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Chapter 1

Introduction

1.1 Motivation: Chaos in neural systems

Chaos is one of the greatest discoveries in the science and engineering of the 20th century
[46, 81, 130, 136, 153, 190]. Striking feature of chaos is due to the fact that irregular
complex dynamics can be generated from simple deterministic nonlinear system. Although
such irregular dynamics had been studied in terms of stochastic dynamical processes, chaos
has completely changed our view on nature. In fact, re-examinations of irregular dynamics
in real world systems have shown that chaotic dynamics can be observed in many real
systems of our science and engineering. The examples include fluid flows [74, 75, 170],
chemical reactions [97, 153, 166], optical systems [4, 99], flooded ship motion [146, 190],
electronic circuits [135], and many others.

Chaos can also be observed in many biological systems [45, 205] including the brain
systems. In the learning process of rabbit olfactory system, Freeman et al. observed
chaotic activity in the olfactory potential [59, 60, 61, 62, 63, 64, 183] and Babloyanz et
al. [23, 24] analyzed human electro-encephalogram (EEG) in various mental stages and
found low-dimensional chaos in several sleep stages. In single neuron level, Aihara et al.
(8,9, 11, 134] observed chaotic response in giant squid axon stimulated by periodic electric
stimuli.

From the physiological observations that suggest chaotic activity both in single neuron
level and in network level, it is a natural direction of the neural network studies to
investigate possible functional roles of chaos in the brain. Freeman et al. suggested a
functional role of chaos as a novelty filter when a rabbit memorizes a new odor [183,
216). They also considered chaos as a nonlinear pattern classifier when a rabbit classifies
memories of odors [64]. Babloyantz et al. [23] emphasized chaos as a resonance capacity
amplifier against external stimuli. Tsuda et al. [202, 204], Aihara and Adachi (3, 5], and
Nara and Davis [150, 151] considered chaos as a dynamical memory searcher.

Significance of chaos in neural systems has been also highlighted in neural
networks applied to engineering problems. In fact, there are several inter-
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6 Chapter 1

esting research works reporting the enhancement of information processing
capability of neural networks in the presence of chaotic dynamics. Lapedes and
Farber [123] and Sato et al. [174, 175] trained several types of recurrent neural networks
to learn chaotic dynamics and reported the enhanced learning capability in the neural
networks. Nozawa [154] applied chaotic neural network [12] to solve the traveling sales-
man problem and reported that remarkable optimization capability can be observed when
neural network exhibits chaotic behaviour. Chen and Aihara [35] realized a simulated an-
nealing in chaotic neural networks and observed significantly good network performance
for various optimization problems.

Engineering application is one of the most important research subjects in the neural
networks. We also believe that significance of chaos in the brain can be found in the neural
networks with engineering applications. Hence, the present thesis aims to investigate
possible functions of chaotic dynamics in neural information processing models
in the light of their engineering applications. The engineering applications include
system identification, modeling, and search. Our subject studies will be briefly described

in the next Sections.

1.2 Neural networks for engineering applications

In neural network research, two remarkable paradigms have been recently developed to
expand the range of the neural network applications. One is the back-propagation
learning [167, 168] and the other is the Hopfield energy [92, 93].

The back-propagation learning presents a framework of learning algorithm to teach
feedforward neural networks to achieve desirable computational tasks. Since multi-layer
feedforward neural networks have universal approximation capability [43, 67, 96], back-
propagation neural networks have been applied to many engineering problems such as
input-output modeling, system identification, time sequence recognition, and time series
prediction [19, 52, 89, 145].

Hopfield [92, 93], on the other hand, realized an analogy between the Hebbian-type
associative memory neural network [15, 16, 17, 20, 85, 119, 149] and the Ising spin model
of the statistical physics and introduced the notion of energy to the associative memory
neural network. The energy function not only provided us with a better understanding
of the associative memory from the viewpoint of statistical physics [18, 89] but it also
extended the applicability of associative memory neural network to engineering problems
such as the optimization problem. In practice, Hopfield and Tank [94] defined a Lyapunov
function for a class of neural networks with symmetric connections and showed that
the network dynamics of energy descent property can be utilized to solve the traveling
salesman problem. Hopfield-Tank approach to optimization problems has been examined
and modified by many researchers [13, 86, 210] and widely applied to practical engineering

problems.
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This thesis focuses on the back-propagation learning and the Hopfield-Tank
optimization technique as the typical engineering applications of neural net-
works. For these two applications, we introduce the idea of chaotic dynamics
for enhancing the neural information processing capability and study the func-
tion of chaos in the neural networks. In the following Section, subject studies of

each Chapter of this thesis are described.

1.3 Chaos for neural network applications

1.3.1 Modeling of chaotic dynamics

In Chapter 2, we study the problem for modeling chaotic dynamics by neural networks.
Due to the universal approximation capability [43, 67, 96] and simplicity of the back-
propagation learning algorithm [168], multi-layer feedforward neural networks have been
frequently applied to systems modeling and identification [19, 52, 89, 145]. Chaotic dy-
namics presents good example for the neural network modeling, since chaos may provide
us with rather complex target for learning. Despite this instinctive thought, modeling of
chaotic dynamics can enhance the learning capability of neural networks. This is because:

(a) In general, chaotic dynamics is generated from a simple nonlinear dynamical system.
Such simple nonlinear dynamical structure can be modeled by rather simple and

small size neural networks.

(b) Due to the orbital instability, chaotic dynamics wanders among a variety of un-
stable periodic orbits embedded in the chaotic dynamical structure. Since chaotic
wandering dynamics provides us with a rich information on its global dynamical
structure, modeling of chaotic dynamics is much easier than other dynamics such

as the periodic dynamics.

In fact, Lapedes and Farber [123] and Sato et al. [175] have reported successful results
for modeling chaotic dynamics which even enhances the learning capability of neural net-
works. On the basis of their results, we study the learning capability of neural networks
with time delayed feedbacks. Due to the existence of time delays, the neural network gives
rise to infinite-dimensional dynamics. By the experimental studies of learning chaotic dy-
namics, we show that the infinite-dimensionality enhances the learning capability of the
neural networks and demonstrate the significance of time delays in the synaptic connec-

tions of neural networks.

1.3.2 Identification of a parametrized family of chaotic dynam-
ics

In Chapter 3, we extend the idea of modeling chaotic dynamics to the identification prob-

lem of a parametrized family of chaotic dynamics. Let us consider a chaotic dynamical
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system that exhibits a variety of chaotic time series with a change in the bifurcation pa-
rameters. The identification problem is to estimate the underlying bifurcation parameters
of the chaotic time series without knowing the analytical structure of the parametrized
family.

By using the technique of neural network modeling, an algorithm is presented for esti-
mating the underlying bifurcation parameters. First, we construct “qualitatively similar”
parametrized family of neural networks that model the sets of chaotic time series. “Qual-
itatively similar” parametrized family means that the family of neural networks exhibits
“qualitatively similar” bifurcation phenomena as the original chaotic dynamics. Chaotic
time series are then characterized in terms of the “qualitatively similar” parameters of
the neural networks.

We emphasize that construction of the “qualitatively similar” parametrized family
is possible since chaotic time series provides rich information on the global dynamical
structure of the parametrized family. In this sense, chaotic dynamics enhances the neural
network capability of identifying a parametrized family of dynamical systems and enables
a novel application of the neural networks.

1.3.3 Detection of switch dynamics

In Chapter 4, we apply the system identification algorithm of Chapter 3 to the switch
detection problem. Let us consider a chaotic time series generated from a dynamical
system whose bifurcation parameters are occasionally switched. Then, the problem is
to detect the switch dynamics in such switched chaotic time series without knowing the
analytical structure of the parametrized family. First, the switched chaotic time series is
divided into windows of short-term time series. From the set of windowed time series,
“qualitatively similar” parametrized family of neural networks is constructed using the
algorithm of Chapter 3. By characterizing the windows of short-term chaotic time se-
ries in terms of the “qualitative” parameters of neural networks, switch dynamics in the

underlying bifurcation parameters can be detected.

1.3.4 Optimization by chaotic neural networks

In Chapter 5, we consider the optimization capability of neural networks in the presence
of chaotic dynamics. Since the Hopfield-Tank experiment of applying neural networks to
optimization problems [94], many researchers examined and modified the neural networks
to solve optimization problems [13, 86, 210]. The well known problem of the optimiza-
tion technique by the Hopfield-Tank neural network is the local minimum problem. The
Hopfield-Tank network is known to have many local minimum solutions that are far from
the optimum solution. The network is frequently trapped in such local minima depending
on the choice of the initial condition. In order to escape from such local minima, stochas-

tic dynamics is usually introduced to neural networks [2, 114]. Escape dynamics from the
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local minima can also be realized by introducing chaotic dynamics which destabilize the
local minimum states. ‘

According to Nozawa [154] who applied chaotic neural network [12] to solve the travel-
ing salesman problem, remarkable optimization capability can be obtained when chaotic
neural network exhibits chaotic behaviour. This observation is important, since it demon-
strates that chaotic dynamics significantly improves the optimization capability of neural
networks.

Motivated by the Nozawa experiment [154], we study global bifurcation structure of
the chaotic neural networks applied to solve the traveling salesman problem. On the basis
of the bifurcation study, global bifurcation scenario is presented for chaotic optimization
dynamics. The scenario not only elucidates the dynamical mechanism of the chaotic
optimization but it also provides a guideline for setting the system parameters for realizing

an eflicient chaotic optimization.

1.3.5 Simulated annealing in chaotic neural networks

In Chapter 6, we study algorithms for realizing simulated annealing [114] in chaotic
neural network. Since the chaotic neural network studied in Chapter 5 gives rise to basi-
cally everlasting search dynamics for optimization problems, it is natural to introduce the
idea of simulated annealing for gradually cooling down the chaotic dynamics to possibly
optimum state.

Towards the simulated annealing in chaotic neural networks, chaotic simulated anneal-
ing (CSA) algorithm has been developed by Chen & Aihara [35]. In the CSA algorithm,
the chaotic dynamics is harnessed by a cooling algorithm of a bifurcation parameter.
Gradual cooling of the bifurcation parameter controls the chaotic search dynamics to
converge to a stable equilibrium state with possibly optimum or near-optimum solution.

On the basis of the bifurcation scenario of Chapter 5, we show that the result of the
chaotic simulated annealing algorithm is primarily dependent upon the global bifurcation
structure of the chaotic neural networks. Unlike the stochastic simulated annealing [71,
114}, infinitely slow chaotic annealing does not necessarily provide an optimum result. As
the improved algorithms for CSA, adaptive CSA algorithm and learning algorithm are
introduced for realizing simulated annealing in chaotic neural networks.

1.3.6 Chaotic dynamics for nonlinear function minimization prob-
lems

In Chapter 7, chaotic optimization technique of Chapters 5 and 6 are applied to the
nonlinear function minimization problem. Again, global bifurcation scenario is presented
for chaotic dynamical systems that solve the nonlinear optimization problem. The bifur-
cation scenario not only elucidates the dynamical mechanism of the chaotic search but
it also shows that a simple simulated annealing algorithm for the chaotic dynamics does
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not necessarily provide an optimum result. Then, a learning algorithm is introduced for
the chaotic optimization system to control the asymptotic measure of the chaotic search
dynamics. Our numerical experiments show that the learning algorithm possibly works as
“chaotic simulated annealing,” which realizes gradual convergence of the chaotic search

dynamics to possible optimum solution.

1.3.7 Conclusions, discussions, and future works

In Chapter 8, subject studies of Chapters 2-7 are summarized. Conclusive remarks
are made to discuss functions of chaotic dynamics in neural networks applied to various
engineering problems. Future works for thorough investigations of our subject studies are

also provided.



Chapter 2

Back-propagation learning of
infinite-dimensional dynamical
systems

abstract: Back-propagation learning is introduced to recurrent neural network with time-
delayed feedbacks (DRNN). Since the time-delays make the dynamics of the DRNN infinite-
dimensional, the learning algorithm and the learning capability of the DRNN are different from
those of the ordinary recurrent neural network (ORNN) with no time-delay. Two types of learn-
ing algorithms are developed for a class of DRNNs and they are tested for the learning of chaotic
dynamics. Comparing the learning algorithms and the learning capability of DRNN with those

of ORNN, functions of time delays in neural networks are considered.

2.1 Introduction

In neural physiology, various types of time delays such as the axon propagation delays
and the synaptic transmission delays are experimentally observed. A natural direction
of the neural network studies is to consider the functions of such time delays in neural
systems. So far, many neural network models with time delays have been introduced
and possible functions of the delays have been discussed. For instance, delayed synaptic
connections are introduced to neural networks that solve a time-sequence recognition
problem [19, 52, 95, 123, 145, 188]. In the network, the delayed synapses function for
concentrating the input information in time and for recognizing the input time-sequence
patterns. Such time-delayed neural networks are widely applied to practical engineering
problems such as the speech recognition problem [19, 52, 95, 145, 188] and the nonlinear
prediction problem [123]. Delayed feedback connections are also considered in a Hebbian-
type associative memory neural network [39, 90, 113, 115, 184]. In the associative memory
network, time delays destabilize the memory states of the Hebbian-type neural network
and enable the network to sequentially recall the stored memories. Stability of the time-

11
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delayed neural networks has been also analyzed extensively [25, 30, 138, 156].

Although the neural network models with time delays have been mainly studied in the
above contexts, the focus of the present Chapter is rather different from these studies.
Our interest is in supervised learning of continuous-time recurrent neural network with
time delayed feedbacks (DRNN). The supervised learning is to teach spatio-temporal
dynamics to the DRNN by applying the back-propagation learning algorithm [167, 168].
Since the dynamics of the DRNN is described by retarded functional differential equations
[82] whose dynamical class is different from the ordinary differential equational models of
recurrent neural networks (ORNN), the learning algorithm and the learning capability of
the DRNN are different from those of the conventional ORNN [48, 49, 77, 158, 163, 172,
173].

To the best of our knowledge, the supervised learning approach to DRNN has not
yet been thoroughly investigated. Back-propagation learning is introduced to DRNN
and the network capability of learning complex dynamics such as chaotic dynamics and
irregular speech dynamics is examined in [195, 197]. By the dynamical analysis of DRNN,
back-propagation learning algorithm for DRNN is briefly studied in [25] and a class of
dynamical systems approximated by DRNNs is also discussed in [192].

The aim of the present Chapter is to consider possible functions of time delays in
neural networks in the light of the supervised learning in DRNN. On the basis of the
comparative studies which investigate advantages as well as disadvantages of DRNN over
ORNN, functions of time delays in neural networks are studied.

The present Chapter is organized as follows. In Section 2.2, a standard mathematical
model for DRNN is introduced and the learning algorithms for the DRNN are developed.
Computational costs of the learning algorithms for DRNN and ORNN are compared. In
Section 2.3, several numerical experiments are presented to show the learning capability of
the DRNN. In Section 2.4, learning algorithm of the DRNN is further applied to speech
modeling and synthesis. Section 2.5 is devoted for conclusions and discussions of the

present Chapter.

2.2 Learning algorithms

2.2.1 Recurrent neural network with time delays

As a standard model for DRNN, let us consider the Kleinfeld model [115] which was

introduced as a sequential memory generator:

N N m
= = —RF O+ L TsVilt) + 3 DV, (6) + 3 Liz4(h),

j=1 7j=1

Vi(t) = G (0), Vo,l0)= [ Vilt+ o) Dyls)ds. (21)
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As is shown in fig. 2.1, the network is composed of N-neurons, where the internal states,
outputs, and delayed outputs of the i-th neuron are respectively described as z*(t), Vi(t),
and Vp,(t) (¢ = 1,..,N). The network also receives m-external inputs z(t) (i = 1,2, ..,m).
The synaptic connections from the j-th neuron, the j-th delayed neuron, and the j-th
external input to the i-th neuron are described by the weight matrices T;, D;;, and
L;;, respectively. The delay function D;(s) represents the response characteristics of the
delayed synapse over the duration of 7. The delay function usually takes the form of
the delta function, D;(s) = é(s — 7;), the step function, D;(s) = ¢  — s)/7;, or the
exponential decay function, D;(s) = exp(—s/7;)/7;. The input-output function G;(z) is
represented by a monotonously-increasing function such as the sigmoidal function G(z) =
2/(1+exp(—=z)) — 1. In case of no time-delay, i.e., 7 = 0, the network of eq. (2.1) becomes
an ORNN widely used for the associative memory network [94] and the recurrent back-
propagation network [48, 49, 77, 158, 163, 172].

External Inputs
zi(t) - . zm(t)

V? ez x1(t) . Vi(t) D1l Voi(t)
| Dot |
x2(t) o> Va(t) D21 Vpz(t) »
x3(t) > Vsit) D31 Vp3(t) >
xN(t) o Vi(t) DR YoN(t)
Tle Rl L
[-Matrix D-Matrix T-Matrix Neurons Time Delays

Figure 2.1: Schematic illustration of the Kleinfeld network of eq. (2.1). Dynamical states of the N-
neurons {z',.., 2"V} are driven by the feedback connections from their outputs {Vi,.., Vy} and the delayed
outputs {Vp,,.., Vp,}. The network also receive m-external inputs {z1, .., zm }.

Eq. (2.1) can be described as a class of retarded functional differential equations
(RFDEs) [82]:
d
i f(=:, z(1), ), (2.2)
where @ = {z',..,2"}, 2 = {21,..,2m}, and f = {fi,.., fv}. The dynamical system
is infinite dimensional, since the state space @, € C([—7,0],RY) is represented by a
continuous mapping of the interval [—7,0] into RV according to #:(f) = «(t + 6) for
¢ € [-7,0]. The system dynamics is described by a function f : C([—7,0], R¥) x R™ x
R¥ — RV with K-dimensional weight parameters Q = {T};, D;;, I;;} € RK.
In the next subsection, learning algorithms that adjust the weight parameters Q are

developed for a class of DRNNs described by eq. (2.2).
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2.2.2 Real time recurrent learning algorithm

Let us consider the supervised learning to teach spatio-temporal dynamics to DRNN of
eq. (2.2). The inverse problem for learning spatio-temporal dynamics can be stated as

follows:

“Classify the units of the DRNN into visible units {z‘|{ € V} and hidden units
{z'|i ¢ V}. Given an initial condition @, and external inputs z(t), the DRNN
gives rise to a unique solution &(t) satisfying ®(t) = f(w¢,2(t),Q) for t € [0,7T].
Then, find the adaptive parameters ) that give rise to a solution @(t) approximately
following a given target trajectory &(t) = {&(¢)|i € V} as @*(t)=&i(t) for i € V and
te[-nT”

The back-propagation learning algorithm for the inverse problem can be formulated

as follows. First, cost function for the adaptive parameters {2 is defined as

T 1 . )
BQ) = [ d 3 20 - 60" (2:3)

Then, the cost function of eq. (2.3) is minimized by the steepest descent method as follows:

w(in+1) =w(n) - ng—g(ﬂ(n)) where w € Q. (2.4)
The first derivatives 0FE/Ow are computed as
O0E T ; oz
== [Cdt e - a0y55 0, (25)

0 i€V
where the values of 8z'/0w in the right hand side are calculated by solving the first

variational equations:

d 6zt N ] afl oz’
L T
+%(zt,z(t),9) (i =1,2,..,N) (2.6)

with an initial condition 8z'/8w = 0 for t € [—1,0].

We remark that, in case of no time delay, i.e., 7 = 0, the present algorithm becomes
the real-time recurrent learning (RTRL) algorithm [49, 173, 209] of the ORNN. Let us
compare the computational cost of the RTRL algorithms for DRNN and ORNN. The main
computational part of the RTRL algorithm is the numerical integration of the variational
equations (2.6). In case of DRNN, the variational equations (2.6) are NK sets of RFDEs,
while the equations (2.6) are NK sets of ordinary differential equations (ODEs) in case of
ORNN. Compared to the ORNN, the RTRL algorithm for the DRNN is computationally
costly, since the time delays make the variational equations (2.6) infinite-dimensional. The
computational cost can be reduced by adopting the time-dependent recurrent learning

(TDRL) algorithm [158, 172] to DRNN.



Infinite-dimensional neural learning 15

2.2.3 Time-dependent recurrent learning algorithm

Let us introduce the TDRL algorithm for DRNN. The TDRL algorithm computes the
first derivatives F /0w by using the Lagrange multipliers A = {1, Az, .., An} as follows.
First, we rewrite the cost function of eq. (2.3) as

o) = [Ta [ {5 b (0 - &0
= () {&'(t) — filme, 2(1),Q)} } ] (2.7)

Then, the first derivatives 0L/0w are calculated as

oy Siew 15H(0) — (0} (1)

z=1

0 af; Oz’

- Z " s w00 G+ )
- A 5’;(22 )+ A0 gf (2,2(0),9)
- ——{ “(t) - fi(=e2(8),Q)} } - (2.8)

By the network dynamics of eq. (2.2), the final term of eq. (2.8) vanishes. Since the second
term of the eq. (2.8) can be written by the transformation ¢’ =1 + s as

/()Tdt[i {A Z/Td (2020, 9) gﬁ:(t—l—s)}]
= /O dt[

, ds 5t' 0T+3] A (t - 3)

af.‘i !
m(a’t'~uz(t —5),8) }]a (2.9)
the first derivatives 0L / Ow become
6:1:
Lo [Ta [ {0 (e (=0 - &(0)
0f;
+ :’2231 /;T ds 5t€[0,7'+3] ’\j(t )6:Bt :( )(mt—s,z(t - S),Q) }
d Oz of;
M(E) (5o) + M) 5@ 2(8),9) }]. (2.10)
Suppose that the Lagrange multipliers A(t) satisfy the following equations
d . N 0
EAi(t) = &'Ev (ft(t) - :v'(t)) - Z ds 5t€[0,7'+a] Aj(t - s)
=T
0f; (2oyy 2(t — 5),Q) (2.11)

Oz_(s)
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with a boundary condition A(7) = 0. By substituting eq. (2.11), the first, the second,
and the third terms of eq. (2.10) become

[l G0 0 + A0 S
3 LN0) 22 0) + MT) ST . (212)

=1

Since 0z'/0w(0) = 0 and A(7) = 0, the above terms also vanish. Therefore, the first
derivatives 0E /0w can be calculated by integrating the final term of eq. (2.10) by the
following algorithm.

[Time-Dependent Recurrent Learning Algorithm)|

(i) For a given initial condition ®, and external inputs z(t), solve the equations (2.2)
forward in time. The solution curve &(t) (¢ € [0,7]) is stored in the computer

memory.

(i) For a boundary condition A(7") = 0 and for target signal £€(t), Lagrange multipliers
A(t) are calculated for ¢ € [0, 7] by solving the equations (2.11) backward in time.

(iii) Using the Lagrange multipliers A(t), the first derivatives are integrated as

oL

.
o :/0 dt Z M(t) (e, 2(2), Q). (2.13)

We remark that the same formula can be obtained by using the adjoint equations of
the RFDE [82].

Although the memory storage of the entire solution curve (t) (¢ € [0,7]) is required,
the TDRL algorithm is computationally less expensive than the RTRL algorithm. While
the RTRL algorithm requires to solve NK sets of RFDEs (2.6), the TDRL algorithm
requires to solve only NNV sets of RFDEs (2.11). In Table 2.1, learning algorithms and their
computational costs are summarized for DRNN and ORNN.

2.3 Numerical experiments

This Section presents experimental studies of applying the supervised learning to various
types of DRNNs. As the teacher signals, periodic and chaotic signals are exploited. By
comparing the learning capability of DRNN with that of ORNN, advantages of time-delays
in recurrent neural network are studied.
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In our numerical experiment, in order to avoid the numerical instability of integrating
the network trajectory for long time interval, the cost function of eq. (2.3) is redefined for

teacher signals £(¢) divided into S-windows as

E/ o —Z{m (£)}2. (2.14)

zev

The modified cost function of eq. (2.14) is minimized by the quasi-Newton method:
Qn+1) =Q(n) — HQ(r))VE((n)) (2.15)

where VE((n)) and H(f2(n)) stand for a gradient vector and an approximate of the
inverse Hessian of E(Q(n)). * The gradient vector VE(£}(n)) is computed by the TDRL
algorithm, where every differential equation is integrated by the Euler method. The
Euler’s integration algorithm for the RFDEs is described in detail in [53].

2.3.1 Figure eight

As the first learning example, figure-eight dynamics shown in fig. 2.2 (a) is employed for
the teacher signal. As a DRNN, the following Kleinfeld model of eq. (2.1) with delta-
function type delays is considered:

d ; 1 N
—z'(t) = —E:c ) + Z T;;V;(t) + > Di;Vi(t — 5). (2.16)
Jj=1

1=1

The network is composed of 2-units (z!,2%) (N = 2), where the outputs are given by using
the sigmoidal function as V; = G(z'). The time constant and the delay parameters are
fixed as (R, 7y,7,) = (10,0.14,0.07) and the teaching periods are set as (S,7) = (2, 3.0).
The external inputs are not considered, i.e., z(t) = 0. The two variables ({;,&;) of the
figure-eight dynamics of fig. 2.2 (a) are used as the teacher signals for the visible units
(z!,z?), where no hidden unit is introduced.

Fig. 2.2 (b) shows the network dynamics after the 153-iterative learning processes.
The network capability of reproducing quite similar dynamics to the teacher signal is
recognized. In the studies of the supervised learning of the ORNN given by eq. (2.16)
with 7 = 0, the figure-eight dynamics has been used as the benchmark test [158]. Due
to the uniqueness of the solution in a continuous-time dynamical system, the figure-eight
dynamics which has a crossing point at the origin can not be described by two dimensional
dynamics and at least three dimensional dynamics is required. In order for ORNN with
two visible units (z',z?) to learn the figure-eight dynamics, at least one hidden unit is
required. In fact, it has been reported that ten hidden units are required for ORNN to

* There is a variety of update formulas for estimating a series of H(2(n)) using E(Q(n)) and VE(Q2(n)).
In our numerical experiments, the Broyden-Fletcher-Goldfarb-Shanno formula with Luenberger’s self-
scaling formula [132] is exploited.
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learn the figure-eight dynamics [158]. In contrast with the ORNN, the present experiment
shows that no hidden unit is necessary for DRNN to learn the figure-eight dynamics. Since
the time-delays make the DRNN infinite-dimensional, DRNN only with two visible units
does not violate the uniqueness of the solution. This implies that, in case of the learning
by DRNN, the dimension of the network dynamics can be increased by introducing the
time-delays and that the time-delays can substitute a large number of hidden units.

O

0.4

0.2

-0.6

(a) h ' ' £'®

0.2

~0.4

-0.6

® | x©

Figure 2.2: (a) Figure eight dynamics (£1(t), £2(t)) used for the first learning example. The dynamics
has a crossing point at the origin. (b) Dynamics of the DRNN of eq. (2.16) in (z'(t), z*(t))-space after
the 153-iterative learning. The network has two visible units, two delays, and no hidden unit.

2.3.2 Rossler equation

As the second example, the chaotic signal from the Rossler equations [165]:

S6 = b6,
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%52 = £+ 046, (2.17)
96 = 2-(-8)6,

is employed as the teacher signal. Among the three variables, two variables (¢;,£;) shown
in fig. 2.4 (a) are used as the teacher signal.
In order for the learning of nonlinear chaotic dynamics, let us consider a DRNN having

multi-layer-perceptron (MLP) structure:

d . h N . N .
awl(t) = Z szG(Z Tkj.’l:"(t) + Z ijibj(t — Tj) + Ik) (218)
k=1 =1 =1
(i=1,.,N)

As is shown in fig. 2.3, dynamical states of the N-neurons @(t) = {z!,..,z™} are driven by
the outputs of the MLP. The MLP has one output layer composed of N-output units, one
middle layer composed of h-middle units, and input layer which receives the inputs from
the N-dynamical units {z!(t),..,z" ()} and their delayed outputs {z'(t — 71),.., 2" (t —
7~)}. The MLP structure is introduced to DRNN, since the MLP is known to have

universal approximation capability [43, 67, 96].

%% % % Middle Layer
% x1(t)
[ x2(1) B xz(t-1t2)
[~ x3(t) o X3(t-13
L)) (o 20
H-Matrix Neurons Time Delays

Figure 2.3: Schematic illustration of the MLP-type DRNN of eq. (2.18). Dynamical states of the N-
neurons {1, .., zx} are driven by the outputs of the MLP, where the MLP has one output layer composed
of N-output units, one middle layer composed of h-middle units, and input layer which receives the inputs
from the dynamical units {z(t), .., zx(t)} and their delayed outputs {z1(t — 71),.., e~ (t — 7v)}-

For learning the Réossler dynamics of eq. (2.17), DRNN of eq. (2.18) with 2-visible
units (z!,z?) which receive the teacher signals (¢;,&;) is considered. No hidden unit is
introduced for the DRNN. The delay parameters are set as (79,71) = (0,0.4), 5-middle
units are located in the MLP (h = 5), and the teaching periods are set as (5,7) =
(100,0.8). As the learning parameters, the weight parameters Q@ = { Hix, Ti;j, Di;, I} are
adjusted by the learning algorithm.
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(b)y ' SO

Figure 2.4: (a) Rossler dynamics of the eq. (2.17) in (&;(t), £2(t))-space. (b) Dynamics of the MLP-
type DRNN of eq. (2.18) in (2'(t), z%(t))-space after 5000-iterative learning. The network has two visible
units, one delay, and no hidden unit.

Fig. 2.4 (b) shows the network dynamics after the 5000-iterative learning processes.
Reproduction of qualitatively similar chaotic dynamics is recognized. Quantitative sim-
ilarity between the network dynamics and the target dynamics can be also confirmed
by computing the Lyapunov dimension Dy [110], where the algorithm for computing
the Lyapunov spectrum and the Lyapunov dimension of the RFDE is provided in [53].
The Lyapunov dimension is estimated as D = 2.0216 for the Rossler equations and

D; = 2.0222 for the DRNN.

Let us consider the case of learning chaotic dynamics by ORNN. In case of no time
delay, i.e., 7 = 0, the DRNN of eq. (2.18) becomes the ORNN whose learning capability
has been studied by several researchers [68, 175]. For such ORNN to learn chaotic dy-
namics from only two teacher signals ({1,&2), at least one hidden unit other than the two
visible units is required. This is because the Peixoto theorem [160] states that chaotic
dynamics can not be generated from continuous-time dynamical system with less than
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three degrees of freedom. In the experimental study of learning chaotic dynamics, ORNN
with two visible units and one hidden unit is trained in [175]. Due to the chaotic prop-
erty of sensitive dependence on initial condition, a slight error in initial condition of the
hidden unit diverges in time and strongly perturbs the trajectory of the visible units.
Hence, the initial condition of the hidden unit should be carefully determined. In the
numerical studies of [174, 175], the initial condition of the hidden units is adjusted as the
learning parameters and this seems to complicate the learning algorithm and the learning
processes.

In contrast with the ORNN, the present experiment shows that the complicated learn-
ing of hidden units can be avoided by introducing time-delays in DRNN. The time-delays
make the DRNN infinite-dimensional and realizes the learning of chaotic dynamics only

by visible units.

2.3.3 Mackey-Glass equation

As the final teacher signal, the chaotic signal from the Mackey-Glass equation [137]:

§i(t — 100)
1+ &%t - 100)

%fl(t) =0.2 — 0.144(¢), (2.19)
is employed, where the single variable {; shown in fig. 2.5 (a) is used as the teacher signal.

Again, we train the MLP-type DRNN of eq. (2.18) with one visible unit ', one delay
z!(m), and no hidden unit. The delay parameter, the number of the middle units, and
the teaching periods are set as 7y = 100, A = 5, § = 100, and 7 = 2.5. By the learning
algorithm, the weight parameters Q = {H;, Tk;, Dij, Iz} are adjusted.

Fig. 2.5 (b) shows the network dynamics after the 1450-iterative learning processes.
Reproduction of qualitatively similar chaotic dynamics is recognized in figs. 2.5 (a) and (b).
Quantitatively, a similar Lyapunov dimension can also be estimated as Dy = 10.30 for
the original Mackey-Glass equation and Dy, = 10.14 for the DRNN.

Let us consider the case of learning the Mackey-Glass dynamics by ORNN having no
time-delay. In order to learn the Mackey-Glass dynamics which has a Lyapunov dimension
of Dp > 10, one visible unit and more than ten hidden units are required. The pfesent
experiment shows that the DRNN can avoid introducing such large number of hidden
units by making use of the time-delayed feedbacks.
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Figure 2.5: (a) Mackey-Glass dynamics of the eq. (2.19) in (¢1(t), 1(t — 100))-space. (b) Dynamics of
the MLP-type DRNN of eq. (2.18) in (z!(¢), 2! (¢ — 100))-space after 1450-iterative learning. The network
has one visible unit, one delayed feedback, and no hidden unit.

2.4 Application to speech

2.4.1 Irregularity in speech

It has been reported that, under certain circumstances, human speech exhibits low-
dimensional nonlinear dynamics. For example, pathological voices show evidence of low-
dimensional chaos in Poincaré sections of the reconstructed speéch trajectory [191]. Pos-
sible bifurcation route to chaos has been observed in non-stationary infant-cry [141] and
chaotic dynamical systems analysis has been carried out for fricative consonants [152]. In
normal phonation of vowels, irregularity in pitch-to-pitch variation has been also investi-
gated in terms of low-dimensional nonlinear dynamics [26, 102, 122, 142, 143, 174, 195,
196, 197, 199]. Since irregular dynamical structure of the vowels is known to be quite
important for natural perception of speech [47, 98, 116, 121], synthesis of irregular vowel
dynamics by nonlinear neural network modeling is worthwhile investigating [174, 195].
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This Section presents nonlinear modeling of such irregular vowel signal by the DRNN.

2.4.2 Nonlinear modeling of speech

In fig. 2.6, speech signal of the Japanese vowel /a/ (mausy003.ad)

{f(t) 1= 1‘12,"aNdata.} (220)

in the standard ATR (Advanced Telecommunications Research Institute International)
data base [22] is shown. The signal is low-pass filtered with a cut-off frequenc, "% kHz
and digitized with a sampling rate of 20 kHz and with 16 bit resolution. After removal of
the initial transient phase and the final decay phase, the signal consists of 11 pitch periods
of steady speech signal. Although the speech signal appears to be nearly periodic, each
pitch waveform and the associated pitch period are different from each other.

o 20 40 (=] 80 100
time (msec)

Figure 2.6: Speech signal of the Japanese vowel /a/ (mausy003.ad) taken from the ATR database.
Consisting of 11 pitch periods, number of the data points is Ngqte = 2200.

Irregularity in the pitch-to-pitch variation can be clearly observed in the delay-coordinate
vector space [186, 176]:

E(t) = (€(), €@t —7), -ovy E(E—(d—1)7) )T, (2.21)

where T represents transposition and d and 7 stand for the reconstruction dimension
and the time lag, respectively. If the speech system that produces the vowel is deter-
ministic and if the associated orbit is confined in a relatively low-dimensional attractor,
the embedding theorems [186, 176] guarantee that topologically similar dynamics can be
reconstructed in the delay-coordinate space. Figs. 2.7 show the trajectory of the speech
signal reconstructed in 2- and 3-dimensional delay-coordinate spaces with 7 = 3. As
is indicated by the arrows in figs. 2.7, behaviour of the reconstructed orbit is roughly

summarized as follows:
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1. The orbit spirals near to the origin.
2. As the orbit approaches the origin closely, it jumps upward and then bursts outside.

3. The trajectory spirals to the origin again.

The behaviour of the associated orbit resembles Shil’nikov’s homoclinic chaos [179], im-
plying that the irregularity in the pitch-to-pitch variation of the vowel might be caused

by low-dimensional nonlinear dynamics.

Figure 2.7: (a),(b): 2-dimensional and 3-dimensional dynamics of the speech signal of fig. 2.6, recon-
structed in the delay-coordinate space (—¢(t),—£(t — 3), —€(t — 6)). The arrows illustrate the system
behaviour; as the orbit approaches the origin closely, it jumps upward and then bursts outside and again
spirals to the center.

For nonlinear modeling of such irregular speech dynamics, an MLP-type recurrent
neural network with multiple time delayed feedbacks:

e OEDY HiG (Y Dija(t — jr) + L) (2.22)
k=1

i=0
is exploited. As is shown in fig. 2.8, dynamical state of a single neuron z(t) is driven by
its time delayed feedbacks z(t — j7) (7 = 0,1, .., K).
The delay parameter, the number of the middle units of the MLP, the number of the

delays, and the teaching periods are set as 7 = 3.0, h = 40, K = 4, § = 20, and 7 = 100.
By the learning algorithm, the weight parameters Q@ = {Hy, Dy;, I} are adjusted.
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D-matrix

H-matrix single nuron time delays

Figure 2.8: Schematic illustration of the DRNN of eq. (2.22). Dynamical state of a single neuron z(t)
is driven by the outputs of the MLP, where the MLP has one middle layer composed of h-middle units
and input layer which receives the inputs from the delayed neural outputs {z(t), z(t — 7), .., z(t — K7)}.
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Figure 2.9: Speech signal synthesized by the DRNN of eq. (2.22).

Figs. 2.9 and 2.10 show the network dynamics after the 2000-iterative learning pro-
cesses. Reproduction of qualitatively similar nonlinear dynamics is recognized in figs.
2.10 (a) and (b). Quantitatively, similar first Lyapunov exponent can be estimated as
A; = 0.030 for the DRNN and \; = 0.047 for the real speech data. In order to compare
long-term dynamical characteristic of the neural network with that of the real data, a sub-
jective listening test was conducted to examine the sound quality of the D/A converted
speech signal synthesized by the network. The signal sounded rather rough but definitely
preserved its natural human speech quality. This demonstrates the network capability of
reproducing the long-term characteristic of the natural speech sound.
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Figure 2.10: (a),(b): 2-dimensional and 3-dimensional dynamics of the DRNN of eq. (2.22) observed
in the delay-coordinate space (—z(t), —z(t — 3), —z(t — 6)). with a time lag 7 = 3.

Let us consider the case of modeling the irregular speech dynamics without using
time-delays. It has been reported by Sato et al. that an ORNN composed of a number
of self-oscillating neurons [174] is capable of learning the complex speech dynamics. The
network has a large number of hidden units that make the network size quite large and
also complicate the learning processes. The present experiment shows that the irregular
speech dynamics can be modeled by rather simple neural architecture using time-delayed

feedbacks.

2.5 Conclusions and discussions

On the basis of the experimental studies that compare the learning algorithms and the
learning capability of DRNN with those of ORNN, functions of time delays in neural
networks are considered.

First, two learning algorithms, the RTRL algorithm and the TDRL algorithm, are
introduced for general class of DRNNs. Compared to the RTRL algorithm for ORNN, the
RTRL algorithm for DRNN is computationally costly due to the infinite-dimensionality
of the DRNN. When real-time learning is not necessary, however, the learning cost can
be largely reduced by adopting the TDRL algorithm to DRNN.

Second, several numerical experiments are carried out to compare the learning capa-
bility of the DRNN with that of the ORNN. In the supervised learning of the ORNN,
the learning capability as well as the dimension of the ORNN can only be enhanced by
increasing the number of the hidden units. Delicate learning is usually required for de-
termining the initial condition of the hidden units [174, 175]. In contrast, the learning
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capability and the dimension of the DRNN can be enhanced simply by introducing the
time-delays. By avoiding the complicated learning of the hidden units, DRNN only with
a small number of visible units is shown to be capable of learning a variety of complex dy-
namics such as chaotic dynamics and irregular speech dynamics. In Table 2.1, advantages
and disadvantages of the DRNN over the ORNN are summarized.

On the basis of the above discussions, we may consider that the time-delays in recurrent
neural networks have a function of making the network dynamics infinite-dimensional and
enhancing the network capability of learning higher-dimensional complex dynamics. In
real neural systems, the time-delays may also have similar functions, although much more
careful consideration and physiological understanding are indispensable.

In the present experiments, the learning capability of recurrent neural networks with
only delta-function type delays are studied. As is described in Section 2.2, various types
of delays can be considered in the neural network and it may be interesting to study
the learning capability of the DRNN with other type of delays. It is also a worthwhile
investigation to include the delay function parameters into the learning parameters and
adjust the delays during the learning process.

It is also possible to discuss the functions of delays in the light of the class of dynamics
approximated by neural networks. Although the approximation capability of the ORNNs
has been studied in [68], approximation capability of the DRNN has not yet been thor-
oughly investigated. We have a preliminary result on the approximation capability of a
particular class of DRNNs and the result will be reported elsewhere [192].

Finally, delayed feedback systems described by RFDEs can be found in many engi-
neering systems such as a passive optical resonator [99]. This laser system is known to
exhibit rich dynamical phenomena such as higher—ilarmonic bifurcations that give rise to
multi-stability of infinitely many periodic attractors. This multi-stability has been ac-
tually used as a memory device for complex information coding [4]. This implies that
the neural network with time-delays may also give rise to this type of multi-stability and
might be capable of learning and embedding many attractors in the network dynamics.
Learning multiple dynamics may also provide us with an interesting new applications of

the DRNN.
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Table 2.1: Learning algorithm and learning capability for DRNN and ORNN.

| DRNN ORNN
Solving Solving
RTRL Algorithm NK Sets of | NK Sets of
RFDEs ODEs
Solving Solving
TDRL Algorithm N Sets of N Sets of
RFDEs ODEs
Enhancement of Increasing Increasing
Learning Capability | Time-Delays | Hidden Units
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Recognizing chaotic time series

abstract: Consider a chaotic dynamical system that exhibits a variety of chaotic time series
with a change in the bifurcation parameters. This Chapter presents an algorithm for estimating
the underlying bifurcation parameters of the chaotic time series in experimental situation in
which no a priori analytical knowledge of the dynamical system is available. First, we construct
“qualitatively similar” parametrized family of neural networks that model the chaotic time se-
ries. “Qualitatively similar” parametrized family means that the family of neural networks
exhibits “qualitatively similar” bifurcation phenomena as the original. Chaotic time series are
then characterized in terms of the “qualitatively similar” bifurcation parameters of the neural
networks. We call the characterization of chaotic time series in terms of the underlying bifur-
cation parameters “chaotic time series recognition.” Several numerical experiments using the
Rossler equations show efficiency of the algorithm. The effect of observational noise included in

chaotic time series is also considered.

3.1 Introduction

Suppose we have a chaotic dynamical system that exhibits a variety of oscillatory patterns
in accordance with its external conditions, i.e., bifurcation parameters. Suppose also that
several chaotic time series can be recorded at different bifurcation parameter values while
we have no priori knowledge of the dynamical system, namely, the functional form of
the dynamical system, its dependence of the bifurcation parameters, and the bifurcation
parameter values which give rise to the recorded time series. Under these conditions, we
consider a systematic characterization of the chaotic time series.

Various techniques have been developed in recent years to characterize chaotic time
series [1, 34, 101, 109, 189, 208]. The algorithms estimate statistical properties of the
underlying chaotic attractors such as fractal dimension (78, 105], Lyapunov spectrum
[51, 171, 212], and Kolomogorov-Sinai entropy [57]. Our approach is entirely different
from these techniques. Since the variety of oscillatory patterns is controlled by bifurcation
parameters, it is natural to characterize the chaotic time series in terms of the associated

29
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bifurcation parameters. In order to distinguish our approach from conventional ones, we
call the problem of estimating the underlying bifurcation parameters of chaotic time series
“chaotic time series recognition.”

“Chaotic time series recognition” can be directly applied to actual engineering prob-
lems, e.g., recognition of oscillatory states of chaotic chemical sensor [169]. Analytical
understanding of the dynamics of complicated chemical sensor system is almost always
impossible. With a change in the external conditions such as chemical ingredients, the
system exhibits bifurcation phenomena with a variety of chaotic time series. In this case,
it would be more efficient to characterize the chaotic time series in terms of the bifurca-
tion parameter values rather than the statistical properties of the chaotic attractors. If
the estimation of the underlying bifurcation parameters is possible, the chaotic oscillatory
patterns can be classified precisely and one can “measure” the external conditions just by
observing the output of the sensor.

Estimation of the exact bifurcation parameter values only from chaotic time series is
practically impossible, since the problem provides no information about the underlying
bifurcation parameters. However, it is possible to estimate “qualitatively similar” bifur-
cation parameter values. Here, “qualitatively similar” bifurcation parameters mean that
the parameters give rise to a family of dynamical systems which exhibits bifurcation phe-
nomena qualitatively similar to the originals. In other words, the chaotic time series can
be recognized based on a parametrized family of dynamical systems qualitatively similar
to the original.

In the area of nonlinear prediction techniques [32, 41, 54, 123, 139, 182], several in-
teresting studies have been done for reconstructing a qualitatively similar parametrized
family of dynamical systems using a parametrized family of nonlinear predictors. In [41],
although no specific result is presented, problems for reconstructing a parametrized family
of dynamical systems using a parametrized family of nonlinear predictors are discussed.
In [32], the experimental result of reconstructing a one-parameter family of discrete-time
dynamical systems, assuming that the sets of the bifurcation parameter values are all
known as well as the associated time series, is reported.

Our approach to the problem is based on a simple algorithm proposed in [198]. The al-
gorithm attempts to reconstruct a family of discrete-time dynamical systems from chaotic
time series under the condition that the underlying bifurcation parameter values are
not known. The efficiency of the algorithm is shown by reconstructing two families of
discrete-time dynamical systems: the Hénon family with two parameters and the coupled
logistic/delayed-logistic family with three parameters.

For actual application in constructing qualitatively similar parametrized family of non-
linear pr. ctors for real world systems, however, the algorithm should be applicable to
the family f continuous-time dynamical systems. The algorithm should also be robust
against the observational noise which surely exists in laboratory experiments. Therefore,
this Chapter gives a modified algorithm so that one can construct a qualitatively simi-
lar family of continuous-time dynamical systems only from chaotic time series including
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observational noise. Using the algorithm, the applicability of the reconstructed family of
nonlinear predictors to the problem for “chaotic time series recognition” is studied.

This Chapter is organized as follows. Section 3.2 illustrates an algorithm for recon-
structing an unknown parametrized family of continuous-time dynamical systems. In
Section 3.3, the algorithm is tested against the Rossler family with two parameters. In
Section 3.4, we make an experimental study on recognizing chaotic time series based on
a reconstructed family for the Rossler equations. Section 3.5 is devoted to discussions of

our future problems.

3.2 Reconstructing a parametrized family of continuous-

time dynamical systems

Consider a parametrized family of continuous-time dynamical systems:

% = f(p,m), n. € R®, pe R" (3.1)
and their observations
{&(p) = g(me(p)) : 0 <t < T} (3-2)
at I different sets of parameter values
Pe{P(t)}icia.1 (3-3)

where g : R* — R' is a smooth observation function and 7:(p) is a solution for eq. (3.1)
at the parameter values p. Here we assume the following:

(i) The functional form of the parametrized family of vector fields f : R™ x RP — RP
is not known; f is assumed to be smooth.

(ii) The functional form of g is not known; g is assumed to be smooth.

iii) m = dim p and the sets of parameter values {p(z)}._ are not known; {p(7)}._
=1,..,I i=1,..,I

1

are assumed to be closely located in the parameter space.
(vi) D = dim 7 is not known.

(v) I sets of observed time series {¢;(p(z)) : 0 < ¢ < T} are all chaotic.

Under the conditions (i)-(vi), we reconstruct an unknown parametrized family of
continuous-time dynamical systems only from the chaotic time series. The algorithm
is composed of three steps. First, observational noise of the measured time series is re-
duced by an averaging filter, and qualitatively similar orbits are reconstructed usying a
delay-coordinate transformation. Second, nonlinear predictors which forecast the chaotic
time series are sought using a same parametrized family of neural networks. Third, ef-
fective bifurcation parameters are extracted from the many parameters of the nonlinear

predictors by principal component analysis.
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3.2.1 Average filtering of chaotic time series

Since time series are usually sampled digitally in laboratory experiments, let eq. (3.2) be

rewritten as

{fn( ) (nnAt(p)) :n=1,2, 7N} (34)

where n;(p) is a solution for eq. (3.1) at the parameter values p and At is a sampling rate.
We assume that the sampling rate At is known.

In order to reduce the observational noise effect, an averaging filter is applied to the
time series of eq. (3.4). The filtered time series are given by

. n+W !
oty = T B N W (35)
nt+W
with 2 =max(]' S &0 (35)

where W is the window length of the moving average and Z is a normalization constant.

3.2.2 Nonlinear predictors

From the filtered time series {én(p(z)) :n = 1,2,.,N - W},_,, ;, a d-dimensional
trajectory {X,(p(?)) : n = (d ~1)7 +1,.,N — W},_,, | is reconstructed by using a
delay-coordinate [186, 176]:

Xa(p) = 7('2a(p)," 2a(p); " 2nlp))
= T(éa()sbnor(p),€nz2r(p), -, €n(@-1)=(P)) (3.7)

where T' denotes transposition. The Filtered Delay Embedding Prevalence Theorem [176]
guarantees that the reconstructed trajectory {X,(p(¢))},_;, ; is qualitatively the same

as the original {n.a:(p(1))}i1 5 -
Next, for each reconstructed trajectory, { X,(p(t))};_; 5, 1> We seek an ordinary differ-

ential equation:

dqﬁt

- ~ F(@,¢) (3.8)

that satisfies

Xnsr(p(3) = 62 (Q(p(2)), Xa(p(2))) (3.9)
for k = 1,2,..,K

where Q € R! stands for a set of parameters of nonlinear function F(-,-), ¢* : RL
R? — R? stands for a solution of the eq. (3.8) at = Q(p(z)) with an initial condition
#(2,X) = X.
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As the nonlinear function model F : RY x R — R?, multi-layer perceptron (MLP) is -
exploited, where MLP composed of three-layers (d-units in the input layer, d-units in the
output layer, and h-units in the hidden layer) is given by

F(Q,d)) = T(fl(Q7¢)’f2(Q,¢)a"’fd(97¢)) (310)
where
h d .
fel@, ) = Dowhotyhes 0( Y Want(i-1)ds ‘b + waant; ) (b =1,2,..,d),
j=1 i=1
2.0
o(z) = e 1.0,
Q = T(wi,wsy.,wr) with L= (2d+1)h,

¢ = T('¢, %9, U9).

The parameters {Q(p(¢))},_,, ; which give rise to the reconstructed dynamics
{Xn(p(?))}iz1 s, ; are computed in the following manner. First, the reconstructed or-
bits are periodically ordered as

{Xa(p(D)) 1 AXn((2))} - {Xa (D)} AXA(p(I + 1)) }H= {Xa(p(1))}), - (3:11)

Second, 2(p(1)) which minimizes the cost function
1 kA 2
U@ =3 > 51 Xau(p(1) — 672, Xa(p(1))) | (3.12)

is computed via the quasi-Newton method * [132] (see Appendix A-1 ) where the initial
condition for Q(p(1)) is given by a set of random values uniformly distributed over [0,0.1]%.
In a similar manner, (p(¢)) (2<i) is computed by minimizing the cost function (3.12)
defined for the reconstructed trajectory {X,(p(z))}, where Q(p(i — 1)) is used as the initial
condition instead of random values. In our numerical experiments, we set the number of
iterations of the minimization procedures of the quasi-Newton method to 20 for i < 107
and 40 for 107 <.

The procedures for computing {Q(p(¢))},_, , are repeated until they converge to a
periodic sequence as

Q(p(N1)), Up(Nt + 1)), .., Up(N; + 1)), Q(p(Nr + I + 1)) (= Q(p(Ny))),..  (3.13)

where Nj is assumed to be sufficiently large.

" In the quasi-Newton method, a local minimum of the cost function (3.12) is sought by the iterative
procedure of Q.1 = Q, — H,VU(Q,) where VU(Q,) and H, stand for a gradient vector and an
approximate of the inverse Hessian of U(Q) at @ = Q,. There is a variety of update formulas for
estimating a series of {H,}. In our numerical experiments, we exploit the Broyden-Fletcher-Goldfarb-
Shanno formula with Luenberger’s self-scaling formula.
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3.2.3 Extracting principal bifurcation parameters

In the final step of our algorithm, principal component parameters are extracted from the
L-dimensional parameters of by the Karuhnen-Loéve (KL) transform [14, 21, 28, 140].
First, we consider the subsequence of the parameters {Q(p(¢)) : 2 = Nr, Ny + 1,.., Nr +
Nj; — 1} and compute {69; : ¢ = 1,2,.., Ny} and Qq as

1

% = 3 LN +i-1) (3.14)
5% = Qp(Ny+i-1)) - Q, (3.15)

where Nj stands for the number of the elements. Second, the multivariate distribution of
{6 11 =1,2,..,N;} is computed in terms of the covariance matrix:

N
9) L 159- 759, 3.16
LxL N Z ) i ( . )
J i=1

Since Q1,1 has non-negative eigenvalues {A1, Ay, .., AL}, we arrange them in descending

order
AL > A > 2> A >0 (3.17)
Applying KL-transformation to 6§, the principal parameters are given by
T = (71,72,70) = “[ur | ug |-+ | ug]™' 6Q (3.18)

where {u1,u,..,ur} stand for the eigenvectors corresponding to {A1, Az, .., AL}
Since transformation (3.18) diagonalizes the covariance matrix (3.16) in I'-space, the
diagonal elements {\;, A, .., A } represent the significance of their corresponding principal

parameters {71,72,..,7z}- Finally, by computing the normalized eigenvalues

A; =100 x —LAZ—— %] (¢:=1,2,.,L), (3.19)
Ej:l )‘j
the number of significant parameters M is determined. If the sample parameters {42 :
i =1,2,.., Ny} are all confined in the m-dimensional linear subspace of 42, one can expect
that M = m and that T, = T(v1,72,.,¥m) Tepresents the significant set of parameters
for the nonlinear predictors (3.8).
With respect to the significant parameters I',,,, the m-parameter family of nonlinear

predictors is given by

d¢t ¢
= F((T), 4" (3.20)

where

QTm) = Ty |us || uz) T | 0] + Qo (3.21)



Recognizing chaotic time series 35

where 0 denotes an (L — m)-dimensional 0 column vector.
Since the sequence of the significant parameters

L (p(1)) = Tm(p(2)) = -+ = T'in(p(Ny)) (3.22)
can be considered as the image of the sequence of the original bifurcation parameters
p(1) = p(2) = --- = p(N) = p(I + 1)(=p(1)) = - (3.23)

in the significant parameter space of nonlinear predictors, we call the original sequence
of eq. (3.23) “bifurcation path” and its corresponding sequence of eq. (3.22) “bifurcation
locus.”

3.3 Numerical experiment on Rossler equation

Let us test our algorithm against the Rdssler equations with two parameters:

d!

d: i

d2

Tm = ITh_PZ 277t (3-24)
d377t

1, .3 1,3
dt P3Nt —P1 e+ N N

We selected the Rossler equations as our example for two reasons; The bifurcation struc-
tures have been well studied (e.g., [70]) and the bifurcation structure is fairly moderate.
In this experiment, ps is fixed as

ps = 0.3 (3.25)

so that the egs. (3.24) is considered as a two-parameter family. Fig. 3.1 (a) shows a local
bifurcation diagram of the eq. (3.24) with

(p1,p2) € [4.3, 5.7] x [ 0.30, 0.36 ], (3.26)
while fig. 3.1 (b) shows a global bifurcation diagram with
(p1,p2) € [3.814, 8.814 ] x [ 0.25, 0.429 |. (3.27)

The bifurcation diagram shows the existence domain of periodic attractors. The color
indicates the number of their periods: Blue indicates 1 or 8 or 15, red indicates 2 or 9
or 16, purple indicates 3 or 10 or 17, green indicates 4 or 11 or 18, sky indicates 5 or 12
or 19, yellow indicates 6 or 13 or 20, white indicates 7 or 14, and black indicates non-
periodic attractor (quasi-periodic or chaotic or diverge to infinity) or periodic attractor
whose period is greater than 21.
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Figure 3.1: (a) (p1,p2)-bifurcation diagram of the Rossler equations with (pi,ps) € [4.3,5.7) x
(0.30,0.36]. (b) (p1,p2)-bifurcation diagram of the Rdssler equations with (p;,ps) € [3.814,8.814] x
[0.25,0.429]. The rectangle region corresponds to the bifurcation diagram of fig. 3.1 (a). (c) (71,72)-
bifurcation diagram of the nonlinear predictors (3.20) reconstructed in subsection 3.3.1 with (y;,72) €
(—0.103,0.105] x [-0.044,0.051]. (d) (y1,—72)-bifurcation diagram of the nonlinear predictors (3.20) re-
constructed in subsection 3.3.1 with (v1,72) € [—0.175,0.568] x [-0.123,0.160]. The rectangle region
corresponds to the bifurcation diagram of fig. 3.1 (c).
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Figure 3.1: (e) (y1,72)-bifurcation diagram of the nonlinear predictors (3.20) reconstructed in subsection
3.3.2 with (v1,72) € [-0.098,0.106] x [—0.044,0.056]. (f) (1, —7v2)-bifurcation diagram of the nonlinear
predictors (3.20) reconstructed in subsection 3.3.2 with (y1,72) € [—0.169,0.560] x [-0.127,0.171]. The
rectangle region corresponds to the bifurcation diagram of fig. 3.1 (e). (g) (71,72)-bifurcation diagram
of the nonlinear predictors (3.20) reconstructed in subsection 3.3.3 with (y1,72) € [-0.072,0.106] x
[—0.042,0.045]. (h) (y1,—72)-bifurcation diagram of the nonlinear predictors (3.20) reconstructed in
subsection 3.3.3 with (vy1,72) € [—0.134,0.501] x [—0.114, 0.145]. The rectangle region corresponds to the
bifurcation diagram of fig. 3.1 (e).
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The bifurcation structures shown in figs. 3.1 (a) and (b) have been deeply studied
by Gaspard-Kapral-Nicolis [70]. On the (p;,p:)-parameter space, it is clearly seen that
“fishhook”-like periodic windows form a spiral structure. In the upper-half region of
fig. 3.1 (b), eq. (3.24) has a homoclinic orbit which passes through the origin and generates
a “screw”-type strange attractor. In the lower-half region, however, eq. (3.24) has no
homoclinic orbit with respect to the origin and it exhibits a “spiral”-type strange attractor.

3.3.1 Noise-free experiment

Consider twelve different sets of parameter values (see fig. 3.2 (a)):

p(d) = (p1(3),p2(3))

 — ~1
= 0.7sin(27rg-ﬁl—)) +5.0, 0.03 cos(2r 1) 1 033) (6 = 1,2, ., 12)3.28)
and measure the associated time series
{£.(p(3)) = *feynac(p(3))) 1 n = 1,2,..,3000} (:=1,2,..,12) (3.29)

where each trajectory is calculated by numerically integrating equation (3.24) with an
initial condition no = 7(0.05,0,0) by the fourth-order Runge-Kutta algorithm with a
time step of 0.01. The transient time and the sampling rate are set to (x, At) = (2.0,0.2).

Following the procedures described in Section 3.2, we first reconstruct trajectories
{Xn(p(1))}iz1a,. 12 in a filtered delay-coordinate space with (d, W, r) = (3,8,4) from the
observed chaotic time series, Here, the reconstruction dimension d is set equal to the
dimension of the original dynamical system, since one can estimate the dimension by a
variety of time series analyses, e.g., [28, 58, 78, 105, 112]. Of course, our procedure works
well for d larger than three. Second, using the nonlinear predictors defined by eq. (3.8)
with A = 10, we seek the parameters {Q2(p(1)),(p(2)),..} corresponding to

{Xa(p(1)) 1 AXa(P(2)} - {Xa(p(12))}, { X (p(13)) }(= {Xa(p(1))}), - (3:30)

by minimizing the cost function defined by eq. (3.12) with K = 4. Finally, we extract
effective parameters {71,72,..} of by the principal component analysis applied to sub-

sequence

{Q(p(N1)), QUp(N: + 1)), QUp(Nr+ Ny —1))} (3.31)
with (N7, Njy) = (1440, 24). :

The solid line of fig. 3.2 (b) shows the normalized eigenvalues of the covariance ma-
trix (3.16) {Tx = 100 x A/ 270 X[%) : k = 1,2,.,10} and the broken line shows
their accumulated sums {ZF ;%] : k =1,2,.,10}. Since the fig. 3.2 (b) shows that

le ['; > 90(%)], it is clearly seen that the principal component parameters of eq. (3.31)
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are I'y = (71,72). The dimension of the bifurcation parameter p is therefore correctly esti-
mated as m = 2. Fig. 3.2 (c) shows the bifurcation locus in the (v;,7;)-space. Compared
to the bifurcation path of fig. 3.2 (a), the original configuration of the bifurcation path is
preserved in the bifurcation locus without any large distortion. Correspondence between
the principal parameters and the original ones can be roughly illustrated as p; <> 4; and
P2 < 72.

Fig. 3.1 (c) and (d) shows bifurcation diagrams of the reconstructed family of dy-
namical systems (3.20) in the (y1,72)-space. The local bifurcation diagram of fig. 3.1 (c)
reproduces qualitatively similar bifurcation phenomena as the original. The bifurcation
structures with continually connected fishhooks are discernible.

Fig. 3.2 (d) shows the bifurcation locus in the (y;,73)-space. We see that the ampli-
tude of 43 eventually increases for large |v;|. This indicates that the image of the original
parameter space p in the ['-space is not exactly confined in the (1, 42)-space. The approx-
imation error due to describing the distorted image by a two-dimensional linear surface
may grow in the outer region. This might be the original cause of the bifurcation struc-
tures being qualitatively different from the original ones discernible in the outer region
of the global bifurcation diagram of fig. 3.1 (d). The situation might be improved by
approximating the nonlinear manifold by nonlinear transformations.
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Figure 3.2: (a) Bifurcation path in the (p1,psz)-space. (b) Normalized eigenvalues of the principal
components {I'y, = 100 x /\k/E;L Aj[%] = k = 1,2,..,10} (solid line) and their accumulated sums

{E;’:l T;(%] : k = 1,2,..,10} (broken line). (c) Bifurcation locus in the (y1,72)-space. (d) Bifurcation
locus in the (1,73)-space.
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3.3.2 Noisy experiment

In order to test the robustness of the algorithm against observational noise, let us perform
the same experiment on chaotic time series which include observational noise. The noisy

chaotic time series are given by
{62(P(?)) = ¥n +7 Nesnac(p(d)) : n = 1,2,..,3000} (:=1,2,..,12) (3.32)

where the recording conditions are the same as for eq. (3.29) except that the observation
includes a Gaussian noise {v,} whose mean and standard deviation are set to 0 and 0.1.
The order of the bifurcation path of eq. (3.23) is also randomized as (see also fig. 3.3 (a)):

p(1) = p(11) = p(4) = p(5) = p(2) = p(3) = p(12) — (3.33)
p(9) = p(10) — p(7) = p(6) — p(8) = p(1)---

Figs. 3.1 (e) and (f) and figs. 3.3 (a), (b), and (c) show the experimental results
obtained by the same algorithm as subsection 3.3.1. Since the results are comparable
with the ones obtained by the noise-free experiment, the proposed algorithm seems to be
robust against the observational noise. Also, performance of the algorithm is not strongly
affected by the choice of the bifurcation path of eq. (3.34).
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Figure 3.3: (a) Randomized bifurcation ‘path (3.34). (b) Normalized eigenvalues of the principal
components {I';, = 100 x )‘k/z;(?—.l Aj[%] : k = 1,2,..,,10} (solid line) and their accumulated sums

{E;zl T;[%)] : k = 1,2,..,10} (broken line). (c) Bifurcation locus in the (v1,72)-space.
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3.3.3 Minimum number of chaotic time series required for re-

constructing a parametrized family

In the previous two subsections 3.3.1 and 3.3.2, efficiency of our algorithm has been
demonstrated under the condition that chaotic time series associated with twelve sets of
different bifurcation parameter values p(z) (¢ = 1,2,..,12) are observed. Then, the next

question would be

How many chaotic time series are necessary to reconstruct qualitatively similar

parametrized family of chaotic dynamics?

Since we deal with two-parameter family of Rossler equations, the minimum condition for
reconstructing the parameterized family is dim{p(:)} = 2. Hence, the minimum number
of chaotic time series, in this case, is three, where the chaotic time series are generated
from three sets of parameter values p(¢) (: = 1,2,3) with triangle distribution.

In order to test this minimum condition, let us perform the same experiment with
subsections 3.3.1 and 3.3.2 using chaotic time series associated with three sets of parameter
values (see fig. 3.4 (a)):

p(t) = (Pl(i),P2(i))_ ‘
= 0.7sin(27r(z; 1)) +5.0, 0.03 cos(zw(’ ; 1)) +0.33) (i = 1,2,3). (3.34)

In this experiment, no observational noise is included in the chaotic time series.

Figs. 3.1 (g) and (h) and figs. 3.4 (a), (b), and (c) show the experimental results
obtained by the same algorithm with the subsection 3.3.1. Since the results are comparable
with the ones obtained by using twelve sets of chaotic time series, our algorithm seems to
be efficient also when only three sets of chaotic time series are given. The results, therefore,
imply that the minimum number of chaotic time series required for reconstructing a 2-

parameter family of Réssler equations is three.
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Figure 3.4: (a) Bifurcation path in the (p,p2)-space. (b) Normalized eigenvalues of the principal
components {I'y = 100 x Ag/ E;gl Aj[%] - k = 1,2,..,10} (solid line) and their accumulated sums

{Z;":l T;[%]: k=1,2,.,10} (broken line). (c) Bifurcation locus in the (71, y2)-space.
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3.4 Recognizing chaotic time series

In this Section, we conduct an experimental study on “chaotic time series recognition”
based on the qualitatively similar parametrized family of nonlinear predictors constructed
in the previous Section. Here, we estimate the original bifurcation parameter values px*
in terms of its image in the principal component parameter space I'y(p*) only from the

associated chaotic time series
{&n(p*) =2 Net+nat(p*) :n =1,2,..,3000}, (3.35)

where the above data is recorded in the same condition as eq. (3.29).
The corresponding bifurcation parameters I's(p*) are sought by minimizing the cost

function
U(r;) = 3 5 | Xuk(p#) — 400, Xu(p#)) [ (3.36)

where ¢ : R? x R? — R? stands for a solution of eq. (3.20) at the parameter values I,
with an initial condition ¢%(I';, X) = X.
For 48 sets of bifurcation parameter values (see fig. 3.5 (a)):
p()) = (p1(?),p2(7))
(z—1) . (z—1) .
= (Rycos(27 73 ) + 5.0, Rysin(27 D )+0.33) (:=1,2,.,12)
with (R;,R,) = (0.35,0.015),(0.7,0.03),(1.4,0.06},(2.1,0.09), (3.37)

the corresponding parameters {I's(p(7))} in the I';-space are estimated. Fig. 3.5 (b) shows
the result for noiseless data; fig. 3.5 (c) shows the result for noisy data.

From the similar configurations discernible in the locations of the corresponding bifur-
cation parameters in the p-space and the I';-space, we see that parameters qualitatively
similar to the original p can be estimated in the I',-space.
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Figure 3.5: Experiment on chaotic time series recognition. (a) Selected parameters in the (p1, p2)-space.
(b) Estimated parameters in the (1, v2)-space by noiseless experiment. (c) Estimated parameters in the

(¥1,72)-space by noisy experiment.
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3.5 Conclusions and discussions

In this Chapter, an algorithm is proposed for constructing a parametrized family of non-
linear predictors “qualitatively similar” to a family of continuous-time dynamical systems
from only several sets of chaotic time series. Several numerical experiments using the
Rossler family show efficiency of the algorithm. On the basis of the family qualitatively
similar to the Rossler equations, we have shown that sets of chaotic time series asso-
ciated with unknown bifurcation parameter values can be systematically characterized
in terms of the qualitative bifurcation parameters of the nonlinear predictors. Our ex-
periments therefore demonstrate the applicability of the method for “chaotic time series
recognition.”

By setting various experimental conditions, we have shown that the algorithm is not
only robust against observational noise but it is also effective to reconstruct a 2-parameter
family of Rossler equations when only three sets of chaotic time series are provided.

Since we have confirmed efficiency of the algorithm to equational models of chaotic
dynamics, our future work will be devoted for applying the algorithm to real world dynam-
ical systems such as electronic circuits [135], chaotic chemical sensor [169], and chaotic

neural oscillators [9, 134].
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Detecting switch dynamics in chaotic
time series

abstract: An algorithm is presented for detecting switch dynamics in chaotic time series. By
the “switch dynamics,” we mean that the chaotic time series is measured from a dynamical
system whose bifurcation parameters are occasionally switched among a set of slightly different
parameter values. First, the switched chaotic time series is divided into windows of short-term
time series. From the set of windowed time series, “qualitatively similar” parametrized family
of neural networks is constructed using the algorithm presented in Chapter 3. By characteriz-
ing the windows of short-term chaotic time series in terms of the “qualitative” parameters of
neural networks, switch dynamics of their associated bifurcation parameters are detected. For
the Lorenz equations, the Rossler equations, and the Mackey-Glass equations, efficiency of the

algorithm is demonstrated.

4.1 Introduction

In the studies of chaotic time series analyses [1, 32, 41, 51, 54, 57, 78, 101, 123, 171, 182,
212], it has been supposed that the time series is stationary and the bifurcation parame-
ters of the underlying chaotic dynamical system are not changed. Such chaotic time series
can be characterized by the statistical property of the underlying chaotic dynamics such
as fractal dimension [78], Lyapunov exponents [51, 171, 212], Kolomogorov-Sinai entropy
[57], and nonlinear predictability [32, 41, 54, 123, 182]. In practice, however, bifurca-
tion parameters of the time series measured from real-world systems can be occasionally
changed. For example, in the flow dynamics, the system variables are sometimes com-
posed of the fast-dynamic components and the slow-dynamic ones [40]. The dominant
fast-dynamic patterns are occasionally changed by the slow-dynamic variables, which can
be considered as the occasionally changed bifurcation parameters.

The occasional change in the bifurcation parameters can also have a functionality
for transmitting binary code information. For example, human speech with binary word

49
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information is transmitted by the sequential changes in the oscillatory states of the vo-
cal system. Another example is the chaotic secret communication systems (42, 44, 161].
This communication system is composed of transmitter subsystem and receiver subsys-
tem. With a successive change between two bifurcation parameter values, p; and p_,
the transmitter subsystem exhibits switch dynamics among the two chaotic attractors
associated with p, and p_. By the Pecora-Carroll synchronization [31, 159], the switch
dynamics of the transmitter is sent to the receiver and the binary information encoded
as a sequence of the switched bifurcation parameters can be decoded in the synchronized
receiver subsystem.

For the analyses of chaotic time series with such switched bifurcation parameters, con-
ventional techniques for analyzing chaotic time series can not be directly applied. This is
because the conventional techniques mainly estimate statistical properties of the underly-
ing chaotic dynamics from long enough time series data with fixed bifurcation parameters.
Towards the analyses of chaotic time series with switched bifurcation parameters, various
new numerical algorithms have been recently developed [33, 104, 111, 133, 177, 178, 211].
The basic numerical procedure for analyzing switch dynamics in chaotic time series is to
first divide a time series into windows of short-term time series data. Then dynamical
closeness between the windows of the data are measured by computing the difference in
statistical quantity between the windowed data such as invariant measure (104, 111, 211],
cross-correlation integral [133, 178], recurrence plot [33, 133], and cross prediction error
[177). Based on the statistical test which detects a significant change in the statistical
quantity of the chaotic time series, the stationarity of the data can be examined.

Although these algorithms have been successfully applied to various chaotic time series
with switched bifurcation parameters, there might be some limitations due to the following

problems:

1) If the switch interval of the bifurcation parameters is short, reliable estimation of
the statistical quantities from such short-term data can not be always expected.

2) If the switched bifurcation parameter values are closely located with others and if
the time series data is contaminated with observational noise, qualitative dynamics
as well as the statistical properties of the associated chaotic attractors might be
similar to each other. Hence, detection of a slight change in the statistical property
of the switched chaotic time series might be quite difficult.

Our approach to the problem is rather different from the techniques of [33, 104, 111,
133, 177, 178, 211]. Since the qualitative change in the chaotic time series is induced by
the switch in the bifurcation parameter values, it is natural and more efficient to detect
the switch dynamics by estimating the underlying switched bifurcation parameters.

The problem for estimating the underlying bifurcation parameters from chaotic time
series has been studied in Chapter 3. Since it is supposed that there is no information
about the functional form of the parameterized family of chaotic dynamics, estimation
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of the exact bifurcation parameter values only from time series is impossible. Instead,
“qualitatively similar” bifurcation parameter values can be estimated by a simple algo-

rithm using a parametrized family of nonlinear predictors. The “qualitatively similar”

bifurcation parameters mean that the parameters give rise to a family of nonlinear pre-

dictors which exhibits qualitatively similar bifurcation phenomena as the original. The

algorithm has been successfully applied to the Rossler family.

Based on the estimation technique of the underlying bifurcation parameters, this Chap-
ter presents an algorithm for detecting switch dynamics in chaotic time series. Using three
typical chaotic dynamical systems, the Lorenz equations, the Rossler equations, and the
Mackey-Glass equations, efficiency of the algorithm is demonstrated. In the experiments,

switched chaotic time series contaminated with observational noise is considered.

4.2 Algorithm for detecting switch dynamics in chaotic

time series

4.2.1 Problem formulation

Consider a continuous-time chaotic dynamical system:

dn;
== f(p(s(t)),m), p € R, e € RP, (4.1)

and its observation:

{&e=g(n) |0t < CY, (4.2)

where the bifurcation parameter p(s(t)) is occasionally changed among I-different sets of
parameter values {p(z)};,_o; ;_; by the switch signal s(t),

0, forteV, (C[0,C))
1, forteV,
s(t) = 0 OTEE (4.3)
I-1, fort € Vi_;

where UV, =[0,C] and VNV, = 0 for i#j.

Here we assume the followings:

(i) The functional form of the parametrized family of vector fields f : R™ x R — RP

is not known; f is assumed to be smooth.
(ii) The functional form of g : R — R! is not known; g is assumed to be smooth.

(iii) D = dim n; is not known.
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(vi) m = dim p and the sets of parameter values {p(¢)},_o ;_, are not known; {p(¢)},_o ;
are closely located with each other.

Under the conditions (i)-(vi), we consider an algorithm for detecting switch dynamics
of the bifurcation parameters p in the chaotic time series {£ |0 < t < C}. The algo-
rithm is composed of four steps. First, observational noise in the measured time series
is smoothed out by an averaging filter, and high-dimensional chaotic trajectory is recon-
structed using the delay-coordinate method. Second, the chaotic trajectory is divided
into windows of short-term trajectories, and nonlinear predictors which model the win-
dowed chaotic trajectories are constructed within a same parametrized family. Third,
effective bifurcation parameters are extracted from the many parameters of the nonlin-
ear predictors by principal component analysis. Fourth, windows of shorter-term chaotic
trajectories are characterized by the principal bifurcation parameters of the nonlinear
predictors and the switch dynamics in the principal bifurcation parameters are detected
by the Linde-Buzo-Gray (LBG) clustering algorithm.

4.2.2 Averaged filtering and delay-coordinate embedding

In laboratory experiments, time series are usually sampled digitally and also contaminated
with observational noise. Hence, let us rewrite the eq. (4.2) by

{gn — g(nnAt) + v, ‘ n = 1a2a tt '7Ndata} (44)

where At is the sampling rate, Ny, is the number of the data, and v, is a Gaussian
noise.
In order to smooth out the observational noise, an averaging filter is applied to the

time series as

. 1 n+W
=gy X G In=12 Nawa = W}, (45)
k=n

where W is the window length of the moving average.

From the filtered time series {£, |n = 1,2,---,N — W}, a d-dimensional trajectory
{Xo|n =1+ (d— 1)7,--+,Naata — W} is reconstructed by using a delay-coordinate
(186, 176]:

Xn = T(lwna2 Lny* ',d "L'n)
= T(&naén—‘r, o '7én—(d—1)r), (46)
where T denotes transposition and 7 denotes time lag. The Filtered Delay Embedding

Prevalence Theorem [176] guarantees that the reconstructed trajectory {X,} is qualita-
tively the same as the original {n;}.
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4.2.3 Nonlinear predictors

In order to detect qualitative change in the reconstructed trajectory {X,}, we divide the
trajectory {X,} into J-windows of short-term trajectories with T-interval:

{(X,t) =X, n=14d-1)7+(E-1)T,--,(d=1)7+iT}_,, ; (4.7)

For each windowed trajectory, { X, (¢)},_; , ;, We construct a nonlinear predictor F :
R x R* — R? which model the trajectory dynamics as

Xn+1(i)zF(Q(i)vXn(i))7 (4'8)

where © € RE stands for a set of parameters of nonlinear predictor F(-,-). As a nonlinear
predictor, multi-layer perceptron (MLP) [167] is exploited, where the MLP f composed
of three-layers (d-units in the input layer, d-units in the output layer, and h-units in the

hidden layer) is given by

f(QvX): T( fl(QaX)3f2(QvX)v"'7fd(Q7X)) (49)
where
-~ d .
F(@,X) = D Whor)hts 0( D Want(i-1)dri T + wadng; ) (k=1,2,..,d),
1=1 =1
2
O'(y) - 1+e_y _13

Q = T(wl,w2,- . ',(.UL) with L = (2d+ l)h
Using the MLP, the nonlinear predictor F' is constructed as
F(Q,X) = X + Atf(Q,X). (4.10)

The parameters {Q(i)},_,, ; which correspond to the windowed trajectories
{Xn(?)}i21,, s are computed as follows. First, J-windows of trajectories {Xn(?)}iz12,.g
are periodically ordered as

{Xa(1)} X (2)}, - {Xn(D) ] {XR (T + 1)}H= {Xa(1)}), - - (4.11)

Second, §2(1) is computed by minimizing the cost function:

(d-1)r+T-K K 1

U@ = Y % Xewll) - PO X (1) (4.12)

n=1+(d-1)r k=1
via the gradient-descent method with a random initial condition (1) € [0,1]*. * Then,
Q(¢) (: = 2,3,---) is computed by minimizing the cost function (4.12) defined for the i-th
* In our experiment, the cost function (4.12) is minimized by a single iteration of the gradient-descent
procedure Q' = Q — aVU(R), where VU() is a gradient vector and a is determined by the line-search

method which minimizes U(Q — aVU(£2)). The gradient vector VU () is computed by the recurrent
back-propagation algorithm of [209].
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trajectory {X,(7)} in a similar manner as (1) except that Q(i — 1) is selected as the
initial condition instead of the random values.
The procedures for computing {Q(¢)},_, , are repeated until they converge to a pe-

riodic sequence as
QUN;), UN; + 1), Ny + ), ANy + T + 1)(= Q(Ny)), - (4.13)

where Nj is assumed to be sufficiently large.

4.2.4 Extracting principal bifurcation parameters

‘From the nonlinear prediction parameters {{()}, principal component parameters are
extracted by the Karuhnen-Loéve (KL) transform [14, 21, 28, 140].

First, we consider the subsequence of the parameters {Q(z) |: = N;,N;+1,---,N; +
Nk — 1} (Nk : element number) and compute ¢ and {6€2; |7 = 1,2,.., Nk} as

1 Mx

Q = —S QN +i-1), (4.14)
NK i=1

8 = QN;+i— 1) — Q. (4.15)

Second, the multivariate distribution of {6€2; | ¢ = 1,2,.., Ng} is computed in terms of
the covariance matrix:

Q L S5 sa. Tsq
_ 1 . Tsq.. 4.16
LxL NK Z—; ( )

Since 7,1 has non-negative eigenvalues {\;, Ay, -+, Ap}, they are arranged in descending

order:
A1 2 A > -2 2 20, (4.17)
Applying KL-transformation to 6€2, the principal parameters are given by
L= (y,72 - »7m) = Tug [ug |-+ | ug]™! 60 (4.18)

where {u;,us,-+,ur} are the eigenvectors corresponding to {A;, Az, -+, AL}

Since the transformation (4.18) diagonalizes the covariance matrix (4.16) in I'-space,
the diagonal elements {A;, Ay, -+, AL} represent the significance of their corresponding
principal parameters {v1,7s,--,7r}. By computing the normalized eigenvalues

Ai
Zf: 1 A,‘)

and the cumulative significance ratio from the first to the k-th principal components

A = (i=1,2,.,L), (4.19)

k
Or=> A (k=1,2,.,1L), (4.20)

=1
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the number of significant parameters M (empirically set as O > 0.98) is determined.
With respect to the significant parameters 'y, the M-parameter family of nonlinear
predictors is constructed as

X1 = F(Q(Cnm), Xn) (4.21)
where
QCy) = Tluy Jug |-+ up] " Tar | 0] + Qo (4.22)

where 0 denotes (L — M)-dimensional 0 column vector.

In Chapter 3, it has been shown that the principal parameter family of nonlinear
predictors (4.21) exhibits qualitatively similar bifurcation phenomena as the original dy-
namics (4.1), where the original bifurcation parameters p are mapped to the principal
parameters I',, via a homeomorphism ¢ : R™—R™. This implies that the switch dynam-
ics in the original bifurcation parameters p can be detected in the principal parameter

space of the nonlinear predictors (4.21).

4.2.5 Detection of switch points

In order to detect switch dynamics in the chaotic trajectory {X,}, we characterize the
temporal dynamics of the chaotic trajectory in terms of the principal bifurcation parame-
ters I'y7. Again, we divide the trajectory {X, } into Q-windows of shorter-term trajectories

with S-interval:

(Xo())=Xn|n=14(d-1)r+(GE—1)8-d-1)7r+i5}_1, o
(4.23)

Then, each window of trajectory {X,(i)} is characterized by the principal bifurcation
parameters ['3r(7) which approximate the trajectory dynamics as

X1 (R F(QCaa(0)), Xn(8)). (4.24)

The principal parameters I'p(i) can be computed by minimizing the cost function:

(d-1)r+iS-K

K
U= %3 o | Kewsl) - PO X P (425)
n=1+(d-1)7+(:-1)§ k=1

via the quasi-Newton method [132] with random initial condition 'y € [0, M.

Finally, in order to determine the number of switch parameters I and to classify
the sets of principal parameters {T'3 () | 1 = 1,2,..,Q} into the corresponding switched
parameters {p(i) | i = 0,1,..,] — 1}, the LBG-clustering algorithm [128] is applied. The
algorithm analyzes the distribution of the principal paraineters {I'n(2) |1 = 1,2,..,Q}
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and classify them into g-nomoverlapping subgroups {T'nm(:) |¢ € R;},_o, .1 (R;#0,
jz(l,RJ ={1,2,..,Q}, R,NR; = 0 for i#j), which minimizes the distortion function:

A

D,(Ry,Ry,--Ry) = ,: Z Z | Tam(3) — T'(y) 1% (4.26)
= Jj=0 <€R;
E = max,-j | Tar(6) = T (4)
Ir'G) = — Z Tar(¢)  (N;: number of elements in R;),
-7 1€ER;

where Z is a normalization constant and I'(5) is the j-th centroid.

Using the least number of clusters g,, which provides sufficiently small distortion
function D, (empirically set as D,,,, < 0.01), we can determine the number of the switch
parameters and cla551fy the principal parameters {['p(?) |7 = 1,2,..,Q} into the corre-
sponding centroids {['(s) | i = 0,1,..,qopt — 1}. If gope = I and the switch centroids
{f‘() |7 =0,. ,qopt 1} have one-to-one correspondence with the original switch points
{p(s) i =10,1,..,] — 1}, the switch dynamics of 3( ) can be correctly detected. For our
convenience, the detected switch centroids {I'(0),['(1),---} are denoted by binary signal

= 0,1,---, respectively. Of course, there is an indeterminacy in the permutation of
the switch signal s'(t) and exactly the same switch signal as the original s(t) can not be
usually recovered. The switch points are finally determined as the time when the switch
signal s'(t) changes into another signal as s'(t)#s'(t + At).

4.3 Numerical experiments

In this Section, we test our algorithm against three chaotic dynamical systems: the Lorenz
equations [130], the Rossler equations [165], and the Mackey-Glass equations [137]. It is
shown that the algorithm detects switch dynamics among two or three sets of bifurcation

parameter values.

4.3.1 Lorenz equation

As a first example, we consider the Lorenz equations [130]:

dl

dtm = o (*ne— 'n),

dZ

dtnt = vl — "ne— ln (4.27)
d3

dtnt = 1 Pne — b(s(t)) >

In this experiment, parameter values for o and r are fixed to

o =16, r =45.6,
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and the bifurcation parameter b makes switches among two values,
b(0) = 4.4, b(1) =4, (4.28)

according to the switch signal s(t).
Let us analyze the switch dynamics of the Lorenz equations modulated by the square

wave signal s(t) of fig. 4.1 (a). The chaotic time series is then obtained as
{& = (*1mae/30) + v [ n = 1,2,.., Nyata}, (4.29)

where the sampling rate, the number of the data, and the Gaussian noise level are set
as At = 0.02, Ngge = 7200, and v,, € N(0,0.02). The Lorenz equation is numerically
integrated by the fourth-order Runge-Kutta algorithm with a time step of 0.001.

S

60 80 100 12
( a) time
|
[
]
|
a1 Al
. | 1[4 |
g() o | f i t
( b ) 2 60 80 100 120 1.
time
S5 (M)
o 20 40 60 80 100 120 140
(C) tume

Figure 4.1: (a) Switch signal s(t) of the bifurcation parameter b in the Lorenz equation (4.27). (b)
Average-filtered time series {€,} (4.5) recorded from the switched Lorenz equation. (c) Switch signal

¢'(t) predicted by the present algorithm.

Fig. 4.1 (b) shows the average-filtered time series {€,} with the averaging window
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length of W = 7. While the observational noise has been smoothed out by the average
filter, it is difficult to recognize qualitative change in the switched chaotic time series.

When the switch dynamics takes place among chaotic attractors with distinctively
different geometric structures, it is reported in [161] that the switch dynamics are dis-
cernible in the maximum recurrent plots of the time series. The maximum plots display
the geometric difference of the switching attractors and indicate the switch dynamics
which falls in either branch of the distinctive attractors. Figs. 4.2 show the maximum
plots obtained from the average-filtered time series {£,} of fig. 4.1 (b). Whereas the two
chaotic attractors with b = 4.4 and b = 4 may have rather different geometric struc-
tures, the observational noise thickens their sheet geometries and mixes the domains of
the switching attractors. Hence, it is hard to distinguish the attractors and to detect
the switching points in the presence of noise. As the number of the switching attractors
increases further, systematic detection of switching attractors by simple maximum plots
may become much more difficult.

0.8 0.8

e
Ganinet) \x' A Eosloet)

0.2

.
: N
I

04 -

-0
0.6 0.4 0.2 0 02 o4 0.8 04 (%3 08

(a) bate (b) o

Figure 4.2: (a) Maximum recurrent plots (€maz(n), £mas(n + 1)) of the average-filtered time series of
fig. 4.1 (b). The crosses indicate the maximum plots of the Lorenz equation (4.27) with b = 4.0 and the
triangles indicate the maximum plots of the Lorenz equation with b = 4.4. (b) Enlargement of fig. 4.2 (a)

with (€maz(n), €maz(n + 1)) € [0.4,0.8] x [0.4, 0.8].

Let us test our algorithm. First, 3-dimensional trajectory {X, | n = 14+ (d—1)r,..,N—
W} (d = 3,7 = 4) is reconstructed from the filtered time series {£,}. The trajectory {X,}
is divided into 6-windows of trajectories {X,(i)},_, , ¢ With a time interval of T = 1200.

Second, using the nonlinear predictors defined by eq. (4.10) with A = 10, we seek the
parameters {(1),$(2),..} corresponding to

{Xa(1)}{Xa(2)}55 - {Xa(6)}, { Xn(T)}, (= {Xa(1)}), - (4.30)

'by minimizing the cost function defined by eq. (4.12) with K = 2.
Third, we extract effective parameters {y;,72,..} of Q by the principal component
analysis applied to subsequence {£2(9988), ©(9989), .., £(9999)}. Fig. 4.3 (a) shows the
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cumulative significance ratio ©, of the covariance matrix (4.16). Since O, > 0.98, we set
the principal component parameters as I'y = (71,72). Fig. 4.3 (b) shows the locations of
the subsequence of the parameters {€(9988), .., ©(9999)} in the (y1,72)-space.

Fourth, the trajectory {X,} is divided again into 18-windows of shorter trajecto-
ries {X,(1)};_; 5 15 With a time interval of 5 = 400. In fig. 4.3 (d), the trajectories
{Xn(9)};_1 2, 15 are characterized by the principal parameter values {I'y(2)},_; , ;4 Which
minimize the cost functions (4.25). The switch dynamics among the 2-clusters of dis-
tinctive points in principal parameter space is clearly recognized. It is indeed shown in
fig. 4.3 (c) that the LBG-clustering is optimized by the cluster number of gop¢ = 2 which
gives a sufficiently small distortion function D, < 0.01. Fig. 4.1 (c) shows the sequence
of the LBG-clustering signal s'(t), which predicts the original signal s(t) with good ac-
curacy. Hence, systematic detection of the number of switch dynamics as well as their
switch points is realized by the present algorithm.
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Figure 4.3: (a) Cumulative significance ratio {@x} of the covariance matrix (4.16). (b) Locations
of the subsequence {£2(9988),.., 2(9999)} of the nonlinear prediction parameters in the 2-dimensional
principal space (y1,72). (d) Distortion function D, (4.27) optimized by the LBG-clustering algorithm
with a cluster number q. (d) Locations of the principal parameter values {T's(i)};_; 5 g corresponding
to the windows of short-term trajectories {Xa(é)};,_; 5 1g- The principal parameters are classified into
2-groups, where the crosses indicate the points classified into “g’ = 0” and the triangles indicate the
points classified into “s’ = 1.”
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It should be noted that, in the present experiment, switch in the bifurcation parameters
does not occur within any window of shorter-term chaotic trajectory. If a switch occurs
within a window, the principal parameter values I'; corresponding to the window can not
be accurately estimated. If such a switch occurs frequently and if the principal parameter
values can not be accurately estimated for many windows, identification of the number of
the switch dynamics as well as their switch points may become quite difficult. We consider,
however, that if the switch occurs only intermittently and if the bifurcation parameters
rarely change within a window, reliable estimation of the principal bifurcation parameters
is possible for “most” of the windows of chaotic trajectories. Hence, for such intermittent
switch signal, the present algorithm may identify the number of switch dynamics with

good accuracy.

4.3.2 Rossler equation

As a second example, we consider the Rossler equations [165]:

d 177t 2

dt = - Nt 377t7

d2

ot a(s(t) (431)
d3’7t

o = bl (e(s() = Tne) ey

where the parameter value b is fixed as b = 0.3 and the bifurcation parameters (a, c) take

three sets of values:
(a(0),¢(0)) = (0.34,5.6), (a(1),c(1)) = (0.36,5.2), (a(2),c(2)) = (0.34,4.8), (4.32)
according to the switch signal s(t) of fig. 4.4 (a). The chaotic time series is obtained as
{€n = (*nnae/10) + v | n = 1,2, .., Ngara}, (4.33)

where At = 0.2, Nyaia = 7200, v, € N(0.0,0.02), and the Réssler equation is numerically
integrated by the fourth-order Runge-Kutta algorithm with a time step of 0.01.
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Figure 4.4: (a) Switch signal s(t) of the bifurcation parameters (a,c) in the Rossler equation (4.31). (b)
Average-filtered time series {{,} from the switched Rossler equation. (c) Switch signal s'(t) predicted by
the present algorithm.

Figs. 4.4 and 4.5 show the results of the detection algorithm. The parameters of
the algorithm are set as (W,d,r,J,T,h, K, N;, Ng) = (5,3,4,6,1200,8,2,9988,12). Ac-
cording to the principal component analysis of fig. 4.5 (a), cumulative significance ratio of
@, > 0.98 is obtained. Hence, we set the principal component parameters as 'y = (71,72).
Fig. 4.5 (d) shows the locations of the principal parameter values {T'5(i)},_;, g corre-
sponding to the 18-windows of shortly divided trajectories {X.(i)};_;, ;4 With a time
interval of S = 400. The switch dynamics among the 3-clusters of distinctive points in the
principal parameter space is clearly recognized. According to the LBG-clustering analysis
of fig. 4.5 (c), it is shown that the optimal cluster number is g, = 3. As in fig. 4.4 (c),
the switch signal s'(¢) of the LBG-cluster data accurately predicts the original signal s(t).
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Figure 4.5: a) Cumulative significance ratio {O.}. b) Locations of the subsequence
g q

{€2(9988), .., ©2(9999)} of the nonlinear prediction parameters in the 2-dimensional principal space (v1,72).
(c) Distortion function Dy optimized by the LBG-clustering algorithm with a cluster number g. (d) Lo-
cations of the principal parameter values {T's(i)};_; , 13 corresponding to the windows of short-term
trajectories {Xn(i)};_; 4 1g- The principal parameters are classified into 3-groups, where the crosses
indicate the points classified into “s’ = 0,” the triangles indicate the points classified into “s’ = 1,” and

the squares indicate the points classified into “s’ = 2.”

4.3.3 Mackey-Glass equation

As a final example, we consider the Mackey-Glass difference-differential equation [137]:

dn; Me—17
- t - 0. . .
;T a(s( )) 1 3917 0.17 (4.34)

The bifurcation parameter a takes three values:
a(0) = 0.21, a(1) =0.2, a(2) =0.19, (4.35)

according to the switch signal s(t) of fig. 4.6 (a) and the corresponding chaotic time series

"is obtained as

{én = NpAt + Vn ! n = 17 2a ey Ndata}’ (4.36)
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where At = 1.25, Nyya = 6000, v, € N(0,0.02), and the Mackey-Glass equation is
numerically integrated by the fourth-order Runge-Kutta algorithm with a time step of
0.025.
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Figure 4.6: (a) Switch signal s(t) of the bifurcation parameter a of the Mackey-Glass equation (4.34).
(b) Average-filtered time series {€.} from the switched Mackey-Glass equation. (c) Switch signal s'(t)
predicted by the present algorithm.

Figs. 4.6 and 4.7 show the results of the detection algorithm for the switch dynamics
of the Mackey-Glass equation. The parameters of the algorithm are set as (W,d, 7,J,
T,h, K,N;, Nx) = (7,4, 8,6, 1000,5, 2,9988,12). According to the principal component
analysis of fig. 4.7 (a), cumulative significance ratio of ©; > 0.98 is obtained. Hence, we
set the principal component parameters as I'1 = (v1). Fig. 4.7 (d) shows the locations of
the principal parameter values {I'1(1)};_; 5 4o corresponding to the 20-windows of shortly
divided trajectories {X,(¢)},_;, 5 With a time interval of S = 300. Switch dynamics
among the 3-clusters of distinctive points in the principal parameter space is discernible.
According to the LBG-clustering analysis of fig. 4.7 (c), optimal cluster number is correctly
detected as g,,: = 3 and the original signal s(t) can be accurately predicted by the LBG
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signal §'(¢) in fig. 4.6 (c).
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Figure 4.7: (a) Cumulative significance ratio {©}. (b) Locations of the subsequence
{0(9988), .., £2(9999)} of the nonlinear prediction parameters in the 1-dimensional principal space (y1).
(¢) Distortion function D, optimized by the LBG-clustering algorithm with a cluster number ¢. (d)
Locations of the principal parameter values {I'1(i)};_; » 4o corresponding to the windows of short-term
trajectories {X,.(i)}i:mwﬂo. The principal parameters are classified into 3-groups, where the crosses
indicate the points classified into “s’ = 0,” the triangles indicate the points classified into “s' = 1,” and
the squares indicate the points classified into “s' = 2.”

4.4 Conclusions and discussions

We have presented an algorithm for detecting switch dynamics in chaotic time series.
By the switch dynamics, we mean that the bifurcation parameter values are occasionally
changed in the chaotic time series. Using three chaotic dynamical systems, the Lorenz
equations, the Rossler equations, and the Mackey-Glass equations, whose bifurcation
parameters switch among two or three sets of slightly different parameter values, efficiency
“of the algorithm is shown. For the chaotic time series contaminated with observational
noise, our algorithm has accurately detected the number of switching parameters as well
as their switching points.
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It should be noted that the present algorithm is based upon the characterization of
windows of short-term chaotic time series in terms of the principal bifurcation parameters
of nonlinear predictors. Performance of the algorithm to identify the number of switching
parameters and their switching points is primarily dependent upon a reliable estimation of
the principal bifurcation parameter values corresponding to each window of chaotic time
series. Reliable estimation of the corresponding principal parameters becomes difficult

when:
(a) The observational noise level is too high.
(b) The window length of chaotic time series is too short.

(c) The bifurcation parameters frequently make switches within a window of chaotic

time series.

Exact number of the switching parameters may be accurately identified when the problems
(a)-(c) are not so significant.

Limitation of the present algorithm against these problems will be studied in our future
works. Applicability of the algorithm against higher-dimensional dynamical systems such
as the spatio-temporal dynamical systems [40, 106] would be also considered in our further

studies.
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Global bifurcation structure of
chaotic neural networks and its
application to traveling salesman
problems

abstract: This Chapter studies global bifurcation structure of the chaotic neural networks
applied to solve the traveling salesman problem (TSP). The bifurcation analysis clarifies the
dynamical basis of the chaotic neuro-dynamics that itinerates a variety of network states associ-
ated with possible solutions of TSP and efficiently “searches” for the optimum or near-optimum
solutions. By following the detailed merging process of ¢haotic attractors via crises, we find
that the crisis-induced intermittent switches among the ruins of the previous localized chaotic

attractors underly the “chaotic search” for TSP solutions.

5.1 Introduction

The traveling salesman problem (TSP) is a classic and famous example of a combinatorial
optimization problem which is hard to deal with. Computational time required to find an
exactly optimum solution grows faster than any finite power of some appropriate measure
of the problem size as long as P # NP [69, 124, 164]. In order to cope with such hard
problems, efficient approximate algorithms for finding a near-optimum solution within
a reasonable computational time have been groped for. As one of such methods, this
Chapter focuses on an intriguing optimization technique of TSP by chaotic dynamics
[35, 154, 213] based on chaotic neural networks [5, 12].

In neural network approach to TSP, every possible solution of the TSP is mapped into
a network of neurons with (0, 1)-binary outputs [94]. Optimization by chaotic dynamics
is to search for a better TSP solution by following a chaotic wandering orbit. By visiting
a variety of network states which correspond to possible solutions of the TSP, chaotic

67
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dynamics continually searches for a better solution.

The remarkable “chaotic search” capability to TSP is demonstrated by Nozawa [154]
who reported that for 94% of the random choices of initial conditions chaotic neural
network with heuristically tuned values of system parameters finds optimum solution of
10-city TSP within 1000-iterative steps. Whereas the experimental studies demonstrate
efficiency of the “chaotic search” to the optimization problem, we remark that they provide
only preliminary results. Due to the complex dynamics of the chaotic neural network, the
underlying dynamical mechanism of the “chaotic search” is not at all clear. Hence, the
efficiency of the method can not be grasped theoretically.

The aim of the present Chapter is to clarify the underlying mechanism of the “chaotic
search” and to re-examine the efficiency of the method to optimization problems. For our
aim, we study global bifurcation structure of the chaotic neural networks applied to solve
TSP. The bifurcation study not only clarifies the dynamical mechanism of the “chaotic
search” but also provides a guideline for tuning the bifurcation parameter value which
gives rise to the network dynamics with efficient “chaotic search.”

The present Chapter is organized as follows: In Section 5.2, we review an exper-
imental method ior solving TSP by chaotic neural networks. In Sections 5.3 and 5.4,
we study one-parameter bifurcation structure of the chaotic neural networks applied to
10- and 5-city instances of TSP. In particular, we follow in detail the merging process of
chaotic attractors via crises [80] and find that the crisis-induced intermittent switching
[79] underlies the “chaotic search” for TSP solutions. In Section 5.5, on the basis of the
bifurcation studies of Sections 5.3 and 5.4, we discuss the global bifurcation structure of
the chaotic neural network and the practical applicability of the “chaotic search” to the

optimization problem.

5.2 Experiment on solving TSP by chaotic neural

network

This Section reviews the experimental method for solving TSP by chaotic neural networks
[154]. First, the Hopfield-Tank neural network is introduced to solve TSP. Second, chaotic
neural network is derived by the Euler’s discretization of the continuous-time Hopfield-
Tank neural network. Third, a technique for observing a set of temporal firing rates of
neurons as possible TSP solution is described.

5.2.1 Hopfield-Tank neural network approach to TSP

‘Consider an N-city traveling salesman problem (TSP): Given an N x N symmetric matrix
(d;;) of distances between a set of N cities (¢4, = 0,1,..,N — 1), find a minimum-length
tour that visits each city exactly once.
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A solution for the TSP can be described in terms of a N x N matrix V with (0,1)-
binary elements {V;; = 0,1 |4,k =0,1,.., N — 1}. Any complete tour can be represented
by denoting Vi, = 1 if city 7 is in position k in the tour and V;;x = 0 otherwise, where the
position k stands for a visiting order in the tour (see fig. 5.1).

order
0 1 2 ~-9
0 | Voo Vo1 Voz -~ Voo
Vio Vi1 Vi2 - Vjg
2 s
a& ;
9 | Voo Vo1 Vo2 - Voo

oplimum solution. (.

0123456789

1000000000
0000000100
0000000010
0000001000
0100000000
0001000000
0010000000
0000010000
0000100000
0000000001

OO~ NR W — O

Figure 5.1: N x N-element binary code V = {V;; |4,k = 0,1,.., N — 1} as a solution to TSP. Shown
right is the optimum solution @ of the 10-city TSP studied in this Chapter. The solution represents a
tour in which city 0 is the first city to be visited, city 4 the second, city 6 the third, and so forth.

Preference for the matrix V as a solution to the TSP can be measured by the following

cost function:

N-1 N-

—

E(V) =

v |

> Vi — 1) +

A

£} > Vie — 1}
k=0 =0

B N-1N-1N-1

0 dijVadViks1 + Vir-1}.  (5.1)
1=0 5=0 k=0

Whereas the first two terms represent the constraint terms to satisfy the feasibility con-
dition of TSP, the third term represents a total path length of a complete tour of feasible
TSP solution. The solution matrix V associated with a low cost value represents a candi-

date of a good TSP solution, since the low cost solution may satisfy the constraints and

provide a short length tour.
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On the basis of the representation of a TSP solution by the N x N matrix V, the
Hopfield-Tank neural network is designed as

d

R (G

N-1N-
k) = — Uik + Z Z weitVit + Lk, Vie = o(wa), (5.2)
=0 1=0
where u;; stands for the internal state variable of the (z,k)-neuron (0<¢, k<N — 1), R
stands for a time constant parameter, and o(z) = 0.5 + 0.5tanh(z/3). The synaptic

connections Ty ; are given by

Taj = —A(6;(1— bu)+ (1l — &;)) — Bdij(Srxr1 + Gii1), (6,k) # (5,1), (5.3)
T = —2A,

for 0 < 4,k,5,l <N -—1.
The Hopfield-Tank neural network of eq. (5.2) has potential capability to solve the
TSP because:

(i)  The underlying Lyapunov function is defined as

N-1N-1

H(V)= )+ 3N f (5.6)
i=0 k=0
which is, for small 3, nearly equal to the TSP cost function of eq. (5.1), since
¥ ik g=H(V)dV — 0 (8 — 0).

(i)  Since, for small 3, the minimal states of the Lyapunov function appear nearly with
(0,1)-binary outputs {Vix = 0,1 | 4,k = 0,1,.., N — 1}, final equilibrium states of
the network (5.2) may provide feasible TSP solutions with short total-path length.
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5.2.2 Chaotic neural network approach to TSP

Nevertheless, practical applicability of the Hopfield-Tank neural network to optimization
problems is crucially limited by the following problems.

(i)  Choosing the parameter values for (A4, B) which controls the strength of the con-
straint terms against the tour-length term in eq. (5.1) is quite difficult. In fact, it
is reported in [86, 210] that appropriate parameter values for (A, B) which properly
locate feasible TSP solutions into local minima of the Lyapunov function H(V) lie in
a small restricted space. Most choices of (A, B) fail to locate feasible TSP solutions
as the local minima and instead produce a large number of local minima which do
not satisfy the constraints of eq. (5.1).

(i) Even with an appropriate selection of the parameter values (4, B), the Lyapunov
function H(V) still has a large number of feasible solutions from long-length tours
to nearly shortest tours. Due to the existence of the large number of long length
tours which are far from the optimum tour, the network is frequently trapped in
local minima with such bad solutions, depending on the choice of initial conditions.

For (i), various techniques are investigated for determining good parameter values for
(A, B) [13, 210]. For (ii), stochastic dynamics is usually introduced to escape from the
local minima with long length tours [2, 114]. In chaotic neural network approach to TSP,
the network escapes from the local minima by chaotic non-equilibrium dynamics [12].
The chaotic neural network for the combinatorial optimization problem is formulated as
follows.

First, parameter values for the synaptic connections (5.3)-(5.5) are slightly modified

as
Tiegt = —A(;(1 — 0ut) + 0ua(L — ;) — Bdij(Sr41 + 1x-1), (6, k) # (3,0), (5.7)
Tikir = —2wA,
Ii = 2aA,

where 0 < 1,k,j,] < N —1, ais a control parameter for excitation level of neurons, and
w is a parameter for adjusting the negative self-feedback [35, 154] or the refractory effect
[12].
Second, with an affine transformation u;;, = ;}fz—ol Eﬁ 51 Ti ;1 pji + Lk, the Hopfield-
Tank neural network (5.2) is transformed into the following form
d 1

N—
R (—pik) = — P+ Vie, Vi =0(D
=0

N-1
dt > Tkt pt + Tia)- (5.10)
=0

If the connection matrix T is invertible, it is proven by Pineda [162] that the attractor
structures of the two equations (5.2) and (5.10) are identical. The chaotic neural network
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is then derived by the Euler’s discretization of the continuous-time model (5.10) as
N 1N-

At
pir(n+1) = pa(n) + B ( —pir(n) + Tk i pit(n) + k) )
3:0 =0

N-1N-
= rpi(n)+(1-7) Z}: ikt Pit(n) + Lik), (5.11)
1=0 =0

;.n

where At is the time step of the Euler’s discretization and » = 1 — (A¢/R). The model is
equivalent to a single internal state version of the chaotic neural network [12, 154].

With a set of well selected values of the parameters (A, B,w, a,3), the chaotic neu-
ral network exhibits chaotic dynamics which “searches” for TSP solutions. The search
procedure for TSP solutions can be observed by calculating the temporal firing rates of
neurons as follows.

At every time step n, first, we compute short-term averaged firing rates p(n) =
{pix(n) = (1/w) T¥4 pa(n — j) | i,k = 0,1,.., N — 1} of neurons with an averaging
duration w. The temporal network firing state p(n) is then encoded into an N x N-
element binary code J(n) = {Jy(n) | ¢,k =0,1,..,N — 1} as

Ji(n) = 1[pa(n) — p*(n)] (5.12)

where 1[z] = 1 (¢ > 0), 1[z] = 0 (z < 0), and p*(n) is the N-th largest value among
{pik(n) | i,k = 0,1,..,N - 1}.

By wandering around a variety of NV x N-element binary codes {J(n) | n = 0,1,..}
with possible TSP solutions, chaotic dynamics “searches” for a better TSP solution. In
the next Section, we study the dynamical basis of the “chaotic search.”

5.3 Omne-parameter bifurcation of the chaotic neural
network applied to solve 10-city TSP

The experiment of applying the chaotic neural network to solve the Hopfield-Tank’s 10-
city TSP is carried out by Nozawa [154] with a set of fixed parameter values. By taking one
of the parameters as a bifurcation parameter, we study one-parameter bifurcation struc-
ture of the chaotic neural network and clarify the dynamical mechanism of the Nozawa
experiment.

First, we show that the chaotic neural network of eq. (5.11) has symmetry which
characterizes the global bifurcation structure. Second, a simple coding rule which enables
to map every attractor of the dynamical system to possible TSP solution is introduced.
Third, one-parameter bifurcation structure of the chaotic neural network is studied.
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5.3.1 Symmetry in dynamical systems

Consider a set of transformations G = {n' 04™ | [ = 0,1, m = 0,.., N — 1} with N x N-
dimensional linear transformations of v and 7 defined as

7Y & Pik 7 P; (k+1)mod N for0 < 4,k < N -1, (5.13)
<

n . Pik > p’i (N—k)modN for 0 S i,k N — ]., (5.14)

where o denotes composition and y™ =y o0---04.
[ ——

m times
By using an N x N-dimensional mapping f : RM*¥ — RN*N_  let us denote the

network dynamics of eq. (5.11) by p(n + 1) = f(p(n)). Since fog = go f for any
g € G (see Appendix A-2 ), the dynamical system is invariant under the operation by any
g € G. Hence the set of transformations G provides symmetry of the dynamical system
of eq. (5.11).

The idea of the symmetry is important, because if O = {p(n) | n = 0,1,..} is any
solution of the dynamical system, then so is g(O) = {g(p(n)) | n = 0,1, ..} for all g € G.
In particular, if O is an attractor, then so is g(O) for all g € G. We then say that g(O)
is conjugate to O. With respect to the system symmetry, we can also characterize an
attractor O by the following symmetry group [76] :

Ao ={g€G|g(0) =0} (5.15)

In the sense that the above group measures the degree of symmetry of O, we say that an
attractor O is a Ap-symmetric attractor. If Ap = 0, we then say that an attractor O is
an asymmetric attractor.

5.3.2 Coding of attractors

In the study of high-dimensional dynamical systems which give rise to multi-stability of
many attractors, introduction of a simple coding of attractors is useful for a systematic
analysis of the system. For instance, in the study of global couple map [107, 108], large
number of multi-stable attractors are coded by the clustering conditions, while, in the
study of optical system [99], attractors are coded by the branching order of the harmonic
bifurcations. In the present analysis, every attractor in the neural dynamical system is
coded into possible TSP solution as follows.

First, a set of long-term average firing rates {p;x = limr_,o0(1/T) 2225 pir(n) | i,k =
0,1,..,N — 1} is measured on an attractor {p(n) | n = 0,1,..}. The attractor is then
encoded into an N x N-element binary code J = {J;1 | i,k = 0,1,.., N — 1} defined as

Jie = 1[pix — p°] (5.16)
where p* is the N-th largest value among {p; | ¢,k = 0,1,..,N — 1}.

As is shown in Appendix A-3 , a set of conjugate attractors {n'oy™(0) |1 = 0,1, m =
0,..,N — 1} are coded into an equivalent TSP solution by this coding, if O = {p(n) | n =
0,1,..} is an asymmetric attractor.
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5.3.3 One-parameter bifurcation of the chaotic neural network

Taking r as a bifurcation parameter, let us study one-parameter bifurcation structure of
the chaotic neural network applied to solve the Hopfield-Tank’s 10-city TSP [94, 210] (see
fig. 5.2). The values of the parameters are fixed as (A4, B, w, «, 8) = (1.0, 1.0, 0.75, 0.05,
0.018) so that the experimental situation of Nozawa [154] is reproduced at » = 0.70.

Figure 5.2: Locations of the Hopfield-Tank’s 10-city TSP, which are given in 2-dimensional coordi-
nates as (0.2439, 0.1463), (0.8488, 0.3609), (0.6683, 0.2536), (0.6878, 0.5219), (0.1707, 0.2293), (0.2293,
0.7610), (0.4000, 0.4439), (0.8732, 0.6536), (0.5171, 0.9414), (0.6195, 0.2634) [94, 210]. The example tour
represents the optimum solution.

Basin Volumes
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20 Conjugate Attractors

Figure 5.3: 100000 samples of random initial conditions p(0) € [0, 1]V *¥ are classified into basins of
20 conjugate fixed points {n' cy™(¢g) | I = 0,1, m = 0,..,9} (g (€ R¥*¥) denotes a basic fixed point)
or other attractors in the chaotic neural network with r = 0.99. The abscissa indicates the 20 conjugate
fixed points and the other attractors and the ordinate indicates the number of initial conditions included

in the basin of each attractor.

As is discussed in Section 5.2, the chaotic neural network approaches to the continuous-
‘time Hopfield-Tank neural network when » — 1.0. Hence, parameter values close tor = 1
are expected to give rise to local minimum solutions of the Hopfield-Tank network. First,
by setting the parameter value to » = 0.99, we find the local minimum solutions by
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carpet-bombing algorithm [157]. As is shown in fig. 5.3, from 100000 samples of random
initial conditions which are uniformly distributed over p(0) € [0,1]¥*¥ only a set of
2N conjugate local minima {n' 0 4y™(q) | { = 0,1, m = 0,..,N — 1} are found, where
q (€ R¥*N) denotes a basic local minimum.

By giving this ¢ as the initial condition at » = 0.89 and decreasing the bifurcation
parameter from r = 0.89 to » = 0.65, the bifurcation diagram is drawn by observing the
(0,0)-neuron state pgo(n) in figs. 5.4 (a) and (b). The successively observed attractors
are coded into possible TSP solutions J and the corresponding cost function values E(J)
defined by eq. (5.1) are plotted in fig. 5.4 (c). We remark that until about » = 0.725 the
cost function curve constantly holds the value corresponding to the optimum-tour length
of the TSP. Namely, all the observed attractors until » = 0.725 are coded as the optimum
solution. We denote this optimum solution by code Q. Fig. 5.4 (d) shows the Lyapunov
dimension Dy, [110] of the attractors observed in the bifurcation diagram.

Parameter region of 0.89 > r > 0.725: In the first stage of this parameter
region, the local minimum ¢ continually exists until » = 0.87 and then bifurcates into
chaotic attractor through period-doubling bifurcation route to chaos [55] (see fig. 5.4 (b)).
With a decrease in the bifurcation parameter, the chaotic attractor continually increases
in size. Whereas the repeated occurrence of saddle-node bifurcations gives rise to pairs
of stable and unstable periodic solutions generating periodic windows in the bifurcation
diagram, the stable periodic attractors also bifurcate into chaotic attractors which merge
with the original chaotic attractor via an interior crisis [80]. Fig. 5.5 illustrates how the
unstable periodic orbits which are born from the period-doubling bifurcations of the local

minimum ¢ underlie the structure of the chaotic attractors.

Let us denote the successively observed attractors in fig. 5.4 (a) by O,, which depends
upon the value of the bifurcation parameter ». Then the system symmetry implies that
a conjugate attractor ' o y™(0,) also undergoes a series of same bifurcations with O,
in this parameter region. Note that a conjugate attractor ' o y™(0,) described above is
continually coded as n' 0o4™(Q), which represents the optimum solution (see Appendix A-3
)- Interestingly, at most stages of their successive bifurcations, the 2V conjugate attractors
{noy™(0,) |1 =0,1, m =0,..,N — 1} are the only observable attractors of the system.
In practice, for systems with » = 0.89,0.85,0.78,0.75, our numerical experiments show
that all the initial conditions on a hyper-surface: (poo,po1) € [0,1] x [0,1],po2 = pos =
-+« = pgg = 0 can be classified into basins of the conjugate attractors {n' 0 y™(0,) |l =
0,1, m =0,..,N — 1} (see figs. 5.6 (a)-(f)).

Parameter region of 0.74 > r: As is shown in fig. 5.4 (d), the 2V conjugate
chaotic attractors increase in their size as the bifurcation parameter is further decreased.
When the parameter reaches a value of about r» = 0.725, the thick chaotic band suddenly
disappears from the bifurcation diagram of fig. 5.4 (a). It seems that the 2N conjugate
chaotic attractors collide with each other and merge as a single attractor via symmetry-

increasing crises [37, 38].
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Figure 5.4: A one-parameter bifurcation diagram of the chaotic neural network for the 10-city TSP. The
bifurcation parameter value r is decreased from 0.89 to 0.65. (a) A one-parameter bifurcation diagram
observed from the (0,0)-neuron state ppo(n). (b) Enlargement of the bifurcation diagram of (a). The
period-16 attractor bifurcates into period-32, period-64, and so forth into a chaotic attractor. (c) The
cost function values £(J(O,)) defined by eq. (5.1) for the successively observed attractors O, in (a). (d)
The Lyapunov dimersion Dy, of the successively observed attractors O, in (a).
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Figure 5.5: Period-2, 4, and 8 orbits born from the period-doubling bifurcations of the local minimum
q. The figure displays how these unstable periodic orbits underly the structure of the chaotic attractors
at » = 0.775, 0.750, 0.725.
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Figure 5.6: On the hyper-surface with (po,po1) € [0,1] x [0,1],p02 = po3 = -+ = pge = 0, basin
portraits of the conjugate attractors {n' o y™(0,) | I = 0,1, m = 0,.,N — 1} are drawn for four
systems: (a) » = 0.89, (b) » = 0.85, (¢) » = 0.78, and (d) » = 0.75. The abscissa indicates
poo € [0,1] and the ordinate indicates py; € [0,1]. While (e) shows an enlargement of the square
part: (poo,po1) € [0.65,0.85] x [0.65,0.85] of (d), (f) shows a further enlargement of the square part:
(poo, po1) € [0.707,0.757] x [0.707,0.757] of (e). With respect to the basic attractors O, observed in the
bifurcation diagram of fig. 5.4 (a), basins of O,, v7(0,), and no~v*(0,) are colored by yellow, basins of
¥(0,), ¥3(0.), and 5o 4%(0,) are colored by red, basins of v*(0,), ¥°(0,), and n 07%(0,) are colored
by green, basins of ¥3(0,), #(0,), and 5 0~7(0,) are colored by black, basins of v*(0,), no+(0,), and
n0~8(0,) are colored by blue, basins of ¥*(0, ), nov*(0.), no7%(0,) are colored by skyblue, and basins
of ¥%(0,) and no+3(0,) are colored by purple.
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5.3.4 Switching among previous localized chaotic attractors and
chaotic search for TSP solutions

Let us study the network dynamics after the mergers of the 2V conjugate chaotic attrac-
tors via crises. The crises may give rise to intermittent switching among the previous
localized chaotic attractors [79]. By following the details of the switches, we find that the
crisis-induced intermittent switches are the dynamical bases of the “chaotic search” for
TSP solutions.

Recalling that the basic attractors O, observed in the bifurcation diagram of fig. 5.4 (a)
have been continually coded as the optimum solution ), we denote the set of the conjugate
chaotic attractors {n' 0 y™(0,) | I = 0,1, m = 0,..,N — 1} just before the crises by
{ntoy™(Q)|1=0,1, m =0,..,N — 1}. Then, we can follow the details of the switches
among the ruins of the previous localized chaotic attractors {n' 0 y™(@)} by calculating
the temporal network firing state J(n) defined by eq. (5.12) with an averaging duration
w. For instance, if J(n) = n' 0 y™(Q), then we may consider that the temporal network
firing state at the time step n is calculated over the duration during which the system is
around the (I,m)-previous localized chaotic attractor n' o y™(Q).

Fig. 5.7 (a) shows a sequence {J(n) | n = 0,1, ..} of the temporal network dynamics
with 7 = 0.73. The dynamic behavior is from a given random initial condition and the
averaging duration is set to w = 500. Starting from @, cyclic switches among the previous

localized chaotic attractors as

“Q=7(@) = - = MQ) Q) - 2 (Q) @7 (5.17)

are recognized. From a different initial condition, cyclic switches as

“PQ) = noy(Q) = - = noy™(@Q) = noy™HQ) = - =1 09°(Q) = n(Q)15.18)

are also observed. This implies that a first crisis gives birth to two attractors (5.17) and
(5.18), which are conjugate with respect to 7.

Fig. 5.8 shows an average of the residence time 7, [79], in which the network stays in
one of the previous localized chaotic attractors {n' 0y™(Q) | ! = 0,1, m =0,..,N — 1}.
At the initial stage of the crisis, switching rarely occurs and the residence time 7,, is
inordinately long. As is explained in detail below, with a decrease in the bifurcation
parameter, the previous localized chaotic attractors get more tightly connected to each
other. This shortens the residence time 7, in fig. 5.8.

For 0.73 < r < 0.737, the system exhibits cyclic switching as (5.17) and (5.18). As

the crisis proceeds for 0.66 < r < 0.73, reversible switches as
“Qe(@) = 2@ =) = 2 (Q) = Q7 (5.19)
and

“9(Q) = noy(Q) = = noy™(Q) S noy™HQ) = - = 1 07°(Q) = n(Q)15.20)
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Figure 5.7: Sample sequences {J(n)|n = 0,1, ..} of the temporal network dynamics with (a): r = 0.730,
(b): r = 0.702, and (c): 7 = 0.666 are shown. The averaging duration of eq. (5.12) is set to w = 500. The
temporal network state is displayed in terms of a set of overlaps between J(n) and the previous localized
chaotic attractors {n' oy™(Q) |1 =0,1, m =0,..,9}, where the overlap between J(n) and 7t oy™(Q) is
defined as h™(n) = 3 ' Yaly (2 {n' 0 v™( @)} — 1) (2 Juk(n) — 1)
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Figure 5.8: The average of residence time 74, in a previous localized chaotic attractor {7 oy™(@) |1 =
0,1, m = 0,..,9} is drawn with increasing the value of the bifurcation parameter 7.

are observed (see fig. 5.7 (b)). Irregular switches which skip the intermediate states as
“v(Q) = 73(Q)” or “no~°(Q) = n0+%Q)” are also observed for systems with small r.

For r < 0.66, the two conjugate attractors (5.19) and (5.20) finally merge into a fully-
connected attractor via second crisis. Chaotic dynamics which “searches” for all the 2IN
previous localized chaotic attractors is observed in this region (see fig. 5.7 (c)).

We remark that, by the first and the second crises, the originally asymmetric attractors
{t oy™(0,) | 1 = 0,1, m = 0,..,N — 1} not only increase in size but also increase in
symmetry from @-symmetry to G-symmetry. This is a symmetry-increasing bifurcation
phenomenon of chaotic attractors which are commonly observed in dynamical systems
with symmetry [37, 38, 79].

5.3.5 Remarks on the chaotic itinerancy

In recent studies of high-dimensional dynamical systems, dynamical phenomena called as
“chaotic itinerancy™ [100, 107, 108, 120, 200, 201, 202, 217] have been extensively studied.
The chaotic itinerancy is characterized by high-dimensional chaotic behavior that makes
intermittent transitions among a variety of “attractor ruins” which are quasi-stationary
sates with effectively low degrees of freedom. Chaotic itinerancy has been discovered in
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optical systems [100], coupled map models [107, 108] and model neural networks [200,
201, 202]. As is initially suggested by Nozawa [154], the present “chaotic search” for
optimization problems can also be considered as the chaotic itinerancy, although the
dynamical mechanism such as the structure of the “attractor ruins” has not been well
elucidated. Our bifurcation analysis clarifies the dynamical basis of the chaotic itinerancy
in the “chaotic search” dynamics in the context of the crisis-induced intermittent switching

among the ruins of the previously stable chaotic attractors.

5.4 Application to 5-city TSP

In Section 5.3, we have seen that the crisis-induced switching is the dynamical basis of
the “chaotic search” in the 10-city TSP instance. Whereas the previous example shows
“chaotic search” among equivalent solutions to the TSP, by using a 5-city TSP instance,
this Section shows another example which exhibits “chaotic search” among the optimum

solution and the second-optimum solution to TSP.

5.4.1 One-parameter bifurcation of 5-city TSP

As an instance for TSP, 5-city locations of fig. 5.9 are utilized. The 5-city instance
was selected among 20 random TSP instances whose 2-dimensional coordinates (z;, y;)
(t=1,2,..,5) with values between 1/1000 and 1000/1000 were generated by pseudo-
random function rand() of the SPARC station 5. The parameter values for the chaotic
neural network are set to (4, B, w, a, 8) = (1.5, 1.0, 0.80, 0.05, 0.018).

(a) (b)

Figure 5.9: Locations of the 5-cities, which are given in 2-dimensional coordinates as (0.3676, 0.3477),
(0.4234, 0.1931), (0.5864, 0.2097), (0.3830, 0.9543), (0.4356, 0.8893). (a) represents an optimum tour
QW with a total path length of d = 1.714747. (b) represents a second-optimum tour Q(?) with a total
path length of d = 1.729555.

First, for » = 0.999, we find the local minimum solutions of the continuous-time
Hopfield-Tank neural network by carpet-bombing algorithm. For 100000 samples of
random initial conditions which are uniformly distributed over p(0) € [0,1]V*¥ | two
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sets of 2N conjugate fixed points {7} 0o v™(¢)) | I = 0,1, m = 0,..,N — 1} and
{toy™(¢®) |1 =0,1, m =0,..,N — 1} are found (see Table 5.1). Whereas ¢!) is
coded as the optimum solution Q), ¢(® is coded as the second-optimum solution Q®,

By decreasing the value of the bifurcation parameter r from 0.91 to 0.775, two bifurca-
tion diagrams are drawn respectively from ¢(!) and ¢(®) by observing a single neuron state
in figs. 5.10 (a) and (c). The figures show essentially similar bifurcation phenomena to
the 10-city instance. Namely, in the first stage of the bifurcation diagram, each local min-
imum ¢® (i = 1,2) bifurcates into chaotic attractor through period-doubling bifurcation
route to chaos, With a further decrease in the bifurcation parameter, each chaotic attrac-
tor increases in size. Whereas the repeated occurrence of saddle-node bifurcations gives
rise to pairs of stable and unstable periodic solutions generating periodic windows in the
bifurcation diagram, the stable periodic attractors also bifurcate into chaotic attractors
which soon merge with the original chaotic attractor.

Let us denote the successively observed attractors in each bifurcation diagram as
O (i = 1,2). Their bifurcation phenomena are peculiar at the following points.

(i) In each bifurcation diagram, O() (i = 1,2) are continually coded as Q) (see
figs. 5.10 (b) and (d)).

(ii) The basins of the two sets of conjugate attractors {n' o y™(0¥)) | i = 1,2, | =
0,1, m = 0,..,N — 1} almost always occupy the entire state space (see Table 5.1).

In other words, bifurcation phenomena which give birth to attractors corresponding to
TSP solutions other than Q) and Q(® are rarely observed.

Table 5.1: For 100000 samples of random initial conditions which are uniformly distributed over
p(0) € [0,1]5%5, basin distribution rates to the two sets of conjugate attractors {7' o *y"‘(OSi)) |+ =
1,2, I = 0,1, m = 0,..,4} are calculated for systems with » = 0.999, » = 0.900, » = 0.875, » = 0.850,
and 7 = 0.825. The basic attractors Oﬁl) and 052) are those observed in the bifurcation diagrams of

figs. 5.10 (a) and (c), respectively.

bifurcation total basin volumes of total basin volumes of
parameter || {n‘ o y™(OMN|l = 0,1,m =0,..,4} | {n' o y™(OP)|l =0,1,m =0, ..,4}
r=0.999 71.538 [%] 28.462 [%]
r=0.900 72.966 [%)] 27.034 [%)]
r=0.875 75.857 [%] 24.143 [%)]
r=0.850 75.304 [%)] 24.696 [%]
r=0.825 58.758 [%] 41.242 [%)

As the bifurcation parameter is further decreased, the chaotic attractors O{) (i = 1,2)
enlarge their sizes. At the parameter value of » = 0.805, first, 0(?) disappears from the
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Figure 5.10: A one-parameter bifurcation diagram for the 5-city TSP. The bifurcation parameter value
r is decreased 0.91 to 0.775. (a) A one-parameter bifurcation diagram drawn from a local minimum g,
(b) The cost function values E(J( ,(.1))) defined by eq. (5.1) for the successively observed attractors o)
in (a). (c) A one-parameter bifurcation diagram drawn from a local minimum ¢(2). (d) The cost function
values E(f(O,(.z))) defined by eq. (5.1) for the successively observed attractors 0% in (c).
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bifurcation diagram via a boundary crisis to O{Y). Then O() collides with the ruin of the
previous chaotic attractor O?) via an interior crisis. The merger of O()) and O(?) gives
rise to a single attractor O("'? which exhibits intermittent switching among Q") and Q(®)
(see fig. 5.12 (a)). Finally, for the parameter region of r < 0.805, the conjugate attractors
{n' oy™(0*?) | 1 =0,1, m = 0,..,N — 1} merge into a single attractor via symmetry-
increasing crises. The intermittent switches, or “chaotic search”, for all the previous
localized chaotic attractors {n'oy™(Q®) |i=1,2, I =10,1, m =0, .., N —1} are observed
here (see fig. 5.12 (b)). The detailed merging processes are also read from fig. 5.11, which
shows the average of switch duration {r1_3,71,7ss} drawn with increasing the value
of the bifurcation parameter r, where 71_,, denotes a switch duration from Q") to Q(®,
751 denotes a switch duration from Q) to Q(Y), and 7g; denotes a switch duration

from 7* 0 4(Q®) to 7™ 0 4™(QY)) ((k,1) # (m,n)).

averaged switch period: T

a

S Ty

1e+08

1e+07
0.8 0,805 0.81 0,815

bifurcation parameter r

Figure 5.11: The averages of switch durations {r_,3, 721, Tsr} are drawn with increasing the value
of the bifurcation parameter r, where 7;_,, denotes the switch duration from Q%) to Q®, ,_,; denotes
that from Q) to Q1) and rg; denotes that from 7* o v/(Q®) to g™ 0 y™(QW) ((k,1)#(m, n)). With
a decrease in the bifurcation parameter, first, switch from Q(?) to Q(1) is observed at r~0.8176. Then
switch from Q(1) to Q) is recognized at r~(0.8166. Finally, switches among the conjugate attractors
{ntoy™(Q@W)]i=1,2,1=0,1, m = 0,..,4} are observed at r~0.804.

5.4.2 Efficiency of the chaotic search

Let us discuss the efficiency of the chaotic search for the two TSP instances studied in
Sections 5.3 and 5.4. In case of the 10-city instance, intermittent switch occurs only among
a set of equivalent TSP solutions and hence efficiency of the “chaotic search” for a better
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Hamming distances: {h (i,l,m)(n)}
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Figure 5.12: Sample sequences {J(n)|n = 0,1, ..} of the temporal network dynamics with (a) r = 0.806
and (b) r = 0.798 are shown. The averaging duration of eq. (5.12) is set to w = 300. The temporal
network state is displayed in terms of a set of overlaps between J(n) and the previous localized chaotic
attractors {n'oy™(Q¥) | i = 1,2, 1 = 0,1, m = 0,..,4}, where the overlap between J(n) and 7 oy™(Q())
is defined as h™(n) = 5 10 Ty (2 {n' 0o 7™(@)}j5 — 1) (2 Jju(n) — 1).
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solution can not be discussed. For the 5-city instance, chaotic search occurs among the
optimum solution Q) and the second-optimum solution Q). In this case, efficiency of
the chaotic search can be discussed in terms of a transition probability between Q) and
Q). The transition probability T(Q¥) — QU)) [L06] represents a probability of transition
from Q1) to Q) when the system is trapped in solution Q). If the transition probability
from Q® to QM is higher than that from Q) to Q(®), then transitions to optimum
solution Q) occur more frequently than ones to second-optimum solution @) and hence
the dynamics can be considered to be efficient to search for the optimum solution. For
r = 0.80, the ratio of the transition probabilities T(Q?®) — Q) and T(Q®) — Q@) is
calculated as T(Q® — QW))/T(Q™M) — Q®*)) = 3.31, which indicates the higher transition
probability to the optimum solution Q(!). Therefore we have confirmed efficiency of the
chaotic search for the optimum solution in the 5-city instance, although the problem size

is extremely small.

5.5 Conclusions and discussions

5.5.1 Bifurcation scenario

On the basis of the several numerical studies, a simple bifurcation scenario is obtained for
chaotic neural networks applied to solve TSP (see also figs. 5.13).

First, a one-parameter family of dynamical systems leading the continuous-time Hopfield-
Tank neural network to the chaotic neural network is formulated. With a decrease in the
bifurcation parameter, local minimum solutions of the Hopfield-Tank neural network bi-
furcate into chaotic attractors through period-doubling bifurcation route to chaos. The
chaotic attractors are locally distributed in the state space. As the bifurcation parameter
is further decreased, the localized chaotic attractors increase in size and eventually merge
into a single global attractor via crises. The merging process gives rise to intermittent
switching among the previous localized chaotic attractors. Since the previous localized
chaotic attractors are interpreted as possible TSP solutions, our bifurcation studies find
that the crisis-induced intermittent switches underly the “chaotic search” for TSP solu-

tions.

We remark that the present bifurcation scenario is obtained only from two instances
of small-scale TSP and may not necessarily provide a general bifurcation theory of the
chaotic neural networks for the optimization problem. We believe, however, that our
bifurcation scenario is still valid for describing the essential features of the chaotic neuro-
dynamics which may efficiently work for a wide class of TSPs, since we have confirmed
essentially similar bifurcation phenomena in several other instances of TSP.
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5.5.2 Optimization capability

On the basis of our bifurcation scenario, let us discuss the optimization capability of the
“chaotic search.” The observed bifurcation phenomena are peculiar in the sense that they
rarely give birth to attractors corresponding to TSP solutions except those observed in
the local minimum solutions of the underlying Hopfield-Tank neural network. It is most
probable that the previous localized chaotic attractors in the “chaotic search” region are
born from period-doubling bifurcations of the local minimum solutions of the Hopfield-
‘Tank neural network and hence they have almost one-to-one correspondence with the
‘local minima. This bifurcation property can be also observed in other instances includ-
ing higher-dimensional TSPs, although theoretical understanding of this property is an
important open question. In the sense that the chaotic dynamics seeks for a better TSP
solution among local minimum solutions of the Hopfield-Tank neural network without be-
ing trapped in one solution, our bifurcation scenario proves the “chaotic search” capability

which overcomes the weakness of the Hopfield-Tank search.

Our bifurcation studies also imply that the efficiency of the “chaotic search” strongly
depends upon the complex linkage structure of a variety of previous localized chaotic
attractors. A large number of dynamical paths leading to a global minimum may produce
efficient search for the global minimum, whereas a large number of paths leading to local
minima may provide poor results. From this viewpoint, we have studied the “chaotic
search” capability for optimum solution by calculating the transition probabilities among
the switching solutions. For the 10-city instance, “chaotic search” occurs only among
a set of equivalent global minimum solutions and hence efficiency of the chaotic switch
from local minima to global minimum can not be discussed. For the 5-city instance,
chaotic search occurs among the optimum solution and the second-optimum solution. The
transition probability analysis clarified that the chaotic switch to the optimum solution
occurs more frequently than that to the second-optimum solution. We therefore confirmed
the efficiency of the chaotic search for global minimum solution in this toy problem with

5 cities.

We remark that the present study on the efficiency of the “chaotic search” provides
only preliminary results because our experiments deal with only two small-scale instances
of TSP. It is an important future problem to examine the efficiency of the chaotic search for
a variety of TSP instances including large-scale problems with further statistical studies
based on the calculation of the transition probabilities or other statistical quantities.

It is also necessary to compare the chaotic search algorithm with other conventional
‘optimization algorithms such as the heuristic algorithms [124, 127], the genetic algorithms
[73], and so forth and clarify disadvantages as well as advantages of the chaotic search
method.
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5.5.3 Parameter tuning

Another problem to be settled for practical application of the present method is the
difficulty of choosing good parameter values for (A, B,a,w,r) that give rise to efficient
“chaotic search.” In this study, we have adopted the parameter values of Nozawa [154].
Whereas there is no systematic way for determining good parameter values for (4, B, a,w),
the present bifurcation analysis at least provides a hint for tuning the bifurcation param-
eter value r. Namely, by following the bifurcation procedure of one of the local minima of
the Hopfield-Tank neural network, one may find the bifurcation parameter region where
the chaotic attractors merge with others via a series of crises and an efficient “chaotic
search” takes place. This reduces the amount of labor for adjusting the bifurcation pa-

rameter value r by trial and error methods.
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Figure 5.13: Global bifurcation scenario for chaotic neural networks: (a) In a parameter region close to
r = 1, the chaotic neural network exhibits Hopfield-Tank “convergence” dynamics to many local minima.

(b) With a decrease in the bifurcation parameter r, the local minima bifurcate into chaotic attractors
through a period-doubling route.

(c) The coexisting chaotic attractors eventually merge into a single
global attractor.
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Simulated annealing in chaotic
neural network

abstract: Chaotic simulated annealing algorithm for combinatorial optimization problems is
examined in the light of the global bifurcation structure of the chaotic neural networks. We
show that the result of the chaotic simulated annealing algorithm is primarily dependent upon
the global bifurcation structure of the chaotic neural networks and unlike the stochastic simu-
lated annealing infinitely slow chaotic annealing does not necessarily provide an optimum result.
As the improved algorithms, adaptive chaotic simulated annealing algorithm and learning algo-
rithm are introduced to chaotic neural networks. Using several instances of traveling salesman

problems, efficiency of the modified algorithms is demonstrated.

6.1 Introduction

Due to the recent successful results in a variety of engineering problems, application of
chaotic neural networks [12] to combinatorial optimization problems has received a great
deal of attention [35, 36, 83, 103, 154]. As is described in detail in Chapter 5, the idea
of optimization by chaotic neural networks can be briefly summarized as follows. In
the continuous state space of the chaotic neural network, every possible solution of an
optimization problem is embedded. By following chaotic wondering orbit which visits a
variety of the solutions, chaotic dynamics continually searches for the optimum or near-
optimum solution. In contrast with the conventional Hopfield-Tank neural network search
[94], the non-equilibrium chaotic search overcomes the local minimum problem. Compared
to the stochastic search system [71, 114] whose search space is essentially the same with the
whole state space, the chaotic search dynamics is confined in a relatively low-dimensional
fractal space, which seems to realize an efficient search for a variety of optimization
problems such as the traveling salesman problem (TSP) [35, 36, 83, 103, 154].

For the chaotic neural network approach to optimization problems, it is natural to
introduce the idea of simulated annealing [114], which is the physical model for gradually

91
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cooling the thermodynamical system to its ground state. Technically, it is quite important
to gradually cool down the chaotic dynamics to a possibly optimum state by simulated
annealing, since the chaotic search is basically everlasting.

Towards the simulated annealing in chaotic neural network, chaotic simulated an-
nealing (CSA) algorithm has been recently developed by Chen & Aihara [35]. In the
CSA algorithm, the chaotic dynamics is harnessed by a cooling algorithm of a bifurca-
tion parameter. Gradual cooling of the bifurcation parameter controls the chaotic.search
dynamics to converge to a stable equilibrium state with a possibly optimum or near-
optimum solution. The experimental studies in [35] demonstrate the efficiency of the
CSA algorithm which obtains fairly good solutions of TSP.

The aim of the present Chapter is to re-examine the efficiency of the CSA algorithm
in the light of the global bifurcation structure of the chaotic neural networks studied
in Chapter 5. On the basis of the bifurcation analyses, we argue that the result of
the chaotic annealing is primarily dependent upon the global bifurcation structure of
the chaotic neural networks and show that infinitely slow chaotic annealing does not
necessarily provide an optimum result. This is unlike the optimization property of the
stochastic simulated annealing which realizes a global optimization in the limit of infinitely
slow annealing [71]. As the improved algorithms for CSA, adaptive chaotic simulated
annealing algorithm and learning algorithm are introduced to chaotic neural network.
Using several instances of TSPs, efficiency of the modified algorithms is demonstrated.

6.2 Chaotic neural network for TSP

Let us consider an N-city symmetric TSP [124]: “Given an N X N symmetric matrix (d;;)
of distances between a set of N cities (1,7 = 1,2,..,N), find a minimum-length tour that
visits each city exactly once.”

As is described in detail in Chapter 5, chaotic neural network that solves the TSP is

described in terms of an N x N-dimensional mapping:
N N
pir(n +1) =rpa(n)+(1—-7) 0( Z ZTik,jl pi(n) + Iik) ) (6.1)
j=1lil=1

where p;; stands for an internal state of the (¢, k)-neuron (:,k =1,..,N),r (0 <7 < 1)
stands for a decay parameter, and o(z) = 0.5 + 0.5 tanh(z/€). The synaptic connections

Tix ;1 are given by

Tyt = —A(0i5(1 — b)) + (1 — &;5)) — Bdij(61 k1 + S1k-1), (6.2)
T;k,ik = —2(.UA, (63)
I,‘k = 2aA, (64)

where A and B are balancing parameters of the constraint term and the tour-length term
of the TSP cost function, a is a control parameter for excitation level of neurons, and w

is a negative self-feedback parameter.
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By wandering around a variety of temporal network firing states { pix(n) = (1/w)
Z;f):_ol pik(n—3) |4,k =1,..,N } (w: averaging duration), which are coded into possible
TSP solutions J(n) = { Jix(n) | i,k = 1,..,N} by Ju(n) = 1jpi(n) — p*] (1[z] =1
ifz>0,1[z] =0if z <0, p*: the N-th largest among {pix(n)}), the chaotic neural
network searches for the optimum solution among a variety of TSP solutions.

In Chapter 5, we have obtained the following global bifurcation scenario for chaotic
neural networks that solve TSP: We take the decay parameter r as the bifurcation param-
eter. First, there is a bifurcation parameter region with r~1, where nonlinear dynamics
of the chaotic neural network of eq. (6.1) becomes similar to that of the continuous-time
Hopfield-Tank neural network which exhibits “convergence” dynamics to the local min-
imum solutions. With a decrease in the bifurcation parameter 7, the local minimum
solutions bifurcate into chaotic attractors through period-doubling bifurcation route to
chaos. The chaotic attractors are initially localized in the state space and eventually
merge into a single global attractor via a series of crises [80]. The merging process gives
rise to intermittent switching among the previous localized chaotic attractors and the

global “chaotic search” for various TSP solutions takes place.

6.3 Chaotic simulated annealing

6.3.1 Slow annealing

In the CSA algorithm [35], in order to terminate the chaotic search procedure and to
obtain the final solution, the chaotic dynamics is eventually controlled to converge to a
stable equilibrium state by a gradual cooling of the bifurcation parameter r. On the basis
of our bifurcation scenario, the CSA algorithm for TSP can be formulated as follows:

[Slow CSA algorithm]

STEP 1 (Initial condition):

Choose random initial condition p(0) € [0,1]¥*Y and set n =0 and r(0) =r,,
where r, stands for a bifurcation parameter value that gives rise to “chaotic search”

dynamics.

STEP 2 (Update of chaotic neural network):

N N
pix(n +1) = r(n) pu(n) + (1 —r( (Z > Ty pat(n) + Iik), (6.5)

J=11l=1

r(n+1) = (1-8)(r(rn)—ry) +r,. (6.6)

B (0 < B < 1) stands for an annealing speed parameter and r, stands for a bifurca-
tion parameter value that gives rise to Hopfield-Tank “convergence” dynamics.
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STEP 3 (Termination):
If |r—ry <0.01, stop. Else, set n =n+1 and go to STEP 2.

With a random initial condition p(0) and with a bifurcation parameter 7(0) = r,,
at the first stage of the annealing, the network searches for TSP solutions by chaotic
wandering dynamics. As the annealing proceeds with r(n) — 7y, the chaotic search
eventually converges to a single equilibrium solution.

Fig. 6.2 shows the result of the CSA algorithm applied to 5-city TSP of fig. 6.1.
The 5-city instance was selected among 100 random TSP instances whose 2-dimmensional
coordinates (z;, ¥;) (¢ = 1,2,..,5) with values between 1/1000 and 1000/1000 were
generated by pseudo-random function rand() of the SPARC station 5.

As the annealing speed 3 is decreased, we see that the convergence rate to the optimum
solution is decreased. As is explained in detail in the next subsection, this phenomenon
is due to the global bifurcation structure of the chaotic neural network.

(a) (b)

Figure 6.1: Locations of the 5-cities, which are given in 2-dimensional coordinates as (0.1768, 0.2233),
(0.9348, 0.6305), (0.1561, 0.5661), (0.5793, 0.0830), (0.0358, 0.6269). (a) represents an optimum tour
Q™) with a total path length of d = 2.422713, while (b) represents a second-optimum tour Q) with a
total path length of d = 2.456266.
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Figure 6.2: The global optimization rate of the CSA algorithm for the 5-city TSP is drawn with

decreasing the annealing speed parameter 8. The system parameters are set to (4, B, w, a, €, 1y, 7,) =
(1.5, 1.0, 0.70, 0.07, 0.018, 0.95, 0.75).

6.3.2 Hierarchical merging structure of TSP solutions

Let us study the global bifurcation structure of the 5-city TSP instance. For simplicity of
our discussion, symmetry of the chaotic neural network is not considered in this Chapter.
First, for » = 0.999 that gives rise to the Hopﬁeid-Tank convergence dynamics, two
local minimum solutions, the optimum solution Q) and the second-optimum solution
@), are found by the carpet-bombing algorithm. With a decrease in the bifurcation
parameter 7, the two solutions, Q1) and Q(®), bifurcate into chaotic attractors through
period-doubling bifurcation route to chaos. As is shown in Table 6.1, in this bifurca-
tion process, the two solutions seem to be the only observable attractors of the chaotic
neural network. In other words, bifurcation phenomena which give birth to attractors
corresponding to TSP solutions other than Q1) and Q(®) are rarely observed.

The two attractors are initially localized in the state space and eventually merge
into a single attractor via crises. In fig. 6.3, the detailed merging processes are clarified
by computing the averaged switch duration {7;_,5,72_,;} with an increasing bifurcation
parameter 7, where 7_,, denotes a switch duration from Q%) to Q® and 1,1 denotes
a switch duration from Q® to Q(V). According to the switch duration curves, first, the
optimum solution Q(!) touches the separatrix of @(!) and Q®) and looses its stability via
a boundary crisis. Then, the second-optimum solution Q(?) merge with the ruin of the
optimum solution Q!) via an interior crisis (see fig. 6.4). The merger of Q! and Q®?

gives rise to intermittent switch dynamics among Q1) and Q(? (see fig. 6.5).
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Table 6.1: For 100000 samples of random initial conditions uniformly distributed over p(0) € (0, 1]

Chapter 6

5x5
b

basin distribution rates to the two solutions, {Q(l) and Q(®}, are calculated for systems with r = 0.999,

r =0.950, r = 0.900, » = 0.875, and r = 0.850.

averaged switch period: T,,

Pr e

bifurcation || total basin volumes of | total basin volumes of
parameter QW QY

r=0.999 51.43 (%] 48.57 (%]
r=0.950 51.19 [%)] 48.81 (%]
r=0.900 51.43 [%] 48.57 (%]
r=0.875 50.58 [%] 49.42 (%)
r=0.850 48.98 [%] 51.02 [%)]

L T2

0.805 0.81 0.815 0.82
bifurcation parameter r

0.825 ¢

Figure 6.3: The averages of switch durations {72, 73,1} are drawn with increasing the value of the
bifurcation parameter r, where 71_,, denotes a switch duration from QW to Q) and 1_,; denotes a

switch duration from Q) to Q(1).
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Fig'lll‘e 6.4: Schematic illustration of the merging process of Q{!) and Q(2). (a) First, there exist two local minimum
solutions, @(1) and Q(?), in the Hopfield-Tank dynamics region. (b) With a decrease in the bifurcation parameter r, two
local minima bifureate into chaotic attractors through period doubling bifurcation route to chaos. The two chaotic attractors
are initially localized in the state space. (c) First, the optimum solution Q1) touches the separatrix of Q™) and Q) and
looses its stability via a boundary crisis. (d) Then, the second-optimum solution Q(2) merge with the ruin of the optimum
solution @(1) via an interior crisis.
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Figure 6.5: Intermittent switch dynamics among Q) and Q(2).
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The merger of Q1) and Q(® can be schematically illustrated in a binary tree structure
of fig. 6.6. Notice that, in this merging process, whereas the global minimum solution QW
has an unstable parameter region, the second minimum solution Q(?) is continually stable
until the final merger. An infinitely slow annealing always provides the second minimum
solution Q(), because in the unstable parameter region of Q(!) every slow annealing is
trapped in the second minimum solution Q(*)

Adrrger or QW eman Q™

£\

Period-Doubling Bifun:nﬁnn
] Rouwe o Chaos

Q( ) Q(Z)

Two Lol Adenaie 475
e Hopriald- Tenk Raegron

ORI SITRLAT

'y

1.3

Figure 6.6: Binary tree representing the merging process of two solutions, @*) and Q(*). The continual
solid line indicates the branch of the stable solution Q(?), the broken line indicates the branch of the
unstable solution Q1) which lost its stability via a boundary crisis, and the node of the two branches
indicates the merger of Q(!) and Q(%).
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Let us consider a general case of annealing multiple-attractor systems. As in the pre-
vious discussion, hierarchical merging process of multiple chaotic attractors {Q(), Q(?), ..}
can be schematically represented in a binary tree structure of fig. 6.7. Notice that, in the
merging process, there is only a single chaotic attractor which is continually stable until
the final merger. An infinitely slow annealing which traces only a stable solution provides
such a continual attractor as the final solution. This implies that an infinitely slow an-
nealing does not necessarily provide an optimum result, since the optimum solution does
not always survive until the final merger. With an analogy from the stochastic simulated
annealing [71], it has been conjectured that the CSA algorithm also provides an optimum
result by infinitely slow annealing. The present result provides a counter-example for this
conjecture.

CGlobal Charotic Soarelr I2vriarrires

Period-Doubling Bifurcation Route to Chaos
I ] I I |

QY Qe o o QS QP
Local Mlrrirrre frr £ FHop el Tark Rogror

1 JyAesef GOyl SUISEAR]

Figure 6.7: Binary tree representing the hierarchical merging structure of multiple TSP solutions
{@™M,Q®, .}. The solid line indicates the branch of a stable solution, the broken line indicates the
branch of an unstable solution which lost its stability via a boundary crisis, and the node of the two
branches indicates the merger of the two solutions.
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6.4 Adaptive chaotic annealing

In order to improve the conventional CSA algorithm, we introduce the following adaptive

chaotic simulated annealing (adaptive CSA) algorithm:

[Adaptive CSA algorithm]

STEP 1 (Initial condition):
Choose random initial condition p(0) € [0,1]¥*" and set n =0 and r(0) = r,.

STEP 2 (Update of chaotic neural network):

pir(n+1) = r(n) pa(n) + (1 —r(n (Z;Tzkﬂpﬂ () + L), (6.7)

r(n+1) = (1=B)(r(n)—rg)+r,  (if E(J(n)) < Eu ), (6.8)
r(n+1) = (1-=08)(r(n)—r,)+r, (if E(J(n)) > Ew ).

E.y stands for a threshold value and E(-) stands for a cost function defined by using
temporal network firing state J(n) as

AN N

E(J Afj 3 n) -1y + = Z{ZJ,k ) -1} +

gZZZd,JJzk Wikn(n) + Jea(@)}. (6.10)

i=1j=1k

STEP 3 (Termination):
If |r—ry| <0.01, stop. Else,set n =n+1 and go to STEP 2.

The adaptive CSA algorithm utilizes “chaotic search” dynamics to seek for a TSP
solution that has lower cost than the threshold value E;,. When such a solution is
found, the algorithm promptly tunes the bifurcation parameter r» to the Hopfield-Tank
“convergence” region and cools down the network dynamics to the equilibrium state. If
the trapping is failed, chaotic search for another satisfactory solution is repeated.

Fig. 6.8 shows an example of the adaptive annealing algorithm applied to the 5-city
TSP. The annealing speed is set to 3 = 0.02 and the threshold value is set to the optimum
tour length Ey, = 2.422713. When “chaotic search” finds the optimum solution QW, the
adaptive CSA algorithm promptly tunes the bifurcation parameter r to the Hopfield-Tank
“convergence” region and successfully stabilize the optimum solution.

Table 6.2 shows results of the adaptive CSA algorithm applied to random 20-city, 30-
city, 40-city, 50-city, and 60-city TSP. For each random TSP, 2-dimensional coordinates of
the city locations (z;, y;) with values between 1/1000 and 1000/1000 were generated
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by pseudo-random function rand() of the SPARC station 5. The threshold value is set
as Ey, = (1 +¢) Cgk (e: gap parameter) using the Held-Karp lower bound Cyg

[87]. The adaptive CSA algorithm provides much better solutions with fewer numbers of

computation steps compared with the conventional slow CSA algorithm.

Fig. 6.9 shows dependence of the computational steps S against the problem size N,
where the log-log plot clarifies a scaling property of § o« N25%. Although our present
study is based on relatively small-scale TSPs, this scaling property demonstrates the
efficiency of the adaptive CSA algorithm that finds an approximately good TSP solution

within a polynomial computational time.

Temporal net- p>QW

work firing mvid BN
state: p(n)

4
Energy state:
E(J(n)) EQ)y=2.422
EQY)=2.456 @)

)

Bifurcation pa- F->Tg
rameter: 1(n) Porp
- 's

time: n

Figure 6.8: Example of the adaptive annealing algorithm applied to 5-city TSP. The annealing speed
and the threshold value are set to 3 = 0.02, E;;, = 2.422713, and other parameters are set same as fig. 6.2.
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Table 6.2: Results of the adaptive CSA algorithm and the slow CSA algorithm against 20 instances
of random 30-city, 40-city, 50-city, and 60-city TSP, where 2-dimensional coordinates of the random city
locations (z;, ) with values between 1/1000 and 1000/1000 were generated by pseudo-random
function rand() of the SPARC station 5. For each instance, 100 sets of random initial conditions are
prepared. The parameters of the adaptive CSA algorithm are fixed to (4, B, w, a, €, 74, 7,, 3, €, w) =
(1.0, 1.0, 0.75, 0.1, 0.018, 0.95, 0.7, 0.04, 0.1, 100). The annealing speed of the slow CSA algorithm is
set to B = 0.0005 for 30- and 40-city TSP, 8 = 0.0002 for 50-city TSP, 8 = 0.0001 for 60-city TSP. The
averaged tour length obtained by the adaptive CSA algorithm is denoted by its ratio to the averaged
tour length obtained by the slow CSA algorithm.

| Adaptive CSA | Slow CSA

averaged tour length

for random 30-city TSP 0.874 1.00
averaged computation steps 7254.2 11041.0
averaged tour length
for random 40-city TSP 0.849 1.00
averaged computation steps 9506.9 11041.0
averaged tour length
for random 50-city TSP 0.860 1.00
~ averaged computation steps 19398.2 27605.0
averaged tour length
for random 60-city TSP 0.849 1.00

averaged computation steps 30338.0 55212.0
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Figure 6.9: Dependence of the computational step S against the problem size N. The log-log plot is
well approximated by the least-square-error line of log(S) = 2.55 log(N — 3.82) + 10.17.
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6.5 Learning algorithm

In Section 6.4, we have introduced the adaptive CSA algorithm as an improved algorithm
for CSA. Although the adaptive algorithm was shown to be effective for finding near-
optimum solutions, there is no guarrentee for finding the global minimum. We also note
that the conventional CSA algorithm and the adaptive CSA algorithm are based on the
controlling algorithm of a single bifurcation parameter. It is a challenging but worthwhile
investigation to develop an algorithm which directly controls the asymptotic measure of
the chaotic neural networks. Controlling the asymptotic measure of the chaotic search
dynamics to eventually converge to the optimum state may provide us with more nat-
‘ural annealing algorithm. Towards this annealing, we introduce the following learning

algorithm for chaotic neural network:

[Learning algorithm for chaotic neural network]

STEP 1 (Initial condition):
Choose random initail condition p(0) € [0,1]¥*" and set n =0 and E,;, =

E(J(0)).
STEP 2 (Update of chaotic neural network):

pik(n + ].) = rpik(n) + (]. - 7’)0‘( Z_: z—: Tik,ﬂpﬂ(n) + I,'k)

7=0 =0

STEP 3 (Learning):

Tiji=Taz+~vy (for pu,pj € firing or pi,p; ¢ firing ),
Tiji=Tij—~ (for piy € firing, p; ¢ firing or py ¢ firing,p; € firing ).

Else;
Tiji=Taj—6 (for pi,pj € firing -or pi,p; ¢ firing )
Tk i = Tie i + 6 ( for py € firing,p;; ¢ firing or pi ¢ firing, p;; € firing ).
K, 7, and 8 (p,v,60 > 0) stand for learning parameters.
STEP 4 (Termination):

If Jn+1)=J(n)="---=J(n—-99), stop. Else,set E;, = min(Eonin, E(J(n +
1))) and n =n+1 and go to STEP 2.
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The algorithm is based on the learning rule introduced by Watanabe et al. for the
memory acquisition in chaotic neural network [207]. As is illustrated in fig. 6.10, the
learning algorithm has the following functions:

1. For a solution J(n) which has lower cost than the minimum value (1 + p)E;n,
stabilize the solution by strengthening the associated synaptic connections (local
search effect).

2. For a bad solution J(n) which has higher cost than (1 + u)E,,;,, destabilize the
solution by weakening the associated synaptic connections (tabu search effect).

(Tarolic Search

Weaken bad solutions

Strengthen good solutions

Figure 6.10: Schematic illustration of the essence of the learning algorithm.

Fig. 6.11 shows an example of the learning algorithm applied to random 5-city TSP
of fig. 6.1, where the learning parameters are set to (,7v, 6) = (0, 0.001, 0.00001). We
see that the chaotic dynamics which makes switches among the optimum solution Q)
and the second-optimum solution Q(?) gradually converges to the optimum solution. As
is also confirmed in fig. 6.12, residence rate of the chaotic dynamics in the optimum state
QW) eventually increases to 1.0 as the learning proceeds. The experiment therefore shows
efficiency of the learning algorithm which modifies asymptotic measure of the chaotic
search dynamics to eventually converge to the optimum solution.
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Figure 6.11: Example of the learning algorithm applied to the 5-city TSP. The learning parameters are
set to (u,7, 8) = (0, 0.001, 0.00001) and other parameters are set same as fig. 6.2.
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Figure 6.12: Residence rate in the optimum solution with an increasing learning step.
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Fig. 6.13 shows result of the learning algorithm applied to a 20-city TSP, where the
TSP is selected from the 20 instances of random 20-city TSP of Table 6.2 and the pa-
rameters are set to (r, A, B, w, o, 8, i, ) = (0.7, 1.0, 1.0, 0.75, 0.1, 0.018, 0.01, 0).
By decreasing the learning parameter v from v = 2.0 x 107* to v = 3.0 * 107¢, aver-
aged annealing solution over 100 sets of random initial conditions is calculated. We see
that the residual energy 0E = (Euperage — Crik)/Crar (Eaverage: averaged solution, Cyx:
Held-Karp lower bound [87]) obtained by the learning algorithm is significantly improved
as the convergence time S is increased. This implies that, in the present algorithm, an
“infinitely slow” learning provides an optimum result as in the case of the stochastic

simulated annealing [71].

0.908

residual energy: df

6.02

1 1 1 L

] 2000 4080 6000 L
computational step: §

Figure 6.13: Dependence of the residual energy §E against the convergence time S. The residual
energy 6F is computed from the averaged annealing solution as §E = (Paverage — Cuk)/Cuk, where
Cyk is the Held-Karp lower bound [87] and Eg,,,qq. is the averaged solution over 100 sets of random
initial conditions.
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6.6 Conclusions and discussions

We have analyzed the CSA algorithm in the light of the global bifurcation structure of
the chaotic neural networks and reported the limitation of the conventional slow CSA al-
gorithm. As an improved algorithm, adaptive CSA algorithm which finds much improved
solutions by fast annealing is introduced. Termination condition for the chaotic search is
also provided using the Held-Karp lower bound. Since the adaptive CSA algorithm is still
an approximate algorithm for finding near-optimum solution, learning algorithm is fur-
ther introduced as a potential algorithm for realizing simulated annealing in chaotic neural
network. The learning algorithm controls the asymptotic measure of the chaotic search
dynamics and improves the efficiency of the chaotic search for optimum solution. The
experimental study has shown the possibility of realizing convergence of chaotic dynamics
to possible global minimum in the limit of infinitely slow learning process.

Our present discussions have been based on the application results to relatively small-
scale TSPs. Further intensive studies are indispensable to confirm validity of our discus-
sions. Size dependence of the computational step required for the adaptive CSA algorithm
will be studied for large-scale problems. Residual energy decreased by slow. learning al-
gorithm will be investigated for large-scale problems in our future work. Efficiency of the
present algorithms to other combinatorial optimization problems such as the knapsack
problem, the quadratic assignment problem would be also examined. By the comparative
studies with various other approximate algorithms such as the 2-opt algorithm, the Tabu
search algorithm, the genetic algorithm, and many others [124], disadvantages as well as
advantages of the CSA algorithms would be clarified.
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Application of chaotic dynamics to
nonlinear optimization problems

abstract: Global bifurcation scenario is presented for chaotic dynamical systems that solve
nonlinear optimization problems. The bifurcation scenario elucidates the mechanism of chaotic
dynamics that searches for a global minimum of the optimization problem. On the basis of the
bifurcation scenario, a learning algorithm is introduced for the chaotic optimization system. The
algorithm controls the asymptotic measure of the chaotic dynamics and improves efficiency of
the “chaotic search.” Our numerical experiments also show that the learning algorithm works as
“chaotic simulated annealing,” which realizes gradual convergence of the chaotic search dynamics

to possible optimum solution.

7.1 Introduction

The minimization problem of a nonlinear function that has many local minima appears
in many engineering problems. Towards the global minimization of general nonlinear
functions, various algorithms have been developed. The famous algorithms are the hill
climbing algorithm [27, 72], the function modification algorithm [125, 131], and the sim-
ulated annealing algorithm [71]. These algorithms have not yet achieved an applicability
to a wide class of practical engineering problems because of the huge computational cost,
no guarantee for the global optimality, and the impractically long computational time.
As an alternative approach to the problem, a novel optimization technique of nonlinear
functions based on chaotic dynamical systems has been recently developed [65, 66, 181,
187]. In the chaotic optimization technique, the global minimum is searched by chaotic
dynamics which visits a variety of local minima of the objective nonlinear function. Al-
though many experimental studies have reported the efficiency of chaos for nonlinear
optimization problems, they are mainly based on the simulation studies and therefore
they are not sufficient for proving the efficiency of chaos to practical engineering prob-
lems. The previous studies also do not clarify the dynamical mechanism of the chaotic

109
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optimization. Hence, the present Chapter aims to investigate the chaotic optimization
mechanism from the view point of bifurcations in the chaotic optimization system.

First, a global bifurcation scenario is presented for chaotic dynamical systems that
solve nonlinear optimization problems. The bifurcation scenario clarifies the generation
mechanism of a strange attractor that includes many local minima of the objective nonlin-
ear function as the unstable fixed points. By wandering around a variety of such unstable
local minima, the chaotic dynamics searches for the global minimum.

Second, in order to improve the conventional chaotic optimization technique, learning
algorithm is introduced to chaotic dynamical system. Our focus is on the asymptotic
measure of chaos that determines the efficiency of chaotic optimization. By the learning
algorithm, asymptotic measure of the chaotic search is adaptively modified by the his-
tory of the chaotic optimization process. By the numerical experiments, efficiency of the
learning algorithm for 1- and 2-dimensional nonlinear optimization problems is demon-
strated. We also show that the learning algorithm works as a potential algorithm for
chaotic simulated annealing (CSA), since it realizes a gradual convergence of the chaotic
search dynamics to possible global minimum state in the limit of infinitely slow learning.

7.2 Global bifurcation scenario for chaotic optimiza-

tion system

7.2.1 Chaotic dynamics for function minimization

Consider the following minimization problem of a constrained nonlinear function:
Minimize e(y)
Subject to y € A,

where y = {y1,Y2,.»va} (€RY), A={y: |y:| <ai,i=1,2,..,d},and e: A = R".

Let us construct a chaotic dynamical system that solves the optimization problem.
First, diffeomorphism A : R — A is introduced to transform the variables y into new
variables z = {z;,23,..,2,} by y = h(z). The objective function e(y) is then redefined as
E(z) = e(h(z)) for z € R". For the diffeomorphism h = {hy,hy,..,h,}, a set of smooth

monotone-increasing functions h; : R — R' defined by

1—e™™
Y; = hi(-’l?) = '

= a; —1—{-—6_‘”: (’l, = 1,2,..,d) (71)

is exploited. Second, consider the gradient dynamical system

d
=T VE(z) (7.2)
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which exhibits convergence dynamics to local minima of the objective function E(z).
Chaotic dynamical system that searches for the global minimum of E(z) is constructed
by the Euler’s discretization of the gradient system (7.2) as

z(t+1) = =z(t)— a VE(z(t))
= f(=(t)), (7.3)

where a stands for the Euler’s discretization constant. It is proven by Yamaguti-Matano
(215] and Hata [84] that, in certain mathematical condition, the difference equation (7.3)
exhibits Li-York chaos [126] for a large enough a. By the global bifurcation analyses
of eq. (7.3), the next Section shows the generation mechanism of chaotic dynamics that
searches for the global minimum of E(z).

7.2.2 Global bifurcation structure of chaotic search

Using the following 1-dimensional example:
Example 1 (1-dimensional Levy-Montalvo function [125]):

d-1
ely) = g{Bsin2(7rz1) 3 (2 — C)*(1 + Bsin®*(r2i41)) + (24 — C)*} + D,
=1
z=y; +35, |yl<50, i=12,..4d, (7.4)

where d = 1, B = 5.0, C = 1.0, and D = 100, let us see the generation of chaotic
dynamics that searches for the global minimum of e(y).

Figure 7.1: (a) Energy curve of the cost function (7.4). a, b, ¢, d, e, f, g, h indicate the location of
the 8 local minimum solutions. (b) Energy curve of the cost function (7.4) transformed by h.
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As is shown by the function curve of fig. 7.1 (a), the function e(y) has eight local
minima indicated as a, b, ¢, d, e, f, g, h, where b (y = —2.5) corresponds to the global
minimum. Fig. 7.1 (b) shows the objective function curve of E(z) transformed by h with
a = 5. We see that the original topology of the eight local minima of e(y) is preserved in

Taking « as the bifurcation parameter, global bifurcation diagram of the difference

equation (7.3) constructed for the example 1 is drawn in fig. 7.2.

global chaotic search point

a.ooz 0.004 .00 0.00s 0010 001z

bifurcation parameter: o

Figure 7.2: Bifurcation diagram of the chaotic dynamical system (7.3) applied to Example 1. With an
increase in the bifurcation parameter a, eight bifurcation diagrams are drawn respectively from the local

minimum solutions a, b, ¢, d, e, f, g, h.

First, in a bifurcation parameter region of small «, there exist eight stable fixed points
which correspond to the local minima of the objective function e(y). With an increase in
the bifurcation parameter a, each local minimum bifurcates into chaotic attractor through
period-doubling bifurcation route to chaos [55]. The chaotic attractors are initially local-
ized in the state space and eventually merge with each other via a series of crises [79, 80].
For instance, the chaotic attractors generafed from the local minima d, e, f, g, h touch
the separatrices from the chaotic attractors generated from c, d, e, f, g, respectively, and
loose their stabilities via boundary crises. The chaotic attractors from a, b, ¢ also touch
the separatrices from the previous chaotic attractors from b, ¢, d, respectively, and loose

their stabilities via interior crises, where the interior crises give rise to the merger of the
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localized chaotic attractors. Notice that, via the interior crisis at a = 0.0074, all of the
eight localized chaotic attractors from a, b, ¢, d, e, f, g, h merge into a single global
chaotic attractor. The single attractor achieves a global dynamical structure which in-
clude all the eight local minima as the unstable fixed points. In the sense that the chaotic
dynamics on such a global attractor visits the eight unstable local minima successively,
the system achieves a search capability of the global minimum among the eight local

minima.

7.2.3 Global bifurcation scenario

On the basis of the bifurcation phenomena observed in example 1, we present the following
“global bifurcation scenario” for chaotic dynamical systems that solve the optimization
problem: First, local minima of E(z) bifurcate into chaotic attractors through period-
doubling bifurcation route to chaos. The chaotic attractors are initially localized in the
state space and eventually merge into a single global attractor via a series of crises. The
final merger gives rise to a single global chaotic attractor which covers all the local minima
of E(z). The “chaotic search” for global minimum is realized by chaotic dynamics on such
global attractor. The bifurcation scenario is essentially the same with the one presented
in Chapter 5. This implies that the present bifurcation scenario elucidates universal
bifurcation phenomena that give rise to chaotic optimization dynamics.

One of the major problems for practical application of chaotic optimization technique
to various engineering problems is the difficulty of choosing good parameter values of the
chaotic search system. In fact, parameter values for the chaotic optimizers have been
empirically determined in the conventional studies [65, 154, 181, 187]. For this problem,
the present bifurcation scenario provides a clear guideline for tuning the bifurcation pa-
rameter value. Namely, by following the bifurcation procedure of local minima of E(z),
one may find the bifurcation parameter region where the chaotic attractors from local

minima merge into a “global search” attractor.

7.2.4 Chaotic search algorithm

Based on the global chaotic search dynamics at a = 0.013, the global minimum of E(z)
can be searched by the following algorithm 1.

[Algorithm 1 (Chaotic Search)]

STEP 1 (Initial condition):
Choose random initial condition z(0) €[—1,1]? and set ¢t =0, z = E(z(0)).

STEP 2 (Update of the dynamics of eq. (7.3)):

2(t+1) = £(=(t))
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STEP 3 (Update of the minimum value z):
Set z = min(z, E(z(t +1))),t =t + 1, and go to STEP 2.

By the recursive execution of the STEP 2, chaotic dynamics of eq. (7.3) searches for
the global minimum of E(z). Fig. 7.3 shows the result of the algorithm 1 applied to
the example 1. As the iteration number of the chaotic search increases, we see that the
minimum value z becomes asymptotically close to the global minimum of E(z).

Searched Minimum : Emin (t)

150

140

120

110
Optimum Value

}

100

0 10 20 30 40 50 60 70

Search Step : t

F igure 7.3: Result of the chaotic search algorithm 1 applied to Example 1. The minimum value E,,;,
searched by chaotic dynamics is drawn with an iteration step of the algorithm.

In general, chaotic dynamical system has an invariant measure [118] which describes
the non-uniform trajectory distribution of the chaotic dynamics. Fig. 7.4 shows an asymp-
totic measure of the chaotic search dynamics of eq. (7.3) applied to example 1. The mea-
sure is computed for a single chaotic trajectory from a random initial condition, where the
computational result seems to be independent of the choice of the initial condition z(0).
We note that the efficiency of the present chaotic search algorithm is strongly dependent
upon this asymptotic measure. The structure of the asymptotic measure is determined
by the functional form of the chaotic dynamics and the configuration of the objective
function. In the conventional chaotic search techniques [65, 154, 181, 187], methods for
constructing an asymptotic measure which gives rise to an efficient chaotic search are
not explicitly provided. We remark that this is the limitation of the conventional chaotic
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search techniques. Systematic methods should be developed for designing the asymptotic .

measure which has better search capability for the global minimum.

p(X)

20

Figure 7.4: Asymptotic measure p(z) of the “chaotic search” dynamics (7.3) applied to Example 1.

7.3 Learning algorithm for chaotic search dynamics

In this Section, we introduce a learning algorithm for chaotic search dynamics. Based on
the history of the previous chaotic search, the learning algorithm adaptively controls the
asymptotic measure to realize better chaotic search for optimum solution [194].

7.3.1 Continuous piecewise-linear filter

Let us introduce a continuous piecewise-linear (CPL) filter g = {91, g2, .., g4}, whose i-th
component is described by a CPL map g; of fig. 7.5. The i-th CPL map g; has a range
Ji = [b',¢'], which is uniformly divided into N unit ranges J} = [b' 4+ (j — 1) D%, b + 3D
(D' = (¢ — ¥)/N, j = 1,2,..,N), and a domain I* = [, c'], which is non-uniformly
divided into N unit domains I} = [b,¢}] (j = 1,2,..,N). Here, the length of each unit
domain d% = |¢i — b] is set to be varied from others, where each length is determined as
d: = wi(c' — b') using a set of weight parameters {w] : j = 1,2,.., N} that satisfies the
normalization condition Y, w} =1 (w§ > 0).

Suppose there is a set of input trajectories to g; with uniform distribution. By the
non-uniformity of g;, the output trajectories are non-uniformly distributed according to
the weight parameters {w;} For instance, if the k-th parameter w} has a large weight,
the length d., of the k-th input domain I} is set to be large and the trajectory distribution
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on the k-th output range Ji increases. By using the CPL filter g which creates a non-
uniformity in the trajectory distribution, asymptotic measure of the chaotic dynamics can

be controlled.

" " |-

bi i 0
C

— e P Xi
i i i
dr d:2 dn

di =} (c'-oh)

Figure 7.5: Basic structure of the continuous piecewise linear map g;. g has a range J* = [b%, ¢!] which
is uniformly divided into N range blocks and a domain I* = [¥,¢'] which is non-uniformly divided into

N domain blocks.

7.3.2 Learning algorithm
By introducing the CPL-filter g as the feedback filter of the chaotic search dynamics, let

us consider the following learning algorithm.

[Algorithm 2 (Learning Chaotic Dynamics)]

STEP 1 (Initial condition):
Choose random initial condition z(0) €[—1,1]* and set t =0 and z = E(z(0)).
Set the weight parameter values as w] = wy = -+ = wY = 1/N, that make the

CPL-filter an identity map g = .d.

STEP 2 (Update of the feedback filtered dynamics):

z(t + 1) = f(g(=(2)))- (7.5)
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STEP 3

STEP 4

(Learning in chaotic dynamics):

If E(z(t+1)) < (1+ €)z, then, for each CPL-map g;, increase the j-th weight
value that satisfies x;(t) € I! by w} = (1+ B)wi.

If E(z(t+1)) > (1+¢€)z, then, for each CPL-map g;, decrease the j-th weight
value that satisfies z;(t) € I} by ' =(1— ¥)ws.

(e (¢ > 0) stands for a small constant parameter and (3, v) (8, v > 0 ) stands for a
set of learning parameters)

(Modification of CPL-filter):

Modify the structure of each CPL-map g; according to i-th set of non-uniform weight
parameters that satisfy Y.}, w: = 1. Then,set n =n+1, z = min(z, E(z(t+1))),
and t =t + 1, and go to STEP 2.

.........................................................

...........................................................

——I=—1b-- » X
f b /b c
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Figure 7.6: Schematic illustration of the learning algorithm 2. Feedback filter g is introduced for
chaotic dynamical system (7.3). By adjusting the feedback filter, asymptotic measure of the chaotic
search dynamics around the bad solution is decreased, while the asymptotic measure around the good

solution is increased.

In the STEP 3 of the algorithm 2, learning process is introduced. As is schematically
shown in fig. 7.6, the learning algorithm has the following functions.

1.

Decrease the distribution of chaotic search trajectories near the bad solutions. This
creates the “Tabu” search area in the asymptotic measure of the chaotic dynamics.



118 Chapter 7

2. Increase the distribution of chaotic search trajectories near good solutions. This
gives rise to the local intensive search around good solutions.

7.3.3 Experiment

In order to test the performance of the learning algorithm, let us apply the algorithm 2 to
the example 1. The results are shown in figs. 7.7 (a)-(d), which display successive changes
in the asymptotic measure of the chaotic search of eq. (7.3) by the learning algorithm.
The parameters of the algorithm are set as (b, ¢, N, ¢, 3, v) = (—2.25, 2.0, 20, 0.025,
0.025, 0.0005). As the learning proceeds, we see that the asymptotic measure around
the optimum solution grows high and after the 1000-iterative learning the asymptotic
measure eventually converges to the optimum solution. This demonstrates the function
of the learning algorithm, which eventually narrows the chaotic search region and realizes
a final convergence to the optimum solution. The result of the learning algorithm seem
to be independent of the choice of the random initial condition.

p(x) p(X)

0
(a) 20 15 10 05 00 05 10 15 X (b) 20 -15 -0 05 00 95 10 15 X

0 B 0.0
(c) 20 -15 10 05 [ 05 1.0 15 X (d) 20 -15 -10 -05 00 05 1a 15 X

‘Figure 7.7: Asymptotic measure p(z) of the “chaotic search” dynamics applied to Example 1. (a)
Before learning. (b) After 1000-iterative learning. (c) After 1200-iterative learning. (d) After 1800-
iterative learning.
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In Table 7.1, performance of the algorithm 1 (without learning) and the algorithm
2 (with learning) is compared by the averaged iteration steps to reach to the global
minimum. By the learning algorithm, which effectively forms a Tabu search area, average
time to reach to the global minimum is improved.

7.3.4 Another 1-dimensional example

Let us consider another 1-dimensional example.
Example 2:

ely) = 600+ (y+4.2) (y+22) (y+1.2) (y—1.7)
(y —2.8) (y — 3.865) (|y| < 4.3). (7.6)

-4.0 2.0 0 20

Figure 7.8: Energy curve of the cost function (7.6). a, b, ¢ correspond to the local minimum solutions,
whereas d, e correspond to the local maximum solutions.

As is shown in fig. 7.8, the energy curve of eq. (7.6) has three local minima a, b, c,
where a corresponds to the global minimum. Fig. 7.9 shows the bifurcation diagram of
the dynamical system of eq. (7.3) (a = 4.3) for the example 2. With an increase in the
bifurcation parameter a, bifurcations of the local minima a, b, ¢ similar to the example
1 are discernible. First, the local minima a, b, ¢ bifurcate into chaotic attractors through
period-doubling bifurcation route to chaos. The chaotic attractors are initially localized
around the corresponding local minima and eventually merge with each other via crises.
The interior crisis near a = 0.008 gives rise to the final merger of all the localized chaotic

attractors.
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X glohal chaotic search point

1 T I T i
0.0001 00,0020 00,1040 0, (ki) 00080 01,0041

bifurcation parameter: (

Figure 7.9: Bifurcation diagram of the chaotic dynamical system (7.3) applied to Example 2. With an
increase in the bifurcation parameter a, three bifurcation diagrams are drawn respectively from the local

minimum solutions a, b, c.

For the global chaotic search dynamics with a = 0.008, the learning algorithm is
applied. Figs. 7.10 show the application results, where the parameters of the learning
algorithm are set as (b, ¢, N, ¢, 8, v) = (—6.5, 3.5, 50, 0.1, 0.1, 0.01). Similar results
to the example 1 can be observed in figs. 7.10. Namely, as the learning proceeds, the
asymptotic measure around the optimum solution grows high and after the 1000-iterative
steps of learning the asymptotic measure eventually converges to the optimum solution.
Comparative study of the algorithms 1 and 2 also shows that the average time to search
for the global minimum is shortened by the learning algorithm (see Table 7.1).

For 1-dimensional instances other than the examples 1 and 2, we can confirm efficiency

of the learning algorithm in a similar manner.
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Figure 7.10: Asymptotic measure p(z) of the “chaotic search” dynamics applied to Example 2. (a)
Before learning. (b) After 500-iterative learning. (c) After 600-iterative learning. (d) After 700-iterative
learning.

7.3.5 2-dimensional problems

Example 3 (2-Dimensional Levy-Montalvo Function [125]):
Here we consider the 2-dimensional case of the Levy-Montalvo function of eq. (7.4), where
the parameters are set as d = 2, B =10, ¢ = 1.0, D = 20.0.

As is shown in fig. 7.11, the 2-dimensional Levy-Montalvo function has many local
minima, where the unique global minimum is located at (y;, y2) = (—2.5, —2.5).

For the 2-dimensional example, the dynamical system of eq. (7.3) is slightly modified as
z;(t+1) = z;(t) — a0FE /0z;(z(t)) + o(zi(t)) (¢ = 1,2), where the additional term is given
by U'(fc) =q+ Q2CXP(—T2((I} - 32)2) (if 2 < 51), qrexp(—ri(z — 31)2) + gzexp(—r2(z — 82)2)
(if 51 < = < s3), qrexp(—r1(z — 81)?) + ¢2 (if s3 < z). For the parameters set to (a, a, g1,
g2, T1, T2, 81, 82) = (5, 0.00075, 1, —1, 10, 10, —3, 3), the modified system exhibits chaotic
search dynamics which includes many local minima in the global dynamical structure (see

fig. 7.12 (a)).
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Figure 7.11: Energy curve of the 2-dimensional Levy-Montalvo function (7.4). In the domain A = {y:

ly1| < 5.0, |y2| < 5.0}, there exist many local minimum solutions and a single global minimum at (y1, y2)
= (~2.5, —2.5).

() "1 (d) "1

Figure 7.12: Trajectory distribution of the chaotic search dynamics applied to Example 3. The circle
indicates the existence region of the optimum solution. (a) Before learning. (b) After 200000-iterative
learning. (c) After 400000-iterative learning. (d) After 600000-iterative learning.
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For this global chaotic search dynamics, learning algorithm is applied. The learning
parameters are set as (by, by, c1, ¢, N, €, B, v) = (—2.67, —19.5, 1.42, 23.5, 200, 0.005,
0.005, 0.00001) and the results are shown in figs. 7.12 (a)-(d).

Initially, the chaotic dynamics gives rise to global search, whose trajectories are dis-
tributed globally in the 2-dimensional state space (see fig. 7.12 (a)). As the learning pro-
ceeds, asymptotic measure of the chaotic dynamics increases around the global minimum
(see figs. 7.12 (b),(c)) and eventually converges to the global minimum (see fig. 7.12 (d)).
This implies that the learning algorithm works efficiently for the 2-dimensional example.
Comparative study of the algorithms 1 and 2 also shows the average search time for the
global minimum shortened by the learning algorithm (see Table 7.1).

Example 4 (Girewank Function [72]):

2 2
_ Y2, , Y1ty
e(y) = Cos(yl)cos(\/i)+ 200 + 21,

ly:| < 25.0, i=1,2. (7.7)

(
¢ .
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Figure 7.13: Energy curve of the Girewank function (7.7). In the domain 4 = {y : |p| < 25.0,
ly2| < 25.0}, there exist many local minimum solutions and a single global minimum at the origin (y,

v2) = (0.0, 0.0).

As is shown in fig. 7.13, the Girewank function of eq. (7.7) has many local minima,
where the unique global minimum is located at the origin (y;,y,)=(0,0).

For the parameters set to (a, a, q1, g2, 71,72, 51, s2) = (25, 0.3, 3, =3, 10, 10, —3, 3),
the dynamical system of modified eq. (7.3) exhibits global chaotic search dynamics which
includes many local minima in the global dynamical structure (see fig. 7.14 (a)).

Figs. 7.14 (a)-(d) show the results of the learning algorithm applied to the example 4,
where the learning parameters are set to (b1, by, c1, ¢z, N, ¢, 8,7) = (—4.2, —3.2, 4.2, 3.2,
200, 0.02, 0.02, 0.0005). Initially, the chaotic dynamics exhibits global search dynamics,
which is uniformly distributed in the 2-dimensional space (see fig. 7.14 (a)). As the
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learning proceeds, the chaotic dynamics achieves a non-uniform (torus-breakdown type)
dynamical structure and its asymptotic measure increases around the global minimum (see
figs. 7.14 (b),(c)). Finally, the system converges to the global minimum (see fig. 7.14 (d)).
Efficiency of the learning algorithm for the example 4 can also be confirmed by the average

search time of the global minimum in Table 7.1.

y1 (d) y1

(<)

Figure 7.14: Trajectory distribution of the chaotic search dynamics applied to Example 4. The circle
indicates the existence region of the optimum solution. (a) Before learning. (b) After 200000-iterative
learning. (c) After 400000-iterative learning. (d) After 600000-iterative learning.
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Table 7.1: Results of the chaotic search algorithms 1 and 2 applied to Examples 1-4. The average iter-
ation steps to reach to global minimum solution is calculated for 10000 sets of random initial conditions.

Ezample ” Without Learning | With Learning
Example 1 406.7 + 0.8 328.1 £ 0.7
Example 2 815.0 £ 1.0 411.0 £ 1.0
Example 3 11816 £+ 100 8726 + 80
Example 4 24614 + 150 18117 + 100

7.3.6 Learning as simulated annealing

From the numerical experiments with four instances of nonlinear function minimization
problems, we have seen the efficiency of the learning algorithm which gradually narrows
the chaotic search space and finally makes the chaotic dynamics to converge to the global
minimum. For the stochastic dynamical system, the search space is usually controlled
by the simulated annealing algorithm [71], which eventually narrows the stochastic search
space and realizes a final convergence to the global minimum by the thermodynamical
control of the temperature parameter. According to the way of controlling the search
space, the present learning algorithm can be also considered as a novel simulated annealing
algorithm for chaotic dynamical system.

As a simulated annealing algorithm for chaotic dynamical system, chaotic simulated
annealing (CSA) algorithm has been proposed by Chen & Aihara [35]. The conventional
CSA algorithm is based on the controlling algorithm of a single bifurcation parameter
in chaotic search system. By gradually changing the bifurcation parameter, the chaotic
search dynamics is eventually changed into the gradient descent dynamics which makes
final convergence to possible global minimum. As is discussed in Chapter 6, the result of
the CSA algorithm is primarily dependent upon the global bifurcation structure of the
chaotic dynamical system and global optimality of the CSA algorithm is not always guar-
anteed. In fact, for the four instances of nonlinear optimization problems studied in this
Chapter, global minimum solution can not be obtained by an infinitely slow CSA algo-
rithm. Hence the experimental results of the present study implies a possibility that the
difficulties of the conventional CSA algorithm can be conquered by the learning algorithm

of the chaotic dynamical systems.
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7.4 Conclusions and discussions

A global bifurcation scenario is presented for chaotic dynamical systems that solve non-
linear optimization problems. The scenario well elucidates the chaotic search mechanism
that visits all local minima of the object function as the unstable fixed points.

In order to improve efficiency of the chaotic optimization algorithm, CPL feedback
filter and its learning algorithm are then introduced. The learning algorithm adaptively
controls the asymptotic measure of the chaotic dynamics and realizes an efficient search
for optimum solution. Using four instances of 1- and 2-dimensional nonlinear optimization
problems, efficiency of the algorithm has been demonstrated.

We remark that there are only few studies which deal with the learning in chaotic
dynamical system. To the best of our knowledge, learning in chaotic dynamics has been
discussed by Tsuda [203], Nara et al. [150, 151], Watanabe et al. [207] for the applications
to pattern learning, pattern search, and memory acquisition. We believe that the present
study provides a first result for applying the learning algorithm in chaotic dynamics for
the optimization problems.

Followings are our future problems.

1. Efficiency of the learning algorithm is tested for higher dimensional problems.

2. By the numerical experiments, we have seen that the learning algorithm works as
a simulated annealing algorithm which gradually cools down the chaotic search dy-
namics to converge to the global minimum. As in the stochastic simulated annealing
[71], “gradual” learning might also be necessary for the global optimization of the
chaotic dynamics. Fig. 7.15 shows the dependence of the convergence rate to the
global minimum on the learning speed 3. For a large 8 which realizes a fast learn-
ing, the trapping rate to local minima increases. On the other hand, for a small
B which slows down the learning process, global optimization rate of almost 100%
is realized. This implies that the learning parameter provides a trade-off parame-
ter between the global optimization rate and the learning speed. Guideline should
be further developed for determining a good learning parameter value in order to

realize global optimization by fast learning.

3. In the recent studies of chaos engineering, techniques have been sought for con-
trolling chaotic dynamics in the way of harnessing the wild horses. Towards the
“harnessing of chaos” [214], many control techniques such as the OGY method
[155] have been developed. In the conventional techniques, the local dynamical
structure of chaos is mainly controlled to stabilize the periodic dynamics. In the
sense that the present learning algorithm controls the global dynamical structure of
the asymptotic measure of chaos, the learning algorithm may provide us with more
adaptive technique for controlling chaos. Applicability of the learning algorithm for
the chaos control technique would be also studied in our future works.
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Global Optimization Rate
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Lﬁérning Speed: 8
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Figure 7.15: Dependence of the global optimization rate of the learning algorithm to the learning speed
B. The global optimization rate is calculate for 5000 sets of random initial conditions.
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Conclusion

8.1 Summary

In this thesis, we have studied the functions of chaotic dynamics in neural information
processing systems.

In Chapter 2, we have considered the learning capability of neural networks with time
delayed feedbacks. The experimental studies have shown that the time delays drastically
enhance the learning capability of the neural networks especially in case of learning high-
dimensional chaotic dynamics.

In Chapters 3 and 4, we have developed an algorithm for constructing a parametrized
family of neural networks that identify the underlying bifurcation parameters of chaotic
time series. The family of neural networks can be used for recognition of chaotic time
series and for detection of switch dynamics in chaotic time series.

We emphasize that these applications are possible only when the neural networks learn
and exhibit chaotic dynamics. Since chaotic dynamics provides us with a rich information
on its global dynamical structure, learning capability of the neural networks is enhanced
and identification of the underlying bifurcation parameters of chaotic dynamics becomes
possible.

In Chapters 5-7, we studied the optimization capability of chaotic neural networks
that exhibit chaotic dynamics to search for optimum or near-optimum solution of the
optimization problem. A global bifurcation scenario is presented to elucidate the chaotic
search mechanism that efficiently escapes from local minima and searches for another
better solution. On the basis of the bifurcation scenario, difficulty of realizing simulated
annealing in chaotic dynamical system is discussed and several modified algorithms for
chaotic simulated annealing are developed.

As is summarized above, we have seen many applications in which chaotic
dynamics significantly enhances the information processing capability of the
neural networks. Our studies therefore encourage further applications of the
idea of chaotic dynamics to neural networks in a variety of engineering prob-

129
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lems. We also believe that our studies would provide us with deeper insights
on the function of chaos in the real brain systems.

8.2 Future works and applications

8.2.1 Chaotic memory in delayed neural networks

In Chapter 2, we have studied a learning capability of neural networks with time-delayed
feedbacks. Such delayed feedback systems described by retarded functional differential
equations can be found in many engineering systems. One example is the optical laser
system [99], which is known to give rise to multi-stability of infinitely many periodic
attractors. With a change in bifurcation parameter, higher harmonic bifurcations take
place and the infinitely many periodic attractors eventually merge into a single global
chaotic attractor [99]. This multi-stability and their merging bifurcations have practical
applicability to memory device, in which memories are stored in the periodic attractors
and the stored memories are searched by global chaotic dynamics [4]. It is an easy
application for delayed neural networks to model such laser dynamics that realizes chaotic
memory function, since both models are described by retarded functional differential
equations. Hence, it is our future work to implement chaotic memory for delayed neural
networks and apply the neural memory device for multiple oscillatory mode generation

and for temporal data storage.

8.2.2 Application to real world problems

In Chapters 2-4, we have studied the neural network applications of modeling chaotic dy-
namics and identifying a parametrized family of chaotic dynamics. Although the neural
networks efficiently work for learning equational models of chaotic dynamics, its appli-
cability to chaotic dynamics in real world systems has not yet been tested. One of our
important future works is to apply our algorithm to real world dynamical systems such
as electronic circuits [135], chaotic chemical sensor [169], blast furnace [144], flooded ship
motion [146], and chaotic neural oscillator [9, 134].

A. System control and monitoring

There are many real engineering systems such as chemical sensor [169] and blast furnace
[144], whose equation of motion and bifurcation structure are not well understood but
whose dynamics can be observed as time series data. Identification of the global bifurca-
tion structure of such unknown dynamical system from time series data by the algorithm
of Chapter 3 may provide us with a rich information on the original dynamical structure,
which can be utilized for control and monitoring of chaotic engineering systems.
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B. Testing plausibility of qualitative models

There are also many real world systems such as physiological neuron [9, 134] and flooded
ship dynamics [146], whose bifurcation structures have been analyzed by using qualitative
mathematical models. It is an interesting future work to test plausibility of the qualitative
mathematical models from the comparative study between the bifurcation structure of the
qualitative mathematical models and the bifurcation structure reconstructed from time
series data by the algorithm of Chapter 3.

C. Judging low-dimensional chaos in time series

In nonlinear analysis of complex time series observed form real world systems, the question

often arises as

Does the irregularity observed in time series data originate from low-dimensional
deterministic chaos or infinite-dimensional stochastic dynamics?

In conventional techniques of chaotic time series analyses [1, 34, 101, 109, 189, 208], the
question has been tried to be answered by detecting low-dimensional chaotic property in
time series data. This type of approach can be sometimes controversial, since accurate
characterization of chaotic property becomes very difficult when time series data is too
short and when time series data is contaminated with too strong observational noise or
dynamical noise.

We emphasize that our approach of identifying a parametrized family of chaotic dy-
namics from time series data can solve this problem. If low-dimensional bifurcation
structure is clearly detected by our algorithm, that is the strongest evidence for low-
dimensional chaos in time series data, because stochastic dynamics never gives rise to
such low-dimensional bifurcations. Hence, our algorithm may be further utilized to judge
low-dimensional chaos in a variety of real world time series that have been miss-judged

as stochastic dynamics.

D. Difficulty of modeling real world dynamics

Finally, we note that application of the algorithms of Chapters 2-4 to real world systems
may not be in some cases carried out straightforwardly, since the real world systems often
giverise to higher-dimensional dynamics and they also have spatio-temporal structure [40].
In conventional techniques for modeling chaotic dynamics, the delay-coordinate method
is usually utilized to reconstruct chaotic dynamics. Although the Takens theorem [186]
guarantees that the delay-coordinate method provides an embedding for low-dimensional
dynamics, the theorem can not be usually applied to higher dimensional spatio-temporal
dynamics. Therefore, the algorithm should be further modified in order to deal with such
complex real world dynamics.
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8.2.3 Further development and application of chaotic search
A. Design and control of chaotic search

In Chapters 5-7, we have studied the mechanism of chaotic search dynamics in optimiza-
tion problems. It should be noted that the chaotic optimization capability is primarily
dependent upon the asymptotic measure of the chaotic search dynamics. In the con-
ventional chaotic optimization techniques [65, 154, 181, 187], methods for constructing
an asymptotic measure which gives rise to an efficient chaotic search are not explicitly
provided. We remark that this is the limitation of the conventional chaotic optimization
algorithms. In order to realize more efficient chaotic optimization, methods for con-
structing an asymptotic measure that gives rise to an efficient chaotic search should be
further developed. In general, however, construction of chaotic dynamics with desirable
asymptotic measure is an extremely difficult engineering problem. At present, there ex-
ists a method for constructing a desirable asymptotic measure only for one-dimensional
piecewise-linear Markov maps [117]. It is a challenging but worthwhile investigation to
develop methods for designing the asymptotic measure of high-dimensional chaotic neural
networks that significantly improve the chaotic optimization capability.

B. Learning algorithm for simulated annealing

Construction of simulated annealing algorithm in chaotic dynamics is also an important
and interesting open problem. Our studies of Chapters 6 and 7 imply possibility of
realizing a simulated annealing in chaotic dynamics by introducing a learning algorithm,
since the learning gradually narrows the chaotic search space and finally makes the chaotic
search dynamics to converge to a possible global minimum. Our further study will be
devoted to justify this scenario from experimental and theoretical viewpoint.

C. Hardware implementation of learning

We also note that the learning algorithm introduced to chaotic neural network in Chapter 6
is based upon a global learning rule in the sense that the synaptic connections are adjusted
by computing the energy function defined to global dynamical state of the chaotic neural
network. Observation of the global network state at every learning step is computationally
rather costly. Development of the learning algorithm based local rule, which is to adjust
the synaptic connections by observing only their neighboring neuron states, may solve
this problem. The local learning rule may also be suitable for a hardware implementation
of the learning algorithm. Towards possible hardware implementation of the learning
algorithm in chaotic neural network, local learning rule will be developed in our future

work.
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Appendix A

Numerical technique and
mathematical preliminaries

A-1 Numerical technique

The procedure for minimizing the cost function (3.12) of Chapter 3 via the quasi-Newton
method requires calculating of the cost function U(Q) and its first derivatives OU/OS).
This appendix illustrates practical numerical algorithms for computing U(2) and U /092.

Let us approximated the solution curve ¢* : REx R? — R? generated form the nonlinear
predictor (3.8) with an initial condition ¢°(Q, X) = X by using the Euler’s integration
formula with a time step of At/q (g € Z) as

$T(X) = X+ % a F(Q,X) (A-1-1)
¥ c@,x). (A-1-2)

Then, the cost function of eq. (3.12) can be rewritten as

N-W-K K 1
u@) =3 > 316"X) - Xl (A-1-3)

j=(d—1)T+1 k= 12

where G* is calculated by the iterative procedure of

GMt(Q, X) = G(2,G™(Q, X)). (A-1-4)
With respect to the cost function (A-1-3), the first derivatives OU /0 are derived as
N-W-K K kg
T@= Y DK - Xiw)- S (@0,X) (A1)

j=(d-1)7+1 k=1
where the right hand values 8G*?/9Q are calculated by solving the first variational equa-
tions of (A-1-4)

oGt oG 0G oG"

= (2, X) = 22(0,67(2, X)) + 51 (2,6 (@, X) (0, X) (A1-6)
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with an initial condition 8G°/9Q = 0 [209].
In our experiment, we set ¢ = 4 and integrated the differential equation (3.8) with a
time step of At = 0.05.

A-2 Symmetry in chaotic neural network

This appendix provides mathematical proof of the symmetry in chaotic neural networks
studied in Chapter 5. We show (i): foy=vof and (ii): fop=mnof. (i)and (ii)
immediately lead to fo (' 0o4™) = (n'oy™)o f for 1 =0,1and m =0,..,N — 1.

(i) For any p € RM¥, fo~(p) =70 f(p) because

N-1N-1
{FovP)lie = rPiknn+ (1 —7) 0 (> D T st pirer +1) (A-2-1)
7=0 1=0
N-1
= rpikn +(1—r) o (3 sump g T, jr-1 pje +1)  (A-2-2)
j:O
~1N-1
= rpirt1+(1—7) Z Ti k41, 0 pjv + 1) (A-2-3)
7=0 I'=0
= {f( )}z k+1 — {7 o f( )}‘Lk (A_2_4)

for 0< i,k <N -1.

The indices in {I;;} are dropped since the set of the parameters {I;+} takes a same
value by eq. (5.9). From eq. (A-2-2) to eq. (A-2-3), we have used Ty ;i1 = Tir+1, jis
which is the property of the synaptic connections defined by -egs. (5.7)-(5.8).

ii) Forany p€ RN*N, fonp=mno f because
n

N-1N-1
{fon)}y = rrive+l=7)a (DY Twapina+1) (A-2-5)
7=0 =0
N-1N-1
= rpinkt(1—7)o( Tir, ; N—v pjir + I) (A-2-6)
j:O =0
—-1N-1
= rpinet(1-7) Z Ti vk, jv P + 1) (A-2-7)
=0 I'=0
= {f®)}lin_e={nof(P}tu (A-2-8)

for 0< i,k <N -1.
~ From eq. (A-2-6) to eq. (A-2-7), we have used Ti jn-1 = Tin-k, ji, which is the
property of the synaptic connections defined by egs. (5.7)-(5.8).
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A-3 Conjugate attractors with equivalent TSP solu-
tion

This appendix shows how the system symmetry gives rise to 2N conjugate attractors
representing an equivalent TSP solution in Chapter 5.

Suppose there exists an asymmetric attractor O = {p(n) | n = 0,1, ..} which is coded
as a feasible TSP solution J(5), where § = limro(1/T) S 1- p(n) represents a long-
term averaged firing rate of O.

Forall I =0,1andm =0,..,,N —1, along-term averaged firing rate of a conjugate
attractor 7' 09™(0) (= {n' oy™((p(n)) | » = 0,1,..}) can be written as 7t o v™(p)
because a linear mapping n'oy™ transforms 7 into n'oy™( p) =limr_ o (1/T) X0 7o
Y™(p(n)). Since J(n'oy™(p)) = n* 0oy™(J(p)), the 2N conjugate asymmetric attractors
{ntoy™(0) | 1=10,1, m =0,.,N — 1} are coded respectively as {n' o y™(J(p)) | | =
0,1, m=0,.,N —1}.

It is well known that the 2N codes {n' 0o9™(J(p)) | [ = 0,1, m = 0,..,N — 1}
represent an equivalent TSP solution [94]. This is because the transformations ~ and 7
do not change the basic tour configuration. Namely, v only shifts a choice of an initial
city in a visiting order of the cities and 7 changes a choice of a visiting direction of the
cities. Hence, the 2V conjugate attractors {n' 0o y™(0) |1 =0,1, m =0,..,N — 1} are
coded into an equivalent TSP solution.
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A D HITH7-), FHEX DEPWETEE LR T8, RE RFTHEH
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IT, —BL IO EZRLCHE F L, 52, TESHICBY 5 54+ A%
DERRIR & AT RO EEM A BRI 72X, K LI BT A2 EEOMEr BEX W7
EFEL7e LEVEHCZLET, T/o, KMLEFTEDLIIEL, HEAFLEE b
MZZBEIZ, S HRZEIR, RANCEER, HEEHIZII, BELHFREHB
ErBbhEL7-, EATEHVLIET,

ZWLERF LFANERLAF REMESRZ IO, EE0ETW L ERFTANEZ #
DHIZHE 2o T, HEI NS REHHZIREZTHEE T L2, FBOEH LTI,

BAREKRFH TEIER LA MARHIZICE, KRR EL T, WO E2 W
DRFOHEHS ERELRFROEL S EFO T L2, TR LTT,

T KFEETIHR LR BKRIGBIEIZ I, &+ AR OR)EN & BFZE 415 O
EEEDLY, EEEMIEEOBIIBEIVWAZEF L, EE0FERALLHEICES
IC, BRI DT o ThHRA DHTRE - WFEE W25 X KR LDV THEE IV
7eEEF L, LEDEHCLET,

BFRRIZ BT B B F ARFFEIC DWW THEA DRIBUR E 275V H—EREUE, 7 4
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F ZAIREYIZ DOV THIFEET A & V2 72722 72 Hanspter Herzel #i%, BIE % & T 5 4 AR
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NEPWHIZTEEZ WA EEPMRICELSTELIREICHER W PV T L,
ERQRT AAVAS DI IS

157



