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1. Introduction

This thesis introduces two different kinds of spatial data structures regarding:

● Light source space(geometric relations between linear/area light sources and

three dimensional object models)

● Screen space(intermediate buffers lie between'hidden surface removal' and

' shading' processes of the standard pipeline)

These sophisticated spatial data structures have yield:

●･ Fast and analytic shading and shadowing algorithms with linear/area light

sources, and

● New applications of computer graphics:

A new paradigm of'non' photo-realistic rendering,

An NC machining system, and

A interactive photo-realistic rendering algorithm with perfect anti-aliasing,

respectively.

This chapter introduces to the importance of spatial data structures and computer

graphics algorithms. A summary of our original research contributions is followed.

1.1 Data Structures for Light Source Space

To realize advanced local illumination models for linear and area light sources is

one of the most important tasks in the field of photo-realistic rendering. These extended

light sources cause significant visual effects such as penumbras(called soft shadows)

and broad but sharp highlights. In fact, these visual effects are very familiar in our daily

life and so notably improve image photo-realism, even if they are subtle.

There have been proposed so many methods to synthesize photorealistic images

with soft shadow. They are classified into the following two major approaches. Monte

Carlo approach needs excessive computing load, but often causes aliasing artifacts such

as poor penumbras. Our approach is based on analytic approach which can completely

suppress the aliasing artifacts since it determines unoccluded portions of each area light

source exactly. This exact segmentation, termed"light clipping", which is expensive, is
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needed for all objects in a scene at every pixel. Sophisticated spatial data structure is

expected to reduce the total amount of light clipping processes.

Especially, space subdivision technique is simple yet powerful to handle a huge

number of objects and light sources. We introduce a new sptial data structure , called

ray-oriented buffer, which subdivides the 3D space into radial sub-sectors by following

light rays radiating from polygonal light sources. Objects intersecting each sub-sector

are listed in the related cell of the buffer. Thus, objects that possibly cast shadows onto

an observed point can be selected by referring the buffer. The ray-oriented buffer

features"spatial coherence".

1.2 Data Structures for Screen Space

Other important spatial data structure is regarding to intermediate buffers of the

standard rendering pipeline, i.e. the screen space data structures. The standard rendering

pipeline consists of projection(viewing conversion, perspective conversion), hidden

surface removal including clipping, and shading as shown in Fig.1.1(a). Image

synthesis is usually iterated until the synthesized images satisfy the user . The user may

modify object layout, view point, lighting parameters, and object surface parameters

inclusive of mapping. Since the iteration is mainly required to set those parameters ,

overall rendering time can be shortened by saving the results of hidden surface removal

in a buffer. Such a buffer lies between hidden surface removal and shading operations ,

and store the results of hidden surface removal. However , conventional simple

structured buffers cause aliasing artifacts because they digitize the object surfaces as

pixels or scanlines.

In this thesis, we propose the cross scan buffer which preserves the results of the

hidden surface removal by the cross scanline algorithm[Tanaka90] as shown in

Fig.1.1(c). The cross scanline algorithm can determine the exact geometric shapes of

visible surfaces. These exact shapes, i.e., triangles and trapezia, are stored in the buffer.

This characteristic is very useful for image re-scaling to arbitrarily size , more accurate

shadow creation, exactly anti-aliased texture mapping, and so on.

Techniques for the comprehensible drawing of 3D shapes are indispensable for

various applications such as industrial design or medical imaging. Their importance in
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computer graphics is not at all inferior to that of photo-realistic rendering techniques.

We propose the G-buffer(geometric buffer) which contains a geometric property of the

visible object in each pixel[Saito90]. By extending image processing operations to

G-buffer, non photorealistic rendering is achieved (See Fig.1.1(b)).

Moreover, the G-buffer method is applied to NC machining. By utilizing G-buffers

created from a parallel projection, all the required NC machining functions are realized

as image processing operations (Fig.1.1(b)). A total NC system is created that consists

of all essential functions, such as tool path generation, path verification, and feed rate

control.

Fig.1.1 Intermediate Buffers of Rendering Pipeline and their Applications.
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1.3 Contributions

The contributions of this thesis fall into two areas:

・ Data structure for light source space

Radial space subdivision for fast and accurate rendering.

・ Data structures for screen space

Pixel-wise subdivision both for non-photorealistic rendering and for NC

machining of 3D objects.

Triangle/trapezia subdivision for interactive image re-generation.

1.3.1 Data Structure for Light Source Space

The ray-oriented buffer and its extension are proposed as a light source space data

structures for fast and accurate rendering illuminated by extended light sources. The

ray-oriented buffer segments 3D space to many radial sub-space sections. The

segmentation guarantees that if a point is included in a section, all light rays falling on

the point are also contained in the section. Each cell of the buffer is assigned to a section

and saves a list of polygons that lie within or intersect the section. That is, candidate

polygons that may cast shadows onto a point are obtained by determining the cell where

the point is located. Therefore, the ray-oriented buffer reduces the number of the

candidates that occlude the light sources, and yields to fast and accurate shading and

shadowing.

1.3.2 Data Structures for Screen Space

The G-buffer[Saito90] pioneers a new field of computer graphics, non

photorealistic rendering(NPR). Various kinds of NPR techniques are realized such as

edge enhancement, line drawing illustrations, topographical maps, medical imaging, and

surface analysis, and so on.

The G-buffer was also applied to NC machining of 3D objects. By preparing

G-buffers from a parallel projection, the various functions required for a NC system

were realized with image processing operations. This allows any surface description and

any tool shape to be used.
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The cross scan buffer is also proposed, which preserves accurate geometric shapes

of visible surfaces in a list structure. The visible surfaces are described using the

triangles and trapezia determined by the cross scanline algorithm [Tanaka90]. In

addition to improvement of image re-generation speed, various kinds of applications are

also possible such as image re-scaling to arbitrary sizes, two-pass shadow creation, and

texture mapping.

1.3.3 Industrial Contributions

This thesis, especially the G-buffer, impacts on not only computer graphics

industries but also manufacturing industries and/or industrial design fields. Thus, the

G-buffer pioneers new possibilities of computer graphics technologies.

ATI Technologies, Inc., one of the major computer graphics company, has been

adopting the G-buffer as its architecture[Mitchell02a],[Mitchell02b],[ATI03]. Their

non photo-realistic rendering environment based on G-buffer has been widely utilized

around the world. This work was done in collaboration with Takafumi Saito.

NTT has also developed a rapid prototyping system using NC milling machine for

industrial design, based on the G-buffer NC machining technologies. The rapid

prototyping systems were supplied to several product design and/or industrial design

companies as well as some institutions.

1.4 Thesis Organization

This thesis begins with introduction to the importance of spatial data structures and

computer graphics algorithms, followed by a summary of our original research

contributions. We discuss related work in Chapter 2 in detail.

The next two chapters discuss data structure for light source space. In Chapter 3, a

new algorithm using the ray-oriented buffer is described as a data structure for light

source space. The ray-oriented buffer realizes a fast and accurate shading and

shadowing algorithm for linear light sources. The ray-oriented buffer is extended and

applied to area light sources in Chapter 4.

The next three chapters discuss data structures for screen space and their

applications. Chapter 5 is about a new rendering technique with the G-buffer. They
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make it possible to produce comprehensible images of 3D objects. The G-buffer is also

applied to NC machining in Chapter 6. Moreover, sophisticated intermediate buffer, the

cross scan buffer, is proposed to re-generate perfect anti-aliased images in Chapter 7.

We finish discussion, future work, and conclusions in Chapter 8.
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2 Related Work
In this chapter, related work is reviewed and compared with our achieved studies

prior to the following chapters.

2.1 Fast and Analytic Rendering for Extended light Sources

Simulating various kinds of light sources is very important in generating realistic

images. Accordingly, several shading and shadowing algorithms have been proposed

for directional lights, point lights, spot lights, and so on. Illumination by linear and area

light sources notably improves image photo-realism, since they cause penumbras along

shadow boundaries. In fact, this effect, called soft shadow, is very common in our daily

life. Moreover, since shadows give us good cues for recognizing object shapes, exact

shadow generation is demanded. However, they are even subtle.

2.1.1 Monte Carlo Approaches

Many Monte Carlo approaches have been proposed to generate the visual effects by

area lights such as distributed ray tracing [Cook84], approximation of an area light

source by a cluster of point light sources [Verbeck84], Monte Carlo integration

[Kajiya86], its two-pass solution [Wallace87], light-backward ray tracing [Ward94], and

so on. The disadvantage of such systems is, however, excessive computing load.

Reasonable computing time requires the number of sampling points to be restricted, but

this often causes aliasing artifacts such as poor penumbras. This is because any point in

a penumbra is illuminated by some but not all parts of an area light source.

2.1.2 Analytic Approaches

Shadowing algorithms for linear light sources must determine light segments falling

on each point on objects' surfaces. The segmentation termed light clipping proceeds as

follows. First, a light triangle is defined by both end points of the linear light source and

the point at which illumination is being calculated. Each object is then tested to

determine whether it intersects the light triangle or not. If intersection does occur, the

intersection coordinates are calculated. Finally, light segments hidden by the
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intersection are removed. As a result of this, the light clipping yields exact light

segments, however, its cost is excessive because an expensive intersection test is needed

for all objects in a scene.

2.1.2.1 Penumbra Pre-processing

Nishita and Nakamae [Nishita83] classified segments of each object of the scene as

being in either umbra, penumbra, or illuminated area by using the shadow volume

technique. This algorithm successfully eliminates redundant intersection tests for simple

environments. However, in a common situation in which objects cast shadows onto

other objects, the computing cost remains expensive because testing at each object

surface involves generating a convex hull of all other objects.

2.1.2.2 Visibility Pre-processing

(a) BSP Trees

The second approach computes the visibility prior to rendering by using, for

example, BSP trees [Chin92]. To reduce the cost, Bao et al.[Bao93] proposed a method

which is an extension of the BSP shadowing algorithm for point light sources[Chin89].

However, traveling the BSP trees is also an expensive operation. In addition, processing

complexity of BSP tree is O(N2)[Woo90]; here N is number of polygons in the scene.

(b) Discontinuity Meshing
Discontinuity meshing was also introduced by [Heckbert92]. That is, it is known in

advance which polygons occlude light sources, thus the light clipping cost can be

reduced. However, when complex objects cast shadows, excessively large partitioned

meshes must be generated. In addition, both the generation and traversal of the BSP tree

require high computation cost.

(c) Backprojection
The backprojection techniques [Drettakis94],[Stewart94] are complicated and still

take a long time to generate discontinuity meshes.
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2.1.2.3 Space sub-division
Space subdivision methods can also decrease the number of objects subjected to

light clipping.

(a) 3D Grid
Uniform space subdivision, or 3D grid, is a popular technique. Each subspace,

named a voxel, saves a list of objects crossing the voxel. Light rays projected toward an

observed point define a light volume. The volume must be scan-converted in the 3D

grid to determine intersecting voxels. Objects stored in the voxels must be gathered then

unified because each object is often saved in multiple voxels. This method reduces

objects forwarded to the light clipping process, however, the total cost reduction is

insufficient because 3D scan-conversion is very expensive. Although space subdivision

like the oct-tree is useful in reducing memory requirements, its treatment increases the

total cost.

(b) Light Buffer
Cylindrical space subdivision, termed the light buffer, was proposed by Poulin and

Amanatides [Poulin90]. The buffer splits 3D space to many fan-shaped subspaces along

a linear light source and stores intersecting objects. Its great advantage is that the object

reduction is achieved by simple buffer reference. Nether 3D scan-conversion nor object

unification is needed. The one dimensional buffer was extended to yield the two

dimensional variant which improved the shadowing speed as described in the previous

chapter.

(c) 5D Subdivision
Arvo and Kirk [Arvo87] also proposed a 5D subdivision, each subspace of which is

defined by a combination of a voxel (3D) and a solid angle (2D). It also segments the

3D space in direction to improve ray-tracing speed, however, its excessive memory

requirement is not practical.

(d) Radial Scan Conversion

Let us turn to the shadowing algorithms for point light sources. Depth-buffer
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shadowing [Williams78] is well known as a fast algorithm. Each cell of the buffer stores

the object intersecting the light ray radiated toward the cell. This means the buffer

subdivides 3D space by light ray directions. Max [Max86] proposed a unique rendering

algorithm for a point light or a directional light. The algorithm scans images along the

light rays from the source to execute hidden surface removal and shadow volume

generation in one step. These algorithms indicate that scanning toward ray directions is

very effective in shadow generation.

As a matter of course, our shadowing algorithm uses a 2D ray-oriented buffer. The

next section estimates the performance of conventional space subdivision methods. Our

ray-oriented buffer will then be explained with buffer generation and shadowing

algorithms. Finally, performance of our algorithm will be determined.

The related works are summarized at Figure 2.1.

10



F
i
g
.
2
.
1
 
C
o
m
p
a
r
i
s
o
n
 
w
i
t
h
 
S
p
a
t
i
a
l
 
D
a
t
a
 
S
t
r
u
c
t
u
r
e
s
 
f
o
r
 
E
x
t
e
n
d
e
d
 
l
i
g
h
t
 
S
o
u
r
c
e
s

.

11



2.2 Intermediate Buffers for Advanced Applications

The standard rendering pipeline consists of the following operations [Foley90];

viewing conversion, perspective conversion, clipping, hidden surface removal, and

shading. Image synthesis is usually iterated until the synthesized images satisfy the user.

The user may modify object layout, view point, lighting parameters, and object surface

parameters inclusive of mapping. Since the iteration is mainly required to set those

parameters, overall rendering time can be shortened by saving the results of hidden

surface removal in a buffer. Such a buffer would improve not only the interactive

environment for image synthesis, but also new applications such as non-photorealistic

rendering, or NC machining employing the rendering results.

2.2.1 Fast Image Re-generation

Several rendering buffers have been proposed including the span buffer

[Whitted81],[Nakamae89], ray-tree, and G-buffers [Saito90]. They lie between hidden

surface removal and shading operations, and store the results of hidden surface removal.

However, conventional buffers cause aliasing artifacts because they employ scanline,

ray-tracing, or z-buffer, and so digitize the object surfaces as pixels or scanlines.

2.2.2 Comprehensible Rendering

Techniques for the comprehensible drawing of 3 dimensional shapes are

indispensable for various applications such as industrial design or medical imaging.

Their importance in computer graphics is not at all inferior to that of photo-realistic

rendering techniques. Comprehensibility is mainly created through suitable

enhancement lather than by accurately simulating optical phenomena. For shape

comprehension, line drawings are effectively used as an addition to or substitute for

surface coloring and shading [Kondo88]. For example, profiles and edges can be

enhanced with black or white border lines. Curved surfaces can be made more

comprehensible by hatching with curved lines. These techniques are commonly used in

hand drawn illustrations. However, they have not been adequately developed for

computer graphics compared to photo-realistic rendering techniques.
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The major problem for synthesizing a comprehensible image is determining the

most suitable combination of enhancement techniques. The reason is that

comprehensibility depends on the object, purpose, and sometimes the viewers'

preferences, and cannot be expressed with theoretical definitions. Therefore, we must

find the best combination by trial and error for each object or application. In order to

maintain high productivity, graphics systems must be flexible and interactive to match

the users' experimentation. For photo-realistic rendering, there is a lot of excellent

research that aims to reduce image re-computation cost by preserving intermediate

information [Duff85],[Mammem89],[Nakamae89],[Perlin85],[Porter84], and/or to build

a rendering system flexibly by separating it into small procedures which can be

combined freely [Cook84],[Crow84],[Nadas87],[Whitted82]. These techniques might

appear to be effective for comprehensible rendering. However, enhancement using line

drawings and conventional surface rendering are so different that it is difficult to

combine them efficiently. This difficulty arises, for example, when eliminating hidden

lines and surfaces for the same image [Saito89]. Perlin has also proposed Pixel Stream

Editor [Perlin85] useful for photo-realistic rendering.

2.2.3 NC Machining

While the thrust of modern computer graphics is the visualization of the real world,

people must use actual 3D objects to survive. One interface between conceptual and

actual objects is that created by CAD/CAM systems coupled to numerically controlled

(NC) milling machines. Unfortunately, this interface is not as efficient or productive as

it should be. The problem lies in the large number of factors that must be considered

when machining a complex object.

A number of sophisticated methods have been developed to address one or more of

these factors, and some have turned into commercial systems. Each method can be

characterized as one of two types: tool path generation, or machining

simulation/verification. In path generation, the main purpose is to obtain an adequate

tool path that produces an accurate shape. The tool path can be obtained from the offset

surface, i.e. the trace of the limit position of the tool center, and a lot of research has

been performed to calculate an accurate offset surface [Zhang86],[Sakuta87].
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Kishinami et al. have proposed a flexible algorithm called the Inverse Offset Method

[Kishinami87] which uses the rasterization technique. In simulation and verification, the

tool path is verified for each factor listed above. Many systems have been developed for

this purpose, and one of the major differences among them is the shape representation

for interference calculation. Wang et al.[Wang86a],[Wang86b], Hook [Hook86], and

Atherton et al.[Atherton87] all used a projection from a view point and applied a

variation of the z-buffer algorithm. Thus, their methods are termed 'view based methods'.

Kawashima et al..[Kawashima89] implemented such a method by using an oct-tree

data structure. Chappel [Chappel83] and Jerard et al..[Drysdale87],[Jerard89a],

[Jerard89b] represented the shape with 'direction vectors' from discrete points

distributed on the object's surfaces.

Unfortunately, in conventional CAD/CAM systems, these two activities, tool path

generation and simulation/verification, are usually independent of each other and based

on different methodologies. This has two disadvantages. First, the entire software

package is huge and excessively complicated. This is because different programs are

required for each activity in order to accommodate various shapes and tool types.

Second, it is difficult to generate tool paths by using simulation results. This function is

necessary because, for example, adequacy of a tool path for fine cutting depends on the

result of rough cutting.

The previous works are summarized at Figure 2.2.
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