
Doctor Thesis, The University of Tokyo

State-Action Map Compression

by using Vector Quantization

for Decision Making of Autonomous Robots

Ryuichi Ueda

Supervisor: Prof. Tamio Arai

February, 2007

This thesis is put in type with LATEX2ε and AMS-LATEX.

To Rie and our baby

i

Acknowledgements

Prof. Tamio Arai gives me the chance of this research, and his advice is
gratefully acknowledged.

Mr. Takeshi Fukase and Dr. Yuichi Kobayashi have its roots in the
study of vector quantization for dynamic programming. I have inherited
their initial studies and have been able to advance this research as this thesis.

The persons who belong to and belonged to Team ARAIBO have
gratefully helped me to conduct the experiments in this paper, and have
provided many cutting-edge software applications for computers and robots.
Mr. Kazunori Asanuma and Mr. Yoshiaki Jitsukawa provided me superb
simulators of ERS-210 and ERS-7 respectively. Mr.Shogo Kamiya and Mr.
Masaki Komura created and maintained the walking actions of ERS-210.
Mr.Toshifumi Kikuchi maintained look-up tables for color recognition by
the camera of ERS-210. Mr.Kazutaka Takeshita and Mr.Kohei Sakamoto
coded some algorithms that became the prototypes of my codes.

This paper is reviewed by Prof. Kanji Ueda with Research into Artifacts,
Center for Engineering, Prof. Ichiro Sakuma with Department of Precision
Engineering, School of Engineering, Prof. Hitoshi Iba with Department of
Frontier Informatics, Graduate School of Frontier Sciences, and Prof. Jun
Ota with Department of Precision Engineering, School of Engineering. I
received lots of advice and feedback from them.

This research is partially supported by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aids for Young Scientists (B) (No.
17760199), and for Scientific Research (B) (No. 16300050).

ii

Abstract

In this thesis, we propose a methodology for implementing decision making
rules (policies) of robots on their limited amount of random access memory
(RAM). Decision making policies are computed by a dynamic programming
(DP) method and they are compressed by vector quantization (VQ).

In Chapter 1, the background, related works, and purpose of our study
are described. An optimal control problem and the finite Markov decision
process that are handled in this paper are formulated so that we explain
the general idea of the optimality of policies. After that, we set up the
problem of how to represent policies that fulfill the following conditions: 1)
they are reflexive policies that can be read only with some operations for
data access, 2) they are efficient from the standpoint of optimal control, and
3) they can be installed with small amount of memory on robots. Those
policies are useful for various robots, especially for autonomous robots
that have poor computing resources, or that must move in real-time. This
problem has never been tackled directly even though there are meny previous
studies that handle problems of how to solve policies with a small number
of data elements. We therefore fix the purpose of this thesis to propose
a methodology of creating small and efficient reflexive policies. In other
word, we try creating reflexive policies whose efficiency per bit are superior.

In Chapter 2, look-up tables called state-action maps are defined
as one of the most suitable formats for reflexive policies. It is defined as a
binary sequence that records a suitable action for every state of robots and
their surroundings. When the state is represented by some variables (state
variables), a state-action map can also be regarded as a multidimensional
array on the state space that are spanned by the state variables. As a
method for building state-action maps, the value iteration algorithm, which
is one of the most popular algorithms of DP, is explained. Simple use
of look-up tables for solving decision making problems is regarded as an
inefficient and nonresponsive way. This criticism is partly true. We however
show some actual examples that the efficiency per bit of policies on a
look-up table is sometimes more efficient than that of policies with tricky
representation. From this chapter to Chapter 4, we explain and evaluate
algorithms with the puddle world task, which is a standard problem of
artificial intelligence.

In Chapter 3, we propose the method for compressing the state-action
maps. Vector quantization (VQ) algorithms are utilized for compression.

iii

The compressed state-action maps are called vector quantized state-
action maps (VQ maps). For compression of state-action maps by VQ,
we propose a novel distortion measure, which is called the state-value
distortion. VQ has been successfully used for lossy compression of digital
images and sounds. In a VQ method, the loss of information of compressed
data is measured by a distortion measure which can be easily defined as
difference of values on each pixel or each element of wave. On the other
hand, the definition of a distortion measure is much more difficult because a
change of an action on a state-action map sometimes influences quite differ-
ent areas of the state-action maps. Therefore, compression of state-action
maps is also difficult. Robots sometimes cannot reach states where tasks are
completed due to only one change. The state-value distortion can reduce
the risk of such a destruction of state-action maps.

The VQ method for state-action maps and the state-value distortion
are evaluated on the puddle world task. The method is also compared to a
compression method that utilizes a tree-structure.

In Chapter 4, we propose some methods that can enhance the efficiency
per bit of VQ maps. Value iteration methods for VQ maps and vector
quantization of VQ maps are applied to VQ maps of the puddle world
task. We verify the effectiveness of the methods by the comparison to the
simulation results in Chapter 3. Other techniques as partitioning, methods
for finiding suitable ways of creating vectors are also introduced.

In Chapter 5, we try creating VQ maps for the height task of the
Acrobot. The Acrobot is an underactuated manipulator that has one
actuator and two links. The task of the Acrobot has different properties
from the puddle world task. Especially, the Acrobot’s nonlinear dynamics
makes the problem difficult. However, we can show that the VQ method can
be applied to it with the common formulation of Markov decision processes.
By a simulation for evaluation, we find that the VQ method can reduce the
dimension of a state-action map from four to two even though the obtained
state-action map is chaotic.

In Chapter 6, the VQ method is applied to two kinds of task on robot
soccer (RoboCup), which is nowadays the most popular standard problem
of robotics and artificial intelligence. In the first task, the VQ method is
applied to an actual robot, which is a quadruped robot ERS-210 made by
SONY, for evaluation experiment. The task is to approach a ball within
minimum steps. In this experiment, we verify that a VQ map whose size

iv

is 1.5[%] of an original state-action map can work without conspicuous
efficiency loss.

In the latter part of this chapter, a task in which two ERS-210s try
scoring within minimum time is handled in simulation. Multi-agent systems
are challenging problems not only for the VQ method but also for DP.
By our discretization of the state-space, the nunber of elements in the
state-action map reaches 610 million. Firstly, we demonstrate that such
a large problem can be solved by DP with a high-performance desktop
computer. Secondly, we solve the problem that the state-action map cannot
be installed on an ERS-210 due to the shotage of memory. The VQ method
is used to reduce the size of the state-action map to a smaller size than the
amount of memory (16[MB]) on an ERS-210. The efficiency of the created
VQ map is evaluated in simulation. The flow of the process of DP and
VQ in this task will suggest that our methodology can give an efficient,
elaborate, and reflexive policies.

In Chapter 7, we summarize and discuss each proposed method and
concept in the thesis. From the results of simulation and experiment on
every task, the ability of the VQ method is evaluated. The versatility of the
state-value distortion is revealed.

In Chapter 8, we conclude this thesis. After that, some possible exten-
sions of our method are indicated.

v

vi

Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Multistage Decision Problems on Robotics 2
1.1.2 State-Action Controller 4
1.1.3 Mapping from State to Action 6

1.2 Policy Implementation Problem 8
1.3 Related Studies and Works . 15

1.3.1 Fundamental Solutions of Optimal Control Problems . 15
1.3.2 Function Approximation Methods 18
1.3.3 Memory Economization for Policy Creation and Imple-

mentation . 25
1.3.4 Relation to The Policy Implementation 28

1.4 Purpose of This Study . 30
1.5 Contents of This Thesis . 31

2 State-Action Map 33
2.1 State-Action Maps . 34

2.1.1 Its Format . 34
2.1.2 Association between Physical Space and State-Action

Map . 36
2.2 Creation of State-Action Map 38

2.2.1 State-Value Function on Look-Up Table 38
2.2.2 Dynamic Programming 38

2.3 Example with Puddle World Task 42
2.3.1 Definition of The Task 42
2.3.2 Discretization of State-Space 43
2.3.3 Computing Result . 45
2.3.4 Relation between Size and Efficiency 47

2.4 Comparison with Value Functions 49
2.4.1 Decision Making from State-Value Function 49
2.4.2 Implementation of Tile Coding 50

vii

2.4.3 Implementation of Interpolation 51

2.4.4 Evaluation Result . 52

2.5 Discussion . 55

3 State-Action Map Compression 57

3.1 Suitable Manner for
Compressing State-Action Map 58

3.2 Vector Quantization . 60

3.2.1 Vector Quantization for Compression of Finite Amount
of Data . 60

3.2.2 Distortion Measure . 61

3.2.3 Blocking for VQ of A Sequence of Numbers 62

3.3 Vector Quantized State-Action Map and Its Character 65

3.3.1 Vector Quantized State-Action Map 65

3.3.2 Size, Accessibility, and Efficiency Loss of VQ Map . . . 66

3.4 State-Value Distortion . 68

3.5 Example of Implementation 70

3.5.1 Blocking . 70

3.5.2 Clustering Algorithms 71

3.5.3 Obtained VQ Maps . 73

3.6 Evaluation with Puddle World Task 76

3.6.1 Comparison with Coarse Discretization 76

3.6.2 Comparison with Tree Structure 80

3.7 Discussion . 86

4 Techniques for Quick and Efficient Compression 89

4.1 Value Iteration for VQ Map 90

4.1.1 A Special Problem to Build VQ Maps 90

4.1.2 Value Iteration after Vector Quantization 91

4.1.3 Evaluation . 93

4.2 Choice of Blocking . 97

4.2.1 Limitation of Compression Ratio 97

4.2.2 Estimation of Better Blocking Way 97

4.3 Multi Layered Vector Quantization 104

4.3.1 Double Layered VQ Map 104

4.3.2 Multi Layered VQ Map 107

4.3.3 Evaluation . 107

4.3.4 Partitioning . 110

4.4 Discussion . 113

viii

5 Application and Evaluation I:
The Acrobot 115
5.1 The Acrobot . 116
5.2 Height Task and Its Formulation 118
5.3 Obtaining State-Action Map 119

5.3.1 Value Iteration . 119
5.3.2 Obtained State-Action Maps 121
5.3.3 Behavior with The State-Action Map 125
5.3.4 Evaluation of The Density 128

5.4 Compression of State-Action Maps 130
5.4.1 Algorithm for Obtaining VQ Maps 130
5.4.2 Obtained VQ Maps . 131
5.4.3 Comparison of Motion with Uncompressed Map 137

5.5 Discussion . 142

6 Application and Evaluation II: RoboCup 143
6.1 RoboCup Four Legged Robot League 145

6.1.1 Autonomous Robot ERS-210 146
6.1.2 Soccer Field and Accompanying Items 146
6.1.3 Recognition . 148

6.2 Task of Going to Ball . 152
6.2.1 State Space . 152
6.2.2 Evaluation of Obtained State-Action Map 159
6.2.3 Compression of The State-Action Map 161
6.2.4 Evaluation of The Entropy Function 163
6.2.5 High Ratio Compression 167
6.2.6 Experiment with Actual Robot 168

6.3 Scoring Task by Two Robots 172
6.3.1 Objective . 172
6.3.2 Related Works and Our Stance 172
6.3.3 Problem Definition and Assumption 173

6.4 Value Iteration for Scoring Task 175
6.4.1 State Space . 175
6.4.2 Actions . 176
6.4.3 State Space Discretization and Final State

Definition . 178
6.4.4 State Transition . 179
6.4.5 Reward . 183
6.4.6 Value Iteration . 183
6.4.7 Behavior of Robots with The 8D Map 184
6.4.8 Evaluation . 188

ix

6.4.9 Effectiveness of Cooperation 189
6.4.10 Effectiveness of the Additional Algorithms 189

6.5 Compression of The 8D Map 191
6.5.1 Vector Quantization Process 191
6.5.2 Execution of The VQ Process and Its Result 193

6.6 Comparison of Efficiency . 199
6.6.1 Comparison with the 8D Map and the 5D Map 199

6.7 Discussion . 201

7 Total Evaluation and Discussion 203
7.1 Evaluation of Costs of Each Process and VQ Map 204

7.1.1 Performance of VQ Maps 204
7.1.2 Computing Complexity for Building 205
7.1.3 Double Layered Vector Quantization 206
7.1.4 Entropy Function . 206

7.2 Evaluation of State-Value Distortion 208
7.2.1 Other Distortion Measures 208
7.2.2 Comparison on The Puddle World Task 209
7.2.3 Comparison on The Acrobot 212
7.2.4 Comparison on The Scoring Task 213
7.2.5 Discussion . 216

8 Conclusion and Future Work 217
8.1 Conclusion . 217
8.2 Future Work . 219

8.2.1 Reduction of Cost in Creating Process of Policies . . . 219
8.2.2 for Augmented Decision Making Problems 219
8.2.3 Minimum Description Length Principle for Decision

Making . 222

A Further Note 223
A.1 Coding of Eq. (2.17) . 223
A.2 Consideration of Collision . 224
A.3 Robustness of Maps for the Acrobot toward Errors of Parameters225
A.4 Difference between Actual Environment and Simulator for

Scoring Task . 227

B Self-Localization 229
B.1 Monte Carlo localization with Resetting 229

B.1.1 Bayes Filters . 229
B.1.2 Monte Carlo localization 231

x

B.2 Resetting Methods . 232
B.2.1 Sensor Resetting . 233
B.2.2 Expansion Resetting 233
B.2.3 Blending of Resetting Methods 234
B.2.4 Implementation . 234

C Use of State-Action Maps in RoboCup 237
C.1 Goalkeeper Task . 237

References 243

Publication List 251

xi

xii

1

Chapter 1

Introduction

This thesis devotes all of its pages to deal with a problem of how to
implement software controller for a robot with a small amount
of random access memory (RAM) on its computer. Though this
problem would not sound up-to-date, it would be true that many researchers
have considered the problem noted above under the bright key-words inten-
tionally or unintentionally. In other words, the problem is still important
subject and they try to solve it by using various techniques or approaches.

In this chapter, we make preparations for explaining our methodology.
In Sec. 1.1, some problems of optimal control, artificial intelligence, and
robotics are introduced. It is helpful for readers to realize characterization
of the subject of this thesis in these fields. In Sec. 1.2, a problem of policy
implementation is defined. Related studies around the problem are explained
in Sec. 1.3. We set the purpose of this thesis in Sec. 1.4. The structure of
this thesis is stated in Sec. 1.5.

1.1. BACKGROUND 2

1.1 Background

1.1.1 Multistage Decision Problems on Robotics

In the course of day-to-day activities, we encounter a lot of cases where we
decide our to-do list so as to fulfill some purposes. If we give an example, a
marathon runner must vary his/her pace in order to mark his/her best time.
The result of the variation of pacing is evaluated when the runner arrives
at the goal. Some kinds of board game are more complicated. Players of
chess, for example, are thinking sequences of their moves in the game. After
dozens of moves, the sequence of moves are evaluated. One of them becomes
the winner and another becomes the loser. Literally speaking, the loser
cannot be obtained any reward even though he/she has thought a sequence
of moves seriously.

As the above examples, there are many cases where not a decision but a
sequence of decisions at every stage is evaluated at the end. These problems
are called optimal control problems or multistage decision problems. In the
above examples, the former can be regarded as an optimal control problem
for minimizing the time. The latter is a typical multistage decision problem
in artificial intelligence.

Fig. 1.1: Motion planning of a non-
holonomic vehicle [Laumond, 1994] Fig. 1.2: A rearrangement task [Ota, 2004]

In this thesis, multistage decision processes and optimal control problems
are argued for robots. In robotics, decision making problems have both

CHAPTER 1. INTRODUCTION 3

characteristics of control engineering and artificial intelligence. Every robot
has its body, which is ruled by the physical law. On the one hand, it should
compose a procedure of a task if the task is not finished without following
the procedure.

Figure 1.1 and 1.2 illustrate two research subjects in robotics:
control of a nonholonomic robot [Laumond, 1994; Ferbach, 1998],
and a rearrangement task of movable objects [Fukazawa, 2003;
Ota, 2004]. The former is rather a control problem. The motion of
the nonholonomic robot is composed of smooth trajectories. Each trajectory
is determined according to the physical characteristic of the robot. However,
we should also pay attention to the cusps that link the trajectories. When
watching the cusps, we think that this path will not be solved by classical
methods for control problems.

On the other hand, the rearrangement task seems to be an issue of AI.
There are three objects: A, B, and C in the “�” shape environment. These
objects have to be rearranged from the state (a) to the state (b). When a
person does this task instead of the robot, he/she thinks where each object
should be temporally put at first. This process is not control but a way of
AI. However, the objects and the robot are suffered from various limitations
on rigid dynamics.

It is easy-to-understand for us to regard a process for completing the task
as a sequence of states and actions. This sequence is written as

s0, a(t0), s(t1), a(t1), s(t2), a(t2), . . . , a(tT−1), sf (s0 = s(t0), sf = s(tT)).
(1.1)

Each symbol is used with the following definitions:

• t = t0, t1, . . . , tT : a sequence of time instants (no need to be fixed),

• s(t): state of the task at time instant t, and

• a(t): action which is executed by the robot at t.

t0 and tT denote time instants at start and finish of the task respectively. s0

and sT are named the initial state and the final state respectively. A state
contains all kinds of information that relate to the task. An action then can
be regarded as the operation of the robot to the state. We assume here that
the robot does not need to observe states. We only want to describe how a

1.1. BACKGROUND 4

robot behaves to complete a task.

We can settle the symbolized states with an arbitrary step size. We
can give the symbol s to every state where the robot stops at a cusp in
the case of Fig. 1.1. In the case of the task in Fig. 1.2, several halfway
arrangements of objects can be given the symbols. Since the aspect of
dynamics is concealed behind the symbols in this case, every action a(ti)
is symbolization of the answer of the control problem from s(ti) to s(ti+1).
The merit of this idea is that decision in a task can be separated to a control
problem and an AI problem.

On the other hand, we can also symbolize the states with a minimum step.
The step is determined by cycle time of computation for decision making.
In this case, the action is more primitive than that of the above case. For
example, it can be input current for actuators. With this representation,
behavior of a robot in a task is handled as just a result of control of actuators.
This representation is more general than the former one. If every action in
the former is decomposed into the sequence of input current for actuators,
and if the state at every time instant of input is observed, the state-action
sequence has a structure with the latter representation.

1.1.2 State-Action Controller

In either case, behavior of a robot can be represented by the state-action
sequence. This idea is frequently utilized to implement controllers of robots,
or machines when they can recognize the state at every time instant. To
explain those controller, we define the symbols of state and action more
definitely.

• States are symbolized in the state-action sequence when they are ob-
served or estimated.

• One symbol of action is given to the motion of actuators between an
observation/estimation and the next one.

The controller that we argue above has the following property.

• An action is chosen reflexively when the state is observed/estimated.

We can symbolize the state-action sequence with this controller as:

s0, π(s0), s(t1), π(s(t1)), s(t2), π(s(t2)), . . . , π(s(tT−1)), sf (1.2)

CHAPTER 1. INTRODUCTION 5

if the task is successfully finished. π denotes a mapping from a state to an
action.

π : S → A (1.3)

where S = {s(t)|t = t0, t1, . . . , tT−1} and A = {a(t)|t = t0, t1, . . . , tT−1}. The
set of states S does not contain identical states. We such a case can be
avoided if the time is included as the state. π is called a policy. Here we call
this controller a state-action controller since every action is chosen based on
the state.

world
robots
objects
...

computer on a robot

s
symbolization

a
concretization

mapping

Fig. 1.3: A state-action controller

Figure 1.3 illustrates relation between a state-action controller and the
world. We assume that a robot, machine, or system has a computer, which is
a von Neumann-type one. It also has sensors and actuators. This computer
converts the sensor readings into s ∈ S, s into π(s) = a ∈ A, and a into
motion of actuators.

Sequential controllers can be the simplest examples of state-action
controller. Robots and machines with sequential controllers have been used
for manufacturing in factories. State of a manufacturing line is recognized
through mechanical switches. When some states of switches are changed,
inputs for actuators are converted by a controller. The motion of machines
changes from the state to another. The mapping from a state to an action
is programmed by engineers.

We can utilize a state-action controller for autonomous robots. A
policy can be defined based on a state-action sequence that is planned by
a programmer. For example, LEGO Mindstorm [Baum, 2000] is a popular

1.1. BACKGROUND 6

commercial product for building autonomous robots and vehicles. Figure 1.4
illustrates a vehicle composed of LEGO blocks and a computer block that
is called RCX. A programming environment, which is called RCX Code, is
attached to this product. We can program a sequential controller with RCX
Code on a computer and send the executable code to the RCX. In the box of
Mindstorm, paper on which a track is drawn is also attached as shown in the
figure. Many people who buy Mindstorm may build up an autonomous ve-
hicle and try programming a code for the vehicle for tracing the track at first.

Fig. 1.4: A LEGO Vehicle

It is not easy to create a program that can make a vehicle trace the track
hundreds of laps without failure, while manufacturing lines can make thou-
sands of products in serial order. The reason is not that their programming
for LEGO robots is unserious. In the case of manufacturing lines, various
factors that disturb state-action sequences are removed. On the other hand,
it seems that we expect LEGO robots to be robust against factors of dis-
turbance. It is then impossible to program motion of robots with a perfect
prediction of all of the factors.

1.1.3 Mapping from State to Action

Thus, robustness toward the disturbance is very important when we want
to make an autonomous robot work beyond environments of factories. In
control engineering, a controller is regarded as robust if it can pull back
a state in the state-action sequence when a perturbation is given. In the
case of the robots mentioned above, however, it is not enough because
envisioned disturbances are much larger than perturbations assumed in

CHAPTER 1. INTRODUCTION 7

control engineering.

Moreover, an autonomous robot must build the state-action sequence by
itself when the initial state is not told beforehand. Paradoxically speaking,
we can judge whether a robot is autonomous or not from this ability. The
robot in Fig. 1.2, for example, should arrange the objects even if the initial
arrangement is not defined previously.

The robustness toward disturbances is included in this function. When
a state-action sequence is cut by an accident, the state after that can
be regarded as an initial state. The robot must compose an appro-
priate sequence from the new initial state to a final state. If we want to
realize such a robot, every and each state should be able to be an initial state.

We define the following state-action controller as follows so as to consider
robots that have the above function. A state space and a set of actions are
defined as

S = {si|i = 0, 1, 2, . . . , N − 1}, and (1.4)

A = {aj |j = 0, 1, 2, . . . , M − 1} (1.5)

respectively. We assume that each and every condition of an environment
belongs to a state in S. Some of the states in S are final states, whose
set is written as Sf. The state is changed from one to another by an action.
Since the state-transition is not always deterministic, we represent each state
transition as Pa

ss′ ∈ [0, 1] toward all of the set of s ∈ S−Sf, a ∈ A, and s′ ∈ S.
On the definition, a policy is defined as

π : S − Sf → A. (1.6)

This policy is effective all over the state space, while the policy in Eq. (1.3)
is a piece of string in the space.

The robot with this policy starts its task as soon as the robot is put at
an arbitrary state; as if it is the instinct of the robot. The robot continues
the task from the posterior state even if the robot drops something, skids
somewhere, or is obstructed by someone. Even if this idea is an impractical
proposition, to research entirely autonomous robots means to realize such a
robot.

1.2. POLICY IMPLEMENTATION PROBLEM 8

1.2 Policy Implementation Problem

Though it is difficult to imagine autonomous robots that have the robustness
mentioned above, polices that can react all kinds of state in the world exist
certainly. For example, a toy car with a motor and a sensor has a kind
of policy. When the car has one sensor that outputs one or zero, the car
can distinguish two states and react to each state. If it has an electrical
circit for memory, moreover, the car distinguish more than two states
with combinations of the sequence of binary. For the car or its policies,
simply stated, state of the world is equal to the stimulation of the sen-
sor. Even if the car does not know the variety of this world, it can be moving.

What is the difference between robots and the toy car? The important
difference is that robots in research are given tasks. Their performance is
evaluated by some ways of evaluation. The other difference is that people
place excessively high hopes on robots, while there is no essential difference
between their hardware. Even if a robot has a high performance computer,
the entity of the computer is an electrical circuit.

From that pessimistic opinion, however, we can find a challenging
problem of how to make bundles of electrical circuits with sensors and
actuators behave intelligently. In this thesis, we want to give robust and
extraordinarily-complex policies to robots beyond the limitation of their
computers.

Three Evaluation Criteria of A Policy

Here we assume a robot that has a von Neumann computer. A policy is
implemented on memory of the computer. The ability of a von Neumann
computer is evaluated by its processing speed and its amount of memory. A
policy on the computer is also evaluated by

• time complexity: calculation amount for accessing the policy, and

• space complexity: the amount of memory for its representation.

These criteria are called the on-line costs in this thesis. The computational
costs should also be considered when a policy is created. The costs are
called the off-line costs. Hereafter, we use off-line and on-line to represent
the phase when a policy is computed and the phase when it is used for
decision making respectively.

CHAPTER 1. INTRODUCTION 9

Another criterion is required for evaluating a policy. As mentioned above,
a robot is given a task and evaluated. Therefore,

• efficiency of control: its optimality on an evaluation

is an important criterion. A policy on a robot can be evaluated by the above
three criteria at on-line.

Our Scope in This Thesis

We can think various implementation problems of policies by the change of
emphasis on each of the above criteria. In this thesis, we handle policies
that make robots possible to decide its action reflexively. In such a policy,
an action at an arbitrary state on a policy must be accessible only with
some steps of four arithmetic operations or address calculations. We name
such policies reflexive policies. A reflexive policy enables a robot to react the
result of state recognition in real-time. For robots that have poor computers
or micro computers, reflexive policies are inevitable. Autonomous robots
and machines that must move very fast also require them.

On the other hand, the amount of memory and the efficiency will be
sacrificed by the direct representation of policies. However, a policy cannot
be larger than the amount of memory on the robot. For robots with poor
computing resources, compact representation of reflexive polices is inevitable.
Small size policies are also welcomed by other robots because there is a
possibility that the robots can consider the more larger number of states
with high efficiency beyond the sizes of their memory. Therefore, we handle
a problem of how to implement reflexive polices as small as possible in this
thesis.

Optimal Control Problem

Before that, we must define the efficiency of a policy. As mentioned above,
the efficiency is measured based on an evaluation, which is represented by a
scalar. If there is no evaluation, we cannot discuss which policy is better or
worse.

The optimal control theory is the most general formulation for solving or
evaluating policies with an evaluation. We consider the following equation:

ẋ(t) = f [x(t), u(t)], x(0) = x0, t ∈ [0, tf]. (1.7)

1.2. POLICY IMPLEMENTATION PROBLEM 10

This equation is called a state equation. x(t) = (x1(t), x2(t), . . . , xn(t)) ∈
X ⊂ �n is named a state vector. Each element in the vector is called a
state variable. u(t) = (u1(t), u2(t), . . . , um(t)) ∈ U ⊂ �m is a control input
vector and its element is named a control parameter. We assume that the
state vector x(t) is known toward ∀t. This state equation defines or models
the dynamics of the system that is controlled. The state of the system
x(t) changes according to control input u(t) with the low of dynamics: f .
Though time tf is defined as the time at the end of control, it does not have
to be fixed. Hereafter x(t) and u(t) are sometimes called a state and a
control input respectively. x0 is called an initial state. If the state can be
led from x0 to xf by the sequence of control inputs from t = 0 to t = tf, a
path of the state in �n space is fixed as shown in Fig. 1.5.

xf

x(t)

x(t) = f [x(t), u(t)].

x0

Fig. 1.5: A state transition of the system

Such a sequence of control inputs can be defined as a function of control
input u : [0, tf)→ �m. If there is a purpose of control, this purpose should be
mathematically defined. In an optimal control problem, the purpose is given
as a functional J [u] ∈ �, which should be maximized or minimized. In other
word, all control inputs from t = 0 to t = tf and their results are evaluated by
a real number. The functional is the summation of an evaluation function:

g[x(t), u(t)] ∈ � (t ∈ [0, tf]). (1.8)

This function gives a real number toward the occasion at time t. Another
evaluation, a value of a final state, is sometimes added to the functional. A
final state is the state at tf and written as xf. The value of a final state is
then represented as V (xf). With the evaluation function and the value for
the final state, the functional is written as

J [u] =

∫ tf

0

g[x(t), u(t)]dt + V (xf). (1.9)

CHAPTER 1. INTRODUCTION 11

The function u, which maximizes the functional, is called the optimal
control. The function of the optimal control is written as u∗. A problem to
find the optimal control can be represented as

max
u:[0,tf)→�m

J [u; x0]. (1.10)

When an initial state x0 and u∗ are given, a path of the state transition is
fixed. This path is called the optimal path and its function is written as
x∗ : [0, tf]→ �n.

When the optimal path is known, u∗ can be a function from the state on
the path to the optimal control input. We write this function

π∗ : �n → �m (1.11)

specially. We call π∗ the optimal policy. However, this function can be
defined only on the optimal path at this stage. In other words, this function
depends to the initial state x0.

In the case of the time-invariant system that can be represented by
Eq.(1.7), we can recognize that the optimal policy is independent of the
initial state. Equation (1.9) can be rewritten as

max
u:[0,tf)→�m

J [u; x0] = max
u:[0,t′)→�m

∫ t′

0

g[x(t), u(t)]dt

+ max
u:[t′,tf)→�m

∫ tf

t′
g[x(t), u(t)]dt + V (xf)

= max
u:[0,t′)→�m

∫ t′

0

g[x(t), u(t)]dt + max
u:[t′,tf)→�m

J [u; x(t′)].

(1.12)

This equation is fulfilled with ∀t′ ∈ [0, tf). As shown in this equation, the
optimal control problem can be separated at ∀t′ ∈ [0, tf). u∗(t′) should
be the solution of the problem in [0, tf), while it should be that in [t′, tf).
Moreover, the solutions should be equal to each other. It means that u∗(t′)
is independent of the initial state x0 and that u∗(t′) is depended only on
the state x(t′). Therefore, the policy, which is the mapping from every state
to a control input, can be defined.

When a policy π, which does not need to be optimal, is given, the func-
tional can be regarded as a function, V ı : �n → �. Each value of the

1.2. POLICY IMPLEMENTATION PROBLEM 12

function is defined as

V ı(x) = J [u; x], (1.13)

where u(t) = π(x(t)), 0 ≤ t ≤ tf.

This function is called a state-value function. This function can be regarded
as an extension of the function that gives the value of the final state in
Eq.(1.9). The state-value function for the optimal policy π∗ is called the
optimal state-value function and is written as V ∗.

Finite Markov Decision Processes

Any robot exists in continuous space as the above definition of optimal
control problems. On the other hands, a computer of the robot calculates
everything with discrete approach. Therefore, the problem is sometimes
discretized or quantized. Here we define the above discretization rigidly
with the manner of finite Markov decision processes (finite MDPs) [Sutton,
1996].

At first, we quantize time as ti (i = 0, 1, 2, . . . ,). Though we do not need
to fix the width of each time interval, we define it as the minimum cycle
time of decision for purposes of illustration. The minimum cycle time will
depend on the various hardwares of the robot. When u ∈ U is chosen at ti,
the robot cannot change it until ti+1 comes. The control input changes a
state x to another x′ while the computer is preparing next decision. For the
computer, control between a time interval is only a operator that changes
states and its physical aspect is not important. Therefore, we define a set of
actions A = {a0, a1, . . . , aM−1} in place of u ∈ U for the operation of the
computer. M is the number of actions that are considered.

The state space X is also discretized or quantized. A symbol of discrete
state s and their set S = {s0, s1 . . . , sN−1} are prepared. N is the number of
discrete state. Every state x in the physical space should be related to one
of the discrete states on the computer. As defined in Sec. 1.1.3, some states
in S belong to a set of final states Sf.

Though a ∈ A and s ∈ S are only symbols on the computer, every state
transition from a state s to another state s′ by an action a is dominated by
the state equation of Eq. (1.7). Moreover, these state transitions become
probabilistic due to the discretization of the state space whether the state
equation is deterministic or stochastic. When a state s(ti) jumps to s(ti+1)

CHAPTER 1. INTRODUCTION 13

with an action at time ti, which is written as a(ti), this dynamics is given by
probabilities:

Pa
ss′ = P [s(ti+1) = s′|s(t) = s, a(t) = a], (1.14)

(∀t ∈ {t0, t1, . . . , tT−1}, ∀s ∈ S − Sf, and ∀s′ ∈ S).

Pa
ss′ are called state transition probabilities.

Toward the above set of s, a, s′, then, an evaluation

Ra
ss′ ∈ � (1.15)

is given. This value is called a reward. In the continuous system of the
optimal control problem, this value relates to the integral of the evaluation
function g at the time interval.

The purpose of the task is to maximize the following summation of values

J [a; s(t0)] = J [a(0), a(1), . . . , a(tT−1)] =

T−1∑
i=0

Ra(ti)
s(ti)s(ti+1) + V (s(tT)), (1.16)

where s(tTf
) ∈ Sf. V is the value of a final state, which is also defined for the

continuous system. The problem is represented as

max J [a; s(t0)]. (1.17)

A policy is defined as Eq. (1.6), which is π : S − Sf → A. As the same
with the continuous system, we can assume the existence of an optimal policy
π∗ and the optimal state value function V ∗.

Relation of Policy Implementation to Optimal Control Problem,
and to Finite Markov Decision Process

By the definition of the optimal control problem, the efficiency of a policy
can be defined rigidly as:

Jı =

∫
X

p(x0)J [u; x0]dx0

(
u(t) = π(x(t))

)
, (1.18)

where p(x0) denotes a probability density that x is chosen as the initial state.
If π is optimal, incidentally, the above equation is maximized independently
of p(x0). When an optimal control problem is solved as a finite MDP with
an approximation, the policy π should be evaluated by the above equation.

1.2. POLICY IMPLEMENTATION PROBLEM 14

π is replaced by π that represents the input-output relation in the actual
world more directly.

Though the efficiency should be high, we also consider the amount of
memory that is used for representing a policy. The size of a policy on
memory can be measured by the number of bits whether the policy is
continuous one: π or not: π. The relation of efficiency and the size can
be compared on such a graph shown in Fig. 1.6. The horizontal axis and
vertical axis indicate the size of a policy and the efficiency respectively. The
axis of efficiency is reversed so that the origin of the graph makes the ideal
point. The origin denotes a point of 0[bit] and the maximum value of Jı.

In studies of minimum description length (MDL) principle [Rissanen,
1999; Barron, 1998], the vertical axis indicates the ability to discriminate.
From this point of view, this graph suggests that this thesis handle a
problem of minimum description of a policy.

size [bit]

ef
fic

ie
nc

y
 J

(r

ev
er

se
d)

small and
efficient
(ideal)

small but
inefficient

large and
inefficient

large but
efficient

0
optimal

Fig. 1.6: Size-Efficiency Graph

In this thesis, we try bringing reflexive policies close to the origin. When
there is a limitation of the amount of memory or a target amount of memory,
we try maximizing the efficiency on the limitation or the target amount.

CHAPTER 1. INTRODUCTION 15

1.3 Related Studies and Works

In this section, important studies for us are referred to so that our concrete
objective is fixed. We start from some methods for solving policies because
a policy must be solved before it is implemented.

1.3.1 Fundamental Solutions of Optimal Control Prob-
lems

The conventional technique for finding a policy in a continuous system is
calculus of variations [Ewing, 1985]. Here it is means the group of methods
to solve the Hamilton-Jacobi-Bellman equation:

∂V (x)

∂t
= max

u∈U

[
g[x, u] +

∂V (x)

∂x
f [x, u]

]
. (1.19)

In [Pierre, 1986], such methods are called classical calculus of variations. If
the optimal control and the optimal path are obtained by calculus of varia-
tions, it is composed of several equations. In other words, the policy that is
not represented by several equations cannot be obtained by these methods.
When we see the above equation, the difficulty can be easily understood.

Dynamic Programming and Reinforcement Learning

Therefore, direct methods are applied to systems in robotics. This term
is used for indicating the methods that solve optimal control problems
not by formula manipulation but by numerical calculation on computers.
Some kinds of continuous quantity are discretized or quantized in the
methods. The finer the discretization or quantization is in a well imple-
mented algorithm, the more the calculation result closes to that of the
Hamilton-Jacobi-Bellman equation.

Dynamic programming (DP), which has been proposed by Bell-
man [Bellman, 1957], is a representative method of direct methods.
Though DP is a classical method of the 1950’s, it comes to be
used for various applications [Hu, 1997; Ferbach, 1998; Fukase, 2002;
Delft, 1994] in this ten years due to the remarkable progression of
computers. If the dynamics of a system are known, DP can solve an opti-
mal control for a purpose based on the discrete representation of the problem.

DP has been used for path planning of mobile robots [Fukase, 2002;
Roy, 1999; Hu, 1997]. In their studies, the pose of this robot is represented

1.3. RELATED STUDIES AND WORKS 16

by two or three state variables: (x, y) or (x, y, θ). (x, y) denotes the position
of a robot on a floor. θ is the orientation of the robot. In these cases, a
system is approximated to a finite MDP, and DP is applied to. The numbers
of states vary from some billion to some hundreds depending on the number
of state variables and necessary granularity of discretization.

Researchers have dealt with the cases where the robot does not know the
dynamics of the system on ahead [Takahashi, 1999; Ito, 2002; Kleiner, 2003;
Tuyls, 2003; Buck, 2002]. Methods of reinforcement learning (RL) [Sutton,
1998; Watkins, 1992] are used for such problems. In RL, the dynamics and
the policy are gradually obtained through the experience of a robot. We can
regard as RL as a kind of DP that is applied to when the state equation in
Eq. (1.7) or state transition probabilities Pa

ss′ are unknown.

DP is sometimes compared to RL since RL can solve sevaral problems of
DP. As mentioned above, RL methods can be appled to a problem without
state transition probabilities Pa

ss′. Even if Pa
ss′ can be measured, difference

between the actual system and measured Pa
ss′ is inevitable. Therefore, DP

is sometimes regarded as too conventional to be studied.

However, the ability of a reinforcement learning method is largely changed
according to circumstances as shown in Table 1.1. Whether dynamics (state
transition probabilities) are known or not influences the difficulty of a prob-
lem so much. Therefore, we should try to obtain the dynamics of a target of
control once at least. In reinforcement learning, how to discretize state space
is frequently discussed. That is because state is sometimes not changed after
a state transition in trials for experience when the discretization is coarse.
Some additional algorithms to deal with this problem are therefore required.
If the discretization is too fine, on the other hand, much experience is re-
quired for convergence. If we want to obtain optimal policy for robots by
a reinforcement learning method, moreover, we must watch for them un-
til convergence. In the case of DP, the influence of coarseness is much less
than reinforcement learning since DP regards state transitions as a stream
of probability.

Potential Field Methods

A potential field method means to create a state-value function, V : X → �,
with heuristics if we regard them as a solution of optimal control prob-
lems. From the viewpoint of optimal control, this method is quite rough.
However, this method is a popular one in robotics [Khatib, 1986;

CHAPTER 1. INTRODUCTION 17

Table 1.1: Comparison of Dynamic Programming and Reinforcement Learning

DP (value iteration algorithm) RL
(with simple discretization) (with simple discretization)

computation load huge small if complete
convergence is not required

human labor to measure accurate state to help robots in learning
transition probabilities

convergence of policy high confidence low confidence
range of policy all over the state space states in which much

experience is obtained
flexibility of discretization large poor (depending on width

of each state transition)

Latombe, 1991], especially for navigation task [Laue, 2004;
Ge, 2000]. This method is frequently used when some moving obsta-
cles exist in the environment. If states of all obstacles are considered in
the state space, the optical control problem is annoyed by the curse of
dimensionality. In the case of a potential field method, the shape of potential
field can be instantly changed regardless of the number of state parameters.

A typical potential field method uses an attractive potential and repulsive
potentials. When there is the only final state xf in the state space X , an
attractive potential, Uatt : X → �, is defined as a function whose global
minimum exists at xf. xf is the only stationary point of Uatt. According to
[Latombe, 1991], this function can be defined as a parabolic well, i.e.:

Uatt(x) =
1

2
ξρ2(x) (1.20)

where ξ is a positive scaling factor and ρ(x) denotes a distance between x
and xf. Then the following is an example of repulsive potentials:

Urep(x) =

⎧⎪⎨
⎪⎩

1

2
η

(
1

ρ(x)
− 1

ρ0

)2

if ρ(x) ≤ ρ0,

0 if ρ(x) > ρ0,

(1.21)

where η is a positive scaling factor, ρ(x) denotes the distance from x to an
obstacle that is represented by a point in �n−X . The sum of the attractive
potential and repulsive potentials of some obstacles:

U(x) = Uatt(x) + Urep(x) (1.22)

1.3. RELATED STUDIES AND WORKS 18

where Urep is sum of the repulsive potentials of all obstacles. When the robot
moves so as to reduce the value of U , the most appropriate direction can be
obtained by

F (x) = −(∂U/∂x1, ∂U/∂x2, . . . , ∂U/∂xn)T

= −∇U(x). (1.23)

Potential field methods have some problems. Koren and Borenstein have
summarized them in [Koren, 1991] as 1) trap situations due to local minima
(cyclic behavior), 2) no passage between closely spaced obstacles, 3) oscilla-
tions in the presence of obstacles, and 4) oscillations in narrow passages. Ge
and Cui have argued another problem that the minimum of U is off the goal
state due to obstacles near the goal. Though many researchers have tried to
solve these problems, an almighty method has never appeared. It seems that
almighty methods will be DP-like methods.

1.3.2 Function Approximation Methods

We can utilize a variety of function approximation methods for representing
a state-value function. Here we introduce some of the popular methods.

Any function approximator can be represented as

V (x; θ1, θ2, . . . , θNθ
)

where x is a state and θ1, θ2, . . . , θNθ
are the parameters of this function. For

solving a control problem, DP or RL must find the appropriate parameters
that can approximate a hidden optimal state-value function. Function
approximation cannot be used for representing a policy in the case where
actions are discretized. In this case, an algorithm that chooses actions
directly from the function.

There exist two types of function approximator: global one and local
one. In the case of a global function approximator, a change of a pa-
rameter makes an impact all over the state space. Global methods have
potential ability for solving the curse of dimensionality. On the other
hand, each parameter of local one has its own area in the space. That
means local function approximators require much more parameters than
the global one. However, the more global an approximator is, the more
instable it becomes when it is applied to DP or RL. The discussion of
convergence is frequently discussed as shown in [Boyan, 1995; Sutton, 1996;

CHAPTER 1. INTRODUCTION 19

Sutton, 1998].

In practical use, a function approximator must be chosen carefully when
a control problem is given because a function on an approximator does not
converge or does not approximate the actual function well in many cases.
Moreover, we must choose the number of parameters and other specifica-
tions. This operation is much difficult than adjustment of the granularity of
discretization at the simple discretization methods.

Artificial neural network

Artificial neural networks (ANNs) have been used for function approxima-
tion or representing the direct relation between states to actions. There is
a famous application of this method in the field of AI. Tesauro has applied
an ANN to backgammon [Tesauro, 1995]. A multilayered perceptron is used
for learning the ratio of victory or defeat from each state of the game. The
ratio is the value of each state. This application is named TD-Gammon. It
is a worthy opponent for human champions as well as Deep Blue. The core
of TD-Gammon is an artificial neural network (ANN) that learns the game
by using temporal difference (TD) learning methodology [Sutton, 1988],
which belongs to reinforcement learning (RL). In the case of the version
3.1, though tens of thousands of training games is required for learning, it
worked in an ordinary computer. On average, it requires only 10− 12[s] per
move decision when it is running on a 400 MHz Pentium II processor.

As mentioned before, this approach has achieved a successful outcome.
The reason why a multilayered perceptron is suitable for backgammon
is derived from the fact that the random dice rolls produce a degree of
variability of states. As a result, the state-value function becomes smooth
and continuous, and becomes easy to be learned.

Tile Coding

In this technique, various kinds of discretization are applied to state space.
When all of them are layered, pseudo cells, which are surrounded with
some partition walls of the various kinds of discrete space, are created. The
number of pseudo cells can be larger than that of cells on all kinds of discrete
space. Figure 1.8 shows an example. Imagine that the two two-dimensional
grids at the left side of this figure are piled up and one of them is shifted to
right and upper direction slightly as shown in the right hand of the figure.

1.3. RELATED STUDIES AND WORKS 20

x2 x3 xnx1

f

Fig. 1.7: A typical multilayered neural network for function approximation

The number of pseudo cells becomes two times larger than that of cells in
the two grids.

In DP and RL methods, each layer records its state-value function. The
value of a state in continuous state space is computed as the average of the
values of discrete states that contain the state.

n cell2 n cell2

4n cell2

Fig. 1.8: Tile coding

The archetype of this technique has been tried by Albus [Albus, 1975a;
Albus, 1975b]. He named the archetype a cerebellar model articulation
controller (CMAC). Tile coding is another name of this technique given by
Sutton [Sutton, 1996].

CHAPTER 1. INTRODUCTION 21

Radial Basis Function Approach

The methods [Broomhead, 1988; Moody, 1989; Samejima, 1999] that belong
to this category scatter Gaussian radial basis functions, and approximate a
state-value function with their summation. A radial basis function (RBF)
for state space X ⊂ �n is represented as

φi(x) = exp

{
−1

2
(x− ci)

tMi(x− ci)

}
, (1.24)

where Mi is a n × n scaling matrix and ci ∈ �n is the center vector of
this function. x is a state vector defined in advance. In the case where
the normalized Gaussian radial basis function [Moody, 1989] is used, this
function is normalized as

bi(x) =
φi(x)∑Nφ

j=1 φj(x)
, (Nφ : number of RBFs in the space) (1.25)

and a state-value function is represented by

V (x) =

Nφ∑
i=1

νibi(x). (1.26)

Figure 1.9 shows an example. There are five RBFs: φ1, φ2, . . . , φ5, whose

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

va
lu

e

va
lu

e

x x

φ
1

φ
2

φ
3

φ
4

φ
5

b1

b2 b3
b4

b5

f

Fig. 1.9: Function Approximation by Using Radial Basis Functions

equation is

φi(x) = exp

{
−1

2
(x− i)2

}

1.3. RELATED STUDIES AND WORKS 22

in the left figure. b1, b2, . . . , b5 in the right figure are their normalized func-
tions respectively. A function is represented with the weighted sum of the
normalized functions by Eq. 1.26. Function f shown in the right figure is an
example with νi = i/5.

Reaction-Diffusion Equation on a Graph

Kobayashi and Yuasa et al. have proposed to utilize reaction-diffusion equa-
tion on a graph for reinforcement learning [Kobayashi, 2002]. In this method,
a function is represented by some elements that are connected by arcs as
shown in Fig. 1.10(a). Parameters of each element are its position of state
space, the value of the function at the position, and the gradient of the func-
tion around the position. The position is a black point in Fig. 1.10(a). The
two dimensional coordinate system is regarded as state space, which does
not have to be two dimensional. The height of the rod that stands from each
position represents the value. The gradient of the panel that is top of each
rod signifies the gradient.

(a) elements for function approximation and their connection

(b) evaluation of complexity of the function and modification of the elements

Fig. 1.10: Function Approximation by Reaction-Diffusion Equation on a Graph
[Kobayashi, 2002]

In this method, the ability of function approximation depends on how

CHAPTER 1. INTRODUCTION 23

to distribute the elements. The more a part of the function has change of
gradient, the more the elements should be allocated to the part. Information
of the requirement of elements is exchanged on the graph, and a scalar
function that represents the overs and shorts of elements is composed on
the graph. Each elements move so that the scalar function becomes flat.
Figure 1.10(b) shows an example of the move of elements. The height of a
cylinder at each element represents the value of the function.

The objective of the study is parallel computation by distributed au-
tonomous systems. As well as artificial neural networks, it is not always
suitable for a von Neumann-type computer.

Interpolation

Takahashi et al. have used interpolation for reinforcement learning [Taka-
hashi, 2001] so as to accelerate learning speed. In this method, representative
states are placed in a reticular pattern as shown in Fig. 1.11. The value of
state x ∈ X is calculated as the weighed mean of the values of the represen-
tative states around x. When the weight and the value of a representative
state are wi and xi respectively, the value is calculated as

V (x) =
3∑

i=0

wiV (xi) (1.27)

in the case of two dimensional state space. A weight is in proportion to the
size of the opposite space from each representative state as shown in the
figure. In this study, the interpolation technique is used not only for values
but also for control input vectors u ∈ U so that a robot can decide torques
of actuators with continuous values.

x0 x1

x2 x3

xw3

w1

w2

w0

representative states

Fig. 1.11: Interpolation (An Example in Two Dimensional State Space)

1.3. RELATED STUDIES AND WORKS 24

Munos and Moore have presented more complex interpolation [Munos,
1998; Munos, 2002]. They use a tree structure shown in Fig. 1.12. They
have indicate that this structure is useful not only reinforcement learning
but also any method for solving optimal control problems.

As shown in Fig. (a), representative states are placed as they cut the
state-space with different resolutions. The value of a state is computed from
the values of three representative states that compose a triangle in which the
state belongs to. Representative states are added to the space when some
criteria indicate their necessity. They are registered on a tree structure shown
in Fig. (b). A leaf has a cell (two triangles) that is not divided into small
cells.

Fig. 1.12: Interpolation (Tree Structure) [Munos, 2002]

In the first part of [Munos, 2002], they have presented the following cri-
teria of where representative states should be added.

• Edges of triangles in a cell have large gradient of values. The gradient
of an edge means the difference of values of representative states at its
end points.

• The values of representative states in a cell have non-linearity when
each of them is compared to values of the other representative states

CHAPTER 1. INTRODUCTION 25

that are connected to by edges.

These criteria are suitable for representing a function with a small number
of cells. However, as the authors have been mentioned, they never relate to
represent a better policy.

Moreover, we must point out that the tree structure consumes a much
larger amount of memory for representing the structure of branches than
that for representing values at leaves. Actually, the ability of approximation
has been evaluated not by the amount of memory but by the number of cells
in the paper. From the viewpoint of memory consumption, well-arranged
representative states as shown in [Takahashi, 2001] are sometime superior to
some complicated arrangement.

1.3.3 Memory Economization for Policy Creation and

Implementation

Studies of memory economization for policies are less than that of function
approximation. In an optimal control problem or a finite MDP, a policy
becomes known after we can obtain its state-value function, which consumes
memory not less than the policy does. Therefore, memory economization of
state-value functions is regarded more important than that of policies.

When we want to represent a policy with a compact format, however, a
study of memory economization for polices is necessary. In this case, some
techniques for function approximation sometimes yield redundant memory
consumption.

Search Methods

If we must give some examples, search methods should be referred to. As a
matter of course, they are not reflexive policies. Though these methods do
not try solving state-value functions, they utilize some evaluation functions,
which are heuristics in many cases, for finding appropriate state-action
sequences.

Search methods have been studied in the field of artificial intelligence
for board games as chess [Greer, 2000; Campbell, 2002], shogi [Iida,
2002], go [Bouzy, 2001; Müller, 2002] and so on. That is because the
number of states is huge. According to [Iida, 2002], the numbers of
states at chess, shogi, and go are 1043, 1071, and 10172 respectively. Since

1.3. RELATED STUDIES AND WORKS 26

the state space is discrete, search algorithms are suitable to the board games.

In the case of robotics, also, search methods are applied to a problem
with many state variables. Since problems of robotics must be solved in con-
tinuous space, some states should be sampled from continuous state space (or
configuration space [Latombe, 1991]) for using a search method. The sam-
pled states are connected each other and search is done on the network. Such
methods are called sampling-based algorithms [Choset, 2005]. Probabilistic
roadmaps (PRMs) proposed by [Kavraki, 1996] and Rapidly-exploring
Random Trees (RRTs) by [LaValle, 1999] are famous in these kinds of
search method. They are frequently utilized for navigation of mazy environ-
ments [Choset, 2005], for motion planning of manipulators [Miyazawa, 2005].

As mentioned above, search methods are suitable to solve a problem in
huge state space in which DP is useless. Alternatively, we should not expect
that they can give an appropriate action instantly on a usual computer. We
afford an instance of Deep Blue, which defeated a human champion of chess in
1997 [Campbell, 2002]. In this case, the policy is given as a search algorithm
on a supercomputer. The computer is composed of 30 processors and 480
special LSI chips so as to search 100 million positions in feasible time.

G

Start

Goal
G

Fig. 1.13: Partitioning of State Space by the Parti-Game Algorithm
[Moore, 1995]

CHAPTER 1. INTRODUCTION 27

Parti-Game

The above search methods answer one or several state-action sequences.
They do not aim to solve a policy completely in state space. On
the other hand, the parti-game algorithm proposed by Moore and
Atkeson in [Moore, 1995] can solve a policy though its coverage of
state-space is not complete. This algorithm has been proposed for on-
line reinforcement learning, and has been improved [Al-Ansari, 1998;
Likhachev, 2002].

At the beginning of this algorithm, state space is divided into
only two discrete states: the final state, and the other state. Then
an action is allocated to the non-final state. However, in almost all
cases, the agent cannot reach the final state from some areas in the
non-final state. When the algorithm notices such an incomplete state,
referred to as a losing cell associated with game theory in [Moore, 1995;
Al-Ansari, 1998], it is divided into two states. By this means, the parti-game
algorithm aims to keep the number of discrete states as small as possible.

As mentioned in [Moore, 1995], this algorithm does not attach importance
to solving an optimal policy, but does it to finding a feasible path at on-
line quickly. Actually, this algorithm is not good for computing state-value
functions since this algorithm does not divide a not-losing state. Even if the
values at some points in a large discrete state are different each other, these
values are represented by one value of this state. This wild approximation
gives negative effect to calculation of the values of neighboring states.

Interpolation with Tree-Structure based on Policy

In the center part of [Munos, 2002], which has been referred to with
Fig. 1.12, a criterion for creating the tree structure for representing a policy
accurately. In this criterion, a cell is divided into two when its representative
states cannot give suitable control inputs at any state in the cell. According
to them, this lack of resolution can be found by the comparison of the value
obtained from the Hamilton-Jacobi-Bellman equation shown in Eq. (1.19)
and the value obtained from the approximated value function.

1.3. RELATED STUDIES AND WORKS 28

1.3.4 Relation to The Policy Implementation

The previous methods have their merits respectively. A policy that is crated
by one of these methods, however, never becomes a perfect policy, which
means the most reflexive, the smallest, and the optimal policy toward an
optimal control problem.

The methods then have been proposed for different purposes from
ours. The policies obtained by the studies become large and inefficient
due to each purpose. The most typical example is a group of studies to
reduce the number of elements (e.g. number of parameters, number of
RBFs, and so on) for representing a state-value function or a policy. This
attempt aims to reducing learning or planning time with the generalization
capability of each method. Some of the methods actually can reduce the
time for creating a policy. In some of those studies, however, they have
said that not only the time but also the amount of memory use can be
reduced. However, we think that this proposition has never proved. That is
because the relation between memory consumption and numbers of elements
is unobvious. If an element uses a large number of bits, the size of the
policy (or the state-value function) becomes large for the number of elements.

In the case of reinforcement learning, a robot must have a state-value
function or another value function. Therefore, many function approximation
methods have been proposed. Though a robot can decide its action from
a state-value function with an evaluation function, the representation of
functions is redundant when it is regarded as a policy. Moreover, the
decision making is not reflexive.

Some methods are then specialized in particular control problems or
decision making problems. For example, some studies have been tried
getting rid of the curse of dimensionality when a policy is solved. Those
studies are very interesting since it is the ultimate theme of AI. However,
those attempts have never been achieved unless some characteristics of each
control or decision making problem should be considered.

From the above discussion, we must propose another methodology so as to
concentrate the small and efficient representation of policies. For versatility
of the methodology, moreover, we should handle each problem as an optimal
control problem or a finite MDP without consideration of its characters. As
mentioned in Sec. 1.2, robots that have poor computing resources or that
work in real-time are handled in this thesis. For this purpose, we think that

CHAPTER 1. INTRODUCTION 29

the creation problem and the implementation problem of a policy should be
divided in a definite manner. The creation of a policy, or calculation of a
state-value function should be done on a high-performance computer. After
that, a policy should be processed into a small one. This methodology can
be applied only to the case where the dynamics of the system is known.
Since we handle a versatile method, the curse of dimensionality is not solved.
However, a study to quest the small and efficient representation of policies
will give important knowledge for the studies of learning or high dimensional
decision making problems.

1.4. PURPOSE OF THIS STUDY 30

1.4 Purpose of This Study

We therefore introduce a novel concept: compression of policies in this
thesis. The compression means the secondary processing for a policy to
reduce its number of bits after it is obtained. Since high compression ratios
cannot be obtained by a lossless compression method, we try applying a
lossy compression method. In this process, the efficiency of the policy should
be kept as high as possible.

In this thesis, a policy is solved by dynamic programming with simple
discretization of state-space for fear that the performance decrement occurs
due to memory economization. The policy is then compressed. There is the
problem of performance decrement in the process of compression. Differently
from other methods, however, the compression method can use the dynamic
programming result, which is free of the influence of economization, as the
information for cutting wasteful use of memory. It will be a great advantage
for this approach.

We develop a novel lossy compression method for policies. This method
inherits the techniques of vector quantization (VQ) [Gersho, 1992]. VQ
is an universal method for compressing digital data of image [Tsai, 2000;
Fekri, 2000] and sound [Huang, 2002]. This method can be applied to
any binary data. Moreover, random access data can be crated by vector
quantization. Therefore, it is suitable for creating reflexive policies.

However, VQ cannot be used for compressing policies without modifica-
tion. Policies are too easily broken after compression due to some problems.
To deal with the problems, we add the novel methodology:

• reuse of dynamic programming result for compression.

It means that our VQ method is based not only on the theory of information
processing, but also on that of optimal control and decision making. From
the above basis, we propose a novel definition of distortion measure, which
is used in almost all of VQ methods for evaluating loss of information by
compression. Our distortion measure is called state-value distortion. The
state-value distortion is used in compression for measuring and reducing the
loss of efficiency of policies. Moreover, some DP algorithms that re-optimize
compressed policies are proposed in this thesis. These algorithms are also
based on the above concept. We also introduce several methods and algo-
rithms for enhancing compression ratio.

CHAPTER 1. INTRODUCTION 31

1.5 Contents of This Thesis

This thesis is composed of 8 chapters.

Chapter 2, 3, and 4 are devoted to explanation and proposition of
methods and algorithms. Their evaluation is also done with the puddle
world task [Sutton, 1996]. This task is a standard problem of artificial
intelligence. In Chapter 2, a format of policies that are compressed is
fixed. The policies are called state-action maps. We then explain how to
create, use, and evaluate. Our novel algorithm for compressing state-action
maps is presented in Chapter 3. The method is evaluated. In Chapter 4,
some techniques to enhance efficiency per bit of policies are proposed and
evaluated.

In Chapter 5 and 6, the proposed method is applied to two kinds of
robots. Though most experiments in these chapters are simulation with a few
exceptions, we can obtain very significant results. The Acrobot [Spong, 1994;
Boone, 1997; Xin, 2004] is controlled by the method in Chapter 5. We take
up tasks of RoboCup [Asada, 1999; Fujita, 2003] in Chapter 6.

(a) puddle world task (b) the Acrobot
(a part of a 4D map)

(c) RoboCup
(a part of an 8D map)

Fig. 1.14: Part of State-Action Map for Each Task

In advance of detailed description, we show a (part of) state-action
map for each task in Fig. 1.14. Each color is related to an action. In
the case of puddle world task and RoboCup, the same action is located
in adjacent states. On the other hand, the state-action map has more
tangled pattern. That difference is convenient for verifying versatility of the
proposed method. As another important difference, numbers of states and
actions vary greatly.

1.5. CONTENTS OF THIS THESIS 32

In Chapter 7, we comprehensively discuss the proposed methods in con-
sideration of the discussion and experimental results in the previous chapters.
The state-value distortion is evaluated with three tasks. We conclude this
thesis in Chapter 8 with our vision about expansibility of our algorithm.

33

Chapter 2

State-Action Map

In this chapter, a format of policies, state-action maps, is defined, and how to
create them by dynamic programming (DP) is explained. State-action maps
that are introduced in this chapter are simple look-up tables that record
an appropriate action toward every state. They say that a state-action
map consumes huge memory and it is too conventional to be studied.
However, data can be accessed from it quickly in computation thanks to
its affinity with von Neumann-type computers. Moreover, DP with look-up
tables is one of the most certain methods to solve an optimal control problem.

This chapter is composed of five sections. In Sec. 2.1, the state-action
map is defined. Algorithms of dynamic programming are explained is 2.2. In
Sec. 2.3, we show an example of creation of state-action maps on the puddle
world task, which is a popular standard problem of artificial intelligence.
Memory consumption and efficiency of the state-action maps are evaluated.
In Sec. 2.4, the evaluated results are compared to some methods of function
approximation techniques so that we improve their memory usage is not
wasteful. We conclude this chapter in Sec. 2.5 with discussion.

2.1. STATE-ACTION MAPS 34

2.1 State-Action Maps

2.1.1 Its Format

In this section, a format of policies, state-action maps, is defined. Assume
that a computer of a robot has a random access memory (RAM). Each bit
of the memory is given its address. Addresses are numbered from zero to
{(the number of bits)−1} on the RAM. A policy, π : S → A, is given a first
address and it is recorded from the bit that has the address without a jump.
We assume that the first address is zero for simplicity. Discrete states in S
are numbered from zero to N − 1. Actions in A are also given numbers from
zero to M − 1.

Assume that indexes of actions, π(s0), π(s1), . . . , and π(sN−1), are put
in from the bit that has the zero address without any delimiter as show in
Fig. 2.1. This binary sequence is called a state-action map (or a map) in
this thesis. Arbitrary binaries can be put in the bits for final states.

011︸︷︷︸
π(s0)

010︸︷︷︸
π(s1)

111︸︷︷︸
π(s2)

010︸︷︷︸
π(s3)

· · · 110︸︷︷︸
π(sN−1)

Fig. 2.1: An example of a state-action map

All operations on a state-action map are manipulation of indexes. We
define the following index sets:

• set of indexes for addresses: Iaddress = {0, 1, 2, . . . , B − 1},

• set of indexes for states: IS = {0, 1, 2, . . . , N − 1}, and

• set of indexes for actions: IA = {0, 1, 2, . . . , M − 1}.

In mathematical formulae, an arbitrary state-action map is defined as a map-
ping:

πMAP : IS → IA. (2.1)

Each action index j ∈ IA is recorded on
log2 M�[bit] of memory.
·�
denotes the ceiling function, which rounds up a real number. In the case

CHAPTER 2. STATE-ACTION MAP 35

of Fig. 2.1, eight kinds of actions can be recorded because three bits are
allocated to a state.

If we consider only the process for changing i ∈ IS to j ∈ IA, the space
complexity for using a state-action map is evaluated based on its memory
usage:

L =
log2 M�N [bit]. (2.2)

That is because every state uses
log2 M� bits for recording an action index.
If L > B, the state-action map cannot be recorded on the memory. The
time complexity for fetching an action can be estimated from the number of
operations for IS → IA. When we compare the time complexities of other
formats of policy, a state-action map can be regarded as a reflexive policy.

The coarser the discretization of X , the more a state-action map will
decrease its performance. Here we formulate the loss of performance.

When a state-action map πMAP is obtained toward a control problem
in continuous state space X , its ability can be measured by Eq. (1.18).
Eq. (1.18) can be rewritten as

JπMAP =

∫
X

p(x0)V
πMAP(x0)dx0, (2.3)

where V πMAP(x) is a state-value function of πMAP on X . Note that V πMAP(x)
is different from the state-value function of πMAP on S. This function should
be estimated from actual use of πMAP.

When we assume that the optimal policy π∗ on X is known, the loss can
be calculated as

ΔJπMAP = Jπ∗ − JπMAP. (2.4)

This value is the efficiency loss of πMAP. If πMAP is the optimal policy under
the discretization, this value can be regarded as the loss of efficiency by
the discretization. As for the Bellman’s principle of optimality, incidentally,
ΔJπMAP ≥ 0 is fulfilled to any probability density function p in the above
equation.

2.1. STATE-ACTION MAPS 36

2.1.2 Association between Physical Space and State-
Action Map

When a policy in continuous state space is recorded as a state-action map,
the state space X is discretized into S. Actually a mapping from a state to
a state index

ISTX : X → IS . (2.5)

is required for accessing a state-action map. This mapping actually defines
the way of discretization. We should pay attention to the format of this
mapping. If it is too complicated, computational cost increases.

If the space of control input is continuous, we quantize it. This quanti-
zation is represented by the following mapping:

UTIA : IA → U . (2.6)

This quantization is required not for recording a state-action map, but for
the value iteration algorithm in Fig. 2.5. In fact, quantization of U is not
required if input parameters for control are directly written in a state-action
map. This direct description can be regarded as the finest quantization.

If all use of memory is considered, the amount of memory for recording
ISTX and UTIA is added to Eq. (2.2). When N is a large number, the
additional amount of memory can be vanishingly small in many cases. We
therefore use Eq. (2.2) for evaluation of L also in this case.

When a robot perceives a state x ∈ X , the action is chosen with the
procedure in Fig. 2.2 If they are brought together, a policy π : X → U can

1: i←− ISTX (x)
2: j ←− πMAP(i)
3: u←− UTIA(j)

Fig. 2.2: Procedure for accessing a state-action map

be written as

u = UTIA
(
πMAP

(ISTX (x)
))

. (2.7)

L depends only on the number of discrete states N whichever IST X is
used. We can reduce the number of discrete states with a tricky manner

CHAPTER 2. STATE-ACTION MAP 37

of division of X . For example, we show two popular manners of division
with two dimensional space in Fig. 2.3. In Fig. (a), the space is divided
by some lines that are parallel to one of the axes. In Fig. (b), Voronoi
tessellation is used for dividing. In the space, some representative points
exist. Each discrete state is composed of the set of points that have the
same representative point. Voronoi tessellation is more flexible than the
use of simple lattice because the lattice in (a) is also a restricted version of
Voronoi tessellation. If we tune a Voronoi tessellation to a patchy pattern of
actions in state space, the number of discrete states may be reduced.

(a) simple lattice (b) Voronoi tessellationx1

x2

x1

x2

Fig. 2.3: Discretization of State Space

However, we should pay attention to the fact that the definition of this
mapping influences time complexity. A transform IST X for the simple lattice
in (a) can be defined as:

IST X (x1, x2) = �x1/d1�+ �x2/d2�d1, (2.8)

where d1 and d2 are the numbers of intervals on x1-axis and x2-axis respec-
tively. In the case of Voronoi tessellation shown in (b), when a state x is
given, its nearest representative point must be chosen from all representa-
tive points. This procedure is much more complex than the calculation of
Eq. (2.8). If time complexity is considered, we cannot say that a complicated
manner of division is always superior to a division with simple lattice.

2.2. CREATION OF STATE-ACTION MAP 38

2.2 Creation of State-Action Map

2.2.1 State-Value Function on Look-Up Table

Though a state-action map can be created by hand, or by decomposition
of an if-then-else code, we handle it as a solution of an optimal control
problem in this thesis. This statement means that the purpose of control
by a state-action map is rigidly defined as an evaluation function, and that
the state-value function of the state-action map can be calculated. That is
because state-value functions are used for compression as it will be explained
in the next chapter.

A state-value function V π of π can be represented by a look-up table
that discretizes state space just as the state-action map of policy π. In this
case, the state-value function is approximated as each real number V π(s)
that is related to each discrete state s ∈ S. V π(s) is called the value of state
s. We need zN [bit] of memory for recording the look-up table of values,
where z is the number of bits for representing a value. We can also use one
of the function approximation methods that are argued in Sec. 1.3.2 if we
want to economize the size of memory. However, we do not use them so as
to avoid the ill-effects of function approximation that is mentioned in the
section.

A policy and its state-value function on S has the following equation:

V π(s) =
∑
s′∈S
Pπ(s)

ss′

{
Rπ(s)

ss′ + V π(s′)
}

(s ∈ S − Sf) (2.9)

in the case of a finite MDP. Values at final states: V π(s) s ∈ Sf are fixed in
advance. This equation is called a Bellman equation. From this relation, we
can solve unknown π from known V π and unknown V π from known π.

2.2.2 Dynamic Programming

We use the value iteration algorithm, which belongs to dynamic programming
(DP) for obtaining policies and state-value functions. The word dynamic
programming (DP) is a generic term of methods that solve optimal control
problems from the relation of a policy and its state-value function both in
continuous and discrete state space. Here we refer to the methods that relate
to Eq. (2.9) and the following equation:

V ∗(s) = max
a∈A

∑
s′∈S
Pa

ss′ {Ra
ss′ + V ∗(s′)} (∀s ∈ S − Sf). (2.10)

CHAPTER 2. STATE-ACTION MAP 39

This equation is called a Bellman optimality equation. This equation
represents the relation between the optimal policy π∗ and the optimal
state-value function V ∗.

Methods of DP are suitable to computing the optimal action and
the value at every discrete state rigidly. They are then quick against all
expectations. As Sutton refers to them in [Sutton, 1998], though this
method may not be practical for very large problems, DP methods are
actually quite efficient compared with other methods for solving MDPs.

A value function can be calculated by the algorithm shown in Table 2.4
from a policy. This algorithm is called a policy evaluation algorithm
[Sutton, 1998]. The arrow “←−” denotes a substitution from the right side
to the left side. Θ in the table then denotes a threshold to stop this algorithm.

1: initialize V (s) arbitrarily (for all s ∈ S − SF)
2: repeat

3: Δ←− 0
4: for each s ∈ S − SF
5: v ←− V (s)

6: V (s)←−
∑

s′ P
π(s)
ss′ [Rπ(s)

ss′ + V (s′)]
7: Δ←− max(|v − V (s)|, Δ)
8: until Δ < Θ (a small number)

Fig. 2.4: Policy Evaluation (from [Sutton, 1998] with minor changes)

The value iteration is a popular algorithm in DP when we want to obtain
V ∗ from scratch. Equation (2.9) represents the balance of action π(s) and
value V π(s). If another action that can enhance V π(s) is found in a state
s, π and V π should change for better ones. The concept of value iteration
algorithm is based on the above idea. Figure 2.5 is a pseudocode of the value
iteration algorithm. By the iteration of Eq. (2.11), a state-value function
comes close to V ∗. After V converges to V ∗, the optimal policy π∗ can be
obtained by Eq. (2.12).

When we use the value iteration algorithm in Fig. 2.5, its time complexity
is O(ιNP), where NP denotes the number of possible state transitions and ι
is the number of sweeps. A sweep means the procedure from Line 3 to 7 in
Fig. 2.5.

2.2. CREATION OF STATE-ACTION MAP 40

1: initialize V (s) arbitrarily (for all s ∈ S − SF)
2: repeat

3: Δ←− 0
4: for each s ∈ S − SF
5: v ←− V (s)
6: Proc. 2.11

7: Δ←− max(|v − V (s)|, Δ)
8: until Δ < Θ (a small number)

9: Proc. 2.12 (for all s ∈ S − SF)

procedures:

V (s)←− max
a

∑
s′
Pa

ss′[Ra
ss′ + V (s′)] (2.11)

π∗(s)←− argmax
a

∑
s′
Pa

ss′[Ra
ss′ + V ∗(s′)] (2.12)

Fig. 2.5: Value Iteration (from [Sutton, 1998] with minor changes)

The number NP reaches MN(N − Nf) if the transition probability are
not zero at any combination of a ∈ A, s ∈ S, and s′ ∈ S − Sf. Nf denotes the
number of final states. In this case, time complexity of the value iteration
algorithm is O(ιMN2). If there are some millions of discrete states, the
value iteration algorithm will not complete within feasible time.

In many cases, however, there are many state transitions that seldom
occur. Moreover, if we ignore all state transitions whose probabilities
are less than a threshold, the maximum number of state transitions is
fixed toward the threshold. For example, when the threshold is 0.01,
the number of possible posterior states are limited to 100 for each set of
a previous state and an action. When this maximum number of state
transitions is written as N ′, the order of time complexity can be reduced to
O(ιMNN ′). We should remember that the ill-effect of the cutoff is expected.

The number of sweeps, ι, varies according to the threshold Δ. Though
we can reduce the number in compensation for efficiency loss of the map,
there is a necessity minimum number of sweeps. We can forecast it roughly
based on expected lengths of state-action sequences in the task. Since the
state-value function is computed based on the value of final states in value

CHAPTER 2. STATE-ACTION MAP 41

iteration, the values of non-final states are sequentially fixed in the reverse
direction of the state-action sequences.

Space complexity of the value iteration algorithm is O(MNN ′), which
is required for recording all of the state transitions. Though they do not
required for recording in value iteration, it is a waste of computation time
that they are computed in every sweep. As shown in Sec. 2.3, the order can
be reduced if we utilize some sort of universality of state transition in state
space.

2.3. EXAMPLE WITH PUDDLE WORLD TASK 42

2.3 Example with Puddle World Task

The puddle world task is used for studies about learning algorithms [Sutton,
1996]. Figure 2.6 illustrates the puddle world. An agent, whose state is
defined as a point on the xy-coordinate system, aims to go to the goal area.
The puddle in the figure prevents the agent reaching the goal directly. If the
agent enters the puddle, penalty is given. The agent should minimize the
sum of the penalty and walking steps from any point to the goal. Though
this task is simple, there are some characteristic parts in this world such as a
narrow path, a broad area, the area where the agent should detour, edge of
the world, and the puddle area. Therefore, a method examined in this world
must work well in the various areas assuredly.

Fig. 2.6: Puddle World

2.3.1 Definition of The Task

As shown in Fig. 2.6, the shape of the world is a square

X = {(x, y)|x ∈ (0, 1), y ∈ (0, 1)},
which can be regarded as the state space. In this case, x and y are the state
variables of the agent. The agent does not have its orientation.

CHAPTER 2. STATE-ACTION MAP 43

The center of the puddle is composed of the two line segments:

L1 = {(x, y)|x = 0.45, y ∈ [0.4, 0.8]},
and L2 = {(x, y)|x ∈ [0.1, 0.45], y = 0.75}

The puddle spreads 0.1 in width from the center lines. The goal is the square
area at the upper right of the figure. In the state space, it means the final
state:

Xf = {(x, y)|x ∈ (0.9, 1), y ∈ (0.9, 1)}.

We define the control vector as u = (δx, δy)
T . δx and δy denote the target

displacement of the agent along x-axis and that along y-axis respectively.
Random Gaussian noise, whose standard deviation is 0.01, is added to the
displacement in the direction of both axes. Therefore, a state transition is
stated as

pu
xx′ =

1

{(2π)2|Σ−1|} 1
2

exp

{
(x′ − x− u)T Σ−1(x′ − x− u)

−2

}
,

where Σ = 0.012

(
1 0
0 1

)
. Therefore,

pu
xx′ =

5000

π
exp

(
−5000|x′ − x− u|2

)
. (2.13)

Since the world is surrounded by a wall, the agent cannot go beyond the
wall. When the posterior state x′ is not in the state space X , x′ is replaced
at the intersecting point of the wall and the line segment between x and x′

as shown in Fig. 2.7.

Reward −1[step] is given for each step. If it enters there, −400{0.1−(x)}
is given. (x) is the distance from x to the nearest edge of the puddle. The
total reward is defined as

ru
xx′ = rx = −1− 400 max{0.1− (x), 0}. (2.14)

2.3.2 Discretization of State-Space

At first, we divide each axis into some intervals. We define [x] as an interval
on x-axis. [y] is also defined as an interval on y-axis. Then every interval is
given a unique number by the following equation:(

ix
iy

)
=

(
�x
√

N�
�y
√

N�

)
, (2.15)

2.3. EXAMPLE WITH PUDDLE WORLD TASK 44

x

x’

wall

x’

in the world out of the world

replaced

Fig. 2.7: Wall Consideration

where
√

N denotes the number of intervals on each axis. It implies that the
number on x-axis and that on y-axis are identical with each other in this
implementation. We also confine 1/

√
N to a natural number. �·� denotes

the floor function. Each discrete state is represented by the combination of
intervals: ([x]ix , [y]iy) (ix = 0, 1, 2, . . . ,

√
N − 1; iy = 0, 1, 2, . . . ,

√
N − 1).

The transition ISTX from x = (x, y) to a state index can be defined as

i = IST X (x, y)

= iy
√

N + ix = �y
√

N�
√

N + �x
√

N�. (2.16)

With this definition, the puddle world is divided into N square discrete states.
Figure 2.8 shows the numbering with Eq. (2.16) when N = 100.

We have to solve Pa
ss′ andRa

ss′ under the above definition of discretization.
If we do not consider collisions with the agent and the wall, Pa

ss′ is calculated
based on Eq. (2.13) by

Pa
ss′ =

∫
x∈s

∫
x′∈s′

5000

π
exp (−5000|x′ − x− u|2) dx′dx∫

x∈s
dx

(∀s ∈ S, ∀s′ ⊂ �2).

(2.17)

s′ can be an arbitrary area in xy-space. The method for coding this
equation is stated in Appendix A.1. Transition probabilities that with the
consideration of collision are computed by the algorithm in Sec. A.2.

CHAPTER 2. STATE-ACTION MAP 45

0 1 2 3 9... ...
10 11 12 19... ...

...

90 91 92 99
...

... ...

...
x

y

O

Fig. 2.8: State numbering

Ra
ss′ [step] is computed from Eq. (2.14) as

Ra
ss′ =

∫
x∈s

rxdx∫
x∈s

dx

=

∫
x∈s

(−1− 400 max{0.1− (x), 0}) dx∫
x∈s

dx

= −1− 400N

∫
x∈s

max{0.1− (x), 0}dx. (2.18)

Since integration of max{·} is difficult, we solve it by using Monte Carlo
method. Points in s are chosen with a reticular pattern and Ra

ss′ is given as
the average of penalties at the points.

In a standard puddle world problem, their types are limited to the follow-
ing four vectors: u = 0.05(1, 0)T , 0.05(−1, 0)T , 0.05(0, 1)T , and 0.05(0,−1)T .
We give the symbols aright, aleft, aup, and adown to them respectively.

2.3.3 Computing Result

State-action maps with Ns = 102, 202, 402, 1002, 2002, and 4002 are created
by the value iteration algorithm with the above condition. These maps and
their state-value functions are shown in Fig. 2.10 and Fig. 2.9 respectively.

2.3. EXAMPLE WITH PUDDLE WORLD TASK 46

Fig. 2.9: State-Value Functions

shortcut

aleftleft

aup

aright

adown

aup aleft

aleft

adown

Fig. 2.10: State-Action Maps

CHAPTER 2. STATE-ACTION MAP 47

We also show behavior of the agent from three initial states in Fig. 2.11.
When Ns = 102, a policy for avoiding the puddle is obtained. We can find
a shortcut, a narrow path between the wall at x = 0 and the edge of the
puddle, in the maps with Ns ≥ 202. An example of the shortcut is shown
as the path of the agent from initial state “A” in Fig. 2.11. aleft for getting
away from the wall at x = 1 appears when Ns ≥ 1002, and adown for leaving
the wall at y = 1 joins when Ns ≥ 2002.

A
B

C

Fig. 2.11: Behavior of the agent with a state-action map (N = 4002)

01010101010101111111010101010101111111110101010101
01011111111010101010010111111110101000010101111111
10101000010101111111101010100101011111111111111101
01010111111111111111010101011101010101010101010100

Fig. 2.12: Binary Sequence of A State-Action Map (aleft: 00, aright: 01, adown: 10, aup:
11)

Figure 2.12 illustrates the raw binary sequence of the state-action map
with N = 102. A state-action map is stored in memory with such a format.

2.3.4 Relation between Size and Efficiency

We measure the relation between the size of policy and its efficiency with
the maps in Fig. 2.9. This result is used for evaluating compression methods.

2.3. EXAMPLE WITH PUDDLE WORLD TASK 48

Efficiency J of each state-action map is measured through mo-
tion of the agent in a computer. Initially, the agent is put at a
point. The reward on each step is counted while the agent is go-
ing to the goal. The value of the initial point is computed as the
sum of the values. This sort of trials are held with 106 initial points:
(x, y) = ((n− 0.5)10−3, (m− 0.5)10−3) (n, m = 1, 2, . . . , 1000). J is obtained
as the mean value of the 106 results. Memory usage L is evaluated by
Eq. (2.2) with M = 4.

0
2
4
6
8

10
12
14
16
18
20

N = 10
N = 20

N = 40

N = 100
N = 200

N = 400

memory usage [bit] memory usage [bit]

ef
fic

ie
nc

y
−

J
[s

te
p]

ef
fic

ie
nc

y
−

J
[s

te
p]

(a) (b)

Fig. 2.13: Relation between Size and Efficiency of The State-Action Maps

The result is shown in Fig. 2.13(a). The unit of values on the vertical
axis is −J [step]. The smaller −J is, the better the efficiency is. Since −J
does not seem to be less than 20 however large N is, we show another graph
in (b), where the intersecting point of the axes is changed. Though we have
measured J five times for each state-action map, the variations in J have
been too small to fill in (b). As shown in Fig. 2.13(b), the more amount
of memory a state-action map consumes, the more its efficiency enhances.
However, the enhancement is asymptotic.

CHAPTER 2. STATE-ACTION MAP 49

2.4 Comparison with Value Functions

Though a state-action map seems to use memory wastefully, is it true? If
the evaluation indexes: efficiency J and size L, are poorer than those of
other methods, it is true.

As mentioned in Sec. 1.3.2, many function approximation techniques
are proposed and utilized for representing the state-value function. They
can be used in place of a state-action map if we add some algorithms for
decision making with them. The time for decision making by a state-value
function will be longer than that with a state-action map. However, use of
a state-value function should be taken into account if its efficiency-per-size
is better than a state-action map.

We compare the state-action maps obtained in this chapter with the fol-
lowing value functions:

• the state-value functions in Fig. 2.9,

• state-value functions obtained by tile coding [Albus, 1975a; Albus,
1975b; Sutton, 1996], and

• interpolated state-value functions computed from the functions in
Fig. 2.9.

2.4.1 Decision Making from State-Value Function

At first, we fix the method of how to choose actions from a state-value
function. An algorithm that is based on a Monte Carlo method is used for
that purpose.

From state x of the agent, the algorithm generates samples of posterior
states according to the probability density function pa

xx′ for each action a.

The samples are written as x
′(0)
a , x

′(1)
a , . . . , x

′(�−1)
a here. From the samples,

the following value

Q̂(x, a) =
1

�−1∑
i=0

[
ra

xx
′(i)
a

+ V (x′(i)
a)

]
(2.19)

is calculated. An action is then chosen based on the following policy

πQ̂(x) = argmax
a∈A

Q̂(x, a). (2.20)

2.4. COMPARISON WITH VALUE FUNCTIONS 50

The larger is, the more the value of Q̂(x, a) is close to the actual action
value function:

Q(x, a) =

∫
X

pa
xx′ [ra

xx′ + V (x′)] dx′. (2.21)

Though calculation of this equation is more precise for decision making than
the Monte Carlo method, the difficulty of this calculation toward an arbitrary
format of a state-value function may be imaginable.

2.4.2 Implementation of Tile Coding

As shown in [Sutton, 1996], we cover the puddle world with five discrete
state spaces. One of them, named S0, divides the x-axis and y-axis into√

Ntile intervals respectively. Each cell in S0 is equally divided into 25
pseudo cells by the other spaces: S2, S3, S4, and S5. Figure 2.14 shows the
case with Ntile = 22. S2, S3, S4, and S5 have an additional interval on each
axis; otherwise cells of S0 adjacent to a wall cannot be divided into 25 parts.

Fig. 2.14: Tile coding (an example with Ns = 22)

The value iteration algorithm is separately applied to the five kinds of
space. Since one of them is identical with the normal state-value function,
the value iteration algorithms are executed on the other four kinds of space.
When the five state-value functions are superposed, we can obtain one of
the state-value functions shown in the lower part of Fig. 2.15. As shown in
the figure, each state-value function is smoothed by the superposition.

Since actions cannot be recorded in pseudo cells, the agent should decide
its action with state-value functions on the five spaces. The agent needs

L =
{

Ntile + 4(
√

Ntile + 1)2
}

z [bit] (2.22)

CHAPTER 2. STATE-ACTION MAP 51

superposition
of 4 shifted tiles

Fig. 2.15: State-Value Functions Obtained by Tile Coding

to store the five state-value functions. z is the number of bits for recording
the value on a state. z is not the number of bits at computation of a state-
value function. We use 32[bit] for computing it and reduce the number to
z[bit] at recording. Each value is rounded off to a number from 0 to 2z − 1
evenly.

2.4.3 Implementation of Interpolation

Interpolation techniques have been used for learning as shown in [Takahashi,
2001]. In Takahashi’s case, this technique has been applied to Q-learning.

We utilize this technique to enhance pseudo resolution of the state-value
functions shown in Fig. 2.9. In Fig. 2.16, a part of a state-value function
is drawn. The value at x is calculated as the weighed mean of values of
states around x. The weight is in proportion to the square measure of the
overlapping area between each discrete state and a square whose center is x.
The size of the square is identical with a discrete state. When the value and
the weight of each discrete state are represented by vi and wi (i = 0, 1, 2, 3)

2.4. COMPARISON WITH VALUE FUNCTIONS 52

respectively as shown in the figure, the value at x is calculated as

V (x) =
1∑3

i=0 wi

3∑
i=0

viwi. (2.23)

Differently from the functions obtained by tile coding, the interpolated
state-value functions consume no more memory than the size of the original
state-value functions. Though we should count the amount of memory for
the algorithm of the interpolation, it is a negligible amount when the number
of discrete states are huge. Since the puddle world task is an example, we
do not take the amount of memory into consideration.

x

v2 v3

state-value function
(on a look-up table)

v0

v1

w0

w2
w3

w1

Fig. 2.16: Interpolation

In Fig. 2.17, state-value functions and their interpolation are illustrated.
When N = 102, 202, 402, we can recognize that the mosaic patterns of the
original functions are smoothed by the interpolation. The state-value func-
tion with N = 1002 and more finer state-value functions can also be smoothed
though we cannot judge it on this resolution.

2.4.4 Evaluation Result

The three kinds of state-value functions and the state-action maps are
evaluated with the same simulation in Sec. 2.3.4. The number of samples
on the Monte Carlo method and the number of bits for representing values
are chosen from (, z) = (10, 8), (10, 16), (100, 8), (100, 16). The number of
discrete states N are set to N = 202, 402, 1002, 2002, 4002 in the cases of
normal state-value functions and interpolated state-value functions. The
parameter Ntile of tile coding is chosen from Ntile = 202, 402, 1002, 2002.

CHAPTER 2. STATE-ACTION MAP 53

interpolation

Fig. 2.17: Interpolated State-Value Function

The results are shown in Fig. 2.18. In all of the figures, the results of
tile coding are not superior not only to those of state-action maps, but also
to those of the normal state-value functions. From the figures, moreover,
we can understand that value iteration by tile coding with Ntile = 102

cannot obtain better state-value functions than value iteration by simple
discretization with N = 202. The same goes for the pair of Ntile = 202 and
N = 402. We should say that tile coding is not always suitable for value
iteration. Tile coding is suitable for reinforcement learning since it can
reduce the number of trials for learning.

In the case of interpolation, some results in Fig. (a) are better than those
of normal state-value functions. When the number of samples on the Monte
Carlo method and the number of bits for representing values, the interpolated
state-value functions seems to make the Monte Carlo method estimate action
values more accurately than the normal functions. In other cases, however,
the effect of interpolation is not significant. That is because the Monte Carlo
method also has a functional capability of interpolation. Since the Monte
Carlo method cannot be executed without the knowledge of dynamics, this
result also indicates the difference between DP and reinforcement learning.

2.4. COMPARISON WITH VALUE FUNCTIONS 54

20

20.2

20.4

20.6

20.8

21

21.2

21.4

(a) 10 particle 8 bit

10 10 10 10 10 10
2 3 4 5 6 7

memory usage [bit]

ef
fic

ie
nc

y
−

J
[s

te
p]

(b) 10 particle 16 bit

10 10 10 10 10 10
2 3 4 5 6 7

memory usage [bit]

20

20.2

20.4

20.6

20.8

21

21.2

21.4

ef
fic

ie
nc

y
−

J
[s

te
p]

(d) 100 particle 16 bit

10 10 10 10 10 10
2 3 4 5 6 7

memory usage [bit]

20

20.2

20.4

20.6

20.8

21

21.2

21.4

ef
fic

ie
nc

y
−

J
[s

te
p]

10 10 10 10 10 10
2 3 4 5 6 7

memory usage [bit]

20

20.2

20.4

20.6

20.8

21

21.2

21.4

ef
fic

ie
nc

y
−

J
[s

te
p]

(c) 100 particle 8 bit

N = 4002

N = 102
tile

N = 2002
tile

SVF on tile coding
normal SVF
interpolated SVF
state action map

Fig. 2.18: Performance of State-Value Functions and State-Action Maps

CHAPTER 2. STATE-ACTION MAP 55

2.5 Discussion

In this chapter, we have defined the state-action map and have explained how
to create it by dynamic programming (DP) with an example of the puddle
world task. Moreover, state-action maps for the puddle world task have
been compared with the computing results of tile-coding and interpolation
quantitatively.

Assurance of Dynamic Programming for State-Action Maps

In the simulation evaluation of the state-action maps with the puddle world
task, we can give a good example of the relation between efficiency J and
memory consumption L. The more memory is used for a state-action map,
the more its efficiency enhances as shown in Fig. 2.13.

Because this simple relation does not always hold true in some other meth-
ods, it indicates the assurance of the DP method that is implemented in this
chapter. In the case of learning methods, for example, the discretization of
state space should be chosen according to distances of state transitions in the
space. If the discretization is too coarse, an agent sometimes sticks around
the same discrete state. On the other hands, efficiency of learning is dramat-
ically lost if the discretization is too fine. The DP method implemented in
this chapter can avoid these problems because it regards state transitions as
flow of probabilities.

The Unexpected Ability of Function Approximation

We have compared the state-value functions on look-up tables with the func-
tions obtained by the tile coding and by the interpolation. From the simula-
tion, we notice that the tile coding is not effective for memory economization
though there is a possibility that tile coding can reduce the time for learn-
ing or planning. No state-value function with tile coding is superior to any
state-action map on a simple look-up table in the simulation of the puddle
world task as the results in Fig. 2.18. Interpolation is not much effective
too. As a matter of course, we should try those methods when memory is
not enough to represent all discrete states on a simple look-up table. How-
ever, the value iteration algorithm sometimes can solve a problem with very
coarse discretization as the state-action map with N = 102 on the puddle
world task. We should not use a complicated function approximation method
without any reason.

2.5. DISCUSSION 56

57

Chapter 3

State-Action Map Compression

In this chapter, we propose a vector quantization (VQ) method for com-
pressing state-action maps. To write this section, we are greatly helped by
Gersho and Gray’s text [Gersho, 1992].

This chapter is composed of seven sections. In Sec. 3.7, necessary char-
acters of compression methods and compressed state-action maps are men-
tioned. The major part of the proposed method in this thesis is presented
in Sec. 3.2–3.4. Brief overview of VQ is done in Sec. 3.2. We will under-
stand that VQ can be one of the most suitable compression methods for
state-action maps. The format of compressed state-action maps by VQ is
then explained in Sec. 3.3. After that, in Sec. 3.4, we present the most im-
portant mathematical formulae that make VQ compress state-action maps
efficiently. The proposed method is applied to the state-action maps for the
puddle world task in Sec. 3.5. In Sec. 3.6, the proposed method is compared
to one of the most competitive methods. The method creates policies on a
binary-tree structure. We conclude this chapter in 3.7 with the discussion
about the result of comparison.

3.1. SUITABLE MANNER FOR
COMPRESSING STATE-ACTION MAP 58

3.1 Suitable Manner for

Compressing State-Action Map

To compress a state-action map, we should choose suitable methods for
compression. A method determines the format of compressed state-action
maps.

First of all, the format of maps should have good quality as a reflexive
policy. On a relevant note, there is a concept of instantaneous decordable
codes in the source coding theorem. When an instantaneous decordable code
is read from its head, it should fulfill the following conditions:

• the end of the sequence of bits that denotes a word (a unit of significant
data) can be recognized without waiting for the next bit, and

• the word can be decoded without waiting for it.

Well coded data by Huffman coding belongs to this category. Reflexive
policies, on the other hand, must fulfill more severe conditions. It must be
random access data because sequences of state transitions are not fixed. A
compressed state-action map must provide an action index for a state within
a fixed time cycle after the state is detected.

memory usage [bit]

ef
fic

ie
nc

y
−

J
[s

te
p]

compression N = 100
performance of
a compressed map

Fig. 3.1: An Ideal Case of Compression

Instead, we should allow efficiency loss of a state-action map by com-
pression. It means that lossy compression methods are preferred rather

CHAPTER 3. STATE-ACTION MAP COMPRESSION 59

than lossless compression methods. Generally speaking, Lossy compression
methods can actualize higher compression ratio than lossless compression
methods. Moreover, lossy compression methods can control the compression
ratio in accordance with required efficiency, or control the efficiency in
accordance with a required compression ratio. Figure 3.1 illustrates an
example. The data in this figure is identical with the data in Fig. 2.13(b).
We assume that some compressed state-action maps are obtained from the
N = 1002 map. If the compression proceeds with the small efficiency loss
as shown in Fig. 3.1, the adjustment of size or efficiency is easy. Not only
high compression ratio, but also this kind of tractability will be required for
practical use.

Figure 3.1 implies another important issue. If a pair of efficiency and
size obtained from a compressed state-action map is worse than a coarse
state-action map, the compressed data is meaningless. We can regard a
coarse discretization as a way of compression. The proposed method must
be advantageous against this simple compression method.

3.2. VECTOR QUANTIZATION 60

3.2 Vector Quantization

From the requisition of Sec. 3.1, we utilize vector quantization (VQ) [Gersho,
1992] for our purpose. Here we explain the fundamental idea of VQ. We can
understand it is quite powerful and universal method for compression of
signals, while we will also understand that its exact copy cannot be applied
to compression of state-action maps.

3.2.1 Vector Quantization for Compression of Finite
Amount of Data

Here we explain basic definitions of VQ in the case where the number of
vectors is finite. Let us suppose that k-dimensional Euclidean space, �k, is
dotted with a set of vectors:

V = {vi|i = 0, 1, 2, . . . , Nν − 1} (3.1)

as shown in Fig. 3.2(a). Here we define a mapping:

Ω : V → C (3.2)

where C = {ci ∈ �k|i = 0, 1, 2, . . . , Nc − 1}. C and c ∈ C are called a
codebook and a representative vector respectively. Ω, which is called a vector
quantizer, changes any vector in V into a representative vector. As shown in
Fig. 3.2(b), when a vector quantizer is given, the vectors in V are classified
into Nc clusters:

Kj = {v|Ω(v) = cj} (j = 0, 1, 2, . . . , Nc − 1). (3.3)

Therefore, an algorithm for obtaining a suitable vector quantizer is called a
clustering algorithm. A vector quantizer can be also regarded as a mapping
from an index of a vector to an index of a representative vector. We represent
this mapping for indexes as

ω : IV → IC, (3.4)

where IV ≡ {0, 1, 2, . . . , Nν − 1} and IC ≡ {0, 1, 2, . . . , Nc − 1}. Indexes
in IV and in IC are called vector indexes and representative vector indexes
respectively in this thesis.

CHAPTER 3. STATE-ACTION MAP COMPRESSION 61

k-d space

(a) (b)

cluster

cluster

clustervectors ()

representative vectors ()

Fig. 3.2: vector quantization

3.2.2 Distortion Measure

Roughly speaking, a vector quantizer is regarded as a good one if it can
convert vectors in V into representative vectors with small degradation. If
we want to evaluate a vector quantizer, the rate of degradation should be
measured. In [Gersho, 1992], “a distortion measure” is used as the term that
denotes the rate of degradation. In almost all methods of VQ, a distortion
measure is defined and used for obtaining an appropriate vector quantizer.
The distortion measure between a vector and a representative vector is de-
fined as

D : V × C → [0,∞). (3.5)

In the case where vectors belong to Euclidean space �k, a distortion measure
can be defined as any distance between v ∈ V and c ∈ C in �k. According to
[Gersho, 1992], the following distortion measures of Ω toward V are frequently
used

D(V, Ω) =
∑
v∈V

D (v, Ω(v)) , (3.6)

or D(V, Ω) = max
v∈V

D (v, Ω(v)) (3.7)

for defining the optimal vector quantizer:

Ω∗ = argmin
Ω
D(V, Ω). (3.8)

3.2. VECTOR QUANTIZATION 62

When Eq. (3.6) is adopted, Ω∗ is a vector quantizer that can minimize the
distortion d averagely. The use of Eq. (3.7) means the request that a worst-
case distortion of vectors should be minimized.

3.2.3 Blocking for VQ of A Sequence of Numbers

Though VQ is the method for reducing the redundancy of a set of vectors, it
is usually used for compressing such a sequence of numbers as digital images
[Tsai, 2000; Fekri, 2000] or digital sounds [Huang, 2002]. We show the flow
of algorithms for compressing a sequence of numbers in Fig. 3.3. Besides
the clustering process, the blocking process is required for the compression
as shown in this figure.

When a sequence of numbers is regarded as an ordered set

N = {ni|i = 0, 1, 2, . . . , N − 1}, (3.9)

these numbers are classified into some sets. In other words, N is divided into
some blocks of equal length. We therefore call this procedure blocking. The
numbers in each block are arranged in an ordered set, which is regarded as
a vector.

Fig. 3.3: The flow of VQ for sequence of numbers

In a rigorous manner, the blocking procedure is to give every ni ∈ N the
position of ε(i)th element of ν(i)th vector by using a pair of transforms:

ν : I → IV = {0, 1, 2, . . . , Nν − 1} (3.10)

ε : I → IE = {0, 1, 2, . . . , Nε − 1}, (3.11)

CHAPTER 3. STATE-ACTION MAP COMPRESSION 63

where I = {0, 1, 2, . . . , N − 1}. I, IV and IE are called the set of indexes,
the set of vector indexes, and the set of element indexes respectively. Nν

is the number of Nε-dimensional vectors. Hence, NνNε = N . Figure 3.4
shows the relation between these kinds of index with a sequence of data that
is arranged by ν and ε. Of course, two different indexes in I should not
transformed to the identical pair of a vector index and an element index.
With these transforms, N is divided into the set of Nν vectors. The set of
vectors are defined as V = {v0, v1, v2, . . . , vNν−1}. A vector has the following
form:

viν = (v(iν ,0), v(iν ,1), . . . , v(iν ,iε), . . . , v(iν ,Nε−1)) (3.12)

(v(iν ,iε) ∈ N , iε = 0, 1, 2, . . . , Nε − 1),

where (
iν
iε

)
=

(
ν(i)
ε(i)

)
. (3.13)

When the set of vectors is compressed to representative vectors based on
the transform in Eq. (3.4), the data for i ∈ I can be read from iεth element
of representative vector ciνω . iνω and iε are obtained by(

iνω

iε

)
=

(
ω (ν(i))

ε(i)

)
. (3.14)

Figure 3.5 illustrates the relation between original data and its compressed
data. In this figure, a look-up table that represents Eq. (3.4) is added to
Fig. 3.4. We name this look-up table a quantization table. The blocked
data is then changed to the set of representative vectors. The look-up table
in which ci (i = 1, 2, . . . , Nc − 1) are recorded is called a codebook. The
compressed data is composed of the pair of a quantization table and a
codebook.

We sometimes represent an action index c(iνω ,iε) on the codebook as
c(iνω, iε). In this case, the codebook can be regarded as the mapping
c : IC × IE → IA.

3.2. VECTOR QUANTIZATION 64

i N

Nν-1

ν(i)

ε(i)

0

0
0 Nε-1

original data

blocked data

ve
ct

or
 in

de
xe

s

element indexes

Fig. 3.4: Blocking

i N

Nν-1

ε(i)

0

0
0 Nε-1

original data

codebook

re
p.

 v
ec

to
r i

nd
ex

es element indexes

ν(i)

ve
ct

or
 in

de
xe

s

0

ω(ν(i))

quantization table
Nν-1

vector quantized map

Fig. 3.5: Structure of Vector Quantized Data

CHAPTER 3. STATE-ACTION MAP COMPRESSION 65

3.3 Vector Quantized State-Action Map and

Its Character

Since a state-action map is a sequence of binary numbers, it can be
compressed by the method in Sec. 3.2.3. The format of the compressed map
is identical with the compressed data in Fig. 3.5 except that the data is
action indexes. However, if a state-action map is compressed in a similar
fashion of compression of images, we cannot actualize high compression ratio.

In this section, a format of a compressed state-action map by VQ is firstly
given. Secondly, we formulate the evaluation indexes: size L and efficiency J
for the compressed map. There we will notice that it is very difficult to create
a compressed state-action map without losing the efficiency J . Thirdly, we
propose a definition of distortion measure that is specialized for state-action
maps. Then we give some concrete creating processes of VQ maps.

3.3.1 Vector Quantized State-Action Map

If we replace the set of indexes I by the set of state indexes IS , we can apply
VQ to compression of any state-action map in form. In this case, a vector
has action indexes as its elements. When ν and ε are given, each vector is
defined as

viν = (v(iν ,0), v(iν ,1), . . . , v(iν ,Nε−1))

=
(
πMAP(sμ(iν ,0)), πMAP(sμ(iν ,1)), πMAP(sμ(iν ,2)), . . . , πMAP(sμ(iν ,Nε−1))

)
,

(3.15)

where μ(i, j) denotes the state index that is divided into i ∈ IV and j ∈ IE
by Eq. (3.10) and (3.11). The function μ is defined as

μ : IV × IE → IS . (3.16)

When a transform ω in Eq. (3.4) is given, the set of vectors V = {viν |iν =
0, 1, 2, . . . , Nν − 1} is changed into a set of representative vector C =
{ciνω |iνω = 0, 1, 2, . . . , Nc − 1}. When each representative vector is written
as

ciνω = (c(iνω ,0), c(iνω ,1), c(iνω ,2), . . . , c(iνω ,Nε−1)) (c(iνω ,iε) ∈ A, or c(iνω ,iε) ∈ U),
(3.17)

the action index for the state index i can be read by Eq. (3.14). When ω
and C are recorded as the quantization table and the codebook, we call

3.3. VECTOR QUANTIZED STATE-ACTION MAP AND ITS
CHARACTER 66

these look-up tables a vector quantized state-action map (a VQ
state-action map, or a VQ map).

3.3.2 Size, Accessibility, and Efficiency Loss of VQ
Map

When we build a VQ map, its consumption of memory, L[bit], is calculated
by

LVQ = Nν
log2 Nc�+ NεNc
log2 M�

=
N

Nε

log2 Nc�+ NεNc
log2 M�, (3.18)

where
·� is the ceiling function. The first term of the right side of this
equation is required bits for the quantization table and the second one is
required bits for recording the codebook. Transforms ν and ε should be
implemented as simple program code and we do not count bits for them.

The process in Fig. 3.6 are required for accessing the VQ map. In this
case, Line 2 in Fig. 2.2, which illustrates the process for accessing a state-
action map, is decomposed into the four lines from Line 6 to 9. The number
of operations from Line 6 to 9 for a VQ map is several times as large as Line 2
for a state-action map. However, they are composed of operations for integer
values. Their load is much smaller than that of any search algorithm and that
for accessing any kind of function approximation data. Therefore, computing
time does not need to be discussed unless in extreme circumstances.

1: i←− ISTX (x)
2: GO TO ACCESS VQ MAP

3: u←− UTIA(j)
4:

5: ACCESS VQ MAP:

6: iν ←− ν(i)
7: iνω←− ω(iν)
8: iε ←− ε(i)
9: j ←− c(iνω, iε)

Fig. 3.6: Procedure for accessing a VQ state-action map

CHAPTER 3. STATE-ACTION MAP COMPRESSION 67

By the compression, πMAP becomes another map π′
MAP, the loss of effi-

ciency can be measured by Eq. (2.3) as

JπMAP − Jπ′
MAP =

∫
X

p(x0)
{
V πMAP(x0)− V π′

MAP(x0)
}

dx0. (3.19)

When we use the policy iteration algorithm shown in Fig. 2.4, this value can
be computed by

JπMAP − Jπ′
MAP = P (x0 ∈ s)

{
V π(s)− V π′

(s)
}

, (3.20)

where P (x0 ∈ s) =
∫

s
p(x0)dx.

3.4. STATE-VALUE DISTORTION 68

3.4 State-Value Distortion

The Specialty of State-Action Map on Compression

We utilize some existing clustering algorithms for DP. Since the problem
of how to choose a suitable ω is argued in the studies of VQ, we fol-
low their footsteps. However, the existing algorithms are not workable
if a distortion measure for action indexes in a state-action map is not defined.

In Eq. (3.5), a distortion measure is defined as D : V × C → [0,∞). For
instance, the inner product between a vector and a representative vector may
be the simplest distortion measure. In this case, D is represented by

D(v, c) = v · c. (3.21)

The inner product must be defined toward a pair of sequences of actions
if it is applied to vectors in a state-action map. When each action a ∈ A
can be represented by only one parameter (e.g. a value of torque, a value of
displacement), the definition is possible. Even if actions has more than one
parameters, there are some methods for calculations.

However, we should not forget that the distortion between v and c, is
changed at different parts of a state-action map. Even if an action a∗ = π∗(s)
can replaced by another action a′ without distortion at the state s, it never
means that the change from a∗ to a′ is distortion-free at any state s′ that
fulfills π∗(s′) = a∗.

State-Value Distortion

Therefore, we propose a novel distortion measure. With this definition, clus-
tering algorithms can be applied to any state-action map. When an action of
a state s ∈ S on an uncompressed state-action map, is changed to another,
a ∈ A, the distortion by this change is measured by

dπ(s, a) = V π(s)−
∑
s′∈S
Pa

ss′ [Ra
ss′ + V π(s′)] , (3.22)

where π is the policy that is given by the uncompressed state-action map.
For state indexes and action indexes, the following representation:

dπMAP(i, j) = dπ(si, aj) (i ∈ IS , j ∈ IA). (3.23)

is suitable. We call each of them a state-value distortion.

CHAPTER 3. STATE-ACTION MAP COMPRESSION 69

In the clustering process, all kinds of distortion caused by changes of ac-
tion are measured by the sum of the above distortion measure. The distortion
that is caused by a change of vector is measured by

Dπ
vector(v, c) =

Nε−1∑
i=0

dπMAP(vi, ci), (3.24)

where v = (v0, v1, . . . , vNε−1) ∈ V, c = (c0, c1, . . . , cNε−1) ∈ C. The distortion
measure of a cluster K ⊂ V is

Dπ
cluster(K) = min

c∈C

∑
v∈K

Dπ
vector(v, c). (3.25)

This equation also means that representative vector c of cluster K is repre-
sented by the following equation:

c = argmin
c

∑
v∈K

Dπ
vector(v, c). (3.26)

The distortion of a VQ map π′
MAP that gives a policy π′ is measured by

Dπ(π′) =
∑
s∈S

dπ(s, π′(s))

=
∑
s∈S

{
V π(s)−

∑
s′∈S
Pa

ss′[Ra
ss′ + V π(s′)]

}
, (3.27)

or

DπMAP(π′
MAP) =

N−1∑
i=0

dπMAP(i, π′
MAP(i)). (3.28)

When the vectors in the map πMAP is classified into clusters Ki (i =
0, 1, 2, . . . , Nc − 1), this equation is equal to

DπMAP(π′
MAP) =

Nc−1∑
i=0

Dπ
cluster(Ki). (3.29)

This distortion measure represents the loss of efficiency. Though this equa-
tion is different from Eq. (3.19), we use this equation for clustering due to
the problem of calculation amount.

3.5. EXAMPLE OF IMPLEMENTATION 70

3.5 Example of Implementation

Here we implement a vector quantization algorithm for the state-action map
so as to give an example of implementation.

3.5.1 Blocking

At first, we fix the manner of blocking. Here we cut a state-action map
into congruent rectangles, which are regarded as vectors. Such a manner of
blocking can be represented by the following transforms:(

iν
iε

)
=

(
ν(i)
ε(i)

)
=

(
�ix/wx�+

√
N/wx�iy/wy�

�ix%wx�+ wx�iy%wy�

)
, (3.30)

where wx and wy are the numbers of intervals of each block along x-axis and
y-axis respectively. Figure 3.7 illustrates an example of blocking with these
transforms.

0 1 2 3 4 5 6 7 8 9

0
 1

2

3

 4

 5

6

7
 8

 9

0 1 2 3 4
5 6 7 8 9

0 1
2 3
4 5
6 7
8 9

vector

element indexes

vector indexes

Fig. 3.7: Example of blocking (N = 102, wx = 5, and wy = 2)

The parameters wx and wy affect the success of compression. This issue is
discussed in Chapter 4. Here we fix the blocking way as (wx, wy) = (

√
N, 1).

Therefore, Eq. (3.30) is simplified as

(iν , iε) = (ν(i), ε(i)) = (iy, ix) . (3.31)

Then, the relation between the state index i and (iν , iε) can be described as

μ(iν , iε) = μ(iy, ix) = ix + iy
√

N. (3.32)

CHAPTER 3. STATE-ACTION MAP COMPRESSION 71

Each vector is defined as

viν =
(
πMAP(sμ(iν ,0)), πMAP(sμ(iν ,1)), πMAP(sμ(iν ,2)), . . . , πMAP(sμ(iν ,Nε−1))

)
=

(
πMAP(siν

√
N), πMAP(siν

√
N+1), πMAP(siν

√
N+2), . . . , πMAP(s(iν+1)

√
N−1)

)
(3.33)

from Eq. (3.15).

3.5.2 Clustering Algorithms

The vectors viν (iν = 0, 1, 2, . . . ,
√

N − 1) are classified into Nc clusters and
the representative vector is computed in each cluster. Here, the pairwise near-
est neighbor (PNN) algorithm [Equitz, 1989] is used for clustering. Moreover,
the Lloyd iteration [Gersho, 1992] is used for enhancing the clustering result
after the PNN algorithm.

Pairwise Nearest Neighbor Algorithm

A pseudo code of the PNN algorithm is shown in Fig. 3.8. The first step of
this algorithm is to create Nν clusters: Ki = {vi} (i = 0, 1, 2, . . . , Nν−1). In
a loop of the PNN algorithm, two of these clusters are combined to a cluster.
Therefore, clusters are disappeared one by one at every loop. The loop is
repeated until the number of clusters are larger than a target number: Nc.
The pair of clusters that are combined is chosen based on the following value:

δ ←− Dπ
cluster(Ki ∪ Kj)−Dπ

cluster(Ki)−Dπ
cluster(Kj), (3.34)

where Dπ
cluster(Ki∪Kj) denotes the distortion of the combined cluster Ki∪Kj

on the assumption that Ki and Kj are combined. The pair of Ki and Kj

that minimizes δ is combined in a loop.

The time complexity of this algorithm is O(MNN2
ν) = O(MN3/N2

ε).
Therefore, the smaller the number of elements in a vector is, the larger the
computation time expands.

3.5. EXAMPLE OF IMPLEMENTATION 72

1: Ki ←− {vi} and ci ←− vi (i = 0, 1, 2, . . . , Nν − 1)
2: n←− Nν

3: while n >Nc

4: δmin ←−∞
5: for every (i, j) (i = 0, 1, 2, . . . , n− 2; j = i + 1, i + 2, . . . , n− 1)
6: if Ki �= ∅ and Kj �= ∅ (∅ : null set)

7: Dπ
cluster(Ki ∪ Kj)←− minc

∑
v∈Ki∪Kj

Dπ
vector(v, c)

8: ctmp ←− argminc

∑
v∈Ki∪Kj

Dπ
vector(v, c)

9: δ ←− Dπ
cluster(Ki ∪ Kj)−Dπ

cluster(Ki)−Dπ
cluster(Kj)

10: if δ < δmin
11: δmin ←− δ
12: imin ←− i
13: jmin ←− j
14: cmin ←− ctmp
15: Kimin ←− Kimin ∪ Kjmin

16: Dπ
cluster(Kimin)←− Dπ

cluster(Kimin ∪ Kjmin)
17: cimin ←− cmin
18: Kjmin ←− ∅
19: n--

Fig. 3.8: Pairwise nearest neighbor algorithm [Equitz, 1989]

Lloyd Algorithm

After the PNN algorithm, we apply a Lloyd algorithm to an obtained VQ
map. The pseudo code of a Lloyd algorithm is shown in Fig. 3.9. This
algorithm repeats composition of clusters and computation of representative
vectors alternately. In the composition of clusters, each vector is added in a
cluster whose representative vector can give the smallest distortion toward
the vector. The computation of representative vectors is simply based on
Eq. (3.26). After some iteration, Δ in each process will stop reducing.

The time complexity of the Lloyd algorithm varies by implementation.
If all of the distortions d(s, a) are calculated and recorded on memory in
advance, it becomes O(ιNNc). ι is the number of iteration.

CHAPTER 3. STATE-ACTION MAP COMPRESSION 73

composition of clusters:

/* cj (j = 0, 1, 2, . . . , Nc − 1) are already set.*/

1: Kj ←− ∅ (j = 0, 1, 2, . . . , Nc − 1)
2: Δ←− 0
3: for each vi (i = 0, 1, 2, . . . , Nν − 1)
4: Kj ←− argminKj

Dπ
vector(vi, cj)

5: Kj ←− Kj ∪ {vi}
6: Δ←− Δ + Dπ

vector(vi, cj)
7: return Δ
computation of representative vectors:

/* Kj (j = 0, 1, 2, . . . , Nc − 1) are already set.*/

8: Δ←− 0
9: for each Kj (j = 0, 1, 2, . . . , Nc − 1)
10: cj ←− argminc

∑
v∈Kj

Dπ
vector(v, c) /*Eq.(3.26)*/

11: Δ←− Δ +
∑

v∈Kj
Dπ

vector(v, cj)

12: return Δ

Fig. 3.9: Lloyd Algorithm [Gersho, 1992]

3.5.3 Obtained VQ Maps

Figure 3.10 illustrates exsamples of compression result. The N = 1002

state-action map in (a) is compressed with two ways of blocking:
(wx, wy) = (10, 10), (100, 1). The number of representative vectors is
10. At first, the PNN algorithm in Fig. 3.8 is used for reducing the number
of clusters from 100 to 10. The Lloyd algorithm in Fig. 3.9 is then applied
to. Obtained VQ maps are illustrated in (b). (c) shows each policy that
is obtained by each VQ map. For convenience of explanation, policies that
are obtained from VQ maps as shown in (c) are called VQ maps in this thesis.

As shown in (b), a VQ map is composed of representative vectors and
a table that indicates where each representative vector is adapted to. In a
computer, representative vectors and the table are described as binary digit
strings respectively and are called a codebook and a quantization table. The
size of each VQ map is calculated as

LVQ = Nν
log2 Nc�+ NεNc
log2 M�
= 100
log2 10�+ 100 · 10
log2 4�
= 400 + 2000 = 2400[bit] (3.35)

3.5. EXAMPLE OF IMPLEMENTATION 74

from Eq. (3.18). Since the size of the uncompressed map with N = 1002 is
20000[bit], the compression ratio is 1 : 0.12.

From (c), changes of policy by lossy compression can be observed. Many
aup and aright are replaced to each other in the part where no puddle exists. In
this part, values of state-value distortion are small toward these changes. On
the other hand, actions allocated around the puddle are not largely changed.
By the use of state-value distortion, frequency of changes can be biased like
this.

CHAPTER 3. STATE-ACTION MAP COMPRESSION 75

6 6 6 6 6 6 6 6 6 06 6 6 6 6 6 6 6 6 0
0 0 0 0 0 6 6 6 0 00 0 0 0 0 6 6 6 0 0
1 2 2 2 7 6 6 6 0 01 2 2 2 7 6 6 6 0 0
4 5 5 3 8 6 6 0 0 04 5 5 3 8 6 6 0 0 0
0 9 5 3 8 6 6 0 0 00 9 5 3 8 6 6 0 0 0
6 6 5 3 8 6 6 0 0 06 6 5 3 8 6 6 0 0 0
6 6 5 5 9 6 6 0 0 06 6 5 5 9 6 6 0 0 0
6 6 6 6 6 6 0 0 0 06 6 6 6 6 6 0 0 0 0
6 6 6 6 6 6 0 0 0 06 6 6 6 6 6 0 0 0 0
6 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0

0
1
2
3
4
5
6
7
8
9

 (b) compressed results (VQ maps)

(c) policies obtained by the VQ maps

(a) an uncompressed map

}

}
}
}
}
}
}

}
}
}
}
}

(wx , wy) = (10,10) (wx , wy) = (100,1)

Fig. 3.10: Structure of VQ Maps

3.6. EVALUATION WITH PUDDLE WORLD TASK 76

3.6 Evaluation with Puddle World Task

3.6.1 Comparison with Coarse Discretization

Here we compare the size and efficiency of pairs of VQ maps and uncom-
pressed state-action maps that are created. If a VQ map is larger than a
coarse uncompressed state-action map, the VQ map is useless.

In Fig. 3.11, size and efficiency of uncompressed maps and those of VQ
maps are compared. In Fig. (b)-(f), there are data points of VQ maps
under the dot-lines that connect data points of the uncompressed maps. We
can consider the VQ maps that have such data points as superior to the
uncompressed maps.

We show three pairs of an uncompressed state-action map and a VQ map
that is smaller and more efficient than the uncompressed map in Fig. 3.12.
The three maps in (a-1), (b-1), and (c-1) are uncompressed state-action
maps and the other three maps in (a-2), (b-2), and (c-2) are VQ maps that
are compared to the above maps respectively. Each VQ map is compressed
from a state-action map that has larger N than each of the above map.

In Table 3.1, size and efficiency J of every map is illustrated. The
compression ratio is calculated as the ratio of sizes between an uncom-
pressed map and a VQ map that are in the same row. This ratio is
called an effective compression ratio. The effective compression ratio
is defined as the ratio of the size of a VQ map to that of a uncompressed
state-action map that is equal or less efficiency than the VQ map. When
an effective compression ratio of a VQ map is more than one toward any
state-action map whose efficiency is more than that of the VQ map, the VQ
map is meaningless. On the other hand, we call a compression ratio as a
self-compression ratio when it denotes the ratio of the size of a VQ map
to that of its original state-action map.

The effective compression ratio of each VQ map in the table is less than
0.7. Though the ratios are not high, we can assuredly find the VQ maps
that are more effective than the state-action maps. The major difference
between the uncompressed maps and the VQ maps is the difference of the
parts of aup and aright (e.g. A-D marked in the figure). In these parts, there
is no difference between the choice of aup and aright. Since the state-value
distortion can consider this nature, the drastic change is possible. The
change then reduces the redundancy of a state-action map.

CHAPTER 3. STATE-ACTION MAP COMPRESSION 77

From the pair of (b-1) and (b-2), moreover, we can recognize that a kind
of variable bit allocation is done in the VQ map. In the upper edge of (b-2),
which is marked as E, adown is allocated. This action can make the agent
avoid collisions with the upper edge of the world and seems to contribute
to efficiency enhancement. In (b-1), on the other hand, aright is allocated in
the part due to the coarse discretization. As well as cutting the redundant
part of a state-action map, the VQ algorithm can leave such a subtlety that
is brought by the fine discretization.

Fig. 3.13 highlights the difference of a state-action map and a VQ map
from the viewpoint of behavior of the agent. In each figure, the frequency
of visit by the agent at the trials for evaluation is illustrated by gray scale.
Every figure is divided into 1002 cells regardless of the coarseness of the
map. The visit frequency of each cell is then counted at the trials. The
darker the cell is drawn, the more frequent the agent visits. The dark part
can be likened to animal trails. (i) and (iii) are the images of trails obtained
by the state-action maps with N = 202 and N = 402 respectively. (ii) is
the image of trails by the VQ map that is shown in Fig. 3.12(a-2). The
efficiency of the VQ map is better than the state-action maps with N = 202

as mentioned before.

When these three images are compared, we notice that the compression
is something more than reduction of resolution, which is shown in lossy
compression of images. When we compare (i) and (iii), there is no difference
but the roughness of trails. However, (ii) illustrates mode change of
behavior by the compression. By a partial change of the map at part B in
Fig. 3.12(a-2), the path of the agent is changed largely.

Table 3.1: Comparison of Size and Efficiency of Maps in Fig. 3.12
uncomp. map VQ map effective

Fig. size [bit] −J [step] Fig. size [bit] −J [step] comp. ratio
(a-1) 800 20.87 (a-2) 520 20.79 1:0.65
(b-1) 20k 20.35 (b-2) 13.8k 20.32 1:0.69
(c-1) 80k 20.30 (c-2) 53.6k 20.29 1:0.67

3.6. EVALUATION WITH PUDDLE WORLD TASK 78

(b) N = 202

(c) N = 402 (d) N = 100

(e) N = 2002
(f) N = 400 2

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

10 101010 10 10
size [bit]

1 2 3 4 5 6

(a) N = 10 (size of VQ maps)2

uncompressed map
VQ map

1 2 3 4 5 610 101010 10 10
size [bit]

1 2 3 4 5 610 101010 10 10
size [bit]

1 2 3 4 5 610 101010 10 10
size [bit]

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

1 2 3 4 5 610 101010 10 10
size [bit]

1 2 3 4 5 610 101010 10 10
size [bit]

N = 10 2

N = 20 2

N = 40 2
N = 100 2

N = 200 2
N = 400 2

Fig. 3.11: Comparison between VQ maps and Uncompressed Maps

CHAPTER 3. STATE-ACTION MAP COMPRESSION 79

(a-1) N =202 uncomp. map (b-1) N =1002 uncomp. map (c-1) N =2002 uncomp. map

(a-2)N =402, Nc =5 VQ map (b-2)N =2002, Nc =32 VQ map (c-2)N =4002, Nc =64 VQ map

A
B

C

D

E

Fig. 3.12: Uncompressed Maps and Efficiency Equivalent VQ maps

(i) uncompressed map
(N =202 uncomp. map)

(ii) VQ map
N =402, Nc =5 VQ map

(iii) original map of (ii)
(N =402 uncomp. map)

Fig. 3.13: Trails of The Agent ((i): (a-1) in Fig. 3.12, (ii): (a-2) in Fig. 3.12, (iii): state-
action map with N = 402)

3.6. EVALUATION WITH PUDDLE WORLD TASK 80

3.6.2 Comparison with Tree Structure

We finally compare the VQ method to another compression method that is
based on a binary-tree representation, which is another possible structure
for representing policies compactly. We name this method a binary-tree
compression method of state-action maps.

Creation of Binary-Trees

As shown in Fig. 3.14, a binary-tree has nodes, branches, and leaves. This
method starts from a node, which has two branches: e−,e+. They cover
0 ≤ x < 1/2 area and 1/2 ≤ x < 1 area respectively. Each branch has a leaf
in which an action is written. Every state-value distortion d(s, a) has been
calculated from a state-value function on a fine look-up table.

node

branch

leaf

... ...

Fig. 3.14: Binary-Tree Structure

From that state, the tree grows with a procedure that changes a leaf
into a node. The leaf that is changed is chosen from all leaves based on
the state-value distortion. To decide the leaf that is changed, the method
calculates every sum of d(s, a) in the area of every branch that has a leaf.
A branch that has the largest sum is attached a node instead of the leaf.
When the area of a branch is not larger than the size of a discrete state
on the state-value function, however, the branch cannot have a node. This
restriction can prevent excess splitting of the state-space.

When a node is added to the tree, the area that is covered by the node
must be split and allocated to both leaves. If the area can be split arbitrarily,

CHAPTER 3. STATE-ACTION MAP COMPRESSION 81

the node must use some bits to memory the way of splitting. We choose to
fix a splitting rule so as to save the amount of memory. The rule is as follows:

• when the area is a square, it is split evenly along y-axis;

• otherwise it is split evenly perpendicular to long edges.

By this rule, the area that is covered by every leaf can be calculated only
with the structure of the tree.

After that, unnecessary nodes are cut. At first, a node that has an
identical action on its both branches can be erased. By an algorithm, every
unnecessary node is replaced by a leaf. This procedure is iterated until
unnecessary nodes exist. Secondly, a node can be erased when another node
has identical contents. In this case, it can be erased when the branch that
points the node is reconnected to the other node as shown in Fig. 3.15. This
procedure is also iterated until unnecessary nodes exist.

We show two examples that are policies on the tree-structures created by
the above method in Fig. 3.16. The N = 4002 state-value function was used
for computing the distortion measures. The policy in Fig. (a) is composed
of 277 leaves (Nnode = 172). Incidentally, there was 300 nodes before the cut
of unnecessary nodes, 276 nodes before the first cut of unnecessary nodes.
Though the number of leaves are smaller than that of states on the state-
action map with N = 202 (Fig. 2.10(b)), its granularity is much finer. When
the number of leaves is 1913, which is incidentally reduced from 2, 000 nodes,
the behavior for avoiding the edge of the world is generated at A and B of
the figure. At the first face, compression by binary-tree is successful.

identical
identical

Fig. 3.15: Reconnection of a Branch

3.6. EVALUATION WITH PUDDLE WORLD TASK 82

(a) 277 leaves (b) 1913 leaves

A

B

Fig. 3.16: Policies on Binary-Trees

Coding of Binary-Trees

Then we discuss memory use of binary-trees. In a computer, the branches
are implemented as pointers (address variables). A node has two pointers
and each of them points the address of another node or a leaf. Since an
address variable consumes 32 bits or 64 bits on a 32-bit or 64-bit computer,
address variables of a system should not be used for addressing.

Therefore, we code a tree with the following format.

• A node has two unsigned integer variables. The size of each variable
is
log2(Nnode + M)�[bit], where Nnode and M denote the number of
nodes and actions respectively.

• The first integer relates to the area whose position on x-axis or y-axis is
far from the origin of xy-plane compared to the other area. The second
integer relates to the other area.

• An array with 2Nnode
log2(Nnode + M)�[bit] is prepared.

• The value i of each variable is defined as follows.

– When i < M , the variable is regarded as a leaf and ai is the action
of the leaf.

CHAPTER 3. STATE-ACTION MAP COMPRESSION 83

– i ≥ M , the variable is regarded as a pointer to another node. The
variables of the other node are written from 2(i−M)
log2(Nnode +
M)�th bit in the array.

By this format, the number of bits for pointers can be changed from a
unique number of bits of a CPU to
log2(Nnode + M)�[bit].

Comparison Result

We have measured the efficiency J of some binary-tree policies. Nnode before
the reduction of nodes is chosen form n·10m (n = 1, 2, . . . , 9; m = 0, 1, 2, . . .).
Since the cut of unnecessary nodes is applied to each map, the actual value
of Nnode becomes smaller than the chosen one. We use all of the state-value
functions with N = 102, 202, 402, 1002, 2002, and 4002.

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

1 2 3 4 5 610 101010 10 10
size [bit]

uncompressed maps
tree made from N = 4002 SVF
tree made from N = 2002 SVF
tree made from N = 1002 SVF
tree made from N = 402 SVF

a b

Fig. 3.17: Evaluation of Tree-Structure Policies

The evaluation results are shown in Fig. 3.17 with the results of the
state-action maps. SVF denotes a state-value function. Points “a” and “b”
in the figure relate to the policies in Fig. 3.16(a) and (b) respectively. When
N = 102, 202, we cannot obtain unbroken policies.

3.6. EVALUATION WITH PUDDLE WORLD TASK 84

The binary-tree policies “a” can be obtained in 30[s] with a 1.5GHz
Pentium M CPU. On the other hand, the VQ maps with Nc = 32 from
N = 4002, for example, is obtained in 16[min]. Therefore, binary-tree
policies are much superior to VQ maps in the viewpoint from time consum-
ing. However, we should note that this difference of magnitude becomes
small when time consuming to create the state-action map with N = 4002

(21[min]) is added to them.

Figure 3.17 suggests the following things:

• almost all of the binary-tree policies are superior to the state-action
maps, and

• the state-value function for calculating state-value distortions should
be fine.

The former means that the binary-tree compression method can be a good
competitor of the VQ method. In a part of the graph, some binary-tree
policies are smaller than some VQ maps whose efficiencies are comparable
level. However,the latter will be a disadvantage compared to the VQ method
because the VQ method can compress state-action maps in keeping with
their granularity. As shown in the figure, the size of a binary-tree does not
relate to the size of state-value functions.

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

1 2 3 4 5 610 101010 10 10
size [bit]

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

1 2 3 4 5 610 101010 10 10
number of discrete states

(a) size - efficiency graph (b) # of states - efficiency graph

uncompressed maps
binary-tree policies
VQ maps

Fig. 3.18: Comparison of VQ Maps and Binary-Tree Policies

In Fig. 3.18(a), all evaluations of the VQ maps in Fig. 3.11 and those
of binary-tree policies are plotted. VQ maps have a range of different sizes

CHAPTER 3. STATE-ACTION MAP COMPRESSION 85

and efficiencies, while the sizes of binary-tree polices are more than 103[bit].
The reason can be understood from Fig. 3.18(b), where the horizontal axis
of the graph is not the size but the number of discrete states. The number
of discrete states means the number of leaves in the case of the binary-trees,
and the number of elements in a codebook in the case of VQ maps. This
figure suggests that the efficiency of some binary-tree policies are superior to
the state-action maps if we consider not the size but the number of discrete
states. In other words, the size on memory of a binary-tree policy becomes
about ten times larger than the number of discrete states. In contrast, the
relation between the state-action maps and the VQ maps changes little
in appearance. It means that the VQ maps do not use large amounts of
memory for representing the structure of vector quantization.

In Table 3.2, we choose some policies so as to illustrate the excess
use of memory of binary-trees. The bits for actions are computed as
2[bit] are used for representing an action index in every structure. In
the case of state-action maps, all memory is used for recording actions.
Though some equations for relating the continuous state-space and the
discrete state-space are required, they are also used for the VQ maps and
binary-tree policies. In the case of VQ maps, quantization tables can be
regarded as the data for composing the structure of VQ maps. For recording
quantization tables, 20− 1.5[%] of memory is used in the VQ maps on this
table. On the other hand, binary-tree policies are composed of pointers.
Action indexes are recorded on some gaps of the pointers. Even though
we have applied the node reduction procedures, the percentage of mem-
ory for actions are 30[%] at most. It may not be an effective usage of memory.

Table 3.2: Breakdown of Use of Memory
structure parameters total size memory for actions

[bit] [bit] [%]
binary-tree Nnodes = 172 (277 leaves) 2,752 554 20.1

Nnodes = 612 (1, 913 leaves) 12,240 3,826 31.3
VQ N = 4002, Nε = 400, Nc = 16 14,400 12,800 88.9

N = 4002, Nε = 400, Nc = 256 208,000 204,800 98.5
N = 102, Nε = 10, Nc = 6 150 120 80.0
N = 102, Nε = 10, Nc = 8 190 160 84.2

state-action map N 2N 2N 100.0

3.7. DISCUSSION 86

3.7 Discussion

In this chapter, we have proposed the vector quantization method for
state-action maps. Use of the state-value distortion is the significant feature
of this method. That is because the compression can be formulated in
the concept of optimal control problem. The VQ method is not a simple
compression method for data, but an optimization method that reuses the
state-value function for simultaneous pursuit of high ratio compression and
small efficiency loss.

Evaluation Result

As shown in the comparison with the binary-tree structure, use of memory
of VQ maps is very economical. In the case of VQ maps, more than half of
memory is used for representing codebooks, while more than half of memory
is used for representing the structure at the binary-tree compression.
Incidentally, if the reconnection procedure of branches is not applied, the
percentage of memory for representing tree-structure is roughly doubled.
Another problem of the tree-structure is that we cannot create efficient
binary-tree policies from coarse state-value functions. The method can
create binary-tree policies that are similar to high-resolution state-action
maps from a state-value function with N = 4002 as shown in Fig. 3.16.
However, the method can no effective policy from the state-value functions
with N ≤ 402. Value iteration with a coarse look-up table is rather
acceptable when we want to obtain a small size policy. Moreover, the VQ
method can reduce the amount of memory from the coarse state-action map.

Rare Efficiency Enhancement by Compression

In Fig. 3.11(b), we can see that the values of efficiency of some VQ maps
are better than the uncompressed state-action map with. We should explain
about this phenomenon. In Fig. 3.19, we show the state-action map with
N = 202 and two VQ maps that are compressed from the state-action map.
Though the VQ map in (b) is smaller than the uncompressed state-action
map in (a), its efficiency is better than that of the map in (a). Though (c) is
the smallest map in the three maps, the efficiency is the best. As shown in
this figure, some actions that are chosen for avoidance of puddle are omitted
in the process of compression. It seems that these omissions enhance the
efficiency.

CHAPTER 3. STATE-ACTION MAP COMPRESSION 87

This result is just an accident. However, it shows that the value iteration
algorithm does not always give the best policy for coarse discretization.
The reason is that the value iteration algorithm excludes the information
of where the agent likely exists in a discrete state. When a state transition
probability Pa

ss′ is calculated, the probability distribution of where the state
x exists in s is assumed as a uniform distribution in s. This assumption is
not different from the actual probability distribution when the discretization
is fine. However, it is not always true under the coarse discretization.

For example, we refer to the discrete state whose action is changed from
aup in (a) to aright in (b). When the agent visits this discrete state, it seems
that the distribution of x in this state s is biased toward the upper part
on paper. Before the agent visits s, it chooses aup if it comes close to the
puddle. If the agent comes close to the puddle again, it chooses aup again.
That behavior can be imagined from the maps both in (a) and (b). As a
result, the agent is apart from the puddle with high probability before it
visits s. However, the state-action map in (a) makes the agent choose aup

though there is a small probability that the agent enters the puddle. In the
value iteration algorithm, we have no choice but to discretize the state space
finer if we want to avoid the loss of steps.

(a) uncomp. map
− J = 20.87[step]

(b) Nc = 9
− J = 20.74[step]

(c) Nc = 8
− J = 20.69[step]

change

change

Fig. 3.19: VQ Maps ((b) and (c)) that are Better than Uncompressed Map (a).

In the process of compression from (a) to (b), aup of the discrete state
is changed to aright. The enhancement of efficiency is a rare accident and it

3.7. DISCUSSION 88

cannot be expected as mentioned above. On the other hand, it is also quite
true that this change occurs because the state-value distortion d(s, aright) of
this state s is small. The changes of actions from (b) to (c) occurs thanks to
the appropriate values of state-value distortion too.

89

Chapter 4

Techniques for Quick and
Efficient Compression

In this chapter, we propose some techniques for enhancing efficiency per
bit of VQ maps. Though the VQ method proposed in Chapter 3 can be
successfully applied to the puddle world task, there is room for reducing the
sizes of the VQ maps and for enhancing their efficiency. If the number of
discrete states is large, moreover, we have to consider the computing time
for compression.

This chapter is composed of four sections. In Sec. 4.1, we point out a cause
of performance reduction of VQ maps. We try applying value iteration to VQ
maps so as to solve this problem. In Sec. 4.2, we try to find suitable ways of
blocking before compression. Entropy functions are utilized for this attempt.
In Sec. 4.3, the redundancy of VQ maps is reduced by one more vector
quantization. Partitioning technique, which reduces calculation amount of
some clustering methods is then introduced. Both of these methods change
the format of VQ maps to tree structures. We conclude this section with
discussion about the effectiveness of the techniques in Sec. 4.4.

4.1. VALUE ITERATION FOR VQ MAP 90

4.1 Value Iteration for VQ Map

4.1.1 A Special Problem to Build VQ Maps

Equation (3.19) implies the difficulty of state-action map compression
because a state-value function is globally changed by a change of just one
action. This problem is related to the fact that any state-action map is a
generator of state-action sequences. A VQ map should not generate any
strange state-action sequence even if many actions in the map are changed
to others. This request is much severe than that for data compression of
image and sound.

0 0.3 [step] loss
action “left”

(a) a map (b) a map with “a flaw” (c) difference of value functions

Fig. 4.1: Change of Value Function (N = 1002)

0 100 [step] loss
action “up”

(a) a map (b) a map with “a flaw” (c) difference of value functions

over 100

Fig. 4.2: Change of Value Function (a serious case, N = 202)

For example, we compare the state-value functions of the maps in

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 91

Fig. 4.1. The map in Fig. (a) is the same one with Fig. 2.9(d). In the
map shown in Fig. (b), a right action on the map in Fig. (a) is changed
to a left action. We compute the state-value functions of these maps by
using the policy iteration algorithm. The time complexity of the policy
iteration algorithm is O(ιNN ′). The difference of the state-value functions
is illustrated in Fig. (c) by gray scale. As shown in Fig. (c), the loss of
values occurs not only at the state where the action is changed, but also the
others that are located upstream of the state. In the case shown in Fig. 4.2,
the loss of values is more serious than that in Fig. 4.1. As with Fig. 4.1, the
map in Fig. (a) is identical with (b) except that an action is changed. In
this case, the changed action makes the robot collide with the wall, and the
robot cannot escape from the state. What is worse is that the upper left
part of this map becomes useless due to one change of action.

If we assume that a state-action map is compressed by the computer
that is used for creating the map, computing resources for compressing
are identical with those for value iteration. As mentioned in Sec. 2.2, the
time complexity for value iteration is O(ιMNN ′). The complexity for
compression should not be more than this order.

It means that we can use the policy iteration algorithm for evaluating
ΔJ only several times. That is because the order of its time complexity is
O(ιNN ′). Since a VQ map can be defined by ν, ε and ω, VQ maps exist by
an increment of their combinations. A feasible combination must be found
within the order of computation.

Figure 4.3 illustrates a case where the efficiency loss is much larger than
the loss that is calculated with the state-value distortion. The maps shown
in Fig. 4.3 are modified from the map in Fig. 4.2(a). The losses of values are
illustrated under the maps respectively. We notice that the efficiency loss of
the map in (c) is much larger than the sum of losses of the maps in (a) and (b).

If we try to consider this problem at a process of vector quantization,
it causes the exponential increase of computing time. That is because the
state-value function must be evaluated by the policy iteration algorithm at
every time an action index is changed in the process of VQ.

4.1.2 Value Iteration after Vector Quantization

Therefore, we propose value iteration algorithms that optimize a VQ map
after compression. In these algorithms, actions in representative vectors

4.1. VALUE ITERATION FOR VQ MAP 92

0 30 [step] loss

changed to right
changed to down

changed to right
changed to down

(a) (b) (c)

Fig. 4.3: Synergic Efficiency Loss by Change of Actions

are changed for optimization with no change of clustering result. In other
words, they compute the optimal policy under the constraint of clustering.

Differently from the normal value iteration algorithm, the state-value
function sometimes does not converge due to the constraint of clustering.
However, we do not care about this issue at first. In this case, the code of
the algorithm can be implemented as the pseudo code shown in Fig. 4.4.
In Line 7, this algorithm chooses the action that maximizes of the sum of
values at the states that are related to iεth element of representative vector
ciν . In Line 11, the values of the states are recomputed since the action of
the states are changed to anew.

If there are Nν clusters that contain one vector respectively, this
algorithm is not different with the value iteration algorithm in Fig. 2.5. In
this case, the state-value function may converge. In the other cases, there
are no assurance of convergence.

When the increase of
∑

s∈S V (s) is prohibited at a sweep, the state-value
function decreases monotonically. If the algorithm in Fig. 4.4 does not

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 93

1: V ←− V ∗

2: repeat

3: Δ←− 0
4: for every (ic, iε) ∈ (IC, IE)
5: Itmp1 ←− {iν |iν ∈ IV , viν ∈ Kic}
6: Itmp2 ←− {i = μ(iv, iε)|iv ∈ Itmp1, iε ∈ IE}
7: anew ←− argmax

a∈A

∑
i∈Itmp2

∑
s′∈S
Pa

sis′
[
Ra

sis′ + V (s′)
]

8: c(ic,iε) ←− index of anew
9: for every i ∈ Itmp2
10: v ←− V (si)

11: V (si)←−
∑
s′∈S
Panew

sis′
[
Ranew

sis′ + V (s′)
]

12: Δ←− max(|v − V (si)|, Δ)
13: until Δ < Θ (a small number)

Fig. 4.4: Value Iteration for VQ Map

converge, this idea should be introduced. The other algorithm, which
reflects this idea, is shown in Fig. 4.5. In this algorithm, the action and the
state-value function are changed only when the new value of every state is
not less than the old value.

4.1.3 Evaluation

Though other algorithms are imaginable, we examine the algorithms in
Fig. 4.4 and 4.5. The way of evaluation is identical with that in Sec. 2.3.4.

Figure 4.6 shows the simulation results with the simulation results of the
uncompressed maps. The evaluations of VQ maps before value iteration in
Fig. 4.6 are the data in Fig. 3.11. The data of VQ maps after value iteration
is obtained by one of the value iteration algorithms in this section. The
better one is drawn in these graphs.

From Fig. 4.6, we can verify that the value iteration algorithm enhances
the limit of compression ratio in all granularity. Figure 4.7 illustrates two
VQ maps for example. One of them in (a) is not applied the value iteration
algorithm. The other, shown in (b), is the VQ map obtained by value
iteration of the map in (a). As shown in (a), the states on the left side

4.1. VALUE ITERATION FOR VQ MAP 94

1: V ←− V ∗

2: policy evaluation (until convergence or a fixed times)

3: repeat

4: Δ←− 0
5: for every (ic, iε) ∈ (IC, IE)
6: Itmp1 ←− {iν |iν ∈ IV , viν ∈ Kic}
7: Itmp2 ←− {i = μ(iv, iε)|iv ∈ Itmp1, iε ∈ IE}
8: anew ←− argmax

a∈A

∑
i∈Itmp2

∑
s′∈S
Pa

sis′
[
Ra

sis′ + V (s′)
]

9: Vtmp(si)←−
∑

i∈Itmp2

∑
s′∈S
Panew

sis′
[
Ranew

sis′ + V (s′)
]

10: if Vtmp(si) ≥ V (si) for every i ∈ Itmp2
11: c(ic,iε) ←− ctmp
12: Δ←− max(|Vtmp(si)− V (si)|, Δ) for every i ∈ Itmp2
13: V (si)←− Vtmp(si) for every i ∈ Itmp2
14: until Δ < Θ (a small number)

Fig. 4.5: Value Iteration for VQ Map 2

of the goal are allocated aup though aright should be allocated there. The
states are connected with other states by VQ. That is because the distortion
measure of aup calculated by Dπ

vector is better than that of aright. After the
value iteration, aright is allocated to the states and the VQ map is corrected.

This algorithm is practically useful only when N ≤ 202. As shown in
Fig. 4.6(b), two VQ maps with N = 202 are smaller and more effective than
the uncompressed map with N = 102. In Fig. (a), there are VQ maps whose
sizes are smaller than the uncompressed map. N = 102 is the smallest
number of discrete states if no discrete state that contains both final state
and non-final state is allowed. VQ can get rid of the limitation that exists
for convenience of DP. When N ≥ 402 (Fig. (c)-(f)), however, the number of
VQ maps that are more effective than the uncompressed maps with coarse
discretization is not increased by the value iteration algorithms.

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 95

(b) N = 20

(c) N = 402 (d) N = 100

(e) N = 2002
(f) N = 400 2

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

10 101010 10 10
size [bit]

1 2 3 4 5 6

(a) N = 10

uncompressed map
before value iteration
after value iteration

1 2 3 4 5 610 101010 10 10
size [bit]

2

1 2 3 4 5 610 101010 10 10
size [bit]

1 2 3 4 5 610 101010 10 10
size [bit]

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

1 2 3 4 5 610 101010 10 10
size [bit]

1 2 3 4 5 610 101010 10 10
size [bit]

2

Fig. 4.6: Evaluation of the Value Iteration Algorithm

4.1. VALUE ITERATION FOR VQ MAP 96

(a) before value iteration (b) after value iteration

the same element of
a representative vector

Fig. 4.7: VQ Maps Before/After Value Iteration (N = 202, Nc = 3)

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 97

4.2 Choice of Blocking

We daringly try finding some good blocking ways that make possible to
compress state-action maps both with high compression ratio and efficiency.
As mentioned before, the VQ method starts from the blocking process. None
the less, it is very difficult to find a blocking way that enables to crate small
but efficient VQ maps. In fact, we cannot know the efficiency of a VQ
map until it is created and used practically. However, we can remove some
unsuitable ways of blocking in advance. Moreover, it may be possible to
find some ways of blocking with the potentiality of high efficiency and high
compression ratio.

4.2.1 Limitation of Compression Ratio

First of all, we should note that limitation of compression ratio exists. We
can calculate it from Eq. (2.2) and Eq. (3.18) as:

LVQ/Luncomp =
N/Nε
log2 Nc�+ NεNc
log2 M�

N
log2 M�

=

log2 Nc�

Nε
log2 M� +
NεNc

N
[bit], (4.1)

where Luncomp denotes the size of a state-action map before compression.
The first and second terms are related to the ratios of quantization table
and codebook respectively. This equation suggests that Nε, the number of
elements in a vector, has an influence on the compression ratio as well as the
number of representative vectors Nc.

For instance, Fig. 4.8 shows the compression ratio according to each set
of Nε and Nc when the state-action map in Fig. 2.10 (c) is compressed.
As shown in this figure, a suitable range of Nε exist for each number of
representative vectors. When Nε is smaller than the range, the compression
ratio is restricted. That is because the size of the quantization table becomes
enlarged. On the other hands, a large Nε makes the codebook enlarge.

4.2.2 Estimation of Better Blocking Way

We should also consider how to cut the map. In this process, we should
consider the bias of the distribution of actions on a map. We show an
example in Fig. 4.9. There are 6 × 6 tiles that are distinguished by their
colors. We regard them as data that is compressed. The array of tiles is

4.2. CHOICE OF BLOCKING 98

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000
number of elements Nε

L

 /
 L

un
co

m
p

V
Q

co
m

pr
es

si
on

 ra
tio

N
 =

32
N

 =
24

N
 =

16
N

 =
12

N
 =

8
N

 =
6

N
 =

4
N

 =
3

N
 =

2

c c c c c c c c c

Fig. 4.8: Example of Relation between Number of Elements, Number of Clusters and
Compression Ratio (a state-action map for the puddle world task with N = 402)

horizontally cut off in Fig. (a), while it is divided vertically. We can think
that the case of Fig. (a) is suitable for clustering than the case of Fig. (b)
because the vectors in Fig. (a) are all alike.

It is useful if the goodness of blocking, which is equivalent to the definition
of the pair of ν and ε is quantified. Though it is possible when the state-value
distortion is used. However, it takes considerable time for evaluating some
pairs of ν and ε toward a large state-action map.

Evaluation with Information Entropy

Instead of the state-value distortion, here we try to apply the concept of
information entropy to evaluation of each pair of ν and ε. This concept is
related to lossless compression methods rather than lossy methods.

When a set of actions exists, its entropy is calculated as follows:

H(the set) = −
M−1∑
i=0

P (ai) log2 P (ai), (4.2)

where P (ai) denotes the occurrence rate of ai in the sequence. When
P (ai) = 0, P (ai) log2 P (ai) is regarded as zero. If the actions appear evenly,
this value becomes H = log2 M , which is the maximum value of the entropy.

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 99

vector 1
vector 2

vector 6

...
vector 1
vector 2

vector 6

...

(a) good blocking (b) bad blocking

Fig. 4.9: Examples of Good/Bad Blocking

On the other hand, the value becomes zero if the set contains only one kind
of action.

In the VQ method, states that are related to an element of a represen-
tative vector should not contain various actions as explained with Fig. 4.9.
The entropy function can be used for quantifying the variety of actions
of the states. The smaller the entropy is, the smaller the distortion will
be expected when the set of actions (action indexes) is replaced by an
representative action.

We define the above idea. When a pair of ν and ε is given, we consider
the sets of actions Eiε (iε = 0, 1, 2, . . . , Nε− 1). Eiε contains all actions of the
states that are related to iεth element of representative vectors. The smaller
the entropy H(Eiε) is, the more the actions in Eiε are biased. The average of
the entropy:

H(ν, ε) =
1

Nε

Nε−1∑
iε=0

H(Eiε) (4.3)

would be an evaluation measure for a way of blocking. Since this equation
evaluate each set separately, cross-interaction of each set is not considered.

By Eq. (4.3), we evaluate the way of blocking for the puddle world task.
The pair of (ν, ε) has been defined in Eq. (3.30) with two parameters: wx

4.2. CHOICE OF BLOCKING 100

and wy, which are the numbers of intervals of each block along each axis
respectively. Though we have used (wx, wy) = (

√
N, 1) (horizontal blocking)

as a simple way of blocking in Chapter 3, (wx, wy) = (1,
√

N) (vertical
blocking) is also a simple way. As a matter of fact, the horizontal blocking
has been chosen based on the evaluation of entropy shown in Table 4.1.

We evaluate the efficiency of VQ maps that are built with vertical block-
ing. The results are shown in Fig. 4.10. Though some of the VQ maps are
superior to the VQ maps with horizontal blocking, compression with vertical
blocking is unstable. Some VQ maps with large Nc are broken as shown
in this figure. Though we cannot estimate efficiency of final products com-
pletely from the entropy function, it can be some amount of information.

Table 4.1: Entropy H (small: good)
horizontal blocking vertical blocking

N (wx, wy) = (
√

N, 1) (wx, wy) = (1,
√

N)
102 0.98 1.19
202 1.03 1.26
402 1.03 1.24
1002 1.04 1.24
2002 1.05 1.24
4002 1.06 1.24

Evaluation of Blocking on Different Number of Elements

When pairs of (ν, ε) that have different Nε are compared, the pair with
smaller Nν(= N/Nε) has advantage to make H small. Nν is the number
of elements in each set Eiε . That is because the bias of elements tends to
become large due to statistical insufficiency when Nν is small. This kind of
bias never contributes to make compression easy.

Therefore, H should be normalized if we want to use entropy to compare
some pairs of (ν, ε) with different Nε. Though there are some methods for
normalizing, we decide to divide H by log2 Nν and define the entropy

H(ν, ε) =
1

log2 Nν

H(ν, ε) =
1

Nε log2 Nν

Nε−1∑
iε=0

H(Eiε). (4.4)

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 101

log2 Nν is the maximum value of H when M ≥ Nν . Therefore, it is suitable
for normalizing H when the statistical insufficiency is considered.

We measure the relation between the entropy and the compression ratio
when a target efficiency J is given. The state-action map with N = 402

for the puddle world task is used for this evaluation. Figure 4.11 illustrates
the results. The desired value of −J is fixed at 20.52[step] and 21.00[step]
in Fig. 4.11 (a) and (b) respectively. Incidentally, −J of the uncompressed
map is 20.51[step]. The VQ maps are build with every pair of (wx, wy), and
the smallest one that fulfill the desired value of J is chosen. In the figures,
the results are plotted by different marks according to the dimensions of
vectors.

From these figures, we cannot find clear relation between the entropy
and compression ratio, especially in Fig. (a). As mentioned before, the
efficiency of a VQ map is unknown until it is used. Moreover, suitable ways
of blocking are not always identical toward different levels of compression
ratio. Therefore, the suitable way of blocking toward a required efficiency
and a compression ratio cannot be answered by only one value of entropy.

However, it seems that pairs of (ν, ε) that have large entropy can be
eliminated from the candidate of suitable ways of blocking. That is because
the limitation of compression ratio clearly relates to the entropy.

4.2. CHOICE OF BLOCKING 102

(b) N = 20

(c) N = 402 (d) N = 100

(e) N = 2002
(f) N = 400

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

10 101010 10 10
size [bit]

1 2 3 4 5 6

(a) N = 10

uncompressed map
horizontal blocking
vertical blocking

1 2 3 4 5 610 101010 10 10
size [bit]

2

1 2 3 4 5 610 101010 10 10
size [bit]

1 2 3 4 5 610 101010 10 10
size [bit]

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

1 2 3 4 5 610 101010 10 10
size [bit]

1 2 3 4 5 610 101010 10 10
size [bit]

2

Fig. 4.10: Comparison of Two Ways of Blocking

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 103

(a) −J < 20.52

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 1 < N < 10
10 ≤ N < 20
20 ≤ N < 40
40 ≤ N < 60
60 ≤ N < 100
100 ≤ N < 300
300 ≤ N

ε
ε
ε
ε
ε

ε
ε

(b) −J < 21.00

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

L

 /
 L

un
co

m
p

V
Q

co
m

pr
es

si
on

 ra
tio

:
L

 /

 L
un

co
m

p
V

Q
co

m
pr

es
si

on
 ra

tio
:

Fig. 4.11: Relation between Entropy and Compression Ratio

4.3. MULTI LAYERED VECTOR QUANTIZATION 104

4.3 Multi Layered Vector Quantization

4.3.1 Double Layered VQ Map

Since redundancy remains in VQ maps in many cases, we attempt to reduce
the size of VQ maps with further compression. Here we utilize VQ once
more for compression of VQ maps. Since lossy compression of a VQ map is
difficult, we should use VQ as a lossless compression.

In the process of vector quantization of a state-action map, a state-action
map πMAP is decomposed into four transforms:

• ν: transform from state index to vector index,

• ε: transform from state index to element index,

• ω: transform from vector index to representative vector index (= quan-
tization table), and

• c: transform from a pair of representative vector index and an element
index (= codebook).

Their relation has been defined as follows:

πMAP(i) = c(ω(ν(i)), ε(i)) = c(iνω, iε). (4.5)

Since ω and c are tables of indexes, they can be compressed by VQ. We define
νω, εω, ωω, and cω for VQ of ω. As with Eq. (4.5), their relation is defined as
follows:

iνω = ω(iν) = cω (ωω(νω(iν)), εω(iν)) . (4.6)

When codebook c is decomposed into νc, εc, ωc, and C2, their relation is rep-
resented by

c(iνω, iε) = cc(ωc(νc(iνω, iε)), εc(iνω, iε)) (4.7)

By the above transforms, a VQ map is decomposed into the set of
ν, ε, νω, ωω, εω, cω, νc, ωc, εc, and cc. Action indexes are recorded only in cc.
The action index for si can be obtained by

πMAP(i) = cc

(
ωc(νc(iνω, iε)), εc(iνω, iε)

)
= cc

(
ωc(νc(cω (ωω(νω(iν)), εω(iν)) , iε)), εc(cω (ωω(νω(iν)), εω(iν)) , iε)

)
= cc

(
ωc(νc(cω (ωω(νω(ν(i))), εω(ν(i))) , ε(i))),

εc(cω (ωω(νω(ν(i))), εω(ν(i))) , ε(i))
)

(4.8)

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 105

Though this equation is too complicated to follow, we can understand from
it that a state index can be turned into an action index by the 10 transforms.
The structure of a policy represented by the 10 transforms are illustrated
in Fig.4.12. We name this structure a double layered VQ map (a DLVQ map).

Figure 4.13 shows a concrete example of compression. In Fig. 4.13(b),
a codebook is composed of three representative vectors that contain 20
elements. When this codebook is regarded as a 3 × 20 table and cut into
20 vectors that contain three elements as shown in (b), we notice that only
seven kinds of vector exist in the 20 vectors. Therefore, this codebook can
be replaced a pair of quantization table and codebook shown in Fig. 4.13(c).

The size of a DLVQ map can be calculated based on the amount of mem-
ory for recording the four tables: ωω, ωc, cω, and cc. The size of a vector
quantized quantization table is

Nωv
log2 Nωc�+ Nωc
Nv

Nωv

log2 Nv�[bit] (4.9)

when the quantization table ω is divided into Nωv vectors and is classified
into Nωc representative vectors. The size of a vector quantized codebook is
then

Ncv
log2 Ncc�+ Ncc
NcNε

Ncv

log2 m�[bit] (4.10)

when the codebook c is divided into Ncv vectors and is classified into Ncc

representative vectors. If we do not consider the memory consumption for
other transforms: ν, ε, νω, εω, νc and εc, the amount of memory for a DLVQ
map is

L = Nωv
log2 Nωc�+ Nωc
Nv

Nωv

log2 Nv�+

Ncv
log2 Ncc�+ Ncc
NcNε

Ncv

log2 m�. (4.11)

In the case of Fig. 4.13, the size of a codebook in (b) is 120[bit]. On the other
hand, that of the VQ data in (c) is 60 + 42 = 102[bit]. Though the number
of vectors is reduced from 20 to 7, the compression ratio is not large because
the size of the quantization table runs up. If we consider the number of bits
for representing the transforms, this compression may not be effective. In
practical uses, the effectiveness of multi layered VQ will be obtained when a
state-action map is large.

4.3. MULTI LAYERED VECTOR QUANTIZATION 106

i N
ε

0
original data

double layered VQ map

ν

ωω ωc cω cc

νω

εω

νc

εc

Fig. 4.12: Structure of double layered VQ

cc0 cc1 cc2 cc3 cc4 cc5 cc6

0 0 0 0 0 0 0 1 2 3 3 3 4 4 4 4 4 5 6 6
quantization table for codebook (60 [bit])

(c) codebook for codebook (42 [bit])

c0c1c2

ε0ε1ε2ε3 ε19

(a) VQ map

(b) codebook (120 [bit])

Fig. 4.13: Compression of Codebook

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 107

4.3.2 Multi Layered VQ Map

In theory, we can apply VQ to all tables in a DLVQ map. Therefore, triple
layered VQ maps exist. The triple layered VQ map also can be applied
VQ. In this manner, we can create n-layered VQ maps. We call the maps
with n ≥ 2 multi layered VQ maps. As shown in Fig. 4.14, any table in a
multi layered VQ map can be decomposed into four transforms. Since two
of them become a quantization table and a codebook again, they can be
decomposed into four transforms respectively. In a multi layered VQ map,
action indexes are recorded only in a table ccc...c. The other transforms are
used for operation of indexes.

In fact, an n + 1 layered VQ map is not always smaller than an n
layered VQ map. When a table is small, a high compression ratio cannot
be expected. Moreover, we cannot ignore the memory consumption of the
executable code for reading a map if it contains many transforms that
belong to the group of ν or ε. Therefore, the concept of multi layered VQ
maps is not useful in the viewpoint of compression. However, the format of
multi layered VQ maps is interesting because it is an extreme opposite of
the format of state-action maps.

VQ map

DLVQ map

Triple Layered
VQ map

Fig. 4.14: Multi layered VQ

4.3.3 Evaluation

The VQ maps created in Sec. 3.5 are compressed to DLVQ maps here. In
the case of a quantization table: ω = {ω(0), ω(1), . . . , ω(Nv − 1)}, we create
vectors based on (

νω(i)
εω(i)

)
=

(
�i/Nωv�
�i%Nωv�

)
(i ∈ IV). (4.12)

4.3. MULTI LAYERED VECTOR QUANTIZATION 108

It means that the sequence of representative indexes in a quantization table
is divided uniformly, and each partial sequence is regarded as a vector. We
try all possible Nωv and choose the compressed quantization table (ωω and
ωc) that has the smallest size. This manner is impossible if Nv is a prime
number. Moreover, the smallest compressed quantization table is sometimes
larger than that of the original quantization table. In those cases, we use
the original map ω as a part of a DLVQ map.

The blocking of a codebook c is then fixed as(
νc(ivω, iε)
εc(ivω, iε)

)
=

(
iε
ivω

)
. (4.13)

This equation means that action indexes in a representative vector are
assigned to different vectors so that the redundancy that exists in every
representative vector is reduced. When the size of the compressed codebook
is larger than that of the original codebook, we choose the original one as a
part of a DLVQ map.

In Fig. 4.15, the size and the efficiency of each DLVQ map is compared to
each original VQ map, which is improved by the value iteration algorithms
in Sec. 4.1. Since a VQ map and its DLVQ map give the identical policy
due to lossless compression, the graph of DLVQ maps shifts to the left from
the graph of VQ maps. As shown in this figure, the larger N is, the more
the compression ratio is improved. It suggests that representative vectors
become redundant when their length is long. the compression ratio of DLVQ
maps is larger when N is large. The numerical data is shown in Table 4.2.
In this table, pairs of an uncompressed map and a VQ map that is more
efficient than the uncompressed map are compared. When N ≥ 4002, the
size of the DLVQ map becomes less than half that of the VQ map.

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 109

(b) N = 202

(c) N = 402 (d) N = 100

(e) N = 2002
(f) N = 400 2

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

10 101010 10 10
size [bit]

1 2 3 4 5 6

(a) N = 10 (size of VQ maps)2

uncompressed map
VQ map
DLVQ map

1 2 3 4 5 610 101010 10 10
size [bit]

2

1 2 3 4 5 610 101010 10 10
size [bit]

1 2 3 4 5 610 101010 10 10
size [bit]

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

1 2 3 4 5 610 101010 10 10
size [bit]

1 2 3 4 5 610 101010 10 10
size [bit]

N = 10 2

N = 20 2

N = 40 2
N = 100 2

N = 200 2
N = 400 2

Fig. 4.15: Evaluation of DLVQ maps

4.3. MULTI LAYERED VECTOR QUANTIZATION 110

Table 4.2: Practical Compression Ratio of DLVQ maps

uncompressed maps more effective compressed maps comp. ratio
N Luncomp −J N Nc LVQ LDLVQ −J LDLVQ LVQ LDLVQ

[bit] [step] [bit] [bit] [step] LVQ Luncomp Luncomp

102 200 21.29 202 3 160 142 21.29 0.89 0.80 0.71
202 800 20.87 402 4 400 326 20.86 0.82 0.50 0.41
402 3200 20.51 1002 16 3600 2196 20.38 0.61 1.13 0.67
1002 20k 20.35 2002 32 13.8k 7072 20.31 0.51 0.69 0.35
2002 80k 20.30 4002 64 53.6k 23.6k 20.29 0.44 0.67 0.30

Figure 4.16 shows a graph for comparison of DLVQ maps and the binary-
tree policies obtained in Sec. 3.6.2. In the comparison with VQ maps in
Fig. 3.18, smaller and more efficient binary-tree policies exist in a part of the
graph. When the redundancy of the VQ maps are cut, however, the part is
covered by some DLVQ maps.

ef
fic

ie
nc

y
−

J
[s

te
p]

20.0

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

1 2 3 4 5 610 101010 10 10
size [bit]

uncompressed maps
binary-tree policies
VQ maps

Fig. 4.16: Comparison of DLVQ maps and Binary-Tree Policies

4.3.4 Partitioning

The VQ method can apply not only to a whole state-action map but also
to a part of the map. Therefore, we can imagine a compressed state-action
map that is composed of some VQ maps. This compressed map has another

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 111

kind of tree structure.

To create such a map, we divide S into Np subsets: Sj (j =
0, 1, 2, . . . , Np−1) at first. In this case, j is regarded as a subset indexes. We
call this procedure partitioning. The set of subset indexes is represented by
ISsub

. In each set Sj , states are ordered as Sj = {sk|k = 0, 1, 2, . . . , NSi
− 1},

where k ∈ ISj
denotes the local state index in Sj. NSj

is the number of
states in Sj . The state index set IS , the subset index set ISsub

, and the local
state index sets ISj

are related to the following transforms: κ : IS → ISsub
,

and ι : IS → ISj
.

A state-action map is also divided into sub maps: πMAPi (i =
0, 1, 2, . . . , Np − 1). Each sub map can be compressed to a sub VQ map
πVQi (i = 0, 1, 2, . . . , Np− 1) by the VQ method. This compressed map com-
posed of the sets of sub VQ maps is named a partitioned VQ map. Figure 4.17
shows the partitioning of a state-action map. As shown in this figure, each
sub maps can have different numbers of elements. The size of a partitioned
VQ map is calculated from Eq. (3.18) as

LP-VQ =

Np−1∑
j=0

Nνj
log2 Ncj�+ NεjNcj
log2 M�, (4.14)

where Nνj , Ncj, and Nεj denote the numbers of vectors, representative
vectors, and elements of a vector respectively in Sj .

i N-10
state-action map

κ

ι(i)

sub map 0

sub map 1

sub map κ(i)

sub map Np−1

ι

compression

compression

compression

compression

Fig. 4.17: Partitioning

4.3. MULTI LAYERED VECTOR QUANTIZATION 112

By the introduction of partitioning, the flexibility of compression is
enhanced. In some situations, some sub maps do not have to be compressed
by VQ. If a partition has only one kind of action, for instance, VQ is not
required. In that sense, partitioning is a bridge between the VQ method
and other methods.

As another merit, some kinds of clustering algorithm can reduce the com-
puting cost by partitioning. In the case of the PNN algorithm, the order of
time complexity is reduced from O(MN3/N2

ε) to O(NpM(N/Np)
3/N2

ε) =
O(MN3/(NεNp)

2) if Nε is not changed.

CHAPTER 4. TECHNIQUES FOR QUICK AND EFFICIENT
COMPRESSION 113

4.4 Discussion

In this section, the value iteration algorithms for VQ maps, discussion about
how to find good ways of blocking, and multi layered vector quantization are
introduced.

Summary of Effectiveness on The Puddle World Task

In Table 4.3, the effectiveness of the value iteration algorithms for VQ maps
and double layered vector quantization is summarized. In a row,

• data of an uncompressed state-action map,

• data of a VQ map without the techniques in this chapter,

• the improved efficiency of the VQ map by the value iteration algo-
rithms,

• reduced size of the VQ map by the double layered VQ, and

• final compression ratio

are illustrated from left to right. Differently from Table 4.2, we have tried
to adjust the efficiency of a VQ map to that of an uncompressed map with
adjustment of Nc.

Table 4.3: Size Reduction and Efficiency Enhancement with The Techniques in This Chap-
ter

uncomp. maps compressed maps
N Luncomp −J N Nc LVQ −J −J after VI LDLVQ comp.

[bit] [step] [bit] [step] [step] [bit] ratio
102 200 21.29 202 3 160 broken 21.29 142 0.71
202 800 20.87 402 4 400 20.88 20.86 326 0.41
402 3200 20.51 1002 11 2600 20.42 20.41 1274 0.40
1002 20k 20.34 2002 21 9400 20.35 20.34 4180 0.21
2002 80k 20.30 4002 36 31.2k 20.30 20.30 12.9k 0.16
(VI: value iteration)

As shown in this table, a smaller and more efficient VQ map exists
toward each uncompressed map from N = 102 to N = 2002. When the
techniques are not applied to VQ maps, the compression ratio is at most
0.65 as shown in Table 3.1. However, the compression ratio is certainly

4.4. DISCUSSION 114

enhanced by the value iteration and double layered VQ.

Especially in the case of where N is large, the enhancement of compression
ratio is significant. Though this tendency is found only in the puddle world
task at this moment, high compression ratios can be expected at large scale
decision making problems.

Remaining Issues

We have interest in the forms of multi layered VQ maps explained in
Sec. 4.3.2. This structure is related to tree structures. DLVQ maps can
be regarded as a kind of tree structured policies, while they are compressed
by VQ. Even a VQ map can be regarded as a tree structured policy whose
node has many branches. The study on multi layered VQ maps will clarify
the relation between the structure of VQ maps and tree structures.

115

Chapter 5

Application and Evaluation I:
The Acrobot

We take up control of the Acrobot as the application of our method.
The Acrobot is an underactuated robot and provides challenging control
problems due to its nonlinearity. In this chapter, we try creating state-action
maps and compressing them. A swinging up task of the Acrobot is solved
by DP without heuristics. The result of DP is compressed to an arbitrary
size of control policy by our VQ method.

The structure of this chapter is as follows. In Sec. 5.1, dynamics of the
Acrobot and the background of its research are explained. The task that is
handled in this chapter is defined in Sec. 5.2. State-action maps for the task
are obtained in Sec. 5.3. The maps are compressed and evaluated in Sec. 5.4.
This chapter is concluded in Sec. 5.5.

5.1. THE ACROBOT 116

5.1 The Acrobot

The Acrobot, which is shown in Fig. 5.1, is a planar robot that is composed
of two links and two joints. Link 1 can swing freely at this joint. Torque
τ can be given at Joint 2. This robot can be parameterized as shown in
Table 5.1. Its pose is then represented by the pair of angles (θ1, θ2) in the
figure. Their relation are often compared to a gymnast who hangs from
a bar, or to an arm of human beings. Control problems of the Acrobot
have frequently studied in control engineering [Spong, 1994; Spong, 1995;
Boone, 1997; Xin, 2002; Banavar, 2003; Xin, 2004] and learning [Sutton, 1996;
Sutton, 1998; Yoshimoto, 2005] as a subject of underactuated robots. This
term denotes a robot that has more degrees of freedom than the number of
actuators.

Fig. 5.1: The Acrobot

Table 5.1: Parameters of The Acrobot

description (i = 1, 2) parameter
length of link i �i

length from joint i to mass center of link i �ci

mass of link i mi

moment of inertia of link i Ii

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 117

The dynamics of this robot can be represented by

θ̈2 =
(τ + φ1d2/d1 −m21c2θ̇1

2
sin θ2 − φ2)

(m2
2
c2 + I2 − d2

2/d1)
, and (5.1)

θ̈1 =
−(d2θ̈2 + φ1)

d1
, (5.2)

where

d1 = m1
2
c1 + m2(

2
1 + 2

c2 + 21c2 cos θ2) + I1 + I2,

d2 = m2(
2
c2 + 1c2 cos θ2) + I2,

φ1 = m21c2(−θ̇2
2 − 2θ̇2θ̇1) sin θ2 + (m1c1 + m21)g cos(θ1 − π/2) + φ2, and

φ2 = m2c2g cos(θ1 + θ2 − π/2).

Global optimization of its control is one of the most chal-
lenging problems due to nonlinearity of the Acrobot. In other
words, to obtain an optimal state-action map in continuous state
space is one of the most ultimate subjects around this robot.
Though feedback linearization is a standard method [Spong, 1994;
Xin, 2004], it does not aim to global optimization.

DP is a possible way to solve a state-action map though it is obtained
in discrete space. However, use of DP is more compliant to the concept of
optimal control than any linearization technique. In the case of DP, the
state-action map is determined by an evaluation function, some boundary
conditions, and discretization if heuristics are not used in the code. There
is no synthetic rule of control in the state-action map.

No use of heuristics was however difficult due to the problem of com-
puting complexity. For example, Boone has applied DP to minimum time
control of the Acrobot [Boone, 1997] in 1997. In this study, increase of
energy of the robot is used as a heuristic. However, it seems that DP can
be used without heuristics if we consider the progress of computers in this
ten years. It is very significant if we can create and observe a feasible global
policy without heuristics.

We try creating global policies of a task of the Acrobot without heuristics
and compressing it by using the VQ method. Differently from the puddle
world task, control of the Acrobot is a problem of dynamic and nonlinear
control. The evaluation of the VQ method is done in this section.

5.2. HEIGHT TASK AND ITS FORMULATION 118

5.2 Height Task and Its Formulation

We take up the height task [Boone, 1997]. In the height task, the Acrobot is
controlled so that the free end of Link 2 gets over a prescribed height. When
the height of the free end of Link 2 is represented by y2 in the xy coordinate
system defined in Fig. 5.1, the relation between y2 and the pair of (θ1, θ2) is

y2 = −1 cos θ1 − 2 cos(θ1 + θ2). (5.3)

When the prescribed height is denoted by h on the y-axis, y2 ≥ h is the
purpose of control.

In this thesis, the task is regarded as a problem of minimum time control.
In this case, the evaluation functional is defined as

J [τ] =

∫ T

0

−1dt = −T, (5.4)

where T is the time when the purpose of control: y2 ≥ h is completed. μ is
regarded as a function that gives the torque at time t (0 ≤ t < T) in the
above equation. We set the time interval for changing torque to 0.2[s].

We should pay attention to the robustness of control. When we can solve
a global solution of an optimal control problem, however, this argument
is less important than the cases of linearization. That is because a global
policy can give an appropriate torque based on the state of the Acrobot
after the behavior of the system is upset by some troubles. However, the
policy will lack robustness if the parameters in the state equation of the
system are inaccurate.

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 119

5.3 Obtaining State-Action Map

We set values of the parameters as shown in Table 5.2(a). The set of these
values is also used in [Sutton, 1996; Boone, 1997]. In this section, global
optimal control for the height task is solved and compressed under this
condition. In this paper, the torque τ is limited to −1, 0, or 1[Nm]. We
define set of A as the set of these torques.

Table 5.2: Setting of Parameters and Variables

(a)
parameter value

�1, �2 1.0 [m]
�c1, �c1 0.50 [m]
m1, m2 1.0 [kg]
I1, I2 1.0 [kg m2]

g 9.8 [m/s2]

(b)
variable domain

θ1 (−∞,∞)
θ2 (−∞,∞)
θ̇1 [−720, 720][deg/s]
θ̇2 [−1620, 1620][deg/s]
τ −1, 0, or 1[Nm]

For implementation of value iteration, we limit the domains of θ̇1 and θ̇2

as shown in Table 5.2(b). These values are set based on [Sutton, 1998]. In
this case, the height task should be completed without excess of the range.
We show the domain of each parameter in Table 5.2(b).

5.3.1 Value Iteration

Discretization

First of all, we construct the set of states S = {si|i = 0, 1, 2, . . . , N − 1}.
We limit the intervals of θ1 and θ2 to [0, 360) in calculation and consider the
space X that is direct product of the intervals of the four variables. Here X
is regarded as a subset of �4 forcibly though it does not correspond to the
actual system of the Acrobot. We divide X in a reticular pattern and create
discrete states. Each discrete state is identified by a combination of intervals
[θ1]i, [θ2]j , [θ̇1]k and [θ̇2]h, which are defied in Table 5.3. The variables are
divided by 10[deg] or 10[deg/s] respectively. Though neighboring intervals
overlap at their ends, it is not a problem in the implementation. The number
of discrete states reaches 36 · 36 · (36 · 4) · (36 · 9) = 60, 466, 176. However,
the Acrobot is symmetric. Giving torque τ at (θ1, θ2, θ̇1, θ̇2) is equivalent to
giving torque −τ at (−θ1,−θ2,−θ̇1,−θ̇2). In computation, the number of
states can be reduced to 60, 466, 176/2 = 30, 233, 088 when we utilize this

5.3. OBTAINING STATE-ACTION MAP 120

symmetric property. The index of each state is defined as follows:

i = 36 · 144 · 324iθ1 + 144 · 324iθ2 + 324iθ̇1
+ iθ̇2

= 1, 679, 616iθ1 + 46, 656iθ2 + 324iθ̇1
+ iθ̇2

, (5.5)

where iθ1 , iθ2 , iθ̇1
, and iθ̇2

denote the index of the state variables of θ1, θ2,

θ̇1, and θ̇2 respectively.

Table 5.3: Discretization of State Space

definition of intervals
θ1 [θ1]i ≡ [10i, 10(i + 1)][deg] (i = 0, . . . , 17)
θ2 [θ2]i ≡ [10i, 10(i + 1)][deg] (i = 0, . . . , 35)
θ̇1 [θ̇1]i ≡ [10i− 720, 10i− 710][deg/s] (i = 0, . . . , 143)
θ̇2 [θ̇2]i ≡ [10i− 1620, 10i− 1610][deg/s] (i = 0, . . . , 323)

Final States and Their Values

In our code, two types of final states are defined. We define Ssuccess ⊂ S as
the set of final states at which the task is completed. ∀s ∈ Ssuccess satisfies
y2 ≥ h at any continuous state in s.

When one of the angular velocities is ont of its domain, the task is
regarded as a failed trial. We consider that the state of the Acrobot is in
another kind of final state, which is called a failure state in this paper. We
define Sfailure as the set of failure states (Sfailure �⊂ S).

We set V (s) = 0 to ∀s ∈ Ssuccess and V (s) = −1000[s] to every state in
Sfailure. The value for states in Sfailure does not make a large difference on
state-action maps if it is a large negative value.

State Transitions and Their Reward

Each discrete states and torques are related to each other as Pτ
ss′

(∀s ∈ S − Sf, ∀s′ ∈ S, ∀τ ∈ A). Every Pτ
ss′ is calculated as follows in our

code.

At first, four continuous states xi ∈ s (i = 1, 2, 3, 4) are chosen. When
s is defined as the direct product of [θ1], [θ2], [θ̇1] and [θ̇2], the values of
(θ1, θ2, θ̇1, θ̇2) of each continuous state are fixed as follows.

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 121

• θ1 and θ2: median values of [θ1] and [θ2] respectively

• θ̇1 and θ̇2: maximum/minimum values of [θ̇1] and [θ̇2]

There are four combinations of (θ̇1, θ̇2). Each combination is assigned to each
xi respectively. The translations of xi (i = 1, 2, 3, 4) are calculated based on
Eq.(5.1) and (5.2). We use the 4th order Runge-Kutta method for computing
the posterior states after 0.2[s] when torque τ is given in the time interval.
The discrete states in which the posterior states exist are obtained. We name
them s′i (i = 1, 2, 3, 4) respectively. The transition probabilities are defined
as

Pτ
ss′i

=
1

4
(i = 1, 2, 3, 4). (5.6)

More continuous states from s should be chosen if we want to calculate
the transition probabilities more accurately. It is very important to enhance
the efficiency and robustness of state-action maps. However, we try creating
state-action maps with the above way in this paper.

Rewards should be computed based on Eq.(1.9). Since time for one tran-
sition is fixed 0.2[s] in the above definition, the reward is set to

Rτ
ss′ = −0.2[s]. (5.7)

5.3.2 Obtained State-Action Maps

We obtain a state-action map for h = 1.9. Value iteration is continued until
the maximum difference of the both side of Eq.(2.11) is larger than 10−5 on
a sweep. Total time for creating the map was 17 hours on a computer that
has 1.5GB RAM and a 1.5GHz CPU. Time for every sweep was 643[s] and
95 sweeps were required for convergence.

Some parts of the state-action map are shown in Fig. 5.2 and 5.3 with
each related part of the state-value function. Every partial map, which is
shown in the left side, is a slice of the four-dimensional state-action map
πMAP. A pair of ([θ1], [θ2]) is fixed and torques for all combinations of
([θ̇1], [θ̇2]) are illustrated as gray scale images. Black, gray, and white denote
1, 0,−1[Nm] respectively.

Each slice of the state-value function V , shown in the right side, is a gray
scale image too. White and black denotes V (s) = 0[s] and V (s) ≤ −60[s]
respectively. Density of gray is in proportion to the value in the range

5.3. OBTAINING STATE-ACTION MAP 122

between 0 ≥ V (s) ≥ −60[s].

In Fig. 5.2, we choose some slices in the area of 0 ≤ θ1 < 10[deg] and
0 ≤ θ2 < 110[deg]. As the value of θ2 varies in the intervals, the marble
pattern of πMAP changes fluently. In each slice of the state-value function,
the black color is filled in the upper right parts and in the lower left part. It
means that πMAP cannot lead the states in this area to Ssuccess within 60[s].
In the states of those parts, two joints of the Acrobot have high angular
velocity in the same direction. It is difficult to reduce both of θ̇1 and θ̇2

within the limitations of velocity from that state.

Nevertheless, the Acrobot requires velocity for swinging up. We can
see some spots or areas of light grey color in the black part. Each spot
is a cut plane of a tube in the four dimensional state space. When the
acceleration is successfully done, the state of the Acrobot runs through one
of the four-dimensional tubes and reaches to Ssuccess.

Figure 5.3 shows some slices in the area of 170 ≤ θ1 < 180[deg] and
150 ≤ θ2 < 360[deg]. In this area, the tip of Link 1 is swung upward. The
pattern of πMAP in this area is different from that in the area of Fig. 5.2.
Every slice in Fig. 5.2 has a black area at the lower right part of the origin
and a white area at the upper left part of the origin.

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 123

[θ1]0,[θ2]0

θ1

[θ1]0,[θ2]2

[θ1]0,[θ2]4

[θ1]0,[θ2]6

[θ1]0,[θ2]8

[θ1]0,[θ2]10

(black: τ=1[Nm], gray: τ=0[Nm],
white: τ=−1[Nm])

(black: V > 60[s], white: V = 0[s])

Fig. 5.2: Slices of State-Action Map and State-Value Function (Link 1 trails down.)

5.3. OBTAINING STATE-ACTION MAP 124

[θ1]17,[θ2]35

[θ1]17,[θ2]31

[θ1]17,[θ2]27

[θ1]17,[θ2]23

[θ1]17,[θ2]19

[θ1]17,[θ2]15

(black: τ=1[Nm], gray: τ=0[Nm],
white: τ=−1[Nm])

(black: V > 60[s], white: V = 0[s])

Fig. 5.3: Slices of State-Action Map and State-Value Function (Link 1 swings upward.)

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 125

5.3.3 Behavior with The State-Action Map

We observe behavior of the Acrobot from several initial states by using this
state-action map. The dynamics of the Acrobot is simulated by the 4th
order Runge-Kutta method. The time interval for computation is set to
0.02[s], which is one-tenth of the time interval for decision of torque.

In Fig. 5.4 and 5.5, the motion of the Acrobot from (θ1, θ2, θ̇1, θ̇2) =
(0, 0, 0, 0) and that from (θ1, θ2, θ̇1, θ̇2) = (0.1[deg], 0, 0, 0) are illustrated
respectively. Figures are drawn as sets of poses in a half cycle of Link 1.
Note that Link 1 is swung by torque τ at Joint 2.

From Fig. 5.4, we can observe the following motion.

• 0 ≤ t ≤ 15.2][s]: pendular movement occurs. The Acrobot is given
momentum.

• 15.2 < t ≤ 16.8[s]: Link 2 passes over Link 1.

• 16.8 < t ≤ 19.8[s]: the pendular movement occurs again.

• 19.8 < t ≤ 21.6[s]: Link 2 passes over Link 2 twice. The motion can
be likened to baton twirling. In this case, Link 1 and 2 are the arm of
a twirler and the baton respectively.

• 21.6 < t ≤ 22.8[s]: The Acrobot stretches its body and the task is just
finished when its body straightens.

Such a strategic motion can be obtained from only one state-action map.
From some other initial states, five kinds of characteristic motions shown
in Fig. 5.6 can be observed. Various complicated motions that cannot be
described in words are also observed.

Though these motion are not the best for this task as mentioned later,
the state-action map can bring the Acrobot to the goal by using some
interesting modes of motion. Moreover, we notice that the modes are
changed by a small difference of initial states when Fig. 5.4 and 5.5 are
compared. Since the state-action map prepares all torques toward all states,
it can deal with the chaotic nature of the Acrobot.

5.3. OBTAINING STATE-ACTION MAP 126

0.0-0.4[s]

Joint1

target height

1.0-1.8[s]0.6-0.8[s] 2.0-3.0[s] 3.2-4.2[s] 5.6-6.6[s]4.4-5.4[s] 6.8-8.0[s]

8.2-9.4[s] 11.0-12.4[s]9.6-10.8[s] 12.6-13.8[s]

20.0-21.6[s]

target height

21.8-22.8[s]18.6-19.8[s]

14.0-15.2[s] 15.4-16.8[s] 17.0-18.4[s]

Fig. 5.4: Motion from (θ1, θ2, θ̇1, θ̇2) = (0, 0, 0, 0)

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 127

0.8-1.4[s] 1.6-2.4[s]0.0-0.6[s]

Joint1

target height

2.6-3.6[s] 3.8-4.8[s] 6.2-7.4[s]5-6[s] 7.6-8.8[s]

11.8-13[s]10.2-11.6[s]9.0-10.0[s] 13.2-14.4[s]

14.6-16.2[s] 16.4-18.0[s]

target height

18.2-19.96[s]

Fig. 5.5: Motion from (θ1, θ2, θ̇1, θ̇2) = (0.1[deg], 0, 0, 0)

5.3. OBTAINING STATE-ACTION MAP 128

Fig. 5.6: Typical Motions of the Acrobot with the State-Action Map

5.3.4 Evaluation of The Density

The obtained state-action map, which is named a normal map here, is
compared with other state-action maps that have different density of
discretization. This evaluation is important to verify the adequacy of the
discretization in Table 5.3. In other words, we evaluate whether the efficiency
of control is obtained or not in compensation for the huge use of memory here.

In a trial of the simulation, the time from an initial state to a
final state in Ssuccess or Sfailure is recoded. The trials are held with
various initial states. We prepare the following set of initial states:
(θ1, θ2, θ̇1, θ̇2) = (3i[deg], 3j[deg], 0, 0) (i, j = 0, 1, 2, . . . , 119). All final states
are removed from the set and 14, 167 trials are held for each map.

We make the following state-action maps that have twice or half numbers
of intervals on some axes than the normal map.

• dense map A: dense on θ1 axis

• dense map B: dense on θ1 and θ2 axes

• dense map C: dense on θ1, θ2, and θ̇1 axes

• coarse map a: coarse on θ1 axis

• coarse map b: coarse on θ1 and θ2 axes

A minimum map whose size is only 2[bit] is also prepared. This map gives

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 129

the following policy:

τ =

{
−1[Nm] if θ̇1 > 0

1[Nm] otherwise.
(5.8)

By this policy, the pendular movement in Fig. 5.6(1) is enabled when the
energy is low.

They are evaluated by the simulation. The average time and worst time
in all of the trials are written in Table 5.4. In the case of the minimum map,
the state of the Acrobot reaches to a failure state in Sfailure at 717 (5[%])
trials. 658 (5[%]) failure trials occur in the case of the coarse map b.

Table 5.4: Comparison with Dense/Coarse Maps and Minimum Map

map/method size [bit] average [s] worst [s]
dense map C 484M 8.8 36.1
dense map B 242M 9.4 31.1
dense map A 121M 10.2 34.1
normal map 60.5M 11.3 39.6
coarse map a 30.2M 14.2 55.3
coarse map b 15.1M 18.0 failure
minimum map 2 17.0 failure

It is the most important thing that all of the trials with the five large maps
have finished successfully. There is no overlimit of the angular velocities and
no unfinished trial in all of the trials. Though the motion of the Acrobot is
chaotic, feasible state-action maps can be created by DP. On the other hand,
the performance of the coarse map b is worse than that of the minimum map.
We need to invest a large amount of memory for creating a state-action map
that can outperform the 2-bit map. Of course there is a possibility that the
amount of memory can be reduced by a refinement of the value iteration
algorithm in Sec. 5.3.2.

5.4. COMPRESSION OF STATE-ACTION MAPS 130

5.4 Compression of State-Action Maps

5.4.1 Algorithm for Obtaining VQ Maps

The obtained state-action map is compressed by our VQ method. At first,
the map is sliced by the same way as it was done in Fig. 5.2. Each slice is
regarded as a block, or as a vector. When this blocking is explained with the
state indexes defined in Eq. (5.5),

iν = ν(i) = �i/46656� (iν = 0, 1, 2, . . . , 647) (5.9)

iε = ε(i) = i%46656 (iε = 0, 1, 2, . . . , 46655). (5.10)

The vectors are classified into Nc clusters. Vectors in each cluster are
replaced by a representative vector and a VQ map is created.

We use the Lloyd algorithm that is shown in Fig. 3.9 for clustering. For
reducing the computation time, all of the distortions d(s, a) are previously
calculated and stored on a file, whose size is NM · 64 = 5, 804, 752, 896[bit].
64 bits are used for storing a value of distortion. Before the Lloyd algorithm
starts, this file is loaded from a hard-disk drive (HDD).

When values of distortion are calculated, the distortion at every state
whose value is worse than −100[s] is regarded as zero toward any change of
torque. Since the Acrobot may not reach Ssuccess from these states, we do
not care what is written in the map.

Table 5.5: Computation Time (with 1.5 GHz Pentium M CPU, 1.5GB RAM)

Nc time [min] # of iterations
256 31.9 2
128 16.4 2
64 8.1 2
32 4.3 2
16 2.3 2
8 3.4 5
4 3.4 8
2 7.7 25
1 0.6 2

computation of all d(s, a) 5.9 —

We create VQ maps with Nc = 2i (i = 0, 1, 2, . . . , 8). A VQ map that is
created with i representative vectors is named the Nc = i map here. As shown

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 131

in Table 5.5, it takes 5.9[min] to calculate and store the values of distortion.
The number of iteration is only two when Nc = 1, 16, 32, 64, 128, 256.

5.4.2 Obtained VQ Maps

The Nc = 32, 16, 8, 4, 2, 1 maps are shown in Fig. 5.7-5.12 respectively. (a)
and (b) in each figure except Fig. 5.12 represent the quantization table and
representative vectors respectively. In the case of Fig. 5.12, no quantization
table is shown because it is not necessary to choose only one representative
vector. Each quantization table in (a) is regarded as a two-dimensional
table in θ1θ2-space. The representative vector index is allocated every cell
of θ1θ2-space. Every representative vector in (b) belongs to θ̇1θ̇2-plane as in
the case of vectors in Fig. 5.2-5.3.

The smaller Nc is, the more the representative vectors are averaged as
shown in (b) of each figure. The representative vector in Fig. 5.12 is the
ultimate in the simplification.

In the case of Nc = 1, the only one representative vector can be regarded
as a state-action map on θ̇1θ̇2-plane. From Fig. 5.12, we can estimate rough
motion of the Acrobot with the Nc = 1 map. There are white (τ = −1[Nm])
part and black (τ = 1[Nm]) part around the point of (θ̇1, θ̇2) = (0, 0). In this
part, the Acrobot will the torque in the travelling direction of Link 2. The
motion of the Acrobot seems to be the pendular movement in Fig. 5.6. The
black and white pattern is reversed at the outside of the pendular movement
area. When the pair of angular velocities of Link 1 and Link 2 belongs to the
outside area, the torque is added to the reverse direction of Link 2’s motion.
It seems that the Acrobot tries to stretch its links in a straight line.

5.4. COMPRESSION OF STATE-ACTION MAPS 132

O θ2[deg]

θ1[deg]

360180

180

90

(a) quantization table

(b) representative vectors (black: τ=1[Nm], gray: τ=0[Nm], white: τ=−1[Nm])

Fig. 5.7: Nc = 32 Map

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 133

O θ2[deg]

θ1[deg]

360180

180

90

(a) quantization table

(b) representative vectors (black: τ=1[Nm], gray: τ=0[Nm], white: τ=−1[Nm])

Fig. 5.8: Nc = 16 Map

5.4. COMPRESSION OF STATE-ACTION MAPS 134

O θ2[deg]

θ1[deg]

360180

180

90

(a) quantization table

(b) representative vectors (black: τ=1[Nm], gray: τ=0[Nm], white: τ=−1[Nm])

Fig. 5.9: The Nc = 8 Map

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 135

(b) representative vectors (black: τ=1[Nm], gray: τ=0[Nm], white: τ=−1[Nm])

O θ2[deg]

θ1[deg]

360180

180

90

(a) quantization table

Fig. 5.10: Nc = 4 Map

5.4. COMPRESSION OF STATE-ACTION MAPS 136

(b) representative vectors (black: τ=1[Nm], gray: τ=0[Nm], white: τ=−1[Nm])

O θ2[deg]

θ1[deg]

360180

180

90

(a) quantization table

Fig. 5.11: Nc = 2 Map

Fig. 5.12: The Representative Vector when Nc = 1 (black: τ = 1[Nm], gray: τ = 0[Nm],
white: τ = −1[Nm])

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 137

5.4.3 Comparison of Motion with Uncompressed Map

Observation of The Motion

In Fig. 5.14, we show sequences of torque τ and height y2 on trials with four
kinds of pair of an initial state and a map. The sequences in (a) and (b)
are obtained by the uncompressed map and the others are obtained by the
Nc = 1 map. The initial states are (θ1, θ2, θ̇1, θ̇2) = (0, 0, 0, 0) in (a) and (c),
and (θ1, θ2, θ̇1, θ̇2) = (1[deg],−1[deg], 0, 0) in the others. In the figures of y2,
types of motion that are observed in some time periods are written in the
time-y2 graphs as the numbers defined in Fig. 5.6.

The pendular movement shown in Fig. 5.6(1) can be always observed in
the first ten seconds of all of the trials. However, behavior of the Acrobot is
changed by the small difference of initial states after 10[s]. Since the influence
of the difference of initial states is large, the difference of the uncompressed
map and the VQ map cannot be observed from the figures.

Evaluation of VQ Maps

The VQ maps in Sec. 5.4 are evaluated by the simulation. The results are
shown in Table 5.6. Comparison to the results of uncompressed maps on
Table 5.4 is illustrated in Fig. 5.15. As shown in this figure, the average
time of every VQ maps is shorter than that of the coarse map a. Though
the coarse map is 324 times as large as the Nc = 1 map, the average time of
the average time with the VQ map is 0.5[s] shorter than that of the coarse
map.

Though the Nc = 1 map considers only θ̇1 and θ̇2, this map is created
from the state-value function in the four-dimensional state space. It is
significant that the VQ method can create a control policy whose dimension
is reduced within the framework of optimal control.

As shown in Table 5.6, the efficiency of the Nc = 1, 2, 4 maps are not
different to each other. As shown in Fig. 5.11 and 5.10, the representative
vectors are similar to the VQ map in Fig. 5.12. Therefore, it is understand-
able that their efficiencies are also similar to the efficiency of the Nc = 1 map.

Every representative vector of the VQ maps with Nc ≤ 4 is similar to
vectors that are used when the tip of the Acrobot is in a low position. In
other words, the compression method discards the control policy at states
where the tip is high. We can recognize it when Fig. 5.2, 5.3, 5.12, 5.11,

5.4. COMPRESSION OF STATE-ACTION MAPS 138

0.0-1.0[s]

Joint1

target height

2.4-3.4[s]1.2-2.2[s] 3.6-4.8[s] 5.0-6.0[s] 7.6-8.8[s]6.2-7.4[s]

9.0-10.2[s] 11.8-13.4[s]10.4-11.6[s] 13.6-15.2[s]

target height

15.4-17.1[s]

Fig. 5.13: Motion from (θ1, θ2, θ̇1, θ̇2) = (0, 0, 0, 0)

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 139

Fig. 5.14: Record of Torque and Motion

Table 5.6: Evaluation Result of VQ Maps

Nc size [bit] average [s] worst [s]
256 23.9M 11.4 45.6
128 11.9M 11.3 60.4
64 5.98M 11.8 51.6
32 2.99M 12.4 63.5
16 1.50M 12.8 78.7
8 748k 13.4 55.5
4 375k 13.7 71.3
2 187k 13.7 62.1
1 93.3k 13.7 85.0

5.4. COMPRESSION OF STATE-ACTION MAPS 140

0

2

4

6

8

10

12

14

16

size [bit]
104 105 106 107 108 109

av
er

ag
e

tim
e

to
 fi

ni
sh

 [s
]

uncompressed state-action maps
VQ maps

dense map C
dense map B

dense map A

normal map

coarse map a
Nc = 1

Nc = 8

Nc = 128

Fig. 5.15: Comparison between Uncompressed Maps and VQ Maps

and 5.10 are compared. The uncompressed state-action map adjusts the
control policy as appropriate according to the pose of the Acrobot. On the
other hands, the VQ maps consider only the angular velocities for the control.

The Nc = 8 map in Fig. 5.9 has various representative vectors differently
from the Nc = 2, 4 maps. The representative vector c5 particularly has a
different appearance to the representative vectors of the Nc = 1, 2, 4 maps.
c5 is mainly allocated to the 90 ≤ θ1 < 180[deg] and 0 ≤ θ2 < 70[deg] area.
It seems that c5 is a special control policy when the height of the tip is high.
Such a representative vector is cut down in the VQ map with Nc ≤ 4. We
show some of representative vectors of the Nc = 128 map. As shown in this
figure, representative vectors vary more widely than those of the VQ maps
that have smaller Nc.

CHAPTER 5. APPLICATION AND EVALUATION I:
THE ACROBOT 141

 (black: τ=1[Nm], gray: τ=0[Nm], white: τ= −1[Nm])

Fig. 5.16: Representative Vectors of the Nc = 128 Map

5.5. DISCUSSION 142

5.5 Discussion

In this section, we have applied dynamic programming to swinging up control
of the Acrobot and its result has compressed by our vector quantization
method.

Summary of Simulation Result

In the simulation, we have obtained the following result.

• Though the obtained state-action maps by DP are chaotic, they can
give policies that make the Acrobot finish the swinging up task suc-
cessfully from all of the static (θ̇1 = θ̇2 = 0) states.

• The VQ maps which also give feasible policies can be obtained. The
VQ map with Nc = 1 is 93.3kB and its compression ratio is 1 : 0.0015.

• The compression ratio of the VQ map is 1 : 0.0031 toward the coarse
map a, which marks worse evaluation than the VQ map.

Discussion from the Result

A chaotic but performable control policy can be obtained in the global
state space of the Acrobot by DP. Moreover, we can verify that our VQ
algorithm can reduce the dimension of the control policy from four to two
in the process of compression. It is significant that its dimension is reduced
by the VQ method.

Though the swinging up task is procedural and complicated one, its secret
of success is how to enhance the energy of the Acrobot. We think that the
success of the experiment in this chapter depends on that simple principle in
some degree. However, the consideration of energy is not done in our method.
In other words, our method can implicitly utilize the principle through the
functional and the state-value function.

Discussion about Application for Actual Robot in Future

We should pay attention to the measuring errors of the parameters and the
state variables shown in Table 5.2. We have evaluated the loss of efficiency
toward some kinds of parametric errors in Sec. A.3. Though more cases
should be tried for certain evaluation, we are optimistic about the robustness
from the tables in Sec. A.3.

143

Chapter 6

Application and Evaluation II:
RoboCup

RoboCup (robot soccer world cup) was proposed mainly by Japanese
researchers [Kitano, 1997; Veloso, 1998; Asada, 1999] as a novel standard
problem for artificial intelligence (AI) and robotics. The world cup has been
held annually since 1997 and its scale of operation has been expanded year
by year. In RoboCup 2005 Osaka, for instance, 330 teams participated from
31 countries.

As we have explained in Chapter 1, nowadays AI on computers can
defeat human champions in chess and backgammon. However, it does not
mean that the AI can perform some jobs in the real world. The RoboCup
project is just on trying making AI act in the real world with the grand
challenge problem: By the year 2050, develop a team of fully autonomous
humanoid robots that can win against the human world soccer champion team.

In this chapter, the proposed method is applied to tasks of robots in
RoboCup four legged robot league. In this league, ERS-7 and ERS-210 are
used for competition. They have only 16MB of flash memory for installing
the executable code that is complied by another computer. In other word,
all of executable codes and data should be stored on the limited amount of
memory.

This chapter is composed of seven sections. RoboCup four legged
robot league, which is the test environment in this chapter, is explained in
Sec. 6.1. Some recognition and localization algorithms that have already
been implemented in our robots are also presented in this section. In
Sec. 6.2, DP and the VQ method are applied to a task in which an ERS-210

144

approaches to a ball from suitable direction for shoot. A VQ map is used
in an ERS-210 for experiment. In this section, we use the entropy function
and the vector quantization method for VQ maps, which are presented in
Chapter 4.

In Sec. 6.3-6.6, another task, which has the largest state-space in the
tasks in this thesis, is handled. The task is to make two ERS-210s score
within minimum time. We define eight dimensional state-space and 610
million discrete states and apply our method to this task. In Sec. 6.3, the
task is defined. A huge state-action map that contains 610 million discrete
states is created in Sec. 6.4. The huge map is compressed in Sec. 6.5, and
obtained VQ maps are evaluated in Sec. 6.6.

We discuss the simulation and experimental results of the two tasks in
Sec. 6.7, and conclude this chapter.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 145

6.1 RoboCup Four Legged Robot League

The RoboCup four legged robot league has been held since 1998 [Asada,
1999]. The photo in Fig. 6.1 is a scene of a game in RoboCup 2002. Every
year, rule of this league has been modified in accordance with technological
improvement. Since simulation and experiment in this section are held on
the environment in 2002 and 2003, we explain the robot and the environment
of this league based on the rules in the years [Fujita, 2003].

In a game, four sets of ERS-210, which are quadruped robots, make up a
team. One of them is the goalkeeper and the others are called field players.
They can communicate with their teammates through wireless LAN, while
they do not controlled by any external computer. It means that they should
behave autonomously. Each ERS-210 must recognize the state of a game,
which varies from second to second, and must choose its action tactfully.
In that condition, state-action maps are very useful for quick decision making.

The length of a game is 20 minutes. Detailed rules are fixed up by a rule
book as well as human soccer. Moreover, there is a characteristic rule that
any hardware of ERS-210 must not be altered.

Fig. 6.1: A Game Scene of RoboCup 2002 Fukuoka

6.1. ROBOCUP FOUR LEGGED ROBOT LEAGUE 146

6.1.1 Autonomous Robot ERS-210

In this chapter, an autonomous quadruped robot, ERS-210, made by SONY
is used for experiments. Its appearance is shown in Fig.6.2. Its height, width
and breadth are 200[mm], 150[mm], and 250[mm] at a standard pose. This
robot is fully autonomous. A computer that is composed of a 192MHz MIPS
CPU and 32MB of RAM is equipped in the body. On its nose, there is a
color CMOS camera whose resolution is 176 by 144. This robot has three
DoF in each leg and in its head as shown in Fig.6.2. Its executable code is
compiled and linked another computer. The executable code is installed on
an ERS-210 through a 16MB flash RAM. Therefore, the size of the code and
other data on the flash RAM must be smaller than 16MB.

color CMOS camera
176(H)x144(V) 25FPS
field of view: 57.6[deg] (H), 47.8[deg] (V)

microphones

touch sensors

range sensors

acceleration sensor
(three axes)

potentiometers
(each joint)

192MHz MIPS CPU
32 MB DRAM 16 MB Flash Memory

3 DoF in Each Leg

3 DoF in Head

Fig. 6.2: ERS-210 Made by SONY

6.1.2 Soccer Field and Accompanying Items

Figure 6.3 illustrates a soccer field for this league. The size of the field
except two inside areas of goals is 4.2[m] by 2.7[m]. This area is covered
with a green carpet. The field is framed in by sloping walls that prevent the
ball from going out except two goalmouths. Moreover, four corners of the
field are covered by isosceles triangle walls. The length of a hidden edge of
the green carpet is 300[mm].

Each goalmouth is 600[mm] across and the depth of the goal is 300[mm].
Each goal area is also covered with the green carpet and is surrounded by a

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 147

vertical wall on three sides. One of the wall, which is called a goal board in
this thesis, is painted in sky-blue. Another goal board is painted in yellow.
A goal board in showing in Fig. 6.4.

There are six landmarks around the field. They are used for self-
localization of robots. The shape of every landmark is a cylinder whose
height and outside diameter are 400[mm] and 103[mm] respectively. As
shown in Fig. 6.4, the upper half of a landmark is colored by two colors.
The six landmarks have its own pattern of the colors so as to be distinct
from each other.

Fig. 6.3: Field for RoboCup 2003

Fig. 6.4: Goal and Landmark

We define a field coordinate system Σfield and a robot coordinate system
Σrobot as shown in Fig. 6.5. The origin of Σfield is the center point of the
field. Its x-axis is parallel to the touch lines and faces to the sky-blue goal.
Its y-axis is on the halfway line.

The robot coordinate system Σrobot exists in the same plane with Σfield

though the robot has a three-dimensional body. Its x-axis exists on a line
that runs through two points that are located directly below shoulders of the
robot. The y-axis of Σfield is perpendicular to the x-axis. Their direction is

6.1. ROBOCUP FOUR LEGGED ROBOT LEAGUE 148

as shown in the figure. The origin of Σrobot exists under the midpoint of the
two points.

Σfield Σrobot

O

ϕ

touch line

robot
end line

halfway line

ball

60
0

Fig. 6.5: Coordinate Systems

6.1.3 Recognition

Color Extraction

An ERS-210 obtains required information for soccer from its CMOS camera
mainly. To detect the colored objects on CMOS camera images easily,
we utilize a look-up table that is called a color table. A color table is a
three-dimensional array, which corresponds to the YCbCr space. As shown
in Fig. 6.6, the types of color are plotted on a color table. Images from the
CMOS camera are changed into the simplified images such as the upper
right image of Fig. 6.6 by a color table. The ball, a landmark, two robots,
the field, and walls can be detected from the color extracted image easily.

To calculate the position of an object in a color extracted image on Σrobot,
the followings should be known:

(1) the pose of the CMOS camera toward the robot coordinate system Σrobot

(2) one of the followings

(a) the size and shape of the object

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 149

(b) the height of the object from the ground

One of (2a) or (2b) is required for measurement because images are two-
dimensional. When (2a) and (2b) are unknown, only the direction of the
object can be measured. In our algorithm, (1) is calculated from joint angles
of the head and pose of the body.

a CMOS image a color extracted image from the CMOS image

Y

Cb
Cr

O

red pink

orangeyellow

skyblue
green

color table

blue

Fig. 6.6: Color Extraction

Self-Localization

Color extracted images of landmarks and goals are utilized for self-
localization of the robot. The position of the robot, which is the origin of
Σrobot, is represented by (x, y) on Σfield and its orientation, θ, is defined as
the direction of y-axis of Σrobot toward x-axis of Σfield. An estimated position
and orientation of the robot, which is called the pose of the robot simply
hereafter, is continuously computed by a probabilistic self-localization
algorithm. This algorithm is called the uniform Monte Carlo localization
(uniform MCL) [Ueda, 2002]. This localization method gives an estimated

6.1. ROBOCUP FOUR LEGGED ROBOT LEAGUE 150

pose of the robot: (x̂, ŷ, θ̂).

The Uniform MCL method uses a lot of candidates ξi (i = 1, 2, . . . , N)
to approximate the probability distribution of where the actual pose of the
robot exists in the xyθ-space. The candidates are called particles. The
particles are distributed in the xyθ-space. An example of distribution of
particles is illustrated in Fig.6.7. The large arrow denotes the actual pose of
a robot. The small arrows denote the poses of particles. This distribution
is obtained after an observation of the upper-right landmark in the figure.
The robot knows the direction of the landmark and the maximum distance
from an image processing algorithm, which measures the orientation and
width of a landmark or a goal in a color extracted image. Particles that are
inconsistent with this information are erased. The other samples remain
and this distribution is obtained. When the robot walks, the particles also
move with the displacement of the pose. At this phase, erased particles
are restored between the remaining particles. When the robot can obtain
another observation, inconsistent particles are erased again. By the iteration
of these processes, the distribution of particles shrinks around the actual pose.

Fig. 6.7: Distribution of Particles in Uniform Monte Carlo Localization

When an ERS-210 localizes itself without walking by this algorithm,
the error of position is 233[mm] on average and that of orientation is
6.5[deg] on average [Asanuma, 2004]. The error of position denotes
e =

√
(x̂− x)2 + (ŷ − y)2 when (x, y) is the actual position. Note that the

robot moves with this extent of localization error on the experiments in this

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 151

chapter.

Incidentally, the accuracy of self-localization in the four legged robot
league are improving year by year. Our current localization algorithm is ex-
plained in Appendix B. With painstaking calibration, its error becomes sev-
eral centimeters and a few degrees on average in the environment of RoboCup
2005 (a 6[m] by 4[m] field with four landmarks).

Measurement of Ball

The algorithm for measurement of the ball calculates the position of the ball
from a color extracted image. When the ball is small, a width of the orange
blob on the image is used for measuring its position. When the number of
the pixels is large or when the CMOS camera is looking down at the field,
the position is calculated from the position of the center of the orange blob.

The accuracy of the measurement algorithm depends a lot on the accuracy
of color extraction. When the robot walks fast, the error becomes large due
to jolt of its body. Roughly speaking, we must expect 30% error when the
algorithm returns the position of the ball.

6.2. TASK OF GOING TO BALL 152

6.2 Task of Going to Ball

At first, we apply DP and VQ to one of the most fundamental tasks in robot
soccer. This task is to approach the ball from a proper direction with the
minimum number of steps (actions). In this task, the robot should consider
the position of the ball from itself and its direction from itself on the field.
Moreover, the robot should consider its position on the field because the
walls around the field prevent the robot from going to the ball throughout
the field. The robot must then be able to observe the ball at any time in its
task. In other words, the ball must always be in front of the robot.

6.2.1 State Space

The total state variables are the following five: (x, y, θ, r, ϕ) = x. The
domain and the way of discretization of each state variable are defined
as shown in Table 6.1. The state space, X , can be defined as the direct
product of the domains in Table 6.1(a). r is divided unevenly into nine
divisions by the equation in the table (b). [r]0, [r]1, and [r]2 have 100[mm]
width respectively. The widths of others increase as 200, 300, . . . , 600,
and 700[mm]. By the discretization shown in Table 6.1(b), the number of
discrete states N reaches 765, 450.

{

{

[x] (width: 200 [mm])

[y] (width:180 [mm])

[ϕ] (w
idth: 10 [deg])

[r]

robot

The interval ([r],[ϕ]) to which the ball belongs.

The interval ([x],[y]) to which the robot belongs.

ball

Fig. 6.8: Discretization for Task of Going to Ball

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 153

Table 6.1: Domain and Discretization of State Space
(a) domain

definition of intervals
x [−2100, 2100)[mm]
y [−1350, 1350)[mm]
θ [−180, 180)[deg]
r [150, 3150)[mm]
ϕ [−75, 75)[deg]

(b) discretization
definition of intervals

x [x]i ≡
[
200i− 2100, 200(i + 1)− 2100

)
[mm] (i = 0, 1, . . . , 20)

y [y]i ≡
[
180i− 1350, 180(i + 1)− 1350

)
[mm] (i = 0, 1, . . . , 14)

θ [θ]i ≡
[
20i− 180, 20(i + 1)− 180

)
[deg] (i = 0, 1, . . . , 17)

r [r]i ≡

⎧⎪⎨
⎪⎩

[
100i + 150, 100(i + 1) + 150

)
[mm] (i = 0, 1, . . . , 2)[

50
(

i− 3
2

)2

+
675
2

, 50
(

i− 1
2

)2

+
675
2

)
[mm] (i = 3, 4, . . . , 8)

ϕ [ϕ]i ≡
[
10i− 75, 10(i + 1)− 75

)
[deg] (i = 0, 1, . . . , 14)

(c) transform from value to index
definition of intervals

x ix = �(x + 2100)/200� (−2100 ≤ x < 2100)[mm]
y iy = �(y + 1350)/200� (−1350 ≤ y < 1350)[mm]
θ iθ = �(θ + 180)/20� (−180 ≤ θ < 180)[deg]

r ir =

{
�(r − 150)/100� (150 ≤ r < 450)[mm]
�3/2 +

√
2r − 675/10 � (450 ≤ r < 3150)[mm]

ϕ iϕ = �(ϕ + 75)/10� (−75 ≤ ϕ < 75)[deg]

Table 6.1(c) shows how to solve the indexes that are defined in Table (b) from
the values in the continuous state space X . When a discrete state si ∈ S
is represented by ([x]ix , [y]iy , [θ]iθ , [r]ir , [ϕ]iϕ), we define relation between the
state index i and the indexes of the axes as

i = 15 · 18 · 9 · 15ix + 18 · 9 · 15iy + 9 · 15iθ + 15ir + iϕ

= 36450ix + 2430iy + 135iθ + 15ir + iϕ. (6.1)

When we use the equations in Table 6.1(c), the transform from a continuous
state to a state index can be defined as

i = IsTX (x) = 36450ix + 2430iy + 135iθ + 15ir + iϕ (6.2)

= 36450�(x + 2100)/200�+ 2430�(y + 1350)/200�
+ 135�(θ + 180)/20�+ 15ir + �(ϕ + 75)/10�, (6.3)

where

ir =

{
�(r − 150)/100� (150 ≤ r < 450)

�3/2 +
√

2r − 675/10 � (450 ≤ r < 3150)
.

6.2. TASK OF GOING TO BALL 154

Final State

The final states are then defined. At first, we define a following set Sball f of
discrete states:

Sball f =
{
s = ([x], [y], [θ], [r], [ϕ])

∣∣∣[r] = [r]0, [ϕ] = [ϕ]i (4 ≤ i ≤ 10)
}

. (6.4)

[x], [y] and [θ] are arbitrary intervals. We consider that the robot has reached
to the ball when s ∈ Sball f. The robot must face to the sky-blue goal when
it has reached to the ball. We define Srobot f 1 as the set of discrete states
where the robot faces to the goal. It is defined as

Srobot f 1 =
{
s
∣∣∣[θ] = [θ]i (7 ≤ i ≤ 10)

}
∪

{
s
∣∣∣− 40[deg] ≤ ϕG(x) < 40[deg] (∀x ∈ s)

}
(6.5)

where ϕG(x)[deg] means the direction of the goal from the robot, where the
point (x, y) = (2100, 0)[mm] on Σfield is regarded as the position of the goal.

The set of final states can be defined as Sball f ∩ Srobot f 1. However, this
condition should be relaxed near the wall since it prevents the robot going
to one of the final states. We therefore prepare another set:

Srobot f 2 =
{

s
∣∣∣[y] = [y]0, [θ] = [θ]i (6 ≤ i ≤ 9)

}
∪

{
s
∣∣∣[y] = [y]14, [θ] = [θ]i (8 ≤ i ≤ 11)

}
∪

{
s
∣∣∣[x] = [x]0, [θ] = [θ]i (3 ≤ i ≤ 14)

}
. (6.6)

The set of final states is then defined as

Sf = Sball f ∩ (Srobot f 1 ∪ Srobot f 2). (6.7)

Under that definition, the number of final states in S becomes 8, 175. It
means that 1.07% of discrete states are final states.

Action and State Transition

38 kinds of actions, shown in Table 6.2, are used for this task. As shown
in Fig. 6.9, each action is parameterized with (δx, δy, δθ). These parameters
denote the displacement of the robot with an action from Σrobot, which is
the robot coordinate system before the action. Though displacements with
an action vary each time, the dispersion is ignorable when compared with

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 155

Table 6.2: Actions for Task of Going to Ball
symbol name δx[mm] δy[mm] δθ[deg]

a0 Forward 0.0 113.0 0.0
a1 TurnRight 20.0 5.0 -32.5
a2 TurnLeft -15.0 5.0 28.0
a3 RightForward 77.0 75.0 0.0
a4 LeftForward -79.0 72.5 0.0
a5 RightSide 114.0 0.0 5.0
a6 LeftSide -107.0 0.0 -5.0
a7 RollRight 30.0 35.0 17.0
a8 RollLeft -30.0 35.0 -30.0
a9 ShortForward 0.0 66.0 0.0
a10 ShortRightForward 58.0 55.0 0.0
a11 ShortLeftForward -65.0 56.0 0.0
a12 ShortRightSide 80.0 0.0 0.0
a13 ShortLeftSide -66.0 0.0 0.0
a14 ShortRollRight 25.0 30.0 18.0
a15 ShortRollLeft -25.0 30.0 -30.0
a16 RightBackward 84.0 -83.0 -2.8
a17 LeftBackward -73.0 -69.0 2.0
a18 RightForward15 16.0 84.0 2.0
a19 LeftForward15 -14.0 102.0 -2.6
a20 RightForward30 36.0 74.0 0.0
a21 LeftForward30 -32.0 102.0 -4.4
a22 RightForward60 102.0 48.0 0.0
a23 LeftForward60 -102.0 46.0 0.0
a24 RightForward75 116.0 34.0 0.0
a25 LeftForward75 -121.0 26.0 0.0
a26 RightBackward15 36.0 -94.0 0.0
a27 LeftBackward15 -35.0 -95.0 0.0
a28 RightBackward30 56.0 -86.0 0.0
a29 LeftBackward30 -55.0 -84.0 0.0
a30 RightBackward60 110.0 -40.0 0.0
a31 LeftBackward60 -106.0 -42.0 -4.0
a32 RightBackward75 115.0 -26.0 0.0
a33 LeftBackward75 -95.0 -23.0 -5.0
a34 RightForwardTurnLeft 30.0 50.0 17.0
a35 LeftForwardTurnRight -25.0 70.0 -15.0
a36 RightForwardTurnRight 92.0 80.0 -15.0
a37 LeftForwardTurnLeft -100.0 80.0 15.0

6.2. TASK OF GOING TO BALL 156

Σ robot

x

y

(before action)

δy

δx

pose before an action

pose after an action

δθ

Fig. 6.9: Definition of Parameters for Actions

the granularity of discretization mentioned later.

We then define state transitions, Pa
ss′. When the robot chooses an action

that cause (δx, δy, δθ) of displacement from x = (x, y, θ, r, ϕ), the posterior
states x′ = (x′, y′, θ′, r′, ϕ′) fulfills⎛

⎜⎜⎜⎜⎝
x′

y′

θ′

r′

ϕ′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x + δx cos θ − δy sin θ
y + δx sin θ + δy cos θ

θ + δθ√
(r cos ϕ− δx)2 + (r sin ϕ− δy)2

arctan[(r sin ϕ− δy)/(r cos ϕ− δx)]− δθ

⎞
⎟⎟⎟⎟⎠ (6.8)

As in the case of the puddle world task, the collision between the robot and
the wall is not considered in this phase.

In the discrete state space S, this transition is represented statistically.
State transition probabilities Pa

ss′ can be computed from iterations of the
following procedure:

• choose x ∈ X from s ∈ S

• calculate x′ from the chosen x based on Eq. (6.8)

• record s′, to which x′ belongs,

which is a kind of Monte Carlo integration. If we compute the choice
probability of every s′, we can obtain the probabilities of all state transitions
toward a set of s and a.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 157

However, we should pay attention to reduce the computational complex-
ity for this computation; otherwise (765, 450−8, 175)·38·765, 450 = 2.20·1013

state transitions must be computed.

We cut off state transitions whose probabilities are less than 0.01.
This pruning is useful for reducing the number of state transitions, while
the completeness of the state-action map is lost. Possible posterior
states s′ toward a set of s and a are limited to 100 with this pruning.
Therefore, the number of combinations of state transitions are reduced to
(765, 450−8, 175) · 100 · 38 = 2.88 · 109. Though this number is much smaller
than 1013, gigabytes of memory is required for recording probabilities of all
state transitions.

The computational complexity can be reduced more if the state transi-
tions of the pose of the robot and those of the ball are recorded separately.
Equation (6.8) can be separated into the two equations:⎛

⎝x′ − x
y′ − y

θ′

⎞
⎠ =

⎛
⎝δx cos θ − δy sin θ

δx sin θ + δy cos θ
θ + δθ

⎞
⎠ , and (6.9)

(
r′

ϕ′

)
=

(√
(r cos ϕ− δx)2 + (r sin ϕ− δy)2

arctan[(r sin ϕ− δy)/(r cos ϕ− δx)]− δθ

)
. (6.10)

From these equations, the following probabilities

Probot

(
[x]i−Δi, [y]j−Δj, [θ]k′

∣∣∣[x]i, [y]j, [θ]k, a
)

, and Pball

(
[r]h′, [ϕ]�′

∣∣∣[r]h, [ϕ]�, a
)

can be computed toward action a, prior state s = ([x]i, [y]j, [θ]k, [r]h, [ϕ]�),
and posterior state s′ = ([x]i−Δi, [y]j−Δj, [θ]k′, [r]h′, [ϕ]�′). Pa

ss′ is then calcu-
lated as

Pa
ss′ = Probot(s

′|s, a)Pball(s
′|s, a)

= Probot

(
[x]i−Δi, [y]j−Δj, [θ]k′

∣∣∣[x]i, [y]j, [θ]k, a
)

· Pball

(
[r]h′, [ϕ]�′

∣∣∣[r]h, [ϕ]�, a
)

. (6.11)

The expression of Probot implies that the transition rule on x-axis and y-axis
depends not on index i and index j if we do not consider the collision of
the robot and the wall. We can obtain such a table as Table 6.3(a), which
records every probability Probot toward every combination of a, k, Δi, Δj,
and k′, by the Monte Carlo method. This table has 3, 741 lines. In the case

6.2. TASK OF GOING TO BALL 158

of The expression of Pball, a transition is represented by the following values:
(h, , h′, ′, a, P). We can also obtain Table 6.3(b), which contains 20, 013
probabilities toward all combinations of a, h, , h′, and ′.

Table 6.3: Tables of State Transitions
(a) Pose of Robot

action k Δi Δj k′ Probot [%]
a0 0 -1 -1 0 6
a0 0 -1 0 0 52
a0 0 0 -1 0 4
a0 0 0 0 0 38
a0 1 -1 -1 1 15
a0 1 -1 0 1 35

...
a37 16 0 0 16 7
a37 16 0 0 17 21
a37 17 -1 -1 0 17
a37 17 -1 -1 17 5
a37 17 -1 0 0 18
a37 17 -1 0 17 8
a37 17 0 -1 0 23
a37 17 0 -1 17 4
a37 17 0 0 0 19
a37 17 0 0 17 6

(b) Position of Ball
action h � h′ �′ Pball [%]

a0 0 0 out ≥ 1
a0 0 1 out ≥ 1
a0 0 2 out ≥ 1
a0 0 3 out ≥ 1

...
a12 2 7 2 8 88
a12 2 7 2 9 7
a12 2 7 3 8 5

...
a37 8 13 8 11 41
a37 8 13 8 12 40
a37 8 14 7 12 9
a37 8 14 7 13 8
a37 8 14 8 12 40
a37 8 14 8 13 43

Reward

The immediate evaluation Ra
ss′ can be defined from the task. The goal is to

reduce the steps of the robot in the task. A state of the robot and the ball
should always be in the state space. Therefore, Ra

ss′ is defined as:

Ra
ss′ =

{
−∞ (if s′ /∈ S)

−1 [step] (if s′ ∈ S).
(6.12)

Computation and Its Result

We apply the value iteration algorithm in Fig. 2.5 to creating a state-
action map. We use a fixed-point variable for recording values. Its
minimum step is 0.01[step]. Sweeps are iterated until Δ > 0. Δ, which
is shown in Fig. 2.5, is the maximum variation of values in a sweep. A
computer with a 3.6 GHz Pentium IV CPU is used for value iteration.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 159

number of sweeps

Δ
[s

te
p]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Fig. 6.10: Convergence of State-Value Function

Table 6.4: Computation Time (with a 3.6GHz Pentium IV CPU)
procedure time
Creation of Table 6.3(a) (105 samples) 13.6[s]
Creation of Table 6.3(b) (104 samples) 16.0[s]
value iteration (one iteration) 5.9[s]
total time (253 sweeps) 1.3× 103[s]

Δ and time for computation are recorded at every sweep in the computation.

Figure 6.10 shows the relation between the number of sweeps and Δ. As
shown in this figure, this value reduces to zero asymptotically in the iteration
of sweeps. Δ becomes less than one at the end of 41st sweep. Though Δ
reaches 0.01[step] at the 160th sweep, 256 sweeps are required for making
it zero. Computation time of each process is shown in Table 6.4. Though
there are 7·105 states in S, a state-action map can be created with 25 minutes.

6.2.2 Evaluation of Obtained State-Action Map

Figure 6.11 shows part of the state-value function when the ball is at point
(x, y) = (0,−1200) and the robot observes it toward the front (ϕ = 0).
The state-action map of this part is shown in Fig. 6.12. 23 kinds of action

6.2. TASK OF GOING TO BALL 160

Fig. 6.11: Part of State-Value Function

Fig. 6.12: Part of state-action map

(x, y)
θ

go
al

go
al

Fig. 6.13: Simulated Trajectories Based on The State-Action Map

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 161

are intricately allocated to each state. It is especially complicated within
a radius of 450[mm] from the ball since the robot must approach the final
states while avoiding the off-limits area around the ball. In Fig.6.13, some
simulated trajectories are illustrated. We see from this figure that the robot
adjusts θ to offensive direction by little and little en route to the ball. It is
difficult for us to program such detailed decision making by hand-coding.
It seems that the complexity of the state-action map represents the difficulty.

Since we do not consider state transitions that occur with smaller
percentages than 1[%], there is no assurance that the robot can reach a
final state. In other words, the state will be out of the state space on
some occasions. Therefore, we should exceptionally add the success rate of
the task to evaluate this map. This rate of this map is 99.9[%], which is
measured by 5, 000 trials of simulation from 5, 000 different initial states.

6.2.3 Compression of The State-Action Map

The state-action map is compressed by the VQ method. Here, we also in-
vestigate the relation of the entropy defined by Eq. (4.4) and the loss of the
optimality. The map obtained in Sec. 6.2 is compressed by various pairs of
(ν, ε). Each VQ map is then evaluated its entropy H and efficiency J .

Entropy on Each Axis

At first, the entropy H is computed for five ways of blocking. In each way
of blocking, the state-action map is sliced by perpendicular planes to one of
the five axes. Table 6.5 shows the entropy toward each way of blocking. wx

denotes the number of intervals on x-axis in a vector. wx, wy, wθ, wr, and wϕ

also denote that on each axis respectively.

Table 6.5: Entropy Evaluation for Blocking (small: good)
direction of slices wx wy wθ wr wϕ H
perpendicular to x-axis 1 15 18 9 15 0.75
perpendicular to y-axis 21 1 18 9 15 0.93
perpendicular to θ-axis 21 15 1 9 15 1.50
perpendicular to r-axis 21 15 18 1 15 1.82
perpendicular to ϕ-axis 21 15 18 9 1 1.82

As shown in the table, we can expect effective compression with small wx

6.2. TASK OF GOING TO BALL 162

and wy. For actual compression, however, we must divide the state-action
map into smaller vectors.

Partitioning

Here we define some blocking ways that are actually used in compression.
VQ maps with various compression ratios are built toward each way of
blocking. When we create many VQ maps from a state-action map with
different compression ratios, the PNN algorithm is more suitable than the
Lloyd algorithm. That is because the number of clusters decreases one by
one in the algorithm, while the number of clusters is fixed in the Lloyd
algorithm. However, the computation time becomes huge to built all VQ
maps that are evaluated in this section.

To reducing the computing time, we apply the partitioning technique in
Sec. 4.3.4. The uncompressed map is equally divided into three partitions
perpendicular to θ-axis. The reason to choose θ-axis is that the number of
intervals, 18, has the most number of divisors in the numbers of intervals of
the axes.

Toward si = ([x]ix , [y]iy , [θ]iθ , [r]ir , [ϕ]iϕ), indexes for sub maps are defined
as

(
iκ
iι

)
=

(
κ(i)
ι(i)

)
=

(
�iθ/6�

15 · 6 · 9 · 15ix + 6 · 9 · 15iy + 9 · 15(iθ%6) + 15ir + iϕ

)

=

(
�iθ/6�

12, 150ix + 810iy + 135(iθ%6) + 15ir + iϕ

)
(6.13)

from Eq. (6.1). From this equation, action π(si) belongs to iκth sub map
and is given index iι in the sub map.

Definition of Blocking

Under the partitioning, the map is compressed with all combinations of the
following numbers: {wx = 1, 3, 21}, {wy = 1, 3, 18}, {wθ = 1, 3, 6}, {wr =
1, 3, 9}, {wϕ = 1, 3, 15}. In every sub map, the definition of (ν, ε) is defined

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 163

as(
iν
iε

)
=

(
ν(iι)
ε(iι)

)
=⎛

⎜⎜⎝
12, 150

wyθrϕ

⌊
ix
wx

⌋
+

810

wθrϕ

⌊
iy
wy

⌋
+

135

wrϕ

⌊
iθ%6

wθ

⌋
+

15

wϕ

⌊
ir
wr

⌋
+

⌊
iϕ
wϕ

⌋

wyθrϕ(ix%wx) + wθrϕ(iy%wy) + wrϕ{(iθ%6)%wθ}+ wϕ(ir%wr) + iϕ%wϕ

⎞
⎟⎟⎠ ,

(6.14)

where wyθrϕ = wywθwrwϕ, wθrϕ = wθwrwϕ, and wrϕ = wrwϕ. Incidentally,
the following equations:

Np = 3, Nε = wxwywθwrwϕ, and Nν =
N

NpNε

are fulfilled in each partition.

Though the above definition can be differentiated for each sub map, the
identical definition is applied to each of them. That is because we do not want
to increase the number of VQ maps that are evaluated excessively. Combi-
nations with Nε < 100 are then eliminated because we cannot expect a high
compression ratio as well as calculation amount is large. Moreover, combina-
tions with Nε > 5, 000 are also eliminated since the compression ratio cannot
be adjusted to a target. In the above condition, the uncompressed map is
compressed with 135 combinations of blocking. Toward the 135 combina-
tions, we have built VQ maps with the following number of representative
vectors: Nc = 1, 2, . . . , 9, 10, 20, . . . , 90, 100, 200, . . . , 900.

6.2.4 Evaluation of The Entropy Function

The following simulation is repeated 5,000 times with every VQ map and the
uncompressed map.

Step 1: choose an initial state at random

Step 2: count the number of steps from the initial state to a final state with
the uncompressed map

Step 3: count the number with a VQ map from the same initial state.

If the steps exceed 100 or the state in a trial is out of the state space, the
situations are regarded as failures.

6.2. TASK OF GOING TO BALL 164

ratio: 1:0.1

ratio: 1:0.1

ratio: 1:0.02

ratio: 1:0.02

fr
eq

ue
nc

y
of

 fa
ilu

re
 [%

]
Δ

J
[s

te
p]

fr
eq

ue
nc

y
of

 fa
ilu

re
 [%

]
Δ

J
[s

te
p]

Fig. 6.14: The Relation between Entropy and Efficiency Loss

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 165

Figure 6.14 shows the results with LVQ : Luncomp = 1 : 0.1 and 1 : 0.02.
LVQ is the total sizes of three partial maps in this case. The upper figures
illustrate the relation between entropy and the increase of steps. The
increase of steps is the difference of the average numbers of steps between
the uncompressed map and a compressed map. This value is calculated from
trials in which both the Step 2 and 3 are successful. The average number of
steps with the uncompressed map is 10.9, and the successful percentage is
99.9%. H in the figures means the average entropy obtained from Eq.(4.4)
for each partial maps. The lower graph shows the relation between entropy
and the percentage of failed trials.

As shown in these figures, both the risk of efficiency loss and the risk
of increase of failures are small if we choose pairs of (ν, ε) that yield small
entropy. As things turned out, a VQ map with high efficiency and success
ratio could be obtained only if at most top 10 pairs of (ν, ε) in the entropy
evaluation were tried.

We show the top five VQ maps on each criterion in Table 6.6 and
Table 6.7. In Table 6.6(a) and Table 6.7(a), the rankings of failure rate and
step loss are also written, while the ranking of entropy is written in (b) and
(c). These tables are suitable to figure out the three-dimensional relation of
the criteria.

When the compression ratio is 1 : 0.1, the ranking of entropy evaluation
is identical with that of failure rate at the first and second place. When the
compression ratio is 1 : 0.02, two VQ maps appear both in Table 6.7(a) and
(b).

On the other hand, the efficiency loss does not relate to the entropy
evaluation as shown in (a) and (c) of Table 6.6 and Table 6.7. A high
failure rate is caused by partial destruction of a map. When the value of
the entropy is high, various vectors exist and they must be categorized
into a limited number of clusters. When the vectors are replaced by a
representative vector in this case, the destruction seems to happen frequently.

6.2. TASK OF GOING TO BALL 166

Table 6.6: Rankings of VQ Maps (compression ratio: 1 : 0.1)
(a) Small Entropy

order (wx, wy, wθ, wr, wϕ) failure rate (ranking) step loss (ranking) entropy H
1 (1, 1, 1, 9, 15) 0.26[%] (1) 0.06[step] (47) 0.234
2 (1, 1, 6, 9, 15) 0.34[%] (2) 0.09[step] (54) 0.246
3 (1, 1, 3, 9, 15) 0.78[%] (18) 0.06[step] (46) 0.255
4 (1, 3, 1, 9, 15) 0.90[%] (22) 0.13[step] (66) 0.267
5 (3, 1, 1, 9, 15) 0.56[%] (9) 0.12[step] (60) 0.269

(b) Small Failure Rate
order (wx, wy, wθ, wr, wϕ) failure rate step loss entropy H (ranking)

1 (1, 1, 1, 9, 15) 0.26[%] 0.06[step] 0.234 (1)
2 (1, 1, 6, 9, 15) 0.34[%] 0.09[step] 0.246 (2)
3 (1, 1, 3, 3, 15) 0.36[%] 0.03[step] 0.289 (8)
4 (3, 1, 1, 3, 15) 0.38[%] 0.02[step] 0.300 (13)
5 (21, 1, 1, 3, 15) 0.38[%] 0.10[step] 0.362 (41)

(c) Small Efficiency Loss (Increase of Steps)
order (wx, wy , wθ, wr, wϕ) failure rate step loss entropy H (ranking)

1 (3, 3, 3, 3, 15) 2.30[%] -0.03[step] 0.391 (71)
2 (21, 1, 3, 3, 15) 0.90[%] -0.02[step] 0.414 (89)
3 (1, 3, 3, 1, 15) 0.90[%] -0.02[step] 0.310 (16)
4 (1, 3, 3, 3, 15) 1.94[%] -0.01[step] 0.330 (24)
5 (3, 3, 6, 3, 3) 1.52[%] -0.01[step] 0.435 (101)

Table 6.7: Rankings of VQ Maps (compression ratio: 1 : 0.02)
(a) Small Entropy

order (wx, wy, wθ, wr, wϕ) failure rate (ranking) step loss (ranking) entropy H
1 (1, 1, 1, 9, 15) 4.18[%] (19) 0.56[step] (49) 0.234
2 (1, 1, 6, 9, 15) 2.66[%] (9) 0.16[step] (13) 0.246
3 (1, 1, 3, 9, 15) 0.80[%] (2) 0.71[step] (63) 0.255
4 (1, 3, 1, 9, 15) 6.62[%] (31) 0.70[step] (62) 0.267
5 (3, 1, 1, 9, 15) 1.50[%] (4) 0.56[step] (50) 0.269

(b) Small Failure Rate
order (wx, wy, wθ, wr, wϕ) failure rate step loss entropy H (ranking)

1 (1, 1, 3, 3, 15) 0.70[%] 0.44[step] 0.289 (8)
2 (1, 1, 3, 9, 15) 0.80[%] 0.71[step] 0.255 (3)
3 (3, 1, 1, 3, 15) 0.98[%] 0.45[step] 0.297 (13)
4 (3, 1, 1, 9, 15) 1.50[%] 0.56[step] 0.269 (5)
5 (1, 1, 6, 3, 15) 1.68[%] 0.46[step] 0.292 (10)

(c) Small Efficiency Loss (Small Increase of Steps)
order (wx, wy, wθ, wr, wϕ) failure rate step loss entropy H (ranking)

1 (3, 1, 6, 9, 15) 1.90[%] -0.09[step] 0.289 (9)
2 (1, 3, 3, 9, 15) 2.90[%] -0.07[step] 0.294 (11)
3 (3, 1, 6, 3, 15) 7.42[%] -0.02[step] 0.339 (31)
4 (1, 3, 6, 3, 15) 6.30[%] -0.03[step] 0.336 (29)
5 (1, 3, 6, 9, 3) 4.90[%] -0.04[step] 0.373 (53)

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 167

6.2.5 High Ratio Compression

Table 6.8 shows the top three sets of parameters that mark small values of
entropy. The entropy function tells that x and y should be divided fine,
and that r and ϕ should not be divided at the blocking phase for efficient
compression. It means that the state-action map is redundant on xy-plane.
This result coincides with Table 6.5.

Table 6.8: VQ Maps for High Ratio Compression
(wx, wy , wθ, wr, wϕ) entropy H Nε

A) (1, 1, 1, 9, 15) 0.234 135
B) (1, 1, 6, 9, 15) 0.246 810
C) (1, 1, 3, 9, 15) 0.255 405

0
1
2
3
4
5
6
7
8

0.0010.010.11

fr
eq

ue
nc

y
of

 fa
ilu

re
 [%

]

0
0.2
0.4
0.6
0.8

1

0.0010.010.11

Δ
J

[s
te

p]

L / LuncompVQcompression ratio

L / LuncompVQcompression ratio

w = 1 (set A)θ
w = 6 (set B)θ
w = 3 (set C)θ

Fig. 6.15: Relation between Compression Ratio and Efficiency Loss

The efficiency losses of the VQ maps with these ways of blocking
measured by the simulation in Sec. 3.5 are illustrated in Fig.6.15. The
frequency of failures gradually increases to 1[%] in association with the
compression ratio with every set of parameters. Once the compression
ratio exceeds its limit, the frequency of failures jumps a whopping some
percentage from 1[%]. It seems that the number of representative vectors

6.2. TASK OF GOING TO BALL 168

runs short definitely at the jump of the frequency of failures. We can regard
a VQ map is broken at this moment. The VQ map with the set A is broken
with a lower compression ratio than the others though this set yields the
smallest entropy. It seems that the compression ratio at breakdown of a VQ
map is related to Nε when the values of entropy are not much different than
each other.

Then we observe how the uncompressed map is changed in the clustering
process. When the parameters are (wx, wy, wθ, wr, wϕ) = (1, 1, 6, 9, 15), we
can observe it on xy-plain. That is because each pair of (ix, iy) is related
to one vector, which can be regarded as a block in θrϕ-space. Figure 6.16
shows the progression of clustering in one of the partial maps. Each area
painted by the same color has the same representative vector.

As shown in the figures from (a) to (e), every edge of the field is clustered
into one area. In the clustering process from (a) to (e), the internal areas
are merged one after another. When Nc = 6, an edge area and an internal
area are merged. At that moment, the VQ map is broken. The frequency of
failures, shown in Fig .6.15, jumps from 0.26[%] to 2.54[%] when the number
of clusters changes from Nc = 7 to Nc = 6. That is because the policy for
(θ, r, ϕ) is made to be common in the edge area and in the internal area
though they are utterly different.

Figure 6.17 is a part of the VQ map with Nc = 7 for the same position
of the ball in Fig. 6.12. We notice that the VQ map is simplified from the
original state-action map when these figures are compared. That is because
the decision making toward the ball is generalized on the seven parts of xy-
plain respectively by the clustering shown in Fig. 6.16. 218, 906 in the VQ
map actions are changed from the original state-action map, which contains
765, 450 actions.

6.2.6 Experiment with Actual Robot

We choose the smallest one from the VQ maps that mark more than 99%
success at the simulation for experiment. The VQ map has the following
parameters: (wx, wy, wθ, wr, wϕ) = (1, 1, 3, 9, 15) and Nc = 8 (in each
sub map). The compression ratio of this map is NVQ/Nuncomp = 0.015.
We also create a DLVQ map from this VQ map. Its size is 87[%] toward
the VQ map. In the experiment, we use not the DLVQ map but the VQ map.

We put a robot and a ball on the field, and the robot approached the

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 169

(a) N = 20c

a block (a vector) in θr - spaceϕ

(b) N = 10c

(c) N = 9c (d) N = 8c

(e) N = 7c (f) N = 6c

Fig. 6.16: Progression of clustering (set B, sub map with Np = 1)

Fig. 6.17: Part of VQ map

6.2. TASK OF GOING TO BALL 170

ball based on a self-localization result [Ueda, 2002] and measurement of
the ball’s position with its camera. It is difficult for a robot to stop at a
final state with perfect estimation of the state variables. The robot then
marched forward when it sensed a final state to push the ball, and the trial
was determined to be a success if the ball rolled to the side of the target
goal (i.e., if x value of the ball increased).

Since a robot sometimes goes out of the state space due to sensing errors,
actions are assigned for states in the r < 120, ϕ ≤ 75 or ϕ < −75 area. The
robot returns to the state space with the assigned actions. Nevertheless, if
the ball goes to one of the robot’s blind spots or rolls in another direction
as a result of a careless touch from the robot, the trial is a failure.

Three conditions with different types of initial states are prepared.

Condition I The robot is put at a point on the x = 0 line with θ = 0. The
ball is put at a point on the x = 1750 line that is in front of the target
goal. The points are chosen at random. The number of steps between
the compressed map and the uncompressed map is compared.

Condition II The robot is put at a point on the x = 1750 line with θ = 180,
and the ball is placed at a point on the x = 0 line. In this task, the state
tends to transfer the rim of the state space when the robot reverses its
orientation while traveling. That part of the compressed map is checked
through this task.

Condition III This task uses the most difficult initial states for compressed
maps with small α. The robot is placed next to a wall at y = −1350
or y = 1350 with θ = 180. x is chosen at random. The ball is placed
200[mm] from the wall and 300[mm] in front of the robot.

Figure 6.18 shows an example of each condition. These trajectories of the
robot were obtained with the compressed map. These were ideal trajectories.
As a matter of fact, the robot sometimes chose fruitless actions in trials
(especially, in Condition III) due to measurement errors of the ball’s position.

Table 6.9 shows the results of the 50 trials. The two maps showed quite
similar results in each condition. In condition I and II, the measurement
errors of the ball affected the failure percentages much more than the ability
of maps.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 171

Fig. 6.18: Trajectories of ERS-210 with The VQ Map

Table 6.9: Results of the Experiment with Actual ERS-210
Uncompressed Compressed

Rate of Average Rate of Average
success steps success steps

Condition I 100% 21.1 100% 21.1
Condition II 96% 30.0 94% 29.2
Condition III 68% 28.5 68% 27.2

6.3. SCORING TASK BY TWO ROBOTS 172

6.3 Scoring Task by Two Robots

6.3.1 Objective

In the later part of this chapter, a purpose of this thesis, which is to install
a huge state-action map in limited memory of a robot, is demonstrated.
We venture to create a huge state-action map for scoring by two ERS-210s.
The state-space for the cooperative scoring task is spanned by all of the
state variables of two robots and one ball. The space is discretized to
600 million states and the value iteration algorithm is executed. In each
discrete state, a walking action or a kicking action is allocated. All of
the actions are not designed for cooperative behavior. However, we think
that state-action sequences for cooperative behavior can be obtained by
the state-action map if they are required for maximizing the evaluation
of optimal control. If the state-action map can be compressed to a VQ
map whose size is smaller than the amount of flash memory of an ERS-210
without large loss of optimality, we consider that the purpose is accomplished.

We have to say beforehand that maps for this task are evaluated not on
actual ERS-210s but on simulated robots. Though development of accurate
kicking actions are inevitable for the cooperative scoring task, we have never
developed them for ERS-210s. We verify whether the VQ method can create
an efficient VQ map that can be installed on the robots or not in this thesis.

6.3.2 Related Works and Our Stance

Almost all of studies in cooperative robotics handle the curse of dimen-
sionality implicitly and explicitly. In many studies of multi-agent systems,
some kinds of basic behavior are planned for each robot beforehand, and
cooperative behavior is planned as the combination of them. For example,
there are many cases of such studies [Nitschke, 2006; Khojastech, 2004;
Fraser, 2005; Fujii, 2004] in RoboCup. In this case, the problem is divided
into each subproblems of each robot. State space of all robots are also
divided into subspace of each robot. Those studies have made it possible
to create various types of cooperative behavior of robots. The proposed
method in this thesis and the value iteration algorithm can be applied to
some of the above methods. They can create a state-action map for a
subtask in subspace.

The above methods are very useful for creating cooperative behavior
of robots and inevitable for control of more than ten robots. From the

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 173

viewpoint of optimal control, however, excessive assist for emergence of
cooperation does not always effective for finding an optimal policy for an
evaluation function. Especially in RoboCup, offense and defense can be
done by one robot. Cooperation is merely an option. In such a case, we can
know whether cooperative behavior is effective or not only by solving an
optimal control problem completely.

We therefore try creating a huge state-action map without any technique
on the study of multi-robot systems in this thesis. Currently, this approach
is not realistic when the number of the robots is more than two. It is,
however,meaningful if cooperative behavior occurs from the framework of
optimal control problems.

6.3.3 Problem Definition and Assumption

We assume that there are only two teammate ERS-210s on the field as
shown in Fig. 6.19. Their task is to bring the ball into the sky-blue goal as
soon as possible. Each robot measures its pose (x, y, θ) and the position of
the ball (r, ϕ) as an ERS-210 does on the ball approaching task. The speed
of the ball cannot be measured. They can exchange the measurements by
using their wireless LAN devices.

localization result: (x, y, θ)
measurement result of the ball: (r,ϕ)

localization result: (x, y, θ)
measurement result of the ball: (r,ϕ)

exchange of measurements
(via wireless LAN)

target goal
(skyblue goal)

Fig. 6.19: Condition of the Task

As explained in Sec. 6.1.1, 16[MB] is the upper limit of memory for
installing executable code, state-action maps, and other data through a flash
memory. When we use a state-action map, 10[MB] is a rough upper limit of

6.3. SCORING TASK BY TWO ROBOTS 174

its size due to the existence of other data.

Toward the above problem, we try applying DP and our compression
method. Before that, we have to confirm the following assumptions. At first,

• the robots have a common VQ map whose size is less than 10[MB], re-
spectively. Moreover, they have common setting of software and hard-
ware.

The robots do not have to use a common VQ map if each robot is assigned its
task in advance. However, such a method restricts dynamic task assignment
and becomes unnecessary restriction for solving the optimal control problem.
The VQ map contains an appropriate pair of actions of two robots toward
every state. Here a state does not mean respective states of the robots and
the ball, but that of the whole system to be controlled.

Then,

• they exchange their measurements and share common perceptions of
an estimated state. The cycle of exchanges is much more frequent than
that of decision making.

Based on the shared measurements, each robot must choose its action from
the pair of actions. At the time, each robot has its role. Since the action of
each robot can be fixed by the measurements uniquely, they do not need to
confirm their roles with each other.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 175

6.4 Value Iteration for Scoring Task

6.4.1 State Space

The state variables are defined as shown in Table 6.10. Figure 6.20 illustrates
their definition intuitively. A robot is called Robot1. (x, y, θ) of Robot1
is renamed (x1, y1, θ1). Another is called Robot2 and its pose is renamed
(x2, y2, θ2). When both of the robots can observe the ball and measure
its position, the measurement results of the ball become redundant. We
use the measurements of Robot2 as the position of the ball (r, ϕ), which
is defined in the task of going to ball, for composing the state space.
The position of the ball is sometimes represented by (xb, yb) on Σfield.
The case where both of the robots cannot observe the ball is not consid-
ered in DP. We prepare a hand-coding policy in that case as mentioned later.

Table 6.10: State Variables for Scoring Task

state variable domain
x1, x2 [−2100, 2100)[mm]
y1, y2 [−1350, 1350)[mm]
θ1, θ2 [−180, 180)[deg]

r [150, 3150)[mm]
ϕ [−95, 95)[deg]

Robot 2

Robot 1

b b

ball

Fig. 6.20: Coordinates and State Variables

The domain of every state variable is defined as shown in the table. The
domain of ϕ is wider than that of the task of going to ball. It means that
the risk of missing of the ball is larger than that in the task of going to ball.

6.4. VALUE ITERATION FOR SCORING TASK 176

Since we prepare the hand-coding policy as mentioned above, the domain
can be expanded. The state space, X , is spanned by x1, x2, y1, y2, θ1, θ2, r,
and ϕ in the domain.

In the task, the observer of the ball can be changed from Robot2 to
Robot1; otherwise their roles are fixed. The robots change their names and
new observer becomes Robot2 in that case. Robot2 is chosen by the following
rule.

• A robot can observe the ball, and its measurement (r, ϕ) is in the
domain defined in Table 6.10, the robot can be Robot2.

• If both of the robots can be Robot2, the robot whose measurement of
r is smaller than that of the other is chosen as Robot2.

• If both of them cannot be Robot2, DP does not support the state.

6.4.2 Actions

Robot1 and Robot2 take their actions synchronously. An action in value
iteration is then defined as a pair of their actions. When Robot1 and
Robot2 choose actions from AR1 = {aR1

i |i = 0, 1, 2, . . . , MR1 − 1} and
AR2 = {aR2

j |j = 0, 1, 2, . . . , MR2 − 1} respectively, the set of action in value
iteration is defined as their direct product: A = AR1 ×AR2.

We define 14 walking actions as shown in Table 6.11(a). We assume that
every robot executes each action once in a time step. 12 actions in this table
are chosen from Table 6.2. Stay and Backward are newly added. Though we
want to use all of the actions in Table 6.2, we have to reduce the number of
actions; otherwise the number of actions in A reaches 382. Since calculation
amount of value iteration is in proportion to the number of actions, that
number is not realistic.

As shown in the table, each robot uses a different set of actions. The
set for Robot2, AR2, is chosen as a suitable set of actions for going to ball.
We select them from the state-action map for the task of going to ball.
Moreover, three kicking actions belong to AR2 as shown in Table 6.11(b).
A kicking action changes the position of the ball. rafter and ϕafter mean the
distance and the direction of the ball from Robot2 after a kicking action.
The pose of Robot2 does not change after any kicking action. Robot2 always
chooses a kick action when 150 ≤ r < 250[mm] and −35 ≤ ϕ < 35[deg]. In
the case of an actual ERS-210, fine position adjustment is required for a kick

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 177

Table 6.11: Actions for Cooperative Scoring Task
(a) walking actions

name δx[mm] δy[mm] δθ[deg]
only for Robot1 Stay 0.0 0.0 0.0

Backward 0.0 -87.0 0.0
RightSide 114.0 0.0 0.0
LeftSide -107.0 0.0 0.0

for both robots Forward 0.0 113.0 0.0
TurnRight 20.0 5.0 -32.5
TurnLeft -15.0 5.0 28.0

only for Robot2 ShortForward 0.0 66.0 0.0
ShortRollRight 25.0 30.0 18.0
ShortRollLeft -25.0 30.0 -30.0
RightForward15 16.0 84.0 2.0
LeftForward15 -14.0 102.0 -2.6
RightBackward15 36.0 -94.0 0.0
LeftBackward15 -35.0 -95.0 0.0

(b) kicking actions
name rafter[mm] ϕafter[deg]

only for Robot2 KickForward 2000 0.0
KickRight 2000 -75.0
KickLeft 2000 75.0

from that range of (r, ϕ). In the simulation, however, we do not consider it
for simplicity.

As for Robot1, actions in AR1 are selected as the robot can run in four
directions and turn to both directions. We limit Robot1’s action to Stay
when when Robot2 kicks the ball.

The above setting looks like separation of roles of two robots. However, it
is never a definite role assignment because the robots can switch their names
each other in the task. Robot1 can go to the ball so as to kick. In this case,
Robot1 and Robot2 change their names when the distance of the ball from
Robot1 becomes nearer than that of Robot2. The number of actions in A is
M = 73 with the above setting.

6.4. VALUE ITERATION FOR SCORING TASK 178

6.4.3 State Space Discretization and Final State
Definition

We discretize the state space X as shown in Table 6.12. The number of
states reaches 142 · 92 · 152 · 9 · 19 = 610, 829, 100.

Table 6.12: Discretization of the state space

definition of intervals
x1 [x1]i ≡

[
300i− 2100, 300(i + 1)− 2100

)
[mm] (i = 0, 1, . . . , 13)

x2 [x2]i ≡
[
300i− 2100, 300(i + 1)− 2100

)
[mm] (i = 0, 1, . . . , 13)

y1 [y1]i ≡
[
300i− 1350, 300(i + 1)− 1350

)
[mm] (i = 0, 1, . . . , 8)

y2 [y2]i ≡
[
300i− 1350, 300(i + 1)− 1350

)
[mm] (i = 0, 1, . . . , 8)

θ1 [θ1]i ≡
[
24i− 180, 24(i + 1)− 180

)
[deg] (i = 0, 1, . . . , 14)

θ2 [θ2]i ≡
[
24i− 180, 24(i + 1)− 180

)
[deg] (i = 0, 1, . . . , 14)

r [r]i ≡

⎧⎪⎨
⎪⎩

[
100i + 150, 100(i + 1) + 150

)
[mm] (i = 0, 1, . . . , 2)[

50
(

i− 3
2

)2

+
675
2

, 50
(

i− 1
2

)2

+
675
2

)
[mm] (i = 3, 4, . . . , 8)

ϕ [ϕ]i ≡
[
10i− 95, 10(i + 1)− 95

)
[deg] (i = 0, 1, . . . , 18)

{
300 [mm]

Robot1 ball

{

30
0

[m
m

]

Robot2

Fig. 6.21: Discretization for Scoring Task

Robot2

Robot1

Fig. 6.22: An Example of Final State

As mentioned before, Robot2 chooses a kick action when 150 ≤ r <
250[mm] and −35 ≤ ϕ < 35[deg]. The final states are also chosen when
(r, ϕ) is in that range. When Robot2 has more than 50% of probability for
scoring after a kicking action from a discrete state, we regard the state as a
final state. Whether a discrete state s is a final state or not is judged by the
following Monte Carlo simulation:

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 179

1. ζ poses of Robot2 (x2, y2, θ2) are chosen from a discrete state at random.

2. Every kicking action is tried from all of the chosen poses and the number
of goals are counted respectively.

If one of the kicking actions can yield more than ζ/2 goals, the discrete state
is regarded as a final state. Figure 6.22 illustrates an example of final states
on our definition. There is a very high possibility of scoring in this state at
KickForward of Robot2.

We should explain the reason why the case where the ball is in the goal
is not defined as the final state. The reason is that the actual robots cannot
make accurate judgments whether the ball is in the goal or not due to the
measurement errors their poses and the ball. Even if the measurement
is complete, moreover, Robot2 does not make a shot unless the goal is
absolutely certain. Under the discretization in Table 6.12, such discrete
states are rare indeed.

In the case of our definition of final states, the task is finished truly when
Robot2 can score. If not so, the state is changed to another and the robots
continue the task.

6.4.4 State Transition

A state transition can be represented by

Pa
ss′ = P (s′|s, a) where, a ∈ A, (6.15)

s = ([x1], [x2], [y1], [y2], [θ1], [θ2], [r], [ϕ]), and

s′ = ([x1]
′, [x2]

′, [y1]
′, [y2]

′, [θ1]
′, [θ2]

′, [r]′, [ϕ]′).

All of the state transition probabilities are calculated and stored on memory
before value iteration; otherwise a probability of the same state transition is
calculated redundantly.

Reduction and Decomposition of State Transitions

By simple arithmetic, however, the combinations of (s, s′, a) reaches
N2M = 610, 829, 1002 · 73 = 27, 237, 189, 826, 697, 130, 000. Thus, whether
this number can be reduced or not determines the feasibility of DP.

6.4. VALUE ITERATION FOR SCORING TASK 180

This number can be reduced by cutoff of state transitions that fulfill
Pa

ss′ < η. In this case, the number of state transitions is not over 1/η toward
a set of (s, a). We choose η = 0.01 for the scoring task. In this case, the
number is reduced to 610, 829, 100 · 73 · 100 = 4, 459, 052, 430, 000.

When we can decompose state transitions into some independent events,
moreover, each state transition probability can be represented by the
multiplication of the probabilities. In this case, the amount of memory for
recording the state transitions can be reduced.

We can consider the following events in the task.

(i) displacement of a robot by an walking action

(ii) relative displacement of the ball by Robot2’s walk

(iii) displacement of the ball by Robot2’s kick

(i) and (ii) can be handled in the same way as the state transitions in the
going to ball task if no collision of the two robots is considered. Probot and
Pball are obtained by Monte Carlo integrations respectively, and stored on
the look-up tables shown in Table 6.3. A state transition probability toward
a set of walking actions by the two robots can be calculated from Probot and
Pball as

Pa
ss′ = Probot(Δ[x1], Δ[y1], [θi]

′∣∣[θi], a
R1)

· Probot(Δ[x2], Δ[y2], [θ2]
′∣∣[θ2], a

R2)

· Pball([r]
′, [ϕ]′

∣∣[r], [ϕ], aR2). (6.16)

For the event (iii), Pa
ss′ can be represented by

Pa
ss′ =Pkick([r]

′, [ϕ]′
∣∣aR2) (aR2: a kicking action) (6.17)

if we assume that the ball never collides with the wall or a robot. This
equation means that the state transition depends only on kicking actions.
Since we do not consider the distribution of the ball position after a kick,
Pkick is deterministic in the discrete state space S.

Virtual State Transition

We have decomposed the state transition probabilities into Probot, Pball, and
Pkick. On the other hand, we have neglected the existence of the following
events that occur in the task.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 181

(1) collision between the ball and the wall around the field

(2) change of Robot1/2 (abbreviation of Robot1 and Robot2)

(3) collision between the ball and a robot

(4) collision between Robot1 and Robot2

(1) and (2) should be especially considered in value iteration. If (1) is
neglected, the ball is regarded as being out of the field. In this case, a state-
value function obtained by value iteration will contain great errors. When
(2) is not considered, the roles of the robots are fixed. If (3) and (4) are ne-
glected in value iteration, the efficiency of the state-action map will decrease.

However, considerations of the above events increase the dependency of
each state variable. If we consider (1), Pkick depends not only on a kicking
action, but also the pose of Robot2. If Robot2 and Robot1 should be
changed after the kick, the pose of Robot1 should also be considered. Probot

and Pball also depend on all of the eight state variables if (2) is considered.

To solve this problem, we introduce virtual states and virtual state
transitions. In the case of (1), we decompose a state transition into the
following two processes: 1) the ball goes out of the field and stops, and 2)
the ball returns from the outside of the field to the inside instantaneously.
A ball out state, as shown in Fig. 6.23(a), is regarded as a virtual state.
The exportation of the ball is regarded as a virtual state transition. Since
virtual state transitions occur instantaneous, no reward is given. In the
actual world, such a pair of state transitions never happens.

In a value iteration algorithm, however, we can consider them if we
prepare memory space for recording the value of virtual states and their
state-transition probabilities. There are 118, 788, 390 ball out states in the
set of discrete states defined in Table 6.12 and the memory can be prepared.

In a virtual state transition from ball out state s, interval [r] of state s
moves to an inner interval, which contains a part of the field, as shown in
Fig. 6.23(a). Since s′ is fixed toward a ball out state s, Pa

ss′ = Pball out = 1
is the state transition model for each of them. In this case, a is the
teleportation. We call it a virtual action.

We also regard the event (2) as a virtual state transition. Actions of
the robots and a change of Robot1/2 by the actions is decomposed into

6.4. VALUE ITERATION FOR SCORING TASK 182

Robot1

ballRobot2

ball

Robot2

(a) a ball out state (b) a reverse state

vi
rtu

al
 st

at
e t

ra
ns

iti
on

virtual state transition

Fig. 6.23: Virtual States and Virtual State Transitions

a set of two state transitions. We define reverse states, which are virtual
states, as the states where Robot1/2 should be switched. An example is
shown in Fig. 6.23(b). In a reverse state, the change of Robot1/2 occurs
instantaneously. We implement a Monte Carlo algorithm to find a reverse
state. In the algorithm, distances of the ball from Robot1 and Robot2 are
compared from various continuous state x that belongs to s when both of
the robots can observe the ball. If the average distance from Robot1 is
smaller than the other, the state s is regarded as a reverse state.

Virtual state transition probabilities Prev from reverse states can be rep-
resented as

Prev([r]
′, [ϕ]′|Δ[x], Δ[y], [θ1], [θ2], [r], [ϕ]). (6.18)

Prev can be computed by a Monte Carlo sampling of values
(Δx, Δy, θ1, θ2, r, ϕ) from the intervals (Δ[x], Δ[y], [θ1], [θ2], [r], [ϕ]).
(Δx, Δy) denotes a relative position of Robot1 and Robot2. In our
algorithm for computing Prev, the sampling is not at random but fixed.
Three values (two boundary values and the mean value) are chosen from
Δ[x] and Δ[y] and two boundary values are chosen from the other intervals.
45, 242, 367 kinds of virtual state transitions are recorded on a look-up table
by this implementation.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 183

6.4.5 Reward

The reward is given as Ra
ss′ = −1[step] when the robots take their ac-

tions respectively. When both of the robots cannot observe the ball,
Ra

ss′ = −∞[step] is given. Therefore, the purpose of decision making is
to reach a final state as small number of steps as possible without losing the
ball.

6.4.6 Value Iteration

We implement the value iteration algorithm on a computer that has
3.0[GB] RAM, a 300[GB] hard disk drive (HDD) and 3.2[GHz] Pentium
D CPU. The algorithm starts from the definition of state space S, set
of actions A, and reward Ra

ss′. After that, two look-up tables of a
state-value function and a state-action map are created on HDD. Each
look-up table is divided into 142 = 196 files with respect to a set of ([x1], [x2]).

Each action is represented by a unique number from 0 to 72. 1 byte is
required for recording each of these numbers. Before value iteration, zero
is filled in the state-action map except the elements of final states, ball out
states, and reverse states. They are given unique numbers: 255, 254, and
253 respectively.

In the look-up table for the state-value function, final states are given
zero as their value. Nonzero values are given to the other states. A 2-byte
unsigned integer is used for representing a value. −1[step] is equivalent to
100 on the integer data.

In the next process, Probot, Pball, and Prev are computed respectively.
(Pball out and Pkick are deterministic.) As shown in Table 6.13, all of the
state transition probabilities can be represented by much smaller kinds of
probabilities than N2M .

Table 6.13: Number of State Transitions

probabilities number of combinations
Probot 1, 024
Pball 7, 485
Prev 45, 242, 367

6.4. VALUE ITERATION FOR SCORING TASK 184

The value iteration algorithm is then executed. Required files are loaded
on memory, improved by Eq. (2.11), and rewritten. Since a Pentium D has
two cores, computing speed is enhanced by multiprocessing. We divide our
value iteration algorithm to Process 1 for [x1]i (i = 0, 1, . . . , 6) and Process
2 for [x1]i (i = 7, 8, . . . , 13) and execute them simultaneously.

The size of the state-action map, which is called the 8D map hereafter,
can be calculated by

L = N log2
M� = 610, 829, 100 ·
log2 76� = 4, 275, 803, 700[bit]. (6.19)

M = 76 in the above calculation contains 73 kinds of action in A, a symbol
for representing a final state and two kinds of symbol for the virtual actions.

We have recorded the maximum difference of value V (s) before and af-
ter the process Eq. (2.11) in each sweep. The differences are illustrated in
Fig. 6.24. The horizontal axis indicates the computation time. The verti-
cal axis is a logarithmic one for the difference of value. Roughly speaking,
it takes twice processing time to reduce the difference to a tenth value as
shown in this graph. If the value iteration is aborted when the difference is
less than one, we can obtain a 8D map with 135 hours.

Fig. 6.24: Reduction of Maximum Change of Value

6.4.7 Behavior of Robots with The 8D Map

Emergence of Cooperative Behavior

We show some examples of the robots’ behavior obtained by the state-action
map. In Fig. 6.25(a), two robots, which were called RobotA and RobotB,

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 185

A0

A1

B0B1

(b) behavior from 0 to 1

A0

B0
B3A1

B2B1

A2
A3

initial pos.
of the ball

(a) whole behavior in the trial

blue: actions as Robot1
red: actions as Robot2

Fig. 6.25: Example of Cooperative Behavior

A0

B0
B3A1

B2

B1

A2

A3

initial pos.
of the ball

Fig. 6.26: Behavior without Cooperation

6.4. VALUE ITERATION FOR SCORING TASK 186

started moving from the bottom left corner and in front of the sky-blue
goal respectively. The ball was put at the center of the field. In this figure,
some important positions of RobotA and RobotB are numbered as Ai and
Bi respectively. The numbers are synchronized. When the state became a
final state, a suitable kicking action was chosen by the same Monte Carlo
algorithm that was used for searching final states.

In Fig. 6.25(b), we pick out the behavior of the robots from (A0,B0) to
(A1,B1) from Fig. 6.25(a). In Fig. (b), both of the robots went to the ball
at first. RobotB, however, went back the way it had come along the way.
RobotB handed over the ball to RobotA at the moment though it had the
right of a kick as Robot2. RobotA became Robot2 just at A1. It means that
the difference between Robot1 and Robot2 does not fix the task of each robot.

After that, RobotA kicked the ball at A2. RobotB waited for the kick
at B2. After the pass, RobotB kicked the ball at B3 and the task was
completed. In a precise sense, the pair of RobotA’s kick at A2 and RobotB’s
wait at B2 is only a way to reduce the number of steps. Though it is our
subjective judgment, however, we can regard this state-action sequence from
(A0,B0) to (A2,B2) as cooperative behavior and regard RobotA’s kick as a
pass.

The evidence of our view will be given by Figure 6.26. In this figure,
each robot does not consider the other and both of the robots chase the
ball in this figure. These robots used a common state-action map in the
space spanned by (x2, y2, θ2) and (r, ϕ). This five dimensional state-action
map will be explained later. When Fig. 6.25 and 6.26 are compared, we can
understand that the robots with the eight dimensional state-action map can
be regarded as cooperative.

We show another example in Fig. 6.27. In this figure, we can see two
passes in one trial. RobotB waited for RobotA’s kick at B1 at the first pass.
RobotA then waited for RobotB’s kick at A2.

Efficiency Loss by Discretization

On the other hand, the cooperative behavior given by the eight dimensional
state-action map is not perfect due to the coarse discretization of the state
space. As shown in Fig. 6.25, the steps from B2 to B3 could be saved if
RobotB waited for the kick of RobotA just at B3. In Fig. 6.27, the positions
of the robots that waited for a kick could be closer to the position where the

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 187

A0

B0 B3

blue: actions as Robot1
red: actions as Robot2

A1 B2

B1

A2
A3

initial pos.
of the ball

Fig. 6.27: Another Example of Cooperative Behavior

ball came. However, the margin is necessary due to the uncertainty of the
poses of the robots and the position of the ball in the discrete state space.
Though we assume that the state transition with a kick is definite in the
continuous space, the state transition becomes probabilistic in the discrete
space as represented by Eq. (6.17). If we want to solve this problem, another
definition of state variables will be required.

Another problem is observed in this state-action map. In the case shown
in Fig. 6.28, both of the robots stop walking at (A1,B1) due to infinite
virtual state transitions between two reverse states. That is because reverse
states are contained in the possible states from another reverse state. This
kind of incompleteness is inevitable since a part of the value iteration
algorithm must choose which robot is near the ball under the discretization.

In the continuous state space, moreover, there are many states where a
score is possible, while they are not regarded as possible states for scoring in
the discrete state space.

Additional Policy

The finer the discretization is, the ill-effect will be reduced. As a realistic
way, on the other hand, we can cover the imperfection of the state-action
map with additional control policies that are coded on the continuous state
space. However, a tenuous ad-hoc method should not be chosen.

Our proposition toward this problem is as follows. When decision making

6.4. VALUE ITERATION FOR SCORING TASK 188

A0

B0 blue: actions as Robot1
red: actions as Robot2

A1

B1

the ball

Fig. 6.28: Infinite Loops of Virtual State Transitions

in continuous state space X has certain advantage over that in discrete
space, we should add some algorithms that decide actions in X .

We therefore implement the following additional policies.

(a) Decision of Shot: When Robot2 judges whether a score is possible or
not by the calculation in X without the 8D map. When it is possible,
Robot2 choose an appropriate kicking action.

(b) Detection of Reverse State: When a state is a reverse state in X ,
a virtual state transition occurs without relation to the 8D map. When
a non-reverse state in X is regarded as a reverse state in the 8D map,
there is no information for decision making. In this case, a change of
Robot1/2 occurs and new Robot2 chooses Forward in order to avoid the
deadlock.

Since the state-action map does not consider the case where both of the
robots cannot observe the ball, we add another policy for ball search. With
this policy, RobotA chooses TurnLeft and the other chooses TurnRight so as
to search the ball.

6.4.8 Evaluation

We evaluate the 8D map with a simulator. In the evaluation, 10, 000 initial
states are chosen. Each trial starts from one of them. When the number
of decisions is over 180 times, the trial is regarded as a failure trial. In
simulation, the wall reflects the ball with some extent of reflection.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 189

6.4.9 Effectiveness of Cooperation

At first, we evaluate whether the cooperation by the 8D map is effective or
not. We create another state-action map, called the 5D map here, under
the consideration of (x2, y2, θ2, r, ϕ). A robot with this map repeats a set of
some walking actions and a kicking action so as to score. The discretization
interval of each axis is identical with that of the 8D map.

We try the following cases: 1) two robots with the 8D map, 2) two
robots with the 5D map, and 3) one robot with the 5D map. We measure
their success rates. Only when the robot(s) can score from a common initial
state in all of three cases, the sum of rewards is recorded respectively.

We also evaluate another case where the collision of two robots are con-
sidered in simulation. When the distance between two robots is shorter than
50[mm], we regard this state as a collision. The trial is then regarded as a
failure trial.

Table 6.14: Efficiency of Cooperation

cases success rate average success rate
of steps (stop by collision)

8D Map 97.4[%] 36.3[step] 95.9[%]
5D Map (two robots) 93.8[%] 40.9[step] 70.9[%]
5D Map (one robot) 83.2[%] 50.5[step] —

Table 6.14 shows the results. When the collisions are not simulated,
both the success rate and the number of steps by the 8D map are better
than those by the 5D map. 4.6[step] were reduced by the pass behavior.
The 8D map is more effective when the collision of the robots is considered.
It is interesting that the robots with the 8D map tend to move apart
from each other though their collision is not considered in the value itera-
tion. The reason is simply because the robots became a passer and a receiver.

6.4.10 Effectiveness of the Additional Algorithms

We evaluate the additional policies: (a) and (b). In Table 6.15, we show the
ability of algorithm (a). It can reduce the number of steps surely though

6.4. VALUE ITERATION FOR SCORING TASK 190

the reduction of steps is only 0.5[step].

The result in Table 6.16 has two faces. The 8D map is incomplete without
algorithm (b). The percentage only with the 8D map, 62.7[%], is worse than
any result with the 5D map. On the other hand, if the incompleteness is
compensated by algorithm (b), the 8D map can output cooperative behavior
with the high percentage. When algorithm (b) is used, there is no failure by
the deadlock at reverse states in the 10, 000 trials. The 2.6[%] of failures at
the use of algorithm (b) happen when the ball stops by the wall, or when
the ball cannot be found by the ball search algorithm. In the former cases,
robots cannot approach to the ball for fear that they collide with the wall.
This is the ill-effect of coarse discretization of robots’ positions. We show
the behavior of the robots with algorithm (b) in Fig. 6.29 from the identical
initial state with that of Fig. 6.28. Though the change of Robot1/2 occurs
six times, decision making of the robots is reasonable.

Table 6.15: Efficiency of Shot Decision in X

cases success average
rate of steps

without (a) 97.3[%] 39.3[step]
with (a) 97.4[%] 38.8[step]

Table 6.16: Avoidance of Deadlock

cases success
(with (a)) rate
without (b) 62.7[%]
with (b) 97.4[%]

blue: actions as Robot1
red: actions as Robot2

A0

ball

B0

B1

A1

Fig. 6.29: Avoidance of Infinite Loops

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 191

6.5 Compression of The 8D Map

The huge state-action map, which contains 610, 829, 100 states, is compressed
in this section.

6.5.1 Vector Quantization Process

Blocking

At first we cut the state-action map on the axes of x1, x2, y1, and y2 for
creating vectors. In the task of going to ball, efficient VQ maps are obtained
when vectors are made by cutting on x-axis and y-axis. We therefore chose
that blocking way.

When a state is represented by

si = ([x1]ix1 , [x2]ix2 , [y1]iy1, [y2]iy2, [θ1]iθ1
, [θ2]iθ2

, [r]ir , [ϕ]iϕ),

we define that the relation between the state index i of si and the indexes of
the axes as

i = 14 · 92 · 152 · 9 · 19 · ix1

+92 · 152 · 9 · 19 · ix2

+9 · 152 · 9 · 19 · iy1

+152 · 9 · 19 · iy2

+15 · 9 · 19 · iθ1

+9 · 19 · iθ2

+19 · ir
+iϕ

= 43, 630, 650ix1 + 3, 116, 475ix2 + 346, 275iy1

+38, 475iy2 + 2, 565iθ1 + 171iθ2 + 19ir + iϕ. (6.20)

We then fix a blocking way to(
iν
iε

)
=

(
ν(i)
ε(i)

)
=

(
�i/38, 475�
i%38, 475

)

=

(
1134ix1 + 81ix2 + 9iy1 + iy2

2565iθ1 + 171iθ2 + 19ir + iϕ

)
, (6.21)

6.5. COMPRESSION OF THE 8D MAP 192

where iν = 0, 1, 2, . . . , 15, 875 and iε = 0, 1, 2, . . . , 38, 474. In this definition,
the number of elements in a vector, Nε, is 38, 475. The number of vectors,
Nν , is then 15, 876.

The size of a VQ map with the above blocking way is calculated by

LVQ = Nν
log2 Nc�+ NεNc
log2 M�
= 15, 876
log2 Nc�+ 38, 475Nc
log2 73� (6.22)

from Eq. (3.18). We have calculated the size of the state-action map by
Eq. (6.19) as 4,275,803,700 [bit]. Since we fix the limit of memory to 10[MB]
= 8 · 10 · 220 = 83, 886, 080[bit], the number of representative vectors, Nc,
should be less or equal to 310. When Nc = 310, LVQ = 83, 633, 634[bit].

Computation of Distortion Measure

The state-action map contains not only actions in A, but also the virtual
actions and a symbol for representing final states. We define the distortion
of a change from a virtual action to an action in A as zero. That is because
the virtual actions are not required when the map is used as mentioned in
Sec. 6.4.7. The distortion for a change from the symbol of a final state to an
action is also defied as zero.

The other distortions are based on Eq. (3.22). Here we have to choose
whether all distortions are calculated prior to clustering or not. All of the
distortions must be recorded on memory if they are buffered in advance.
On the other hand, calculation cost becomes large if each distortion is
calculated in the clustering process. The number of combinations of s ∈ S
and a ∈ A is 610, 829, 100 · · ·73 = 44, 590, 524, 300. When each value of
distortion is recorded in 2-byte integer, the required size of memory is
89, 181, 048, 600[byte]≈ 83[GB]. Since this size is small enough to store on a
HDD nowadays, we choose to buffer all of the values of distortion measure.
The values of distortion are written in Nν = 15, 876 files. Each file relates
to a vector and stores all values of distortion d(s, a) whose state s belongs
to the vector.

The algorithm for creating the files of distortion can be created with a
slight modification of the value iteration algorithm. Every V (s) is calculated
on every pair of (s, a) in the value iteration. Therefore, the files can be built
by an additional process that computes and records V ∗(s) − V (s) for every
a ∈ A.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 193

Clustering Algorithm

We use the Lloyd algorithm for clustering. Though the implemented algo-
rithm is not different from the algorithm in Fig. 3.9, file loading processes
should be added to it. At composition of clusters, only one file of a vector
is loaded on memory. In the computation of representative vectors, files of
vectors in a cluster are loaded for computing a representative vector.

6.5.2 Execution of The VQ Process and Its Result

As mentioned above, Nc ≤ 310 is a necessary condition for storing a VQ map
for scoring task in the flash memory. We choose Nc = 256 as the number of
representative vectors. In this case, every representative vector index can be
represented by an 8[bit] number. This number is convenient for coding. The
size of a VQ map with these parameters is

VVQ = Nν
log2 Nc�+ NεNc
log2 M�
= 15, 876
log2 256�+ 38, 475 · 256
log2 73�
= 127, 008 + 68, 947, 200 = 69, 074, 208[bit] ≈ 8.23[MB] (6.23)

according to Eq. (3.18). This size does not exceed the 10[MB] limit.

The VQ algorithm was executed without any condition of stop. It took
9.4 hours to compute all values of state-value distortion. After that, a VQ
map by computation of representative vectors and that by composition of
clusters were obtained one after the other. The average time for computation
of representative vectors was 45 minutes. That for composition of clusters
was then 71 minutes. Therefore, it takes 116 minutes for one pair of iteration.

We recorded every VQ map after the computation of representative
vectors and after composition of clusters. Each of them was evaluated by
the simulation, and we have obtained the results shown in Fig. 6.30. The
data points in this figure start from the simulation result of the VQ map
after first computation of representative vectors, and ends on that of the VQ
map after 30th computation of representative vectors. We have stopped the
computation after the 40th composition of clusters. That is because the VQ
maps after 30th computation of representative vectors make the identical
result in the simulation.

As shown in this figure, both of success rates and efficiencies were
improved until 6th pair of iteration. After that, however, the efficiency

6.5. COMPRESSION OF THE 8D MAP 194

95

96

97

98

99

100

0 10 20 30 40 50 60

41

42

43

44

45

46

0 10 20 30 40 50 60

after computation of rep. vectors
after composition of clusters

converged map
 (63.3 [hour])

smallest step map
 (20.9 [hour],
6th map after composition of clusters)

computation
time [hour]

computation
time [hour]

su
cc

es
s r

at
e

[%
]

ef
fic

ie
nc

y
−J

 [s
te

p]
at

 su
cc

es
sf

ul
 tr

ia
ls

Fig. 6.30: Convergence of VQ Map for Scoring Task

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 195

suddenly fell down in exchange for enhancement of the success rate. Finally,
the evaluation result converged on 98.0[%] success and −J = 43.3[step]. It
seems that the enhancement of success rate was more effective to reduce the
distortion than the that of efficiency. As a result, the efficiency of the final
VQ map was worse than the 6th map after composition of clusters. If the
uncompressed map could give assurance of 100[%] success, the graph in this
figure would be easier to understand.

We choose the 6th VQ map after composition of clusters and the VQ
map after the convergence as the targets for analysis. They are called the
smallest step VQ map and the convergent VQ map hereafter.

Figure 6.31(a) illustrates behavior of the robots with the 6th VQ map.
The initial state is identical with that of Fig. 6.28 and Fig. 6.29. The number
of kicks increases from one to two because of a subtle change of the policy.
We should also pay attention to the bent footstep of RobotA. From this
initial state, RobotA does not work in the both cases of the VQ map and
the uncompressed map. Since the behavior of RobotA, which is regarded
as Robot1, is scarcely related to the task, the part of the state-action map
is changed without harm. In Fig. 6.31(b), we give another example. The
initial state is the same one with Fig. 6.27. In this example, the number of
kicks is reduced from three to two. The VQ map does not always increase
the number of kicks.

Some parts of the quantization table of the smallest step VQ map is
shown in Fig. 6.32 and 6.33. Figure 6.32 represents the distribution map of
representative vectors on x2y2-space when the pose of Robot1 is fixed. The
area where Robot1 exists are marked by a blue frame in each of the eight
figures. Roughly speaking1, these figures illustrate the tendency of motion
of Robot2 toward the position of Robot1.

The clustering result in (a) is simple as those of the task of going to ball
in Fig. 6.16. It seems that the position of Robot1 is too far from the target
goal to cooperate with Robot2 in this case. When Robot1 exists near the
goal, on the other hand, the distribution maps of clusters from (b) to (h)
are mosaic-like. Not only Robot2’s position, but also Robot1’s position have
important implications to the decision making in those cases.

1It is rough statement because each representative vector has information of Robot1’s
actions.

6.5. COMPRESSION OF THE 8D MAP 196

blue: actions as Robot1
red: actions as Robot2

A0

ball

B0

B1

A1 B2

(a)

blue: actions as Robot1
red: actions as Robot2

A0

ball

B0 B1

A1 B2
A2

(b)

Fig. 6.31: Behavior of Robots with VQ Map

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 197

Some parts of the quantization table is shown in Fig. 6.32-6.33. Fig. 6.32
represents the distribution map of representative vectors on x2y2-space when
the pose of Robot1 is fixed. The area where Robot1 exists are marked by
a blue frame in each of the eight figures. Roughly speaking, these figures
illustrate the tendency of motion of Robot2 toward the position of Robot1.
Figure 6.33 represents the distribution map of representative vectors on
x1y1-space when the pose of Robot2 is fixed.

The distribution of the representative indexes in Fig. 6.32(a) is simple.
The field is divided into some edge parts and some central parts. They are
then separated according as the distance from the sky-blue goal. It seems
that the position of Robot1 is too far from the target goal to cooperate with
Robot2. In this case, Robot2 tries to bring the ball to the goal by itself. The
action of Robot2 is based on the relation between the position of the ball
and that of the goal. When Robot1 is near the goal, on the other hand, the
distribution is mosaic-like as shown in Fig. 6.32(b)-(d). Not only Robot2’s
position, but also Robot1’s position have important meaning to the decision
making.

In the case of Fig. 6.33, the space is divided parallel to x-axis. It means
that Robot1’s position on y-axis, y1, influences the way of cooperation with
Robot2 rather than x1. It seems that Robot2 changes the direction to ap-
proach the ball and to kick it in response to Robot1’s position.

6.5. COMPRESSION OF THE 8D MAP 198

Fig. 6.32: Parts of Quantization Table (Robot1’s position is fixed.)

Fig. 6.33: Parts of Quantization Table (Robot2’s position is fixed.)

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 199

6.6 Comparison of Efficiency

6.6.1 Comparison with the 8D Map and the 5D Map

We evaluate the smallest step VQ map and the convergent VQ map, and
compare them to the 8D map and the 5D map. At first, we measure
the performance of the VQ maps without consideration of collisions of
the robots. The result is compared to the results of the other maps in
the left part of Table 6.17. In the case of the smallest step VQ map,
performance becomes 2.9[step] worse than that of the 8D map though
it is 2.4[step] better than the performance of the 5D map. There is
no reduction of the success rate. The success rate of the convergent VQ
map is better than the 8D map, while the average of steps increases 4.4[step].

The average of changes in the table denotes the number of the changes
of Robot1/2 (not by a map but by the pre-applied decision making in X)
per one trial. It indicates the closeness of collaboration between the two
robots. As shown in the table, this value of the VQ map is 0.8 smaller than
that of the 8D map. Though the robots can make passes with the VQ map,
the VQ map tend to make the robots choose solo attack.

The above result quantitatively indicates that the performance decrement
occurs through the lossy compression. However, it is significant that the VQ
method never makes the map collapse in spite of the high compression ratio
(1 : 0.016). The unevenness of the results of the two VQ maps is derived
from imperfectness of the 8D map, which does not guarantee 100[%] of
success.

Table 6.17: Efficiency of Cooperation with VQ Maps
success average average of success rate

rate of steps changes (stop by collision)
8D Map 97.4[%] 37.5[step] 3.2 95.9[%]
smallest step VQ Map 97.4[%] 40.4[step] 2.4 95.6[%]
convergent VQ Map 98.0[%] 41.9[step] 2.4 96.1[%]
5D Map (two robots) 93.8[%] 42.8[step] — 70.9 [%]

From the right side of Table 6.17, we can verify that a quality of the 8D
map can be preserved after the compression. In the right side, the success
rates in the case where the collision is considered are illustrated. From these
results, we can verify that the VQ map avoids the collision as well as the 8D

6.6. COMPARISON OF EFFICIENCY 200

map. Though the chance of active cooperation like passes are reduced by the
compression, the VQ map can sustain the property of the 8D map.

CHAPTER 6. APPLICATION AND EVALUATION II: ROBOCUP 201

6.7 Discussion

In this section, the VQ method was applied to state-action maps for two
types of task in robot soccer: the going to ball task, and the scoring task.

In the going to ball task, we verified that a VQ map can be used in
an actual robots. On the actual robot, the VQ map can achieve equal
results with the uncompressed state-action map. As mentioned in Sec. 6.2.6,
the noise of measurements makes failure trials increase. Though the VQ
map has some broken parts, these faults are hidden. This result is not
trivial when we implement policies on actual robots. A fine state-action
map is sometimes unnecessary when measurements or motions of robots
are not precise. On the other hands, we can obtain an efficient state-
action map in theory when the discretization is fine. The VQ method can
be a tool for adjustment of the size of a policy under such a practical problem.

The scoring task is the largest scale problem in the tasks examined in
this thesis. Though the VQ maps are not evaluated on the actual robots,
their size can be reduced under the memory limitation of ERS-210. DP
and VQ processes can be finished with 13 days. If there is one more state
variable, the computation time will jump to 100 days. By definition, such a
basic value iteration cannot deal with an infinite number of state variables.
However, we think that the number of state variables will be increased
one-by-one. Nowadays, there are two topics, which will accelerate the ability
of value iteration, about commercial CPUs.

One of them is parallelization of CPUs. Though it took ten days to
obtain the 8D map, this time can be reduced by additional multiprocessing.
It would take 20 days if we had not executed the value iteration algorithm
on two processes. Some kinds of CPU for personal computers have two cores
nowadays and it will increase in future.

The other is the release of 64-bit CPUs for the public. They make coding
of DP easy through the explosion of address space. The value iteration
algorithm in this paper had to read and write data between RAM and
HDD frequently due to the limitation of the memory space. Such a process
becomes the cause of slow down and bugs. If we use a 64-bit CPU, the code
for value iteration will be simple.

6.7. DISCUSSION 202

203

Chapter 7

Total Evaluation and
Discussion

In this thesis, the proposed vector quantization method is applied to the
following tasks.

• puddle world task

• swinging up of the Acrobot

• decision making of ERS-210 for RoboCup four legged league

– running to ball task

– scoring task

In this chapter, the VQ method and some concepts that are used for more
than one task are discussed from the viewpoint of their versatility. In Sec. 7.1,
space and time costs of our method are evaluated from the results of the above
tasks. The ability of the state-value distortion is evaluated in Sec. 7.2.

7.1. EVALUATION OF COSTS OF EACH PROCESS AND VQ MAP204

7.1 Evaluation of Costs of Each Process and

VQ Map

7.1.1 Performance of VQ Maps

In Table 7.1, the highest compression ratio that has been obtained in this
thesis is illustrated for each task. Psame denotes the consistency probability
of actions on a pair of adjoining states. We introduce this index in order
to show the redundancy of each uncompressed state-action map. It also
indicates the inefficiency of discretization when the value is small.

In the case of the puddle world task, we cannot expect a high compression
ratio when the discretization is coarse. In that case, the number of bits is cut
down before compression. This economization of computing resources at DP,
however, reduces the chance of obtaining more efficient policies. In effect,
we can obtain more efficient and smaller VQ map, which is compressed
from the N = 202 state-action map, than the N = 102 state-action map.
Moreover, the size of the quantization table is not ignorable when the
number of states, N , is small. It is another reason of the low compression
ratio. As shown in Table 7.2, the number of vectors are reduced from 20 to
3 by the compression. If only the codebook of the VQ map is considered,
the self-compression ratio is 0.15. However, the self-compression ratio of the
DLVQ map is just 0.355.

Still, we can verify that the use of memory of VQ is better than the tree
structure in Sec. 3.6.2. It is one of the significant results in this thesis.

Table 7.1: Features of Problems and Maps of Applications in This Thesis

state-action map VQ map comp.
task n M N size [bit] Psame N size [bit] ratio
puddle world 2 4 100 200 0.69 400 142 1 : 0.71†

puddle world 2 4 4.0 · 104 3.2 · 105 0.96 1.6 · 105 1.3 · 104 1 : 0.16†

the Acrobot 4 3 1.5 · 107 3.0 · 107 0.61 3.0 · 107 9.3 · 103 1 : 0.0031†

going to ball 5 38 7.7 · 105 4.6 · 106 0.39 7.7 · 105 6.0 · 104 1 : 0.013‡

scoring 8 73 6.1 · 108 4.3 · 109 0.34 6.1 · 108 6.9 · 107 1 : 0.016‡

†: effective compression ratio; ‡: self-compression ratio
n: number of state variables; M : number of actions; N : number of discrete states

On the other hand, much higher compression ratios are obtained in the

CHAPTER 7. TOTAL EVALUATION AND DISCUSSION 205

Table 7.2: Summary of Discretization
task N Nν Nε Np Nc

puddle world (coarse) 400 20 20 — 3
puddle world (fine) 160,000 400 400 — 36
the Acrobot 30,233,088 648 46,656 — 1
going to ball 765,450 630 405 3 8
scoring 610,829,100 15,876 38,475 — 256

tasks of swinging up of the Acrobot and scoring at RoboCup. Though their
redundancy index Psame are smaller than that of the puddle world task, the
obtained compression ratios are better than those of the puddle world task.
The similarity between the tasks of the Acrobot and ERS-210 is that

• each problem is defined in higher dimensional state space than that of
the puddle world task, and that

• there are some redundant axes.

In the case of the Acrobot, θ1-axis and θ2-axis are redundant. In the case of
the robot soccer, x-axis and y-axis are redundant. VQ is suitable for reducing
this kind of redundancy. Note that the redundancy along an axis does not
mean that these axis should be roughly divided on DP. To solve an accurate
state-value function, fine discretization of each axis is important. It is not
until a state-action map is obtaned that the redundancy on an axis is known.

7.1.2 Computing Complexity for Building

We next summarize the computing complexity of DP and VQ in Table 7.3,
and Table 7.4. In the case of the swinging up task of the Acrobot and
the scoring task of ERS-210, the amount of memory is calculated from
the size of look-up tables for recording the map, the state-value function,
probabilities of state-transition, and values of distortion measure. In the
other cases, the actual consumption of memory measured by the operating
system is written.

When the PNN algorithm is used, its computation amount is as same
order as that of DP. The Lloyd algorithm can finish compression within tens
percent of the time for DP.

On the other hands, required amount of memory for VQ is ten times or
one hundred times as large as that of DP in ever task. The huge amount

7.1. EVALUATION OF COSTS OF EACH PROCESS AND VQ MAP206

Table 7.3: Summary of Costs for DP
task time (frequency of CPU) memory
puddle world (N = 4002) 21[min](1.5 GHz) 4 · 106[bit]
the Acrobot 17[hours] (1.5 GHz) 2 · 109[bit]
going to ball 25[min] (3.6 GHz) 3 · 106[bit]
scoring 10[day] (3.2 GHz, 2 process) 2 · 109[bit]

Table 7.4: Summary of Algorithms and Their Cost for VQ

task used algorithms time (frequency of CPU) memory
puddle world PNN, Lloyd, VI, DLVQ 33[min] 9 · 106[bit]
the Acrobot Lloyd 7[min]-38[min] (1.5GHz) 8 · 109[bit]
going to ball PNN with partitioning 4.5[min]-163[min] (3.6GHz) 1 · 108[bit]
scoring Lloyd 20.9[hour]-63.3[hour] (3.2GHz) 9 · 1010[bit]

VI: value iteration after vector quantization

of memory is used for storing the values of distortion. Though this use of
memory is effective for reducing the computing time of VQ, it will be a
difficulty for compressing huger state-action maps. We should find a way to
balance the amount of memory and the time for computing.

7.1.3 Double Layered Vector Quantization

We have introduced vector quantization of VQ maps and this method has
applied to the puddle world task and the going to goal task. In the case of
the puddle world task, the sizes of VQ maps can be reduced to 89[%]–44[%]
sizes. The larger the original state-action map is, the larger compression
ratio can be obtained. On the other hand, enhancement of the compression
ratio between the VQ map and the DLVQ map is only 1 : 0.87 in the going
to ball task. Though the number of states at the going to ball task are larger
than the numbers of states for the puddle world task, this enhancement is not
large. The number of actions for the going to ball task is 38, while that of the
puddle world task is 4. It seems that the existence of many actions prevents
the DLVQ algorithm for compressing the VQ map with high compression
ratio since the DLVQ algorithm is a lossless compression method.

7.1.4 Entropy Function

It seems that evaluation by the entropy function toward every axis
helps to find good ways of blocking. As shown in Table 4.1 and Table 6.5,

CHAPTER 7. TOTAL EVALUATION AND DISCUSSION 207

the entropy function chooses suitable directions to cut the state-action maps.

Not only the evaluation toward each axis, but also ways of blocking
are evaluated by the entropy function. The results are shown in Fig. 4.11,
Fig. 6.14, and Table 6.6-6.7. In the puddle world task, the evaluation is not
clearer than the evaluation toward each axis. We can marginally expect a
high compression ratio from some pairs of (ν, ε) with small H and large Nε.
On the other hand, in the case of the going to ball task, we can estimate
suitable ways of blocking with the entropy function.

We think that there is still room for improvement on the use of the entropy
function. Moreover, if we want to find suitable blocking ways with higher
accuracy, use of the state-value distortion should be also tried. However,
it will be difficult to find a better way than the entropy evaluation due to
enlargement of computing time. As mentioned before, moreover, the acutual
appropriateness of blocking is unknown until a VQ map is obtained.

7.2. EVALUATION OF STATE-VALUE DISTORTION 208

7.2 Evaluation of State-Value Distortion

The state-value distortion is proposed in this thesis and it can be applied to
all of the tasks in this thesis. However, there are some possible definitions
of distortion measure. Here we evaluate the state-value distortion with some
definitions.

7.2.1 Other Distortion Measures

Difference Count Distortion

One of them counts the number of different actions between two maps. The
distortion in a state is defined as

d′π(s, a) =

{
0 (if π(s) = a)

1 (otherwise)
, (7.1)

when the action at s ∈ S is changed from π(s) to a ∈ A. The distortion
measure between a vector and a representative vector can be written as

D′π
vector(v, c) =

Nε−1∑
i=0

{
0 (vi = ci)

1 (vi �= ci)
, (7.2)

where v = (v0, v1, . . . , vNε−1) and c = (c0, c1, . . . , cNε−1). D′π
vector can be

called a difference count distortion.

Control Input Distortion

The other is defined in consideration of displacement of actions. When the
displacement of action a ∈ A on xy-plane is represented by xa, the distortion
at s ∈ S is defined as

d′′π(s, a) = |xπ(s) − xa|. (7.3)

The distortion between a vector and a representative vector is then defined
as

D′′π
vector(v, c) =

Nε−1∑
i=0

|xvi
− xci

|. (7.4)

D′′π
vector can be called a control input distortion because it is measured in

parameter space of control input.

CHAPTER 7. TOTAL EVALUATION AND DISCUSSION 209

7.2.2 Comparison on The Puddle World Task

We compare the state-value distortion, the difference count distortion, and
the control input distortion on the puddle world task. VQ maps are created
with every distortion measure. The PNN algorithm, the Lloyd algorithm,
and the value iteration algorithm for VQ maps are applied to creation of
each VQ map. After that, each VQ map is evaluated by the simulation.

Figure 7.1 shows the result. The state-action maps with
N = 102, 202, 402, 1002, 2002, 4002 are compressed and their sizes and
efficiencies are illustrated from Fig. (a) to (f) respectively. The numbers of
clusters are chosen from Nc = 1, 2, . . . , 10, 24, 25, 26, . . . Each horizontal axis
and vertical axis indicates size and efficiency respectively.

As shown in this figure, the advantage of the state-value distortion
is clear. In Fig. (b)-(f), the state-value distortion endures higher ratio
compression than the others. The efficiency of VQ maps created with
the state-value distortion are then equal or better than the other maps in
Fig. (a) and (c)-(f). The difference of ability is not prominent between the
difference count distortion and the control input distortion.

Figure 7.2 illustrates an example of the cases where the state-value distor-
tion is advantageous. The map in (a) is compressed to a VQ map in (b) with
the state-value distortion. The VQ map obtained by the other definitions of
distortion is coincidentally identical and it is shown in (c). The clustering re-
sults of the VQ maps in (b) and (c) are illustrated in (d) and (e) respectively.

The major difference between (d) and (e) is the clustering result of K1.
Even though the alignment of actions in the vectors from v2 to v17 is oppo-
site of the alignment in the vectors from v74 to v89, the state-value distortion
Dπ

vector makes them belong to the same cluster K1. Since Dπ
vector can consider

the equality of aright and aup in this area, they can belong to the same
cluster. On the other hands, the clustering result in (e) by the other defi-
nitions of distortion is more superficial than that of the state-value distortion.

Since K1 obtained by the state-value distortion covers large areas of the
puddle world, the other clusters can be composed finely. As a result, the
efficiency of the VQ map in (b) is better than the VQ map in (c), which is
obtained by the other definitions.

7.2. EVALUATION OF STATE-VALUE DISTORTION 210
ef

fic
ie

nc
y

−
J

[s
te

p]

size [bit]

(a) N = 102

D state-value distortion

D difference count distortion

D control input distortion

vector
π

vector
π

vector
π

20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4
21.6
21.8
22.0

0 50 100 150 200 0 200 400 600 800
size [bit]

(b) N = 202

20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4
21.6
21.8
22.0

0 500 1000 1500 2000
size [bit]

size [bit]

ef
fic

ie
nc

y
−

J
[s

te
p]

ef
fic

ie
nc

y
−

J
[s

te
p]

(c) N = 402

102 103 104 105

size [bit]

(d) N = 1002

20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4
21.6
21.8
22.0

size [bit]
103 104 105 103 104 105 106

Fig. 7.1: Evaluation of the State-Value Distortion

CHAPTER 7. TOTAL EVALUATION AND DISCUSSION 211

(b) state-value distortion

(a) uncompressed map

(c) difference count distortion
 control input distortion

(d) clustering result of (b)v0

...
...

v99

0
2

3

1

v17

...
...

v74

v89

...
...

(e) clustering result of (c)

0

2
1

3

v0

v1

v73

v86

...
...

...
...

Fig. 7.2: VQ Maps Obtained by the Three Kinds of Distortion Measure (N = 1002, Nc = 4)

7.2. EVALUATION OF STATE-VALUE DISTORTION 212

7.2.3 Comparison on The Acrobot

We also create VQ maps using the difference count distortion and the control
input distortion. In the case of this task, Eq. (7.1) and Eq. (7.3) should be
rewritten as

d′π(s, τ) =

{
0 (if π(s) = τ)

1 (otherwise)
, and (7.5)

d′′π(s, τ) =|π(s)− τ | (7.6)

respectively. In the both cases, the distortion in every state whose value is
worse than −100[s] is regarded as zero toward any change of torque. This
condition is identical with that on the creating process of the VQ map in
Fig. 5.12.

(a) state-value distortion (b) difference count distortion

(c) control input distortion
 (black: τ=1[Nm], gray: τ=0[Nm], white: τ= −1[Nm])

Fig. 7.3: VQ Map with Nc = 1 Obtained by Three Definitions of Distortion Measure

The obtained VQ maps with Nc = 1 are shown in Fig. 7.3. The
difference between (a) and (c) is eye-catching. In the case of the control
input distortion, τ = 0 tends to be the average of torques at states that are
related to an element of a representative vector. Therefore, the gray part is
much larger than the other VQ maps. In the case of the VQ map in (b), on
the contrary, τ = 0 is hardly chosen as elements of representative vectors by
the difference count distortion.

CHAPTER 7. TOTAL EVALUATION AND DISCUSSION 213

Not only these three VQ maps, but also VQ maps with other Nc are
evaluated by the simulation. The results are shown in Table 7.5. The average
time is illustated in Fig. 7.4. As shown in the table and the graph, the VQ
maps with the state-value distortion mark the best average time in every Nc

except Nc = 4. The difference count distortion can give the best result in the
average of Nc = 32, 4 and in the worst time of some VQ maps. However, the
averages in Nc = 256 and Nc = 128 are inscrutably worse than those of the
state-value distortion. The control input distortion seems to be unsuitable
for this task. Since representative vectors have many elements of τ = 0, the
control policies provided by the maps seem to be indistinct.

Table 7.5: Comparison of VQ Maps Obtained by The Distortion Measures

average [s] worst [s]
state- difference control state- difference control

Nc value count input value count input
256 11.4 12.4 12.4 45.6 48.7 60.3
128 11.3 12.3 12.4 60.4 42.2 52.3
64 11.8 11.9 12.2 51.6 51.9 56.3
32 12.4 12.4 12.9 63.5 59.5 59.2
16 12.8 13.0 13.8 78.7 56.6 57.5
8 13.4 13.5 14.3 55.5 59.8 61.8
4 13.7 13.6 15.1 71.3 54.5 106.2
2 13.7 14.0 16.0 62.1 75.3 117.6
1 13.7 14.1 17.9 85.0 59.7 failure

7.2.4 Comparison on The Scoring Task

In the case of the scoring task, we cannot define the control input distortion
because the state variables (x1, y1, θ1, x2, y2, θ2, r, ϕ) have different character-
istics. If we define a generalized distance, definition of a distortion measure
can be possible. However, there is no basis of the definition of distance.

Therefore, VQ maps only with the difference count distortion are created
and compared here. In the same way with Fig. 6.30, the efficiency and
success rate of each VQ map in the Lloyd iteration is evaluated. The
evaluation result is shown in Fig. 7.5. Convergence was recognized after the
44th computation of representative vectors. The total time for convergence
was 43.7[hour].

7.2. EVALUATION OF STATE-VALUE DISTORTION 214

av
er

ag
e

tim
e

to
 fi

ni
sh

 [s
]

0

2

4

6

8

10

12

14

16

18

size [bit]
104 105 106 107 108

state-value distortion
difference count distortion
control input distortion

the uncompressed map

Nc = 1

Nc = 256

Nc = 4

Fig. 7.4: Comparison of VQ Maps Obtained by The Distortion Measures (graph)

From the comparison between Fig. 6.30 and Fig. 7.5, we notice that the
converged map by the difference count is obviously more efficient than the
converged map by the state-value distortion. This result is not expected one
for us. The reason is discussed later.

The smallest step map was obtained after 6th composition of clusters.
This smallest step map and the converged map obtained by the difference
count distortion are compared with those obtained by the state-value
distortion. The simulation result is shown in Table 7.6. As shown in the
table, each map has different drawbacks and advantages. We cannot make
a sweeping judgment about whether each map is good or bad.

However, we notice that the VQ maps with the difference count distortion
are inherited the property of the 8D map. That is because the average
numbers of changes of the robots are larger than those of the VQ maps that
are obtained by the state-value function. The VQ maps with the difference
count distortion make the robots attempt passes more frequently than the
other VQ maps.

CHAPTER 7. TOTAL EVALUATION AND DISCUSSION 215

95

96

97

98

99

100

0 10 20 30 40 50 60

41

42

43

44

45

46

0 10 20 30 40 50 60

after computation of rep. vectors
after composition of clusters

converged map
 (43.7 [hour])

smallest step map
 (6.1 [hour],
6th map after composition of clusters)

computation
time [hour]

computation
time [hour]

su
cc

es
s r

at
e

[%
]

ef
fic

ie
nc

y
−J

 [s
te

p]
at

 su
cc

es
sf

ul
 tr

ia
ls

Fig. 7.5: Convergence of VQ Map for Scoring Task by Difference Count Distortion

7.2. EVALUATION OF STATE-VALUE DISTORTION 216

Table 7.6: Efficiency of VQ Maps Obtained by the Definitions of Distortion Measure

distortion measure and maps success avg. avg. of success rate
rate of steps changes (stop by collision)

state- smallest step VQ map 97.4[%] 41.5[step] 2.4 95.6[%]
value convergent VQ map 98.0[%] 43.0[step] 2.4 96.1[%]
difference smallest step VQ map 98.1[%] 42.0[step] 3.0 95.7[%]
count convergent VQ map 98.0[%] 42.4[step] 2.9 95.5[%]

To put it the other way around, the state-value distortion changed the 8D
map more radically than the difference count distortion. This phenomenon
is also shown in Fig. 7.6. To reduce the number of steps, the state-value
distortion chose to reduce the frequency of passes. Though it was not effective
on this task, the numbers of changes in the table suggest that VQ with the
state-value distortion can cause the qualitative change of a state-action map
in accordance with required compression ratios.

7.2.5 Discussion

The result of evaluation in each task can be summarized as Table 7.7. The
state-value distortion and the difference count distortion can be used for
the three tasks. On the other hand, the control input distortion has some
problems. We think that this difference occurs because the control input
distortion considers not the property of tasks but that of the motion of robots.

Table 7.7: Summary of Comparison Results
state-value difference count control input

puddle world better worse worse
the Acrobot better even worse

scoring even even —

From this point of view, the property of each task can by taken into
the account by the difference count distortion through the contents of each
state-action map. Therefore, the compression with this distortion measure
is possible in each task. However, this distortion measure cannot evaluate
the influence of changes of actions, while the state-value distortion evaluates
them. This difference causes the difference of efficiency especially in the case
of the puddle world task and the task of the Acrobot.

217

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we have introduced a concept of compression of policies for
decision making problems and control problems so as to implement reflexive
policies on robots with small amount of memory and high efficiency.

The vector quantization (VQ) method is used for the compression. In
the compression, dynamic programming (DP) result is reused as the state-
value distortion. Therefore, our method belongs not only to information
processing, but also to control or decision making problems. Our method is
evaluated by the puddle world tasks, the swinging up task of the Acrobot,
and the tasks of robot soccer.

We have obtained the following knowledge through this study. From
them, we conclude that our methodology is applicable for the above tasks,
and outperforms current competitive and popular methods.

• Versatility for Different Types of Tasks

The VQ method can be applied to the puddle world task, the swinging up
task of the Acrobot, and the tasks in RoboCup successfully. In the puddle
world task and the swinging up task, we have verified that a coarse state-
action map is larger and less efficient than some VQ maps created from a fine
state-action map. The highest effective compression ratios are 1 : 0.16 and
1 : 0.0031 in the puddle world task and the swinging up task respectively. In
the going to ball task, a VQ map whose self-compression ratio is 1 : 0.015
is obtained. It has been as efficient as the uncompressed state-action map
on the actual ERS-210. In the scoring task, the self-compression ratio is

8.1. CONCLUSION 218

1 : 0.016, and the 8D map, whose size is 4.3 · 109[bit], can be compressed to
a 6.9 · 107[bit] VQ map. The size is smaller than the size of ERS-210’s flash
memory.

• Superior Memory Economization Ability to Other Methods

As the other methods, we have implemented a tile coding algorithm, an
interpolation algorithm and a tree-structure algorithm. They are compared
to our method on the puddle world task. As mentioned in Sec. 2.5, these
techniques are not effective when DP can create a state-action map within
a given amount of memory.

On the other hand, we can obtain some small and effective policies by
the tree-structure algorithm. A binary-tree policy only with 1913 discrete
states (leaves) is superior (12, 240[bit], 20.31[step]) to a state-action map
with N = 1002 = 10, 000. However, we can also obtain a smaller DLVQ map
(10.568[bit], 20.31[step]) than the binary-tree policy. Though a binary-tree
can represent a policy with small number of discrete states, a large amount
of memory is used for representing its tree-structure.

Moreover, the size of binary-tree policies that are superior to state-action
maps are limited in the range from 2.7k[bit] to 12.0k[bit], while those of
VQ maps are distributed from 150[bit] to 100k[bit]. We think that this
difference is caused by the versatility of vector quantization as a universal
compression method. In this stage, we should conclude that application of
VQ is appropriate for the policy implementation problem.

CHAPTER 8. CONCLUSION AND FUTURE WORK 219

8.2 Future Work

8.2.1 Reduction of Cost in Creating Process of Policies

In this thesis, we have chosen the most secure approach, which is value
iteration with a look-up table, on the off-line process. As we have mentioned
repeatedly, it is difficult to develop more efficient DP methods than the
value iteration algorithm. However, if the VQ method is applied inversely
to creating a policy, there is a possibility that we can reduce time and space
complexity of dynamic programming. The word inversely means that a
method starts from a state in which a temporary VQ map exists. The VQ
map can be enhanced by changes of its codebook and quantization table
with efficiency evaluation of the VQ map. In this case, use of a function
approximation method should be looked into for reducing computing
complexity. In this case, however, we should expect that such a method
does not have versatility.

For reinforcement learning, use of the VQ map is more realistic. There are
reinforcement learning methods that utilize actor-critic structure [Kimura,
1998]. In an actor-critic structure, a state-value function and a policy are
separated and they are enhanced with their interactions and experiences of
an agent. A VQ map can be a possible format for the policy.

8.2.2 for Augmented Decision Making Problems

In this thesis, a decision making problem is handled in a limited number
of state variables. On the other hand, the number of state variables exist
infinitely when we parameterize various environments in which robots labor
on tasks. Though it is impossible to deal with the infinite number of state
variables, we can connect our study to some typical problems in robotics.

Consideration of Parametric Errors

Then, there will be some cases where parameters should be regarded as state
variables. For example, the parameters of the Acrobot shown in Table 5.2
cannot be always measured precisely. Though the VQ maps for the swinging
up task are robust against errors of parameters as mentioned in Sec. A.3,
that robustness cannot be always expected in all control problems.

There are two ways to deal with this problem. One of them is to consider
the disturbance of state-transitions by some margins of parametric errors

8.2. FUTURE WORK 220

when the state-transition probabilities are calculated. The other one is to
build a state-action map for each part in an area of parameter space. If the
calculations can be finished in feasible time, we can obtain a policy that
can be applied to all of the set of parameters in the area. In this case, the
parameters should be learned at on-line since one suitable state-action map
must be chosen.

We have interest in the latter though time complexity for creating state-
action maps is large. That is because the VQ method can compress the
state-action maps not respectively but jointly. When a part of a policy
barely changes within a range of parameter change, the parts of the state-
action maps obtained within the range of parameters can be represented by
one representative vector. Therefore, we can expect efficient memory use for
representing a policy for various sets of parameters.

Uncertainty of State Variables

Autonomous robots must know state variables by themselves. Then the
obtained state variables contain some extent of uncertainty. Barraquand et
al. and LaValle have proposed a method for dealing with the uncertainty
with identical formulation of Markov decision processes [Barraquand, 1995;
LaValle, 2000]. In this method, the state space is augmented by additional
state variables that represent how the state variables are uncertain. If the
state-action map can be obtained in the augmented state-space, the VQ
method can be applied to it without any modification.

Roy et al. have proposed the coastal navigation method in which a
state-action map for navigation of a mobile robot is solved by value iteration
with an additional state variable [Roy, 1999]. The additional state variable
represents the uncertainty of the position and orientation of the robot. In
this study, range sensors were used to measure the distance from walls in
an indoor environment and the results were used for self-localization. Since
the state-transitions of uncertainty reduction by the range sensors could be
estimated, the value iteration could build an effective state-action map. This
map makes a robot move along walls so that the robot can localize itself
easily. We have also studied this attempt with the going to ball task in early
stage of this study [Fukase, 2003]. However, the effectiveness of uncertainty
consideration was unclear because it is difficult to estimate state-transitions
of the uncertainty by the observations with the camera of ERS-210.

We have also studied another kind of decision making methods under

CHAPTER 8. CONCLUSION AND FUTURE WORK 221

the uncertainty [Ueda, 2003; Ueda, 2005]. In the method, DP is executed
without consideration of uncertainty. On the other hand, the uncertainty
is represented by a probability distribution in the state-space. The decision
making method chooses an action that is expected to maximize the value
from the probability distribution and the state-value function. The state-
action map is also used for the calculations. To use this method, we have
to compress not only the state-action map, but also the state-value function.
Alternatively, we need to propose a method that can choose an appropriate
action from a probability distribution and a VQ map.

Consideration of Other Movable/Moving Objects

The state-action maps created in this thesis have a common problem: they
do not deal with a movable object or a moving object whose state variables
are not considered. The movable objects mean chairs, boxes, or other static
obstacles for instance. The moving objects will be robots or persons in the
environment. Though they will be eliminated in the case of the Acrobot,
other robots always exist in the games of RoboCup. Moreover, four of them
are opponents.

However, we have used state-action maps in actual games simply because
they are useful. In the case of the going to ball task, for example, a robot in
the task never avoids the other robots; otherwise an opponent robot will keep
the ball. It is a case where the number of state variables is extremely limited.

On the contrary, a robot never collides with a human being or another
robot when it is working in an office environment. Since this is an important
function for mobile robots, various collision avoidance methods have been
proposed. In this case, we should not create a state-action map in state-space
that is augmented by some state variables for representing poses of others.
Since the motion of the others is unpredictable, an obtained state-action
map will not be efficient for its size.

Though the above cases are utterly different to each other, state-action
maps that do not consider the other objects are important in the both cases.
In the latter case, a robot can restart the task with a state-action map after
any other method is used for collision avoidance. Since the state-action map
can regard any state as an initial state, the collision avoidance method can
concentrate the robot on going to the other side of an obstacle. On that
point, state-action maps in partial state space of the environment have high
affinity with other decision making policies.

8.2. FUTURE WORK 222

As a matter of course, combinations of state-action maps are a possible
way to enable robots to engage in various tasks. In this case, the VQ method
is also useful for storing various state-action maps as mentioned in Sec. 1.3.4.

8.2.3 Minimum Description Length Principle for De-
cision Making

To formulate the relation between time complexity, space complexity, and
the efficiency of decision making policies and control policies will be the
ultimate objective as an extension of this thesis. In fact, we have limited
the target for the study to reflexive policies in this thesis.

This formulation will be a version of the minimum description length
(MDL) principle [Rissanen, 1999] for control and decision making problems.
In the MDP principle, the trade-off between the size of data and its discrim-
ination capability is discussed. If the response time of a policy is added to
the trade-off analysis, we can compare not only reflexive policies but also
outputs of search methods.

223

Appendix A

Further Note

A.1 Coding of Eq. (2.17)

We had to compute Eq. (2.17) as accurate as possible so that we evaluate
the methods accurately. When s and s′ are following rectangles:

s = {(x, y)|x1 ≤ x < x2, y1 ≤ y < y2}, and (A.1)

s′ = {(x′, y′)|x′
1 ≤ x′ < x′

2, y
′
1 ≤ y′ < y′

2}, (A.2)

Eq. (2.17) is modified as follows.

Pa
ss′ =

∫
x∈s

∫
x′∈s′

5000

π
exp (−5000|x′ − x− u|2) dx′dx∫

x∈s
dx

=
5000

π(x2 − x1)(y2 − y1)
·∫ x2

x1

∫ y2

y1

∫ x′
2

x′
1

∫ y′
2

y′
1

e−5000(x′−x−ux)2e−5000(y′−y−uy)2dy′dx′dydx

=
5000

π(x2 − x1)(y2 − y1)
·(∫ x2

x1

∫ x′
2

x′
1

e−5000(x′−x−ux)2dx′dx

)(∫ y2

y1

∫ y′
2

y′
1

e−5000(y′−y−uy)2dy′dy

)

A.2. CONSIDERATION OF COLLISION 224

=
1

20000π(x2 − x1)(y2 − y1)

{
− e−5000(x1−x′

1+ux)2 − 50
√

2π(x1 − x′
1 + ux)fe[50

√
2(x1 − x′

1 + ux)]

+ e−5000(x2−x′
1+ux)2 + 50

√
2π(x2 − x′

1 + ux)fe[50
√

2(x2 − x′
1 + ux)]

+ e−5000(x1−x′
2+ux)2 + 50

√
2π(x1 − x′

2 + ux)fe[50
√

2(x1 − x′
2 + ux)]

− e−5000(x2−x′
2+ux)2 − 50

√
2π(x2 − x′

2 + ux)fe[50
√

2(x2 − x′
2 + ux)]}{

− e−5000(y1−y′
1+uy)2 − 50

√
2π(y1 − y′

1 + uy)fe[50
√

2(y1 − y′
1 + uy)]

+ e−5000(y2−y′
1+uy)2 + 50

√
2π(y2 − y′

1 + uy)fe[50
√

2(y2 − y′
1 + uy)]

+ e−5000(y1−y′
2+uy)2 + 50

√
2π(y1 − y′

2 + uy)fe[50
√

2(y1 − y′
2 + uy)]

− e−5000(y2−y′
2+uy)2 − 50

√
2π(y2 − y′

2 + uy)fe[50
√

2(y2 − y′
2 + uy)]}

, (A.3)

where fe(z) =
2√
π

∫ z

0

e−z2

dz. (A.4)

fe is called the error function, shown in books of statistics as a look-up table.
We implement the look-up table in the code that calculate Pa

ss′ directly from
Eq. A.3.

A.2 Consideration of Collision

To consider the collisions, we implement an algorithm that allocates Pa
ss′ to

other states when s′ is out of the world.

1. Obtain the intersecting point p0 of a wall and a line segment whose
end-points are the center points of s and s′.

2. Assume another line segment. Its length is 1/
√

N , its median point is
p0, and it is parallel with the wall. 1/

√
N is the width of an edge of a

discrete state. Its end-points are named p1 and p2.

3. A state that is the nearest to pi in S is named s′i (i = 1, 2).

4. If s′1 �= s′2, there is a point that divides s′1 and s′2 on the wall. This
point is named q12.

5. The probability Pa
ss′ is shared by s′1 and s′2 based on the following

equations:

APPENDIX A. FURTHER NOTE 225

Pa
ss′1collide =

√
N |p1 − q12|Pa

ss′, and (A.5)

Pa
ss′2collide =

√
N |p2 − q12|Pa

ss′. (A.6)

These probabilities are added to Pa
ss′1

and Pa
ss′2

that are computed without

collisions. Figure A.1 illustrates an example of the relation between the
symbols.

s s’1
s’2 p

0

p
1

p
2

q
12s’Wall

W
al

l

Fig. A.1: Probability share

A.3 Robustness of Maps for the Acrobot to-

ward Errors of Parameters

Here we evaluate the robustness of the state-action maps and the VQ maps
in Chapter 5. We change values of the parameters of the Acrobot and use
the maps created in Chapter 5. Since the values are different from those
when the maps are created, the performance will be lost.

A.3. ROBUSTNESS OF MAPS FOR THE ACROBOT TOWARD
ERRORS OF PARAMETERS 226

Table A.1: Performance toward Parameter Error (m1 = 1.1[kg])

Nc average [s] loss[s] worst [s] loss[s]
normal 11.4 0.1 41.8 5.7

256 11.5 0.1 40.9 -4.7
128 11.3 0.0 44.6 -15.8
64 11.7 -0.1 49.0 -2.6
32 12.4 0.0 65.3 1.8
16 12.9 0.1 55.5 -23.2
8 13.5 0.1 71.3 15.8
4 13.8 0.1 81.2 9.9
2 13.7 0.0 72.9 10.8
1 13.9 0.2 68.1 -16.9

minimum map 17.1 0.1 failure —

Table A.2: Performance toward Parameter Error (m2 = 1.1[kg])

Nc average [s] loss[s] worst [s] loss[s]
normal 12.1 0.7 40.5 1.1

256 12.0 0.6 47.7 7.9
128 11.7 0.4 44.1 -1.8
64 12.2 0.4 60.0 -6.2
32 12.8 0.3 52.1 -7.1
16 13.2 0.3 56.5 -11.2
8 13.9 0.4 82.1 23.6
4 14.2 0.6 69.0 13.7
2 14.1 0.4 75.1 -14.4
1 14.4 0.7 68.7 -23.1

minimum map 17.7 0.9 failure —

Table A.3: Performance toward Parameter Error ((�1, �2) = (0.9, 1.1)[m])

Nc average [s] loss[s] worst [s] loss[s]
normal 11.6 0.3 51.1 14.9

256 11.6 0.2 42.6 8.5
128 11.4 0.1 50.3 10.9
64 11.7 -0.1 56.7 16.8
32 12.3 -0.2 53.9 8.0
16 12.6 -0.2 58.9 -7.4
8 13.2 -0.3 failure —
4 13.3 -0.4 64.7 -3.0
2 13.2 -0.5 66.7 8.2
1 13.5 -0.3 79.4 24.2

minimum map 16.2 -0.6 failure —

APPENDIX A. FURTHER NOTE 227

A.4 Difference between Actual Environment

and Simulator for Scoring Task

We used a simulator that has the following restrictions for evaluation
of maps and policies for the scoring task, and for observation of be-
havior of the robots. This simulator is relatively simple. Experiments
with actual robots, or superb simulators shown in [Asanuma, 2004] and
http://araibo.mech.chuo-u.ac.jp/haribote should be used for in future.

Absence of Corner Walls In the simulator, the triangle wall in every
corner is not considered as well as the value iteration algorithm.

Simulation of Collision Collisions between the wall and the ball, and
between the wall and the robot are considered in the simulator. On the
other hands, the collisions of the two robots, and those of a robot and the
ball are not considered.

Simulated Rebound of the Ball

In the simulation, the collision of the ball and the wall around the field
is modeled as follows. When the ball collides with the wall, the following
difference of distances is calculated.

• the default distance rafter of the ball by the kicking action

• the distance from the robot to the collision point

The difference is decomposed into the vertical component dv and the
horizontal component dh toward the wall. After the collision, the ball stops
dvcref apart from the wall, while the ball travels dh from the point along the
wall. In the simulation, the coefficient cref is set to 0.3.

The dynamics of the rebound is much complex than the above model.
It is ideal if the value iteration algorithm and the simulator can use the
model for calculation. However, the dynamics easily changes the difference
of the material of carpets that are used as the ground of the soccer field
in this league. We choose the simpler model than any elaborate one in the
simulator. In the case of value iteration, we do not care the rebound due to
the problem of computational complexity.

A.4. DIFFERENCE BETWEEN ACTUAL ENVIRONMENT AND
SIMULATOR FOR SCORING TASK 228

229

Appendix B

Self-Localization

Here we explain the self-localization method used in the experiments in the
RoboCup. The evaluation of this method is shown in [Ueda, 2004].

B.1 Monte Carlo localization with Resetting

We used Monte Carlo localization (MCL). MCL is the application of particle
filters for mobile robot localization by Fox, Dellaert et al. [Fox, 1999;
Dellaert, 1999].

A Bayes filter is the mathematical model that is represented by MCL.
It can be applied to mobile robot localization when the pose changes with
Markov process, and when information about the pose is stochastically
obtained based on the pose. An estimation result, which is represented by a
probability distribution, is always maintained in a Bayes filter. It is renewed
when a robot moves or obtains sensor information. Since those assumptions
are generally suitable for the case of mobile robot localization, MCL and
other methods based on Bayes filters work successfully.

B.1.1 Bayes Filters

The pose of a mobile robot on a flat environment is usually represented by
the set of x, y and θ. As shown in Fig.B.1(a), (x, y) denote the position of
the robot, and θ denotes its orientation based on a coordinate system. We
define as a point in the xyθ-space and ∗ as the actual pose of the robot. A
space X that contains all possible ∗ is also defined. Moreover, the following
symbols:

B.1. MONTE CARLO LOCALIZATION WITH RESETTING 230

Fig. B.1: Definition of Symbols. (a): parameters for pose �∗t . (b): relation between discrete
time t, information d, action a, and pose �∗.

• discrete time: T = 0, 1, 2, . . . , t− 1, t, t + 1, . . . ,

• available information at T = t: dt, and

• the robot’s action while t ≤ T < t + 1: at

are given for formulation. They are shown in Fig.B.1(b). A self-localization
problem is formulated with these symbols. The problem is to solve the fol-
lowing probability:

Bt(X) =

∫
X

bt()d = Pr{∗t ∈ X|dt, at−1, dt−1,

at−2, dt−2, at−3, . . . , d1, a0, b0}, (B.1)

where X denotes any region in X and bt() is the probability density of
 = ∗. Initial probability density function (pdf) b0 affects the character of
a localization problem. If b0 converges around actual pose ∗, it is called
position tracking. If ∗ is unknown and b0 is set as an uniform distribution,
it is called a global localization problem.

When the set of all possible d and the set of all possible action a are
represented by D and A respectively, Bayes filters require that the following
probability densities can be measured for ∀ ∈ X , ∀′ ∈ X , ∀a ∈ A, and
∀d ∈ D at any time step.

• |′, a ∼ p(|′, a): the probability density that = ∗t+1 on condition
′ = ∗t and a = at (Markov property)

APPENDIX B. SELF-LOCALIZATION 231

• d| ∼ p(d|): the probability density that d = dt on condition = ∗t . If
d is a discrete quantity, probability P (d|) is required as its substitution.

A Bayes filter can be formulated as

b̂t() =

∫
X

p(|′, at−1)bt−1(
′)d′, and (B.2)

bt() =
p(dt|)b̂t()∫

X p(dt|′)b̂t(′)d′
. (B.3)

Eq.(B.2) and Eq.(B.3) denote a Markov process and the Bayes theorem re-
spectively. Basically, they are calculated alternately.

B.1.2 Monte Carlo localization

A Bayes filter is implemented with various methods according to conditions.
For global localization problems, particle filters [Fox, 1999; Dellaert, 1999;
Kwok, 2003] and multi hypothesis trackings (MHT) [Jensfelt, 2001;
Kristensen, 2003] are frequently used. A MHT executes many Kalman
filters at once. The center pose of each Kalman filter is a hypothe-
sis of the robot’s pose. An algorithm that generates and eliminates
hypotheses is required for a MHT. On the other hand, particle fil-
ters approximate Bayes filters more directly than MHTs. They
are sometimes compared from various standpoints [Gutmann, 2002;
Kristensen, 2003]. We think that the combination of a Bayes filter and a
resetting method can be used in various conditions while its behavior is easy
to understand.

Particle filters for mobile robot localization have been named Monte
Carlo localization (MCL). This method utilizes particles s

(i)
t (i = 1, 2, . . . , N)

that drift in the xyθ-space for approximation of b̂t and bt. The particles
share weight whose total is one. The weighted distribution of particles
approximates the probability distributions.

Figure B.2 shows the algorithm of MCL. s
(i)
t = 〈(i)

t (x
(i)
t , y

(i)
t , θ

(i)
t), w

(i)
t 〉,

which is the set of its pose in the xyθ-space and its weight, denotes a
particle. These processes approximate Eq.(B.2) and Eq.(B.3) respectively.
The larger the number of particles N is, the more the approximation is
expected. In general, many particles are required when bt is uncertain.
Decision of a proper number of particles is studied by Fox [Fox, 2003].

B.2. RESETTING METHODS 232

• Process for at−1 (i = 1, 2 . . . , N):

′ ←− ∼ bt−1()

′′ ←− ∼ p(|′, at−1)

generate s
(i)
t = 〈(i)

t , w
(i)
t 〉 = 〈′′, 1/N〉.

• Process for dt (i = 1, 2 . . . , N):

w
(i)
t ←− p(dt|(i)

t)/α, where α =
∑N

i=1 p(dt|(i)
t).

Fig. B.2: Algorithm of MCL

It is the fatal state for MCL when there is no particle around actual
pose ∗. MCL cannot approximate the probability distribution at the region
where no particle exists.

This fatal case often occurs due to not only the lack of particles, but
also any accident that goes against the suppositions of a Bayes filter. These
accidents cannot be enumerated without omission. However, we can write
the worst result by such an accident with only one expression:

Bt(Y) =

∫
Y

bt()d ≈ 1 (∗ /∈ Y ⊂ X). (B.4)

Therefore, a recovery method from the state of this equation can enable an
MCL method to be robust.

Incidentally, kidnapped robot problems frequently become subjects for re-
search as one of the fatal cases. The kidnap refers to the situation that a
robot that knows its pose well is moved anywhere. This case can be also
represented by Eq. (B.4).

B.2 Resetting Methods

Note that any Bayes estimation does not work well with wrong prior
knowledge. Therefore, we must handle the problem beyond the limits of
Bayes filters.

The following process: 1) stop a Bayes filter when the state like Eq.(B.4)
is detected, 2) start the Bayes filter with new b0, is a possible way for this

APPENDIX B. SELF-LOCALIZATION 233

problem. This method is called a resetting method and is used in MCLs.
Though Thrun et al. have pointed out that these kinds of method does not
have theoretical validity in [Thrun, 2001], it does not contradict with Bayes
filters. That is because Bayes filters do not restrict the condition of b0 as
long as it is not wrong.

B.2.1 Sensor Resetting

The sensor resetting uses α, which is shown in Fig.B.2, for the trigger of
resetting [Lenser, 2000]. α is explained by

α =

∫
X

p(dt|′)b̂t(
′)d′ (B.5)

in a Bayes filter. When the following value

β = 1− α/αth (αth : a positive threshold) (B.6)

becomes positive, particles are placed based on the pdf:

b0new() =
1

1 + β
bt() +

β

1 + β
p(|dt). (B.7)

B.2.2 Expansion Resetting

We have used another resetting method since RoboCup 2002 in our localiza-
tion method (Uniform Monte Carlo localization, [Ueda, 2002]). This method
is called the expansion resetting. We generalize it and propose its use for
MCL. It initializes the pdf as

b0new = f [̂bt] (B.8)

when β > 0. This equation only explains that only b̂t is used for allocation
of particles. A more important thing than Eq.(B.8) is that mapping f acts
as b0new becomes vaguer than b̂t. After that, b0new ←− f [b0new] is repeated
every input of new information d until β of Eq.(B.6) becomes zero or less.

In the case of MCL, mapping f expands the region where particles exist
as shown in Fig.B.3. The extent of expansion on each axis should be roughly
in proportion to the interval in which particles exist. This resetting method
has the following property if there is no perceptual aliasing.

• If b̂t is not wrong, the expansion stops soon.

B.2. RESETTING METHODS 234

Fig. B.3: Expansion Resettings (an example in a 2-d space)

• If b̂t is completely wrong, the expansion usually supplies particles near
correct pose ∗.

Therefore, this method avoids the discard of accurate bt when wrong infor-
mation is singly obtained.

B.2.3 Blending of Resetting Methods

For solving the perceptual aliasing problems or other special problems, the
above methods can be blended with some ways. For example, the following
choice is possible when β > 0 with Eq.(B.6).

• if particles exist in a small region: expansion resettings

• otherwise: sensor resettings

This procedure regards b̂t as important if it converges. Otherwise the proce-
dure attaches importance to sensor information.

B.2.4 Implementation

Common Setting

An MCL, the three resetting methods and an image processing algorithm
were implemented on a virtual robot. The image processing algorithm iden-
tifies each landmark at first. After that, it returns h, the width of the iden-
tified landmark (the width of the arrow in Fig.6.3(b)), and ϕ̂, the relative
direction of the identified landmark from the robot. Hence d = 〈h, ϕ̂〉. When

APPENDIX B. SELF-LOCALIZATION 235

the actual direction of the landmark and its distance from the robot are rep-
resented ϕ∗() and r() respectively, the probability model for information is
computed as:

p(d|) = p(h, ϕ̂|) = p(ϕ̂− ϕ∗
i ())p(h|ri()), (B.9)

where subscription i means the id of the landmark. The independence of ϕ̂
and h are assumed for this formulation.

p(d|) was previously measured with random walk of a robot in the
simulator. 71,920 measurement results were obtained. ϕ̂ − ϕ∗(), r, and h
were discretized into 1[deg], 100[mm], and 3[pixel] respectively for creating
frequency tables. Figure B.4 illustrates the contents of the tables. There
was 10 mistakes of landmark identification and the results at the mistakes
were removed from the tables. Though a landmark was recognized only
once when r < 300[mm], this result was also removed. These tables were
implemented on the robot for the probability models in MCL. Probability
distribution p(|d) was also calculated and implemented for the sensor
resettings.

The number of particles was fixed as N = 1000. This number of particles
is sufficient for MCL to be stably executed in the field of the four legged
robot league. Though it is preferable that the ability of each resetting
method for compensation for the shortage of particles is investigated, this
paper does not refer to it.

Rule for Expansion Resetting

At an expansion resetting, all particles are randomly placed in a box whose
each edge is parallel to x-axis, y-axis, or θ-axis. The center of the box is
placed on the mean position of particles: (x̄t, ȳt, θ̄t), where x̄t =

∑N
i=1 x

(i)
t w

(i)
t ,

ȳt =
∑N

i=1 y
(i)
t w

(i)
t . They are calculated based on their state just before

the information that causes a resetting is input. When the size of the box
is represented by the length of each edge: ωx[mm], ωy[mm], and ωθ[deg],
they are calculated based on weighted standard deviations of the distribu-
tion: σx[mm], σy[mm], and σθ[deg]. The lengths are basically calculated as
(ωx, ωy, ωθ) = (6σx, 6σy, 6σθ). However, we set the lower limits of ωx, ωy, and
ωθ to 300[mm], 300[mm], and 60[deg] respectively for fear that expansions
become slow when particles are converging. If one of the edges is shorter
than the limit length for the edge, its length is extended to the limit.

B.2. RESETTING METHODS 236

Fig. B.4: Dispersion of Sensor Information. (a) P (ϕ̂− ϕ∗
i (�)), (b) P (h|r).

Implementation of a blending method

We implemented a blending method of sensor resettings and expansion re-
settings. When β > 0 with Eq.(B.6), this method chooses a sensor resetting
if σx > 300[mm], σy > 300[mm] or ωθ > 60[deg]. Otherwise an expansion
resetting is chosen.

237

Appendix C

Use of State-Action Maps in
RoboCup

C.1 Goalkeeper Task

We have utilized a state-action map for our goalkeeper in RoboCup. A goal-
keeper should frequently change its pattern of behavior based on its intention.
For example, when a goalkeeper goes to the position of the ball so as to grab
it, there is a suitable pattern of behavior. When the goalkeeper fends off
a shot, another pattern of behavior is required. In this case, we sometimes
think that a policy is required for every pattern of behavior. However, we
have used only one state-action map for whole behavior of a goalkeeper. The
state-action map can be created by the following manner.

State, Action, and State Transition

We use identical state variables with the ball approaching task. The domain
and the way to discretize each parameter are shown in Table C.1(a). We then
add 14 by 27 by 18 cells in xyθ-space for occasions when the robot is not ob-
serving the ball. We call these additional cells ball invisible states. The total
number of cells is 2, 980, 152. Though dynamics of the ball is not taken into
account, the planned result can be used for competitions as shown in Fig.C.1.

In this task, six kinds of actions are added to the set of actions as
shown in Table C.3. The goalkeeper robot can use kinds of action. State
transition probabilities are computed by the identical method with the ball
approaching task.

C.1. GOALKEEPER TASK 238

Table C.1: Parameters for Value Iteration
(a) State Space

state variable domain width of a cell # of cells
x [1000, 2400)[mm] 100[mm] 14
y [−1350, 1350)[mm] 100[mm] 27
θ [−180, 180)[deg] 20[deg] 18
r [120, 2020)[mm] 100[mm] 19
ϕ [−92, 92][deg] 8[deg] 23

(b) Final States

case condition value[step]
(i) ball invisible & |x− 2200| < 100 & −15

|y| < 100 & |θ| > 150
(ii) 2100 < x < 2200 & |θ| > 150 & {|ϕ| < 12 or −10

(ϕ < 0 & y > 50) or (ϕ > 0 & y < −50)}
(iii) ϕ < 45 & r < 200 & {|θ| > 135 or |ϕG| > 135} 0

(c) Penalty Ra
ss′

case penalty[step]
(1) Action a is executed. -1
(2) |ϕ| ≤ 92 and |ϕ′| > 92 -5
(3) |ϕ′| > 92[deg], |ϕ′

G| > 30 and x′ < 2100 -5
(4) s′ /∈ S -250

APPENDIX C. USE OF STATE-ACTION MAPS IN ROBOCUP 239

Table C.2: Computation time (with a 3.6GHz Pentium IV CPU)
procedure time
Monte Carlo integration for Probot (105 samples) [s]
Monte Carlo integration for Pball (104 samples) [s]
value iteration (one iteration) 40.7[s]
total time (71 sweeps) 2.9× 103[s]

Final states

The task is to guide the goalkeeper to appropriate pose (x, y, θ) according to
(r, ϕ) without an own-goal. The appropriate pose restlessly changes when
other robots move the ball. There are some candidates for appropriate poses
as shown in Fig.C.3 and on Table C.1(b). Final states are set based on these
poses. When the center of a cell satisfies one of the conditions, the cell is one
of final states. ϕG is the direction of point (2100, 0) (center of the goal) on Σr.

Penalty

The reward, which should be called penalty in this case, is given every one
action. That value is −1 regardless of the kind of action. We set other
conditions that should be penalized as shown in Table C.1(c). (2) is given
because it is disadvantage if the goalkeeper loses the ball. (3) prevents own-
goals. In case (4), the robot collides with a wall around the field or the
ball. The former upsets self-localization since the orientation of the robot is
changed unexpectedly. The latter is connected directly with an own-goal.

Value Iteration and the Result

The state-value function is obtained by value iteration with the above con-
ditions. V ∗ is obtained within 49 minutes with a 3.6 GHz CPU. The graph
in Fig.C.5 is a part of the state-value function. Each value on the graph is
obtained when θ is fixed to the direction to the ball. The state-value function
has discontinuity and local maxima. Figure C.6 then shows some examples
of the behavior computed from π∗.

C.1. GOALKEEPER TASK 240

Table C.3: Added Actions for Goalkeeper Task
name δx[mm] δy[mm] δθ[deg]
Backward 0.0 -87.0 0.0
ShortBackward 0.0 -46.0 0.0
RightForwardTurnLeft 30.0 50.0 17.0
LeftForwardTurnRight -25.0 70.0 -15.0
RightForwardTurnRight 92.0 80.0 -15.0
LeftForwardTurnLeft -100.0 80.0 15.0

Fig. C.1: Scenes in a game (Team ARAIBO 0-2 Kyushu Institute of Technology)

APPENDIX C. USE OF STATE-ACTION MAPS IN ROBOCUP 241

Fig. C.2: Coordinate Systems Fig. C.3: Appropriate Poses

number of sweeps
0 20 40 60 80 100 120 140 160 180 200 220 240 260

Δ
[s

te
p]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. C.4: Convergence of state-value function

C.1. GOALKEEPER TASK 242

Fig. C.5: A Part of The State-Value Function

Fig. C.6: Behavior of The Robot with π∗

243

References

[Al-Ansari, 1998] Mohammad A. Al-Ansari and Ronald J. Williams: “Ro-
bust, Efficient, Globally-Optimized Reinforcement Learning with the
Parti-Game Algorithm,” In NIPS, pp. 961–967, 1998.

[Albus, 1975a] James S. Albus: “A New Approach to Manipulator Control:
The Cerebellar Model Articulation Controller (CMAC),” Journal of Dy-
namic Systems, Measurement and Control, 97(3), pp. 220–227, 1975.

[Albus, 1975b] James S. Albus: “Data Storage in the Cerebellar Model Artic-
ulation Controller (CMAC),” Journal of Dynamic Systems, Measurement
and Control, 97(3), pp. 228–233, 1975.

[Asada, 1999] Minoru Asada, Hiroaki Kitano, Itsuki Noda, and Manuela
Veloso: “RoboCup: Today and Tomorrow – What we have learned,” Ar-
tificial Intelligence, 110pp. 193–214, 1999.

[Asanuma, 2004] Kazunori Asanuma, Kazunori Umeda, Ryuichi Ueda, and
Tamio Arai: “Development of a Simulator of Environment and Measure-
ment for Autonomous Mobile Robots Considering Camera Characteris-
tics,” In D. Polani et al. (Eds.): RoboCup 2003: Robot Soccer World Cup
VII, pp. 446–457, 2004.

[Banavar, 2003] Ravi N. Banavar and Arun D. mahindrakar: “Energy based
swing-up of the Acrobot and Time-optimal Motion,” In Proc. of IEEE
International Conference on Control Applications, pp. 706–711, 2003.

[Barraquand, 1995] Jérôme Barraquand and Pierre Ferbach: “Motion Plan-
ning with Uncertainty: The Information Space Approach,” In Proc. of
IEEE International Conference on Robotics and Automation, pp. 1341–
1348, 1995.

[Barron, 1998] Andrew Barron, Jorma Rissanen, and Bin Yu: “The Mini-
mum Description Length Principle in Coding and Modeling,” IEEE Trans.
on Information Theory, 44(6), pp. 2743–2760, 1998.

REFERENCES 244

[Baum, 2000] David Baum: Dave Baum’s Definitive Guide to LEGO MIND-
STORMS, Springer, 2000.

[Bellman, 1957] Richard Bellman: Dynamic Programming, Princeton Uni-
versity Press, Princeton, NJ, 1957.

[Boone, 1997] Gary Boone: “Minimum-time Control of the Acrobot,” In
Proc. of IEEE ICRA, pp. 3281–3287, 1997.

[Bouzy, 2001] Bruno Bouzy and Tristan Cazenave: “Computer Go: An AI
oriented survey,” Artificial Intelligence, 132(1), pp. 29–103, 2001.

[Boyan, 1995] Justin A. Boyan and Andrew W. Moore: “Generalization in
Reinforcement Learning: Safely Approximating the Value Function,” In
Advances in Neural Information Processing Systems 7, pp. 369–376, 1995.

[Broomhead, 1988] D.S. Broomhead and David Lowe: “Multivariable Func-
tional Interpolation and Adaptive Networks,” Complex Systems, 2(3), pp.
321–355, 1988.

[Buck, 2002] Sebastian Buck, Michael Beetz, and Thorsten Schmitt: “Ap-
proximating the Value Function for Continuous Space Reinforcement
Learning in Robot Control,” In Proc. of the IEEE/RSJ IROS, pp. 1062–
1067, 2002.

[Campbell, 2002] Murray Campbell, A. Joseph Hoane Jr., and Feng hsiung
Hsu: “Deep Blue,” Artificial Intelligence, 134(), pp. 57–83, 2002.

[Choset, 2005] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George
Kantor, Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun: Prin-
ciples of Robot Motion, MIT Press, Cambridge, MA, 2005.

[Delft, 1994] Christian van Delft: “Approximate Solutions for Large-Scale
Piecewise Deterministric Control Systems Arising in Manufacturing Flow
Control Models,” IEEE Trans. on Robotics and Automation, 10(2), pp.
142–152, 1994.

[Dellaert, 1999] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebas-
tian Thrun: “Monte Carlo Localization for Mobile Robots,” In Proc. of
IEEE International Conference on Robotics and Automation (ICRA99),
pp. 1322–1328, 1999.

[Equitz, 1989] W. H. Equitz: “A new vector quantization clustering algo-
rithm,” IEEE Trans. Acoust. Speech Signal Process, 37(10), pp. 1568–1575,
1989.

REFERENCES 245

[Ewing, 1985] George M. Ewing: Calculus of Variations with Application,
Dover publications, Inc., Mineorla, NY, 1985.

[Fekri, 2000] Faramarz Fekri, Russell M. Mersereau, and Ronald W. Schafer:
“A Generalized Interpolative Vector Quantization Method for Jointly Op-
timal Quantization, Interpolation, and Binarization of Text Images,” IEEE
Trans. on Image Processing, 9(7), pp. 1272–1281, Jul. 2000.

[Ferbach, 1998] Pierre Ferbach: “A Method of Progressive Constraints for
Nonholonomic Motion Planning,” IEEE Trans. on Robotics and Automa-
tion, 14(1), pp. 172–179, Feb. 1998.

[Fox, 2003] Dieter Fox: “Adapting the Sample Size in Particle Filters
Through KLD-Sampling,” International Journal of Robotics Research,
22(12), pp. 985–1004, 2003.

[Fox, 1999] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian
Thrun: “Monte Carlo Localization: Efficient Position Estimation for Mo-
bile Robots,” In Proc. of AAAI-99, pp. 343–349, 1999.

[Fraser, 2005] Gordon Fraser and Franz Wotawa: “Cooperative Planning and
Plan Execution in Partially Observable Dynamic Domains,” In D. Nardi
et al., editors, RoboCup 2004: Robot Soccer World Cup VIII, pp. 524–531,
2005.

[Fujii, 2004] Hikari Fujii, Daiki Sakai, and Kazuo Yoshida: “Cooperative
Control Method Using Evaluation Information on Objective Achieve-
ment,” In Proc. of DARS, pp. 201–210, 2004.

[Fujita, 2003] Masahiro Fujita: “Sony Four Legged Robot League at
RoboCup 2002,” Gal A. Kaminka, et al. (Eds.) RoboCup 2002: Robot
Soccer World Cup VI, pp. 469–476, 2003.

[Fukase, 2002] Takeshi Fukase, Masahiro Yokoi, Yuichi Kobayashi, Hideo
Yuasa, and Tamio Arai: “Quadruped Robot Navigation Considering the
Observation Cost,” In A. Birk, S. Coradeschi, and S.Tadokoro, editors,
RoboCup 2001: Robot Soccer World Cup V, pp. 350–355, 2002.

[Fukase, 2003] Takeshi Fukase, Yuichi Kobayashi, Ryuichi Ueda, Takanobu
Kawabe, and Tamio Arai: “Real-time Decision Making under Uncertainty
of Self-Localization Results,” Gal A. Kaminka, et al. (Eds.) RoboCup
2002: Robot Soccer World Cup VI, pp. 375–383, 2003.

REFERENCES 246

[Fukazawa, 2003] Yusuke Fukazawa, Chomchana Trevai, Jun Ota, and Tamio
Arai: “Controlling a Mobile Robot That Searches for and Rearranges Ob-
jects with Unknown Locations and Shapes,” In Proc. of IEEE/RSJ IROS,
pp. 1721–1726, 2003.

[Ge, 2000] S.S. Ge and Y.J. Cui: “New Potential Functions for Mobile Robot
Path Planning,” IEEE Trans. on Robotics and Automation, 16(5), pp. 615–
620, 2000.

[Gersho, 1992] A. Gersho and R. M. Gray: Vector Quantization and Signal
Compression, Kluwer Academic Publishers, Boston, MA, 1992.

[Greer, 2000] Kieran Greer: “Computer chess move-ordering schemes using
move influence,” Artificial Intelligence, 120(2), pp. 235–250, 2000.

[Gutmann, 2002] J. Gutmann and Dieter Fox: “An Experimental Compari-
son of Localization Methods Continued,” In Proc. of IROS, pp. 454–459,
2002.

[Hu, 1997] Huosheng Hu and Michael Brady: “Dynamic Global Path Plan-
ning with Uncertainty for Mobile Robots in Manufacturing,” IEEE Trans.
on Robotics and Automation, 13(5), pp. 760–767, Oct. 1997.

[Huang, 2002] Yuan-Hao Huang and Tzi-Dar Chiueh: “A New Audio Coding
Scheme Using a Forward Masking Model and Perceptually Weighted Vec-
tor Quantization,” IEEE Trans. on Speech and Audio Processing, 10(5),
pp. 325–335, Jul. 2002.

[Iida, 2002] Hiroyuki Iida, Makoto Sakuta, and Jeff Rollason: “Computer
shogi,” Artificial Intelligence, 134(1-2), pp. 121–144, 2002.

[Ito, 2002] K. Ito and F. Mathuno: “A Study of Reinforcement Learning
for the Robot with Many Degrees of Freedom -Acquisition of Locomotion
Patterns for Multi Legged Robot-,” In Proc. of ICRA-2002, pp. 3392–3396,
2002.

[Jensfelt, 2001] P. Jensfelt and S. Kristensen: “Active Global Localization
for a Mobile Robot Using Multiple Hypothesis Tracking,” IEEE Trans. on
Robotics and Automation, 17(5), pp. 748–760, 2001.

[Kavraki, 1996] Lydia E. Kavraki, Petr Švestka, Jean-Claude Latombe, and
Mark H. Overmars: “Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces,” IEEE Transaction on Robotics and
Automation, 12(4), pp. 566–580, 1996.

REFERENCES 247

[Khatib, 1986] Oussama Khatib: “Real-Time Obstacle Avoidance for Ma-
nipulators and Mobile Robots,” International Journal of Robotics Re-
search, 5(1), pp. 90–98, 1986.

[Khojastech, 2004] Mohammad Reza Khojastech et al.: “Using Learning Au-
tomata in Cooperation among Agents in a Team,” In Proc. of International
RoboCup Symposium, pp. CD–ROM, 2004.

[Kimura, 1998] Hajime Kimura and Shigenobu Kobayashi: “An Analysis of
Actor/Critic Algorithms using Eligibility Traces: Reinforcement Learn-
ing with Imperfect Value Function,” In 15th International Conference on
Machine Learning, pp. 278–286, 1998.

[Kitano, 1997] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki
Noda, and Eiichi Osawa: “RoboCup: The Robot World Cup Initiative,”
In Proc of The First International Conference on Autonomous Agent, pp.
340–347, 1997.

[Kleiner, 2003] Alexander Kleiner, Markus Dietl, and Bernhard Nebel: “To-
wards a Life-Long Learning Soccer Agent,” Gal A. Kaminka, et al. (Eds.)
RoboCup 2002: Robot Soccer World Cup VI, pp. 126–134, 2003.

[Kobayashi, 2002] Yuichi Kobayashi, Hideo Yuasa, and Tamio Arai: “Func-
tion Approximation for Reinforcement Learning Based on Reaction-
Diffusion Equation on a Graph,” In Proc. of SICE Annual Conference
2002, pp. 916–921, 2002.

[Koren, 1991] Y. Koren and J. Borenstein: “Potential Field Methods and
Their Inherent Limitations for Mobile Robot Navigation,” In Proc. of
IEEE ICRA, pp. 1398–1404, 1991.

[Kristensen, 2003] Steen Kristensen and Patric Jensfelt: “An Experimen-
tal Comparison of Localisation Methods, the MHL Sessions,” In Proc. of
IROS, pp. 992–997, 2003.

[Kwok, 2003] Kody Kwok, Dieter Fox, and Marina Meila: “Adaptive Real-
time Particle Filters for Robot Localization,” In Proc. of IEEE ICRA, pp.
2836–2841, 2003.

[Latombe, 1991] Jean-Claude Latombe: Robot Motion Planning, Kluwer
Academic Publishers, Boston, MA, 1991.

[Laue, 2004] Tim Laue and Thomas Röfer: “A Behavior Architecture for Au-
tonomous Mobile Robots Based on Potential Fields,” In Proc. of RoboCup
2004 symposium, pp. CD–ROM, 2004.

REFERENCES 248

[Laumond, 1994] Jean-Paul Laumond, Paul E. Jacobs, Michel Taix, and
Richard M. Murray: “A Motion Planner for Nonholonomic Mobile
Robots,” IEEE Trans. on Robotics and Automation, 10(5), pp. 577–593,
1994.

[LaValle, 1999] S. M. LaValle and J. J. Kuffner: “Randomized Kinodynamic
Planning,” In Proc. of IEEE International Conference on Robotics and
Automation, pp. 473–479, 1999.

[LaValle, 2000] Steven M. LaValle: “Robot Motion Planning: A Game–
Theoretic Foundation,” Algorithmica, 26pp. 430–465, 2000.

[Lenser, 2000] Scott Lenser and Manuela Veloso: “Sensor resetting localiza-
tion for poorly modelled robots,” In Proc. of IEEE ICRA, pp. 1225–1232,
2000.

[Likhachev, 2002] Maxim Likhachev and Sven Koenig: “Speeding up the
Parti-Game Algorithm,” In NIPS, pp. 1563–1570, 2002.

[Miyazawa, 2005] Kiyokazu Miyazawa, Yusuke Maeda, and Tamio Arai:
“Planning of Graspless Manipulation based on Rapidly-Exploring Random
Trees,” In Proc. of 6th IEEE Int. Symp. on Assembly and Task Planning
(ISATP 2005), pp. ITP–3, 2005.

[Moody, 1989] John Moody and Christian J. Darken: “Fast Learning in Net-
works of Locally-Tuned Processing Units,” Neural Computation, 1(2), pp.
281–294, 1989.

[Moore, 1995] Andrew W. Moore and Christopher G. Atkeson: “The Parti-
game Alogirthm for Variable Resolution Reinforcement Learning in Mul-
tidimensional State-spaces,” Machine Learning, 21, 1995.

[Müller, 2002] Martin Müller: “Computer Go,” Artificial Intelligence, 134(1-
2), pp. 145–179, 2002.

[Munos, 1998] Rémi Munos and Andrew Moore: “Barycentric Interpolator
for Continuous Space and Time Reinforcement Learning,” Neural Infor-
mation Processing Systems 11, pp. 1024–1030, 1998.

[Munos, 2002] Rémi Munos and Andrew Moore: “Variable Resolution Dis-
cretization in Optimal Control,” Machine Learning, 49(2-3), pp. 291–323,
2002.

[Nitschke, 2006] Geoff Nitschke: “Emergent cooperation in robocup: A re-
view,” In RoboCup 2005: Robot Soccer World Cup IX, pp. 512–520, 2006.

REFERENCES 249

[Ota, 2004] Jun Ota: “Rearrangement of Multiple Movable Objects,” In
Proc. of IEEE ICRA, pp. 1962–1967, 2004.

[Pierre, 1986] Donald A. Pierre: Optimization Theory with Applications,
Dover Publications, Inc., Mineola, NY, 1986.

[Rissanen, 1999] J. Rissanen: “Hypothesis Selection and Testing by the MDL
Principle,” The Computer Journal, 42(4), pp. 260–269, 1999.

[Roy, 1999] Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian
Thrun: “Coastal Navigation - Mobile Robot Navigation with Uncertainty
in Dynamic Environments,” In Proc. of IEEE ICRA, pp. 35–40, 1999.

[Samejima, 1999] K. Samejima and T. Omori: “Adaptive internal state space
construction method for reinforcement learning,” Neural Networks, 12(7-
8), pp. 1143–1155, 1999.

[Spong, 1994] Mark W. Spong: “Swing Up Control of the Acrobot,” In Proc.
of IEEE ICRA, pp. 2356–2361, 1994.

[Spong, 1995] Mark W. Spong: “The swing up control problem for the Ac-
robot ,” IEEE Control Systems Magazine, 15(1), pp. 49–55, 1995.

[Sutton, 1988] Richard S. Sutton: “Learning to Predict by the Methods of
Temporal Differences,” Machine Learning, 3, pp. 9–44, 1988.

[Sutton, 1996] Richard S. Sutton: “Generalization in Reinforcement Learn-
ing: Successful Examples Using Space Coarse Coding,” In Neural Infor-
mation Processing Systems, pp. 1038–1044, 1996.

[Sutton, 1998] Richard S. Sutton and Andrew G. Barto: Reinforcement
Learning: An Introduction, The MIT Press, Cambridge, MA, 1998.

[Takahashi, 1999] Yasutake Takahashi, Masanori Takeda, and Minoru
Asada: “Continuous Valued Q-learning for Vision-Guided Behavior Ac-
quisition,” In Proc. of the 1999 IEEE International Conference on Multi-
sensor Fusion and Integration for Intelligent Systems, pp. 255–260, 1999.

[Takahashi, 2001] Yasutake Takahashi, Masanori Takeda, and Minoru
Asada: “Improvement Continuous Valued Q-learning and Its Application
to Vision Guided Behavior Acquisition,” RoboCup 2000: Robot Soccer.
World Cup IV, pp. 385–390, 2001.

[Tesauro, 1995] Gerald Tesauro: “Temporal Difference Learning and TD-
Gammon,” Communications of the ACM, 38(3), pp. 58–68, 1995.

REFERENCES 250

[Thrun, 2001] S. Thrun et al.: “Robust Monte Carlo Localization for Mobile
Robots,” Artificial Intelligence Journal, 128(1-2), pp. 99–141, 2001.

[Tsai, 2000] Jyi-Chang Tsai, Chaur-Heh Hsieh, and Te-Cheng Hsu: “A New
Dynamic Finite-State Vector Quantization Algorithm for Image Compres-
sion,” IEEE Trans. on Image Processing, 9(11), pp. 1825–1836, Nov. 2000.

[Tuyls, 2003] Karl Tuyls, Sam Maes, and Bernard Manderick: “Reinforce-
ment Learning in Large State Spaces – Simulated Robotic Soccer as a
Testbed,” Gal A. Kaminka, et al. (Eds.) RoboCup 2002: Robot Soccer
World Cup VI, pp. 319–326, 2003.

[Ueda, 2002] Ryuichi Ueda, Takeshi Fukase, Yuichi Kobayashi, Tamio Arai,
Hideo Yuasa, and Jun Ota: “Uniform Monte Carlo Localization – Fast and
Robust Self-localization Method for Mobile Robots,” In Proc. of ICRA, pp.
1353–1358, 2002.

[Ueda, 2003] Ryuichi Ueda, Tamio Arai, Kazunori Asanuma, Shogo Kamiya,
and Kazunori Umeda: “Mobile Robot Navigation based on Expected State
Value under Uncertainty of Self-localization,” In Proc. of IROS, pp. 473–
478, 2003.

[Ueda, 2004] Ryuichi Ueda, Tamio Arai, Kohei Sakamoto, Toshifumi
Kikuchi, and Shogo Kamiya: “Expansion Resetting for Recovery from Fa-
tal Error in Monte Carlo Localization – Comparison with Sensor Resetting
Methods,” In Proc. of IROS, pp. 2481–2486, 2004.

[Ueda, 2005] Ryuichi Ueda, Tamio Arai, Kohei Sakamoto, Yoshiaki Jit-
sukawa, Kazunori Umeda, Hisashi Osumi, Toshifumi Kikuchi, and Masaki
Komura: “Real-Time Decision Making with State-Value Function under
Uncertainty of State Estimation,” In Proc. of ICRA, 2005.

[Veloso, 1998] Manuela Veloso, William Uther, Masahiro Fujita, Minoru
Asada, and Hiroaki Kitano: “Playing Soccer with Legged Robots,” In
Proc. of IEEE/RSJ IROS-98, 1998.

[Watkins, 1992] Christopher J.C.H. Watkins and Peter Dayan: “Q-
Learning,” Machine Learning, 8(3-4), pp. 279–292, 1992.

[Xin, 2002] Xin Xin and Masahiro Kaneda: “The Swing up Control for the
Acrobot based on Energy Control Approach,” In Proc. of IEEE Conf. on
Decision and Control, pp. 3261–3266, 2002.

REFERENCES 251

[Xin, 2004] Xin Xin and Masahiro Kaneda: “New Analytical Results of the
Energy Based Swinging up Control of the Acrobot,” In Proc. of IEEE
Conf. on Decision and Control, pp. 704–709, 2004.

[Yoshimoto, 2005] J. Yoshimoto, M. Nishimura, Y. Tokita, and S. Ishii: “Ac-
robot control by learning the switching of multiple controllers,” Journal of
Artificial Life and Robotics, 9(2), pp. 67–71, 2005.

REFERENCES 252

Publication and Award List 253

Publication and Award List

Journal Papers

1. Yuichi Kobayashi, Takeshi Fukase, Ryuichi Ueda, Hideo Yuasa, Tamio
Arai: “Design of Quadruped Robot Soccer Behavior Considering Ob-
servational Cost,” Journal of the Robotics Society of Japan, Vol. 21,
No.7, 802-810 (in Japanese), 2003.

2. Ryuichi Ueda, Takeshi Fukase, Yuichi Kobayashi, Tamio Arai and
Shogo Kamiya: “Lossy Compression of Deterministic Policy Map with
Vector Quantization,” Journal of the Robotics Society of Japan, Vol.23,
No.1, pp.104-112 (in Japanese), 2005.

3. Ryuichi Ueda, Tamio Arai, Kazunori Asanuma, Kazunori Umeda, and
Hisashi Osumi: “Recovery Methods for Fatal Estimation Errors on
Monte Carlo Localization,” Journal of the Robotics Society of Japan,
Vol.23, No.4, pp.84-91 (in Japanese), 2005.

4. Kazunori Umeda, Kazunori Asanuma, Toshifumi Kikuchi, Ryuichi
Ueda, Hisashi Osumi, and Tamio Arai: “Development of a Simulator
of Environment and Measurement for Multiple Autonomous Mobile
Robots Considering Camera Characteristics,” Journal of the Robotics
Society of Japan, Vol.23, No.7, pp.878-885 (in Japanese), 2005.

5. Ryuichi Ueda and Tamio Arai: “Real-Time Decision Making of Au-
tonomous Robot under Uncertainty of State Estimation by Using Par-
ticle Filter and Q-MDP Value Method,” Journal of the Robotics Society
of Japan, Vol.25, No.1, pp.103-112 (in Japanese), 2007.

Conference Papers (reviewed)

1. Takeshi Fukase, Masahiro Yokoi, Yuichi Kobayashi, Ryuichi Ueda,
Hideo Yuasa and Tamio Arai: “Quadruped Robot Navigation Con-
sidering the Observational Cost,” Andreas Birk, Silvia Coradeschi and

Publication and Award List 254

Satoshi Tadokoro (Eds.), RoboCup 2001: Robot Soccer World Cup V,
pp. 350-355, Springer, 2002.

2. Ryuichi Ueda, Takeshi Fukase, Yuichi Kobayashi, Tamio Arai, Hideo
Yuasa, and Jun Ota: “Uniform Monte Carlo Localization –Fast and Ro-
bust Self-localization Method for Mobile Robots.,” IEEE International
Conference on Robotics and Automation (ICRA), pp. 1353-1358, 2002.

3. Ryuichi Ueda, Takeshi Fukase, Yuichi Kobayashi and Tamio Arai:
“Vector Quantization for State-Action Map Compression,” IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2356-
2361, 2003.

4. Takeshi Fukase, Yuichi Kobayashi, Ryuichi Ueda, Takanobu Kawabe
and Tamio Arai: “Real-time Decision Making under Uncertainty of
Self-Localization Results,” Gal A. Kaminka, et al. (Eds.) RoboCup
2002: Robot Soccer World Cup VI, pp. 375-383, 2003.

5. Ryuichi Ueda and Tamio Arai: “Value Iteration Under the Constraint
of Vector Quantization for Improving Compressed State-Action Maps,”
Proc. of IEEE International Conference on Robotics and Automation
(ICRA), pp. 4771-4776, 2004.

6. Kazunori Asanuma, Kazunori Umeda, Ryuichi Ueda and Tamio Arai:
“Development of a Simulator of Environment and Measurement for Au-
tonomous Mobile Robots Considering Camera Characteristics,” Daniel
Polani, et al. (Eds.), RoboCup 2003: Robot Soccer World Cup VII,
pp. 446-457, 2004.

7. Chomchana Trevai, Ryuichi Ueda, Toshio Moriya and Tamio Arai:
“Mobile Robot System for Composition of Seamless and High Reso-
lution Images –Mobile Robot Localization and Map Building,” Proc.
of IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 1822-1827,
2003.

8. Ryuichi Ueda, Tamio Arai, Kazunori Asanuma, Shogo Kamiya, Toshi-
fumi Kikuchi, Kazunori Umeda: “Mobile Robot Navigation based on
Expected State Value under Uncertainty of Self-localization,” Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 473-478, 2003.

9. Ryuichi Ueda, Toshio Moriya, Trevai Chomchana, and Tamio Arai:
“Mobile Robot Control for Composition of Seamless and High-

Publication and Award List 255

resolution Images in Library,” IS&T/SPIE’s 16th Annual Symposium
on Electronic Imaging, San Jose, CA, USA, 2004.

10. Chomchana Trevai, Ryuichi Ueda, Toshio Moriya, and Tamio Arai:
“Integration of Monte Carlo Localization Method for Mobile Robot
with Sonar Array,” Proc. of The 8th Conference on Intelligent Au-
tonomous Systems (IAS-8), Amsterdam, Netherlands, 2004.

11. Ryuichi Ueda, Tamio Arai and Kohei Sakamoto, Toshifumi Kikuchi
and Shogo Kamiya: “Expansion Resetting for Recovery from Fatal
Error in Monte Carlo Localization –Comparison with Sensor Resetting
Methods,” Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2481-2486, 2004.

12. Ryuichi Ueda, Tamio Arai, Kohei Sakamoto, Yoshiaki Jitsukawa,
Kazunori Umeda, Hisashi Osumi, Toshifumi Kikuchi and Masaki Ko-
mura: “Real-Time Decision Making with State-Value Function under
Uncertainty of State Estimation –Evaluation with Local Maxima and
Discontinuity,” Proc. of IEEE International Conference on Robotics
and Automation (ICRA), 3475-3480, 2005.

13. Ryuichi Ueda, Tamio Arai, and Kazutaka Takeshita: “Vector Quanti-
zation for State-Action Map Compression – Comparison with Coarse
Discretization Techniques and Efficiency Enhancement,” Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 166-171, 2005.

14. Yoshiaki Jitsukawa, Ryuichi Ueda, Tamio Arai, Toshifumi Kikuchi, and
Kazunori Umeda: “An Object Recognition method using Fuzzy Color
Classification,” 36th International Symposium on Robotics (ISR), CD-
ROM, 2005.

15. Kazutaka Takeshita, Ryuichi Ueda, and Tamio Arai: “Fast Vector
Quantization for State-Action Map Compression,” Proc. of The 9th
International Conference on Intelligent Autonomous Systems (IAS-9),
694-701, 2006.

16. Hisashi Osumi, Shogo Kamiya, Hirokazu Kato, Kazunori Umeda,
Ryuichi Ueda, and Tamio Arai: “Time Optimal Control for Quadruped
Walking Robots,” IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 1102-1108, 2006.

17. Toshifumi Kikuchi, Kazunori Umeda, Ryuichi Ueda, Yoshiaki Jit-
sukawa, Hisashi Osumi, and Tamio Arai: “Improvement of Color

Publication and Award List 256

Recognition Using Colored Objects,” A. Bredenfeld et al. (Eds.):
RoboCup 2005, pp. 537-544, 2006.

18. Feng DUAN, Yoshiaki JITSUKAWA, Ryuichi UEDA, and Tamio
ARAI: “Pushing Motions of Quadruped Robot Generated by Genetic
Algorithm,” Proc. of The 6th International Workshop on Emergent
Synthesis (IWES), pp. 277-282, 2006.

19. Natsuki Yamanobe, Tamio Arai, and Ryuichi Ueda: “Robot Mo-
tion Planning by Reusing Multiple Knowledge under Uncertain Con-
ditions,” Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2232-2237, 2006.

20. Ryuichi Ueda, Tamio Arai, and Kojiro Matsushita: “Creation and
Compression of Global Control Policy for Swinging up Control of the
Acrobot,” Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2557-2562, 2006.

21. Ryuichi Ueda, Kohei Sakamoto, Kazutaka Takeshita and Tamio Arai:
“Dynamic Programming for Creating Cooperative Behavior of Two
Soccer Robots —Part 1: Computation of State-Action Map,” Proc. of
IEEE International Conference on Robotics and Automation (ICRA),
2007. (to appear)

Publication and Award List 257

Awards

in Academic Activity

1. Young Investigator Excellence Award, Robotics Society of Japan

in RoboCup Activity (as a member of Team ARAIBO)

1. RoboCup JapanOpen 2000 Robotics Society of Japan Award

2. 3rd place, Technical Challenge of Four Legged Robot League in
RoboCup 2003 Padua

3. 2nd place, Technical Challenge of Four Legged Robot League in
RoboCup 2004 Lisboa

4. 3rd place, Technical Challenge of Four Legged Robot League in
RoboCup 2005 Osaka

Publication and Award List 258

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

