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Chapter 1 Introduction
Nonlinear optical properties of solids are being studied exten-
sively. Remarkable progress in laser spectroscopic techniques
has made possible the detailed microscopic studies of nonlinear
optical processes. These studies give us possibilities of poten-
tial applications to optoelectronic and optical devices.

The effect of giant oscillator strength associated with
excitation of excitonic molecules enhances extremely the non-
linear optical processes under two-photon resonance of the

1)

excitonic molecules. Giant two-photon absorption, two-photon
Raman scattering and luminescence due to the excitonic molecule
have been investigated in detail experimentally as well as

2-5) Here the two-photon Raman scattering is

theoretically.
four-photon process in which two photons excite the excitonic
molecule and one-photon is emitted leaving behind an exciton
polariton in solids. When we increase the excitation power, we
observe hiéher order nonlinear optical phenomena, e.é., shifts of
Raman lines and new lines in the Raman scattering spectrum.6_9)
These new lines are analized in the first half of this thesis
from the microscopic point of view. This affords us profound
comprehension about various important properties such as the
competition between coherent and incoherent processes, the
transient behaviors and so on. Origins of these new lines can be
classified into coherent and incoherent higher order optical
processes.lo)

In the second half of the present thesis, we discuss another

striking nonlinear optical phenomenon of optical bistability due

to this exciton-excitonic molecule system. It brings about not



only a good example to understand nonequilibrium statistical
physics, but also has the possibilities for applications to
valuable device on the basis of the hysteresis and differential
gain shown in its optical input-output characteristics. This
optical device is being considered to be used as essential parts
of an optical integrated circuit as well as an optical computer,
in which 1light plays the role of electron in large scale
integrated circuit in modern electronic computer.ll’lz)

This bistable behaviour results from the combined effect of
the nonlinear optical response of the medium and the feed-back
provided by Fabry-Perot resonator to the beam, and was observed

13,14) Gibbs et

in semiconductor etalons such as GaAs and InSb.
al. used the nonlinear dispersive response due to the really
excited elementary excitations. So that their switch-off time is
governed by the longitudinal relaxation time of the excitations

8sec). This 1is one of the largest

and is rather long (V10
obstacle to get a more effective device than very large scale
integrated circuit of Si or Josephson junctions.

An optical bistéble system wusing the coherent optical
nonlinearity induced by the giant oscillator strength in semi-

5) This

conductors, especially in CuCl, has been proposed.l
system was shown to have the possibility of responding in an
order of pico-second, which will remove that crucial obstacle to
application to the more effective optical device. Several
attempts have been devoted to the theoretical study of this

system.lG-lB)

Some recent preliminary experimental results in
CuCl have demonstrated the existence of optical bistability,

which, however, do not coincide numerically with any one of these



2
19,20) The holding power is more than 10

theoretical works.
times higher than expected in Refs.[ 15] ,[ 16], and the off-
resonance condition required in Refs.[17],[18] is not satisfied.
To clear up the cause of inconsistencies is very important for
the sake of application to the optical device as well as
understanding the microscopic details of optical bistability.

The present thesis 1is just devoted to the study of these
subjects. In paticular, the following problems are intended to
be clarified;

(1) what is the origin of the new emission bands under strong
pumping?

(What determines their peculiar characteristics?)

(2) Why are the observed optical bistable responses inconsistent
with the theoretical works?

(3) Can this optical device respond in an order of pico-second
under rather low holding power as predicted before?

The key to these problems is the fact that there exists the
competition between coherent processes and incoherent processes
even in these nonlinear phenomena just as in the second order
optical processes.

In the first half of this thesis, we consider the emission
from highly excited crystal irradiated by monocromatic laser
beam. The radiation field and the polarization field in the
crystal interact with each other and form the hybridized waves,

21) The emission

the quantum of which is called the polariton.
processes can be understood microscopically as multi-polariton
scattering, that is, many polaritons are scattered simultaneously

through the real and virtual creation of excitonic molecules. We



formulate the emission spectrum of multi-polariton scattering by
means of Green's function method, fully taking into account of
really and virtually excited excitonic molecules. The perturba-
tion expansions of this expression in terms of polariton
amplitudes turn to be corresponding to the new Raman line and new
emission bands mentioned above. Thus the first question is
answered.

The second half of this thesis is devoted to the investiga-
tion of optical bistability in this polariton-excitonic molecule
system. The stationary and transient behaviours are discussed in
terms of nonlinear integral-difference equations. We show that
this system represents two types of optical bistability; one is
caused by coherent two-photon excitation and the other is caused
by the real creation of excitonic molecules. It is considered
that the latter process induced the optical bistability observed
in CuCl. = The second and third problems have been solved
simultaneously. The optically bistable response due to this
incoherent process can explain the experimental conditions. This
is realized under near two-photon resonant excitation of the
excitonic molecule and the higher holding power than the coherent
process 1is required. Under this coherent excitation of the
excitonic molecule it will be shown that the optical bistability
is realized at a lower pump field and can be switched between the
on- and the off-states in the order of 10 pico-second. The
instability of this system is also discussed. Throughout this
thesis, we shall know how the competition between coherent
processes and incoherent processes are reflected in nonlinear

optical phenomena.



Chapter 2 Multi-Polariton Scattering via Excitonic Molecules
§2-1 Introduction
In the course of optical processes, the system interacts with its
environment.Under two-photon excitation in direct-band-gap semi-
conductors, we have two channels, i.e., a hyper-Raman scattering
and a luminescence. The former is a coherent two-polariton
scattering via virtual creation of an excitonic molecule and no
exchange of energy takes place with the environment. On the
other hand, the latter is an incoherent emission from a really
excited excitonic molecule converted from two polaritons and an
energy exchange with the environment is accompanied. The
competitive behaviour between those two channels can be observed
in emission spectra and has been studied in detail both
experimentally and theoretically.s'ﬁ)
On the increase of the excitation power, higher order
nonlinear emission bprocesses are expected to become observable
some of which are purely coherent and the others are incoherent
or partially coherent. (Here, "coherent process" means that the
scattered polaritons have a coherency with incident polaritons
and, of cource, no energy exchange with its envifonment occurs.)
From a microscopical point of view, these processes can be
described as coherent, incoherent or partially coherent multi-
polariton scattering. For example, a process where four incident
polaritons are scattered via two virtually excited excitonic
molecules conserving their total energy and momentum is consider-
ed as a coherent four-polariton scattering. When a really
excited excitonic molecule is dissociated into two polaritons and

these polaritons interact with two incident polaritons, this



process 1is considered as an incoherent (partially coherent)
four-polariton scattering.

In the next section, we derive the expression of the
emission spectrum for multi-polariton scattering, which contains

any order of coherent and incoherent processes.

§2-2 Emission Spectrum
The Hamiltonian of the polariton-excitonic molecule system under

consideration is given as

#: #0 + v (2.1)
- t t
Mo = Ehwp(k)AkAk + hw_(k)B[B,, (2.2a)
= - - -gt -t t
v ) -hg(k,Q k) (B_o=Bg) (Ag_ =AT ) (A +ATL), (2.2b)

k,Q
where Ak and Ai (Bk and Bi) are annihilation and creation
operators of a polariton (an excitonic molecule) with momentum k
and energy-ﬁmp(k) (ﬁwm(k)), g(k,k') is a coupling constant of
forming an excitonic molecule with k+k' from two polaritons with
k and k' and contains the giant oscillator strength.

When the crystal is irradiated with a strong monocromatic
laser field at a nearly two-photon resonance of an excitonic

molecule, the polariton with this frequency w, and wave vector k

0 0

and the virtual excitation of an excitonic moleucle with 2w0 and

2k0 are induced in the crystal.
This virtual excitation causes the hyper-Raman scattering

and keeps the coherency of the polariton, so that its amplitude

-2iw.t -iw.t

(Foe 0°) is related to that of the polariton (Eoe 07)
through the first order of the interaction as:
= 42 — -1
Fo = 9lkyrkg)EG/Tw (2ky)-2w -1y ] (2.3)



with a transverse relaxation constaﬁt Y of an excitonic
molecule.

The really excited excitonic molecules are also formed on
their dispersion mm(Q) at the same time through the interaction
with the environment such as phonons, impurities and so on. They
are decomposed into incoherent polaritons, which are observed as
luminescent 1light. The amplitudes of these excitonic molecules
{Fé} are determined by taking account of effects associated with

the relaxation processes.zz)

With the macroscopic occupation of the.incideht polariton,
the coherent excitonic molecule and the incoherent excitonic
molecule as the initial state, coherent and incoherent excita-
tions of the higher orders are formed through multi-polariton
scatterings. In order to describe these situations, we use the
coherent state description of the system with these excitations

at t=-w;

~-iw.t -2iw.t -imm(Q)t

0 0 '
)Dm(FOe ,{FQe 1

|t>s _t_—*——°°> Dp(Eoe

> > .4
x[o> 0> s | (2.4)
where, |t>S is the state vector, |0>p and |0>m are the vacuum

states of polariton and excitonic molecule, respectively, and D

(Dm) is the Glauber unitary displacement operator for polariton

(excitonic molecule):23)
[}
= t_g*

Dp(Ek(t)) exp(E, (t)A]-E, (£)A ], (2.5)

D_({F,(t)}) = Jexp(F.(t)BI-F:(t)B,]. (2.6)

m Q ) Q Q "Q Q )
Then, we perform the time dependent canonical transformation:

—iwot

|1:>S = Dp(EOe )Dm(---) [t>. (2.7)



According to this transformation, the initial state and the

Hamiltonian are converted into

lt> == 10,100 (2.8)
| coh inc _
H(t) = H0+Vl(t) +V, (t) + V5 (t) +V3 (2.9)
_ + +
H, = ]E:[‘ﬁwp(k)AkAk +hw (k)B/B 1 , (2.10a)
—iwot 4 ' ob
vy (t) = ]ZKZ‘hg(k,kO) (Eqe Bk+k0Akfh.c.) , (2.10b)
-2iw.t
<) - 0" tat
vy (t) = lzchg(k,zko-k) (Fpe AkA2k0~k+h.c.) , (2.10c)
inc -iwm(Q)t +ot
= - ' .c.) , 2.104
v, (£) élicﬁg(k,o k) (Fge Afal L +h.c.) ( )
tat
\ = Y Yng(k,0-k) (B,ATAT _ +h.c.) . (2.10e)
3 Li o™xPo-x

Here, we used the rotating wave approximation.

The formation rate of the polariton k is written as

S d +
W, = lim=—<t|ATA [t>. (2.11)
K"k

The emission spectrum is given by Wk times the transmitting
probability of the polariton at the surface, which is considered
to be almost constant in the frequency region under considera-
tion. Therefore we may consider Wk approximately as the emission
spectrum.

We should notice that the interactions are arranged in the
order of their magnitude;

coh inc
V1>V2 &VZ >>V3.

So at first, we eliminate the time dependence of vy and

V3°h under transformation into the rotating frame and diagonalize



H0+Vl under the unitary transformation:

k Cak’ C

= Bk k ’ (2.12)
By Cex’ Cok Bk+k0
into the following form:
+ t
H0+Vl = gﬁma(k)akak + ﬁwB(k)BkBk. (2.13)
Here
_ 2 2-1/2
and
Cax Pk +k ) Vo 5 212
c = _ '[(Amk+k0-wak) +|gk| ] ’ (2.14)
Bk Ik

with Ap(k)=wp(k)-w0, Am(Q)zwm(Q)—Zw0 and gk=g(k’kp)E0'

Accordingly, we may rewrite W, as follows:

k
= + -
Wk %Im<0|T{AkAkV(0)S(w, w)}l0>L. (2.15)
Here, T is the time ordering operator, V(t) is the interac-
. . (o
tion representation of VEV§°h+V;nc+V3, S(w,-w)zexp{—%f '\y('r)d'r}

and the subscript L means that we should pick up only linked
diagrams.

This expression is correct also in the presence of
perpendicular relaxation processes as 1long as ma(B)(k) is

replaced by wa(B)(k)-iYa(B)(k)‘

Next, we calculate the contributions of VSOh and V;nc to the
infinite order by means of the diagrammatic method developed by
Belyaev.24)

Finally, V3 is taken into account by usual Green's function

techniques. We show the procedures in Appendix A. In order to



get the precise expression of Wk' we must solve very complicated
simultaneous integral equations as shown in Appendix A. This,
even numerical evaluation, is very difficult to solve because of
the complex k dependence of coupling constants.

In the next sections, we calculate eq.(2.15) by the
perturbational methods. These results in the lower order terms
are concluded to correspond with the nonlinear phenomena observed

by experiments.

§2-3 Perturbational expansion of the emission spectrum

The lowest order contribution to eq.(2.15) is written as;

(0) _ .,(R) (L)
We 'l o= W+ W , | (2.16)
UASIEA Im[j_gtl<o|T{A;Ak§§°h(o-)3§°h(tl)}|o>],  (2.17a)
W = 2 Im[I_Stl<o|T{A;Ak$%n°(o-)§§n°(tl)}|o>]. (2.17b)

By the direct calculation, we obtain

(R) 2 2
W = |F,-g(k,2k,-k)|[“ } |c. C. |“6(w ,+w ) (2.18a)
k 0 0 0V M Vi uk v2k0 k
={aIB}
(L) 2 2 :
W = )|Fr-g(k,Q-k)|“ } |c. c, |“8(w o +w . -Aw) ,
k 0 Q u,v M Vi vk vQ-k (0]
={a,B} (2.18b)
where AwQ = wm(Q)-ZwO.

As realized from the diagram of Fig.l-a which corresponds to
WéR), a coherent polarization due to an excitonic molecule at 2k0
and 2w0 is converted into two polaritons, and one of these is

observed as a Raman line. We have four ways for combinations of

two renormalized polaritons a and B as shown in eq.(2.18a).

- 10 -



Thus, additional Raman lines are expected to be observed,
depending on the frequency Wy intensity of the laser field EO
and the direction of the wave vector k.

In §2-4, we reconsider these Raman scatterings on the basis
of the dispersion anomaly, taking into account an infinite series
of coherent excitation.

The diagrams of the next higher order processes are shown in

Fig.2-a and Fig.2-b. The corresponding coherent terms in

eqg.(2.15) are;

(lic) _ ta V_(0-
Wy =2 Im[IIIdtldtzdt3<0|T{AkAkV3(0 )
" coh coh
x ¥4 (£ V50 (1) V520 (£5) } 0>
= 1P gk, 2kyH) |2 ] Jate, 12 ] e e o ey 12
q uon M 0 K-9 \q
2
x IGBA+(k+q’_wv2ko-k—q)| Sluptrg vk k-]
(2.19a)
and
(2;c) _ w... ... t Y
Wy =2 Im[J-m dt, dt5<o|T{AkAkV3(o V4 (t))
coh coh coh coh
Vo, () Vo T (Eg) Vo () Vo (k) 1 0>]

2 Sy 12
= |Fy-g(k,2ky-k) [“ ] I lg(k,q;)g(2ky-k-q;+q,,q5) |

9,9,

% 2 IC kC Cv Cv 2k .-k-qg, - |2
upouy  F1T M9 V192 VaskeTR 979,
V1,V2

X [Gpps (ktay oy o 40y o o )12

192 V% p7F 9179
2
x |G,y (k+q, ,—w -w )
AB 1 V9, v22k0—k q9,-9,
X §(w o +w +W +0 ), (2.19b)
Wk uygy via, v,2kg-k-q;-q,

- 11 -



where

|Gpas Or0) 12 =[Gy 0 Gk, w) |2

1 1 2

2
[C . Cpoy | . .
ok "Bk w wak+lYa w—ka+1YB

Incoherent terms can be expressed in the same manner:

(1;1i) 2 2 2
wo T = Y|FLg(k,0-k) [ “Y]g(k,q) |© Y ]Cc . Cony  Cy ]
k o 2 q uva HkTvo-k-qTAg

2
XIGBA+(k+q,—va_k_q)| 6(wuk+wlq+wv0—k—q—AwQ)

(2.20a)
and

W£2?i) = 2|F6g(k,o—k)122 ) Ig(qul)g(Q‘k‘ql‘qz'qz)'2
Q q;9;
x5 |2

C, ,C c, ., C
upuy MK M9k TV1d; TV0-9) g,
V1V2

2

2
x IGAB+(Q-ql,AmQ-wulk—wuqu_k)|

x §(w
]

o ) (2.20b)

+w +Ww
k' Tupay -k viq, v,0-q,-q,

As shown in Fig.2-a, is the rate at which two renormalized

(1;c)
"k
polaritons are formed from a coherent excitonic molecule and one
of them is resolved into two renormalized polaritons.

A renormalized polariton is regarded as a composite particle
of a polariton and an excitonic molecule, so that one of the most
. . . (l;c)
important processes contained in Wk
polaritons created by a coherent excitonic molecule interact

is the following one: Two

individually with incident polaritons and form two excitonic

molecules. Then, one of them decomposes into two polaritons and

- 12 -



we observe one of these polaritons.

The corresponding term in eq.(2.19a) is written approxima-

tely as
2
é'Fog(k’ZkO—k)g(k’q)CBkCBZkO—k-qCanak+qCBk+ql
8 - 7. 2
{wm(4ko—k-q)+wm(k+q)-4w0} Yo
x 8 Ly, (4kg=k-a) +u () +o, (@) -dwg] (2.21)

The emission spectrum due to this process is determined
dominantly by the last two factors as the prefactors may be
considered as constants. This process has a larger contribution

only for woz%wm(ko), as realized from the second factor of

eq.(2.21).
On the other hand, almost all the contributions of the

incoherent process Wél;l) is to increase the intensity of

luminescence.

In the next higher order processes shown in Fig.2-b, the

main terms of the coherent process (Wéz;c))

correction to Wél;C).

is only the slight

(2;1)
Wy

process, that 1is, two polaritons formed from an incoherent

But, contains another emission
excitonic molecule and two incident polaritons are scattered
simultaneously into four polaritons through the virtual creation
of two excitonic molecules.

The corresponding term in eqg.(2.20b) is expressed approxima-

tely as

- 13 -



2
)
c ] Irge c |

Qg
: 2 2.-
X [{wm(q+k0)—wp(q-k0-k)-wp(k)} +y ]

2
akcaq—kl anBqCaQ—qCBQ-q

1

x [{2wgrop (@) =up (@-a+ky) —u (a+kg k) —u () 32017, (2.22)

where C is a constant derived from the summation over g, and we

neglected its energy and wave vector dependence. |C_ C l2 and

aq Bq

|F have their maxima, respectively, around g=k, and at Q=2ko.

Q' 0
Therefore, the last two factors of eq.(2.22) are simplified into

the following form neglecting some insignificant constants:
2, 2.-1
[{wm(Zko) wp(zkO k) wp(k)} +ym]

2,.2.-1
X[{Zmo-wp(zko-k)-wp(k)} +ym] . (2.23)

From this expression for a multiplication of the luminescence and
the Raman spectra, we can realize that this process has an
intermediate character between them. In fact for|2w0~wm(2k)|<ym,

-k )+

0

this emission spectrum has a single peak at wp(k)=w 0

1
fwm(ZkO).

-w_(2k
P

Contribution of much higher order optical processes can be
calculated by the higher order expansion of S(w,-w).

These processes may be observed as the shifts of Raman and
luminescence 1lines or their asymmetric shapes. Really, the
two-photon absorption spectra of excitonic molecules exhibit

4)

asymmetry under an intense excitaion, which is considered to be

partly caused by the higher-order multi-polariton effects.

§2-4 Bogolyubov transformation

Under the unitary transformation into rotating frame, H +Vl(t)+

0

- 14 -



coh
2 (t)

explicitly as:

v

coh
HO + Vl(t) + Vv, (t)

Hl

[

+ A (2k k)A2k0 k

g = A (KIALA + A (ktkg )Bk+k0 K+k

is converted 1into a time-independent bilinear form,

-~ JH (2.24)
£k

0

2k - kT A (3k 'k)B3k xP3k -k

+ 9(ko'k)EoB§+koAk"*g(kofk)ESBk+koAﬁ

+ g(k 2k -k)E.B

+ g(k,2k0—k)F0A3k

We can easily diagonalize

25)

transformation. This

lizing the photon-exciton
nian.Zl) We define new

the 1linear combinations

molecule:
oy C11 €12
%k+k0 . €21 22
&Zko-k C31 €32
%3k0-k Cy41 Cyo
Here, o

0 3k 2 2kO -k

+g(kgr2koK)EgByy AL )

0 0 0

'f' * - » *
O_kAk-+g(k,2k0 k)FOAZkO_kAk . (2.25)

this Hamiltonian by means of Bogolyubov
procedure is just the same as diagona-
Hamiltonian into the polariton Hamilto-
annihilation and creation operators by

of those of polariton and excitonic

C13 14\ | A
Ca3 Co4 Bk+ko
(2.26)
C33 C34 A2k0-k
C

43 44| | B3k _-x

" and Bk are normal-mode annihilation operators, thus they

satisfy the following equations:

n, [} n,
(o » H] = hog,0p
v '

and [6k+k0’ Hy ] "ﬁwsk+k0

Y
. (2.27)

0



and have the usual commutator relations

+ =
(Cik 7 Cyxrd = 855 Sy v
+ + oo
r —3 — ==
Lcik ’ Cjk'] [Cik ’ Cjk'J O (llj 112)I (2-28)

&k and CZkE%k’ Using the Hamiltonian (2.25) and

eq.(2.27), we get the normal-mode frequencies Wyk and ka as the

solution of the following eigenvalue problem:

det =0, (2.29)

p 0, =ALSN, -g'*

0 , 0, -g', -A'-)

where Ap:Ap(k), Am_Am(k+k0), Ap_Ap(Zk0 k), AnFAm(3k0—k)’ g=
g(k,ko) Eyr g Eg(kO,Zko—k), ng(k,ZkO-k)Fo. Equation (2.29) also
gives the dispersion relation of renormalized polaritons, fully
taking into account the coherent excitations. This dispersion

relation ié written as
Ei(k) = h(Ai(k) + wo) (i=1,2,3,4), (2.30)

where {Ai} are the eigenvalues determined by eq.(2.29), or,
equivalently, the roots of an algebraic equation
{=8_) (=8 )-1g12H{(A+ a1) A+ a1)-1g" |2}
P m P m
2 -

HIETT(A=a, ) (A+ 4 1)=0. (2.31)
In the low intensity limit (E0+-0), the eigen energies {Ei(k)}
reduce to {hwp(k), h(wm(k+k0)—wo), ﬁwp(ZkO—k), ﬁ(wm(3k0—k)—m0)}.
These eigen modes are regarded as the combined modes of ordinary

polariton and induced polariton, i.e., the polarization induced

by the transition from incident polariton to excitonic molecule.

- 16 -



As recognized from eq.(2.31), Ai(k) take complex values in
some range of k. The modes which have complex eigen frequencies
are unstable and either amplified or damped. When decreasing the
excitation intensity (IEOIZ), two of these amplified modes
coincide with the modes of the scattered polaritons through the
Raman scattering. Hence, these modes are considered to be
corresponding to the polaritons formed by the coherent excitation
and represent the shift of Raman line and new Raman lines. These
are essentially the same lines observed and calculated by Grun et
al..8)

It may be thought curious, however, that the eigenvalues of
H, take complex values in spite of its hermitian form shown in

k
eq.(2.25), which describes a coherent two photon excitation:

coh _ .t *
Voh = % AkAZko—k + £ AkAZko-k .

This interaction Hamiltonian is not a self-adjoints operator, so

that the total Hamiltonian H becomes non-hermitian when the

k
. . coh
contribution of V2k exceeds that of other terms. (Here,

"non-hermitian" means that the eigen vectors of this Hamiltonian
do not belong to the Hilbert space.) This non-hermite
Hamiltonian is essentially the same as that of the harmonic
oscillator in the negative potential, i.e.,

2 2.2
Hyg = P wgx. (2.32)

In reality, we should add higher order terms such as

Ai Al Ak Ak , which are neglected in the present formulation, to
3 74

1 72
' Then, the Hamiltonian retains its hermiticity, just as

K*

adding the fourth order term KX4 to the non-hermite Hamiltonian

H

- 17 -



HOS‘ The Hamiltonian H!, therefore, is valid only when the
amplitudes of these modes are small, and is considered to
describe growing behaviour of these modes. The imaginary parts
of its eigenvalues can be considered as the growing rates of
them, as is noticed by setting up the equations of motion for
them. In fact, as mentioned above, these complex modes are in
accord with the polaritons scattered through the coherent

excitation. Therefore, we discuss the nonlinear optical

processes on the basis of this non-hermite Hamiltonian.

§2-5 Numerical results and discussion
In this section, we apply the results of the previous sections to
the emission spectrum of CuCl.

The exciton in CuCl has a large oscillator strength and the
excitonic molecule has a large binding energy (30meV) and stable
at low temperature, so that nonlinear optical phenomena are
enhanced under strong two-photon excitation.

Recently, Itoh et al. found new emission bands denoted by X-

9)

and L-bands. The latter may correspond to the L-line reported

7)

previously without any assignment. The characteristic features

of these two emission lines are as follows;

(1) They are observed only under a strong excitation on the
slightly higher energy side from the just two-photon
resonance of an excitonic molecule. LT and xT lines are
observed on the low frequency side of the Raman line MR in

which a transverse polariton is left in the crystal. On the

other hand, L., and XL lines lie below another Raman line M

L L

with a longitudinal exciton left in the final states. Under
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the just two-photon resonant excitation, their peak frequen-
cies are coincident with those of MT line and M, line.

(2) The peak of L-bands are located just at midpoint between the
two-photon Raman scattering and the luminescence lines. That
is, the peak frequency shift is almost equal to the change of
excitation frequency. On the other hand, the X-bands shift
in the opposite sense.

(3) The peak energy and line shape of the X-bands do not depend
on the scattering angle, while those of the L-bands do.

These features of X-bands and L-bands are well comformable

(1;c) and W(2;i)

to those of the emission processes W , respective-
ly, as discussed in Sect.2-3.
As for the XL and 'LL lines, we can repeat the similar

calculations by adding the interaction term,

] - . _ +
vy y Hg'(k,Q K)BJAA o\ + h.c., (2.33)
k,Q
where ALk is an annihilation operator of a longitudinal exciton
with wave vector k. The peak frequencies calculated from the

expressions of these processes (egs.(2.20),(2.21)) agree with the
experimental results fairly well, as shown in Fig.3.

We conclude that two emission bands observed below MT and M
lines for u%f>%um32ko) under a strong excitation can be assigned
to the four polariton scattering; X-bands and L-bands are
corresponding to the scattering associated with the coherent
excitation of excitonic molecules (2w0,2k0) and incoherently
excited excitonic molecules (wm(2k0),2k0), respectively. The Wy

-dependence of these four lines can be perfectly explained by

these processes as shown in Fig.3.
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Only one discrepancy 1is the angular dependence of the
splitting of two peaks in XT—bands. Observed splitting is almost
independent of k, i.e., the direction of observation, as the
similar emission spectra were observed in the backward and the
forward scattering. In this calculation, the splitting in the
forward configuration is almost twice as large as the backward
one as shown in Fig.3. This may be mainly due to the neglect of
the relaxation and higher order effects. Really, the relaxation
has an effect to reduce the difference between the backward and
the forward scattering.

This discrepancy will be removed when the angular (k)

dependence of X, -bands is measured precisely and compared with

T
those calculated taking into account both the effects of

relaxation and higher order processes.
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Chapter 3 Optical Bistability due to Excitonic Molecules

§3-1 Introduction

An optical bistable system is made to operate in two low~ and
high-transmitting states and this exhibits a hysteresis of

11,12)

transmitted power against change of incident power. This

optical bistability has been observed for the Fabry-Perot cavity

13,14)

of GaAs and InSb, and the room-temperature operation is

found to be possible in a GaAs-GaAlAs superlattice etalon.26)
These offered the possibility for all-optical devices as
memories, logical operations, transistors etc.. It takes,
thever, 40-100 nano-second to switch off from the high to the
low transmitted states. Gibbs et al. used the nonlinear response
due to really excited elementary excitations, i.e., excitons in
GaAs and electron-hole pairs in InSb. As a result, it takes a
long decay time characteristic of these elementary excitations to
switch-off._

In addition to this demerit, the energy of incident laser is
partially dissipated into heat in these processes. This may
prevent the high degree of accumulation of these'optical devices.

On the other hand, the optical bistable system due to the
coherent nonlinear polarization of an exciton-excitonic molecule
system, which is the subject of the present paper, is considered
to be free from these two disadvantages. This system was shown
to be capable of being switched between the on- and off-states in
the transverse relaxation time of the order of pico-second in
some idealized situation, where the response of the medium is
purely dispersive, so that the energy dissipation may be reduced

very much.



Recently, Peyghambarian et al. observed optical limiting and
bistable responses with 8 to 12 ﬂm thick CuCl films sandwiched by
90 % reflecting mirrors.lZ)

The bistable behaviour was observed under nearly resonant
two-photon excitations of the excitonic molecule with 7 to 14

Mw/cmz. The required holding power was 102 times the theoreti-

15,16)

cally expected ones. This is inconsistent with the results

by Sarid et al. and by Sung et al. that the optical bistability
is possible only under an enough off-resonant condition.l7'18)

In the present thesis, we formulate the dynamics of this
system on the basis of a polariton picture, where the coherent
coupling between incident photons and relevant excitons is fully
taken into account. Here weucan neglect the incoherently excited
excitons under well off-resonant excitation from the exciton
resonance. Then, the nonlinear optical response of the medium is
caused by interactions of the polaritons with the two kinds of
excitonic molecules, that is, coherent interaction of two
polaritons through virtually excited excitonic molecules and
incoherent interaction between the polariton and really created
excitonic molecules. The stationary states show that, even under
the nearly two-photon resonant excitation of excitonic molecule,
two kinds of the optical bistability are possible due to the
coherent nonlinear polarization at a low excitation power of the
order of O.IMW/cm2 and du;Vto the incoherent one at a higher
excitation power of the order of lOMW/cmZ. The threshold power
of the optical bistability depends in the opposite way on the

off-resonant frequency of the two-photon transition to the

excitonic molecule state. The coherent process is the same as in
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Refs.[13]1,[14]. The incoherent process is quite different from
the optical bistability observed in GaAs and InSb, but may
correspond to that of CuCl observed by Peyghambarian et al., for
this process is caused by the really created excitonic molecules,
that is, it depends on the fifth order nonlinear optical
susceptibility.

We also consider the effect due to a spatial oscillation of
polariton fields which is neglected in the mean field theory.
This effect'comes out to be important when the sample length is
of the same order of or shorter than the relevant wave length of
the polariton.

We study the transient behaviour of system and show that the
response time of the coherent optical bistability is determined
primarily by that of the Fabry-Perot cavity, that is, the
polariton decay time due to leakage from both ends.

Then the possibility of two beam optical bistability of this

system and some instabilities are also discussed.

§3-2 Basic equations and boundary conditions

We consider a polariton-excitonic moleéule system driven by the
coherent laser field in a Fabry-Perot resonator with the length £
and reflectivity R at both ends. The Hamiltonian which describes

the medium (polariton-excitonic molecule system) is,

H = Ewp(k)AkAk + gwm(Q)BQBQ

+ Y G(k,0-k)(afAat B +h.c.), (3.1)
K o kA4-kBo

where we take Th=1. This is represented in the momentum space.



On the other hand, the spatial representation of fields is
inevitable to describe the boundary conditions at both ends.

Here we introduce the following field operators:

~ - ik.r ~ — ik-r
a_(r) = J et , o_(r) = e
F Kok B ootk
Z Z
2 - ik-r - _ + ik-r
B_..(xr) = Z B A+_ et r Bno,(x) = B.A e
F1l 0, >k, >0 0~0-k Bl 0, <k, <0 0°0-k
2 - + ik.r - _ + ik-r
Boo(r) = } B.A' e , Boo(r) = ¥ B.AT e ,
F2 Q Q-k B2 Q0 0k
Q,>k, Qy <k,
kz<0 0<kZ
> = + _i(Q'_Q) °r
Np(r) =} ko Bo'Bo® ,
Q>3
Q'
ﬁO (r) = . z Bg.Ble—i (Q'—Q) -x ,
~ Lo Ko
2 <2°72
Ql
Ny(r) = ]y BlBye t (@ T (3.2)
Q<=2
Ql

where k0 is the wave vector of incident polariton propagating in
the Z-direction, and {&(r)}, {B(r)} and {N(r)} are operators of
normal polariton fields, nonlinear polariton fields and the
populations of excitonic molecules, respectively. Physical
meanings of these field operators are sketched in Fig.4. The
equations of motion of these field operators are obtained by
commuting these with Hamiltonian (3.1).

The next step is to determine the boundary conditions at the
ends of the cavity. This is rather difficult because there exist

not only normal polariton fields but also nonlinear polariton

fields, i.e., this problem is a kind of the additional boundary

- 24 -



condition (A.B.C.).27)

This problem may be solved when we treat
the coupling between the electromagnetic field and these
excitations in the first principle, but, in our case, we can take
an easier method.

The bistable operation is possible under the excitation of
lower branch polariton. Under a weak excitaion, the single mode
of polariton exists and the A.B.C. is unnecessary as far as the
effect of the evanescent mode is neglected. The interaction
between normal and nonlinear polaritons, however, is essential to
give correct boundary conditions under the strong pumping,
because the external field excites renormalized modes which are
expressed approximately as a linear combination of normal and
nonlinear polariton modes. As a result, we consider the A.B.C.

here.

Now we write boundary conditions in the following forms:

_ ' ié _
aF(O,T) = tEI(T) + re aB(O,T 2A1),
aB(AT,T) = raF(Ar,r)
BFl(O,T) = relSBBl(O,T—ZAT) + t ClEi(T)’

BBl(AT,T) = rBFl(AT,T),

re-lGBFZ(O,T—ZAT) + t C2E£(T),

BBZ(O'T)

BFZ(ATIT) = rBB2(ATrT)l (3.3)

where, r=/R, t=/1-R, § is the detuning of Fabry-Perot cavity, and

i(w.t-k.2)
A 0 0
<<aF(r)>>te

aF(x,T)

i{wot-ko(ZR-Z)}

<<aB(r)>>te , etc..

n

aB(XIT')

Here, <<'°°>>t denotes a trace over the density matrix and an



average over horizontal sections, TEt—Z/vg, T'zt—(2£-z)/vg, X =
Z/vg and ATEE/vg, where vg is the group velocity of normal
polaritons which will be defined below. Cl and C2 are certain
parameters dependent on inner variables such as IaF(x,T)IZ, and
Ei(r) is a variable which is a function of the incident field and
inner variables (see Appendix B). Note that these boundary
conditions depend essentially on the strength of the normal
polariton field. With these boundary conditions, we obtain

difference-integral equations as follows,

2 ié
aF(x,T) - re aF(x,T—zAT)

X
= tEi(T)-ZiGJOBFl(E,T)-+BF2(£,T-2(AT-E))dE

o DT
- ZiGrzelSJ

) Bpl(g'szAT)'+BF2(€’T-2(AT-£))dg
- ziGreiéfiTBBl(E,T-ZAr)-+832(E,1—2€)d£ '

ap (x,1) - rzeisaB(x,t-ZAT)

= rtEi(T)"ZiGrjirﬁFl(E,T)-FBFZ(E,T-Z(AT-E))di

. X
2 laj Bgy (E/T-28T) + By, (E,T-26)AE

- 2iGr’e
0

At
- 216 gy (6,70 + By, (£,7-200AE
x
eiKXBFl(X,T)-—rzeid—ix(zz_X)BFl(x,T-ZAT)

s X s
0B () - ie[odg el&{iap(a,n |2 =N, (E,7) Yo (€,7)

= rtC
2 i5-2iXs (2T iRe 2
- igret®Te? J atc et {ag (&, 1-287) |7 - N, (€,7-28T) )
X

XaF(E,T—2AT) .
i (AT —iXe 2

- iGre [ d¢ e {IaB(g,T—ZAT)I -NB(E,T-ZAT)}aB(E,T—ZAT)

0
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elk(zz-x)BBl(x'T) p2.16- 1Kx By, (X, 7-200)

. : At Y
= r?tc;e ey (1) —iGrJo ag e (lag (g, 1) |2 - N (8, 1) Yag (£, 1)

- 1Gr2eldf dg e_iX£{|aB(£,T—2AT)|2-NB(E,T—ZAT)}aB(E,T-ZAT)

ag e 1A%, log (€, 1) |2 ~Np(&,)tag(E,T) o

s T
_ iGezlazI

X

. . YL
elkxB (x,1) - r2e-16-21A2e1Ax

B2 BBz(x,T—ZAT)

(F)

x .
= tcin(T)-inodE elxg{[aF(E,T)lz (&,71)

N‘Bks,r-z(AT—s))}aB(g,r—z(Ar-g)>

2 -16 21X2J dg eixg{laF(g,‘[-ZAT) |2

X

- iGr

N g, t-20m) B (g, T2 a1-8)) Yo (8, t-2(281-8))

eik(zz-x) 2 —ikx-i$

BFZ(X,T) -re BFZ(X,T—zAT)
AT .
= rtC2EI(T)-1GrJ dg elxg{IaF(E,T)I2 (F)(E T)
0
NP (g, 1-2 (8- Yoy (£, 1-2 (87-8))
.2 —ig(¥ -ike 2 (F)
- iGr“e J d¢ e {IaB(EIT-ZAT)I (&,1-28)
0

B (g, t-201) Yoy (6, 1-26)

. T '
_ iGe21XzJ ar e-lkg{laB(ng)lz (B)(E -
X

- (F)(g T+2(AT=£)) Yoy (£, T+2 (AT-E))
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-y AT

NF(x,T) - e N (x,1=-AT)
T

= -iGe Y TJ e’ n(B 1 (x/n)eg (x,n) —c.c.) ,
T=— AT

N (x,7) - e ¥ AT (x,1-81)

g (X1 e g ¥r1-AT

T

= -ige ' ! dn e n(B* (x,n)o.({x,n) -c.c.) ,
T=AT Bl B

NéF)(X,T) - e Y ATNéF)(x,T—AT)
T

= -ige™’ Tj dn e M(By, (x,mag (x,n) -c.c.) ,
T=-AT

NéB)(X,T) -y ATNéB)(x,T—FT)

T
= -ige” TJ dn ef n(BFz(x,n)oc (x,1n) ~c.c.) . (3.4)
T=-AT

Here we used two approximations. First, we decoupled averages of
multiplications of field operators, e.g., <<&§,(r)aF(r)&F(r)>>t
—+laF(x,t)|2aF(x,t). This approximation is allowed when the

system is coherently excited. Second, we made a slowly varying

envelope approximation:

wP(kO—lvr) N wp(ko) + vg-(—lvr),
G(ko—ivr,ko—ivr) N G(ko,ko), (3.5)
ow ' _
where vg=(7ﬁ§)k=k0 and vg=lvg|. This is allowed when the

temporal and spatial change of field operators is not so large,

e.g., when

32
—5 aF(x,T)

9X

1!3
& —— | —
3
Vg X

aF(x,T) . (3.6)

Egations (3.4) are basic equations in our analysis, and they are
applicable so far as the approximations mentioned above are

valid.
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§3-3 Stationary solutions
We apply the equations derived in the previous section to the
system of excitons and excitonic molecules in CuCl crystal.

In this section, we consider the stationary response.
Expanding field operators into Fourier series,

(-1) _-iAx a(O) + 0‘(l)eiAx

CXF(X) = e e e + o e + +

BFl(x) + B(_l)e—iAX + B(O) + B(l)eiAX + «.., etc.,

(3.7)

we get nonlinear simultaneous equations of infinite order from

(K)

egs.(3.4). The K-th component Op is at most of an order of
160 021K (005 e,
and IGaéo)Iz'bl means the power of polariton field is over

SOMW/cm2 in CuCl. 1In addition, for a large |K| the fields show
rapid changes in space and their spatial averages are small.

Therefore it 1is sufficient to keep only terms to the order of
(0),4_(0)
| %

fifth order susceptibility (XS)' The result is

o(|Ga ), that is, we take into consideration up to the

(l—rzeia)aéo)

r2ei6—iA')8(0)

-21G(§——)(l+r )B(l)-2iG(§%)(l-

- 21G(2—f“;-) (l+rlet )e( 1) +21G(—»X) (1-re i“iA')B(O)

iA? -iA?
. L (- l) (0) B3 (l) (0)
- 21Gre {—— B +(___X——)B vg B2 -+(——:IX——)B } o,
(L)_ G (0) 2 (0) (0) e
Bp1 = ~gllog 1% -Ng Yag ' (3.9)
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where K=A-iP, A“=X&/vg and At is replaced by (éi) in order to
g
make the system size dependence clear. The population of

excitonic molecules is given as

-T2 .
(0) _ 2G ,,1-e (0)_(0)*
Npoo T Yn-z{( X Pr1 % *c.ci}ere. (3.10)

But as shown in Ref.[4], the absorption spectra measured around
the energy region of a giant two-photon absorption band are not
Lorenzian, but obey an Urbach-Martienssen rule. Therefore, on
the lower energy side, the population of incoherently created
excitonic molecules decreases exponentially with increasing the
off-resonant energy A.28’29)

Furthermore the peak value of the population is rather
different from the calculated value using eq.(3.10) for the high
excitation power. These discrepancies are caused by the fact
that, in the real system, there are many channels of creating
excitonic molecules incoherently, such as impurity scattering,
exciton-exéiton collisions etc., but we have not evaluated these
influences correctly, since they cannot be described by relaxa-
tion constants alone.

Therefore, it will be better to substitute experimental data
{N(exp)} for {N(O)} in egs.(3.9). Néexp) can be expressed

according to the Ref.[4],

, ) =8/ (v +y'I)

exp) _ A-e 2

N = : -, 11
where A and y' are constants given in Table 1 and I=|aéo)|2.

Néexp) and Néexp) have the similar expressions. Before showing

the results of numerical calculation, we should comment about the

deviation from the mean field theory. The forward propagating
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(0)

polarization field op satisfies the following equation up to

the third order nonlinear processes;

(1 -r2et’) ;0) - tEL

. 2
iG™ & (0),2 0),2
lag 1%+ 00|

= TZ:ITTV; ){(l+r2elé)aéo)+2reisaéo)}

2G

_ (A-ir){(l r2 i6-1iA" )B(O) (l_rZei6+iA' (0)}

is .
+ ey 1-et g0 - o718 00y (3.12)

In the mean field theory, only the first term oh the right-hand
side appears. The second and third terms describe the deviations
from the mean field approximation. It is noted that the first
term is proportional to the sample length, while the others are
not. Accordingly, the deviation is negligible when the sample
length % is sufficiently large, but it comes out to be serious
with reducing the length. In CuCl, the critical 1length is
several microns, and, as mentioned below, coherent optical
bistability can not occur when % is shorter than 1.5 um.

We performed numerical calculations with the material
constants listed in Table 1. As expected, we have two types of
optical bistability; one due to the coherent process and the
other due to the incoherent one, depending upon the detuning and
the incident power. The former is observed at the low incident
power and the latter at the high incident power. The sample
length and off-resonance dependence of their holding power are
shown in Figs.5-10. We derive the characteristics of these two
optical bistabilities in CuCl from them. First, the holding

power required for the coherent optical bistability is by two



orders of magnitudes lower than that for the incoherent one.
This is Jjust the consequence of the fact that the coherent
process 1is induced by X3 associated with coherent nonlinear
polariton, whereas incoherent one is induced by Xs describing the
real creation of excitonic molecules. Second, the £ dependence
of the coherent optical bistability is opposite to that of
incoherent one. This shows a competitive relation between these
two processes. Third, the coherent optical bistability is
realizable in the region 23 1.5um and for the higher off-resonant
energy, we need a smaller £. This is caused by the combined
effects of the negative contribution of x5 (incoherent process)
and the deviation from the mean field theory, that is, the
contribution of spatially oscillating components of the field
operators.

Fourth, the coherent nonlinear polarization is approximately
proportional to A/(A2+F2)=(2w0—wm)/[ (2w0-wm)2+r2] . Therefore
this is sensitive to the frequency fluctuation y and the spectrum
broadening of incident laser 1light. When the laser spectrum
width A/2 becomes of the same order as A/2, contributions to
coherent polarization cancel out each other. When the phase
relxation T becomes larger than the fixed degree of the
off-resonance A, the effect of coherent polarization is reduced.

Thus we may conclude that the optical bistability of CuCl
etalon observed by Peyghambarian et al. and Levy et al. may be
due to the incoherent process because the holding power is as
large as 7 to 15 Mw/cm2 and it was observed only near the giant
two-photon absorption of excitonic molecules. The holding power

calculated here seems rather low compared with the experimental



data. This may be because our theory deals with very pure
crystal irradiated by an absolutely coherent laser light, but in
the actual situation crystal and laser 1light do not fulfill such
a requirement.

To confirm this result, the otpical bistability should be
observed under an sufficiently off-resonant excitaion (A>>T) of
the excitonic molecule by a laser light as coherent as possible
and for CuCl crystal as pure as possible.

(It shoud be noted that we cannot have incoherent optical
bistability if we do not replace {N} by {N®*P}. Because, in the
system with constant relaxation times, +the contribution of

incoherent processes cannot overcome that of coherent processes.)

§3-4 Transient response

In this section, we discuss the dynamics of this optical bistable
system basing upon eqgs.(3.4). As shown in the previous section,
there exiét two types of optical bistability, coherent and
incoherent ones. The switching time of the former is dominated
by the transverse relaxation time and the response time of the
Fabry-Perot cavity. On the other hand, the latter responds in a
rather long longitudinal relaxation time due to the real creation
of excitonic molecules. The holding power required for an
incoherent optical bistability is typically 100 times as high as
that for the coherent optical bistability. Our interest lies,
however, in the fast and low power switching process, therefore
we mainly consider a coherent optical bistable response. (It is
hard (if not impossible) to describe the time dependence of

population of excitonic molecules, so that we replace {N} by



{N(exp)}. ~When we treat them with using effective longitudinal
relaxation constants (Y") and effective dipolemoment matrix
element (G), the results are trivial, that is, the same as in the
mean field theory using the constants determined by experiments.)

Coherent optical bistability is realizable at a low incident

power, at which the contribution of X is negligible compared
(O)|2 (O))

with X,. So we only retain terms up to O(]|Gu in

egs.(3.4). We get

aéO)(r) 2 iaaéo)(T-zAT)

- re

2 _1i¢

= tB! (1)- 21G (2 ){8(1)(1)-+r e ‘l)(x 241) }

2 16 iA?

- 21G(—1F){B(0)(T) 89 (t-201) }

- 2162 (14r?e®) g 01 (1-a1)

g
- 2iG(=h) (1-r2elotid! )3(0) (T-AT)

iA
iA'_
- 2iGre {(——)B( l)(T-ZAT)-+(e .
i

L) %) (1-2a1)

—iAY
(gs)eég)(r~Ar) +(————zr—)8(0)(T—AT)} ,

4

Il

g (1) ol® (1) ]2 (1) , wen (3.13)

14

(1) -%l

Here we approximate

AT

At
JO Bpy (£, T-2(AT-E))dE = fo By (E,T-AT)AE

[AT AT

BBZ(E,T-ZQGE = J BBz(ng"AT)dg r T . (3.14)

/o 0

This approximation is valid under the conditions
IBFZ(E.T)-BFZ(E,T-AT)l<<ATlBF2(E,r)I"' ’ (3.15)

and these conditions are satisfied in our numerical calculations.
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The switching behaviours of transmitted power with respect
to the incident power are presented in Figs.1l1,12. We have
computed the tansient responses varying several parameters such
as the pulse width, intensity, shape and so on.

We 1list up the features of transient response we have
observed. First, the shape of pulses does not affect so much the
transient behaviours. Even in the case of a rectangular pulse,
where this system suffers quite rapid change of the incident
field, the amplitude of the transmitted field varies rather
slowly as shown in Figs.l1l1,12. This transient feature guarantees
our asuumption of egs.(3.14), (3.15).

Second, the larger the amplitude of the pulse comes to be,
the shorter becomes the switching time. The shortening of the
switching time is almost saturated when the pulse power exceeds
the threshold by more than the hysteresis width. On the other
hand, the system cannot be switched by the pulse exceeding the
threshold power by less than half the hysteresis width.

Third, in the coherent optical bistability, both switch-off
time and switch-on time are determined by the response time of
Fabry-Perot cavity and given as:

£ A 4%

— 3 (1= ° (3-16)
S vg(l R)

The numerical value of tS is about 20 pico seconds for £=2um and
R=0.9.

Since we fix the transverse relaxation time at P-l=30 pico
seconds and this is of the same order of the response time in the
region of other material parameters with which we are concerned,

we cannot deny that ts is influenced by T. But, if the



transverse relaxation time is longer than the value we take, ts
will not change so much, because we consider an absolutely
coherent process in space as well as in time, so that relaxation
of the relevant mode is induced by multiplication of two types of
phase modulation; one caused in the material (transverse
relaxation) and the other due to the partial extinction of the
mode at the surface (run-off from Fabry-Perot cavity). On the
other hand, if it is much shorter, it is doubtful whether our
assumption'for spatial coherence is correct. In such a case, it
may be more suitable to describe this system as an effective
three level system interacting with laser field.lS)

It i.s noted that any instability did not appear in the
present numerical calculations 1in spite of rather complicated
simultaneous nonlinear difference equations. From this fact, we
may conclude that the coherent optical bistability in this system

is stable against pulsation, chaos and so on.30s31)

The response
time of the cavity is much longer than the round trip time of the
polariton because of high reflectivity of the mirrors at both
ends. In addition to this, the holding power required in this
system is relatively small. Thus, overshoot switching and the
instabilities due to difference equations are suppressed.
Furthermore we consider a good cavity 1limit, so that Lorentz
chaos may not appear. We should mention that we have observed
several chaotic behaviors of transmitted light in the incoherent
optical bistability in the mean field theory with some values of
material parameters. But we think they are intrinsic in the

approximate difference equations and unphysical, for their

temporal change is far beyond the efficiency of slowly varying



approximation and they seem to be suppressed by taking account of
the spatially oscillating effects.

The switching time of incoherent optical bistability is
dominated by the longitudinal relaxation time, i.e., the decay
time of the population of really created excitonic molecules. It
is rather short because of the giant-oscillator-strength effect
in the radiative process. This makes the switch-off time of the
incoherent optical bistability as short as 0.3 nano-seconds. The
short switch~off time observed by Peyghambarian et al. is
considered to be the result of this short longitudinal relaxation

time of excitonic molecules.

§3-5 Concluding remarks
In this 1last section, we summarize our results and give some
comments.

We havg developed the theory of optical bistability from a
microscopic point of view and applied it to the system of
polariton-excitonic molecule in CuCl. We have found two types of
optical bistability; coherent and incoherent ones. The former is

5)

the same type as proposed by Hanamura,l but the latter is a new
type. The optical bistability observed by Peyghambarian et al.
is considered to be this incoherent optical bistability.

The deviation from the mean field theory becomes crucial for
the reduced system-length and off-resonant pumping. This is due
to spatially oscillating effects of polarization fields.

Switching time of coherent optical bistability is as short

as the response time of Fabry-Perot cavity, while that of

incoherent one is dominated by the longitudinal relaxation time



of really populated excitonic molecules.

In addition, the holding power required in coherent optical
bistability is almost 10-2 times as low as that in incoherent
one, and no heat 1is produced in absolutely coherent process.
Thus we think CuCl etalon is favorable for an optical bistable
deyice by taking advantage of its coherent optical bistability.
As for instabilities, we have not observed any instability in the
course of numerical <calculations for the coherent optical
bistability. We conclude that so far as coherent optical
bistability is concerned, this system will not represent
instabilities such as Ikeda instability, overshoot switching and
so on.

Now we discuss about the‘possibility of two beam optical
bistability which is characteristic of the polariton-excitonic
molecule system (three level system).

When this system is irradiated by a driving laser beam
Oel(w t—kor))

tivity n and detuning ¢ is written as

(E 0 ellrt-kyr),

and a probe beam (E the reflec-

1

n = n, + n'(wO)IO + n“(wl)Il ’ (3.18a)

O = ¢y + "Iy + ¢"-I; (3.18b)

where IO=|E0|2, Il=|El|2’ n'(n") and ¢'(¢") are the coefficients
of nonlinear reflectivity and detuning with respect to the
driving (probe) field.

We consider the following situation;

w, + W

N n '
0 1 2w (ky+ky), I,>>I; and | ¢ I>>l¢0+¢ IOI. (3.19)

0

Then we notice n",¢" a(wm—w —wl)-l. This situation is very

0
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different from those we have considered so far, for the system
can be switched not only with the change in the power but with
that in the frequency of probe beam. The switching power is much
lower than the one-beam optical bistability. The power required
for switching (AIZ)' compared with the one beam case (AIl), is

roughly estimated as:

AT
AT

5 . 1 wm(ko+kl)-w0—w

5 1 (3.20)
1 1+F]

wm(ko+kl)-2w0 ’

where F is the finess of the Fabry-Perot cavity. An optical
bistability of the probe beam is also possible. This optical
bistability needs a low holding power and a low switching power,
for the nonlinearity is enhanced by the strong driven field. The
ratio of the holding power of the prove beam in this system (Ip)
to that in one beam case (Il) is given after some calculations

as:

r
l+DIl

I 1
_P N (3.21)
I
1
where

c?(1+r) |G |2
2n(wp-wm)(wm—wo

_wl)
These specific features are characteristic to the optical

bistable system induced by the nonlinearity due to a two-photon

transition.
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Chapter 4 Summary

The nonlinear optical phenomena in polariton-excitonic molecule
system, especially in CuCl, have been investigated theoretically.
We have paid attention to the competitive behaviors of coherent
and incoherent processes,

In the first part of this thesis, we studied the emission
spectrum of this system under the strong incident fields. We
have formulated its expression microscopically which does not
have a conventional form such as the formula in soft X-ray

problem.32)

The higher order emission processes can be
understood as multi-polariton scatterings. Renormalization of
the polariton dispersion, additional hyper-Raman scattering near
two-photon resonance and new emission lines (X-lines, L-lines)
could be explained systematically in this picture. We found
X-lines are caused by purely coherent processes, while L-lines
are induced from coherent and incoherent processes.

In the second part, we considered optical bistability of
this system using the same Hamiltonian as used in the first part.
We introduced field operators, derived equations of motion for
them, and gave adequate boundary conditions. Two types of
optical bistability were found to be realizable: one is due to
coherent process and the other 1is due to incoherent process.
These correspond to the two dominant processes discussed in the
emission spectrum. The coherent optical bistability has a
potential wuse for bistable device for the following three
advantages; (1) low holding power, (2) fast switching and (3)
small heat production. The optical bistable behaviours observed

by Peyghambarian et al. in CuCl, however, are considerd due to
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the incoherent process.

What are lacking to realize the coherent optical bistable
response? First, we need a sample of CuCl so pure as the Urbach
tail is ©observed at the two-photon absorption spectrum.
Otherwise, the coherent polarization of the excitonic molecule
may be smeared out in the background of the two-photon absorption
due to the excitonic molecule associated with the phase
relaxations due to scattering by impurities or defects.

Secondly, a coherent laser will be required to pump the
coherent nonlinear polarization. Otherwise, destructive inter-
ference will kill the coherent nonlinear polarization under the
multi-mode pumping.

We have demonstrated the disadvantage of the reduction in
the thickness of the nonlinear optical medium from the calcula-
tion beyond the mean field theory. There the spatially oscillat-
ing fields reduced the nonlinear optical polarization effective-
ly. We have not found an Ikeda instability, pulsation, chaos and
so on in the present system. This optical bistable system under
the coherent nonlinear optical process seems to be very stable as

discussed in Sect.3-3.
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§ Appendix A
In this appendix, the procedure for the calculation of the
emission rate Wk in Sect.2-2 is briefly shown on the basis of the

Green's function method.

We define the following Green's functions:

talk,k'it) -1<0{T{A*(t>A S,(=)}]0>,

', o + o
Gptp(k/k'it) 1<OIT{Ak(t)Bk.+kOSZ( )1l0>,

Ggtalk,k'it) = -i<0|T{B] . (£)A.,S,(=)}|0>,

0

and G (k,k';t)

stp —1<O|T{ K4k (t)Bk.+k0 2(w)}[0>, (A.1)

coh

2 (T)+V§nd(r)3}

[¢+]
where Sz(w) = exp{-if at(v

- OO
and we take the unit h=l.

As shown in the diagrams of Fig.A-l1, the Green's function

GA+A(k,k';t) satisfies the following Dyson equations
k,k';t) = 62 (k;t) -6 +-2Jm dt £(k,Q;1)
Cptathr® Cata k' L), P8
X G(O)(k-T)é (Q-k,k';t-1)
ATA' T PAtA T
_(0) B * : :
or, = A.rA(k t)dk k' +éJ_°°dT £ (k"QIT) (A 2)
x G4 (k,Q-k';T) XC(O)(k'-t—T)
Ata ™’ ! Atatt
where
(0) .
Gyt kit) = -i<o|r{af(t)a}jo> ,
is (@)t
f(k,Q;t) = g(k,Q—k){FoéQ'2k +Fae },
v ® (0 ]
Gyt p (k/k';E) = XJ_wdr £* (x, Q,T)GAfi(k,'T)GAfA(Q‘k:k it=1)

Q (A.3a)
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and

(0)

(k,k';t) = zj dt £(k',Qi7)Gytp (KsQ-k';T)Gprp (K'5T-E)

Byt
ATA 0

(A.3b)

The other Green's functions are given as
g

(Q-k,k';t-1)

EJ ar £k,Q: 116, °) (k, 1) &

Catp sk E) AtA
Q
oo N , 0
ak/k'it) = gJ-wdT f*(k',Q;T)GATA(k,k —Q;T)Géfg(k;t—f)
. _ (0) ) . OO o0
Gatg k' 1) = G0 0ki 0 8y, 4] g,j_m(_matlmz
* v ot (0) (.
x £(k,Q; 1) £ (k',Q";1,)Gpyp(kiTy)
G -‘-A(k—Qlk'"Q';Tl_Tz)Gégg(k';Tz) ’ (A-4)
with  6'9) (k;t) = -ico|T{at (t)B}|0>
Catp -
and  GA\IA(kit) = -i<0|T{BT(£)A}|0>.
L (1) = ,
et A+A(k t) = GA.i.A(k,k,t) ’
(=) - s
and Ggyp (Qit) = -i<0|T{BL(£)B S (=)}]0> ,

then the emission rate W which includes any order of

kl

multi-polariton scattering process, is given from eq.(2.15);

W, = ( )(k 0- )[ dT(l+Zlg(k 0-k) | %6 Q:L(Q,T))

1 1
x Géfg(g—k;—o—r)Gé+L(k;+o—r).

The corresponding diagram is shown in Fig.A-2.

Here, we neglect another type of diagrams because their

contribution to Wk is very small, as is proved by the

perturbational expansion of the interaction V3.
The excitonic molecule Green's function Gé:;(Q,T) is

obtained by means of the usual diagramatic methods for three
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particle interactions, where the Green's functions GA+A(k,k';t),
GAfB(k,k';t), GB+A(k,k';t) and GB+B(k,k';t) are used as O0-th

order Green's functions. Thus, Gé?%(Q,T) is expressed as a

solution of complicated simultaneous integral equations which are

omitted here.
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§ Appendix B
In this appendix, we derive the boundary conditions of egs.(3.3).

B

The forward propagating waves are o and BBZ' They are

F’ "F1
coupled with one another and compose three eigen modes.
Their eigen frequencies and relative amplitudes are deter-

mined by the following equation:

w—wp(k), -2, -2 aF 0
-G%(|a_|%-2N_), w-w_(2k)+w_(k) 0 GB_. |=| o0
F F’ m P ! Fl

2 2
=G (lag|"-2N,), 0, w-wm(Zk)+wp(k) GBg, . 0
(B.1)

or the eigen value equation:

2 2
(w~wp(k))(w—wm(Zk)+wP(k)) - 2G (laFl

2

—ZNF)(w—wm(Zk)+wp(k)) -

2 =
2G ([aF! ~2N0)(w—wm(2k)+wp(k))~0. (B.2)

Under the off-resonant excitation on the lower energy side, only
the lowest eigen mode is excited. Thus, the boundary conditions

are decided as:

Il

ap(0,1) tEi(T) + yelaaB(O,t—ZAT) ’

aB(AT,T) YGF(AT,T) ,

BFl(AT,T) = YeléﬁBl(O,T-zAT) + t:ClEi(T) '
BBl(ATpT) = YBFl(AT,T) ’

ye"l‘sst(o,T-zm) + £ EL(T)

BF2(OIT)

BFZ(ATIT) = YBBZ(ATIT) ’ (B.3)
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where

2
. - 26{|ag|"~2n.}

(2ug=wp) +// (=20 ) 2+86% (ap| -Np-N ()

2
. - 26{|ag|“-2N,}
- - 21862 2N ’
(20 ,=w) +V/ (uy 20.,) “+8G (| ap| 2-Np-N()

C 1/2
2 2
4ﬂhwpvg(l+|Cl| +[C2l )

Ei(T) = [ -EI(T) ' (B.4)

C is the velocity of 1light in the vacuum and EI(T) is the

amplitude of incident laser light.
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Figure Captions
Fig.l. Diagram contributing to (a) the Raman scattering with the
coherent external 1lines FO and (b) the luminescence with the

external lines F..

Q
Fig.2. (a) Diagram inducing the XT— and XL-bands when the
external 1lines ére'FO. (b) Diagram inducing the LT- and LL-
bands when the external lines are F..

Q
Fig.3. Peak frequencies of the emission spectra as a function of

the incident laser frequency W

4)

0° Open and closed circles denote
and the solid lines are calculated in this

thesis with the material constants for CuCl4). The dotted lines

the observations

and the broken 1lines show, respectively, the MR~bands and the

calculated XT—bands for the forward scattering configulation.

Fig.4. The physical meanings of field operators (eqgs.(3.2)).

Fig.5. Typical off-resonance{( A ) dependence of input-output
hysteresis curve. Curves (a), (b) and (c) are for A=0.9meV,

1.2meV and 1.5meV, respectively, where £=5.0pum and §6=0.3.

Fig.6. Typical detuning(§) dependence of input-output hysteresis
curve. Curves (a), (b) and (c¢) are for §8=-0.1, -0.2 and -0.3

respectively, where 2=5.0um and A=1l.5meV.

Fig.7. Off-resonance(A) and sample-length(%) dependence of the

holding power in coherent optical bistability.

Fig.8. A figure similar to Fig.7 in incoherent optical bistabi-

lity.

Fig.9. Off-resonance(A) dependence of holding power. Curves (a)

and (b) are for incoherent optical bistability and for coherent
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optical bistability.

Fig.10. Sample length (%) dependence of holding power. Curves

(a) and (b) are similar to Fig.9.

Fig.1ll. Transient response of coherent optical bistability.
Transmitted power (curve(b)) switches from off-state to on-state

with respect to the change of incident power (curve(a)).

Fig.12. A figure similar to Fig.ll. This case shows switch-off

behaviour.
Fig.A-1l. The diagrams correspondig to eqgs. (A.2)-(A.3b).

Fig.A-2. The diagram of the emission rate Wk'
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Table 1

Y, = 2.ZXl0—3meV, I = 2.2%x10 %mev
IGI2 = S.SXlO-lg(meV)zcm3, A= 3.SXI010meV/KW2
' _ -4
Y = 4.4%x10 "meV/KW
_ 8
vg = 3.6%X10 cm/s
R = 0.9.

The other material constants are the same as those in Ref.[4].
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