
5 G-buffers for Non Photo realistic

Rendering

A new rendering technique is proposed that produces 3D images with enhanced

visual comprehensibility. Shape features can be readily understood if certain geometric

properties are enhanced. To achieve this, we develop drawing algorithms for

discontinuities, edges, contour lines, and curved hatching. All of them are realized with

2D image processing operations instead of line tracking processes, so that they can be

efficiently combined with conventional surface rendering algorithms.

Data about the geometric properties of the surfaces are preserved as Geometric

Buffers (G-buffers). Each G-buffer contains one geometric property such as the depth or

the normal vector of each pixel. By using G-buffers as intermediate results, artificial

enhancement processes are separated from geometric processes (projection and hidden

surface removal) and physical processes (shading and texture mapping), and performed

as post-processes. This permits a user to rapidly examine various combinations of

enhancement techniques without excessive re-computation, and easily obtain the most

comprehensible image.

Our method can be widely applied for various purposes. Several of these, edge

enhancement, line drawing illustrations, topographical maps, medical imaging, and

surface analysis, are presented in this chapter.

5.1 Introduction

Techniques for the comprehensible drawing of 3 dimensional shapes are

indispensable for various applications such as industrial design or medical imaging.

Their importance in computer graphics is not at all inferior to that of photo-realistic

rendering techniques. Comprehensibility is mainly created through suitable

enhancement lather than by accurately simulating optical phenomena. For shape

comprehension, line drawings are effectively used as an addition to or substitute for

surface coloring and shading [Kondo88]. For example, profiles and edges can be
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enhanced with black or white border lines. Curved surfaces can be made more

comprehensible by hatching with curved lines. These techniques are commonly used in

hand drawn illustrations. However, they have not been adequately developed for

computer graphics compared to photo-realistic rendering techniques.

The major problem for synthesizing a comprehensible image is determining the

most suitable combination of enhancement techniques. The reason is that

comprehensibility depends on the object, purpose, and sometimes the viewers'

preferences, and cannot be expressed with theoretical definitions. Therefore, we must

find the best combination by trial and error for each object or application. In order to

maintain high productivity, graphics systems must be flexible and interactive to match

the users' experimentation. For photo-realistic rendering, there is a lot of excellent

research that aims to reduce image re-computation cost by preserving intermediate

information [Duff85],[Mammem89],[Nakamae89],[Perlin85],[Porter84], and/or to build

a rendering system flexibly by separating it into small procedures which can be

combined freely [Cook84],[Crow84],[Nadas87],[Whitted82]. These techniques might

appear to be effective for comprehensible rendering. However, enhancement using line

drawings and conventional surface rendering are so different that it is difficult to

combine them efficiently. This difficulty arises, for example, when eliminating hidden

lines and surfaces for the same image [Saito89].

We propose a new enhancement technique for 3-D shapes that conceptualizes

geometric properties. We have developed drawing algorithms for the basic enhancement

operations, the drawing of discontinuity lines, contour lines, and curved hatching. All

operations are realized with 2-D image processing operations, not with line tracking

processes, so that they are suitable for interactive surface rendering environments.

The geometric properties are preserved as a set of Geometric buffers (G-buffers). A

G-buffer set is obtained by forming projection views and removing hidden surfaces.

Each buffer contains one geometric property, such as the depth or the normal vector, of

the visible object in each pixel. The basic enhancement operations can be performed

using G-buffer contents during post-processing. If geometric factors (i.e. shapes and

camera parameters) are fixed, any combination of enhancement can be examined

without changing the contents of the G-buffers.

The proposed method is also useful for photo-realistic rendering. It can be
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considered an extension of Perlin's Pixel Stream Editor[Perlin85]; it means that Perlin's

mapping techniques can be easily performed on a G-buffer set. Since the G-buffer set

contains no physical(or optical) properties such as reflectance or colors, photo-realistic

techniques can be used in post-processing and performed independently from

enhancement operations. Therefore, the proposed method can be considered a very

powerful and flexible rendering concept for various purposes.

5.2 Geometric Buffers

In this section, Geometric buffer set contents are introduced. A G-buffer set is the

intermediate rendering result, and used as the input data for enhancement operations.

Each buffer contains a geometric property of the visible object in each pixel. The

following properties are the typical contents of a G-buffer set.

● id: object/patch identifier

● ou: patch coordinate u

●ov: patch coordinate v

● sz: screen coordinate z(perspective depth)

● wx: world coordinate x

● wy: world coordinate y

● wz: world coordinate z

● nx: normal vector x

● ny: normal vector y

●n z: nounal vector z

Note that this list is not exclusive nor a requirement; the required G-buffer set

depends on the required enhancement techniques.

One of the significant advantages of preserving only geometric information in a

G-buffer set is that the rendering processes can be separated into the following three

groups.

● geometric processes:

processes based on geometric factors such as object shapes and camera
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parameters;(ex. perspective projection, hidden surface removal)

● physical processes:

processes based on physical(optical) factors such as reflectance, colors,

textures;(ex. shading, texture mapping)

● artificial processes:

processes based on psychological or artistic factors;(ex. enhancement)

G-buffers are formed during the geometric processes, and are used by the physical

and artificial processes. When physical and/or artificial factors are changed, the new

image can be recalculated without modifying existing G-buffers if the geometric factors

are fixed. Since physical and artificial processes can be applied independently, we can

rapidly examine various combinations. Post-processing is performed as a combination

of image processing operations. Since they are uniform operations for 2-D arrays,

special hardware or vector processors can effectively accelerate the calculations.

In this chapter, intermediate data which contains the scalar value of each pixel is

called an 'image'. A G-buffer is also called an image; one example is the 'sz image'.

5.3 Basic Enhancement Operations

In this section, basic enhancement operations-discontinuities, edges, contour lines,

and curved hatching-are described. Though all of them are line drawings, they are

realized with 2-D image processing operations instead of line tracking.

5.3.1 Drawing Discontinuities

Discontinuities of an image can be extracted with a first order differential operator.

Various operators developed in the image processing field[Rosenfeld82] are available,

however, we recommend Sobel's:

(5.1)
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where A-H and X are values of the neighboring pixels in Fig.5.1. In Eq.(5.1), g is

normalized so that it corresponds to the gradient per pixel.

Discontinuities of the first order differentials of an image can be extracted with a

second order differential operator. For this calculation, we recommend the following

operator:

(5.2)

Discontinuities can be extracted as sequences of peak levels by a differential

operator, however, they are not suitable for comprehensible rendering. Using a

differential operator only, it is impossible to draw discontinuities as uniform lines

because of the following artifacts:

(1) it is hard to distinguish discontinuities from large continuous changes;

(2) darkness of extracted lines depends on the degree of gaps.

Furthermore, second order differential operators have one more artifact:

(3) 0-th order discontinuities are extracted as double (negative and positive) lines.

These undesirable artifacts can be corrected using the minimum and maximum of

neighboring differential values. An example of the normalization operator is as follows:

(5.3)

where g is the gradient value of a pixel, gmax and gmin are the maximum and minimum

gradient values in the 3X3 neighboring pixels, and p is the normalized value. The

constant kg distinguishes discontinuities from continuous changes; its value depends on
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the object. Equation(5.3) can almost correct artifacts(1) and(2) of gradient images. For

discontinuities of first order differential, Eq.(5.3) can be applied to second order

differential images with simple modifications. For artifact(3), the following operation

can be applied:

(5.4)

where l is the second order differential value of a pixel, and e is the corrected value. The

constant kl, is the limit of gradient for the elimination of 0-th order discontinuities.

Fig.5.1 Neighboring pixels.

5.3.2 Drawing Edges

The most significant application of drawing discontinuity is edge drawing. Here,

edge has the two following meanings:

● profile-the border line of an object on the screen;

● internal edge-a line where two faces meet.

Profiles and edges are the 0-th and first order discontinuities of the depth image(sz

image) respectively, thus the operations described in Subsection 5.3.1 can be simply

applied. Edges can be drawn stably with 2-D image processing operators even for

complicated free form surfaces.

When an image is synthesized by perspective projection, the projection must be

performed to depth values. In this case, the general relation between the depth in the eye

coordinate zv and that in the screen coordinate zs(perspective depth) is as follows

[Newman79]:
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(5.5)

With Eq.(5.5), linearity of depth values on the screen is ensured. However, we

recommend the following equation:

..(5.6)

where d is the distance between the view point and the screen, and w is one pixel length

on the screen in eye coordinate (Fig.5.2). The advantage of Eq.(5.6) is that equalizes the

gradient value of depth image with the slope of the surface.

Fig.5.2 Perspective depth.

An example is shown in Fig.5.3. The depth image of a machine nut, its first and

second order differential images, and corrected profile and internal edge images are

presented. The normalization of the profile image was performed by using Eq.(5.3) with

kg=10. The correction of the internal edge was realized by using Eq.(5.4) with kl=2.

However, the artifacts (1) and (2) in Subsection 5.3.1 are not normalized for the internal

edge image; the sign of an internal edge indicates its convexity, and the strength

corresponds to its sharpness.

Note that edges can also be extracted by using the object/ patch identifier (id image).

This method is simple, but not complete for concave curved surfaces. To draw edges
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exacdy, it is possible to combine the two methods.

Fig.5.3 An example of edge drawing.
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5.3.3 Drawing Contour Lines

This subsection proposes a new algorithm for drawing contour lines by using image

processing techniques. Contour lines are usually drawn by tracking [Beck86],

[Dickinson89], however, it is difficult to find starting points for all contours and to

reliably trace the contour when the scalar field has singular points. The proposed

method generates contour lines as raster data; both input and output data are images and

the process consists of homogeneous calculations on each pixel and its neighbors. The

algorithm is robust even for irregular or complex scalar fields, and can draw anti-aliased

smooth lines easily. Furthermore, the thinning of condensed contour lines is also

possible.

Assume that only the contour lines of value p are required. Let s be the value of a

pixel of input image, g be the gradient value at the pixel, and d be the contour width in

pixels. As the simplest method, each pixel value c of the output contour image can be

obtained as follows:

(5.7)

(5.8)

where cc and cb are the densities of contour lines and background respectively. The

function f1(t) defines the density change of contours. The gradient value g can be

obtained by first order differential operators. The following operator is recommended

rather than the Sobel Operator (Eq.(5.1)):

(5.9)
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where A-H, X are neighboring pixel values in Fig.5.1. The method using Eq.(5.7),(5.8)

leads to excessive aliasing. By using a linear (Fig.5.4(b)) or a higher order function (c)

for fl(t) instead of a bilevel function (Eq.(5.8), Fig.5.4(a)), aliasing artifacts can be

reduced.

Fig.5.4 Color change of a contour line.

It is generally difficult to draw accurate contour lines in flat regions where p•`s and

g•`o, because the contours in such regions are basically unsteady due to noise if the

scalar field is given by measured data. For the proposed algorithms it is necessary to

add an exceptional process when g=o. One solution is to let c be close to a constant

value (such as cb) if g is less than a threshold value gƒÃ:

(5.10)

(5.11)

where the function fg modifies the contour density when the gradient g is too small. The
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constant Csparse corresponds to the contour density of flat regions; if Csparse=0, the

density is the background color cb. Using this process, the contour lines sometimes

disappear locally or look noisy in flat regions. Even in such cases, however, these

algorithms never fall into endless loops nor miss important contours completely.

Contour lines with regular intervals can be drawn by applying Eq.(5.7) to each

nominated value. Assume that the scalar values pn are nominated at an interval of q:

(5.12)

then pixel densities are given as follows:

(5.13)

where

(5.14)

If the gradient is large enough, the region is filled with the contour density using

Eq.(5.13),(5.14). However, it is desirable to change the density of concentrated regions

(application examples are shown in Subsection 5.4.3). By modifying the function fg into

Eq.(5.15), any density Cdense can be selected:

(5.15)

71



An example of drawing the contour lines of a scalar field:

(5.16)

is shown in Fig.5.5. This example uses Eq.(5.10) and (5.15). The gradient is zero at the

center (0, 0), where the density Csparse is white. For the region of large gradient, the

density Cdense is black in (a), and gray in (b).

Fig.5.5 An example of contour lines.

5.3.4 Curved Hatching

In this subsection, we propose a method to express hatching with curved lines that

indicate some type of structure lines. Such lines include the latitudes and longitudes of a

sphere or a rotated object, intersections by a set of parallel planes, and u-v mesh of a

parametric surface. For the above examples, a set of structure lines can be defined as

contour lines of a scalar field, so that they can be drawn with the method given in

Subsection 5.3.3. However, contour lines drawn at regular intervals become too dense

or sparse depending on the gradient, and are not suitable for hatching. To uniformly

hatch a surface, contour lines must be drawn at regular pixel intervals.

Contour lines with uniform density can be drawn by using the binary thinning out

technique. When the gradient is large and the contour lines become dense, alternate

contours are thinned out. If the contour lines become sparse, new contours are added

between existing lines. One example of the binary thinning out algorithm is as follows:
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(5.17)

(5.18)

where

(5.19)

(5.20)

(5.21)

and pd is the standard interval in the scalar field. The function fd has two terms; the first

term corresponds to the density of normal contour line, and the second term corresponds

to thinned or added contour line between normal lines. With these functions, contour

lines are approximately spaced at intervals of di on the screen. An example of Eq.(5.16)

is shown in Fig.5.6.
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Fig.5.6 An example of curved hatching.

5.4 Examples and Applications

5.4.1 Edge Enhancement

A shaded image of 3-D shapes can be more comprehensible by enhancing edges

(profiles and internal edges) with black or white lines. This technique is commonly used

in hand drawn illustrations in the field of industrial design [Kondo88]. When the shaded

image is generated with conventional computer graphics techniques, the edge drawing

method in Subsections 5.3.1 and 5.3.2 is easily applied. This is because the depth image

(the sz image) can be obtained as a by-product of hidden surface elimination. An

enhanced image is generated by combining the edge image with the conventional

shaded image. This technique is not the original usage of G-buffers; the shaded image

and depth image are preserved as intermediate results, and both have geometric and

physical factors. However, existing rendering software can be used with little

modification, and the enhancement can be rapidly examined.

Two examples are shown in Fig.5.7. The original shaded image is (a), and the depth

image is (b). Applying the differential operations on (b) (this process is shown in

Fig.5.3), an edge image (c) was obtained. A final enhanced image (d) was generated by

composing (b) and (c). In images (c) and (d), convex edges are drawn with white lines,

which present the edge highlight effect [Kondo88], [Saito89]. Another example of

enhancement is shown in images (c') and (d'); all profiles and edges are enhanced with
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black lines. It was generated by taking absolute values of the internal edge image.

Edges in reflected or refracted objects can be also enhanced with the proposed

method. For this purpose, a ray length image is used instead of a depth image. The ray

length image contains the ray length form the eye to the last reflected(or refracted)

object in each pixel, which can be obtained by ray-tracing. An example is shown in

Fig.5.8. Note that this method is simple but not complete; a complete method is

discussed in Subsection 5.5.1.

Fig.5.7 Two examples of edge enhancement.
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Fig.5.8 Edge enhancement of reflected objects.

5.4.2 Line Drawing Illustration

A lot of hand drawn illustrations are produced with just line drawings. Such 

illustrations consist of profiles, internal edges, and surface structure lines. Hatching

techniques are effectively used instead of shading.

With the proposed method, these basic techniques can be examined quickly through

the use of G-buffers in computer graphics. An example is shown in Fig.5.9. Six images

(nx, ny, nz, sz, ou, ov) were preserved as G-buffers. The shaded image(sh) was

calculated from the nx, ny and nz images. The profile image(pr) was obtained from the

sz image. The curved hatching(cu, cv) was from(ou) and(ov). By enhancing the

hatching images with the sh image and composing with the pr image, the final

illustrations(shu, shy, shuv) were obtained.

Line drawing illustrations are easy to print or copy. No special treatment for gray

scale is required, and even an inexpensive copy machine maintains the image quality.

The quality of the copied sh image is completely poor, however, the copied cv image

still has almost the same quality as the original.
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5.4.3 Topographical Maps

A topographical map can be drawn with a combination of multiple techniques in

order to effectively visualize the height data. For example, the following basic

techniques are very familiar:

● contour  lines-Usually they are drawn at regular intervals. Often two contour

thicknesses are used: thick contours for large intervals such as 100m and thin

contours for small intervals such as 20m.

● color  bands-To present absolute height, several discrete color bands are used.

Continuous color change is also available.

● relief-To  visualize the direction of slopes, shading is applied.

These techniques can be easily simulated with the proposed method if the height

value is prepared for each pixel.

Figure 5.10 shows the process of making an enhancement map of the region around

NTT's Yokosuka R&D Center. Image(wz) is the original height data. In the contour

line image(cn), two contour thicknesses were used for 20m and 5m intervals. The

constant cdense of Eq.(5.15) was set to the line color(black) for 20m contours. On the

other hand, it was set to background color(white) for 5m contours. With this technique,

the combined contour image(cn) can present both large and small gradient regions.

When the gradient becomes large and 5m contours become too dense, they are thinned

out and only 20m contours are displayed. Image(sh) is the relief(shaded image), which

was obtained from the gradient images of the(wz) image. Image(mx3) is the

combination of(cn),(sh), and color bands.

The above processes for normal(cartesian) maps can be also applied to draw

bird's-eye maps, which is but one advantage of our method. Example bird's-eye maps

are shown in Fig.5.11, which shows the same region as in Fig.5.10. Four G-buffers (sz,

wx, wy, wz) were generated from the original height data. The contour image(cn) and

the relief image(sh) were obtained from(wz) and(wx, wy, wz) respectively. For

bird's-eye maps, the profile image(pr) is also effective; it shows the shape of mountains

clearly. In Fig.5.11, four images(cn, pr, mx2, mx4) are presented, where(mx2) is the

combination of(pr) and(sh), and(mx4) is the combination of(pr),(cn),(sh), and color

bands.
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Fig.5.10 Process of making a topographical map.

Fig.5.11 Bird's eye maps.
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An artistic example-Japanese sumi-e(Indian-ink drawing)-is shown in Fig.5.13.

This picture was easily obtained from(cn) and(sz).

Fig.5.12 A sumi-e.

5.4.4 Medical Imaging

Recently, a lot of research has been done for visualizing volume data from CT

images [Drebin88],[Lorensen87],[Udupa89]. Many techniques for shading, coloring,

and transparent drawing have been developed to generate comprehensible images.

These techniques are effective to present an overview of the data. However, medical

doctors usually require the information about a more specific part; how the shape of the

object has been deformed by the disease or injury, or what is the exact place of the

diseased part. For this requirement, we can make the image more comprehensible with

G-buffers and 2-D image processing techniques. It is easy to draw profiles and contour

lines that show us some useful geometric information of the 3-D shapes. These line

drawings can be combined interactively with a conventional shaded or colored image.
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Fig.5.13 Medical imaging From CT data.

Data courtesy of Dr.Jin Tamai, Department of Radiology, Nippon Medical School.
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Example images are shown in Fig.5.13. The original voxel data had 50 slices of CT

data. After separating the bone part[Drebin88], seven G-buffers(wx, wy, wz, sz, nx, ny,

nz) were generated by ray-tracing the voxel data. The enhanced image(b) is the

combination of four techniques: the profiles, shading, the contour lines of(wz), and the

color bands for(wy). The conventional shaded image(a) is more realistic, however, the

enhanced image(b) gives us much more information about the bone shapes.

5.4.5 Surface Analysis

Free form surfaces such as Bezier or spline surfaces are widely used in geometric

modeling. A shape with these parametric surfaces can be controlled flexibly, and their

continuity is mathematically well known. However, it is difficult to evaluate the quality

of surfaces; because the quality depends on a lot of geometric properties, and

photo-realistic rendering is insufficient. For this purpose, it is important to visualize and

analyze the geometric properties. For example, contour lines, pseudo-highlight patterns,

and curvature maps are effective to describe the features of a curved surface [Beck86],

[Dickinson89],[Higashi83],[Higashi90]. In conventional methods, line drawings are

calculated by tracking, which requires a lot of consideration about numerical analysis.

Some of the surface analysis techniques are easily realized with our method. For

example, a pseudo-highlight pattern can be obtained as follows. A pseudo-highlight

pattern is the reflected image on a curved surface of parallel lines that are assumed to lie

at an infinite distance[Higashi90]. Assume the cylindrical coordinate whose z-axis is

parallel to the parallel lines. Then, each line has a constant e value. For each pixel, the

θ value in the reflected image on the visible surface is easily calculated from the

normal vector and the position of the surface, and the eye position. By drawing contour

lines or curved hatching for the image of ƒÆ value, the pseudo-highlight pattern is

generated.

In Fig.5.14, contour lines(a), and a pseudo-highlight pattern(b) of a curved surface

are presented. The curved surface consists of two bicubic patches that connect with C1

(not C2) continuity. The overview of the shape is comprehensibly presented with the
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contour lines. The discontinuity is clearly shown in the pseudo-highlight pattern.

Fig.5.14 An example of surface analysis.

Two bicubic patches are connected with C1 contmurty

5.5 Discussions

5.5.1 Anti-aliasing and Reflective/Transparent Objects

A G-buffer contains the property of only one surface per pixel. This restriction

leads the following problems:

・ aliasing artifacts occur on surface borders;

・ reflected or transparent images cannot be enhanced.

Some simple solutions are possible. For example, edges can be anti-aliased by

calculating the sz image as the average depth value in each pixel. Edges in reflected

images can be drawn with the method in Subsection 5.4.1. However, these are not

fundamental solutions.

These problems can be solved by preserving the properties of all surfaces visible in

each pixel. This can be realized with Extended G-Buffers. In Extended G-buffers, each

G-buffer has an extra memory area; the main area has the property of the primary

visible surface at each pixel, and the extended area has the property of the other visible

surfaces. A couple of additional G-buffers are preserved to retain pixel coverage

information and the pointer to the next area for each pixel. This method can be
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considered as an extension of the A-buffer method[Carpenter84], and

reflection/refraction and anti-aliasing can be achieved with duplicated operations on the

appropriate Extended G-buffers. Extended G-buffers have not been implemented yet; it

requires more investigation.

5.5.2 Local Enhancement

To draw a picture more comprehensibly, local enhancement is often required for

some specific regions. This can be provided with conventional 2-D paint systems.

Various interactive paint systems have been developed and effectively used. A system

with useful enhancement tools for technical illustration has also been developed

[Kondo88]. Using such a paint system to enhance computer generated images, a

designer can draw an image with any enhancement as he likes. However, it requires a

great deal of effort to apply the same enhancement technique globally, i.e. apply it to a

whole image, or a set of similar images such as an animation sequence. Furthermore, it

is difficult to apply the enhancement uniformly.

Our method is mainly for global enhancement. However, it is also possible to

realize local enhancement by applying operations only where some condition is satisfied.

The object/patch identifier(the id image) can be effectively used for this condition.

5.5.3 Errors and Artifacts

To implement G-buffers, the data type for each property should be carefully

considered. In our experimentations shown in Section 5.4, all images including

G-buffers are preserved as floating point data in order to avoid digitization errors.

However, it is rather inefficient in both execution time and memory space. Though it is

difficult to generally discuss the required precision of images, the following expectation

is usually true. The required precision of an image depends on the subsequent

operations. If the image is just used for linear operations, 1 byte integers are usually

sufficient. Normal vectors(the nx, ny, nz images) are an example if they are used for

the calculation of diffuse reflection only. On the other hand, if the image is used for a

differential operation, 2 or 4 byte integers or floating point numbers are needed. Since
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the process of drawing edges has differential operations, the sz image must have higher

precision.

It is also necessary to maintain the precision in the geometric processes. If a

G-buffer is generated with an approximation and is used for a differential operation,

undesirable artifacts sometimes occur. Such artifacts are shown in Fig.5.3; thin lines

shown on smooth curved surfaces are the border of tessellated polygon patches. Linear

interpolation of normal vectors can make the shaded image smooth, however, the

interpolation of depth values leads artifacts in the internal edge image.

5.6 Conclusion

We have proposed a new technique for rendering 3-D shapes comprehensibly.

Enhancement techniques-drawing discontinuities, contour lines, and curved hatching-

are developed with 2-D image processing operations, so that these line drawing

algorithms can be easily combined with conventional surface rendering algorithms. By

preserving geometric properties in G-buffers and visualizing the properties in

post-processes, various combinations of enhancement techniques can be rapidly

examined and a user can efficiently select the best enhancement technique. Furthermore,

G-buffers are also useful for photo-realistic rendering. Example images of edge

enhancement, line drawing illustrations, topographical maps, medical imaging, and

surface analysis confirm that our method can be flexibly and efficiently applied in

various fields.
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