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Semilinear Parabolic Equations in LP

Abstract

We construct a unique local regular solution in Lq(O,T; LP)
for a class of semilinear parabolic equations which includes the
| (a>0) and the Navier-

semilinear heat equation u_ - Au = |u

t
Stokes system. Here p and q are so chosen that the norm of
Lq(O,T; LP) is dimensionless or scaling invariant. The main re-
lation between p. and q for the semilinear heat equation is
1/q = (1/r - 1/p)n/2, p > r provided that initial data is in

LI’

with r = na/2 > 1, where n is the space dimension. Applying
.our régular solutions to the Navier-Stokes system)we show that the
Hausdorff dimenéion of poséible time singularities of a turbulent
solution is less than k/2 if the turbulent solution is in

L%(0,T; LP) where k = 2 - q+ng/p, p2n, 1 =g < =, We show,

moreover, that a turbulent solution is regular if it is in C((O,Ti;Ln).



1. INTRODUCTION

We consider semilinear parabolic equations of type

u, + Au = Fu, u(0) = a (1.1)

where Fu vrepresents the nonlinear part of the equation and A

is an elliptic operator. We study this initial value problem in

LP spaces. A standard theory (e.g. [ 8,29]) shows for a large
class of- Fu that there is a local solution u(t) which is con-
tinuous from [0,T) to LY for a € Lr; here r > 1 is the
exponent determined by the structure of the nonlinear term Fu.

The solution u(t) can be extended globaily, namely, T can be
taken infinity provided that el LY norm of a, is sufficiently
small. In this paper we show that the above constructed solution
u(t) belongs to Lq(O, T; LP) with suitably chosen ¢q, where

P >r. Since u ¢ Lq(O, T; LP) is equivalent to ‘"unp(t) € Lq(O,T),
this result gives the asymptotic behavior of Hu”p(t) as t >0

and t + » if T = ». We prove, mofeover, that the uniqueness
holds in the class .Lq(O, T; 1P),. As is seen latér, these results
are not only interesting by itseif but also applicable to the
regulabity theory for weak solutions of the nonstationary Navier-
Stokes system.

A simple example of (1.1) is a semilinear heat equation

ug - A= |ul®u, ulx,0) = a(x), x € R (1.2)

where o > 0. Existence results due to Weissler [31] say that

there is a local solution u in C([0,T); L) for a € LY if

r = p: T ne/2 > 1 and that T can be taken infinity provided



that ﬂanr is sufficiently small. Applying our theory to (1.2)

yields u € L0, T; LP) with 1/q = (1/r - 1/p)n/2, q, p >

qQ > a + 1. Moreover, the above class Lq(O, T; LP) guarantees

uniqueness of solutions of (1.2); here, we have to replace qQ>r

by p > a + 1. Our results seem new even for (1.2); see section 4.
To explain the meaning of these results conceptually, it is

convenient to recall dimensional analysis of (1.2); see [ 2 ,11].

If u(x,t) solves (1.2), then for each A >0,

AZ/

u (x,t) = *aOx, 2 2)

also solves (1.2) unless we consider the initial condition. We
describe this scaling property by assigning a scaling dimension

to each quantity:

t: 2, X 1 , u: =2/c

so that each term in (1.2) has dimension -2 - 2/a. Clearly, the
norm Jlaf_, with r = p, has zero-dimension, so conceptually the
existence results read: if a zero-dimensional integral of initial
data is finite, then a solution u exists at least locally; if

”a”p is small, u can be extended globally.' Our results read:
o

many zero-dimensional integrals of solution are finite and that

the class Lq(O, T, Lp), P > r having zero-dimension guarantees

the uniqueness if p, @ > o« + 1. However, I suspect that in general
the class C([0,T); L) with » = P, is not sufficient to guarantee
tﬁe uniquéness although the norm suptHunP(t) is dimensionless.

There is a counter_example due to Ni and Sacks [18] for the initial-

boundary value problem of (1.2) on a ball. . Although it



is convenient to use-scaling dimension to explain the meaning of
P> P> @ our methods are not based on the scaling property of the
equations. Our theory is also applicable to more general equations
which do not have the scaling property.

Another typical example of (1.1) = covered by our theory is the
nonstationary Navier-Stokes system which has also the scaling
property. The dimension of u should be replaced by -1 and
P, should equal n, the space dimension; see [ 2,8 ]. The

solution u we discussed above 1s called a regular solution since

u 1is smooth both in space and time variables for t > 0. Because
of a special property of the nonlinear term there is a global weak
solution constructed by Leray [17] and Hopf [12]; we call this

solution a turbulent solution following Leray's definition. If

n 2 3 we do not know whether turbulent solutions are regular. As
is pointed out, however, by Leray [17] properties of regular solu-
tions are very useful to study partial regularity of turbulent
solutions.

In this paper we give proofs of regularity criteria for tur-
bulent solutions which are announced in [10]. Let us roughly and
briefly review our results. To fix the idea we consider the sys-
tem on a smoothly bounded domain in R™. Let Xk 2 0 be the
scaling dimension of [([|vlpdx)q/Pdt, i.e. k=2 - q * ng/p.

One of our results read: if é turbulent solution beloﬁgs to
Lq(O, T; Lp), P > n, then the set of possible time singularity of
it has k/2-dimensional Hausdorff measure zeroc. If k = 0, the

turbulent solution should be smooth. The case k = 0 is recently

proved also by Sohr [21] by a different method. To show our re-



sult we estimate life span of regular solutions from below if
a ¢ Lr, r > n. If we consider the marginal case p = n, the
set of possible time singularity has Lebesgue measure zero. This
result is recently proved also by Sohr and von Wahl [ 23 ]. Their
method is based on an improvement of Sather and Serrin's uniqueness
result [ 21 ] whereas our method depends on the existence of regu-
lar solution u in L0, T; LP) P > n whose scaling dimension
is zero provided that wu(0) ¢ L". As a by-product we show that
turbulent solutions belonging to C((0,T); L™ are regular; this
is proved by von Wahl [27]. Relations to other regularity results
will be discussed in section 5.

Another interesting application of regular solution u in
190, T; LP) with p > n, k = 0 is discussed in Kato [15].
Using the fact Hqu € Lq(O,w), he in particular proves that the

energy of the turbulent solution tends to zero as t - o if the

.. 2
domain 1s 1IR", ; o

- — e — —

In section 2 we study (1.1) in an abstract setting. Actu;lif,
we consider an integral form of (1.1) instead of (1.1). We do not
use any fractional powers but various LP spaces so that our
analysis works even for unbounded domains; this is important if
we discuss the asymptotic behavior of solution as t + «». Also
the assumptions are so chosen that results are directly applicable
both to the semilinear heat equation (1.2) and the Navier-Stokes
system. We state the existence and the uniqueness of solutions
and estimate for the life span of solutions in Theorem 1. The

results in Lq(O, T, LP) framework are stated in Theorem 2.



Both theorems are important in sections 4 and 5.

Our analysis is based on the regularization property of linear part
e tA and successive approximations. The basic idea is similar
to [ 8,14,1;,23,29,30,31j ﬁutvﬁe usé no.ffactional ﬁowefs nér
derivatives. To show Theorem 2, however, new idea is required.
Proofs of Theorems 1 and 2 are given in section 3. The proof of
Theorem 1 is more or less known; however, arguments are scattered
in many papers.cited above, so we give the proof for completeness.

In section 4 we show that Theorems 1 and 2 are applicable to
the semilinear heat equation (1.2) and the Navier-Stokes system.
Tor (1.2)we also compare our results with other works so that most
of restrictions on exponents are really necessary.

In section 5 we stﬁdy the regularity of turbulent solution

by using results in section 4. This section gives a proof of the

results announced in [10].



2. ABSTRACT EXISTENCE THEOREMS
This section states existence theorems for semilinear para-

bolic evolution equations of type
u, + Au = Fu, u(0) = a (2.1)

in various LP type function spaces; here Fu represents the non-
linear part of the equation. As is standard practice, we study
(2.1) via the corresponding integral equation
| -tA,, [F -(t-T)A
ult) = e thgs joe Fu(T)dT. L 2.2)

The solutiéns of this equation are often called mild solutions.
We shall construct mild solutions only because in many examples
one can prove that mild solutions are differentiable in t and
are strong solutions of (2.1) as far as (2.1) is a parabolic
equation [ 8 ,14,29,30]. TFor later use we study (2.2) in an abstract
setting. ,

Let X be a locally compact Hausdorff space and let u be
a Radon measure. Let LP denote the set of p-measurable functions
on X with p-integrable p-th power, where 1 < p < ». Let Cc'
be the space of continuous functions on X with compact support.
For applications it is convenient to consider a direct sum decom-
position of (Lp)z, the set of f%-vector valued LP functions.
Let P be a continuous projector from (Lp)z to a closed subspace
EP  of (Lp)2 for 1 < p < ® sguch that the restriction of P
on (CC)E is independent of p. TFor technical reason we assume

-tA

(Cc)z n EP is dense in EP. Let e (t=0) Dbe a strongly

continuous semigroup simultaneously on all Ep, 1l < p < =, Since



problems we consider are parabolic, it is natural to assume the
following estimates for e-tA. There are constants n, m 2 1

such that for a fixed T, 0 < T < « <the estimate

e~ tA

(A) f”p =< MHfﬂs/t°, f €ES, 0 <t <T

holds with o = (1/s - 1/p)n/m, p 2 s > 1 and constant M depen-
ding only on p, s, T, where nfﬂs denotes the norm of f in LS.
A typical example of such semigroups 'is the solution operator of
the heat equation in IRd;‘it is easy to check that (A) holds with
n=d, m= 2, P = LP,

Having the Navier-Stokes system in mind, we give assumptions
on the nonlinear term Fu. Let T be a closed linear operator

densely defined in (Lp)k to E? with some q > 1 such that for

some Y, 0 =¥y <m the estimate

(N1) ue‘tArfnp < NlnfﬂP/tY/m, £ eEP, 0<t<T

holds with N1

assume Fu can be written as

depending only on T and p, 1 < p < «=. We

Fu = TGu ' (2.3)

and G is a nonlinear mapping from P to (Lh)k such that for

some o > 0 the estimate

A

(N2)  fl6v - Gwlly, = N,|v - w”p(”v”; +~nwng>, GO = 0

holds with 1 = h = p/(1+a) and N2 depending only on p, 1 < p

. L
< o , For example, let g(y) be a mapping from IR to iRk

satisfying



gy -g(z)| = N |y-z|(|y|%]z|®), g0 =0 (2.4)

and put (Guw)(x) = g(u(x)). This G satisfies (NZ) which fol-
lows (2.4) by applying the H8lder inequality. Heuristically, T
has é role of differential operator of order y and Gu behaves
like |u|%.

We now state the existence of mild solutions of (2.2), at
least locally, assuming (A) and (N1,2). In what follows BC
denotes the class of bounded and continuous functions and C
denotes positive constant whose value may change from one line

to the next.

THEOREM 1. (i) (Existence). Let Pq denote

. _no ' |
Py T Yy , (2.5)

and assume Py > 1. Suppose a ¢ E' for a fixed r > P, Then,

there is T_, 0 < T =T and a solution u of (2.2) on £0,T))

such that
t%u(t) € BC([O,TO); EP) for r =p< e (2.6)
tcﬂu(t)ﬂp + 0 as t~+0 “for r<op (2.7)

with o = (1/r - 1/p)n/m, 0 < o < 1/(a+1).

(ii) (Estimate for TO). If »>p > 1,

-a/(1-8(r))

T, =z Cla, (2.8)

@]

B(r) = (y + na/r)/m (2.9)

with C independent of a.




(iii) (Global existence for small initial data). There is a

ositive constant such that if
D € Haﬂpo < g, then To equals
T. In the case T = » we have

Huup(t) = c/t°, 0<t< o (2.10)

with C independent of t, provided that p 2 P, -

(iv) (Uniqueness). Solutions of (2.2) satisfying (2.6) and (2.7)

for some 0 < ¢ < 1/(a+l), p > &+l, o = (1/r - 1/p)n/m are unique.

If r> P,» O may equal zero and (2.7) is not necessary to guaran-

tee the uniqueness. In particular, if r > Py solutions are unique

in BC([O,TO); ET) provided that r > a+l.

(v) Let (0,T,) be the maximal interval such that u solves

(2.2) in  C((0,Ty); zrne")"mpo > 1, F'>mox(d+i B), Then
JuCs)|| 2 C/(T4-s) 2Bz /e (2.11)

with constant C independent of T, and s.

The results in this generality are new although some parts
are more or less known. If T is a bounded operator from (_Lp)k
to EP, (i) is proved by Weissler [29]. Theorem 1 gives the global
existence for small initial data in E o, where P, is the mar-
ginal number defined by (2.5). Also it gives estimates for u
from below near the blow up point; see (v). In section 4 we shall
discuss examples and compare them with previously known results.

We next state that u in Theorem 1 is also in Ll/c(o, TO; EP)

provided that p is close to 1r; this result does not directly

follow from (2.6) and (2.7) so a new idea is required to prove it.
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THEOREM 2. (i). Let u be the solution of (2.2) constructed in

Theorem 1(i). Then, u belongs to Lq(O, To; EP) with Qs P > r,

q > a+tl, 1l/q = (1/r - 1/p)n/m.

(ii). Assume T = o, D = Poe If nanp is sufficiently small,

o
u is in Lq(O, K EP).

(iii). (Uniqueness).. Solutions of (2.2) belonging to L%o, T

EP) for some p > r, 1l/q = (1/r - 1/p)n/m, g, p > a+l are

unigue.
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3. PROOFS OF THEOREMS 1 AND 2

To solve the integral equation (2.2), i.e.,

u- = uo + Su (3.1)
: t -(t-1)A
Su(t) = f e Fu(t)dr (3.2)
0
uo(t) = e"tA, (3.3)

we use successive approximation

Uguy = Uyt Suy s 320 (3.4)

and estimate.them in various norms. Since Theorem 1 improves some
known results we give the proof for completeness although the basic
idea is nowadays standard (cf. [8,14,17,23,28 1). The proof given
below is technically different from those of [8,9,14,23,30] be-

cause we do not use any estimates for spatial derivatives of u.

Pfdgf'bfj&@@éﬁém’l. We begin with estimates for e YFy.  The

assumptions (A), (N1,2) give

1™ A Ev-F N, 5 —gpyoglveell vy + w3, o<t <T (3.5)

with & = (1/s - 1/p)n/m, M' = ?B-GMN]NO, v, w € TP provided

that p > l+a; s > p/(1+a); here g = B(p) 1is defined by (2.9).

In fact using (A), we have

le A rv-Fw) | = [le” A 2”2 (pyoruy
S S

1 = .n_a. - =
(Fv-Fw)nh with g = D §s h ng'

8
My -
2 e tA/2



This is dominated by

23#5MN1_
—;ET}]GV - Gw ”h

since F has the form (2.3) and (N1) holds for T. The estimate
(3.5) now follows from (N2)7

We ﬁext,deriye an a priori estimate for
K. = X.(T ) = sup tcﬂu H Ct), j 20
I (0<tsT

for 0, p such that

.1 1 1 L ,
g = (; "EJE~’» 0 =0 < 3FT » P>aetl, p2r, p# po(3.§)

R — r— — & - — - C e . [T

We wrote that' the numbers o, p. satlsfylng (3.8) do EXlSt because
we have assumed p, > 1. " In fact, the definition of po in (2.5)

shows

;

n;s_

f,m_y <4,
Dg 'n Do

CIE|

which gives

1
at+l

2

>-.(% - —lf)

=

provided that Py > 1. This shows there are ¢ and p satiSfying

(3.6). To estimate Kj let us recall the scheme (3.4):

We apply (3.5) with v = u.,, w = 0 to the second term Suj and

get

t “
o , 0 & . -
sl = 7 i on s G
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here p >1l+a is used. This gives an iterative estimate

1+a_1-8(r)
Kj+1 .= Ko + M’BKj 'I‘O (3.8)
with
1 . .
3 1
B = [ dTt
Jo 61-r>B(Pj otre)

since B(r) = B(p) + oa; the assﬁmptions o < 1/(a+l) and p > P,
ensures the convergence of B since B(po) = 1. For a technical

reason we use a less sharp estimate but essentially same as (3.8):

o o 1-8(r), 1l+a
4 T

An elementary calculation shows that there is a constant K(TO)

such that
. . . 1-8(r), 0 1
t Py
Kj < K 'satisfying 2M'BT_ KW < 133 (3.9)
and
K=+ 0 as Ko -~ 0, (3.10)
provided that
1-B(r), @ N 1\ 1 :

We thus have an a priori estimate for Kj under the condition
(3.11).
We next study what conditions for TO and a guarantees

(3.11). First we prove that for o > 0

toﬂe’tAaHp -0 as t -+ 0. (3.12)



1y

Since we have assumed (CC)£ n EX is dense in ET there is a
2
o . . r .
sequence {gi} in (CC) such that a, »a in E®. Applying

(A) gives

tU”eFtA

IA

a1

oy ~-tA
Tt lle
I aUp i1y

(a-ai)ﬂp'+ t9e" s

-tA
a

< C”a‘ai”r'+ tgue :inP

with constant. C independent of i and t. Since a; € BP, (A)

implies that the second term tends to zero as t + 0. We thus

have (3.12) which particularly implies that

KO + 0 as TO > 0 (3.13)

for o > 0. If T > P, (consequently B(r) < 1), the condition
(2.8) ensures (3.11) since (A) implies that Ko/l]al[r is bounded
independent of a and TO. In the case r = P> (3.13) shows
that for small T_ we havé (3.11) for every T0'> 0. Moreover,
since B(po) = 1, (3.9) includes no T, explicitly, so K is
bounded on (0,T) even if T = «. We thus see (3.11) holds under
the assumptions on a; ’I‘O in (1), (ii) or (iii) of Theorem 1.
So far we'proved a priori estimates (3.9) and (3.10) in the
situation of (i), (ii) or (iii). To see the existence it remains
to prove the convergence of {uj} as j -+ «, Actually, we shall
first prove tguj converges in BC([O,TO); EP) provided that
p, O satisfy (3.6). Note that (3.7) implies each t%u. ¢

J
-tA . . . q
is strongly continuocus in any E-=,

BC((O,TO);'EP) because e
1 < g < »; for example see [ 28 , Lemma 2.1]. Moreover, from

(3.10) and (3.13) it follows that touj € BC([O,TO); EP) and if
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o .
c >0, t uj is zero at t = 0. To show the convergence we con-

sider the successive difference of uj constructed by (3.4):

Just like deriving (3.8), (3.5) with p = s gives

o 1-8(r)y .
t ”u -u.fl () = 2M'T sup 17 lu. ~u. (1) 3.14
54174515 0<T§T %l 57Uy lp(ns 81w
here p > Pq is used. Slnce 2M‘ I B(r) < i/(a+l)“< 1 thls
shows that there is a function u such that 1im t%i. = t u  in
J+¢O

BC([O,T )3 EP)Y. which solves

Also if. o} >'0, tcHqu takes zero at t = 0, since each tguj
has the same property. To complete the proof of (2.8) and (2.7)
we have to relak the condition on p. Let p' be r = p’-svp
and o' = (1/r - 1/p')n/m. We shall prove that to'uj converges
in BC([O,TO); Ep) and that tc'Nuﬂé, takes ze%o at t =A0 if

8"}’OﬁbSApp;yihg (3.5) -te. Su. "with "5 = p! yielﬁs

o! - ' n 1-8(r) -
t ”uj+l ujHP,(t) <= 2M To 'S OiggTT llu:J u 1” (t)- (3.15)
';iih a digfer;nt»éonstént M", Slnce tcuj converges in

BC([0,T_); EP) this implies tc'uj > %4 in BCCLO,T); EP).
Thus we have proved (2.6). Since tcﬂuj"p and tc'ﬂuoﬂp,
take zero at t = 0 by (3.i2), (3.15) implies (2.7). The
asymptotic behavior (2.10) comes from (3.8) if p, ¢ satisfy

(3.6). Tor general p in Theorem 1, it is not difficult to
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see (2.10) also holds~by using (3.12) and (3.15). Thus we have
proved (i), (ii) and (iii) of Theorem 1.
. ondiv) ) A

Since (v) easilybfql%pwswqug>g%ﬁ?iﬂ;ﬁAremging to prove the
uniqueness (iv). Let wu, v be two solutions‘of (2.2) satisfying
assumptions of (iv). We may assume that u and v satisfy (2.6
-7) for same o0, 0 < o < 1/(a+l), p > o+l; if »r > Py» O may
equal zero and we assume (2.6) only. In fact, if u satisfies
(2.86-7) for some 0, p such that 0 < o < 1/(a+l), p > a+l,
o = (1/r - 1/p)n/m, we see u also satisfies (2.6-7) for every
o', p' such that 0 =< o'f<<é, ' = (1/r - 1/p')n/m. To 'see this

we just use the estimate

! a ' -
+7 Hu”p,(t) < to“HuoHp, + M"Ti B(r)( sup TOHuHP(T))l+a,

0=1=T
o}

which is proved similarly to (3.15).

We first consider the case 1r > Py- Let K Dbe a constant
such that tUHuHP3 tcﬂvﬂp =K, 0=+t= To’ where o, p . satisfy
0.5 0 <" 1/(a+l), p > a+l, o = (1/r -,l/p)n/m: Since u - v =
Su - Sv by definition, we have the estimate

tu-v]_ (1) = 2M' BT o tTuev) (1), 0 <t <=t (3.16)
: p °© 0sTSt p

which follows from (3.5) similarly to (3.15). Since »r > Dy»

1-B(P)Ka < 1.

5 This implies

we can take T small so that 2M't
that u = v"on [O,to). Since u, Vv EBC([E,TO), EP) for every
€ > 0, the above argument with initial data u(e) = v(€) shows
that if u =v on [0,7) for some O < T < T_, then u agrees

with v on [T,T+to) for some t_ > O. This shows u = v on

[0,T).
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It remains to discuss the case »r = Py- Let K(to) ~be a
constant such that toﬂuﬂp3 tqnvﬂp‘ﬁ K(to), 0 =t = t, where
0 < g < 1/(a*l), p > atl, o = (1/r - 1/p)n/m. Here by (2.7)

K(to) tends to zero as to + 0. Instead of (3.16) we have

tcuu—v"%(t).s 2M’K(to)a sup TG"uiV"CT), 0 =1 =t

O
0 o]

since B(po) = 1. Take t, >0 smail so tﬁat ZM'K(to)d < 1.
As is seen in the preceeding paragréph.we have u = v on [O,to).
Since u, v € BC([t_/2,T)), EP), p > a*l, 'p > r with u(t_/2) =
v(to/z), the:uniqueness of the case r > Po implies u = v on
-[to/2,To). Thus we have proved the unigueness. 0o

To prdve Theorem 2 a new idea is necessary. Wé begin wifh

estimates for the linear part ug which are simple but important.

LEMMA. Under the condition (A) we have

t
- B - ) ..
[re®argar < el os<st

1
7 - (Z

with C = C(p,q,M).

Proof. We apply the Marcinkiewicz interpolation theorem [25 ,
Appendix]. The idea of the proof is essentially the same as
Weissler's for the case A = -A; P - [31,p. 39(6)1]. However,
we give it for completenes§. Consider the map U defined by

Ua = He'téfanp from (Lpf}” to functions on [0,T). The assump-
tion (A) shows that U is of weak type (r,q), where 1l/q =

(1/r - 1/pdn/my, 1 < r, q. Clearly U is subadditive and of
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weak type (p,»). If »r =g, the interpolation theorem is appli-
cable. So U 1is of strong type Cfl,ql), r, <q; with 1/q =

(l/rl ~ 1/p)n/m, which is the desired result.

Proof "of Theorem 2. Let {uj} be the sequence defined by (3.4).

We shall prove
,l*B(I‘) ”u l+a

j”p,q,T' ?
(3.17)

lasenlp,q,re = Mgl g e * CT

T' 20

with C = C(M', p,q), p >a+l, ¢ > a+l, 1/q = (1/r - 1/p)n/m,

S R T T q 1/q
. denotes the norm f ”Vup ds " 7. Recall the
‘ 0

where ”V”p,q,Tr

inequality €3.7):

t
< M1 1 1+a
"Suj”p(t) = M fo z;t:;EZET ”uj”p (1)dr.

Applying the Hardy—Li{tlewood inequality [19 ,p. 31] to this

yields

»

su. < .
1Suglip g, 3lp,q,T

Using this® estimate to suj in (3.4), we get (3.17).
If gq > r, Lemma shows that ”uo“p,q,T' is finite and

”uo”p,q,T' = ClajL.- Just like the proof of Theorem 1 (i) (ii)

(iii), this with (3.17) implies that is bounded in

I50p,q,1
j provided that T' is sufficiently small or ”anp is suf-

o
ficiently small for T' = T, 1 = Po- Since u € BC((O,TO); EP)

and u 1is the limit of wu,, this implies
]

u € Lq(O,TO; EP) with q, P > max {r, a+l} (3.18)
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If nanp is sufficiently small and T = «, we have
o

u o€ Lq(O,TDQEp) with g, p » max (po,11+l) (3.19)

To complete the proof of (i) (ii) it remains to prove (3.18),
(3.19) without assuming p > a+l. Let p' be r <p' =p and
1/q' = (1/r - 1/p')n/m. Similarly to deriving (3.15) and (3.17),

we have

I

1-8(r) T C3 20)
+ CT' 5
flu H p,q,T'” 3Hp fal, gt
As we have seén before, if T' is sufficiently small, cpri-B(r)

el , - is shall, say, less than 1/2.. In the case r = p _,
,QQT o]

j“p g, is small,

less than 1/2C. This shows that ”uj”pi q',T! is bounded under
’ 2 k]

T = ®, if uaH§ "~ is sufficiently small then Ju.

the assumptions of (i), (ii). We thus have proved (3.18-19) with-

out assuming p > a+l, which completes the proof of (i), (ii).

it rgmains.to prove the uniqueness. Let u and v be
sélutions of‘(2.2)’satisfying the assumption of (iii). We may
assume that u and v are in Lq(O,TO; EP) for same g, p
such that gq, P > max Cf;*ﬁ§i§, 1/q = (1/r - 1/p)n/m. In fact
if u is in Lq(O,TO: EP) for some p, q such that p->-r
(1/r - 1/pdn/m, u is in Lq'(O,TO; Epf) for

n

‘q,p »atrl, 1/q
all p', q' > max (r, o+l), p' =P, 1/q9' = (1/r - 1/p")n/m.

This easily follows from the estimate

+ CTl B(r),

”u”p!’q| ’TO = ”uonp q o) nu”p q, T ”u“p q',T
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which is proved similarly to (3.20).
By (3.4) we see u - v = Su - Sv. Apply (3.5) and the

Hardy~-Littlewood inequality to get

< y1-B(r) Q
lu-vil, o o = CT Aallg,q,oe * VIS g podlusvil, o py (3.21)

where 0 < T' < T,. If T is sufficiently small so that

a a -
”u”p,q,T" "V”p,q,T' < 1/4CT§ BCr)’ then (3.21) implies that
u=v on  [0,T").

Set
T" = sup {t; u(s) = v(s), a.e.s. 0 =s =< t}.

We have prerd T" 2 T' > 0. To show the unigueness on (O,TO),
it is enough to prove T" = To' Suppose not, i.e. T" < To.
Since u =v on (0, Tl),>§stimbting Su - Sv just like (3.21)
yields

o
P>q,T",t

o

Paan"’t)

fu=vil = o1 Py + v

where

Ielp,q,7,¢ :( lelwug ds) e

It is easy to see that there is a constant € > 0 such that for

t - T" = € the coefficient of |lu-v]j of the right hand

. pP,q,T",t
side is small, say, less than 1/2. The inequality now shows
u=v on [T'",T"+e) which contradicts the maximality of T".
We thus have proved T" = TO and the uniqueness of solutions.

This completes the proof of Theorem 2.
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4. THE SEMILINEAR HEAT EQUATION AND THE NAVIER-STOKES éYSTEM'
In this section we give examples of cz.i) satisfying all

assumptions for (2.1) of section 2. A simple but important ex-

ample is the initial value problem for the semilinear heat equa-

tion in @ ¢ Rr" .

ug - Au = ]u[au (a>0), ulo,x%x) = alx), x €Q (4.1)

with boundary condition
u = 0 on 3aQ, (4.2)

where @ is a smoothly bounded domain or R"” itself; if”JQ = rR"

we just consider (4.1). We now check assumptions for (2.1) in

section 2. Since Cc(Q) is dense in LP(gq), assumptions on EP

are verified if we put EP = LP(Q) and P = identity. If’we'put

‘e‘tA = etA, et is strongly continuous inyin(Q). It is easy

fo check (A) with m = 2 if @ = Efy'bgcause'wetA

capﬁﬁejﬁritténf
explicitly by:usihg the Gaussian kernel. mAlso for a bougdéd do-
main @ it isAknown that_(A) holds; see [28 ] for example&l The
assumptiohs,for the nonlinear term are easil& verified. 5T§§i
operatoi r in  (N1) should be the identity operator aﬁh jf = 0.
We thus have checked all assumptions féf (2;1): Lef ué piqkjup
some results of Theorems 1land 2 for (w;i;é).

.

. D Lo
s - O _ 1700y -
THEOREM 3.;,(Exlstence?. Suppose @ ¢ L © = L "(Q) .2nd  po

“he/2 > 1. Then there is T_ > 0 and a mild solution of (4.1-2)

on [O’To) such that

p .
u € BC([O,T)); L ©) n Lq(O,TO; LP)
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with 1/q = (l/pO - 1/p)n/2, q, p > P,» Q> atl. There is a

positive constant ¢ such that if Naﬂp < ¢ then To can be
o

be taken infinity.

(Unigueness). Mild solutions of (4.1-2) are unique in Lq(O,TO;7Lp)
with 1/q = (l/po - 1/pdn/2, g, p > atl, p > P,

(Estimate near the blow up). Let (0,T,) be the maximal interval

such that u solves (4.1-2) in C((0,T,); Lrnf’)Jr > Py > 1, Y’}m«x(oﬂﬂ/ ﬁ))'

Then

”u(s)nr > C/(T*_s)(2r—na)/2ra

with constant C independent of T, and s.

Remark. The mild solution u constructed above is a classical

solution of‘(u 1-2); see also [ 291. 1In fact u ¢ Lq(O,TO; 1.P)

with p = q 1mplles that u ¢ LP((o, T )XQ)  with P :.Pofd > a+l.

So we see |u] u € LFV(“*4%(0 T, )XQ). An L-—éstimate [16 1 for the
2,1 ' ‘

heat equatlon gives u ¢ w?v(dﬁ4)

dard bootstrap argument ylelds ‘u € W

(s, T IxQ) ‘for § > 0. A stan-
2 1 for every. r> 1.

Applying the Schauder estimate [16], we have ﬁzu, ’u% ETC((O,TO)xﬁ).

Remark. Except the fact that u ¢ Lq(O,TO; LP) the existence
part of Theorem 3 is known by Weissler [29,31]; in [31] he assumed

a 2 0, however his proof holds for general a.

Remark. The assumption Pq > 1 1is necessary for the g;obalf:

n

existence for small initial data. In the case P, = 1 and Q@ = IR

solutions blow up even if a > 0 is small; see Fujita [ 6 ] and

Weissler‘[31].



Remark. The smallness assumption is necessary for the global
existence. If Q is a bounded domain, for initial data ¢ = ky,
vy 20, ¥ 20, k € R, solutions blow up in a finite time pro-
vided that k > 0 is sufficiently large; see, for example [7 1.
If @ is R®, choose a ¢ C:(Efw such that a > ¢ in @ and
a 2 0. A standard comparison argument shows that the solution

u of (4.1) with such initial data a blows up.

Remark. As is seen in Theorem 1 the local existence holds even
if Pq is replaced by r > P However, for the global existence

the assumption Hanp < ¢ cannot be replaced by Hanr < g if
o

Q = BR". 1In fact since HaHr is not invariant under scaling
o
ay (x) = Az/ a(Ax), the assumption Hal]P < £ 1is equivalent to
a ¢ L'(R™ . However, smallness of a 1s necessary for the global

‘existence since there is a ¢€ CS(BQ’) such that the solution blows

up; see the preceeding remark.

Reﬁark. As is pointed out in the Introduction, note that the norm of
‘Lq(O,TO; LP) in our uniqueness result has zero scaling dimension.
This improves Baras' result [1 ]J: the uniquenesé holds in C([O,TO);
Lp), D > P> the scaling dimension of which is less than zero.

The class C([O,To); Lpo) does not guarantee the uniqueness

although the norm is dimensionless. In fact Ni and Sacks [18 ]
proved the nonuniqueness in C([O,To); Lpo) if § is a ball and

a = 2/(n-2) (consequently, D, = a+l).

Remark. The estimates from below near the blow-up is also proved
in Baras [1 ] by using essentially same methods. Special cases

are previously proved in [31].
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We next consider the initial value problem for the Navier-

Stokes system in) 9 ¢ R" (n22):

u, - Au + (u,V)u + Vp = 0, Veu = 0
‘ . , (4.3)
ulx,0) = a(x), X € Q :
with boundary condition
u = 0 on 989, | 4 i)
Do : ,
where (u,9V) = J u (a/axj) and & is a smoothly bounded domain
j=1
or R" itself; if Q = Efl, we only consider (4.3). This system

describes the motion of viscous incompressible fluid filling a
rigid vessel §. The function u = (u}(x,t),...,un(x,ﬁﬁ) repre-
sents the velocity of the fluid and p(x,t) 1is the prégéure.
The function a = (al(x),...,an(x)) is given initial velocity.
For simplicity external fofqe is assumed zero.

For a suitable choicewof function spaces the system (4.3-4)
can be written as a form (2.1). This is nowadays very Stahdard;
see [ 9] and papers cited there. However, we briefly review it
for completeness. Let EF be the closure in (LP(eN)™ of all
divergence-free vector fields with compact support in §. It is
known that there is a continuous projector P from (LPean™  to

E” and that P is independent of 1 < p < ® on (Cc)n‘ Clearly,

(Cc)n n E? is dense in EP. The Stoke: operator A in EP s

defined by A = -PA with dense domain
D(A) = EP n {u ¢ (WZ’P(Q))n; u =0 on 3af}.

Applying P to both sides of the Navier-Stokes system gives
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u, + Au = ~P(u,Vu, uld) = a ¢ P (4.5)
for some p > 1; obviously, this is a form (2.1) with Fu = -P(u, Pu.
We now verify assumptions on CeTtA in section 2. TFor a

bounded domain , we have

o_-tA : A
Ia"e £l = C”fug%
‘since et g a‘bouhdédfpolomofﬁhiéfééﬁigroup in EP. Since

20,2

D(AY) s continuously embedded in (H (eN®  this together

with the Sobolev embedding theorem yields (A) with m = 2; for
more detail see [8, 9 J. For g = R", e"tA 4 the solution
operator of the heat equation so (A) can be directly verified [151].

We next verify the assumptions for the nonlinear term Fu =

. n . .
-P(u,V)u. Since V * u = 0, we have (u,V)u’ = ) Vjujul. We
351
n ‘ ; 2
put T = ) PVj which is a linear operator from (LP)" ~ to 9.
j=1
The nonlinear term Fu is expressed.by TI'Gu if we define
2 . |
g(w: R + ®R® by ~g(u)l3§F;-ulu3. It is easy to see g satis-
fies (2.4) with o = 1 which implies that (Gu)(x) = g(u(x))
satisfies (N2). For a bounded domain §, since
P , b
C  ia-l/2..
s 17z 187 e
472 p
and since A‘l/zf is bounded in LP [ 8], the assumption (N1)
with vy = 1 is verified. If @ =2Rn, Vj(=a/axj) and P
commute with e—tA so (N1) is directly verified. We thus have

.checked all assumptions in section 2. Let us pick up some results
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from Theorems 1 and 2 for (4.5) which are important in sequel.

THEOREM 4. (Existence and Uniqueness) Suppose a ¢ Er, i;ﬁﬁﬁ.

Then there is

T, > 0 and a unique mild solution of (L.5) on

[OaTo) such that

- - R

u € BC(LO,T,); ™y 19¢0,T_; EP) (4.6)

l/qu

t € BC([O,TO); EP) and tl/qu takes zero at 't = 0 (4.7)

with 2/q + n/p =hMr, g, P > »r. There is a positive constant

¢ such that if HaHr < ¢ then To can be taken infinity.fdr r = ﬁ.

(Estimate near the blow up). Let (0,T,) be the maximal interval

such that wu solves (4.5) in  C((0,T,); Er), r>n > 1. Then

lute)f, = C/(T,-e) (7727 (4.8)

with constant C independent of T, and s.

Remark. The mild solution u constructed above is a classical
smooth solufion; see [8‘]. More precisely, u beléngs»to

C®(@x(0,T,)). We call u a regular solution. .

Remark. The advantage of theorem 4 is that u belongs’fo

L4(o, tos EP) having zero scaling dimension for a ¢ Ln:j‘ln

[ 4] Fabes, Lewis and Rivere constructed Lq(O,TO; Ep)v solution.
However they are forced to assume a € Er, r > n Dbecause they do

not use Lemma in section 3; see also [ 3] for q = IRn.

Remark. As is seen in our proofs of Theorems 1, 2 and 4, we do
not use a priori estimates for the nonstationary Stokes equation

due to Solonnikov [2u47]:
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t
f jae tadat <
0 q

= Clap® ;
”a”wg_z/q,q

where  1s a bounded domain. However, we note that for e'tA

Lemma in section 3 follows from this estimate and the characteri-
zation of D(A%®); this method also shows that ‘the inequality in

Lemma holds for the Stokes operator if q = r.

Remark. In the case Q = IR3, (4.8) was given by Leray [17].

He also gave the estimate from below for ”Vul[2 and nuuw near
the blow-up. In [ §] Foias and Temam gave the corresponding-

estimate for HuH_1 when @ is a bounded domain in IR3.
H

Remark. In [15] Kato studied the asymptotic behavior of ﬂu”n

as t » » when @ = R". He proved
T
1 full_ (t)at + 0 as T + = (4.9)
T 0 n _

if u(0) = a is small in E". When n = é, this implies
Hqu(t) + 0 as t - o since the energy cannot increase. To
show (4.9) he used the fact that u ¢ Lq(O,w; EP) in (4.8).
Note tﬁaf'ﬁis?;éigéd~w6fk;:ﬁh"é?m;re general situation;’}lh'fact,
under the assumptions of Theorem 1 we have

1

T .
=1 fhul. (£)dt > 0 as T » =,
T J'0 Po
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5. REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM

We shall prove some sufficient conditions for regularity
announced in [10] by using regular solutions in Theorem 4; the
case £ = R" is included here. The results can be extended to

the case having non-zero external force f;
u, *+ Au = Fu + f

under an appropriate restriction on f; however, we omit f for
simplicity.

We begin by showing that regular solutions satisfy energy

equality provided that the initial data are in E2. For @ = R"

this is important because u(t) ¢ E" does not imply u(t) ¢ Ez.

PROPOSITION 1. (i) Let u be the regular solution of (4.5) on

. . 2 .
(O,TO) (To<m) satisfying (4.6). Suppose wu(0) = a ¢ E°. Then

1

u € L7(0,T_; £2) p Lz(O,TO; Hly, (5.1)

where Hl z Hl(Q) is the Sobolev space of order one.

(ii) The above regular solution u satisfies the energy gquality

2 T2 2 »
labZce> + 2 [ fvallceras = i} (5.2)
0

R

Proof. We ﬁeéiﬁlwith estimates for Su in (3.4), where A is

the Stokes operator and Fu = -P(u,V)u.. We shall prove
Isul ,(£) = ¢ sup st/ %uf_jlui, O (5.3)
0<tst P
| vSull < (5.4)

2,2,t CHqu’q’tNVuHQ,Q’t
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t 1/
on . i » - q
wit 2/q n/p 1, p > n, where ”V”p,q,t <foﬂvnp(s)ds>

and C is independent of wu and t. As in section 3, we have

t ,
Isull () = ¢ jo<x-s>‘l/2 - n/szuNp(s)UuHZ(s)ds,

/2

which yields (5.3). Since [Ve ™4 = CHaHz/tl [9,15], it

2

is not difficult to see
t -1/2 - n/2
Ivsull,(t) = ¢ jo(t-s) Pﬂunp“Vunz(s)ds.

Applying the Hardy-Littlewood inequality gives (5.4).

Since u satisfies (3.4), (5.3-4) yields

luly wx = Clally + Cls™ %l (v, o o s
vul < cfve tAq + cllull vy
'2,2,t 2,2,t P,q,T 2,2,t
~-tA

In the second inequality, since v = e a solves :Vt + Av =h0,

taking the inner product of v and the equation eventually gives

—tAaHZ
2,2,

gre small, say, less than 1/2C if t is sufficiently small.

2||ve < Haﬂg. By (4.6-7) both |Is~/ 2u] and Huﬂp’q,?

p,®,t

Hence the above two inequalities imply that

1

o 2 2
u € L (O,to; E") N L CO,tO; H™)

for small t_ > 0. This argument can be repeated for inifial data

Lo<ae t<tJ n .'
u(t )Yy since u € BC([O,TO); E"), so we eventually have (5.1).

The proof of (ii) is given by Prodi; see [21]. The crucial

point is that (Fu,u) 2 makes sense and vanishes. o
L !
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Remark. The proof given here is:similar to that of Katdv[lsl.

If Jaj_ = is sufficiently small, so do |ju|_ Is+/a

P>Q,=’ u'upa‘”a”.

If so, we have (5.1) for To = w,

Let us recall properties of weak solutions of (4.5) constructed
by Leray [17] and Hopf [12]. A weak solution v is supposed to

satisfy the following properties [26]:

2 (5.5)

v is weakly continuous from [0,w) to E
v € L™(0,»; E%) n 12(0,=; HY) (5.6)
f {(v,e¢/afj‘+‘(v,A¢) + (v, (v, )}t + (a,d(x,0)) = O
0 ' '
h (5.7)
A‘ w a . . ’ . . T . - .
Io(v,vw)dt = 0, v=0 on 202 x (0,=) 1if 30 2 @,

for all ¢l, Y € C:(Q x[0,%)), ‘Ve¢ = 0, where ( , ) denotes the

standard L2 innder product. Moreover, the energy inequality

holds for v

. t . ¢

MHGE zf loviitsdds” = Jv)i(t)) for t ozt (5.8) °
+ (e} O
.
a.e. to >0
2 2, 2 N
I3 + 2[ Ievidesras = el for t320 (5.8
0 . :

Up to now we do not know the uniqueness nor the regularity of
solutions satisfying (5.5-8) if n > 3. However, as far as a
regualr solution exists all weak solutions should agree with the

regular solution. More precisely, we have
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PROPOSITION 2. ([21], see also [26, Theorem 3.9]). Let v

be a weak solution satisfying (5.5-7,8!'). Suppose that u 1is

a solution with u(0) = v(0) ¢ 2 satisfying (5.6-7) and

u € 1%o0,T; Ep)(ELp%q) (5.9)

with some p, q, 2/q + n/p =1, p >n. Then v agrees with
u in Ux[0, ;.

Proof. The crucial step is to show the identity

t :
- I'(Z(Vu,Vv)*—b(w,w,u))ds = (u(t),v(t)) =~ Haﬂg (5.10)

0____, - —— et

with w = v - u, where ( , ) denotes the L2-innder product and
b(ul,uz,us) = ((ul,v)uz,us). (5.11)

Admitting (5.10), we have the estimate

t

t
jeisce + 2f geiies = 2f vGwwwas . tro0 (5.2)
0 0 .

which follows from 2 X (5.10) + (5.2) + (5.8). Applying the

standard argument to (5.12) eventually gives

? . 2 t (
HWHQ(t) < kuQ(O)(exp C Jouu"gdu)
2/gq +n/p=1, p>n -
which yields w = 0, since w(0) = v(0) - u(0) = 0; see [21].

It remains to prove (5.10). Applying Theorem 4 in [21],

(5.7) gives

t
fo((v,¢lt) - CVV,V¢1) + b(yé¢l,v))ds
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= (Wy(et) = a4y (e,0)) (5.13)

t
I ((u,¢2t) - (Vu,V¢2) + b(u,¢2,u))ds
0

(5.14)
= (u,9,(, 1)) = (a,6,0e,00)

where ¢, € co(x[Q,=)), V+¢g = 0. We want to put ¢, = u and

¢, = V. Since we have for (5.11)
i = vl , )
i -
‘Id_gul’uZ’u3)ds = C(Hulﬂz,m,t Yuilly 5,40
X "vu2"2,2,t"u3"p,q,t >

the trilinear form fb(ul,UQ,UB) can be extended to

x v x L%0,T;LP) with p > n, where V = L¥(0,T;L%)

2 1

\%
g
N L°(0,T;H), V0 = vVNL

2,

- Moreover, by the standard density

argument

t . t
f b(ul,uz,u3)ds = -J b(ul,u3,u2)ds
0 0

holds for wu, ¢ VO,'u2,u3 € van Lq(O,T;Lp). This shows that

we may replace b(v,¢l,v) in (5.13) by —b(v,v,¢l) and that

t t
—J b(v,v,u.)ds + -f b(v,v,ulds of wu. =+ u in Lg’q (5.15)
0 N
t t
f b(u,ve,u)ds > f b(u,v,u)ds if Ve TV in V (5.16)

0 0
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Replace b(v,¢l,v) in (5.13) by —va,v,¢l) and call the

new identity (5.13'). Since the set of divergence free vector
fields with compact support is dense in rP = Hé s n LPa)
b

(see appendix), we see (5.13') holds for ¢ ¢ CZ([O,w);Fp)
where p > n. Here we have to handle (VV,V¢1) and b(v,v,¢l)
simultaneously so we need a dénsity proposition in FP. It is
not difficult to see (5.1%) holds for ¢, € cZ([o,m);Hl). We

now plug ¢l = u and ¢2 = v in (5.13-14), where

€
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~ ~o B .
and u, v are zero extension of u and v outside [0,t]; here

-1 : D s .
pe(t) = € "plt/e) and pa 20 is a even smooth function with

compact support and fbds 1. This technique is due to Temam

[26]. We seeveasily

t
Sﬁ(v,uet)l-k (u,v . ))ds f (u(t),vit)) - ”a”% as e »~ 0 (t=20),

because (u(t),v(t)) is confinuous in t 20 by (5.2) and (5.5).
This together with (5.15-16) shows that adding (5.13) and (5.14)

¢, = Vv yields

with ¢1 = u 9 c

e’

t
—'f (2(Vu,Vv) + blw;v,u))ds = (ul(t),v(t) - ”ang
0

by tending € + 0. Since jg(w,u,u)B makes sense and vanishes,

this identity yields (5.10).

Remark. The proof given above is essentially found in [21,26].
In [21] there is a restriction on space dimensions but as is seen
above it can be removed. Recently, Sohr and von Wahl [23] gave
’a proof by using a differeht épproﬁimation. Moreover, they im-
prove Proposition 2 itself. Instead of (5.9) they only assume

u € c([0,T]; E") and get the same conclusion.

A funetion v is called a turbulent solution if v satisfies

(5.5-8). We shall prove regularity criteria for turbulent solu-
tions. Let v Dbe a turbulent solution. Philosophically, our

results read: if ﬁ[!vlpdx)q/pdt having scaling dimension
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k =2 -q + nq/p is finite, the Hausdorff dimension of possible
time singularity of v is less then k/2. Here O is a smoothly

bounded domain of Rr" or IR" itself.

THEOREM 5. (i) Let v be a turbulent solution of (4.5). Iif
v is in LP%q with k >0 and p > n, for some p, q = 1, then

there is a closed set I of (0,T) whose k/2-dimensional Haus-

dorff measure vanishes and such that v is in Cw(ﬁ?ﬁ((O,T)\Z)).

(ii) Let v be a solution satisfying'(§.6-7). If v is in

Lp%q with k=0, p>n for some p, q, then v is in Cm(ﬂ x

(6,T1).

Proof. If w§ admit Theofem 4, the proof is standard [5,17].
However, we”éi%e it for{com%ieteness.' Let 20 = {t; Hvﬂp(t) =},
Clearly, Z, .has’Lebeé%pe,measure zero. We shall show.that there
ié a closed set I > ZO such that v is smooth in ﬁ){((O,T)\Z)
and f\85 has Lebesgue measure zero. For t € (0,T)\I Theorenm

4 gives a regular solution - u for initial data v(¢) ¢ P, p > n.
Since V(%)-Q:Ez, u satisfies the energy equality (5.2) by Propo~
sition 1. We apply Proposition 2 and see Vv agrees with the
regular solutién u in  (+,T(t)+t) for some T(t) > 0. Let

Z = (0,T) \ U (t,T(t)+t).
o t£20 '

Clearly 3 is closed and v is smooth in T x ((0,T)\I). Since
the points of Z\Zo consist of the left end points ofyone of the
connected components of (0,TN\EI, Z\ZO is countable and has
Lebes%ue measure zero.

We shall first prove (i). Let Lfi,si) i€ I be the con-
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nected component of (0,T)\I. Since v ¢ Lp%q’ just like Leray

[17], (4.8) implies

L k/2 .

In fact on f(ri,gi), v is a regular solution, so (4.8) with

r = p vyields

1 - k/2

Hv(t)Hg > C/(s -t (5.18)

Integrating‘over (r_i-,si)w and adding'all‘these inequalities for
i€e¢€TI give. ‘

k/2

L N e L
: RNTL P, o
| ﬁbuvgfaupdt, > cn, g(s;mr)

Since v ¢ LP2%, this implies (5.17). The result (i) now follows
from Scheffer's argument [20] (ef. [5,91).

If X ='0, according to Prodi's result [21, Theorem 5], the
assumptionS'%or v in (ii) implies that v satisfies the energy
equalify;(S.Z) so v is a turbulent solution. As is seen in the
preceding paragraphs, we have (5.18) with k = 0. Integrating
on '(ri,si) yields

S. :
flnv-&f@? lgat = =,

r
1

so s; should be greater than T, since Vv ¢ Lp%q. In other
words there is no time singularity of v in (0,T]. We thus
have proved v € C(Q x(0,T1). o

Theorem 5 (ii) improves results of Serrin (see [21]) and

Kaniel and Shinbrot [13]. They discussed the case k < O.
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Recently, Sohr [22] proved (ii), however, the method seems dif-
ferent.

Theorem 5 is also useful to understand the difference be-
tween the cases n =2 and n=>13. If n = 2, (S.S)vimplies
vV € Lp%q with k = 0 and p > n, so every weak solution satis-
fying (5.6-7) is smooth. However, when‘ n =3, (5.6§{just implies
v € LS%Z so k = 1. Theorem 5 (i) says that 1/2-dimensional
Hausdorff measure of time singularity sét vanishes. These re-
sult§ are previously known by many authors; see e.g.-[s,i7,20,2l,
261]. However, our results clarlfy the situation.

In [2] Caffarelli, Kohn and Nirenberg study space-time in-
terior 51ngular1t1es of suitable weak solutions which satisfy a
localized version of eneréy.inequality. Théy have p#dved that
for n = Sb every sultable weak solution w is smooth w.r.t.

x in T X(O T)\F such that F is a closed set of QX (0,T)
whose Hausdorff dlmensionﬂis less thaﬁ one.' Hence, v ¢ c” (@ x
((O,T)\B));Cgheré the Hausdofff dimension of a closed set E 1is
less than '1/2. This is différent from the result for time singu-
larity ﬁentioned in the pfeceding paragraph because only the in-
terior regulérity is discussed.
Remark. It ié not difficult to show the existence of §4turbulent
n

solution if @ is a bounded domain [12,26]. However, if @ = R,

as is pointed out by Kato [15], the existence is known only for

n< i,

Remark. In [9] there is an error in the definition of the Leray-

Hopf solutions; the energy estimate (5.1) in [9] should be re-
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placed by (5.8). In the proof of Lemma 7.4 in [9] the definition
of singular sets should be changed; see the definition of g in
the proof of Theorem 5 (i).

In Theorem 5 we assume p > n. We next discuss the marginal

case p = n.

THEOREM 6. (i) Let v be a turbulent solution of (4.5). 'Ef

v 1is in Ln%q then there is a closed set g of (O,T) whose

Lebesqae medsure vanishes and such that v is in C%{g & ((0,TA ).

(ii) ([27]1). Let v Dbe a solution satisfying (5.6~ 7). If v

is in C((0 ‘I’)"En),then v is in CT(@x (0,T)).

Proof. The proof of (i) lS similar to the beglnnlng part of the
proof of Theorem 5 (1). The main difference is that we apply
Theorem U4 with E'-initial data v(t). Even in this casé (4.6)

says the regular solution satisfies assumptlons of Prop051tlon 2

if v(t) ‘e E2. ‘

To prove (ii) we may assume that Vv is a turbulent solution
as in the proof of Theorem 5 (ii). We also may assume that

.(b;T)\Z = (r sl). For all  t ¢ (fi;si) we have a regular

1€I

solution with initial data v(t) which agrees with v on

(t,t+T(t)). If we go back to the proof of (3.13), we see T(%)

:Hepénds céﬁ%;nuously on VTL) 'ln En topology The assumptlon
v € C((0,T); E™) now shows that v 1is regular in (ri,si+e),

e >0 if s; < T. This implies that I 4is empty so v € CT(§ x

(0,T)). O

If n =4, (5.8) implies Vv € LH%Z, gso Theorem 6 (i) says

that possible time singularity set of 4L-dimensional turbulent

solutions has Lebes%ue measure zero. This result is proved by
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Kato [15] and Sohr and von Wahl [23]. Moreover, in [23] they
[roved Theorem 6 (i) for 2 = q = « by using fheir improved
version of uniqueness theorem; .see the remark of Proposition é.
They do not use u ¢ L4¢o,T; L?) in (45.8) to apply the uniqueness
because they replace (5.9) of Proposition 2 by ueC((0,T]; M.
This is different from ocur proofs. Of course, Theorem 6 (ii)

also follows similarly if we use their uniqueness theorem, al-
though the proof in [27] is different. In [23] they also proved

the uniqueness of weak solutions satisfying (5.6-7)rinf'im(0,T; M),

Acknowledgments. I am grateful to Professor Folland for pointing
out that the inequality in Lemma holds for q =r > 1 if one

appeals to the generalized Marcinkiewicz theorem.

-
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Appendix

Let Q Dbe a smoothly bounded domain in R” or R"

itself. Let C; o denote the set of smooth divergence free
2
vector fields with compact support in Q. Let Hé o be the
b

closure of CE'U in H1(Q). We consider Banach space
Y
FP = Hé s n Lp(ﬂ), 1 = p < », whose norm is defined by the sum
b
of the norms of Hé,o and LP. Ag far as I know, the following

proposition is not stated in the literature.

PROPOSITION: The set cE , is dense in rP.
The set ,g AS dense in

1

Proof. If 1/pz 1/2 - 1/n, HO o

is continuously embedded in
LP by the Sobolev inequality. Hence P = Hé,o, so obvipusly

CE o is dense in FP. 1In particular we may assume D > 2.
N :

Let A = A+ M, where A 1is the Stokes operator and M 1is

a positive constant. As is mentioned in [8,91], e_tA is an
analytic semigroup in EP and Ez. For f € FP we see

f6 = é-GAf belongs to the domain of A% in Ep, a > 0; in
particular f, € D(A(]"LB)/2

5 )p’ B < 1/p. A characterization of

D(A®)(ref. [15] in [91) implies that f, is in Hy °°P, the

closure of Cz 5 in Hl+8’p(8 < 1/p), where H%°P  in the space

b

of Bessel potentials. If 1/2 > (1 - 1/n)/p, for a choice of

1+8,p 1
0,0 0,0

Sobolev inequality; if p > 2 the assumption on p 1is auto-

© . +
matically satisfied. Since CO is dense 1in Hl B
,0 0,0

implies that there is a sequence {fj j} such that f 57 £s
b b

B < 1/p, H is continuously embedded in H by the
,p, this

in FP as j o+ o,
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It remains to prove f. .+ f 1in FP as 6§ - 0. Since

§
-tA . . . . 2 )
e is a continuous semigroup in E and EY, we see

Al/zf<S -+ Al/2f in L2 and f6 + f in LP. The first con-

vérges ig exactly the same as the convergence of f6 in Hl

0,0
1/2)2 = Hl . Thus we have proved c is dense

because D(A 0,0 0,0

in FP.

Remark: The reason we consider A + M instead of A 1is to

handle unbounded domains. In fact the proof works for exterior
n

domains with no modifications. For Q = R or bounded star-

shaped domain Masuda [32] gave another proof.
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