A Note on the KATO-HORI's Tention Formulas
for the Calculation of the Skyline Cables

Seihei KaTo

I. The Formulas

How to calculate the accurate values of the tension of the skyline-cables used for
the logging cableways and cablecranes might be one of the important problems relating
to construction and maintenance of the cable-installations. This problem had been
considerably discussed by many researchers in the past. Resulting from such discussions,
now most Forest Engineers of Japan are used to apply the theoretical formulas given by
the writer and his colaborator, T. Hori, Assistant Professor of the Kyoiku University
Tokyo, who contributed great parts of the mathematial computations. Use of these
formulas, which are adequately applicable for the skyline-cable carrying any number of
carriages, has heen also recommeded by the Forestry Agency of Japan from the view
point of pracical convenience.

The Karto-Horr's formulas are based on the theory of the “Parabolic Cable” and
the method of calculation by means of these formulas is called the “Method of equi-
valent uniform load and equivalent sag-span ratio”. Now, we shall consider a cable
which is hung and tensioned between two points, then a certain amount of the sag or
the dip will be given to the cable line, and the cable line will show a certain curve
called “Catenary”, providing that the cable is perfectly flexible and the linear density
of the cable is quite uniform along the longitudinal axis of it. If the curve of the cable
line is very flat, e.i. the amount of the central sag is relatively small compared with
the span-distance, the “Catenary” is approximately coincident with a “Parabola” which
has the same amount of the central sag. And this fact is recognized in the most
cases of the skylines of the logging cable-installations. The statical meaning of a
parabola is a curve of the flexible cable loaded with any uniformly distributed load
along a straight line which represents the vertical projection of the cable line. The
formulas were derived by the analysis of this approximate parabolic cable.

The fundamental structure of the Kato-Horr's tension formula could be given by
the following expression:

(Maximum tension)=(Total load)x (Coefficient)
In this expression, the term “maximum tenssion” means the greatest tension of the
skyline-cable at the upper end of the span under consideration; the term “total load”
means the total sum of the vertical loads including the weight of the cable and the
weight of the carriage-loads within the coresponding span; and the term “coefficient”
is such a variable coefficient or a parameter as to be expressed by a function of the
sag-span ratio of the original empty cable, weight of the carriage-loads, number and
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interval of the carriages, etc.
The general expression for the maximum tension 7. of the cabel, which is hung
over a certain span and loaded with several carriages, is given by the formula:
T, =(W+i-P) @ )
where, W=Weight of the cable within the span under consideration
P=Weight of the single carriage-load, assumed to be equal to each other
carriage.

i=Numbers of the carriages hung on the cable within the same span

@ =Coefficient
The coefficient @ is given by the expression:

D /T (ds;+tan a)?

8s; (A-a)
in which, tan a=Inclination of the span
s-z=s;=Equivalent sag-span ratio
—{ﬁ=s=Central sag-span ratio of the empty cable
0
f=Central sag of the empty cable
l,=Horizontal distance of the span
z=Coeflicient of equivalency
and this coefficient z is given by the following expression;
2= SR S R (A-b)
V1F 03— G+ 1) — D1+ n2[32 —2i(E+1)(i—1)q]
P . .
where, n:4W=M0V1ng load ratio

_ Distance between two adjacent carriages
= Span length
=Ratio of the interval of the carriages to the total length of the span
For the case of the cable loaded with a single carriage, put =1 in the formula (A),
then the maximum tension;
T, =(W+P)o

oV 1+{Es tan )
85,

_ (B)
$1=2,S

P C
=T an 43

For the case of the empty cable, put ¢=0 in the formula (A), then the maximum
tension or the tension of the cable at the upper end;
To=W-0,
o _ A/1+(4s+tan a)*
o=
8s
These formulas (A),(B), (C) are called the Kato-Horr's tension formula.

©
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II. Derivation of the general formula

(1) Behavior of the cable and the carriage-loads

As shown in Fig. 1, a cable is hung and tensioned between two points A and B.
The horizontal distance from A to B is /,, When the cable is empty, e.i. there is no
concentrated load on the cable, the amount of the sag of the cable at the span center
is f, and consequently the sag-span ratio s=f/l,, On this cable any number of the
vertical concentrated loads P, P,, - P;, are applied at the corresponding points 1, 2,

Denote k-1, the horizontal distance from A to each loaded point, then, for example,
L=kl L=kyly - , L=kl e , in general /,=k,-/, and in the extreme cases
k=[k,],, =0 and ko=[k]m =1

When the cable length from A to B Empty Cable
is L, and the weight of the cable per unit
length of the cable is p, the total weight
W of the cable is given by W=p-7I. If
we assume that the weight of the cable is

distributed along the horizontal straight
line, the density w of the assumed uniform
load is given by w=W/l,=pL/l,.

The cable is tensioned and fixed at A
and B. And the carriages are hung on
the cable. The tensions of the cable at A
and B and their vertical components are
denoted by 7%, 7}, and V,, V, correspond-
ingly, while the horizontal component,

which is constant at every point on the
cable, is denoted by H,.
(2) Equation of the cable curve

Now we can consider the statical equi-
librium condition 3JH =0, ¥V =0 and M
=0), and taking the moments of all ex-

ternal forces in respect to the point B;

2 %
M 5 =H,;- I, tan aJrVuJO——%O-— > P.(1—k)1,=0
r=1
from which we obtain
Vo _ , wlo_ i P(1—Fk,)

The original curve of the empty cable is assumed to be a parabolic curve, but when
this cable is loaded by the concentrated carriage-loads, the curve is angled at each
points where each carriage-load is applied. Take the origine of x—¥ axis at A, and
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consider that the cable is cut at any point C on the cable between (j—1) and (j), and
all forces are still remain acting on the portion A~C of the cable. Then we obtain
the following equation from the statical equilibrium condition > M ¢, =0;

2 -1
H o4V ora—"50 = S [Ple—h 1] =0

Substituting eq. (1), the equation of the cable curve is derived;

wax? i P, A —k) 3 il .
y(j)—'ZH +x{tan 0(—’2H —,«ZAJ HL 21 i }_%P'rkrl(} (Za)
If we put the parameter,
H;
mi_T 2-b)
and the moving load ratio,
P,
n,= W 2-¢)
eq. (2-a) can be written as follows;
ZLZ lo l l i1
y = — —- -3 :
Yo 2mb+x{tana om;,  my nl =)+ m; % n} m; = nok, (2)

This is the general equation of the cable curve of any portion of the loaded cable.
And taking the derivative of eq. (2), we obtain the inclination of the curve:

Y [ ; i il
tan 4, =ff-~; —tan a~—h'/%f{—2~—-'z + B -h)- 5 "} (3)

For the empty cable, put #,=0 and m;=m, in eq. (2), then we have the equation
of the original curve.

- x? - lo ’
y_%o«+x<tana 2m0> (2)

Denote the horizontal component of the tension for the case of the empty cable by

H,, then the parameter m, is Ho,/w. The amount of the sag of the original cable can
be obtained by use of eq. (2)';

. 12
f=[xtan a—y]mzlo@:’gfno
hence we have the relation
m _419_2,,_,,19‘ (4)
T 8F T 8s

(3) Curve length
The curve length of the cable between the two supporting points A and B is
given by

R C O NG C IO

The cable curve is generally very flat, e.i., the value of sag-span ratio is usually
small, say less than 0.08. Then, the second term in eq. (3) is always very small when
it is compared with 1. In general, following relation has been mathematically re-
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cognized, if 4 is relatively small amount when it is compared with 1.
V14 (tan a—4)% =sec a—4 sin a—i——%—dz cos® a (5-b)

Applying this approximate calculation, we obtain from eqgs (3) and (5-a) the equation
for the curve length;

i+l kjlo lo 1 x : i1 '
) nglo[sec - {7——0+ S A—k)= S ntsina
1 2 g,
+7’,ﬁj{7*ﬁ + Z n(1—k)— 2 n,} cos a:ldx (5-c)

The procedure of integration in this equation is rather complicated, so that only
the result will be written in this note as follows.

L=D,+D,+ D, (1)
i1 oRilo
D, = Z, sec a dr=I, sec « (ii)
g FIST/N
31 lO \’ j-1 B
— i _ /\ o '\
D, JZJL m, {2 I, +2n (1—%,) > n,} sin a dx
,',l . 1 1 Iz
_—_”;1* Sin w [—5—— 2 +lo ,_J n (1 k) 1024 (k k] 1) Z n ] (lll)

2
DBZ% l(')_'z' (D;;/+D3//+D3/N) cos? a

b= $1" (51 Y] Gy Yarm
Dg”zzjzf‘; 5:,101 (%~f—o) { Ll n(l—k) =S 0} dw=1, 20 k(1—k) (iv-b)
Jj—1¢0
b= 8L (S bo S

=

W[ 35 Gt (S n)—{z n,(1—k)}]

j=

—

=1, 302 b (1—k) +25,'S 33 nngh, (k) (iv-c)
T= T g=r
1 13K, ;
D3=§m71(Da +Dy" 4Dy )COS301—724—7¥C0S3 (iv)
where,
._1+12L(n,+nﬁ)k,(1 k)2 S 33 1) (v)
r=1 g=r

Substituting (ii), (iii), (iv), (v) in eq. (i), we obtain the total curve length

K , cos! a):l(1+—é‘i~—cos4 ) (5)

L=I[,sec a(1+ é4
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where, {=1, sec a=direct distance from A to B
K,=given by eq. (v)

(4) Relation between sag-span ratio s of the original empty cable and the parameter ;.

For the empty cable, P,=0 and #,=0, so that [K,)i-e=1 from eq. (v). Hence, put
K,=1 in eq. (5), then we have the curve length from A to B.

LO:Z<1+§£j— cos ) (6)

Substituting the relation (4) into this, we get the formula for the curve length of the
empty cable;

L0:l<1+%szcos4a> (7)

If it could be assumed that, there is no change in the length of the cable and no
displacement of the suporting points A and B, the curve length of the loaded cable
given by eq. (5) must be equal to the curve length of the empty cable given qy eq.
(7). Hence we have

VE,
" 8s

o (8)

(5) Inclination and sag of cable
The inclination of the cable at the lower end A and uper end B is derived from

eq. (3).

d
tan 0, { @Y | tana- \/K {1+2\_‘n,(1 k,)}
(9)
tan 0 —[ﬁy(“—“—m—] ~tan (r-i—"”4s'"'{1+2£ n.k }
v dx J,‘”lo— / \/R: T

The amount of sag 7, at the point j of the loaded cable is derived from egs. (2)
and (8);
7;=[x tan a—Y 5 lo-ksg

_ kil

A -2 S k) e S,
_Ailo,{k(l k)+2(1— k)z,nk+2k Ln(l k)} (10)
T VK, ! ' ’

(6) Maximum tension
The horizontal component of the tension of the loaded cable can be expressed in
the term of the sag-span ratio of the empty cable from eq. (8);

Hi:‘miw:fglgw/}i 11
Then, the tension of the cable at A (lower end) and B (upper end);

To=Hv/1+tan?0,

T, =Hv/1+tan 0, }

The position of a system of the carriage loads moving over the span, in which K,

12)
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will be a maximum, can be found by setting dK;/dk,=0, where k, =k +(k,—Fk,), and
(k,—Fk;) is constant.

dK; i i i
=12(2 n,—2 3 nk)1+ X n,)=0
dkl r=1 r=1
therefore,
4 4
E nrkr 1 1 E ey (kr_kl)
g or k=g it (13)
E n, Z ny
rel r=1

This means that the value of K, is maximum when the center of gravity of the whole
moving loads comes to the middle point of the span, and the maximum value of K,
in this case is
{Y‘ e =) _
w—l+3 V nr+12 = _~~--—~—122n (k,— k1)2+3(2_, n,)2+122, 2, nrng(k —k,)
Py
(14)

In this position of the load-system, the horizontal component of the tension is also a
maximum and the cable tension at the upper end closely approximates to the maximum
value of the tension. Therefore, the approximate maximum tension of the loaded cable
is given by the formula;

. wi \/ K, 4 &, z
tmx—[rb]mo el LS /1+[tan a +- \/; (1+7>:41 nr)} (15)
(7) Method of equivalent uniform load and equivalent sag-span ratio.
In eq. (15), put 1+ i“ n,
z=" \/;2; -=Coefficient of equivalency (16)
and
s;=2z-s=Equivalent sag-span ratio a7
then,
-
T = (W 3 P V1N a5 a18)
Put
@:‘/ 1+(§ags _°Y+4Si)2—~:Coeﬁicient of maximum tension 19
then,
Ty max= (W Ll P,)®=(Total load)x Coefficient. (20)

If the weight of the carriage-load is equal to each other, as it is practically so in
the case of the cableway, and the number of the carriages is i,
Pi=P,= oo, =P,=P
M=y = ceverenemrnneennns =n,=n=P/W
and the total load=(W+i-P)= W(1+in).

For the case of the equal interval distance of the carriages, as it is quite common
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in the cableway practice, denote that,

Average horizontal distance between two adjacent carriages
Horizontal distance of span

@n

then,
1—(¢—1
A
Substituting these in egs. (14) and (16), we obtain the practical formula for the coeffi-

cient of equivalency,

14+in - ©2)
= V1t a{Bi—ii+ DiE— g} +n* {3 — 240+ Di—Dg}

Summerizing the results of the theoretical analysis mentioned above, the writer

could generally state the Karto-Horr’s practical tension formula:
Timax:(W+i'P) o
oY1+ ttanay
8s;
§;=RZ*S§ <A)
2= 1+in -
T V1T aBi—iG+D)G—1)g* w2 {3—2iG+ 1)(1—1)g}

1I. Correction-factors

Becuse of the relatively small amount of the sag-span ratio, for instance s<0.08,
which is very common in the case of the skyline-cable, the change in the cable length
due to the elastic elongation caused by the application of the carriage-loads or due to
the temperature change, and also the displacements of the supporting poits of the
cable caused by the loading should be taken into consideration in most cases.

A certain correction is inevitably needed for the values of the cable tension calcu-
lated by the formula (A) or (B). For this purpose the use of the correction-factors
had been recommended. In general, for the calculation of the tension-formula the cor-
rected values of the equivalent sag-span ratio s;/=e-s; should be used instead of s,.
Here, = is the compound correction-factor;

e=g,XegX¢e, (a)
in which, ¢.: for the elastic elongation of the cable.
¢q: for the displacements of the supporting points.
¢.: for the temperature change.

The practical formulas for the calculation of these correction-factors are given as follows;

{1+W/1+ 1+ 832(:17:’)5.4 )Ae}

4, =T, AE (b)
Te=T; nax— T,
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Y
o= 1+ S costa
N1, | (c)
5*14__3*,”, 10 (d)
‘T 16sPcosta

The same correction-factors can be applicable for the corrective calculation of the
sag 7 of the loaded points of the cable. (See reference 2.)
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