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1. Introduction.
In this paper all (V-)manifolds are assumed to be (V-)smooth.
R. Fintushel and R. Stern [8] proved that @g, the integral cobordism

group of oriented integral homology 3-sphere, has a subgroup

isomorphic to z®(Z/2k) for some k30. It is not difficult to see
that @g has a subgroup isomorphic to Z&Z. In fact, since

Poincare homology sphere 3(2,3,5) is given as a guotiont space of

g3

divided by a free linear action of a group ofworder 120, the
V-manifold version of Theorem 2.1 of [8] (see [11]) implies that
2(2,3,5) and Z(al,a2,~'~,an) are linearly independent over Z if
alaz-'-an>120/4=30 and the invariant R(al,az,»-o,an) defined in
[8 §1] (see below) is positive.

In this paper we show that @g have a subgroup isomorphic
to y A The framework of the proof depends on [8] and also
C.H. Taubes' works on gauge theory on end-periodic 4-manifolds in

'[14]. We generalize the above argument to general homology sphere,

not only 2(2,3,5). A subgroup isomorphic to z” is given by Seifert



fibered homology 3-spheres, and it is mapped isomorphically to z"
in the Zz—homology cobordism group of oriented Zz-homology 3-sphere.
A subgroup isomorphic to Z” in the Zz—homology cobordism group of

Zz-homology 3-spheres is also given by lens spaces [4,5,6].

2. Statement of the results.

Let a1;a2,~~»,an be integers pairwise relatively prime to each
other. Fintushel-Stern [8] define R(al,az,—--,an) as virtual
dimension of a certain moduli space of self-dual connections, which
is calculated as:

R(al,---,an)z % -3+n+ Z(E}E)

1

(ISR

a,-1
2 2 nkK, .
£ kil cot(znak/a;“)cot(5~)sin

i=1

[

where a=aj,a,c--a; . One of their results is that E(alg»--,an), the
Seifert fibered homology 3-shpere fibered over 82 with exceptional
fibers of orders 8y "ty has infinite order in @g, if
R(al,-—~.an) is positive.

Our main result is stated below.

Theorem 2.1. For any homology 3-sphere X, we can associate a

positive number e(2) with the following significance: Let

2902550052 be homology 3-spheres and Zozz(al,az,---,an) a
Seifert fibered homology 3-sphere. Suppose that a=aja,c e, 18
larger than any of e(zi)’l for i=1,2,---,m, and that R(al,a2,~'o,an)

18 positive. Then



(2.2)  2[2y] 0 (2[5, 1+2[,]0+---+2[2 1) ={0) in 6

For example, R(2,3,6k-1) (keN) is calculated to be 1 [8 §10].
Hence there exists a sequence k1<k2<k3<-~-' such that [2(2,3,6ki-1)]
(i=1,2,3,+++) are linearly independent over Z.

More precisely we can estimate ¢(32) for Seifert homology

3~-spheres.
—_— . o -1 y
Theorem 2.3. We can take e(z(al,az,---,an))—(ala2 , an) in
Theorem 2.1.
Corollary 2.4. Suppose that a sequence Zi=2(all,azi,-»-,an i)
. . . i
(i=1,2,-++) satisfies that R(all,azl,.--,an.l)>0 (i=1,2,:--) and
i
Haj1<Haj2<-~~. Then [Zi] (i=1,2,+++) are linealy independent over
. H
Z in @3.
For example, [2(2,3,6k-1)] (k=1,2,--+) are linearly

independent over Z in @g.

According to [8] and [7], we can generalize Theorem 2.1 to the
case that cobordisms admit positive definite intersection form or
certain torsions in their homology groups. But we state our theorem
as above for simplicity. Here we only notice that Theorem 2.1
is wvalid when 21,22,--~,2m are Zz—homology 3-spheres and (2.2)

is regarded as a relation in the Zz—homology cobordism group

of oriented Zz—homology 3-sphere. Hence Corollary 2.3 is also



valid in the Zz—homology cobordism group.

In Section 3 we show, according to [14] .and T[8], that
Theorem 2.1 follows from compactness of a certain moduli space of
self-dual V-connections. The compactness is proved in Section 4,
assuming a decay estimate of curvature of self-dual connection. A
crucial point is that the class of product flat connection on the
product bundle over a (rational) homology 3-sphere is isolated in
the moduli space of flat connections. We give a proof of the decay
estimate in Section 5. In Section 6, Theorem 2.3 is proved by using
ChernfSimons invariant. In Section 7, we explain the details of

"patching arguments'" used in Section 4 and Section 6.



3. V-manifolds with product ends.

In this section we give a framework of the proof of
Theorem 2.1 following [14] and [8], &and see that if we assume
compactness of a certain moduli space of self-dual V-connections,
then the proof is completed.

Let ZO=Z(a1,-~-,a ) be a Seifert fiberd homology 3-sphere, and

n
21,'~',Zm oriented homology 3-spheres. Let W be a compact oriented
4-manifold with (not necessarily connected) boundary. Suppose that
W has the integral homology of punctured 4-sphere, and has boundary

m m

oaws= u Ut 3

>1, and mkgo for k=1,+++,m)
k=0 j=1 = |

k,; (Mo2
where zO,j is a copy of 20 , and zk,j (1§k§m) is a copy of Zk or
-zk (the orientation reversed Zk), and the union is disjoint union.

Let Y be the mapping cylinder of the projection from 20 to SZ.

Then Y is a V-manifold with n branched points XqsrsX of orders
Byt If we introduce the V-orientation of Y so that
8Y=ZO, then Y is negative definite. In fact, we have
HZ(Y\{xl,---.xn};Z):HZ(Y\{xl,-~»,xn},ZO;Z)zZ and its generator
o 2 B . . .
e satisfies e [Y,ZO]-—I/a (a~a1a2 an), where [Y,ZO] is

the fundamental class of V-manifold Y, and we regard e as an

element of HZ(Y,ZO;Q)zHZ(Y\{x1,~--,xﬁ},ZO;Q) (see [8 §2] and also

[111).
» " Now we define a V-manifold X with product ends to be:
m m

x=wvu vlioy.)u v
j=1 Y k=1 j=1

m
k s
U Zk’jx[o,“),



where Yj is a copy of Y. Let PO be the principal SO(2)-V-bundle

over (-Y corresponding to a generator of

1)
- . . A .

H (Yl\{xl’"'Xn}’zo,l’z)”z’ which is trivial over zO,l’ Fix a
smooth connection 60 such that 60 is equal to the product connection
over a neighborhood U of EO 1 in Y1 on which PO is a product bundle.

Let P be the principal SO(3)-V-bundle over X defined to be:

P =Py x SO(3) Y (X\(-Y;))xS0(3),
S0(2)
where the identification over 20,1 is constructed by wusing the
product structure of PO|U. We extend 60 on P trivially and denote
it by the same notation. We fix Riemannian metrics on Zk (1gkgm).
Choose and fix a V-metric on X which is the product metric of the
given metric on zk,lzizk and the standard metric on [0O,=) over
each end of X. Let E be thefso(B)(=R3)¥V-bundle associated with
P by the adjoint representation (or the standard representation.)
For a positive number 6, we consider the following classes of
V-connections and V-gauge transformations on P.

LE)) . fal g<=t s

o)
i}

. 2
{60+a, aeL3,loc(Q

(&)
I}

2 .
{gel (P xS0(3));]v, gl <=}.
8 4 loc Ad 80 )

Here we fix a V-smooth map 7:X-R which is equal to the projection



from zy jx[O,w) to [0,~) over each end of X, and use the norm | "53

1/2.

3 :
lal  =( fx e®® 3 Ivegalz )

i=0

QI(E) is the set of E-valued 1-V-forms on X. Although X is an open
V-manifold, the first Pontrjagin number of P is defined as follows.

1
p (P) = - =55 [ tr F(a)aR(a).
8n X

Here A is an element of Ca, and F(A) is its curvature, which is an
E-valued 2-V-form. pl(P) does not depend on the choice of A (see
[12 §2]). 1If we take A=60, then we obtain pl(P)=l/a.

Let * be the Hodge's star operator acting on E-valued V-forms,

= Lip_ep). 2 2 f -
and F_= 2(F *F).CéaLZ’lOC(Q (E)) be the anti-self-dual part of
curvature. The moduli space Ma which we will consider is now

defined to be M =F~"1(O)/Ga. The topology of Cy is defined by | Hé'

8

The topology of Gy is defined by using [V, g|, and the "limitting
: 0

value" (see [14 §7]). Then we give My the quotient topology.

In the next section we show the following compactness.

Proposition 3.1. There exist positive numbers ¢(Z) and 6(2)
depending only on 2 (and the fixed metric on it) for each
(rational) homology 3-sphere 2 with the following
significance: Suppose pl(P)<e(Zk) and 6;6(2k) for every zk (1gkzn).

Then Ma is compact.

If we assume the above proposition, then Theorem 2.1 is shown



along the 1line of [14 §2] and [8 §9] in the following way:

1

Suppose R=R(a1,'--,a ) is positive, and s(zk)>p1(P)=a~ , 6(2

>0
n =

i)
for every Ty (1<k<n). R turns to be an odd integer [8]. Then,
according to Taubes, when we take sufficiently small é, and perturb
F_ if neccesary, Mb has a natural structure of R-dimensional compact
singular manifold with a single singular point of the form of the

vertex of cone over CP(Rhl)/Z, which corresponds to reducible

self-dual V-connections in Ca (see [14 §8,9]). Fix a smooth point
Xq on X. Let Q be the principal SO(3)-bundle over

Mé\{the singular point} defined by Q=(F__1(O)xPX )/Ga. Then the
' 0

restricted bundle QltliP(R'l)/2 bounds Q| (M,\the cone over cp(R-1)/2y

R-1)/2

hence every characterisic number of QICP( must vanish. On

the other hand, if we consider the neighborhood of the singular
point locally, we get (see [8 §9])

(wy(Q) (BT1)/2 [ep(R-1)/27 ) oy ¢ 2,

i

This is a contradiction. Therefore Theorem 2.1 follows.



4. Compactness of the moduli space.

Under the situation in the previous section, Taubes [14 §10]
proved that My is compact if (1) pl(P)<4, and (2) xl(zk) has only
the trivial reprensentation into SO(3) for 1l<k:m. We want to weaken

the condition (2) about = but instead we may strengthen the

1’
condition (1) about pl(P). In order to prove Proposition 3.1, we
modify arguments of Taubes in [14 §10].

We need the lemma below.

Lemma 4.1. Let X be a rational homology 3-sphere with a fixed
metric, Q=2xS0(3) the produét bundle over 2z, and 60’ the product
connection on Q.

(1) Fiz 1gpg~ and q=0,1,:-- such that p(g-1)>3. Let {Bi} be a
sequence of flat connections on Q. Then we can take a subsequence

{Bi,} and a sequence {gi,} of gauge transformations such that

*

, P _ . *
g4 B., is a Lq_1 connection, and {gi. Bi‘} converges to some
P _ . s 1P _
Lq_1 connection in Lq_1 toplogy. |
(2) There 18 a positive constant c with the following
significance: Suppose that B 1is a flat connection such that

HB-GO’HLw<c. Then B is gauge equivalent to 6,'.

Proof of (1). Locally - any flat connection is gauge equivalent to
00'. Therefore the claim immediately follows from 'patching of
convergences'. We explain detail of this argument in Section 7.
See Proposition 7.5.

Proof of (2). Suppose a seguence {Bi} of flat connections



satisfies HBi—GO’HLwaO (i»0). Using (1), we can take a subseguence

*
{Bi,} and a sequence {gi,} such that {gi, B.,} converges to some

i \}
2 . . o
L2-connect1n B_ in Lg—topology. Then Sobolev embbedding LgeL and
the relation
*
dgi'z(Bi'-GO’)gi'_gi'((gi' Bi,"Bw)+(Bm~90'))
imply  that {]g..];=} is bounded. (Note |g,;.],~<3.) Take a
i L1 i''"L =
subsequence {gi,,} such that {gi,,} converges to some g_in
*
Li—topology. Then we can show that g_ eo'sz, and hence g_ is a
- *

Lg-gauge transformation by bootstrapping. Then {{gi',g°° 1) Bi,,}
converges to 60’ in Lg—topology. "Slice Theorem" implies that any

connection close to 00’ in Lg—norm is gauge equivalent to 60'+b by a

2
.L3

example, [1], [9], or [3]). Therefore it suffices to show that the

*
-gauge transformation such that d b=0 and HbHLZ is small (See, for
2
equations P

F(6,'+b)=db+[b4b]/2=0 and d b=0

2(a'(2,50(3))). Let 2,° (2,20) be the first

eigenvalue of Laplacian on 1-forms of 2. Then Hl(z,m)=o implies

imply b=0 for small bel
that xo is strictly positive[ We have

olbl 2 = 1@ )pl 2 = IT6461/2];2 5 o' ol 210l =

Here c' is a positive constant independent of b. If |b]; 2 is small,
2



then HbﬂLw<20/c’, by Sobolev embedding LSCL“, and hence we obtain
HbﬂL2=O, i.e., b=0.

Now we state a crucial lemma to show compactness of the

modili space.

Lemma 4.2. Let 3 be a rational homology 3-sphere with a fixed
metric, Pzzzx[o,w)xSO(B) the product bundle over 2x[0,«), and 90 the
product connection on Pz' There exist positive numbers e=¢(2) and
co=co(£), which depend only on 2 and 1its metric, with the
following significance: Let A be a Lg léc-self-dual connection on Pz
such that
2 \1/2
IFa) 2 = (| LISIGB AR
zx[o’“)
Suppose that there exists an integer nO;O and a gauge

transformation heLﬁ(zx[no+1,nO+2],SO(3)) of le[no+1,no+2] such that

4 - "
z |9, J(n A-6,)1° < ¢
0

f 2
Zx[no+1fno+2] j=0

(4.3)

Then there exists a gauge transformation geLﬁ loc(2x[1,w),SO(3))

of PZ such that for any n=0,1,-:, we have
4 j, * 2 2 2
(4.4) sup z IVB J(g A'BO)!~ < ¢ f |F(A)]“.
Zx[n+1,n+3] j=0 0 Zx[n,n+4]

We require one more derivarive in (4.4) than in the definiton

- 11 -



of C, and Gy, in order to make use of compact embedding L:ch later

in the proof of Proposition 4.8.

Proof. In the following we write Cqy1Cpy e for positive
constants depending only on 2 and its metric. Lemma 10.4 of [14]
implies that there exist a gauge transformation
2 .
gneLu'loc(Sx[n,n+4],SO(B)) and a smooth flat connection An on

PZIZX[n+1,n+3] for each integer n such that (4.4) holds with g, A,

and Cq replacing g, 60 and ot

1v, J(e "A-a )% <

2 J 2
< ¢y .
0 n Zx[n,n+4]

(4.5) sup
Zx[n+1,n+3] J

b=

[F(A) |

Using parallel translation as in the proof of Corollary 2.3 of [13],
we can arrange g and An so that An—BO has no component along the

path {x}x[n+1,n+3] for any xeJ. Then there is a smooth flat

*

connection B on Q=2xS0(3) such  that A =n_ B

where
n

n?
xnzzx[n,n+3]a2 is the projection. By Lemma 4.1 (1), we can

arrange g, and A so that HBn—GO‘HLZ is bounded by a constant

Css and hence the L;—norms on sections of Zxso(3) defined by

using Ve , and VB (n=0,1,-+) are uniformly equivalent for
0 n

0<q<5 up to & constant c;. Here we have written HbHLw for

> sup IVG b
Ogjza 2 0

. If we restrict (4.5) for (gn,An) and

(8h4e178p41) on 2x{n+2}, and set g '=g |Ix{n+2}, g =g, 1 |2x{n+2}

1
n+1
and A'=A|Zx{n+2}, then we get

1 * 2 s L
5 ley’ A'-Bplie < sup 2 |V, (g, A'-B)|

- 12 -



Similarly we get

1

1 o 2 2
5 1841 Baaally = e3¢

Let kn be gn'“lgn+1'. Then from the relation and estimate below
* *

dao'kn = kn(len, " AT-Bp )+ (B g=00"))- ({8, AT-B )+ (B =657 ) )k,

Ik dp= < Be =+ 5ﬂknan(c1c3e+c2) +5(clc3e+c2)||kn|lLq for Ozqgh,

g+l q

we get, by bootstrapping, that ﬂknﬂLm is bounded by a constant c.
5
(Note that kneCO(Z,SO(3)) implies HanLw§3.) Then we have

* *® ! *

-1 v‘ 1 o o AT oo
N L e Ul NP NP Y,

< 3cﬁclc35 + 3C1038.
m,)
4

(Note that kneCO(Z,SO(3)) implies Hkn
By (4.3)and Sobolev

We set h"=h|2x{no+2} and A"=Alx{no+2}.

embedding Lchw, we have

*
"h" A"-BO'“Lm§C6E’

- 13 -



o'y

oo

n v"l "'*B g ' n‘ "
(gnO h') nO— 0 HL"°§ "h A"-6

=1
oo

[ -1 41’ " -1
+ﬂ(gno h") ﬁLwano-g A h"

oo |
N N
§c6s+3Oc3cle.

Then, using Lemma 4.1 (2), we see that Bn is gauge equivalent to
0
60', if ¢ is sufficiently small. Similarly (4.6) implies

inductively that inductively that all Bn's are gauge equivalent to
60‘, if e 1is sufficiently small. Therefore there 1is a gauge

*
transformatin h on PZIZx[n+2,n+3] such that h An=A on

n,n+1 n,n+1 n+1l

Zx[n+2,n+3]. Difine a proncipal SO(3)-bundle Pz' over

Ix[1x=) by wusing data {PZIZx[n+1,n+3], Then

hn,n+1}n=0,1,-~‘

data {An} is regarded as a flat connection on Pz', which is

gauge equivalent to a product product connection. Let
hneIso(Pz'lZX[n+1,n+3],PZHZx[n+1,n+3]) be the given "trivialization"
-1

h_h

such that hn,n+1= nPn+1

. (4.5) implies that g h, gives a local
approximation between A and {An}. Then by patching argument as in
the proof of Lemma 10.5 of [14], we get g satisfying (4.4). This
completes the proof of Lemma 4.2. We explain detail of the patching

argument ("patching of connection approximation") in Section 7. See

Proposition 7.4 and Remark 7.7).



In the next section we prove the following lemma.

Lemma 4.7. Let Z, P, and ¢ be as in Lemma 4.2. There exist y>0
and c7>O depending only on X with the following significance:
Suppose A 1is a self-dual connection satisfying the conditions in

Lemma 4.2. Then the following decay estimate holds.

e IR [f2.

Such a decay estimate is obtained by Donaldson [3] and
Freed-Uhlenbeck [9] when 2 is the standard 3-sphere. Donaldson's
argument might be valid in our case, if we use Lemma 4.2. Then we
could take y to be essentially the first eigenvalue of Laplacian on
l1-forms of 2 (see Appendix of [3]). In the next section we give a
proof of a rough estimate using Lemma 4.2.

In the rest of this section we assume Lemma 4.5 and prove the
compactness of moduli space of self-dual connections on PE in the
following form. ‘

We set Cé(Pz) and Gé(Pz) as in the definition of C(5 and G(S in
Section 3. Note that, by definition, Ca(Pz) satiefies (4.3) for

sufficiently large Ny-

Proposition 4.8. Let Z, P., ¢ and y be as in Lemma 4.2. Take 6>0

2‘9
smaller than y. Suppose a sequence {Ai} of self-dual connections

in Cé(Pz) satisfies |F(A 2<e. Then there is a subsequence {Ai‘}’

Ol

- 15 -



a sequence {gi'}CLi,loc(zx[l’“)’50(3)) and a self-dual connection
L 3

A€C,(Py) such that g, A;, converges to A_ in | Ha-norm.

Note that, by Lemma 7.2 of [14], g is automatically in
Gé(PZ)
Proof of Proposition 4.8, given Lemma 4.7. By Lemma 4.2 there is

*
g. such that if we set g. A,=06,+a.,, then
i : i7i "0 71

b .
(4.9) sup z |V Ja.

2
|
Zx[n+1,n+3] 3=0 o *

2 2
< |“c cpe

2
F(A.)
“o J):x[n-,n+4]| .

Since LZCLE is a compact embedding, we can take a subsequence Ai'

such that {ai,} converges to some a_ in L3’loc~topology. Set
A =05+, We claim  that |a;,-a_[,20. Lemma 4.7 and (4.9)
imply
J e 3 v, a2 < 3 o(P*3)02yp(a )22
Zx[ny*l,=)  §=0 b0 1+ = n=n, 0 171L7(2x[n,n+h))
o _ -ns(7-6)
< 2z e(n+3)6c§c7e n7£24vol(2) < cge 0
= L s
0
Here we set c8=4(1—e_(y"5))-1e36cgc752-vol(z).

We write for the left hand side.

2
lesls, tnge1,=)
Now take any positive number 4+ For large Ny, We have

lesls, tngst,=) 2 €1 (1=1,2,---).

- 16 -



3 n . : ° —
Since a;, converges to a_ ln‘L3,loc topology,

2 .. 2 2
a < liminf ja, < £, .
u ,,_,u 6’[no+1'm) = i'__)m u lv” 6’[no+1,m) = 1
This implies Aweca(PZ). For sufficiently large 1i', we have

”ai"am"a,[o,no+1] < ¢,- Then we can estimate as follows.

2 2

*
les, Ag-al,"= “ai*’awné,to,w)

2

A

2 2
"ai'"awna,[O,no+1] + Zﬂai'ué,[n0+1,m) + Zﬂawﬂa,[no+1,w)

2

A

581

This completes the proof of Proposition 4.6.

Now we can show Proposition 3.1.

Proof of Propositon 3.1, given Lemma 4;7. We write ¢(Z2) and 8(2)
for the constants in Proposition 4.8 for Z. Proposition 4.8 and a
patching argument ("patching of convergences") imply that Mé is
compact. We explain the detail of the patching argument in

Section 7. See Propsition 7.5.



5. Decay estimate.
In order to give a proof of Lemma 4.5 and complete the whole
proof of Theorem 2.1, we prepare two lemmas. We fix a positive

number ¢ as in Lemma 4.2.

Lemma 5.1. There exists c7>O depending only on 2 with the
following significance: Suppose A 1s a self-dual connection on Pz
satisfying the conditions of Lemma 4.2. Then we have for any
integers Np<ny,
2
“F(A)"Lz(zx[no,nlj)

2 2
< c7(HF(A)HLZ(Zx[no_l,nO+2])+“F(A)“LZ(Ex[nl-g,n1+1]))

Proof. By Lemma 4.2 we can assume A=f,+a and

%)

2 . 2
(5.2) sup (la] +|V90a- < CO"F(A)“LZ(Ex[n,n+3]) < cpe-

Zx[n+1l,n+2]

According to Appendix of [3] we set T(a)=tr(daAa+%aAaAa) so that

dT(a)=tr(F(A)AF(A)). Since F(A) is self-dual,

|F(A)|2=-tr(F(A)AF(A)). Then for integers ny<n,, we have

T(a) - jz T(a).
XN

2
(5.3) "F(A)HLZ(Zx[nO,Dlj)z J 1

ano

The claim follows from (5.2) and (5.3).

Lemma 5.4 Let {ak}kzl be a sequence of non negative numbers

- 18 -



satisfying

(5.5) S @, < e,

Suppose there is an integer N such that for any integers k,<k

01

(5.6 3
5.6) b) a < N(a, +a, ).
kg © 0 M1

Then we obtain

@) < 4Na12—(k/2N).

Proof. (5.5) implies aiaO (i==). If we take klaw in (5.6), then we

get

(5.7) igk a; £ Nay.
Define kj which satisfies

(5.8) 2Nj g ky < 2N(j+1) end  (5.9) %, a /29,
inductively as follows. Take kb=1. Assume that we can take kj

satisfying (5.8) and (5.9). (5.7) implies

2N(j+2)-1

Z a; < Nak .
i=2N(j+1) - J

Therefore there is kj+1 satisfying (5.8), replaced Jj by j+1, such

- 19 -



that

a, < (Na, )/(2N) < a,/29*1,
k. = k. = i
j+1 J

For any k>0, we can take kj so that kj§k<2N(j+2). Then we get

< I a; s Neg g Nay/29g tina, 27 (¥/2N)

k. J

Proof of Lemma 4.5. By Lemma 5.1 and Lemma 5.4, there are c8>0 and

y>0 depending only on 2 such that

IF(IE2 (5n,ne3]) € 58

Then (5.2) implies a similar estimate for 1F(A}l2.

- 20 -



6. Chern-Simons invatiant.

In the previous sections we show the compactness of Mé when
Lz-norm of curvatures are bounded by a sufficiently small constant.
In this section we estimate the constant wusing Chern-Simons
invariant and calculate in the case of Seifert fibered homology
3-sphere to prove Theorem 2.3.

First we define Chern-Simons invariant for SO(3)-connection as

follows (see [2]).

Definition 6.1. Let Z be an oriented closed 3-manifold, Q a
principal SO(3)-bundle over Z with WZ(Q)=O (i.e. Q=ZxS0O(3)), and B a
connection on Q. Take a compact oriented 4-manifold Y, a principal
SO(3)-bundle § over Y with w2(@)=0, and a connection A on § such
that the boundary of Y is a disjoint wunion of Z and an oriented
closed 3-manifold Z' and that the restriction of (Q,A) on Z is
isomorphic to (Q',B), and the restriction of (§,A) on 2Z' is
isomorphic to (Z'xS0O(3), product connection). Then we define

Tpl(B)eR/4Z by

Tp, (B) = —— | tr F(A)4F(A) mod LZ.
1 2
8xn Y
When P is an SO(3)-bundle over an oriented closed 4-manifold
with WZ(P)=O, then P is induced from an SU(2)=Spin(3)-bundle P', and
pl(P)=—4c2(P’)EHZ. This dimplies that the above difinition is
well~defined.

Similarly we define TCZ(B’)ER/Z for an SU(3)-connection B’

- 21 -



over an oriented closed 3-manifold.

The following lemma is an immediate consequence of the

definition.
Lemma 6.2. (1) Let 2-Z be a Jinite regular covering with covering
transformation group G, and B’ a flat connection over 2Z

corresponding a homomorphism from G to SU(3). Then

Tc.(B')e(#G) " 1z/Z.

o
(2) Let Y be a compact oriented 4-manifold with 8Y=UZi
(disjoint union), and A a flat connection over Y. Then
> TcZ(AlZi) = 0.
i
(3) Let B be an SO(3)-connection on the product bundle over an

oriented closed 3-manifold, and B’ the SU(3)-connection induced

from B by the inclusion SO(3)cSU(3). Then

Tcz(B‘) = —Tpl(B) mod Z € R/Z.
Proposition 6.3. Let B be «a flat SO(3)-connection over
Zozz(al,az,---,an). Then we have
Tp,(B) « (alaz---an)-IZ/Z.
Proof. Let Y be the mapping cylinder of n:ZOeSZ introduced in
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Section 3. Let XyoXgy sy X ESZCY be the singular points of Y. The

link of X5 is isomorphic to a lens space with fundamental group
Z/ai. Therefore Lemma 6.2 implies that it suffices to show that B
can be extended to a flat connection over Y\{x1,~~-xn}. Let

2

yEN ZO) be the element corresponding to general fiber of n:ZOeS .

1 (
Since Y\{xl,---xn} has a homotopy type of wunion of EO and the
mapping cylinder of ZO\{singular fibers}aSZ\{xl,--o,xn}, van

Kampen's theorem implies that
ﬂl(Y\{xlv"'xn)) = “1(20)/<7>'

Suppose that B is corresponding to a homomorphism ¢:n1(20)480(3).
Since y is in the center of nl(zo), the image w(nl(zo)) is contained
in the centralizer 080(3)(¢(y)). Since nl(zo) is perfect, the image
¢(xl(zo)) is contained in the commutator subgroup of CSO(3)(@(7))’
Similarly ¢(n1(zo))is contained in the twofold commutator subgroup
of 080(3)(¢(7)). Let g be an element of SO(3). When the order of g
is equal to 2, we have Cgy 5 (g)=0(2) and [0(2),0(2)]=st, [si,sty=1.
When the order of g is neither equal to 1 nor 2, we have
CSO(B)(g)zS1 and [81,81]=1. In either case the twofold commutator
subgroup of CSO(3)(g) is trivial. Therefore ¢@(y) must be equal to
1, and hence ¢ can be reduced to a homomorphism from

wl(Y\{xl,-»~,xn}) to SO(3). This completes the proof.

For a homology 3-sphere X, we define O§51(2)§4 as an estimate

of the length from the product connection to other flat connections
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on XZxS0O(3).
Definition 6.4. Let =:(0,4]-R/Z be projection. We set

e,(2) = inf{n-l(Tpl(B)) ; B is a flat connection of 2ZxSO(3)}.

Proposition 6.3 implies the following estimate.

. . -1
Proposition 6.5. el(iz(al,a2,~--,an))g(a1a2~--an) .

We show that we can take 52(2)=min{s(2),e(-2)} as the constant

e{(2) in Theorem 2.1, when 52(2)>O.

Theorem 6.6. Let 21’22"

ez(zi)>o (i=1,2,+++,m). Let zo=2(a1,a2,---,an) be a Seifert fibered

homology 3-sphere such that R(al,aZ,-»-,an)>o and alaZ~--an>r.2(zi)_1

-',Zm be homology 3-spheres. Suppose

(i=1,2,--+,m). Then

2[2,10Z([2,1+2[2,]+---2[2_1) = {0} in eg.

Proof of Theorem 2.3, given Theorem 6.6. Theorem 2.3 immediately

follows from Proposition 6.5 and Theorem 6.6.

In the rest of this section we prove Theorem 6.6 by modifying
the argument of [14,8§10].
We wuse the notations in Section 4. The following lemma is an

extension of Lemma 10.3 of [14].
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Lemma 6.7. Let {Ai}CC(Pz) be a sequence of self-dual connections.

Then either one of the followings is satisfied.

(6.8) lim limsup J F(A, |2 = 0.
nN-oo jo 2)([11,00) -
\ . 2 2
(6.9) lim limsup f |F(Ai)[ > 8xn sl(~2).
= i-reo Ix n,uo)
Proof. Suppose that (6.9) is not satisfied. There are Ny and
c<el(—2) such that
J' [F(a,)|? < 8aPc < 8a%.h  (i>>1).
zx[nO’“’) -

Theorem 8.8 of [9] implies that there is a subsequence {Ai'} and a
sequence {gi.} of gauge transformations such that {gi,*Ai,}
converges to some A_ in Cioc-tgpology. Note that since a "bubble"
of SO(3)-self-dual connection must carry away a positive integral
multiple of 8n2o4 from the square of Lz—norm of curvature, there is
no room for bubbles in this case. To prove (6.8), wé argue as
follows. As in the proof of Lemma 4.2, we can approximate

AwIZX[nl,n1+4] by a flat connection induced from a flat connection

Bn on 2ZxS0O(3). We take nl(>no) sufficiently large so that the
1
error is small. When i' is sufficiently large, it 1is also an
*
approximation of g, Ai,IZx[nl,nl+4]. Fix such large i'. When n,

*
(>n1) is sufficiently large, we can approximate g5 Ai,IZX[nZ,n2+4]

by a flat connection isomorphic to the product connection on
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Zx[nz,n2+Q]xSO(3) from the definition of Ca(Pv). Therefore by

considering cutting off at [nl,n1+4] and [n 2+4] (see [14 §107),

20n

we can approximate the Chern-Simons invariant of Bn by
1

(6.10) p(A,,) = =
fo[n1+2,n2+2] 174 8n2 J-2><[n1+2,n2+2]

2
|F(Alv)l .
The error tends to zero when we take the threefold limit with

1

—e and ng-e in order. Since (6.10) is bounded

by c<51(-2), this implies that Tpl(Bn )e[o,sl(—z)) mod Z when ny is
1

respect to néam, i

sufficiently large. Then the definition of el(—z) means Tpl(Bn )=0.
1

This in turn implies that (6.10) is almost equal to zero, and the

error tends to zero when we take the threefold limit with respect to

Ny, i'-e and n e in order. This completes the proof.

Proof of Theorem 6.6. As in the proof of Theorem 2.1, it suffices
to show Proposition 3.1 with 52(2) replacing ¢(2). Take the same §
as in Proposition 3.1. Let {fAi]} be a sequence in M. Then on
each end Ix[0,~), (6.9) is not satisfied from Proposition 6.3, and
hence (6.8) is satisfied. Let £=¢(2) be the constant as in
Proposition 4.8. Then for sufficiently large n, there 1is a
subsequence {Ai,} such that

IF(a,,) ]2

< g{Z2).
'(Zx[n,m) * o)

Apply Proposition 4.8 to take a subsubsequence which converges on

Zx[n,=) in | Ha—norm when we choose suitable gauges. Then, as in
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the proof of Proposition 3.1, “"patching of covergence"
(Proposition 7.5) implies that there is a subsubsequence of {Ai,}
which converges on the whole V-manifold in | Hé-norms. This implies

the requied compactness of M This completes the proof.

5
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7. Patching argument.

The arguments stated in this section are essentially given by
K.K. Uhlenbeck in [15], and already used in [3] and [14]. But since
there seems to be no articles which state these arguments in general
context, we explain them here for convenience of readers. (We do
not cover all patching arguments in [15]. We do not give "patching
of gauges" used by Taubes to prove Lemma 10.4 of [14] quoted in
Section 4.)

For simplicity we consider only principal SO(3)-bundle over
smooth manifolds. (This assumption is used only in the proof of
Lemma 7.1. Other arguments are valid for any bundles whose
structure groups are compact Lie groups.) In this section we use

only Sobolev embeddings as tools.

We wuse the following notations: We fix n, 1g<p<=~ and g=0,1,--
such that p(gq-1)>n. Let M be an n-dimensional Riemannian manifold,
and {Ui} a finite open covering such that Uint is relatively

compact and admits Sobolev embedding Lp_ch°° and Sobolev

q
multiplication laws Lg_1XL§4L§ (O;kgq-l) as bounded maps. Set
Vi=Uin U u,. Let PO be a principal SO(3)-bundle over M, and 60 a

J#i
smooth connection on P. For a open set UcM and a connection A on

POIU, we define “°“L§(A,U) by
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for sections s of associated ve
section we call A a Lp -Cco
q-1,loc ¢

A=6,+a over U and HaNLP
q-1'"0"

P
a Lq_1 connect

<

(6~,UnV)

set V. We call A

When V is a relatively

PP
kaqu (

(O<kg

multiplication laws

1
(A,V)-norm

LD
q—
D

Ly

for example,

equivalent to

Hence, the same Sobo

LP

k(A,V)-norm.

We use this fact fre

Lemma 7.1 (patching of bundle

LP

a-1,loc Then

-connection on PO.

following significence: Suppose

over M and {gi} is a set of bundle

3
4

, covering tdentity, such that

_1g.—1

(7.2) j

le. I, p <
i Lq(Ao,Uint)

compact

bundles with PO.

open set

ctor In this

nnection on an UcM if

~ for any relatively compact open

ion on U if |A-6,]|,p <eo,
0 Lq_l(GO,U)

open set admitting Sobolev

Oék;q-l), then Li(eo,v)—norm is

q) for Lg_ -connection A on V.

1

lev multiplication laws hold for

ely.

isomorphisms). Let A be a

0

there exist ¢>0 and c>0 with the

1

0
isomorphisms from POIUi to PO'IUi

P 1S a principal SO(3)-bundle

g

Then there is a bundle isomorphtism g:PO@PO‘, covering identity, such
that for each io, g 1s equal to g. over U. \V. , and
i i i
0 0 0
"gi —lg_lan(A V. ) <c 2 ugi-lgj'l“LP(A U.nU.)"
0 q' 0’ io i,J g 0’Ti Ty
Proof. First we give a proof for principal Sp(l)—pundles. Let PO
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and PO’ be Sp(1l)-bundles satisfying the corresponding conditions.
Let L and L' be the standard associated quaternionic line bundles
with PO and PO‘ respectively. We identify Iso((PO)x,(PO')X) with

the unit vectors of Homm(LX,L'X) for xeM. Fix a partition of unity

0

{pi} of {Ui}. Sobolev embedding Lgcc and (7.2) imply that, if ¢ is

sufficiently small, we can define geIso(Po,Po‘) by

(7.3) ;e
7.3 g = e Hom (L,L').
]2 pigi] H*™?
i
Note that |Zp.g.|=|2p.g. -lg.l. Then we can check the required
PR S A e 7

estimate.

In the case of SO(3)-bundle, we can pull back the structure
group of PO and PO‘ to Sp(1) (the double covering of SO(3)) at least
locally. If ¢ is small, we can 1lift {gi} to local isomorphsms

between the Sp(l)-bundles uniquely so as to preserve the estimate

(7.2). Then g is well defined by (7.3). This completes the proof.

In the proof of Lemma 4.1 (1) in Section 4, we wused the

following proposition.

Proposition 7.4 (patching of connection approximations). Let

{gijCAUt(Poluint}i,j be a set of gauge transformations of POIUint

satisfying cocycle conditions: gii=1, gijgji=1 and gijgjkgkizl' We
call it a set of transition [functions. Let {Ai}i be a set of
P - : -

Ly-1,10c-COnnections on PolU; such that g5 Ay=A; over U;nU;. We

write P for the bundle defined by patching {PozUi} by {gij}‘ We
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write A for the connection on P defined by {Ai}’ Then there exist
>0 and c>0 with the following significance: Suppose P' is a bundle
represented by data {gij‘eAut(PolUint)} and A' is a connection on

P’ represented by data {Ai'} such that

less 653 P (a, U, ru,) £
g Jj'i ]

Then there is a bundle isomorphism g:P-P' such that g=g; on Ui\vi

and
* 1
"A_g A HLp (A,U V.)
q-1 j
-1
<c( 2 |lg;; “gys'-1]pp + 2 A -AL P )
= i3 ij ij Lq(Aj,Uint) ] i i Lq—l(Ai’vi)
Proof. Define gi:P|Ui-+P'lUi by using the given "trivialities™" with
: : -1 -1,
Pini and the identity map, th?n B; B37Bij Bij on P|UintcPO|Uj.

Lemma 7.1 implies that there is g:P-P' such that g=g; on

U. \V, , and
o 1o

i-lg'_luLp(A U.nU.)"
J q , i j

A

-1
Hgio g-lﬂLp(A,V. ) c 2 |e
q g i,3

Let h,eAut(P,|U, ) be the representation of g|U. using the
i 0 i, i,

"triviality". Then h, =1 on U, \V. and
0 o to

-1
In, -1, p <c 2> |g;, “g;-1];p .
ig Lq(AiO,Vio) 20708 B Lq(A,Uint)

s

Using Sobolev multiplication law LPxLP 1P on V., , we obtain
g Tq-1 Tg-1 1o
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*

- (]
hy A; "ILP (A v. )

*
la-g A'],p =] A,
L (A’vi ) + o ‘o q-1 i 1,

g-1 0 0

<la; -a; 'lp
=iy i L (A

-1
+clh; ;P lay hy Ipp
g-1 , V. ) ig Lq(A. WV, )ITAL io L 1(A. WV, )

io i, is" 1 i, g- i’ 'ig

2
+ clh; |{p la, -a, '|;p .
i, Lq(AiO,ViO) i, Tip Lq—l(Aio’ViO)

Here <¢>0 is a constant. Using dA 1=0, we obtain the requied
o
estimate.
In the proof of Lemma 4.1 (1), in the last step of the proof
of Proposition 3.1 in Section 4 and in the proof of Theorem 6.6, we

used the following proposition.

Proposition 7.5 (patching of convergences). Suppose a sequence {Ak}
of connections on PO and gauge transformations {g};eAut(POIUi)}i K
) ,
* oo
satisfy that {g? Ak}k converges to some Lg_l—connection Ai on Ui in

Lg_l(eo,Uo)—norm. If we take a subsequence {Ak} (now relabeled),

*
then there are {gkeAutPo} such that gk Ak converges to some
Lg_l—connection A” in Lg_l(BO,M)-norm. We can take gk so that gkzgi
on Ui\vi‘
k _, k-1 k kK * k* k__k* k .
Proof. Set gij—(gi) gj, then we have i B A =g A", i.e.,
k _ kK __k , k*,k =, k¥ k ,= k
VAwgij'dAwgij'gij(gi A Ai) (gj A Ai)gij on UimUj.
i i

k

By bootstrapping, this implies that {gij} is Lg—bounded. We can
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take a subsegquence {Ak} (now relabeled) such that {gij} converges to

o . . p_ uo"‘eo_co
some g.J on Uint in Lq_1 topology. Then we have g.. Ai--Aj and also

1J
k o =1y _ k o -1, _k o -1. k k_ .= o -1
i i
k* k_p= k w -1

By bootstrapping, this implies that

k

i3 (k—0).

(g% )

HVA g iJ "LP (A LU, nU)

i

Therefore, using V w1=0, we obtain
A,
i

k ™

le

-1
i5(815) ‘1“LS(AZ,Uint)’*O (k—0).

Let Pk be a bundle defined by transition functions {g }. and P~

; ij’i, 3

a bundle defined by transition functions {glJ}l e Then the data
k
{e

* . oo

A } is regarded as a connection on Pk, and the data {Ai}i as a
connection A~ on P”. Apply Proposition 7.4 to get a bundle
isomorphism gk:Pw—+Pk for large k such that gk=g§ on Ui\vi and

HA“-gk{gﬁiAk}iﬂLg_l(Am,uv)—*o (k—0).

*
Since (Pk,{g? Ak}i) is isomorphic to (P,Ak) by definition, this

implies the required result.

Remark 7.7. In this section we have assumed that {Ui} is a finite
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covering. But if all Uint are disjoint, for example, we can apply
the propositions locally to get a certain estimate. The final step

of the proof of Lemma 4.2 is such a case.

L™
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