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Chapter 1. Introduction 

In recent years, study of nonlinear phenomena in various systems has been acquired greater 

importance. In linear systems, the physical variables obey regular developments and their 

analyses are quite simple. On the contrary, nonlinear systems often show unexpected 

behaviors from the analogies of linear systems or perturbations. Many physicists have 

intensively made various contributions. Among these works, one of the most sign ificant 

achievments on the subjects is the theory of integrable systems and solitons. In the first 

place, let us summarize the developments of the study of integrable system. 

In 1955, Fermi, Pasta and Ulam considered a one dimensional lattice, which has cu­

bic nonlinearity in the potential, and studied numerically an approach to the equilibrium 

(Fermi, Pasta and Ulam 1955). Contrary to the prediction, they observed that not all the 

Fourier modes are excited, in spite of the coupling of inter-modes due to the anharmonicity 

of the potential. The system is not thermalized and periodically goes back to the initial 

state. This recurrence phenomenon has its origin in the nonlinearity and the dispersion 

of the system. Later , Kruskal and Zabusky studied this problem in the continuum ap­

proximation (Zabusky and Kruskal 1965). They obtained the Korteweg- de Vries (KdV) 

equation as the lowest perturbation term and analyzed it numerically using the periodic 

boundary condition and a sinusoidal starting profile. The analysis showed that the slope 

is steepened and that solitary pulses emerge. The pulses, which are stable in collisions, 

and behave as if particles and undergo elastic collisions, wa.S named solitons. They also 

observed the recurrence properties of the solutions. 

At the same time, many efforts have been made for studying the nonlinear phenomena 

analytically. The most remarkable development is the inverse scattering method. This 

was first done for the KdV equation by Gardner, Greene, Kruskal and Miura (1967), 

and later, Lax (1968) tried to generalize it . From that time on, many physicists tried to 

apply this method to other systems. Zakharov and Shabat (1972), Zakharov, Faddeev 

and Takhtadzyan (1972), Wadati (1972, 1973) , Ablowitz, Kaup, Newell and Segur (1973), 

and Wadati, Konno and Ichikawa (1979) have shown that the inverse scattering method 

is applicable to nonlinear SchrOdinger equation, sine-Gordon equation, MKdV equation, 

and other physically interesting equations. During the time, the method has become 

more sophisticated and generalization to quantum system has been achieved (Sklyanin 

and Faddeev 1978, Sklyanin 1979, Sklyanin, Faddeev and Takhtadzyan 1980). 

The inverse scattering method can be su=arized as follows. First, we consider an 

auxiliary linear problem where the potential is a functional of a sought function. Second, 

we study the direct scattering problem and the time developments of the scattering data. 
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Finally, we reconstruct the function from the scattering data (the inverse scaqttering prob­

lem) by using the Gel 'fand - Levitan - Marchenko equation (Gel'fand and Levitan 1955, 

Marchenko 1955). It has produced much influence on the analyses of integrable systems. 

The solved models have commonly the property that is called integrability. From 

the mathematical understandings of the method , the integrability of the system has close 

relation to the symmetry of the system - an infinite number of conserved quantities. All 

the exactly solved models, which are called soliton equations, have been recognized to have 

infinite symmetries. 

In the meantime, studies on localized wave modes have also been done in various 

systems. Especially, the main fields of research are plasma physics and fluid mechanics. 

Zakharov considered an interaction between the electrons and the plasma wave (Zakharov 

1967), and collapse of the nonlinear localized modes in Langmuir waves (Zakharov 1972). 

As a model system, the Toda lattice, an integrable lattice model with nonlinear (exponen­

tial) potential, is applied in many fields (Toda 1967a,b, Toda and Wadati 1973), especially 

in field theory (Leznov and Saveliev 1979, Bulgadev 1980, Babelon, de Vega and Viallet 

1981, Mikhailov, Olshanetsky and Perelomov 1981, Olive and Throk 1985). In analyzing 

a slow variation in wave packets, the reductive perturbation method is applicable in many 

cases. It is an expansion method of the dependent variables with Gardner - Morikawa 

transformation. Taniuti, N. Yajima, Kakutani, Ichikawa and others developed the method 

and applied it to the soliton theories (Taniuti 1974, Ichikawa and Taniuti 1973, Taniuti and 

N. Yajima 1969, 1973, Asano, Taniuti and N. Yajima 1969). In 1969, Newell et al. consid­

ered the Rayleigh- Benard convection and got a nonlinear amplitude equation (Newell and 

Whitehead 1969, Newell , Lange and Aucoin 1970). This was the beginning of the studies 

on convection patterns by lowest amplitude equations. Kodama and Taniuti showed that 

the nonlinear Schrooinger equation is related to the sine-Gordon equation in small ampli­

tude region (Kodama and Taniuti 1978). This shows a piece of relations between soliton 

equations. 

Among these various pictures, it can commonly be said that the exactly solved system 

is stable in the sense that the zero field configuration is the minimum energy state. In the 

latter half of the 1980's, the.re has been an increasing interest in the nonlinear phenomena in 

unstable systems. The author and Wadati (Yajima and Wadati 1987) investigated the so­

called unstable sine-Gordon (USG) equation, which describes unstable pendulii systems, 

and got soliton solutions. Tanaka and N. Yajima (1987) proposed a set of nonlinear 

equations in electron beam plasma. fiZuka and Wadati (1990) have derived the nonlinear 

Schrooinger equation for the Rayleigh-Taylor Problem. 

One of the importances of analyzing unstable system is that the systems that are 
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thought to be unstable in the above meaning often appear in many circumstances. For 

example, one of the physical picture of the sine-Gordon model is two-level atom system 

where the atom is initially in the ground state (Lamb 1973). The USG equation comes 

from the situation that the atom is initially in the excited state. As another example, in 

the plasma system, there usually exists electron or ion beam. So the assumption that the 

zero field configuration is the minimum energy state may not depict the system adequetly, 

because an energy flux of the beam is poured into the system. In any unstable system, it 

is quite difficult to investigate the system because of its nonlinearity and instability. This 

will be understood in the section 2.1 for one example. Therefore, an exact treatment is 
desirable. 

In this thesis, we consider unstable systems and analyze the unstable nonlinear Schrii­

dinger (UNS, for short) equation as a model. In the aforesaid three examples, we can 

derive the UNS equation in some critical wave number region. This derivation shows that 

the UNS model properly describes propagations of envelopes of high frequency waves, and 

this situation often occurs in various physical fields. Then we can regard this model as one 

of the canonical equations describing time developments of nonlinear unstable systems. 

We solve the UNS model equation explicitly, and show that this equation is an integrable 

model. Among the exact solutions, we study soliton solution (localized wave mode). The 

analyses on properties of these modes show the characteric properties of wave propagations 

in unstable media. The existence of these modes is not always .l.:nown, so we analyze some 

initial problems to find that solitons do exist in rather general conditions. From this 

point of view, we can understand the roles of the localized wave modes excited in unstable 

systems. In addition , we consider some circumstances in various physical fields and get 

the UNS equation to apply the results in this thesis. 

The thesis is organized as follows. In the next section, we introduce the UNS model 

and make a perturbational analysis of a disturbance caused in the system. In §3, we 

solve the initial >alue problem for the equation exactly. In addition, an infinite number 

of conservation laws are presented. In §4, we derive soliton solutions and study properties 

of solitons created in unstable media. We also analyze some initial value problems and 

show that solitons can exist under general circumstances. In §5, some physical systems 

leading to the UNS equation are considered. The last section is devoted to the concluding 
remarks. 
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Chapter 2. The Unstable Nonlinear Schrodinger Model 

§2.1 The Model 

T he model equation we are going to consider in this thesis is the unstable nonlinear 

Schrodinger (hereafter UNS) model (Yajima and Wadati 1990a): 

(2.1) 

where q is a complex field variable, and u is a sign factor. This equation describes nonlinear 

effects in various (unstable) nonlinear systems. The examples are discussed in Chapter 5. 

By the word unstable, we mean that the system is not in the minimum energy state, even 

in the zero-field confi guration. We can easily recognize this situation in the examples there. 

1n nonlinear optics, this equation is often referred as the nonlinear Schrooinger equa­

tion. To discuss the wave profile in the optical fiber, the initial condition for t he equation 

is q(O, t). Therefore, a role of x in the UNS equation is essentially a ' time' variable in 

nonlinear optics. 

In this thesis, we shall consider the case of u > 0. The other case u < 0 has been 

solved very recently (Iizuka, Wadati and Yajima 1991). The Lagrangian density for (2.1) 

with u = +1 is 

where the symbol '*' denotes the compiex conjugate. The stress-energy tensor is 

-1 ( • • ) 
TO! = 2i qp - q P 

T1o = pqx + p*q; 

Tn = -p*p + q"q"qq, 

where the value p is the canonical momentum density defined by 

(}£ • 
p= -=qt. 

8qt 

(2.2) 

(2.3) 

The Lagrangian does not depend explicitly on x and t, so these values satisfy current 

conservation, and belong to the family of the conserved quantities. The components Tpo 

corresponds to the conserved densities by definition of the stress-energy tensor. The in­

tegrals of them belong to the family of infinite number of the conserved quantities. This 

situation is to be discussed in Chapter 3. 
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§2.2 Time development of small disturbance 

Before developing discussions in detail, let us consider the time development of a small 

disturbance caused in the system by perturbation analysis, and get some insights into the 

roles of the localized modes. Regarding the amplitude of q(x , t) to be small , the third term 

in the equation (2.1) is negligible. Then, the equation is: 

iqo,x + qo,tt = 0. (2.4) 

We consider a propagating wave solution, exp[i(kx-wt)], for this equation. The dispersion 

relation is 

k+w2 = 0. (2.5) 

There is a complex frequency for the case with positive k. When we use a positive value 

TJ, the solution is 

k = 4TJ2' w = ±2iTJ, TJ > 0. 

go(x , t) =A exp( 4iTJ2x + 2TJt). (2.6) 

But , as time goes on, this solution gets large and the nonlinear term comes to play an 

important role. Let us write the solution of the UNS equation as q(x , t), and expand it as 

q(x ,t) = e4iq
2

x [Bo(t) + c:B1(t) + c: 2 B2(t) + · · ·], 

B0 (t) = Ae2qt. (2. 7) 

Note that the zeroth order term of this expression is q0 (x , t) . The expansion parameter 

c: denotes 'small' deviation from the plane wave solution g0 (x, t) , and is finally set to be 

c: = 1. Substitution of (2. 7) into (2.1) gives 

d2 B (t) n-1 

- 4TJ
2 
Bn(t) + ----i/!- + 2 L Bi(t)Bm(t )Bn -1- m- l(t ) = 0, 

l,m=O 

n = 1,2,·· · . (2.8) 

We set u in (2.1) to be c: because the nonlinear term does not contribute to the lowest order 

in the expansion. Equation (2.8) can be solved iteratively. This is a set of inhomogeneous 

second order differential equations with constant coefficients. The fundamental solutions 

of the corresponding homogeneous equation for En are e2qt and e- 2qt. The solution e2qt 

has the same form as Bo(t), and the only contribution to the whole solution is to change 

the constant A of Bo(t) . The other solution e- 2qt goes to zero in the limit t -+ oo, so it 
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can be neglected compared with time growing part of the solution. These facts allow us 

to exclude the fundamental solutions of the homogeneous equation. A simple observation 

shows that the particular solution of (2.8) has the following form: 

n = 1, 2, · · · , 

where Cn 's and O'n 's are constants. The set of particular solution for each order is 

Bn(t) = (- {:~:) n Ae(4n+2)ryt n = 1, 2, · · ·. 

Finally, by summing up contribution from all orders and setting e: = 1, we get 

q(x , t) = e4iry'z e2ryt A [ 1+ ~ ( _ i:~: r e4n~t ] 

2iT} e4i~ 2z+i¢ 

cosh (2TJt + p)' 

where, in terms of real constants p and r/>, we have set 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

This shows that the instability will not grow forever. The exponential growth in the 

linear regime is suppressed by the ·nonlinearity and the system returns to the unstable 

equilibrium state. This behavior is reasonable since the UNS equation is invariant under 

the time reversal t -+ -t. 
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Chapter 3. Exact Solutions of the UNS Model. 

In this chapter, we shall get the exact solutions for the model equation by using the inverse 

scattering transform. In addition , the conservation law is discussed. 

§3.1 Inverse Scattering Method 

§§3.1.1 lost functions and scattering data 

We apply the inverse scattering method te solve initial value problem of the UNS equation 

(Yajima and Wadati 1990a). From a relation between the UNS equation and the nonlinear 

Schriidinger (NLS) equation, we use the auxiliary linear equations of the conventional NLS 

equation (Zakharov and Shabat 1972) interchanging space x and timet: 

8x -=Lx, 
8x 

8x 
8t=Mx, 

L- (i/q/2- 2i(2 
- iq~- 2(q* 

M = (-i( _9) 
-q• t( 

iqt + 2(q ) 
-i/q/ 2 + 2i(2 , (3.1a) 

(3.1b) 

(3.2) 

The compatibility condition of (3.1a) and (3.1b) with (t = 0 yields the UNS equation. We 

fix t until §§3.1.3 and consider the eigenvalue problem (3.1a). The spectral parameter (is 

in general a complex number corresponding to the eigenvalue. Here, a boundary condition 

that q(x) approaches to zero sufficiently fast as /x/-+ oo, 

q(x)-+ 0 for /x/ -+ oo. (3.3) 

is adopted. 

Let us introduce Jost functions r/> and t/; for real ( _ €, which have the following 
asymptotic forms: 

r/>(x, 0 -+ ( e-2~('z) 

t/J( x, 0 ( e2i~ 2z) 

x ~ -oo, 

(3.4a) 
x-+ +oo. 

We also introduce the other Jost functions¢ and {1 with asymptotic forms (Lamb 1971): 

¢(x , O -+ 
( -e2~('z) x-;. -oo, 

( e-2~{'z) 
(3.4b) 

{l(x, 0 x-+ +oo. 
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We define Wronskian as W[f, g] = h92 - h91 · We take functions f and g to be 

solutions of (3.1a) with eigenvalue ( 1 and (2, respectively. We see from (3.1a) that the 

Wronskian satisfies 

8 8 
8

x W[f, g] = 
8

x (hg2 - hg1) 

= -2((1- (2){i(f192 + hg1)((1 + (2)- q* hg2- qhg!}. (3.5) 

The right hand side of (3.5) is zero for Jest functions with the same eigenvalue, and then 

the Wronskian does not depend on x . Considering this fact and the asymptotic forms 

(3.4), we have 

W[{;, ,P] = 1, W[if,,,P] = 1. (3.6) 

We can choose a pair of independent solutions using this property. Then, we find that 

each of the sets { ,P, ¢} and { ,P, -if;} consists a fundamental system of solutions, because 

each of them is linearly independent set. So the following relations among Jest functions 

are satisfied: 

,P(x, 0 = a(c),b(x, 0 + b(c).P(x, E), 

if,(x, 0 = -ii(E),P(x , c)+ b(E){;(x, E). 

We make a list of these relations in Table 3.1. 

Ta ble 3.1 

(3.7) 

The coefficients a(E), ii(O, b(E) and b(E) correspond to scattering amplitudes (Lamb 

1971) , and it should be noticed that they do not depend on space variable x. From (3.6) 

and (3. 7) , we can express scatterting amplitudes in terms of the Wronskian: 

and can show that 

a( C)= W[,P, ,P], ii(E) = W[if,, {;], 

b(c) = -W[,P, ,b], b(~) = W[if,,,PJ, 
(3.8a) 

(3 .8b) 

We make analytic continuations of the Jest functions into complex (-plane. Because 

of (3.1a) and (3 .4), the functions ,P and ,P can be continued analytically into a region 
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Im((2)=2c!) > 0 and the functions if, and {; into C'7 < 0, where ( = c + i!). Then the 

expressions (3.8a) tell us that a(O is continued into C'7 > 0 and ii(O into C'7 < 0. On 

the other hand, the amplitudes b(O and b(O cannot generally be continued into complex 

(-plane, but from the analytic continuation of the Jest functions and (3.8a), they are 

continued only into the imaginary axes on the (-plane. Furthermore, if q(x) is defined on 

a compact support, b(O can be extended into C'7 > 0 and b(O into C'7 < 0. Then the 

relations (3.8) hold in the region where the corresponding amplitudes are continued. 

We can show that in the limit of J(J --+ oo, these Jest functions satisfy 

We have asymptotic forms for the scattering amplitudes from (3.8a) and (3.9): 

a(()--> 1, 

b(() -t 0, 

ii(() -t 1, 

b(() -t 0, for J(J-t 00. 

(3.9) 

(3.10) 

So far, no definite relation between the sets of functions { ,P, .p} and { ¢, -if;} are used. 

We use the following definition of the bar hereafter in our discussion: 

/(x,() = (~1(x ,() ) = ( 0 1) (!i(x,()) = ( f2.). 
h(x ,() -1 0 J;(x,() -/1 

(3.11) 

Then due to (3.7), we find that ii(() and b(() are respectively related to a(() and b(() as 

ii(() =a(()*, b(() = b(()* . (3.12) 

We denote zeros of a(() in the region ~'7 > 0 by (;, (j = 1, 2, · · · , N). At ( = (;, 
the functions ,P(x,() and ,P(x,() are linearly dependent ,P(x,(;) = b;,P(x,(;). A bound 

state occurs there since ,P(x, (;) is a square integrable function. A set of quantities 

{a(() , b( (), b;, (;} is called scattering data. We can develop a similar discussion for the 

other amplitudes ii(() and b((). Time dependence of the scattering data, when q(x, t) 
obeys the UNS equation, will be discussed in §§3.1.3. 

§§3.1.2 Inverse problem 

We consider the inverse problem, that is, construction of q(x) from the scattering data. 

We introduce a function P( () defined as 

{ 

1 "(x ()e2i(,x Irn((2) > 0 ·, 
P(() = a(() 'i' ' 

{;(x, ()e2i(,x Irn((2) < 0. 
(3.13) 
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We assume that all the zeros of a(() located at ( = (j , j = 1, 2, · · · , N are simple. 

Integrating a function <P(z) · (z- ()- 1 along a contour in complex z-plane (Fig.3.1), we get 

(3.14) 

Here, we define /k by 

(3.15) 

and the functions .p(ll(O and .p<2l('7) are the jumps of<P(() across (and I) axes, respectively. 

Fig.J.l 

We can get an expression of g(x) by expanding ,P(x , () · e- 2;(>x in powers of C 1 

Reminding (3.9) , the asymptotic form of 1/;(x, ()in the limit ICI --+ oo, we have an expansion 

formula 

(3.16) 

Substitution of this expression into (3 .1 a) enables us to write g(x) and its polynomials in 

terms of O'j 's. We have a relation between the solution q( x) and the expansion coefficients 

by comparing the terms in the order of c-1 In addition , we have from (3.14) and (3.16): 

g(x) =2ial 
N 

=- 2i L ,ze-2;';'x t,b ;(x , (•) 
k=l 

-~joo d(<P~IJ•w-..!..joo d'7¢~2 J•('7l· 
11" -co 1i -oo 

(3.1i) 

From the definition of <P(z) , the jumps .p(l l(() and ¢<2l('7) can be expressed in terms of 
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the scattering amplitudes: 

( > 0 ' 

( < 0' 

(3.18) 

I)> 0' 

I)< 0. 

We introduce functions J(Ul(x, y)'s (j = 1, 2) and express ,P(x, () as 

(3.19) 

A set of functions Fi (x)'s (j = 1, 2, 3) in terms of the scattering data are defined as 

(3.20) 

We can reduce (3.14) into a set of Fredholm integral equations whose unknown functions 

are J(Ul(x, y)'s by using the definition of <P(() and (3.18-20): 

Kij)(x, y)+F/(x + y) + [ "' ds K~2)*(x , s)Fj*(s + y) 

+ ["' dsK~1 )*(x ,s)Fi\ 1 (s+y)=O, 
K~i)•(x, y)- ["' ds K~2)(x , s)Fi (s + y) 

- ['"' ds KP)(x , s)Fj+J(s + y) = 0 . 

(3.21a) 

(3.21b) 

A set of these equations are the Gel'fand-Levitan-Marchenko type (GLM) equation for the 

system (3.1a). Assuming that the kernels KUl(x , s) vanish in the limit of s--+ oo, we have 

from (3.16), (3.17) and (3.19) 

(3.22) 
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Given the scattering data, we know F;(x) and solve the GLM equation to get J{Ul(x,y). 

Then, we find q(x) by (3.22). Thus from the scattering data, we can construct the potential 

q(x) in (3.1a). 

§§3.1.3 Time dependence of scattering data 

The time development of the solution q(x , t) is considered through those of the scattering 

data. We evaluate their time dependences. We take the limit x --+ oo in (3.1b) and use 

(3.4). In this limit , using the boundary condition (3.3) and the form of the Jost functions 

(3.4) , we have a relation 

(3 .23) 

Comparison of each component in both sides yields a set of differential equations for the 

data. A simple calculation gives 

j=1,2,···,N, 

Time dependences of the other amplitudes are similarly derived: 

ii( (, t) = e,,., a( o· ' 
b; (t) = e-i(j'bj , j = 1,2, · · · ,N. 

(3.24a) 

(3.24b) 

Time dependences of 1k's, which will be necessary in the following section, are expressed 

from (3.15) as 

(3.25) 

Then, we can solve the initial value problem for the UNS equation as follows. For a 

given initial condition , q(x, 0) and q1(x, 0), we can calculate the scattering data at t = 0. 

The bound state eigenvalues(; 's are time-independent. Time dependence of the scattering 

data is given in (3 .24), so the explicit forms of F;(x + y;t)'s are known. The sought 

function q(x , t) is obtained by solving the GLM equations (3.20) with F; (x + y; t)'s and by 

substituting the result K)Il(x, x; t) into (3.22). 
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§3.2 Infinite number of conserved quantities 

So far in this section, we solved an initial value problem for the UNS model. In this 

section, we shall study conservation laws for the system. There exist an infinite number 

of conservation laws and from this fact it has been found that the model equations are 
integrable. 

As it was considered in the USG model (Yajima and Wadati 1987) , there should exist 

an infinite number of conservation laws, considering that the model has the form which 

is gotten by interchanging x and t. We get their recursion relations to find the conserved 

quantities. 

We take .P as the 'Jost function matrix', whose columns are the Jost functions ¢>, ~ ' 
and which has an asymptotic form: 

x ~ -oo, 

Of course, this matrix satisfies the equations: 

We get a set of conservation laws from relation 

j , k=1,2 (3.27a) 

(3.27b) 

(3.28) 

The quantity [ln,Pjj]x is the conserved density and [ln.P;;]t is flux. As in other cases, a set 

of infinite number of conserved quantities are given by expanding the conserved density in 

terms of the spectral parameter. From (3.1a) and (3.28), the conserved quantity is 

C = Dnlf!;;]x = Jdx ~ 'l:,L;klfiki· .p)) k 

We write the off-diagonal part of the matrix L as L, then we have 

1 2 2 '\'-
z.P;;,x=-2iu;( +iuil¢>1 +~Likrki, 
'I')) k 

rjk = lfiidlfiii· 

Now we differentiate r. From the relation (3.1a), we find 

arkj lfikj ,x lfikj 1/Jii,x 
& = lfiii - -;q;-

=(-2i(2 + ijqj 2)(uk- (J'i)rki + l:,Lklrli- l:,Lilrkirli· 
l 

-13-

(3.29) 

(3 .30) 

(3.31) 



The function .Pi k can be expanded in t he power of C 1 from the first order as it will be 

shown in the Appendix A, so r can be expanded as 

(3 .32) 

We can get an infinite set of conserved densities by using t he form of t he matrix L and 

comparing the coefficient for each order of C 1 . We have a set of recursion relations for 

r};l•s, (j # k) (see Appendix A): 

4 ·c )ir<1J -c . t - kj - k}, 

4 ·c )ir<2J B z - kj = kj' 

ar(lJ . 
4 ·e-li r<aJ =- _k_, + 2i(-)' lql2 r(lJ- c r(lJ r (lJ 

t kJ OX kJ J k kJ kJ > 

or(~) n 

4 ·c )i r<n+2) - k) + 2 ·c )i I 12r(n) C· "'r<mJr(n+1- m) 
t - kj - - ----;;;- t - q kj - J k L.. kj kj 

m =l 

n-1 
- B "'r<r:>J r<~-m) )k L.. k; k) , (n 2 2). (3.33) 

m=l 

Here the quantity B and C are given in the (A.3) and we have written the sums over p in 

(A.4) explici tly. 

We have derived t he recursion relations for the 'generator' of the conserved densities. 

We are considering 2x2-matrix., so we can confine ourselves to the quantities Fn and F12 . 

First four coefficients for F21 are: 

(3.34a) 

(3.34b) 

(3.34c) 

(3.34d) 

The other element F12 gives us the corresponding results: 

r(lJ - !._q 
12 - 2i l 

(3.35a) 
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(3.35b) 

(3.35c) 

(3.35d) 

It should be noted that between these sequences of the generators, there exist a set of 

relations 

(3.36) 

This is known from the forms of the recursion relations. Taking complex conjugate of 

(3 .33) and using t he fact that the matrices B and C have properties Bik = -BZi and 

ci k = - c;i, we can see that rrk 's sat isfy t he same relations as - rkj 's do. 

The infinite numbers of conserved densities emerge as the coefficients of en in (3.29). 

They are: 

1(n) - B · r<n J + C· r<n+t) i - J k kj J k kj , 

The explicit (-dependence of the conserved quantities are: 

(3.37) 

C =- j dx L2i(2Aikrki + j dx Lilqi 2Aikrki+ j dx LBikrki+( j dx L: cikrki· 
k k k k 

(3 .38) 

The first term of this relation is constant because Ai k = CTj Dj k. Therefore it is negligible 

in considering the conservation laws. We get the conserved densities as (3.37) substituting 

(3.32) and comparing the both sides. The first four of the conserved densities are 

1P ) = (q,q"- qq;) /2, 

1~1) = (qq; - q,q" )/2, (3.39a) 

1)
2
) = -(iq,q; + qq; + ilql4 )/4, 

1~2 ) = (iq,q;- q*q% + i lql4 )/4, (3.39b) 

1i 3) = i(qq;x- q,q;)/8, 

1~3 ) = i(q;qx- q"qox)/8, (3.39c) 

We can get the corresponding flux densities quite similarly. The result is 

(3.40) 



where the matrix M is the off-diagonal part of M. Again , we write the first four of them: 

Ji1) = -ilql 2 /2, J~l ) = ilql 2 /2, 
J i2) = -qq~ /4, J;2) = -q*qt/4, 

Ji 3
) = -(qq; + ilql4 )/8, J;a) = -(q*qx- ilql 4)/8. 

(3.41a) 

(3.41b) 

(3.41c) 

- d r(n ), t . r I ' d J' From the symmetric property of B , C, Man ik s, we get symme nes 10r san s as 

We get new conservation laws that have physical meaning by Hermitizing the con­

served quantities and fluxes above. For example, using the quantities in (3.39) and (3.41) , 

we have new conserved densities AUl•s and BUl•s: 

A(!)= (q,q•- qq;)f2i, B (!) = -lql 2 /2, 

Ai2
) = -(lql 2)x/8, Bi2

) = -(lql 2)t/8, 

A~2) = -(q,q~ + lql4 )/4, B;2
) = -(qq;- q•g,)/Si, 

Ai3
) = i(qq~- q*qt)x/16, Bi3

) = -(lql 2 )x/16 

AJ) = (qq;x + q*qtx- q,q;- q;qx)/16 , 

B;a) = -(qg;- q•qx)/16i -lql 4 /8. 

(3.42a) 

(3.42b) 

(3.42c) 

(3.42d) 

(3.42e) 

From J(l) and J (l) we can essentially get only one conservation law (3.42a). The law 

(3.42b) is trivial. Among other laws, (3.42c) and (3.42e) gives the relation given from the 

stress-energy tensor, considering the integrated terms and using (3.42d). The quantity 

B;2
) is equal to T01 , up to a constant factor, and A~2) to Too , where a term qq; - q•qx 

is added. This addi t ional term goes to zero when the density is integrated and (3.42d) is 

used. 
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Chapter 4. Soliton Solutions 

In this chapter, we shall consider soliton solutions. We obtain N-soliton solution from the 

general method described in the previous section. In addition, we solve eigenvalue problems 

for some typical initial conditions. The results are useful for discussing the properties and 

the roles of solitons in unstable media: the mechanisms of the stabilization of the systems. 

§4.1 Soliton Solutions 

We assume that b( () = 0 and a(() has N simple zeros at ( = (j , j = 1, 2,- · · , N in the 
following. Then, equation (3.17) gives q(z, t) as 

N 

q(x, t) = -2(L ('n(t),P2 (z, (k)e 2i(~x)*. (4.1) 
k=! 

We can get the expressions for the forms of the elements of the Jost functions , ,P2(z, (k)­

From (3.14) we see that at the zeros of a((), ( = (j, j = 1, 2, · · ·, N, 

(4.2) 

where the functions t/>'s that appear in the expression of <P( () are rewritten by using (3. 7) . 

We define V>Y) and Jti, respectively, as 

(4.3) 

then ( 4.2) is rewritten as 

N • .,.en· _ '\"' Jti f1-k . ,.(k) = ~ 
'1'2 L (~ _ ( '1'! Jl-1 · 

k=! } k 
(4.4) 

This is a set of simultaneous equations of first order, then we can easily get the solutions. 

For example, and for the later purpose, we present one soliton solution. It is obtained 

when a(() has one simple zero in rme > 0. In fact, denoting the zero of a(( ) by ( = ~ + iry , 
we have 

( ) 
- '). exp( -4i(e - ry2 )z- 2i~t + i¢>) 

q x , t - --•77 , 
cosh(S~ryz + 2r;t + p) (4.5) 
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where 

q, = -2arg(p(t = 0)), ( 
21'71 ) 

p =log IJL(I =oW . (4.6) 

Generally, the simple zeros of a(() in Im(2 > 0 correspond to solitons. 

A soliton - and as we see shortly, constituent of multiple solitons - has two pa­

rameters, E and '7· The velocity and amplitude are -( 4<)- 1 and 21), respectively. Other 

characters of solitons, such as width of the envelope, wavelength of the carrier wave, are 

determined by these two parameters. The solution ( 4.6), when x and t are interchanged, 

is the same as that of the stable (conventional) nonlinear Schrodinger equation (Zakharov 

and Shabat 1972). We see that (2.11) is a special case E -+ 0 of the one soliton solution 

(4.6). 

It is known that solitons experience position shift due to their mutual collisions (Wa­

dati and Toda 1973). We examine the asymptotic behaviors of soliton solutions in order 

to study the effect of soliton collisions in the unstable media. 

We denote the distinct zeros of a(() by (; = E; + i1);, j = 1, 2, · · ·, N. We assume 

that 6 < 6 < · · · < EN: each soliton has different velocity since the velocity of soliton is 

-(4E; t 1 A soliton with a smaller subscript has a larger velocity with this labeling. 

The time and spatial dependences of IJL;(x, t)l's are from (3.24) and (4.3) 

(4.7) 

We observe theN-soliton solution in a coordinate such that x + t/4Em is constant. In this 

moving-coordinate, we have 

/Lj- 0 

/Lj- 0 

for j < m, 

for j > m, 

as t-+ +oo , 

as t--. -oo. 
(4.8) 

We can get asymptotic forms of simultaneous equations ( 4.4) in the limit t -+ ±oo. For 

t -+ oo, we find that 

I (+)12 
/ (m) + ..!!:!:__ / (m)•- 0 

1p1 2i1)m 1p2 - ' 

(4.9a) I (+ll' 
~.1,(m) + 1(m)• _ (+)• 

2 · 1"1 11'2 - JLm > 
11)m 

where 
N ( ) II (m- (; 

p,;t = J.lm -
i=m+l (m (j 

(4.9b) 
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In the other limit t-+ -oo, we have a set of equations in the same form as (4.9a), but JL~) 
is replaced with JL~) Similarly to (4.9b), JL~) is 

(-) = mrr-1 (m- (; 
JLm JLm ( _ (~ · 

i=1 m J 

(4.9c) 

We see that in the limit of large lxl, the equation for each Jost function decomposes into 

individual soliton parts, when we compare (4.9) with (4.4). These equations ensure the 

stability of solitons and give a useful information on soliton collisions. There exists the 

same set of N solitons in the limit t -+ ±oo. Collisions of solitons occur in pair. Each 

soliton experiences the shifts of position and phase resulting from the collisions. Comparing 

(4.9) with (4.4) and remembering the expression of one soliton solution (4.5), we see that 

the center and phase of the m-th soliton in the asymptotic regions are respectively given 
by 

-1 1 IJLml 2 

Xm = ---pm = ---log--
8Em'7m 8Em'7m 2l'7ml' 

¢>m = -2 arg(pm). (4.10) 

We write Xm's and 4>m's fort-+ oo as x~)'s and q,~l's, and fort-+ -oo as x~)'s and 
q,~) 's. That is, we have 

as t--. oo, 

as t-+ -oo. (4.11) 

We find from ( 4.9b,c) and ( 4.10) that the position shift and the phase shift of the 
m-th soliton are: 

1 ( N I ( I m-1 I = -- L log m - (; - L log (m - (; I ) 
4Em'7m j=m+l (m- (j j:1 (m- (j ' 

!J..q)m = q,;,;) - ql~) 

= 2 [f arg ( (m = (~) - t arg ( (m = (; ) ] . 
i=1 (m (, j=m+1 (m (j 

(4.12) 
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We restrict our consideration to two solitons to make a discussion simple; one with 

a larger velocity -(4El)- 1 and the other with a smaller velocity -(46J- 1. According to 

(4 .12) , the faster soliton has a negative position shift 

~x1 = _1_Jog[(1- (21 < 0, 
467)1 (1- (2 

(4.13a) 

and the slower one has the positive position shift 

~x2 = --
1
-log[ (

2
- (

1 I > 0. 
467)2 (2- (j 

( 4.13b) 

That is , the faster soliton decelerates and the slower one accelerates during the collision. 

This property is common to the USG equation (Yajima and Wadati 1987). On the contrary, 

the faster soliton accelerates and the slower one decelerates during the collision in stable 

media. We conclude that, in the unstable cases, the interactions between solitons are 

attractive. In other words, solitons form virtual bound states during the collision. 
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§4.2 Initial value problems 

So far , we have assumed the existence of discrete simple eigenvalues. We have not examined 

if this assumption is realizable, or not. In this section, we shall study some initial value 

problems, and have confidence that this assumption is very reasonable. 

We consider the following initial value problems: 
A 

a) q(x, 0) = 0, q1 (x, 0) = --h-, A : constant. 
COS X 

(4 .14a) 

( 0) 
= A exp (ikx + 2iA2 tanh x) 

b) q x, cosh x , q,(x, 0) = 0, A, k : constants. (4.14b) 

C) ( O) ={Ve;k~ , lxi<L ( 0) 0 VLk t t q x, O, lxl > L q, x, = , , , · : cons an s. (4.14 c) 

(1) Initial condition a) 

This corresponds to the situation that an 'impulsive force' is applied to the system. In 

(3.1a) we eliminate the function v 2 and use a new independent variable z = (1- tanhx)/2. 

Then we have for v1 ; 

d2v1 1 dv1 
z(1-z)-+(--z)-

dz2 2 dz 

{ 
2 4(4 + 2i(2 (1- 2z) } _ 

+ A + ( ) V1- 0. 4z 1- z 
(4 .1 5) 

This equation is the same as the one appeared in the initial value problem of the conven· 

tiona! nonlinear SchrOdinger equation (Satsuma and N. Yajima) , when ( is replaced by 

2(2 We get the similar equation for the function v2. Setting v = 1/2- 2i(2 , we have two 

linearly independent solutions, v(l) and v< 2 l: 

vP) = z;(' (1 - z)_;(' F( -A , A; 1- v; z) , 

v~1 ) = z-;(' (1 - z );(' F( -A, A ; v; z ) , 

vP) = z~-;('(1- z)-;(' F(v +A, v- A; 1 + v; z), 

v~2 ) = z ~+;(' (1 - z );'' F(1 - v + A, 1 - v - A; 2 - v; z) , 

(4.16a) 

(4.16b) 

where F(a , b; c; z) is the hypergeometric function (Abramobitz and Stegun 1964). The Jost 

functions, and the transmission and reflection amplitudes are 
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a= r( -2i((2- 7J2) +A+ 1/2) r( -2i((2- 7) 2)- A+ 1/2) 

ilr(2i(e - 7)2) + 112w 
b = f(A) f(1- A) 

(4 .17) 

The transmission amplitude a(() can be analytically continued into the region ~7) > 0, 

[f( -2i(2 + 1/2JF 
a(()= f( -2i(2 +A+ 1/2) f( -2i(2 - A+ 1/2). (4.18) 

Thus, we find that zeros of a(() in the (-plane are located on the line~= 7) (Fig.4.1), and 

their values are 

j = 1, 2, ... , (4.19) 

I Fig.4.1 

We see from ( 4.19) that the number of solitons, n, increases as the impulsive force becomes 

larger. This suggests that the energy injected into the system is used to create solitons 

and transported in the form of solitons. It is interesting that if the impulsive force is not 

strong enough, A::::; 1/2, no soliton emerges from the initial condition ( 4.14a). 

(2) Initial condition b) 

This corresponds to a localized disturbance placed still. The detailed calculations are 

shown in the Appendix B. The fundamental solutions for v1 are expressed as 

vii)= eiA' (l -Zz)eikz/2/.\(1- z)-i.l F(2(A, -2(A; ~ + 2iA; z), 

v?) = eiA
2
(1-2z)eikz/2 zl/2-i.\(1 _ z )-i.l 

x F(.!_- 2i.X + 2(A, .!_- 2i.X- 2(A; -
2
3

- 2i.X; z) . 
2 2 

The other function v2 is given as the linear combination of 

v~1 ) = e'A'(l-zz)e-ikxf2z-i.\(1- z)" F(2(A, -2(A; .!_- 2i.X; z), 
- 2 

v~2) = eiA'(l-Zz)e-ikx/2 zl/2+i.l( 1 - z)"' 

X F(.!. + 2i.X + 2(A, .!. + 2i.X- 2(A; ~2 + 2i.X; z). 
2 2 
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(4.20a) 

(4.21b) 

As in (1), the function F is the hypergeometric function. Thus, the Jost functions and the 

scattering amplitudes are found to be 

{r(1/2- zi.x)p 
a= f(1/2- 2i.X + 2(A) f(1/2- 2i.X- 2(A)' 

b = ilf(2i.X + 1/2)12 
f(2(A) f(1- 2(A) . (4.22) 

We look for zeros of a(() in the region ~7) > 0. We see from (4 .22) that the zeros are 
determined by 

.!_- 2i.X ± 2(A 
2 

{ 
A 1 . 2 A o k A 2 

= 4~(7J±2")+2"}+t{-2~ +2(7)± 2)-- 2 - 4 }=1-m, 

m = 1,2,···. 

The solution which satisfies ~7) > 0 does not exist when k > 0. When k < 0, we get 

~i = ±Zi , 7J· = ± ( ~ _ 2j- 1 ) 
1 2 8Zi ' 

. - [ (A2 + 2k)z ( (2j- 1)z - ) ] I/2 

z,- 8 1+ (A2+2k)2 1 , 

(4.23) 

j = 1, 2, · · ·, n, ( 4.24) 

where n is the integer which satisfies 

(4.25) 

In this case, the number of solitons, n , depends not only on the initial amplitude A but 
also on the wave number kin (4.14b). 

(3) Initial condition c) 

This case is another example in which a localized still disturbance exists. In this case, 

we can derive Jost functions by connecting at x = ±L. The results of Jost functions are 

tabulated in the Table 4.1 (Appendix B). 

Table 4.1 
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Of course, the condition (3.11) remains valid. Then, we can easily find the scattering 

amplitudes: 

. 2 [ k/2 + 2e - V
2 

] a(() = e'(k+ 4< )L cos 2wL - i w sin 2wL , 

2~V 
b(() = --sin2wL, 

w 

(4.25) 

We continue analytically the function a(() into the region Im((2) > 0 and find its zeros. 

The amplitude a(() depends on ( through a form of ( 2
, so we set >. = 2(2 and find zeros 

in upper half of >.-plane. The equation which gives the zeros is 

(4.26) 

In general, it is hard to solve this equation, but we can easily see at least one of the 

solutions, which comes from w = 0. It is: 

(4.27) 

There always exists complex >. when k < V 2 • If we adopt a condition k = 2r. M / L , where 

M is an integer, t his condition is 2r. M < LV2
• This shows that at least one soliton exists 

in the system when a product of the expanse and the amplitude of the wave exceed a 

threshold. Both of them can indicate the initial energy of the disturbance, so we can say 

that a soliton is created if the energy of the disturbance is enough, for a sinusoidal wave 

localized in a square well form. This may be said to contradict the result in §2.2, but we 

can say that the localized disturbance has much less energy compared to the plane wave, 

which expands in the whole space, and the existence of a threshold is not an obstacle of 

the discussion. It is extremely interesting to examine existence of zeros in the other region, 

k > V 2
, and others which come from other conditions. We, however, leave them as future 

problems. 
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§4.3 Periodic solutions 

In this section, we consider periodic solutions for the UNS equation which describe the 

modulations of carrier wave. We set 

q(:z: , t) = ¢(y) exp[i(K :z:- Dt)], 

y = 2D:z: +t, (4.28) 

where ¢, K and n are real. We have an equation for ¢ by substituting this into the UNS 

equation: 

(4.29) 

Now we introduce a positive constant a: 

C = real constant. (4.30) 

As in the Appendix C, the periodic solutions which satisfy the equation have the following 

forms: 

¢(y) =Acn(a(y- Yo), k) , 

=Adn(a(y- Yo), k). (4.31) 

The quantities A, a and Yo are constants and k is the elliptic moduli. The solutions are 

(1) K + n2 > o, -(K + n2
)

2 < c < o 
¢(y) = adn(a(y- yo), k) , 

k2 = ~J(K + f!2)2 + C, 
a 

O<k<l. (4.32a) 

(2) c > 0 

a 
¢(y) = acn( k(y- Yo), k), 

O<k<l. (4.32b) 

The limit k ~ 1 for these solutions lead to the one soliton solution. 
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Chapter 5. Applications to Physical Systems 

In this chapter, we make some applications of the models. The model systems are me­

chanical model analogous to the sine-Gordon equation, electron beam plasma and the 

Rayleigh-Taylor system. In those systems, there is a critical wave number in low frequency 

region and the envelopes of the fields obey the UNS equation . The results show us physical 

meanings of the model equation. 

§5.1 The sine-Gordon type model 

The first one among the applications of the UNS equation is the reductive perturbation 

method for a model called the unstable sine-Gordon (USG) model (Yajima and Wadati 

1987, 1990a). The model equation is: 

(5.1) 

where m2 is a constant. The mechanical expression for this is given in the Fig.5.1. A 

chain of pendulii is connected with each other with spring (Scott 1969) . In this case, the 

coefficient m2 corresponds to a moment of the gravity. Each pendulum oscillates around 

the stable equilibrium point, <P = 1r in (5.1). Another example of the model (5.1) is two­

level atomic system (Lamb 1971). The conventional sine-Gordon system describes the time 

evolution of the two level atomic system where initially all the atoms are in their ground 

states. The system described by the model (5.1) is considered to express the similar system 

with a condition that all the atoms are initially in the excited state. 

Fig.S.l 

The equation (5.1) has a linear dispersion relation: 

(5.2) 

As in §2, we can see from this relation that the plane wave number that satisfies k2 < m2 

will e>.:ponentially grow in time. Therefore the system described by (5.1) can be considered 

as an unstable system. 

The equation (5.1) is derived from the Lagrangian density and the Hamiltonian den-

sity: 
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1{ = 7r</J- £ 

= ~(q,; + q,;)- m2(1- cos<jJ), 

6[ 
7r = 8</J, = q,,. 

These show that in the model equation, a particle moves in a periodic potential. 

(5.3) 

The USG equation reduces to the UNS equation through the reductive perturbation 

method under small amplitude condition, and this gives a conspectus on the system de­

scribed by the UNS equation. 

We expand the field variable q, as 

<P = I>n L q,~l(Cr)exp[il(ko:z: -w0 t)], (5.4) 
n=l l=-oo 

(Kodama and Taniuti 1978) and introduce the Gardner-Morikawa transformation to inde­

pendent variables (Gardner and Morikawa 1960) : 

r = t:(t- !)ox). (5.5) 

The term sin <P is approximated as sin <P S;' <P- <jJ3 /6 when the amplitude is small. Substi­

tuting this and (5.4-5) into the USG equation, and comparing terms with the same order 

in t:, we get an infinite set of equations for each order oft:. We find in the first three orders: 

t:1 : q,~1) = 0 (I f. ±1) , (5.6a) 

k6- w6 = m2 , (5.6b) 

t:2 : q,~2) = 0 (I f. ±1), (5.7a) 
wo 

(5.7b) '7o = ko' 

t:3 : ,(3)_ 1{q,(1)}3 
"'' --48 ' 1 (I= ±3), (5.8a) 

q,~3) = 0 (I f. ±1, ±3)' (5.8b) 

. ,(1) 1- '76 q,(l) 2 
- ~I<P<1Jiz<P<1l = o (5.8c) lq>1 {-~ 1 TT 4ko 1 1 . 

In (5 .8b), we have used a symmetry between q,~k) and <PC:) that assures a reality of <jJ: 

(5.9) 
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Relations (5.6b) and (5.7b) show that the factor (1- 7JB)/2ko is positive. Then, rescaling 

variables as 2 
r= ~t, 

vl-7Jo 

we find that ql\1
) = q satisfi es the UNS equation (2.1). 

(5 .10) 

We see tha.t the UNS equation is derived from the USG equation, which clearly de­

scribes time development of unstable system, when an amplitude of the USG system is 

very small . 
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§5.2 Electron Beam Plasma 

As a second application of the UNS equation, we shall consider an electron beam plasma 

system (Tanaka and N. Yajima 1988) , where an electron beam is injected into plasma under 

high frequ ency electric field. due to the continuity relation and the equation of motion , we 

have a set of equations describing dynamics of the density nand the velocity u of electrons 

in plasma and beam due to the continuity relation and the Bernoulli equat ion. T he ions 

(with positive charge) are much heavier than electrons, so we neglect their motion. We 

assume that the electrons in the injected beam have sufficiently large velocities and then 

the temperature dependent term is negligible. We have 

an a[-+ 'Y·(npup) = 0, 

aup ( ) e (h) Tp -- + u ·'Y u = --E - --\i'n af p p m mnp P> 

anb Tt + 'Y·(nbub) = 0, 

aub e (h) Bt + (ub·'Y)ub = -:;;;E , 

(5.11a) 

(5.llb) 

(5.1lc) 

(5.11d) 

where subscript p is for plasma and b for beam. Here E (h) is the high frequency electric 

field, Tp the temperature of electrons, m the electron mass and - e t he electron charge. 

We divide the densities and velocities into three parts: the average, the high frequency 

and the low frequency parts. We distinguish these parts by the superscripts 0, h, and /. 

We handle the high frequency terms as perturbations. The higher order terms of the 

high frequency part, such as n~h)u~h ), are considered to be small. Eliminating Up and ub 

except the average parts, we have 

(5.12a) 

(5.12b) 

where u o is the average velocity of the beam. The average velocity of the plasma electron 

is set to be zero because their motion is random. From now on, the nabra \7 operates on 

all the functions in the right. We have from Gauss's law, 

(5.13) 
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Substitution of (5.13) into (5.12) gives us 

where 

'l· [!:..._- Tp '\12 + w2(1 + n1' ) )] E (h) = - ( 82 - Tp '\12) 41ren~h ) 
8t2 m • n1° ) 8t 2 

m ' 

) 

2 2 ( (I)) 
(~+u ·'l n(h)=O'W• 'J. 1+~ E(h ) 

8t 0 
b 4u n(o) ' 

b 

41re2n1o) 
We=--- . 

m 

(5.14a) 

(5.14b) 

(5.14c) 

We call 0' beam constant and w. electric plasma frequency. The frequency of the electric 

field is well approximated by w,. We introduce complex variables E and p as 

E (h) = ~(E + E•) , 41ren~h ) = ~(p + p•) , (5.15) 

whose time dependences have forms 

(5.16) 

Then we interpret envelopes E and p as slowly varying functions in time. We have 

(5.17) 

when we neglect the higher derivatives of E. Taking p to the leading order, when we 

consider p as a traveling wave with wave number vector k , we have 

( 82 
Tp 2 ) 2 ( Tp P) -- - '\1 p !::!! -w p 1 - - - . 

8t 2 m • mw~ 
(5.18) 

The second t erm in the right hand side of (5.18) can be dropped because the 'yeJocity ', 

w. / k, of the high frequency part is much larger than the thermal velocity J2Tpf3m . Using 

(5.17) and (5.18) in (5.14a), we get 

(5.19) 

The term n1' ) fn1°) comes from the ponderomotive force (Zakharov 1972) and is expressed 

as 
n1' ) IEI2 

n~O) = - 161rn.~0) Tp 
(5.20) 
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Then we have from (5.19) and (5.20) 

'l· (i~ _ w. + ___2L_'\1 2 _ w.IEI
2 

) E = _ w. p. 
8t 2mw. 321rn1°)Tp 2 

(5.21a) 

We can drop the term n~l) /n~O) in (5.14b), because n~l) is usually much smaller than n~O) 
Then, we have 

( :t + Uo · '\1 r p = O'w;'J. E. (5.21b) 

From now on, we restrict our discussion to one-dimensional problem of (5.21). Let 

a direction of the average beam velocity u 0 be x-axis. We consider longitudinal wave for 

p, so the non-zero element of the electric field E = (E1 , E 2 , E3 ) is only E 1 . In terms of 

dimensionless variables , 

V=uo~, 3 270' 
1\, =-8 , 

a set of equations (5.21) is reduced to 

(
. 8 1 8

2 I !2) 4 3 ·-- 1 + - - + f f = --K. g 8r 2 8e 27 , 

( 
8 8 )

2 

- +V- g=f. 
8r 8F. 

The dispersion relation of the linearized (5 .23) yields a cubic equation for w: 

( 
k2) 4K.3 

(w- kV) 2 w- 1- - = -. 
2 27 

This is shown in Fig.5.2. 

Fig.5.2 

(5.22) 

(5.23a) 

(5.23b) 

(5.24) 

Let us consider the circumstances of the solutions for this relation. As it can soon be seen, 

there are two branches in the solution; a branch with one real frequency and the other 
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branch with two frequencies which grows into complex in a certain wave number region. 

From the formula of the solutions of cubic equation, the condition that gives the equation 

(5.24) complex solutions is: 

(5.25) 

When v2 < 2(1 + "), there always exists complex w solution. When V2 > 2(1 + "), the 

condition for k which gives complex w in small wave number region is 

( . I 2(1 + "l ) 
k < ke =: V 1 - y 1 -~ · (5.26) 

The other critical wave number, k = V(1 + )1- 2(1 + ")/V2 ), gives us a frequency much 

greater than w., so it does not match to our discussion. (The wave having this frequency 

would suffer the Landau damping.) The real frequency mode gives a stable plane wave, 

and we consider the branch that gives complex solutions. We investigate the equation 

(5 .23) the region near the 'critical point' ke. We denote by We the frequency at k = ke 

which becomes complex number for k < ke: 
2 

We= kY- 3". (5.27) 

We express the solution of (5.23) as 

( ~) = ( !~) e;(k,€-w,r). (5.28) 

The envelopes <Pt and </>2 are slowly varying functions of E and T around the critical point 

where the wave number and the frequency are nearly ke and We. Using this approximation 

in (5.23) , we have 

[ 
9 27i ( {) {) ) 

<1> 2 = - 4"2 + 4"3 or + v aE 

- 1264:4 (:T + V :E) 2- o( (:r) 3, (:E) 3)] ¢>1· (5.29) 

From (5 .28), (5 .29) and (5.23) and neglecting higher derivative terms in E, we obtain 

. a</>1 9 8
2

</>1 
1 1

2 • ( 5 30) 
-tV 8f" + 4" ar2 + cf>l 'i'l = 0. . 

A suitable transformation of variables in (5.30) gives the UNS equation. 

In su=ary, the envelope of the high frequency electric field near the critical wave 

number ke obeys the unstable nonlinear SchrOdinger (UNS) equation, under the condi­

tions that the beam velocity is sufficiently large and that the system is one-dimensional. 

The envelope is considered to realize low frequency modes, so the model equation can be 

said to describe the time developments of low frequency modes in unstable media. The 

nonlinearity comes from the ponderomotive force due to the high frequency electric field . 
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§5.3 Rayleigh-Taylor Instability 

In this section we shall discuss the Rayleigh-Taylor instability problem after Iizuka and 

Wadati (Iizuka and Wadati 1990), and derive the UNS equation. The Rayleigh-Taylor 

instability problem deals with the stability of a system where a heavy fluid is supported 

by a light fluid under the gravity. We suppose that the system is isotropic and uniform in 

the horizontal plane and restrict ourselves in two-dimensional case - one vertical and one 

horizontal. The situation is that the heavy fluid is bounded from above by a rigid plane 

and the light fluid from below (Fig.5.3). 

Fig.5.3 

The interface between the two fluids is y = TJ(X, t). When it is completely flat, '7 = 0. 

The following three assumptions for the fluids are made. 

1) The density of a light fluid is negligibly small compared with that of heavy fluid. 

2) The fluids are invicid and incompressible. 

3) The motion of the fluid is irrotational. 

4) Between the two fluids there exists the surface tension. 

The motion of the light fluid needs not to be considered due to the condition 1). Because 

of the condition 3), the velocity field of the heavy fluid is expressed in terms of the velocity 

potential ,P(x, y, t). 

The fundamental equations for the system are 

·condition for incomplessible flu.id : 

L\,P = 0 (TJ ~ y ~h), 

·rigid boundary condition at y = h: 

vJN = 0 (y =h) , 

·free boundary condition at the interface: 

vlN = '7t + vlx'7x (y = TJ). 

·the Bernoulli equation: 
1 T 

vlt + 2IV'v\l 2 + 9Y + p'7u(1 + '7;)-3
/

2 = 0 (y = TJ), 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

where T is the coefficient of surface tension, p the density of heavy flu.id , and g the accel­

eration constant of gravity. The surface tension has a stabilizing effect wh.ile the gravity 

causes an instability in the system. 
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Let us linearize equations (5.31)-(5.34), then we have 

1f; = C cosh k(h- y) cos(kx- wt), 

1) = C(kjw) sinh khsin(kx- wt), 

T 
w2 = ( -k3

- kg) tanh kh , 
p 

(5.35) 

(5 .36) 

(5.37) 

where Cis a constant. Equation (5.37) is a dispersion relation for the system (Fig.5.4). 

Fig.5 .4 

For small (large) k, w2 is negative (positive). There is a critical wave number ke at which 

w 2 changes its sign, 

(5.38) 

We analyze nonlinear evolution of the interface by means of the reductive perturbation 

method (Taniuti 1974). We express the expansions of 1/;( x , y,t) and !)(x,t) in powers of 

the smallness parameter <:: 

where 

Relations 

n 

1) =I: I: t:n em!)(n ,mJ, 

n=lm=-n 
n 

1/J = I: I: t:n Em,p(n,m ) 
1 

n=l m=-n 

E = exp i(kx- wt) 

1)(n ,-m) = (1J(n,m))• 
1 

,p(n,-m) = (1/J(n ,m ))*, 

(5.39) 

(5.40) 

(5.41) 

(5 .42) 

(5.43) 

should be satisfied since 1) and 1/J are reaL Here the asterisk indicates the complex conjugate. 

The transformation of independent variables (Gardner-Morikawa transformation (Gardner 

and Morikawa 1960)) is set to be 

r=c:(t-Wx). 
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(5.44) 

(5.45) 

Substituting equations (5.39-45) into equations (5.31-34), and comparing each coefficient 

of t:n Em cause us to get relations among 1) (n,ml((, r) and ,p(n,m)((, r). If we analyze the 

lowest-order , the quantity W in (5.45) is found to be equal to the inverse of the group 

velocity, 8kj8w. 

We obtain a closed evolution equation for 1)(1•1l((, r) by collecting terms up to the 

order of t:3 E: 

i1]~1.1) _ ~ ;:~ 1)~~,1) + I<I1) (1,1)I21J(1,1J = o, (5.46) 

where 
[{ = -kw3 (2s1s2 + s?/2 - 3/2)2W _2 

s![(g- 4Tk2jp) +2w2s2/k] +wk (2s1s2- 3)W 

- 2(V2 ~ gh) [4w
2
V(si- 1) + w3h(s~- 2s1 + 

8

1

1
)- 4wgs 1 ] W 

3k5 T 
+ --W 

2wps1 ' 

s 1 = coth kh, s2 = coth 2kh, 

We adopt the variable transformations, 

1 82k 
X =-2~(-

q = II<I (~:~) -1 1)(1,1J, 

then equation (5.46) reduces to the unstable nonlinear Schrodinger equation 

fJ2k 
iqx + qrr- 2sgn(K aw2 )lql 2q = 0. 

(5.47) 

(5 .48) 

(5.49) 

(5.50) 

(5.51) 

We consider the 'deep water' case kh ~ 1 since the expression of s = sgn(I<fJ2kjfJw2) is 

complicated . In this limiting case, s = -( + )1 when k > ( <)J1 + 2j-./3ke. 

It is fair to mention that the unstable nonlinear SchrOdinger (5.51) (s = +1) has 

been derived for capillary waves on the surface of liquid column (Kakutani, Inoue and Kan 

1974). 

When k > ke the linearized wave is stable and the nonlinear SchOdinger equation is 

derived by using a different Gardner-Morikawa transformation (Iizuka and Wadati 1990) . 

Other wave number regions: k < ke have been discussed (Iizuka and Wadati 1990). The 

linearized wave is unstable when the wave number k is smaller than ke . They obtained the 

Ginzburg-Landau type nonlinear diffusion equation in this region. These equations can be 

considered to form a set of model equations of nonlinear evolutions in unstable media. 
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6. Concluding Remarks 

In this thesis, we have discussed nonlinear waves in unstable systems and have derived the 

following results: 

(1) The unstable nonlinear Schrodinger (UNS) equation describes propagations of local­

ized modes in some region of the wave number. (§5) 

(2) The inverse scattering method is also applicable to the unstable system. The Gel'fand 

_ Levitan - Marchenko equation is different from that for the conventional nonlinear 

Schrodinger equation. (§3) 

(3) Initial value problems for the model equations are exactly solved by applying the 

inverse scattering method . Solitons can be generated and propagate also in unstable 

systems. These results give a firm basis for the analyses of physical phenomena, 

remembering the corresponding physical models. (§3) 

(4) The disturbance caused in the system does not grow forever, but is suppressed by 

the nonlinearity. Also, the investigation on the initial value problems tells us that 

the solitons are caused generally, and play important roles in carrying away surplus 

energy. (§2, §4) 

(5) The position shift due to mutual collisions between solitons has the opposite sign 

compared to the stable case. (§5) 

(6) In connection with the result (3), we derived the infinite number of conservation laws 

and the model equations are found to be integrable. {§3.2). 

All of these results is original and (1)-{5) have been published. We can discuss properties 

and roles of solitons in unstable media, based on these results. The result (5) suggests that 

the interaction between solitons can be considered to be attractive. This property occurs 

from the instability of the system and should be detectable by experiments. 

The localized wave modes are created from rather general initial conditions. The 

existence of solitons in unstable media is very important to keep the system not to explode. 

A disturbance caused in the system grows because of the instability, but is suppressed due 

to the nonlinearity, as seen in §2. This suggests that, in unstable media, a soliton is 

a nonlinear excitation that makes the system stable by carrying the surplus energy in an 

effective way. The results of initial value problems support quantitatively this picture, since 

the number of solitons created in the system increases as the initial amplitude gets large. In 

three dimensional Langmuir turbulence, the following is well known: For monochromatic 

Langmuir wave, 'caverns' of density and developments of automodulations of Langmuir 

wave take place in the plasma. They formally develop infinitely, and then suffer Langmuir 

collapse, which play a role of dissipation of the energy (Zakharov 1972). We can consider 
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that this process is the nonlinear effect on the development of instability in plasma. But, 

for the instability in this picture the existence of beam is not taken into account, and the 

result in this thesis is the first exact analysis including such effects. In the electron beam 

plasma system, we can conclude that the localized wave mode is an important process to 

stabilize the system, although it is unclear if the collapse occurs or not in higher dimensions. 

Recently, Yamagiwa et a!. (Yamagiwa, Tokuda and Mineo, 1990) studied a high fre­

quency beam mode in electron beam plasma. The observation shows that the wave envelope 

A(z), z being the distance of the propagation, is given by 

A(z) = ;sech[;(z- zo)J, {6.1) 

where 1 is the linear growth rate and z0 is the position of maximum amplitude. An amazing 

fact is that this is exactly the same as the result (2.11), in a moving system. We can say 

that our result is supported experimentally. 

In §5, we have seen that the UNS equation is obtained in systems under various 

physical circumstances. This suggests that, under some conditions , the UNS model is 

a suitable equation for describing nonlinear modulation of amplitude in unstable media 

and has a wide applicability. In such a situation, the equation comes as the amplitude 

modulations of lowest frequency modes (§5.1 and §5.3) or modulation of envelope of plasma 

wave modes near the critical frequency, that is approximately equal to the plasma frequency 

w • . We see from this fact that the UNS equatio~ describes noulinear evolutions of localized 

modes with long wavelength modulation in unstable systems. . 

Alternatively, we can select special regimes of parameters of the system in deriving 

the UNS equation. Then, in other conditions, say, other regimes of wave number of carrier 

wave, we can of course get other types of equations, such as noulinear diffusion equations 

(Iizuka and Wadati 1990), which are valuable to investigate. We can consider that these 

equations constitute the canorucal models for nonlinear dynamics in unstable media. 

Related to the UNS model, there are many generalizations or applications stimulating 

our interests. First, we can try to find the higher order equations of the UNS equation, 

like the AKNS hierarchy. The answer for this subject is not obtained yet, because the 

au.xiliary linear problems {3.1a) are complicated and the treatment does not have good 

perspective. It is a future problem. 

Second, it is interesting to consider the higher dimensional case. The treatments in 

§§5 .2 and §§5.3 are lirllited in the one dimensional case. For example, in the electron 

beam plasma system, we can consider an axial symmetric boundary condition, which gives 

a time development of radial component of density and the electric field. In this case, 

interaction between the radial mode and the z-directed mode may exist because of the 
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form of the model equation (5.21), and it is expected that some interesting phenomena 

can be observed. In addition, in the case of §5.3, an anisotropic case may be considered , 

and th is will give another viewpoint in higher dimensions. 

Third, we can consider a quantization of the UNS model. Again for example in §§5.2, 

the model equation includes some components that consist the plasma system, e. g. plasma 

electrons, beam electrons and ions. The immediate suggestion is to apply the results in 

this thesis to some one dimensional system that is constituted from particles and quasi 

particles of many kinds. Zakharov considered an electron-plasmon interacting system in 

plasma turbulence system (Zakharov 1967). Considering the model equations (5.11) , we 

can apply this model to such a system. An quantization of the UNS model would be a 

simplified but effective and interesting model for one dimensional quantum system. 

In the last of the conclud ing section, we like to take up to another example of nonlinear 

equation , that has a connection with the UNS equation. That is the one with the UNS 

type, whose sign of nonlinear term is negative. As one of the example for its physical 

picture, in §5.3, consider the case where the wave number equals to the critical value kc. 

Then the nonlinear term in (5.51) has a negat ive sign (this means that s = +1 in (5.51)), 

and the UNS equation with negative nonlinear term emerges. A plane wave solution is 

stable for (5.51). In this case, we have the dark soliton solution given by 

(.A+ iv )2 + exp2v(T- To- 2.AX) -2iX 
q(X, T) = ) e , 

1 + exp 2v( T - To - 2.AX 

v=~, (6.2) 

Initial value problem of (5.51) under the boundary condition Jqj 2 
_... 1 (x _... ± oo) is 

physically and mathematically very in terest ing. It was solved very recently (Iizuka, Wadati 

and Yajima 1991). Including their result , we can say that the outcomes of this thesis 

are co=only acceptable for the equations that describe time developments of unstable 

nonlinear systems. 

In conclusions, it should be emphasized that in this thesis, we have thoroughly inves­

tigated the UNS model, which is one of the canonical equat ions describing the nonlinear 

evolutions in unstable media, and have clarified the roles of the localized wave modes. 
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Appendix A 

In this appendix, we present the asymptotic expansion of the matrix Jost function , and 

get some information for the 'generator' of the conserved densities r. 
First , let us consider the eq.(3.4). In the limit x --+ -oo, we have 

From (3.1a), the x-derivative of the left hand side is 

!_(1/Jjke2i(>u,x) = e2i(,u;x L Ljll/Ja. 
ox l 

The element of the matrix L is defined by 

Ljk = Ljk + 2i(2
<Tj0jk· 

Integrating both sides of (A.1a.) taking care of the boundary condition, we get 

-2i(
1o·x{c j"' d 2i(lu ·v'""'" ( )} 1/Jik= e ' Ujk+ - oo ye ' 7Ljl 1/Jlk y . 

We split the matrix L according to the order in (: 

L = ijqj 2 A+ B + (C, 

A = (; ~1) , B = c~~ 2q) 0 , 

(A.1a) 

(A.1b) 

(A.2) 

(A.3) 

The matrix Lis 0(() , then we have from integrating by parts, the RHS of (A.2) has 0((). 

By definition, the diagonal element of r is the unity, then 

r i < = O(C 1
). 

Nex.t, we derive the recursion relation (3.33). The matrix L can be written as L = 

B + (C, where B and C are defined in the (A .3) , and rii is unity, so the second and the 

third terms in the right hand side of (3.31) are 

I:: L.l rlj = Bkj + cc.i, 
l 

2 2 

I:: Lilrkj rli = I:: Bjprpj r.i + (I:: Cjprpj r.j. (A.4) 
l p=l p=l 

c;!j c;!j 

where we have used the fact that the diagonal elements of L (so are those of B and C) 

are zero. As the elements FiJ's are unity, the non-trivial expressions for r}~) 's are gotten 

only for j "I k. Then fork "I j , the factor <Tk -<Tj is 2( -1)i. Substituting (3.32) and (A.4) 

into (3.31) and comparing the same order in ( , we have (3.33). 

-39 -



Appendix B 

Here we treat the initial conditions (b) and (c) in (4.14), and get Jost functions. Both 

conditions have common properties: q1 (x, 0) is identically zero and q(x, 0) is bounded. As 

we have mentioned in the text, we first think real value~ for (. We introduce a set of 

quantities: 

F = IQI 2
- 2e. 

Q = 2(q(x, 0), 

Then , the equation (3.1a) becomes 

(
iF 

Xx = R 

R = -2~q(x, 0)*. (B .1) 

(B.2) 

We can get a set of differential equations for the elements of the function x by eliminating 

the other element . The equations are: 

We shall discuss each initial condition separately. 

1) initial con<lition (b) 

We substitute the explicit form of the initial condition , and set 

Xl = eiA 
2

ta.nhz . eikz/'2 . w
1

, 

X2 = e-iA
2
tanhx. e - ikz/2. W2. 

Then as in the case (1) , we get a differential equations. For w1 , we have 

<f2w1 ( 1 ) dw1 z(1-z)--+ --z -
dz 2 2 dz 

{ 4
e A2 4~4 

+ 2ke + k2 /4 + i(2e + k/2)(1- 2z) } = 
0 + + 4z(1-z) v1 · 

(B.3) 

(B.4a) 

(B.4b) 

(B.5) 

We introduce a variable.).:= e + k/4 , and have two independent solutions of (B.5): 

wP) = z;~(1- z)_;~ F(2~A, -2(A; ~ + 2i>.; z) , 
2 

w\2) = z 1 i 2-;~(1- z)_;~ 

x F(~-2i>.+2~A ~ - 2i>.-2~A'~-2i.).·z). 
2 .. '2 .. ' 2 ' (B.6) 
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Therefore, the two independent solutions for the first component in (3.1a) are: 

xPl = e;A'(l- 2•le;b/2z;>.(1- z)-;~ F(2~A, -2(A; ~ + 2i>.; z) , 
2 

x\2) = e;A 
2 (1-2z) e;h/2 Z 1/2-;>. (1 _ Z )-;~ 

x F(~- 2i.). + 2~A ~- 2i.).- 2~A' ~- 2i.).· z) . 
2 .. ' 2 .. ' 2 ' 

Similarly, we have for the function x2 : 

X~! ) = e;A'(l- 2=le-ax/ 2 z-;>.(1- z);~ F(2~A, -2~A ; ~- 2i>.; z), 

X~2 ) = e;A 2(1-2z)e-;b/2zl/2+;~(1- z);~ 

X F( ~ + 2i.). + 2~A. ~ + 2i.). - 2~A; ~ + 2i>.; z ). 
2 2 2 

(B.7a) 

(B.7b) 

The asymptotic forms of these functions are in Table B.l. These forms give us the explicit 

forms of the Jost functions: 

(B .S) 

Table B.l 

Of course, these satisfy the relation (3.11). The asynptotic form of¢> decides the scattering 

amplitudes and¢> itself. From the Table B.1, the Jost function 1/; is in the limit of x--> -oo: 

1 
i lr( - -2i>.W 

2 -iA 2 -2i! 2 x 
f(2(A)f(1- 2(A) e e 

1 2 r( - - 2i>.) 
2 e-aA2 e-2a(2x 

1 1 
f( '2- 2i>. + 2(A)f( '2- 2i>.- 2(A) 

(B .9) 1/;= 

So we have 
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a 

f ( ~- 2i.A) 2 

2 e-2•A' 
1 1 

f( 2- 2i.A + 2~A)r( 2 - 2i.A- 2~A) 

1 
ilr(-- 2i-AW 

2 e-•A' 
f(2~A)f(1- 2~A) 

(B .10) 

The fun ction¢ can be gotten from (3. 11). Then, the J ost functions for the initial condition 

(b) have been derived. It should be noted that when we make analytic cont inuation of the 

coefficients a and b, we can get the complex variable version of the scattering data (4 .22). 

3) initial condition (c) 

Because the potential has discontinuities at x = ±L, we think in each continuous region 

and make continuation at the point of discontinuity. When lxl > L , the equation (3.1a) 

is very simple. The matrix of the equation has only constant diagonal elements, so the 

general solution in this regime is 

lxl > L , (B .ll ) 

where A and Bare the integral constants. In the other region lxl < L, we use (B.3). These 

equations become 

then the characteristic equation is 

(B.12) 

For the first component x1 , th e sign of the second term in RHS is minus and for the second 

component X2, it is plus. Now we have four fundamental solutions and four coupling 

constants to get general solutions, but among these coefficients, the independent one are 

only two. From the equation (3.1a) we have relations for the components of X· Then the 
solution is 

(B.13) 

where 

j = 1, 2, (B .14) 
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and O'j 's (j = 1, 2) are the coupling constants. We should note a relation .A 1 .A2 = -1. 

Now from (B.ll) and (B.13) we get the explicit forms of the Jost functions. Let us 

first consider .,P, whose asymptotic form is (3.4a). In the region of x > L, 

(B.l5) 

because of (3.4a) and (B .ll). The continuity of the each component of ..P at x = L 

determines the coefficients in (B.13): 

(B.16) 

This gives a result 

• 1• _ ei(k/2H')L w 

( 

2~V eikx/ 2 sin(w(x- L)) ) 

'~-'- k 2 + 2 2 - V 2 

e-ib:/ 2 [cos(w(x- L)) + i / ~ sin(w(x- L))] 
(B.17) 

Similarly, we impose the continuity conditions on ..P at x = -L, and we can have the form 

of ..p in the region x < - L. The result is 

( 

- 2~V . 2 ·,, ) --- sm 2wLe- '' "' 

..p = w 2 2 

ei(k/2+4{')L(cos 2wL- i k/2 + 2~ - V sin 2wL)e2i{'x 
(B.lS) 

This is summarized in Table 4.1. As for the other J ost fun ction ¢>, we can get its expressions 

in a similar way. 
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Appendix C 

We seek the periodic solutions for (4.29). An expected function for the solution is elliptic 

functions because of the third order nonlinearity. We can set the general forms of the 

solutions as in the equation (4.30). We put them into the (4 .29) to get the solution. We 

easily have a set of condition for the cnoidal case by substitution: 

¢ = Acn(a(y - Yo), k), 

2A2 = a 2 + K + 0 2, 

A2=a2k2. (C. 1) 

We see at a glance that a fun ct ion - f(y) is also a solution if f (y) is the solution of ( 4.29). 

Then we can confine ourselves to the case A= ak and get 

A 
¢ = Acn(k(y- Yo),k), 

(2- 2_)A2 = K + o2
• k2 

The quantity A is real, so the following condition emerges: 

(1) 0 < k2 :<::; 1/2, K + 0 2 :<::; 0, or, 

(2) 1/2 < k2 :<::; 1, K + 0 2 > 0. 

(C.2) 

(C.3) 

Now we adopt a constant a defined in the equation (4.30) for A. We have from (C.2) that 

,P( y) = acn(i(y- Yo), k) , 

k2 = a2 /-/(K + 02)2 + C, 

The explicit form of k is 

k2 =a2 /(2a2 
- (K + 0 2

)), 

O<k<l. 

1 [ K + o
2 

] 

=2 1- )(K + 02)2 + C . 

(C.4) 

(C.5) 

The condition 0 < k < 1 corresponds to C > 0, and the form of (C.5) automatically 

guarantees the condition (C.3) as far as this condition is valid. This is the solution (4.32b). 

Similarly, we can treat the solution of dn-type. The conditions for A and a , which 

correspond to (C.l), are 

¢=A dn(a(y- Yo), k) , 

2A2 = a 2 k2 + K + 0 2
, 

A2 = a2. 
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(C.6) 

Then the solution is 

We have from (C.6) that 

,P(y) = adn(a.(y- Yo), k) , 

1 
k = -:xJ(I< + 02)2 + c, 

a. 
O< k < l. 

2 2)(!< + 0 2 )2 + c 
k = ;-;[ (:-:I<:-+:-0:::-:2>:') -+--J-r(;=;I<~+==:::0""'2 )""2 =+=:CJ:::-· 

(C.7) 

(C.5) 

This time, the condition for 0 < k < 1 is C < 0. In addition, the reality of the quanti ties 

A and k requires -(K + 0 2
) 2 <C. Then we have confirmed the solu tion (4.32a). 

Another possibility, whose form is Asn(a(y- Yo), k) , brings a result A= 0, and this 

is trivial. 
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Jost functions x--+ +oo x-+ -oo 1(1 --+ 00 J ost fun ct ions X< -L lxl < L x>L 

¢(x, () ( a(()e-2i(,, ) ( e-2~(
2

" ) ( e- 2~(
2

" ) 
b(()e2i(,, 

1/J(x , () c2.~,,) c(()e- 2i(
2

z ) c2.~,,) a( ()e2i(,, 

~(x, () ( b( ()e-2i(': ) 
( _ e~i( 2" ) ( _ e~i( 2 z ) 

- a(()e2'< " 

¢(x,O ( e-2~<
2

" ) ( Ae"•l'(co•O, - ~~ ' ' " 0,) ) ( ae-2ic'z ) 

2~V A -ih/2 . 8 
f3e2i! 2

z 

---e sm 1 
w 

( f3e- 2i!
2

z ) ( 2{V A "•/ ' . O ) --e sm 2 

c2.~,,) 1/!(x, () w 
ae2it 2

:c -ih 2 .I< . 
Ae I (cos82 + t-;:;sm 82) 

{;(x, () ( e-2~(
2

" ) ( ii(()e-2i(,, ) 
_ b( ( )e2i(2z 

( e-2~(
2

" ) 

81 = w(x + L), 82 = w(x- L ), 

Table 3.1 Relat ions among the Jost funct ions and the scattering data. K 2€V 
a= A(cos 2wL- i- sin 2wL ), f3 =-- sin 2wL 

w w 

Table 4.1 The Jost fu nctions for the initial condition (4.14c). 
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Function 

(1) 
X1 

(2) 
X1 

(1) 
X2 

(2) 
X2 

x -> +oo (z-> 0) x -> -oo (z -> 1) 

r(~ + 2i>.)r(~ + 2i>.) 
eiA

2 
e-2i(

2
x e-iA 2 e-2i( 2x 

1 . 1 . 
r(- + 21>. + 2(A)r(- + 21>.- 2(A) 

2 2 

r( ~- 2i>.)r( ~ + 2i>.) 
2 2 

0 e-iA2 e-2i( 2 x 

f(1- 2(A)f(1 + 2(A) 

r( ~- 2i>.)r( ~- 2i>.) 
2 2 

eiA 
2 e2i( 2 x e-iA 2 e2i(2x 

r( ~ - 2i>. + 2(A)r( ~ - 2i>.- 2(A) 
2 2 

r(~ + 2i>.)r(~- 2i>.) 

0 e-iA 2 e2i(~x 

f(1- 2(A)f(1 + 2(A) 

Table B.l Asymptotic forms of xl1l, xl2l, x~1 ) and x~2 J. 
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Figures 

Figure Captions 

Fig.3.1 The integral contour in calculating (3.14). The direction is anti-clockwise. 

Fig.4.1 Zeros of transmission amplitude for the initial condition (4.14a). There appear 

even number of zeros. 

Fig.5.1 A mecanical model of the USG equation. Pendulii are connected with rubber 

band . 

Fig.5.2 Dispersion relation (5.24) near the critical wave number kc when V 2 > 2(1 + ~~:). 
Solid line indecates the real part of w, and dashed line the absolute value of the 

imaginary part (linear growth rate). 

Fig.5.3 A configuration of the two dimensional Rayleigh-Taylor instability problem. 

Fig.5.4 Dispersion relation w 2 = (Tk 3 / p- gk)tanhkh . The critical wave number is de­

noted by kc. 
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~rubber band ---, : -- \ ' - \ ' 
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0 k 
Fig.5.1 Fig.5 .2 
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heavy fluid 

0 

light fluid 

Fig.5.3 Fig.5.4 
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