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Preface 

"Controlled Thermonuclear Fusion Energy" has been for long expected to 
release human beings from anxiety about lack of energy. It is because it has 
desirable features that its fuel, deuterium, exists inexhaustibly in seawater, no 
activated waste is produced, etc. Several approaches have been advanced to 
date, but they seem to still leave a long distance to the goal. One of the most 
difficult problems in controlled fusion research is the complete understanding 
of plasma behavior, in spite that the theoretical and experimental investigation 
has been eagerly conducted. 

Of these controlled fusion experimental devices, "tokamaks" have made 
the most promising results toward a "break-even" condition, since the first 
introduction in the middle of 1950s. To study plasma behavior in a tokamak, 
many devices have been developed in the world and some of them are in 
operation. 

In the tokamak experiment, fortunately, it is not so difficult to produce 
and maintain a pulse of plasma discharge to a certain extent by a simple trial­
and-error method. Then it has been emphasized to improve the plasma 
performance indices such as energy/particle confinement time, ion temperature 
and density in the hope of realizing controlled nuclear fusion. These indices 
result from the microscopic interactions of particles with electromagnetic 
fields. The external macroscopic electromagnetic fields are artificially 
controlled by the actuators such as poloidal/toroidal field coils. Therefore, 
manipulation of macroscopic quantities performs more important a task than 
that to maintain a plasma. In fact, it is known that high confinement mode (H­
mode) and locked-mode disruptions are sensitive to the clearance from the wall 
and plasma current evolution, respectively, both of which can be controlled by 
the electromagnetic field applied to the plasma. They seem to show the 
significance of looking from a macroscopic stand point. 

A way of looking at a plasma macroscopically is an "equilibrium control 
analysis," where a plasma is supposed to preserve its external/internal force 
balance like a conductor whose position, shape and current profile 
(conductivity) are evolving during a pulse of discharge. This simplification is 
valid in the time scale of macroscopic manipulation, -1 msec, which is 
sufficiently longer than the time scale that an acceleration of a plasma is 



settling to zero, -1 )lsec. (Analysis of conductivity evolution would require 
"transport analysis" to be involved.) Consequently, the design and operation of 
plasma control for a tokamak experimental device is based on the equilibrium 
control analysis. 

In addition, to realize the design and operation of plasma control system, 
the utilized hardware performance is the other important element. The recent 
rapid advance of digital computer technology allows us to apply various kinds 
of complicated algorithms to plasma control. This enables the fast and accurate 
control of plasma equilibrium with high reliability and reproducibility. 

The objective of this thesis is to investigate how to design and operate 
plasma equilibrium control with digital computers. Problems in control of 
tokamak plasma equilibrium - plasma shape identification, coil-vessel-plasma 
electromagnetic interactions, plasma control dynamics model, etc. - are 
discussed from the view points of applied mathematics and electromagnetics. It 
is presented how the JT-60 and JT-60U plasma real-time control system were 
designed and constructed using digital computers. A synthesis of tokamak 
plasma equilibrium control is finally proposed. 

Kenichi Kurihara 

Correspondence to Kenichi KURIHARA: JT-60 Facility Office I, Department of Fusion 
Facility, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, 801-1 
Mukoyama Naka-machi Naka-gun Ibaraki-ken, 311-01, JAPAN. Facsimile: +81- 292(70)7459 
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Chapter I 

Introduction 

1.1 Concept of Tokamak Plasma Equilibrium Control 
Controllability of tokamak plasma properties is a basic but unsolved 

problem. The difficulties are as follows: 
(1) All the relations of the many distributed state quantities and the small 
number of actuators have not yet been made clear. The distributed state 
quantities are the profiles of plasma current, temperature and density, position 
and shape of a plasma column, electromagnetic fields and energy/particle 
confinement (flow). These are not independent, but interact each other. On the 
contrary, the major actuators are the several poloidal field coils, toroidal field 
coil, gas fueling, NBI (neutral beam injectors), RF (radio frequency heating 
devices), pellet injectors. 
(2) The condition of the first wall facing a plasma is uncontrollable and usually 
unobservable. The activation extent of the wall determines the particle 
recycling ratio, which is known to be very sensitive to the edge plasma 
properties affecting the macroscopic plasma performances. 

All the difficulties must be solved in the future as a result of various 
investigations with experiments. To perform the experiments, a plasma should 
be produced and maintained properly at first. Then this makes it possible to 
study other properties. The important parameters concerning production and 
maintenance of a plasma are its positions and shape. In the time scale of plasma 
position and shape control, a plasma can be regarded to preserve its external 
and internal force balance like a conductor. Consequently, in order to obtain a 
desired equilibrium plasma, it is necessary to control the plasma. 

The configuration of the plasma equilibrium control in a tokamak is now 
shown in Fig. lf•J . Four processes are linked through data or physical 
quantities: (a) "Identification" is to identify plasma configuration parameters, 
position and shape, from measured signals. (b) "Control algorithm" is to 
perform control calculations by comparing the identified parameters with 
preset reference waveforms according to a certain algorithm. It produces 
control commands to actuators. The control algorithm depends on the 

[•] ; Control of plasma electron density is performed in the same way as shown in Fig. I. Some actuators such 
as NBI and RF are operated according lO preset waveforms without feedback control. 
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performance index and status of a plasma. Various algorithms are proposed 
for optimal plasma control. (c) "Actuators' dynamics" is composed of power 
supplies and poloidal field (PF) coils to produce electromagnetic fields 
according to the received commands. This process cannot be completely 
separated from that in "plasma & structural components." (d) "Plasma & 
structural components" interact with each other and with electromagnetic 
fields . Eddy currents induced in the structural conductors also interact PF 
coils, which is shown as the returning flow to "actuators' dynamics" in Fig. 1. 
As a result of those interactions, plasma position, shape and moving velocity 
are determined. 

Control 
Algorithm 

1 Identification 
I 
I 

:L------' 
I 

:Control 1 

!_~~~~~~----------] 
c::::J; Transferred Quantities. 

Controlled 
~C}_bj_e_c} _________ " 

(=:J; Process or Component. 

Fig. 1. Configuration of Tokamak Plasma Equilibrium Control 

1.2 Objectives of This Thesis 
The objectives of this thesis are now clarified together with the previous 

works in this field, . 
Concerning tokamak plasma shape identification, many methods have been 

proposed[ll, but few of them seem to have a rigorous mathematical basis. For 
example, filament-coil-plasma approximation[2l, which is the most popular 
method for the full shape identification, has not been verified mathematically. 
Furthermore, rational determination of both the utilized sensors and their 
locations for the design of a new device does not exist. Thus, it is necessary to 
solve a shape identification problem on the basis of applied mathematics. 

The shape identification can be regarded a kind of a static problem if the 
current distribution is determined. On the other hand, such an equilibrium 
plasma has "dynamics" because it moves electromagnetically interacting with 
the vacuum vessel, poloidal field coils, support structures, etc., where induced 
eddy currents produce electromagnetic field dynamics. Various kinds of eddy 
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current analyses are performed for electromagnetic industrial products in the 
wor!d[31. In addition, the benchmark tests to evaluate numerical codes for eddy 
current analyses were reported[41. However, only a few numerical analyses 
have been applied to tokamak plasma equilibrium control[51. Though those 
methods adopt various approximations of a tokamak device, they seem never to 
have been verified in the experiments. A simple model of plasma equilibrium 
control must be first constructed using Maxwell equations. Second, the model 
should be verified in comparison with experimental data from the JT -60 
tokamak. Finally, a finite element method of plasma equilibrium control 
analyses is developed for three-dimensional general tokamak geometry. 

Once a model for plasma equilibrium control is completed, various 
control methods can be applied to the model. The obtained preferable methods 
will be built in the plasma control system. However, at this stage of seeking 
experimentally the best tokamak operation for a fusion reactor, the control 
methods must be changed whenever a new understanding of plasma behavior is 
added. Consequently, a flexible system is required for tokamak plasma control. 
To realize the requirement, it seems to be natural to adopt advanced digital 
computers, because they have good reproducibility and reliability in addition 
to flexibility. No large tokamak device early in 1980s except JT-60, however, 
adopted digital computers for plasma control. It is then important to show how 
JT-60 plasma control system using digital computers is designed and operated. 
Furthermore, JT-60 Upgrade plasma control system, which allows any control 
method to be quickly and easily installed, provides one of the sophisticated 
systems for tokamak plasma equilibrium control with digital computers. 

Now the objectives of this thesis are listed up as follows: 
(1) To develop a new method to identify tokamak plasma shapes by solving a 
partial differential equation governing the problem of concern on the basis of 
applied mathematics. The method must give criteria to determine rationally 
both the utilized sensors and their locations. 
(2) To construct a simple model of plasma equilibrium control using basic 
electromagnetic equations (e.g. Maxwell equation, Ohm's law, etc.). The model 
should be verified in comparison with experimental data from the JT-60 
tokamak. A finite element method of plasma equilibrium control analyses is 
formulated for three-dimensional general tokamak geometry. 
(3) To present how the plasma control systems for JT-60 and JT-60 Upgrade 
are designed and operated, as the sophisticated examples of tokamak plasma 
equilibrium control systems with digital computers. 
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(4) Finally, this thesis is intended to clarify synthetically how to build up 
"computer control of tokamak plasma equilibrium" from a methodological 
point of view. As this thesis contains all components necessary for plasma 
equilibrium control, it is believed to be of great use for the improvements or 
new developments of a tokamak system. 

The abstracts of the chapters are presented as follows: In Chapter II, two 
methods of tokamak plasma shape identification are developed and discussed 
from an applied mathematical point of view. A necessary condition for shape 
identification is derived and application to JT-60 Upgrade and ITER 
(International Thermonuclear Experimental Reactor) plasmas are presented. 

In Chapter III, electromagnetic interactions in a tokamak are investigated. 
Modelling of the controlled object dynamics is discussed and the validity is 
confirmed using JT-60 experimental data. Furthermore, electromagnetic 
equations for plasma equilibrium dynamics are derived, where axisymmetric 
motion is considered with the inputs of PF coil voltages and plasma pressure 
profile. A three-dimensional finite element method of plasma equilibrium 
control analyses is formulated for the tokamak geometry. 

In Chapter IV, design and operation of JT-60 and JT-60 Upgrade plasma 
control systems using digital computers are presented from the technological 
aspects of software and hardware. In particular, how to build up a parallel and 
pipeline computer system is presented. System design of real-time shape 
visualization is also presented. 

In Chapter V, conclusions derived from the investigations in the previous 
chapters are presented. A synthesis to design a tokamak plasma equilibrium 
control system is finally proposed as a result of the discussions in this thesis. 

References in Chapter 1.2 

[1] Braams, B.J., Plasma Physics and Controlled Fusion, Vol.33 (1991) p.715. 
[2] Swain, D.W., Neilson, G.H., Nuclear Fusion, Vol.22 (1982) p.1015. 
[3] Many examples of eddy current numerical analyses are presented in 

"IEEE Transactions on Magnetics, Vol. Mag-23 (1987) No.5 and Vol. 26 
(1990) No.5" 

[4] Miya, K. and Nakata, T. (ed.), "Proceedings of the international workshop 
for eddy current code comparison," (Oct. 1986) 

[5] Jardin, S.C. et a!., "Dynamic modeling of transport and positional control 
of tokamaks," Journal of computational physics, Vol.66 (1986) p.481 
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Chapter II 

Shape Identification of 
Tokamak Equilibrium Plasmas 

As shape identification is indispensable for tokamak plasma experiments, 
many identification methods have been proposed. The methods for the real­
time control are as follows: 

(a) Shafranov moment method [ll 

(b) Multiple moment method [21 

(c) Flux extrapolation method [JJ 

(d) Statistical processing formulation using the equilibrium database [41 
These methods can well identify only the plasmas having certain shapes, 
positions and internal quantities. In particular, (a) and (b) can be used only for 
circular plasmas. It is because long computation time is not allowed in real­
time processing. Does adequate calculation time make it possible to reproduce 
the complete shape of plasmas? The full-shape identification methods proposed 
to date are then as follows: 

(e) Filament-current-plasma approximation method [SJ 

(f) Eigenfunction expansion of a vacuum poloidal flux function in 
cylindrical coordinates [61 

(g) Eigenfunction (Legendre-Fourier) expansion of a vacuum poloidal 
flux function in toroidal coordinates [?J 

(h) Optimal control method with a Cauchy boundary condition [SJ 

(i) Green's function method [91 

U) Full equilibrium analysis P0l 

The method (e) requires many independent parameters such as positions 
of the filament currents to be identified, and no algorithm to determine the 
filament-current locations has been found. This method gives a comparatively 
good result, though it was heuristically introduced and is not based on the 
theoretical certification. 

Both the methods (f) and (g) analytically solve the Grad-Shafranov 
equation in a vacuum region. The method (f) uses an expansion of regular 
functions, while the method (g) uses that of functions with a singular point at 
the expansion center. The analytic region of concern is a doughnut-shape 
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vacuum are surrounding a plasma in a poloidal cross section. It is easily 
explained that a vacuum poloidal flux function in such a field that is not simply 
connected must have a singular point. Hence, the method (g) seems to be more 
preferable than the method (f). Furthermore, the method (g) can identifies 
both the shape of a small circular plasma and that of an asymmetric divertor 
plasma. This can also take eddy current into consideration. 

The method (h) needs flux loop values. As flux values are obtained by the 
time-integral of the flux loop signals, and as the integrator must have the drift 
characteristics, this method is less suitable for steady-state tokamak operation. 
The necessity that the optimal control algorithm should be applied to this 
problem seems to be based on the Cauchy problem. But the reason why the 
Cauchy condition is necessary is unclear. 

The method (i) also corresponds to solving the Grad-Shafranov equation 
in a vacuum region analytically. This method uses both the flux loop and probe 
signals. The flux loop signal is less suitable for steady-state discharge, 
similarly to the method (h). 

The method U) is to solve the Grad-Shafranov equation both in the 
vacuum and plasma regions under the assumption of the formulas of plasma 
current/pressure profiles. The necessity of the Grad-Shafranov equation in the 
plasma region is still questionable. 

All the methods above still have problems in (steady-state) plasma 
operation, though analytical solutions of the Grad-Shafranov equation in a 
vacuum (the methods (g) and (i)) seem to be the most promising methods. 
However, why do so many arguments on shape identification still remain after 
so many method was proposed? This question may be caused by the inadequate 
theoretical (mathematical) consideration. This chapter is devoted to the 
clarification of the problem from the analytical point of view, the derivation 
of a necessary condition for shape identification, and the confirmation with 
applications. 

In Chapter II.l, A method to identify the shape of tokamak plasmas with a 
Legendre-Fourier expansion of the vacuum poloidal flux function in toroidal 
coordinates is improved for the JT-60 Upgrade plasmas that have different 
sizes, positions, shapes and internal quantities. The method is based on the 
analytical solution of the Grad-Shafranov equation in a vacuum region using 
toroidal coordinates. Though many identification methods proposed previously 
allow very small perturbations of certain parameters of nominal plasma, the 
method presented in this article can relax the identification restriction on 
plasmas. Hence, it is applicable to accurate feedback control and real-time 
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visualization of various plasma configurations. Both the method and the 
computational algorithm are clearly presented. A comparison of this method 
with the filament-current approximation method is described. Robustness in 
the case of the unavailability of sensors or with signal noise is also examined in 
application to the JT-60 Upgrade tokamak geometry. 

In Chapter II.2, The mathematical concepts of necessary conditions for 
tokamak plasma shape identification are discussed. A method using only the 
derived necessary condition is proposed. This method is based on the boundary 
integral equations governing a vacuum region around a plasma with only the 
measurement of either magnetic fluxes or magnetic flux intensities. The 
application to JT-60U and ITER plasmas shows that this method can identify 
various plasmas with low to high ellipticities with the necessary precision by 
providing an adequate number of the magnetic sensors. The proposed method 
is also applicable to real-time control and visualization by utilizing tabulated 
"look-up" data. 

References 
[I] Mukhovatov, V. S. and Shafranov, V. D., "Plasma Equilibrium in a Tokamak," Nuclear 

Fusion vol.ll(l971), p.605. 
[2] Aikawa,H. et al., "Derivation of Plasma Displacement in a Tokamak from Magnetic 

Probe Signals," Japanese Journal Applied Physics vol.15(1976), p.2031 & p.2479. 
[3] Schneider, F., "Novel Method of Determining the Plasma Position and its Application to 

the ASDEX Feedback System," Proceedings of lOth Symposium on Fusion Technology, 
Padova(1978), p.1013. 

[4] Hosogane, N. et al., "Method for Measuring Divenor Configuration Parameters for 
Feedback Control in JT-60," Nuclear Fusion vo1.26(1986), p.657. 

[5] Swain,D.W. and Neilson,G.H., "An Efficient Technique for Magnetic Analysis of Non­
circular, High-beta Tokamak Equilibria," Nuclear Fusion vo1.22(1982), p.l015. 

[6] Reusch,M.F. and Neilson,G.H., "Finite Order Polynomial Moment Solutions of the 
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PPPL-2072(1984). 
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11.1 Tokamak Plasma Shape Identification with a 
Legendre-Fourier Expansion of the Vacuum 
Poloidal Flux Function 

1. Introduction 
Since the tokamak was first introduced in the middle 1950s, various 

methods for position and shape identification have been developed for plasma 
control and diagnosis[IHI2l. These methods are roughly classified into two 
types; calculation of macroscopic parameters and full-shape identification. 
The former aims at real-time feedback control, where the calculation time is 
required to be minimized. The latter is required to identify full plasma shapes 
more accurately, even if a much longer calculation time is needed. Now we 
address the latter methods with a poloidal flux function expressed by a series 
of eigenfunctions of the Grad-Shafranov(G-S) equation in a vacuum region. 
These functions are used because they are well supported by the mathematical 
theory of the solution of partial differential equations. 

The form of an eigenfunction depends on the coordinates taken for the 
analysis. Eigenfunctions in cylindrical, spherical and toroidal coordinates have 
been applied to tokamak devices. Eigenfunctions of the G-S equation in other 
coordinates can be mathematically considered, but other coordinates have not 
been used for tokamak plasma applications. Selection of the coordinates has a 
strong influence on the accuracy of approximation of the finite series of 
eigenfunctions. When the configuration of the coordinates has similarity to the 
actual plasma shape, the identification can be more precisely performed and 
needs only the first several orders of eigenfunctions. Consequently, toroidal 
coordinates were chosen as a starting point because they basically expresses the 
contour of a complex potential field produced by a pair of positive and 
negative charges. 

The requirements for the shape identification of the JT-60 Upgrade (JT-
60U) plasmas (noncircular lower-divertor plasmas) [I3l are listed below. 
Req.l: An algorithm that can identify the shape precisely in real time and in 
various plasmas; from a small circular limiter plasma to a large noncircular 
divertor plasma with various internal quantities such as li, ~p, etc. Req.2: An 

algorithm that can visualize the shape in real time. This will improve operation 
efficiency. Req.3: Eddy currents should be taken into consideration. 

The previously proposed methods which use eigenfunctions in cylindrical, 
spherical and toroidal coordinates do not satisfy Req. 1; even a small amount 
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of positional perturbation increases the identification error. However, the 
sophistication of these algorithms and their integration with computer 
technology could satisfy Req. 2. 

As a result of investigation, it was determined that the improved method 
described in this chapter can satisfy all requirements. In the following sections, 
this method -"the !.Qroidal-coordinates .Legendre-Eourier expansion (TOLFEX) 

method"-is explained together with its application to the JT-60U plasmas. 

2 Poloidal Flux Function in a Vacuum Region 
2.1 Analytical Solution of the Grad-Shafranov Equation in a 

Vacuum Region and Its Physical Interpretation 
Two quasi-steady-state Maxwell's equations in a vacuum region; 

rot B = 0, 
div B = 0 

(2.1) 
(2.2) 

give the Grad-Shafranov equation under the assumption of axisymmetric 
geometry. ¢is a poloidal flux function. 

r2di /gradljl) = (rif~) + (~)2 ) ljJ = 0 
"\ r2 ar\ r dr dZ (2.3) 

Now we change the variables from (r, z) in cylindrical coordinates to (a, 8) in 
toroidal coordinates according to the following relations ; 

th - r2+(z-Zo)2+R6 cot (} = r2+(z-Zo)2·R6 
co a- 2 r Ro ' 2 (z-Zo) Ro (2.4) 

Then, the solution of Eq. (2.3) is given as a series of flux eigenfunctions 
SGm(r,z,R0,Z0) using the method of variable separation[14l): 

~~(r,z,Ro,Zo) = sinh a ·fm(a) ·gm(8) 
Y cosh a - cos (} (2.5) 

f (a)= dGm-w(x) : x=cosh a 
m dx · 

Gm-1/2 = P m-1/2 ;(m-1/2)-order Legendre function of the 1st kind 

Qm-1/2 ;(m-1/2)-order Legendre function of the 2nd kind 
g m(e) = cos me 

sin me 
m = 0,1,2, ..... ; separation constants. 

Each flux eigenfunction SGm(r,z,R0,Z0) expresses a two-dimensional potential 

field produced by both currents of poloidal field coils and a plasma current. 
Flux eigenfunctions are classified into four types depending on the selection of 
the functions fm(a) and gm(8), as shown in Table 2.1. Figures 2.1 and 2.2 show 
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three-dimensional figures of flux eigenfunctions involving a Legendre function 
of the first and second kind , respectively. 

Table 2.1 Classification of Flux Eigenfunctions 

~1/2 Pm-1/2 Qm-1/2 

cos me P·cos Q·cos 
sin me P·sin O·sin 

Physical interpretation of the flux eigenfunctions is: 
Pcos: m=O : flux produced by a ring-ftlament current flowing through (R0,Zo). 

=I : flux produced by dipole currents. 
=2 : flux produced by quadruple-pole currents. 
=3- : flux produced by (2m)-pole currents. 

Psin: m=l-

Qcos: m=O 
=I 
=2 
=3 
=4-

Qsin: m=l 
=2-

: flux expressed by rotating the corresponding Pcos flux about 
(Ro,Z0) by an angle of rc/(2m). 

: the 0-order of vertical magnetic field. 
:the 1st-order of vertical magnetic field. 
:magnetic field for changing ellipticity. 
: magnetic field for changing triangularity. 
: magnetic field for an m-angle polygon. 

: horizontal magnetic field. 
: flux expressed by rotating the corresponding Qcos flux about 

(Ro.Zo) by an angle of rc/(2m). 

In particular, a singular point in the flux eigenfunctions of Pcos and Psin is 
only a point of (R0,Z0), though higer order eigenfunctions can express the 

magnetic field produced by multipole currents. A series of flux eigenfunctions 
can express a figure of vacuum peloidal flux except the singular point (R0,Zo). 

If a Dirichlet or a Neumann condition is given everywhere on a certain 
closed boundary, an infinite series of eigenfunctions could compose a solution 
of the G-S equation. Such an ideal supposition, however, can not be applied to 
an actual system. Hence, the flux functions produced by artificially-located 
peloidal field (PF) coils should be introduced for improvement of the 
identification. 

The locations of PF coils are determined as a result of design of a 
tokamak plasma. A PF coil can be defined as several turns of ring currents, 
whose flux satisfies the G-S equation in a vacuum region. The PF coil flux 
function can be considered independent of the eigenfunction S?m(r,z,R0,Z0) 

because there is only a small possibility that a flux function of an artificially­
located PF coil agrees with a finite series of flux eigenfunctions introduced 
mathematically. 
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2.2 The Expression of the Poloidal Flux Function 
The expression of the poloidal flux function is given as a linear 

combination of the eigenfunction I;Gm(r,z,R0,Z0) and the PF coil flux function 
I;Cj(r,z). 

a p 
¢(r,z,Ro,Zo) = 2:, C~-~~(r,z,Ro,Zo) + 2:, cf-~((r,z). 

m=O i=l (2.6) 
a. ; the number of types of eigenfunction ~Gm. 

~ ; the number of types of flux function ~ci. 

cGm ; the unknown coefficient of ~Gm. 

cci ; the unknown coefficient of ~ci. 

Taking a plasma current into consideration, a CGm is easily eliminated. 
Integration of a quasi-steady-state Maxwell's equation rot B=llo.i over the entire 
surface where current is flowing gives 

Jloi = f rot B·dS =#B ·dl. 

I ; the total current flowing through the surfaceS. 

dS ; =n dS, n is the normal vector to the surfaceS. 

(2 .7) 

dl ; the direction vector along the closed curve around surface S. 

In general, a magnetic flux density vector is given as derivatives of a poloidal 
flux function 1;, and then; r·Br=-dl;/dz, r·Bz=d/;/dr. Using these relations, the 
closed linear integrals (the right-hand side of Eq. (2.7)) are calculated for the 
functions SGm and Sci analytically. If a point of (R0, Z0) is included inside the 

closed line of the integral, the integrated values are determined independently 
of the route of the line, as shown in Table 2.2. 

Table 2.2 The Values of the Closed Linear Integrals 

Flux Function 

P·cos 

sC:.. P·sin 
Q·cos 
Q·sin 

c,<i 

PB·dl 
5 

nRcrff 
0 
0 

0 

0 

a 

b) 

b) 

b) 

Note: 
a) : See Reference [15]. 
b): Q·cos, m=O, I, 2 and Q·sin, m=l, 2 are 

regular functions. Their integral values 
are exactly 0. Others can be regarded 0 
as a result of numerical calculations. 

Thus, Eq. (2.7) results in the following relation. 
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(P·cos) 

I cg = m'£Ro·J.lo·Tt·Ip = k(Ro)·Ip 
5 . (2.8) 

Ip ; plasma current. 
(P·cos) 

I ; summation of the coefficients of the eigenfunctions of P·cos. 

11 ; parameter for adjusting the coefficient of P·cos ( 11 <1.0). 

k(Ro) = m'£Ro·J.lo·11 
5 . 

CG0 denotes the coefficient of the eigenfunction Pcos,m=O; then Eq. (2.8) gives 
(P·cos) 

c~ = k(RoHr - I cg 
m~O 

Eliminating CG0 in Eq. (2.6) by using Eq. (2.9), 

m~O 

G 
~o ; the eigenfunction P·cos, m=O 
(P·cos) 

(2.9) 

i= l (2.10) 

I ; summation of the eigenfunctions of P·cos, excluding P·cos,m=O. 
m;<O 

(P-cos) 

I ; summation of all eigenfunctions except P·cos. 

The vector expression is now introduced in Eq. (2.10). Then 

1/J(r,z,Ro,Zo) = p(r,z,Ro,Zo)·Ip +'q(r,z,Ro,Zo)·C. (2.11) 

p(r,z,Ro.Zo) = k(Ro)·~~. 
GGGG GG CC 

<q(r,z,Ro,Zo) = (~~-~o. ~z-~o,. · ·, ~j .~j+l> · ·.~t .~2> · ·). 

rc = <c?-q. c:;'-q, ... , cy.c~ 1 ,. .. ,cf,ci,.. ·). 
q , C E R (a+P· l)xl, tq ; transpose the vector q. 

C and (R0, Z0) are identified from the signals of flux loops and a Rogowski 
coil. The necessary conditions for the existence of C and (R0, Z0) are easily 

obtained as 

a+ ~ + 2(R0, Zo search) ::; (number of flux loops) + 1(a Rogowski coil). (2.12) 

Now this concept is discussed from a mathematical point of view. The G­
S equation belongs to a second-order elliptic partial differential equation 
(PDE) that holds in the doughnut-shaped region surrounding a plasma surface. 
Figure 3 shows a topological concept of this region. A boundary condition is 
given only on the outermost boundary; the innermost boundary is free. Two 
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types of boundary conditions are possible; "Dirichlet" when flux loops are 
used and "Neumann" when magnetic probes are used. A Dirichlet type 
boundary condition is adopted for our method. 

Outermost Boundary (A Dirichlet condition) 

Plasma 

Analytic Region 

Innermost Boundary (The figure and value on 
the boundary are free.) 

Fig. 2.3. Topological Concept of the Analytic Region 

According to Morse and Feshbachli 4l, solutions of the second-order 
elliptic PDEs provides stable and unique results for Dirichlet conditions on a 
closed boundary. Consequently, the Dirichlet condition only on the closed 
outermost boundary (i.e., on the vacuum vessel wall) determines a unique 
solution over the concerned region including the innermost boundary (i.e., the 
plasma surface). Though the solution has been obtained on the entire 
doughnut-shaped region, information on the innermost boundary is never 
derived from consideration of differential equations. Instead, it is obtained 
from a tokamak plasma property. The outermost magnetic surface of a plasma 
is known to be defined by the contour with the same flux value. Therefore, 
once a flux value is given at a certain point on the innermost boundary, a 
contour with the same flux value must show the plasma shape. In a limiter 
discharge, all flux values at fixed limiters located on the vessel wall are 
calculated using this solution. The smallest value (or the largest value; 
depending on the selection of positive or negative direction) indicates the flux 
value on the plasma surface. In a divertor discharge, flux values at both the 
fixed limiters and an X-point (a saddle point of the solved flux function) are 
calculated. The smallest value indicates the surface flux value. The discussion 
above concludes in principle that this method can find a plasma shape from 
flux loop signals without any information on plasma internal quantities. In 
reality, however, the Dirichlet condition is given on discrete points on the 
boundary and the solution of an infinite series of eigenfunctions cannot be 
given exactly. Application to the JT-60U, discussed in Section 4, shows this 
does not present a problem. 

3. Algorithm for Shape Identification 
3.1 Identification of (R0,Z0) and C 

The first step of shape identification is to determine (R0,Z0), the center of 
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the toroidal coordinates. The next step is to determine the coefficient vector C. 
If (R0, Z0) is not identified but fixed, the identifiable plasmas are extremely 
restricted because of a finite series of eigenfunctions and discrete boundary 
conditions. Now, returning to Eq. (2.11), C is linearly contained, while 
(R 0,Z0 ) is nonlinearly contained. It was found that both a linear and a 

nonlinear unknown quantity can be calculated by "the two-step least squares 
method." This method applies the least square method twice with the 
performance index remaining unchanged. 
[Defmition] 
The number of flux loops is N, and each of their positions in cylindrical 
coordinates is (ri, zi), i=l,2, .. N. The following quantities are defined . 

1/l;==I/J(r;,z;,Ro,Zo), 

p;==p(r;,z;,Ro,Zo), 

q;==q (r;,z;,Ro,Zo), 

h; t(ifJJ,ifJ2>. ·,ih<) E RNxl. 

P"' ~pl,P2> · ·,PN) E RNxl. 

F; t(q 1 ,q 2,. .. ,q N) E RNx(a+~·l)_ 

Making N sets of Eq. (2.11) on the points of (ri, zi), i=l,2, .. ,N, the following 

vector equation is obtained. 
h = p·Ip + F·C. (3.1) 

pbs; is the observed data of the i-th flux loop and the vector hobs is defined as: 

hobs == '(1/l~bs,I/Jr',. .. ,lfrNb') E RNxl. (3.2) 

[The least squares method is used to obtain this form of C ] 
The performance index is defined as follows; 

J = t( h obs_ h )-(h obs_ h). (3.3) 

aJ;aC=O gives the form of the least squares solution of C cal. 
ccal = (LF·F)·l.tF-(h obs_ p ·Ip)· (3.4) 

ccal is substituted into C in Eq. (3.1) and the calculated flux vector heal is 
given as a function of (R0,Z0). 

h eal = p·Ip + F-ecal 

= (E- F ·(tF·F)·1.tF}·p·lp + F·(tF·F)-1-tF- h obs. (3.5) 

E ; A unit matrix E RNxN_ 

[The least squares method is used to obtain the performance index for (R0,Zo)J 
The performance index for (R0, Z0) is set to the form of Eq. (3.3); 

J = t(h obs_ h cal)·(h obs_ h eal). (3.6) 

The right-hand side of Eq. (3.5) is substituted for heal in Eq. (3.6), then 
J = t(h obs_p·lp) · (E - F·('F·F)·l.tF)-(h obs_p ·Ip) (3.7) 

= th obs.u.hobs + V·hobs.rp +W-I~. (3.8) 
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V(Ro,Zo) = -2·'p·(E- F ·('F·F)· 1.tF) 

W(Ro,Zo) = 'p·(E - F ·('F ·F)· 1-tF) ·p 

It should be noted that the dimensions of U and V are determined not by the 
number of eigenfunctions but by the number of flux loops. A nonlinear search 
process over the three-dimensional curved surface of (r,z,J(r,z)) is required 
for obtaining a point (R0, Z0) that minimizes the performance index of Eq. 
(3.8). Once (R0, Z0) is determined, Eq. (3.4) gives the parameter ccal. 

3.2 Identification of the Poloidal Flux Function 
The substitution of C cal in Eq. (2.11) gives the peloidal flux function ¢at 

an arbitrary point of (r, z) in a vacuum region; 

¢(r,z) = p(r,z)·Ip + tq (r,z) ·Ccal 

= ta(r,z)·hobs + b(r,z)·Ip. 

a(r,z) = th(r,z)·('F ·F)· I.tF E RNxl . 

b(r,z) = p(r,z)- th(r,z)·('F·F)-1-tF-p 

(3.9) 

(3.10) 

On the three-dimensional curved surface of (r,z,cp(r,z)) in the vacuum region, 

the flux values at the fixed limiters are calculated. The X-point search is also 
performed on the same surface. Among calculated flux values at both the fixed 
limiters and an X-point, the smallest one indicates the plasma surface flux 
value ¢min· The contour of ¢(r,z) with ¢min then shows the shape of the plasma. 

4 . Performance Evaluation: Application to JT-60 Upgrade 
4.1 Evaluation of Precision 

In this section, the plasma shapes identified by the proposed method -
TOLFEX (toroidal-coordinates L.egendre-.Eourier expansion) method are 
compared with those calculated by a reliable equilibrium code in JT -60U 
geometry. Seven types of eigenfunctions are used for JT -60U as follows; 
(l)Pcos:m=O, (2)Pcos:m=2, (3)Qcos:m=O, (4)Qcos:m=l, (5)Qcos:m=2, (6)Qcos:m=3 
and (7)Qsin:m=L These indispensable eigenfunctions together with the four flux 
functions produced by the PF coils were found to identify various JT -60U 
plasmas having different positions, shapes and internal quantities. 

The 11-value in Eq. (2.8) is a constant, 0.96, for various JT -60U plasmas. 
This signifies that two eigenfunctions, Pcos,m=0&2, express 96% of the total 
plasma current and that the higher order eigenfunctions probably specifies the 
remainder of the plasma current. 

The dashed line in Fig. 4.1(a) shows the identified shape of a 6 MA 
standard divertor plasma and that in Fig. 4.1(e) shows a 6 MA standard limiter 
plasma case. Both identified shapes agree with the contours calculated by the 
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equilibrium code. Figure 4.l(h) is a 1 MA small limiter plasma attached to the 
inside wall of the vessel. The identification error is observed on the outside 
surface and on the tokamak center axis. It seems that the number of flux loops 
located on the outside wall of the vessel may be very inadequate and the 
distance from the flux loops to the plasma surface is too great to give a precise 
identification. Figure 4.l(d) is the case of a smaller divertor plasma with a 
low poloidal ~-value. Good agreement can be seen despite the excessive 
distance from the plasma to the upper flux loops. 

Errors related to the change of plasma current profiles are next 
investigated. Figures 4.l(b) and 4.l(c) show the case of a peaked-profile 
plasma and that of a broad-profile plasma as compared with the plasma in Fig. 
4.l(a). Though the effective distance from the flux loops and the plasma 
becomes greater in the peaked-profile case (b), the error is small. In contrast, 
the effective distance becomes smaller in the broad-profile case (c), but the 
identified surface is rather wider in comparison with the reference shape. 
Figures 4.l(f) and 4.l(g) show good results for limiter plasmas with different 
positions. 

Table 4.1 compares the TOLFEX method and equilibrium code major 
radii(= 1/2{ (inner surface)-(outer surface)}) and the vertical positions. A is 
calculated according the reference [16]. The precision of the X-point, the unit 
of mesh, in the equilibrium code is 4 em. 

Table 4.1 Comparison of the Major Radii and the Vertical Positions between 
the TOLFEX Method and the Equilibrium Code Outputs 

Items Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 
Di vert./Limi t. D D D D L L L L 

Io 6MA 6MA 6MA 2MA 6MA 4MA 2MA 1 MA 
Rn 0.652 0.679 0.630 0.373 0.959 0. 190 0.189 0.195 

li 0.755 1.030 0.579 0.789 0.996 0.784 0.778 0.785 
Fig. 4.1 () (a) (b) (c) (d) (e) (f) (g) (h) 

IEOuilib.(m 3.3682 3.3699 3.3688 3.368C 3.2680 3.1707 3.4051 2.8499 
Rp TOLFEX(m 3.3643 3.3701 3.3599 3.3636 3.1546 3. 1546 3.4213 2.8932 

Errorrmm) -3.9 +0.2 -8.9 -4.5 -5.0 16.1 16.2 43.3 
fEGuilib.(m 0.2105 0.0980 0.2206 -.0688 0.1787 -.2156 0.3 131 -.0056 

Zp TOLFEX(m 0.2113 0.0965 0.2151 -.0728 0.1752 -.1998 0.2660 -.0131 
Error(mm) -9.2 -1.4 -5.5 15.7 -3.5 15.8 -47. 1 -7.5 
Equilib.(m 1.030 1.194 0.9196 0.7493 1.4570 0.5824 0.5785 0.5885 

A TOLFEX(m 1.038 1.237 0.8839 0.7795 1.4030 0.4930 0.9042 1.2430 
Errorro/o) +0.7 +3.6 -3.8 +4.0 -3.7 -15.3 -56.3 + 111.2 

Rx 
Equilib.(m 3.0792 3.0792 3.0792 3.0792 ::><=: TOLFEX(m 3.0700 3.0700 3.0800 3.0900 

Zx Ecluilib.(m) -1.449 -1.449 -1.522 -1.486 
TOLFEX(m) -1.422 -1.443 -1.445 -1.487 

20 



Fig. 4.1 Identified JT-60U Plasma Shapes by the TOLFEX Method 
Compared with the Output of the Equilibrium Code 
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4.2 Comparison with the Filament-Current Approximation Method 
The filament-current approximation method, where six filament currents 

simulate the plasma current, is essentially different from the proposed 
TOLFEX method because the locations of the filament currents are fixed 
inside the plasma surface. In other words, the identifiable shape is restricted 
by the filament current locations. In contrast, the expansion center of the 
toroidal coordinates in the TOLFEX method is one of the identified 
parameters. Thus, the various positions and shapes of plasmas can be 
identified, as mentioned earlier. More than 15 calculations were required to 
determine the optimum locations of the six filament currents for identification. 
Figure 4.2 shows the final identified shape determined by this method 
compared with the equilibrium shape. (The same case determined by the 
TOLFEX method is shown in Fig. 4.1 (a).) 

The results of this comparison indicated that, (1) the precision of the 
shape reproduction by the TOLFEX method is almost the same as the best case 
by the filament-current approximation method in the JT-60U application and 
(2) the performance index J (Eq. (3.3)) of the filament-current approximation 
method is 20% greater than that of the TOLFEX method. 

---· ; The identified surface 

-- ; The equilibrium code 

• ; The filament-current 
locations 

0 ; The flux loop locations 

+ ; The identified X-point 

L_ _ __, ; 1.0 m 

Fig. 4.2 The Identified Shape Determined by the Six-Filament-Current 
Approximation Compared with the Output of the Equilibrium Code 

4.3 Evaluation of the Loss of Flux Loops 
Though a flux loop is one of the simplest diagnostic devices, the case of 

loss of flux loops should be considered. Fifteen flux loops are located just 
outside the first wall of the vessel in JT-60U, as shown in Fig. 4.1. The 
necessary number of sensors is thirteen , one being a Rogowski coil. The 
unknown quantities are the coefficients of the seven eigenfunctions, the 
coefficients of the four PF-coil flux functions and the expansion center (R0, 
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Z0). Figure 4.3 shows the TOLFEX-identified shapes with the loss of one, two 
and three loops, respectively. Of significant importance, in the second case of 
Fig. 4.3 there is no loop on the third round (120°) of the wall on the poloidal 
cross-section. The resultant deviation, however, is not as great as might be 
expected. Table 4.2 shows the errors for several parameters . It follows that 
the TOLFEX method is robust against the loss of flux loops. 

Table 4.2 Identification Errors Resulting from the Loss of Flux Loops 

Shape 
Equilib. Number of the unused flux loops and 

code difference from the equilibrium code (mm) 
parameters output (m) 0 I 2 3 

Rp 3.3682 -3.9 -17.7 -13.3 -12.4 
Inner surface 2.3851 -9.9 +1.0 -1.1 +5.4 
Outer surface 4.3513 +1.4 -36.4 -25.5 -30.2 

Zp 0.2105 -9.2 -15.0 -14.9 -11.5 
#of unused flux loops none #1 #1, 15 #1, 7, 13 

---· ; The identified surface -- ; The equilibrium code ; I. 
o ; The flux loop locations x ; The unused flux loops 

Fig. 4.3 The Identified JT-60U Plasma Shape by the TOLFEX Method 
for the Cases of the Loss of One, Two and Three F lux Loops 

4.4 Evaluation of Noise Resistance 
In the discussion above, the input data of the flux loops and the Rogowski 

coil to the TOLFEX method are identical to the output data from the 
equilibrium code. However, a condition where signal processing is ideally 
performed and no electromagnetic noise exists cannot be presumed. Thus, 
random noise should be included in the input data to the TOLFEX method for 
investigation of actual use. The applied noise is as follows: 
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(1) Rogowski coil 

Assume 1% of the signal is random noise, 
Ipnoise = Ipeq(l.O + N(O.O, 0.01)}, (4.1) 

where Ipnoise is the input data to the TOLFEX method and Ipeq is the output 

data from the equilibrium code. N(O.O, 0.01) expresses random noise having 
Gaussian distribution with m (mean value)= 0.0 and 0' (standard deviation)= 0.01. 
(2) Flux loop 

A flux loop signal is produced by integrating the difference voltage of a 
flux loop from a fixed common reference flux loop . It is assumed that the 
largest signal to noise (SIN) ratio is 1000:1 for the pair of flux loops with the 
largest signal value. The SIN ratio of a flux loop with a smaller value becomes 
less than 1000:1, and thus the adopted supposition is rather severe. Now 
supposing the #8 loop is a common reference flux loop and the difference 

between the #8 and #M loops produces the largest signal, then 
1/lnoise(i) =1/leq(i)+( ¢eq(M)-~q(8)} N(O.O, 0.001), (4.2) 

where 1/lnoise(i) is the input data to the TOLFEX method and 1/leq(i) is the 

output data from the equilibrium code. N(O.O, 0.001) expresses random noise 
having Gaussian distribution. 

The input data with noise were applied to the same plasmas as those in the 
cases identified in Fig. 4.1. In each case, the TOLFEX method was performed 
eight times. Different noise was included each time. Table 4.3 shows the 
variations of the parameters. The variation of the major radius in case (h) 
(small limiter plasma) is -5 em, but in the other cases the variations are less 
than ± 1 em. Thus, it follows that the TOLFEX method is robust against noise. 

Table 4.3. Variation of the Parameters with Noise 

Item'\. Fig.4.1 (a) (b) (c) (d) (e) (f) (g) 
Diven./Limit. 

Ip 
Rp variation 
g:>variation 

5. Discussion 

D D D D L L L 
6MA 6MA 6MA 2MA 6MA 4MA 2MA 
+5/-1 +2/0 +4/-2 +4/-1 +1/0 +3/-2 0/-2 
+3/-10 +2/-3 +6/-5 +5/-1 +7/-3 +9/-3 +5/-2 

variation (mm) = ((data with noise)- (data without noise)} 
(maximum variarion)/(minimum variation) 

(h) 
L 

1MA 
+35/-70 
+14/-5 

Toroidal coordinates were first applied to an analytical solution of the G­

S equation for the D-shape tokamak plasmas of the ISX-B device by Lee and 
Peng 151. The identifiable shape in this solution may be extremely restricted 
because the point (R0,Zo) is fixed, as a result of the evaluation of the TOLFEX 

(!Qroidal-coordinates L_egendre-Eourier expansion) method proposed in this chapter. 
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The method proposed by Lee and Peng [5] has the following differences from 
the TOLFEX method. 
Dif. 1 Flux figures of the PF coils are not used. 
Dif. 2 Plasma current is not taken into account. 
Dif. 3 An artificial constraint on the coefficients of eigenfunctions is applied, 
Dif. 4 A constant parameter must be identified. 
Dif. 5 Only magnetic probe signals are used. 

The peculiarity of the ISX-B device seems to make the need for PF coil 
flux figure unnecessary (Dif. 1). The coils for maintaining a D-shape plasma 
create a flux field similar to the eigenfunction Q·cos,m=3. Therefore, all of 
the flux fields produced by the PF coils can be expressed by eigenfunctions. 
That is probably why the flux figures of the PF coils are not necessary for the 
identification. Concerning Dif. 2, the precision of the TOLFEX method 
deteriorates in the JT-60U application without the use of a plasma current 
value. The coefficient of the eigenfunction P·cos,m=O may include a large 
identification error if plasma current data are not utilized. This type of plasma 
flux figure uniformly increases or decreases the entire identified figure, see 
Fig. 2.1. The constant parameter, Dif. 4, can correct the identification error to 
some extent. Dif. 3 and Dif. 4 are never derived from the analytical solutions 
of PDEs, but they seem to adjust the flux figure. Dif. 5 corresponds to the 
solution with the Neumann boundary condition, where the solution exists 
uniquely. This is similar to that of the Dirichlet condition. In applications with 
magnetic probes , however, the average magnetic intensity along the axis is 
measured. This measurement includes the error due to probe direction. 

Next, we estimate the required memory size and computation speed for 
the execution of the TOLFEX method by a computer in real time. "Table­
look-up procedures" should be employed for the real-time calculation of the 
Legendre function . The results of calculations performed without the observed 
plasma current and flux data should be executed before the discharge and 
should be stored in the computer memory in tabular form. 

The search for (R0,Z0) requires the calculation of J(r,z) and oJ(r,z)/oz. 
The parameters U, V, W in Eq. (3 .8) and their derivatives should be stored in 
tabular form. The flux calculations on the fixed limiter, the X-point search 
and the major radius calculation require the parameters a and b in Eq. (3.10), 
which should also be stored in tabular form. To estimate the requirements for 
a computer capable of performing these tasks, assume the range of (R0,Z0) is 

restricted to remain inside the 0.5m-radius circle whose center is that of the 
vacuum vessel and that the number of flux loops is 15. The memory size 
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required is estimated to be about 15 Mbytes . The longest calculation time 
needed will be to calculate J(r,z) and aJ(r,z)/az; roughly 400 instructions are 
required. If the calculation cycle time of the processor is 0.1 )lsec, 40 JlSec will 
be needed for one J(r,z) or aJ(r,z)/az calculation. Fifty iterations are assumed 
to be required for the determination of (R0,Z0). Thus , it takes 2.0 msec to 
perform the calculation. The number of processors should be determined 
according to the required cycle time of control. 

6. Concluding Remarks 
The proposed method in this chapter-TOLFEX method - is summarized 

as follows: 
(1) The method can identify the shape of an asymmetric divertor plasma 
without information on the expansion center (R0, Z0) because the point (R0 , Zo) 
can be determined through "the two-step least squares method." It can also 
identify the shape of a small circular plasma . 
(2) The method does not need magnetic probes. By employing a discrete­
point boundary condition and a finite series of flux eigenfunctions, the plasma 
shape can be accurately reproduced . 
(3) The method can take eddy currents into consideration. Information of 
uniform field produced by the eddy currents is contained in the eigenfunctions 
having Legendre functions of the second kind. The flux produced by 
axisymmetric eddy currents can be added to the members of the 
eigenfunctions. 
( 4) The method can be executed in real time where a table-look -up procedure 
is applied for calculation. It is possible to apply this method to feedback 
control and real-time visualization. 
(5) Since (R0,Z0) is identified close to the magnetic axis , Z0 can be used as the 

vertical position. Feedback control for the vertical position can be started at 
the calculation step that determines (R0,Z0). Thus, a short control cycle can be 

utilized to suppress vertical instability. 
(6) The method is robust against the loss of flux loops and the existence of 
signal noise. 
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11.2 Tokamak Plasma Shape Identification 
Based on Boundary Integral Equations 

1. Introduction 
To conduct experiments and data evaluation properly in tokamak devices, 

plasma shape identification is needed for plasma equilibrium control and 
analysis. Various methods to identify these shapes have been proposed[ll. 
However, a method called "filament-current-approximation (FCA)[2]" seems to 
be most frequently applied to tokamaks. This method uses several filament­
current-coils to express the vacuum magnetic field produced by the plasma 
current. For such a simple approximation, this method reproduces the shape 
comparatively well using only magnetic measurements. In contrast, methods 
based on the analytical solution of partial differential equations (PDEs) such as 
the "Legendre-Fourier expansion (LFE)l3l", the "multipole expansion[4l", etc., 
give poor identifications for plasmas with certain shapes or current profiles[3J. 
This results from the small number of sensors employed and also because 
numerical limitations allow only calculation of the first few series in solution 
formulas that are composed of an infinite series of eigenfunctions. Full 
equilibrium analysis[5] with the plasma current/pressure profile formulas 

requires knowledge of the shape. The premise that the predetermined formulas 
for this analysis can match the various states of plasmas is still questionable. 
Furthermore, the existing methods, FCA and LFE, cannot accurately identify 
the shape of a highly-elongated (K'=2.2) ITER (International Thermonuclear 
Experimental Reactor[6]) plasma. The reason for this is not clear; it seems the 
identification of the plasma shape is not fully understood. In this chapter, a 
necessary condition for plasma shape identification is discussed from the view 
points of conceptual mathematics and numerical computation. It is then 
confirmed that the method utilized for derivation of the condition gives shape 
reproduction with only the necessary condition in application to the JT-60 
Upgrade (JT-60U) and ITER. 

First, conceptual and theoretical considerations of shape identification are 
discussed in Section 2. Some techniques of the numerical computation used in 
the method are described in Section 3. Application to tokamak plasmas in JT-
60U and ITER along with several discussions are presented in Section 4. 
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2. Tokamak Plasma Shape Identification Concept 
It is well known that a tokamak plasma is so light that it is considered to 

preserve its equilibrium state. The problem of concern is, therefore, to 
identify the static magnetic field that results from currents flowing in both the 
plasma and poloidal field (PF) coils. Magnetic measurement data are presumed 
for this identification because magnetic sensors are at present passably reliable 
in a tokamak and should also be in the future. These sensors measure the 
magnetic or flux fields in the vacuum around a plasma. Since the plasma 
surface is a border surface of the vacuum region, complete identification of the 
magnetic fields in this vacuum region would then give the identification of the 
plasma shape. Is this possible in an actual system? What kinds of magnetic 
sensors are necessary? The answer to these questions are discussed in this 
section. 

2.1 Topological Concept of the Problem and Formulation of the 
Equations 
The quantities of current density U) and magnetic flux intensity (B) are 

connected by the following static Maxwell's equations: 

rot B = Jl~, 

div B = 0. 

(2.1) 

(2.2) 

By introducing the vector potential A (B=rotA) from Eq. (2.2), Eq. (2.1) 
becomes: 

rot rot A = Jlo.i· (2.3) 

It is assumed that all the quantities are axisymmetric. Now the flux function 1/J 

is defined as 1/J =r·Aro, where Aro is a toroidal component of the vector A, and r 
is the distance from the axis in cylindrical coordinates. Then Eq. (2.3) can be 
converted to the following scalar equation: 

div [(grad I/J)/r2] = -)l~ro/r, (2.4) 

where jro is a toroidal component of the vector j. The variable jro can be 
expressed by using the pressure and current profile functions, p(I/J) and I(¢), 
in terms of the flux function ¢: 

jro = (Jlofr)/2·dF/di/J + r·dp/di/J. (2.5) 

The substitution of Eq. (2.5) for the right hand side of Eq. (2.4) yields the 
Grad-Shafranov equation. For a vacuum region, jro is set to zero in Eq. (2.4), 
and the following equation is then obtainedPl: 
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div [(grad ¢)/r2] = 0. (2.6) 

This equation is classified as an elliptic nonlinear homogeneous second-order 
PDE. In general, a boundary value problem for an elliptic second-order PDE 
is known to give a unique solution with a Dirichlet or a Neumann condition on 
a closed boundary[8J . However, as the plasma current profile is unknown, the 
concerned analytical region is a doughnut-shaped area surrounding the plasma. 
This topological concept is shown in Fig. 2.1. It seems to be unclear whether a 
uniqueness of solution for a general elliptic second-order PDE still holds in 
such a region that is not simply connected. However, the analytical solution of 
Eq. (2.6), based on the method of separation of variables, gives two kinds of 
eigenfunctions, one of which has a singular pointl3l. This suggests the existence 
of a unique solution for Eq. (2.6) in such a region that is not simply connected, 
with a Dirichlet or a Neumann condition on a closed boundary. In fact, the 
shape identification method using those eigenfunctions gives a good result for 
low-K plasmas[3l. 

Sensor Surface 

~§§§! ~ 

Fig. 2.1 Topological Concept of the Analytical Region 

Now Eq. (2.4) is solved by converting Eq. (2.4) to the form of an integral 
equation using a Green function because this approach is most advantageous 
for a numerical solution of the concerned PDE. (The reason for this selection 
is explained in Appendix 1.) In the identity of the scalar functions, f and g: 

div[f.(grad g)/r2]- div[g·(grad f)/r2] = f.div[(grad g)/r2]- g·div[(grad f)/r2], (2.7) 

¢(y) and G(x, y) are substituted for f and g, respectively . The function G is 
the Green function between two points, x andy, in an axisymmetric geometry. 
The points x and y are defined as (rx, zx) and (ry, zy), respectively in 

cylindrical coordinates. The function G is then expressed as: 
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G(x , y) = G(r,,z,, ry,zy) =~~(I -1-} K (k)- E(kJ), (2.8) 

where K and E are the complete elliptic integrals of the first and second kinds, 

and k
2

"" 4·rx·ry / ((rx + ry'f + (zx- zy'fl. Furthermore, as this Green function is 

identical with the 0-th order eigenfunction of Eq. (2.6), the following equation 
holds: 

div [(grad G(x, y))/r/l = y·8(x, y), 

Y"" lim { div [gradG(x, y)]·dV(y) = - 8n2 

volume n-+0 Jn r~ 
xcn 

where 8(x, y) is the delta function, 8(x, y)"" [0 (x;ey), oo (x=y)], 

L ¢(y)- 13(x, y)dy=¢(x), xd2' 

(2.9) 

(2.10) 

(2.11) 

and dV(y) is the infinitesimal volume element at pointy. After integrating the 
identity Eq. (2.7) in the volume n with respect toy, Eqs. (2.4), (2.9), (2.11) 
and the Gauss integral formula are taken into account with n::Jx. Then the 
solution of Eq. (2.4) is obtained as: 

cr·t/f..x)= { [G(x, y}gradt/f..y}-1/f..y}gradG(x, y)] dS;y) I { J.lui(y}G(x. y} d~(Y) 
Jan ry Jn Y 

(2.12) 

where an is the closed surface of the volume n, dS(y) is the infinitesimal 

surface element vector at the pointy, dS(y)=n(y)·dS(y), n is the vector normal 
to the surface an in the direction away from n, j(y) is the current density 
distribution involved in the region n, and cr is a constant defined by: 

cr=-y·S, 8 = [I (n::Jx), 1/2 (an::Jx)l9l, 0 (the area excluding (n+an) ::JX)). 

Equation (2.12) signifies that if the current distribution in region n is known, 
the solution can be exactly expressed with the Dirichlet (1/l(y)) and Neumann 

(grad ifl(y)) boundary conditions on the surface an. The identifiability 

condition for tokamak plasma shape using this solution is discussed in the 

following subsection. 
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2.2 A Necessary Condition for Plasma Shape Identification 
Equation (2.12) requires knowledge of j(y) in the region Q. As the plasma 

current distribution was not known at the time of shape identification, the 
plasma current cannot be taken as j(y) for Eq. (2.12). It is assumed that PF 
coils and other current distributions, except plasma current, are known. This 
does not degrade the conceptual discussion of shape identification. This is 
because the field produced by unobservable currents such as eddy currents is 
negligibly small when compared with the field produced by the plasma 
current. The exception is for the case of short periods of current build-up and 
disruption [ lOJ. 

Three closed curved surfaces nested one within another are now defined 
in the axisymmetric analytical region . On the poloidal cross section, these 
surfaces show the nested closed curved surfaces illustrated in Fig. 2.2. 

Fig. 2.2 Topological Concept of the Closed Surfaces and Integral Routes 

The first surface is the boundary surface, oilB. which contains the whole 
region of concern. The second surface is the sensor surface, oils, along which 
the sensors are located and which is contained by oilB. The third surface is the 
hypothetical plasma surface, ()Qp, that contains the plasma column and is 
contained by ans. The area bounded by the surface an! and anz is denoted by 
il1-2. Equation (2.12) is applied to two regions, ilB.s and Qs.P, which do not 
involve the plasma. Then ()Qs is subsequently moved infinitely far from the 



concerned area. With respect to y on the central axis, G(x, y)=O and 
gradG(x,y)=O. By taking into account the following limitation: 

lim ( [G·gradtP-1/>·gradG]·dS(y) = 0 
an8 .... oo Jan8 r~ 

(2.13) 

the surface integral on ()Qs in Eq. (2.12) vanishes. Consequently, the solutions 
for Eq. (2.4) in the regions , Q s .s and Qs.P, are as follows: 
For X~ ns.s, 

(2.14) 

For X~ ns.P, 

atfl..x)=i [G·grad¢-1/>·gradG}dS;y) -i [G·grad¢-1/>·gradG]·dS;y) 
~ ~ ~ ~ 

(2.15) 

By using Eq. (2.14), again for X~ ns.P, 

crl/>(x)) [G·gradtP-1/>·gradG] ·dS(y) I r ~oGc+jv}G _dV(y) 
Janp r~ Jnp.s ry 

(2.16) 

In these equations jc and jv are the known current density in the regions Qs.s 

and Qs.P, respectively. For dS(y)=:n(y)·dS(y), n is the vector normal to the 
surface ans or ()Qp in the direction toward the plasma. 

The integral along the curved surface oQs in Eq. (2.14) requires that the 
values of 1/>(y) and grad¢(y) be measured . The quantity 1/>(y) is directly measured 

by the time-integral of the voltage signal from a one-tum flux loop. The 
quantity Bt denotes a tangential component of a flux intensity vector to the 
curved surface ()Qs, and Bt can be expressed in terms of 1/> as Bt=grad¢·n/ry. 

The signal from a magnetic probe located along an s gives grad¢·n/ry. 
Therefore, 4> and Bt can be measured by magnetic sensors. 

An infinite series formula is introduced for further discussion. K(a, ~) is a 
bounded and smooth function, except in the case where a=~ and q(~) is a 



smooth function in the integral domain Q. If u and 13 are involved in Q, and if 
the integral of Kca. p) with respect to 13 is bounded, i.e. J Kca. p)ctp < oo, then: 

f K(a, P} q (p) dP = ~ w(hi, a, Pi}q(ll;) 
(2.17) 

(see Appendix 2) where hi is the i-th infinitesimal length for the definite 

integral in the interval [a,b]. By using a sufficiently large number N for 
division of the integral interval, Eq. (2.17) can be converted to: 

f K( a, P} q (p) dP = ~ w(hi. a, pi}q(ll;)+ 0( u, N) 
(2.18) 

where 8(u, N) is a sufficiently small function compared with the first term of 
the right hand side of Eq. (2.18). This function is presumed to decrease 
monotonously as N increases, i.e. 8(u, N--too)--. 0. 

Now, let the numbers for division of the curved surfaces ons and onr be 
N and M, respectively, and N ;::: M. Equations (2.14) and (2.16) are then 
expressed as infinite series formulas by utilizing Eq. (2.18), where the residual 
function 8 denotes the total amount of residues produced by all integrals in Eq. 
(2.14), (2.15) or (2.16). In Eq. (2.14), by bringing x infinitely close to the 
boundary ans from the inside, we obtain: 

N N 
qf._x)= L W\(x, y;)qf._y;}+ L wl(x, y;)Bl(y;}+W1(x}+8

1(x, N). x.;;;ans. Yidns 
i=l i=l (2.19) 

Similarly, in Eq. (2.16) X is brought infinitely close to ans and ()Qp from the 
inside, and then: 

M M 
2 

qf._x)= L w1(x, z;)qf._z;}+ L W~(x, z;)Bt(z;}+Wj(x)+8 (x, M). x.;;;ans. Zi.;;;anp 
i=l i=l , (2.20) 
M M 

3 
qf._x)= L W~(x, z;)·qf._z;}+ L W~(x, z ; )-Bt(z;}+W~(x)+8 (x, M). xdilr, Zi.;;;anr 

i= l i=l (2.21) 

Equation (2.19) (or Eq. (2.14)) expresses the relation between 1/J on oQs and Bt 

on ons. Equation (2.20) expresses the relation between 1/J on oQs, and 1/J and Bt 

on oQr. Equation (2.21) expresses the relation between 1/J on ()Qp and Bt on 

onr. As Eqs. (2.19)-(2.21) are linear, they can be composed as vector 
equations with matrix coefficients. According to the existence theorems for the 
solution of the Fredholm integral equation of the first kind, no solution exists 
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except for the special case within analytical discussionsl*l. However, no 
difficulty is encountered in the discretized Fredholm equation. 

By x=yi (i=1,2, .. ,N) in Eqs. (2.19) and (2.20), two sets of simultaneous N 
equations are obtained. Similarly, by x=zi (i=1,2, .. ,M) in Eq. (2.21), a set of 

simultaneous M equations is obtained. The three sets of the vector equations 
are then expressed as: 

~ = Ai"qJ5 + B 1-Bt5 + c 1 + dp 

~ = A2-qJP + B2-Btp + c2 + d 2, 

~ = A3-qJP + B3-Btp + c3 + d 3, 

where the vectors and matrix coefficients are defined as follows: 

qJS = t( qJ(y 1), qJ(y2), qJ(y3), ... , qJ(yN))e RNxl , 

qJP = t[ qJ(zl), qJ(z2), qJ(z3), ... , qJ(zM)]e RMxl' 

Bt5 = t[ Bt(y 1), Bt(y2), Bt(y 3), ... , Bt(yN)]eRNxl, 

Btp = t[ Bt(z1), Bt(z2) , Bt(z3), ... , Bt(zM)]e RM xl, 

(2.22) 
(2.23) 
(2.24) 

Al(i. j~W\(Yi, Yj~E RNxN, Bl(i, j~W1(Yi, Yj) e RNxN, cl:= {w1(yJ), W1(y 2), ... ,W1(YN)]e RNxl, 

A2(i. j W~(Yi, zj) e RNxM, B2(i, j W~(Yi, zj) e RNxM, c2:= {wj(yJ), Wj(y2), ... ,W!(YN)]e RNxl , 

A3(i. j W~(zi, zj) e RMxM, B3(i. j W~zi, zj) e RMxM, c3:= { W~(zJ), W~(z2), ... ,W~(zM)]e RM xl, 

dl= {o1(y 1 ,N), o1(y2,N), ... ,o 1(yN,N)]e RNxl, d2= {o2(y 1,M). o2(y2,M) ..... o2(yN.M}]e RNxl, 

d 3= {o3(zl,M}, o3(z2,M}, ... ,o3(zM,M)]e RMXl 

By elimination of Btr from Eqs. (2.23) and (2.24) using the method of least­
squares, the following relations are obtained: 

qJP = (tF·FJ-l.tF. ( qJs + (B2-B3·lc3- c2) + (B2-B3-ldr d2)}, 

F = A2 + B2-B3-1(1M- A3), IM; a unit matrix e RMxM, 

Btp = B3-l(JM- A3)·qJP- B3-l c3- B3-l d3. 

Eq. (2.22) can be rearranged as: 

qJs =(IN- Al)-l·(Bi"Bts + cl + dl) , 

IN; a umt matrix e RNxN_ 

(2.25) 

(2.26) 

(2.27) 

Matrix inversions in Eqs. (2.25), (2.26), and (2.27) can be calculated because 
the independence of the rows are preserved even for N and M~oo (preserving 

[*];Classification of the integral equation types: x--->ilOS in Eq. (2.14) and x--->ilOP in Eq. (2.16) yield the 
boundary integral equations. These belong to the Fredholm integral equation of the second kind for the flux 
function~ and that of the first kind for the flux intensity Bt. The relation x--->ilOs in Eq. (2.16) is the Fredholm 
integral equation of the ftrst kind for both ~and Bt on ClOP. The Fredholm equation of the second kind has a 
unique solution, while that of the frrst kind does not have a solution except in a special case[! I]. 
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--
N ;::: M). As the vectors of residuals dp ct2 and ct3 monotonously converge to 0, 
¢P and Btr converge to the real values. By substitution of ¢P and BtP into Eq. 

(2.16), a flux function value can be calculated at any point X outside oflP. 
Equation (2.27) implies that Bt5 on o!15 gives ¢5 on o!15. Equations (2.25) and 
(2.26) imply that ¢5 on o!15 gives Btp and ¢P on orlr. Therefore, intermediate 

Conclusion I results, which specifies that a necessary condition to identify the 
flux function in a vacuum region outside a plasma (see Fig. 2.2) is that either 
flux intensities tangential to the curved surface ofls (Bt5) or flux function 
values at points on ans (f) must be continuously given. 

Conclusion I does not directly specify a condition to identify plasma 
shapes. However, it implies that the flux function values at all points in the 
vacuum region facing the plasma can be identified by magnetic measurements 
in a vacuum around the plasma. To advance the discussion, properties of the 
plasma outermost surface shall be confirmed. It is well known that either a 
limiter on the first wall of the vacuum vessel or an X-point, which is usually 
produced by the divertor coil, determines the outermost flux surface having a 
certain value of the flux function. If the flux function distribution in the 
poloidal cross section is compared to the "geographical altitude of a mountain," 
then the contour having the highest (or lowest) altitude in a vacuum around a 
plasma identifies the outermost flux surface. 

The hypothetical plasma surface anr has been located to enclose the 
plasma. Now the solution of the integral equations by locating anr inside the 
plasma is considered. This corresponds to the identification of a different 
plasma that produces the same flux field outside a real plasma. Therefore, the 
identified flux field in the area between anr and a real plasma surface is no 
longer a reality . However, it can be proved that the identified flux field agrees 
with a real field outside a real plasma surface (see Appendix 3). As a result, a 
contour having the properties of the plasma surface in the region outside anr 
uniquely exists[#] and this COntOur iS denoted by dflP•. The quantities ¢P* and 

Btp• denote the flux function on oQr• and flux intensity tangential to the curved 
surface anr•, respectively. It is clear that Btp• and ¢P* are the result of the 

boundary integral equations where anr• is an inner boundary surface-the 
hypothetical plasma surface. Thus, we obtain intermediate Conclusion II, 
which specifies that a closed surface having the properties of the plasma 
surface uniquely exists in the region outside the hypothetical plasma surface 

[#];If more than one conLOurs exis t having plasma surface properties, one of them must be a real plasma surface. 
The remaining contours must be inside a real plasma, because the exact flux field outside a real plasma has been 
solved. However, these remaining contours contradict the propenies of the outermost plasma surface. 
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can p•) and that it can be determined by solving the boundary integral 
equations by letting anr be located within a plasma. 

Considering intermediate Conclusions I and II, the following conclusion is 
finally reached: a necessary condition to identify the shape of the plasma 
surface is that either flux intensities tangential to the curved surface ans (BtS) 

or flux function values at points On ans (rfJ5) must be COntinuously given. 

3. Calculation Algorithm and Techniques 
In the previous section the identifiability condition is derived with the 

assumption of ideal measurement. In reality, however, magnetic sensors are 
located at irregular intervals on the wall of a vertically asymmetrical vacuum 
vessel. In this section, a more realistic algorithm is presented to calculate the 
flux function distribution in a vacuum around a plasma using a finite number 
of sensors . The calculation flow is first discussed, followed by several 
calculation techniques peculiar to this algorithm. 

(1) Calculation flow 
If the flux intensities tangential to the curved surface ans on the poloidal 

cross section, Bt5, are given, the following three calculations are required. If 
the flux function values at points on ans, rfl5' are given, the first calculation is 

not performed. 
Calculation 1: Input [Bt5 on ans] ~ Output [rfl5 on ans]. 

Equation (2.27), the discretized equation of the boundary integral equation on 
ans derived from Eq. (2.14), is approximated using d1=0 as: 

(3.1) 

where IN is a unit matrix E RNxN . According to Eq. (3.1), f on ans is calculated 

using Bt5 on ans. 

Calculation 2: Input [f on ans] ~Output [Btp and rfJP on anP] . 

Equations (2.25) and (2.26) ; the discretized equations of the boundary integral 
equations on ans and anP derived from Eq. (2.16), are approximated using 
d2=0 and d3=0 as : 

ql = (tF·F)·t.lF·(rfls + B2·B3·tcr c2) , 

F = A2 + B2· B3·1(JM- A3), 

Btp = B3·t(IM - A3)·rfJP- B3·t c3. 
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where IM is a unit matrix E RMxM. According to Eqs. (3.2)-(3.4), BtP and qt on 
()Qp are calculated using ¢5 on ans. The boundary ()Qp is presumed to be 

completely enclosed by the plasma. 
Calculation 3: Input [BtP and qt on ()Qp) ~Output[¢ in Qs.P]. 

The flux function values ¢ at any point in the region Qs.p can be obtained 

by using the following discretized equation of Eq. (2.16). The contour having 
the highest (or lowest) flux value in a vacuum around a plasma shows the 
outermost flux surface of a plasma. Thus: 

(3.5) 

where x is an arbitrary observation point in the region Qs.P, ' 1 (x, ()Qp) and 
' 2(x, ()Qp) are the vectors resulting from the discretization of the first term in 

the right hand side of Eq. (2.16), Ic is the current vector of coils or conductors 
in the region !.1s.P, and ' 3(x) is the coefficient vector that connects Ic with the 

flux value at the point x. 
Equation (3 .5) shows that once ()Qp is determined, the coefficient vectors 

depend on only x. By preparing those vectors in tabular form, the flux 
function value 1/J(x) can be calculated using only the measurements of Ic and 
either Bt5 or ¢5. This implies that this method is applicable to real-time control 

and visualization. 
To execute these three outlined calculations, several techniques peculiar to 

the numerical computation needed by this method are required as discussed in 
the following portion of this section. 

(2) Discretization of the closed curved surfaces 
The integral formulas should be converted into finite series for numerical 

computation. The closed curved surfaces of ()Qs and ()Qp are approximated as 
polygons whose sides must be sufficiently short on the poloidal cross section. 
For example, for application to JT-60U or ITER, an inscribed 1000-sided 
polygon is adopted in place of the concerned closed curved surface. The 
method of division is that (a) the closed surface is redefined as a function p(9) 

in polar coordinates whose center is that of the vacuum vessel, (b) the closed 
curved surface p(9) is divided into 1000 equal parts of [81, 82], [82, 93], ... 

[9999, 81ooo], [81000, 81) and (c) a 1000-sided polygon is formed whose vertexes 
are the points of (81,p(81)), (9z,p(92)), ... (81ooo,p(81ooo)). 

The sensors on the closed surface are moved to the nearest middle points 
of the 1000 sides of the polygon for numerical calculation. The sensors are 
located at irregular intervals as in actual tokamaks. For this reason, the line 
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integral along the closed surface requires two types of calculation steps ; 
interpolations and numerical integrations with the regular intervals adjusted by 
the interpolation. B-spline for a periodic function[12] is applied to the 
interpolation. The angles in polar coordinates mentioned above are commonly 
taken as a variable in both interpolations and integrations. 

(3) Integral of the interval including a singular point 
The integrands of G(x,y) and grad G(x,y) have a singular point of y=x , but 

they are integrable in the sense of the Riemannian integral concept. Two 
methods can be considered: (a) A side having a singular point is discretized. 
This singular point is the middle point of a certain side of the polygon. By 
dividing the side into an odd-number of parts of the same length, discretized 
points are obtained without divergence of the integrands . Using these points, 
simple numerical integration along this side of the polygon is executed. (b) The 
integral interval is limited to the neighborhood of the singular point and the 
analytical integral calculation is performed, as discussed in Appendix 2. 

The method (a), the Simpson integral with 19 discretized parts, is found 
to give adequate accuracy, which will be shown in the following section. 

4. Application to JT-60 Upgrade and ITER 
The method based on boundary integral equations ("the BIE method") is 

applied to tokamaks of JT-60 Upgrade (JT-60U) and ITER, and its 
performance is evaluated in this section. The method of evaluation is as 
follows: (a) A test plasma is produced by a reliable equilibrium code, and 
magnetic flux intensities at sensor locations are calculated beforehand. (b) A 
shape is reproduced by the BIE method using magnetic flux intensities. (c) The 
identified shape and the flux contour figure produced by the equilibrium code 
are plotted on the same axis for comparison. 

The application of the BIE method to the JT -60U high-pp divertor 
plasmas having different current profiles is shown in Fig. 4.1. The closed 
curved surface for sensors, ans, is the vessel wall. Fifty Bt sensors (that 
measure a component of magnetic field tangential to ClQs) were located along 
ans at the same interval with respect to angle e in polar coordinates. The same 
ellipse: 

[RH(8), ZH(8)] = [3.33+0.5 -cose m, l.O·sine m], 
in cylindrical coordinates , was used as the hypothetical plasma surface ()Qp for 
all identifications shown in Fig. 4.1. The number of discretized points 
independent of each other on ()Qp was 25. These were located at the same 
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interval with respect to the parameter e. Figure 4.1 illustrates that differences 
in plasma current profiles have little influence on the accuracy of 
identification. 

(a) Standard current profile (b) Broad current Profile 
I =6MA, =0.65, h=0.76 

-- ; The equilibrium code -- ; The identified plasma shape 
......... ; The hypothetical surface o ; Sensor locations 

Fig. 4.1 Application to JT-60U High-~p Plasmas with Different Current Profiles 

The application of the BIE method to ITER is shown in Fig. 4.2. The 
identification of the standard high-~p double-null divertor plasma is presented 
in Fig. 4.2(a) . Figures 4.2(b)-(e) show influences caused by the changes in 
case (a): (b) the influence of the ~P change, (c) that of the hypothetical plasma 

SUrface d.Qp, (d) that Of the SenSOr-plasma distance, and (e) that of noise, where 
1% noisd*l was applied to all the magnetic sensors (Bt) and coil current 
signals. Forty-eight Bt sensors were located symmetrically to the "midplane" (a 
mirror surface plane for the symmetry, that is often the equatorial plane of a 
torus) along ans at the same interval with respect to the parameter e. The 
curved surface ans is defined on the poloidal cross section in cylindrical 
coordinates as: 

(Rs(e), Zs(e)] = (6.0+a·cos(e+{sin-1(0.4) ·sin e}) m, a·K·sin em]. 

[*]; Random noise which obeys the nonnal distribution whose standard deviation is I% of the real value. 
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The parameters of a and JC are as follows : a=2.3 m and JC=2.2 in (a), (b), (c) 
and (e), a=2.9 m and K=2.2 in (d), and a=2.4 m and JC=2.4 in (f) . The same 
ellipse: 

[RH(e), ZH(e)] = [6.0+1.0·cose m, 2.0·sine m], 
in cylindrical coordinates, was used for ()Qp in (a), (b), (d) and (e), and a 
circle with a 1.5-m radius is used for (c) . The number of discretized points 
independent of each other on ()Qp was 20. These were located at the same 
interval with respect to the parameter e. The influence of either ~P or ()Qp 

change was found to be very small. In contrast, the influence of the sensor­
plasma distance was found to be comparatively strong. This would imply that 
the line density of the sensors affects the identification accuracy. The 
comparison in Fig. 4.2(e) shows that this method is robust against 1% noise. 

Figure 4.2(f) shows the reproduction of a circular plasma. Twenty-four 
Bt sensors were located asymmetrically to the midplane along C:lns at the same 
interval with respect to the parameter e . A circle with a radius of 1.0 m was 
used for ()Qp , The number of independent discretized points on ()Qp was 8 
These were located at the same interval in polar coordinates with respect to 
angle e . 

Fifty Bt sensors were necessary for accurate shape reproduction for the 
JT-60U case. In the ITER case with 48 Bt sensors, the accuracy is illustrated in 
Fig. 4.2. If the identification errors must be decreased or if the environment 
has strong noise and/or unknown eddy currents, then an appropriately large 
number of sensors are needed. The sensor locations should also be properly 
determined. At this point, the BIE method can be a useful tool to give a logical 
determination of sensor locations according to the following logic: The 
identification errors are produced mainly in the interpolation process. 
Therefore, if the flux intensity between a pair of adjacent Bt sensors is 
precisely reproduced using a given interpolation function, the error is 
minimized. On the other hand, if flux intensity is not precisely reproduced, 
one or more additional sensors are needed between the adjacent sensors . This is 
in agreement with a natural conviction that many sensors are needed in an area 
having strong nonlinearity. 

The BIE method gives an accurate ITER identification. While the 
methods of "filament-current-approximation (FCA)" and "Legendre-Fourier 
expansion (LFE)" include large identification errors, as mentioned in Section 1, 
they both give good results for JT-60U applications. What is the real cause of 
accuracy deterioration? Current sources in FCA and eigenfunctions in LFE are 
used to reproduce the flux field in a vacuum. Consequently , they determine 
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both the flux distribution and the flux intensity distribution simultaneously 
with the determination of one unknown current value in FCA or with that of 
one unknown coefficient value in LFE. Such limitations should be compensated 
by increasing the number of either current sources in FCA or eigenfunctions 
in LFE. However, FCA has difficulty in positioning filament currents, and 
LFE has difficulty in the numerical computation of higher modes of 
eigenfunctions. These difficulties posed by FCA and LFE seem to degrade the 
accuracy for the identification of an ITER plasma with K"'2.2. As the portion 
of higher modes is small in the JT-60U case (K"'1.5), several filament current 
sources in FCA, or several lower modes of eigenfunctions in LFE, are enough 
to reproduce the vacuum magnetic field. 

In contrast, in the BIE method, flux and flux intensity on the inner 
boundary an? are independent variables in the boundary integral equations. 
They both are determined so that the identified vacuum magnetic field can 
agree with the magnetic measurements. Therefore, this method has a wider 
range of freedom than FCA or LFE. It should be understood that this is the 
reason why the BIE method can identify an ITER plasma much more 
accurately than FCA and LFE using the same number of sensors. 
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Fig. 4.2 Application to ITER Plasmas 
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5. Conclusions 
As a result of the foregoing discussions, the following conclusions are 

reached. 

A necessary condition to identify the shape of the plasma surface is that 
either flux intensities tangential to the curved surface ans or flux function 
values at points on ans can be continuously given together with the complete 
knowledge of current density distribution in the region, except in the plasma. 
The sensor surface, ans, is the closed curved surface along which the magnetic 
sensors are located. Knowledge of plasma internal quantities is essentially 
unnecessary for the shape identification. 

The method based on the boundary integral equations (BIE), which uses 
integral equations for derivation of the defined necessary condition, is 
proposed for tokamak plasma shape identification. Application to JT-60U 
(Ko=l.S) and ITER (Ko=2.2) shows that the BIE method identifies the plasma 
shape more accurately even with a finite number of magnetic sensors along 
ans. As this method is used to numerically compute the exact analytical 
solution of the concerned partial differential equation, and if the proper 
number of sensors are properly located along ans, the shape is definitely and 
accurately reproduced independently of the size or shape of the tokamak. 
Furthermore, several test calculations by the BIE method give the following 
features: 

(a) The differences in plasma current profiles have little influence on the 
accuracy of the shape identification. 

(b) The influence of the change of poloidal beta j3p on the shape 

identification is very small. 
(c) The influence of the change in the hypothetical plasma surface (ClQr) 

figure on the shape identification is very small. 
(d) The influence of the sensor-plasma distance on the shape identification is 

comparatively strong. This is because the sensor density is sensitive to the 
identification accuracy. 

(e) This method is robust against 1% noise. 
(f) This method can identify a small circular plasma by the hypothetical 

plasma surface enclosed within the plasma. 
As the line integrals are numerically calculated using measured data in this 
method, an appropriate number of sensors are needed for interpolation. 
However, the total number of sensors will never be impractical because only a 
component of the flux intensity vector tangential to ans is necessary. 
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Appendix 1. Solutions of the PDE for plasma shape identification. 

From a mathematical point of view, the problem of identifying the plasma 
outermost magnetic surface is a type of boundary value problem of an elliptic 
second-order PDE. In general, there are three well known methods of solving 
a PDE: 

(a) The method of separation of variables 
(b) The variational method 
----> Finite element method (numerical computation) 
(c) The method of boundary integral equations (Green function method) 
----> Boundary element method (numerical computation) 

All these methods originate from analytical and strict solutions of a PDE. In 
reality, the solution is numerically computed in either a finite series or at 
discretized points. The features of these methods and their applicability to 
shape identification are discussed below. 

The method of separation of variables is based on the fact that variables in 
the Laplace operator (Laplacian, 6) are separable in Descartes coordinates. 
Therefore, any set of variables resulting from conformal mapping of Descartes 
coordinates are separable for the Laplacian. A PDE is converted to multiple 
ODEs (ordinary differential equations) corresponding to the number of 
variables in the coordinates being conformal to the Descartes coordinates. The 
concerned operator in Eq. (2.6), i.e. rot·rot= grad·div - D., is separable, though it 
is not identical with the Laplacian. The basic functions, "eigenfunctions," for 
Eq. (2.6) in Descartes, cylindrical, toroidal, and spherical coordinates are 
known. The solution of Eq. (2.6) is then composed of an infinite-series of the 
eigenfunctions, whose linear coefficients are determined by the boundary 
condition. It is, however, impossible to determine an infinite number of 
coefficients from the boundary condition values, which are usually given at 
discretized finite points. Therefore, a large error may be included, especially 
in numerical calculations of higher modes of eigenfunctions[3J. This implies 
that unless the first several series of eigenfunctions can approximate the 
solution precisely, the calculation will contain a fairly large margin of error. 
In fact, the Legendre-Fourier expansion method identifies the shapes of low­
K(<1.8) plasmas very well. However, a plasma with high-K(=2.2) in ITER is 
inaccurately reproduced[l3J. Thus, the method of separation of variables is not 
easily applicable to shape identification of highly-elongated plasmas. 

The finite element method applied to the whole region including the 
plasma is known for current profile identification. However, this premises a 
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fixed outermost plasma surface. Hence the method of weighted residuals is 
applied to Eq. (2.3) for a vacuum region surrounding the plasma. The current 
density is j=O, then: 

rot rot A= 0. (Al.l) 

The vector potential A is adopted for a weight function. After both sides of 
Eq. (Al.l) are multiplied by A, the volume integral of both sides over region 
ns.p yields: 

i A·rot rot A dV=i (rot Aj2 dV- r A -(rot Ax dS) = 0 
QS·P QS-P Jans•onP (A1.2) 

where ans and ()Qp are the sensor surface and hypothetical plasma surface, 
respectively, and ns.p is the region bounded by both ans and ()Qp, as shown in 
Fig. 2.2. Equation (Al.2) is discretized on the finite elements over the region 
Qs.p and is solved numerically. The boundary value A on the surfaces ()Qs and 
()Qp is required for solving Eq. (A1.2). The value of A on ()Qp, however, 
cannot be fixed beforehand. Consequently, this approach encounters difficulty 
when applied to an unfixed boundary value problem. 

The method of boundary integral equations is based on a strict formula of 
the solution of a PDE using a Green function with both Dirichlet and Neumann 
boundary conditions. Part of the boundary shape and value cannot be fixed, 
being the same as the situation previously mentioned. However, the following 
features exist in the boundary integral equation method: (1) The Dirichlet and 
Neumann conditions on the surface ans can be derived from each other by 
putting the boundary ans (enclosing the analytical region) analytically and 
infinitely far from the concerned region (see Fig. 2.2). (2) The Dirichlet and 
Neumann conditions on ()Qp can be computed using those conditions on ans. 
The feature (1) is "an infinitely far boundary," which is one of the difficulties 
of numerical computation. The feature (2) implies that flux function 
extrapolation toward the plasma is possible. Furthermore, no difficulty arises 
in numerical computation of the solution expressed as a complete formula 
because a boundary integral with singularity is stable. As the hypothetical 
plasma boundary ()Qp must be located sufficiently inside a plasma, it is 
necessary to roughly know the plasma shape prior to identification. I 
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Appendix 2. Infinite-series formula of the line integral along the interval 
including a singular point. 

It is well known that a definite integral of a continuous regular function 
can be expressed as an infinite-series formula. If the integrand with a singular 
point diverges to infinity, and if the definite integral is bounded in the sense of 
the Riemannian integral, can the integral result be expressed as an infinite­
series formula? The answer will be discussed within this appendix. 

Singular integrals introduced for boundary integral equations are 

Scv¢"' ( G(x. y}gradq_(y} dS;y) S$VG"' ( q_(y}gradG(x, y} dS(y) 

kn, ~ 1 ~ 
, (A2.1) an; , (A2.2) 

where an; is a closed surface including a singular point on the poloidal cross 
section. 

Arc [PN~PI]; anv, 
Arc [Pl~PNJ; anw 

Fig. A2.1 N-sided Polygonal Approximation of the Closed Surface and the 
Definitions of Points and a Vector 

Now an; is divided into two regions; a sufficiently small region involving a 
singular point canv) where the flux function is presumed to be constant, and 
the region of the remainder canw), i.e. an;= anv + anw. The integral over 
anw is a normal integral and can be expressed as an infinite series. The closed 
surface an; is approximated by the polygon in the same manner as in Section 
2, and is shown in Fig. A2.1. The singular point x is presumed to be the 
middle point of the side PNPI, whose length is 2·h. This side PNPI is taken as 
anv. This region is sufficiently small such that Scv~ and S~VG are approximated 
as: 

{ G(x, y)·gradq_(y)d~;y) = gradq_(x} Jh G(x, y}n 2~/s 
Janv Y -h 

(A2.3) 
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{ 4(y}gradG(x, y} dS;y) = 4(x}fh gradG(x, y)-n ¥ 
Janv ry -h Y 

(A2.4) 

where the variable s in the integrands is a distance along the side PNP1 from the 
middle point x whose position vector is x=Crx,zx), y=(ry,zy), ry=rx+s·cosT], 
zy=zx+s·sinT], n is a vector inward normal to the side PNPI, as shown in Fig. 

A2.1 and the slope of the side is tan T] . The right hand sides of Eqs. (A2.3) and 
(A2.4) are rewritten. Thus: 

f
h G(x, y}n 2~ ds = 8n ( sin T\ }lh K(k) ds- 16n ( sin T\ l·ih E{k) ds 

y - cos T\ - cos T\ 
h 0 0 , (A2.5) 

f

h ih 3 ih dG( ) 2Jt ds 4Jt sin T\ K(k) d 81t sin T\ -r::r ) gra x,y-n --=--- s- ._._k ds r y r x. rx 
h 0 0 0 (A2.6) 

Using approximations of k=l-s2/(8r/) and k2=1-s2/(4r/). the complete elliptic 

integrals of the first and second kind, K(k) and E(k), are analytically 

integrated as: 

ih K{k) ds =I, (_L)i [PKi- qKi·(loJ.JL) - __L_ll h2
i+

1 

0 i=O 8rt "'\8rt 2t+ 1 21+ 1 , (A2.7) 

i
h 10 

1 i h2 2 h2i+1 
E{k) ds = L (- ) [PEi - qEi·(loJ- )- -. )]-. 

0 i=O 8r~ "'\8r~ 21+ 1 21+ 1 , (A2.8) 

where pKi, qKi, pEi and qEi are constant coefficients that were prepared for 
calculations of K(k) and E(k) with double precision (i.e. 8 bytes=l word)[l4J. 

As a result of the derivations above, both Eqs. (A2.1) and (A2.2) are 
understood to have the same formula at x=o:: 

{ H(a,~)-q(~)d~j H(a,~)q(~)d~+{ H(a,~)q(~)d~ 
Jani Janw Janv (A2.9) 

N-1 
= L w(hi,a,Pi}q(~i)+ Y(h,a)q(a) 

i=l (A2.10) 

where the first and second terms in Eq. (A2.9) corresponds to those in Eq. 
(A2.10). The bounded function Y(h,o:) is easily derived from Eqs. (A2.5)­
(A2.8). By using the following definitions in the second term of Eq. (A2.10): 

PN = o:, hN = h and w(hN, o:, o:) = Y(h,o:), 
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the right hand side of Eq. (A2.10) results in: 

N 

L, w(hi. a, Pi}q(~i) 
i=l 

Increasing N to infinity, Eq. (2.17) is obtained: 

(A2.11) 
In actual calculation, Eq. (A2.10) is used instead of Eq. (A2.11). The integral 
interval anv should be determined to be small enough to regard ¢ as a 
constant in an v, while the integrand must not overflow numerically in the 
integral interval onw. I 
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Appendix 3. The result of the BIE method gives an exact solution for a 
vacuum region with the hypothetical plasma surface located 
inside the plasma. 

Shape identification based on boundary integral equations (the BIE 
method) requires the hypothetical plasma surface to be located inside the 
plasma. The definitions are repeated as follows: anp is the hypothetical plasma 
surface completely enclosed by the plasma, anp• is the real plasma surface, and 
ans is the surface along which the magnetic sensors are located. The solution 
of Eq. (2.4) with taking anP is defined as /;(x), and can be expressed as: 

cr·s(x) = ( [G·grad¢-¢·gradG]·dS;y)) ~oUc+jv)·G d~(y) 
Janp ry Jnp.~ y 

(A3.1) 

where the vector S is normal to the surface in the direction toward the plasma, 
jc and jv are the known current densities in the regions Q s -~ and Q P-s, 
respectively, and cr= (8n2 (Qp.~:::>x), 4n2 canP:::>X), 0 ((exterior to Qp.~):::>x)}. On 

the contrary, by assuming the plasma current density jp is known, the solution 
¢(x) is given by: 

crs(x) = ( [G·grad¢-¢·gradG]·dS;y)) ~o(jc+jy+jp)·G d~(y) 
Janp ry Jnp.~ y 

(A3.2) 

By introducing the surface anP•, Eq. (A3.2) can be rewritten as: 

crq;(x)= dl·lf{x)+i [G·grad¢-¢·gradG]dS(y) +i ~oUc+jv) · G dV(y) 
r2 ry 

anp• Y nP·-~ 
, (A3.3) 

where cr# ·VJ(x) is defined as: 

cr#·ljl(x) =i [G·grad¢-¢·gradG]dS(y)- i [G·grad¢-¢·gradG}dS(y) 
r2 r2 anp Y anp• Y 

i · dV(y) 
+ ~oJp·G·--ry 

np• .p ' (A3.4) 

and cr#: (8112 (QP•-P:::>X), 47!2 ((aQp• Or af2P}:::>X), 0 ((exterior to Qp•.p):::>X)}. In a 
vacuum region (exterior to Qp•.P), cr#·VJ(x)=O in Eq. (A3.3). Consequently, Eq. 

(A3.3), in which the plasma current density is taken into account, is expressed 

for a vacuum region as: 
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(A3.5) 

On the other hand, by introducing the plasma surface ()Qp• in Eq. (A3.1), then: 

a E,(x) = J [G·gradif>-1/J·gradG] dS(y)- J [G·gradif>-1/J-gradG}dS(y) 
anr r'9 anr• r'9 

(A3.6) 

The summation of the first and second terms in Eq. (A3.6) is a nonzero value 
only inside the region Qr•-P, and it vanishes in a vacuum, as is the same 
derivation with a#·lf(X) in Eqs. (A3.3) and (A3.4). Taking into account that 

there is no current flow in nr•-P, then: 

a·E,(x) = J [G·gradif>-1/J·gradG]·dS(y) +i lloUc+jv}·G dV(y) 
r2 ry 

anr• Y nr·-~ 
(A3.7) 

The right hand side of Eq. (A3.7) is identical with that of Eq. (A3.5). Finally: 

t/J(x) = /;(x). (A3.8) 

Therefore, it is understood that with the hypothetical plasma surface located 
inside the plasma, the result from the BIE method gives an exact solution for a 
vacuum region. I 
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Chapter III 

Dynamics of 
Plasma Equilibrium Control 

A tokamak plasma is a very light conductor carrying high current with 
high magnetic field from the view point of equilibrium control. Consequently, 
zero inertia approximation is valid in the time scale of the poloidal field (PF) 
coil current control by the digital computer. As force balance is always 
preserved inside and outside the plasma column, "dynamics" results from the 
magnetic field propagation of the PF coils and the magnetic field induced by 
the plasma motion. A vacuum vessel and other conductors of structural 
components make the problem more complicated. Plasma-vessel-PF-coils are 
electromagnetically interacting with each other, and these resultant field 
determines the plasma motion. As feedback control should be applied to the 
system, control algorithms should be involved in the dynamical model. In this 
chapter, the analytical method based on the classical electromagnetic theory is 
introduced to decompose those interactions. 

In Chapter III.l, the A-¢ method (A is the magnetic vector potential and 
if! is the scalar potential) was applied to eddy current analysis in the JT-60 
tokamak fusion device. This analysis agrees with the coil excitation 
experiments much better than the filament-current-coil approximation does 
with them. The accuracy of the A-¢ method is estimated by comparing it with 
the analytical solution of magnetic field penetration into an infinitely long 
cylindrical conductor. A JT-60 plasma equilibrium-control-dynamics (ECD) 
model including eddy currents induced in the vacuum vessel is proposed for 
control system design and analysis. Considering the plasma-vessel interaction, 
the one-point plasma model and its equilibrium force balance are assumed. 
Comparison of the simulation and experimental data identifies the essential 
points for reproduction of the plasma ECD: (a) Magnetic field induced by the 
plasma motion is proportional to its velocity. (b) Magnetic field penetration is 
regarded as a response of a first-order differential equation. Application limits 
of the employed model are also identified: (a) Plasma volume effects are not 
accurately involved. (b) Influence of eddy current on shape evolution is not 
taken into consideration. 
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.. 

As a result of the analysis in Chapter ffi.l, the A-¢ method is understood 
to be effective. Then, in Chapter III.2, the synthetic numerical model of 
equilibrium control dynamics based on the A-1/J method is built up. The finite 
element formulation is completed. Necessary tools for the analysis such as 
automatic mesh generator, algebra for large-scale sparse matrices, etc., are 
also newly developed. 
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III.l Eddy Current Effect Study on 
the JT -60 Plasma Equilibrium Control 

1. Introduction 
Tokamak plasma experiments are eagerly supported because of their 

promise to reach the breakeven condition needed for thermonuclear fusion 
reactors . One important and necessary aspect in these experiments is plasma 
equilibrium control. This control may well determine the possible operating 
regimes and thus is related directly to achievable plasma performance. A 
plasma itself can always be assumed to follow an external electromagnetic field 
preserving its inner equilibrium. The external field is produced by controlled 
poloidal field (PF) coil currents and uncontrolled/undetectable eddy currents 
induced by both PF coils and plasma motion. Eddy currents, consequently, 
play an essential role in the transient phenomenon of equilibrium. Among the 
many design studies on tokamak equilibrium control reported to date, some 
studies considered eddy current effects; others neglected the existence of eddy 
currents. Eddy current analyses for the design of electromagnetic industrial 
products such as motors, computer disk read/write heads and a wide 
assortment of transducers, etc., have advanced in conjunction with recent 
theoretical investigations of analysis and the rapid development of computer 
performance. The A-¢ method (A is the magnetic vector potential and ¢is the 
scalar potential), one of the three-dimensional eddy current analyses based on 
Maxwell's quasi-steady-state (qss) equations, is selected for JT -60 tokamak 
application because the governed equations are derived exactly from Maxwell's 
qss equations without any approximation. (Several previous methods that 
approximated conductors as filament-current-coils (FCCs) have been applied to 
tokamaks .) In this study a calculation based on the A-¢ method is compared 
with the exact analytical solution of Maxwell's qss equations in an infinitely 
long cylindrical conductor geometry. Also studies in tokamak geometry are the 
calculations of the poloidal magnetic field (Bp) penetration into the vacuum 
vessel using three methods; the A-¢ method, the FCC approximation and the 
infinitely-thin-plate (ITP) approximation. In Section 2, these methods are also 
compared with the experimental results of JT-60 PF coil excitation tests 
(performed without a plasma). The calculations show that Bp penetration can 
be modelled as a system of a first-order differential equation having a time 
constant fixed at the observation point. It will be shown that this makes the 
model much simpler. In addition to Bp penetration, the magnetic fields created 
by eddy currents induced by the plasma movement, the voltage-current 
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relation for the PF coils , the flux consumption, the plasma motion and the 
control system are also discussed for modelling of plasma equilibrium control. 
The simulations and JT-60 experiments are compared in the control of JT-60 
vertical and horizontal plasma displacements within and beyond O<nindex<l.S in 
Section 3. The method used to establish the control model from the design 
parameters is discussed in Section 4. The limitation of reproducibility and 
errors in this model are presented, and problems in the FCC approximation 
for the vacuum vessel are also described in Section 4. 

2. Poloidal Field Penetration into the Vacuum Vessel 
2.1 Overview of the Eddy Current Analyses: the A-¢ method and others 

Several methods to reproduce a transient eddy current phenomenon have 
been proposed for design engineering and data analysis of industrial products, 
accelerators, fusion devices, etc. The benchmark tests are performed where 
common models are computed by several methods and the results are 
compared with each other as well as with experimental data[l]. In this study, 
three methods for calculations in tokamak geometry are selected; the A-¢ 
method, the infinitely-thin-plate (ITP, or shell) approximation[2l (a particular 
case of the T method[3l) and the filament-current-coil (FCC) approximation[4l. 
The A-¢ method is based on Maxwell's quasi-steady-state (qss) equations; 

rotH= j, 
as rotE=- -

B = 11oH, 
div B = 0, 

and Ohm's law; 

at 

j = cr E. ( cr ; an electrical conductivity tensor) 

(2.1) 

(2.2) 
(2.3) 
(2.4) 

(2.5) 

The introduction of the vector and scalar potentials, A (B=rotA) and ¢, gives 

rot rot A= J..locr-(-
0:r -grad¢). (

2
.
6

) 

By taking A as a weight function for Eq. (2.6) and integrating over the three­
dimensional analytical domain Q with boundary an, we obtain the integral 
formula of Eq. (2.6); 

L [(rot Af- A-J..lo·cr-(- aa~- grad¢)]dV=in A ·(rot Axn)ds 

, (2.7) 
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where n is the vector normal to the boundary surface . A gauge or a condition 
permissible in gauge transformations provides a necessary scalar equation for 
A and 1/J. Kirchhoffs law, 

d. . d. ( aA )= 
IV J= IV (J · -at - gradi/J 0, 

(2.8) 

is adopted as the scalar equation in the used A-¢ method. By solving 
numerically Eqs. (2.7) and (2.8) using discretized finite elements of space and 
time, the evolution of A and ¢ is obtained. This method is based on classical 
electromagnetic theory[*]. However, different methods, such as the infinitely­
thin-plate (ITP) and filament-current-coil (FCC) approximations, have been 
often used for eddy current analyses of tokamaks. 

The ITP (or shell) approximation[2J is a special case of the T method[#)[3J 
and the normal component of the current vector potential T U=rot T) to the 
conductor plate is used as an unknown variable. The tangential components are 
neglected in the analysis. 

The FCC approximation is a well-known method applied to tokamak 
fusion devices[41. In this approximation, many toroidally-looped filament coils 
are arranged in a group in place of a doughnut-shaped axisymmetric vacuum 
vessel. This has the advantage that the field evolution at any point can be easily 
obtained by solving simple circuit equations . The validity of this observation, 
however, seems never to have been verified theoretically or experimentally in 
the case of toroidally non-uniform vacuum vessel. 

2.2 Calculations of Poloidal Field Penetration into the Vacuum 
Vessel Compared with JT -60 Experiments 

(1) Infinitely long cylinder geometry 
The accuracy of the A-¢ method is initially estimated by comparison with 

the analytical solution of magnetic field penetration into an infinitely long 
cylindrical conductor. A current of 37 .5+2.5sin(2fnt) kA & f=5 Hz is forcibly 
induced in a filament current wire located parallel to the conductor. The 
dimensions of this geometry are shown in Fig. 2.1. Only a single component 
(Az) of the vector potential (which is parallel to the filament current) exists as 
an unknown variable. The Coulomb gauge, divA=O is used for this analysis. 
The electrical field is produced only in the z-direction. Therefore, no electric 

[*):The A-¢1 method presented here adopts Eq. (2.8) instead of a gauge condition. Consequent­
ly, ¢1 is not able to be determined in a nonconductive region. Therefore, the electric field by 
grad ¢1, which propagates through the nonconductive region, cannot be taken into account. 

[#): The T method is based on Maxwell 's qss equations and is similar to the A-¢ method. 
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charge appears on the cylinder and ¢ can be set to zero (grad¢=0). The 
following diffusion equation, which governs eddy current behavior in the 
conductor, is obtained from Eq. (2.6), divA=O and grad¢=0; 

t-..Az= <J)lo oAz 
at . (2.9) 

The vector potential Az on the outer surface of the conductor is not only a 
function of filament current but is also a function of the eddy current behavior 
defined by Eq. (2.9). This makes "a pre-unfixed Dirichlet-boundary value 
problem of a parabolic partial differential equation." The analytical solution of 
this equation can be expressed as an infinite-series of the Bessel-Fourier 
expansion; 

Az(p,9,t)= I I CvJ.(t)-Jv(WvJ.P)·cosv9 +I Dv(t)·{~t-cosve 
V=O A=l V=O (2.1 0) 

where Jv is the v-th order Bessel function of the first kind, ffivA. is a constant of 
separation of variables, a is a radius of the cylinder, (p,8) is polar coordinates, 
as shown in Fig. 2.1, and CvA.(t) and Dv(t) are coefficients of linear 
combinations of eigenfunctions. CvA.(t) and Dv(t) are obtained by solving the v­
sets of the (A.+ 1) simultaneous first-order differential equations (see 
Appendix). 

Infinitely Long Cylindrical 
Conductor (Inconel #625) 

e 

z 

Fig. 2.1 Infinitely Long Cylinder Geometry and 
(p,8,z) Coordinates 

Fig. 2.2 Mesh Division of the Infinitely 
Long Cylindrical Conductor 

To apply the A-¢ method to this model, the conductor and the remaining 
region are divided into appropriate small pieces of finite elements. The 
analytical region is a thin slab bounded by two planes perpendicular to the z­
axis. Each plane is a 200 m x 200 m square to avoid the influence of the 
boundary condition on the conductor area. Figure 2.2 shows a view of the 
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mesh division from z=oo over the analytical region . A three-dimensional 
calculation is performed on this model with the boundary condition being that 
the magnetic field vector B=(Bx,BY) is perpendicular to the z-axis. The 
discretized time step is 12.5 msec. 

The calculations of BY penetration by the A-¢ method and analytical 
solution for the center of the cylinder are compared in Fig. 2.3. The analytical 
solution for the center can be obtained by using {Dl(t), CI:~.(t), A,=1 to 20}. It 

provides the accuracy of the A-¢ method for reproduction of the B diffusion 
behavior; errors of the phase and amplitude at a frequency of 5 Hz are -5 
degrees fast and -10% less than full amplitude. 

xl0·3 (1) 

-4 .6 

~ 
By wilhoul 

'0 lhe conductor .s 
;;, -4.8 u 

" -5 
~ 
0 

!i ·5.0 
c: 

" u 

" -5 -5.2 
"' ~ 

o:l 

-5.4 
0 100 200(msec) 

Fig. 2.3 By Time Evolution at the Center of the Cylinder 

(2) JT-60 geometry 
A vertical field (VF) coil excitation test was performed in the JT-60 

fusion experimental device without a plasma, and the VF coil current was 
varied according to a preset waveform. The vacuum vessel, made from Inconel 
#625, is formed by joining eight 6.5 em-thick rigid ring sectors (thick 
conductor parts) and eight 0.2 em-thick bellows (bellows parts), alternately in 
the toroidal direction , as shown in Fig. 2.4(a) . The bellows offer high 
electrical resistance in the toroidal direction and, consequently, lower 
resistance in the poloidal direction. The toroidally developed length of a 
bellows is 8.3 times the actual length of the bellows. Magnetic field (B) sensors 
(magnetic probes) are located at six poloidally-different points just inside the 
thick part of the vacuum vessel wall on the same poloidal plane. These sensors 
measure the two components of B (normal and tangential directions to the 
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wall). Figure 2.4(b) is a peloidal cross-sectional view of the vessel showing 
PF coils and sensor locations in a sector. 

(a) The Cutaway View (b) The Cross-Sectional View 

Fig. 2.4 JT-60 Vacuum Vessel 

The following methods and data will now be compared; (i) the A-¢ 
method, (ii) the ITP approximation, (iii) the FCC approximation, and (iv) the 
experimental data obtained from the VF coil excitation test. In the A-¢ 
method, the anisotropic electrical conductivity is used to represent the bellows 
characteristics. A mesh division view of the analytical region of the vacuum 
vessel is shown in Fig. 2.5. The cylindrical coordinates (R,w,Z) are now 
adopted to explain the boundary conditions. 

Fig. 2.5 Mesh Division of JT-60 Vacuum Vessel 

The analytical region is bounded by four planes and a curved surface; two 
planes perpendicular to Z-axis, two planes perpendicular w-axis and a curved 
surface R=lOO m. The different boundary conditions can be independently set 
on the planes and the surface. The upper boundary of the plane perpendicular 
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to the Z-axis is extended to 100m away from the "midplane (the equatorial 
plane of the torus). " The outboard boundary of the curved surface is also 
extended to R=lOO m away from Z-axis (R=O). These were done so improper 
boundary conditions would not cause an unfavorable influence on the analysis. 
The magnetic field B on both boundaries is restricted to be parallel to the 
boundary surfaces whose normal unit vector is n, i.e . B·n=O. B should be 
perpendicular to the midplane on the lower boundary due to the JT-60 up-and­
down symmetry, i.e . Bxn=O. The remaining boundary planes are the sector 
cut-ends of w=0° and w=40°, where a periodic boundary condition is adopted, 
i.e. I B(R,w=0° ,Z) I= I B(R,w=40° ,Z) I , 

B(R,w=0° ,Z)·n(w=0°)=B(R,w=40° ,Z)·n(w=40°) and 
{ B(R,w=0° ,Z)xn(w=0°)} z= { B(R,w=40° ,Z)xn( W=40°)} z· 

In the FCC approximation , the vacuum vessel is divided into 84 
axisymmetric one-tum coils . Two kinds of loop resistance are considered; one 
is the actual one-tum electrical resistance and the other is the resistance 
without the bellows parts . Thus , the bellows effect on the field penetration will 
be known. 

In the ITP approximation, 464 eigenmodes of the finite element circuits 
are used to represent the eddy current flow pattems[2J. 

Figures 2.6 and 2.7 show the Bz time evolutions calculated by the A-¢ 
methods, FCC and ITP approximations together with the sensor signal obtained 
from the experiment. Figure 2.6 compares the following calculations and data 
at the sensor location: 
(AO) Bz in the experiment (in steady-state oscillation). 
(Al) Bz without the vessel. 
(A2) FCC approximation (bellows+thick conductor parts). 
(A3) A-¢ method in the JT-60 geometry. 
(A4) FCC approximation (thick conductor parts only). 
(AS) A-¢ method with the vessel composed of only the thick conductor parts. 

(A3) shows the best reproduction of the experimental data (AO). Slight 
deviations of amplitude and phase are observed, though they are within the 
error of the A-¢ method , as described in Section 2. Conductors neglected in 
the analysis such as diagnostic access ports and support structures may increase 
the time constant of the penetration. The penetration speed in (A2) is much 
faster than the actual (AO) and closer to (AI). On the other hand, the A-¢ 
method (AS) and the FCC approximation (A4) calculations correlate well in 
this axisymmetric geometry. This indicates the thick conductor parts seem to 
determine the time response of the field to the sensor. 
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Figure 2.7 shows the comparison of Bz time evolution at the center of the 
vessel for the following calculations: 

(B1) Bz without the vessel. 
(B2) FCC approximation (bellows+thick conductor parts). 
(B3) A-¢ method beneath the bellows. 
(B4) FCC approximation (thick conductor parts only). 
(B5) A-¢ method beneath the thick conductor part. 
(B6) ITP approximation( toroidal average along the central axis of the vessel). 

(B3) and (B5) are the results from the A-¢ method calculation, similar to (A3) 
and (AS). (B3) shows almost no retardation from (B 1), while (B5) indicates a 
peak-to-peak delay of -12 msec. On the other hand, (B2) shows a few 
milliseconds delay and (B4) shows extreme retardation of the penetration. The 
average Bz along the axis in the vessel by the A-¢ method would be slower 
than (B3) and faster than (B5), but (B6), calculated by the ITP approximation, 
closely agrees with (B5). Thus , the ITP approximation estimates a slightly 
slower field penetration than the A-¢ method. 

These results can be interpreted as follows: 
( ! ) It appears that the FCC cannot reproduce the VF coil field penetration into 

the vacuum vessel. However, the FCC approximation agrees with the A-¢ 
method if the vessel is axisymmetric. 

(2) The A-¢ method reproduces well the phenomenon if all the conductors are 
included in the analytical region. 

(3) The time response of the field penetration to the magnetic sensor located on 
the wall inside the thick part is determined by the time constant of the thick 
conductor part. In contrast, the response time to the center of the vessel is 
much less than that to the sensor; it has almost no delay. This implies that 
the field penetrates the vessel rapidly through the bellows parts and slightly 
later through the thick conductor parts. Therefore, the response time to the 
plasma is predominantly determined by the characteristics of the bellows. 
As a plasma is affected by even a small change in magnetic field, the time 
constant of the field to the plasma movement is estimated to be less than -6 
msec , half of the discretized time step (12.5 msec) . 

(4) The ITP approximation shows good reproduction even though eddy 
current flow across the bellows shell plate is neglected . The field 
penetration response to the center is determined by the eddy currents in the 
thin bellows and little current flow across the bellows plate exists . 
Therefore, the preferable situation seems to make good reproduction 
calculated by the ITP approximation. 
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In addition, as the system response of the field evolution at the center of the 
vessel shows very short delay, a system of a first-order differential equation 
can be presumed to approximate this system. This simplifies the JT-60 system 
model. 

(T) 
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(AO): --- :Bz in the experiment.(in the steady-slate oscillation) 
(AI):-- :Bz without the vessel. 
(A2): ....... :FCC approximation where one-tum elecu-ical resislances are 

given by the bellows+thickconductor parts. 
(A3):-- :A-1/J method in the JT-60 geomeu-y. 
(A4): -······ :FCC approximation where one-turn elecu-ical resislances are 

given by the thick conductorparts only. 
(A5):-- :A-t/! method in the geometry where the vessel is composed 

of only the axisymmetric thick conductor parts. 
Fig. 2.6 Bz Time Evolution at the Sensor Location (R=3.0 m, Z=l.O m) 
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(B2): ....... :FCC approximation where one-tum electrical resistances arc 
given by the bellows+ thick conductor parts. 

(B3):-- :A-1/J method beneath the bellows. 
(B4): ....... :FCC approximation where one-tum electrical resistances are 

given by the thick conductor parts only. 
(B5): - - :A-t/! method beneath the thick conductor parts. 
(B6): --- :ITP approximation. 

Fig. 2.7 Bz Time Evolution at the Center of the Vessel (R=3.0 m, Z=O.O m) 
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Figure 2.8 shows the time evolution of eddy current flow in the vessel 
conductor induced by the vertical field penetration. The major mode is found 
to be a saddle-shaped-circulating current induced in the thick conductor parts. 
It would be, of course, more realistic to account for phenomena such as the 
eddy current flow around the diagnostics-access ports on the thick conductor 
part. However, the dominant behavior is understood by this simple modelling 
of the vessel. 

Fig. 2.8 Time Evolution of Eddy Current Flow in the Vessel Conductor 
Induced by the Vertical Field Penetration 
(Eddy currents att=25 and 50 msec flow in opposite direction to those at 
t=IOO and ISO msec, respectively.) 

3. JT-60 Plasma ECD Model with Eddy Current Induced in the 
Vacuum Vessel 
The plasma movement should be taken into consideration for design of the 

ECD (equilibrium-control-dynamics) model. Though the external field 
propagates through the wall component in the same manner as the no-plasma 
analysis in the previous section, it behaves in a different way inside the vessel 
due to the movement of the plasma. Next, phenomena associated with the 
plasma-vessel interactions will be examined. The penetrated field immediately 
makes the plasma begin to move according to the JxB force. The plasma 
weight is negligibly small so acceleration occurs in a very short time period. 
The plasma tries to accelerate to the Alfven velocity. However, the plasma 
cannot move at such a high speed because a retarding force is produced by its 
movement in the following ways; 
(a) the force of the magnetic field that is a function of the plasma location acts 

on the plasma. If decay index (nindex) of the magnetic field at the plasma 
location is within 0<nindex<l.5, the plasma is positionally stable. 

(b) the PF (poloidal-field) coil voltage induced by the plasma movement 
produces a magnetic field that opposes plasma movement, and 

(c) the induced eddy currents in the vacuum vessel also produce a field that 

opposes plasma movement. 
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Plasma in a field whose decay index is beyond O<nindex<l.5 is unstable without 
wall stabilization. The growth rate of such a plasma depends on the magnetic 
field strength at the moving plasma location, the induced PF coil current and 
the eddy current in the vessel. If the growth rate is suppressed to a low level, 
feedback control of the PF coil current could stabilize the plasma. To date, the 
study of such dynamics (plasma ECD) has been conducted on stability analyses 
by considering (the above) phenomena (a) & (b)[5J or on simulation studies by 
taking (a), (b) & (c) into account, where the eddy current is presumed to be 
induced in the L (inductance)-R (resistance) circuits of the coils instead of the 
solid vessel conductor[4l. The validity of the latter model, however, is still 
unverified experimentally. The L-R circuits approximation is almost identical 
with the FCC (filament-current-coil) approximation. The applicability of the 
FCC approximation to JT-60 will be discussed later in this chapter. 

3.1 JT-60 Plasma ECD Scheme 
Tokamak plasma behavior is known to be a result of the electromagnetics 

and/or particle interactions with the device components such as the PF coils, 
the vacuum vessel, the first wall, etc. They would also include the behavior of 
the control system including power supplies and position calculations for 
consideration in longer time-scale analysis (more than 1 msec). However, for 
the model of ECD, it is understood that it is not necessary to involve all the 
microscopic interactions. This is shown by past experience with tokamak 
devices. Therefore, only the essential phenomena are included in the JT-60[*1 
simplified ECD scheme as shown in Fig. 3.1. 

The phenomena in Fig. 3.1 are modelled as follows: 
(1) Penetration delay of the magnetic field 

The magnetic field penetration through the vacuum vessel is governed by 
a system of a first-order differential equation that has a time constant of -., as 
discussed in Section 2. 'tR and 'tz denote the time constants of the vertical and 

horizontal field penetration, respectively. 
(2) The magnetic field by the plasma axisymmetric movement 

This magnetic field is produced by the eddy current, which is induced in 
the vacuum vessel by the movement of the plasma. The movement is presumed 
to obey axisymmetric rigid-body motion. Consequently, the magnetic field 
Bmove (T) is assumed to be a two-dimensional column vector=1(BR,Bz), where 

the superscript 1 denotes a transposition of the matrix. The production of Bmove 

[*]: JT-60 cross-sectional view is shown in Fig. 2.4(b). The ellipticity K was able to be changed 
from less than 0.5 to greater than 1.6 by the quadrupole field (QF) coil. 
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analog & continuous-time 

digital & discretized-time 

Fig. 3.1 JT-60 Plasma Equilibrium Control Dynamics 
(The number in the figure corresponds ID the sub-section number in Section 3. 1.) 

will now be examined in detail. The plasma current is assumed to remain 

constant. When a plasma column with current lp (A) axisymmetrically moves as 

a result of plasma-conductor interactions at a velocity vector vp (m/sec) = 
'(vz,vR), the magnetic field lines of the plasma current must cut the vessel wall 

at almost the same speed as the plasma if the plasma mass is assumed to be 

zero. The change of the magnetic field B resulting from plasma motion 
produces an electrical field E in the vessel according to the Maxwell's 

equation; 
ClB rotE=- -
Clt (3.1) 

Using vector potentials , B is expressed as 

B=rot (Ap+Aeddy), (3.2) 

where Ap and Aeddy are the vector potentials produced by the plasma current 

and eddy current that is induced by the plasma movement, respectively. The 

plasma current density jp and eddy current density j eddy satisfy Maxwell's qss 

equations as follows; 

rot rot Ap = Jlojp, 

rot rot A eddy = J.l.Oj eddy. 

A scalar potential¢ is introduced to express E explicitly, then 

(3 .3) 
(3.4) 
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E _ o(Ap+Aedcty) d'" 
-- - gra 'I' at (3.5) 

Now the plasma axisymmetric motion in an axisymmetric vessel is considered. 

The electrical field resulting from such plasma motion is produced only in the 

toroidal direction. Therefore, no electric charge appears on the vessel 

conductor and ¢ can be set to zero, ¢=0 (grad¢=0). Equation (3.5) then 
becomes 

E = _ o(Ap+Aedcty) 

at (3.6) 
The imposition of the Coulomb gauge, divAp=O and divAectcty=O, allows Eqs. 

(3.3) and (3.4) to be solved. Then Ap(r,t) and Aedcty(r,t) are obtained; 

A p(r ,t)=floi jp(s(t),t) dV(s(t)) 
4n I r-s(r)J 

flp 

Aedcty(r,t)=floi jedcty(s,t) dV(s; 
4n Jr-sJ nv 

(3.7) 

(3.8) 

where Qp is the total region occupied by a plasma and Qv is a conductor in 
which an eddy current is induced by the movement of the plasma; and J-dV(s) 

denotes the volume integral with respect to the position vector variable s. 

According to Ohm's law, 

jectcty(s,t)=a(s)·E(s,t)=- a(s)·o(Ap(s,t)+Aectcty(s,t))/Clt, (3.9) 

where a(s) is an R3x3 electrical conductivity tensor. Substitu ting Eq. (3.9) for 

the right hand side of Eq. (3.8) , we obtain 

Aectdy(r,t)=- floi o(s) _a{AP(s,t}+Aedcty(s,t)}dV(s) 
4n Jr-sJ Clt nv (3.10) 

Furthermore, the repeated substitutions of Eq. (3.10) for Aectdy in the right 

hand side of Eq. (3.10) give the infinite series formula of Aectcty; 

Ad ( t) = _ !lod[i cr(s)-Ap(s,t)dV( )] 
e dy r, 47tdt lr-sl 5 

nv 

~( !J.o ()llf l (cr(sl)cr(~} .. cr(sn)}·Ap(sl,t) -dV(s'] 
+nL...,=2 - 47t. "\:" nv . . V(sl)dV(s2f nJ 

aL l(r-snHSn·Sn-1} · ·(S2·sJll 
nv 

, (3.11) 
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where {si, i=1,2, ... ,n) is a position vector for each integral operation. For JT-
60, the scalar conductivity a of Inconel #625 is 7.69x105 n·1m·1 and (crJ.lo/4n)n 
-(0.0769)n. The higher time derivatives of the vector potential, ca;at)nAp(st,t), 
become smaller than the time derivatives of the lower ones in the time scale 
being considered. Therefore, only the first term of Eq. (3.11) can adequately 
provide an accurate approximation of Aectdy. Now the first term of Eq. (3.11) 
is calculated. The time derivative of Eq. (3.7) yields the formula for 
aAp(r,t)Jat; 

- aAJr,t) = [- J..4l f j a (j p(s))\ dV(s)]·v (t) 
at 4n \as\ lr -s l 1 p 

Op 

= F(r)·vp(t). 
(3.12) 
(3.13) 

In the above derivation, the plasma current density j p on the plasma boundary 
anp is set to 0 and the plasma is assumed to move like a rigid-body. F(r) is an 
R3x2 matrix . The bracket<> is defined as follows; 

j a (j p(s))\:: [ a (jp(s)) 1_}j p(s)) ] E R3x2 
\as\ lr -s l I aR\ Ir-s l az\ lr -s l . (3.14) 

Aectcty(r ,t) is obtained by substituting Eq. (3.12) for the first term of Eq. (3.11); 

Aectdy(r ,t) "' ~ Lv cr (ls:~~~(s) dV(s)]·v p(t) 
41tl (3 .15) 

The magnetic field Bmove produced by jeddy(r ,t) is given by 

Bmove(r ,t)=rot Aeddy( r ,t), 

and by applying the rotation operator on Eq. (3. 15), 

B (r t)-J..4l [f [(o(s)-F(s))#(r-s)] dV(s)]·v (t) 
move ' 47t lr -sl3 p 

n v 

= H (r)·vp(t). 
The operator # is defined as follows ; 

[M#u] 0 [ ( : : ; H~l[ t
1

::.:: ~ :::~y l E R3xk 

Y tma·U~ - tm p- ua 
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where MER 3xk, ffiiERkxl and UiER3xl. In this case plasma movement is 

presumed to be two-dimensional, therefore, k=2. Strictly speaking, the R 3x2 

matrix function H(r) depends on the distribution of plasma current density. 
H (r) can be normalized by lp , H (r )= y(r)· lp. By considering only the 
axisymmetric motion of the plasma, and assuming uniform Bmove and invariant 
current distribution, the following simplified approximate expression is 
obtained. 

Bmove=K ·Vp · lp, (3.20) 

where K (T/(A·m/sec)) is a coefficient matrix, which is now assumed as a 
diagonal constant matrix=diag(kR,kz)E R2x2. The elements of this matrix are 

related to the electrical conductivity of vessel materials and locations of 
conductors to the plasma and the volumes of the conductors. It must be stressed 
that Eq. (3.20) implies the induced magnetic field is generated instantly by the 
plasma motion and is proportional to the velocity of the plasma. 

(3) Plasma motion 
Plasma macroscopic motion is governed by Newton's equation for a rigid 

body; 

mp-dvp/dt=Ftotal, (3.21) 

where mp is the mass of the plasma and Ftotai is the total force vector applied to 
the plasma column. We can assume mp-dvp/dt:oO for a macroscopic motion in 
a time scale of a millisecond. In other words, it maintains the balance of the 

total force; Ftotal"'O. Ftotal is then given by 

Ftotal = { (grad p - jpx B) dV 

JnP 
"'Fp- 2n:Rplp{B ext(Rp,Zp)+Bmove} "' 0, (3.22) 

where p and B are plasma pressure and a magnetic field vector in the plasma 

column, respectively; Bext is a magnetic field vector generated by the PF coils, 
which is a function of the macroscopic plasma position (Rp,Zp); Rp, Zp and ap 
are the major radius, vertical displacement and minor radius, respectively. Fp 

is plasma internal force, i.e., 

(Fp)R = K -a(l/2)).l.Olp2 {log(8Rp/ap)+(~p+li/2)-3/2} [6,7] and 

(Fp)z = 0, 

(3.23) 
(3.24) 

where ~p+li/2 is the lambda parameter; and K -a is the volume effect (K is 

plasma ellipticity, a-1/4[71). Now Eq. (3.23) is rewritten using the plasma self­

inductance Lp=).l.ORp { log(8Rp/ap)+li/2-2} and 
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(Fp)R = lC -a( (l/2)1p2Lp/Rp+(l/2)1J.Oip2(~p+ 1/2)}, (3 .25) 

is obtained. Lp in this formula is closely related to the flux consumption. 

(4) Flux consumption 

Flux conservation is adequate when considering positional instability 
during a short period, but the flux consumption should be examined for the 
long-period (> 1 second) reproduction of the plasma ECD. The equilibrium of 
the supply and consumption of flux is expressed as 

(<jlPF(t) + <jlOH(t)] - (Lplp + JT)plpdt + <)leddy(t)] = 0, (3.26) 

where the former and latter brackets show the supply and consumption of flux, 
respectively, <jlPF(t) and <jlOH(t) are the time-integrated fluxes produced by the 
PF coils except the ohmic-heating (OH) coil and by the OH coil only, 
respectively, ~cddy(t) is the flux consumed by eddy currents in the structural 
materials and JT)plpdt is the flux consumed by the plasma electrical resistance. 

Equation (3.26) is assumed to hold at the start of the simulation(t=to). In 
addition, the following are assumed during the simulation. (a) 6(8-<)>0H- JT)plpdt 

- <jl cddy(t))=O, where 6 denotes the deviation from the value at t=to and 8 is the 
ratio of the OH coil flux consumed by the plasma and conductors. (b) The other 
PF coil fluxes are neither consumed by the plasma and conductors in the 
structure. Then by applying 6 to Eq. (3.26), the simple expression; 

6<jlPF + (l-8)-6<jlOH - 6(Lp·lp) = 0, (3.27) 

is obtained. This equation is used to substitute Lp in Eq. (3.27) for that in Eq. 

(3.25). 

(5) PF coils 
JT-60 has five types of PF coils; ohmic heating (OH) coil, vertical field 

(VF) coil, horizontal field (HF) coil, quadrupole field (QF) coil and divertor 
(D) coil. The VF and HF coils are the only actuators which control plasma 

horizontal and vertical displacement. The waveforms same with the 
experimental data are used for the currents of OH, QF, D and (VF or HF) coils 

in the simulation. Models of the VF and HF coils will now be developed using 
the system identification method that uses data of the PF coil impedance 
measurements. The models are presumed to have the form; 

L (lcoi!Ncoil) =I Ci/ (l+s·Ti), (3.28) 
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where L (Icoil/V coil) is the Laplace transform of the ratio Icoil/V coil, !coil is the 
coil current, Vcoil is the coil voltage, Ti is the i-th time constant, Ci is the i-th 
coefficient and s is the parameter in the Laplace transform space (s=27tf.j, f is 
frequency, j=Y-1). The integer ratio of the designed time constant of the coils is 
taken as Ti. Then the linear coefficient Ci is selected by the least-squares 
method so that Eq. (3.28) can fit the figures observed on Bode diagrams. The 
electrical circuit equivalent to the resultant Eq. (3.28) is solved in the ECD 
simulation, where Vcoil and Icoil are the input and output, respectively. 

The inductive couplings between the OH/QF/D coils and the VF/HF coils 
are included in the model. But the couplings from the VF coil to the OH/QF/D 
coils and from HF coil to the OH/QF/D coils are neglected in this model 
because currents of the OH/QF/D coils are well controlled by JT-60 power 
supplies. 

The mutual coupling to the PF coils by the plasma movement is 
considered. At the start of plasma motion this coupling produces voltage in a 
coil and the coil current starts to change according to the time constant of the 
coil (not instantly). The field produced by the current change of PF coils acts 
to restore the plasma displacement. Consequently, if only this field is taken as 
Bmove in Eq. (3.22), it is impossible to determine vp using the assumption of 
mp-dvp/dt=O. However, it is poss ible to estimate vp (or the growth rate) by 
solving Newton's equation Eq. (3.21) (see Section 4). Such vp would be more 
severe than really exists and, therefore, depending on the circumstances, that 
value might be effective in the initial phase of tokamak design. 

(6) Control system (including the PF coil power supply) 
The importance of modelling the control system dynamics seems to be 

little understood to date, but it is an essential task for the construction of ECD 
system. The discretization (sampler & holder), digitization, dead time and 
control elements, all essential characteristics of the control system, are 
completely reproduced in the model. In the control elements, proportional and 
differential control algorithm is executed every 1 msec in the JT-60 plasma 
control system together with minimal-time and other control methods in the 
PF coil power supply controller[8l . The actual control voltages are applied to 
the coils by thyrister convertors. 

The unknown parameters in the simplified model are now summarized: 
(1) Penetration delay of the magnetic field 

'tR (sec) ; time constant of the vertical field. 
'tz (sec) ; time constant of the horizontal field . 

(2) Magnetic field induced by the plasma axisymmetric movement 
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kR (T/(A·m/sec)) ; conversion constant of the radial motion. 
kz (T/(A·m/sec)) ; conversion constant of the vertical motion. 

(3) Plasma motion: 

a ; the power of K -a (the volume effect) in Eq. (3.23). 
( 4) Flux consumption: 

8 ; the OH coil flux consumed by the plasma and conductors. 
(5) PF coils and (6) Control system do not contain any unknown parameter. 

3.2 Determination of the Unknown Parameters in the ECD Model 
Though the unknown parameters of 'tR, -r2 , kR, k2 , a and 8 are expected to 

be predetermined by only the knowledge of the design parameters of the 
device, an accurate simulation code including the plasma internal behavior will 
be required to obtain their precise values. Now determination of these values 
will be undertaken using the JT-60 experimental data. The aim is to identify 
the simplest ECD model that can reproduce the essentials of the plasma 
movement. The method to predetermine the parameters will be discussed in the 
next section. 

The simulation was performed under the following conditions; 
(a) the control reference waveforms of Rp or Zp are identical with 

experimental data, 
(b) the waveforms of the other coils' currents, which are not directly related 

to the Rp and Zp control, are also identical with the experimental data and 
(c) no parameters except 'tR, 'tz, kR, k2 , a and 8 exist to adjust the ECD model. 

In the Rp damping oscillation experiment, where the QF coil current was 
abruptly changed so as to change K of the plasma from 1.0 to 0.6, 
(d) a was adjusted so that the amplitude in the ECD simulation agrees with that 

in the experiment, ---> a = 0.132 - l/7 
(e) 8 was adjusted so that Bz evolution in the ECD simulation agrees with that 

in the experiment, ---> e = 0.7 
(f) 'tR was adjusted so that the damping rate of the amplitude in the ECD 

simulation agrees with that in the experiment and 
---> 'tR = 4.1 msec 

(g) kR was adjusted so that the period of oscillation in the ECD simulation 
agrees with that in the experiment. ---> kR = 1.6xl0-9 T/(A-m/sec) 

===> The parameters for the Rp control characteristics are fixed from the 
Rp damping oscillation experiment. 

In the Zp step response experiment, 



..... 
~----~----------------------------------------..... 

(h) 'tz was adjusted so that the damping rate of the amplitude after the 

overshoot in the ECD simulation agrees with that in the experiment and 
---> 'tz = 2.5 msec 

(i) kz was adjusted so that the period of oscillation in the ECD simulation 
agrees with that in the experiment. ---> kz = 1.3xl 0-9 T/(A·m/sec) 

===> The parameters for the Zp control characteristics are fixed from the 
Zp step response experiment. 

Thus, all the unknown parameters in the ECD model are determined through 
the comparison of the data from the simulation and experiment. It must be 
noted that this small number of adjusting parameters are adequate for the 
reproduction of JT-60 plasma ECD. Figures 3.2(a) and 3.2(e) show 
comparisons of the adjusted-model-based simulations and the experiments on 
control of Rp and Zp, used for the parameter evaluation, together with the 
magnetic field Bz and BR at the plasma position, respectively. 

3.3 Several Simulations Using the ECD Model 
The fixed model should be confirmed to reproduce plasma ECD in 

several other cases. The selected simulation shots, in which the plasma 
positions were changed, and their main parameters are shown in Table 3.1. 

Figure 3.2(b) shows good agreement of Rp ramp response. The 
sawtoothed waveform of Bz is well reproduced. It may be caused by the tirne­
discretized reference produced by the sampler & holder shown in Fig. 3.1. 
This is an unavoidable aspect of the digital control system. Figure 3.2(c) 
shows slow Rp outboard displacement, where a coarse digit of the coil current 
is observed in Bz waveform. A 10 Hz Rp oscillation experiment is shown in 
Fig. 3.2(d). The error in the simulation is 4 mm of the amplitude . A 
sawtoothed waveform of Bz similar to that in Fig. 3.2(b) was observed. 

Figure 3.2(f) shows Zp downward step response in the same discharge as 
shown in Fig. 3.2(e). Good agreement between the simulation evolution and 
experimental result is recognized. In Fig. 3.2(g), Zp was moved upward with 
feedback control just as the plasmas were being elongated from 1.0 to 1.4. In 
Fig. 3.2(h), Zp was moved downward with feedback control just as the plasmas 
were being elongated from 1.0 to 1.2. As K became larger, the fluctuation of 
the horizontal magnetic field BR increased in amplitude as shown in both Fig. 
3.2(g) and 3.2(h) (slightly). Differences between the simulation and 
experiment in the BR evolution are caused by the volume effect of plasmas. It 
is noteworthy that a BR of only one Gauss(=l.Oxl0-4 T) is sufficient to cause a 
Zp movement speed of 0.1 m/sec with a 700 kA plasma in JT-60. 
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Table 3.1 Main Parameters of the Discharge Pulses Used in the Simulation 

lp Divenor/ 
~p+li/2 K Rp reference Zp reference Fig. 3.2 Shot No. MA Limiter m m 

E42A4 0.5 Lim. 0.6 
l.O(t=0.7sec}4 

Rp=3.11 Zp=O.O (a) 0.6(t=0.73sec) 

E4969 2.3 Div. 0.6 1.0 
Rp=3.08(t=4.0sec) 

Zp=O.O (b) ->3.045(t=4.1sec} 

E5716 1.0 Lim. 0.8 1.0 
Rp=3.02(t=3.0sec) Zp=O.O (c) 

->3.08(t=4.0sec) 

E5524 1.0 Div. 0.8 1.0 
Rp=3. 11 +0.01 sin(20nt) 

Zp=O.O (d) 
t >3.0sec, l OHz 

E3622 1.5 Lim. 0.8 1.0 
Rp=3.0Z Zp=O.O(t=2.5sec)->0.05(t=2.6sec) 

! Zp=0.05(t=7.0sec)->O.O(t=7. lsec} (e)&(f) 

E4557 0.7 Lim. 1.0 
I.O(t= 1.5sec)-> Rp=3.0~ Zp=O.O(t= 1.5sec) ->0.15(t=3.0sec) (g) 

1.4(t=3.0sec) 

E4559 0.7 Lim 1.0 
I.O(t= 1.5sec)-> Rp=3.0~ Zp=O.O(t=1.5sec)->- 0.15(t=3.0sec) (h) 

1.2(t=3.0sec) 
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(a) Rp damping oscillation induced by the step change of K. 
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(b) Rp step response 

Fig. 3.2 Determination of the Parameters in the ECD model [(a) & (e)] and 
Comparison between the Experiment and ECD-simulation [(b)-(d), (f)-(h)]. 

Note: Solid line shows simulation; Broken line shows experiment. 



~--------------------------------------------------.... 
(m) 

3. 09 fTTT'T""""'"fTTTn'Tr<~~~~ 
#E005716 

3.07 

+-Bz-sim. 
3.05 

93.0 86.0 

3.03 

K=l.O 

3.01 92.0 85.0 
2.8 3.2 3.6 4.0 (sec) 2.8 3.2 3.6 4.0 (sec) 

(c) Rp outward displacement 

(m) x1o-3 (T) 
3.13 87.0 

#E005524 R 
~ p-exp. 93 .0 Bz-exp.-+ 

t\ 86.0 hi \ I 

A 
tl 

3.12 92.0 

85.0 

91.0 

3.11 '(J 84.0 

90.0 

~~ 83.0 

3.10 89.0 ~ 
~~ I 
j \~ ~ ~~ 82.0 

v . ~ 88.0 
3.09 1C 

=1.0 Rp-stm. +- B z-sim. 
81.0 

3.0 3.1 3.2 3.3 3.4 3.5 (sec) 3.0 3.1 3.2 3.3 3.4 3.5 (sec) 

(d) Rp oscillation experiment with a frequency of 10Hz 

Fig. 3.2 Determination of the Parameters in the ECD model [(a) & (e)] and 
Comparison between the Experiment and ECD-simulation [(b)--(d), (f}-(h)]. 

Note: Solid line shows simulation; Broken line shows experiment. 
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(f) Zp downward step response 

Fig. 3.2 Determination of the Parameters in the ECD model [(a) & (e)] and 
Comparison between the Experiment and ECD-simulation [(b)-{d), (t}-(h)l. 

Note: Solid line shows simulation; Broken line shows experiment. 
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Fig. 3.2 Determination of the Parameters in the ECD model [(a) & (e)] and 
Comparison between the Experiment and ECD-simulation [(b)--(d), (f)-(h)]. 

Note: Solid line shows simulation; Broken line shows experiment. 
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