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Micro Local Theory of Boundary Value Problems

The subject of this paper is to study non-characteristic
boundary value problems for partial differential equations 1n
a micro local situation. Throughout this paper, we chiefly
use the method of algebralc analysis, not of functional analy-
sis, which will be very useful to understand the essence of
boundary value problems or mixed problems intuitively. As the
most important appiication in this paper, we obtained the theorem
on propagation of micro—anélyticity of solutions up to the
boundary for partially micro-hyperbolic operators in one side
and for diffractive operators.

This paper consists of two parts,
" Micro Local Theory of Boundary Value Problems I "

and

" Micro Local Theory of Boundary Value Problems II and a

Theorem on Regularity for Diffractive Operators ".

In the former part, we introduce the notion of " Mildness "
and micro-local Green's formula, which are indispensable for
the systematic study of boundary value problems. In the lat-
ter part, we formulate non-characteristic boundary value pro-
blems micro-locally and apply these methods to solvability or
regularity of boundary value problems for some kinds of pseudo-
~differential operators.

As for more detailed explanation, the reader may be refer-

red to see the introduction of each part.



Micro Local Theory of Boundary Value Problems I
By Kinmi Kataoka

Abstract

In [ 9] ana [/l ], H.Komatsu-T.Kawai and P.Schapira defined boun-
dary values of hyperfunction solutions to non-characteristic boundary
value problems. Since then, many works have been published. Above
all the Green's formula used by A.Kaneko is seemed to be very funda-
mental for boundary value problems., The auther introduces the conc-
ept of mildness for . hyperfunctions, which expresses a wide class of
hyperfunctions having boundary values, and shows that mildness is kept
under several operations, integration along fiber, product,
eeey, and so on, Simultaﬁeously mildness and these operations are
micro-localized and the relationship with boundary value problems for
pseudo-differential operators is clarified., The Green's formula, in
particular, is also micro-localized, too. Lastly the consistency with
topological boundary values is stated,
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Introduction

Let P(x,D) be a differential operator of order m defined in
M={xeRn; Rhcr}. Suppose that Na{;eM; x1=0} is non-characteristic
with respect to P. Then, Komatsu-Kawai and Schapira independently
proved that any hyperfunction solution to P(x,D)u=0 in {xeM;x1>O}
has a unique extension ﬁkx)efk+(M,BM) and “"boundary values® (fo,

m n~n/ . A/
...,fm_1)é rQN,BN) such thgt U=u in (xeM;x1>O} and Pu =
m-1 )
P fj(x')fﬁa (x1). As for these hyperfunctions u(x), we want to
j=0 ’

stress that every normal derivative up to the infinite order has a
boundary value on x1=+0. More precisely for every differential ope-
rator J(x,D) (of finite or infinite order) defined in a neighborhood

of the boundary J(x,D)u(x) has a boundary value J(x,D)ulx =40 28
.=

a section of BN (such an approach is seen in the treatment of hyper-

functions with real analytic parameters by A.Kaneko L1] ).. In orderx

to generalize this property apart from solutions to differential eg-

uations, the auther introduced the concept of mildness, Let £(x)

be a hyperfunction defined in {xﬂﬂ;$>x1>0,]x'-x&<5}. Then f(x) is

said to be mild at (0,x6)eN from the positive side of N if and only

~

if f(x) has an extension f(x) to I&+({B1KX.IX'-X&<5}»BM) such that

~J

f(x) considered as a section of CM+IX is continued as a section of
-1

Cyix to SyXNT ((o,xé))={(o,x';;1,iq')es§x; x‘zxé,}'l‘=0}. We

A
denote by B the sheaf of germs of mild hyperfunctions from the

N|{M+
positive side of N,
A
In 2.1 of \§2, we begin with the micro localization of By Mee
A
CN M+
exact sequence is obtained.

That is, a sheaf on iS*N is introduced and the following

A
¢ 7Tl e =70

A
© > Gy | ? By M



A A
The softness of CN|M+ and BNIM+ are proved there. Further, to

analyze mild hyperfunctions more minutely, we characterize mildness
by using defining functions, {hat is, a mild hyperfunction is writien
as a sum of boundary values of holomorphic functions defined in such
a domain as Dz{zecn; [211<F, \z'—xék? ,<Imz',§o>? X(Imz'\ +—%—( \Imz1\ +
(-Rez1)*)}, where (x) =x if x20 and (x),=0 if x<0. Here we remark
that the intersection of D with the complex boundary {z1=0} constit-~
utes a wedge in Cn'1,{?'ecn'1;<Imz',$o>:>§hmz'L P'-x6\<5ﬁ. iﬁsing
these facts, the trace operation and the canonical extension are

defined as the following sheaf homomorphisms.

A A
Trace : BN|M+af(X),———>f(+O.X')éBN or Cyims >0y »

L X]

ext By, 3 f(x) —>£(x)¥(x )6 MY, (B,) and so on.

Especially ext is injective., The subject of 2.2 is the micro
local Green's formula (Theorem 2.,2.8). To obtain it we define

duct tions ; B @8 3 By 1 B HY
product operations ; NIM+% ----- é@ N|M+ﬁBNlM+ » BN [ M4 M+(BM)

———>}{8+(BM), integration along fiber , and so on under suitable
conditions on singular supports. In 2.3, we treat topological pro-
perties of mild hyperfunctions., It is proven there that for any
mild hyperfunction f(x1,x') with proper support in x', there exists
the limit of f(x1,x') as x,—>+0 in the space of analytic functionals
and that it coincides with Trace(f).
The subject of §1 is the division theorem for CNIX which has

been proved by Kashiwara-Kawai (local version) and Schapira, Kataoka
(semi global version)., Here we give. the projection opérators conc=-

retely using symbols of pseudo-differential operators.

1-2



§1. The division problem for the sheaf CNIX'

In this section we introduce the division theorem of the sheaf
CN‘X whose local form was proved by Kashiwara-Kawai [4 ][5 ] and
whose global form was proved by Schapira [12,] (and also see Kataoka
[’7] ), in particular we will give concretely the projectioh oper-

ators.

1.17. Notations.

Let M be a n-dimensional real analytic manifold, N be its sub-
manifold of codimension 1 and X,Y be their complex neighborhoods re-
spectively. For the sake of simplicity, we assume M=Rn5x=(x1,x')

and Nz{xeRn;x1=0}. Further we set M+={xeRn;x1gO}.

M=B™3(x,, X" ) < N= 10y x5* 13(0,x')
N N
X=C"3(z,,2') O ¥=140{x¢"""3(0,2")

0 .
And we define the pairing of TX=C"x¢"3(z; Z:(ij/%zj+ WﬁQM%E&)) and

.

J=1 n
*X=C"x¢™3(z;4) by -Re<w,$»>. In this paper, we denote 3 wjﬁj by
W, &> and w=u+iv, §=§+i7. Then S§X, S§+X, G+, H+, I are written as

follows,

S§X ={(O,x';¢1,17')€S*X; x', real}

G+ ={(0,x"; $,,iN')eSkX; Rel,¥0}
H+ ={(x1,x';171,17')es*x; x',ﬂ=(71,Q') real and x1>0.}
I ={(O,x';i?)€S§X; x',N real}

S*

— U,y
M+X" G+YH+Y1I,

CM+IX and CNlX are canonically defined as sheaves on S§+X and S§X

respectively (see Kataoka [ ¥ ] §4 and Kashiwara-Kawai (41,057 ).



For the sake of reader's convenience, we pick up some important
properties of these sheaves (see Kataoka (g 3}4 and Kashiwara-

-Kawai ( 41,05 ]).

s s . * ' . ¥*
Proposition 1.1.1. Let 7EM+/X ; SM+X-—éX and ﬂﬁ/x H SNX—eX

be canonical projections. Then we have,
0 ~
%M+(BM)!N = nIVH/X*CMHXlN
O——~>?¥O(B ) —7TL C ————>O’l —>0 exact
N'™M N/X*NIX XIN ¢

Further, CM+IXIG+=CNIXIG+ ’ CM+IX|H+=CM[H+ and the follow=-
ing canonical injections are obtained.

ClelIQ“i""’CMJ,lx]IC‘;"CMII

Proposition 1.1.2. Cs X (or CN[X) is a ;PX18§+X -module
(JDXIS*X -module), where JPX is the sheaf of germs of pseudo-diffe-
X .

rential operators.

Proposition 1.1.3. We denote the closure of H+ and G+ Dby

H+=H+YI and G+=G+YI respectively. Then the sections of CM+|X (or
CNIX) have the unique continuation property along the fiber of

* ;5+_\S§X9(O,x';§1,i7l')——>(x';iY(')EiS*N (or 13 s§X\s§x——>is*N).

Proposition 1.1.4. Setting Uﬁ:i(o,x';g,in')e%x; M=t}

for each k=2,,,n, we have the following shéafnisomorphism.
+ . A4
Bk 3 Clelui — ’Ce'lﬁf; ’

~
where U§ ={(;H,x';iﬁ‘)e®xiS*N ; 7k=i1} and CO& is the sheaf of germs

of microfunctions in (Q1,x') with holomorphic parameter C1.



Then the induced isomorphism of pseudo-differential operators are

given as the following quantized contact transformation.

0 6ER DY, for i, BERL DT wag T
ii) p¥ xj(ék) =x;  for j¥1,k, i x, (B 2y-1_ ;-%(% )1,

B xk(\Blic)-1=xk+ 2&, Si{%x o o e

111) pi (Z £,(x) 8 (x0)= -5k z (12;1)3(+ SRMEACOR
Proof Remember the sheaf isomorphism ‘SE (Kataocka E8]-‘§4.2
Theorem 4.2.3)

gL ; F<x>=o~<f<z2,;’.{...zn.p.;1..j.{,.¢n>aa:1».--§.--,\az:n>
—————-)G(:1,X')= G(f(zzp\{kovzn’p!;1):v’1€ )dgzl\ "‘l\dc )’

wherep(zé‘)-z .+ 2. 1 'ﬁ”:Z‘z. .+ 2.1 and
T itk %555% Pt %1,k 355 %

f(z2, ,inzn,P, 3,‘1,.£, ’gn)d§1’\'“\é"/\d§n is a normalized Radon transf-

orm of a germ F(x) of CN!X' From this expression, i) and ii) are

concluded, for example,

Bi( F(X)) ﬁi(c‘(qﬂ’:‘?f(zzv;ky,ZnIP €1,”"Cn)d§1A'-ic"'/\d¢n)) |

GJ(C] (zzvvvvoznopygpn’ocn)dqz/\“‘E""/\d? )
= §1(;i);o-;(-kG(Z;1,x ) = *14‘1@:: BE(F(x)),
Bi(x,F(x)) = Bi(o(zy+ £(zp, STTENS X PP ORI LI SV SRCIND

by normalization

ﬁ:}i(@( (,% )-1 2 f(zzv p}:\:a vznva§1" ’9 ’;n)dg‘]/\""'/\dé‘n))

(]

- G'((a’%’)-1% f(Zz,,,,,Zn,p 41!019’§n)dg2/\”'¥;“/\d¢ )



- ) G e g )=;1,—0%<-———)‘15§;-<F(x>).

pf{‘(x F(X)) ﬁk(o'(z f(ZZ...,.Zn.P.§1,.,.’§ )dg1 —1-{~~*Ad§n))
=¥ipE(G((P'Z1¢1j'i{‘ ‘ann)f(zgyvf{voznap 401,’yr9€‘n)d§1 -'l;"Aden‘))
=%1i pi(@( {(9‘32§2” "yl‘;"'znén)f(zz’5}’{”zn'p’ 2:1’:}2; :fn
+ (—)-1 C1f(zzoov,’ n'p ¢1)’)”Cn)}dé"]/\“’\{“"/\dén))
=$i€({(P-Z Q --*\;'-'Zn:n)f(zzo .l’c”zn’p' ;1vv£:’ ’En)
+ (r() -1 /b €1f(22o9121,znvp 51'99:9511)}(1:2/\-1;’*/\‘18)
= 16(8x) + ()T IE 2,60 x)

= (i * AE SR )T IBR(FG).

m-1 .
Furthermore the Radon transform of F(x)= _5_; fj(x')g('])(x1) is
. n-1 i .
given by (say, fj(x')El_;(lR ,BN) for every j );

2(p, Qaotg) = { 222 [ (}IZS(,’,%T ayjas(3)

- { (n=1)! S Z(¢1 )Jf ERFISAY dy'}do'(g),

(-2ni)? 3= D=1 (p-¢yr, &)

n
where d%(&)=3" (-1)1'1Cld4°1,\._,v_---,\dé“n. Since Ck=¢i on Ui,
1=1 1

. ket f (=) B S
BE(F(x)) = (-1) (“m{(-m)n j{lou,’mg) me TS ay'f
deZA """" /\an) |
B €t DT W= T SO SR L o A :
(-2mi)® 37;% G R W(i-fﬁn'1 (’ﬁ'—<y'.§'>)n'1}dc‘(é &

"

m-1 : :
-7 B, 04, ) G )07 e 5 (x)



1.2 The division theorem for CNlX'

Let P(x,DX) be a pseudo-differential operator defined in a nei-

-1, 1 ,
ghborhood of 7 1(p0)={(0,x6;(},1Q6)€S§X; §1ec§ of the form

1

| .
P(x,D )= D" + P1(x,Dx,)Dx1 #-----+ P (x,D,),

1

where ij=ﬁﬁﬁxj, Dx'=(Dx2"’Dxn) and order of Pjéj, [Pj(x,Dx,),x1]=O

for every j. We denote the principal symbol of P(x,Dx) by o{P)
m -1
S5 Mp, (2,208, s ep (5, 8.
By Proposition 1.1.2, P(x,Dx) induces the sheaf isomorphism

™~
P(x,Dy) 5 Cyyx =2 Cyix

on Sixn{(2;&)€S*X; G(P)40}. On the other hand L' (pg)n{e(R)=0}

. . -1 ; .
={(0,x83 &, i8)s &M+ (0, x4, 10808, 4o 4p (0, %4,104)=0F is a
finite set of number m counting multiplicities, in particular P(x,DX)
is invertible on an open dense subset of each fiber of L. So we

have the following statement.

Proposition 1.2.1. Let P(x,Dx) be a pseudo-differential ope-

rator stated above, then

P(x,D,) ; Cle|s§x\s§x — >Clelsﬁxxs’gx

and

P(x,D,) 3 CM+|X!E+\S§X >CM+|X|§#\S§X

are injective sheaf homomorphisms on the domain of definition of P.

Proof These are direct corollaries of Proposition 1.1.3.

Thus our interest concentrates upon calculating the cokernel
of P; CNIX'_#CNlX' By Proposition 1.1.4 this is equivalent to cal=-

culating CGVQ(¢1,X',D;1,DX,)COQ where Q(¢1,x',DC1,Dx,)=ﬁ§oPo(pﬁ)'1,



Lemma 1.2.2 Let P(z,DZ) be a pseudo differential operator

of the form
M~ :
P(z,D,)= DZT + P1(z,DZ,)Dz1 +----+ P (2,D,,),
where order of Pj(z,Dz,) <£j and Pj(z'Dz') commutes with z, for every
jo Then

) m
Q(§1vz"Dc1sz|)" éi'P(ZsDZ>'(ﬁi)-1= ;2.:_7:06 Ql(:1"Z,9D¢1’DZI))

where Q1 is the 1l-th homogeneous part of Q, satisfies the following
relations.
1% (8,,24:7, 5')
@quTs *=0

=0

for every r,s 20 and 1 satisfying r > s+m, where T and &' are
variables corresponding to D; and DZ,=(Dz ,...,Dz ) respectively.
21 2 n
Proof We may assume that each Pj(z,Dz,) is defined at (O;;é),

so P has the Taylor expansion in z as follows,

2 ) is’'a pseudo-differential operator

where each R}(DZ,)=RJ(D22,,,D
n

with constant coefficient defined in some neighborhood of {Q':tb},
and this series converges as a pseudo-differential operator at (O°§6)

Therefore from Proposition 1.1.4 Q-ﬁk'P(p )" =1 is written in the form

32 J -1 Jk
Q z',Dp ,D = 2. (F EVeig B Dw D
(4‘1’ ’ 41 za) Z 5 130 ( 1C1 Z, " %n (zk+ €1 2y C’I)
. “y 1
X (1;11)1:1132k ) R3(D,:)

_ mn ) . 1.1 3 J -J 1
=22 2. (%) 'z, k 1;1 D, (zk+D€1§’1 . DC11DZk R3(D,4).

Consequently it suffices to prove this theorem in the case of



1. 1 -1\ dn t | .
Q=C1 Dzk(zk+D¢1§’1Dzk ) D¢1 , where 0£1<m and j,t20. We claim that

1 =143 . .
Dzk(zk+DC1§1DZk )Y has the following expansion.

1 -1yJ_ e cn d
Dzk(zk+D¢1c1Dz )= jZ::::: a:b c,d C1 k C1D

k finite sum

where {Ai'g c d} are ‘constants and the summation is taken over all
| B 4 '
index satisfying a20,b20,c20, 1l2d21-j and a<c. This claim is easi-

ly proved by induction on j. Thus Q has the following expansion;
a+1 c+ d
ZA e.a & bD tD

By remarking that a+lgc+lgc+t+1s(c+t)+m, we obtain the desired
result,
AT5Q, (8, 2,5, &)
Qgr@Ts

=0 =0 for every r,s such that r>s+m,

where Qi is the i-th homogeneous part of Q.

Theorem 1.,2.3. We inherit the notations from the previous

lemma. Let K be a compact set in ¢H-plane with real analytic bou-

ndary - Recall that Q(¢1,x';DC1,Dx,) is defined in a neighborhood

of H={(§y,x';0,i%')eUi R x'=xé,q'=Qé§%’C, and that the restriction

of its principal symbol Qm(qy,x';r,t') to H is a polynomial in §1

of degree m. We assume that Qm(§1,xé;0,iyé) never vanishes on ¥ .
Then setting 'z;{(¢1,x6;0,176)eH; CHGK}, we have the following direct

decomposition of sections of COL
s=1
F(K CO() = Q(C1,X Dc ’ |)F(K CO’) @ Z CNI(X ) €1l’

where s is the number of zeros of Qm in K counting multiplicities.

03170

Proof By the Weierstrass's division theorem for pseudo-



-differential operators, P(x,Dx) is decomposed into the product
P=P'P" of pseudo-differéntial operators defined on {(O,xé;&a,iﬁé);¢1e¢},
where P" is invertible on {(O,xé;f1,176)68§x; §16K, (76’k=¢1)} and
P' is written in the form

s 5-1
P'(x,Dx)= Dx1 + P{(x,Dx,)Dx1 ot Pé(x,Dx,)

with order of P3 £ J and [Pﬁ, x1]=0 for every j. So putting
-1 .
Q'(d},x',Dc1,Dx,)=Fi'P'(x,Dx)(pi) , we prove this theorem for Q"

in place of Q. In other words we may asSume s=m,
Let h(§1,x') be a section of C& on K, then the following integral

is well-defined as a section of CC on'ﬁ?

(1.1) h (§1,x ) = 2m13$ wl¢1 (Q'1h)(w,x')dw.

In fact, due to the Cauchy's integral theorem for microfunctions
with holomorphic parameters this integral is invariant under the

change of path of intégration. Now we calculate the difference
b, (gypx') = n(g,x") - Q(C1.x'.D<1.DX.>h1<c1,x').

(1.2) @Gy x",Dg 1Dy I (§1")

= -271{1 Q(§1'x"DQ 'Dxl)(w‘¢1)—1(Q-1h)(W,X’)dW

r
1 m 5o, 4 RIw=4)” W’Ql )
‘z‘n‘f#%im A Ty e LR X
= o f: -3-1 beQl 1 -1 .
ared f}. =-v0 =0 w-&‘;1) T (¢1'x 'O’Dxt)} (Q” 'h)(w,x")dw,

where Ql(C1,x',D¢ 'Dx') is the homogeneous part of degree 1 of Q.
1

On the other hand, since Q has a Taylor expansion in D; as follows;
1



g
— 1 D_,)D,Y
"'C (C-},x 0, x!

m oo
. _ 1
UG x! Dg WD) = 2 23T ‘-

So

i
|

-
g

Al
.Pdg °§6%5Q;1%>

(1.3) h(QH,x') (w-¢1)-1h(w,x‘)dw

(w—<’1)”1~Q(w.x',D ,D_, ) (¢ ) (v, x" )aw

o emi vy {]_Z=..bo 3=0 J! C1 /a,-(_.] x‘) W (w,x')
Using the Leibniz's rule

J .
nvQ .
(W-GAI) 1 /a-—tjl(w’x' ’O’Dxl )DWJ

J N\, j-rf QT Y
2 <~-1)“ﬁ(r)nwJ L e 2 0,20 )

(w-C1)-1Q(w,x',Dw,Dx,) is decomposed into the sum of two pseudo-

-differential operators as follows.

(W-C1)—1Q(w x',D Dx,)
m J J
- Z. JZO‘-S#{——“W &) “‘ 1<wx 0,0, )]
m 3_; 3-1 (_1)1‘ . QJQ
—_ -r-1§ RF ]_
Dw[ 125_,0 2o rZ=o G {’Bw ((w-8y)7 —5~(w,x1,0 2.0
Here, the second

term does not contribute the integral in (1.3). Therefore it

follows that;

(1.4)  h(&,x') =

m .
1 g—QJ _1?°Q )
Ei [:?;-oo JZ {—"(( w=Gy) '1,0—,@;(w,X',0.Dx.))}1(Q Th) (w,x' )dw

10



r+j

__;5—5—(w x',0 Dx,)}

m oo i
A AP U S
l=-0°j= =0
'K\
X (Q” ') (w, x)dw.
From (1.2) and (1.4), we obtain the following.

hz(CA"x') =

i, (£=w)T 2T g
27§1§ [J‘Z__w ‘]Z.(W-C1) J 1{2 ;! o /6"CJ (w,x' ,O,DX,)

/a —3(
" ad

_ r+3Q '
=1 ¢ { 5 Z(w-§°1 =9=1¢ > (c‘ L L(w,x1,0,0,,))}
omi r

l==% j=0 r= J+1 /bwr’a'Cj

61,3{ 0 Dx|)}](Q-1h)(W x? )dw

X(Q'1h)(w,x')dw.

Further by lemma 1.2.2,

Jxm (&)-w) (3r+JQ
= - Zmlf{ Z 2—‘(""’:1) i 1( Z :1 l(w x! O’Dx'))}

== j=0 r=j+1 T nw /E’CJ

X(Q™"h) (w,x')dw.
Consequently
(1.5) h (¢1,x') =
L6 Z<&71~w> (L5 e

Tooeo 52 O(r+3+1)! It

,523+r+1Q

L(w,x',0,D,,))(Q7"8) (w, x" )aw,

From this expression, h2(§1,x') is a polynomial in C1 of degree less
than m-1 with coefficients in germs of Cy at (xé;i?é).
Next we will prove the uniqueness of this decomposition. To

do so, it is sufficient to prove that

(1.6) 'jé(w-q)”(q‘*h)(w,x:)dw =0

11



as a section of C®& on K for every he€ EE% CN!(Xé;iYé)‘C1 . Since h

is a section defined on H and Q is invertible on Hvint(X) by the

assumption, the above integral is equal to
( -1 -1 t
w=6,)71(Q7'h) (w,x*)aw
wl=1/R

-f g @ G xay
wl =R

for sufficiently small R>0 such tnat {|4|<R™'{DE. Write that

m .
P(x,D,) = Dx’:‘ + 32::1 DX‘:'Jps(x,Dx,),

where order of Ps < J and [Ps,‘aq] =0. Then by Proposition 1.1.4
+ +\=1 . |
Q=pk~P(§k) is written as follows,
m-j . ~1 -1
) P3(¥1prxk ,x2,..,xk_1,xk+waka R CER

k

m
™+ 25 (Fiwd,
K j=1

(?1wa

...,xn;Dx.)

In the coordinate system (v=w"1,x2,..,xn),

Mo g (4 5 <2 -1 '
) Ps(—lv DVDXI s X0y eesXy_qs

m
Q = (Fiv''D )™ + 2 (FivT'D {

k j=1 *k
-1

-1
-vD_D +D
VX, Xy

m
)m + 2:1($iDX
J::

X peats e+ r%gil)

_ o temf m-j_Jj=1 SO -1 _
=V '{(+1DX )YV Ps(_lv DVka »Xopews Xy 4

k k

-1 =1 i -1
Xk-VDvak +ka 'xk+1""'xn’Dx')V}v g
m-1 m-1
Therefore for h(w,x')= 23 £ (x)v Te 2. C } Vs vwt
’ r=0 T r=0 N (x6,176) ’

m- 1
7i(1-¢,v)7 Q) (v x)=(1-¢v) T (R(v, %1, Dy, Dy ))'1(Zofr(x' v,
I'=

m o

- : m oy M=J d=1p1 (452 -1
where R(v,x',Dv,Dx,) = (¥1ka) + 321 (+1ka) v Psﬁ_lv DVka ’
-1

—vD.D_~ 14D
VvV X

L Px 1,...,xn;Dx,)v is an

XoseeesXy 40Xk s Xyt
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invertible pseudo-differential operator in (v,x') defined in the
neighborhood of {(v=0,x'=x6;iﬁ6dx')}. So the residue of
1[%1-§3v)"1(Q-1h)(v'1,x') at v=0 is equal to zero. That is to say,

the equation (1.6) holds., Thus the proof is completed.

Remark From the proof it is easily understood that the

hypothesis of the analyticity of ¥ =K is unnecessary.

Corollary 1.2.4. (The division theorem for CN!X)

We fix a point (xé;iné)EiS*N. Let K be a compact subset of
1N ((xg310))= (0, x5 &y, 11 )E SEX; x'=x4, q'=n4} and P(x,D ) be a
pseudo-differential operator of finite order defined in the neigh-
borhood of 1'1((x6;iﬂé)). Assume that the principal éymbol G(P) of
P never vanishes on AK=K~int(K). Then, putting s=(the number of
zeros of ¢(P) in int(X)), the following direct decomﬁosition of

sections of CNIX holds,
S-1
[, ey i) = 2D K, cp y) © % Oy (Xb;iﬂé)'g(r)(x1)

Proof Remarking that P is decomposed into the product
P=P'P" of pseudo-differential operators defined on 2f1((x6;iQ6)),
where P" is invertible on K and P' is of the form |

S=1

S
D.° + P1(x,Dx,)Dx1

X, + et Ps(x!Dxl)'

this decomposition is a direct consequence of Theorem 1.2.3.

13



§2. Micro local boundary value problems,

Through this section we formulate boundary value problems in
micro local sense and introduce some general tools to treat them,
Especially the micro local Green's formula will be indispensable

for the study of mixed boundary value problems.

2.7 The concept of mildness at the boundary.

Let u(x) be a hyperfunction defined on Ua{xemn; x40, xkR}.

Then the boundary value u(+0,x') is not well-defined in general as
a hyperfunction in x', even if u(x) depends on the variable Xy anal-
ytically in U. But if u(x) is extensible to the neighborhood of
{x1=0, x'<R} as a hyperfunction with real analytic parameter Xx,,
the boundary value u(+0,x') is defined as the substitution u(0,x')
(see S-K-K (/O] CH I). In this section we extend this trace operation
to an operation on a wider class of hyperfunctions. In the sequel

a section of By defined on {xeﬁn;x1>0,lxh<€} with some £>0 is
identified with a germ of MO (By)/ HO(By) at x=0. We inherit the

notations M,N,M+,X,Y,..etc from \§1.

Definition 2.1.1. Let u(x) be a section of ?4§+(BM) defined in

.a neighborhood of xoeN. Then u(x) is said to be mild at X4 from the

positive side of N, if and only if u(x) is extensible to

*
Sy

with a section of Cy |y on G+, so it always defines a section of Cle

XAS§XAEN/§1(xO) as a section of Cy 4. In fact u(x) is identified

on a neighborhood of S§XnS§XnG+ﬁEN/§1(xO). Furthermore by Proposi-
0 : . .
tion 1.1.3 and the fact that 0+S§XAS§X(CN|X) has the unique conti-

nuation property along fibers of 7L:S§XAS§X—?N (see L) 4.3), the

extension of u(x) to S§XnS§Xnﬂﬁ/i1(xo) is unique if it exists,

14



Let v(x)=[u(x)) ve a germ of j4g+(BM)/ﬂ4g(BM) at x,EN, where u(x)
0 . . . 4
€)ﬁn+(BM)xo. Then v(x) is said to be mild at xo from the positive

side of N if and only if u(x) is mild at X, from the positive side
. 0 o ex ot
of N, Since ?4N(BM)CJEN/X*QN|X' this deflnltlon does not depend on

the choice of u(x).

Remark 2.1.2. From the definition, if u(x)ej43+(BM)/34§(BM)

is mild at xoeN, u is mild at x for sufficiently close x to Xq in N.
So mildness is a sheaf-theoretic concept. Hereafter by BN!M:

0 0] . .
D4M1(BM)/}4N(BMX]N is denoted and the sheaf * of germs of mild sec-
tions of BNIM+ from the positive (or negative) side of N is denoted

N A _ _
by BNlMi . Then BNIM1 is J}X-subsheaf of BNIM:'

Example 2.,1.3. Let P(x,Dx) be a differential operator of finite

order defined on the neighborhood of erN in M. Suppose that N is
non-characteristic with respect to P, Then every solution of P in

BNIMi!xO is mild at Xq from the positive (negative) side of N, In

fact, let u(x) be a germ of 34§+(BM) at x5 with Pu=f€j4g(BM). Then,
since P is invertible on S§X as a pseudo-differential operator by the
non-charactericity of N and f is identified with a section of CNIX

on ?ﬁN/i1(xo), p-lf gives the extension of u(x) to S§Xnﬁ§Xdﬁ&/i1(xo}

as a section of CNlX‘

Example 2.1.4. Let u(x) be a germ of By at xgeN. Suppose

that SS(u(x))niSﬁMnﬂf1(xo)=95s(that is, u is real analytic in the

direction transversal to N. See S-K-K (/0] CH I). Then u(x)‘int(Mi)

15



is mild at Xq from the positive side (negative side) of N. We leave
the proof of mildness of uw in the later part of this sectionm, where

the more intuitive explanation of mildness will be given.

To proceed to the micro-localization of mildness, we introduce

the sheaf C, i S*N
the shea N M+ on i .

¥* % o0 .
Definition 2.1.5. We define SyX  and T canonically as
follows.
ZOO
s§x°°= (sﬁx\s’;x)“is*Nx{w}-»-——————e iS*N
) w W
(ch'.;C»]yi)z“)r (O'x';wvi,l') (x';iy(')

Clearly S§X“§ is a real analytic manifold and fﬂ is a real analytic

projection with fiber pl=gY{ee} . Putting i=the injection :

SyX\SYX —» S}X, we define

w .
Cnix = 1*(CleIs§X\s§x)°

as a sheaf on S§X¢i Set the projection

1t s Gnsix={(0,x'52,,171)ESEX; Redy 2 0, 'k0F —>(x'3ip')eis N,

N\
then the sheaf CNIM+ on iS*N is defined as

Q>

+ (o]
wie = LxCouapx NCOnix i5* N ntooy / ToxOmix »

00 60 . A .
Here we remark that ©,Cy .y = ZuCy x - Obviously Cyy, is a

15xJ y-module.

A
Furthermore, to analyse the relation of By, and .T*§+(BM) we

: Q¥
introduce the sheaf CNIM+ on iS*N,

16



Definition 2.1.6. CNI'M-n- is defined as the image sheaf under

the sheaf homomorphism
-11(0 +
Ty ﬂM+(BM)lN ’”“——';?’*(CMHX,G?\S;X)‘
This is, of course, isomorphic to the image sheaf under

705 s () [y ——— U O |19

. . . . -1
since CMHX]I -———>CMII is injective, CNIM+ is a 7BN agx-module,

but not a I, :Px-module.

Fix a coordinate (x1,x') of M and the induced sheaf isomorphism

Fii ; CNIX[Uﬁ ——>CG’[U§ ( £&=x1). .Then the ‘sh’eaf homomorphism on Vﬁ:

{(x';iq')etRn‘1xiRn"1;’Zk= e}

(2.1) 9 P Cype ——> ¥(00]g,)

'is obtained, where ¥ 1is a projection given by

3 . - . -1
Uy NG+ ={(0, %3¢, 4N )eR bexig™T;Re 8,50, = €7 —> V.

Surely this is injective by Proposition 1.1.3. So we can study

Image(qk) instead of CNIM+’

NS

la¥4
Definition 2.1.7. Set L,L+,L,L+ and 7L, X  as follows.

L= BUR™ Ve {(,,x7)=(4), Xy o2 )€ (€400} )xRP™1 ]

U

L+=%{P1len'1={(C1,x')éL; Re&, 20 or § =ocof

T = pxis*R -1={(C1,lx';i’]')e(ﬂl“%w})an'1x(ian"1/£R+)}

U
Th=3p 18R = {(4,,x 15101 )€T; Red, 2 0 or &= oo}

17



~ ~/
—TC L int(L+) C-—-—-&'----?L-f
U ol : a T
L+ int(L+) —~—> 14

§RC R

T
—_

~/
where int(L+)=I+n {Re §,>0, & %}, int(I+)=L+n{Re 5170, &xoof.
We denote by BO- the sheaf of germs of hyperfunctions on L=p 'x g2~
depending holomorphically on C1. Then the sheaf CO+ is defined

~
on L+ as follows.,
o0 - .
Co% = Image of (1 Au(BO|s pcr,y) — Ae(CO] 4 (50y))
Cov coincides with CO” on int(E¥), but c&?:g}x*(cef]im'(ﬁ)) on 2Th.

In fact sections of CO+ have boundary values,

Proposition 2.1,8. The following injective sheaf homomorphism

is well-defined,

o0 b 0
(2.2) cor+| > MO )i
stxig¥pi-1 Fw stxpP=1 gy 1 s¥gh-1
\\
£(Gy,x") £(it+0,x")

where S'iSR™1={(g,x';in")el’; Rel =0 or & =oo}, skR™ e (2, x1)
¢xR™1; Rel,=0 or & =oof, and STiSRPTIY [ (t,x75i,1N1) e(RViso})x
R 'x (iR®/R+); T=0} F={(t,x';i7,1'); TLO}.

Conversely the Cauchy integral

, -1 £(t,x'), 1 f )
(2.3) h(f(t,x )):z/[;uéco} ZVEi'i’(c-{‘]; )ld't =\/{RU{0¢} 271-;_ (i-£%1)(§+10)ldu

defined as a sheaf homomoxrphism

hi 0L (HRCe ) ——> ojoor

| -)|
1XRn-1 S1XiSﬁRn'

where oL: STxiS*R*1—is*R™ ', of : K iR T—is*RE!  are

18



projections, gives the left inverse of

b ;  Otcor > o, (C ; 0eq)s

sTxp?~ 1| s'xig*R

that is, heb=identity.

Proof The well-definedness of (2.2) is reduced to the N-regular-
ity of the partial Cauchy-Riemann equation by P.Schapira fiQ-] .
Here we prove this only by properties of CM+|X' Without loss of
generality we may prove the well-definedness of b in (2.2) only on
(8100 V={(t,x" i )RR IXaR™™T 5 M =1} Y USAT= {0, x 518,17 7) 5 =1}
Then, according to Theorem 4.2.12 §4 (¥ ], Cé:lﬁxvg is isomorphic

s

: +
to CM+IX[U;nI by the quantize@ Legendre transform @, . Therefore,

: : . : 0
using the sheaf imbedding i . : CM+IX}I<;“7Q4}MKCM)]I (Theorem 4.2,8
§4( % 1), b is written as the composite homomorphism

1) + ?

. +y=1 oo 0
oio(B)) : CG%’ + — %4 (c
ﬁn @n van F van

RxR™™

~/, .
where ﬁ; is the quantized Legendre transform for microfunctions

given by

(2.4) i(n=1)1 f g(y)dydl,----a9, .

(-2ni)*J ™ (<xt-yt, -y, 1+10)”

In fact this homomorphism is injective and we see that it is compat-

ible with the trace homomorphism

K*(Bo']int(m)){fam —_—> Bﬁxﬁnq
U
f(§1,x') f§;t+0,x’)

as follows, Let f(§1,x') be a germ of K*(BGWint(L+)) at (ito,xé)
€9L+, By the partial flabbiness of BY¥ with respect to the real
parameter x' (see Lemma 4.2.16 §4 [ 8 1), we may assume f(@},x')
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is a section of By defined on {Z,e€; |£-ity|<¥, Re§, > Ofx R*1 with

support in {(51,x')€®1&1n"1; \x'-xc')l=<1}. So we have

+y=1 ...!n..2!1 f f(€19y')dy' . Y
(pn) ({£]) = of (=21 i)n- { mn-1 (<z,§>—<y',§'>)n’{§cn“l d (C ))"

Therefore io (p;)'1. (I£]) =

_ f(in +Otyi)dY'
[y 2 -

(-2mi )n- go-1 (x1ﬂ1+<x'—y',q'>+10)n'1

This integral is well-defined as an integral transformation for micro-
functions, in fact it gives the inverse transformation of (2.4).

(cf. Theorem 4.2.8 f4 [ §1]) so §ioi°(§;)'1([fl)= {f(it"'o'x')JIRxV* .
n

0
Next, let g(t,x') be a germ of (3“{‘ (c ) ) at
' ’ *IP gl g1 gk s s*RP-T
e is*R™1, By the flabbiness of C and the fundamental exact
-1

sequence, there exists a hyperfunction f(t,x') defined on S1>(IR

such that [f(t,x')] =g(t,x') on 0(:'1(}_)0) and SS(f)CF. So

AL, ,x") ‘fmvew} -5 %gzq—;ﬂlmt

flu” ,x') .
( ‘f RV} - (i-ulé1)'(ﬁ+10)ldu )

is a hyperfunction with holomorphic parameter defined on {(4‘1,}:')
€CxIRn'1; Re{1 >’O}. On the other hand, by the theory of integration
for microfunctions, the spectre of A(§1,x') on {(C‘l,x';i))'dx');ReQ?O,
(x‘;iﬂ')zpo} is uniquely determined as a section of microfunctions
with holomorphic parameter only by g(t,x'). So h defines a sheaf

-+ ol

. 0]
homomorphism (X (H (C )
O E gL rP 17 5T ¥R

Let f(§1,x') be a gex_'ni of O(:COZ at poeiS*an"1. So (§‘1+1)f(l,°1,x')

20



is also a germ of 0(:0094? at the same point. Then by the theory of
boundary value problems for hyperfunctions (Komatsu—-Kawai[ ‘? J ’

Schapira[//]) there exists a unique section g(&,,x') of C
1 ,P1an-1

(we write :1-ss+it) on a neighborhood of P1x4po}-{(s,t,x';ic',i'c,i*(')
e(\Rx[RUi-of)xmn’1x(iR1+n/R+); =T=0, (x';iq')zpoz( with support in

{(s,t,x';i@,i’t,i?'); 820 or s+it=0} satisfying
8(81sx') = (5 +1)£(8,,x') on P! xfpgini 5501

and

By 8Gyx') = 3(1418)£(i140,x')8(s)al,  on B xipyf,
1

where the last condition for §1=‘>0 means that, putting w=u+iv=2;;1,‘

awg(wq,x')u %%% f((iv+0)“1,x')8(u)d§ .

‘ ~

So - (C1+1 )'1(4'1-(’1) 1g(2,°1,x')d?;1 is well-defined as a differential
S

form defined on {(2‘;,@:,:{';i’}'dx')erIP1xiS*an'1; Re);’1 >0, Zﬁa,'

(x';il'l')-cpo}, in addition,

dc1{(§°1+1)'1(§‘1-2; )”1g(C1,x‘ )d4°1’] = i(it-%)qf(imo,x')S(s)ds/\dt

(= -4, {(1+w)""I (1-wrf; )"1g(w"1,x' )dw}z -i(1-iv2'; )"1 (:Lv-x-O)'df((iV«»O)"1 ,X1)

X X(u)du/\dv ).

Therefore h(f(it+0,x')) =ﬁ{u{w} éiﬁ(it-g;)"1f(it+o,x')idt

=fP1 i?} E%Edﬁ{({’1+1)‘1(&‘1—?;)‘%(2,‘1.1(')&51} .
=154

o~/
Now we confine &‘1 in E-{Z‘je@; IZ?;-ZK 1% , so

=./;,1 2—%(1{’1{ (1- XE(C1))(Cf"")-1(§1-&:)"18(§’1,X' )dc,‘f |
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* fw_iz./d 5%3%1{ Xp(2)(8-8) 7128, x)agh,

where ?QE(§1) is the characteristic function of EC:P1, and by the

formula of Stokes the first term vanishes. Consequently

h(f(it+o'x'))=\/[>1 {8 2—7%14'1 X (8)(C-E) 7 2(5y, x el
-{&y

.\A<1-2| =1 -2—711‘.3 (C1'2’1)-1f(§1,x')d¢1 = f(z],x')

Considering the identity theorem, this shows heb(f)=f.

+ B
Corollary 2.1.9. The sheaf O(,CO% is flabby.

Proof Consider the following decomposition of identity.

Micdt —2 5 o (M(C

a-17| 1 pe) —— %00%
s'xBr™ ' s xis¥RMT
heb = identity.

So the flabbiness of (X:Cd? follows from the flabbiness of the sheaf

of microfunctions C

Proposition 2.1.10. In the sheaf homomorphism gq, of (2.1),

Image(qk) coincides with the sheaf d;cd:. Especially, since
flabbiness is a local property, CNIM+ is flabby.

Proof We inherit the notations from the preceding propositions,
The proof of Image(qk)c:(XICé: is included in the proof of Theorem
4.2.12 f4 08 1( "G(C1,x')" represents a section of a;cd? ), so we
omit it here. Iet g(C1,x') be a germ of <x;céﬁ at po=(x6;176)€iSﬂRn'1.
Then, by the proof of Proposition 2.1.8, g(§1,x‘) is represented by
a section A(C1,x') of BO’defined on {(§1,x')erR "1;Re§1>03. Further
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by the partial flabbiness of BY (Lemma 4.2.16 [ ¥ ]) we may assume
that the support of A(C1,x') is contained in {(C1,x'); k'-x4l S 1}.
Therefore we have

| , A( , ')d { :
)" () = o(- iﬁi@)———{f 1.7 0 }ij-.-.iad‘(é')).

(-2n)?~ TV R*Y (<2, -¢yt, &15) R

On the other hand G(z,f1,..g..,§n) =
k

- B e Gaeang

(’zni)n”1 n-1 (<zr§7‘<Y'!§'>)n‘1

fgymis

is holomorphic on D={(2,§1,,.Y,.,tn)ecnxcn"1; -Re<z,8> > (x4l +1)|Reg ],
k

Re§1)’0}, and so, by the theory of cohomological Radon transformations

(see.§2.1 and 2.2[ % }), G(z,C1,.£..,§n)dG(§) defines an element of

Hn°1uz, G’n), where
C

= 2¢€%; -Re<z,2>>0}.
Ce{:e’(ﬂn;Re§1>0,Re§"O:¢k=i€k { ’ ’§ }

Note that

Seeh-de - a ¢?; - N>4 0
1520 ’lelﬁn.’?k----ef{ze x,84+<y, 1> £ 0f

= {zsmn; x1go, y1=”'1\':“"=yn=09 éyké()}

and Hn°1(JZ, Ogn) = Hg(ﬂn, e;n), Hence GAG6(&) defines an element ¢

of Hg(cn, Oén)' Further, using the exact sequence
cn)

n n
Hy, (€%, e;n) —?H‘S‘(cn,%n) —> Hg_y, ({z¢C"; £y, <0} , &

where M+={z6®n;1mz=0, Rez120}, ¢ is represented by an element of

n ,.n n n n .
Hy, (€7, Gén) = rh*(ﬁ '%Rn) because HS_M+({zeC ; eyk<0§'0én) is
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isomorphic to Hn""({zecn;eyk<o}\{x1go,y1=~-‘{5-—=yn=o§,%n)
C:’Hn‘1((mn‘1-{x1g0,y1=~N~=yn_1a0})X{zeC;Rez>0§,ng)

and this is zero by the Malgrange's vanishing theorem with Stein
holomorphic parameter (cf. Lemma 4.2.16[_% ]). Considering the

canonical homomorphism
N, sn £ +
Hg(€%, & q) > [ 'l*(cmle‘é%\s;x))-

this leads to (@i)’1(g)e CN!M+[p . So the proof is completed.
0 .

Corollary 2.1.11. A germ f(x) of ZI(CM+IX[§4\S*X) at poeiS*N.
Y

belongs to CN!M+ » in other words f is represented by a germ of
34§+(BM) at ﬂXpo), if and only if the following condition holds.
Choosing a local coordinate (x1,x') of M with po=(x6;176)evi,
then Bi(f)(w'1,x') is represented by a section of BY on i(w,x')e
cxan"; Rew)O,leS‘,lx'-xéh:?} as a section of C® near {w=0,x'=xé,
n'=hbie
In particular, the following pseudo-differential operators

operate on CNIM+ as sheaf homomorphisms.
finite
P = Z\ Pj(vaxl)DxJ
j=0 1
where {pj(x,Dx')S are pseudo-differential operators commuting with x,.
Proof These are direct consequences from Theorem 4.2.12 [ § ]

and Proposition 2.,1.10. And the last assertion follows from the

explicit form of ﬁ§°P°(5i)h1 (cf. Theorem 1.2.3) :
finite
- -1 -1 =1 - .
j‘-z——-’a Pj(lﬁw D“'I)xk’ xz, . .,Xk_1,Xk—WDwak+ka,xk+1’ o "xn;Dxl)(-lew Tka)J .

(Recall that CO+ is a JDX-module).
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A ,
As for C , we have the following theorem,

NiM+

Theorem 2.1.12. é\mm is a soft sheaf on iS*N.

Proof To simplify the proof, we assume M=ﬁna(x1,x') and N=
{x1=0}. Then iS*R™ ' is covered by open sets {Vi}k’& (Vﬁ:{(x‘;iql)e

rRAIx 171 ,=€} ), so we have only to show the following statement.

¥ For any open subset V of Vi and any section ce,[kvnvi,6N1M+) such

Rn--1

that the closure of support(c)anVi in iS* is contained in Ve,

A .
there exists a section c'élz% (Vﬁ, CN!M+) satisfying

vai)-prOper
¢'=c on V,"
We prove this for the case of k=n &=+1, By the quantized Legendre

+ o] ig 4 i
transform @, CNIXIVﬁXkﬂi is isomorphic to /gCG;an_1%»}x.v+
n

, where
i €xis*RY 1P xis"R™ ! is the imbedding. On the other hand, the
integral transformation.

(2.5) B(£)(G0x') = = 75 [ iger %ﬁﬁﬁds

with !§1I>R.for fe M, CE and sufficiently large R>0
(Y ,

len'1l{°0}xiS*an'1'
induces an injection - on ﬁ”}XiS*Rn"1

/oy C— C

E : olvg
M o xR~ oo} CxR P xR 1| {0}

where {e¢} means {oo}xis*an“1 and  ((: CXiS*\Rn"1~—>iS*an"1 is

the projection. In fact E°E=E and E(f)-fe &, CO n-q for any
: CxR
fe CY . Hence E°8' gives the injective sheaf homomorp-
ML ai=1l1e0} 8n & J P

. +
hism on Vn

A + o
(2.6) T3 Oy = Ly x0ON x|t 15/ LxCxix 20 oo ooy

Let V be an open subset of V) and c be a section of IYV v 8 )
P n M YNIM+
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such that the closure of s’uppor'l:(c)(\'\?rxv;u1 is contained in V;. Then

T(c) is a section of 00’1 ne1 defined on a neighborhood of

PxR™

-{OOI)((VA\I;). By the assumption for c, T(c) is a section of CO/1 ne1
P 'xr%!

on i(g‘“x';i’\')elP1xiS*Rn'1;(x';ivl' JEV and R(x‘)g__\§’1\§_ oo} for some

n-1 Setting

positive valued real analytic function R(x') defined in R
‘the real submanifold L='{(C1,x')elP1x1Rn-1; \4’1\ =R(x')§, the substitution
of T(c)(§‘1,x') on L is a section of Cy on {(R(x')eie,x‘;ifcd9+i"l'dx');
(x';in')eV, T=0}. So by the flabbiness of Cy and the assumption for
¢, there exists a section g(4,x') of Cy on {(R(x')eie,x';iq'dx');

(x';i')')evg}with ¥ =proper support, where
WA {(R(x')eie,x';i”l'dx');(x';irz')evzf _ x1eRM TN
is the projection. Using g(6,x'), T(c)(§1,x') is extended to

{(4‘1,x';i)]')e&P1xiS*uRn'1; R(x')<l§1|§oo,(x';irl')ev;:} as a section of

cr given by
P 1 xiwﬁn- 1

21 . .
28x) = = 7 [ R(if‘;;;‘ezq R(x')e® 6.
1

Next, recall that ﬁ;’l(c) defines a section g of CO’? on {§1e%&31;§’1#w}

modulo of,CO” at every point of V and T(c)-ge X C0® . So
C Cx

2(c) € [(v, ®jco%) and  £(%,,x')€ f’((oc+)'1(V).Cozi)(\f({oO}xV;,CG/1 Rn_j)
P 'x

oQ
C[’(%E’1>~VU{°°}XV£,CO’+). Now we consider the boundary value b(f)=

£(it+0,x') defined in (2.2) Proposition 2.1.8, which is a section

0 . . - .

of-~34F(cS1x[Rn_1) on {(t,x';i}rdx") €(RY4eot)x1 ¥R 5 (x 15101 )€V, ox

t=oo and (x';ik')ev’}. Since fe€[ (v}, oo )
){ n (TLN‘V;)-proper n’ [P1Xan-14°°?xV:l ’

by the flabbiness of 340(C ), there exists a section e(t,x')

of NO(c ) on 8'xV! such that e(t,x')=f(it+0,x') on
F S1x[Rn1 n
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{(t,x';iﬂ!dx')es1xvg; (x';iq')ev or t=oot and the support of e(t,x')
is A -proper with J&:'S1xvga(t,x';iQ')——)x'eRn"1. Then h(e(t,x'))
(see (2,3) Proposition 2,1.8) is a section of

(v?

n,(X;Céa) . which coincides with f=T(c) on V by

I}m]v+)—proper
Propogition‘2.1.8. Furthermore, by the change of the path of integ-
ration in (2.3), we see that h(e)(C1,x') is also holomorphic on
{(§1,x';17*); §1=oo,(x';iq')ev;} (In this case tee(t,z Y=t -£(it+0,x")
is holomorphic on $x}xV;.). Therefore Qgg)'1(h(e))vis a section of

+ + o0 . . : .
I?R1V+)-proper(vn’ Q*CM+IX(\CNth“ﬁx jgxy) vwhich coincides with ¢

modulo 7,Cp y on V. This completes the proof.

To obtain the explicit representations of sections of CNIM+ and

A

‘CN|M+ , we consider the monoidal transform of X with center M+,

Definition 2.,1.13. We inherit the notations from 1.1, The

normal spherical bundle SM*X of M+ in X and the projection ‘TM+/X

are defined as follows,

TM+/X

> M+,

- Uy |
Sy X = (SNX—SNM+) 1SM!M+
W W

%

(O,xf;w1=u1+iv1,iv')
where SyM+=1{(0,x';+1,0)] and iSM‘N={(O,x';iv)} is identified with

{(O,x';+a9+iv1,iv')ESNX—SNM+}. Then the monoidal transform of X

with center M+ is canonically defined as
NS
My o= (x-me)H sy %,

which is equipped with the natural topology (see Proposition 4.1.4

[ 8]). Further we define the closed subset D+ of SM+X£:Sﬁ+X as
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D+ = %SM+XM>iS§HX = {(xj,x';iv;iQ); x40, <v,h>2 0}
U{(O,x';w1,iv';§1,i>‘l'); -Re(w,Z,)+<v', "> 20, Re&, 20, (w,,iv")4(1,0)
L%ﬁo,x';+oo+iv1,iv';iq); <y,7>g:0}

and /\/
Déyg+ o (X=M+)M Dy,

So we have the following commutatiw;e\/diagram, where T, T, T, T

are the canonical projections. D*”X+ is equipped with the weakest
‘ topologyv under which 7' is continuous
fm/ \'r ~and D+ has the orlglnal topology as a
closed subset of D+ . Then the topology

Mtyx
\ / of “*X* defined in Definition 4.1.1[ § ]

coincides with the strongest topology under

which <' is continuous (cf. Proposition 4.1.4[% 1). In particular
' is a continuous, proper, separated and surjective mapping with

contractible fibers, So we have the following isomorphism,

~ -1 -1
Lemma 2.1.14. Cyy|x < RTy U7 R +Xfc 0% n]®Wy, /x
Proof This is a direct consequence from the definition of

Cysix (see Definition 4.1.2[8 ]) and Proposition 1.2.2 . S-k-x [[0].

Definition 2.1.15. We denote by L S, XN (N). Then the

closed subset F+ of L and the projection § are introduced as follows.

F+ ={(o,x';w1,iv')eL; v,=0,0<u, € +ool -——9—-—-—->(X';iv')€iSN

Indeed these are coordinate-invariant. Putting j: X=M+ C—-7M+X, we

define

~ : A~ -1
Qus = 3*(‘93(|x-M+)l Sy, X ' G+ T Ry, /T

- 28



and the sheaves Kﬁ+ , §§+ on iSN as follows.

~ ~v ~o 1 [
R = Ou(yg|ps) By, = R G*RW%+(C%M+1L)
Lemma 2.1.16, We have the following quasi-isomorphismsS.
-1 ~ N’ ~
Rlg, x T U < Oy, RO, (W, | 5.) & B,
And therefore  Cy, .,y <Rt} ‘Tc."1qM+[n-1]®CJM+/X .
Proof These follow from the vanishing theorem of cohomology

groups of open convex sets in ¢® with coefficients in holomorphic

functions.

A4 )
Now, to obtain the intuitive explanations of 2§+ and BM+’ we will
express germs of these sheaves as holomorphic functions.
Set M:Rna(x1,x') N={x1=0} M+'={x1zof and a directed set X

of positive continuous functions on RE ={(t,s)emz; £20,s20} as

(2:7) ¥ ={nec®®?) ; n20,h(t,0)=0,%h/2s<c’(R2),rh/?s 20,%h/05(0,0)=0f

with the natural order ( hé¢h'<> h(t,s)£h'(t,s) for every (t,s)).
Then the stalk of A, —at (0;i0/0x_)€iSR™™" is given by

(2.8) X&+,(O;i©/®xn) = %%QO I?D?' Gén)’

Fig.2.1 (n=2)
where Dg={zeCn; lzi< & ,

1 NI DS‘
To> F W+t gl + gl X(=x00f (X(e) ) (
bd - -~ - - -
is the Heaviside function) and the stalk 2y ‘
|
of ﬁ;; at (O;fbﬁbxn) is given by L, !
| X
1
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B = lim H} (D~, &)
(2.9) Bu+|(0ji0/0x ) = Lim 5, Tn
n ?~>+0
heX 4
= g [opnsy,000) 7 Lo o),
Fig.2.2 (n=2) where S, is a closed subset of ¢? of

the form : S ={zeC”; Iz £ 1(+0,ly )]
U{ zeC?; ;y1\éh(x1,{y'[), X532 0} for
heX.

Remark 2.1.17 The domain of def-

ining functions of germs of §;+, Dg\Sh

in (2.9), is not Stein in general. The

auther does not know the envelope of holomorphy of such a domain,

Proposition 2.1.18 The following injective sheaf homomorphisms

are canonicélly defined .

By, W & > Ty Joby, (By)

and

ﬂﬁ; ¢ 2 4 ﬁ;; ‘“"—"—’fIN1}4ﬁ+(BM)
v
f(z) —> [21:1 f(z)log zJ v b(£(x,,2")¥(x, W)

Here we remark that ¢ is not a 't§143k-homomorphism, in fact, the

equation
Ly _ 2 _ -1
c(fa ) = /az1c(f) - 2mi[f(o'zt)z1 1

holds.,
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Proof To explain b and ¢ we use the expressions in (2.8) and
. . 1
(2.9). Note that, setting E$={zewn; lai< ¥, yh>-§([yﬂ +eemet |y _10} ,

the isomorphism
H;hw , O )& H;hu:g. o )= [’(Eg\sh.eég / es,00,)

holds for sufficiently small &>0. Taking a holomorphic function
f(z)e[YEg\Sh,G/n), we define a section of IY{&J<8},B n) as
C R

b(£) = o(£(2)| (B~ Sy)n{y,>0H) - b(2(2) (BgnSyndy < 0} *

In fact the boundary values in the right hand side are determined if
the orientation of N is given, and clearly the support of b(f) is
contained in M+. Further by the theorem of the edge of the wedge

this induces the injective homomorphism
. 5 O
b BM+!(O;i%/6xn) 3_}%M+(BM)10

It is easy to see that b defines canonically an injective sheaf home-

morphism : @ggacaN ""—“9‘I§134g+(BM)' Next, for a holomorphic

function on Dg, -é%zf(z)log z, 1is considered as a holomorphic func-

tion on DE\{zGCn; Rez130, Imz1=0}. So the sheaf homomorphism

~ NS
c i Ay, - > By,
y K
£(z) [-5m; £(z)log z,]

is well-defined and injective. PFurther this is independent of the

coordinate system.

Example 2.,1,19. By the preceding proposition we know that

o :
By, defines a germ of’34g+(BM). Conversely any germ of :%4§+(BM)
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is represented as a sum of boundary values of germs of ﬁM/+. Indeed

the cohomology group H ({zea) l2l<d' ,O’n)= Hn'1({(zl<5‘§\M+,®/n) is
c C

calculated by the Stein covering {wi.} with W— =flzi< 3t N

J=25 ey
({z €C; z1¢ [o, +00)}x{z'ed3n 1, Imz 0}) So any section of :HM+ M)

on ﬂxl<3} is written as a sum of boundary values of sections of

[’({zean; z1¢[o,+oo), |2]€ &, Imzz>0,..,Imzn>0},06n) ...etc.

The typical example of sections of ﬁ;M which does not belong to

Ry, is £(zt)zM2")

in z' at 2'=0 with A(z')%0,1,2,... Such a function is important

, where f£(z') and A(z') are holomorphic functions
in the theory of boundary value problems with regular singularities,

A
In the sequel, we prove that the mild hyperfunctions BN!M+

coincide with sums of boundary values of sections of ﬁ;;.

Lemma 2.1.20, The image of the imbedding bec ; %+®QNC——=}

5131‘74191+(BM) defined in Proposition 2.1.18 consists of mild hyperfun-

tions. Particularly the induced sheaf homomorphism
Ry,®Wy —>1y'B NrM+

is injective and (EI-\i1°gx - homomorphism. Indeed this coincides with
the homomorphism induced by

AM+®wN ? TN BNIM+ .

f(Z) b(f(z)!{Rez1>O})

Proof Fix a germ f(z) of ,‘&D/*I-r at (O'i’b/’ax )e Then c(f) =

2_nl:t‘(z)lo.g z,] defines not only a germ of B C'CN1JoFM+(BM) but
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also a germ of nﬁ/x*(CNlX‘S*XnS*X) In fact by moving the cut-off
hyperplane, [-éﬁif(z)log z,] deflnes an element of

H;(e('{zecn; [zi<& 9yn>"'g=( Iz1l + lyZi t----t ‘yn_1()}, %n)

1eiee[p,mo)} for every €€{0,27T], Further the trace

operations and the relative cohomology exact sequences induce the

with xe={zecn; z

natural homomorphisms as follows.

y2=-- - --~yn- -+o

Hg, (121<8 3> 5yl + 1) AGRERE ) LY >

n-1 1 N

—_— H 9“{3’2“""’3’ —O} Hizl<d , yn>-§lz1t}. G’én) 7
Hl’l

gm0, 41

On the other hand the stalk of C N

Nix 2t (o;eie,o)es§xns*x is isomor-

phic to

lim H ({|z1<%1, e' 0)

§$+0 A
with xﬁxs{zecn; Re(z1eie)231(y4ﬂ+!Im(z1eiB)D}. Combination of these
facts assures the existence of the homomorphism

A

-1
Ay, —> Ty "ZN/X*(CNnxls;;an*x)'

N
Thus the mildness of boc(ﬂ§+) is proved., The other claims are easily

verified,

Proposition 2.1.21. For any open subset U of iS*N with proper

' A
convex fibers, every section of Wﬁ*CNIM+ with ﬂﬁ|U-proper support
is identified with a section of K§+/1§1CZM on U° ( the polar set of
U), that is, |
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PAY No ~
Tl ) O e = Tylpedwhpe / Tyl ye
Proof Let us calculate,35=RGTNlU)!R1TCM+]X. By Lemma 2.1.16,
5§2:7R@INIU)'RZT(RT;73'-1QM+[§}\S*X)[n"1]' Consider the following
1 3
commutative diagram,

3L x Gee—i > 3L % (TnsEX) <2 3n%x ()N

I)\I( \“C" Q | N \"C" Q N\‘,tr
,N 7 - ) / YAl 2 (

N < idh < f Oy

Therefore ?Féfmﬁh*Rf,f’1R1Ti'1RQ§ ﬂr'1qM+[n-1], by the theorems
in CHI s-K-K[I|0],

Rty RE, (RLTE1 1) (Ri™") e~ Ty, [n=1)
-1

chN*Rf!m‘;(quf"”)i”7c' qy, (n-1]

R(TyofeLhet), (meiog") gy, (n-1)

[R("'C‘o'rcl ojofM ) ' ('Tf.'“io fn )—1qM+[n_1]

i

RGR(TC3o£m) (meief) Mgy (o=t

Set the continuous maps 848, @S follows.

- g g
31 x ()~ V() L ST xU 2 > I,
N N U
W V)
(O,x';w1,iv';§1,i7') (O,x';w1,iv';iQ') (O,x';w1,iv')

1 -
g5 ay, (n-11.

The fiber of g, is given by {(§1,?1)€R2; 512;0,-§1u1+71v1+<y',nr>g 0}

Note that g,g,=m'if". Therefore F & RT,Rg, R, ]

and so this is topologically isomorphic to
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R x[0,+00) on ({Vﬁo}U{v1=0,u1<O}U{u1=v1=o, <v', N> 2 0 n{uy +oo}

rx{0, 1] on {v,=0,u,50, <v', R">> 0Fn{uyx+oo}

R on {v1=0,u1>0,<v',‘1 v =O}U{v1=0,u1=+°¢>, SSAN R ] O}
L0, +%) on {u =+oQ , Vv, %0} |

® on {v =0, 04 u, g +%°, v, <of.

Using the isomorphism R3g1,g11(g2 qM+)'p = HJ(g11(po) C)® g2 qM+]p

{82 QM+l Pg for j=1 and POE{V1=O,O<u1g+oo,<v o”t'>20}

0 otherwise,

1g§1qm+cn‘1]ggE1TF+\F (qM+]F+)l{<v',‘q'>zO} ln-21,

where F- ={(0,x' W, iv! )eS X'N’ v,=0, Ozu z-oo}-, S0

we have Rg,, g;

nv -
F & RRe,, (85 Traapo (Ol 7l { <ve, oz op ) n-23.
. . . n-2, . -1
The fiber of g21{<v',ﬁ'>20} is given by {W'e€S ™ “;iNteUnmy ' (x'),
v,z O} and so this is topologically isomorphic to
on (x';iv')eU®={(x';iv')eisN; <v',M'>z 0 for V(x';i)\')éU}
[O,-i-OO)Xan-3 or ¢ otherwise.
Therefore R, (85 Tpinp- (qy,| F+)l‘f. <! ’1'>zo})[n -2 &
I

Fpanr- Q| 7o)l -1 w0y 2nd s0  F SRG (MG, p_ (o |pa) 071 (v0))

=R(TN1U°)*R9*’T}‘?+\F-(QM+lF+)' Consequently we have the isomorphism
1 4 + ov 1
ROy ) 1 RY Cpry  x € R Ty [0 ) RO« T inpo (U | 740«

Define the sheaf qy,uy_ on (SM+X-SNM-)U(SM_X—SNM+) as

UgVm- = { s on Sy, X=SyM-
Ay on SM_X-SNM+
= - i = Vp- =
because qy, = A holds on SNX SNM. Setting F= F+V F

{0, x"ju,,iv' )R IX( {1oajV R) X1 5272 } C (S, X=Sy=) V(S _X-SyM+) and
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the projection @I: F —>iSN, the following exact sequence on F holds,

0 ”‘“—9”7F+\F-(QM+lF+) E— qM+UM-VlF — qM-lP- —>0

S0 R (T y0)wROu Ty p (apgs | ) &
(TNIUO)*E;(QM_JF_) / (?N]Uo)*’é/*(qM-PUM-IF)’
since (ch|Uo)*e*]1; . (Qy,|p.) =0 and r! (TNon)*R?f*(qM+uM_IF)=o
+ N\ [ e

by the proper convexity of 6'1(U0). Thus, because of 1TCM+|X=O,

(2.11)  {(Tl g0 )xB/ Q| wt 7/ (Tylyo )b (aun | #)

SRy | ) B,y = (ENIU)!R1Z?CM+IX'

Put the imbedding k : §¥\S§X C——+S§X9°. Then we have a relative

cohomology exact sequence;
+ 1+
0 —> UChyix —>*uChp i xlimx 15% —7 R Oy — -
A
Recalling the natural homomorphism QTNIUO)*KE_ —> TyxCy . ©SPECI-

A
ally CTNIUO)*RE— ————>©LN|U),CNIM_ (see the preceding lemma),

we obtain the following natural homomorphisms.

~ g A gl +
(Ty] 0w by —E— oy ) Oy ——> | o)y (RaCygy x| oot x 1 55/ TaCopar X
—E s (| ) R 01041

So, since g"g'g 1is surjective by (2.11) and g" is injective, for
A
every germ e, of OFNlU)!CNlM- there exists a germ ezeImage(g) satis-
. + oo -
fying e,-e, € Kernel(g")=(Ty| ;) (%uCyys 1Oy xliony x 1 8*WAL¥Coam 1 x/ WeCyp XD
where we mean by 2;0M+|Xr«c§ﬁxl{«4xiS*N)AZ;CM-IX the sections of

C on {(O,x';{},iﬂ')ES§X\S*X; Re(1#0 or R<Ll§ﬂ<-+oo§ for suffi-

NIX Y
ciently large R> 0 which have boundary values on INSX as CMII

from the both sides '{Re§12_0}. Hence considering the boundary value
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operation induced by CMiIXlI 1y : CMII :

(g |50 4 (2aCori ) x0ON 1 x| too} x 1. 5% ML yx /7 LaCyy ) 2 1 ()]

injective ~ i+(f(x)I{Rec1>o})'i-(f(x>l{Re¢1<0})e Ty | ) 4 Ty (O 1)

e,~e, defines a germ of leU)!?-!(CMJI\S*X)= {[f(x)]EBM!N/a;MIN :
s8(£)NT T () € 170 3% T (i (aygyune ] 1) | 40) = | w0 Wi/ Qo[ -

Therefore e, also belongs to Image(g), that is,

1

(TNIU")*"“?(-/QMN —_— (WN‘U)!GNIM-

A A
is surjective. On the other hand O-a{ZM{N —-}BN{M_«-97§N*CN{M_
is exact because of 7:N/X*CN1X = CIMlN @j4§(BM) (see Proposition
1.1.1). Combination of this and the preceding lemma assures the‘inj-
P N A .
ectivity of 0TN'U°)*AM~/CIM!N '""(ﬂﬁwU)!CNiM-' Changing the

signature - into +, the proof is completed.

Corollary 2,1.22. We have the exact sequence of nglN-modules;

FAS N
0 ““‘*aMlN —> By e T2 Ty Oy —> O

A .
From this we obtain that BN|M+ is a soft sheaf on N.
Proof We have only to show the surjectivity of ﬁﬁlM+ -—

A AN s

WN*CNIM+' By the softness of CN!M+ and Proposition 2.1.21, any germ
A
of ’II.N*CNIM+ is represented by a sum of boundary values of sections
1A

of ﬁﬁ+. Recalling that ®ﬁ+C4JrN1BNIM+ , this assures the surjecti-

‘ A
vity. Moreover let S be a closed set in N and f be a section of BNIM+
on S. Remark that this sequence is globally exact on any open
subset of N due to the cohomological triviality of CZM. So combina-

A
tion of this fact and the softness of CNIM+ admits the existence of

a section f'GF(N’ﬁNtMJr) satisfying f'ls - féF(S, aM]N)’ So we



may assume that re['(u, §h|M+) and f'-feIﬁ(U,CZMlN) for a suitable
open neighborhood U of S. Choose a real analytic vector field 2
defined in a neighborhood of N in M which is transversal to N, and

a continuous function $P(x') defined on N with support in U such that
%=1 on a neighborhood of S. Then P(x') is extended by the vector
field 2 to a continuous function VV(x1,x') defined on a neighborhood
of N in M such that \["|N = . Note that the product (f'-i‘)')b' is
a well-defined continuous function defined on a neighborhood of N in
M satisfying (f'-f)vV= f'-f on a neighborhood of S in M. Moreover
F=(f'-f)#’ depends real analytically on the transversal parameter
x1_to N. Consequently f'-F is a mild hyperfunction from the positive

side of N satisfying f'-F=f on S. This completes the proof,

From Proposition 2.1.21 and its corollary we know that any gernm

A
°f Byime+
On the other hand as for the uniqueness of such a representation, we

is written as a sum of boundary values of sections of K&+.
have the following theoren.

Theorem 2.1.23. (The edge of the wedge theorem for 2;+)

i) Let X be a closed subset of iSN with connected fibers. We den-

ote by Y(K) the convex hull of K in each fiber. Then we have,

and when K=idSN,

e ~
aMl N 7 Tyxlyye

ii) Let K1,..,Km be closed subsets of iSN such that each Tyl k

J
is a surjective mapping with proper convex fibers. Then the
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following exact sequence holds for every open subset U of N,

m -1 ‘ ne F’l m -1 el
(2.13) ;;,(14‘2:11-1(?1“ (U),\“x(KjUKk),AM+)-——>j§1 [y (nky, By,)

where F1 and Fz are given as follows,

m
R0 £(a)) - 3@1 2 (2 (2)-1y(2))

Fyo @ £ (z)) = Z by (fgl{Rez >O})

o] s ¥ .
Further, if {1nt(K )}3 =1,2,,m cover iS'N, the homomorphism F, is
surjective,
Proof The results in i) are derived directly from Proposition

2 1.21. Let f=(f1,..,f ) be a section of Kernel(F ). Since

E: bK (f )=0, by Prop081t10n 2.1.21 the support of [f ] in CN!M is
=1 "]
contained in int(x° )n{\J int (K5 )}(: \) 1nt(KmnK°) \J 1nt(K(K UK. ) ).
3—.
Therefore by the softness of CNlM+ on?BN (U) there exzst sections
A - -
CipeesCy_q OF Oy, o0 TC;'(U) such that c +----+c . =[(fJonm;'(V)
A
and the support of ¢ in CNIM+ is contained in int(X(KaJKé)o) for
every j. On the other hand by Proposition 2.1.21 we can take sections
Eqseeer8y_q OF ﬁﬁ+ on T§1(U)AXTK£JK1),..,?§1(UhiXYK£JKm_1) respecti-
vely such that ¢ =[g1],...,cm 1=[gm__1]. Set g:(gjk)j’k €

@P(T-1(U)AnK Vk, ), Ry, ) as =3g.
Jok J
other components are equal to zero, So. the m-th component of f-F1(g)

gmj='gjm for every j and the

velongs to [(U, Qy|y) and hence it may be assumed to be zero. Con-
sequently the induction step on m completes the proof.

Corollary 2.1.24 (Canonical flabby extensions)
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. . . 1[0
We have a natural 1mbedd1ng of §k|M+ into j4M+(BM)N gs a sheaf
homomorphism on N,

A 0
ext 5 By ——s okl (By)y
which gives a right inverse of the natural homomorphism f%+g+(BM)N
~——>BN‘M+. Here we remark that ext is not a,lgx-homomorphism as

seen in Proposition 2.1.18, Moreover the micro local version of ext

is also defined as the following sheaf imbedding,
t . G _— C C 1lic
ex P OUNIM+ N|M+ *“M+| X?

which gives a right inverse of the homomorphism : CNIM+"_>2:CM+IX/Z*CNIX'
In fact the diagram :

1/\' A
Byime — > Cyims

o 2 o

-14,0
Ty F, (By) ———> Cyyus

™

: A
is commuting. Particularly for every fEEBN'M+, ext(£f) is one of the
extensions which have the smallest singular support in extensions to
0
(B«

From now on, we call ext(f) "the canonical flabby extension of

AN w
£eBy | pee
Proof These are direct consequences from Proposition 2.1.18

and the preceding theorem., The micro local version of ext is also

A
well-defined by using the softness of C and Proposition 2.1.21.

NIM+
Indeed the micro local version of ext coincides with the integral

transformation (@k)“lEoﬁk'introduced in (2.5) in Theorem 2.1.12.

Corollary 2.1.25 (Trace operator)
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By the trace homomorphism on iSN ;

a4

Be @ £(2) > £(0,2') € Uy ,

. v A .
the trace homomorphlsqsfor %N1M+ and CNIM+ are induced,
N
Trace : By M+ 2 f(x) —— f(+0,x')E»BN on N
Trace . © 3 f(x) —— £f(+0,x*)€C on iS*N
* NIM+ ’ N °
Certainly this is the natural extension of the substitution for

hyperfunctions with real analytic parameter.

Lemma 2.,1.26. Let X,Y be topological spaces and f ; X—>Y be

a continuous map. Suppose that any open subset of X and Y is para-

compact and there exists an increasing sequence {Ej}j=1 5 of
P Sy e
closed subsets of X satisfying that ;
od
E, Cint(E,) CE, Cint(E;)CE.C --- -- , \J E. =X and
1 2 2 ) 3 j=1

f!E H Ej —> Y is a proper map with void or contractible fibers
J
for every j.

Then for any complex 5; of sheaves on Y,
-1 ~ -
Rf,f % <« Rgyg 1%
holds, where g ; f(X)&~Y is the imbedding.
The relation between }40 (B,,) and B is clarified in the
« M+‘*"M‘N M+

following proposition.

Proposition 2.1.27. Let X be a closed subset of iS*N. Set
s= (V)N (K)Y(SEXAG+). Then, |
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i) if each fiber of K is non-void and proper convex,

o N
Ty | 1nt(x0)I*Bue Ty, 75l s ot 1/ 70)

that is , a section of $43+(BM)N whose singular support is contained
in 171(K)U{¢idx1§ is uniquely written as a boundary value of a
section of ﬁﬁ; on int(k°).

ii) if each fiber of V=iS*N-K is non-void and proper convex,

-1 ~
R" Tﬁ*mnzvo)a *RW%+(QM+IL) ¢'7tM+/X*Wé(CM+IXl§4) ’

where a is the antipodal map.

Proof Recalling Lemma 2.1.16, we have

(2.14) RJIM+/X*IRTS(CM+‘Xt€+) & wrm/i;m‘sm,;m“ (qM+‘ 1) [n-ﬂ_

= RnM+/X*Rw4Rﬂ;?_1( Wf—1(qm+lL)[n'1]

S)

= RTRR[" ™ (ay, | ) -1 -

©=1(s)
We denote by j the imbedding D¥- TT1(S)e=»D*. Then the following

triple is a triangle.

R7CIR]" 1
(2.15) =)™ (qM“"L)
k//// +1
Qg 1 ' >  BIRI, T (qM+| 1)

Note that the map TUej is written as the composite of 8o and 841

where 84 and g, are defined as follows.

- g : g
p*- = 1(s) 1 > L X (iS*N-K) ——2 > I
W L v
(O,x';w1,iv';§‘1,i’l') (O,x';w1,iv';i7') (O,X';W1,iV')

As seen in the proof of Proposition 2.1.21 the fiber of 84 is a non
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void convex set on {(O,x‘;w1,iv')QF+ or <v',M'>2 0} and is void on
the other point. Therefore by the preceding lemma we have
RSBy, 3™ ™ (g | 1) S Re Rk 85 (ayg, | )= RU8,| (8| )™ Cay, | 1)

where Xk ; Y={(0,x';w1,iv';11')€L § (1S*N-K); (O,x’;w1,iv')§F+ or
&', \'>2 0} C<——> L x (iS*N-K) is the imbedding. Hence from the
N

triangle in (2.15) , it follows that,

.16 ‘RI
(2.16) AT ©=1(s)

Consider the following triangle

-1 r~
T (qM+IL) *—i BdiStgaly(qM+tL)'

Raist, (o,

1

Rdistgz‘Y(qM+!L) —_— RhZ*IRdisth 5 (qM+;L)

(2.17)

attached to the triple of natural continuous maps as below.

g
Y ZIY > L

N . . —%&
L x (iS"N-K)
N

Let us calculate the other two complexes in (2.17). Firstly, by

the preceding lemma and the assumption for XK we see Rdisth (qM+lL)=O.
Secondly, Rh,,Rdist h7 1(q ‘ ) = Rh, RI" h (q i ), where

! h1 2 M+| L 2% P M+ |L7?
P ={(O,x';u1,iv';17')eF+ § (iS*N-K); <v',Q'>'< O} is a locally closed

subset of L X (iS*N-X),
N

= thz*u-'P[RIr 1(F ) 2 (qM'i'l )@IRhZ*FP 21‘RIFF+(QM+‘L)

since every point of iS*N-K has a neighborhood base consisting of

open convex sets. Therefore,
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. s -1 '
(2.18) mdlstgzly(qml L) 53 R, Mphg 'R, (g, | L)
Taking account of»the triangle

-1
Rh,Tphy RIp, (ay, | 1)

A(//// *“\\\\;t}

-1 -1
Rhoxhy B, (qy, [1) ———> Ry (b WF+(QM+[L)lh'2'1(F+)—P)
we have,
- A s
(2.19) Rhoxlphp Bl (ay, 1) = RdlSthéWF+(qM+!L)

vhere ny {(0,x';u1,iv';i"\')eF+§ (iS*N-K); <v', 0" 2 O} > F+.

From an easy application of the preceding lemma, we obtain that ;

(2,20) Rdisthéﬁﬁ’F+(qM+ lL)Q—’- mi*i-1R”,F+(qM+ ‘ 0 [2-nj ,

in the case i),

| Rr9"1(<v°)a>RFF+(qM+lL)

e o in the case ii).
(i: 07" (int(X"))<—>F+ ) ‘

Combination of these facts (2.14) ~(2.20) completes the proof.

As the final of § 2.1, we want to state a conjecture on the
fundamental relationship between.343+(BM) and Cyy,- Together with
the flabbiness of CNIM+' this means the decomposability of singulari-
ties of hyperfunctions with support in M+. This is true when n=2

(see the proof of Proposition 2.1.10);

Conjecture The following sequence is exact.

| _ e ‘
0—> ”M+/x*r§+ns§x(cmuxle+)“——"> Mt (Bdy ~—> T Oy gy —©
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2.2 Product and Green's formula.

A.Kaneko used effectively Green's formula to study singularities
of boundary values of hyperfunction solutions of boundary value pro-
blems ([ 2 1,({ 3 ] ). He constructed a defining function of a
fundamental solution of the adjoint system with small singularity
in the complex domain and made the product of this and the given sol-
ution of the original system as the trace of the product of two def=-
ining functions in the complex’domain. Here we inherit this idea

and generalize it in the micro local situation,

Definition 2,2.1 For a hyperfunction f(x) which is mild

from the positive side of N, we define the singular support of f near
N as,

85(f) & Ss(ext(f)) C i8*M|y, ,

A
where ext(f) is the canonical flabby extension of T €By Mee

The singular support of a section of 14§+(BM) has a fibrated

structure on N, that is,
sS(£)nme  (W)-15% = z‘1oz(ss(f)nﬂf1(N)-is§M)

for every feiﬁ4§+(BM), where 7 iS*M[N~iS§M ———> iS*N is the
prdjection (see Theorem 4,.3.3 [3:1,which is a direct consequence from

the unique cintinuation property of CM+]X)' So we define the reduced

singular support ¢-SS(f) of feje(ﬁ'*(vBM) on N as,

1-55(£) & L(sS(H)n  (W)-185M) C 15%W,
and furthermore
A
2 -SS(f) = 7-SS(ext(f)) for every fE'BNlM+'

Then, easily to see, the following relations hold.
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1-SS(£) = (the support of [£]in Cyy,)  for every feH) (By)y

9-SS(f) = (the support of [fl in 6N|M+) for every f€ ﬁﬁ|M+

A
Theorem 2.2.2 (Product : ﬁNlM+ %“”'% gN]M+ > By yy)

. A
+----+t >0 and (x';ivu)e?,-ss(f1),...,(x';i}zl;l)e

Hgo,..,tmgo with t1
Z-Ss(fm) is not equal to zero in each fiber of iT*N, the commutative

product of f1,...,fm

(x)®----- ®fm(x)~—————>f1(x)~--~fm(x)

. 0 0
is well defined as a section of BN!M+= }4M+(BM)/ﬂ4N(BM)lN. We assert
that the product f1(x)'-~-fm(x) is also mild and

2=55(£ -1 )C g-s5(£,)V -~~~ V9 -ss(£ ),

where K?’---VKm={(x';iQ')eiS*N ; ﬂ'=t1Q{+~~--+tmﬂ$ for some t,z0,

veeryt 20 With t +---+tm>'o and some (x';im)elgv...,(x';i‘f(&x)exm} ,

1
for subsets K,,...,K;  of iS*N,
Proof Through Proposition 2.1.21 Theorem 2.1.23 and the soft-

. ~s
ness of 6NlM+ the product operation on AM+ H

ﬁ}'H @ ’K{,H 3£(z)®g(z) —> f(Z)g(Z)G/K;H

induces an operation on sections of gNlM+' Obviously this coincides
with the ordinary product operation on BN!M+' So it follows that
£,(x)f,(x) is mild and 2-55(f,f,) C 2-5S(£, V1-55(£,). Repeating
this process, we reach the assertion.

Theorem 42‘2‘3 (Product : %NIM-l- (CX) ‘HICV)H(BM)N —_— ﬂﬁ+(BM)N )
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. N | .
Let f(x) be a section of BNIM+ and g(x) be a section of j4§+(BM)N‘
Suppose that Z-SS(f)hZ-SS(g)a=§0 . Then the product ;

£(x)Q g(x) —> f£(x)g(x)

is well-defined as a section of 34g+(BM), which coincides with the
ordinary product of two hyperfunctions in int(M+). And the following

estimate holds,

1-55(£g)C. 1-5S(£)V 1 -85(g)

Furthermore this definition satisfies the associatve law in the fol-

lowing sense.

£,(x)(£,(x)a(x)) = £,(x)(£,(x)g(x)) = (£,(x)f,(x))e(x)

for all f,,f,¢€ BN‘M+ and gej +(By)y such that t i+t attahL is

not zero in each fiber for t 20 t 20 t320 with t +t2+t3:>0 and

1
(x';i01)el-58(f,) (x';172)EZ-SS(f ) (x',lqs)el-SS(g)

We remark that , if g(x) is a section of J#N(BM), fg is also
a section of J%O(BM) '

Proof We fix an open subset U of N. Let f(x) be a section of
QN{M+ on U and g(x) be a section of J¥g+(BM)N on U satisfying that
Z-Ss(f)AZ—SS(g)a=75. First suppose that 7-SS(f) is contained in an
open subset V of iS*N[U with Val-SS(g)2= ¢ and each fiber of V is
non void and proper convex, By Proposition 2.1.21 £ is written as
the boundary value of a section F(z)érkvin,ﬁﬁ+) = f%6"1(V°)[U,6ai+lF+).
Since 2-55(g)C iS*N-V®, by Proposition 2.1.27 g is identified with
a section of ['(U, Rn°1T RW‘ SO «RI" (d%b Hﬁ) Therefore f(x)g(x)
is cohomologically well-deflned as a section of

o, Rn-1'cN*RIPVOR9* FA&ml(i))- Thus  £(x)g(x)e [(U, MO (B,),) end

Z-SS(fg)CliS*N-Va. On the other hand for any proper convex open sub-
set V' of is*N[U satisfying that VC V! CiS*N-(2-85(g))3, g is identi-
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fied with a section of ]ﬁ(U, RnwttN*mnkv,)ORG*RH}+(QM+1L))' Noting

that (V')° € v°, this shows f(x)g(x) is also defined as a section

of (v, Rn'1'CN*RH’(V')OERG*RK’F+(QM+[L))={h(x)eP(U.9‘(§+(BM)N)SZ~SS(11)

c:iS*N~(V')a}. Because these definitions of product are compatible

with each other we obtain that
1-s8(£e) © (N (87| -(V)®)

where V' moves over proper convex open subsets of iS*NlU such that

VCV'CiS*N-(7-SS(g))2. Let (x*';iq') be a point of f\(iS*NIU-(V')a).
Vl

Then, easily to see, T({(x';-iQ')PJV)r\Z-SS(g)a%¢ . In other words
(x';iQ')é vV2-SS(g). Therefore we have the following estimate.

(2.21) 9-58(fg) C VY 2-55(g)

Before proceeding to the general case , it is noticed that the assum-
ption of non-voidness of fibers of V is unnecessary. For the gener-

al case, express f(x) in the form,
finite
£(x) = 21 £,(x),
J

where {fj}j are mild hyperfunctions defined on U such that for

every jJ Z—SS(fj) is contained in a proper convex set which is separated
hm .Z-Ss(g)a o In fact this is possible by the softness of 6N1M+
and the assumption : ‘Z—SS(f)r\.Z-SS(g)ar.yﬁ. So we define fg by

2 £y(x)e(x).
J

From the edge of the wedge theorem for 2&+ it follows that this
definition does not depend on the expressions of f(x). Further the

estimate 7-SS(fg) C 7-SS(f)V ¢-SS(g) is easily obtained from (2.21).
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Remark 2.2.4 i) These definitions of product satisfy

Leibniz rule for differential calculations.
ii) If g(x)EJ¥§+(BM)N‘is written as a boundary value of a section
N\
of §§+ , the product of g(x) and a section of By M4 Coincides with
. ~ o~ .
the product induced by the product : AM+ %} §ﬁ+-—9-BM+ . ZIspecially
A

we have the following equations for every feBNlIVH‘
(2.22) ext(£f(x)) = f(x)Y(x1)

(2.23) Trace(f(x)) =\/\f(x)8'(x1)dx1

Using expressions by K§+ » Several operations on mild hyper-
functions other than products are defined in the following theorem

(cf. S-k-K CH I [/0] anda £2.3 [ %1]).

Theorem 2,2.5 Let M' M be real analytic manifolds, N' N be

their submanifolds with codimension 1 respectively and _50; M' —>M

be a real analytic map such that P(N')CN and 4 ; TN'M'lx“’TNMW(x)
is bijective for every xeN', So we may assume that P(M!)CM_ .

We denote by ' the restriction of ¥ to N'.

i) Substitution is defined as the following sheaf homomorphism.

=18 3 f —— foP e B
PtOUBNue NYIMY !

and

2=-SS(£p) < ¢r*(2-88(£)),

A A
= Kernel(BN[M+ ——ﬁﬂnN*(CNlM+liS§,N)) and

where %ﬁlM+

* c a¥rr o ok s ¥t

' 3 (iS™N-iSE,N) X N' —iS"N!'.
Sy 8 .

ii) Suppose that % is a submersion., Then Integration along fibers

is defined as follows.
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A
Ml

Ay
and
K\ -
z-ss(fso_1 g) C We(gr*)~ 1 (2-55(g)),
q ’ .
where (D'M is the sheaf of germs of real analytic g-forms on M and
'
iS*N'< iS*N x N! 0f > iS*N.

N

These operations commute with ext and Trace, that is,
(2.24) ext(f)eP = ext(£:9), ext(‘/\;‘,_1 g) = ‘/39_1 ext(g)
(2.25) Trace(f)e $'= Trace(fs¥), Trace( -1 g)=j;o._1 Trace(g)

hold,

n+m

Proof We prove only ii). We may assume that M'= 3(x,u)

——j&—a xeR?= M and N':{(x,u)eM';x1=O}, N={xeM;x1=O}. Let g(x,u) be
: A
a section of $|By, . defined in {xeN; Ixi< 8}. Then by the softness
+

A . '
of CN'IM; there exist sections F,(z,w),...,F (z,w) of AM+ defined

on {(x',u;iy',iv)e€isN'; lx'\<é$,uelRm,(y',v)€Kj}U {(x',u;iy',iv)eisN';
lx'l< 28, mlzR,(y? v)GSn+m'2} for j=1,..,n+m respectively such that

JZ1bK3(F (z,w))=g(x,u) as a section of BN iy e where K,,..,K . are

proper convex compact subsets of Sn+m-2 satisfying U'i'nt(Ko) =gh+m-2
and R>0 is a large number satisfying that (the suppo%t of g in BN lM')
N{(x',u)eN'; Ix'< 38} C{(x' u)eN'; ul<R}. Then by the definition of
integration of hyperfunctions (S-K-K CH I [/0] ana §2.3(%])

fg(x,u)du is written in the form

(u+id( Jul )Vj)) au),

9
Fj(z,u+10(( lu\)vj)det( DU

j=1 3 lul€ R+1
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vhere (((t) is a smooth function on [0,R+1] such that 1D Q(t)=€ >0
on t€[0,R], 0gX(t)$€ on [R,R+1] and Q(R+1)=0, vy is a unit vector
of R® such that {y'ean“;(y',vj)exj"g +@ for every j and Ki={y'c
Rn'1—{0}/R+; 3veR™ such that (y',v)eKjk. In fact, since Fj(z,w) is
holomorphic on {(z,w)e Cnxcm;z1=0,1mz'=0,Imw=0, IRez ' < 3§, [Rew|ZR},

well defined and does not depend on the choice of O(t) and Vj‘ So
Gj(z) is a section of X§+ on {(x';iy')?iSRn“1;\x%< 275, y'eK5§ for
every j. Thus the mildness of Jfg(x,u)du is proved., Furthermore
from this concrete expression of the integral we obtain that
ext(dfg(x,u)du)= erxt(g(x,u))du, Trace(dﬁg(x,u)du)= v[frace(g(x,u))du
and the estimate of the singular support.

Fix a coordinate system (x1,x') of R®., Then for any germ F(z)

A4
of AM+ ’

q is a positive integer. Using these facts we obtain the following

2;1(F(z)-F(O,z')) and F(z1q,z') belong to EE+ again, where
results.

Proposition 2.2,6 Fix a coordinate (x1,x') of M., Then we

have the following sheaf homomorphisms.

1) By, 28(x) | > x7'(£(x)-Trace(£)(x'))€ By |y,
2-55(x7" (£(x)-Trace(£)(x'))) C {-58(£(x))
ii) gNlM+ 3f(x) |— > f(x1q,x') € ﬁﬁlM+

Z-SS(f(X1q,X')) C: Z—SS(f(X)),

where q is a positive integer, Furthermore, in connection with the

trace operation, the following formulas hold.
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'Trace(f(x)g(x)) = Trace(f(x))Trace(g(x))
Trace(f(x1q,x')) = Trace(f(x)),

3 a
where f,g € By v, such that {-SS(£)Al-Ss(g) =¢,

The following lemma is very useful to verify the mildness of

boundary values of holomorphic functions.

Lemma 2.2.7 Let F(z) be a holomorphic function defined on

{zec™; |21< € yRez,> 0,Imz = ----=Imz _,=0,Inz > o}U{zecn; l2I< &, Imz 7
C(lzﬂ +\Imzzl+-f--+\1mzn_ﬂ )} for some positive numbers &, C.

Then the boundary value F(x1,...,x ,xn+io) is mild from x,> 0 at

n-1
the origin.,

Proof Consider g(x1,z')=Y(x1)F(x1,z'). Then the boundary
value of g(x1,z') is a hyperfunction with support in {x1g O} and
coincides with F(x1,..,xn_1,xn+io) in {x1> of . So it suffices to
show that g(x1,z') defines a section of Cy y on s§x/\7n“1(o) (see
Lemma 2,1.20)., In particular F(z) is extended analytically to
{zec“; W\<3,Imzn'> 8'1([Imzﬂ +n--+lImzn_1{+lRez1LY(-Rez1))} for
sufficiently small i>0.

The micro local versions of several operations are easily deri-
ved from these theorems. We omit the details.

We fix M=R® N:Rn'1={x6M;x1=O}. Let P(x,D)=D,"+P,(x,D')D," T4
—-~+Pm(x,D') be a pseudo-differential operator of order m defined
on a neighborhood of 171((x6;i76)) and f(x) be a germ of 8N!M+ at
(xé;iﬁé). Assume that u(x) is a germ of GNim+ at (xé;i?é) satisfying
Pu(x)=f(x). To calculate P(x,D)ext(u), we use (2.22) and (2.24).

Indeed the operator Pj(x,D') is considered as an integral transforma-

52



tion whose kernel is given by Pj(x,Dx,)g(x'-y‘)dy' . So we have

m-1

 k
P(x,D)ext(u)(x) = ext(£) + 21 3¢3)(x,)Q. (x',D1) (22 (+0,x)),
j,k=0 J nx1

where {ij(x',D')}j kK are pseudo-differential operators of order
’ ]
less than m defined at (xé;ijé) and they are induced by P(x,D).
In particular u is uniquely determined by f and ’3kuﬁ%x1k(+0,x') for

k50,1,00’m‘10

Theorem 2.2.8 We inherit the notations. Iet u(x) be a germ

A
of Cyjpsy 8T (xé;i76) such that P(x,D)u=0 and v(x,y') be a germ of
N
Cnrimy
N1 tP )
DN'zNXR B(X',y')s(xz,.o?xn,yz,..?yn) and (X’D) is the formal

at (xb,xé;-i?é,i?é) such that tP(x,Dx)v=O, where ML=M+an'1

adjoint of P(x,D). Then we mean by "The micro local Green's formula"

that

(@]
il

M/pP(x,D)u(x)'ext(V(x,y'))dx

J u(x)+ T (x,D)ext(v(x, ) )ax
m-1 '

= (123 [(0,30) (40, (xt,y e

holds at (y';iT')=(x6;iq6) in the sense of microfunctions in y', where
m-1

(2.26) % (x,D ext(v(x,y")) = L w (x',y")-§3)(x,).
j=0 ¢

Two conditions are required for the micro local Green's formula.

One is the well-definedness of the products Pj(x,D')D?'ju(x)oext(v),'
... and 80 on as microfunctions at (xé,xé; “O,iﬂé). The other is

the integrability of the microfunctions Pj(x,D')D?’ju(x)-ext(v(x,y')),
¢ee and so on. The following is a sufficient condition satisfying

these requirements,
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" SS(wj(x',y'))CZ{(x',y';in',it')EiS*N*; x‘=y',q'+t'=0} for every
j and  sS(ext(u))C {(x;1n)eis*M; x,=0}",

Proof By the assumption for {wj(x',y')}j and (2.26),
Z-SS(ext(v))C,{x'ay',q'+z*=0} holds (because tP(x,Dx) : CM'IX' —_—
CM;IX' is injective ). So (Pj(x,Dx,)X(x'-x"))(D?'ju)(x1,x“;x
ext(v(x1,x',y')) is well defined as a microfunction and is integrable

with respect to the variables x',x"., Therefore,

JB(x,0)u(x) ext(v(x,y'))ax"

m

= ZO PJ(X,DX, )S(x‘_xtl)(D?“ju)(x1 , X" )e ext(v(x1 ,X', ! ))dx'dx"
Jm | |

= ;;g \/p(DT‘Ju)(X1.X')-tPj(x,Dx,)ext(v(x1,xn’y:))dx..

Since the support of D1ru(x)vD1s(tPj(x,D'))ext(v(x,y')) in Cy, is

contained in {x1=0}, by the Leibniz rule

J/é(x,D)u(x)-ext(v(x,y'))dx

m
2 ) ux) (D)™ (x,D 1) ext(v(x,¥) Jax
=0 do

d/;(x)'tP(x,D)ext(v(x,y'))dx

© M=1
g;% (-1)3u/p(D1Ju)(+0.X')wj(X',y')dX'-
Thus the micro local Green's formula holds at {(y';iv'); y'=xd, =14}

We will have several applications of this theorem in ‘the next

paper.
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2.3 ‘Topological properties of mild hyperfunctions.

In $ 2.1, we defined boundary values of mild hyperfunctions
purely algebraically. Our aim in this section is to show that, in
some case, these boundary values coincide with corresponding topolo-
gical boundary values,

Let f(x) be a section of r'(R AN,M+) (N=Rn'1C—>M+={xeRn;
x120}). That is, f£f(x) is a hyperfunction on U={xemn;0<x1<5@ with
support in {er;\x'lg1/5f} which is mild at every point of N. Since

O o 2 o¥

ext(f) belongs to Cyix C“NinS*M(CM) at every point of iSgM by the
M .

definition of mildness, f(x) depends real analytically on the varia-

in {er;O<x1<8'} for some small 3'£9 . So we can consider
lRn--1

ble X4

a one-parameter family of hyperfunctions in

e g 1/8, {208, x)} .

with support in

Lemma 2.3%.1 lim \/Pn ext(f(x))Y(&-x1)dx = 0,
&-5+0 R

Proof Recall Theorem 2.,2.5 ii)., By the softness of 6N1M+
there exist sections F1(z),...,Fn(z) of K§+ defined on {(x';iv')
e;i.lSN; v'eKj or [x422/§} for j=1,...,n respectively such that
Z; bKj(Fj(z))=f(x) as a section of %N1M+’ where K, ,..,K are proper
convex compact subsets of sh-2 satisfying \~}1nt(K°)=Sn"2. Then the

integral v/qn ext(f(x))Y(E-x )Jdx is written in the form,

n
¢
% ‘/lx l<'—' dx! f F (x1,x +iot( |x*)v. )det(

(x*+10(( \X‘\)vj)
)dx1 ’
7o x! :

where ((t) is a smooth function on [0,2/8] such that 1% o(t)>0 on
[0,2/%) and ®(2/8)=0 and V5 is a unit vector of Kj for every j.

The integrand in this representation is a continuous function on
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[0,6]x{jx'\¢ 2/ 8}, and so the integral converges to zero as &-+0.

Theorem 2.%3.2 Let K be a compact subset of R ana £(x) be

a section of rk(mn-1'§NlM+)' Then f(€,x') converges in the weak top-
ology of Q(X)' as £-+0 to Trace(f(x)).

Proof Let g(x') be an analytic function defined on K. App-
lying Lemma 2.3.1 to D1(g(x')f(x)), we have |

E%}?O V(;n ext(D1(g(x')f(x)))Y(G-x1)dx=O.

Use the formula g(x')f(e,x')gie-x1) = g(x‘)Trace(f(x))gkx1)
+ ext(D, (g(x")£(x)))¥(e-x,) - D {ext(g(x")£(x))¥(€~x,)f. So we

obtain,
lim Jr

Jrmo J gost g(x*)f(e,x')ax’ 3“/13‘1‘1 g(x")Irace(£f(x))dx'.
-+ :

R

Considering the softness of the sheaf of mild hyperfunctions,

we can generalize Theorem 2,3.2.

Corollary 2.3.3 Let M be a real analytic manifold, Ll ve

an open subset of M with compact real analytic boundary N=28l and
n(t,x') : (-&§,€)xN—M be an analytic diffeomorphism onto a neigh-
borhood of N such that h(0,x')= idy and h(t,x')é&l if t>0. Ve
assume that f(x)&rkfz,BM) is mild at every point of N, Then
f(h(t,x')) converges in the weak topology of OU(N)' to Trace(f(x))

as t—+0,
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Micro Local Theory of Boundary Value Problems II and

a Theorem on Regularity of Diffractive Operators.

By Kiyomi KATAOKA

Abstract
It is proven that boundary value problems for partially micro-
-hyperbolic pseudo-~-differential operators in one side of the bound-
ary are solvable in a micro local sense and that , for any micro
local solution defined up to the boundary to anti partially micro-
byperbolic pseudo-differential operators in one side or diffractive
pseudo-differential operators, micro-analyticity propagates up to

the boundary.

Introduction

In [V]], we introduced the notion "mildness" of hyperfunctiohs
on a real analytic boundary (say, x1=0), which expressed hyperfunc-
tions defined in one side of the boundary which have boundary values
for any normal derivative of finite or infinite order, and developed
several operations on mild hyperfunctions, which were simultaneously
formulated micro-locally. In this paper, using these tools, we
formulate boundary value problems in a micro local situation and
study solvability or a kind of regularity for them.

Set M=Rn5(x1,x'), M,={xeM;x,20} and N={xeM;x,=0}. Let P(x,D)
=D1m+P1(x,D')DT'1+~—‘+Pm(x,D') (Dza@éxj) be a differential operator
of order m with real analytic coefficients defined on {xeM;{m<r}.'

Then, as seen in&ﬂ]], every hyperfunction solution f(x) to Pf(x)=0

on {xeM;x1>O, &kr} is mild from the positive side of N on {;'GN;



kq<r§. So the boundary values (D1jf)(+0,x') j=0,1,.. are always
well-defined., But, once you attempt to formulate these using only

the theory of microfunctions, you will confront two essential diffi-
culties. Actually you can not define boundary values of microfunc-
tion solutions (say, defined on {ﬂx;iQ)EiS*M;x1>O,\xkr} ) in general,
and even if so, these boundary values are not unique as microfunctions
on N (consider the case P=D12+"--+Dn2). To avoid these difficulties
we use the micro-localized notion of mildness, that is, the sheaf
6N!M+ on iS*N introduced in{(J7). A germ u(x) of 6ﬁ1M+ at p=(xy;
i?é)eiS*N defines a section of microfunctions on {gx;in)eiS*M;r>x1>O,
k'-x6h<r,lq'—76h<r:} for some small r>0, but the converse is not
true.‘ Further, sections of pseudo-~differential operators defined

on {ﬂz;C)GT*X;z1=O,(z';g'):pé,é;e@_}operate on the stalk of 6N0M+

at pj. As seen in [I7]), if P(x,D) is a pseudo-differential operator
of order m of the form D1m+P1(x,D')D?'1+~-—+Pm(x,D'), the corres-
pondence {ueeNlm+; Pu=o§ "“‘>(u(+0,x‘),..,(D?~1u)(+0,x'))€(CN)m is

an injective sheaf homomorphism on iS*N, Thus boundary value pro-
blems are micro-localized in a natural manner,

In the first section, we explicitly seek relations among boun-
dary values of 6N!M+ - solutions corresponding tp elliptic factors,
which have already been obtained in [/S ) anda [26] , and construct
)k

the solution u(x) in t(ﬁ to the following system of pseudo-

NiM+
-differential equations at péEiS*N,

(DI - A(x,D"))u(x) = f(x)
u(+O,X') = uo(x')7

where A(x,D') is a (k,k)-matrix of first-order pseudo-differential



operators defined at (O,xé;i?é)eRXiS*N, f(x) is a germ of t(6N1M¥)k
and uo(x') is a germ of t(CN)k at p) such that D1I-A(x,D') is
partially micro-hyperbolic in {x1>0} at pj}, that is, det(§11-07(A)
(x,ib‘))ﬂDhas no root with positive real part with recpect to €1
when 0¢x,¢€& , lx'-xéls_g , m'-‘qé(éa for some €& »0. Theorems of
this type have been obtained by many authers ([ 3 ], [[2;], [2fi],
(91,0233, (/4 1), though they assumed that P was a differential
operator or P was partially micro-hyperbolic in both sides or £=0.
In the proof we employ the argument of analytic continuation of
defining functions due to Bony-Schapira and Kawai-Kashiwara ([3 ].
LﬂZ]). Furthermore, using micro local Green's formula in {F]],
we obtain the dual version of this theorem, that is, for any 8N1M+ -
solution u(x) at P} to P(x,D)u(x)=0, where P(x,D1,~D') is partially
micro-hyperbolic in {x1>0} at p), micro-analyticity of u(x) as a
section of CM in {x1>0} ieads to micro-analyticity of all boundary
values at pé. This is a generalization of the theorem by Kaneko
[‘8 ] , where P is a differential operator and u(x) is a hyperfunce
tion solution. For partially micro-hyperbolic operators in both
sides ( (267)) and non-micro-characteristic operators ( DZ]] ), theo-
rems of the same type have been obtained by Schapira.
In the second section, we prove the N+;regu1arity of diffract-

ive pseudo-differential operafors. That is, assume that P(x,D)=
2

D, +P1(x,D')D1+P2(x,D‘) is a second-order pseudo~-differential ope=-

rator with real principal symbol defined at poz(o,xé;i7O)EiS*MxN
M

satisfying : G(B)(py)= {§(B),x,] (pg)=0, {{s(P),x,},0(2)3(0,x8,M)"
<0 and d0(P)adx,AW(p,)%0, where { , } is the Poisson bracket

- A
and @) is the fundamental 1-form. Then for every CNlM+ - solution



u(x) to Pu(x)=0 at p6=(x6;in6), all boundary values (D1ju)(+0,x')
(j=0,1) are micro-analytic at p} if and only if u(x) is micro-

analytic as a section of microfunctions on X; -{Pd}(C:{x1>O}),
’ 0

vhere T; is the bicharacteristic strip through pj (cf.L21],
0

(6], (287 ). 1In the 1ast step of the proof of this theorem we
employ Bony and Schapira's results ([/ ],LZﬂ]) on non-micro-chara-

cteristic pseudo-differential. operators,



.§1 Micro local boundary value problems

Let P(x,D) be a differential operator of order m defined in
M={xeRn;lxh:r}. Suppose that N={xeM;x1=O} is non-characteristic
with respect to P. Then, according to Komatsu-Kawai and Schapira's
theory of boundary value problems (Komatsu-Kawai [I?] ,Schapira[}ﬁr]),
any hyperfunction solution of P(x,D)u=0 in {xeM; xi>0} has a unigue
extension ﬁkx)é.[&+(M,BM) and "boundary values" (fO""’fm-1)e

[(v,B )™ such that ¥ coincides with u in {xeM;x,>0} and PY =

n-1

M fj(x')s(j)(x1). On the other hand this is directly explained by
=0

‘the theory of mild hyperfunctions, In fact, since u is mild on N
from the positive side of N ( see [[7] ), ext(u)=u(x)Y(x1)€

[, (M,By) is well defined and satisfies
m-1

P(x,D)ext(u) = Z 8(3)(x1)Q.k(x',D')(D1ku)(+0,x'),
3rk=0 ’

where tij(x',D')} are differential operators of order less than m

induced by P(x,D) and N. So we know that W = ext(u)

Me

and fj(x')= 2 ij(x',D')(D1ku)(+O,x'). Furthermore, by the theory
k=0

of the sheaf 6N1M+ and the exact sequence

A A
0 ——> Oy |y — By ims — TaCryyue — 0
we can treat the solution u(x) or the boundary values (fO""fm-1)
micro locally on iS*N (recall that ext and Trace are defined for
A
the sections of CN|M+)' For example, the local hyperfunction solut-

ion u(x) of the problem

(1.1) { P(x,D)u(x)=0 x1>'0

Adu/px,3(+0,x1 )= 5(x")  §=0,..,m-1



for given hyperfunctions (fo(x'),..,fm_1(x')) exists if and only

if the problem (1.1) has a 6N1M+—solution at every point of iS*N
(such a solution is unique at evéry point of iS*N because P(x,D)ext(u)
is uniquely determined by (fO""fm~1))’ The operator P(x,D) is also
micro localizable,too. Indeed 8ﬁ|M+ is a Z*J;X-module which contains
nN'1[9X as a subsheaf. Thus micro local boundary value problems

for pseudo-differential operators are formulated on iS*N.

Definition 1.1 P(x,D)€ 0, PE (2 SEX~S¥X —>iS*N ) is called

to have N as a non-characteristic hypersurface if and only if the

map ;s (S§X\S§X)A{¢1P)=O} —>iS*N is proper. Easily to see,
each fiber of 1 {(0,x';¢1,iQ')eS§X\S§X; a(P)=0} *—é(x';i?')eiS*N
is finite and its number counting multiplicities is locally constant,
Let m Dbe this number., Then by Weierstrass' division theorem for
pseudo-differential operators P(x,D) is decomposed into the product
Q'R, where Q and R are sections of 2,P} , Q is invertible and R

has the following form ;

R(x,D) = D,™ + R,(x,D")D}"" +----- + R_(x.D'),

1

order Rj(x,D') S j. Therefore we will study essentially the pseudo

differential operators as above.

Corollary 1.2 Let P(x,D) = D,®+ P, (x,D')D™ 14.s P_(x,D')
1 1 m

1
. £
(order P;£J) be a section of 2« Py Then the

A k3
CN!M+ - solution

of the problem : P(x,D)u(x)=0 and @Ju/@x13(+0,x')=fj(x') J=0, .0, ,m=1
: for given microfunctions (fo,..,fm_1)eCNm is unique at every

point of iS*N if it exists.



Considering ext(u) instead of u, the analysis>of micro local
boundary value problems is brought to the analysis on s§+x. One
of the advantages of the micro localization of boundary value problems
is that we can use not only pseudo-differential operators, but also
quantized contact transformations keeping S*+X (see Theorem 4.,2.17

M
§4 L/67] ). We give easy applications of these tools.

Proposition 1.3 (Relations among boundary values, cf.(/5]

126] )

Let P(x,D)=D ™+P, (x,D*)D} ™'+ ----4P (x,D') (order P g j) be

a section of 2*J>§ and s be the number of {C1GC; G(P)(O,xé;{},
176)=0, ReC1:>O} counting multiplicities for a point (xé;i?é)eiS*N.
Then there exist sections of :Pg, ij(x',D') (m-sgjsm-1, 0skg
m-8-1), defined in a neighborhood of (xé;i?é) such that every GNIM+'
-golution u(x) of Pu(x)=0 at (xé;i?é) satisfies the following equa-

tions.
. m-s-1
(1.2) (D, 3u)(+0,x1) = 2, Qu(x",D*) (D, u)(+0,x")

for m-sg j £ m=1.

If P(x,D) is elliptic, that is, {Z.€C; 6(P)(0,x4;2,,178)=0ln iR =,
(1.2) is a necessary and sufficient condition for the solvability
of the boundary value problem P(x,D)u(x)=0. We call the equations
(1.2) " the relations among boundary values"',

Proof Consider the canonical extension of u,

m=-1
P(x,D)ext(u) = za)fj(x')g(j)(x1).
J::

By Weierstrass' division theorem for pseudo-differential operators

P(x,D) is decomposed into the product P'P" of two pseudo-differentiél



operators P!',P"E€ 2*J>§ which have the following properties :
P" is invertible on {(O,x';:1,iQ')eS§X; x'=x}, n'=?6, ReC1> 0} gnd
P'(x,D)= D1S+A1(x,D')D?"1+~--+As(x,D') (order Ajg_j). Therefore

we have %21 f (x')g(j)(x )€ P'(x D)Ik xX'=xt, W'=ht Rel, > O} C )
PN 1 D)L ({xt=xg, N'=14,Re8y> 0f, Cyy )

We may assume (xé;i?é)eU; and apply the quantized contact ffansform

ﬁ;. So it follows that

m=-1
Jé‘o(ic1)j(—Dn)J+1fj(x‘)e’1;"'(:1'}{"1)4‘1’1)}(')F({x'=x(')9}l'=q(')vRe:1>o}' ce),
where ?'=§;'P'(ﬁ;)-1 (see .§1 in [[71] ). Now, using the formula

(1.5) in Theorem 1.2.3 [I7] we obtain the following equation,

o0 j ,323+r+1“ﬁ
/ Z.(Q1-w) (2_. 2. =0 (w,x';0,D4))
l1=—e0  §=0 (r+j+1)! 5 J+T+14] x

m- 1
x{(’f")'1-50(1w)q(-nn)q*‘fq(x')} aw = 0,

~J
where Pi(w,x';r,g') is the homogeneous part of ?ﬂ(w,x',Dw,Dx,) of
order 1 and Y is a real analytic closed curve in € enclosing all the
zeros of G(P')(O,xé;g},iﬂé) ((My)y=*+1). Since the left-hand side
of this equation is a polynomial in C1 of degree less than s-1, it
reduces to the following pseudo-differential equations for (fo...,
fm-1)'

m-1

(1.3) 2, Byg(x',D)E (x') = 0 for t=0,..,s-1,
q=0

where {th(x',D')} are pseudo-differential operators defined at

(xé;iﬁé)eiS*N given as follows.

S=1 .
By (X, D) E(x? )————/ Z(C}-w)(Z > )
r=0

(I8 l=-00 j=0 (r+j+1)!



,323+r+1P,

x— J,,,,,,A.mj;(w x'30,D_, ) ((F") T (1w)3(-p )9 £ (x ))dw}
W

Easily to see, the order of Bt is less than g+1 and

q
r+1§ﬁ

At s5-1 ] - ‘ )
O‘QH(th)(x';Q') =:;EF{{: I,Z;__:O(wa)r(rﬂ)!,bwrﬂs(w’x 10,4")

X(gg(w,x‘;O,C'))—1(iw)q(-Cn)Q+1dW}€1=o .

Let a1(x',C'),..,as(x',§') be zeros of ?;(w,x';o,q*):c(?ﬁ)(w,x*;o,;')
=0(P')(0,x"';-1f w, ') with respect to w. Then, noting that
P1(w,x'50,2")=(-18, )% (w-a, (x",§")) - = - --(w-a,(x',§')), we have

+ Y . . -1y
01 (Bygd (2,8 (-2, 1/?7{4(”)(1;1("'& (x1,21))

( ) r+1 [}
Z (flf)'. 1(TT<w- (x',8 )))dw}ggo

/bw

s s
12t . v eryy=1 =1

S
;3-1 (w‘aj ) )dw}¢1 =0 ?

where R is a sufficiently large number such that {aj\<R. for every

jo Therefore,
(1.4) 0y (Byg) (x',80)= 2n(-1¢ )% q1 £, for 0gVqzs-1.

So the pseudo-differential equations in (1,3) are solvable with

respect to (fgy,..,f _,), that is, there exist pseudo-differential
f .

operators Cjk(x"D')eJDYl(xé;iqé) for j=0,..,8-1,k=3,..,m=1  such

that (1.3) is equivalent to the following equations ;



m-1

(1.5) £(x') = kZ € (X1, D)L (x1)  for 3=0,..,5-1.
=8

To obtain the relations among uj(x')=(D1ju)(+O,x'), we write fj(x')

as linear combinations of UgseerlUp 4 3
(x*) ( 23« )1(3'*1/611)““3"“1'1( | Juy (x*)
1.6 f.(x')=u x')+ -1 . O,x*,D¥)u, (x').
(1.6) 1 m-j-1 K+lgmmj-2 J)Qx1l Tk
k .
(Use the formula : D1k(Y(x1)f(x))=Y(x1)D1kf(x)+§:J)$'1(g(x1)D?"Jf(x)).)
. j=1

Remark that this equation is solvable with respect to Ugs e er¥p 4 in'

the following way.
(1»7) uj(X')ﬂ fm—j-1(x')+Ej,m-j(x"D~')fm-j(x')+ -

+ Ej'm_1(x',D')fm_1(g')‘ for every j.
Combination of (1.5) ~v(1.7) yields the desired relations (1.2) .
It is easy to see that, when P(x,D) is elliptic, (1.5) 1is a necess-

ary and sufficient condition for the solvability. Thus the proof is

completed,

Lemma 1.4 Let (O,yé;i?b) and (O,xé;iﬂo) be two points in
SyXniS*M and 9 be a real quantized contact transformation from a
neighborhood of (O,yé;iro) into a neighborhood of (O,xé;i?o). Put

s3(x,0,)=3-y;§"" and RJ(x,Dx)=i'Dyj'§ "' and assume S'(x,D,)€Pyex,.
Then the contact transformation 5” induced by§ keeps S§
defines a sheaf isomorphism CNIX ] CNlX (or CM+IX —— CM+IX’ see

X and so &

Lemma 4.2.13 and Theorem 4.2.17 §‘1 C/6]). As for this sheaf iso-

morphism, the following formula holds.

(1.8)  FEe0) = 8x) [ ke, yDereyt for Ve(yeoy,

10



where k(x',y') is the kernel function of the real quantized contact

transformation &' in N induced by £ in the following way.

(1-9) 5'33 §'~1=Sj(*:D#|'O;x')’ i'Dym if-1=RJ(*,DX,,O,X')
J

for j=2,...,n, where Sj(Dx,x) or'Rj(Dx,x) are the transposed normal
expressions of Sj or R"j respectively, that is, all x-operators are
disposed in the latter part of each term than Dx—operators. In fact
we assert that Sj(Dx,O,x') and Rj(Dx,O,x') do not contain D -operator

1
and that the commwtation relations :

[Sj(*,Dx,,O,x'), Sk(*vaanrx')]=O Jrk=2,..o0, ... and so on :

hold.

Proof Let K(x,y) be the kernel function of § . Then §(§~(y1 )x
§(y'-¥')) is given by K(x,0,¥'). Use the theory on holonomic systems.
We omit the details.

Remark i) An arbitrary real quantized contact transformation

keeping S§X is written as the composite of an inner automorphism and

a quantized contact transformation as above. m—1

ii) Using this lemma we can calculate the transform of F(x)= z:

m- 1 j=0
5090 (x, )£, (x')= 2D, I(§lx)E.(x1)) vy Z .
1773 j=0 1 177)
- Example 1.5 The following boundary value problem (k=0,1,..)

is solvable microlocally at (xé;iné)EiS*N ((70)2>»O) from the positive
side of N

Pu = (D12+ x1kD22)u(x) =0 x,>0
(1) { 3
(D4 %u)(+0,x") = uj(x') j=0,1

if and only if the relation

11



(- 1/(k+2)) )kfz

1+ 1/(k+z))(1(k+27 2

(1.10)  u,(x') + uy(x') =

holds at (x 170 Indeed the adjoint equation

Ypu = (D12+ x1kD22)v(x,y') =0 x,720
(11)
v(+0,x',y')= d(x'-y")
has a hyperfunction solution v(x,y')= C ‘8(x3—y3)"~-°8(xn-yn)
T () 2a 2 M) (1)
k+2 1 | Ve 1 ;
X NX, H ( )e where HY,' /(z) is the
f_mm 10 Jkan K42 1 an By
Hankel' function of the first kind and Ck is a constant depending only
on k. Since the singular support of V/Rx,(+0,x',y')= Ci~8(x"-y")

+ o0 .
X P iM(xpmy,) . g N '
M e df is.also contained in {(x',y';if',iz');x'=y’,

-0
n'+z'=0} , we can apply the microlocal Green's formula ( see [}7 ] ).
Therefore quo(x')(D1v)(+0,x',y')dx‘ -qu1(x')v(+0,x',y')dx' = 0

holds at (xé;i?é). This is just the relation (1.,10). The sufficiency

is also proved by using v(x,y').

Next, we treat pseudo-differential operators which are partially

micro-hyperbolic in the one side of the boundary (cf. ([ 3 1,0/2],0/4],

(%81, [23)).

Definition 1.6 Let P(x,D)= D™+ P1(x,D')D’$’1+ - --+P_(x,D')

(order P. £ j) be a section of 2*j>§ . P(x,D) is said to be parti-
ally mlcro-hyperbollc in the positive side of N at (x 170)618*N if
the equation G(P)(x;§1,17 )=0 with respect to C1 has no root with
positive real part when &2x,20 and (x'-xélgf, M'-14l€ €  for some

positive constant £ . As typical examples, we have P=D12-x1kD22 at

12



(O;xidxz), P=D1-i(x1+x 2)D2 at (O;idxz) and so on,

2

The following theorem is a generalization of the results obtai-

ned by many authers ( see Introduction).

Lemma 1,7 Let U be an open subset of iS*N with proper
convex fibers. Then the followingzé}x—sheaf isomorphism holds (cf.
Proposition 2.1.21 in [|7]).

Cy] ) R Oy S (g0 P |5 )7 Al

N‘U ! VNI X NIUZ/ %27 M+ [ F M|N ?
where Fy=F nF_ ={(0,x';w,,iv')eS X;w,=0}C iSM and particularly
%41“ =Ia\I/V1-lF holds (see Definition 2.1.15 in U’?] )e

0 0

Proof Ca}culate R(RN'U)!RI!CNlX in the same way as in Propo-
sition 2.1.21 in [[|7). We omit the details.

Theorem 1.8 Let A(x,D') be a kxk-matrix of pseudo-differential

operators of order less than 1 defined in a neighborhood of (O,xé;iyé)

¢R x iS*N. Suppose that det(C1Ik- oq(A(x,D'))) is partially micro-

-hyperbolic in the positive side of N at (xé;i?é). Then for every
germ f(x)at(f1(x),..,fk(x))et(eN‘Mf) and every data v(x'):t(v1(x'),
...,vk(x'))Qt(CNk) at (xé;iﬂé), there exists a unique solution u(x)
-t(u1(x),..,uk(x))et(eN[ME) such that;

(D1Ik - A(x,D"))u(x) = f(x)

u(+0,x') = v(x') 2 (xgitte)-

Remark Easily to see, inhomogeneous initial value problems

for single pseudo-differential operators which are partially micro-

13



-hyperbolic in the positive side of N are reduced to this theorem.
Proof Without loss of generality we may assume v(x')=0,
(xé;i?é):(o;idxz) and that A(x,D') is developed into the following

power series

A(x,D') = > aL(x)Dx? ,
L=(12y L4 ’1n)

where L moves over all multi-indices such that 12ez, 1329,..,1n;;O
and |Ll=1l,+.---41 <1, and {aL(z)} are holomorphic functions defined

in Q,={zec™; 2 J<R, |z'l<R}] satisfying that : ( lay(2)| = max ia%q(z)\ )
P>q
Ll 1,-ILi

sup [aL(z)ig B(1-1L)!b ¢
S
where B, b, ¢ are positive constants (cf. $2 [4Janda 2 (UZ] ).
In particular A(z,D') is a section on {(z;{)eP*X;lzﬁ<R, b%<R,l§ﬂ<
c\Czl for j=3,..,nf{. Furthermore by the partially micro-hyperbolicity

in the positive side of N we may assume that :

(1.11)  det(&, I, - §(A)(z,&')) never vanishes on {(z;Q)eS*X; ¥4,=0,
0 £ x.<R, l2'<R, \Z,'J.[<c\€2\ for j=3,..,n, =-Im({,/{5)>B(Iy"
n

& lmG /e k.

(Apply the ordinary hyperbolic inequality to det(C1Ik— G(A)(z12,zz,
...,zn,C')) ; L3 7], (/27 ). By the softness of 6N1M+' it may be
assumed that f(x) is a section of t(éN,ME) on {mﬂ<R§ with support in
U={(x';iﬂ');[x%§r, m§< r, for j=3,..,n}, where r <min(c¢/2,b/6,R/3)
is taken small enough later (depending only on R,b,c,n).

Since D1Ik-A(x,D') is invertible on {(O,x';{},iﬂ')&s§x;lx%<R, wjh<
éc?z for j=3,..,n and qu>T22§ for a sufficiently large number T,

u.(x)=(D11k.A(x,D'))"1ext(f(x)) are defined as a section of t(Cmﬁ) )

on {(O,x';%‘vi?' )& SEX; |x'KR, lQI?TP’('l} with support in

14



ﬂx';iﬂ')eU, Rﬁ\>TvT@ Recalling the z*gpxusheaf homomoxphisms

oo oo 1
CNnxlis*Nxoo — CNIXliS*wa /Cnix R4 Cpyx o

tu'(x) (modulo (Z*CN'x)k) is identified with a section of (R1z,
CNIX)k on {(x';iq');lxﬂ<R} with support in U, By the preceding
lemma and the cohomological triviality of the sheaf CLMiN’ we have

a section tG(z) of (fi&+lFo)k on {ﬁx';iv')eiSN;lx'kR, (X';iV')EUo}zr

{(x'3iv); rﬂx'<R}U{(x'-iv');1x't<R Vo2 vy +---+|v )} satisfying

t

that [7 3 G(z)log z1] coincides with “u' as a section of

(CNixliS Nxoo) modulo (1,C le)k. On the other hand by Prop.2. 1 21
Li71, tf(x) is identified with a section F(z) of (AM+)k on {(x';
i"('); x ‘<R, vzgr(IVB\ +~--~+[vnl)} modulo (a-MiN k Especially for .

sufficiently small numbers R' R" G(z) is holomorphic on {zec '}x%<

%—R R! >y2;>r(b3\+-—-+]yn|+ R" )} , r<lx W¢3~R, z1=0, y':O} .and

F(z) is holomorphic on {zec ;lxq(g-R, k4<R',ly!<R', R'>'y2:>rQy§ +
--- +[yn|+lR,1,l ‘Rz\ (-x1ﬁ}u{zémn; r<ﬂx1<%—R, z1=0, y'=0} . From a
technical reason we divide G(z) into a sum G'(z)+G"(z) ofKVéctors of
holomorphic functions such that G*'(z) is holomorphic on D'—{zecn
K'<E-R, R'>¥, > llys| +---+ ly | + lR.. 3Vizee™; xkER, ¥, >2r(ly3l +oue-

+ |y l+‘R")~R , y22R’} and G" is holomorphic on D"={g€® HP'S %<§~

R'>y22>2r(W§ +oo-Hy |+ !Rl‘)~R'} . In fact because D'YD"={z¢C”; 'K

2
%~R y2>v2r(w31+~"-+|ynl+!ﬁ# )-R'] is Stein, this is possible.
Partlcularly G'(z) is holomorphic on D= {zeCn ! K—~ ’ y2>v2r(w3[

121
—~+ly | + ﬁj‘)} { <txl<-—~R z1=0, y =O} and the boundary value of
G(z) coincides with u'(x) as a section of (R1z!CN'X)k on {(x';iﬁ');
m'k%-R}. So, from now on, we use G'(z) instead of G(z).

Now we recall the operations of pseudo~differential operators

15



on holomorphic functions ([4] ,(/2_] ). . Let tH(z) be a vector-
-valued holomorphic function defined in an open set W. Then for

a positive numbver &£ ,

ar(z) fz L1
(2,0)H(z) = 2, ap(2)D (z) + 2. mhpyr[. © (pms) v
1,320 1601 W e
1 1
xD23 .---.Dzn H(z1,s,z3,..,zn)ds

is well defined if zeWnSl, Pz-iEBb and Xi{z}u{wémn;w1=z1, w,=1iE,

W J J[é |z =16l j=3,..,n} ) C W (see [ 4 ], where ¥ denotes the

convex hull). Set &=min(b/2,cR/6n). Then A¥(z,D')G'(z) is holo-
1241

morphic on {zGC ,|zﬂ<¥,|xﬂ<2r,\yﬂ<r, y2>2rQy3|+--+[ynl+ R3 2’ zecn;

z,=0, y'=0, r¢fx'j<2r} if O<I<R, [ +3Tikp, 2r+é-,\fﬁ(3r+é)< —é-R and %:,,_+

Jﬁ(r+%{ﬁ(3r+£))<(;%} . Easily to see, we can take r and § satisfying
these conditions. Note that the boundary value of As(z,D')G'(z) is
equal to A(x,D')u'(x) as a section of t(R1Z!CNI§) on {(x';iq');\x%<
2r}. So (D1Ik-A5(z,D'))G'(z) - F(z) is holomorphic on {zeC"; z,=0,

y':O,lx%<2r}. Consequently for a sufficiently small positive number
10nr

ry (r and ro<;r), G'(z) is holomorphic on

V= {ZGC 1x'\<--Rl ¥41=0, Yo>3r(AE [y + R" )} {4r<k1<2 , y1—0, Yo>

31‘(’\[.— ‘ynl + R") ro}
and (D,I,-A8(2,D'))G'(2z) is holomorphic on {z€C”; k'Zr, y,=0,
0£x,<T, r0>y2>3rJﬁlyﬂ}. Now using the assumption (1.11) on partially
micro-hyperbolicity of P, we will show that G'(z) is extended analy-

n

tically to tzew H 0§x1<r1, mﬂ<%r, y1=y3=n~=yn=0, O<y2<r1} for a
sufficiently small number r,»0, by Lemma 2.2.7 L/71 this implies that

the boundary value u(x)=G'(x1,x2+iO,x3,..,xn) of G'(z) defines a mild

16



hyperfunction from the positive side of N and so u(x) is the solu-
tion in (CN|M+) to (D1Ik~A(x,D'))u(x)=f(x) at (O;idxz). To do so0,
we employ Lemma 4.3 § 4 in 112]. Put a family of real analytic

functions which are convex with respect to y" ;

B
_?7\_ x1vY3’-°9yn)={4r'(ﬁ +(e X1'1)(4I‘f{ﬁ+1 )Eﬁhy"\z + ?\.2 +MTQ_‘}£-; -—%——)

for 12A>0, B>0. We claim that G'(z) is holomorphic on yU \5
0<A%1

{zQCn;y1a0, Y2=3",\ , 0£ x1<@ y |x< R/Z}D{Zémn;y,]zo, y"=0, Yo 7?2 0,

0<x,<f, K'<R/2} if the following conditions 1)~~5) are all sat-

isfied. Set S, ={zeC"; y,=0, y,=% , 0£x,<@, Ix'|< R/2} .

1) S,CV : This is satisfied if 62< R"/3r.

2) S, n{x'|>5r/4 or y"I>MYCV : This is satisfied if R < ryR"/3r

and 3B/4{m R" <j,(,,

3) SK\VC{Y1=O’ O§x1<rot k'|s 5r/4, 3rinyUi< Yo <& ro} for vl.e (0,1]:
This is satisfied if g<r, and 3r(-J'§f(+ ’1%!)‘( Tge

4) For every 2% SNV, 'X‘( {zoju{'we@n;w1=z?, w2=i£, |w -zg‘g %&zg-ia\

J
for 3=3,..,n} )RR A% (& S% :+ Taking account of the convexity
AsAs
of {yzzy}jn{zfz?} and the inequality r, +1-6—r-9(5+2r+r0)<£ this

is satisfied if (eBB..-1)(4rJﬁ +1)< 4rqn.

5) At every point of S\ V, the inequality @5&/@::1 >B( |y + 502- )

11



holds (see Lemma 4.3 Uz]). : This is satisfied if B<1/B.
Ciearly we can take g and M as they satisfy all the con-
ditions 1) ~~ 5). So by using Lemma 4.3 [ /2 ] and Holmgren's argu-
ment, our claim is justified. Since ext(u)-(D1Ik-A(x,D'))'1ext(f)
etxz*CNiﬁ), we have (D1Ik-A(x,D'))ext(u)—ext(f)e 0311k-A(x,D'))'
t(Z_*CN‘I)E). On the other hand (D1Ik—A(x,D'))ext(u)~ext(f)=Trace(u)x
,8(x1) always holds. So from the division theorem for CNlX,(matrix

case ) we obtain Trace(u)=0. Thus the proof is completed. .

Corollary 1.9 (Half solvability, cf. U@ ,[23])

Let P(x,D) be a partially micro-hyperbolic pseudo-differential
operator of order m in the positive side of N defined on 2:1((x6;176)).

Then the sheaf homomorphism
P(x,D) : CM+IX9 u —> Pu € CM+1X

is isomorphic on (2+)’1((x6;i76)). In particular when P(x,D) is
a hyperbolic differential operator in the positive side of N defined

at (O,xé)éN, the sheaf homomorphism
P(x,D) : 34§+(BM)311 ——-——-—-—>Pu€.:HSI+(BM)

is isomorphic at (0,x6).
Proof It suffices to show the solvability of Pu=f in CM+IX
at every point p € (1+)'1((x6;176))niS*M for every germ f€Cy , 4.
. . . s 0
Considering the surjectivity }4Mf(BM) ——_>CM+1X/CNIX at p, (Prop.
4.2.10 [ |6 ]), f is written as f=[f']+ g at p,, where f'e}4§+(BM)
at (0,x!) and geC . Now we consider f'(x) as a section of
0] NiX Po

Cyims+ Then according to Prop.2.1.10 LIT] , the quantized Legendre
transform ISi(f)(cy,x') ((xb;iqé)evi) is represented by a section

18



A(§1,x') of B defined on {(§1,x')erRn'1; Re€}>0,\x'-kék8}. Devide
A(§1,x') into a sum A1(C1,x')+A2(C1,x') of sections of B®Y, where A,
is defined on {,€C; Re§,»0 or\§4>-2\td}x{x';|x'-x&<3&- and 4, is
defined on {C16¢; ReC1>O or\C§<2|td}x{;';]xt_x&<83 (where p,=(0,x};
itg174) My=t1=€ ). Note that (3§)‘1(A2)echx|po and (8)7'(4,)e

Q:CM+IXr\CﬁﬂXliS*Nﬂw)(xé;iﬁé)' Consequently f' is written as a sum
A
ext(f")+g' at Pos where f"eCN|M+l(X6;iW6) and g'eCNlXIPO. So we

A
have f= ext(f")+(g+g') with £'e€Cyma

. d 'eC .
(xg3iny) 2°¢ &*&'€ NIXIPO
Furthermore by using the division theorem for CNIX’ g+g' is written

m
Thus

as Phﬁ3i?vj(x’)3(j)(x1) with heC and (vj)jeC

m
b NIXIpO - N |§xé;176)
the equation is reduced to Pu = ext(f")+ vj(x')g(a)(x1). This
J=0
is- solved by the preceding theorem.

At the end of this section we treat the problems of propagation
of micro-analyticity of solutions up to the boundary. First of all

we formulate these problems in a micro-local view point.

Definition 1.10 Let P(x,D)=D1m+P1(x,D')DT'1+---+Pm(x,D')

be a section of 2*))§ of order m, Then P(x,D) is said to be N, -

-regular (N -regular) at p.€iS*M x N - S¥X if the following condition
: - 0 M Y

is fulfilled : If a germ u(x) of Cy, yAMIgmxn(C) (Cyojxnt~ s
M
resp.) at p, satisfies P(X'D)u'eCNlX' u belongs to CN(X'p . We
0

remark that this concept is invariant under quantized contact trans-

formations keeping sﬁ+x.
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Corollary 1.11 The operator P(x,D) is N-regular (see

Schapira [26] ) at P, if and only if P is N, and N_-regular at p,.
Proof Recall the definition of N-regularity. This follows

directly from the exact sequence,

at p, (see Proposition 4.2.10 (/6] ).

The meaning of N+-regularity is explained as follows (ef.
Schapira L26] ). We assume that o(P) has a zero of order s at p,

- 3 A I3
=(0,x6;170,1,iQ6) with respect to €1. Let v(x) be a CNIM+-solutlon
of P(x,D) at (xé;iné). Suppose that v(x) is micro-analytic near Py
in the positive side of N, that is, ext(v) is zero as a microfunction
on {(x;1iN)€is*M; &>x,>0, be'-xdl<e, \‘Q-’zol< E} for some &£>0. Remar-

. 0 X .
king that ext(v)eCM+Ixnjiis*MxN(CM) at p,, we obtain that ext(v)e
M

Cle at Py from the N+-regularity of P at Po- On the other hand by
the same argument as in Proposition 1.3, we can show that this is
equivalent to the s-relations among boundary values V(+0,X' ), eeey
DT-1V(+O,X'). In other words s-boundary values corresponding to

the zero §1=f70 4 of multiplicity s vanish at (xé;iné). Therefore

14
this means propagation of micro-analyticity of solutions from the

positive side of the boundary up to the boundary.

Theorem 1,12 | Let P(x,D)=D,"+ P1(x,D')DT‘1+--+ P_(x,D')

be a pseudo-differential operator of order m defined on zf1((xé;iﬂé))
with (x4;i78)€iS*N. Suppose that ‘P(x,D) is partially micro-hyper-

bolic in the positive side of N at (xé;oiﬂé),in other words, the
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equation G(P)(x;g},i}f)=0 with respect to C1 has no root with negative
real part when &gx1g0, lx'-xélg_s ’ -m'-*qélg& for some E£>0. Then
P(x,D) is N_-regular at every point of 2-1((x6;176))niS*M. (ct,

Kaneko [ ¥ ] and Schapira [26 1. |

Proof Fix a point p.=(0,x}:i in1)eiS*™M X N. To show the
£Xool P Po (o, 0} -Ylo,1y )zo) M

N,-regularity of P at p,, we may assume that {(150; G(P)(O,xé;ga,iqé)
=0}={ify, 1}. Set M'=Man'13(x,y')=(x1,..,xn,yz,..,yn) and N'=NxgP~1',
We remark that, as an operator on functions in (x,y'), tP(x,D) is
partially micro-hyperbolic in the positive side of N' at (xé,xé;—iné,
i?é)Eis*N'. So the following boundary value problem has a GN'IM; -

solution u,(x,y') for every k=0,...,m-1 ;

{ tP(x,D)uk(x,y' )=0

Dxfuk(+0,x',y')= gjk.s(x"-y') =0, ..,m-1

o 0 '
at (xé,xé;-lqé,lﬂé). Let v(x) be any germ of CM+IXK\jJiS*MxN(CM) at
M

py Wwith Pv(x)ECN‘X. By the division theorem for CNIX we haje a
germ v'(x)éCle at p, and germs fo(x'),..,fm_1(x') of Cy at (xé;iQé)

such that P(x,D)(v(x)-v'(x)):‘Z:fj(x')x(j)(x1). Recalling that P
J
is invertible on 1'1((x6;176))-{p0} , w(x)=v(x)=-v'(x) is extended

to a germ of 2;CM+an CI;TXliS*wa at (x4;if4). That is, [w(x)] is
a 6NIM+-solution of P at (xé;i?é). In order to prove this theorem

it suffices to show that f1(x')=--—-=fm_1(x')=0 at (xé;iﬂé). We
apply the micro-local Green's formula to this case (f2.2 [|T] ).
Indeed since SS(Dxfuk(+O,x',y'))C: {(x',y';iq',iTJ);x'ay’, n'+t'=0§
for j,k=0,1,..,m=1 and SS(ext(y(x)])=SS(w(x))<:{x1=O§, the conditions
are all fulfilled. Therefore we have fj(y')zo at (xé;i?é) for j=0,
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19eeeymM=1, Thus the proof is completed.

Example 1.13 P= D, %+x{"D,% (k=1,2,...) is neither N -

nor N_-regular at (O;+idx2) (see Example 1.5).

§2. An application to diffractive boundary value problems

We apply the results in § 1 and [|7] to prove the N, -regularity
of diffractive operators, for example P=D12-(x1--x2)D32 (e£.[ 6],
{2$T]), which are neither operators treated in § 1 nor operators
studied by Schapira in [27] . |

Let P(x,D) be a pseudo-differential operator of finite order

with real principal symbol defined at poz(o,xé;iYO)EiS*M><N-iS§M.

M
We consider the most generic case of diffraction, that is,

(2.1) §  OIpy)=0, {=P),x}(py)=0, {{6(B),x,},5(B)F(py)%0

'IiUJ(P)oxﬁ 7x1} (Po)’\’oo ds(P )/\dX1 (Po)*o°

In fact, let (x(t);iﬂ(t)) be the bicharacteristic strip for P |
passing through po=(x(0);iﬂ(0)). Then we have dx1/dt(0)=c{G(P),x1}(po)
=0 and d2x1/dt2(0)=c'{G(P),{ﬁ(P),x1}}(po)kO with some non zero
constants c,c'. So the bicharacteristic strip is strictly tangent
to {gx;in);x1=0} at pye |

By the condition {ic(P),x1},x1}=Q26(P)ﬁﬁq12#0 we may assume
that P is a pseudo-differential operator of second order written
in the form, G(P)= ;12+a1(x,§')§1+a2(x,§') (a1,a2 are real valued
when Xx,¢' are real), which has a double root C1=170,1 for (x;gf)
=(xo;i76) by the condition {q(P),x1}(p0)=0. Therefore by a

suitable real contact transformation keeping {x1=0} invariant,

22



6{P) and P, are transformed into o{P)= 4&2+r(x,:') and po=(0;0,
176). Noting that r(O,fQé):O and’/3r/3x1(O,i76)=%{{6(P),x1},G(P)}
£0, r(x,g') is written as -(x11?(x',§'))a(x,§') where ‘?(x',f')
and a(x,§') are real valued analytic functions of homogeneous deg-
ree O and 2 with respect to ¥ respectively, and'y(o,yé)go, a(O,?é)
%0, Since 4% %0 follows from dGKP)Adx1#O, we can take @(x',§')
2x,. Thus 6(P) is transformed into the following form ;

(2.2) o(2) = £% - (x,-x,)a(x,§')  at py=(0;0,i7y),

where a(x,g') is a positive valued real analytic function of homo-
geneous degree 2 with respect to f' defined on a neighborhood of
(x;g')=(0;76) (in the case a»0, the bicharacteristic strip pass-

ing through p, is contained in {x1g0} ).

Proposition 2.1 We inherit notations from above. Let u(x)

be a section of 6N|M+ defined on a neighborhood U of po=2(po).
Assume that P(x,D)u(x)=0 on U (particularly P(x,D) is defined on
- A
%2 1(U) ). Then there exists a section v(x) of CNIM+ on U whose
support is compactly contained in U such that Pv(x)=0 on U and
v(x)=u(x) at PYe (We may assume P(x,D)=D12-(x1—x2)a(x,D')).
Proof We denote by 75(t)=(x(t,p);i?(t,P)) (-§< t<4 %) the
bicharacteristic strip passing through p=25(0)e{0(P)=0}, that is,
(xﬂt,p);?(t,p)) is the integral curve for Hc(P)' Without loss of
generality we may assume (a/rax1((x1-x2)a(x,')z'))>0 on-{(x1{<0(, (x'};'
17')€U}, which implies d2x1/dtz(t,p)=2d71/dt(t.P)>O there. Choose
positive numbers X, € and a neighborhood VCCU of pé such that

the integral curve (x(t,p);N(t.p)) is defined as an analytic
mapping from [-8,81x{ (x;]); o(®)(x,7)=0, g€, (x';i")EV [3(t,D)
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to §(x;7M); X<, (x';i’l')
€U} and satisfies 'x1(¢$,p)2 2€ for every pé{c‘(P)(x,VZ)zo, x s &,
(x';iQ')eV}. By the softness of émm, there exists a section w(x)
of 6&1M+ on U with support in V such that w(x)=u(x) on a neighbor-
hood of pj. So the support of P(x,D)w(x) is contained in V\{pé}.
Consider f(x)=ext(P(x,D)w(x)) which is a section of Cy, |y on {(x1,
vx';<%,iq')es§+x; x,<A , '40 } with support in {(x1,x';§1,iq')es§+x;
x1=0, '%0, (x';in')ev\W}\Q§x1,x';aa,iq')es§+x; 0gx<2 ANl ,
(x';in')EV\Wﬁ for a small number 0<3L<£ , and small neighborhood WE
V of pé in 1S™N. By the flabbiness of CM we can cut the support
of f£(x) in {x1>0} such that (the support of f(x))r\{x1>0} is conta-
ined in {_(xvx‘;i"h,i}l')tf-.iS*M; Ot<x1§/u. ,X\Vh\gm'( ,(x';ih‘)&V\W}, where
M<A is a positive number satisfying that the intersection of the
bicharacteristic Y}) (t) passing through Py with {O§x1§/u} is cont-
ained in {(x;iﬂ)éiS*M 3 (x';iq')ew}. Since P(x,D) is of real prin-
cipal type and the support of f£(x) has a compact intersection with
every bicharacteristic strip D"p(t)} , we can find a section g(x)’

of C, satisfying P(x,D)g(x)=f(x) defined on {(x;iN)eiS*M; [x1l<l,,

M
N'¥0, (x';i?z')eU} with support in K= [(support f)(\iS*M]U[{pc1l<x’Sn
{‘J‘p(t); \tis8, pe(support f)(\-[G'(P)(x,Q)zof(}] . By the flabbiness of

Cy and By, there exist sections G, (x),G_(x) of By on {lx1\<k, x'e

M, (U)} with support in {x1go},{x1go} respectively such that g(x)
=[G+(x)]+((}_(x)] holds as a microfunction on {\x1l<k, (x';iQ')GU}.
Consider the‘ difference r(x):ext(w(x))-[G+(x)] which is a section
of Cy,|x ©on {(x1,x';C1,iQ')ES§+x; 0<x,<X, N'%0, (x';iN')eU} and
satisfies P(x,D)r(x):w(+0,x')S'(x1)+(D1w)(+0,x')8(x1)+f(x)-P(x,D)
(6, (x)] =w(+0,x")§" (x)+(D,w) (+0,x* ) §(x,)+R(x,D) [¢_(x)]e[YU, (L)
Cy-ix)+ Noting that (2*)*CM+‘xﬁ(2‘)*cM_iX=2*CNIX, we have P(x,D)r(x)
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GF(U,Z*CN”() and r(x)er(U’(7—+)*CM+IXAC;7XliS*Nx0O)' Since [G )=
-[6_)ecy x on {(x;i)eiS*M; x,=0, 40, (x';i7")eU~UKn{x,=0})},
[G (x)] represents a section of z*CNlX on U\Q(Kn{x1=0}). Therefore
r(x) defines a section v(x) of CNIM on U whose support is compactly
contained in U satisfying that Pv(x)=0 on U and that v(x)=u(x) at
pé, because Z(Kn{x1=0}) is compactly contained in U\{pé}. This
completes the proof.

When P(x,D)=D12-(x1-x2)A(x,D') is a second-order differential
operator defined in a neighborhood of the origin and @(A)(x,g')g:o

for every x and every g'em? 1

, making use of hyperbolicity of P in
{x,=x,>0}, any hyperfunction solution to Pu=0 defined on 1x,>0, Ixi<
R} can be continued to ﬂx(<r,x1-x2>'O}Ufwh:R,x1>O} as a solution
for a small r>0, Then this solution is identified with a solution
defined on {ﬂt,x)eﬂxmn;0<t<1. xi<r, x1-tx2>0} to the following

system of differential equations ;

(D% = (x4=x,)A(x,D"))u(t,x) =0,.
Dtu(t,x) =0,

To apply this argument to the case that P(x,D) is a pseudo-differ-
ential operator in (2.2) and that u(x) is a micro local solution
(that is, QN,M+- solution) to P(x,D)u=0, we must employ the method

used in Theorem 1.8,

. 2 2 2
Lemma 2,2  Set U={(0,x';;,iY')eSyX; N =+1, (5| + 7, + ---+7, 2,
2
<§ } and X ={(O x'w,,iv! )ESM+X|N' v 26'\/( -u, ) 2+v12+-—-—-+vn 1}.
( (t) =t if t20, =0 if t<0). ILet f(x) be a section of BN!M+ such
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. 1 .
that ext(f(x)) represents a section of R GtN/XlU)!CN]X' in other
words, for a suitable closed set ACU which is compact in every
fiber of 'nﬁ/X' ext(f(x)) can be continued to S§X~A as a section of
Cle. Then f(x) is written as a boundary value of a section of

(T|y,) %8y, (as for the definitioms of Sy X, @y, see § 2.1 in [|T]).

1 -1 .
Proof We denote R WENXQh/Xoi[1]'by Qy s where ’Th/x is the

>

projection from the monoidal transform "X of X with center N to X
(see CH I [24]). Then, Proposition 1.2.2 in CH I [24 ] shows that

-1

' DNX-—ﬁ>SNX are canonical projections. Using this expression,

after a direct calculation of derived functors (cf. Proposition 2.1,.21

(17]), we obtain R(TE'N/XJU)!CNIXQ‘R(T,KO)*QNI x(=1] with KO={(O,x';

2 2 2
w1,iv')€SNX; VHECWAWﬂ LA YRR SEEEL L A } (the dual cone of U). Set

) >
+....+vn_1}. Note that K_

. 2
K_={(O,x‘;w1,1v')€SM_X; vnéfJ(u1)+ *V,
NK_=Kg» Qy|x=,=9n-=Yun- ©B Kg (as for the definitions of Uppy
Qs QM4UpM.r S€€ Definition 2.1.15 and the proof of Proposition 2,
1.21 in [I7]) and that K=K VK_ is cohomologically trivial (that

is, Stein) for the sheaf AV M- * Thus we have the exact sequence ;

0 ——> (Tl )y —> (g Jxay BT uy. — (leo)*qu —0.
+ ’ ' - .
This implies the proof. We omit the details.,

From now on, we assume P(x,D)=D12-(x1-x2)a(x,D'), where a(x, ')
is the one defined in (2.2). In fact by inner automorphisms lower
order terms are negligible because of dG6(P)AW %0, where W= { dx,+

..... + Q’nclxn is the fundamental 1-form.
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Proposition 2.3 Let P(x,D)=D,2~(x,-x,)a(x,D') be the pseudo-
-differential operator as above, and f(x) be a 6N1M+-solution to
Pf(x)=0 at p6= (o;iq6). Assume that (76,3""'7é,n)*°' in other
words, dG(P)Adx,A40 at py. Set M'szMB(t,x1,..,xn),»N'={§t,x)e
M';x1-tx2=0}5(t,x') and ML={(t,x)eM';x1—tx2gO}. Then there exists
a hyperfunction g(t,x) defined on JZ:Qﬂt,x)EM';O<t<1, x1~tx270,
ki<r } with small r>0 satisfying the following ;

i) D,g(t,x)=0 on §) and the canonical flabby extension G(t,x)=
g(t,x)Y(t)Y(1-t) is mild from the positive side of N' at every
point of {(t,x')eN';0&t41, Ix'kr},

ii) G(t,x) satisfies the pseudo-differential equation P(x,D)ext(

G(t,x))=0 as a section of CM'!X'/CN'IX' in a neighborhood of
+

{ﬂt,x;rrdt+iQ'dx'+€1d(x1—tx2))€S§1X'; x=0, 0stl, ¢ =T=0, =148,

iii) g(+0,x) and g(1-0,x) are mild on {x€N; Ix[<r} and {xeM; Ix|<

1
g(+0,x) coincides with f(x) as a germ of 6N1M+ at pé:(O;iQé)eiS*N

r, x1-x2=0} from the positive side of x1=0 and x -x2=0 respectively.

and g(1-0,x) coincides with ext(f(x)) as a section of Cy on 1(x;
iM)eis*M; x,>0, x,-x,>0, Ix|<T, l"[—’]OK rt.

Proof After a suitable change of coordinates, we can take Py
=(0;idx ) (n23). In the coordinate system U =X =X,,Uy=Xy,.., U, =X/,

. . 2
P(x,D) is wrltten'as Du1-u1a(u1+u2,u',Duz-Du1,Du3,..,Dun). So the

Weierstrass! division theorem for pseudo-differential operators

admits the following decomposition

P(x,D) = E(u,Du)(Duf - u1B(u,Du,)Du1 - u,C(u,D,))

in W={(w;l)n(u+iv;ﬂﬁiv)es*x;\w“(ZR,[w%<R,\Xj<RPh} for every j#n}
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for some R>0, where E(u,Du) is elliptic on W, B(u,Du,) and C(u,Du,)
are pseudo-differential operators of order 1 and 2 respectively
defined on W such that G?(B)(w,l), OE(C)(W,X) are real if w, A are
real and that 6,(C)(u,X)>0 for every (u;ﬂ)es*MdW. Further, by

taking R small enough, we may assume that :

(2.3) Zﬁz-u1o;(B)(u1,w',?d)1q5u1c§(0)(u1,w',ZJ) never vanishes

on {(w;A)eV; Inw,=0, and Im(ﬂq/xh)>>145;(\Imw'\+l1m(ll/kn)l)
if u20, ImQ,/A,)>Iy~u; if u,<0t.

Then, as in Theorem 1.8, there exists a constant d>0 such that, with
respect to {w -18} BE (w, Dw,)H(w) and C&(w, D, ,JH(w) are well-defined
if w —18h:d,lw1K2R, W'<R and H(W) is holomorphic on 7({w§U{w' w =
Wiy Q;=1£,\Qs-wjg;§1w;-wd for every j=2,..,n-1}).

Now return to the solution f(x). By Proposition 2.1, we may
assume that f(x) is a section of §N|M+ on N whose support as a
section of CNIM is contained in a sufficiently small neighborhood U
of po-(O idx ) and that P(x,D)f(x)=0 holds as a section of CNIM+
everywhere on iS*N. Since P(x,D)ext(f(x))€ TL(U,Z* NIX) and P
is invertible on {(0;§1dz1+idxn)es§x; C1¥O}, for every k>0 we can
take U small enough such that ext(f(x)) is extensible as a section
of Cyy to SEX—{(0,x'3&,,in')esyX; lx <k, 7n>";€w/|4'1‘2+ 7,2+ -+ 12,3
Hereafter we fix k and f(x), k (<%R) will be chosen small enough

depending only on n,R,d later. Then by Lemma 2.2 f(x) is identified
with a holomorphic function F(z) defined on {zeC"; >y, > k((=x) +
(x1-$)++|y“+n~-+|yn_ﬂ),\x'KR}*{peCn;y=O, x,=0, k¢x'<KR} for some &>
0. Exchanging F(z) modulo in CZM}N due to the same argument as in

Theorem 1.8, we may assume that F(z) is holomorphic on D={?e®n-
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y,> 2k§(-x,) +(xy=8) + vyl + =+ b U< R {y + 5> 2k (%)
(x1-?)++ly1\ +----+]yn_1{}, k<|x''<2R/3 % for some smaller 3>0.

In the coordinates w , D is written as iwecn; vn>2k{(-u1-u2)++

(u1 +u2—8)++ lv1,+w2| + [v2| + -+ \vn_1|}, [ut < R}U{vn+8> 2x{*"*"} k<luy
<2R/3}. Setting &=min{d/2, R%/2{z}, QE(W,DW)F(W)=(Dwf-w1Be(w,ch)Dw1

-w1C£(w,Dw,))F(w) is holomorphic on {u'ls2k, lw1\<'2R, \Wi<R, k>v >
2ki(-u1-u2)++(u1+u2-$)++ \v1+v2\ oyl +---+ lvn_1\}} if 2k+'%(3k+8)< R,
a2k Bt ) (31, 6)< €, and 3k+€<d. These are fulfilled if k is taken
small enough. Remark that the boundary value of Qe(w,Dw )F(w) is
equal to Q(u,Du)f=(Duf-u1B(u,Du,)Du1-u10(u,Du.)')f as a section of
R (nN/X IWASEX)!CNIX on {ju'lg 2k} {see Lemma 2.2). So, since E(u,Du)

is elliptic on W and E(u,Du)Q(u,Du)f=P(x,Dx)f=O holds as a section
of R (%N/XIWAS;\;X)!CNIX (this is true when k< R/242n), Qe(w,Dw)F(w)

2 2 2
r el & 3

for some ¥'> 0. To prolong F(u1,w') analytically (cf. 4 nan,

is holomorphic on Z={lu,+u,lg ¥', [u'ls 2k, v |¢¥', vy

we introduce a family of piecewise real analytic hypersurfaces {SA}
(0<AS 1); S)\={(u1 Jwt e Rxe? Y Vo= Bluy s Vs e ey Vg )+2k(u,+u,=9),
+2k(=u,=u,~2K) , lu'l< 2R/3, u, <o }, where ¥. 1is given by

o-u, )

I( ;
{(81(«/?”1 )(e 1724 )+8ka{ﬁ}*{/\2+v22+--v+vng1 +hy (u,)
+ h&(u1-24fu22+%-0c2+%—(x,) ,

with hl(t)=8k( t2+A2-t) and ({ is a positive constant taken small

later. Choose o< min{d/2,8/4k,8'/2,9%'/12k}. Then we have S, \DC

2 2

{lu'lék, 0(>u1?._ 2\1u22+ -2-13-0(2 -0, Vo THeeotV <40L2/n} and S\DCZ

n-1=
for every A€(0,1]. Therefore F is continued analytically to DV
I(OL-u1)

-1 )+8k~{ﬁ)¢1v22+ v 2

U s, = DY{m"<2R/3,u.$«, v > ((8k.w/ﬁf1)(e -1

12A2 0O
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+ 16k((-u1)++(-u1+2\F22+-18—o(,2-%—u)+) if the following §onditidns

are satisfied.

1) S,CD : This is satisfied if 8ky{A >2k(20t+2{x'1%%—, that is, o(<%r.
2) For every (u?,wo')ESA\D, T( {(u?,wo')}u{(u?,w'); w =i, (wj-ng

Jﬁ-lis—wo\ for every j=2,..,n-—1}) is contained in \J SR.' (V) S).'
n A'2zA 1212

UD) : Considering the convexity of S)‘n{u1=u?§, this is satisfied
if k+‘%- (&+k+12k) < 2R/3 and &€ > 12kX +[((8k~l'ﬁ+1)(e2u-1)+8kfﬁ)’\rﬁl
+32K] k(e +k+12k%) (use the formula hy(t,+t,)< hy(t,)+16k|t,|).
3) At every (u?,wo')ES&\D the surface S, is real analytic and
non-characteristic for Q(w,Dw), that ;s, S, is written locally as
{vy=%:} and satisfies the following inequalities at this point (
see Lemma 4.3 [J2] and the assumption (2.3)),

fb%‘ > Ifuy (|G + .\I Vo -tV +La

fﬁlt) if w20,

P .
--—1-1-1- > L\f—u“ if u,<0.

Easily to see, these are fulfilled if ®<1,.IN<min}1/6, 8k}.
Surely we can take k and ® small enough such ’chat they satisfy all
the conditions listed till now and that k depends only on n, R and

d. Consequently it follows that F(z) is holomorphic on {zemn; Ix*<R,
Y 26((=x0) #(xg=0) 4 lyg| + -+ by DRUIKN< 2R/3, X1=%,6% , ¥,=Vps

I(K=x,+x,)
yn> ((8kNm+1)(e 172 -1)+81«:'./?1),\/y22+---—+;>rn_2_;1 +16k((x2—x1-%—0(_
+24x, 1) LH(x- ),,)}D{zecn; IxI<B, yn>16k-min{(-x1)+, (x2-x1)+§-,
y1=~—~~—=yn_1=0j- for some small $>0. So G'(t,x):F(x1,...,xn__1,

xn+iO)Y(x1-tx2)Y(t)Y(1-1‘.) is a well-defined hyperfunction on '{(t,x)A
eRR"; Ix|1<B} with support in {x.‘-tngo, 0L t<1f. Set g(t,x)=
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G'(t'x)'{o<t<1,x1-tx2>0}’ Then g(t,x) is a hyperfunction defined

in {0<t<1, x,=tx,>0, Ix|<p} and satisfies D,g(t,x)=0 there. So
G'(t'x)’{x1-txz>0} is equal to the canonical flabby extension

g(t,x)¥Y(t)Y(1-t). Further , though we omit the proof, we can show
the mildness of G'(t,x) on {x1-tx2=0} by prolonging F(w) analytically
(cf.~§2 [/2]). Since G'(t,x) defines a section [c'(t,x)]) of CM;IX‘/

Cyiyxr ona neighborhood of L={(t,x;izdt+idxn+§5d(x1-tx2)6S§1X' ;

x=0, 0st<1, §1=z'=0} and Q(u,Du) [_G'(t,x)] coincides on L with

[{QE (W'DW)F(W)} Imw1 =-~=Imwn_1=0 X Y(x1-x2t)Y( t)Y“'t)] Imwn=+0 € G/z=0®

Y(x1-x2t)Y(t)Y(1-t) (this is not trivial, but the proof is rather
long and tedious), Q(u,Du)[G'(t,x)]=0 holds on L , which is equiv-
alent to P(x,Dx)[G'(t,x)]=O on L. It is easy to yverify the claim
iii) in the statement of this proposition. Thus the proof is com=-

pleted.

Theorem 2.4 Let P(x,D) be a pseudo-differential operator

with real principal symbol defined at p0=(0,x6;i?o)eiS*MxN-iS*

M.
M N

Assume that ;
G(P)(Po) = {G’(P), 11}(1)0) = 0, {{G/(P)o X.‘}, x1}(Po) % 0,
{{o(®), x}, (P)}(0,x4,%,)< 0, dG(R)Adx,AW ¥ O at p,.

Then P(x,D) is N+-regu1ar at Py In other words, this is equivalent
to the following statement. Without loss of generality we may ass-
ume that P(x,D) is a second-order pseudo-differential operator of

the form D12+P1(x,D')D1+Pé(x,D'). Then any boundary value of a
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eN,M+-solution f(x) to P(x,D)f(x)=0 at p0=2(p0) is micro~analytic
at p§ if SS(ext(f))n’Qon{ x,> 0}= 9‘. where 3}0 is the bicharvac-
teristic strip passing through Po defined in a small neighborhood
of Ppe

Proof We may assume P(x,D)=D12~(x1—x2)a(x,D’) and p,=(0;
idxn) ‘as in Proposition 2.3. So by this proposition, for the
solution f(x) there exists a hyperfunction g(%,x). Hereafter we
use the coordinates (s,u1,...,un)=(t,x1-x2t,x2,..,xn). Therefore

P(x,D) and D, are written in the form ,

2 .
{IP = Du1 - (u1-(1-s)u2)a(u1+su2,u',Dua-sDu1,Du3,..,Dun),

Dt = DS - u2Du1-

By Weierstrass' division theorem for pseudo-differential operators
P can be decomposed into the product 'R'R of pseudo-differential

operators on L={ﬂs,u;idun)es§,X'; 0gs<1, u=0}, where R' is elliptic

on L and R is a second-order pseudo-differential operator of the form

44
from ii) in Proposition 2,3 we obtain a pseudo-differential equation

R =D 2-(u ~(1-8)u,)B(8,u,D,)D, ~(u,=(1-8)u,)C(s,u,D ,). Hence
1

for sections of CM;IX'/CN'IX' on L,

iDuf - (u1-(1-s)u2)B(s,u,Du.)Du1- (u1-(1-s)u2)0(s,u,Du,)}[ext(Gi]=O.

Since R(s,u,Du) is invertible on {(s,u;x‘duﬁidun)esﬁ,)('; u=0,
0$s<1, XqGC‘%O}}, this implies R(s,u,Du)Gso as a section of
GN.‘Mi on{(s,u';idun)EiS*N'; 0<s¢1, u'=0}. On the other hand from
i) it follows that (D -u,D )G=D(g(t,x)¥Y(t)¥(1-1))=g(+0,u)d(s)-
1
A
g(1-0,u1+u2,u')g(s-1). Here g(+0,u)=f(u) as a germ of Cyimse 2t
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A
(O;idun)GiS*N and g(1-0,u1+u2,u*) is a Cyy yn -Solution to
‘R(1,u,Du)4r=o at (O;idun)GiS*N“ (Mza{(s,u)eM';s=1,u1gO}, N*t:{ueM;'_

;u1=0}), because of P(Ds'uZDu )G=(Ds-—u2Du )JPG=0. Furthermore ,
1 1
recalling that g(1-0,u1+u2,u') coincides with f(u1+u2,u') as a

section of Cy, on {(u;ivdu)eis*M"; r>u,> 0, r>u+u,> 0, ik r,

1
\V=-(0,..,0,1)|< T }, we can apply the N -regularity of R(1,u,Du)

to this case. In fact R(1,u,Du) is just the operator Du2 -
1

u1B(u,Du,)Du -u1C(u,Du,) introduced in Proposition 2.3 which is
1 A

hyperbolic to the codirection du, in {r >uy 2 O} for small r >0,

1
so this is N: -regular by virtue of Theorem 1.12. Remarking that

the deleted bicharacteristic strip 'YE -{Pgt is contained not only
0
in({x1>0}, but also in {x1~x2>0}, the assumption SS(ext(f))n); N
’ 0

{x1>0}=¢ leads to SS(ext(g(1-0,u1+u2,u')))Ciu]:O} near (O;idun)
€iS*M", Therefore by the NY -regularity we have g(1~0,u1+u2,u')=0
A
at (O;idun)ﬁiS*N" as a germ of Cpy s °* Consequently it follows that
+

(Ds-uznu1)c=f(u)-8(s) holds on {(s,u’';idu )€iS*N'; 0gs€1, u'=0} as
A ' ;
a section of CN']M' . Hence, set ho(s,u')=G(s,+O,u') and h1(s,u')
+ .

sD;1(Du G)(s,+0,u') and take boundary values on u,=+0 in these
n 1

equations, then we have the following system of pseudo-differential

equations of first-order for sections of CN' ’

hg £(+0,u*) &(s)
{D 1, - A(s,u',nu,)}< = \)

B, D;;(Du1f)(+o,u')818)

on a neighborhood of {js,u';idun)EiS*N' ; 0<s41, u'=0}, where
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o, . ' u,D
2 u
A= n

2+=1 2 i .
_(1-s)u2 DunC(s,O,u',Du,), -(1-s)u2 DuhB(s,O,u',Du,)Dun .

Recall SS(ho), SS(h1)C{O§_s§1j by the definition. So, noting that
the determinant of the principal symbol of DSIZ-A(s,u',Du,) is

given by :

A% + (1-8)u,%6{(B)(5,0,u', A A + (1-S)u23G§(C)(S.0.u'.>.') :

and that B, C have real principal symbols and GE(C):>O on {O§s§1,
u'=0, N=(0,..,0,1)}, we obtain UA{SS(hy)Vss(n,)} C {0ss%1, u,=0,
iﬁ%:O}U{s=0} for some neighborhood U of {ﬂs,u';idun)eiS*N'; u'=0,
0$s§1}, because D312-A(s,u',Du,) is invertible on {0<s<1, O<u2<€§
and is a hyperbolic operator on {O<s<1, -S<u2< O}‘with small velo-
city of order lu2\3/2. Furthermore in the regular involutory sub-
manifold V={fs,u';i)%ds+iv'du')€iS*N'; Y,=0, u,=0} the theorem of
micro-Holmgren of Bony ([{ ]) is available. In fact since the

determinant of the micro principal symbol of DSIZ-A(s,u',Du,) along

v ois A%
integral curves of “9/3s in Un{ 0<sgi, u,=0, iﬂs=01. Thus we have
U(\{SS(hO)USS(h1)}C{s=O}. At the last step of the proof, we use

Schapira's theory in (27 ). Since N={;QM;x1=O}={ﬁs,u')EN';s=0} is

the micro analyticity of (ho,h1) propagates along

micro-non-characteristic for DSIZ-A(s,u',Du,), according to his
theory, DSIZ-A(s,u',Du,) is a N-regular operater. So (DSIZ»A)X
“(ngehy)="(£(+0,u'), D;;(Du1f)(+0,u'))®g(s)e(CNiy,)z (Y' is a
complex neighborhood of N') leads to (ho,h1)e(Cle,)2 at (0,0;
idu n)eiS*N' ;‘«' N. Further by the division theorem for Cy, y, (see

§1 [17}) we have f(+0,u')aD;;(Du1f)(+0.u')=O at (O;idun)eiS*N.
This completes the proof.
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