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0. Introduction

Let k be an algebraically closed field of any characteristic,
and X be a proper normal surface over k. Let Aut(X/k) be the set of
all automorphisms of X over k. For each o€Aut(X/k), let o* be the

automorphism which ¢ induces on each cohomology group

H(X):= B (X_,,Q,) (L#ch(k))

(or if k=C, you can take as Hi(X) the usual rational singular
cohomology group Hi(X(C),Q)). It is known that Tr(a’)|Hi(X) is an
integer which is independent of ¢ (cf.[2]). We put
4 . .
Tr(c*) |[H*(X) = 3 (-1)'Tr(o*)|H"(X).
i=0
The main purpose of this paper is to give the following formula for
any non-trivial oce€Aut(X/k),
Tr(o*) |[H*(X) = y§x° 1,7 (o),

where X° denotes the set of all scheme-theoretic points of X which
are fixed by ¢ (in fact the right hand side will turn out to be a
finite sum), and ly is an invariant attached to the closure of y in
X which is independent of oce€Aut(X/k), and lastly, vy(o) is a
rational number which is defined in a purely locally manner at y,
namely it is determined by the action of ¢ on the completion of X at
y. To be more precise, for yeXo, ¢ induces an automorphism of the
completion Ay of the local ring of X at y, which we denote by Oy‘
Let IA (c¢) be the ideal of A_ generated by all elements of the form
o,(a)-i with aeAy..In case that X’ consists of isolated regular

Yy
closed points, the classical fixed point formula says



(0.1) Tr(o®) |[H*(X) = 3, »,(0),
xeX

where wx(o) = dimk(Ax/IAx(o)).

In general, X% is divided into two disjoint subsets Xg and Xi,

where for i=0 or 1, X; denotes the set of the points of X% whose
closure in X has the dimension i. Moreover, for each pexg, 6 will be

defined to be either type I or I at p by observing how o acts on the

stalk of Qi/k at p (cf.(1.11)). Thus, we define Xg (resp. x2) to be

I
the set of all pexg such that o is type I (resp. II) at p. Then, the

formula in the general case will be

(0.2) Tr(e*)|H*(X) = 3 _ 1

ey (o) + 2
peXI » g

peXp 19.vn(°) * 2 o vx(o)‘

» xeXO

Here, for pexg and its closure Fp in X, we put

(0.3) » (o) = lengthAp(Ap/IAv(a)),

zp = Z'ng’ where gp is the genus of the normalization of Fv’

Ty

the self-intersection number of Fp on X,

where the intersection theory on a normal surface is defined by
Mumford [9] (rp is a rational number, not an integer in general).
Lastly, for xexg, vx(a) is a rational number defined in a purely
local manner at x; for a two-dimensional noetherian normal complete
local domain A over k and its non-trivial automorphism @, we will
define its "multiplicity” VA(¢)€Q in §2. Then, vx(o) is defined to
be v, (ox). An explicit calculaticn of vx(a) will be given in §&4.
X

In particular, we will see that (0.2) gives the formula (0.1) in the

special case. Moreover, one would see that in case that X is smooth



over k, the whole argument works well for any non-trivial

endomorphism ¢ of X and we have the same formula (0.2).

In §6 and §7, we will develop the two-dimensional version of
the classical Swan representation for a discrete valuation ring, and
will give a character formula of a finite group acting on an
algebraic surface which we can view as the two-dimensional version
of the Weil formula for an algebraic curve (cf.SGA5X(5.1)).
Moreover, applying the method in [6] to our result, we obtain a
result which is considered the two-dimensional version of the
Grothendieck-Ogg-Shafarevich formula for an algebraic curve
(cf. SGA5X(7.1)). Such a formula was first discovered in [7] by a
different method, which stimulated the author to make these

researches.

I would like to express my hearty thanks to Professors K.Cho
and G.Laumon for helpful discussions and valuable advice. Also, I
would like to express my sinceré gratitude to Professor Y.Ihara for
his hearty encouragements and suggestion for (6.10). Finally, I wish
to express my special thanks to Professor K.Kato for his keen
interest on this work and suggestion for the alternative definition

of vA(o) in §3.



Notations

A ring means a commutative ring with unit.

For a homomorphism of rings k — R, End(R/k) (resp. Aut(R/k))
denotes the set of all endomorphisms (resp. automorphisms) of R over
k, and End(R) = End(R/Z) and Aut(R) = Aut(R/Z).

For a ring R and o€End(R), IR(o) denotes the ideal of R

generated by all elements of the form o(a)-a (ac€R).

For a scheme Z and an integer i>0, Zi={zeZ| dim{z}=i}.
For a morphism of schemes Z — S, End(Z/S) (resp. Aut(Z/S))
denotes the set of all endomorphisms (automorphisms) of Z over S,

and End(Z)=End(Z/Spec(Z)) and Aut(Z)=Aut(Z/Spec(Z)).

For a scheme Z and o€End(Z), Zz° denotes the set of all points
of Z fixed by ¢, and Jz(a) denotes the unigque ideal of OZ whose
stalk .}Z(o)z at each point zeZ is as follows: If z¢Z°, Jz(o)z= OZ
and if zeZ?, Jz(a)z=IR (oz). where Rz is the local ring of Z at z

z

and o, is endomorphism of Rz induced by o.

For 2=End or Aut, X' denotes the subset of all non-trivial

(namely, not the identity) elements.



1. Preliminaries

(1.1) Let k be an algebraically closed field and let

A = k[[X,Y]]
be the ring of formal power series of two variables over k. We fix
a prime ideal p of height one in A, and denote by x[p] the
normalization of A/p. By definition, x[p] is a complete discrete
valuation ring with the residue field k, so for a prime element t,
we have an isomorphism x[p] = k[[t]]. Let R be the localization of
A at p and put x(p) = R/pR, which is the quotient field of x[p].

Furthermore, we fix an integer n>0, and put
A = A/p" and R = R/(»R)"

Let M be a free R-module of rank one, and for each integer i>0,

iy = (pR)IM  and  erim = Fim/Fitin.

By definition, Gr'M = 0 for i>n, and for Ogign-l, it is a

one-dimensional vector space over x(p).
Definition(1.2). M is filterwisely based if there is given a
set ¢=(¢i)O§i§n—1 of isomorphisms

¢; = (R)T/ (R = Grim

determined up to the multiplication by x[v]x. We define Gr;M to

be the image under ¢i of
i, i+1 — 1+1
/v ®Ax[n] c (pR)™ /(»R)
This is well-defined free x[p -module of rank one.

Definition(1.3). A sub-A-module L of M is an A-lattice if L is

firitely generated over A, and generates M over R.



Put
FIL = FIM n L and GriL = FiL/Fi*1L.

Then, GriL is a sub-(A/p)-module of GriM which is finitely generated
over A/p and generates GriM over x(p).
When M is filterwisely based as (1.2), for an A-lattice L of M,
we define its index by
n-1
(1.4) [M:L] (= [M,9):L]) = 3wy

where By = dimk(GriM/(GréM n GriL)) - dimk(GriL/(GréM n GriL)).

(1.5) Let the notations be as (1.1). Fix a non-trivial endomorphism
¢ of A over k, and n be the maximum integer for which ¢ acts
trivially on A/p". We assume n>1 and define A and R as (1.1). Let
5&/k be the module of formal differentials of A over k. For
convenience of readers, we recall its definition. First, let

C=A®A := lin A/n’@A/nd,

1,J

where m is the maximal ideal of A. Let IC(A) be the ideal of C
generated by all elements of the form aél - léa (a€A). By

definition, we have an isomorphism
(1.6) C/1(4) —~» A ; a® — ab.

Then, we define

éi/k = IC(A)/IC(A)Z.

We have a derivation of A over k

~1 o - - 2
- - =~ T | = T
d: : A — Qﬁ/] ; & — a@i 1® mod I~ (4)°.

R Al - ‘1 = . ‘1 3 " - 5
Let QR/k = QA/k®AR end déd : R — QR/k be the unigue derivation



. . ~1
of R over k whose restriction to A is dA. Let Qx(p)/k be the module
of formal differentials of x(p) over k which is defined as follows:

First, we define

where for each integer n>0, we put x[p]n=x[p]/(tn) with a prime

element t of x[p]. We see that Qi[p]/k is a free x[p]-module of

rank one. Then, we put
~1 ~1
Q = Q ® .
x(p)/k = Fulp]/x®x[p]*(¥)-

There is a well-known exact sequence

(1.7) 0 — rR/(R)% % op epn(e) £ 0] L — 0,

where the maps a and B are defined as follows:

a(b mod (pR)2) = db®1 - (bepR),

B(adb®1l) = adb (a,beR and a,b are its images in x(p)).
We see that 5é/k is a free R-module of rank tﬁo. In fact, we can
take as a basis (dw,du), where = is a prime element of R and u is a

unit of R such that du has & non-trivial image in Qi(p)/k‘

Consider the following map
n 2n 2n
R — (pR)/(®rR) ; a — o(a)-a mod (pR)" .

It is a continuous derivation of R over k, so we get a homomorphism

(1.8) g, : 5;1/1;@15 —  (sR)2/(pR)?® ; adb®l — a(o(b)-b).

1 &% (resp. (bR)n/(pR)Zn) is a free

Since ¢_ is surjective and Q-/,
s 1 ‘ n/K 0t

f-module of rank 2 (resp 1), Ker(¢6) is a free R-module of rank 1.



Definition(1.9). o is type 1 at p if the image of Ker(wc) under

~ = ~1 e 21
9z /x®grR * g /1 8g* () 2 (p) /K

is non-trivial. Otherwise, o is type I at »p.

Remark(1.10). The argument so far works well in more general
context where A is a two-dimensional noetherian normal complete

local domain over k such that A/m =~ k (m is the maximal ideal of A).

Now, we define a natural structure of a filterwisely-based
module over R on Ker(p ). If o is type I at p, (1.7) gives a

canonical isomorphism for each i (0gign-1),

GriKer(p,) = 9} ) & (sR)1/(3R)TTT.

So, for a prime element t of x[p], the map

(vR)i/(vR)i+1 — 5i(°)/k®(pR)i/(pR)i*1 s a mod (pR)i+1 — dt®a

gives the desired structure on Ker(¢o). If o is type II at p, (1.7)
gives a canonical isomorphism for each i (O;ign-l),

»R/(sR) %€ (pR)T/ (PR)T*Y = GriKer(p,).

By the regularity of A, we can find an element s#€A which is a

generator of p. Then, the homomorphism
i i+l 2 i i+l i+l
(»R)~/(®R) — »R/(pR)"€(pR)7/(PR) ; a mod (pR) — a®a

gives the desired structure on Ker(wa).

(1.11) Let k be an algebraicelly closed field. Let R be an
excellent discrete valuation ring over k with the maximal ideal »p

and the residue field x(r), and assume that Qi(p)/k is a



one-dimensional x(p)-vector space. Put Ri= R/p1 for each i>0, and

o ~1 s 1
R = l@m Ri and QR/k = 1;m QRi/k‘

Then, QR/k is a free R-module of rank 2. Fix a non-trivial
endomorphism ¢ of R, and put n=1engthR(R/IR(a)) and §=Rn. Then,

in the same argument as before, we have an R-homomorphism

oAl T o, wn/.2n - _
Py ¢ QR/k®RR »/p ; adb®1 a(o(b)-b),

and Ker(¢o) is a free R-module of rank one. Thus, we define ¢ is
type I or I at p according to the image of Ker(¢o) in Qi(v)/k is

non-trivial or trivial. Defining
Gr'Ker(p ) = »lKer(cpo)/v“lKer(svo),

we see isomorphisms

GriKer(wo) 0 for i>n, and

1 i, i+1 . .
. Q &, (p /¥ ) if o is type I at p
i - x(p)/k°R ’
Gr Ker(wo) =

(v/v2)®R(pl/pl+l) if ¢ is type I at ».

In particular, for X/k, o€End(X/k)' and pexg as Introduction,
we put R the local ring of X at p, and obtain the definition for ¢
to be type I or I at p. By definition, we see that the following
conditions are equivalent for c€End(X/k) and vexz.

(1.11.1) o is type I (resp. II) at p.

(1.11.2) There exist a closed point xs?p anéd & prime idesl p_ of AX
lving over » such that oernd(Ax/k} is tvpe I (resp. I) et %°

(1.11.3) The same condition as (1.11.2) holds for any XEFp and »p_.



2. The definition of the multiplicity of an automorphism of a

two-dimensional local ring (regular case)

Let k be an algebraically closed field and A a two-dimensional
noetherian normal complete local ring over k such that A/m = k,
where m is the maximal ideal of A. Let P be the set of all prime
ideals of height one in A. For peP, let Rp be the localization of A
at p, and x(p) its residue field.

In the following two sections, we define, for each o€Aut(A/k)',
its "multiplicity" vA(a)eQ, which gives the desired invariant vx(o)

in the formula (0.2) as explained in Introduction.

Definition(2.1). For o€End(A/k)' and peP, we define

Rp(Rp/IA(o)Rp).

vp(a) = length

Let P? be the set of all p such that vv(a)>0. Following (1.9)
and (1.10), o is defined to be either type I at p or type I at »p

for each psPo. We define P; (resp. Pﬁ) to be the subset of P°

consisting of all p such that o is type I (resp. I) et p.

In the following part of this section, we assume that A is
regular, so that A=k[[X,Y]]. In this case, wA(a) will be defined fcr
any o€End(A/k)'. Thus, we fix o€End(A/k)' in what follows. Let C
and IC(A) be as defined in (1.5), and let IC(T) be the ideal of C
generated by all elements of the form a(a)éb - aéo(b) with a,beA.

For each integer r;O, we put
r _ C
(2.2) TA(o) = To‘r(C/IC(A),C/IC(F)).

By definition, Tz(a) is a C-module cof finite type and IC(A °T§(G)=O
so that Tz(a) is viewed as an A-module of finite type through the

isomorphism (1.6).

- 10 -



Lemma(2.3). (1) We have isomorphisms
10(0) = A/I,(0) and Ti(o) = (IC(A) n IC(I‘))/(IC(A)oIC(I‘)).
(2) TX(O) = 0 for rx2.

Proof. (1) is an easy exercise in homological algebra and (2)
follows from the computation of Torr using the Koszul complex

associated to a regular sequence generating IC(A) in C.

For each peP and each r, we put
r _ or
(2.4) TA(G)p = TA(°)®ARp .
r _ . r . r
SA(O)p = the image of TA(o) in TA(O)p .

For each r, let
r . .r r
7 . TA(O) — pipo SA(o)b
be the natural map. Then, Ker(yr) and Coker(yr) has a finite

dimension over k. We define

(2.5) 34(0) =

"M

(-1)r(dikaer(yr)-dikaoker(yr)).
r=0

Now we fix :ePa and put R=Rv andé n=vb(o). Recall the notations

in §1. By definition, we have
™(6)_ = ® := R/(5R)® and S%(s)_ = & := A/p"
A P : A P ) *

so that Tg(a)b has & natural structure of a filterwisely-based

R-module and Sg(o) is an A-lattice of Tg(o)p. Thus, we put

(2.6) v

»PrO v

(¢) = -[T

> O

0]
- (G)r:SA(U)r]'

1 . .
As for lﬁ(d)v, we have the following.

- 11 -



Lemma(2.7). There is a canonical isomorphism

1
Tp(o), = Ker(g,),
where . 0 @ R — (pR)n/(pR)2n is the map (1.8)
6 * “R/k°R $G/.
The proof of (2.7) will be given later.
By (2.7) and the result in §1, T}\(o)p is a free R-module of

rank one, which is canonically filterwisely based, and Si(o)p is an

A-lattice of Ti(o) Thus, we define

5"
(2.8) vi.p(a) = -[Ti(o)»:Si(o)p].

Lastly, we define

(2.9)  v,(0) = 8,(a) + pzpo(»g.p(a) - a ().

The proof of (2.7). Llet C, IC(A) and IC(T) be as defined
before. Let p be the inverse image of p in C under (1.6) and Cp be

the localization of C at . Put
IC(A)D = IC(A)Cp and IC(T)D = Ic(r)cv.

Noting the isomorphisms

Cy/ (1e( M) +1g(N),) = R/(3R)7= R,

2 pet
IC(A)p/IC(A)p = QR/k’

R

The), = (10(a), 0 100, )/ (10(a), 10D )

we see that IC(A) S IC(A)p induces a map

®_R.

- 2 _ 7
— I(4), /I (4) 7 = 0 18

) s

- 12 -



To prove that 6p induces an isomorphism T}\(o)p ~ Ker(¢o), we first
note the isomorphism

Cb
p = Tor, (Cp/IC(A)p’Cp/IC(T)p)
On the other hand, Cp is a regular local ring of dimension 3, and
that Cp/IC(A)p and C#/IC(I‘)p are discrete valuation rings (in fact,
both are isomorphic to R), so that we can find a regular sequence
(a,b,c) in Cp such that IC(A)v (resp. IC(T)p) is generated by (a,B)
(resp. (a,c)). Now, our assertion follows from the computation of
Tor1 by using the Koszul complexes associated to the regular

sequences (a,b) and (a,c) (cf. SGA6,VI(2.5)).

- 13 -



3. The reduction to the regular case

Let A be as in the first part of this section. In this section,
we reduce the definition of Ya to the regular case which we treated
in the previous section. First, we consider a resolution of Spec(A)

f : L — Spec(A)

by which we mean a regular two-dimensional scheme X and a proper
birational morphism f such that f induces an isomorphism

L \ E > Spec(A)-x,
where x is the closed point of Spec(A) and E = (f-l(x))red which is
a one-dimensional proper scheme over k. For the existence of such an
2, we refer the readers to [5]. For qul, let E,7 be the closure of
7 in E. Note that peP defines a closed point of Spec(A)-x, which we
denote again by p, and we put FD the closure of p in L. For a given
ceAut(A/k)', we choose a resolﬁtion 2 of Spec(A) such that o extends
an automorphism of & over k. If such an extension exists, it is
unique and we denote it again by 6. The existence of such an ¥ is
guaranteed by the theory of the minimal resolution of Spec(A)
(cf.[8]). Let Eg (resp. Eg) be the set of ero (resp. neEl) which
are fixed by 6. By (1.11), for neEg, o0 is defined to be type I or I
at n and we denote by E; (resp. E%) the set of all neE; such that o

is type I (resp. I) at 5. On the other hand, for erg, we define

vele) = 7y (o) (of. §2),

where Ax is the completion of the local ring of X at x and L is the

automorphism of Ax induced by o. Then, we put

(3.%) vplo) = 2 v (o) + 2 _z v (o) +
= xe (N

-
-
et

(@]

- 14 -



where vﬂ(o) and zn is defined in the same way as (0.3), and zn is
the self-intersection number of En on £ (cf.[14]). Lastly, we define

(3-2) VA(G) = ‘Va.(ﬁ) = pzpﬁ vp(o)'sa'p + 1 - TP(O‘)IH*(E),

2 .
where Tr(o*) |H*(E) = 3 (-1)'Tr(o*)|H'(E_,,Q,) (i¥ch(k)),
120

and g pEQ (peP) is defined as follows. Let

F'=F_+ 3 r_-E (r_eQ)

be the total transform of p on € in the sense of [9], namely, rﬂ

(neEl) is determined uniquely by the equalities

(Fé,Eﬂ) = 0 for any neBl.

Then, we put

€ = >r +-(E_,F_ ).
Z.» nee, 7 1P

Proposition(3.3). The definition (3.2) of vA(o) does not depend
on the choice of Z.

In case that there exist X/k, ?eAut(X/k) and xeX? eas in
Introduction such that A is obtained by completing X at x and that ¢
is induced by ¢, (3.3) follows from the global formula (0.2) proved
in §4. The rest of this section will be devoted to a purely local

proof of (3.3).

- 15 -



Before starting the proof of (3.3), we first introduce some
definitions. Let R be a noetherian local ring and U=Spec(R)-x,
where x is the unique closed point of Spec(R). Let

f : £ — Spec(R)

be a proper morphism such that f induces an isomorphism

b
red’ Coh(Z)

defined in [4], and let I be the set of all triple (4,#,y),

2 \ E = U, where E = (£ (x)) Let D2(%) = D (Z) be as

where A,¥ € Ob(Dg(a)) and weIsomU(l,#), namely, an isomorphism
~
Y J“IU — JIIU,
where xlU (resp. NIU) is the restriction of A (resp. #) to U. Then,
we can see that there exists a unique function
(3.4) g2 — 2
which satisfies the following conditions (3.4.1) and (3.4.2).
b

(3.4.1) For A,¥,2 € Ob(Dc(%)), welsomU(x.ﬂ) and ¢eIsomU(#,z),

ZR("93"P"P) = ZR("PUvV’) + ZR(‘”92'¢)'

(3.4.2) For («,¥,yp)eX, suppose that there exists ﬁeHom(l,ﬂ) such

that $|U= v, and let zeOb(Dz(z)) be the mapping cone of $. Then,

g (L ¥,9) = zp([2]),

where for erb(Dz(%)) supported in E, [X] denotes the elements of
the Grothendieck group KO(E) of coherent sheaves on E determined by

¥, and 1R ¢ KO(E) — Z is the unique homomorphism such that

25 ([%]) =_EZ(-1)llengthRHl(z,x).
1€

- 16 -



(By EGAN(3.2.3), HY(%,X) is an R-module of finite length for any

ieZ, and it is trivial except for a finite number of i's.)

Moreover, we have the following properties of IR-
(3.4.3) If (&,¥,p)eZ, and if A and # are supported in E,

1R (W) = 2p([4]) = 25([41).

(3.4.4) Let g : £' — 4 be a proper morphism such that g induces
an isomorphism Z'\ E' = & \ E , where E'= (g-l(E))red. Define '

and gz, for L' as before. Then, for (L', N',p')el',
iR Y

AR, W,y ) = 2p(Rge(H'),Rge(¥'),y").

Now, let A and 4 be as in the first part of this section. Let &
be the formal completion of & along E, and 6 be the automorphism of

Z induced by 6. Let % =K xk% be the fiber product of formal

schemes over k. Let 4 (resp. I') be the diagonal (resp. the graph of
6) in . They are formal closed subschemes of %. Let 55(4) (resp.

J%(T)) be the ideal of definition of 4 (resp. I') in © and for each

%9
integer r20, put

- 0
» 3
(

(3.5) Tq(0) = Ton S(0y/54(4),04/5(T)).

By definition, 9;(0) is a coherent 0,-module and J%(A)-3§(0)=O so

%

that 9;(0) is viewed as a coherent Og module through the natural

isomorphism O%/jg(d) ~ 0&. By EGAII(3.1.6), there is a unique

tr

}J

n

Qq >
i ¥y

Q

coherent C,-module 9;(0) whose formal completion along E

Moreover, as (2.3), we can see 9;(0) 0 for r32, and

- 17 -



79(0) = 0g/%(c) and F4(e) = (34(4) n 34 (1)]/[s4(4)-34(1).

Now, for each pePo, choose apeAp which satisfies the condition:

-~

(3.6) If oePo, dE” is non-zero in Qi(p)/k’ where a_ is the image of

b

a, in x(p). If oePE, 8, is a prime element of Ap (cf. §2).

For ap chosen as above, we define oa € Z as follows: For pePg,

by

(3.7) § = the order of da_,

a p

p
namely, writing dgv = avdtp for some prime element tb of x(p) and
avex(v).
_ - ) o RN
Bav = ordx(v)(ap) max{nltv divides ap}.

For pePE, we define

(3.8) 0, = (Fy(a,)-F.),
b

where F” is the closure of p in &, (ap) is the divisor of ap on X
and ( , ) denotes the intersection number of divisors on <.

For peP, let 9;(0)p be the stalk of 3;(0) at p. By definition,
Fé(o)p=0 unless peP?. On the other hand, for peP?, we can see from

the proof of (2.6) that there is an isomorphism
. <0 ~ gl . o1 - 18 .
(3.9) wap : 3g(a)p — 9g(o)p, 1— a®l - 1®  mod S (4) - 5g (T).

Thus, for a = (ab) ¢ chosen as (3.6), we obtain an isomorphism

peP
(3.10) vy @ Tglo) |y == Tzlo)|y

such that the stalk of v, at peP? coincides with Vg o where Eé(o)lu
D
denotes the restriction of ?é(a) to U:= Z \ E.
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Lemma(3.11). We have

0 1
rq(0) = 2,(9g(0) Tgla)uvg) = 3 6, w7y (0) (ef. (3.1)).

(3.11) is an immediate consequence of the definition of v%(o).

Now, for the proof of (3.3), it suffices to determine how
v%(o) changes after replacing X by the blowing-up of & at a closed
point fixed by 6. Thus, we are reduced to the following case:
Let D=Spec(A) with A=k[[X,Y]] and o be a non-trivial automorphism of
A over k. Let f : & — D be the blowing-up of D at the unique
closed point x of D, and put E = f-l(x). Then, f identifies 4 \ E
with U:= D-x. For each integer r>0, let 9;(0) (resp. 9;(0)) be the
coherent OD-module (resp. Oa-module) whose formal completion along x
(resp. E) is defined as (3.5). By definition, the restrictions of
Tg(o) and 5;(0) to U is identified, which we denote by 95(0). For

each peP?, choose apEA as (3.6) so that we have an isomorphism (3.10)

ve t Tp(0) = T5(0) (8 = (8,),p0)

whose stalk at each pePa is described as (3.9). Then, (3.3) follows

from the following formulsa
(3.12)  2,(55(0),Fh () w,) = 2,(50(0) . TE(0) wy) + 1.
Let 6=Spf(A) (resp. é) be the formal completion of D along x
(resp. 4 along E), and let
& = 5 xkﬁ and ¥ = é xké

be the fiber product as formal schemes over k. Let J%(A) and JW(A)
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(resp. J%(r) and JV(F)) be the ideals of definition of the diagonal
(resp. the graph of o¢) in O% and Ow respectively. In addition to

r r r
ED(o) and 9%(0), we introduce a coherent O%-module g%/D whose
formal completion along E is

o r _ OZ
FK/D(O) 1= Yaﬂr (OV/JW(A),O%/J%(F)).

We can see that 3§/D(o) = 0 for r22, and that its restriction to U

coincides with 35(0). Now, we deduce (3.12) from the following.
Claim. (1) 2,(90,n(0),T5 (o) w,) = 2,(90(0),T2(a),p,)
. Xpa\Wg/ploisWg plo/ ¥y Xa\“pl0Js/pla) ¥y /-
0 1 _ 0 1
(2) IA(g.Q/D(G)’g.g/D(O)"Pa) = XA(ng(U),g'gC(U)»‘Pa) + 1.

Proof of (1). We have isomorphisms

) .. 0:
D

Rig,(0y/%.(4)) = R*'f,05 =
R AR T 0 for i>0,

for i=0,

where g : ¥ — % and f : £ — D are the natural morphisms.

Hence, by EGAN(6.9.8), we have a spectral sequence
P.Q _ p-P q - abPt*q
62 = R f,(ﬂ’z/D(o)) = 93 (o).

Now, our assertion follows from this and (3.4.4).

0
Proof of (2). First, we compute Eoﬂp%(oy,o%/fx(r)) by using

the Koszul complex associated to a2 regular sequence in Os generating

J%(A), and we can see
0 for p>0,

2
Ton, (Oy,0y/5¢(T)) =
Ow/(jy(T)'jy(ExE)) for p=0,
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where ExE 1is the fiber of g : ¥ — % over the unique closed point
of % and JV(EXE) is its ideal of the definition. Hence, we have

or OW
7% plo) = Toa (OV/JW(A),Oy/(Jw(F)-Jw(ExE))).

Put

$ = Coker(ow/(Jw(T)-Jy(ExE)) — 0,/5,(T) @ OW/JV(EXE)).
The sheaves

Oy Oy
Koﬂr (OV/JV(A)’OV/JW(EXE)) and Foﬂr (O,/JY(A),Q)

are supported in E ¢ 4 = Aa C ¥, so determine elements in K. (E).

ol
Set

r OY
1 rgo('l) [gojl‘r (O,,/J’,(A),OY/JV(EXE))],

X
"

< r Oy
5, = rgo(-n [Toar. (0y/%,(4),%)]

in KO(E). Then, by (3.4.1) and (3.4.3), we have

0 1 0 1
28Fg/p(0)sTg plo)swy) = 24(Fg(0),Fg(0) sy ) + 2,(F5) - 2,(5,).
Hence, we are reduced to prove that ZA(52)=O and xA(51)=1. Since
Supp(¥) ¢ E = Aa n (ExE), the first assertion follows from [10]
V,§B,n°3,Th.1. The second assertion follows from isomorhisms

Oy

0, .
9oﬂr’(o,/§,(4),c,/jy(Exz)) Ton_ " (Cq/Sq(E),0q/5g(E))

R

.}K(E)/.}g(g)2 for r=0,

R

0 for r>0,

whers 3K(E) is the ideal of cdefinition cf £ in Cg and the firsct

isomorphism follows from [10] v,§8,n°1.
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4. The proof of the main formula (0.2)

Let X/k be as in Introduction. In this section, we prove (0.2)
for ceAut(X/k)'. First, by definition, we are easily reduced to the
case that X is smooth over k. Then, the following proof works well,
only assuming o€End(X/k)'. Put Z = X ka and let 4 (resp. I') be the

diagonal (resp. the graph of o¢) in Z.

Lemma(4.1). We have
- 0,
* * -
Tr(et) B0 (X) = 3 (2,500, 2(05/55(4), 0,11,
where JZ(A) (resp. JZ(F)) denotes the ideal of definition of 4
(resp. T'), and
2(2,*) = 3 (-1)%aim n(zZ,*).
q=0
This follows from SGA4 1/2,cycle and [3](20.4).
In the following, we put for each integer r>0,

0

(4.2) gf = 3oﬁrz(OZ/Jz(d),OZ/JZ(T)).

By definition, 3; is a coherent Oz-module which is annihilated by
JZ(A), so it is viewed as a coherent OX-module through the natural
isomorphism OZ/JZ(A) = OX. Moreover, as (2.3), we see that

9; = 0 for r;Z, and that there are canonical isomorphisms

a
v

9« 0g/14(0) end 71 = (jz(d) n JZ(I‘))/(.?Z(A)n}Z(T)).

For xexg, ¢ induces an element oernd(Ax/k)' and we see
(4.3) s ®CXAX = Tﬁx(cx) (cf. (2.2) ané (2.3))

For each pexg ené each integer r>0, we put
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r . r r . . r . r
Tp s the stalk of 9X at p and 9» s+ the image of TX in Tp.

By definition, 9; is a coherent Ox-module such that

r
Supp(?p) c Fp,

where Fp is the closure of p in X. Let

r , or r
A 9X —_— & o 9»
peX1

be the natural homomorphism. Then, Ker(yr) and Coker(yr) has a

punctual support and we can see (cf.(2.5))

1

(4:4) 3 (x(x.Ker(y7) = z(X,Coxer(;y")) =
r=0 :

> o(éAx(ox) + ex).

xeXo

Here, €y is defined as follows: For xexg and peXO, let Px(v) be the
set of all prime ideals of height one in Ax lying over p. Then, we

have a natural map for each integer rx0,

r r r
.t 9®. AL — e S, (o.) (cf.(2.4)).
b 4 r OX X p P (p) Ax Xpy
X X
We can see that c; is injective, and put
r . r - S B o 0
e, = dlmk(Coker(yx)) and e = > (-1) £, T EL - £

Now, fix pexg, and let F denote F‘p for simplicity. Let R be
the local ring of X at p. We denote by the same letter p» the maximal
ideal of R, and put «x(»)=R/p which is the function field of F.

Let n=vp(o) (cf. (0.2)). By definition, we have

(4.5) Tg = ® := r/2D",
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and in the same argument as the proof of (2.7), we have the

following canonical isomorphism

1
(4.6) Tp = Ker(e_),

where

1 = 2
Py * Qg 8K — p"/p" ; adb® — a(o(b)-b) (cf.(1.11)).

For each integer i;O and for r=0 or 1, we put

GriTF

ir, i+l .r
= T .
p =¥ Tp/v

P

Then, GrlT:=O for i>n, and it is a one-dimensional x(p)-vector
space for O<ig<n-1. Moreover, by (4.5),(4.6) and (1.11), we can see

the following isomorphisms for Ogign-1,

Grng = pl/pitl,
Ql ® i i+1) i f is t I at
il | x(p) /K r(»7/p if ¢ is type I at p,
Gr p =

(v/»2)®R(vl/»l*1) if o is type I at ».
Let £ : ¥ — F be the normalization of F and put

2, = Ox(-iF)®, €

X F

1 . .
f,Q?/kSC g. if o is type I at »p,

T.f 2’80 <. if o is type [ at »r.
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Then, ii is an invertible OF—module, and %i.o (resp. “1.1) is a

coherent OF-module whose stalk at p is canonically isomorphic to

GriTg (resp. GriT;). For r=0 and 1, we put
r r n-1
(47) 6» = X(X’gp) - izox(F’%i’r)’

By (4.3), we see

4.8 8T = r. r £.(2.6 d (2.8)).
( ) P szg (Ex pxegx(p)VAX.pX(UX)) (c ( ) o ( ))

Lastly, putting

i; = 2(F,%; o) - 2(F,%; ;) (Ogign-1),
we have
* 1 * . .
z(?,f zi) - z(?’ng/k80?f Qi) if o is type 1 at p,
li =
* *
1 (¥, f ‘i) - 2(F,f 31®0?f ii) if o is type I at p.

Hence, by the Riemann-Roch theorem for the curve ?, we have

1 . .
zv the degree of Q?/k if o is type I at v,

(4.9) 1, =

T

*
p the degree of f 21 if o is type I at o,

where 2y, and r_ are defiend in (0.3).

b
Now, our assertion follows from (4.1),(4.4),(4.8) and (4.9),

inview of (2.9).
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5. An explicit calculation

Let A=k[[X,Y]] be the ring of formal power series of two
variables over k, and let m be the maximal ideal of A. In this
section, we will compute explicitly vA(o) for a fixed o€End(A/k)’

(cf. §2). First, we can write

Q
P4
n

x+§ ~ ~
(5.1) (g, h € m).
Y +

Q
<
"
=14

Let f be a greatest common divisor of E and ﬁ, and let g=§/f and

h=R/f. We put

(5.2) a

o

(£) and B, = (g,h).

a b

By definition, IA(o) )

and we can see that e and Bo depend
only on A and o, neither on the choice of the coordinates X and Y
nor on that of f. Since g and h are relatively prime, A/Bo has a

finite length, and we put
(5.3) ¢ = dim (A/B ).

Let {»_}

alaes be all distinct prime ideals of height one in A which

divides e - For each a€S, let n,= vy (6) (cf. (2.1)). By the
a
definitions in §2, P%= {nalaes}. For each eeS, fix an element =z €A

such that pa=(na) and a prime element t of the normalization

x[ra] of A/va so that x[na] > k[[ta]]. We put

- -1
(5.4) © = h-dX - g-dY¥ € 2y
I ! . - o . -1
ancé let o (a€eS) be the image of w in Qx(ra)/k’

, Otherwise

Lemma(5.5). IS w, i8 non-trivicl, ¢ is type I ct c.

6 is type I at P,
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The proof of (5.5) will be given later.

Let SI (resp. SH) be the subset of S consisting of such a that
o is type I (resp. II) at P, In view of (1.7), for each aESI
(resp. SH)’ we can find a non-zero aaex[pa] such that

= . ‘1 = .
w, = 8a, dta (resp. w mod ”aQA/k = a dna).
We define

(5.6) Bg = ordx(pa)(aa) = max{rltz divides aa}.

Theorem(5.7). We have

vy(o6) = &+ 3 n_-u_ .
A ges @' ¢@

Define C = AR A, IC(A) and IC(T) as §2. By the map

A — C ; a — a®l.

We consider A a subring of C, and fix an identification
C = A[[Z,wW]] = k[[X,Y,Z,W]] ; 18X — Z, 1Y — W.

Then, IC(A) (resp. IC(T)) is identified with the ideal generated by
(X-2,Y-W) (resp. (o(X)-Z,s(Y)-W)). For each integer r»0, let 'rj,:(o)

be as (2.2). By the equality
h(X-Z) - g(Y-W) = h(a(X)-Z) - g(a(Y)-W),
we can see
Q := h(X-Z) - g(Y-W) € I(4) n I.(T).
Lemma(5.8). The map
A — T.i(o) ;1 — 2 mod I,(4)-I,(T).

induces an isomorphism A/ao = Ti(a) (ef.(2.3.1)).
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Proof. To compute Ti(a) = Torg(C/IC(A),C/IC(F)), we use the
Koszul complex associated to the regular sequence (o(X)-Z,0(Y)-W);

d2 d

1
C-elAe2 —_ C—e1 <) C-e2 — C,

where

dl(el) = a(X)-2, dl(ez) = o(Y)-W and

dZ(elAeZ) = (o(X)—Z)e2 - (a(Y)-W)el.
We get
(5.9) T1(o) = Ker(d,®A)/Im(d. ®A),

A 1 2
where
d,®A : A®A -— A ; (a,b) — -(ag+bk) = -f(ag+bh),

NN

d2®A t A — AB®A ; a— (-ah,ag).

Hence, we have
Ker(d1®A) = A-(h,-g) and Im(d2®A) = A-(fh,-fg).

So, we get an isomorphism Ti(a) x A/ao. There remains to prove
that (h,-g) is mapped to (2 mod IC(A)-IC(F)) under (5.10). In fact,

this follows from the following commutative diagram

d,®A
(A ©A)/Im(d,@A) ——— A

i ¢ : o

Com)m . i, -
0 — Torl(c/*c(d)9c/*c(r)) I Ic(T)/(Ic(A)'-Lc(T)) -_ C/-Lc(-d)s

where ¢ is defined by

¢((a,b)) = a(o(X)-Z) + b(o(¥)-W) mod I,(4)-I(T).
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Now, noting an isomorphism

C/(1o(4)+1o(I)) = A/T,(0),
IC(A) n IC(T) G IC(A) induces a homomorphism

(5.10) 6, : Thlo) — 5i/k®A(A/IA(o)) —_ &i/k®(A/a(o)).

By (5.8), we see that 90 induces an isomorphism

(5.11) Tg(o) > (A/a(o))-w c QY , ®(A/a(c)).

1
A/k
Now, (5.5) follows from this and the definitions.

Now, by (5.8), we can see
(5.12)  8,(0) = dikaer(A/IA(o) — A/a(o)) =8 (cf. (2.4),(5.3)).

On the other hand, fixing a€S, we denote simply p=p_, aA=7

a’

N _ . T . n = _ .
n=n_and p=p_. Put A = A/p and R = A®ARp’ where Rp is the

localization of A at p. Then, we can see

0 - 0 _ =
SA(U)p A C TA(o)p = R,

- _ 1 _ =, ~1 =
A-w <C TA(U)b = Rw c Q

1
Salady A/KOAT"

From these descriptions, we get

vg.p(d) = -[Tg(o)”:sg(a)”] = -n¢ ,
(5.13)
a.plo) = ’[Ti(“),=si(6)p] = -n(&+u) ,

where ¢ = dimk(x[r]/(A/v)).

2
()]

¥

(8]
~1
]
(6]
(Y
w)
B

(a)

ct
B
o

(8}

()

Hy
’.l

P

ct
}_1

(o]

]

cllows from (5.12) and
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Lemma(5.14). Let A be as in the first part of §2, and
ceAut (A/k)' have a finite order prime to ch(k). Then, we have

valo) =1 - #P° (cf. §2).

Proof. We begin with the following facts.

Lemma(5.15). Let A=k[[X,Y]] and oeAut(A/k)' and assume that o
has a finite order n which is prime to ch(k). Then, there exists

teAut(A/k) such that if we put o'= 1 ‘ot,

a'(X) = CI-X and o'(Y) = CZ'Y,

where :i (i=1 and 2) is an element of k such that 52 = 1.

Corollary(5.16). Let A and ¢ be as (5.15). There are only two
possibilities: Onme is that P° is empty and vA(o)=dimk(A/IA(o))=l.
The other is that P° consisits of one element p such that A/p is

regular, and vA(o)=O.
(5.16) is an easy cosequence of (5.15) and (5.7).

Proof of (5.15) (cf. [1] p.32). For @€End(A/k), there is a
unigue expression
p(X) = aX + bY + £ and o@(Y) = cX + dY + g

with a,b,c,d € k and f£,g € m°. Then, we define L(p)cEnd(A/k) by

L{p)(X) = aX + bY and L(g)(Y) = cX + dY.
By definition,

L : End(A/k) — End(A/k) ; ¢ — L(p)

is a ring homomorphism, ané oc€Aut(A/k) if and only if L(p)e€Aut(A/k).

In particular, if g@cAut(A/k), L(¢-L(¢)-1) is the identity. Now,
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for oceAut(A/k) as (5.15), we define ¢ernd(A/k) by

R S R
p,(8) = ¢ (izo o -L(o )(a)) for ae€A.

Then, we see that L(wa) is the identity so that ¢aeAut(A/k) and

S

Céz oi+1.L(o-i)(a))

n-1 . .
(,20 AL (om ) L (0) (a)
1=

o-9,(a)

"
o N0

?,(L(c)(a)).

This means P, 0P, = L(o). Since L(o)n is the identity by

definition, (5.15) follows at once from this.

Now, we return to the proof of (5.14). Fix a resolution
f : £ —— Spec(A),
such that o extends to an automorphism of Z. Then, we use the same

notation as the last part of §2. We note that for each peP, Fp

-

intersects with E at a unique closed point of E which we put Xy By

c

e e . (¢}
definition, if peP’, xpeEO. Now, from (5.16), we can see the

following facts.

- . c -G - -
(5.14.1) For any 7ne€E., n€i] &nd Z_ is regular.
MEE1s MEEg i

(5.14.2) If p» and p' are distinct elements of pY, xp#xp,.

(5.14.3) Let »eP and 5€E,. If F, intersects with E_ and pepP?, EU¢E§.

10
Now, (5.14) follows from these facts and the classical fixed
point formula for the curve E in view of the definition of vA(o)

(cf.(3.1) end (3.2)).
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6. The Swan functions for two-dimensional local rings

In this section, we will define a two-dimensional version of
the classical theory of Swan representations for complete discrete
valuation rings, which is expected to play an important role in the
ramification theory of algebraic surfaces.

First, we review briefly the classical theory. In general, for
a group G and a ring R, let Map(G,R) denote the set of all mappings
G — R, and let C(G,R) denote the subset of Map(G,R) consisting of
all elements f such that f(o)=f(¢') if o and o' are conjugate in G.
Let K(G,R) be the Grothendieck group on the category of finitely
generated projective R[G]-modules. We can consider K(G,R) a subset
of C(G,R) by taking the traces of elements of K(G,R) (cf. SGA5X).

Let E be a complete discrete valuation field and OE (resp. E)
the ring of integers (resp. the residue field) of E. Let F/E be a
finite Galois extension and G=Gal(F/E). Let Op (resp. F) be the

ring of integers (resp. the residue field) of F. We assume that
(6.1) the extension F/E is separable.
Put d=[F:E]. For oeG-{e} (e is the identity of G), we define

E(OF/IOF(G)).

Then, we define SwG € Map(G,Z) as follows:

(6.2) rG(o) = length,

d - vG(o) if o#e and vG(o)>O,
(6.3) SWG(O) = 0 if o#e and vG(o)=O,
-3 SWG(G) if o=e.
gFe
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We can see easily SwG € C(G,Z). One of the main results in the
classical ramification theory is that for any prime number {, the
image of SwG in C(G,Qt) lies in K(G,Qi) (cf.[11] and [12]) and that
it plays an important role in the ramification theory of algebraic

curves (cf. SGA5SX).

Now, let A be as §2 and K be its quotient field. Let L/K be a
finite Galois extension and G=Gal(L/K). Let B be the integral
closure of A in L. We denote by PA (resp. PB) the set of all prime
ideals of height one in A (resp. B). Let S be the subset of PA

consisting of all p where the extension B/A ramifies. We assume
(6.4) for any peP, and gEPB lying over p, x(p)/x(p) is separable.
Under this assumption, we will define
v G-{e} —m Z (resp. SwGEC(G,Z))
which plays the role corresponding to (6.2) (resp. (6.3)) in our

two-dimensional context. First, we put

(6'5) VG(O) = VB(O) - 3%?5”;(0).6’5 ’

Here vB(o) is the multiplicity of ocAut(B/k) defined in §3. For

3EPB, v;(o) is defined as (2.1), and if pePA lies under p, we put

= dim 0

1
(6.6) 6'5 e

[¥]/=[»] °

where x[?] (resp. x[r]) is the normalization of B/Y (resp. A/p). In

particular, if B is reguler and dimk(B/IB(o)) is finite, we have

(6.7) velo) = dimk(B/IB(o)).
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Let pePA and choose BEPB lying over p. Let Gk (resp. 13) be
the decomposition (resp. inertia) subgroup of G at p, and put
ﬁg = G;/Ig ~ Gal(x(P)/x(p)). Note that x(p) and x(P) are complete
discrete valuation field with residue field k. So we have defined

Swg,, € C(§$,z) (cf.(6.3)). Let Z[E;] € C(G;,Z) be the character
p

of the regular representation of 63' Consider

pﬁ; 1= Swa; + Z[@;] € C(E;,Z)

as an element of C(Gg,Z) through the natural map G; — 5;, and put
p = Ind (p=_) € C(G,Z).
G.p GD/G G;

This definition depends only on p, and not on the choice of 3.
Finally, for a finite (may be empty) subset R of PA containing S, we

define SwG R € Map(G,Z) by

]
Q
m
(®]
]
~~—
()
'

vG(o) + pngG.p(o) -1 i
(6.8) st.R(o) =
2 ('SWG(O)) if o=e.
g#e

We give some basic properties of SWG R*

Lemma(6.9). (1) Sw €C(G,Z).

G.R
(2) If oeG-{e} has an order prime to ch(k), we have

SWG.R(G) = 0.

Proof. (1) follows immediately from the definition, and (2)

follows from (5.14) and the following facts:

(€.9.1) UEG; lies in I; if and only if »~(0)>0.

~
b

(6.9.2) p@(‘é) = 1+éy , where e is the identity of Gy (cf. SGA5X).
b » X

(6.9.3) If o0eG-{e} has an order prime to ch(x(»)), v;(o) = 0 or 1.



Excmple(5.10) Let k be an algebraically closed field of
characteristic 2, A=k[[u,v]] and K be the quotient field of A. Fix
an integer n>0, let L be the splitting field of the equation

TZ— uT + vi= 0,

and let B be the normalization of A in L. Then, we see
B = k[[t,s,v]]/(ts—vn) with t+s=u.

The extension L/K is a cyclic extension of degree 2, and the
non-trivial element ¢ of G=Gal(L/K) is determined by

t’= s and s%= t.
Then, we see that p:=(u)ePA is the unique prime ramifying in the
extension B/A and that (6.4) is satisfied if and only if n is even.
™)

So, we assume n=2m for some integer m>0. Then, 3:=(t+s,t+v P

B
is the unique prime lying over p. Let £ : £ — Spec(B) be the
minimal resolution. Then, we see that the special fiber E of f is a

sequence of n-1 projective lines Bl""’En-l as follows:

(Figure 1)

Moreover, E? consists of one point x which lies on the middle line
Em in the above chain and does not lie on any other line Bi (i#m).
The closure F of 3 in & intersects E at x and is a regular closed
subscheme of X. Finally, o acts on E as a symmetry with respect to

the line F (cf. Figure 2). In a neighbourhood of x in &, v defines

Em and w:=

<t

+ 1 defines F, and the action of ¢ is described as
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follows:
2 -1
g(v)=v and o(w)= w+w (1l+w) ~.

From these observations, we compute
vx(o) = 0 and Tr(o*)|H*(E) = -2.
Consequently, we obtain
SWG.S(G) = =2,

where S={p} c Py (cf.(6.5)).

(Figure 2)



7. The Weil formula for an algebraic surface

Let k be an algebraically closed field and X be a proper normal
surface over k with the function field K. Let L/K be a finite
Galois extension with the Galois group G. Let Y be the integral
closure of X in L. Fix a closed subscheme R in X such that the
natural map f : Y — X 1is etale over U:= X\R, and put
Y

V=f "(U). We assume

(7.1) For any pexl and p lying over p, x(g)/x(p) is separable.

Fix peX, and choose 'SEY1 lying over p. Let G; = {0eG|o(¥)=7}.
It is identified with Gal(L;/Kv), where Kp (resp. L;) is the
quotient field of the completion of the locel ring of X at p
(resp. Y at ;). By (7.1), the condition (6.1) is satisfied for LF/KD
so that we have defined the Swan character Sng for G; (cf.(6.3)).

Then, we put

(7.2) Sw = Ind

(Sw~ ).
G.» G;/G G's

Clearly, this definition does not depend on the choice of v.

Next, fix xeXO and choose erO lying over x. Let
Gy = {0eG|o(y)=y}. It is identified with Gal(Ly/Kx), where K_
(resp. Ly) is the quotient field of the completion Ax (resp. By) of
the local ring of X at x (resp. Y at y). Note that (7.1) implies

that (6.4) is satisfied for BV/Ax so that we have defined

SwA €C(G,,Z), where R_ is the set of &ll prime ideals in A_ lying
uv,Rx y X X
ove} some element in Rl' Then, we put
(7.3) Sw = IndA (Sw ).
. .R G G QR
G.x uy/ v By

Ciearly, this definition does not dependé on the choice of
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The following theorem, which is an immediate consequence of
(0.2) and the definitions, is viewed as the two-dimensional version

of the Weil formula for an algebraic curve (cf. SGA5X(5.1)).
Theorem(7.4). For any prime number {#ch(k), we have the

following equality in C(G,Q,),

TrH;(V) = 2 (U)QIG) - 2 x,°Swg , + 2 Swg g o

peRl xeRo

where Q[G]eC(G,Q{) comes from the regular representation of G, and

=

1, (U) = izo(-l)idimoiﬂi(Uet,Qi),

b . .
Tre vy (@) = i§O<-1>lTr<°'>|H§(Vet’9¢>-

Corollary(7.5). If a Sylow p-subgroup of G acts freely on Y,

Tng(v) = 2.(U)Q,[G].

This is an immediate consequence of (7.4) and (6.10.2).
Remark(7.6). The statement of (7.5) is proved by Deligne in
case of arbitrary éimension (cf.[6]).

By (7.4), the image of 3 Sw

in C(G,Q{) lies in the
xeRO

G.x.R
subset K(G,Q{). Sc we propose the following.
Conjecture(7.7). Let B/A, G and R ¢ P be as §6. Then, for any
prime number {#ch(k), the image cf SWG.R in C(G,Q{ lies in K(G,Qi).
Remcrk(7.8). In view of (6.7), when B is regular ané there is

no reP_. ramifying in B/A, this is conjectured by Serre [12].

B
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Let X be as before and let U be a non-empty open subscheme of X
and R = X\U. Let ¥ be a locally constant constructible sheaf of

Fi-vector space on Uet (t{#ch(k)). Following [7], we introduce

Definition(7.9). ¥ is weakly ramified along R if there exists a
*
finite Galois etale covering f : V— U such that f ¥ is constant,
and that ¥ : Y — X satisfies (7.1), where Y is the normalization

of X in V and ¥ is the extension of f.

Now, assume that § is weakly ramified along R and fix a finite
etale Galois covering f : V — U as (7.9). Putting G=Aut(V/U), the
stalk M of § at a geometric generic point of U is endowed with a

canonical action p of G. Then, by [6], putting
4 i, i
Zc(va) = 2 (‘1) dlmn: HC(Uet’y) ’
i=0 1
we have the following formula

2.(U,F) = (1/#G) 2 Tr
OEG{-reg
is the subset of G consisting of all elements whose

H;(v)(o).Trﬁr(a).

Here Gt-reg

order is prime to {, and for OEG{-reg’

where 1 runs over all eigen values of p(o) in an algebraic closure
of E{ and W(F{) is the ring of Witt vectors with coefficient in F{.

Combining this with (7.4), we obtain a formula

Vv
(7.10) zc(U,?) = rs-zc(U) - 2 zb-Swp(i) + > wa(F),
nsRl stO
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Here, re is the rank of ¥, and for peRl,

(7.11) Sw, (7) = (1/#G) 3 SwG.p(o).Trﬁr(o).

OEG{-reg

It is so called the Swan conductor of ¥ at p», and it is known that
Swp(F) is an integer independent of V as (7.9) (cf.[7] and [13]).

Finally, we put for xeRo,

(7.12) SWX(s) = (1/#G) 3 SWG’X.R(G)-TrSr(o) e @, (cf.(7.3)).

°€G£-reg

This formula is viewed as a two-dimensional version of the
Grothehdieck-Ogg-Shafarevich formula for an algebraic curve

(cf. SGA5X(7.1)). Such a formula was first discovered in Laummon[7]:
In the same situation, he defiend Swia(i)ez (XERO) which depends
only on the restriction of § to the henzelization of X at x, and he
obtained the same formula as (7.10) except replacing SWZ(?) by
Swia(ﬁ). It is essentially defined as the total dimension of the
space of vanishing cycles sz.x(j!?) (j : U— X 4is the inclusion)
for a "good" fibration a : X — Pi, and eventually he proved that
the definition does not depend on the choice of =.

In view of these facts, we propose the following

Conjecure(7.13). Swz(i) does not depend on the choice of V as

(7.9) and coincides with Swi‘a(?).

By the joint work with three other people (S.Bloch, K.Kato and
T.Saito), the conjectures (7.7) &né (7.13) have been solved
affirmatively in the "algebraic cese", namely, a1l objects involved
come by completion from objects which are finite type over k. The

proof will eppear in the near future.
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