
CHAPTER 3 

FOREST CHANGE DETECTION BY WINTER SATELLITE IMAGES

3.1 Background

       In the Russian Far East, forest resources have been consistently diminishing 

since the Soviet era through exploitation or other disturbance (Section 2.1). Thus, there 

is a need for remote sensing to provide an independent means of detecting and 

evaluating disturbances in boreal forests. Forest cuts and other canopy removal can be 

detected on satellite images by change detection (Section 1.3). In the Russian Far East, 

satellite images have been acquired frequently only in winter (Sections 1.4, 2.1). 

However, Snow-covered satellite images can be used for the monitoring and inventory 

of boreal forests as a stable data source (Section 2.2). In response to the consideration 

above, this Chapter aims the followings;

- To find appropriate image indices for canopy change detection in boreal 

  forest using winter satellite images with snow. 

- To distinguish the winter indices from the summer indices in terms of 

  forest change detection and recovery detection.

3.2 Study Area

       The study area is at the western skirt of the Sikhote-Alin Range, east of 

Khabarovsk, in the Russian Far East (Figure 3.1). The area covers a square of ca 180 

km by 180 km within a Landsat scene (path/row=121/026 in WRS-2). Lowland of 

marsh and grassland along the Amur River predominates in the western part of the 

area, while forest covers the slopes of the range in the eastern part. The altitude 

ranges from about 30 m near the Amur River to more than 2000 m in the range. The 

Japan Forest Technology Association (JAFTA, 1998) carried out a forest resource study 

using satellite images in the same area.

       In Khabarovsk, the monthly mean temperature is below 0℃ from November 

through March, and the minimum temperature is -20.9℃ in January (National 

Astronomical Observatory, 1997). Precipitation from April to September accounts for



more than 80% of the annual amount of 678.8 mm, which makes the probability of 

acquiring cloud-free satellite images here much greater in winter than in summer 

(TAKAO, 2000). At the Gassinski Model Forest, which is within the study area, the 

snow depth reaches 40 to 50 cm and winter snow cover lasts 150 days (Gassinski Model 

Forest Association, WWW).

       The forest consists of coniferous and deciduous broadleaf species. The main 

species distributed in the area are Dahurian larch (Larix gmelinii), Ezo spruce (Picea 

jezoensis), fir (Abies nephrolepis), Korean pine (Pinus koraiensis) ash (Fraxinus 

mandshurica), linden (Tilia amurensis), oak (Quercus mongolica), elm (Ulmus 

davidiana) and birch (Betula costata) (OKITSU, 1997). 

       Some scenery of the forests and trees are depicted in Photo 3.1-3.6.

3.3 Methods

3.3.1 Images Used

       The satellite images used in this study were five Landsat winter images (one 

MSS and four TM) along with one summer Landsat TM image. All were taken between 

1980 and 1999 (Table 3.1, Figure 3.2). All the winter images were taken in mid-March, 

except for the 1999 image, which was taken in mid-February. The summer image was 

used for comparison of indices between winter and summer, as will be described. 

      Hereinafter, each ID in Table 3.1 will refer to the corresponding image. Note 

that TM95S is the one summer image.

3.3.2 Image Pre-Processing

      TM96 was geocoded using ground control points (GCPs) collected on 1:200,000 

topographic maps. All other images were related to TM96 using GCPs collected on 

screen, and then they were overlaid onto TM96 either by nearest-neighbor 

interpolation for the TM images or by cubic convolution for MSS80. The RMS error of 

GCPs for each overlay was less than one pixel. 

       Appropriate radiometric corrections were applied separately as described later. 

When reflectance for each wavelength is required in order to obtain an index, the



exoatmospheric reflectance is derived from pixel values with either the original 

(MARKHAM and BARKER, 1986) or the latest (MARKHAM and CHANDER, 2003) 

conversion parameters.

3.3.3 Index Selection

       In this study, the single bands of the sensors and some commonly used indices 

were examined. Since MSS lacks mid-infrared bands, some indices could not be derived 

for MSS80.

1) Single bands (RED, NIR, MIR): A visible (MSS band 5, TM band 3), a near-infrared 

  (MSS band 7, TM band 4), and a mid-infrared (TM band 5) were used. For all bands, 

  the dark matter retrieval (CHAVEZ and MACKINNON, 1994) was applied as the 

  atmospheric correction, and then converted into surface reflectance. Hereinafter, 

  those three reflectances are referred to as RED, NIR, and MIR, respectively.

2) Normalized red band (N-RED): Prior to change detection by differencing of two 

  successive images, these images needed to be mutually normalized such that the 

  differences of 'no-change' points would distribute around zero. Empirical 

  normalization using "pseudoinvariant features" is often used (SCHOTT et al.., 1988; 

  HALL et al., 1991; HEO et al., 2000; DU et al., 2002). At visible wavelengths, the 

  reflectance of snow is very high and stable (DOZIER, 1989). Using the brightest snow 

  and darkest matter, the visible band was normalized to a relative reflectance 

  between 0 and 1. Because pixel values of MSS80's band 5 saturated at lower 

  reflectance than most of the snow on the image, the pixel values corresponding to 

  the brightest snow could not be derived. Instead, N-RED for MSS80 was derived by 

  the inverse fitting of the regression from MSS80's band 5 to N-RED for TM85. 

3) Normalized difference vegetation index (NDVI): NDVI was derived by equation 

  (3.1) using RED and NIP,



4) Normalized difference snow index (NDSI): NDSI is the analog of NDVI, which 

  detects the snow cover by using the visible and mid-infrared bands. It was derived 

  by equation (3.2) (KLEIN et al., 1998).

where GRNis the reflectance of TM band 2.

5) The robust vegetation and snow indices of SAITO and YAMAZAKI (1999): Combining 

  RED, NIR and MIR, they proposed a vegetation index that is insensitive to the floor 

  condition, V2, and a snow index that is insensitive to the overstory, S3. They noted 

  that both indices could express the density of vegetation above snow cover.

6) Tasseled Cap (KAUTH and THOMAS, 1976; CRIST et al., 1985): Tasseled Cap is a set 

  of linear transformations of Landsat images that creates a new set of images from a 

  TM image: Brightness, Greenness, Wetness and other components. Since the 

  combination of these three components describes the degree of forest regeneration 

  stage while reducing atmospheric influences, they have been widely used for forest 

  change detection and monitoring (COHEN et al., 1995; COLLINS and WOODCOCK, 

  1996; COHEN et al., 1998). In this study, those three indices were derived from the 

  original DN of the TM images without any atmospheric corrections.

3.3.4 Reference Data and Sampling

There was no independent vegetation information of the study area at hand,



nor did the author spend enough time in the area for data collection. However, in forest 

change detection, visual change interpretation of the image is a reliable means of 

developing reference data (COHEN et al, 1998; HAYES and SADAR, 2001; WILSON and 

SADER, 2002).

      The RGB composite technique (SADER and WINNE, 1992) with the time series 

of visible bands was used to delineate the forest canopy change. In this study, two color 

composites of the red bands (1980-1985-1990 and 1990-1996-1999 for Blue -

Green - Red, respectively) were provided for the interpretation. Since a forest stand 

becomes brighter in the red band after canopy removal, cuts or fires appear yellowish 

(at the first time period) or reddish (at the second time period) on the composites. By 

this interpretation, one of four disturbed periods (1980-1985, 1985-1990, 1990-

1996, 1996-1999) was assigned to each canopy removal.

      It was quite difficult to distinguish between cuts and fires using only 

band/index values, or pixel color, because in winter images the snow obscures the 

ground on which charcoal and ash are left after fire (ROY et al., 2002). By 

interpretation, however, cuts and fire scars appear as quite different shapes (JAFTA, 

1998): Cuts appear small with complex edges, whereas fire scars appear relatively 

large with round edges along topography. For comparison between cut and fire, fire 

scars were classified separately from cut stands.

      The whole image was divided into 9-km by 9-km (300-px by 300-px) grids as 

the units of interpretation. First, the grids that the author visited or observed from air 

were interpreted. Then grids were randomly chosen for interpretation one by one until 

at least 120 sample points (described next) could be randomly collected for each 

disturbed period.

       In each disturbed period, each sample point was randomly chosen from the 

center of a continuous area of the disturbed period where at least 5 by 5 neighboring 

pixels were assigned to the same disturbed period, and the sample value was derived 

as the average of the 3 by 3 neighboring pixels. While this approach may lead to a bias 

to overselection of larger cuts/fires, it avoids the errors of image overlay. The value was 

obtained at 60 points for each disturbed period, for index distribution estimation.



Another set of 60 points for each disturbed period was reserved for the producer's 

accuracy assessment of the classification (described in Subsection 3.5.3).

3.3.5 Separability and Stability of the Indices

       The primary concern was whether the cut or burned stands were clearly 

separated from intact forest on the indices of each image. Though 'intact forest' could 

not be interpreted, the forest stands before cut were assumed to be intact. The 

separability of indices among forests, cuts and fires was evaluated.

      The separability was measured as the probability of error in classification, 

assuming that the sample values of the indices were normally distributed (SWAIN, 

1978). Suppose that there are two different normal distributions, represented by two  

normal probability density functions, Nμ1,δ1(x) and Nμ2,δ2(x) where the means or 

standard deviations are diffbrent from each other, i.e.μ1≠μ2 or δ1≠δ2. then the 

probability of error between the two distributions, Pe, is calculated by equation (3.5) or 

(3.6). Pe takes a value between 0 and 0.5, where the lower is Pe the better is the 

separability (Figure 3.4(a)).

(if σ1=σ2, assuming, μ1<μ2)

where x1<x2 are the solutions to the following equation

       Intact forests and snowfields are stable objects in terms of landuse throughout 

the satellite observations. In contrast, cut stands and fire scars can be less stable due



to the early succession of vegetation after the disturbances. If indices from the stable 

objects remain stable throughout the observations, a change in indices could suggest a 

real change in landuse. As an indicator of stability, the relative ranges of means for the 

land use classes were calculated. The relative range of means, RRk for class k∈

                                                           バ

{'forest,' 'cut/fire,' 'snow'} was calculated from a set of index means IIi,j for image i and 

class j as,

ｉ=1,2…ｊ='forest', 'cut/fire'. 'snow'

      The more stable is an index is for its class, the lower is the RRk (Figure 3.4 

(b)).

3.3.6 Trend of Recovery through Chronoseauence of Cut/Fire on an Image

      Unlike following changes in certain samples through a time series of images, 

chronosequences of cuts were used to observe changes by comparing the index values of 

cut stands at different ages after cut on an image. To allow comparison among different 

samples, the method assumes that all samples of different age have identical 

conditions except the age. Actually, the conditions of atmosphere, snow, or sun location 

are more homogeneous within a single image than at a specific location among images 

of different dates.

       Separability was calculated between intact forest and other classes. In 

addition, linear regression was applied from the mean age after cut to the index value, 

to find the trends of the index change after cut. When the regression is not significant, 

it suggests that the index is stable over time, or the change in the index is not linear. 

When the regression is significant, the age of recovery is calculated. The age of 

recovery is the age after cut on the regression line at which the index value becomes 

equal to the mean index value of intact forest. 

       Note that the `recovery' discussed here is purely on the index basis. From the



viewpoint of forest succession, in general, 'soft' broadleaf species, such as birches and 

alders, are the first to regenerate, predominating for the first couple of decades after 

forest disturbance, after which they are gradually replaced by 'hard' broadleaf species 

and conifers over the course of centuries (KAKIZAWA, 2002a). One must remember that 

a boreal forest does not recover to nearly 'intact' within a few decades after severe 

disturbance.

       A winter image, TM96, was used for the chronosequential analysis. A summer 

TM image, TM95S, was taken nine month earlier than TM96. A set of indices from 

TM95S identical to those from TM96 was derived for comparison with the results of the 

TM96. The time series of summer TM images could not be provided because of their 

lack of availability (TAKAO, 2000).

3.4 Results

3.4.1 The Interpreted Classes

       Cuts were interpreted from each period of the time-series images. Large-scale 

fires occurred only between 1980 and 1985. Although relatively small areas of fire scar 

appeared on the fringes of large scars, they seemed to be dead trees that had fallen 

long after dying in the initial fires. In addition to these disturbances, open snowfields 

through all periods were arbitrarily interpreted. Finally, six classes were assigned for 

interpretation: Cut 1980-1985, Cut 1985-1990, Cut 1990-1996, Cut 1996-1999, 

Fire 1980-1985, and Snow.

     These classes were divisible into Before cut and After cut/fire for each image 

at image acquisition, because the time of cut/fire was known. For the chronosequential 

analyses on TM96 and TM95S, these six classes above could be converted into 11-16 

years after cut, 6-11 years after cut, 0-6, years after cut, Before cut, 11-16 years 

after fire, and Snow, respectively.

3.4.2 Separability of Cut/Fire from Intact Forest and the Stability of the Indices

      The changes of the indices over time are shown in Figure 3.6. On TM85, TM90, 

and TM96, which had both Before cut and After cut/fire classes, the separability



between these classes was derived (Table 3.2). RED, NIR, N-RED, and the Tasseled 

Cap indices showed good separability, whereas MIR did not. The probabilities of error 

of NDVI, V2, NDSI, and S3 varied widely among the images. These index values of 

intact forest were especially unstable. 

      Relative ranges showed that NDVI, V2, NDSI, and S3 of the forests were very 

unstable. Relative ranges of N-RED and Tasseled Cap indices were relatively low for 

all the classes.

      Cut 1980-1985 and Fire 1980-1985 were poorly separated by any index, 

throughout the images. The probabilities of error ranged from 37% to 43% for TM85 

immediately after disturbance, and decreased slightly with time to between 23% and 

35% for TM99.

3.4.3 Trend of Recovery through Chronoseauence of Cut/Fire on an Image

       The chronosequences of the indices on TM96 and TM95S are shown in Figure 

3.7. Table 3.3 shows the separability between intact forests (Before cut) and 

disturbances and the trend of the indices after cut. The summer N-RED was not 

derived for TM95S, since there were no stable bright and dark 'pseudoinvariant' objects 

on the ground in the summer image. The values of the winter N-RED should be 

identical to those of the winter RED in Table 3.3, based on the definition of both. 

      For the winter image, the separability was generally good except for MIR, 

NDVI, and V2. For the generally good indices, the trends after cut did not correlate 

with the age after disturbance or, if they did correlate, the ages of recovery were very 

high.

       The summer indices had worse separability in general than the winter ones. 

The vegetation indices (NDVI and V2) had the worst separability, especially 

immediately after cut. NIR, NDVI, V2, and Greenness had very low or negative values 

for age of recovery, which indicated that the index values deviated from the intact 

forest with the time after cut. Wetness and S3 had relatively good separability 

immediately after cut as well as high coefficients of determination in the trend after 

cut and medium ages of recovery (a few decades), which indicated they had clear



tendency of recovery within a couple of decades.

3.5 Discussion

3.5.1 Characteristics of the Indices

      On a single winter image of TM96, all the indices except MIR, NDVI and V2 

separated the cuts and fires from the intact forest quite well, even nearly 15 years after 

disturbance. RED, N-RED and Wetness presented particularly good separability (Table 

3.3). NIR, Brightness, and Greenness also presented reasonably good separability. They 

kept the separability throughout the images (Table 3.2), though the index values varied 

among the images (Figure 3.6), which might be caused by the conditions of atmosphere 

or snow, sensor degradation, sun incident angle etc. Only N-RED maintained good 

separability as well as stable index values throughout the images. MIR could not 

separate forest disturbance well because of the low reflectance of both forest and snow 

at the mid-infrared wavelength.

      The good separability of these indices follows naturally from the fact that the 

reflectance of snow is much higher than that of forest at the visible and near-infrared 

wavelengths. However, caution must be exercised when using AYR or Greenness, 

because the reflectance of snow at the near-infrared can approach zero as the snow 

grain size becomes large (DOZIER, 1989); that is, high reflectance of snow at the 

near-infrared cannot be expected in late spring. Another consideration regarding the 

near-infrared bands should be that the reflectance of forest during winter might vary 

depending on whether the forest is evergreen or deciduous.

      Though NDSI and S3 showed good separability on TM96 (Table 3.3), the 

indices derived by division of the bands, that is, NDVI, V2, NDSI, and S3, generally 

had unstable values (high relative ranges of means) and poor separability over time 

(Table 3.2 and Figure 3.6). Particularly unstable were the intact forests, which had 

very low reflectance at any wavelength (see RED, NIR, and MIR in Figures 3.6 and 3.7). 

As denominators, the low reflectance pixels amplify their own random errors and/or the 

systematic errors introduced by the atmospheric correction more severely than the 

high reflectance pixels do when calculating the indices by division of the bands.



Therefore, the index values for the intact forest, which has low reflectance, and the 

separability of such forest from other forest classes both became unstable. Thus, it 

would be wise to avoid using those indices of winter images for forest monitoring.

       The recovery after disturbance tended to be very slow or non-linear within the 

duration of the study, for each winter index. Even NDVI, V2, NDSI, or S3, whose 

coefficients of determination were relatively high (Table 3.3), did not show clear 

differences among the cut classes of different ages. This stability allows the 

disturbances to be detected for at least about two decades. However, it is not practical 

to use winter images to assess the early stage of succession of stands after disturbance 

because of the stability of the indices.

       The summer indices behaved quite differently from the winter indices. In 

summer, NDVI of 0-6 years after cut had as low a value as that of Before cut. The 

vegetation indices (MR, NDVI, V2, and Greenness) showed a similar tendency in 

summer. Usually these indices dropped immediately after disturbance due to canopy 

removal, a characteristic that has been widely used to detect clear-cuts (COPPIN and 

BAUER, 1996; HAYES and SADAR, 2001; SADER and WINNE, 1992). However, these 

indices recovered rapidly and exceeded the original vegetation's value. The ages of 

recovery for those indices took low values, which suggests that the index values 

experienced drastic temporal change. WILSON and SADAR (2002) noted that changes in 

NDVI could be used to detect clear-cuts within only 1-3 years after cutting. In this 

study, the intervals of winter image acquisition were even longer, which made the 

vegetation indices fluctuate over the course of about 15-20 years. The chance of 

summer image acquisition was even worse than that of winter's. Thus, those 

vegetation indices in summer are not practical for detecting changes in forests of the 

region.

       Summer Wetness showed a clear linear increase following a sharp drop to the 

bottom immediately after disturbance. The age of recovery for Wetness was 15.8 years, 

which means that by 11-16 years after cut the index almost recovered to the value 

before cut. However, the index for 11-16 years after fire remained low. Though the 

recovery of an index does not necessarily represent the recovery of the vegetation, as



pointed out previously, summer Wetness can be a good indicator of early succession 

after cut in the first decades. MIR correlates closely with Wetness, and many studies 

have pointed out the importance of MIR or Wetness in describing early forest 

succession (HAYES and SADAR, 2001; COHEN et al., 1995; COLLINS and WOODCOCK, 

1996; FIORELLA and RIPPLE, 1993).

       From the discussions above, it can be summarized that boreal forest change 

can be best detected by using a time series of winter RED, N-RED or Wetness, and the 

early succession stage can be estimated by summer Wetness for the first few decades 

after cut.

3.5.2 Fire Scars on Winter Image

       Fire scars could not be distinguished from cut stands by index values on 

winter images in which snow obscured the evidence of fire such as charring. In addition, 

because forest on the winter images is distinguished as tall and dark objects on snow 

regardless of whether they are dead or alive, the standing dead trees after fire are 

classified as forest. This might be why the clearing by a large fire was detected over the 

course of many years, despite the occurrence of the fire only once. To classify fire scars 

automatically and correctly, supplementary analyses of summer images are required. 

For example, old fire scars can be distinguished from a time series of summer images 

by Wetness' shallower trend of recovery than the trend for cuts. In summer images 

obtained immediately after fire, the fire scars can be detected by charring (ROY et al., 

2002).

3.5.3 Change Detection Using the Good Indices

      The change detection of forest canopy in the study area from 1980 to 1999 was 

examined by using winter N-RED and Wetness, two of the indices recommended in the 

previous section. The changes of each period were derived from pairs of successive 

images. COHEN et al. (1998) recommended a simultaneous processing of multi-date 

images over merging the pair comparisons, however, the latter has its advantages in its 

simplicity and expandability to the future. Since fire scars could hardly be



distinguished from cuts, as mentioned previously, the fire scars were classified into one 

of the cut classes.

       Since the N-RED had already been normalized, the changes were delineated 

by differencing the successive two indices followed by thresholding with an arbitrary 

fixed (threshold) value of 0.3. Wetness had good separability but was not stable 

throughout the images. Therefore, principal component analysis (PCA) was applied for 

each pair of successive Wetness, and the minor component was thresholded with two 

standard deviations to identify the changes. PCA shows the overall changes among 

images in the major component and the local changes in the minor component (SINGH, 

1989).

       The producer's accuracy was assessed by comparing the classification with the 

interpretation using the 60 preserved interpretation samples for each class (see 

Subsection 3.3.4). The user's accuracy was assessed by interpreting the random sample 

points on the classification result; with 100 points for each changed class and 400 

points for each unchanged class (Table 3.4).

      Both the indices showed almost same level of user accuracy (66-100%) and 

the producer's accuracies (79-98%). The later periods (1990-1996, 1996-1999) had 

lower accuracies in general, and this is supposedly because the area of real cuts/fires 

had been reduced recently. The user's accuracy was better than producer's for all 

periods except 1996-1999, which suggested that the area of cut/fire was 

underestimated for those periods.

      For change detection using RED, another good index, PCA should be applied, 

since RED was not stable, too (Figure 3.6, Table 3.2). The result was expected to be 

almost as same as that for N-RED, because each image's RED has a linear relationship 

with the corresponding N-RED. Note that PCA would not be simply applied for RED for 

MSS80, whose original band 5 saturated at high reflectance.

      Given that the three indices had the almost same level of accuracy, RED and 

Wetness might have a better performance, because PCA and the derivation of RED and 

Wetness required neither manually nor subjective judgment, while N-RED required a 

time-consuming interpretation of snow distribution. On the other hand, RED and



N-RED required only a visible band. Especially N-RED could be derived from even the 

saturated band 5 of MSS80. With this flexibility of the relative normalization of a 

visible band, history of boreal forest would be able to be traced back to Landsat MSS of 

three decades ago, or even back to aerial and space photography of up to nearly a 

century ago.

3.6 Summary of Chapter

       Using a time series of winter satellite images and a summer image for 

comparison, the author examined several indices (RED, MR, MIR, N-RED, NDVI, 

NDSI (KLEIN et al., 1998), SAITO and YAMAZAKT's (1999) V2, S3, and Tasseled Cap 

(KAUTH and THOMAS, 1976; CRIST et al., 1985) Brightness, Greenness, and Wetness) 

for change detection in boreal forest in the Russian Far East.

The results show that;

- Winter RED , N-RED, and Wetness are the best indices for detecting canopy 

  removal. The indices remain sensitive to the changes for at least about two 

  decades. Both user's and producer's accuracies of the change detection with 

  the indices were within 66-100%. 

- NDVI , NDSI, and other indices derived by division are too unstable to 

  distinguish changes from no changes. 

- Using only winter image it is difficult to distinguish fire scars from cut 

  stands or to estimate the succession stage after disturbance. It might be 

  achieved in combination with summer image analysis. 

- Summer Wetness is the best index for identifying recovery after 

  disturbance within a few decades.

       These results can be applied to the management of boreal forest covered by 

snow every winter. Use of winter images enabled change detection even after the 

passage of many years. Thus, it can be used to reconstruct the forest 

management/disturbance history by using images taken during the more than three 

decades of Landsat operation, or even longer with aerial and space photography.



Figure 3.1 Study area
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The relative range of means, RR, is represented as d/a for the disturbed stands and n/a 

                        for the undisturbed stands..

Figure 3.4 Preferable properties of indices for detecting forest disturbances 

In a single-year comparison, the probability of error for misclassification is represented 

as the overlapped area of the two distributions: the better index has the less 

probability of error. In a multi-year comparison, stability and reproducibility of an 

index for a class is preferable. Thus, the better index has the less relative range of 

means.



Figure 3.5 Preferable trends of indices for detecting the recovery of forest after a 

disturbance 

Index 1 (purple) is not a suitable indicator of recovery because it does not show a 

monotone recovery to the pre-disturbance (intact) level. Index 2 shows a monotone but 

too gradual recovery for the duration of observation. Index 3 is a suitable indicator of 

recovery that shows a monotone and clear recovery to the pre-disturbance (intact) level 

within the duration of observation. The age of recovery is the age after disturbance on 

the regression line at which the index value recovers to the pre-disturbance (intact) 

level.



Figure 3.6 Time series of indices of the forest stands with different disturbance 

occurrence time/disturbance type. Vertical bars indicate standard deviation. Dashed 

lines indicate that cut/fire occurred during the period covered by the lines. n=60 for 

each class.



Figure 3.7 Chronosequence of indices of the forest stands with different type of 

disturbance/age after disturbance, derived from TM96 (winter) and TM95S (summer). 

The vertical scales at left and right are for winter and summer indices, respectively. 

Vertical bars indicate standard deviation. Solid lines connect cut stands of different age. 

Dashed lines indicate that cut occurred during the period covered by the lines. n=60 

for each class. C0: Before cut (Cut 1996-1999), C1: 0-6 years after cut (Cut 1990-

1996), C2: 6-11 years after cut (Cut 1985-1990), C3: 11-16 years after cut (Cut 

1980-1985), F3: 11-16 years after fire (Fire 1980-1985), S= Snow. N-RED was not 

derived for the summer image when snow was absent.



Table 3.1 List of satellite images used

Note: L-3: LANDSAT3, L-5: LANDSAT5, * WRS-1, ** WRS-2



Table 3.2 Separability and stability of indices over time



Table 3.3 Separability and succession trend of the chronosequences of disturbance

Note: the winter and summer images are TM96 and TM95S, respectively



Table 3.4 Accuracies of the change detections using "good" indices

Note N/A="not available"


