------- t=Tkyr - ---- t=10kyr — — — t=100kyr

Figure 22. (c) Geoid height change (tensile)



Horizontal displacement [m]

Horizontal displacement [m]

Computing global postseismic deformation without artificial assumptions 119

| |

J /,t\ 32 ] ! - 1 | i
1 [\ Ds=10km - N Ds=20km |
80 1 i . 24 - \ -
| ‘*a [ :
60 _ ! 16 1 -
40 - i ]
| g ] 8
20 - - |
O | \r T i O ; T l i
0.0010.01 0.1 1 10 100 0.0010.01 0.1 1 10 100
24 _- ! 1 | 1 B | | | |
12 | Ds=30km I 371 Ds=60km 5
0 _ \\\ '-"/ . 2 *
kS ‘ |
24 v g 11
36 - \ : i
] \\ / I 0
48 - v B ]
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr  --------- t=1kyr ----- t=10kyr — — — t=100kyr

Figure 22. (d) Horizontal displacement 1y on ¢ = (° (tensile)



—_
[\
jes)

Horizontal displacement [m] H

orizontal displacement [m]

| Ds=10km | ] i/ Ds=20km
] \/ [ 8] U B
8
'20 T 1 T I | I T T
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
2 ' I I !
Z 0.0 s = i
0] i |
' 0.2 i
-2 - ]
| -0.4- E
1 Ds=30km ] Ds=60km{[
-4 - B E
! 1 I 1 ‘06 ] I I I
0.001 0.01 0.1 1 10 100 0.001 0.001 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr  --------- t=Tkyr - - - t=10kyr — — — t=100kyr

Figure 22. (e) Horizontal displacement 14 on ¢ = 45° (tensile)



Computing global postseismic deformation without artificial assumptions 121

E 300 _____ | | | 1 80 | ] | |
+— ] o= \\ __ 70 _- ______ —_
g 201 N Ds=10km | o Ds=20km |
£ 200- - - N s
o ﬂ \ » 50 - | -
© 150- - 40 § i
& 1001 I 30 1 | [
o ] i ¥ i
= 50 2 20 7 ‘
© ] \ L 10 1 -
E O __ \\\_}// O __ \
> '50 1 1 l} 1 '10 il L I I
0.001 0.01 0.1 1 170 100 0.0071 0.01 0.1 1 10 100
E ) | | | ] L | | |
= 100 - - = - 8 1 .
() ] AN Ds=30km | ] Ds=60km
£ 801 \ - 6 - l
@ ] ]
O { |
c 604 N [
o 4 -
§% ] [
O 1 i
c_o 2" [
B [ N S A :
o . o — =~ ~— a
> T T 7 T T T T T
0.007 0.01 01 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
t=0yr oo t=1kyr ----- t=10kyr — — — t=100kyr

Figure 23. (a) Vertical displacement (dip-stip with dip angle of 45). The same as Fig. 20 but for the viscous
model 2 in Fig. 10 (the thickness of the lithosphere is 30 km). Normalized by UdS = 10 m x(100 km¥.

The Ds denotes the source depth.



—
[\
[\

Figure 23. (b) Gravity change (dip-slip with dip angle of 45°)

'(__U-‘ ! | i L
o | ] |
o 0 -
O ]
E -5000- -
o) - ] [
= ] i
& -10000 -
= - 4 L
© 1
2 15000 -
E Ds=10km |
O A T T T T i -20000 T T T
0.001 0.01 01 1 10 100 0.001 0.01 0.1 1 10 100
T
87 | | ] I ] I | 1 I
S ; 0 - T .
£ ]
- -500 -
m ' 4 -
2 "I - [
S -10000 i) - -1000 -
G 15000 " / - :
- 1 ,’/ Ds=30km -15007 Ds=60km
= -20000+ - =- =7 L :
6 T T T T -2000 T T T T
0.007 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
\ Y t=Tkyr - ---- t=10kyr — — — t=100kyr



Geoid height change [mm]

Geoid height change [mm]

Computing global postseismic deformation without artificial assumptions 123

1 ! L 1

120
80 |
40:
0
_40_.

-80

******* Ds=10km

~ : H
v

N N =
\\\ /// |
\\,// -

-

0.001 0.01 0.1 1 10 100

50

0.001 0.01 0.1 1 10 100

Angular distance [degree]

! 1 | |

Ds=20km

Ds=60km

ol _ _ _ 3 - 3

0.0071 0.01 0.1 1 10 100
Angular distance [degree]

_____ t=10kyr — — — t=100kyr

Figure 23. (c) Geoid height change (dip-slip with dip angle of 45)



—
[\]
SN

Horizontal displacement [m]

Horizontal displacement [m]

-30 A

60 1
30 -
O“

0.001 0.01 0.1 1 10 100

0.001 0.01 0.1 1 10 100
Angular distance [degree]

Ds=20km

0.001 0.01 0.1 1 10 100

1

0.001 0.01 0.1 1 10 100

Angular distance [degree]

t=0yr -—ee- t=1kyr

t=10kyr — — — t=100kyr

Figure 23. (d) Horizontal displacement 1y on ¢ = (° (dip-slip with dip angle of 45°)



Horizontal displacement [m]

Horizontal displacement [m]

Computing global postseismic deformation without artificial assumptions 125

T

Ds=10km

] 1 | L A
4 A -
: ' Ds=20km
| |
0 - ] [

0.001 0.01 0.1 1

10 100

03 | | i
0.2
0.1
1
‘ 00—
(R [ l
Y/ -
T 1 i | L— '01 T T I T
0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100
Angular distance [degree] Angular distance [degree]
=0yr  --------- t=1kyr ----- t=10kyr — — — t=100kyr

Figure 23. (e¢) Horizontal displacement u,; on ¢ = 45° (dip-slip with dip angle of 45°)



126

v @14 1 -

£ £, :

n %) ] I i |

> >107 =T

o a g, ———" u

> > 1

& = 64 vs R S

(\E) g 4 N |' ______________ B

= 2 T I

0 — T 0 e ——
0 2000 4000 6000 0 400 800
Depth [km] Depth [km]
60 L L L | L L " 1 " " L 1 6 1

_ 50 1 L I

"5 401 - No 4 T

230+ -2

g £

= 201 - = 2 -

10 - -
0 — 0 —
0 2000 4000 6000 0 400 800

Depth [km] Depth {km]
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Figure 30. (b) The effect of fine layering on the deformation rate.
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Figure 36. (b) The time series of the coseismic and postseismic deformation. E to H correspond to the

stations in Fig. 35.
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the two point-dislocation model
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Figure 37. The viscoelstic structure and the fault model
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Figure 38. Pattern change of the postseismic vertical displacement. The station indicated by circles, trian-

gles and squares correspond to the pattern I, I and III in the figure, repsectively.
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Figure 39. Earth’s flattening and its change due to earthquakes
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Figure 40. The time variation of ./ due to the Sumatra-Andaman Islands Earthquake
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Figure 41. Calculation for the arbitrary point on the sphere



