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Introduction 
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1.1 Introduction 

This thesis is devoted to the theoretical study of optical linear and nonlinear 

responses in the disordered system. We are concerned mainly with optical nonlinear 

responses due to excitons. Exciton systems are very promising as a nonlinear 

material (Sec. 1.2). Roughly speaking, it is because an exciton has an enhanced 

transition dipolemoment, i.e., the ability to interact collectively with the radiation 

field (Sec. 1.3). An effective value of the enhanced transition dipolemoment is 

determined approximately by a spread of the exciton's wavefunction, which must 

have close relation to the relaxation mechanism of an exciton. However, such 

evaluation of optical nonlinear responses only by the effective transition 

dipolemoment with the use of the relaxation times T, and T, is too crude to give 

an interesting phenomena such as the weak localization effect on the phase­

conjugated wave generation (Sec. 1.4). The third-order nonlinear process 

generating the phase-conjugated wave will be found to be very sensitive to the 

interference caused by the exciton's scattering with static disorder in the system. 

So as to treat the exciton's coherency properly, the microscopic mechanism of 

relaxation is needed. When we use a random potential model as a microscopic 

description of the dephasing process, the problem of the Anderson localization 

will emerge (Sec. 1.5). It allures us to construct the scaling theory of the phase­

conjugated wave generation. We will find that various topics in different field 

correlate organically with one another. In Sec. 1.6, we will state the purpose and 

the outline of the thesis in a more specific way. 
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1.2 Excitons and Optical Nonlinear Responses 

Optical nonlinear responses of solids have been studied extensively so far. 

However, many fundamental problems remain to be understood. The third-order 

optical nonlinear susceptibility x<3
> describes a wide range of interesting optical 

nonlinear phenomena such as the four-wave mixing experiment and the generation 

of phase-conjugated waves (PCW) as well as optical bistability. In designing 

optoelectronic or optical devices, both of the large optical nonlinear susceptibility 

x<3
> and the fast switching time T are desired. Unfortunately these two properties 

don't seem to be compatible. If we define the figure of merit for the optical 

nonlinear material by I x<3
> I I aT, where a is the absorption coefficient, an empirical 

law of I x<3
> I I aT ~ canst. holds good in a large class of optical nonlinear materials. 

As Fig. 1.1 illustrates, only exceptions of this empirical law are exciton systems 

under resonant pumping. From this point of view, there is increasing interest in 

the nonlinear optical properties due to excitons in the organic and inorganic 

crystals. (See also, e.g., Ref. [1].) Exciton systems are so promising as optical 

nonlinear materials that both the large optical nonlinearity and rapid switching 

will be realized in those systems. 

1.3 Enhanced Dipolemoment and Nonlinear Responses 

Such favorable properties of exciton systems as optical nonlinear materials 

result from collective interactions with the radiation field and it can be explained 

in terms of the enhanced oscillator strength of an exciton. If we designate an 

annihilation (creation) operator of the valence (conduction) electron in the state 

of the Wannier function at the site r;, the general exciton states lw,.) can be 
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expressed by 

(1) 
i.,j 

where the coordinate R ( r) is a center-of-mass (relative) coordinate of the electron-

hole pair at r; and rj, and F""(R) ( cpn(r )) is a wavefunction of center-of-mass 

(relative) motion for the e-h pair. The suffix of the wavefunction >. ( n) is a 

quantum number of the center-of-mass (relative) motion of the exciton. The 

transition dipolemoment between this state and the ground state is given by 

(w"" IPx I g)= i ~F,;,CR,)eiKR, ]cp:(r = 0). (2) 

The atomic dipolemoment is designated by p., and Px = P.L
1
(b,'a, +aJb)e'KR, is 

a Fourier component of the transition dipolemoment of the system. 

Take Frenkel-type excitons as an example. Frenkel excitons are collective 

excitations, say, in the molecular crystal. Frenkel excitons correspond to the 

case of 'Pn (r;- r) = 61,j in Eq. (1). If there are no dephasing processes such as 

lattice vibration and scattering by defects in the crystal, the momentum of the 

center-of-mass motion k becomes a good quantum number. Then the wavefunction 

of the center-of-mass motion F." (R) is in the ideal crystal given by 

F. (R ) 1 ik ·R ( 3) 
kn i = JNe '. 

The transition dipolemoment of this ideal Frenkel exciton becomes JN times as 

large as the atomic dipolemoment p. : 

(4) 

In the case of Frenkel exciton localized with a localization length ( 1oc, F""(R) 
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behaves exponentially such as FAA (R,) ~ ~a3 1 eoc exp(-R, I ~Joe)'. The transition 

dipolemoment of this localized Frenkel exciton is also enhanced from the atomic 

value as 

(5) 

for K ~ 0, when the localization length ~Joe is much larger than the size of the 

unit cell a. 

Since the third-order nonlinear polarization p(J> is proportional to the 

transition dipolemoment to the fourth power1, Eq. (4) shows that p <J> due to 

ideal Frenkel excitons will be expected to scale as - N 2
, not as - N. This means 

that the nonlinear susceptibility x(3) . which is determined by the polarization 

density, has an enhancement factor of N due to the exciton's spatial coherence 

over the whole crystal. On the other hand, x<J> due to localized excitons should 

have an enhancement factor of - eoc I a 3
, as shown by Eq. (5). This simplified 

argument above will be found later to hold true only under resonant pumping of 

the exciton. 

In a system of semiconductor of microcrystallites, the coherent size is 

determined by the sample size itself, which leads to the third-order susceptibility 

proportional to the volume of the semiconductor microcrystallite under resonant 

pumping of excitons [2-5]. If the momentum and energy relaxation of the exciton 

exist, these processes limit the coherent sizett. Consequently the factor N in 

• The prefactor is necessary for the normalization condition of the wavefunction. 
t The estimation of optical nonlinear re sponses here is oversimplified. In later chapters, we 

will confirm that it is true under certain conditions. 

:j::j: The localization length of the exciton can also be considered a kind of the exciton's coherent 

length. 

-5-



« 

1. Introduction 

the enhancement factor of x<3
> should be replaced by a smaller value N.rr· 

Unfortunately such relaxation processes are usually taken account of only 

phenomenologically by introduction of the longitudinal and transverse relaxation 

times T, and T.,. Such approximation is too crude to take serious account of the 

effect of intersite coherence on the nonlinear susceptibility. To examine the 

exciton's intersite coherent effect on optical nonlinear responses, the microscopic 

relaxation mechanism is needed. In fact, as will be seen in the next section, it is 

not until we use the microscopic model of static random onsite energies as a 

dephasing processes that we will find the peculiarity of the phase-conjugation in 

the random system. We also note that the exciton's coherent effect is not correctly 

treated within the framework ofthe.local-field approximations, and ·simple-minded 

equation of motion method as in Ref. [6]. 

1.4 Phase -conjugated Waves and Weak Localization Effect 

The generation of the phase-conjugated wave is a kind of optical nonlinear 

responses described by the third-order susceptibility x(3) . The geometry of three 

incident beams - the forward and backward pump beams and the probe beam 

- is depicted in Fig. 1.2. When an exciton is scattered elastically by random 

potentials, it suffers from the momentum relaxation. These scattering processes 

make the motion of an exciton partially coherent and partially incoherent (i.e., 

diffusive), and thus the effective dipolemoment of an exciton will be reduced 

[7,8]. 

The disorder effect not only reduces the transition dipolemoment, but also 

give a very interesting positive contribution to optical nonlinear responses . In 
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random systems, the backward scattering amplitude is known to be enhanced 

due to interference effect. In other words, the probability that a particle or an 

elementary excitation such as an exciton retums to the original point will increase, 

and the system is inclined to be localized. The importance of coherent multiple 

scattering by static random potentials has recently been recognized in nonlinear 

optical properties. Weak localization effect by disorder has been shown to enhance 

the generation of the phase-conjugated waves in nearly degenerate four-wave 

mixing [9-14]. They discussed and showed by the perturbational calculation 

that coherent collision due to random potentials enhances the strength of the 

phase-conjugated wave signal. (See also Ref. [15,16].) In the end of Chapter 4, 

we will explain intuitively how the coherent collision enhances the generation of 

the phase-conjugated wave. 

When disorder in the system increases further, the localized-delocalized 

transition will occur and the exciton state will be localized. The weak localization 

effect is just a precursor of the localized state. Although the weak localization 

effect can be treated by the perturbational calculation from the delocalized limit, 

the same sort of calculation cannot be applied around the localized-delocalized 

transition. This topic will be argued more in the next section. 

1.5 Anderson Localization 

When disorder in the system increases further, the delocalized-localized 

transition (i.e., Anderson transition) is expected to occur as a function of the 

strength of disorder, or of the frequency. Such transition point in the frequency 

domain is called mobility edge w' , where the states of the exciton change in 
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nature from the localized to the extended states or vice versa . The possibility of 

the localized-delocalized transition of the exciton [17-21] gives an interesting but 

nontrivial problem on optical nonlinear responses due to excitons. Since the 

exciton's localization length diverges when pump and probe frequencies approach 

the exciton mobility edge in the localized phase, the effective transition 

dipolemoment of an exciton should become very large near the transition point. 

Does this imply that the optical nonlinear responses will also become very large 

around the exciton mobility edge? It is noted that the exciton wave number is 

not a good quantum number in this system, so that linear absorption spectrum 

due to the exciton is very broad and almost constant around the mobility edge. 

As for the Anderson localization of conductors (i .e., electronsr;· there exists 

a very powerful theory- the scaling theory of the Anderson localization [22,23] . 

According to the scaling argument of the Anderson localization, all the states are 

localized in one- and two-dimensional bulk system at the absolute zero temperature, 

and the localized-delocalized transition is expected to occur as a function of 

disorder, or of frequency in the three-dimensional system. The dimensionality of 

the system is known to be a crucial parameter in the theory of the Anderson 

localization. 

However no strong dependence on the dimensionality is manifested in the 

result of the weak localization effect on the phase-conjugated wave so far. In 

addition, the simple-minded estimation in the localized phase such as we set the 

diffuson coefficient to zero seems to give a wrong answer to the generation of the 

phase-conjugated signal in the localized phase. Commonly used methods such as 

perturbational calculation of exciton scattering by random potential break down, 
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particularly, around the exciton mobility edge. If we develop the length-dependent 

scaling theory for the phase-conjugated wave generation, we examine 

systematically its behavior on both the localized and the delocalized sides of the 

exciton mobility edge. Here we need the application of the scaling theory on the 

phase-conjugated wave generation. 

Complicating the situation furthermore, both the restricted geometry of 

the sample and the misalignment of forward and backward pump beams also 

destroy the interference effect - the localization effect. In other words, both 

smear out the critical behavior around the transition point. To investigate such 

singular behavior in nonlinear polarization around the exciton mobility edge, the 

scaling theory oflocalization will be found very effective. 

1.6 Purpose and Outline of the Thesis 

The present thesis is devoted to the study of the disordered effect on the 

optical nonlinear polarization, particularly on the generation of the phase­

conjugated wave. As we have seen in the previous sections, it is because the 

phase-conjugated wave generation is sensitive to disorder and gives us a particular 

interest in the random system. Although the exciton system is a very promising 

as an optical nonlinear material because of the exciton's intersite coherency 

itself, it is not fully understood yet from the microscopic point of view how the 

exciton's coherence contributes to optical nonlinear processes such as the 

generation of the phase-conjugated wave. The localized-delocalized transition of 

the exciton gives a very interesting situation, because the third-order nonlinear 

susceptibility i 3
> is sensitive to a spread of the wavefunction. (On the other 
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hand, the liner susceptibility x< '> is not so sensitive to a spread of the wavefunction.) 

A certain kind of optical nonlinear responses ought to be enhanced around the 

exciton mobility edge. 

Based upon these subjects introduced above, the following points will be 

clarified in the thesis: (1) How is the enhancement factor Nerr due to the exciton's 

coherency calculated from the microscopic model? (2) What singular behavior of 

the phase-conjugated signal is expected around the exciton mobility edge? (3) 

And how is the enhancement effect of the phase-conjugated signal destroyed by 

many factors, i.e., the restricted geometry of the sample, the misalignment of the 

two pump beams, and the detuning frequency? 

We clarifY the nature of phase-conjugated wave generation in the disordered 

and finite system, and its behavior around the localized-delocalized transition. 

Putting it the other way round, localization and delocalization of the exciton, 

which is still an open problem, can be studied well by observing the generation of 

phase-conjugated waves, when the pump and probe beam frequencies are close 

to the exciton mobility edge. 

The outline of the thesis is as follows. We investigate the microscopic 

model of the exciton system in Chapter 2. We start from the microscopic 

Hamiltonian of Frenkel excitons with static onsite disorder. Dephasing processes 

of the exciton are included through the scattering by onsite disorder. The 

longitudinal damping of an exciton into the ground state is included 

phenomenologically in the form of the Liouville operator. In Chapter 3, we 

formulate linear optical response and nonlinear polarizations for phase-conjugated 

wave generation, taking full account of the disorder effect. In Chapter 4 we first 
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examine the dominant contribution for the third-order susceptibility under nearly 

resonant pumping of excitons. Next we perform the perturbational expansion 

from the delocalized limit. The relation between the enhancement factor for the 

phase-conjugated wave generation and the cooperon mode is explicitly shown. In 

Chapter 5, we develop the length-dependent scaling theory for the enhancement 

factor of the phase-conjugated wave generation. The spectral anomaly of this 

signal around the exciton mobility edge is demonstrated. Its dependence on the 

system size and the misalignment is also examined. In the final chapter, we 

summarize our results: the singular behavior of the phase-conjugated wave 

generation around the exciton mobility edge. We also discuss how to observe the 

localized-delocalized transition in frequency by observing the phase-conjugated 

wave generation as a function of pump frequency or of misalignment of two 

pump beams. 
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Figure 1.1 

Logarithmic plotting of I xc'> I /a as a function of log[ll r ], where a is the absorption 

coefficient and r is the switching time. The empirical law of I xc'> I / a r = const. is 

drawn by the gray line in the figure. Exciton systems under resonant pumping 

are shown to be free from this empirical law, and be promising as optical nonlinear 

materials. 
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Figure 1.2 

The geometry of the nearly degenerate four-wave mixing. Three incident beams 

are used: the forward (ba ckward) pump beams denoted by (w0 ,kfCb> ), and the 

probe beam by (w.,k.). The signal beam which is phase-conjugated to the probe 

light is observed at (w, ,k,) = (2w0 - w.,kr +h. -kP) . 
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2. Microscopic Model 

2.1 Criteria for Constructing a Microscopic Model 

In this chapter, we construct the microscopic model of Frenkel excitons in 

the disordered system which is appropriate to estimate optical nonlinear 

susceptibilities. As we have seen in the previous chapter, the microscopic model 

for the exciton's relaxation processes is needed when we take account of the 

exciton's coherency seriously to estimate the nonlinear susceptibility. It is our 

central interest to learn how the exciton's coherency affects various kinds of 

optical nonlinear responses. To treat the exciton system, the attractive interaction 

between an electron and a hole is needed. In addition, the system is not in 

equilibrium state when we observe optical nonlinear responses . Everything 

considered, such system is too complicated for us to deal with. Some simplifications 

in the model are needed. 

Our first simplification is to treat the model of Frenkel excitons. In this 

model, the lowest exciton state is assumed to have so localized a wavefunction in 

the relative motion of the electron-hole pair that a pair of an electron and a hole 

are almost located at the same atom (or molecule). The exciton's coherency is 

defined by a spread of the wavefunction of the center-of-mass motion. This 

model has a merit of mathematical simplicity and, at the same time, allows us to 

examine the coherent effect on optical nonlinear susceptibilities. 

As our second simplification, we take the situation where the relaxation of 

an exciton's momentum is much faster than that of an exciton's energy. From 

this assumption, we have only to use a microscopic mechanism for dephasing 

processes, i.e., relaxation processes for an exciton's momentum. The distribution 

of static onsite random energies is introduced. This model gives excitons not 
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2. Microscopic Model 

only the pure dephasing processes but also the weak localization effect which 

leads to the localized-delocalized transition, as we have mentioned in Chapter 1. 

Longitudinal relaxation processes, i.e., relaxation processes of an exciton's energy, 

is treated only phenomenologically by assuming a tractable but plausible form of 

the Liouville operator'. 

Optical nonlinear responses (and susceptibilities) can be estimated in a 

nonequilibrium system by help of the density matrix e whose evolution obeys 

the Liouville equation. The details of this calculation will be presented in Chapter 

3, where we will estimate nonlinear responses under a rotating wave 

approximation. 

2 .2 Microscopic Model for Optical Nonlinear Responses 

2 .2 .1 Time evolution of the density matrix 

We introduce the microscopic model for Frenkel excitons in N coupled 

two-level atoms (or molecules) with random onsite energies n, and dipolar 

couplings between them. The ground state, the one-exciton states and the two-

exciton states are depicted in Fig. 2.1. The volume of the system is defined as 

V = Ld ( L is a system size in dimension d). The time evolution of the density 

matrix e(t) of the electronic system is determined by the following Liouville 

equation (we use the unit of n = 1 here and hereafter): 

d e =-i[H0 +H'(t), e]+L
1
e, 

dt 

• This is described by the Liouvill e operator L
1

(2 in Eq. (1). 

- 16-
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2. Microscopic Model 

where H 0 is the Hamiltonian of electronic system and H'(t) is the interaction 

between the electronic system and the transver se electric fie lds E~(r,t) . The 

term Li! describes a longitudinal relaxation, i.e., a relaxation of an exciton's 

energy, and its detailed form will be given later. In terms of a Pauli spin 

operator s; ( s,-) creating (annihilating) an excitation at the site i. the 

Hamiltonians H 0 and H'(t) are expressed by 

H0 = l.. T<r;- r)S(Sj, (2a) 
(i ,j) 

H'(t) =-J dr P(r ) · E~(r, t). (2b) 

The polarization density operator P(r ) is given by 

(3) 

with p the atomic transition dipolemoment. 

2.2.2 Experimental Geometry for Phase-Conjugated Wave Generation 

In the thesis, we consider mainly the phase-conjugated wave generation 

by the nearly degenerate four-wave-mixing experiment. The experimental setting 

is shown in Fig. 1.2. The two pump waves (w0 , k r) and (w0 ,kb), and the probe 

wave (wP,kP) are applied on the optical nonlinear material. Thus the external 

electric field is expressed in the composition of three incident beams as 

3 
E~ (r, t) = L(E,eik,.r-iw,l +E;e-ik,·r+iw,'), (g) 

l=l 

where (w1, k 1
) (l = 1,2,3) denote the forward (w0 , k ,), the backward (w0 , kb) pump 

beams and the probe beam (wP, k P). Under a rotational wave approximation, we 

have three kinds of signal waves from the three kinds of population gratings, as 
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will be depicted later in Chapter 4. Among them, we observe the signal beam 

phase-conjugated to the incident probe light at (w,,k,)= (2w0 -wp, kf +k. - k P). 

2.2.3 Random Configuration Average 

The term T(r;- r) in the Hamiltonian H 0 describes the random onsite 

energy n, for i = j and the dipolar couplings for i"" j. The onsite energies n, 
are assumed to obey the Gaussian probability distribution 

(4) 

Observed physical quantities must be evaluated, by averaging over the distribution 

of random onsite energies. This procedure is designated by 

(-·-)., = JI) P[Sl,]dSl, (···). (5) 

From the definition of the distribution, the average and the variance of the 

onsite energies are given by 

(6a) 

(n n) -(n) (n) = W 2o . 
I J Otl I au ) au 1,) 

(6b) 

When we evaluate the nonlinear response by perturbational method in the 

later chapters, we explicitly assume that random onsite energies obey this Gaussian 

distribution. However, the behavior of the phase-conjugated wave signal which 

is obtained from the scaling theory is believed to be universal around the exciton 

mobility edge, irrespective of the Gaussian, box-type, or Lorentzian distribution 

of the random onsite energies. 
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2.2.4 Liouville operator for a Longitudinal Relaxation 

The term L
1

{! in the Liouville Eq. (1) describes the longitudinal relaxation 

of an exciton, i.e., the relaxation processes of excited states into the ground state. 

Since we are concerned mainly with the disorder effect and such situation as the 

dephasing rate is much faster than the longitudinal relaxation rate, we introduce 

a constant decay rate of the exciton phenomenologically. However there is one 

point that we should take care of. The solution g(t) of the Liouville Eq. (1) must 

always satisfies the identity Trg(t) = 1. This condition seems very trivial, but 

popular methods to calculate nonlinear responses, e.g., equation of motion, or 

optical Bloch equation, sometimes break this identity by introducing 

phenomenological damping effect, and give rise to unphysical divergences in the 

nonlinear susceptibility. (See also Ref. [24].) When we treat the random system, 

this normalization condition becomes more important, because we have to have 

physical quantities averaged over the random configuration. 

In order to write down the matrix elements of L,g, we first introduce 

formally the ground state jg), one-exciton eigenstates Ia), and two-exciton 

eigenstates j(uu')) of Hamiltonian H 0 • Here the symbol (uu') formally represents 

a state of two excitations. Because of the Pauli's exclusion principle, there are 

N one-exciton eigenstates and N(N -1)/2 two-exciton eigenstates. Then we 

designate the eigen energies of these states as 

H0 jg)=O, 

H 0 ja) =!lola), 

H 0 j(O"u')) = n ••. j(uu')) . 

-19-
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2. Microscopic Model 

As is shown later, it suffices to consider only matrix elements involving one-exciton 

eigenstates and the ground state under resonant pumping of excitons. For 

completeness, however, we here assume rather general form for the Liouville 

operator L.,e as follows: 

(g 1£7~ g)= z"L, ''loflo,o + 2 L 'Y ,,·fl,,•,aa·, (Sa) 
(a<7') 

(8b) 

(Be) 

(8d) 

(Be) 

(80 

Here we designate the longitudinal relaxation of the one-exciton state Ia) by 'Yo 

and that of the two-exciton state laa')by and 'Y .... It can be easily confirmed 

that the relaxation matrix L.,e introduced above conserves the probability. The 

solution e(t) of the Liouville Eq. (1) always satisfies the identity Tre(t) = 1, so 

that we come across no unphysical divergences in the nonlinear susceptibility 

arising from the lack of conservation of probability, as stated previously. In later 

chapters, we assume that the relaxation rates 'Yo 's are independent of the state, 

and much smaller than the pure dephasing rate 'Y ' due to impurity, i.e., 

'Yo = 'Y << 'Y'. It is noted that the effect of the pure dephasing processes is taken 

account of, not in the relaxation matrix L.,e , but in the Hamiltonian H0 • The 

pure dephasing rate 'Y' is evaluated by the Born approximation of impurity 
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scattering in Chapter 4. 

2.3 Summary of our m odel 

In this chapter, we have introduced the microscopic model which is suitable 

for linear and nonlinear responses in the disordered system. It should be 

emphasized that the dephasing process of an exciton is included in the Hamiltonian 

H0 , and we take full account of the effect of random on-site energies microscopically. 

As for the longitudinal relaxation of an exciton, we use a tractable and plausible 

form of the Liouville operator L jl , which does not break the probability condition 

Trg = 1. Thus there is no unphysical divergence in calculation of nonlinear 

responses even in the random system. In the next chapter, we will evaluate 

optical linear and nonlinear responses under a rotating wave approximation. 
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Figure 2.1 

Schematic representation of the states of the Frenkel excitons with random 

onsite energies. (a): The ground state . (b): an instance of the one-exciton states. 

A pair of an electron and a hole is located at the site i. (c): an instance of the 

two-exciton states. Two pairs of an electron and a hole are located at the sites i 

and j (i oF- j). 
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3. Linear & Nonlinear Susceptibilities 

3.1 Expansion in the external electric field 

In this chapter, we survey how linear and nonlinear optical polarizations 

and susceptibilities are evaluated. Throughout this chapter, we use a rotational 

wave approximation. Our interest is focused much upon the nearly degenerate 

four-wave mixing under resonant exciton pumping. However, the results obtained 

in this chapter is general under a rotational wave approximation. 

The electronic polarization of the system is calculated through the solution 

e(t) by 

P(r,t) = (Tr{P(r) e(tl}L (1) 

It is important that we take the ensemble average (-·-).,of the physical quantity 

over random configuration of onsite energies. We believe that this procedure is 

one of the most reliable one to evaluate the nonlinear polarization in the random 

system, because such methods as the equation-of-motion method may suffer 

from the ambiguity in the order of taking the quantum average and the random 

configuration average. To take account of the random distribution of energy 

levels averaging, we will evaluate Eq. (1) by resorting to the diagrammatic 

perturbation as to disorder effect in the next chapter. Linear and nonlinear 

polarizations are evaluated by expanding the density matrix e(t) in H'(t) to the 

third-order. Liouville equation can be formally rewritten as 

0 
-e= Loe+LI (t)e, at 

where we introduce the Liouville operators £ 0 and L 1(t) by 
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3. Linear & Nonlinear Susceptibilities 

L 1(t)=-i[H'(t),·] . (3b) 

To solve the density matrix e(t) in the expansion of H'(t), we may well use 

the interaction picture as 

e(t) = eLol Q(t) • (4) 

If we write down the relation between e(t) and [l(t) given by Eq. (4) in the form 

of the matrix elements, it becomes as follows: 

egg= egg+ 2:,[1- exp(-2, 0 t)]eo.o + 2:,[1- expc-z, ••. O]e •• · .•• ·, C5a) 
(au') 

eg,o = exp(C-Io +illJt]eg,o, (5b) 

eo,g = exp[ ( _, 0 - illo )t l eo,g' (5c) 

eo,p = exp[C-Io - lp -illo +illp)t]eo,P' (5d) 

e •• ·.g = exp[c-, ••. -in ••. )t]e •• ·.g' (5e) 

e8 ••• • = exp[C-1 •• · +ifl •• . )t]eg .••. , (5£) 

e •• ·,o = exp[(-, aa' _,0 -in ••. + illJt]e •• .. o' (5g) 

eo,aa' = exp(C-Io - 1 •• · -illo +ifl ••. )t]eo,aa' ' (5h) 

e ••..•.• - = exp[C-, ••. - 1.-.- -io ••. +ill •.• - )t]e.; ..••• - . C5i) 

The density matrix in the interaction picture [i(t) satisfies the Liouville equation 

where 

fJ_ -c)--e=L, t e, 
fJt 

(6) 

(7) 

It is straightforward that we write down the Liouville equation in the interaction 

picture by the matrix elements; 

_§___- - (-') <ro-ino)l["' H' - H' -"' H' ] (8 ) fJ t eg,o - L e £... g,p ep,o egg g,o ,L.eg,aa' aa',o ' a 
p (~') 
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[ 

(9) 

X H~.g eg,p- e,,g H;.P + I(H~.--· e •• ·,p - eo,oo' H; •.. ~ )]' 
(au') 

() - - ( ') h..-+iO,..)I"(H' H' ) (10 ) at e •• ·,g - -l e L... oo',o e,,g- e •• ·,o o,g ' a 
Q 

0 - -( ·) <>._-in.,.>< "(H' H' ) (lOb) Bt eg,oo' - -l e :- g,oeo,oo' - eg,o o,aa' ' 

() - - ( ') h..-+>.+iO,..-iO,)I[" H' "" H' H' ] (11 ) fiieuo',o. - -z e L...J oo',pf2p,o.- L ... Jlou' ,u '"u- o'"u-,o - eou',a 8 ,o , a 
{J (u'"u-) 

:t i!o,oo' = ( -i)e<>. +>.,.+in. -in.,. )'[H:w eg,oo' + I H~ .• -.- e.-.-.•• · -I e,JJH;, •• ·]' ( 11b) 
(u '"u "" ) {3 

~i! , --=(-i)e<>..-•>.-.-+m,..-in.-.->'"(H', e ---e, H' --) . (12) at oa ,u 0 :- 00 ,a o,o 0 00 ,o. o,o (1 

The formal solution ofEq. (2) is given by 

e(t) = 71(t,-=)e(-=), (11) 

where the operator 7.1 in the Liouville space can be expressed with the time-ordered 

exponential as 

(12) 

At time t--) -=, we assume the electronic system to be at the ground state: 

e(-<><>) =eo"' lg)(gl . The interaction H'(t) is adiabatically switched on. By 

expanding the time-ordered exponential, we obtain the density matrix expanded 

in a perturbation series of H'(t) : 

(13) 
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where 

(14a) 

(14b) 

(14c) 

(14d) 

Linear and nonlinear polarizations (and susceptibilities also) are defined using 

the density matrices rt><t) and rJ"l (t) as 

P 0 \ r ,t) = (Tr{.Pcr)e0 J(t)}t, 

P (3)(r ,t) = (Tr{P(r)g<3J(t)}t· 

(15a) 

(15b) 

The second-order nonlinear polarization P (2)(r ,t) is found to vanish. In the 

following calculation, we use a rotational wave approximation to evaluate linear 

and nonlinear susceptibilities. 

3.2 Linear Susceptibility 

We define the linear susceptibility by 

pOJ(r,t) =- N IIx<o :E,eik, ·r-iw,t +(c.c.). (16) 
v k, 1• 1 

The evaluation is straightforward through Eqs. (14b) and (15a). Under a rotating 

wave approximation, we obtain a stationary solution as 

OJ ( ) = _ ~ .fN p.(al k,) E,e-""•' 
i?o,g t L., I"> • 

l W l-Ho + l /a 

(17) 

Therefore linear susceptibility x0 l is given by 
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x<'l =(I Jl. Jl. (k, la)(alk,)) . (18) 
a Wz- fla +'-/o au 

The disorder effect on the linear susceptibility is included fully in the one-state 

eigen energies n. and the random configuration averaging (-·-).,. It will be 

evaluated by the perturbational calculation in the next chapter. 

3 .3 Third-order Nonlinear Susceptibility 

Since the second-order nonlinear susceptibility will vanish, we go on to the 

calculation of the third-order nonlinear susceptibility. The third-order nonlinear 

susceptibility is defined by 

3 

P (3)( r , t) = I I x(3): E,E:Eneik· r -iw ,l + (c.c.)' (19) 
Jc, l,m,n=l 

where (w,, k ,) = (w1 -wm + wn,k1 -km + kn) . As will be given in Appendix A, the 

dimension of x<3l is [E-1][Ld). (Here [E) and [L) are, respectively, the dimensions 

of the energy and the length.) Evaluation of i 3
l under a rotational wave 

approximation is done through Eqs. (14d) and (15b) after some calculation. The 

result is summarized by help of the double Feynman diagrams (see, e.g. Ref. 

[25)) of Fig. 3.1 as 

(20) 

The third-order susceptibility x<3l consists of five terms from eight diagrams 

depicted in Fig. 3.1: each suffix of x~3l denotes the contribution from i-th diagram 

in the figure. Detailed form of each term is given as follows : 
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X~~.= N2 I I P.P.P.P. (k, ln)(alk.)(km l/3)(/3 lk,) . ) ' (2lb) 
V \ o.P (w,-00 +L')'0 )(w.-O. +q.)(wm-Op-Lip) ., 

x~3 ) =- N
2 I I P.P.P.P. _ (k, ln)(akm 1Caa'l)(Caa'll /3k.)(/3 lk,). ) ' (2lc) 

V \ o,p,(aa') (w,- 0 0 + l')'0 )(w1 + wn- fl aa ' +Li aa· )(w1 - flp + l!p) 
0 0 

x~';7 =- N
2 I I p.p.p.p. (km la)(ak, 1Caa'l)(Caa'll f3k.)(/3 lk,) . ) ' 

V \ o,p,(aa ') (w, +00 -flaa' +l')'0 +L'Yaa •)(w1 -00 + L'Yo)(wm- flp -Lip) "" 

(2ld) 

x~3) = N 2 I I P.P.P. P._ (km la)(ak, 1Caa'l)(Caa'll f3k.)(/3 lk,) . ) 
V o,P,(aa') \ (w, +fl. - fl aa' +l"f0 +ltaa' )(w1 +wn- fl aa' + l!aa ·)(w1- flp +l!p ) 

00 

(2le) 

Here we use the notation of lk) = I,(ilk)S(Ig) and l/3k) = s; lk) = I P(ii /3)S(Ik) . 

The third-order optical susceptibility should be proportional to atomic density 

N IV for the bulk material. It should be emphasized that the expressions 

obtained above include all the effects due to disorder and finite sample size. 

What is difficult lies in obtaining the eigenstates of the Hamiltonian H 0 and in 

taking the ensemble average over random impurity configuration. In the following 

chapter, we show that such difficulty will be overcome under resonant pumping 

of excitons'. We will find the factor N 2 I V in the expression of x<'> to be 

reduced naturally to (N IV) N,rr, where N,rr is the enhancement factor of the 

nonlinear optical polarization we will define. 

* It is because the leading contribution to the nonlinear susceptibility as to the expansion in 
')' I 1 ' is given by x\~2 +X~~. , which can be estimated through the knowledge of the one-exciton 
states only. It will be given in Chapter 4. 
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Figure 3.1 

All the processes contributing to the third-order nonlinear polarization under 

rotating wave approximation in the double Feynman diagrams. Thick lines and 

double thick lines denote one-exciton and two-exciton states, respectively. The 

diagrams (1) - (4) give dominant contribution to the third-order polarization 

under resonant pumping. 
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4. Random Averaged Perturbation 

4.1 Introduction to Random Averaged Perturbation Theory 

In this chapter, we examine the disorder effect both on the linear and 

nonlinear susceptibilities by the perturbational expansion from the delocalized 

limit. To justifY this expansion, W I T must be small. Based upon the expressions 

obtained in the previous chapter, we evaluate x<'> and x<3> by help of diagrams. 

Our concern will be focused upon the optical nonlinear susceptibility in the 

random system. We will establish the relation between the third-order nonlinear 

polarization and the exciton's diffusive propagation, and the peculiarity of the 

phase-conjugation in the random system will be clarified. 

In investigating the exciton propagation in the disordered medium, two 

diffusion modes are relevant: the particle-hole mode (diffuson) and the particle­

particle mode (cooperon) [23]. They are depicted in Fig. 4.1. Whereas the 

diffuson mode corresponds to the forward coherent scattering process, the cooperon 

mode describes that the backward scattering amplitude is enhanced by multiple 

impurity scatterings, as a result of constructive interference between two processes 

that are connected with each other by time-reversal symmetry. Since the phase 

conjugation is a process generating a wave whose phase is complex conjugate to 

the incident probe wave, it is very natural that nonlinear polarization for the 

phase conjugation is expressed by use of the cooperon mode [9-14]. When the 

incident waves are under resonant pumping of the exciton, we will find that the 

enhancement factor Ncrr for the phase-conjugated signal is directly written down 

by the cooperon mode with the momentum and the frequency specified by the 

external electric field. 

We first evaluate the linear susceptibility in Sec. 4.1. It will be found that 
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the onsite random energies give the dephasing relaxation rate to the linear 

susceptibility x0 >. In Sec. 4.2 and later, we will examine the disorder effect on 

the nonlinear susceptibility. We will define the enhancement factor N ,rr of the 

nonlinear susceptibility, and find that N,rr is closely related to the cooperon 

mode in the case of the phase-conjugated wave generation. 

In the following treatment, we neglect the state dependence of the rate of 

decay into the ground state. Thus set all Ia 's to a constant I· As we said in Sec. 

2.1, we assume the situation that 1 is much smaller than the dephasing rate 

coming from random onsite energies'. In addition, we assume all the external 

radiation fields have the same polarization, and designate the parallel component 

of the atomic transition dipolemoment' p. as p. . For the sake of convenience, we 

introduce the retarded and advanced Green functions by 

(1) 

It is noted that the Green functions of Eq. (1) are not c-numbers but operators. 

4 .2 Disorder Effect on Linear Susceptibility 

To begin with, we examine the disorder effect on linear susceptibility x0 >. 

The linear susceptibility is given by (18) in Chapter 3, and can be expressed in 

terms of the Green function introduced above as follows: 

(2) 

Thus evaluating linear susceptibili ty is reduced to that of the averaged retarded 

• The dephasing rate due to random onsite energies will be designa ted by 1 ' later. 

-33-



. ...... 

4. Random Averaged Perturbation 

one-particle Green functions a:.·A(w,), which is defined by 

((k, [GR,A(w)[k,}L = a:,·A(w) o• .. •,. (3) 

To evaluate a:,·A(w), we introduce the self-energy of the exciton EZ·A(w) by 

GR,A(w) _ 1 ( ) 
k - ( _ ,-., + · ) _ '0R,A ( ) ' 4 

W " •-V'f "'• W 

The symbol n. denotes the exciton's dispersion relation in the system without 

disorder. The self-energy EZ·A(w) is evaluated in the Born approximation as in 

Fig. 4.2. The imaginary part of the self-energy part E=·A(w) will define the pure 

dephasing rate "'/. The real part of E:·A (w) means an energy shift. Disorder-induced 

redshift relative to the homogeneous spectrum is known well [26,27], but it is not 

our present purpose to go into the detail of it. Neglecting the real part of the 

self-energy EZ·A(w), we obtain: 

(5) 

where N 0 is the average state density of the exciton per unit volume and unit 

energy at frequency w0 • Thus the averaged retarded and advanced Green function 

are expressed by 

(6) 

Hence linear susceptibility is evaluated as 

2 

xo' = ~L (7) 
w,-n., +ih'+ r ) 

We find that the disorder effect on linear susceptibility merely gives the pure-

dephasing rate due to scattering by impurities, as is expected. No singular 

behavior of linear susceptibility is anticipated even around the exciton mobility 

edge. However if we go on to the evaluation of the nonlinear susceptibility, 
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disorder in the system will be found to give quite a different effect. This will be 

given in the next section. 

4.3 Disorder Effect on Phase-Conjugated Wave Generation 

4 .3.1 Nonlinear Susceptibility in resonant region 

Now we will examine the third-order nonlinear susceptibility defined by 

3 

P (3' Cr ,t) = L, I,x<3l: E,E:Eneik, ·r-'-',< + (c.c.), (8) 
1c. l,m ,n= l 

where (w,,k, ) = (w1 -wm + wn,k1 -km +kJ . The explicit expression of x<3
l was 

obtained in the previous chapter. The result was given by Eqs. (20) and (21a}-{21e) 

in Chapter 3. The experimental geometry was illustrated in Fig. 1.2. If we use a 

rotational wave approximation, three kinds of signal waves can be observed, 

depending upon the combinational order of frequencies and momenta as in Fig. 

4 .3 and in Table 4.4. The phase-conjugated signal (w, ,k, ) 

(2w0 - w P, kr + kb - kP) is observed in the cases (l, m , n) = ((, p, b) and (b, p, f). 

As is stated previously, the pure dephasing rate 1 ' given by Eq. (5) is 

assumed to be much larger than I· We retain the leading terms by expanding 

Eq. (20) of Chapter 3 in 1 h ' ( « 1) under nearly resonant pumping of excitons. 

In resonant region, the dominant contribution coming from the diagrams (1)-(4) 

of Fig. 3.1 is found to be larger by the order of magnitude 1 ' I 1 (» 1) than that 

from (5)-(8). It is because the former terms have exactly the same eigen energy 

in the denominator and thus these terms have the factor 1 in the denominator 

at the phase-conjugated wave generation. The latter ones don't have the same 

eigen energies in the denominator, so will have the factor of the order 1 + 1 ' in 
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the denominator. (See also Ref. [28]). Therefore the dominant contribution to 

the third-order optical polarization producing phase-conjugated waves in resonant 

region is given by 

(9) 

Recently the third-order nonlinear susceptibility of disordered aggregates 

is investigated in Ref. [29-31]. Since the one-dimensional XXZ model can be 

transformed into the fermion model by use of the Jordan-Wigner transformation, 

the eigenstates of the disordered aggregates are found to be fermion states [32]. 

In Ref. [31], the exact result by the Jordan-Wigner transformation is compared 

with the result obtained by the local field approximation or that by what he 

called the "excitonic two-level system" approximation which is identical to Eq. 

(9). He concluded as follows: (1) Whereas the local field approximation correctly 

describes the nonresonant nonlinear response, it cannot describe the on-resonant 

nonlinear absorption. (2) By contrast, the approximation given by Eq. (9) may 

very well describe the on-resonant nonlinear response and it rapidly improves 

for growing disorder, though it does not recover the exact off-resonant behavior. 

We will show the dominant contribution to the third-order susceptibility 

given by Eq. (9) shows a singular behavior as a func tion of the de tuning frequency 

8w = w,- wP and the misalignment between the forward and backward pump 

beams, q = kr + k., when both are around zero. 

4.3.2 The Enhancement Factor and the Coherent Volume function 

We define the enhancement factor N ,rr, which measures how many atoms 
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(or molecules) can contribute coherently to the nonlinear optical polarization. 

The enhancement factor N,rr for the phase-conjugated wave generation is 

introduced as follows: 

(10) 

To get the microscopic expression of the enhancement factor N,rr, we rewrite 

Eqs. (21a) and (21b) of Chapter 3 in terms of the retarded and advanced Green 

functions introduced in Eq. (1). It leads to 

(lla) 

(llb) 

Gn (w , )GA(w2 ) = GA(w2)- Gn(w ,)' (12a) 
w 1 - w2 +2q 

"'R "'R 

Gn(w ,)GR(w2) = G (w2 )- G (w,) (12b) 
wt- w2 

This identity allows us to transform the terms x\~2 and x~~. into the summation 

of the averaged two-body Green functions. The evaluation ofthe averaged two-body 

Green functions is performed diagrammatically by decomposing them into the 

form of the vertex part and the averaged one-body Green functions. As stated 

previously, we take only the terms whose behavior becomes singular in the 

generation of phase-conjugated waves at kr +k. ~ 0 and w, - wP ~ 0 in evaluating 

the optical nonlinear susceptibility x<3l. Other terms that will be neglected here 

give the contribution of the order (~ ,oh)d N IV to N .rr, where ~ ooh = [N0 (')'+ i 'lr' ' d 

is the conventional coherent length of the exciton. This contribution is smaller 

by the order of magnitude 1h'(« 1) than that we retain here. Hence we get 
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and the advanced Green functions, depends also on the momenta of the three 

incident beams: k,, k., and kP, as illustrated in Fig. 4.5. The microscopic 

expression of the enhancement factor N .rr for phase-conjugated wave generation 

is obtained by comparison between the equations above and Eq. (10). We finally 

obtain the following result: 

N ,rr = (~)[1-2i-y_£_J:=:c6w)l _ + (f H b) , 815w w, w, 
(14) 

(15) 

We will call the function :=: the coherent volume function hereafter. As will be 

shown in the next chapter, the coherent function :=: will play a central role in the 

renormalization of disorder effect. This is because x'3
> has the dimension of [Ld] , 

as will be shown in Appendix A. 

The vertex part r(w,- w P) can be easily evaluated by the perturbational 

expansion from the delocalized limit, as is done in Ref. [9]. At the lowest order, 

the diffusion mode called cooperon (Fig. 4.1; see also Ref. [23]) is found to give 

the leading contribution at q=k,+ k. = O, and 6w=w,-wP= O [9,11]. The 

cooperon mode depends only on ow = w,- w P and q = k, + k• like 

, 2 , 
f'0>(ow· ) - I I (16) 

c ,q --N D 2 · <. · 2 ' 
7r o oq -Luw+ I 

where D0 = u~ I 2d1' is the bare diffusion coefficient and u0 is the group velocity 

of the exciton. Corresponding to Eq. (16), we obtain the lowest order expression 
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of the coherent volume function ::0:(8w) under nearly resonant exciton pumping as 

a function of ow and q: 

::::<o>(ow;ql= ~ 
2 

1 . (17) 
7r N 0 D0q +N0 (-iow+2i) 

The result shows that the coherent volume function for the completely phase-

conjugated signal, i.e., ow= 0 and q = 0 in Eq. (17), is dominated by 21 not by 

1 +1 ' in the delocalized limit. 

4.3.3 Physical Explanation of the Result 

The result obtained in the previous section can be easily understood by 

help of a Bergmann's figure of Fig. 4.6 [33]. Figure 4.6 illustrates how the 

incident probe k is scattered into -k + q (phase-conjugated signal) via scattering 

sequences. First take the case generating a exactly phase-conjugated wave, i.e., 

q = 0. In the scattering process from the state k into -k, there are complementary 

scattering series, one pair of which is illustrated in Fig. 4.5. They are the 

sequences 

(18a) 

where the momentum transfers g"g2 ,g3 ,g4 (along the upper semicircle), and 

(18b) 

with the momentum transfers g4 ,g3 ,g2 ,g1 (along the lower semicircle). These 

two processes are time-reversal with each other, so that they have the same 

phase shift from random potentials. Thus their transition probabilities are 

identical to each other. Since the final amplitudes A' and A" are equal, say, to 

A, the total intensity 
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lA' + A"l
2 

= IA'I2 
+ IA''I2 + CA')" A"+ A'(A")" (19) 

becomes 4IAI
2

• The backscattering intensity is two times as large as it would be 

if their phases were completely random, which is illustrated in Fig. 4.5(a). The 

finite momentum deviation q reduces this coherence of these scattering processes 

as in Fig. 4.6(b). In this case, the phase shift given from random potential can 

no longer be identical between the time reversal processes. It should be emphasized 

that disorder in the system gives both the positive and negative effects for 

getting large nonlinear optical responses, as we have already seen in this section 

and also in Sec. 1.3. 

4.4 Summary of the Perturbational Calculation 

In this chapter, we have presented the perturbational calculation of the 

linear and nonlinear susceptibility by the expansion in randomness. In Sec. 4.2, 

we have seen that randomness gives rise to the dephasing relaxation rate '"'/ . In 

Sec. 4.3, we have investigated the disorder effect on the nonlinear susceptibility. 

We have derived the microscopic expression of the enhancement factor of the 

nonlinear susceptibility, and clarified the peculiarity of the phase-conjugated 

wave generation in the random system. In particular, the enhancement factor 

for the phase-conjugated wave generation is found to be closely related to the 

diffusion mode called cooperon. In other words, we have shown within the 

lowest order perturbation theory that the observation of the phase-conjugated 

wave generation is equivalent to that of the diffusion mode (i.e., the cooperon 

mode) with frequencies and momenta specified by the external electric field. In 

addition, we h ave given a physical picture by use of the Bergmann's figure about 
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the origin of the enhancement for the phase-conjugated wave generation. All 

the results obtained in this chapter is evaluated at the lowest order calculation. 

If disorder in the system increases, the localized-delocalized transition will occur. 

In the next chapter, we will investigate the behavior of the nonlinear susceptibility 

around the exciton mobility edge by constructing the scaling theory. 
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Figure 4.1 

The two diffusion modes in the random system. Dash lines denote scattering of 

the exciton by the random onsite potential denoted by the cross. Upper arrows 

and lower arrows means, respectively, the retarded and advanced Green functions. 

These two modes will be found to give dominant contributions to x<3 > at 

q = k, + k. = 0. (See also Fig. 4.5.) (a): The ladder vertex part corresponds to the 

lowest-order "diffuson" mode (the particle-hole channel). (b): The maximally-

crossed vertex part corresponds to the lowest-order "cooperon" mode (the particle-

particle channel). If the direction of the advanced Green functions is reversed, 

the maximally-crossed vertex part is transformed to the ladder vertex part. 



.... ·················)(··· ..........•.....•.. 

Figure 4.2 

The self-energy of the averaged one-particle Green function. Dash lines denote 

scatterings of the exciton by the random onsite potential denoted by the cross. 

The random average is taken over the impurity position. 
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(a) - k o 

k p -k p 

k P-2k0 fd+::o (b) k o 

(c) 

Figure 4.3 

Three kinds of signal waves are observed through the reflection of the third 

wave by the three kinds of population gratings. The figure is illustrated for the 

case that the forward and backward pumping waves are applied exactly in the 

opposite direction, i.e. , k , = k, and kb = -k,. (a): Population grating by (k,,w0 ) 

and (kP,wP). (b): Population grating by (k,,w0 ) and (k.,w0 ). (c): Population 

grating by (k.,w0 ) and (kP,wP). 
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k, k m k. k, k,+ k. w, w,-wm 

k, k p k, k r + k,- k P k ,+ kb 2w0 -wP 2w0 -2wP 

kb k p k, k r + k. - k P k, + kb 2w0 -wP 2w0 -2wP 

k, k b k p k, -k. + k p k ,+ k p wP wP-w0 

k p k b k, k, - k. + k p k, + k p wP wP -w0 

kb k r k p - k , + k b + k p k ,+ kb wP wP-w0 

k p k, kr - k , +kb + kp k, + kb wP wP -w0 

Table 4.4 

Three kinds of signal waves are observed in the third-order optical process. Th e 

phase-conjugated wave (w,, k ,) = (2w0 - wP, kr + k•- k P) is observed when th e 

combination of (l ,m,n) is equal to (f,p,b) and to (b,p,f). 

-45-



k+-s 

rkk·kk (ws-wp) 
s b, p f 

Figure 4.5 

~k 
p 

The general vertex part working between the retarded and the advanced Green 

functions. The vertex part depends on the difference of the signal and probe 

frequency, i.e., w, - w P , and on the incident momenta k,, k•, and kP. 
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(a) (b) 

Figure 4.6 

Two complementary scattering series producing the enhanced backscattering 

intensity given by Bergmann [33]. The incident probe wave has the momentum 

k and the signal wave has the momentum -k(+q). The intermediate states are 

designated by k( and k('. The momenta g:s mean the phase shifts given by the 

random potential. (a): The two complementary scattering series in the case 

generating a exactly phase-conjugated wave. The phase shifts given by the 

random potentials are exactly same between the two scattering series along the 

upper and lower semicircles. (b): The same scattering processes as given in (a) 

in the case with a finite momentum deviation q. It is found that the finite 

momentum deviation reduces the coherence of these complementary scattering 

processes. 
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Scaling Description of Phase­
conjugated Wave Generation 
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5.1 Introduction to Scaling Description 

If the disorder in the system increases, the localized-delocalized transition 

is expected to occur in the three-dimensional system. Such transition point in 

the frequency domain is called mobility edge w'. Since the localization length of 

the exciton diverges at the exciton mobility edge, the effective transition 

dipolemoment of an exciton should become very large around the transition 

point. This gives a very interesting situation, because the nonlinear susceptibility 

seems to be very sensitive to a spread of the wavefunction, as was seen in Sec. 

1.3. In addition, it has been shown in the previous chapter that the phase­

conjugated wave generation is playing a special role in the random system. In 

this chapter, we will investigate -the behavior of the nonlinear susceptibility for 

the phase-conjugated wave generation around the exciton mobility edge. 

Perturbational treatments such as one presented in the previous chapter breaks 

down around the exciton mobility edge. For this reason, we will construct the 

scaling theory [22,23,34,35] of the enhancement factor N.rr to examine the behavior 

of the nonlinear susceptibility around the mobility edge. 

Localization effect can be described through the interaction between the 

two diffusion modes [23,36], and this interaction renormalizes and decreases the 

diffusion coefficient. General arguments about the renormalization of the diffusion 

coefficient and the diffusion propagator itself were given in the form of the field 

theoretical model called (several kinds of) nonlinear sigma models [36-41]. (The 

treatments of the original nonlinear sigma model were mentioned in Refs. [ 42-44]. 

Finite size effect in the nonlinear sigma model was given in Refs. [ 45,46].) In 

their treatments, the diffusion modes can be formulated as Goldstone modes. 
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5. Scaling Description of PCWG 

The detailed calculation and renormalization group analysis in the field theoretical 

model of the Anderson localization will be given in Appendix B. 

We begin this chapter with the second lowest order perturbational 

calculation of the enhancement factor N,rr for the phase-conjugated wave 

generation (Sec. 5.2). This will tell us how the interaction between the two 

diffusion modes will renormalize the diffusion coefficient and the diffusion 

propagator. By combining the result by the perturbational calculation and the 

insight from the field theoretical treatment, we construct the scaling description 

of N,rr· This will enable us to investigate the disorder effect and the finite size 

effect on the enhancement factor N,rr for the phase-conjugated wave generation. 

In Sec. 5.3 and later, we will systematically evaluate the dependence of the 

phase-conjugated signal on various physical quantities - randomness, the 

de tuning of the pump- and probe- frequencies from the exciton mobility edge, the 

misalignment of the two pump beams and the system size (Sec. 5.4). In addition, 

we will find the spectral singularity in the nonlinear susceptibility around the 

exciton mobility edge (Sec. 5.5) . 

5.2 Coherent Volume Function and Renormalized Cooperon 

It is straightforward to evaluate the second lowest order contribution for 

the vertex part r(w, - w P) [ 4 7 ,48]. This next higher order correction corresponds 

to the one-loop calculation of the transverse correlation function in the nonlinear 

sigma model. Here we follow the line of Ref. [ 4 7]. The renormalized cooperon 

channel r:'> can be evaluated by use of the following Dyson equation as 
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5. Scaling Description of PCWG 

(1) 

The equation above can be schematically illustrated as shown in Fig. 5.2 . We 

take the leading singular term for q = 0 and -iow + 2')' = 0. To perform the 

systematic expansion in WIT or (47r2N0D0f.d-•r', we find thatTI~'> is expressed 

by the summation of the diagrams as in the Fig. 5.3. Each contribution can be 

written down explicitly as 

(2) 

where 

n~'A>cow; q) = t[(r~o > cow; Ql- 7r~J J;a:+.a:-• a:a~-•-• J (3a) 

n<lB>(&,.r q ) =_:!_I r<o>(&,.r Q ) (I GR G~ aA)
2 

(3b) 
c , 1rNo Q d ' " k+q Q-Jr. k ' 

nOC>(ow· q ) =_:!_I ~0> (ow· Q ) (I GR GA GA )
2

. (3c) 
c , 1rNo Q d ' k k Q - k k - q 

The straightforward evaluation of the integrals leads to 

n°>(ow. q ) = 1rNo D q2
"' ~O)(&,..r Q ) (4) 

c ' - 4!'4 0 t d ' . 

Thus the renormalized cooperon mode r~l)(8w; q) is expressed by 

~I) . - ~ 2~ 
c (Ow, q )- 1rN

0 
D

0
(1-6.)q2 - i8w+2i ' (5) 

1 J'" 1 d dQ 
6.= 1rN

0 
tiLD

0
Q2 -i8w+2')'(27r)d. (6) 

The correction 6. is found to be logarithmic in the two-dimensional bulk system 

as 

6. = 47r2 ~0D0 In[ -io~~~ 21 ] · (7) 

This kind of logarithmic correction in the two-dimensional bulk system is 

characteristic in the localization theory [23,49]. 
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5. Scaling Description of PCWG 

5 .3 Scaling Form of the Coherent Volume Function 

The form of the renormalized diffusion (cooperon) mode has a more profound 

meaning than it looks. It shows that all the disorder effect of diffusion modes in 

the delocalized phase is incorporated through the renormalized diffusion coefficient 

D0(1- t.). As is shown in framework of the nonlinear sigma model, this nontrivial 

feature of the Anderson localization theory holds good even if we consider still 

more higher-order correction, because it is based upon the nonvanishing of the 

order parameter, i.e., the averaged density of states, at the transition point. The 

detail will been seen in Appendix B. Since the exciton's average density of states 

is not expected to vanish at the exciton mobility edge, we rely fairly upon this 

insight. Hence we take full advantage of this feature. We will apply the length-

dependent scaling law of the diffusion coefficient to determine the scaling form of 

the diffusion (cooperon) mode. This allows us to investigate the disorder effect 

and the finite size effect on the enhancement factor N eff for phase-conjugated 

wave generation in terms of the correlation (localization) length ~. 

When the inelastic scattering length L~ = [N0(-iw, + iwP + 21lr11
d is 

introduced, the enhancement factor N eff and the coherent volume function =-L 

derived in Eqs. (14) and (15) of Chapter 4 are given by 

(8) 

(9) 
=-L = N D (q• +L-•)+L d. 

0 L ~ 

Here we omit the numerical factor 2/Jr as we are discussing only the order of 

magnitude. In Eq. (9), we carefully replaced q2 by q2 + L-2 in the denominator, 
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5. Scaling Description of PCWG 

because all the momenta are discretized and cut off by the order of 11 L in the 

sample with finite volume V = L". The renormalized diffusion coefficient DL 

depends upon L, q and L~ , as will be discussed in the following. The length­

dependent scaling theory [22] allows us to estimate the renormalized diffusion 

coefficient in terms of the dimensionless conductance gL = L"-2 N 0DL . The 

dimensionless conductance gL is determined by the following relation in the 

weakly localized regime: 

L dlngL = {3(g ) = (d- 2)-_!_+ ... (10) 
dL L gL 

On the right hand side of the equation above, we have made use of the result 

obtained by the expansion in E = d- 2. Thus we obtain 

(11) 

on the delocalized side of the exciton mobility edge, where g· is given by 

11(d - 2) . The length ~ is the correlation (localization) length determined only 

by the elastic scattering. The length L' is the effective linear size of the system 

that N 0DL is scaled up to. The length L' can be evaluated to be equal to 

min[L,q-',L~ J. where L~ is a length defined by L~ =~D I(-iw, +iwP+2"f). (Dis 

a renormalized diffusion coefficient.) The relation among L~ , L~ and ~ will be 

given in Appendix B. It will be shown that L~ and L~ will be shown to be 

related by L~ =(g.)"" L~ around the mobility edge (i.e., L~ << ~ )." The correlation 

(localization) length ~ diverges at the mobility edge like I w-w· 1-" [23,50,51]. 

The critical exponent v must be larger than 2 I d = 0.666 · · · by the Chayes and 

* By contrast, L~ is given by (g.)
112 L~~L~ I~ in the de localized limit, i.e., ~ << L~. See 

Appendix B for the detail. 
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Chayes theorem [52]. The realistic value of the critical exponent v is between 

0.73 (by ~-expansion with Bon)l-Pade analysis [53]) and - 1.5 (by numerical 

analysis [54]). 

In the following, we shall consider only the three-dimensional case where 

the localized-delocalized transition is believed to occur. As a result, we obtain 

the expression for :=:.L on the delocalized side of the transition from Eqs. (9) and 

(11) as 

:=:,L=[( 1_ +_!J(q2+L-2)+L""]_, (12) 
min[L, L~ , q· '] ~ ~ 

We discuss all the effects due to disorder, misalignment, and finiteness of the 

sample size, based upon Eq. (12). In the large volume limit, the behavior of N.rr 

for the phase-conjugated signal obtained from Eq. (12) is identical to that obtained 

in Ref. [12]. We are mainly concerned with the behavior of the enhancement 

factor around the mobility edge, where L~ becomes of a comparable order of L~. 

5.4 Sample Size Dependence 

In this section, we investigate the sample size dependence of the coherent 

volume function :=:.Lin the case q = kr + k. = 0 on both sides of the exciton mobility 

edge. First we examine the behavior of :=:.L on the delocalized side. As is easily 

confirmed from Eq. (12), the coherent volume function :=:.L is proportional to L3 in 

small linear size. The larger the linear size becomes, the more deviates the 

coherent volume function from the cubic power law and at last it is saturated to 

the constant value L~ as shown in Figs. 5.4 and 5.5. This crossover occurs at 

L- L~ and the behavior in the intermediate (mesoscopic) region is also highly 
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dependent on the size of the correlation length ~, as the solid lines in Fig. 5.4 

show. Figure 5.5 is a logarithmic pot of Fig. 5.4. Because of the saturation of 

the large volume limit, the behavior of the coherent volume function :=:Lis deviated 

from the cubic power dependence of L. In the figure, we also plot L2
·
6 function, 

which was observed by the experiment in Ref. [55]. The result obtained by the 

scaling theory is likely to fit so well. 

We now go on to the behavior on the localized side of the transition. When 

the localization length ~ is larger than the effective linear size 

L' = min[L,q-',L~ ], we cannot distinguish between the localized state and the 

delocalized state, so that we expect that the behavior on the localized side is 

similar to that on the delocalized side. However, when the localization length is 

smaller than L' = min[L, q-1
, L~ ], the difference between the localized and 

delocalized sides emerges. We can estimate ::::L on the localized side by following 

the scaling law away from initial point near the fixed point up to a length scale 

L = ~ [56] . As a result, we expect that the coherent volume function :=:L on the 

localization sides proportional to L3 in the small volume limit and saturated to 

e, not to L: , as Fig. 5.3 shows. 

5.5 Spectral Anomaly and Misalignment Dependence around 

Exciton Mobility Edge 

Next we illustrate the expected behavior of N .rr in the unit of N I V as a 

function of C' and q in Figs. 5.6 and 5.7. Since the correlation (localization) 

length ~ is proportional to I w - w ' 1-", Fig. 5.6 shows the anomalous w-dependence 
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of the enhancement factor N,rr around the exciton mobility edge w' with the 

fixed misalignment q . Just near the transition point, the singularity is cut off 

by - 2L! both on the sides. Away from the transition point, N ,rr decreases as 

e ocl w - w' I -a" on the localized side, and as (I q2 ocl w - w' 1-" on the delocalized 

side, which makes the spectrum non-symmetric on the tails . As shown by Fig. 

5.4 , it should be noted that when the misalignment q approaches zero, the 

region where N ,rr is dominated by the length scale L~ is much larger on the 

delocalized side. The background intensity comes from the terms neglected in 

our treatment. The relative value of the peak to the background is of the order 

of (L~ I (,
0
h )

3 - 1 ' t, (» 1) at the mobility edge. 

In Fig. 5.7, the enhancement factor N ,rr is drawn as a function of the 

misalignment of the pump beams q. In the region so closed to the exciton 

mobility edge that the correlation Oocalization) length ( becomes larger than the 

characteristic wavelength q-1 and the inelastic scattering length i~ , the localized 

and delocalized states cannot be distinguished as shown by the solid line in Fig. 

5.7 . Away from the exciton mobility edge, where ( s q-1
, there will emerge the 

difference in the q-dependence of the enhancement factor N ,rr on the delocalized 

side (the dash line) and on the localized side (the dotted dash line) in the region 

of q s i~ -1
, as is shown in Fig. 5. 7. The width of the peak in Fig. 5. 7 in the 

delocalized phase is characterized by i~ -1
, which is almost equal to ~( I(L~ )3 in 

the delocalized limit, and to (L~ t1 around the mobility edge w' . 

5.6 Summary of the Scaling Description of PCW Generation 

In this chapter, we have constructed the scaling description of the 
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enhancement factor N.rr for the phase-conjugated wave generation. To evaluate 

the renormalized cooperon mode, we have applied the length-dependence scaling 

theory of the diffusion coefficient into the diffusion propagator. The validity of 

this application is justified by the next lowest-order calculation of the cooperon 

mode and the field theoretical treatment of the Anderson localization. The 

scaling description have enabled us to investigate systematically how the 

enhancement factor for the phase-conjugated wave generation depends upon 

randomness, the misalignment of the two pump beams, the detuning of the 

probe- and pump- frequencies from w', and the system size. Our scaling theory 

have reproduced the confinement effect of the exciton in the small volume region 

and also sho~ the breakdown of it, as in Fig. 5.4 and 5.5 . We have also found 

the spectral anomaly and enhancement of the nonlinear susceptibility around 

the exciton mobility edge, as in Fig. 5.6. In addition, we have investigated the 

misalignment dependence of the enhancement factor for the phase-conjugated 

wave generation as in Fig. 5.7. 
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localized 

' Mobility Edge w * (W) 

de localized 

Frequency W 

Figure 5.1 

Schematic view of the localized and delocalized phases as a function of disorder 

and the frequency. The grey thick line is the boundary between the localized 

phase and the delocalized phase. If the disorder increases with a fixed frequency 

(the dotted dash line), there is a phase transition between the delocalized phase 

and the localized phase. Similarly, if the frequency is varied with a fixed disorder 

(the dash line), there is a phase transition between the two phases in frequency 

domain. 
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Figure 5.2 

Construction of the next higher order of the cooperon mode. The Dyson equation 

i.e., Eq. (1), is schematically illustrated. 

~-. -.~ ~ .. lC .~ 
~ .x + x .. i:.x + 

~-.. ·-· .. ~ ~······r·· .. +-
(A) 

.": X 

-+-~+- ~ ~ 

+ + 
)q( 

+ (B) :l!C . . 

-+-:-+- +---: _·- ~ 

~-. -.-+-
+ + ~_x + (C) 

~ ..... ~ 
···x ··· 

Figure 5.3 

Diagrammatic representation of mo in Figure 5.2 and in Eqs. (2) and (3). The 

contributions from the series of diagrams (A), (B), and (C) are written, respectively, 
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Figure 5.4 

~ = 10.0 L"' 
~=L"' 
~ = O.lL"' 

The behavior of the coherent volume function =:.L as a function of the sample size 

L at q = kr +kb. In the small volume limit, =:.Lis proportional to L3 (the dash 

line) both in the delocalized side (the solid line) and the localized side (the dotted 

dash line) of the exciton mobility edge. The value of =:.L is saturated to L~ on the 

delocalized side, or to e on the localized side. Approaching the exciton mobility 

edge from the delocalized side, =:.L increases as L3 in the mesoscopic region but 

always saturated to L~ in the large volume limit both on the localized and 

delocalized sides. 
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Figure 5.5 

Logarithmic plot of the coherent volume function ~Las a function of the logarithm 

of L I L~ . Though ~ L is proportional to L3 in the small volume region, the 

exponent of ~L seems to be slightly deviated from 3 because of saturation in the 

large volume region. In the figure, the experimental value of the exponent 2.6 by 

Masumoto, Yamazaki, and Sugawara (1988) [55] is also drawn for the sake of 

reference. 
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Figure 5.6 

The schematic behavior of the enhancement factor N.rr for the phase-conjugated 

wave generation as a function of the inverse of the correlation (localization) 

length C' ocl w- w· 1' . The enhancement factor N.rr is measured in the unit of 

N IV with several fixed values of the misalignment of the forward and backward 

pump beams q = k r + kb. The system size is assumed to be so l arge as 

L»q-',L~ in the figure. Since~ is given by t l (w - w.) lw· l-' , the figure 

corresponds to the spectrum anomaly around the mobility edge w·. On the 

localized side, N.rr decreases by N.rr - e, whereas N.rr does by N.rr -~I q2 on 

the delocalized side, when the pumping frequency is far away from w· . 
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q 

The schematic behavior of the enhancement factor N.rr for the phase-conjugated 

wave generation as a function of the misalignment of the forward and backward 

pump beams q = k, + k •. The enhancement factor N.rr is measured in the unit of 

N IV with several fixed values of the correlation Oocalization) length ~, and the 

system size is assumed to be so large as L >> q·',L~ in the figure. Just near the 

exciton mobility edge (the solid line), the delocalized and the localized states 

cannot be distinguished. Away from the exciton mobility edge, the discrimination 

emerges between the delocalized side (the dash line) and the localized side (the 

dotted dash line) for q s L~'. The width of the peak in the delocalized phase is 

characterized by ci~ r', which is almost equal to ~UCL~ )3 in the delocalized 

limit, and to (L~ f' around the mobility edge. (See also Appendix B.) 
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6. Conclusion 

In this thesis, we have investigated linear and nonlinear susceptibilities 

under nearly resonant pumping of the Frenkel excitons in disordered system. 

We have introduced the model in which we can take full account of the dephasing 

process correctly from the microscopic point of view. Particular attention have 

been paid to the nonlinear susceptibility generating the phase-conjugated wave 

in the random system. We have evaluated the linear and nonlinear susceptibilities 

by the perturbational calculation as to the electron-radiation interaction. As a 

result, we have clarified that the phase-conjugation plays a special role in the 

random system, and that it is closely related to the exciton's diffusive motion. 

In this paper, we have constructed the scale description of the phase­

conjugated wave generation and investigated the behavior of the enhancement 

factor N.rr for phase-conjugated wave generation on both sides of the exciton 

mobility edge. In small volume region, our theory reproduces the result of the 

confinement effect. For the larger volume crystal, the qualitative difference 

between the delocalized state and the localized state has been manifested. The 

expected singular behavior of the spectrum around the exciton mobility edge has 

also been demonstrated as a function of pumping frequency and the misalignment 

of the two pump beams. 

Based upon the obtained results in the paper, we can propose two kinds of 

experiments to observe the singular behavior of x<3
> near the exciton mobility 

edge w'. Here we confine ourselves to the case of exactly degenerate four-wave 

mixing in a large crystal, i.e., w0 = wP "'win the system with L >> L~ , q-1. First 

when we have the finite misalignment q = kr + k• fixed, the singular behavior of 

the generation of phase-conjugated wave like N.rr = (N I V)~q-2 <><I w- w' 1-" can be 
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observed as a function of pump frequency w on the delocalized side for 

( ,; q-1
,; L~ . When the pump frequency w0 is detuned from the exciton mobility 

edge w· on the localized side, the signal will decay more rapidly as 

N,rr = (N I V)(" ocl w - w • l-3
" . This dependence of the signal on the pump frequency 

is saturated in so close pumping region as L~ -I ~ q on the delocalized side, or as 

( ~ L~ on the localized side. This crossover will be able to determine the absolute 

value of the correlation and localization length ( = ( 0 I (w- w·)l w· I-" . 

Second when the de tuning I w- w· I is fixed on the delocalized or localized 

sides, the correlation or localization length ( will be determined by changing the 

misalignment q . In pumping localized excitons, the enhancement factor N.rr is 

saturated to the value (N IV)(" ocl w - w· l-3
" for the smaller misalignment q ,; C1

, 

whereas it decreases as q_, for the larger misalignment q ~ C1 ~ L~' - By observing 

this crossover, we will be able to determine the localization length ( as a function 

of w. On the other hand, when the misalignment q decreases on the delocalized 

side, the enhancement factor N,rr for the phase-conjugated signal increases as 

q-3 for q ~ ("1 ~ L~1 or as q-2 for C' ~ q ~ L~ - I and saturated to the value 

N.rr = (N I V)L~ for the smaller misalignment q ,; L~ _,. The crossover at q- L~ -I 

depends on the detuning I w-w· I. Hence we expect the singular enhancement of 

the third-order optical processes, i.e. , the generation of phase-conjugated wave 

near the exciton mobility edge. In the reverse way of thinking, we will be able to 

study the localized-delocalized transition of an exciton by observing the singular 

spectrum of phase-conjugated wave generation as a function of pump- and probe­

frequency around the exciton mobility edge w· and the misalignment of the 

forward and backward beams. 
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We will mention miscellaneous effects which we have neglected so far. 

First is about the renormalization of the inelastic relaxation rate near the transition 

point. As inelastic processes, we take relaxation by phonons. There was no 

renormalization of the relaxation rate of the exciton's energy 1 , as was shown in 

Chapter 5. If the radiative relaxation is a dominant channel of the energy 

relaxation, this assumption is not valid, so we have taken the situation where 

the energy relaxation processes through phonons give a dominant contribution 

to the inelastic relaxation rate. Since the relaxation rate due to phonons are 

determined approximately by a spread of the wavefunction, inelastic relaxation 

rate seems to be a slow varying function of the disorder around the localized­

delocalized transition. As we have mentioned in Sec. 5.3 and Appendix B, another 

renormalization constant Z would be needed within the framework of the nonlinear 

sigma model, if there were any renormalization of the inelastic relaxation rate, 

and it would lead to the vanishing of the exciton's density of the states at the 

transition point. Though the incorporation of such effect may be possible, as in 

the renormalization group theory in the disordered interacting system [63-66], 

we think the vanishing of the density states in the exciton system is rather 

strange. 

Another problem is about the validity of the one-parameter scaling theory 

of the Anderson transition itself, which our present treatment heavily relies 

upon. Extensive numerical studies of the Anderson localization to confirm the 

one-parameter scaling theory have been performed in the center of the band. 

However, the critical behavior near the band edge is complicated and still have 

some ambiguity. Many authors have obtained the mobility edge trajectory as a 
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function of the disorder and the energy by numerical methods [54,67-69] and by 

analytical methods' [70-73]. In Fig. 6.1, the mobility edge trajectory calculated 

numerically by Bulka et. al. [69] is shown. (The symbol V is the transfer between 

the nearest-neighbor sites, which we designate by T so far). From Fig. 6.1 and 

data obtained by other authors, it appears that one-parameter scaling theory of 

the Anderson transition can be applied within the energy region which corresponds 

to the band of the undisordered system, i.e., lEI s 6V in Fig. 6.1. However, in the 

energy region outside the band of the undisordered system, i.e., lEI <= 6V in Fig. 

6.1, the effect of the potential localization is as important as the quantum 

interference effect. There is some region slightly outside the undisordered band 

where the localized-delocalized-localized transition will occur with a fixed energy 

and increasing the disorder. In this situation, our scaling theory is relevant to 

the second transition (from delocalization to localization with a fixed energy and 

increasing disorder), because this transition seems to be caused by the quantum 

interference effect. Though the whole behavior of the mobility edge trajectory 

may be explained by the quantum interference effect with the effect of the 

disorder-induced band shift, the critical behavior at the transition from the localized 

state to the delocalized state with increasing disorder is not clarified so far. 

Finally we will check the experimental data to confirm the possibility of 

the localized-delocalized transition of the exciton. Bearing Z3 excitons of CuCl 

* Licciardello and Economou [70] used the localization-function method to determine the 
mobility edge. Economou and Soukoulis [71-72] expoited what is called the potential-well 
analog with the aid of the coherent potential approximation. Kotov and Sadovskii [73] 
extended the self-consistent theory introduced by Vollhardt and Wolfle [50]. 
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crystals in mind', we use the lattice constant a= 0.54[nm], the resonant wave 

number k0 = 4.5 x 105 [em·'], and the exciton's effective mass m = 3.14 rna. The 

exciton Bohr radius of Z3 excitons is a8 = 0.70[nm], so it doesn't so bad to treat 

them as Frenkel excitons. To justify our theoretical treatment, the value of the 

dephasing rate 1: at the exciton mobility edge should be larger than the inelastic 

relaxation rate 1- To estimate the order of 1:. the Ioffe-Regel condition1 is 

useful. This condition gives 1: -l[meV], which justifies our basic assumption 

1: » I · In addition, this order of the dephasing rate is experimentally attainable. 

If we use the numerical results of the mobility edge by Ref. [54,69], we can get 

more information upon the dependence on the kind of the energy distribution 

(Gaussian, box, and Lorentzian). Using Eq. (5) in Chapter 4 and taking 

N 0 = 1020 [cm·3 eV"1
], 1: can be estimated to be 3-6 [meV] (Gaussian), 

12- 25 [meV] (box), and 0.005- O.Ol[meV] (Lorentzian) at the band edge of the 

system without disorder. Thus the Gaussian and box distribution models can be 

valid, but the Lorentzian distribution model cannot be allowed to use the scaling 

theory of the Anderson transition. The inelastic scattering length is given 

L~ = 6.3 x 10-6 [em], so by adjusting the impurity concentration, or the pump 

frequency, the phase-conjugated wave generation may be enhanced by the factor 

(L~/~,oh)3 -102
, compared with the third-order susceptibility for the other 

processes. 

• The localized-delocalized transition of the (CuCI),_)CuBr)x solution is a suggested 

example to apply our scaling theory. 
The localized-delocalized transtion will happen when the mean free path f. is nearly equal 

to the lattice constant a. 



• Gauss ~ • 10.9' 0.5 v 
• Box 

• Larenlz !t • 3.8' 0.5 

EIV-

Figure 6.1 

Mobility edge trajectories ""(E) as a function of the disorder and the energy for 

the box (e ), Gaussian (A), and Lorentzian C•) distribution of onsite energies. 

The result was obtained numerically by B. Bulka, et. al. (1987) (Ref. [69]). The 

symbol V is the dipolar interaction between the nearest-neighboring sites, which 

we have designated by T throughout the thesis. The energy E = 6V equals to 

the band edge of the system without disorder. The critical disorder for each 

distribution at the center of the band is ""(0) IV= 16.3 ± 0.5 (box - e ), 

""(0)/V = 20.9±0.5 (Gaussian- A), and ""(0)/V = 3.8±0.5 (Lorentzian -• ). 
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Appendices 

Appendix A: Power Counting 

In this appendix, we examine the dimension of the physical variables. 

Based on the fact that the quantity such as 2r. J dr P (r ) · P (r) has the dimension 

of the energy, we find the following (canonical) dimensions. In the following, E 

and A denote the dimension of the energy and the momentum, respectively. 

(P(r)] = [P •. ] = E 112Ad12 

[E(r)] = [E,] = E'12Ad12 

(Al) 

(A2) 

(A3) 

Thus the canonical dimension of the linear and nonlinear susceptibilities are 

obtained as 

(A4) 

[x''>] = E -'Kd . (A5) 

Throughout this paper, we use the density of the states per volume N 0 , which 

has the dimension like 

(N0 ]=E-'Ad. (A6) 

The diffusion coefficient has the dimension of 

(A7) 
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Appendix B: RG treatment of the Anderson Localization 

B.l Introduction 

In this appendix, we summarize the renormalization group (RG) treatment 

of the Anderson localization. The phase transition point (the mobility edge) 

between the localized phase and extended phase appears when the dimensionality 

of the system deviates from d = 2 to d = 2 + c ( c is the positive infinitesimal) 

[57,58]. The localization problem and the critical behavior around the mobility 

edge is usually investigated by the renormalization group treatment within the 

frame of the field theoretical model called nonlinear sigma model by many authors 

[36-44,47,59]. Essentially their treatment is identical to the renormalization 

procedure of the diffusion modes themselves. Thus the similar treatment allows 

us to know the scaling behavior of r c(q, w ) in the critical region (i.e. around the 

mobility edge.) The "self-energy correction" to the cooperon mode calculated in 

Sec. 5.2 corresponds to the one-loop calculation in the theory of the nonlinear 

sigma-model. The results of the higher loop corrections are already available 

[60,61]. In this Appendix, it is shown how the physical quantities can be evaluated 

by use of the renormalization group. We may leave to other references the 

detail about the mapping between the localization problem and the nonlinear 

sigma model. 
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B.2 Removal of Divergenc e by Dimensional Regulation 

To go on along with the argument in the nonlinear sigma-model, we introduce 

the following parameters t0 = (aN0D0 f
1 and lzu = (-iw+ 2-y)(j3D0 f 1

, where D0 is a 

bare diffusion coefficient. Numerical constants a and f3 will be defined later so 

as to absorb the numerical factors in the calculation. The canonical dimensions 

of these new parameters are [t0 ] =A'-" and [!zu] = A2
• (The symbol A denotes the 

dimension of momentum, as in Appendix A.) 

With these quantities, the bare diffusion propagator derived in Sec. 4 .2 is 

expressed by 

n<o> ( ) = 2-y'
2 

. 1 2-y'
2 

a t0 (B 1) 
1

c q, w 1rN
0 

D
0
q 2 -iw +2-y -;-q2 + /3lzu. 

From the perturbational calculation done in Sec. 5.2, the lowest-order correction 

for the diffusion propagator is given in form of the self-energy rr~' l (q, w)' which is 

expressed by the new parameters as 

rr">< ) q' " 1 
c q, w = 2-y'' f Q' + f3hu. 

(B2) 

Then the renormalized cooperon mode at the lowest-order is 

<1> _ [ o) ) - ' _ <n J-1 
_ 2-y'

2
a t0 rc (q, w)- (~ (q, w) rrc (q, w) - 7r (l-6.')q'+ f3hu' (B3) 

where 

6.' = a t0 "--1- = t a S" r<f ) ({3 J.. )t r(.::<.) (B4) 
7r ~ Q' + f3hu 0 (27r)d+l '"' 2 ' 

and S" is the surface area of the d-dimensional unit sphere. Substitution of the 

value of S" = 21rd 12 I f(d I 2) leads to 

6.'= o: to I--1-=~(f3hu)ir(.::!.). (B5) 
7r Q Q' + f3hu 7r( 4 7r )d 12 2 

The correction term 6.' is proportional to t0 , but diverges at the limit of € -7 0 
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like €-
1! The origin of this divergence at € -t 0 attributes to the short-distance 

singularity. In evaluation ofEq. (7) in Chapter 5, we introduce the ultra-violet 

cut-off Q, - F 1 to remove this singularity and obtain the correction tJ. instead of 

6'. Here we take the alternative method to remove this short-distance singularity 

- the minimal substraction scheme to remove the dimensional pole. 

It is well known that the two renormalization constants Z and Z 1 are 

enough to renormalize the theory of the nonlinear sigma model [ 42-44] such as 

hu = z1z-l/2 h , 

~ = K.""' .fZ!._ 
hu h' 

and define the renormalized vertex part by 

(B6) 

(B7) 

(B8) 

(B9) 

Here the parameter K. has the dimension of the momentum. By substituting the 

renormalized parameters for the bare ones, it leads to 

[r~ncq,t,h, K.lf' = z [r~ 1> cq,to ,lzulf' 

= _"Tr_[zz-1 K.' q 2 + z"2 K.' f3h + Zq2 r(l- t l 2 f3'/2 (zz-"2 h)"2]. 
2(')' ')2 1 od od 7r(47r)" ' 2 

€ 
1 

(BlO) 

To absorb the divergence, we assume the forms of the renormalization constants 

like 

Z= l+zt+O(t'), (Bll) 

(B12) 

It is a straightforward calculation that when the constants z and z 1 satisfy 
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z= 0, (B13) 

2 o. f3' 12 f(1--'-) 
z, =-;· 7r(47r)d ' 2 2 (B14) 

the dimensional pole is removed and we obtain the nondiverging cooperon mode 

which is defined by 

~'' C t h ,_) = 2r '2a ,_-• t 
' q, ' 7r (1-6.')q 2 +f3h' 

(B15) 

where 

(B16) 

For simplicity, we choose a = a d= 7r(47r)d12 /f{2-f) and f3 = 1. Then z, is equal 

to £/2. Setting the renormalization scale K. equal to the inverse of the mean free 

path r' and taking the limit of £ ~ 0, we can confirm that the corr~ction term 

6.' exactly reproduces the result ofEq. (7) in Chapter 5: 

(h -2)''2-1 
6.' = -lim t .:.._"-____.:. __ 

, ~o £I 2 2 
ln --1- = 6.(w). 1 [ 2 ' ] 

47r N 0D0 -iw + 21 
(B17) 

B.3 Renormalization Group Equation for the Diffusion Propagator 

Next we examine the universal scaling form of the cooperon mode. To do 

this, we write 

2 ' 2a r~ '' Cq,t, h, ,_) = ...2___.!_-=.(q, t, h, ,_). CB 18) 
7r 

Here =.(q,t,h, K.) is the diffusion propagator which has the dimension of Ad . In 

fact, this function =.(q,t,h,K.) is the coherent volume function introduced in Sec. 

4.3. The function =.(q,t,h,K.) has the universal scaling form, which we will 

determine by use ofthe renormalization group treatment. Form the perturbational 
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treatment, which is justified in the small t limit, =:_(q,t, h, r;.) has the form like 

(Bl9) 

The renorrnalization group equation is derived by the fact the bare function i.e., 

z-' =:_(q,t,h,r;.) is not explicitly dependent on r;. with fixed bare parameters. Thus 

(B20) 

We use the relation 

d 1 a a t 1 a a hi a 
"'d r;. ''·"' ="'a "' + "' a"' ,,,., at+"' a"',,,., a h 

= K._!)__+ {3(t)i!._+(((t) + {3(t) -E)h_i)__ 
a"' · at 2 t ah' 

(B21) 

where the function {3(t) and ((t ) is defined and calculated to the one-loop order 

as 

atl ( a lnZ,)-' 2 O 5 {3(t)=r;.- =Et· 1+-- =€t-2t + (t ), 
a K. ,,,h, alnt 

(B22) 

and 

( (t) =r;.-- = {3(t)--=0. a1nz1 a1nz 
a"' ,,,., at 

(B23) 

Eventually we obtain the renormalization group equation for the diffusion 

propagator =.as 

[ 
a a ((<tl f3<tl ) a J _ r;.-+ {3(t)-+ ( (t)+ -+--€ h-h =.(q,t,h,r;.)=O. 

a"' at 2 t a 
(B24) 

Physically the meaning ofEqs. (Bl3) and (B23) is very important. In the nonlinear 

sigma model, the asymptotic behavior of the order parameter, say, u is given 

[42,44,59] by 

C7 _ (t _ ( r <C t" )1 2P'C ( l . (B25) 
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According to Eq. (B23), the order parameter does not vanish at the transition 

point in the localization problem. This corresponds to the fact that the average 

density of state has no singularity around the mobility edge, so the relation 

({t) = 0 (i.e., Z = 1) is expected to hold good even at the higher order calculation. 

In other words, the renormalization of the inelastic relaxation rate by disorder is 

not expected to exist. This is the reason we have considered only how the 

diffusion coefficient will be renorroalized when we evaluate diffusion propagator, 

in Chapter 5. Eventually we obtain the renorroalization group equation for the 

diffusion propagator as 

K.-+ (3(t)-+ -- [ h- =.(q,t,h,K-)=0. [ 
a a (f3 <0 ) a J _ 
a, at t ah 0 

(B26) 

The solution of the equation above is easily obtained by the method of 

characteristics as 

=.(q ,t, h, K.) = =.(q,t(p), h(p), K.p-1 
), (B27) 

where 

p d~~) + (3(t(p)) = 0, (B28) 

P dh(p) + ( (3(t(p))- [ ) h(p) = 0' (B29) 
dp t(p) 

and the initial conditions are given by t(l) = t and h(l) =h. The solutions are 

easily obtained as (the critical exponent vis given by -11 (3'(()): 

( - )"" (/t(p)=l± p/((t) ' 

h(p)! t(p) = p' hit' 

(
delocalized) (B30) 
localized 

(B31) 

where we introduce the (dimensionless) correlation length ~(t) =I (t- ()/ t 1-". The 

usual correlation length ({t) will be defined by ({t) = (~(t). 
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B.3 Renormalization Group and Finite Size Effect 

To consider the connection between the nonlinear sigma model and the 

length-dependent scaling theory [22], we consider the finite size effect of the 

sample. Since the renormalization procedure is to aim the removal of the short-

distance singularity, the renormalization theory is not completely insensitive to 

the finite size effect. Consequently the renormalization equations are not modified, 

and the linear size of the sample L comes into the theory as a parameter. Thus 

we replace 

(B30) 

Using the dimensional analysis such as [::::] = Kd, we obtain 

=Ad =:w(Aq,t(p),A2 h(p),AK.p-1
). 

(B31) 

If we set A= p = L/ !. and K. = r' , we can derive the relation between the different 

size as 

=:L(q,t, h)=/ =:,(pq,t(p),p2h(p))l . 
p=L i l 

(B32) 

In the case of the diffusion coefficient N 0D, whose canonical dimension is A', the 

same procedure can leads to the relation 

(B33) 

The equation above means the renormalization of the dimensionless conductance 

gL! The relation given by Eq. (B33) is identical to the length-dependent scaling 

ofEq. (10) in Chapter 5, when the nonlinear sigma model is valid to describe the 

system. The theoretical drawback of the nonlinear sigma model results from the 
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fact that it deals with the transverse correlation function . In fact, q-dependence 

of the diffusion coefficient (i .e., calculation of the critical exponent 1J) is rather 

problematic and can be done only by considering the invariant correlation function 

[40,47,62]. 

B.4 Relation between L'P and L'P 
Using the relation ofEq. (B33), we can obtain the relation between L<p and 

i<p, which we h ave introduced in Sec. 5.3. In the sample size of the order of- f., 

the states are extended and the form of the correction term given by Eq. (B16) is 

expected to be valid. Thus we get 

(B34) 

Hence we estimate DL(q,t,h) as 

L' NODL(q,t, h)=__!_+ ~{(h(p)L2 )' 12 -1}. (B35) 
t(p) t 

To make this expression valid, the term t;~) {<h(p)£')' 12 -1} must be small. For 

this reason, there arises a length scale which satisfies the condition 

h(p)L2 = 1. (B36) 

This length scale is what we have called i <p in Chapter 5, and r elevant to the 

scaling theory of the diffusion coefficient. The condition ofEq. (B36) is transformed 

by use of Eqs. (B30) and (B31) like 

h(p)(i )2 = t'(i<p! Lj = 1' 
<p 1+(L<p 10' 

(B37) 

in the delocalized phase. Thus we obtain 
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{ 
L., ~ ct'r11

" L., (for~ 2: L., ) 
L., ~ ct')-112 L., ~L., I~ (for~ :> L., ) 

According to Eq. (B38), w-dependence of L., will change from - w-112 to 

(B38) 

-w -I/3 

with the increasing of the correlation length ~. This corresponds to the crossover 

behavior of the diffusion coefficient from D(w)- w 112 to D(w) - w113
• 






