Chapter 8

Global electromechanics in infarct heart

-82-



8.1 Abstract

To test the hypothesis that alterations in electrical activation sequence contribute to
depressed systolic function in the infarct border zone, the anatomical correlation of abnormal
electromechanics and the infarct geometry was examined in the canine post-myocardial
infarction (MI) heart, using a high-resolution MR-based cardiac electromechanical mapping
technique. Three to eight weeks after creating an MI in six dogs, a 247-electrode epicardial sock
was placed over the ventricular epicardium under thoracotomy. MI location and geometry were
evaluated with delayed hyperenhancement MRI. Three-dimensional systolic strains in epicardial
and endocardial layers were measured in five short axis slices using motion-tracking MRI
(DENSE). Epicardial electrical activation was determined from sock recordings immediately
prior to and following the MR scans. The electrodes and MR images were spatially registered to
create a total of 160 nodes per heart that contain mechanical, transmural infarct extent, and
electrical data. The average depth of the infarct was 55+11% and the infarct covered 28+6% of
the LV mass. Significantly delayed activation (>mean+2SD) was observed within the infarct
zone. The strain map showed abnormal mechanics, including abnormal stretch and loss of the
transmural gradient of radial, circumferential and longitudinal strains, in the region extending far
beyond the infarct zone. In conclusion, the border zone is characterized by abnormal mechanics
directly coupled with normal electrical depolarization. This indicates that impaired function in
the border zone is not contributed by electrical factors, but results from mechanical interaction
between the ischemic and normal myocardium.

8.2 Introduction

Depressed systolic function in the ischemic border zone with normal perfusion has been
recognized for several decades (135). The presence of hypocontractile, border zone myocardium
has consistently been substantiated by a variety of modalities, including echocardiography (124,
156), radiopaque bead arrays (163, 238), and most recently, MRI (84, 98, 103, 143). The
abnormal mechanics of the border zone is clinically important because it may negatively affect
ventricular remodeling and hypertrophy (61, 125).

The mechanism underlying the depressed function in the border zone has been explained
primarily by mechanical factors. Most investigators concluded that it results from mechanical
interactions, or tethering, between normal and ischemic myocardium (93, 94, 156, 163, 210, 238).
However, the abnormal mechanics in the border zone may also involve a contribution of
abnormal electrical activation. For example, the timing of electrical activation in the border zone
may be delayed by abnormal electrical sequence in the infarct zone and depressed shortening, or
relative stretch, in the border zone. A relative delay in electrical activation may augment the
depressed function in the border zone, because the myofiber in the border zone has to contract
against a higher afterload generated by earlier shortening of remote nonischemic zones.

It was hypothesized that alterations in electrical activation sequence contribute to
depressed systolic function in the infarct border zone. To test this hypothesis, the anatomical
correlation of abnormal electromechanics with reference to the infarct geometry was
qualitatively and quantitatively examined in a canine model of chronic myocardial infarction. A
high-resolution cardiac electromechanical mapping technique allowed acquisition of anatomical,
electrical, and mechanical data with high precision in a near-simultaneous fashion (88).

8.3 Materials and Methods

All animal protocols were reviewed and approved by the Animal Care and Use
Committee of the National Heart, Lung and Blood Institute.
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8.3.1 Surgical procedures

Six adult mongrel dogs (18-28kg) were anesthesized with intravenous sodium thiopental
(10-20mg/kg), intubated, and mechanically ventilated with a mixture of oxygen, medical air and
isoflurane (1-3%). An 8Fr arterial introducer was placed in the left carotid artery through a skin
cut down (1-2”) under sterile conditions. The surface ECG and the arterial pressure were
recorded throughout the procedure. A bolus iv injection of heparin 1,000 IU and lidocaine 40 mg
was administered, followed by a continuous iv infusion of lidocaine 110 mg/hr for the entire
procedure. A 6Fr guiding catheter was advanced though the introducer to the left coronary
ostium under fluoroscopic guidance, and a balloon angioplasty catheter was advanced to LAD
through the guiding catheter over a guide wire (0.014”). The LAD was then occluded at its origin
by inflating the balloon. Myocardial ischemia was confirmed with ST-T changes on ECG and
transient decrease in arterial blood pressure upon balloon inflation. The balloon occlusion was
maintained for a total of 120 minutes. Another bolus iv injection of lidocaine 40 mg was given
15 minutes prior to reperfusion to avoid serious ventricular arrhythmia. All the animals showed
frequent ventricular ectopic beats after reperfusion. The catheters and the introducer were
removed and the surgical wound closed. The surface ECG was recorded 3-4 times per day for
the first 48-72 hours to monitor the baseline rhythm.

Three to eight weeks following MI, the animal underwent a median sternotomy under
general anesthesia. The heart was placed in a pericardial cradle, and a multi-electrode epicardial
sock consisting of a nylon mesh fitted with 247 silver electrodes attached in an ordered fashion
was placed over the ventricular epicardium, as described previously (88). The sock was placed in
a consistent and predetermined orientation for all experiments and secured with several sutures.
Ten to fifteen 4-mm diameter glass beads (18uL) filled with an aqueous solution of
gadopentetate dimeglumine (Gd-DTPA) (5SmM) were attached to the sock as markers for
registering mechanical and electrical data. An MR-compatible pressure micromanometer catheter
(Millar, SPC-350, 5Fr) was advanced under fluoroscopic guidance to the left ventricular (LV)
cavity through a 6Fr arterial introducer placed in the right carotid artery. A ground reference
electrode was sewn onto the fat pad at the aortic root. All sock wires were run directly out of the
chest and the animal was transported to the MR scanner.

8.3.2 Data acquisition

MR scanning was performed in a 1.5-T scanner (Siemens Sonata). LV geometry (LV
end-diastolic and end-systolic volumes) and function (LV stroke volume and ejection fraction)
were evaluated with a cine true FISP sequence (BW +1,395 Hz/pixel, TE/TR 1.9/3.7 ms, readout
flip angle 50°, FOV 225 x 300 mm, image matrix 192 x 256, spatial resolution 1.2 x 1.2 x 6.0
mm, 8-10 slices without a gap). MI geometry was evaluated with a phase-sensitive delayed
hyperenhancement (DHE) inversion recovery sequence (134) 10 to 30 minutes following an
intravenous injection of a contrast agent (Gd-DTPA, Berlex Magnevist) at 0.25 mmol/kg (BW
+140 Hz/pixel, TE/TR 3.9/8 ms, turbo flash with readout flip angle 30°, FOV 119 x 200 mm,
image matrix 122 x 256, spatial resolution 1.0 x 0.8 x 3.0 mm, readout at late diastole, 13 views
per segment, 20-25 slices without a gap). For these two sequences, LV short-axis image slices
from the LV apex to base were acquired in a consistent manner based on predetermined
anatomical landmarks without gaps between slices. Each image acquisition was ECG-gated, and
the image was acquired during a single breath hold (30-40 sec) by manually holding mechanical
ventilation at end expiration. Three-dimensional (3D) displacement fields were calculated
measured in five short axis slices using a motion tracking sequence (DENSE, BW +1000
Hz/pixel, TE/TR 1.55/3.1 ms, 15° readout flip angle FOV 175 x 350 mm, image matrix 128 x
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256, spatial resolution 1.36 x 1.36 x 8.0 mm) (5). To spatially register the displacement fields
with the MI geometry, encoding and readout of the DENSE sequence was set at end systole and
end diastole, respectively. The timing of end systole and end diastole was determined from the
cine images.

The epicardial sock electrical recording system in the MR scanner room was described
previously (88). Briefly, all 247 electrodes were radiofrequency-filtered at the MR scanner
interface, and the data from the epicardial electrodes and physiological monitoring, including LV
pressure and ECG, were simultaneously acquired at a minimum sampling rate of 1,000Hz for a
duration of 10 sec immediately prior to and following the MR scans (29). Animals were
euthanized and their hearts were scanned with a 3D spin-echo sequence to locate the glass bead
markers (BW =130 Hz/pixel, TE/TR 12/148 ms, FOV 256 x 256 x 88 mm, image matrix 256 x
256 x 88, spatial resolution 1.0 x 1.0 x 1.0 mm). After excision, the heart was filled with vinyl
polysiloxane, maintaining end diastolic shape, and the locations of electrodes and beads were
digitized (Microscribe 3DLX, Immersion Corporation, San Jose, CA) (88, 148).

8.3.3 Data analysis

The LV myocardium was manually segmented in the DENSE images. The 3D end-
diastolic configuration and 3D displacement of the tissue in each pixel were measured (4). The
end-systolic configuration was calculated from the displacement vector field and the end-
diastolic configuration. The Lagrangian Green’s strain tensor E was calculated in every
tetrahedron of adjacent 4 pixels in the LV myocardium as 0.5(F F-I), where F is the deformation
gradient tensor, F is the transpose of F, and I is the identity matrix. The reference and deformed
states were defined as end-diastolic and end-systolic configurations, respectively. Three
independent finite strains (E,, Ec, and Ej) were computed in the local cardiac coordinate system
with reference to the center of mass of each short-axis LV myocardium image (172). E, E, and
Ey reflect myocardial stretch or shortening along the radial (Ey), circumferential (E.) and
longitudinal (Ey) cardiac axes, respectively. The LV circumference was divided into 32 sectors
and two layers (endocardium and epicardium), and average strain values were calculated in each
sector.

In the DHE images, MI geometry and endocardial and epicardial borders were manually
segmented (164). As in the strain map, the LV circumference was divided into 32 sectors, and
the average transmural depth of MI was calculated in each sector. The values were linearly
interpolated to determine the MI depth at the DENSE image slice positions.

Electrical signals from the 247-lead sock electrodes were averaged over approximately
20 consecutive heartbeats. The local depolarization time at each electrode was defined as the
peak negative dV/dt within the QRS complex (140). The time reference for the local
depolarization times was the earliest ventricular depolarization time in each heart. Delayed
electrical activation was defined as electrical activation time exceeding the mean +2SD of
activation times of all the nodes. Electrical maps were spatially referenced to the strain and MI
geometry maps using the least squares fit of glass marker beads (88, 148). The electrical
activation time in each of the 32 sectors was calculated as the weighted average of the electrical
activation time at three adjacent electrodes (Figure 8-1). In essence, the electrical activation at
160 (= 32 sectors x 5 slices) nodes was calculated from those at the 247 original sock electrodes.
A total of 160 nodes that contain mechanical, infarct extent, and electrical data were measured.
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Figure 8-1: Epicardial electrical signals during a cardiac cycle (cycle length = 544 msec, HR = 110 bpm) registered to a short-
axis delayed hyperenhancement (DHE) MR image of the LV split into 32 sectors. Regions of bright intensity correspond to MI.
In this image, abnormal or delayed activation is seen from sectors 4 through 9, whereas the infarct ranges from sectors 3 through
14.

At the mid-LV level, each sector corresponded to an approximate 3-D dimension of 6
mm (circumference), 6 mm (longitudinal), and 10 mm (radial). The infarct zone was defined as
the sectors including MI. The border zone was defined as the sectors immediately adjacent to the
infarct zone, and the remote zone was defined as the sectors opposite to the infarct zone in the
short-axis images. Division of the LV circumference into 32 sectors was chosen to create nodes
with sufficiently high spatial resolution that would robustly detect the depressed function at the
border zone, the width of which is reported to be <10 mm (93, 94, 156, 198, 210, 238).

8.3.4 Statistical analysis

Values are means + SD unless otherwise specified. A paired t-test was used to compare
electrical and mechanical parameters. Statistics were performed using SigmaStat 3.0 (SPSS, Inc.
Chicago, IL).

8.4 Results

All the animals went into intermittent ventricular tachycardia 24 hours after reperfusion,
which lasted for 24-48 hours, and normal sinus rhythm resumed thereafter. The animals
underwent the electromechanical data acquisition 38+12 days post-MI. Hemodynamic
parameters at the time of the electromechanical data acquisition are summarized in Table 8-1.

8.4.1 Infarct map
The infarct was located in the anteroseptal region, and usually involved the anterolateral

papillary muscle on the endocardial border (Figure 8-2). The epicardial border exhibited spatially
intricate structures with multiple interdigitations of viable myocardium within the infarct zone.
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The average depth of the infarct was 55+11% and the infarct covered 28+6% of the LV mass
(Figure 8-3A).

Heart rate (bpm) 121 £19
LVPmax (MmHg) 85+ 16
dP/dtnax (MmHg/s) 1713 £ 661
dP/dtyi, (MmHg/s) -1515 £ 643
LVEDP (mmHg) rz3
LVEDV (mL) 40+6
LVESV (mL) 235
LVSV (mL) 17 %2
LVEF (%) 43+3
CO (mL/min) 2058 * 517

Table 8-1: Hemodynamic data. Values are mean + SE. LVP,,,: peak LV pressure, dP/dt,,,: peak positive dP/dt, dP/dt,,;,: peak
negative dP/dt, LVEDP: LV end-diastolic pressure, LVESV: LV end-systolic pressure, LVSV: LV stroke volume, LVEF: LV
ejection fraction, CO: cardiac output.

Figure 8-2: Short-axis, delayed hyperenhancement (DHE) image of MI from a single animal. Regions of bright intensity
correspond to MI. Note multiple interdigitations of viable myocardium within the infarct region.

8.4.2 Electrical activation map

Electrical breakthrough, or the point of the earliest activation, was located in the anterior
RV region. Activation time exceeding the mean + 2SD was observed in a total of 19 nodes, and
these nodes were within the infarct zone (Figure 8-3B). The electrical activation time was
significantly delayed in the infarct zone compared with that of the border zone (31£9 vs. 19+2
msec, P<0.05, Figure 8-4), whereas the electrical activation time was not significantly different
between the border zone and the remote zone (19+2 vs. 21+3 msec, P=n.s.).
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Figure 8-3: Infarct depth and electrical activation from a single animal. A. Infarct map (in percent depth). B. Isochrone map of
electrical activation time (in msec). The area circumscribed by a solid black line represents the right ventricle (RV). The area
circumscribed by a solid white line represents the infarct zone in the anterior wall (the infarct zone in the septum is covered by
the RV). Pos: posterior wall, Sep: septal wall, Ant: anterior wall, Lat: lateral wall.
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Figure 8-4: Quantitative analysis of electrical activation time in each zone (n=6). Electrical activation time (in msec) was
significantly delayed in the infarct zone compared with that of the border zone (31£9 vs. 19+2 msec, P<0.05), whereas it was not
significantly different between the border zone and the remote zone (1942 vs. 21£3 msec, P=n.s.).

8.4.3 Strain map

A 3D displacement map from a single animal is shown in Figure 8-5. Each arrow
represents a displacement vector that points from the end-diastolic to end-systolic configuration.
The magnitude of displacement is color-coded. It is clear that the displacement magnitude in the
infarct zone in the anteroseptal wall (left side of the figure) is small (purple ~ blue) compared to
that of the remote zone in the posterolateral wall (right side of the figure, red ~ yellow).
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The number of strain calculation points was 3,625+766 per heart, and each sector
contained 1143 strain points from which average strains were calculated. Er, E.. and Ej; over the
infarct zones were smaller in magnitude than those in the remote zones (Figure 8-6). The regions
of abnormal strains, particularly the longitudinal strain, extended far beyond the infarct zone, and
the strains were larger in the epicardium than in the endocardium.
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Figure 8-5: 3-D Displacement map from a single animal. Each arrow represents a displacement vector that points from the end-
diastolic to end-systolic configuration. The magnitude of displacement is color-coded. It is clear that the displacement magnitude
in the infarct zone in the anteroseptal wall (left side of the figure) is small (purple ~ blue) compared to that of the remote zone in
the posterolateral wall (right side of the figure, red ~ yellow).

Em, Ecc and Ej in both the infarct zone and the border zone were significantly smaller than those
in the remote zone (P<0.05), and there was no significant difference between the infarct zone and
the border zone (P=n.s., Figure 8-7). However, E., E.. and Ej in the border zone were more
heterogeneous than those in the infarct and remote zones. For example, two animals showed
positive circumferential strains in the border zone, which indicate that the myocardium in the
border zone underwent a paradoxical systolic stretch in the circumferential direction. Similarly,
three animals showed large positive longitudinal strains in the border zone, which suggest that
the border myocardium was also stretched in the longitudinal direction during active contraction
(Figure 8-7). There was a significant transmural gradient between the epicardium and
endocardium in Er, Ec and Ej; in the remote zone (P<0.05), and the transmural gradient was lost
in both the infarct zone and the border zone.
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Figure 8-6: 3-D Strain map from a single animal. The area circumscribed by a solid white line represents the infarct zone. E,:
radial, E.: circumferential, and Ey;: longitudinal strains. The regions of abnormal strains, particularly the longitudinal strain,
extended far beyond the infarct zone, and the strains were larger in the epicardium than in the endocardium. Epi: epicardial layer,
Endo: endocardial layer.

In summary, the infarct zone was characterized by delayed electrical activation and
abnormal mechanics, including loss of transmural gradient and reduction of strain magnitude or
abnormal stretch. In the border zone, the abnormal mechanics similar to that of the infarct zone
was observed, however, the electrical activation time was not different from that of the remote
Zone.
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Figure 8-7: Quantitative analysis of finite strain in each zone (n=6). E,,, E.. and E; in both the infarct zone and the border zone
were significantly smaller than those in the remote zone (P<0.05), and there was no significant difference between the infarct
zone and the border zone (P=n.s.). There was a significant transmural gradient between the epicardium and endocardium in E,
E. and E in the remote zone (P<0.05), and the transmural gradient was lost in both the infarct zone and the border zone.
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8.5 Discussion

To examine the electrical activation in the infarct border zone with depressed systolic
function in chronic MI, the present study combined epicardial electrical recording and high-
resolution MR-based imaging techniques to examine the anatomical correlation of local
depolarization, myocardial scar, and systolic deformation of the heart.

8.5.1 Impact of infarct geometry on electromechanical properties in the

infarct zone ’

Recent studies have demonstrated that the DHE MRI technique allows accurate
assessment of infarct extent and geometry. The spatial extent of DHE was the same as that of
myocyte necrosis shown by TTC-stained pathology, independent of wall motion and infarct age
(138), and the clinical reproducibility of DHE for determination of infarct size and distribution is
highly comparable to that of routine clinical SPECT (160). In addition, DHE is superior to
SPECT in detection of subendocardial infarcts (243).

The high-resolution DHE MRI results show that the infarct geometry on the border is
highly complex (Figure 8-2). The infarct was mostly non-transmural, and the infarct size was
approximately 30% of the LV, both observations are consistent with previous reports using a
similar occlusion-reperfusion infarct model in canine (78, 95, 96, 129, 248). Traditionally, the
infarct zone has been associated with delayed electrical activation and slow conduction velocity
(69, 78, 97, 235). As a result of the relatively small size and nontransmural geometry of the
infarct, delayed electrical activation in a limited region of the infarct zone was observed (Figure
8-3). The nontransmural geometry of the infarct in this model is not only due to reperfusion, but
also due to rich collateral circulation intrinsic to the canine heart, as compared to humans and
other species such as swine. Permanent coronary ligation in swine tends to result in a well-
demarcated, transmural scar, whereas the canine MI model in the present study is characterized
by a relatively large volume of viable myocardium over the infarct zone. Holmes et al. (115)
studied systolic deformation of the infarct zone in a small region in the LV free wall by
permanent occlusion of obtuse marginal branches of LCx in swine. Despite impaired systolic
shortening, they found significant systolic wall thickening (E;) still present at 3 weeks, which is
suggestive of passive deformation in the regions composed almost entirely of collagen (114). In
contrast, the results indicate significant impairment of systolic deformation and loss of
transmural gradient in En, E.. and Ej including systolic wall thickening in the infarct zone
(Figure 8-4A and 8-5B). Therefore, the difference in the infarct geometry appears to account for
distinct characteristics in mechanics as well as electrical activation.

8.5.2 Mechanism of impaired systolic function in the infarct border zone

It was hypothesized that impaired systolic function in the infarct border zone may be
partially accounted for by delayed electrical activation. However, the electrical activation in the
infarct border zone was not delayed compared with that of the remote zone (Figure 8-3 and 8-4),
whereas the systolic function of the border zone was depressed relative to that of the remote zone
(Figure 8-6 and 8-7). These findings indicate that electrical factors do not contribute to the
impaired systolic function in the border zone, but the border zone dysfunction most likely results
from mechanical interaction between the ischemic and normal myocardium. Although the details
of this interaction are not fully understood, mechanical ‘tethering’ due to high wall stress appears
to be a predominant mechanism (93, 94, 156, 163, 210, 238). Besides, recent studies have
demonstrated that the LV myocardial shortening is regionally heterogeneous (271), and the
timing and the peak of shortening may be controlled by nonuniform prestretch from atrial
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contraction via a regional Frank-Starling effect (272). Although prestretch during atrial
contraction in the border zone was not quantified because the time course of finite strain was not
examined, it is speculated that a higher wall stress in the border zone may lead to a smaller
diastolic prestretch, which may contribute to generating delayed and little shortening.

Of note, the high-resolution motion tracking MRI revealed a paradoxical systolic stretch
(eccentric contraction) in the border zone of some animals (Figure 8-7). This systolic stretch is
clinically important because it may generate a stretch-activated ectopy to trigger reentry
ventricular arrhythmia in patients with ischemic heart. Whether the border zone undergoes little
shortening (isometric contraction) or stretch is most likely determined by the loading conditions,
the local material property during ventricular tension development, and the ventricular geometry
which dynamically changes as structural remodeling progresses. Anatomy-based description of
mechanics in the myofiber direction may identify the geometrical and hemodynamic factors that
contribute to systolic stretch in the border zone.

8.5.3 Limitations

In the present study, the 3D finite deformation of the LV wall was examined in open-
chest, anesthetized dogs. Therefore, the results may not precisely reflect the cardiac mechanics in
closed-chest, awake animals. The spatial registration error in this electromechanical mapping
technique has been previously reported to be 2.1mm on average, with a precision of marker
localization in the images and on the excised heart of 1.0 and 0.7mm, respectively (88). The
temporal resolution of electrical activation was 1ms, and this means that the temporal error was
within approximately one sample point (=1ms). Although this mapping technique assumes that
the heart be undeformed between the in situ and excised states without controlled perfusion
fixation in situ, previous studies have reported high precision in registering electrode locations
over the epicardial surface (88). Due to MR compatibility issues, the electrical mapping in this
study was limited to the epicardium. At present, commercially available basket catheters contain
ferromagnetic material and would severely degrade image quality. Clinical applicability of this
technique to the study of cardiac electromechanics may be limited by surgical intervention and
mechanical restriction from the sock. Due to a highly elastic property of the sock material, its
mechanical restriction on the heart was minimal, although this effect has not yet been quantified.

8.6 Conclusions

Using a high-resolution electromechanical mapping system, it was demonstrated that
abnormal electrical activation is observed in a limited region in the infarct zone, whereas the
region of abnormal mechanics extends far beyond the infarct zone in chronic MI. The infarct
border zone is characterized by abnormal mechanics directly coupled with normal electrical
depolarization. These findings indicate that electrical factors do not contribute to the impaired
systolic function in the border zone, but the border zone dysfunction most likely results from
mechanical interaction between the ischemic and normal myocardium.
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Chapter 9
Global electromechanics in infarct heart

with substrate for sudden cardiac death
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9.1 Abstract

Alteration of action potential duration (APD) induced by abnormal myocardial stretch
(“prestretch”) may increase the risk for sudden cardiac death (SCD) in chronic myocardial
infarction (MI) by increasing the dispersion of repolarization and thus susceptibility to
ventricular tachyarrhythmia. However, the effect of prestretch on APD in chronic MI in vivo has
not been quantitatively characterized. The anatomical correlation between prestretch and
activation recovery intervals (ARI) was examined in a swine model of chronic MI in vivo where
sustained monomorphic ventricular tachycardia is inducible with programmed stimulation. Four
weeks after anteroseptal MI was created (n=8), high temporal resolution (9msec) tissue-tracking
MRI was used to characterize prestretch, and a 247-lead epicardial sock was subsequently placed
over the ventricular epicardium to measure ARI under thoracotomy. Prestretch appeared in early
systole (30msec), peaked at 70-100msec and persisted until 240-260msec. Prestretch was highest
in the posterolateral viable region opposite to the MI (10.8+7.4%), and lowest in the septal
region (0.4+0.2%) (P<0.05). Prestretch significantly correlated with peak shortening rate
(P<0.001). The magnitude of prestretch was similar in the viable and infarct myocardium, but the
mechanical function in the infarct myocardium was significantly depressed. There was a strong
and consistent correlation between prestretch and ARI in all animals (P<0.001). In conclusion,
prestretch in chronic MI prolongs local ARI in a magnitude-dependent manner in swine with a
substrate for SCD. Early interventions to reduce prestretch may help reduce SCD in patients with
chronic ML

9.2 Introduction

Recent prospective multicenter clinical trials demonstrate a major survival benefit with
the implantable cardioverter-defibrillator (ICD) for sudden cardiac death (SCD) in high-risk
subgroups with LV dysfunction due to prior myocardial infarction (MI) and nonischemic
cardiomyopathy (149). However, these high-risk subgroups constitute only a small fraction of all
the SCDs, thus interventions in these subgroups do not have a major impact on the general public
health problem of SCD (183). The majority of the potential SCD victims are not protected by the
current guidelines, primarily due to lack of specific markers with high predictive value (269).

SCD mainly results from ventricular tachyarrhythmia (30), thus is an electrical
phenomenon. Inducibility of sustained monomorphic ventricular tachycardia (VT) during the
invasive electrophysiological study with programmed electrical stimulation (PES) is clinically
equivalent to having an arrhythmic substrate, thus has been used as a prognosticator for
subsequent mortality (47). However, its prognostic accuracy is relatively low (47, 48, 70).
Moreover, its invasive nature does not warrant its use in the “unprotected” yet low-risk
subgroups.

Recent studies demonstrate that the mechanical and electrical phenomena in
cardiomyocytes are interdependent (146). For example, mechanical myocardial stretch alters
action potential duration (APD) (204). Because myocardial scar and structural remodeling confer
significant heterogeneity to the material properties of the LV, the regions of greater compliance
that experience abnormal stretch, or “prestretch”, may have altered APD (170), which may
increase the dispersion of repolarization within the ventricles and thus the susceptibility to
ventricular tachyarrhythmia (27, 91, 204). In fact, strategies to suppress prestretch in patients
with LV dysfunction have consistently proven to be successful. For example, beta-blockers,
which likely diminish prestretch due to the negative inotropic effect, reduce mortality among
patients with heart failure due to a significant reduction in fatal arrhythmias (59). Furthermore,
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cardiac resynchronization therapy (CRT) aims to cancel the prestretch in the lateral LV by
electrically stimulating the region of prestretch, and improves morbidity and mortality in patients
with intraventricular conduction delay (40, 58)

Stretch is a mechanical phenomenon, thus can be noninvasively quantified with MRI
(194). Quantitative characterization of the effect of prestretch on APD may establish the link
between the mechanical and electrical phenomena in the heart in vivo, and allow an MR-guided,
noninvasive risk assessment of SCD in these “unprotected” subgroups. The hypothesis of this
work is that the prestretch in chronic MI with a substrate for SCD alters the local APD in vivo.
To test this hypothesis, the anatomical correlation between prestretch and activation recovery
intervals (ARI) in a swine model of chronic MI was quantitatively examined where sustained
monomorphic VT is inducible with PES. A high-resolution cardiac electromechanical mapping
technique (88) allowed acquisition of anatomical, electrical, and mechanical data with high
precision.

9.3 Materials and Methods

All studies were performed according to the Position of the American Heart Association
on Research Animal Use (2). All animal protocols were reviewed and approved by the Animal
Care and Use Committee of the National Heart, Lung and Blood Institute, which is accredited by
the American Association for Accreditation of Laboratory Animal Care.

9.3.1 Creation of myocardial infarction

Eight domestic swine (34—47kg) were anesthesized with intravenous sodium thiopental
(10-20mg/kg), intubated, and mechanically ventilated with a mixture of oxygen, medical air and
isoflurane (1-3%). The surface ECG and the arterial pressure were recorded throughout the
procedure. A modified version of a catheter-based MI procedure was used that has been
described previously (213). Briefly, a balloon angioplasty catheter (2.7Fr) was advanced to the
middle portion of LAD through a 6Fr guiding catheter via a carotid artery. The balloon was then
inflated to 6atm to occlude LAD, and the occlusion was maintained for 150min. After
completion of balloon occlusion, the catheters were removed, the surgical wound closed, and the
animals extubated and recovered.

9.3.2 In vivo MRI

Four weeks after MI, the animals were anesthetized as above to undergo in vivo MRI in a
1.5T scanner (Espree, Siemens) with an 8-channel surface coil (Figure 9-1B). LV geometry (end-
diastolic and end-systolic volumes) and global function (stroke volume and ejection fraction)
were evaluated with a cine steady state free presession (SSFP) sequence (bandwidth (BW)
+930Hz/pixel, echo time (TE) 1.78msec, repetition time (TR) 3.56msec, readout flip angle 35°,
FOV 233x311mm, image matrix 192x256, spatial resolution 1.2x1.2x8.0mm, 6 slices). LV
regional function was evaluated with a 2-D myocardial tissue tracking sequence (137) (cine-
DENSE, BW +1,008Hz/pixel, TE/TR 4.52/9.0msec, readout flip angle 12-20°, FOV 400x200
mm, image matrix 128x64, spatial resolution 3.1x3.1x8.0mm, 6 slices). The slice positions and
the orientations of the cine-DENSE images were set to the same as those of the cine SSFP
images to facilitate registration processes. A total of 45-65 images were acquired through systole
with temporal resolution 9.0msec. LV short-axis image slices from LV base to apex were
acquired in a consistent manner based on predetermined anatomical landmarks without gaps
between slices. Each image acquisition was ECG-gated, and the image was acquired during a
single breath hold (40—60sec) by manually holding mechanical ventilation at end-expiration.

-95-



A Myecardial Infarction E Ex vivo MRI F  Signal intensity map

(closed-chest)
4 weeks
B /n vivo MRI (closed-chest)
Mechanical data acquisition

Epicardium

C Electrical data acquisition Segmentation

(in vivo, open-chest)

H

[EAOWIBI ¥20S

i.v. Gd-DTPA injection Volume-rendered
Euthanasia infarct geometry

Epicardial
surface mesh

D Heart excision | Registration

Electrodes digitization
' RV

Electrodes

¥
Registration
markers

Figure 9-1: Overview of data acquisition and processing.

9.3.3 Electrical recording system

After MRI, the animals were transported to the operating room and underwent median
sternotomy. A multielectrode epicardial sock, consisting of a nylon mesh fitted with 247 silver
electrodes (electrode spacing = 2-5mm) attached in an ordered fashion, was placed over the
ventricular epicardium (Figure 9-1C) (19). The sock was placed in a consistent and
predetermined orientation and secured with several sutures. A ground reference electrode was
sewn onto the fat pad at the aortic root. Electrical signals from the 247 electrodes were amplified
(gain=1,000) and were acquired using a 16-bit analog-to-digial converter (PXI-6225x4, National
Instruments) at a minimum sampling rate of 1,000Hz for 10sec (29). Electrical recording was
conducted during normal sinus rhythm and sustained monomorphic ventricular tachycardia (VT).
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9.3.4 Induction of monomorphic ventricular tachycardia

A pair of bipolar stimulating wires was directly attached to the RV outflow tract (RVOT)
using an alligator clip, and a modified version of a swine PES protocol (213) was conducted to
test the inducibility of sustained monomorphic VT. Briefly, following regular ventricular pacing
(S1) at a cycle length of 250, 300 and 350 msec, single (S2), double (S2, S3), or triple (S2, S3,
S4) premature stimuli were introduced with a pulse width of 2msec. The endpoints of the
protocol were (1) completion of the protocol without inducing VT or ventricular fibrillation
(VF); or (2) induction of two episodes of sustained monomorphic VT or VF. Sustained VT was
defined as monomorphic VT lasting more than 15sec, and was confirmed in multiple leads. VT
or VF was electrically defibrillated using an internal defibrillation pads, and the cables to the
electrical recording system were temporarily disconnected before defibrillation to protect the
system. When either endpoint was reached, the stimulating protocol was completed.

9.3.5 Postmortem studies

Upon completion of PES, heparin 5,000IU and Gd-DTPA 0.20mmol/kg were
administered intravenously and the animals euthanized 15-20min after Gd-DTPA. The heart was
removed, and was filled with vinyl polysiloxane, maintaining end-diastolic shape (88). As
markers for registering the MR and the sock data, eight to fifteen 10mm x 1mm glass tubes filled
with Gd-DTPA (5§ mM) were placed in the myocardium, and the locations of the sock electrodes
and the glass tubes were digitized (Microscribe 3DLX, Immersion, San Jose, CA) (Figure 9-1D)
(88). The sock electrodes were removed from the heart. To evaluate the extent of MI with high
spatial resolution, ex vivo contrast-enhanced MR imaging(109) was performed in the 1.5-T MR
scanner. A 3D Gradient recalled echo (GRE) sequence was used to visualize MI and to locate the
glass tube markers (BW <+170Hz/pixel, flip angle 20°, TE/TR 3.71/9.28msec, FOV
120x120x100mm, image matrix 256x256x192, spatial resolution 0.5mmx0.5mmx0.5mm)
(Figure 10-1E).

9.3.6 Data processing

Custom programs in MATLAB (Mathworks, Inc.) and C™ were used for data analysis.
The infarct geometry was extracted from the 3D GRE images using a signal intensity threshold
to visualize a volumetric image of infarct in the ventricles (Figure 9-1F) (18). The MI was
segmented as the hyperenhanced region that was seen in >1slice in the 3D GRE images. The
hyperenhaced region was defined as >6 standard deviation (SD) of the signal intensity above the
mean intensity of the circular region (diameter ~10mm) in the remote, viable myocardium
(Figure 9-1G) (186). The values of the MI depth at the cine-DENSE image slice positions were
determined using bicubic interpolation (19).The ventricular epicardial surface was extracted
from the MR images, and the spherical harmonic mesh (117) was created to subsequently
visualize electrical data (Figure 9-1H). The locations of the glass tube markers were determined
from the MR images, and the electrodes were spatially referenced to the MR images using rigid-
body transformation (Figure 9-11) (88).

The local activation recovery interval (ARI) was measured between times of electrical
activation (=dV/dtn, of the QRS) and recovery. Electrical recovery was defined as the dV/dty.x
of the T wave for negative T wave, the dV/dty;, of the T wave for positive T wave, and at the
mean time between dV/dtn.x and dV/dty;, for biphasic T wave (259). ARI between electrodes
was calculated using bicubic interpolation.

The LV endocardial border was manually segmented in the LV short-axis cine SSFP
images to calculate global LV function using MIPAV (NIH) (164). The cine-DENSE sequence
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used for tissue-tracking encodes one-dimensional (1-D) displacement of each pixel from the
reference time point as stimulated echoes in the phase image (Figure 9-2) (4).

A B

Figure 9-2: The magnitude (4) and the phase (B) images from the cine-DENSE sequence.

A previously published protocol of image acquisition, displacement and strain calculation
was followed (137). Briefly, two separate image acquisitions were performed consecutively to
obtain 1-D displacement information in two orthogonal directions (Figure 9-3).

27 msec

9 msec 9 msec 9 msec 9 msec

ECG

frame 1 frame 2 frame 3 frame 4 frame 5

# —»i 1-D displacement
% —} 1D displacement
Ill -

+
2-D displacement "i"
+

Lagrangian Green's strain tensor E
'
Circumferential strain component E,

Figure 9-3: Image acquisition, displacement and strain calculation using the cine-DENSE sequence.

The LV myocardium was manually segmented and the 2-D phase information in each
pixel was unwrapped and was converted to 1-D displacement. The 2-D displacement of each
pixel was computed by means of vector addition of the two orthogonal 1-D displacement.
Regional Lagrangian Green’s strain tensor E was computed by means of isoparametric
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formulation with quadrilateral elements (175). Each quadrilateral element was a square 4-pixel
neighborhood of myocardium where the final position of each element of myocardium is known
(the pixel location), and the initial 2D position of each pixel is measured. After diagonalization
of E, the directions of the first and second principal strains and the corresponding eigenvalues
were found. Relative to the center of mass of the left ventricle, the circumferential strain
component E.. were computed by means of projection of E into the circumferential directions.

The circumferential strain €. (Figure 9-4A) was calculated from the Lagrangian Green’s
strain tensor as the percent change in length of a small line segment in the circumferential
direction (272):

&, = (JA+2E_)-1)x100%

where E.. is the Lagrangian Green’s strain component in the circumferential direction. By
convention in continuum mechanics, a negative strain represents shortening (e.g. -15%), whereas
a positive strain represents stretch (e.g. +15%) in the circumferential direction.

A B
—_— 10 -
I| Circumferential Strain | — 5 | /i-‘*—t(*
| | g N
o] Prestretchx
£ } *5.*
g 0+6— -0 — e —_ -— ==
@ \
- ©
— I t\
c @ \t* Peak Shortening
Q2
=
-
=
b

A
€ B #
g 4§ Time to Onset \\“m TR W/

3 = -15 4 of Shortening
7 Time to Peak Shortening :
d
P4 |
.20 d : : | .
0 100 200 300 400 500

Time from ECG R wave (msec)

Figure 9-4: A. Circumferential strain. Circumferential strain €, describes myocardial shortening or stretch in the circumferential
direction. B. Sample fit of raw circumferential strain data at imaging times (+) to 7th-order polynomials (solid line). Prestretch
was defined as the maximum strain (=stretch) prior to systolic shortening, and the onset of shortening was defined as the time of
prestretch. Peak shortening was defined as the minimum strain (= shortening) before diastolic stretch. C. Mesh reconstruction of
LV. Mesh vertices indicate locations of displacement and strain calculations. There are a total of 144 data points per heart (=24
sectors X 6 short-axis slices).

The short-axis LV circumference was divided into 24 sectors, and the average
circumferential strain in each sector was calculated. The reference configuration (strain=0%) was
defined at the time of the tag encoding gradient, which occurred at 22msec after the peak R wave,
and the first cine-DENSE image took place at 27msec after the peak R wave. The strains were
interpolated across time using a seventh-order polynomial fit to all of the data points (Figure 9-

-99 .-



4B). The seventh-order polynomial was chosen over other orders of polynomial fits and local
cubic splines because it provided a good trade-off between accuracy of the fit and noise
reduction of the data (252).

Abnormal stretch, or “prestretch”, was defined as the maximum strain (= stretch) prior to
systolic shortening, and peak prestretch rate was defined as the positive peak of the time
derivative of the circumferential strains during prestretch. The onset of shortening was defined as
the time of prestretch, and peak shortening was defined as the minimum strain (=shortening)
before diastolic stretch. Peak shortening rate was defined as the negative peak of the time
derivative of the circumferential strains during shortening. Strain data in sectors where prestretch
or peak shortening was not observed were excluded from analysis.

Each LV had 144 mechanical data points (= 24 sectors x 6 short-axis slices), and a 3-D
prolate ellipsoid mesh described by Bovendeerd et al (38) was used to present the data (Figure 9-
4C). A bicubic surface through existing data points were fitted to the mechanical data, where the
value of an interpolated point is a combination of the values of the sixteen closest points. The
circumferential length of each sector in the figures was shortened or lengthened based on ¢ to
visually demonstrate the dynamic motion of the LV with reference to the undeformed
configuration.

9.3.7 Electromechanical data registration

To evaluate the correlation between electrical and mechanical indices involved in
prestrecth, electrical data were analyzed in the regions of prestretch. The electrical data in the LV
was spatially referenced to mechanical data based on pre-determined anatomical landmarks. A
bicubic surface fit was used to calculate the electrical indices at the mechanical data points in the
LV that was covered by the epicardial sock electrodes.

9.3.8 Statistical analysis

Values are means+SD (n=8). One-way analysis of variance (ANOVA) was used to
compare maximum and minimum mechanical indices, and mechanical indices between the
viable and infarct myocardium. If a statistically significant result was obtained, individual
locations were compared by a two-tailed ¢ test. Linear regression was used to assess the
correlation between prestretch and other indices, and expressed with their correlation coefficient
(r) and P value. A value of P<0.05 was considered statistically significant. Statistics were
performed with SigmaStat 3.0 (SPSS, Chicago, IL).

9.4 Results

9.4.1 General parameters

All animals survived the infarct procedure, which resulted in anteroseptal MI (Figure 9-5).
The animals underwent MR studies and VT induction 29+5days after MI. Sustained
monomorphic VT was induced in all animals, which indicate that all animals had a substrate for
ventricular tachycarrthythmia (Figure 9-6). All induced VTs were hemodynamically unstable,
likely due to relatively short cycle length (CL) (133+22 msec). Hemodynamic parameters during
the MRI study are summarized in Table 9-1. The time course of circumferential strain by tissue-
tracking MRI covered 86+21% of cardiac cycle (Table 9-2). The heart rate during the open-chest
electrical measurements was 129+13bpm, and this value was significantly larger than that of the
in vivo MRI study (97£28bpm, P=0.019).
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Figure 9-5: A. Short-axis view of the contrast-enhanced MR image. Regions of high intensity (= light gray) corresponds to MI. B.
Mesh presentation of the MI wall depth (%) in one animal. Note the MI was mostly transmural (= dark red), and was located in
the anteroseptal region.

A. Normal sinus rhythm B. Ventricular tachycardia

- -

1mV|_

100 msec

Figure 9-6: Unipolar electrical recordings from an epicardial sock electrode. A. Normal sinus rhythm, B. Sustained
monomorphic VT.

Parameters Mean + SD (n=8)
Heart rate (bpm) 96.8 + 28.4
LV end-diastolic volume (mL) 9.7 = 8.F
LV end-systolic volume (mL) 36.5+5.3
LV ejection fraction (%) 38.7+£4.7
Stroke volume (mL) 232047
Cardiac output (mL/min) 2,205 £ 708.2

Table 9-1: Hemodynamic parameters at the time of MRI studies.
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Parameters Mean + SD (n=8)
Cycle length (msec) 669 + 198
Cine-DENSE coverage (msec) 546 £ 92
Time coverage per cardiac cycle (%) 8621

Table 9-2: Time coverage by cine-DENSE sequence per cardiac cycle.

9.4.2 Infarct geometry

The MI was mostly transmural due to little collateral circulation intrinsic to the swine
heart, and was non-transmural only at its anterior and septal edges (Figure 9-5A). On the anterior
edge, the MI usually involved the anterior segment of the anterolateral papillary muscle on the
endocardial border. The MI also expanded to the anterior portion of the right ventricule (RV).
The myocardial wall in all portions of the MI exhibited substantial thinning. The mesh
presentation of the MI wall depth (%) in one animal is shown in Figure 10-5B. On average, the
MI covered 23+4% of the LV surface (n=8).

9.4.3 Characteristics of prestretch

Figure 9-7 shows circumferential strains over time in the mesh representation of the LV
in one animal during normal sinus rhythm. The time course of mechanical mapping showed
substantial heterogeneity in strain distribution. The viable myocardial tissue that occupied the
majority of the LV underwent normal systolic deformation sequence, shown in light green (0%),
cyan (-5%), blue (-10%), then dark blue (-15%). In contrast, the MI region (circumscribed by a
solid line) underwent substantial systolic stretch, shown in yellow (5%) as viable myocardium
shortens (blue). The viable myocardium in the lateral region exhibited significant prestretch
(yellow-red) during early systole. Significant prestretch (red) appeared around 30msec in the
lateral, viable myocardium when the majority of the LV has not started contraction yet (light
green). Prestretch peaked at 70-100msec, and persisted until 240-260msec. Regional
heterogeneity of prestretch-related mechanical indices is shown in Figure 10-8 and Table 9-3.
Comparison of mechanical indices between the viable vs. infarct myocardium is summarized in

Figure 9-9.
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22 msec 27 msec 36 msec

135 msec Prestretch

216 msec

261 msee 270 msec 270 msec 288 msec 297 mseo 308 mseo 3156 msec 324 msec 333 msec

Circumferential Strain (%)

342 mseo 351 msec 360 msec 300 mseo 387 msec 306 msec 405 msec 414 msec

423 msec 432 msec 941 mseo 480 mseo 450 msec 458 msec
Figure 9-7: Time course of circumferential strain in one animal. Note that prestretch (shown in yellow-red) appears at around
30msec in the lateral region when the majority of the LV myocardium has not started contraction yet (shown in light green).

Prestretch peaked at 70-100msec, and persisted until 240-260msec. The area circumscribed by a solid line represents MI (>50%
wall depth). Note the circumferential length change appears greater than actual change in vivo.
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Figure 9-8: Average mechanical indices by region (n=8). A. Prestretch (circumferential strain, %), B. Peak prestretch rate
(circumferential strain/sec, %/sec), C. Time to onset of shortening (time, msec), D. Time to peak shortening (time, msec), E. Peak
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solid line represents MI (> 50% wall depth).
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Parameters Average Minimum Maximum
Prestretch (%) 46+53 04£02 10.8 £ 7.4*
Septal (viable) Posterolateral (viable)
Peak prestretch rate (%/sec) 176.3+199.0 7.1+£33 442.3 + 324.6*
Septal (viable) Lateral (viable)
Time to onset of shortening (msec) 112.7+150.4 342+10.1 392.9 £ 310.4*
Posterolateral (viable) Anteroseptal (MI)
Time to peak shortening (msec) 392.3+£914 199.9 + 299.1 523.1 £79.0*
Septal (viable) Anteroseptal (MI)
Peak shortening (%) -11.3£4.7 -19.6 £4.5 -0.7 £ 1.3*
Posterolateral (viable) Anteroseptal (MI)
Peak shortening rate (%o/sec) -80.0 +43.9 -170.5+91.7 -33.6 + 12.0%

Lateral (viable)

Anteroseptal (MI)

Table 9-3: Minimum vs. maximum mechanical indices by region. Values are means+SD (n=8). *: P<0.05 vs. Minimum.
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Figure 9-9: Comparison of mechanical indices between viable vs. infarct myocardium. These glots contain the pooled data from
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9.4.4 Correlation between prestretch and electromechanical indices
There was a significant correlation between prestretch and peak shortening rate in the
viable myocardium (Figure 9-10).
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Figure 9-10: Correlation between prestretch and peak shortening rate in the viable myocardium in one animal (r=-0.75,
P<0.001).

The correlation between prestretch and no other mechanical indices were consistently
significant (Figure 9-11). The correlation between prestretch and ARI was analyzed in the
prestretch region, which was the viable myocardium mostly in the lateral LV. The spatial
distribution of greater prestretch was very similar to the distribution of longer ARI (Figure 9-12).
A total of 24+6 data points out of 144 in each heart were used for analysis. Figure 9-13 shows a
strong correlation between prestretch and ARI in one animal (r=0.89, P<0.001). This correlation
was consistently significant among all animals (Figure 9-11).
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Figure 9-11: Correlation coefficients for each animal. Individual correlation coefficients are shown in closed (viable
myocardium) and open (infarct myocardium) circles, and the open squares indicate mean+SD of the correlation coefficient in
each animal. The number of data points per animal (meantSD) to calculate each correlation coefficient is also shown. The
horizontal dashed lines indicate |r|=0.5. TTOS, time to onset of shortening; TTPS, time to peak shortening; PS, peak shortening;
PSR, peak shortening rate; AR, activation recovery interval.
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Figure 9-12: Spatial distribution of prestretch and ARI in one animal. The prolate ellipsoid mesh on the left represents prestretch
(color-coded in %) derived from the cine-DENSE images, whereas the epicardial mesh on the right represents ARI (color-coded
in msec) derived from the electrical sock measurement. The spatial distribution of greater prestretch (red arrow) was very similar
to the distribution of longer ARI (black arrow).
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Figure 9-13: Correlation between prestretch and AR in the prestretch region in one animal (r=0.92, P<0.001).

9.5 Discussion

9.5.1 Overview

The present study combined noninvasive MR-based techniques and invasive electrical
measurements to examine the anatomical correlation of abnormal myocardial stretch and ARI in
chronic MI. The quantitative mechanics using the cine-DENSE MRI demonstrates excellent
agreement with that of tagged MRI (137), and cine-DENSE MRI requires less user input for
post-processing than tagged MRI (252). Furthermore, high temporal resolution (9ms) allowed
characterization of the timing, location, and magnitude of prestretch with high fidelity.

Although alteration of APD in response to acute loading has been studied at the global
ventricular level, this is the first study to quantitatively demonstrate the magnitude-dependent
mechanoelectrical feedback (MEF) at a local level in vivo. The regionally heterogeneous
prestretch likely generates a heterogeneous distribution APD, which results in an increased
dispersion of repolarization and thus increased susceptibility to ventricular tachyarrhythmia. This
finding is consistent with a recent report that the presence of left bundle branch block and
resultant mechanical dyssynchrony in patients with heart failure is an independent risk factor of
all cause mortality and sudden death (28)

-110 -



9.5.2 Animal model of chronic myocardial infarction with substrate for

sudden cardiac death

The occlusion-reperfusion MI model in the present study reflects a clinical scenario
where acute coronary artery occlusion is followed by revascularization procedures, which is
clinically associated with inducible VT (136). A closed-chest animal model of chronic MI within
the first month after MI was used, because the risk of SCD is highest in this time period (220).
Sustained monomorphic VT was inducible in all the animals studied, which confirms that those
hearts have a substrate for SCD.

9.5.3 Mechanical characteristics of prestretch in chronic myocardial

infarction

Prestretch appeared in early systole when the majority of the LV myocardium has not
started contraction yet (Figure 9-8). This suggests that prestretch is not initiated by contraction of
other ventricular regions, but by ventricular filling, likely due to atrial contraction. Diastolic
expansion of the MI tissue is limited due to its ‘stiff® material property relative to that of the
viable myocardium, thus the region of largest expansion coincides with the more elastic, viable
myocardium opposite to the MI. As a result, the regional pattern of prestretch was similar to that
of normal human heart, being lowest in the septum and highest in the posterolateral region (82,
272). The posterolateral region opposite to the MI experiences largest and quickest prestretch,
and quickest shortening (Figure 9-8A, B, F). Prestretch significantly correlated with peak
shortening rate (Figure 9-10) which may reflect the regional Frank-Starling mechanism (272).
However, no significant correlation was observed between prestretch and other mechanical
indices (Figure 9-11). This implies disruption of the regional Frank-Starling mechanism in
chronic MI, due to significantly depressed mechanical function in the infarct myocardium
(Figure 9-9).

9.5.4 Prestretch and stretch-induced arrhythmia

The magnitude of prestretch in the data was substantially higher than those reported in
normal human heart (10% vs. 4-6%) (82, 272) (Table 9-3). Because the magnitude of stretch is
important in the induction of stretch-induced arrhythmia (55, 91, 128, 139, 263), these results
support the involvement of prestretch in triggering fatal arrhythmia in chronic MI. In addition,
the relatively long time period of prestretch (Figure 9-7) sufficiently covers the vulnerable
window for stretch-induced arrhythmia (142), thus provide a mechanistic support for SCD in this
population.

The results suggest that prestretch in chronic MI prolongs local ARI in a magnitude-
dependent manner (Figure 9-10, 9-11, 9-12). This finding is consistent with a recent report by
Nishimura et al using a carbon fiber technique and voltage-sensitive dye in single ventricular
myocytes in rat (190). In contrast, earlier studies show that acute loading can shorten (204, 262)
or prolong (170, 227) APD, possibly mediated by SACs (118), beta-adrenergic receptor
activation (153) or actin cytoskeleton (190). One possible factor to explain the finding in light of
these studies is the timing of stretch. Stretch results in shortening of APD during the early
plateau phase and prolongation of APD at later stages of repolarization (90, 141, 146, 261). The
results show that prestretch persists until 240-260msec, and the relatively long period of
prestretch may cause consistent prolongation of APD in the region of prestretch. Another
possible factor is that structurally remodeled hearts with chronic MI in vivo was used. Stretch-
induced MEF was mostly studied in isolated normal rabbit heart (26, 80, 153, 204, 227, 262),
and electrophysiological properties, including conduction velocity and MEF, of the structurally
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remodeled myocardium are most likely different from those of the normal myocardium. For
example, the myofiber and laminar structure of the myocardium are the structural bases of the
orthogonal anisotropy of electrical propagation (116, 150), and these cardiac microstructures

undergo significant alterations in the structurally remodeled hearts in a regionally heterogeneous
manner (20, 110).

9.5.5 Clinical implications

The findings have two important clinical implications. First, the MR-guided, noninvasive
quantification of prestretch may help identify the population at risk for SCD, along with other
promising noninvasive diagnostic techniques including signal-averaged ECG (62), T-wave
alternans (TWA) (36) and heart rate variability (HRV) (49). Further studies are needed to assess
the risk of SCD in human patients with prestretch.

Second, the MR-guided quantification of prestretch may guide early interventions as
primary prevention of SCD. Early interventions to modulate prestretch by multisite pacing
combined with pharmacological interventions to suppress stretch-activated arrhythmia may be
beneficial in reducing SCD. In addition, as demonstrated in CRT trials, suppression of prestretch
would also prevent and even reverse structural remodeling in the viable myocardium, which
would further reduce mortality in the longer period (99).

9.5.6 Limitations

Control studies were not conducted, therefore the electromechanical indices were not
compared between control and infarct animals. The heart rate during electrical measurements
was significantly higher than that of mechanical measurements (129+13 vs. 97+28bpm, P=0.019),
most likely due to reduced preload associated with thoracotomy. Earlier studies suggest that ARI
measurements are sensitive to loading conditions, thus the magnitudes of ARI may have been
underestimated. The LV mechanics was examined in anesthetized, closed-chest swine. Therefore,
the results may not precisely reflect the cardiac mechanics in conscious animals. Species
difference (swine vs. human) is another factor to consider when these results are clinically
extrapolated. The strain data in the present study describe the average transmural mechanics in
the LV myocardium in vivo. Although significant transmural variations in timing and magnitude
of prestretch have been described (16), the aim of the present study was to identify regional
variations, not transmural variations, of cardiac strains. To maintain a sufficient signal-to-noise
ratio (SNR), the tissue-tracking MRI sequence required an interval for T recovery between the
last phase in one cardiac cycle and the beginning of the next cardiac cycle. Therefore the
mechanical indices for an entire cardiac cycle was not studied. However, the aim of the present
study was to examine systolic shortening, and the 85% coverage of the cardiac cycle (Table 9-2)
was more than sufficient for this objective.

9.6 Conclusions

Prestretch in chronic MI prolongs local ARI in a magnitude-dependent manner in swine
with a substrate for SCD. The stretch-induced ARI prolongation may increase the dispersion of
repolarization and thus susceptibility to ventricular tachyarrhythmia. Early interventions to
reduce prestretch may help reduce SCD in patients with chronic MI.
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Chapter 10

Thesis conclusions
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The overall goal of the thesis was to assess anatomical correlation between cardiac
mechanics and electrophysiology in vivo, and to investigate whether it is possible to predict
electrical behaviors from mechanical behaviors of the heart. There were six specific aims to
achieve this goal, and the conclusions from these aims are:

Aim 1: LV mechanics during early relaxation involves substantial deformation of fiber
and sheet structures with significant transmural heterogeneity. Predominant epicardial stretch
along myofibers during isovolumic relaxation appears to drive global torsional recoil to aid early
diastolic filling (Chapter 4)

Aim 2: Enhanced filling in volume-overload hypertrophy is achieved by enhanced sheet
shear early in diastole. These results provide the first evidence that changes in motion of radially
oriented laminar sheets may play an important functional role in pathology of diastolic
dysfunction in this model (Chapter 5).

Aim 3: Despite lack of evidence of significant transmural gradient in electrical
repolarization in vivo, there is transmural dispersion of myofiber relaxation as well as shortening
(Chapter 6).

Aim 4: Normal sheet extension and wall thickening immediately after activation may
require normal transmural activation sequence, whereas sheet shear deformation may be
determined by local anatomy. (Chapter 7).

Aim 5: The infarct border zone is characterized by abnormal mechanics directly coupled
with normal electrical depolarization. This indicates that impaired function in the border zone is
not contributed by electrical factors but results from mechanical interaction between ischemic
and normal myocardium (Chapter 8)

Aim 6: Prestretch in chronic MI prolongs local ARI in a magnitude-dependent manner in
swine with a substrate for SCD. The stretch-induced ARI prolongation may increase the
dispersion of repolarization and thus susceptibility to ventricular tachyarrhythmia. Early
interventions to reduce prestretch may help reduce SCD in patients with chronic MI (Chapter 9).

These results underscore the fact that cardiac anatomy (e.g. fiber, sheet structures),
electrophysiology (e.g. activation sequence) and mechanics (e.g. shear, prestretch) are
indispensably interwinded, thus interdependent. Although this thesis focused on prediction of the
susceptibility to SCD as a clinical output, the interdependence of anatomy, electrophysiology and
mechanics could be further utilized in future research to extract clinically relevant information.
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List of Figures and Tables

Chapter 2
Sudden cardiac death

Figure 2-1. Major implantable cardioverter-defibrillator (ICD) trials. Hazard ratios (vertical
line) and 95% confidence intervals (horizontal lines) for death from any cause in the ICD group
compared with the non-ICD group. *Includes only ICD and amiodarone patients from CASH.
AVID = Antiarrhythmics Versus Implantable Defibrillators; CASH = Cardiac Arrest Study
Hamburg; CIDS = Canadian Implantable Defibrillator Study; EF = ejection fraction; HF = heart
failure; MADIT = Multicenter Automatic Defibrillator Implantation Trial; MUSTT =
Multicenter UnSustained Tachycardia Trial; SCD-HeFT = Sudden Cardiac Death in Heart
Failure Trial; CABG = coronary artery bypass graft surgery; EP = electrophysiological study;
LVD = left ventricular dysfunction; MI = myocardial infarction; N = number of patients; NICM
= nonischemic cardiomyopathy; NSVT = nonsustained ventricular tachycardia; PVCs =
premature ventricular complexes; SAECG = signal-averaged electrocardiogram.

Figure 2-2. Absolute numbers of events and event rates of SCD in the general population
and in specific subpopulations over 1 year. General population refers to unselected population
age greater than or equal to 35 y, and high-risk subgroups to those with multiple risk factors for a

first coronary event. Clinical trials that include specific subpopulations of patients are shown in
the right side of the figure.

Chapter 3
Cardiac electromechanics

Figure 3-1. Fiber orientation and ejection fraction in a cylindrical LV model.

Figure 3-2. Transmural fiber orientation.

Figure 3-3. Transmural fiber structure. Combination of spiral and circumferential fibers 1)
generates large EF (>60%), 2) generates physiological LV pressures, 3) minimizes global LV
torsional deformation, and 4) equalizes transmural fiber strain and stress.

Figure 3-4. Systolic shearing of fibers along cleavage planes.

Figure 3-5. Laminar sheet structure.

Figure 3-6. Sheet shear and extension allow systolic wall thickening of >40%. Each circle
represents a cross-section of myofiber. X, direction normal to the sheet; X, sheet direction; X3,

radial direction; B, sheet angle; Eq,, sheet shear; E, sheet extension.

Figure 3-7. Cardiac action potential.
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Figure 3-8. 3-D isochronic representation of the activation of the human heart. Zero time is
the beginning of the LV potential.

Figure 3-9. The deformation gradient tensor, F, carries line segment dX into dx.

Figure 3-10. a) Fiver reference markers (apex bead, base bead and three epicardial beads)
used to calculate a cardiac coordinate system, b) The 3-D coordinates of three columns of
markers from in the reference coordinate system, ¢) Two projection views of the marker
set to calculate the 3-D coordinates

Figure 3-11. Two projection views of the high-speed cineradiographic images. AP,
anteroposterior view; LAT, lateral view.

Figure 3-12. A local cardiac coordinate system defined by the transmural bead set. ﬁ,
radial axis; L, longitudinal axis; C, circumferential axis. Note C=L xR .

Figure 3-13. Relationship between the local cardiac coordinate axes (Xi, X3, X3) and the

local fiber-sheet coordinate axes (X, X, Xy).

Figure 3-14. A local fiber-sheet coordinate system and its major strain components.

Figure 3-15. Encoding of the initial location by the first gradient pulse. A circle and an arrow
represent a sample and its phase at each time point, respectively.

Figure 3-16. A pair of dephasing (G) and rephasing (-G) gradient pulses to encode the
displacement of each sample from the initial location.

Figure 3-17. Pulsed gradient stimulated echo (PGSTE) sequence, which stores one
component of the magnetization along longitudinal magnetization.

Figure 3-18. Pulse sequence diagram for cine-DENSE. Following an ECG trigger, the
dephasing gradient pulse is emitted to encode displacement. A segmented fast gradient-echo
echo-planar imaging sequence modified to include the DENSE unencoding (= rephrasing)
gradient is used to rapidly sample the displacement-encoded longitudinal magnetization at
multiple cardiac phases. Ggro = readout gradient, Rf = radiofrequency.

Figure 3-19. Schematic demonstrates the computation of 2D displacement maps from raw
data obtained with cine DENSE MR imaging. Complementary data are subtracted to suppress
the T relaxation echo, and a small circular filter is applied to remove residual signal. After 2D
inverse Fourier transformation (2DIFT), phase correction and phase unwrapping are performed,
followed by computation of one-dimensional displacement values. Vector addition of orthogonal
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one-dimensional displacement values yields a 2D displacement map. Phase ref = phase
reference.

Chapter 4
Regional mechanics during relaxation in normal heart

Figure 4-1. Sites of marker implantation. A: Schematic representation of the heart. X;:
circumferential axis, X5: longitudinal axis, Xj3: radial axis, LAA: left atrial appendage, RCA: right
coronary artery, LAD: left anterior descending, D, D»: first and second diagonal branch of LAD,
respectively. B: Schematic representation of excised tissue block containing the bead set. Fiber
angle (o) was measured in the circumferential-longitudinal (X;-X>) plane at each transmural
depth with reference to the positive circumferential axis (X;), with a positive angle defined as
rotation towards the longitudinal axis (X;). Sheet angle (B) was measured in the plane
perpendicular to the fiber angle at each transmural depth with reference to the radial axis (X3),
with a positive angle defined as rotation towards the positive crossfiber direction (X). Xy fiber
axis, X;: sheet axis, X, axis oriented normal to the sheet plane. The X; X;, and X, axes present a
Cartesian system (See text for details).

Figure 4-2. Early relaxation. Early relaxation was defined as the period beginning at end-
systole (ES) and ending at minimum LV pressure (LVP, solid line). White squares represent
circumferential strain (E;;) at midwall.

Figure 4-3. Measured fiber (o) and sheet (B) angles vs. % wall depth (n = 5, mean + SE). The
mean fiber angles (o) ranged approximately from -60° to +60°, from epicardium to endocardium,
resulting in a transmural gradient of ~120°. The mean sheet angles (8) were predominantly
negative with small variations across the wall (-36° ~ -2°). epi: epicardium, endo: endocardium.

Figure 4-4. Time course of finite strains during early relaxation in local cardiac coordinates.
Note significant endocardial circumferential stretch (E;;), endocardial wall thinning (Es3),
epicardial torsional recoil (E2), transverse shear (E»3, Ei3) during early relaxation (P < 0.05).
Values are means + SE. epi: epicardium, mid: midwall, endo: endocardium, ER: early relaxation.
ES (end-systole, time = 0%), End of ER (time = 100%). Note different scales for each strain.

Table 4-1. Two-factor repeated measures analysis of variance during early relaxation.
Values for epicardial (Epi) and endocardial (Endo) strains are means * SE. Statistically
significant (P < 0.05) effects of time (%), depth (1), and interaction between time and depth (1)
are shown.

Figure 4-5. Time course of finite strains during early relaxation in fiber-sheet coordinates.
Note significant epicardial stretch along the fiber direction (Ef), endocardial sheet shortening
(Eg), fiber shear (Eg, Em) during early relaxation (P < 0.05). Values are means * SE. epi:
epicardium, mid: midwall, endo: endocardium, ER: early relaxation. ES (end-systole, time =
0%), End of ER (time = 100%). Note different scales for each strain.
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Chapter 5
Regional mechanics during relaxation in hypertrophied heart

Figure 5-1. A. Schematic representation of the heart. X;: circumferential axis, X:
longitudinal axis, Xj: radial axis, LAD: left anterior descending coronary artery, LCx: left
circumflex coronary artery, LV: left ventricle, LA: left atrium. A precalibrated micromanometer
pressure catheter was inserted into apex to monitor LV pressure. A 9-Fr silicone catheter was
inserted into LA to monitor LA pressure, which was used in every imaging study to correct for
baseline drifting of the LV micromanometer. B. Bead set consisted of three transmural columns
of 4-6 gold beads (0.8mm) and a surface gold bead (1.7mm) above each column. Finite
deformation of the myocardium was calculated from displacement of each material point (=
bead) in space. C. Diastolic filling. ECG: surface electrocardiogram, LVP: left ventricular
pressure, LAP: left atrial pressure. Diastolic filling was defined as the period beginning at mitral
valve opening (time=0%, pressure crossover of LVP and LAP) and ending at end diastole
(time=100%, peak of ECG R-wave). White squares in the figure represent longitudinal strain
(E22) at 80% wall depth in a control animal. D. Fiber-sheet coordinate system. Each cylinder
represents a myofiber. Myofibers are organized into laminar “sheets”, which are approximately
four cells thick and roughly stacked from apex to base (150). Sheet angle (3) is measured with
reference to the positive radial axis (X3).

Figure 5-2. Illustrative account of fiber (o) and sheet () angle measurement. A transmural
rectangular block of tissue in the implanted bead set was carefully removed from the ventricular
wall, with the edges of the block cut parallel to the local circumferential (X;), longitudinal (X3)
and radial (X;) axes of the LV. The block was sliced into Imm-thick sections parallel to the
epicardial tangent plane. In each 1mm-slice tissue, fiber angle (o) was measured with reference
to the positive circumferential axis (X;). Note the orientation of the fiber axis (Xr) rotates
counterclockwise from epicardium to endocardium. The lmm-slice tissue was sectioned
perpendicular to the mean fiber direction, and sheet angle () was measured in the section plane
with reference to the positive radial axis (X3). This process was repeated in all the Imm-slice
tissues from the epicardium (Epi) to the endocardium (Endo). X;: sheet axis.

Table 5-1. Hemodynamic parameters. Values are means £ SE (n=6). LVPp,,: maximum left
ventricular pressure, MVO: mitral valve opening, LVEDP: left ventricular end-diastolic pressure,
dP/dtnay, dP/dtyin: peak positive and negative dP/dt, respectively, t: time constant of isovolumic
LV pressure decline, fiber strain: Eg, sheet strain: Eg;, sheet shear: Eqy,.

Figure 5-3. Transmural fiber and sheet angles during diastolic filling. Values are means +
SE (n=6). Closed square: mitral valve opening, open square: end diastole, Epi: epicardial surface,
Endo: endocardium. Both in control and hypertrophy, transmural fiber angles did not
significantly change from mitral valve opening to end diastole (P=n.s.). Similarly, transmural
sheet angles did not change during diastolic filling in control (P=n.s.). In contrast, transmural
sheet angles significantly decreased from mitral valve opening to end diastole in hypertrophy (*:
P<0.05). See text for details.

Figure 5-4. Direction of sheet angle change during diastolic filling. Endo: endocardium, epi:

epicardium, X;: radial axis, Bmvo, Bep: sheet angle at mitral valve opening (MVO) and end
diastole (ED), respectively. Because transmural sheet angles were negative at MVO, a decrease
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in sheet angle during diastolic filling (Figure 6-2) indicates that the sheets become more oblique
to the radial axis towards ED.

Figure 5-5. Cardiac strain time course during diastolic filling in control. Values are means
SE (n=6). Epi, endo: 20%, 80% wall depth from the epicardial surface, respectively. MVO:
mitral valve opening, ED: end diastole.

Figure 5-6. Fiber-sheet strain time course during diastolic filling. In A, the reference
configuration for both control and hypertrophy was determined at the end diastole of the control
study. In B, the reference configuration for control and hypertrophy was determined at the end
diastole of the control and hypertrophic state, respectively. Values are means = SE (n=6). Fiber
strain: Eg, sheet strain: Es, sheet shear: Eq,. Epi, endo: 20%, 80% wall depth from the epicardial
surface, respectively. MVO: mitral valve opening, ED: end diastole. Closed circle: control, open
circle: hypertrophy. *: P<0.05 by two-factor repeated measures ANOVA (control vs.
hypertrophy).

Table 5-2. End-systolic strains.

Figure 5-7. Schematic representation of fiber-sheet strains during diastolic filling. A:
control, B: hypertrophy. Bep is not significantly different between control (Bep-control) and
hypertrophy (Bep-hypertrophy). In contrast, Bmvo is greater in control (Bmvo-contror) than in
hypertrophy (Bmvo-hyperrophy). The net result is a significantly greater sheet shear (Esn), which
contributes to greater wall thinning, during diastolic filling in hypertrophy than in control. Fiber
stretch: Eg, sheet shortening: Es;, MVO: mitral valve opening, ED: end diastole.

Chapter 6
Regional electromechanics in normal heart

Figure 6-1. Schematic representation of the heart. The transmural bead set was implanted
between the first (D;) and the second (D,) diagonal branch of the left anterior descending
coronary artery (LAD) to measure finite deformation of the myocardial tissue across the wall.
Epi, epicardium; Endo, endocardium; LV, left ventricle; LCx, left circumflex coronary artery.

Table 6-1. Hemodynamic parameters. Values are mean=SD (n=14). LVPy,y, maximum left
ventricular pressure; dP/dt, first derivative of pressure over time; dP/dtmax, peak positive dP/dt;
dP/dt ., peak negative dP/dt.

Figure 6-2. Transmural fiber orientation. Values are mean=SD (n=14). Fiber angles were
measured with reference to the positive circumferential direction. Epi, epicardium; Endo,
endocardium.

Figure 6-3. Time course of transmural fiber strains. A. Entire cardiac cycle. Different colors
represent the percent wall depth from the epicardial surface. Open circles, the onset of myofiber
shortening; open squares, the onset of myofiber relaxation; TDShort, transmural dispersion of
myofiber shortening; TDRelax, transmural dispersion of myofiber relaxation; ECG,
electrocardiogram; AoP, central aortic pressure; LVP, left ventricular pressure; LAP, left atrial
pressure. B. A closer look at TDShort. C. A closer look at TDRelax.
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Figure 6-4. Transmural dispersion of myofiber mechanics. Values are mean and error bars
indicate SD (n=14). Open circles, the onset of myofiber shortening; open squares, the onset of
myofiber relaxation; TDShort, transmural dispersion of myofiber shortening; TDRelax,
transmural dispersion of myofiber relaxation.

Figure 6-5. Bipolar electrograms from plunge electrodes. Red and blue dots mark the time
points of steepest portion of initial bipolar QRS waveforms and end of T-wave, respectively.
Note the endocardial-to-epicardial direction of depolarization, whereas no clear transmural
dispersion of repolarization is observed.

Figure 6-6. Electrical activation (open triangles) and the onset of myofiber shortening
(open circles) vs. mean wall depth. The open triangles represent the electrical activation (n=4)
mean value at each depth (mm). The open circles represent the onset of myofiber shortening
(n=14) mean value at each depth (mm).

Figure 6-7. Electrical repolarization (closed triangles) and the onset of myofiber relaxation
(open squares) vs. mean wall depth. The closed triangles represent the electrical repolarization
(n=4) mean value at each depth (mm). The open squares represent the onset of myofiber
shortening (n=14 mean value at each depth (mm).

Figure 6-8. Transmural tissue coupling. Purple and green lines indicate strains in epicardial
(0% wall depth) and endocardial (90% wall depth) layers, respectively. Solid and broken lines
indicate fiber and cross-fiber strains, respectively. IVC, isovolumic contraction; IVR, isovolumic
relaxation.

Chapter 7
Regional electromechanics in paced heart

Figure 7-1. A: Schematic representation of the left ventricle. X;: circumferential axis, X:
longitudinal axis, X;: radial axis, LAD: left anterior descending coronary artery, D;, D;: first and
second diagonal branch of LAD, respectively. B: Schematic representation of local fiber-sheet
axes. Fiber angle (o) was measured in the circumferential-longitudinal (X;-X>) plane at each wall
depth with reference to the positive circumferential axis (X;). Sheet angle () was measured in
the plane perpendicular to the fiber angle at each wall depth with reference to the radial axis (X3).
Xy fiber axis, X;: sheet axis, X, axis oriented normal to the sheet plane. The X; X,, and X,, axes
present a Cartesian system (For details, see (17)).

Figure 7-2. Three cardiac phases. EC: early contraction phase, Ejection: ejection phase, ER:
early relaxation phase, ED: end-diastole, ES: end-systole, LVPy,: minimum LV pressure.

Table 7-1. Hemodynamic parameters and time intervals. Values are means + SE (n=5). LV:
left ventricle, dP/dtm.: peak positive dP/dt, dP/dty;,: peak negative dP/dt, EDP: end-diastolic
pressure, ESP: end-systolic pressure, Tau: the time constant of LV isovolumic pressure decay
(logarithmic method) (197, 247), ED-ES: time interval from end-diastole (ED) to end-systole
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(ES), QT: QT interval on surface ECG, QTc: corrected QT interval, TDR: transmural dispersion
of repolarization. *P < 0.05 vs. atrial pacing.

Table 7-2. End-systolic strains. Values are transmural average (subepicardium, midwall and
subendocardium) £ SE (n=5). E;;: circumferential strain, E,: longitudinal strain, Ej;: radial
strain, E»: circumferential-longitudinal shear strain, E,;: longitudinal-radial shear strain, E3:
circumferential-radial shear strain, Eg: fiber strain, Eg: sheet strain, E,,: strain normal to the
sheet plane, Eg: shear strain within the sheet plane, Eq,: sheet shear strain, Eg,: fiber-normal shear
strain, B: sheet angle, *: P<0.05 vs. Atrial pace.

Figure 7-3. Temporal sequence of each strain component. Values are means + SE (n=5).
Subepicardium, midwall, and subendocardium represents 25%, 50% and 75% wall depth from
the epicardial surface, respectively. The reference state for strain calculation was end-diastole for
both atrial pacing (peak of the ECG R-wave) and LV epicardial pacing (V-spike). dP/dt,y: the
timing of LV peak positive dP/dt, ES: end-systole, EC: early contraction, ER: early relaxation.
Note different scales for shear and normal strains.

Figure 7-4. Transmural delay in mechanical activation time (t,,). Values are means + SE
(n=5). Subepicardium and subendocardium refer to 25% and 75% wall depth, respectively. End-
diastole was used as the reference state (time = 0) for both atrial pacing and LV epicardial pacing.
Maximum fiber shortening in atrial pacing and LV epicardial pacing was found near end-systole
and peak positive dP/dt (dP/dtmax), respectively. *: P < 0.05 vs. subepicardium of the same
pacing mode, t: P < 0.05 vs. subepicardium of atrial pacing.

Table 7-3. Transmural mechancial activation strains (E’). Values are transmural average
(subepicardium, midwall and subendocardium) + SE (n=5). *: P<0.05 vs. Atrial pace.

Chapter 8
Global electromechanics in infarct heart

Figure 8-1. Epicardial electrical signals during a cardiac cycle (cycle length = 544 msec, HR
= 110 bpm) registered to a short-axis delayed hyperenhancement (DHE) MR image of the
LV split into 32 sectors. Regions of bright intensity correspond to MI. In this image, abnormal
or delayed activation is seen from sectors 4 through 9, whereas the infarct ranges from sectors 3
through 14.

Table 8-1. Hemodynamic data. Values are mean = SE. LVP,y: peak LV pressure, dP/dtyay:
peak positive dP/dt, dP/dtni,: peak negative dP/dt, LVEDP: LV end-diastolic pressure, LVESV:
LV end-systolic pressure, LVSV: LV stroke volume, LVEF: LV ejection fraction, CO: cardiac
output.

Figure 8-2. Short-axis, delayed hyperenhancement (DHE) image of MI from a single

animal. Regions of bright intensity correspond to MI. Note multiple interdigitations of viable
myocardium within the infarct region.
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Figure 8-3. Infarct depth and electrical activation from a single animal. A. Infarct map (in
percent depth). B. Isochrone map of electrical activation time (in msec). The area
circumscribed by a solid black line represents the right ventricle (RV). The area circumscribed
by a solid white line represents the infarct zone in the anterior wall (the infarct zone in the
septum is covered by the RV). Pos: posterior wall, Sep: septal wall, Ant: anterior wall, Lat:
lateral wall.

Figure 8-4. Quantitative analysis of electrical activation time in each zone (n=6). Electrical
activation time (in msec) was significantly delayed in the infarct zone compared with that of the
border zone (319 vs. 19+2 msec, P<0.05), whereas it was not significantly different between the
border zone and the remote zone (19+2 vs. 21+3 msec, P=n.s.).

Figure 8-5. 3-D Displacement map from a single animal. Each arrow represents a
displacement vector that points from the end-diastolic to end-systolic configuration. The
magnitude of displacement is color-coded. It is clear that the displacement magnitude in the
infarct zone in the anteroseptal wall (left side of the figure) is small (purple ~ blue) compared to
that of the remote zone in the posterolateral wall (right side of the figure, red ~ yellow).

Figure 8-6. 3-D Strain map from a single animal. The area circumscribed by a solid white line
represents the infarct zone. Eq: radial, Ec.: circumferential, and Ej: longitudinal strains. The
regions of abnormal strains, particularly the longitudinal strain, extended far beyond the infarct
zone, and the strains were larger in the epicardium than in the endocardium. Epi: epicardial layer,
Endo: endocardial layer.

Figure 8-7. Quantitative analysis of finite strain in each zone (n=6). E, E . and E; in both the
infarct zone and the border zone were significantly smaller than those in the remote zone
(P<0.05), and there was no significant difference between the infarct zone and the border zone
(P=n.s.). There was a significant transmural gradient between the epicardium and endocardium
in Er, Ecc and Ej in the remote zone (P<0.05), and the transmural gradient was lost in both the
infarct zone and the border zone.

Chapter 9
Global electromechanics in infarct heart with substrate for sudden
cardiac death

Figure 9-1. Overview of data acquisition and processing.
Figure 9-2. The magnitude (A) and the phase (B) images from the cine-DENSE sequence.

Figure 9-3. Image acquisition, displacement and strain calculation using the cine-DENSE
sequence.

Figure 9-4. A. Circumferential strain. Circumferential strain g. describes myocardial
shortening or stretch in the circumferential direction. B. Sample fit of raw circumferential
strain data at image frames (+) to 7th-order polynomials (solid line). A zero strain value (c)
was indicates the time of the tag encoding gradient (=22msec after the peak of the ECG-R wave)
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to reflect the reference configuration. C. Mesh reconstruction of LV. Mesh vertices indicate
locations of displacement and strain calculations. There are a total of 144 data points per heart
(=24 sectors x 6 short-axis slices).

Figure 9-5. A. Short-axis view of the contrast-enhanced MR image. Regions of high intensity
(= light gray) corresponds to MI. B. Mesh presentation of the MI wall depth (%) in one
animal. Note the MI was mostly transmural (= dark red), and was located in the anteroseptal
region.

Figure 9-6. Unipolar electrical recordings from an epicardial sock electrode. A. Normal
sinus rhythm, B. Sustained monomorphic VT.

Figure 9-7. Time course of circumferential strain in one animal. The numbers indicate the
time from the peak of ECG-R wave. The area circumscribed by a solid line represents MI (>50%
wall depth). Note the circumferential length change appears greater than actual change in vivo.

Figure 9-8. Average mechanical indices by region (n=8). A. Prestretch (circumferential
strain, %), B. Peak prestretch rate (circumferential strain/sec, %/sec), C. Time to onset of
shortening (time, msec), D. Time to peak shortening (time, msec), E. Peak shortening
(circumferential strain, %), F. Peak shortening rate (circumferential strain/sec, %/sec). The
area circumscribed by a solid line represents MI (> 50% wall depth).

Figure 9-9. Comparison of mechanical indices between viable vs. infarct myocardium.
These box plots contain the pooled data from all the data points from all animals. The boundary
of the box closest to zero indicates the 25 percentile, a line within the box marks the median,
and the boundary of the box farthest from zero indicates the 75™ percentile. Whiskers above and
below the box indicate the 90" and 10™ percentiles. *: P<0.05 vs. viable myocardium.

Figure 9-10. Correlation between prestretch and peak shortening rate in the viable
myocardium in one animal (r=-0.75, P<0.001).

Figure 9-11. Correlation coefficients for each animal. Individual correlation coefficients are
shown in closed (viable myocardium) and open (infarct myocardium) circles, and the open
squares indicate mean+SD of the correlation coefficient in each animal. The number of data
points per animal (meantSD) to calculate each correlation coefficient is also shown. The
horizontal dashed lines indicate |r|=0.5. TTOS, time to onset of shortening; TTPS, time to peak
shortening; PS, peak shortening; PSR, peak shortening rate; ARI, activation recovery interval.

Figure 9-12. Spatial distribution of prestretch and ARI in one animal. The prolate ellipsoid
mesh on the left represents prestretch (color-coded in %) derived from the cine-DENSE images,
whereas the epicardial mesh on the right represents ARI (color-coded in msec) derived from the
electrical sock measurement. The spatial distribution of greater prestretch (red arrow) was very
similar to the distribution of longer ARI (black arrow).

Figure 9-13. Correlation between prestretch and ARI in the prestretch region in one
animal (r=0.92, P<0.001).
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