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Chapter 1

Introduction

1.1 Background

Shannon showed the theoretical limit of coding performance and the exis-
tence of code that can attain this limit in his seminal paper that founded
Information Theory [40]. However, since the random coding technique was
used for the existence proof of a code, it was not clear how to construct the
code. In the late 1950’s, BCH code [3] [19] and Reed-Solomon code [38] were
invented as channel codes. These codes can be implemented efficiently, but
in the limit of long block length n, an asymptotically positive transmission
rate (R > 0) and decoding error → 0 (as n → ∞) are not compatible. The
first code with which the above properties are compatible was invented by
Justesen in 1972 [20]. However, this code also could not attain the optimal
rate shown by Shannon.

In the 1990’s Turbo code was invented [1] and Low Density Parity Check
(LDPC) code was rediscovered [15] [24] [23]. It was experimentally shown
that Turbo code and LDPC code could be implemented efficiently and the
coding rate could approach the optimal rate with an arbitrary small decod-
ing error. Research on the construction of codes that can be implemented
efficiently and, at the same time, approach an optimal rate shown by coding
theorems have been an important problem in Information Theory.

Information Theory treats the problem of source coding and channel cod-
ing. For each problem, a point-to-point system, where there is one sender
and one receiver of a message, and a multi-terminal system, where there is
more than one sender or receiver, can be considered. A point-to-point sys-
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Figure 1.2: Lossy source coding system

tem is more fundamental. Figures 1.1 and 1.2 show lossless and lossy source
coding problems of point-to-point system, respectively.

In the lossless source coding problem, the infimum value of the compres-
sion rate that asymptotically makes the decoding error to be 0 has been inves-
tigated. The value is known to be the entropy of the source H(U) defined by∑

a PU(a) log 1
PU (a)

, where the source PU is assumed to be stationary memo-
ryless. In the lossy source coding problem, the infimum value of the compres-
sion rate that makes distortion between the original message sequence and
the reproduction message sequence to be less than a given value D with high
probability has been investigated. The value is known as the rate-distortion
function R(D) defined by minPV |U :

∑
a,b PUV (a,b)d(a,b)≤D I(PU , PV |U), where the

source PU is assumed to be stationary memoryless. Figure 1.3 shows the
channel coding problem of a point-to-point system. In this problem, the
supremum value of the transmission rate that asymptotically makes decod-
ing error to be 0 has been investigated. The value is the channel capacity
C(W ) defined by maxPX

I(PX ,WY |X), where the channel WX|Y is assumed
to be stationary memoryless. When the code that satisfying the condition
that the decoding error asymptotically decrease to 0 for the lossless source
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Figure 1.4: Joint source-channel coding system

coding or channel coding problem, or the condition that the distortion be-
tween the original message sequence and the reproduction message sequence
is less than a given constant for the lossy source coding problem, achieves the
optimal rate asymptotically, we say that the code has asymptotic optimality.

In real communication systems, we do not always know the statistical
properties of the source or the channel. In this framework, the problem
whether the code that asymptotically makes decoding error to be 0 exists, or
if such code exists, how fast the error approaches 0, is called the problem of
universal coding. For the universal source coding problem, the speed at which
the decoding error approaches 0 (“ error exponent”) is strictly obtained, on
the other hand, for the universal channel coding problem, the upper and
lower bounds of the error exponent are known to have a gap (e.g. [7]).

When both the source and the channel constitute a communication sys-
tem, and k outputs from the source are transmitted through n channel usage
(Figure 1.4), the problem investigating the infimum value of n/k (Limit of
the Minimum Transmission Ratio: LMTR), that makes the distortion be-
tween the original message sequence and the reproduction message sequence
to be less than a given constant D with high probability, is called the joint
(lossy) source-channel coding problem. LMTR is known to be R(D)/C(W )
when both the source and channel are assumed to be stationary memoryless.

For multi-terminal systems, there are various types of source coding and
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channel coding problems. For examples, the Wyner-Ziv system (Figure 1.5)
shows the lossy source coding problem with side information at the decoder,
and the Gel’fand-Pinsker system (Figure 1.6) shows the channel coding prob-
lem where the encoder knows the channel state. The former is expected to be
applied to the sensor network [43], and the latter can be regarded as a model
of steganography [26]. Although there exist many kinds of multi-terminal
systems [10] [21] besides these systems, details of multi-terminal systems are
omitted since the theme of this thesis is on point-to-point systems.

For various communication systems, existence of code with asymptotic
optimality has been proven. Since the proofs are non-constructive using
random coding arguments, construction of the code that has asymptotic
optimality, and at the same time, can be implemented using an efficient
algorithm has been an unsolved problem (note that for the lossless source
coding problem, the variable length code that has both the above properties
has been constructed (e.g. [48] [49])).

LDPC code was first proposed as a linear code using LDPC matrices
for a given channel. Since LDPC matrices have O(n) non-zero elements,
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where n denotes the block length of the code, there exist efficient algorithms
that approximate the maximum-likelihood (ML) decoding [15] [24]. Caire,
Shamai, and Verdú [5] proposed a lossless universal source code that can be
applied to sources with memory using multiple LDPC matrices and selecting
the most favorable one by MDL (Minimum Description Length) [39] and
showed high compression performance.

In a theoretical aspect, Miller and Burshtein [28] proved the asymptotic
optimality of LDPC codes for channels whose noise distribution is symmet-
ric such as the binary symmetric channel (BSC). For the lossy source coding
problem, Matsunaga and Yamamoto [27] showed the asymptotic optimality
of LDPC codes under the assumption of uniform distribution over the bi-
nary alphabet and using the Hamming distance as a distortion measure, and
Miyake [29] extended their results to a non-binary alphabet case. Martinian
and Wainwright [25] also showed the asymptotic optimality of LDPC codes
under the same assumption, and extended their results to multi-terminal sys-
tems such as the Wyner-Ziv and the Gel’fand-Pinsker systems [26]. Note that
all the results for the asymptotic optimality of LDPC codes were obtained
under the assumption that the stochastic properties governing the system
considered has symmetric properties such as uniform distribution over the
alphabet or additive noise on the channel. To show the asymptotic optimal-
ity of LDPC codes for arbitrary stationary memoryless channels, which is
not assumed to have symmetric properties, Bennatan [2] obtained the de-
sired LDPC code after considering uniform distribution over a sufficiently
large alphabet and constructing a map (“quantization map”) from the large
alphabet to the alphabet of the system under consideration. For lossy source
coding problem with respect to an arbitrary stationary memoryless source,
Gupta and Verdú [18] constructed a heuristic coding algorithm and showed
asymptotic optimality.

1.2 Contributions

We constructed a lossless universal source code, lossy source code, and chan-
nel code using sparse matrices for stationary memoryless systems, and showed
their error exponent (lossless universal code) or asymptotic optimality (lossy
source code, channel code). It should be noted that the sparse matrix code
constructed in this thesis can be applied to any discrete stationary memory-
less sources and channels, which are not assumed to have symmetric prop-
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erties of probability distributions of the communication models. Here we
distinguish the word “sparse matrix” from “LDPC matrix”. Since the num-
ber of non-zero elements for sparse matrices is O(n log n) compared to O(n)
for LDPC matrices, we need a distinction. Therefore, it can be seen that
under the same condition, while implementing algorithms such as the sum-
product algorithm takes O(n) execution time for code using LDPC matrices,
the polynomial order of n will be necessary for implementing code using
sparse matrices.

In the lossless universal source coding problem, we showed the universality
of sparse matrices that construct the encoder and decoder, and showed that
by using the decoder that does not depend on the statistical properties of
the source, the decoding error asymptotically approaches 0. The fact that
the obtained error exponent is similar to that of the ordinary linear code is
remarkable.

The lossy source code constructed using sparse matrices is shown to
have asymptotic optimality for arbitrary stationary memoryless sources with
bounded and additive distortion measures. Simulation experiments are car-
ried out by implementing the sparse matrix code using the linear program-
ming method proposed by Feldman [12], and show that the code attains high
compression performance that goes beyond the time-sharing bound.

The channel code constructed using sparse matrices is shown to have
asymptotic optimality for arbitrary stationary memoryless channels. Note
that the code constructed here is simpler than the code proposed by Bennatan
and Burshtein [2] who used a “quantization map” over a sufficiently large
virtual alphabet. While they assumed the decoder was ML decoder, we can
show the universality of the code using minimum entropy decoding as the
decoding operation [33]. The duality of encoder and decoder between the
lossy source code and the channel code seems interesting.

For joint source-channel coding systems, while the code approaching LMTR
is ordinarily constructed by serially combining the optimal lossy source code
and the optimal channel code, we show that by taking output from the vector
quantizer of the lossy source code as the channel codeword, code construction
becomes much simpler.

We showed that fundamental problems of point-to-point communication
systems can be analyzed using simple common concepts and techniques.
Point-to-point systems are so fundamental in Information Theory that coding
theorems of many multi-terminal systems are derived by combining results or
techniques of point-to-point systems. We can expect in sparse matrix coding,
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multi-terminal systems can be investigated similarly, and so far, Muramatsu
and Miyake [35] have constructed sparse matrix codes for the Wyner-Ziv and
the Gel’fand-Pinsker systems and shown their asymptotic optimality. In the
near future, we are looking forward to seeing implementations of efficient
and optimal video coding or radio communication using the results of the
multi-terminal source or channel coding problems.

1.3 Composition

In Chapter 2, we show the fundamental lemmas, which we will often use in the
following chapters. In Chapters 3, 4, and 5, a lossless universal source code,
lossy source code, and channel code are constructed using sparse matrices
and their asymptotic optimality are proven. We conclude in Chapter 6 by
describing future works.

1.4 Notations

A list of the commonly used notation is as follows. The first entry is the
symbol, followed by its meaning.

R set of real numbers

R+ set of positive real numbers

[1: n ] a set of integers {1, 2, · · · , n}
[a, b ] a closed interval including both endpoints a, b ∈ R

(a, b) an open interval which does not include both endpoints
a, b ∈ R

GF (q) a finite field constituted by [0 : q−1], where q is a prime number

|set| a cardinality of the set; otherwise, |number| denotes the absolute
value of the number

xn n-dimensional row vector (x1, x2, ..., xn)

A, B sparse matrices
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1[(logical) equation ]
indicator function: if (logical) equation is satisfied, the value is
1; otherwise, 0

EX expectation operation with respect to the random variable X

dH(a, b) Hamming distance between a, b ∈ GF (q): if a = b, the value is 0;
otherwise, 1

w(zn) Hamming weight of the sequence zn: number of non-zero compo-
nents of zn

R coding rate defined by R = k/n for source coding shown in Figure
1.1 and 1.2, and for channel coding shown in Figure 1.3.

z∗ operation of taking value 1 if z �= 0; otherwise, 0

|t|+ max{0, t}

S(w) weight spectrum defined by (2.5) in Lemma 2.2

{αn(R,w)} a sequence which satisfies (2.8)

{βn(R)} a sequence which satisfies (2.6)

e Napier’s constant

ln logarithmic function with base e

log logarithmic function with base q specified in the context

h(p) binary entropy function defined by p log 1
p

+ (1 − p) log 1
1−p for

p ∈ [0, 1]

H(U) entropy function of random variable U defined by
∑

a PU(a) log 1
PU (a)

another notation H(PU) is used depending on the context

H(V |U) conditional entropy function of random variable V conditioned
on U , which is defined by

∑
a,b PUV (a, b) log 1

PV |U (b|a)
another notation H(PV |U |PU) is used depending on the context
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I(U ;V ) mutual information between random variables U and V , which

is defined by
∑

a,b PUV (a, b) log
PV |U (b|a)
PV (b)

another notation I(PU , PV |U) is used depending on the context

D(P ||Q) Kullback Libler divergence between probability distributions P

and Q defined by
∑

a P (a) log P (a)
Q(a)

||P −Q|| variational distance between probability distributions P and Q
defined by

∑
a |P (a) −Q(a)|

T nQ type set (set of sequences with type Q)

T nW (xn) conditional type set (set of sequences with conditional type W
for a given xn)

T nQε (jointly) typical sequence set defined by (2.49) or (2.51)

T nWε(x
n) conditionally typical sequence set defined by (2.52)





Chapter 2

Preliminaries for Sparse Matrix
Coding

In this chapter, concepts and lemmas which are used in the following chapters
are shown.

In each of Sections 2.1 and 2.2, first, we describe the construction of a
sparse matrix and correspondence between the syndrome constraint xnA =
ck and a random walk. The lemma of the weight spectrum is fundamental for
applying the random walk formula to the proof of the sparse matrix coding
theorem. A second moment lemma is necessary for evaluating Chebyshev’s
inequality by using the weight spectrum lemma. In Section 2.3, concepts
and some lemmas of the type method [7], which is often used throughout the
thesis, are shown.

In Section 2.1, issues are described in the case of binary alphabet for
readability, and in Section 2.2, general non-binary alphabet cases are inves-
tigated.

2.1 Sparse Matrix with Binary Alphabet

In this section, alphabet is taken as GF (2), where GF (2) is a finite field
constructed by {0, 1}. First, we show the construction of a sparse matrix
that will be used in coding and decoding. After showing the correspondence
between the sparse matrix coding operation and random walk, some use-
ful lemmas of random walk follow, which will be used in proofs of coding
theorems.

17
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2.1.1 Construction of Sparse Matrix

n×k sparse matrix A is constructed as follows. Let a sparse matrix parameter
be t that is an appropriate even natural number. Then, the construction is

Step 1: Set all elements of A to be 0.
In each row, the following operation (Step 2) is carried out.

Step 2: Take number a ∈ [1 : k] uniformly at random. Add number 1 to the
a-th column, where the addition is modulo 2. Repeat this step t times.

Note that throughout the thesis, for a positive integer k, we define [1 :

k]
def
= {1, 2, · · · , k}.
From the above construction, A can be regarded as a random variable.

We use notations PA[EA] and EAf(A) as a probability for an event EA and
an expectation of function f(A), respectively.

Remark 2.1
Sparse matrix parameter t is specified for the formulas stated in the following
subsections to hold.

2.1.2 Random Walk Correspondence

In sparse matrix coding, a probability PA
[
xnA = ck

]
is often evaluated for

given xn ∈ GF (2)n and ck ∈ GF (2)k. When we define the weight function
w : GF (2)n → [0 : n] as

w(xn)
def
=

n∑
i=1

dH(xi, 0), (2.1)

where dH is Hamming distance:

dH(a, b)
def
=

{
0, if a = b
1, otherwise.

(2.2)

Then xnA = ck can be interpreted as random walk on hypercube {0, 1}k
starting from the origin 0k and attaining the point ck in w(xn) × t steps.
Therefore, lemmas for random walk are available for analyzing properties of
sparse matrix coding. Figure 2.1 shows an example of random walk corre-
spondence. At each step, a particle on a vertex of hyper cube {0, 1}k moves
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Figure 2.1: Example of random walk correspondence

to the vertex connected by an edge. w(xn)× t corresponds to the number of
steps, and ck corresponds to the point where the particle starting from the
origin stops after w(xn) × t steps.

Note that when the weight of ck is even, if w(xn) × t is odd, then the
probability PA

[
xnA = ck

]
is apparently 0. We assume that ck is even weight

and the sparse matrix parameter t is an even number when we consider a
binary alphabet.

2.1.3 Random Walk Lemmas

The next lemma for random walk is well known.

Lemma 2.1 (Random Walk Formula [22])
A random walk on a k-dimensional hyper cube {0, 1}k is considered. A par-
ticle moves from one vertex to another, which are connected by an edge, with
uniform probability 1/k.
The probability that the particle starting at origin 0k stays at the vertex, whose
Hamming weight is w after m steps, is

1

2k

k∑
j=0

awj

(
1 − 2j

k

)m

, (2.3)

where

awj
def
=

j∑
ν=0

(−1)ν
(
w

ν

)(
k − w

j − ν

)
(2.4)



20 CHAPTER 2. PRELIMINARIES FOR SPARSE MATRIX CODING

Using the above lemma and considering that w = 0, the next lemma
holds.

Lemma 2.2 ([28][31][35])
Let the weight spectrum S(w) be

S(w)
def
=

∑
zn:w(zn)=w

EA1
[
znA = 0k

]
, (2.5)

where 1[·] denotes an indicator function. Then for a fixed R = k/n, there
exists a positive number γR ∈ (0, 1] satisfying the following statements:
1) There exists a sequence {βn(R)}∞n=1 which satisfies

nγR∑
w=1

S(w) < βn(R), (2.6)

where βn(R) → 0 (n→ ∞).
2) For any integer w ∈ [nγR+1 : n], if the sparse matrix parameter t satisfies
the conditions that t is an even number and that

t ≥ max

{
10

3
,
lnn

γR

}
(2.7)

then there exists a sequence {αn(R;w)}∞n=1 which satisfies

PA
[
znA = 0k

∣∣ w(zn) = w
]

=
αn(R;w)

2k−1
, (2.8)

and there exists a positive number sequence {δn(R)}∞n=1 satisfying

|αn(R;w) − 1| ≤ δn(R) for any w ∈ [nγR + 1 : n], (2.9)

and

δn(R) → 0 (n→ ∞). (2.10)

Remark 2.2
Note that Lemma 2.2 represents an original form of the hash property pro-
posed in [35].
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Figure 2.2: Random walk correspondence with non-binary alphabet

2.2 Sparse Matrix with Non-Binary Alpha-

bet

In this section, an alphabet is taken as GF (q) for a prime number q, where
GF (q) is a finite field constructed by [0 : q− 1], and discuss the extension to
a non-binary alphabet. Throughout this thesis, the base of log is q.

2.2.1 Construction of Sparse Matrix

n×k sparse matrix A is constructed as follows. Similar to the binary alphabet
case, let t be a sparse matrix parameter that is an appropriate even natural
number.

Step 1: Set all elements of A to be 0.
In each row, the following operation (Step 2) is carried out.

Step 2: Take numbers a ∈ [1 : k] and b ∈ [1 : q − 1] uniformly at random.
Add the number b to the a-th column, where the addition is modulo q.
Repeat this step t times.

2.2.2 Random Walk Correspondence

In a non-binary alphabet, the correspondence between xnA = ck and random
walk is not obvious. The left figure in Figure 2.2 shows an example. Since a
non-zero number, which can be different from 1, is multiplied with each raw,
to establish the correspondence, some precautions are needed.
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The next lemma shows the equality between the probability of the left
figure and that of the right figure in Figure 2.2. Note that the correspondence
between the right figure in Figure 2.2 and random walk on k-dimensional
lattice is obvious.

Lemma 2.3 (Random Walk Correspondence in Non-Binary Alphabet [11])

Let xn be some q-ary n-tuple, and let x∗n be defined as follows:

x∗i
def
=

{
0, xi = 0
1, xi �= 0.

(2.11)

Then we have

PA
[
xnA = ck

]
= PA

[
x∗nA = ck

]
. (2.12)

2.2.3 Random Walk Lemmas

The next lemma corresponds to Lemma 2.1.

Lemma 2.4 (Random Walk Formula [31])
A random walk on a k-dimensional hyper lattice [0, q − 1]k is considered. A
particle moves from one vertex to another, which is different in only one
coordinate, and the coordinate and its value are selected uniformly at random
with probability 1

k(q−1)
.

The probability that the particle starting at origin 0k stays at the vertex, whose
Hamming weight is w, after m steps is

1

qk

k∑
j=0

ãwj

(
1 − qj

(q − 1)k

)m

, (2.13)

where

ãwj
def
=

j∑
ν=0

(−1)ν
(
w

ν

)(
k − w

j − ν

)
(q − 1)j−ν (2.14)
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Note that each term in the summation of ãwj in (2.14) can be a negative
number.
[Proof of Lemma 2.4]
Let P [h] be the probability that a particle moves along with the vector
h ∈ [0 : q − 1]k in the unit step. Note that from the definition of random
walk on [0 : q − 1]k, the weight of the vector h is 1, and P [h] = 1

k(q−1)
. Let

μ̂(ξ)
def
=

∑
h∈[0:q−1]k:w(h)=1

P [h]e
2πiξ·h

q , (2.15)

where w(h) is a Hamming weight of h.
Then, noting that the random walk is an additive process and by using

the property of Fourier transformation, we have

Pg =
1

qk

∑
ξ∈[0:q−1]k

μ̂(ξ)me−
2πiξ·g

q , (2.16)

where Pg is the probability that a particle that started at origin 0k stays at
g ∈ [0 : q − 1]k whose Hamming weight is w.

The Fourier coefficient μ̂(ξ) can be computed as follows.

μ̂(ξ)
(a)
=
ωξ1 + ..+ ω(q−1)ξ1 + ..+ ωξk + ..+ ω(q−1)ξk

(q − 1)k
, (2.17)

where at (a), ω is a primitive q-th root of 1.
Note that for an integer ξ �= 0, since it holds that

ωξ + ω2ξ + · · · + ω(q−1)ξ = −1, (2.18)

we obtain

μ̂(ξ) =
(k − w(ξ)) (q − 1) − w(ξ)

(q − 1)k

= 1 − qw(ξ)

(q − 1)k
. (2.19)

By substituting the above equation into (2.16), it holds that

Pg =
1

qk

∑
ξ∈[0:q−1]k

(
1 − qw(ξ)

(q − 1)k

)m

ω−ξ·g

=
1

qk

k∑
j=0

(
1 − qj

(q − 1)k

)n ∑
ξ:w(ξ)=j

ω−ξ·g. (2.20)
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When we set w(g) = w, it can be shown that

∑
ξ:w(ξ)=j

ω−ξ·g =

j∑
ν=0

(
w

ν

)(
l − w

j − ν

)
(−1)ν(q − 1)j−ν

= ãwj. (2.21)

By substituting (2.21) into (2.20), we obtain the desired formula.
[End of Proof of Lemma 2.4]

The next lemma corresponds to Lemma 2.2.

Lemma 2.5 ([31][35])
For the weight spectrum S(w) defined in the same way as (2.5) of Lemma
2.2 except zn ∈ [0 : q − 1]n, then for a fixed R = k/n, there exists a positive
number γR ∈ (0, 1] satisfying the following statements:
1) There exists a sequence {βn(R)}∞n=1 that satisfies

nγR∑
w=1

S(w) < βn(R), (2.22)

where βn(R) → 0 (n→ ∞).
2) For any integer w ∈ [nγR+1 : n], if the sparse matrix parameter t satisfies
the conditions that t is an even number and that

t ≥ max

{
10

3
,

2

log(q − 1)
,
lnn

γR

}
(2.23)

then there exists a sequence {αn(R;w)}∞n=1 that satisfies

PA
[
znA = 0k

∣∣ w(zn) = w
]

=

{
αn(R;w)

2k−1 , q = 2
αn(R;w)

qk , q ≥ 3,
(2.24)

and there exists a positive number sequence {δn(R)}∞n=1 satisfying

|αn(R;w) − 1| ≤ δn(R) for any w ∈ [nγR + 1 : n] (2.25)

and

δn(R) → 0 (n→ ∞). (2.26)
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[Proof of Lemma 2.5]
From the definition, it holds that

S(w) =
∑

zn∈[0:q−1]n:w(zn)=w

EA1
[
znA = 0k

]
(a)
=

∑
zn∈[0:q−1]n:w(zn)=w

EA1
[
z∗nA = 0k

]
= (q − 1)w

∑
z∗n∈{0,1}n:w(z∗n)=w

EA1
[
z∗nA = 0k

]

(b)
= (q − 1)w

(
n

w

)
1

qk

k∑
j=0

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

, (2.27)

where (a) is from Lemma 2.3 and z∗i
def
=

{
0, zi = 0
1, zi �= 0.

, (b) is from Lemma

2.4 by setting w = 0 of ãwj in (2.13).
1) Using (2.27), it is sufficient to show

lim
n→∞

nγ∑
w=1

(
n

w

)
(q − 1)w

qk

k∑
j=0

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

= 0 (2.28)

for some γ > 0, which we specify as γR later.
The left hand side of the above equation can be transformed as follows.
nγ∑
w=1

(
n

w

)
(q − 1)w

qk

k∑
j=0

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

=

nγ∑
w=1

(
n

w

)
(q − 1)w

qk

·

⎛
⎜⎝

� (q−1)k
q

�∑
j=0

+
k∑

j=� (q−1)k
q

�+1

⎞
⎟⎠(

k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

(2.29)

≤
nγ∑
w=1

(
n

w

)
(q − 1)w

qk

� (q−1)k
q

�∑
j=0

(
k

j

)
(q − 1)je−

qwtj
(q−1)k

+

nγ∑
w=1

(
n

w

)
(q − 1)w

qk

k∑
j=� (q−1)k

q
�+1

(
k

j

)
(q − 1)j

(
1

q − 1

)wt

(2.30)
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Note that when q = 2, the second term of (2.29) is equal to the first term.
The first term of (2.30) is derived using 1− x ≤ e−x, and the second term is
followed by noting that the sparse matrix parameter t is assumed to be an
even number and the fact that the k-th term of the summation attains the
maximum value.

The first term of (2.30) is upper bounded as follows.

nγ∑
w=1

(
n

w

)
(q − 1)w

qk

� (q−1)k
q

�∑
j=0

(
k

j

)
(q − 1)je−

qwtj
(q−1)k

≤
nγ∑
w=1

(
n

w

)
(q − 1)w

qk

k∑
j=0

(
k

j

)
(q − 1)je−

qwtj
(q−1)k

=

⎛
⎝ bn

ln n∑
w=1

+

nγ∑
w= bn

ln n
+1

⎞
⎠(

n

w

)
(q − 1)w

(
1 + (q − 1)e−

qwt
(q−1)k

q

)k

, (2.31)

where at the last equality, the binomial theorem is used, and b > 0 is a
positive constant specified later.

By substituting k = nR, t = ξ lnn, the second term of (2.31) is evaluated
as follows.

nγ∑
w= bn

ln n
+1

(
n

w

)
(q − 1)w

(
1 + (q − 1)e−

qwt
(q−1)k

q

)k

≤ nγqn(h(γ)+γ)

⎛
⎝1 + (q − 1)e−

qξ ln n bn
ln n

(q−1)nR

q

⎞
⎠
nR

= nγqn(h(γ)+γ)

(
1 + (q − 1)e−

qbξ
(q−1)R

q

)nR

= nγ

⎛
⎝q

h(γ)+γ
R

(
1 + (q − 1)e−

qbξ
(q−1)R

)
q

⎞
⎠
nR

(2.32)

At the above inequality, h(p) is a binary entropy function defined by p log 1
p
+

(1−p) log 1
1−p , and using the technique of the type method, the upper bound
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is derived (see (2.62) of Lemma 2.7 shown later). From the above evaluation,
if bξ

R
≥ 1 holds, then there exist γR satisfying

q
h(γR)+γR

R

(
1 + (q − 1)e−

qbξ
(q−1)R

)
< q, (2.33)

and this fact shows that the second term of (2.31) vanishes exponentially
when n→ ∞.

As the next step, we evaluate the first term of (2.31). Each term of the
summation can be evaluated as

(
n

w

)
(q − 1)w

(
1 + (q − 1)e−

qwt
(q−1)k

q

)k

≤ (nq)w

(
1 + (q − 1)e−

qwt
(q−1)k

q

)k

(a)

≤ (nq)w

⎛
⎝1 + (q − 1)

(
1 − 0.3qwt

(q−1)k

)
q

⎞
⎠
k

= (nq)w
(

1 − 0.3wt

k

)k

≤ (nq)we−0.3wt

=
(
qn1−0.3ξ

)w
, (2.34)

where at (a), e−x ≤ 1− 0.3x (0 ≤ x ≤ 3) is used under the condition bξ
R
≤ 3

2
.

(Note that if bξ
R

≤ 3
2
, qwt

(q−1)k
is upper bounded by 3.) By substituting the

above evaluation, we have

bn
ln n∑
w=1

(
n

w

)
(q − 1)w

(
1 + (q − 1)e−

qwt
(q−1)k

q

)k

≤ qn1−0.3ξ

1 − qn1−0.3ξ
→ 0 (n→ ∞, if ξ > 10

3
). (2.35)
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As the final step, the second term of (2.30) is evaluated as follows. Notic-
ing the statement following (2.30), we assume q ≥ 3.

nγR∑
w=1

(
n

w

)
(q − 1)w

qk

k∑
j=� (q−1)k

q
�+1

(
k

j

)
(q − 1)j

(
1

q − 1

)wt

=

nγR∑
w=1

(
n

w

)
(q − 1)w(1−t)

k∑
j=� (q−1)k

q
�+1

(
k

j

)(
1

q

)k−j (
1 − 1

q

)j

≤
nγR∑
w=1

(
n

w

)
(q − 1)w(1−t)

≤
nγR∑
w=1

qnh(
w
n )−w(t−1) log(q−1)

= nγRq
−nmin 1

n≤x≤γ
{x(t−1) log(q−1)−h(x)}

(2.36)

Note that by differentiating x(t−1) log(q−1)−h(x) by x, if q ≤ nξ log(q−1)−1,
then the minimum value of min 1

n
≤x≤γ {x(t− 1) log(q − 1) − h(x)} is attained

at x = 1
n
. If ξ > 2

log(q−1)
, then q ≤ n is sufficient for the above minimum

value being attained at x = 1
n
. Then we have

nγR∑
w=1

(
n

w

)
(q − 1)w

qk

k∑
j=� (q−1)k

q
�+1

(
k

j

)
(q − 1)j

(
1

q − 1

)wt

≤ nγRq
−n{ 1

n
(t−1) log(q−1)−h( 1

n)}
= nγRq

−(t−1) log(q−1)+n(− 1
n

log 1
n
−(1− 1

n) log(1− 1
n))

= nγRq
−(t−1) log(q−1)+log n+log(1+ 1

n−1)
n−1

(a)

≤ nγRq
−(t−1) log(q−1)+log n+ 1

ln q

= nγRq
log(q−1)+ 1

ln q
−(ξ ln(q−1)−1) log n

= γRq
log(q−1)+ 1

ln qn−(ξ ln(q−1)−2) → 0 (n→ ∞, if ξ > 2
log(q−1)

). (2.37)

At (a), (1 + 1/n)n ≤ e is used.
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From (2.32), (2.35), and (2.37), by setting

βn(R) = nγ

⎛
⎝q

h(γ)+γ
R

(
1 + (q − 1)e−

qbξ
(q−1)R

)
q

⎞
⎠
nR

+
qn1−0.3ξ

1 − qn1−0.3ξ
+ γRq

log(q−1)+ 1
ln qn−(ξ ln(q−1)−2), (2.38)

the desired inequality is obtained.

2) It is sufficient to show that

k∑
j=0

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

→ 1 (n→ ∞) (2.39)

First, it holds that

k∑
j=0

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

=

⎛
⎜⎝

� (q−1)k
q

�∑
j=0

+
k∑

j=� (q−1)k
q

�+1

⎞
⎟⎠(

k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

. (2.40)

Note that when q = 2, the first term of (2.40) is equal to the second term of
(2.40).

The proof is completed after showing

� (q−1)k
q

�∑
j=0

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

→ 1 (n→ ∞) (2.41)

and

k∑
j=� (q−1)k

q
�+1

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

→ 0 (n→ ∞). (2.42)
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Noticing that the term of j = 0 in (2.41) is equal to 1, we have

1 ≤
� (q−1)k

q
�∑

j=0

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

≤
� (q−1)k

q
�∑

j=0

(
k

j

)
(q − 1)je−

qwt
(q−1)k

j

≤
k∑
j=0

(
k

j

)(
(q − 1)e−

qwt
(q−1)k

)j

=
(
1 + (q − 1)e−

qwt
(q−1)k

)k
(a)

≤ e(q−1)ke− q
q−1 ln k

= e(q−1)k
−1
q−1 → 1 (n→ ∞), (2.43)

where at (a), 1+x ≤ ex and wt ≥ k ln k is used. Note that since w ∈ [nγR+1 :
n] and t ≥ lnn

γR
from (2.23), we have wt ≥ nγR · lnn

γR
= n lnn ≥ k ln k.

On the other hand, using the assumption that t is an even number, it
holds that

k∑
j=� (q−1)k

q
�+1

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

(b)

≤
k∑

j=� 2k
3
�+1

(
k

j

)
(q − 1)j(q − 1)−wt

(c)

≤ (q − 1)−k ln kqk(1+h(1/3)) → 0 (n→ ∞), (2.44)

where at (b), q ≥ 3 is used, and at (c), wt ≥ k ln k is used. From (2.43) and
(2.44), by setting

δn(R) = e(q−1)k
−1
q−1 − 1 + (q − 1)−k ln kqk(1+h(1/3)), (2.45)

the proof is completed.
[End of Proof of Lemma 2.5]
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Remark 2.3
Throughout the thesis, when we use Lemma 2.5, we assume that the condition
for t (2.23) is satisfied. When n is large, the condition t = O(log n) is
essential. This condition corresponds to the fact that after O(n log n) steps,
the probability that the random walking particle stays at a vertex converges
to a uniform distribution.

Remark 2.4
Let k-dimensional row vector ck ∈ [0 : q − 1]k be given, and w(ck) = c, then
from Lemma 2.4, we have

PA
[
znA = ck

∣∣ w(zn) = w
]

≤ 1

qk

k∑
j=0

|ãcj|
(

1 − qj

(q − 1)k

)wt

≤ 1

qk

k∑
j=0

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

= PA
[
znA = 0k

∣∣ w(zn) = w
]
, (2.46)

where at the last inequality, the relationship
∑j

ν=0

(
w
ν

)(
k−w
j−ν

)
=

(
k
j

)
is used.

(2.46) shows that we can use 1) of Lemma 2.5 for the case of znA = ck with
ck �= 0k. On the other hand, from (2.13) it can be shown that

∣∣∣∣∣
k∑
j=0

ãwj

(
1 − qj

(q − 1)k

)wt

− 1

∣∣∣∣∣ =

∣∣∣∣∣
k∑
j=1

ãwj

(
1 − qj

(q − 1)k

)wt
∣∣∣∣∣

≤
k∑
j=1

|ãwj|
(

1 − qj

(q − 1)k

)wt

≤ 1

qk

k∑
j=1

(
k

j

)
(q − 1)j

(
1 − qj

(q − 1)k

)wt

. (2.47)

Therefore, by evaluating (2.47) using the same arguments for the evaluation
of (2.43) and (2.44), we can use 2) of Lemma 2.5 for the case of znA = ck

with ck �= 0k.
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2.3 Types and Second Moment Lemma

So far, we considered lemmas whose statements involve formulas like EA1[f(A)].
Some analyses, such as Chebyshev’s inequality, need formulas like
EA1[f(A)]1[g(A)]. This section shows lemmas available in that situation.

Before stating the lemmas, we show the definitions of the types and typical
sequence sets that will be used throughout this thesis.

Definition 2.1 [Type, Type set, Typical sequence set [7]]
For a sequence xn ∈ X n, where X is a finite set, a type of xn is defined as
Pxn:

Pxn(a)
def
=
N(a|xn)

n
(2.48)

for any a ∈ X , where

N(a|xn) def
= |{i ∈ [1 : n]|xi = a}| ,

and |set| denotes the cardinality of the set. A type set T nQ ⊂ X n is the set of
sequences whose type is Q. A typical sequence set of a probability distribution
Q, T nQε ⊂ X n, is defined as

T nQε
def
=

{
xn ∈ X n

∣∣ |Pxn(a) −Q(a)| ≤ εQ(a) for any a ∈ X}
. (2.49)

For sequences xn ∈ X n and yn ∈ Yn, where X and Y are finite, a joint
type of (xn, yn) is defined as Pxnyn:

Pxnyn(a, b)
def
=
N(a, b|xnyn)

n
(2.50)

for any (a, b) ∈ X × Y, where

N(a, b|xnyn) def
= |{i ∈ [1 : n]|xi = a, yi = b}| .

A joint type set T nQ ⊂ X n ×Yn is the set of sequences whose joint type is Q.
A jointly typical sequence set of a joint probability distribution Q on X ×Y,
T nQε ⊂ X n × Yn, is defined as

T nQε
def
=

{
(xn, yn) ∈ X n × Yn

∣∣
|Pxnyn(a, b) −Q(a, b)| ≤ εQ(a, b) for any (a, b) ∈ X × Y} .

(2.51)
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For a conditional probability distribution WY |X on y ∈ Y given x ∈ X , a
conditional type set conditioned on xn, T nW (xn) ⊂ Yn, is the set of sequences
satisfying

N(a, b|xn, yn) = N(a|xn)W (b|a)
for any (a, b) ∈ X × Y. A conditional typical sequence set of a conditional
distribution W conditioned on xn is defined as T nWε(x

n) ⊂ Yn:

T nWε(x
n)

def
=

{
yn ∈ Yn

∣∣ |N(a, b|xn, yn)
n

− N(a|xn)
n

W (b|a)|

≤ ε
N(a|xn)

n
W (b|a) for any (a, b) ∈ X × Y

}
.

(2.52)

Lemma 2.6 [Second Moment Lemma]
Let a probability distribution P over [0 : q − 1] be given. If for a positive
number ε, zn ∈ T nPε and mina:P (a)>0 P (a)(1 − ε) > 2γR, then the following
statements hold.
1)

EA1
[
z∗nA = ck

] nγR∑
w=1

∑
z̃n:w(z̃∗n−z∗n)=w

1
[
(z̃∗n − z∗n)A = 0k

]

≤
{

(1+δn(R))βn(R)
2k−1 , q = 2

(1+δn(R))βn(R)
qk , q ≥ 3,

(2.53)

where z∗i
def
=

{
0, zi = 0
1, zi �= 0

, and when q = 2, the Hamming weight of ck is

taken to be even.
2) For ε satisfying 2P ∗(1)ε ≤ γR

2
, and z̃n ∈ T nPε and w(z̃∗n − z∗n) > nγR,

EA1
[
z∗nA = ck

]
1
[
(z̃∗n − z∗n)A = 0k

]
=

{
αn(R;w(z∗n))

2k−1

αn(R;w(z̃∗n−z∗n))
2k−1 , q = 2

αn(R;w(zn))
qk

αn(R;w(z̃∗n−z∗n))
qk , q ≥ 3,

(2.54)

where P ∗ is a probability distribution over {0, 1} that satisfies P ∗(Z∗ = 0) =
P (Z = 0).
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[Proof of Lemma 2.6]
Let I ⊆ [1 : n] be a set of indices, and AI be a submatrix of A whose indices
of rows are included in I, and row vector (zn)I is defined in a similar way.
Note that AI is a |I| × k matrix, and (zn)I is a |I|-dimensional row vector.
In the following proof, q ≥ 3 is assumed. When q = 2, a similar argument
holds.
1) When sequences zn and z̃n are given, define

Ic
def
=

{
i ∈ [1 : n]

∣∣ zi = z̃i
}

(2.55)

and

Id
def
=

{
i ∈ [1 : n]

∣∣ zi �= z̃i
}
. (2.56)

Then

EA1
[
z∗nA = ck

] nγR∑
w=1

∑
z̃n:w(z̃∗n−z∗n)=w

1
[
(z̃∗n − z∗n)A = 0k

]

=

nγR∑
w=1

∑
z̃n:w(z̃∗n−z∗n)=w

EA
{
1
[
(z̃∗n − z∗n)IdAId = 0k

]
EAIc

1
[
(zn)IcAIc = ck − (zn)IdAId

] ∣∣ (z̃∗n − z∗n)IdAId = 0k
}

(a)

≤
nγR∑
w=1

∑
z̃n:w(z̃∗n−z∗n)=w

EA1
[
(z̃∗n − z∗n)IdAId = 0k

] 1 − δn(R)

qk

(b)

≤ βn(R)
1 − δn(R)

qk
(2.57)

where at (a), since zn ∈ T nPε and mina:P (a)>0 P (a)(1 − ε) > 2γR,

w ((zn)IC ) ≥ n(1 − P (0))(1 − ε) − w ≥ 2nγR − nγR = nγR, (2.58)

and 2) of Lemma 2.5, and the independence of rows between indices in Ic
and Id are used. At (b), 1) of Lemma 2.5 is used.
2) For a given zn, let

I(zn)
def
=

{
i ∈ [1 : n]

∣∣ z∗ = 1
}
, (2.59)

and note that if zn ∈ T nPε, then z∗n ∈ T nP ∗ε.
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Since z̃n ∈ T nPε and w(z̃∗n − z∗n) > nγR,

EA1
[
z∗nA = ck

]
1
[
(z̃∗n − z∗n)A = 0k

]
= EA1

[
z∗nA = ck

]
·EAId\I(zn)

{
1
[
(z̃∗n − z∗n)Id\I(zn)AId\I(zn) = (z̃∗n − z∗n)I(zn)AI(zn)

]
∣∣ z∗nA = ck

}
(c)
= EA1

[
z∗nA = ck

] αn(R;w(z̃∗n − z∗n))
qk

=
αn(R;w(z∗n))

qk
αn(R;w(z̃∗n − z∗n))

qk
, (2.60)

where at (c), after noting the fact that z∗n, z̃∗n ∈ T nP ∗ε and w(z̃∗n− z∗n) = w,
and 2P ∗(1)ε ≤ γR

2
imply

|Id\I(z∗n)| ≥ n
γR − 2P ∗(1)ε

2
≥ n

γR
4
, (2.61)

we used 2) of Lemma 2.5 and the independence of rows between indices in
Id\Izn and Izn .

[End of Proof of Lemma 2.6]
Useful lemmas often used in the following chapters are stated below.

Lemma 2.7 [[7] [17]]
1) For 0 ≤ γ ≤ 1/2,

nγ∑
i=0

(
n

i

)
≤ qnh(γ). (2.62)

2) Let a set of types which is constructed by sequences over [0 : q − 1] with

length n be P(1)
n , and a set of joint types which is constructed by sequences

over [0 : q − 1] × [0 : q − 1] with length n be P(2)
n , then

|P(1)
n | ≤ (n+ 1)q, (2.63)

and

|P(2)
n | ≤ (n+ 1)q

2

, (2.64)

3) For a type set T nQ,

qnH(Q)

(n+ 1)q
≤ |T nQ| ≤ qnH(Q). (2.65)
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For a conditional type set conditioned on xn, T nW (xn), if T nW (xn) is non-void,

qnH(W |Pxn)

(n+ 1)q2
≤ |T nW (xn)| ≤ qnH(W |Pxn). (2.66)



Chapter 3

Lossless Universal Source
Coding

In practical communication systems, the source statistics often are not known
to both the encoder and decoder. In this situation, a universal code can at-
tain optimal performance in the following sense. A universal code has two
types of coding scheme: variable length coding and fixed length coding. In
the former type, the compression rate can attain the compression limit or en-
tropy; redundancy, which is the difference between the compression rate and
entropy, has been analyzed by many researchers [39][42]. In the latter type,
a universal code attains the optimal decoding error exponent, which gov-
erns the decreasing speed of the decoding error, while the compression rate
remains constant. The Lempel-Ziv code [48][49] is one of the most famous
variable length universal codes and has practical encoding and decoding com-
puting times. Caire, Shamai and Verdú proposed a variable length universal
code that combines linear code and the MDL principle [4][5].

On the other hand, little is currently known about fixed length universal
codes, which have practical encoding and decoding computing times. While
Coleman, Médard, and Effros [6] recently proposed an efficient universal
decoding algorithm using linear programming or expander code, they did
not discuss the efficiency of the algorithm in practical use.

In this chapter, we construct a fixed length code using sparse matrices
with minimum entropy decoding [8] as a decoding scheme because it does
not depend on the statistical properties of the information source, and show
that the code has universal properties in the sense of fixed length coding.
We also show that error exponents similar to those obtained in [8] can be

37
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obtained using a sparse matrix random coding technique.
Using sparse matrices for code construction enables us to use existing

efficient decoding algorithms such as the sum-product decoding algorithm
(e.g. [14]). Fixed length universal codes constructed by sparse matrices pro-
vide a computationally practical encoding and decoding scheme whose er-
ror probability decreases optimally without the statistical properties of its
sources being known.

We consider only a class of i.i.d. sources to simplify the arguments specific
to sparse matrix coding. To show that a linear code can be used as a universal
code, when analyzing decoding error, evaluation of a supremum with respect
to an objective class of sources is inserted into the expectation operation
of sparse matrix random coding. When we handle random coding of sparse
matrices, the probability distribution is no longer uniform, and the evaluation
problem becomes harder. The upper bound of the decoding error probability
will be shown in exponential form using the expurgated ensemble technique,
which Miller and Burshtein [28] and Erez and Miller [11] adopted to evaluate
the exponent of the decoding error probability of a linear channel code using
sparse matrices.

3.1 Preliminaries and Problem Setting

We focus on our problem in the non-binary alphabet framework, where al-
phabet U = GF (q) for a given prime number q. In the following, the base of
ln is e and the base of log is q.

Let a class of probability distribution on alphabet U be P. A random
variable denoting output from the source PU ∈ P is U . Assume that the
stochastic process Un is i.i.d.:

PUn [Un = un] =
n∏
i=1

PU [Ui = ui]. (3.1)

For a positive number τ > 0, P(τ) is a set of stationary memoryless proba-
bility distributions on U defined as

P(τ)
def
=

{
P ∈ {i.i.d. sources on U} ∣∣ min

a∈[0:q−1]
P (a) > τ

}
. (3.2)

Note that from the definition, infP∈P(τ) mina∈[0:q−1] P (a) > τ , and the positive
constant τ is not necessarily known to both the encoder and decoder.
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Figure 3.1: Lossless source coding system

Figure 3.1 shows the lossless source coding system considered in this chap-
ter.

For a sequence un from the source, the encoder ϕn : GF (q)n → GF (q)k

is defined as

ϕn(u
n)

def
= unA, (3.3)

where A is an n × k sparse matrix constructed following the description in
Section 2.2.1. The compression rate R is defined as k/n.

As a decoding operation, minimum entropy decoding [8] is adopted. For a
given codeword mk ∈ GF (q)k, the decoder ψn : GF (q)k → GF (q)n is defined
as

ψn(m
k)

def
= arg min

un:unA=mk
H(Pun), (3.4)

where Pun is a type of un (see Definition 2.1), andH(Q) is an entropy function
defined as

H(Q)
def
=

∑
a∈[0:q−1]

Q(a) log
1

Q(a)
. (3.5)

The problem addressed in this chapter is as follows:
[Problem Setting]
When the compression rate is given as R, and a sparse matrix A is given
and fixed, evaluate the upper bound of the expectation value of the decoding
error probability for any P ∈ P(τ):∑
un

P (un)1 [un �= ψn (ϕn(u
n))] . (3.6)

Remark 3.1
Since the decoder ψn adopts minimum entropy decoding (3.4) and does not
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depend on the specific probability distribution P ∈ P(τ), obviously the decoder
has the universal property. To show that the encoder ϕn has the universal
property, i.e., the sparse matrix A in (3.3) does not depend on the specific
probability distribution P ∈ P(τ), it should be proven that the decoding er-
ror that is averaged over A after taking the operation supP∈P(τ) becomes 0
asymptotically with the block length n shown as (3.6).

In this chapter, we study issues of the fixed length universal codes de-
noted above, which are problems of constructing universal codes with the
optimal error exponent under the constant compression rate condition. Re-
fer to Csiszár [8] for studies on the optimal error exponent of linear codes.

3.2 Main Theorem and Proof

3.2.1 Main Theorem

Before stating the main theorem of this chapter, we define a set Pη(τ) for
0 < η < 1, which is a subset of P(τ):

Pη(τ) def
=

{
P̃ ∈ P(τ)

∣∣ H(P̃ ) < η
}
. (3.7)

Note that from the definition of P(τ), 0 < H(P ) < 1 for P ∈ P(τ), and
since the base of log is q, H(P ) ≤ 1.

Theorem 3.1 [Error exponent of source code constructed by sparse matri-
ces]
For any η > 0 and sufficiently large n, there exists a sparse matrix A that
constructs ϕn and ψn satisfying for any P ∈ P(τ)∑

un

P (un)1 [un �= ψn (ϕn(u
n))]

≤ q
−n infP̃∈PH(P )(τ) minQ[D(Q||P̃ )+|R−H(Q)−η|+]

(3.8)

with high probability.

Note that PH(P )(τ) is obtained by replacing η of Pη(τ) by H(P ).
When R ≤ H(P ), the upper bound of the decoding error shown in The-

orem 3.1 is trivial. On the other hand, when R > H(P ), it is a nontrivial
evaluation.
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Remark 3.2
The upper bound of the decoding error shown in Theorem 3.1 is identical to
the one obtained for the linear code constructed using non-sparse matrices
[8, Theorem 2] except the outer inf operation. When the compression rate R
is in the interval (H(P ), Rcr) for a Rcr, the obtained exponent can be shown
to be optimal for the same reason as discussed by Csiszár [8]. Also for the
same reason discussed there, P(τ) can be extended to the class of k-th Markov
sources without difficulty.

When q = 2 (binary alphabet), P̃ satisfying H(P̃ ) = H(P ) is P̃ = P or
P̃ = 1 − P . Therefore, since by interchanging inf and min it holds that

inf
P̃∈PH(P )(τ)

min
Q

[
D(Q||P̃ ) + |R−H(Q)|+

]
= min

Q

[
D(Q||P ) + |R−H(Q)|+] ,

the next corollary is obtained. Note that when q ≥ 3, the type of P̃ satisfying
H(P̃ ) = H(P ) cannot be determined.

Corollary 3.1
When q = 2 (binary alphabet), for any η > 0 and sufficiently large n, there
exists a sparse matrix A that constructs ϕn and ψn satisfying for any P ∈
P(τ)∑
un

P (un)1 [un �= ψn (ϕn(u
n))] ≤ 2−nminQ[D(Q||P )+|R−H(Q)−η|+]

with high probability.

The next corollary simplifies the problem setting. Note that for any
i.i.d. probability distribution P with mina∈[0:q−1] P (a) > 0, if τn → ∞ (n →
∞), then mina∈[0:q−1] P (a) > τn holds for sufficiently large n.

Corollary 3.2
Theorem 3.1 and Corollary 3.1 hold even in the case of τ = 0.

For the proof of Corollary 3.2, we consider two cases:
Case 1. For all a ∈ [0 : q − 1], P (a) > 0.

The proof of Theorem 3.1 below also holds when we replace τ with τn,
where 1/τn grows with polynomial order of n.
Case 2. For some a ∈ [0 : q − 1], P (a) = 0.

In 2) of Lemma 3.2 below, q, an exponent of the upper bound of |P̂η(τ)|,
is replaced with |{a ∈ [0 : q− 1]|P (a) > 0}|, which is smaller than q, and the
proof of Theorem 3.1 also holds.
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3.2.2 Some Lemmas

In proving the theorem, the random coding expectation is taken over the
expurgated ensemble. Since we delete the “bad code set” from the original
ensemble, the expectation of decoding error can be decreased. The set from
which the “bad code subset” is removed is called the expurgated ensemble [11]
[28]. The next lemma shows that the bad code subset which will be removed
has small probability. While in [11] the lemma was shown for sparse matrices
constructed using bipartite graph correspondence, the following lemma is for
sparse matrices constructed using the manner described in Section 2.2.1.

Lemma 3.1 [Expurgation Lemma]
Let A be an n × k sparse matrix constructed using the manner described in
Section 2.2.1, R = k/n be fixed, and

dmin(A)
def
= min

xn 	=0n:xnA=0k
w(xn). (3.9)

Then, for any d ≥ γR, there exist δn(R) (δn(R) → 0 (n → ∞)) and
βn(R) (βn(R) → 0 (n→ ∞)) satisfying

PA [dmin(A) < nd] ≤
{

βn(R) + 2(1 + δn(R))2−n(
k
n
−h(d))1[d > γR], q = 2

βn(R) + (1 + δn(R))q−n(
k
n
−h(d)−d)1[d > γR], q ≥ 3,

(3.10)

where h(x) is a binary entropy function defined as

h(x)
def
= −x log(x) − (1 − x) log(1 − x). (3.11)
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[Proof of Lemma 3.1]
From the definition of dmin, it holds that

1 [dmin(A) ≤ nd] = 1

[
min

zn 	=0n:znA=0k
w(zn) ≤ nd

]

= 1

[
∃zn �= 0n s.t. znA = 0kand zn ∈

nd⋃
w=1

{w(zn) = w}
]

≤
∑

zn:znA=0k

1

[
zn ∈

nd⋃
w=1

{w(zn) = w}
]

≤
∑

zn:znA=0k

nd∑
w=1

1 [w(zn) = w]

≤
nd∑
w=1

∑
zn∈[0:q−1]n

1 [w(zn) = w]1
[
znA = 0k

]
. (3.12)

Using this, we obtain

PA [dmin(A) < nd]

= EA1 [dmin(A) < nd]

≤
{
nγR∑
w=1

+
nd∑

w=nγR+1

}
EA

∑
zn∈[0:q−1]n

1 [w(zn) = w]1
[
znA = 0k

]

=

nγR∑
w=1

S(w) +
nd∑

w=nγR+1

EA
∑

zn∈[0:q−1]n

1 [w(zn) = w]1
[
znA = 0k

]
. (3.13)
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Note that if nd = nγR, the second term of (3.13) vanishes. The first term of
(3.13) is upper bounded by βn(R) in Lemma 2.5. On the other hand,

nd∑
w=nγR+1

EA
∑

zn∈[0:q−1]n

1 [w(zn) = w]1
[
znA = 0k

]

(a)
=

nd∑
w=nγR+1

EA
∑

zn∈[0:q−1]n: w(zn)=w

1
[
z∗nA = 0k

]

=
nd∑

w=nγR+1

(q − 1)iEA
∑

z∗n∈{0,1}n: w(z∗n)=w

1
[
z∗nA = 0k

]

(b)
=

nd∑
w=nγR+1

(q − 1)w
(
n
w

)
αn(R;w)

qk

(c)

≤ (1 + δn(R))q−n(
k
n
−d−h(d)), (3.14)

where at (a), Lemma 2.3 is used and z∗i
def
=

{
0, zi = 0
1, zi �= 0

, at (b), Lemma

2.5 (b) is used, and at (c), 1) of Lemma 2.7 and 2) of Lemma 2.5 are used.
[End of Proof of Lemma 3.1]

To prove the theorem, we will evaluate

EA sup
P∈Pη(τ)

∑
un

P (un)1 [un �= ψn (ϕn(u
n))] (3.15)

for a fixed η (0 < η < 1). After evaluating (3.15) and setting the upper
bound as error(η), we will show that there exists the sparse matrix A that
satisfies

sup
P∈Pi/Ln (τ)

∑
un

P (un)1 [un �= ψn (ϕn(u
n))] ≤ L2

nerror(i/Ln) (3.16)

for all i ∈ [1 : Ln−1] with high probability. When we set Ln as a polynomial
of n that satisfies Ln → ∞ (n→ ∞), the proof is completed [44].

To evaluate the supP∈Pη(τ) part of (3.15), we use an approximation set

of Pη(τ). Let P̂η(τ) be a set of positive functions P̂ : [0 : q − 1] → R+.

Then P̂η(τ) is an approximating set of Pη(τ) if, for a given ε > 0 and for any

P ∈ Pη(τ), there exists P̂ ∈ P̂η(τ) satisfying∣∣∣P (a) − P̂ (a)
∣∣∣ ≤ εP (a) for any a ∈ [0 : q − 1]. (3.17)
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The next lemma shows the existence of P̂η(τ) and evaluation of |P̂η(τ)|.
Lemma 3.2 [Approximating Set]
For a given positive number ε > 0, there exists an approximating set P̂η(τ)
that has the following properties:
1) For any P ∈ Pη(τ), there exists P̂ ∈ P̂η(τ) satisfying∣∣∣P (a) − P̂ (a)

∣∣∣ ≤ εP (a) for any a ∈ [0 : q − 1],

and
2)

|P̂η(τ)| ≤
(

1

τε

)q

,

where τ > 0 is a positive number specified in the definition of the probability
distribution class P(τ) in (3.2).

[Proof of Lemma 3.2]
Consider a line [0, 1] in R and divide it by width τε. Make a correspondence
between P ∈ Pη(τ) and P̂ ∈ P̂η(τ) by

P̂ (a) =

⌊
P (a)

τε

⌋
τε for any a ∈ [0 : q − 1],

and then it is straightforward, by using the definition of the considered class
of probability distribution (3.2), to show that properties 1) and 2) above
hold.

[End of Proof of Lemma 3.2]
Note that P̂ ∈ P̂η(τ) is not necessarily a probability distribution on U .

3.2.3 Evaluation of Decoding Error Probability

Let an expurgated ensemble D be

D def
=

{
Sparse matrix A

∣∣ dmin (A) > nγR
}
. (3.18)

Denote an expectation operation on D as E
(ex)
A , then since, from Lemma 3.1,

we have PA(D) ≥ 1 − βn(R), we can obtain

E
(ex)
A 1[·] ≤ 1

1 − βn(R)
EA1[·]1[D]. (3.19)
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In the following, we evaluate

E
(ex)
A sup

P∈Pη(τ)

P [Decoding error]

= E
(ex)
A sup

P∈Pη(τ)

∑
un

P (un)1 [un �= ψn (ϕn(u
n))] (3.20)

instead of (3.6).

E
(ex)
A sup

P∈Pη(τ)

∑
un

P (un)1 [un �= ψn (ϕn(u
n))]

≤ E
(ex)
A sup

P∈Pη(τ)

∑
un

P (un)1 [∃ũn �= un s.t. ũnA = unA

and H(Pũn) ≤ H(Pun)]
(a)

≤ 1

1 − βn(R)

·EA sup
P∈Pη(τ)

∑
un

P (un)1 [∃ũn �= un s.t. ũnA = unA

and H(Pũn) ≤ H(Pun)]1 [D] ,

(3.21)

where (a) comes from (3.19).
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EA sup
P∈Pη(τ)

∑
un

P (un)1 [∃ũn �= un s.t. ũnA = unA and H(Pũn) ≤ H(Pun)]

·1 [D]

≤ EA sup
P∈Pη(τ)

∑
un

P (un)
∑

ũn:ũn 	=un

1
[
(ũn − un)A = 0k

]
1 [H(Pũn) ≤ H(Pun)]

·1 [D]

= EA sup
P∈Pη(τ)

∑
un

P (un)

(
nγR∑
w=1

+
n∑

w=nγR+1

)

·
∑

ũn:w(ũ∗n−u∗n)=w

1
[
(ũ∗n − u∗n)A = 0k

]
1 [H(Pũn) ≤ H(Pun)]1 [D]

(b)
= EA sup

P∈Pη(τ)

∑
un

P (un)
n∑

w=nγR+1

·
∑

ũn:w(ũ∗n−u∗n)=w

1
[
(ũ∗n − u∗n)A = 0k

]
1 [H(Pũn) ≤ H(Pun)]1 [D]

≤ EA sup
P∈Pη(τ)

∑
un

P (un)
n∑

w=nγR+1

·
∑

ũn:w(ũ∗n=u∗n)=w

1
[
(ũ∗n − u∗n)∗A = 0k

]
1 [H(Pũn) ≤ H(Pun)] ,

(3.22)

where (b) comes from the definition of D and Lemma 2.3 in which

u∗i
def
=

{
0, ui = 0
1, ui �= 0

.

To evaluate (3.22), we use Approximating Set Lemma (Lemma 3.2) as
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follows:

EA sup
P∈Pη(τ)

∑
un

P (un)

·
n∑

w=nγR+1

∑
ũn:w(ũ∗n−u∗n)=w

1
[
(ũ∗n − u∗n)A = 0k

]
1 [H(Pũn) ≤ H(Pun)]

(c)

≤ EA sup
P̂∈P̂η(τ)

∑
un

P̂ (un)

(1 − ε)n

·
n∑

w=nγR+1

∑
ũn:w(ũ∗n−u∗n)=w

1
[
(ũ∗n − u∗n)A = 0k

]
1 [H(Pũn) ≤ H(Pun)]

(d)

≤ e2nεEA sup
P̂∈P̂η(τ)

∑
un

P̂ (un)

·
n∑

w=nγR+1

∑
ũn:w(ũ∗n−u∗n)=w

1
[
(ũ∗n − u∗n)A = 0k

]
1 [H(Pũn) ≤ H(Pun)]

≤ e2nε
∑

P̂∈P̂η(τ)

∑
un

P̂ (un)

·
n∑

w=nγR+1

∑
ũn:w(ũ∗n−u∗n)=w

EA1
[
(ũ∗n − u∗n)A = 0k

]
·1 [H(Pũn) ≤ H(Pun)]

(e)

≤ e2nε
∑

P̂∈P̂η(τ)

∑
un

P̂ (un)
n∑

w=nγR+1

∑
ũn

1 [H(Pũn) ≤ H(Pun)]
1 + δn(R)

qk

(f)

≤
∑

P̂∈P̂η(τ)

∑
un

P̂ (un)n(n+ 1)q(1 + δn(R))q−n(R−H(Pun)−2ε), (3.23)

where at (c), we use Lemma 3.2 while noting that type Pun in the indi-
cator function 1[·] does not depend on the probability distribution P (un)
nor P̂ (un), at (d) we assume ε < 1/2 and use the fact 1

1−ε < 1 + 2ε and
1+2ε < e2ε, (e) comes from 2) of Lemma 2.5, and (f) is derived using 2) and
3) of Lemma 2.7.
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Using the above result, we can evaluate (3.20) as

E
(ex)
A sup

P∈Pη(τ)

P [Decoding error]

≤ 1

1 − βn(R)

∑
P̂∈P̂η(τ)

∑
un

P̂ (un)n(n+ 1)q(1 + δn(R))q−n|R−H(Pun)−2ε|+ ,

(3.24)

where |x|+ def
= max{x, 0}. The final step is as follows, by using ordinary

techniques of types:

n(n+ 1)q(1 + δn(R))

1 − βn(R)

∑
P̂∈P̂η(τ)

∑
un

P̂ (un)q−n|R−H(Pun)−2ε|+

=
n(n+ 1)q(1 + δn(R))

1 − βn(R)

∑
P̂∈P̂η(τ)

∑
Q∈Qn

∑
un∈Tn

Q

q−n(H(Q)+D(Q||P̂ )+|R−H(Pun)−2ε|+)

=
n(n+ 1)q(1 + δn(R))

1 − βn(R)

∑
P̂∈P̂η(τ)

∑
Q∈Qn

|T nQ|q−n(H(Q)+D(Q||P̂ )+|R−H(Pun)−2ε|+)

(g)

≤ n(n+ 1)2q(1 + δn(R))

1 − βn(R)

∑
P̂∈P̂η(τ)

q−nminQ(D(Q||P̂ )+|R−H(Q)−2ε|+)

(h)

≤ n(n+ 1)2q(1 + δn(R))

1 − βn(R)

(
1

τε

)q

·q−n infP∈Pη(τ) minQ(D(Q||P )−log(1+ε)+|R−H(Q)−2ε|+),

(3.25)

where (g) comes from using 2) and 3) of Lemma 2.7, and (h) is from using
2) of Lemma 3.2 and D(Q||P̂ ) ≥ D(Q||P ) − log(1 + ε) from 1) of Lemma
3.2. Since ε > 0 can be made arbitrarily small, inf P̂∈P̂η(τ) can be replaced by

infP∈Pη(τ) in (3.25).

In the following part of the proof, we take η as i/Ln for i ∈ [1 : Ln − 1]
with a large number Ln specified later. By setting the right hand side of
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(3.25) as error(i/Ln) and using Markov’s inequality,

P
(ex)
A

[{
sup

P∈P1/Ln (τ)

P [Decoding error] > L2
nerror(1/Ln)

}
∪

· · · ∪
{

sup
P∈P(Ln−1)/Ln (τ)

P [Decoding error] > L2
nerror((Ln − 1)/Ln)

}]

≤
Ln−1∑
i=1

P
(ex)
A

[
sup

P∈Pi/Ln (τ)

P [Decoding error] > L2
nerror(i/Ln)

]

≤
Ln−1∑
i=1

EA supP∈Pi/Ln (τ) P [Decoding error]

L2
nerror(i/Ln)

≤ 1

Ln
. (3.26)

When we set Ln as a polynomial of n satisfying Ln → ∞ (n → ∞), we can
take the sparse matrix A that satisfies

sup
P∈Pi/Ln (τ)

P [Decoding error] ≤ L2
nerror(i/Ln) (3.27)

for all i ∈ [1 : Ln − 1] with high probability, and the proof is completed.

3.3 Simulation Results

In this section we discuss simulation results that show the universal property
of the code constructed by sparse matrices in Theorem 3.1 and compare the
error exponent obtained experimentally with the theoretical error exponent.
Note that we adopt sum-product decoding instead of minimum entropy de-
coding in the interest of computational efficiency.

In simulations, after sequences from the i.i.d. source are encoded into
codewords, the codewords are decoded by sum-product decoding and the
decoding error is computed. We conducted simulation experiments for a
binary alphabet case (q = 2). Note that when q = 2, the minimum entropy
decoding is equivalent to the maximum likelihood (ML) decoding, and the
sum-product algorithm approximately implements the ML decoding.

Figure 3.2 shows the plots of decoding errors for various sources. The
sources are i.i.d., and probability PU(U = 1) is taken as a probability parame-
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Figure 3.2: Simulation of universal code: R = 0.5

ter, which is represented by the horizontal axis. Decoding error is represented
by the vertical axis.

The plot labeled “n = 1000” shows decoding error for the code with which
the sparse matrix and sum-product decoding parameters were fixed during
simulation when block length n = 1000 and compression rate R = 0.5.
For each source, 1000 sample sequences were encoded and decoded, and
decoding error was computed as the relative frequency of the error for the
samples. For the plot labeled “n = 500”, the block length condition was
n = 500 and other conditions were the same as in the case of n = 1000.
Both plots show that decoding error tends to decrease as source parameters
decrease. In both cases, decoding error drops drastically around PU(U =
1) = 0.03. Since the compression rate R was 0.5 and h(0.11) � 0.5, if
we used an idealistic encoder and decoder, under the parameter range less
than PU(U = 1) = 0.1, decoding errors of the simulation would approach
0. The difference between the experiments and theory seems to come from
the approximate implementation of the ML decoding by the sum-product
algorithm we adopted.

Figure 3.3 shows decoding errors under conditions of varying block length
with a fixed compression rate (R = 0.5) and probability parameter (p =
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Figure 3.3: Simulation of error exponent: R = 0.5

0.01, 0.02). In each block length, 10, 000 samples were simulated. For data
of p = 0.01 and p = 0.02, the computed exponents were 0.087 and 0.040,
respectively. The theoretical values computed by the formula

min
Q

{
D(Q||P ) + |R−H(Q)|+} (3.28)

for R = 0.5 and PU(U = 1) = 0.01 or PU(U = 1) = 0.02 are 0.238 and 0.147,
respectively. The exponent obtained in the simulation is about 1/3 ∼ 1/4 the
size of the one obtained theoretically. The difference also seems to come from
the approximate implementation of the ML decoding by the sum-product
algorithm we adopted.

3.4 Concluding Remarks

A universal code for a class of i.i.d. sources was constructed using sparse ma-
trices, and expectation of decoding error using minimum entropy decoding
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was upper bounded by an exponential function of block length n. A simple
simulation showed the universality of the code constructed by sparse matri-
ces and sum-product decoding with a fixed parameter for a class of binary
i.i.d. sources.

A construction of an efficient decoding scheme with a non-binary alpha-
bet was recently proposed by Coleman, Médard and Effros [6]. Studying
application of their decoding scheme to our universal coding scheme and
construction of an efficient universal decoding algorithm with a non-binary
alphabet will be the subject of our next study.

In this chapter, to elucidate methods for analyzing sparse matrix coding
properties, we focused on the simplest P(τ) that is the set of i.i.d. sources.
For the case that P(τ) takes other sets such as an arbitrarily varying source
(AVS [7]) or correlated sources, similar results were obtained in [30].





Chapter 4

Lossy Source Coding

Matsunaga and Yamamoto [27] constructed a lossy source code that asymp-
totically attains optimality of the rate-distortion function under the condi-
tions of a binary alphabet, uniform distribution, and Hamming distortion
measure. Similar results were obtained by Martinian and Wainwright [25].
Miyake [29] extended Matsunaga and Yamamoto’s results to a non-binary al-
phabet condition. Zamir, Shamai and Erez [46] proposed nested linear/lattice
codes.

Note that the results referred to above hold under limited conditions, such
as a uniform distribution of information sources, and that some results do
not attain a theoretically optimal coding rate. In this chapter, we construct
a source code with a fidelity criterion using sparse matrices for arbitrary
discrete stationary memoryless sources that is not necessarily uniform, and
we demonstrate the asymptotic optimality of the code. In the construction
of sparse matrices, “sparse” matrices have 1’s of O(n log n) like those con-
structed by Matsunaga and Yamamoto [27]. By combining a coding scheme
constructed using these sparse matrices with an efficient algorithm such as
the LP decoding algorithm [12] or the sum-product algorithm, the comput-
ing time of coding or decoding processes can be estimated by the polynomial
order of block length n, but not by the linear of n.

Bennatan [2] and Erez [11] have already investigated the theory of sparse
matrices over GF (q). They constructed a channel code by extending the
bipartite graph method, through which it is not easy to strictly evaluate the
the probability that a sequence with a given weight becomes a codeword. In
this chapter, constructing sparse matrix code that corresponds to a random
walk makes accurate evaluation of the above probability possible, leading to

55
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a proof of the lossy source coding theorem for arbitrary discrete stationary
memoryless sources.

An efficient algorithm, such as the LP decoding or the sum-product al-
gorithm, is available using matrices for encoding and decoding. The results
obtained here will make good algorithms of, for example, vector quantiza-
tion, for which only a heuristic algorithm is currently available for the case
of a large block size [16].

4.1 Preliminaries and Problem Setting

The alphabet focused on here is a set [0 : q − 1], where q is a prime number
and the set is also considered as a field GF (q). The basis of ln is e and of
log is q.

Notations are defined as follows.

Information Sources:
A probability distribution of the source is assumed to be stationary and
memoryless and is denoted as PU with the generic random variable U .

Encoder and Decoder:
The encoder and decoder are denoted as ϕn : GF (q)n → GF (q)k and
ψn : GF (q)k → GF (q)n, respectively. In this setting, the compression

rate R is defined as R
def
= k/n.

Fidelity Criterion:
Let the bounded and additive distortion measure be dn : GF (q)n ×
GF (q)n → R. For a given constant D, the fidelity criterion adopted
here is

lim
n→∞

PUn

[
dn (Un, ψn (ϕn(U

n)))

n
> D

]
= 0. (4.1)

A typical example of a distortion measure is Hamming measure dn(u
n, vn)

def
=∑n

i=1 dH(ui, vi), where dH(a, b)
def
=

{
0, a = b,
1, a �= b.

Rate-Distortion Function:
The minimum value of the compression rate with which ϕn and ψn
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Figure 4.1: Lossy source coding problem

satisfy the fidelity criterion is given by the rate-distortion function,
R(D) (e.g., [7], [9]). R(D) is obtained by the formula

R(D) = min
PV |U :

∑
a,b PU (a)PV |U (b|a)d1(a,b)≤D

I(U ;V ). (4.2)

When q = 2, if we use a Hamming measure as d1 in the formula,

R(D) can be explicitly computed as R(D) = h(p) − h(D) where p
def
=

PU(U = 1), and h(x) is the binary entropy function defined as h(x)
def
=

−x log(x) − (1 − x) log(1 − x).

With the above preparation, the problem considered is as follows.
[Problem:]
When a fidelity criterion is given for a stationary memoryless source PU ,
construct the encoder ϕn and the decoder ψn using sparse matrices, of which
the compression rate approaches the rate-distortion function R(D) asymptot-
ically with block length n.

Figure 4.1 shows a block diagram of the lossy source coding problem.

4.2 Main Theorem and Proofs

4.2.1 Main Theorem

Theorem 4.1
Let a conditional probability distribution PV |U be given and fixed. If there
exists a positive number δ that satisfies l+k

n
> H(V )+δ1/3 and l

n
< H(V |U)−

δ for sufficiently large n, l, and k, then an encoder ϕn and a decoder ψn can
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be constructed by an n × l sparse matrix A and an n × k sparse matrix B,
which satisfy the fidelity criterion

PUn

[
dn (Un, ψn (ϕn(U

n)))

n
> D

]
→ 0 (n→ ∞). (4.3)

Remark 4.1
Assume that the conditions of Theorem 4.1, l+k

n
> H(V ) + δ1/3 and l

n
<

H(V |U) − δ, are satisfied for a sufficiently small δ. If we set l+k
n

= H(V ) +
2δ1/3 and l

n
= H(V |U) − 2δ, then the coding rate k

n
is equal to I(U ;V ) +

2(δ + δ1/3). This observation shows that if I(U ;V ) is equal to the rate-
distortion function R(D), the coding rate can asymptotically approach the
rate-distortion limit.

Note that it is well known that the conditional probability, which makes
I(U ;V ) equal to R(D), can be computed by the Arimoto-Blahut algorithm
(e.g., [9], [7]).

4.2.2 Construction of Encoder ϕn and Decoder ψn

In this subsection, construction of an encoder and a decoder using sparse
matrices is shown. For the construction, n× l sparse matrix A, n× k sparse
matrix B, and l-dimensional row vector cl are used. Both matrices are
constructed following the manner described in Section 2.1.1 (q = 2) or 2.2.1
(q ≥ 3). cl is taken as a non-zero row vector, and especially when q = 2, the
Hamming weight of cl is taken to be even.

Note that random variables A, B are independent of each other, and
we use PAB[·] and EAB[·] as the probability distribution and expectation
operation over the random variables A, B, respectively. Assume that A,
B, the realization value of corresponding random variables, and a fixed row
vector cl are known to both encoder and decoder.

Construction of Encoder ϕn

Figure 4.2 shows an outline of the encoding process. An encoder ϕn consists
of a quantization part and a compression part. Each part is constructed with
sparse matrices A and B as follows.
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Figure 4.2: Construction of encoder

Let the output sequence of the source be un and the output of the quan-
tization part be vn defined as

vn
def
= arg max

ṽn:ṽnA=cl
PV n|Un(ṽn|un), (4.4)

where cl ∈ GF (q)l is a fixed row vector. Note that when q = 2, the Hamming
weight of cl must be even, since the parity of the weight w(cl) is equal to
that of w(ṽn) × t and t is even from the assumption of the sparse matrix
parameter.

Codeword mk = ϕn(u
n) is given by

mk def
= vnB, (4.5)

where mk can be regarded as the output of the compression part.

Construction of Decoder ψn

Figure 4.3 shows an outline of the decoding process. When codeword mk ∈
GF (q)k is given, decoding sequence ûn = ψn(m

k) is obtained by

ûn
def
= arg max

ṽn:ṽnA=cl

ṽnB=mk

PV n(ṽn). (4.6)

Note that if decoding is performed correctly, vn = ûn holds.

Remark 4.2
When q = 2 (binary alphabet) and PU(U = 1) = 0.5 (uniform distribution)
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Figure 4.3: Construction of decoder

with the Hamming distance as the distortion measure, conditions in Theorem
4.1 are stated as

l + k

n
> 1 + δ1/3

and
l

n
< h(D) − δ.

Since PV also becomes the uniform distribution, the decoder (4.6) obtains the
decoding sequence ûn by solving linear equations ṽnA = cl and ṽnB = mk.
From the condition l+k

n
> 1 + δ1/3, it holds that the rank of the n × (l + k)

concatenated matrix of A and B becomes n with high probability.

Remark 4.3
When we set D = 0, since

PV |U(v|u) =

{
1, if u = v
0, otherwise,

conditions of Theorem 4.1 are stated as

l + k

n
> H(U) + δ1/3

and
l

n
< −δ.
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In this case, since l and A are void, the first condition k
n
> H(U) + δ1/3

becomes the existence condition of the lossless source encoder and decoder
constructed by the sparse matrix B.

4.3 Proof of Theorem

In this section, it is shown that encoder ϕn and decoder ψn constructed
above satisfy optimality of the compression rate and the fidelity criterion
simultaneously.

For source output sequence un, if the encoder outputs vn, which is a jointly
typical sequence with respect to probability distribution PUV , it can be shown
that the distortion between un and its quantization vn, dn(u

n, vn)/n, becomes
asymptotically upper bounded by the constant D in the fidelity criterion as
follows: Throughout the proof, ε > 0 is a given positive constant and fixed.
Since (un, vn) ∈ T nPUV ε

,

1

n
dn(u

n, vn) =
1

n

n∑
i=1

d1(ui, vi)

=
∑
a,b

Punvnd1(a, b)

≤
∑
a,b

{P (a, b) + |P (a, b) − Punvn(a, b)|} d1(a, b)

≤
∑
a,b

P (a, b)(1 + ε)d1(a, b)

≤ (1 + ε)D. (4.7)

By use of the above observation and the fact that the output of the source
is in a typical sequence set with high probability, to prove the theorem it is
sufficient to show that the probability that the output of the decoder is not
jointly typical with the input of the encoder becomes asymptotically 0.

In the remainder of this section, it will be shown that the output of
“quantizer” in the encoder, vn (see Figure 4.2), which is a jointly typical
sequence with the input of the encoder, un, coincides with the output of the
decoder with high probability, and that, at the same time, compression rate
R = k/n asymptotically approaches the rate-distortion function R(D) =
I(U ;V ).
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In the proof of Theorem 4.1, we use a random coding technique over
sparse matrices A, B.

Note that

EABP
n
U

[
(Un, ψn(ϕn(U

n)) /∈ T n
PUV δ̂(ε)

for ∃δ̂(ε) → 0 (ε→ 0)
]

≤ EABP
n
U

[
E1

⋃
E2

⋃
E3

]
≤ P n

U [E1] + EABP
n
U

[
E2

⋂
Ec1
]

+ EABP
n
U

[
E3

⋂
Ec2

⋂
Ec1
]
, (4.8)

where

E1
def
=

{
Un /∈ T nPUε

}
, (4.9)

E2
def
=

{
V n /∈ T nPV |U δ′(ε)(U

n) for ∃δ′(ε) → 0 (ε→ 0)
}
, (4.10)

E3
def
= {V n �= ψn (ϕn(U

n))} , (4.11)

and in (4.10) and (4.11), V n is the output of the “quantizer” part of the
encoder (see Figure 4.2). E2 and E3 refer to “encoding error” and “decoding
error”, respectively.

From the law of large numbers,

P n
U [E1] → 0 (n→ ∞). (4.12)

In the next sections, evaluations of EABP
n
U [E2

⋂ Ec1 ] and EABP
n
U [E3

⋂ Ec2
⋂ Ec1 ]

are described.

4.3.1 Evaluation of EABP
n
U [E2

⋂ Ec
1]

Let

GA(cl)
def
=

{
vn ∈ [0 : q − 1]n

∣∣ vnA = cl
}
, (4.13)

E21
def
=

{
GA(cl)

⋂
T nPV |Uε(u

n) = ∅
}
, (4.14)

and

E22
def
=

{
V n /∈ GA(cl)

⋂
T nPV |U δ′(ε)(u

n) for ∃δ′(ε) → 0 (ε→ 0)
}
, (4.15)
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then note that

E2 ⊂ E21

⋃
E22. (4.16)

Therefore, we have

EABP
n
U

[
E2

⋂
Ec1
]
≤ EAP

n
U

[
E21

⋂
Ec1
]

+ EABP
n
U

[
E22

⋂
Ec21

⋂
Ec1
]
. (4.17)

Note that E21 does not depend on B.

For EAP
n
U [E21

⋂ Ec1 ], the next lemma holds.

Lemma 4.1
For any un ∈ T nPUε

, if there exists a positive number δ that satisfies l/n <
H(V |U) − δ for sufficiently large n and l, then it holds that

lim
n→∞

EAP
n
U

[
E21

⋂
Ec1
]

= 0. (4.18)

[Proof of Lemma 4.1]
We prove the case q ≥ 3. The case q = 2 can be proven similarly.

Let R′ = l/n and set γR′ < minb:PV (b)>0 PV (b)(1 − ε). Then, note that
for any vn ∈ T nPV |Uε(u

n) with un ∈ T nPUε
, the Hamming weight of vn satisfies

w(vn) > nγR′ .

To prove the lemma, it is sufficient to show that for any un ∈ T nPUε
,

PA

⎧⎪⎨
⎪⎩

∑
vn∈Tn

PV |U ε(u
n)

1
[
vnA = cl

]
= 0

⎫⎪⎬
⎪⎭ → 0 (n→ ∞), (4.19)

where 1[“logical equation”] is an indicator function for the logical equation.
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PA

⎧⎪⎨
⎪⎩

∑
vn∈Tn

PV |U ε(u
n)

1
[
vnA = cl

]
= 0

⎫⎪⎬
⎪⎭

= PA

⎧⎪⎨
⎪⎩

∑
vn∈Tn

PV |U ε(u
n)

(
1
[
vnA = cl

]− αn(R
′;w(vn))

ql

)

= −
∑

vn∈Tn
PV |U ε(u

n)

αn(R
′;w(vn))

ql

⎫⎪⎬
⎪⎭

≤ PA

⎧⎪⎨
⎪⎩

∑
vn∈Tn

PV |U ε(u
n)

(
αn(R

′;w(vn))

ql
− 1

[
vnA = cl

])

≥
∑

vn∈Tn
PV |U ε(u

n)

αn(R
′;w(vn))

ql

⎫⎪⎬
⎪⎭

(a)

≤
EA

∣∣∣∣∑vn∈Tn
PV |U ε(u

n)

(
αn(R′;w(vn))

ql − 1
[
vnA = cl

])∣∣∣∣
2

∣∣∣∣∑vn∈Tn
PV |U ε(u

n)
αn(R′;w(vn))

ql

∣∣∣∣
2

(b)

≤
EA

∣∣∣∣∑vn∈Tn
PV |U ε(u

n)

(
αn(R′;w(vn))

ql − 1
[
vnA = cl

])∣∣∣∣
2

∣∣∣∣ (1−δn(R′))|Tn
PV |U ε(u

n)|
ql

∣∣∣∣
2 , (4.20)

where (a) comes from Chebyshev’s inequality, and at (b), 2) of Lemma 2.5
with Remark 2.4 is used for the denominator.
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On the other hand,

(Numerator of (4.20))

= EA
∑

vn∈Tn
PV |U ε(u

n)

∣∣∣∣
(
αn(R

′;w(vn))

ql
− 1

[
vnA = cl

])∣∣∣∣
2

+EA
∑

vn 	=ṽn∈Tn
PV |U ε(u

n)

{
αn(R

′;w(vn))

ql
αn(R

′;w(ṽn))

ql

−αn(R
′;w(vn))1

[
ṽnA = cl

]
ql

−αn(R
′;w(ṽn))1

[
vnA = cl

]
ql

+ 1
[
vnA = cl

]
1
[
ṽnA = cl

]}

(c)
=

∑
vn∈Tn

PV |U ε(u
n)

{
αn(R

′;w(vn))

ql
−
(
αn(R

′;w(vn))

ql

)2
}

−
∑

vn 	=ṽn∈Tn
PV |U ε(u

n)

αn(R
′;w(vn))

ql
αn(R

′;w(ṽn))

ql

+EA
∑

vn 	=ṽn∈Tn
PV |U ε(u

n)

1
[
vnA = cl

]
1
[
ṽnA = cl

]
, (4.21)

where at (c), 2) of Lemma 2.5 with Remark 2.4 is used.
The third term of (4.21) can be evaluated as follows:

EA
∑

vn 	=ṽn∈Tn
PV |U ε(u

n)

1
[
vnA = cl

]
1
[
ṽnA = cl

]

(d)
= EA

∑
vn∈Tn

PV |U ε(u
n)

⎛
⎝nγR′∑
w=1

+
n∑

w=nγR′+1

⎞
⎠

∑
ṽn∈Tn

PV |U ε(u
n):w(ṽ∗n−v∗n)=w

1
[
v∗nA = cl

]
1
[
(ṽ∗n − v∗n)A = 0l

]

(e)

≤
(1 + δn(R

′))βn(R′)|T nPV |Uε(u
n)|

ql
+ (1 + δn(R

′))2

( |T nPV |Uε(u
n)|

ql

)2

,

(4.22)
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where (d) comes from Lemma 2.3, and (e) comes from Lemma 2.6 and (4.25).

Note that

|T nPV |Uε(u
n)|

ql
≥ qn(H(V |U)− l

n
−δ(ε)), (4.23)

where (4.23) comes from 3) of Lemma 2.7, and the left hand side of (4.23)
approaches ∞ (n → ∞). This comes from the assumption l

n
< H(V |U) − δ

by taking ε that satisfies

ε log
1

ε
+ 3ε <

δ

2
, (4.24)

for sufficiently large n to hold

q2 log(n+ 1)

n
<
δ

2
, (4.25)

where δ(ε)
def
= ε log 1

ε
+ 3ε+ q2 log(n+1)

n
.

By substituting (4.22) into (4.21) and noting that

δn(R
′) → 0 (n→ ∞), (4.26)
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which comes from 2) of Lemma 2.5, it can be shown that

EA

∣∣∣∣∑vn∈Tn
PV |U ε(u

n)

(
αn(R′;w(vn))

ql − 1
[
vnA = cl

])∣∣∣∣
2

∣∣∣∣ (1−δn(R′))|Tn
PV |U ε(u

n)|
ql

∣∣∣∣
2

≤
∑

vn∈Tn
PV |U ε(u

n)

{
αn(R′;w(vn))

ql −
(
αn(R′;w(vn))

ql

)2
}

∣∣∣∣ (1−δn(R′))|Tn
PV |U ε(u

n)|
ql

∣∣∣∣
2

−
∑

vn 	=ṽn∈Tn
PV |U ε(u

n)
αn(R′;w(vn))

ql

αn(R′;w(ṽn))
ql∣∣∣∣ (1−δn(R′))|Tn

PV |U ε(u
n)|

ql

∣∣∣∣
2

+

(1+δn(R′))βn(R′)|Tn
PV |U ε(u

n)|
ql∣∣∣∣ (1−δn(R′))|Tn

PV |U ε(u
n)|

ql

∣∣∣∣
2 +

(1 + δn(R
′))2

( |Tn
PV |U ε(u

n)|
ql

)2

∣∣∣∣ (1−δn(R′))|Tn
PV |U ε(u

n)|
ql

∣∣∣∣
2

(f)

≤ 1 + δn(R
′)

(1 − δn(R′))2

( |T nPV |Uε(u
n)|

ql

)−1

− 1

+
1 + δn(R

′)
(1 − δn(R′))2

βn(R
′)

( |T nPV |Uε(u
n)|

ql

)−1

+
(1 + δn(R

′))2

(1 − δn(R′))2

=
1 + δn(R

′)
(1 − δn(R′))2

( |T nPV |Uε(u
n)|

ql

)−1

+
1 + δn(R

′)
(1 − δn(R′))2

βn(R
′)

( |T nPV |Uε(u
n)|

ql

)−1

+
4δn(R

′)
(1 − δn(R′))2

→ 0 (n→ ∞), (4.27)

where at (f), we use 2) of Lemma 2.5. From the above arguments, (4.18)
holds.

[End of Proof of Lemma 4.1]
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Remark 4.4
In [35], cl is taken as a random variable. Here, with the help of Lemma 2.6,
cl can be taken as a fixed vector.

Before analyzing the second term of (4.17), we show a lemma that has a
dual meaning with Lemma 4.1.

Lemma 4.2
For any un ∈ T nPU ε

and for any δ > 0, let

G̃A(cl)
def
=

{
vn ∈ [0 : q − 1]n

∣∣ vnA = cl and H(W |Pun) <
l

n
− δ

}
, (4.28)

where W appearing in the above definition is a conditional type of vn condi-
tioned on un.

Then it holds that

lim
n→∞

PA

[
G̃A(cl) �= ∅

]
= 0. (4.29)

[Proof of Lemma 4.2]

PA

[
G̃A(cl) �= ∅

]

= EA1

⎡
⎣ ∑
vn∈[0:q−1]n

1
[
vnA = cl

]
1

⎡
⎣vn ∈

⋃
W :H(W |Pun)< l

n
−δ
T nW (un)

⎤
⎦ ≥ 1

⎤
⎦

(a)

≤ EA
∑

vn∈[0:q−1]n

1
[
vnA = cl

]
1

⎡
⎣vn ∈

⋃
W :H(W |Pun)< l

n
−δ
T nW (un)

⎤
⎦ , (4.30)

where (a) comes from Markov’s inequality.
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Since the assumption is cl �= 0l, we obtain

EA
∑

vn∈[0:q−1]n

1
[
vnA = cl

]
1

⎡
⎣vn ∈

⋃
W :H(W |Pun)< l

n
−δ
T nW (un)

⎤
⎦

(b)
= EA

⎛
⎝nγR′∑
w=1

+
n∑

w=nγR′+1

⎞
⎠

·
∑

vn:w(v∗n)=w

1
[
v∗nA = cl

]
1

⎡
⎣vn ∈

⋃
W :H(W |Pun)< l

n
−δ
T nW (un)

⎤
⎦

≤
nγR′∑
w=1

∑
vn:w(v∗n)=w

EA1
[
v∗nA = cl

]

+
n∑

w=nγR′+1

EA
∑

vn:w(v∗n)=w

1
[
v∗nA = cl

]
1

⎡
⎣vn ∈

⋃
W :H(W |Pun)< l

n
−δ
T nW (un)

⎤
⎦

(c)

≤ βn(R
′) + (1 + δn(R

′))
∑

vn∈[0:q−1]n

1
[
vn ∈ ⋃

W :H(W |Pun)< l
n
−δ T

n
W (un)

]
ql

(d)

≤ βn(R
′) + (1 + δn(R

′))
∑

W :H(W |Pun)< l
n
−δ

|T nW (un)|
ql

≤ βn(R
′) + (1 + δn(R

′))
∑

W :H(W |Pun)< l
n
−δ

qnH(W |Pun)

ql

≤ βn(R
′) + (1 + δn(R

′))
∑

W :H(W |Pun)< l
n
−δ

qn( l
n
−δ)

ql

≤ βn(R
′) + (1 + δn(R

′))(n+ 1)q
2

q−nδ, (4.31)

where (b) is from Lemma 2.3, (c) comes from Lemma 2.5 with Remark 2.4,
and (d) is derived using ordinary type techniques [7].

By substituting (4.31) into (4.30), Lemma 4.2 is proved.
[End of Proof of Lemma 4.2]

Remark 4.5
The duality between Lemma 4.1 and Lemma 4.2 is remarkable. Lemma 4.1
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shows that if l
n
< H(V |Pun) − δ, then

{
vn

∣∣ vnA = cl
}⋂

T nV ε(u
n) �= ∅ holds

with high probability. On the other hand, Lemma 4.2 shows that if l
n
>

H(V |Pun) + δ, then it holds that
{
vn

∣∣ vnA = cl
}⋂

T nV ε(u
n) = ∅ with high

probability. These similar lemmas will be used for the proof of the channel
coding theorem in Chapter 5.

Definition 4.1 [Variational Distance] For given probability distributions P
and Q on a set U , the variational distance between P and Q is defined as

||P −Q|| def
=

∑
a∈U

|P (a) −Q(a)|. (4.32)

Lemma 4.3
For given probability distributions P and Q on a set U , if the following two
conditions hold,
1) ||P −Q|| ≤ ε,
and
2) when P (a) = 0, then Q(a) = 0,
then it holds that

|P (a) −Q(a)| ≤ ε

minb:P (b)>0 P (b)
P (a) for any a ∈ U .

[Proof of Lemma 4.3]
From the above assumptions,

ε ≥ ||P −Q|| =
∑
a

|P (a) −Q(a)|

≥
∑

a:P (a)>0

minb:P (b)>0 P (b)

P (a)
|P (a) −Q(a)|

≥ minb:P (b)>0 P (b)

P (a)
|P (a) −Q(a)|. (4.33)

[End of Proof of Lemma 4.3]
To prove

EABP
n
U

[
E22

⋂
Ec21

⋂
Ec1
]
→ 0 (n→ ∞), (4.34)
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it is sufficient to show that for any un ∈ T nPUε
, the output of “vector quantiza-

tion” part of the encoder, v̂n, is jointly typical with un with high probability,
which means that

||Punv̂n − PUV || < δ′(ε) for ∃δ′(ε) that satisfies δ′(ε) → 0 (ε→ 0) (4.35)

with high probability, where

v̂n
def
= arg max

ṽn:ṽnA=cl
P n
V |U(ṽn|un), (4.36)

by using Lemma 4.3.

Assume that un ∈ T nPU ε
. Note that

arg max
ṽn:ṽnA=cl

PV |U(ṽn|un) = arg max
ṽn:ṽnA=cl

logPV |U(ṽn|un)

= arg max
ṽn:ṽnA=cl

n∑
i=1

logPV |U(ṽi|ui)

= arg max
ṽn:ṽnA=cl

n
∑
a,b

Pun(a)W (b|a) logPV |U(b|a)

= arg max
ṽn:ṽnA=cl

{∑
a,b

Pun(a)W (b|a) log
PV |U(b|a)
W (b|a)

−
∑
a,b

Pun(a)W (b|a) log
1

W (b|a)

}

= arg min
ṽn:ṽnA=cl

{
D(W ||PV |U |Pun) +H(W |Pun)

}
, (4.37)

where W is a conditional type of the argument ṽn conditioned on un in
the above optimization. Let Ŵ be the corresponding conditional type of
v̂n attaining the minimum of the right hand side in (4.37). From Lemma
4.1, there exists a vn satisfying vnA = cl and vn ∈ T nPV |Uε(u

n) with high
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probability. With this vn, since ||Punvn − PUV || < 2ε, we obtain

D(Ŵ ||PV |U |Pun) +H(Ŵ |Pun)

(a)

≤ −1

n
logPV n|Un(vn|un)

=
∑
a,b

Punvn(a, b) log
1

PV |U(b|a)

≤
∑
a,b

|Punvn(a, b) − PUV (a, b)| log
1

PV |U(b|a)

+
∑
a,b

PUV (a, b) log
1

PV |U(b|a)
(b)

≤ 2ηε+H(PV |U |PU), (4.38)

where at (a), the definition of v̂n, and at (b), η
def
= max

a,b:PV |U (b|a)>0
log

1

PV |U(b|a)
and the fact that ||Punvn − PUV || < 2ε are used, respectively.

If D(Ŵ ||PV |U |Pun) > (2η + 10 log 1
ε
)ε, then

H(Ŵ |Pun) ≤ H(PV |U |PU) − 10ε log
1

ε
(4.39)

is derived. If

10ε log
1

ε
> δ, (4.40)

then there exists l
n

satisfying both l
n
< H(V |U) − δ and H(Ŵ |Pun) < l

n
−

(10ε log 1
ε
−δ). Therefore, from Lemma 4.2, the probability that v̂n is included

in GA(cl) approaches 0 for sufficiently large n.
Considering the above fact, it is sufficient to investigate only the case of

D(Ŵ ||PV |U |Pun) ≤ (2η + 10 log 1
ε
)ε. Then we have

(2η + 10 log
1

ε
)ε ≥ D(Ŵ ||PV |U |Pun)

(c)

≥ 1

2 ln 2

∑
a

Pun(a)||Ŵ (∗|a) − PV |U(∗|a)||2

(d)

≥ 1

2 ln 2

{∑
a

Pun(a)||Ŵ (∗|a) − PV |U(∗|a)||
}2

. (4.41)
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At (c), we use the formula D(P ||Q) ≥ 1

2 ln 2
||P −Q||2 [9, Lemma 11.6.1]. At

(d), Jenzen’s inequality [9, Theorem 2.6.2] is applied.

As a result, we obtain

∑
a

Pun(a)||Ŵ (∗|a) − PV |U(∗|a)|| <
√

4(η + 5 log
1

ε
)ε ln 2, (4.42)

which means√
4(η + 5 log

1

ε
)ε ln 2

>
∑
a

Pun(a)||Ŵ (∗|a) − PV |U(∗|a)||

=
∑
a,b

∣∣∣Pun(a)Ŵ (b|a) − Pun(a)PV |U(b|a)
∣∣∣

≥ ||PunŴ − PUPV |U ||
−
∑
a,b

∣∣PU(a)PV |U(b|a) − Pun(a)PV |U(b|a)∣∣
= ||PunŴ − PUV || −

∑
a

|PU(a) − Pun(a)|

≥ ||PunŴ − PUV || − ε = ||Punv̂n − PUV || − ε. (4.43)

From Lemma 4.3, when we set δ′(ε) def
=

ε+
√

4(η+5 log 1
ε
)ε ln 2

mina,b:PUV (a,b)>0 PUV (a,b)
in (4.8), (4.35)

is proved. Therefore, we obtain (4.34).

4.3.2 Evaluation of EABP
n
U [E3

⋂ Ec
2
⋂ Ec

1]

It is sufficient to show that if l+k
n
> H(V )+ δ1/3 for a positive number δ > 0,

then for any un ∈ T nPUε
we obtain

lim
n→∞

PAB

[
v̂n �= arg max

ṽn:ṽnA=cl

ṽnB=mk

PV (ṽn)

]
= 0, (4.44)

where v̂n = arg maxvn:vnA=cl PV |U(vn|un) and mk = v̂nB.
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From the results in Section 4.3.1, it can be assumed that v̂n ∈ T nPV δ′(ε).
Then it holds that

PAB

[
v̂n �= arg max

ṽn:ṽnA=cl

ṽnB=mk

PV n(ṽn)

]

≤ EAB1
[∃ṽn �= v̂n s.t. PV n(ṽn) ≥ PV n(v̂n), ṽnA = cl, ṽnB = mk

]
≤ EAB

∑
ṽn 	=v̂n

1
[
PV n(ṽn) ≥ PV n(v̂n), ṽnA = cl, ṽnB = mk

]
(a)

≤ EAB
∑
ṽn 	=v̂n

1
[
PV n(ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]
·1 [ṽnA = cl

]
1
[
(ṽn − v̂n) B = 0k

]
= EAB

(
nγR∑
w=1

+
n∑

w=nγR+1

) ∑
ṽn:w(ṽ∗n−v̂∗n)=w

1
[
PV (ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]

·1 [ṽ∗nA = cl
]
1
[
(ṽ∗n − v̂∗n) B = 0k

]
≤ EB

nγR∑
w=1

∑
ṽn:w(ṽ∗n−v̂∗n)=w

1
[
(ṽ∗n − v̂∗n) B = 0k

]

+ EAB

n∑
w=nγR+1

∑
ṽn:w(ṽ∗n−v̂∗n)=w

1
[
PV (ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]

·1 [ṽ∗nA = cl
]
1
[
(ṽ∗n − v̂∗n) B = 0k

]
, (4.45)

where at (a) v̂n ∈ T nPV δ′(ε) and mk = v̂nB are used.

By 1) of Lemma 2.5, the first term of (4.45) is upper bounded by βn(R
′).

On the other hand, the second term of (4.45) is evaluated as follows:

EAB

n∑
w=nγR+1

∑
ṽn:w(ṽ∗n−v̂∗n)=w

1
[
PV (ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]

·1 [ṽ∗nA = cl
]
1
[
(ṽ∗n − v̂∗n) B = 0k

]
(b)

≤ EA

n∑
w=nγR+1

∑
ṽn:w(ṽ∗n−v̂∗n)=w

1
[
PV (ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]

·1 [ṽ∗nA = cl
] 1 + δn(R)

qk
, (4.46)
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where at (b), 2) of Lemma 2.5 is applied to random variable B. Note that
in (4.46), since both v̂∗n in summation and 1

[
ṽ∗nA = cl

]
depend on A, we

cannot directly apply 2) of Lemma 2.5 to 1
[
ṽ∗nA = cl

]
. To apply Lemma

2.5, we have to decorrelate these variables as follows:

EA

n∑
w=nγR+1

∑
ṽn:w(ṽ∗n−v̂∗n)=w

1
[
PV (ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]

·1 [ṽ∗nA = cl
] 1 + δn(R)

qk

≤ EA
∑
ṽn

1
[
PV (ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]
1
[
ṽ∗nA = cl

] 1 + δn(R)

qk

= EA

⎛
⎝nγR′∑
w=1

+
n∑

w=nγR′+1

⎞
⎠ ∑

ṽn:w(ṽ∗n)=w

1
[
PV (ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]

·1 [ṽ∗nA = cl
] 1 + δn(R)

qk

≤ EA

nγR′∑
w=1

∑
ṽn:w(ṽ∗n)=w

1
[
ṽ∗nA = cl

] 1 + δn(R)

qk

+EA

n∑
w=nγR′+1

∑
ṽn:w(ṽ∗n)=w

1
[
PV (ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]

·1 [ṽ∗nA = cl
] 1 + δn(R)

qk

(c)

≤ (1 + δn(R))βn(R
′)

qk

+EA

n∑
w=nγR′+1

∑
ṽn:w(ṽ∗n)=w

1
[
PV (ṽn) ≥ q−n(H(V )+δ(δ′(ε)))

]

·(1 + δn(R))(1 + δn(R
′))

ql+k

(d)

≤ (1 + δn(R))βn(R
′)

qk
+

(1 + δn(R))(1 + δn(R
′))qn(H(V )+δ(δ′(ε)))

ql+k
. (4.47)

At (c), Lemma 2.5 with Remark 2.4 is used, and at (d), ordinary techniques
of types (e.g., [7]) are used.
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With the above argument, if we take ε and n, l, k satisfying

δ′(ε) log
1

δ′(ε)
+ 3δ′(ε) <

δ1/3

2
(4.48)

and

q2 log(n+ 1)

n
<
δ1/3

2
(4.49)

and l+k
n

> H(V ) + δ1/3, then it is shown that the second term of (4.45)
approaches 0 with n→ ∞.

Note that with the results in Sections 4.3.1 and 4.3.2, by setting δ̂(ε)
def
=

ε+ δ′(ε)(1 + ε), we can prove Theorem 4.1 through the evaluation of (4.8).

Remark 4.6
δ and ε must satisfy the following relationships: From (4.40),

10ε log
1

ε
> δ, (4.50)

from (4.24),

8ε log
1

ε
< δ, (4.51)

and from (4.48),

8δ′(ε) log
1

δ′(ε)
< δ1/3. (4.52)

By the straight forward calculation, if

ε

(
log

1

ε

)3
(160 ln 2)3

(mina,b:PUV (a,b)>0 PUV (a, b))6
< 1 (4.53)

is satisfied, which is a sufficient condition of δ′(ε)3 < ε, it can be shown that
there exists δ satisfying (4.50), (4.51), and (4.52).
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Remark 4.7
Note that the statement of Theorem 4.1 can be replaced by

lim
n→∞

EABPUn

[
dn (Un, ψn (ϕn(U

n)))

n
> D

]
= 0. (4.54)

Using the above fact and Markov’s inequality, it is shown that we can get
sparse matrices A and B, which have desired properties, with high probability
as follows: for any positive number ε > 0,

PAB

[
PUn

[
dn (Un, ψn (ϕn(U

n)))

n
> D

]
> ε

]

≤
EABPUn

[
dn(Un,ψn(ϕn(Un)))

n
> D

]
ε

→ 0 (n→ ∞) (4.55)

4.4 Simulation Experiments

Linear code linear programming (LCLP) proposed by Feldman [12] is a
promising method for implementing the lossy source coding process effi-
ciently. In the encoding and decoding of a lossy source code constructed
by sparse matrices, we propose auxiliary methods to obtain approximate op-
timal values in the case where the output of LCLP takes non-integer values.
In a simulation, the proposed method [32] attains smaller average distortions
than the time-sharing bound.

4.4.1 LCLP Algorithm and Its Property

In this subsection, a binary alphabet (q = 2) is assumed, and we show how
the LCLP algorithm can be used to implement the vector-quantization part
of the encoding process:

max
vn:vnA=cl

PV n|Un(vn|un). (4.56)

Note that the LCLP algorithm can also be applied to the decoding process
in the same way as to the encoding process.

Let A = (aij)n∈[1:n],j∈[1:l] and cl = (cj)j∈[1:l]. The objective function to be
minimized is
n∑
i=1

vi log
PV |U(0|ui)
PV |U(1|ui) → min, (4.57)
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where (vi)i∈[1:n] are variables to be determined, by noting that

arg max
vn:vnA=cl

PV n|Un(vn|un) = arg max
vn:vnA=cl

logPV n|Un(vn|un)

= arg max
vn:vnA=cl

n∑
i=1

logPV |U(vi|ui)

= arg max
vn:vnA=cl

n∑
i=1

{
(1 − vi) logPV |U(0|ui) + vi logPV |U(1|ui)

}

= arg min
vn:vnA=cl

n∑
i=1

vi log
PV |U(0|ui)
PV |U(1|ui) . (4.58)

For j ∈ [1 : l], let

N (j)
def
=

{
i ∈ [1 : n]

∣∣ aij = 1
}

(4.59)

and

Ej def
=

{
S ⊆ N (j)

∣∣ |S| + cj = 1 (mod 2)
}
, (4.60)

where |A| denotes the cardinality of set A. Then the “relaxed” linear con-
straints associated with the original linear constraints vnA = cl are as follows:

0 ≤ vi ≤ 1 for i ∈ [1 : n], (4.61)

and for any j ∈ [1 : l] and S ⊆ Ej,∑
i∈S

(1 − vi) +
∑

i∈N (j)\S
vi ≥ 1. (4.62)

Feldman [12] showed that when LCLP is applied to channel coding, the
output becomes the maximum likelihood estimator if all of the output values
are integers. This property is called Maximum Likelihood Certificate Prop-
erty (MLCP). When LCLP is applied to source coding problems, while row
vector cl of the parity check condition vnA = cl is a fixed vector whose Ham-
ming weight is even, the algorithm described here can also be shown to have
MLCP using similar arguments to [12]. The next proposition summarizes
this fact.
Proposition[MLCP]
The LCLP algorithm described here has the MLCP.
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4.4.2 Auxiliary Methods

As mentioned above, LCLP does not always output integers. In an ordinary
process, when non-integer output is produced, the output must be treated
as an error. In this situation, the LCLP process is said to have failed.

In channel coding with the sum-product decoding algorithm, some trials
have been investigated to improve the case of failures in decoding. Fossorier,
Lin and Snyders [13] proposed an approximation process to improve the
convergence property of the sum-product algorithm in channel coding.

In this subsection, we propose auxiliary methods that enable LCLP to be
used for lossy source coding problems.

When the LCLP outputs vn with non-integer values, we scalar-quantize
vi to 0 or 1 by a given rule if it corresponds to a redundant row of the
parity-check matrix. After this scalar-quantization, we solve linear equations
vnA = cl to determine the remaining part of vn. Then, we obtain the output
ṽn that consists of integers and satisfies the parity-check condition. The
block diagram of this auxiliary algorithm (AA) is shown in Figure 4.4, and
the details of AA are given in the following part of this subsection.

Although the AA can output a solution with all integers, the output can-
not always be a near-optimal solution. Hence, we propose another auxiliary
method called the 2nd optimization to attain a smaller distortion using the
output of AA, which is described following the description of AA.

Auxiliary Algorithm

The AA consists of three steps: 1. sweep-out, 2. scalar-quantization, 3.
solving of the linear equation. In the second step, scalar-quantization is
applied to ṽi’s, which correspond to redundant parts of a solution in the
indeterminate equation vnA = cl. In the third step, the remaining parts of
the solution are determined by solving l linear equations with l variables.
The details of each step are given as follows. For simplicity, the rank of A is
assumed to be l.

[1. Sweep-out step]

Under the above assumption, by application of the sweep-out row op-
eration to A, the transformed matrix of A contains l unit row vectors
(1, 0, .., 0), ..., (0, .., 0, 1). After elimination of l unit vectors from the trans-
formed matrix, the set of residual row indices is denoted as IndX. An example
of the process is shown in Figure 4.4.
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LCLP

Integer/
Non-integer

nv~

nv̂
Yes

No

AA

LCLP

Integer/
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Figure 4.4: LCLP and AA

[2. Scalar-quantization step]

By use of a scalar-quantizer Q : [0, 1] → {0, 1}, each value of ṽi(i ∈ IndX )
is determined. Let LCLP output be vn ∈ [0, 1]n, then, ṽi = Q(yi) for i ∈
IndX. For example, we set

Q(vi)
def
=

{
0, if vi ≤ 0.5
1, otherwise,

(4.63)

which is used in our simulation.
[3. Solving of the linear equation step]

By solving of l linear equations with l variables, each value of ṽi(i ∈ [1 :
n]\IndX ) is determined.

2nd Optimization

While the output of AA, ṽn, satisfies the parity-check condition ṽnA = cl, the
value of the objective function derived from the output is not always near
the optimum. In this subsection, we propose an algorithm called the 2nd
Optimization (2nd Opt) whose output satisfies the parity-check condition
and, at the same time, can be a value closer to the optimum. The 2nd Opt
carries out the procedures of LCLP and AA by fixing vi in (4.64) for each
i ∈ [1 : n] (Figure 4.6).
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Figure 4.5: Sweep-out step

The algorithm is as follows.
Let ṽn be the output of AA. For i ∈ [1 : n],

arg max
vn:vnA=cl

vi=ṽi

PV n|Un(vn|un) (4.64)

is carried out by LCLP and AA, and let z(i)n be the output of the i-th loop
of LCLP and AA. The final output of 2nd Opt is obtained by

arg max
z(i)n:1≤i≤n

PV n|Un(z(i)n|un). (4.65)

Remark 4.8
Let Tn be a computational complexity of LCLP, where n denotes block length.
Since the computational complexity of the sweep out process of a matrix is
O(n3), that of AA is estimated by O(n3), and that of LCLP and AA by Tn +
O(n3). Therefore, the computational complexity of 2nd Opt, which repeats
LCLP and AA n times, is n × (Tn +O(n3)). This complexity is apparently
higher than that of the sum-product algorithm whose complexity is estimated
by O(n).

Hence, our next goal in future work is to contrive an efficient algorithm
with low computational complexity, which can output a near-optimal vn sat-
isfying a given parity-check condition.
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Figure 4.6: LCLP, AA, and 2nd Opt

4.4.3 Simulation Results

In this subsection, we first denote the conditions of simulation, and then we
show some simulation results.
[Conditions]
The probability distribution of the source is set to be uniform, s.t. PU(U =
0) = PU(U = 1) = 0.5, and the distortion measure is the Hamming measure.
Block length n is fixed to be 100. An n × l sparse matrix A and an n × k
sparse matrix B are generated using the bipartite graph method (Figure 4.7;
see e.g. [24]) with parameters l and k shown in Table 1. Note that the values
of l and k in Table 1 satisfy the conditions stated in Theorem 4.1. For a
given compression rate, each simulation consists of generation of sparse ma-
trices, 100 samplings of the source message with block length n = 100, and
lossy encoding and decoding using LCLP, AA, and 2nd Opt.
[Simulation Results]
Average distortions calculated by 100 encodings and decodings for each com-
pression rate are shown in Figure 4.8. The horizontal and vertical axes denote
compression rate and average distortion, respectively.

The distortion-rate curve and time-sharing bound are denoted by the solid
curve and dotted line, respectively. In the figure, “LCLP-success” means that
no auxiliary methods (AA, 2nd Opt) were used in the vector-quantization
process, and the average distortion was calculated only for the case that
the LCLP succeeds in encoding to generate v̂n with all integer components.
“LCLP and AA” and “LCLP and AA and 2nd Opt” mean that the corre-
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Figure 4.7: Bipartite graph method for generating sparse matrices

sponding auxiliary methods (AA only or AA and 2nd Opt) were used in the
process. At decoding, “LCLP and AA” was applied to all cases. The figure
shows that “LCLP and AA and 2nd Opt” attained the smallest average dis-
tortions over the entire range of coding rate. Note that the 2nd Opt was not
used at the rate of 0.8 since LCLP almost always succeeds for the vector-
quantization process (Table 2). “LCLP-success” and “LCLP and AA and
2nd Opt” attained average distortion smaller than the time-sharing bound.
However, in the case that only LCLP was used for the vector-quantization
process, the success rate was very low when the compression rate was low as
shown in Table 4.2. Thus, “LCLP-success” is plotted only for a compression
rate higher than 0.5. These findings show the effectiveness of the auxiliary
methods.

Remark 4.9
We note in Table 4.2 that the success rate of the vector-quantization process
(4.56) increases as the compression rate k/n increases, and there is a gap be-
tween compression rates 0.5 and 0.6. It might be an interesting open problem
to clarify the relation among parameters k, l, n and success rate.

4.5 Concluding Remarks

We considered a source coding problem with a fidelity criterion and con-
structed a lossy source code that can achieve the optimal rate, the rate-
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Table 4.1: Parameters for matrices: n = 100

Rate

0.25

0.40

0.50

0.60

0.75

0.80

l k

80 25

75

60

50

40

25

40

50

60

75

80

Table 4.2: Success Rate of LCLP for Vector-Quantization

Compression rate

LCLP success rate

0.25 0.40 0.50 0.60 0.75 0.80

0 0 0 50 64 88
(%)

distortion function. While some simulation experiments using the LP relax-
ation method were presented, further improvement of the proposed algorithm
will be needed. Since Murayama [37] showed good performance for longer
block length cases by improving the sum-product algorithm, improving or
modifying the sum-product algorithm is also needed to be investigated.
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Chapter 5

Channel Coding

Miller and Burshtein [28] showed that the Shannon limit of the transmission
rate for the binary symmetric channel (BSC) can be attained by using a low
density parity check (LDPC) code. When the channel is a general stationary
memoryless channel, which is not necessarily a BSC, a quantization mapping
method [2] developed by Bennatan and Burshtein can be used. Using the
method, they evaluated an error exponent and obtained various interesting
simulation results. However, since they assumed the decoder was an ML
decoder, the universal channel code was not easy to construct. Moreover,
the properties of joint source-channel coding systems constructed by LDPC
codes or sparse matrices have not yet been studied much.

It is well known that for a joint source-channel system, optimal coding in
the sense of the limit of the minimum transmission ratio (LMTR) [7] can be
attained using the independently optimized source code channel code. An
evaluation of an error exponent [47] and an analysis of general sources and
channels [45] have recently been reported, whereas the advantages of using
sparse matrix coding for the joint source-channel system have not yet been
investigated.

In this chapter, we will present a channel coding theorem for arbitrary
stationary memoryless channels, in which code is constructed in a manner
dual to that in the lossy source coding theorem. By combining the results for
the lossy source coding and channel coding, we will obtain a simpler result
for the construction of joint source-channel coding system. The result shows
that we can obtain a simpler code using sparse matrix coding for the system.

87
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Figure 5.1: Channel Coding System

5.1 Preliminaries and Problem Setting

The alphabet treated here is a set [0 : q− 1], where q is a prime number and
the set is also considered as a field GF (q). The basis of ln is e and of log is
q.

Let a transmitted message be mk ∈ GF (q)k and an encoder be ϕn :
GF (q)k → GF (q)n. A channel is assumed to be stationary and memory-
less and is described by a conditional probability distribution WY |X , where
X and Y denote random variables describing channel input and output, re-
spectively. Both X and Y are elements in GF (q). A decoder is denoted as
ψn : GF (q)n → GF (q)k, and the decoded message is m̂k ∈ GF (q)k. ϕn and
ψn are constructed by n× l sparse matrix A and n× k sparse matrix B as
shown in a later section. Note that the transmission rate R is defined as k/n
and the channel capacity C(W ) can be described as (e.g. [7] [9])

C(W ) = max
P

I(P,W ). (5.1)

With the above preparation, the problem considered is as follows.
[Problem:]
When a stationary memoryless channel WY |X is given, construct the encoder
ϕn and the decoder ψn using sparse matrices, for which the decoding error
vanishes and the transmission rate approaches the channel capacity C(W )
asymptotically with block length n.

Figure 5.1 shows a block diagram of the channel coding problem.

5.2 Main Theorem and Proofs

5.2.1 Main Theorem

Theorem 5.1
Let a probability distribution PX be given and fixed. If there exists a positive
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number δ that satisfies l+k
n
< H(X)−δ and l

n
> H(X|Y )+δ1/3 for sufficiently

large n, l, and k, then an encoder ϕn and a decoder ψn can be constructed by
an n× l sparse matrix A and an n× k sparse matrix B that satisfy

WY n|Xn

((
ψ−1
n (mk)

)c |ϕn(mk)
) → 0 (n→ ∞).

Remark 5.1
Assume that the conditions of Theorem 5.1, l+k

n
< H(X) − δ and l

n
>

H(X|Y ) + δ1/3, are satisfied for a sufficiently small δ. If we set l+k
n

=
H(X) − 2δ and l

n
= H(X|Y ) + 2δ1/3, then the transmission rate k

n
is equal

to I(X;Y ) − 2(δ + δ1/3).
This observation shows that if I(X;Y ) is equal to the channel capacity,

the transmission rate can approach the capacity asymptotically.
Note that the input probability distribution, which makes I(X;Y ) equal

to the channel capacity, can be computed by the Arimoto-Blahut algorithm
(e.g. [7] [9]).

5.2.2 Construction of Encoder ϕn and Decoder ψn

In this subsection, construction of an encoder and a decoder using sparse
matrices is shown. For the construction, n× l sparse matrix A, n× k sparse
matrix B, and l-dimensional row vector cl are used. Both matrices are
constructed in the manner described in Section 2.1.1 (q = 2) or 2.2.1 (q ≥ 3).
cl is taken as a non-zero vector. Especially when q = 2, the Hamming weight
of cl is taken to be even, which comes from the same reason as stated in
Section 4.2.2.

Assume that A, B, the realization value of corresponding random vari-
ables, and a fixed row vector cl are known to both encoder and decoder.

Construction of Encoder ϕn

Figure 5.2 shows an outline of the encoding process.
Assume that a probability distribution PX is given. Let the message

sequence be mk ∈ GF (q)k. The codeword xn = ϕn(m
k) is then obtained by

ϕn(m
k)

def
= arg max

x̃n:x̃nA=cl

x̃nB=mk

PXn(x̃n). (5.2)
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Construction of Decoder ψn

Figure 5.3 shows an outline of the decoding process. The decoder ψn consists
of an estimation part and a reproduction part. Both parts are constructed
of sparse matrices A and B.

When a channel output yn ∈ GF (q)n is given, the output of the estimation
part, x̂n, is defined as

x̂n
def
= arg max

x̃n:x̃nA=cl
PXn|Y n(x̃n|yn), (5.3)

where PXn|Y n = PXnWY n|Xn/PY n . Reproduction message m̂k = ψn(y
n) is

obtained by

m̂k def
= x̂nB. (5.4)

If decoding is correctly performed, m̂k = mk holds.
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In the above definition, matrix A provides the syndrome that is necessary
for decoding, and matrix B is introduced to make a correspondence between
a message and a codeword. Note that the channel decoding process (5.3) and
(5.4) stated above seems to be dual to the encoding process of lossy source
coding (4.3) and (4.4).

Remark 5.2
When q = 2 (binary alphabet) and the channel is binary symmetric with the
crossover probability ξ, the optimal probability distribution is PX(X = 1) =
0.5. Then, conditions in Theorem 5.2 are stated as

l + k

n
< 1 − δ

and
l

n
> h(ξ) + δ1/3.

Since PX is uniform, the encoder (4.2) obtains the codeword xn by solving
linear equations x̃nA = cl and x̃nB = mk. From the condition l+k

n
< 1 −

δ, the rank of concatenated matrix of A and B becomes l + k with high
probability. Therefore, by taking extra n − (l + k) values of x̃n as arbitrary
fixed values, we can increase the number of constraints in the decoding process
(4.3) from l to l + n− (l + k) = n− k.

5.3 Proof of Theorem

Since when the channel capacity C(W ) is 0, reliable transmission over the
channel is impossible, C(W ) > 0 is assumed throughout this section. There-
fore, for the input probability distribution PX in lemmas below, H(PX) > 0
is assumed. Throughout the proof, ε > 0 is a given positive constant and
fixed, the conditions of which are specified later in this section.

Note that from the construction described in Section 2.1 or 2.2, random
variables A, B are independent of each other, and we use PAB[·] and EAB[·]
as the probability distribution and expectation operation over the random
variables A, B, respectively.

In the proof of Theorem 4.1, we use a random coding technique over
sparse matrices A, B.
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Note that for a fixed message mk,

EABWY n|Xn

[
ψn(Y

n) �= ϕn(m
k)

∣∣ ϕn(mk)
]

≤ EAB1 [E1] + EAB1 [Ec1 ]WY n|Xn

[
E2

⋃
E3

∣∣ ϕn(mk)
]

≤ EAB1 [E1] + EAB1 [Ec1 ]WY n|Xn

[E2

∣∣ ϕn(mk)
]

+EAB1 [Ec1 ]WY n|Xn

[
E3

⋂
Ec2

∣∣ ϕn(mk)
]
, (5.5)

where

E1
def
=

{
ϕn(m

k) /∈ T nPXδ′′(ε) for ∃δ′′(ε) → 0 (ε→ 0)
}
, (5.6)

E2
def
=

{
Y n /∈ T nWε(ϕn(m

k))
}
, (5.7)

E3
def
=

{
X̂n �= ϕn(m

k)
}
, (5.8)

and X̂n in (5.8) is the output of the “codeword estimation” part of the
decoder (see Figure 5.3). E1 and E3 refer to “encoding error” and “decoding
error”, respectively.

From the law of large numbers,

WY n|Xn

[E2

∣∣ ϕn(mk)
] → 0 (n→ ∞). (5.9)

In the remainder of this section, we will evaluate

EAB1 [E1]

and

EAB1 [Ec1 ]WY n|Xn

[
E3

⋂
Ec2

∣∣ ϕn(mk)
]
.

5.3.1 Evaluation of EAB1 [E1]

This subsection proceeds almost parallel to Section 4.3.1.
Let

GAB(clmk)
def
=

{
xn ∈ [0 : q − 1]n

∣∣ xn(AB) = (clmk)
}
, (5.10)

E11
def
=

{
GAB(clmk)

⋂
T nPXε

= ∅
}
, (5.11)
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and

E12
def
=

{
ϕn(m

k) /∈ GAB(clmk)
⋂

T nPXδ′′(ε)(u
n) for ∃δ′′(ε) → 0 (ε→ 0)

}
,

(5.12)

where (AB) denotes juxtaposition of matrices A and B, and similarly (clmk)
denotes juxtaposition of row vectors cl and mk. Then, note that

E1 ⊂ E11

⋃
E12. (5.13)

Therefore, it holds that

EAB1 [E1] ≤ EAB1 [E11] + EAB1
[
E12

⋂
Ec11

]
. (5.14)

For EAB1 [E11], the next lemma holds.

Lemma 5.1
For a fixed mk, if there exists a positive number δ that satisfies l+k

n
< H(X)−δ

for sufficiently large n, l, and k, then we have

lim
n→∞

EAB1 [E11] = 0. (5.15)

[Proof of Lemma 5.1]
We prove the case q ≥ 3. The case q = 2 can be proven similarly.

Let R̃ = l+k
n

, and set γR̃ < mina:PX(a)>0 PX(a)(1− ε). Then, note that for
any xn ∈ T nPXε

, the Hamming weight of xn satisfies w(xn) > nγR̃.

To prove the lemma, it is sufficient to show

PAB

⎧⎨
⎩

∑
xn∈Tn

PXε

1
[
xn(AB) = (clmk)

]
= 0

⎫⎬
⎭ → 0 (n→ ∞), (5.16)

where 1[“logical equation”] is an indicator function for the logical equation.
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PAB

⎧⎨
⎩

∑
xn∈Tn

PXε

1
[
xn(AB) = (clmk)

]
= 0

⎫⎬
⎭

= PAB

⎧⎨
⎩

∑
xn∈Tn

PXε

(
1
[
xn(AB) = (clmk)

]− αn(R̃;w(xn))

ql+k

)

= −
∑

xn∈Tn
PXε

αn(R̃;w(xn))

ql+k

⎫⎬
⎭

≤ PAB

⎧⎨
⎩

∑
xn∈Tn

PXε

(
αn(R̃;w(xn))

ql+k
− 1

[
xn(AB) = (clmk)

])

≥
∑

xn∈Tn
PXε

αn(R̃;w(xn))

ql+k

⎫⎬
⎭

(a)

≤
EAB

∣∣∣∑xn∈Tn
PXε

(
αn(R̃;w(xn))

ql+k − 1
[
xn(AB) = (clmk)

])∣∣∣2∣∣∣∑xn∈Tn
PXε

αn(R̃;w(xn))
ql+k

∣∣∣2
(b)

≤
EAB

∣∣∣∑xn∈Tn
PXε

(
αn(R̃;w(xn))

ql+k − 1
[
xn(AB) = (clmk)

])∣∣∣2∣∣∣∣ (1−δn(R̃))|Tn
PXε|

ql+k

∣∣∣∣
2 , (5.17)

where (a) comes from Chebyshev’s inequality and at (b), 2) of Lemma 2.5 is
used for the denominator.
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On the other hand,

(Numerator of (5.17))

= EAB
∑

xn∈Tn
PXε

∣∣∣∣∣
(
αn(R̃;w(xn))

ql+k
− 1

[
xn(AB) = (clmk)

])∣∣∣∣∣
2

+EAB
∑

xn 	=x̃n∈Tn
PXε

{
αn(R̃;w(xn))

ql+k
αn(R̃;w(x̃n))

ql+k

−αn(R̃;w(xn))1
[
x̃n(AB) = (clmk)

]
ql+k

−αn(R̃;w(x̃n))1
[
xn(AB) = (clmk)

]
ql+k

+1
[
xn(AB) = (clmk)

]
1
[
x̃n(AB) = (clmk)

]}

(c)
=

∑
xn∈Tn

PXε

⎧⎨
⎩αn(R̃;w(xn))

ql+k
−
(
αn(R̃;w(xn))

ql+k

)2
⎫⎬
⎭

−
∑

xn 	=x̃n∈Tn
PXε

αn(R̃;w(xn))

ql+k
αn(R̃;w(x̃n))

ql+k

+EAB
∑

xn 	=x̃n∈Tn
PXε

1
[
xn(AB) = (clmk)

]
1
[
x̃n(AB) = (clmk)

]
, (5.18)

where at (c), 2) of Lemma 2.5 with Remark 2.4 is used.
The third term of (5.18) can be evaluated as follows:

EAB
∑

xn 	=x̃n∈Tn
PXε

1
[
xn(AB) = (clmk)

]
1
[
x̃n(AB) = (clmk)

]

(d)
= EAB

∑
xn∈Tn

PXε

⎛
⎝nγR̃∑
w=1

+
n∑

w=nγR̃+1

⎞
⎠

∑
x̃n∈Tn

PXε:w(x̃∗n−x∗n)=w

1
[
x∗n(AB) = (clmk)

]
1
[
(x̃∗n − x∗n)(AB) = 0l+k

]
(e)

≤ (1 + δn(R̃))βn(R̃)|T nPXε
|

ql+k
+ (1 + δn(R̃))2

( |T nPXε
|

ql+k

)2

, (5.19)
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where (d) comes from Lemma 2.3, and (e) comes from Lemma 2.6.

Note that

|T nPXε
|

ql+k
≥ qn(H(X)− l+k

n
−δ(ε)), (5.20)

where (5.20) comes from 3) of Lemma 2.7, and the left hand side of (5.20)
approaches ∞ (n → ∞). This comes from the assumption l+k

n
< H(X) − δ

by taking ε that satisfies

ε log
1

ε
+ 3ε <

δ

2
, (5.21)

with sufficiently large n to hold

q2 log(n+ 1)

n
<
δ

2
, (5.22)

where δ(ε)
def
= ε log 1

ε
+ 3ε+ q2 log(n+1)

n
.

By substituting (5.19) into (5.18) and noting that

δn(R̃) → 0 (n→ ∞), (5.23)
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which comes from 2) of Lemma 2.5, it can be shown that

EAB

∣∣∣∑xn∈Tn
PXε

(
αn(R̃;w(xn))

ql+k − 1
[
xn(AB) = (clmk)

])∣∣∣2∣∣∣∣ (1−δn(R̃))|Tn
PXε|

ql+k

∣∣∣∣
2

≤
∑

xn∈Tn
PXε

{
αn(R̃;w(xn))

ql+k −
(
αn(R̃;w(xn))

ql+k

)2
}

∣∣∣∣ (1−δn(R̃))|Tn
PXε|

ql+k

∣∣∣∣
2

−
∑

xn 	=x̃n∈Tn
PXε

αn(R̃;w(xn))
ql+k

αn(R̃;w(x̃n))
ql+k∣∣∣∣ (1−δn(R̃))|Tn

PXε|
ql+k

∣∣∣∣
2

+

(1+δn(R̃))βn(R̃)|Tn
PXε|

ql+k∣∣∣∣ (1−δn(R̃))|Tn
PXε|

ql+k

∣∣∣∣
2 +

(1 + δn(R̃))2
( |Tn

PXε|
ql+k

)2

∣∣∣∣ (1−δn(R̃))|Tn
PXε|

ql+k

∣∣∣∣
2

(f)

≤ 1 + δn(R̃)

(1 − δn(R̃))2

( |T nPXε
|

ql+k

)−1

− 1

+
1 + δn(R̃)

(1 − δn(R̃))2
βn(R̃)

( |T nPXε
|

ql+k

)−1

+
(1 + δn(R̃))2

(1 − δn(R̃))2

=
1 + δn(R̃)

(1 − δn(R̃))2

( |T nPXε
|

ql+k

)−1

+
1 + δn(R̃)

(1 − δn(R̃))2
βn(R̃)

( |T nPXε
|

ql+k

)−1

+
4δn(R̃)

(1 − δn(R̃))2

→ 0 (n→ ∞), (5.24)

where at (f), we use 2) of Lemma 2.5. From the above arguments, (5.15)
holds.

[End of Proof of Lemma 5.1]

Before analyzing the second term of (5.14), we show a lemma that has a
dual meaning with Lemma 5.1.
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Lemma 5.2
For a fixed mk, and for any positive number δ > 0, let

G̃AB(clmk)
def
=

{
xn ∈ [0 : q − 1]n

∣∣ xn(AB) = (clmk) and H(Q) <
l + k

n
− δ

}
,

(5.25)

where Q appearing in the above definition is a type of xn. Then we have

lim
n→∞

PAB

[
G̃AB(clmk) �= ∅

]
= 0. (5.26)

[Proof of Lemma 5.2]

PAB

[
G̃AB(clmk) �= ∅

]

= EAB1

⎡
⎣ ∑
xn∈[0:q−1]n

1
[
xn(AB) = (clmk)

]
1

⎡
⎣xn ∈

⋃
Q:H(Q)< l+k

n
−δ
T nQ

⎤
⎦ ≥ 1

⎤
⎦

(a)

≤ EAB
∑

xn∈[0:q−1]n

1
[
xn(AB) = (clmk)

]
1

⎡
⎣xn ∈

⋃
Q:H(Q)< l+k

n
−δ
T nQ

⎤
⎦ , (5.27)

where (a) comes from Markov’s inequality.

Since the assumption cl �= 0l, it holds that

EAB
∑

xn∈[0:q−1]n

1
[
xn(AB) = (clmk)

]
1

⎡
⎣xn ∈

⋃
Q:H(Q)< l+k

n
−δ
T nQ

⎤
⎦

(b)
= EAB

⎛
⎝nγR̃∑
w=1

+
n∑

w=nγR̃+1

⎞
⎠

·
∑

xn:w(x∗n)=w

1
[
x∗n(AB) = (clmk)

]
1

⎡
⎣xn ∈

⋃
Q:H(Q)< l+k

n
−δ
T nQ

⎤
⎦
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≤
nγR̃∑
w=1

∑
xn:w(x∗n)=w

EAB1
[
x∗n(AB) = (clmk)

]

+
n∑

w=nγR̃+1

EAB
∑

xn:w(x∗n)=w

1
[
x∗n(AB) = (clmk)

]

·1
⎡
⎣xn ∈

⋃
Q:H(Q)< l+k

n
−δ
T nQ

⎤
⎦

(c)

≤ βn(R̃) + (1 + δn(R̃))
∑

xn∈[0:q−1]n

1
[
xn ∈ ⋃

Q:H(Q)< l+k
n

−δ T
n
Q

]
ql+k

(d)

≤ βn(R̃) + (1 + δn(R̃))
∑

Q:H(Q)< l+k
n

−δ

|T nQ|
ql+k

≤ βn(R̃) + (1 + δn(R̃))
∑

Q:H(Q)< l+k
n

−δ

qnH(Q)

ql+k

≤ βn(R̃) + (1 + δn(R̃))
∑

Q:H(Q)< l+k
n

−δ

qn( l+k
n

−δ)

ql+k

≤ βn(R̃) + (1 + δn(R̃))(n+ 1)qq−nδ, (5.28)

where (c) comes from Lemma 2.5, and (d) is derived using the union bound.
By substituting (5.28) into (5.27), Lemma 5.2 is proved.

[End of Proof of Lemma 5.2]
Using the argument similar to that in the proof of the lossy source coding

theorem, to prove

EAB1
[
E12

⋂
Ec11

]
→ 0 (n→ ∞), (5.29)

it is sufficient to show that the output of the encoder, x̂n, is a PX-typical
sequence with high probability, which means that

||Px̂n − PX || < δ′′(ε) for a function δ′′(ε) which satisfies δ′′(ε) → 0 (ε→ 0),

(5.30)

where

x̂n
def
= arg max

x̃n:x̃n(AB)=(clmk)
P n
X(x̃n), (5.31)
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by using Lemma 4.3.
Note that

arg max
x̃n:x̃n(AB)=(clmk)

PXn(x̃n) = arg max
x̃n:x̃n(AB)=(clmk)

logPXn(x̃n)

= arg max
x̃n:x̃n(AB)=(clmk)

n∑
i=1

logPX(x̃i)

= arg max
x̃n:x̃n(AB)=(clmk)

n
∑
a

Q(a) logPX(a)

= arg max
x̃n:x̃n(AB)=(clmk)

n

{∑
a

Q(a) log
PX(a)

Q(a)
−
∑
a

Q(a) log
1

Q(a)

}

= arg min
x̃n:x̃n(AB)=(clmk)

{D(Q||PX) +H(Q)} , (5.32)

where Q is a type of the argument x̃n in the above optimization. Let Q̂ be
the corresponding type of x̂n attaining the minimum of the right hand side
in (5.30). From Lemma 5.1, there exists xn satisfying xn(AB) = (clmk) and
xn ∈ T nPXε

with high probability. With this xn, since ||Pxn − PX || < ε holds,
we obtain

D(Q̂||PX) +H(Q̂)
(a)

≤ −1

n
logPXn(xn)

=
∑
a

Pxn(a) log
1

PX(a)

≤
∑
a

|Pxn(a) − PX(a)| log
1

PX(a)

+
∑
a

PX(a) log
1

PX(a)

(b)

≤ ηε+H(PX), (5.33)

where at (a), the definition of x̂n, and at (b), η
def
= max

a:PX(a)>0
log

1

PX(a)
and

the fact ||Pxn − PX || < ε are used, respectively.
If D(Q̂||PX) > (η + 10 log 1

ε
)ε, then

H(Q̂) ≤ H(PX) − 10ε log
1

ε
(5.34)
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is derived. If

10ε log
1

ε
> δ, (5.35)

then there exists l+k
n

satisfying both l+k
n

< H(X) − δ and H(Q̂) < l+k
n

−
(10ε log 1

ε
− δ). Therefore, from Lemma 5.2, the probability approaches 0 for

sufficiently large n that x̂n satisfying the above inequality (5.34) is included
in GAB(clmk).

Considering the above fact, it is sufficient to focus on the case ofD(Q̂||PX) ≤
(η + 10 log 1

ε
)ε. It holds that

(η + 10 log
1

ε
)ε ≥ D(Q̂||PX)

(c)

≥ 1

2 ln 2
||Q̂− PX ||2. (5.36)

At (c), we use the formula D(P ||Q) ≥ 1

2 ln 2
||P −Q||2 [9, Lemma 11.6.1].

As a result, since we obtain

||Q̂− PX || <
√

2(η + 10 log
1

ε
)ε ln 2, (5.37)

(5.30) is derived. From Lemma 4.3, when we set δ′′(ε) def
=

√
2(η+10 log 1

ε
)ε ln 2

mina:PX (a)>0 PX(a)
in

(5.6), (5.29) is proved.

5.3.2 Evaluation of EAB1 [Ec
1]WY n|Xn

[E3
⋂ Ec

2

∣∣ ϕn(m
k)
]

Assume that the message mk is fixed. It is sufficient to show that if l
n
>

H(X|Y ) + δ holds for sufficiently large n, l and for a positive number δ > 0,
then we have

lim
n→∞

EAB1 [Ec1 ]1
[
x̂n �= ϕn(m

k)
]

·WY n|Xn

[
Y n ∈ T nWε(ϕn(m

k))
∣∣ ϕn(mk)

]
= 0,

(5.38)
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where x̂n = arg maxxn:xnA=cl PX|Y (xn|yn) with channel output yn.
Let R′ = l/n. Then it can be shown that

EAB1 [Ec1 ]1
[
x̂n �= ϕn(m

k)
]

·WY n|Xn

[
Y n ∈ T nWε(ϕn(m

k))
∣∣ ϕn(mk)

]
≤ EAB1 [Ec1 ]

∑
yn∈Tn

Wε(ϕn(mk))

W (yn|ϕn(mk))

·1 [∃x̃n �= ϕn(m
k)s.t. PXn|Y n(x̃n|yn) ≥ PXn|Y n(ϕn(m

k)|yn), x̃nA = cl
]

≤ EAB1 [Ec1 ]
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))

·
∑

x̃n:x̃n 	=ϕn(mk)

1
[
PXn|Y n(x̃n|yn) ≥ PXn|Y n(ϕn(m

k)|yn), x̃nA = cl
]

(a)

≤ EAB1 [Ec1 ]
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))

·
∑

x̃n:x̃n 	=ϕn(mk)

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]
1
[
x̃nA = cl

]

= EAB1 [Ec1 ]
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))

⎛
⎝nγR′∑
w=1

+
n∑

w=nγR′+1

⎞
⎠

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]
1
[
x̃∗nA = cl

]

≤ EAB1 [Ec1 ]
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))

nγR′∑
w=1

∑
x̃n:w(x̃∗n)=w

1
[
x̃∗nA = cl

]

+ EAB1 [Ec1 ]
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))
n∑

w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]
1
[
x̃∗nA = cl

]

≤ EA

nγR′∑
w=1

∑
x̃n:w(x̃∗n)=w

1
[
x̃∗nA = cl

]

+ EAB
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))
n∑

w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]
1
[
x̃∗nA = cl

]
,

(5.39)
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where at (a), ϕn(m
k) ∈ T nPXδ′′(ε) is used.

Using 1) of Lemma 2.5, the first term of (5.39) is upper bounded by
βn(R

′). Note that in the second term of (5.39), since both ϕn(m
k) and

1
[
x̃∗nA = cl

]
depend on A, we cannot directly apply 2) of Lemma 2.5 to

1
[
ṽ∗nA = cl

]
. To apply Lemma 2.5, we have to decorrelate these variables

using the permutation group method developed in [41] and [34].

Definition 5.1 [Permutation Group]
The set of all n-th order permutations σ : [1 : n] → [1 : n] is denoted as Sn,
where for xn = x1, x2, ..., xn and A = (aij), the operation of σ is defined as

σ(xn) = xσ(1), xσ(2), ..., xσ(n) (5.40)

and

σ(A) =
(
aσ(i)j

)
. (5.41)

Note that from the construction of sparse matrices in Sections 2.1 and
2.2,

Eσ(A)σ(B)1 [f (σ(A), σ(B))]
def
=

∑
A,B

PA (σ(A))PB (σ(B))1 [f (σ(A), σ(B))]

= EAB1 [f (σ(A), σ(B))] , (5.42)

and from the definition of the encoding process (5.2), it holds that

ϕσn(m
k)

def
= arg max

x̃n:x̃nσ(A)=cl

x̃nσ(B)=mk

PXn(x̃n)

= σ
(
ϕn(m

k)
)
. (5.43)
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The second term of (5.39) can be evaluated as follows:

EAB
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))
n∑

w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]
1
[
x̃∗nA = cl

]

=
1

n!

∑
σ∈Sn

Eσ(A)σ(B)

∑
yn∈Tn

Wε(σ(ϕn(mk)))

W (yn|σ(ϕn(m
k)))

n∑
w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]
1
[
x̃∗nσ(A) = cl

]
(b)
=

1

n!

∑
σ∈Sn

EAB
∑

σ−1(yn)∈Tn
Wε(ϕn(mk))

W (σ−1(yn)|ϕn(mk))
n∑

w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|σ−1(yn)) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]

·1 [x̃∗nσ(A) = cl
]

=
1

n!

∑
σ∈Sn

EAB
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))
n∑

w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]

1
[
x̃∗nσ(A) = cl

]
. (5.44)

At (b), (5.42) is used.

To proceed with the analysis, we use the fact that

1
[
x̃∗nσ(A) = cl

]
= 1

[
σ−1(x̃∗n)A = cl

]
= 1

[∃zn ∈ {0, 1}n s.t. σ(zn) = x̃∗n and znA = cl
]

≤
∑

zn∈{0,1}n:znA=cl

1 [σ(zn) = x̃∗n] . (5.45)
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Then

1

n!

∑
σ∈Sn

EAB
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))
n∑

w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]
1
[
x̃∗nσ(A) = cl

]
(c)

≤ EAB
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))
n∑

w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]

·
∑

zn∈{0,1}n:znA=cl

∑
σ∈Sn

1 [σ(zn) = x̃∗n]

n!

= EAB
∑

yn∈Tn
Wε(ϕn(mk))

W (yn|ϕn(mk))
n∑

w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

1
[
PXn|Y n(x̃n|yn) ≥ q−n(H(X|Y )+δ(δ′′(ε)))

]

·
∑

zn∈{0,1}n 1
[
znA = cl

]
(
n
w

)
≤ EAB

∑
yn∈Tn

Wε(ϕn(mk))

W (yn|ϕn(mk))
n∑

w=nγR′+1

·
∑

x̃n:w(x̃∗n)=w

PXn|Y n(x̃n|yn)qn(H(X|Y )+δ(δ′′(ε)))

∑
zn∈{0,1}n 1

[
znA = cl

]
(
n
w

)
≤ EAB

∑
yn∈Tn

Wε(ϕn(mk))

W (yn|ϕn(mk))
n∑

w=nγR′+1

·qn(H(X|Y )+δ(δ′′(ε)))

∑
zn∈{0,1}n 1

[
znA = cl

]
(
n
w

)
≤ EAB

n∑
w=nγR′+1

qn(H(X|Y )+δ(δ′′(ε)))

∑
zn∈{0,1}n 1

[
znA = cl

]
(
n
w

)
(d)

≤ (1 + δn(R
′))nq−n(

l
n
−H(X|Y )−δ(δ′′(ε))), (5.46)
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where at (c), (5.45), and at (d), 2) of Lemma 2.5 with Remark 2.4 are used,
respectively.

With the above argument, if we take ε and n, l, k satisfying

δ′′(ε) log
1

δ′′(ε)
+ 3δ′′(ε) <

δ1/3

2
, (5.47)

q2 log(n+ 1)

n
<
δ1/3

2
, (5.48)

and l
n
> H(X|Y ) + δ1/3, then it is shown that the second term of (5.39)

approaches 0 with n→ ∞.

Note that with the results in Sections 5.4.1 and 5.4.2, we can prove The-
orem 5.1 through the evaluation of (5.5).

Remark 5.3
δ and ε must satisfy the following relationships: from (5.35),

10ε log
1

ε
> δ, (5.49)

from (5.21),

8ε log
1

ε
< δ, (5.50)

and from (5.47),

8δ′′(ε) log
1

δ′′(ε)
< δ1/3. (5.51)

By a straightforward calculation, if

ε

(
log

1

ε

)3
(40 ln 2)3

(mina:PX(a)>0 PX(a))6
< 1 (5.52)

is satisfied, which is a sufficient condition of δ′′(ε)3 < ε, it can be shown that
there exists δ satisfying (5.49), (5.50), and (5.51).

Remark 5.4
In the proof of lossy source coding theorem, “decorrelation” of two random
variables was also needed. (See (4.46).) Note that (4.46) and (5.39) were
“decorrelated” using different techniques.
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Remark 5.5
Note that the decoding error criterion adopted here is not the maximum de-
coding error but the average decoding error. The maximum decoding error is
defined by

max
mk∈[0:q−1]k

WY n|Xn

[
ψn(Y

n) �= mk
∣∣ ϕn(mk)

]
, (5.53)

and the average decoding error is defined by

1

qk

∑
mk∈[0:q−1]k

WY n|Xn

[
ψn(Y

n) �= mk
∣∣ ϕn(mk)

]
. (5.54)

From Theorem 5.1, it can be easily shown that

lim
n→∞

EAB
1

qk

∑
mk∈[0:q−1]k

WY n|Xn

[
ψn(Y

n) �= mk
∣∣ ϕn(mk)

]
= 0. (5.55)

By applying Markov’s inequality to the result of Theorem 5.1, we can see
that, with high probability, sparse matrices A and B can be taken, which
makes the average decoding error arbitrarily small.

5.4 Joint Source-Channel Coding

Combining Theorem 4.1 of a lossy source coding with Theorem 5.1, we can
consider the joint source-channel coding (JSCC) problem. In a point-to-
point communication system, which has one sender and one receiver, we can
obtain a code optimal in the sense of the limit of the minimum transmission
ratio (LMTR [7]) by serially using the optimal source code and the optimal
channel code.

Approaches to the JSCC problem that are different from the LMTR crite-
rion have recently been proposed. Some studies evaluated the error exponent
or analyzed the transmissibility condition for general sources and channels
[45] [47].

In this section, we take another approach to the problem. The issue ex-
amined here is how we can simplify the encoding and decoding process while
keeping transmissibility within a given distortion criterion. We are not con-
cerned with the LMTR criterion here. In other words, using sparse matrix
code, we want to simplify the conventional JSCC system described in Figure
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Figure 5.4: Joint source-channel coding system

5.4. For the joint source-channel coding system, it has been shown that by
concatenating source encoder (decoder) and channel encoder (decoder) seri-
ally as shown in Figure 5.4, optimal performance of the code can be achieved
(“source-channel separation theorem” e.g. [9]). However, the optimal system
obtained by block codes need optimization processes in each encoder and/or
decoder. We will show that using sparse matrix coding, the number of opti-
mization processes can be reduced, and more efficient code than the ordinary
block code in the sense of number of optimization is obtained.

For simplicity, the block length of the message from the source and that of
the channel code are assumed to be equal. In this section, sufficient conditions
for the following points are clarified.

• Sparse matrices of lossy source code and of channel code can the same
while keeping transmissibility within a given distortion criterion.

• A quantized message of the source output becomes a channel codeword
as it is.

Let a sequence from the source be Un and that of a reproduction message
be V n. Other notations are the same as those used so far. The distortion
criterion isD, and dn : Un×V n → [0,∞) is a bounded and additive distortion
measure.

A corollary about constructing the JSCC encoder and decoder shown in
Figure 5.4 using encoders and decoders obtained in Theorems 4.1 and 5.2 is
derived straightforwardly as follows (Figure 5.5).

By comparing conditions for l
n

and l+k
n

in Theorems 4.1 and 5.1, we can
see that conditions for the existence of common sparse matrices A and B
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Figure 5.5: Joint source-channel coding system constructed by sparse matrix
code

between lossy source code and channel code are

H(X|Y ) < H(V |U) (5.56)

and

H(V ) < H(X). (5.57)

Note that from the above conditions, the inequality I(X;Y ) > I(U ;V ) is
derived.

Then, we can set the JSCC encoder ϕ
(J)
n : GF (q)n → GF (q)n as

xn = ϕ(J)
n (un)

def
= arg max

x̃n:x̃nA=cl

x̃nB=(arg max
ṽn:ṽnA=cl PV n|Un (ṽn|un))·B

PXn(x̃n) (5.58)

and the JSCC decoder ψ
(J)
n : GF (q)n → GF (q)n as

v̂n = ψ(J)
n (yn)

def
= arg max

ṽn:ṽnA=cl

ṽnB=(arg max
x̃n:x̃nA=cl PXn|Y n (x̃n|yn))·B

PV n(ṽn). (5.59)

In the above definition, if there does not exist x̃n or ṽn that satisfies
conditions of the maximization, then the encoder or decoder output a fixed
sequence specified in advance.

ϕ
(J)
n maps the message from the source to the channel input, and ψ

(J)
n

maps the channel output to the reproduction message.
The next corollary follows the above discussion.
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Corollary 5.1 [Joint Source-Channel Coding]
Source PU , a conditional probability distribution PV |U , an input probability
distribution PX , and channel WY |X are given and fixed. Assume that

H(X|Y ) < H(V |U)

and

H(V ) < H(X)

are satisfied.

If there exists a positive number δ that satisfies

H(X|Y ) + δ1/3 <
l

n
< H(V |U) − δ (5.60)

and

H(V ) + δ1/3 <
l + k

n
< H(X) − δ (5.61)

for sufficiently large n, l, and k, then an encoder ϕ
(J)
n and a decoder ψ

(J)
n can

be constructed by an n × l sparse matrix A and an n × k sparse matrix B,
which satisfy

∑
un

PUn(un)
∑
yn

WY n|Xn

(
yn

∣∣ ϕ(J)
n (un)

)
1

⎡
⎣dn

(
un, ψ

(J)
n (yn)

)
n

> D

⎤
⎦ → 0

(n→ ∞).

Note from the above corollary that, while we can use common sparse ma-
trices for lossy source coding and channel coding, in the encoding and decod-
ing processes, lossy source encoding/decoding and channel encoding/decoding
are performed separately, which seems to require heavy computation (see Fig-
ure 5.5). In contrast, the following corollary shows that the JSCC encoder
and decoder can be constructed in a simpler manner. In the encoder of
Corollary 5.1, after compressing the output of quantization part of the lossy
encoder, the channel codeword is obtained by regarding the compressed out-
put of the lossy encoder as the input of the channel encoder. If the output
of quantization part of the lossy encoder has enough redundancy, it seems
possible that the output of quantization part becomes the channel codeword
as it is.
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Reconsidering the proof of Theorem 5.1, we can summarize conditions for
channel codewords to be correctly decoded as follows.

1. Channel codewords are included in T nPXε
.

2. Channel codewords satisfy “syndrome condition”:
x̃nA = cl

On the other hand, in Section 4.3.1, we can see that the output of the
quantizer

vn = arg max
ṽn:ṽnA=cl

PV n|Un(ṽn|un) (5.62)

is included in T nPV ε
with high probability and, at the same time, satisfies the

“syndrome condition”
vnA = cl.

Therefore, we can easily conjecture that if we set the JSCC encoder ϕ
(JL)
n :

GF (q)n → GF (q)n, which we call the Joint Source-Channel Linear Coding
(JSCLC) encoder hereafter, as

vn = ϕ(JL)
n (un)

def
= arg max

ṽn:ṽnA=cl
PV n|Un(ṽn|un), (5.63)

and the JSCLC decoder ψ
(JL)
n : GF (q)n → GF (q)n as

v̂n = ψ(JL)
n (yn)

def
= arg max

x̃n:x̃nA=cl
PXn|Y n(x̃n|yn), (5.64)

then the code constructed here can satisfy the distortion criterion over the
given channel. In the above definition, if there does not exist ṽn or x̃n that
satisfies the optimization conditions, then the encoder or decoder output a
fixed sequence specified in advance.

Here, we can see ϕ
(JL)
n as a quantizer of lossy source coding and ψ

(JL)
n as

a channel decoder (see Figure 5.6). Note that the above construction of the
code includes n and l through the sparse matrix A and does not include k
nor the sparse matrix B.

When we check the conditions for l
n

in Theorems 4.1 and 5.1, we can see
that the condition for the existence of the sparse matrix A, which constructs
ϕ

(JL)
n and ψ

(JL)
n , is

H(V |Y ) < H(V |U)

by identifying V in Theorem 4.1 with X. The next corollary follows the
above discussion.
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Figure 5.6: Joint source-channel linear coding system

Corollary 5.2 [Joint Source-Channel Linear Coding]
Source PU , conditional probability distribution PV |U , and channel WY |X , where
X is identified with V , are given and fixed. Assume that

H(V |Y ) < H(V |U)

is satisfied.

If there exists a positive number δ that satisfies

H(V |Y ) + δ1/3 <
l

n
< H(V |U) − δ (5.65)

for sufficiently large n and l, then an encoder ϕ
(JL)
n and a decoder ψ

(JL)
n can

be constructed by an n× l sparse matrix A, which satisfy

∑
un

PUn(un)
∑
yn

WY n|Xn

(
yn

∣∣ ϕ(JL)
n (un)

)
1

⎡
⎣dn

(
un, ψ

(JL)
n (yn)

)
n

> D

⎤
⎦ → 0

(n→ ∞).

In the above corollary, not only can common sparse matrices in lossy
source coding and channel coding be used, but encoding and decoding pro-
cesses can also be replaced by a single operation of lossy encoding (vector
quantization) and channel decoding, respectively.

Remark 5.6
Note in the above corollary that only the condition on l, and not the condition
on k, appears. The right inequality of (5.65) is a condition of the existence of
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a “good” reproduction message in the lossy source coding framework, and the
left inequality of (5.65) is a condition of obtaining a correct codeword from
the channel output in the channel coding framework.

There are two reasons the condition on k is unnecessary. One is that,
from the viewpoint of lossy source coding, we do not need to compress the
reproduction message in the above JSCLC framework. The other is that,
from the viewpoint of channel coding, we need only a codeword and not a
transmitted message in the channel coding problem.

Remark 5.7
When q = 2 (binary alphabet), PU(U = 1) = 0.5, the channel is binary
symmetric with crossover ξ ≤ 0.5, and the distortion measure is the Hamming
distance, then the condition in Corollary 5.2 H(V |Y ) < H(V |U) is equivalent
with ξ < D by taking PV |U as a binary symmetric channel with crossover D.

Corollary 5.2 shows that I(U ;V ) < I(Y ;V ) is a sufficient condition for
transmitting a message while keeping a distortion less than D with high
probability in the JSCLC framework. Conversely, by combining proofs of
converse theorems for lossy source coding and channel coding, it can be
shown that when a message is transmissible with a distortion less than D,
there exists a random variable V that satisfies I(U ;V ) ≤ I(Y ;V ).

In the remainder of this section, after defining the quantity that corre-
sponds to the optimal distortion, we state and prove a corollary about the
optimality of the quantity.

Definition 5.2 [JSCLC-Distortion]
Let

D(PU ,WY |X)
def
= min

PV |U :I(U ;V )≤I(Y ;V )
EUV d1(U, V ) (5.66)

be called JSCLC-Distortion.

The next corollary holds.

Corollary 5.3
D(PU ,WY |X) is the minimum distortion with which a message from source
PU can be recovered after transmitting channel WY |X .
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[Proof of Corollary 5.3]
With the help of the proof of an ordinary converse coding theorem (e.g. [9]),
we will show that if a message can be transmitted within a certain distor-
tion level, there exists a random variable V that satisfies I(U ;V ) ≤ I(Y ;V ).
Random variables Un, V n, Y n, and V̂ n are shown in Figure 5.6. At first,
note that the system described in Figure 5.4 achieves the optimal perfor-
mance by the source-channel separation theorem. Using above fact and the
correspondence between Figure 5.4 and 5.6, it should be noted that V̂ n can
be regarded as an estimator of “channel codeword” V n.

Now we will make a desirable probability distribution of random variable
V . From the data processing lemma [9][7],

I(V n; V̂ n) ≤ I(V n;Y n) (5.67)

holds. In the following, the left and right hand sides of (5.67) are evaluated
separately.

I(V n; V̂ n) = H(V n) −H(V n|V̂ n)
(a)

≥ H(V n) − nε

≥ H(V ) −H(V n|Un) − nε

= I(Un;V n) − nε

(b)

≥
n∑
i=1

I(Ui;Vi) − nε

(c)
= n · 1

n

n∑
i=1

I
(
PU , PVi|Ui

)− nε

(d)

≥ nI

(
PU ,

1

n

n∑
i=1

PVi|Ui

)
− nε, (5.68)

where ε is a positive number. At (a), Fano’s inequality [9][7], at (b), the i.i.d.
property of Ui, at (c), another description of mutual information I(X;Y ) =
I(PX , PY |X), and at (d), convexity of I(P,W ) with respect to W , are used.
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On the other hand, it holds that

I(V n;Y n)
(e)

≤
n∑
i=1

I(Vi;Yi)

= n · 1

n

n∑
i=1

I(PVi
,WY |X)

(f)

≤ nI

(
1

n

n∑
i=1

PVi
,WY |X

)
, (5.69)

where at (e), a memoryless property of channel WY |X , and at (f), a concave
property of I(P,W ) with respect to P , are used. Combining the above
evaluations, we obtain

I

(
Pu,

1

n

n∑
i=1

PVi|Ui

)
≤ I

(
1

n

n∑
i=1

PVi
,WY |X

)
. (5.70)

When we define the probability distribution of (U, V ) as

PU(u) · 1

n

n∑
i=1

PVi|Si
(v|u) (5.71)

and note that

PV (v)
def
=

1

n

n∑
i=1

∑
u

PU(u)PVi|Ui
(v|u)

=
1

n

n∑
i=1

PVi
(v), (5.72)

then the inequality I(U ;V ) ≤ I(Y ;V ) is shown to hold for V defined here.
[End of Proof of Corollary 5.3]

Remark 5.8
Under the same setting of Remark 5.7, by using the symmetric property of
probability distributions, it can be seen that PV |U , which attains the minimum
value in the definition of D(PU ,WY |X), becomes a binary symmetric channel.
Using this fact, D(PU ,WY |X) = ξ is obtained.
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5.5 Concluding Remarks

A channel code for a stationary discrete memoryless channel, which is not
necessarily a BSC, was constructed by sparse matrices, and coding theorem
was proved.

We applied sparse matrix coding results to the joint source-channel coding
problem. Combining channel code with lossy source code, both of which are
constructed by sparse matrices, a simpler joint source-channel code can be
constructed than that constructed by the ordinary block code. The concept of
JSCLC-distortion is defined as an optimal distortion keeping transmissibility.

To examine whether the proposed coding scheme can be efficiently imple-
mented, simulation experiments that combine it with an efficient algorithm,
such as the sum-product algorithm or the LCLP algorithm [12], are necessary
and are future works.

There is also the universal channel coding problem. In this problem,
the decoding error exponent under a fixed transmission rate is of interest.
However, since we adopt the average decoding error criterion to deal with
the term EA1 [E1], which depends on each message mk, in Section 5.3, it
is not straightforward to evaluate the error exponent using the expurgation
technique as in Chapter 3. This problem is also a future work.



Chapter 6

Conclusion and Future Works

In fundamental point-to-point communication systems, we constructed loss-
less universal source code, lossy source code, and channel code using sparse
matrices for stationary memoryless systems, and showed their error exponent
(lossless universal code) or asymptotic optimality (lossy source code, channel
code).

In Chapter 3 focusing on the lossless universal source coding problem, we
showed the universality of sparse matrices that construct the encoder and
decoder. We also showed that by using a decoder that does not depend
on the statistical properties of the source, the decoding error approaches
0 asymptotically. The fact that the error exponent obtained in the sparse
matrix coding framework is the same form as that obtained in the ordinary
linear coding framework is remarkable.

In Chapter 4, the lossy source code constructed using sparse matrices
was shown to have asymptotic optimality for arbitrary stationary memo-
ryless sources with bounded and additive distortion measures. Simulation
experiments were carried out by implementing the sparse matrix code using
the linear programming method proposed by Feldman [12]. The experiments
showed the code attains high compression performance that goes beyond the
time-sharing bound.

In Chapter 5, the channel code constructed using sparse matrices was
shown to have asymptotic optimality for arbitrary stationary memoryless
channels. Note that the code constructed is simpler than the code proposed
by Bennatan and Burshtein [2] that used a “quantization map” over a suf-
ficiently large virtual alphabet, and while they assumed the decoder was an
ML decoder, we can show the universality of our code by using the mini-

117
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mum entropy decoding as the decoding operation [33]. We also showed the
interesting duality of the encoder and decoder between the lossy source code
and the channel code. For the joint source-channel coding system, while the
code approaching LMTR is ordinarily constructed by serially combining the
optimal lossy source code and the optimal channel code, we showed that by
taking the output from the vector quantizer of the lossy source code as the
channel codeword, the code construction becomes much simpler.

By constructing codes using sparse matrices, we may be able to imple-
ment the codes with efficient algorithms such as the sum-product algorithm
or linear programming. In this thesis, while we showed some simulation ex-
periments of sparse matrix codings in a simple setting, the following issues
are left as future works:

1. Increase implementable block length

2. Obtain higher success rate of encoding and decoding

3. Speed up the algorithm

While we used sparse matrices, whose number of non-zero elements is
O(n log n), many papers concerning LDPC codes use matrices, whose number
of non-zero elements is O(n). This difference appears in the execution time
of the coding algorithm. In the former case, the time can be evaluated as a
polynomial order of n, while in the latter case, as a linear order of n. When
a sparse matrix code has asymptotic optimality, whether it is necessary that
the number of non-zero elements is O(n log n) is left as another future work.

Lossy source coding systems and channel coding systems are the most
fundamental constituents in information theory. Therefore, combining these
coding techniques, we can expect that codes of many multi-terminal com-
munication systems can be constructed using sparse matrices. Muramatsu
and Miyake [35] [36] constructed codes for the Wyner-Ziv and the Gel’fand-
Pinsker systems using the hash property that is an extended concept of sparse
matrix coding. The existence theorems of many multi-terminal coding sys-
tems have been proved using random block coding. However, whether or not
they can be proved using sparse matrix codes is still not clear.
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