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ABSTRACT 

A MICROMECIIANICS-BASED CO TINUUM T HEORY FOR 

LOCALIZATION PHENOME A 

Yoshi aki OKUI 

T he conventional continuum theory is based on the constituti ve equations that pre

sc ribe relations between the average stress a nd strain , valid when th e local deformation 

is more or less unifo rm . However , when the deformation is local ized, the effects of in ter

ac tion among microdefects become impor tant , and must be includ ed in the formulation 

of a ny effective continuum theory. One promising way of establishing a continuum the

ory that can capture localization phenomena is to use micromechanics. 

In this paper, a micromechanics-based continuum theory (named Interaction Field 

Theory, 1FT) is proposed, which can model localization phenomena, such as shear 

failure in rocks or shear band formation in sands under compress ion. Specia l attent ion 

is placed on the effects of inte rac tion among microdefects on determination of the 

evolu tion of microd efects. A new fi eld variable (interaction fi eld) th at characterizes 

the effects of interaction among mi crodefects is introduced , and its gove rning integ ral 

equation is formulated. All hough th e technique is applicable to any material with 

any micros tructure, for a n illust ration the theory is formulated and used to study the 
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behavior of geomaterials; namely, t ime-depcndcnt and -i ndepe nd ent deformation of 

brittle rocks and time- independent that of sands under compreos io n. 

Numer ical results arc give n that illustrate the difference between th e propo,ed the

ory and a continuum damage mechanics in whi ch the int eract ion effccb a re not taken 

into account, as with conve ntional theories. lt is confirmed that the proposed theory 

can describe the locali zation process as well as soften ing beh;wior, wh ich are difficult to 

model by the conti nuum damage mechanics. Furthermore, numeri cal calcul ations are 

carri ed out in order to reproduce typical labo ratory testing for geornaterials, such ~ 

short-term triaxial tests and creep tes ts under constant stress states. 1t i:, show n that 

th e proposed theory is able to describe several feat ures act uall y obse rved in labo ratory 

tests; the transition from the shear failure mode to the axial sp litting mode in t ri axia l 

tests of brittle rocks as the confine pressure is decreased a nd the typical s hape o f creep 

curves o f brittle rocks. 
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Chapter 1 

Introduction 

1.1 Localization Phenomena 

Localization phenomena a rc phenomena in which deformation or damage concentrates 

into one or more small zones in materials. Two types of loca li zat io n phenomena ca n 

be distinguished: (1) local ization due to stress concentr atio n under ce rtain boundary 

conditions and (2) localization from homogeneous st ress states. A typical example o f 

the former type of local izat ion is unstable crack g rowth in brittle mater ials under ten

sil e st ress states. When the st ress intensity facto r at the tip of the crack attains its 

critical value the fracture toughness, the crack extends abruptly without the increase 

of any external load in g. This type of local izat ion phenomena i:, relat ively simple ;wd 

engin ee ring problems related to local ization due to st rcs;; concentrat ion are easi ly re

solved by employing conve ntional theories, such as fr act ure mecha ni cs. In the latt e r 

type of localization phenomena, firstly inelastic deformation or damage is di s tributed 

homogeneous ly over a large zone but la.tcr the inelastic deformation or damage conce n

trates into a relatively small zone as progressive evolution of damage. The locali zation 

-

phenomena discussed in the present paper arc thi:, transitional t) [H' of lo,alizat ion: and 

in the following, the localizat ion due to th e stre:,s concentration is not included in t he 

se nse localization phenomena are used in this prese nt st udy. 

The locali zat io n phenomena occur in a wide vari ety of n1at crials: :,tructural n1ctab 

(Nadai, 1950], rocks (Friedman a nd Logan, 197:!], concrete (Torrcnt i et al., 1989] and 

granular mate rial s (Mandel et al., 1977]. For instance, a fl at bar of mild :,tcc l under 

uniaxial tension exhibits thin lines which is inclined at an angle of about ·!!) dcg with 

respect to the direction of tension. These lines, cal led "Luders' line:,'' or simply "s hear 

bands", quickly spread over the length of bar at the insta nt of the drop in the load at 

the yield point a nd their thickness increases . In shear bands, a large amount of the 

plastic shear is generated and the thickness of the bars becomes thin. 

As an another example of the local ization phenomena, failure of rocb under com

pressive st ress state is considered. The failure modes of rock samples depend o n the 

magni t ude of th e confining pressure and may be classified as follows: (I) axia l splitting 

under uniaxi al compress ion or low confin ing pres:,urc, (2) brittle shear fau lting and 

(3) ducti le fl ow under a high confining pressure. The mechanis m of the axial splitting 

results essentiall y from uns table extension of a s ingle crack in the sa mple and the final 

plane of rupture is paral lel to the directio n of th e maximum con1pression. The duc

tile Row exhibits no locali zed region of strain and cracking. On the other hand , th e 

brittle shear failure belongs to the localization phenomena con, idered here. The final 

plane of s hear faultin g is also inclined with •espect to the direction of the maximum 

compressio n. T he shear faultin g plane consists of highl y density zone, of microcracks 

whose orientations are almost parallel to the direction of the maximum compression 

(Wawersik and Brace, 197 1; llallbauer et al., 1973; Sp runt and Brace , 1974; ll a.dley, 

1975; Tapponnier and Bra" , 1976]. The process of locali zat io n of micro c rackin g into 

a. narrow band is obse rved by means of optical mic roscopy [llallbaucr el al., 1973] and 
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acoustic ernission [Yanagidani el al., 198.5). flail bauer et al. reported that in the earli er 

loading stages the areas of high crack densities arc confined to the central part of the 

specimen, but randomly distributed. With increasing axial stress, some of the locaJized 

areas appear to join into a plane which forms the macroscopic failure plane later. At 

axial stress close to the ultimate strength of the specimen this final plane is not yet 

clearly defined. Such shear faults are formed in natural rock masses by tectonic or 

gravitational possesses. 

Probably the most important aspect of locali zation phenomena in engineeri ng prac

tice is the fact that the load carryi ng capacities of the material extensive ly depend on 

localization. As shown in above examples, the localization is a precursor of macroscopic 

failure and the stability of materials for external loading often changes at occurrence 

of local ization. Because of the engineering sign ifi cance and occurrence in various ma

tNials , many papers have been published on the mechanics of locali zation. Review of 

the development of theoretical work on this topic is given in the next sect ion. 

1.2 Previous Studies 

1.2.1 Continuum Theory 

The nonlinear response of enginee ring materials depends on the type, size, distribution 

and orientation of microdefects in the materials. With an increasing load , microde

fects in a material evolve, and the effects of interaction among the microdefecls become 

dominant, governing the process of macroscopic failure. For example, th e macroscopic 

failure of brittle mater ials such as rock under compression consists of several stages: (1) 

nucleation and evolution of mi crocracks ; (2) localization of mi cwcracki ng; (3) forma

tion of macroscopic fault due to coalescence of the localized microcracks. To establish 
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a theory for such mechanical behavior of materials , il is important to take account 

of the influence o f rni crodefects. It would seem natural to consider and model di s

crete rnicrodefects using the met hod of rnicromechanics. ll owever, co nsiderati on o f the 

interaction effects of individual rrucrodefecls with a disc rete model is not feasible for 

analyses of general problems with arbitrary boundary and loading co nditions. It is 

therefore necessary to establish a continuum theory that describes the overall behavior 

of materials containing microdefects. 

Continuum theories for mechanical behaviors of materials are divided into two dif

ferent approaches: the phenomenological approach and the micromechanics-based ap

proach. In the phenomenological approach, the relations between macroscopi c quanti

ties (e.g. the flow rule in plasticity or the evolution law of damage in phenomenological 

continuum damage mechanics) are based on relationship between macroscopic quanti

ties obtained from experiments. In the rnicromechanics-based approach, the behavior 

of rnicrodefects distributed in the material is generally considered to explain the me

chanical behavior of the material. One of the issues of interest is whether or not a 

continuum theory can reproduce the process of localization phenomena. 

P lasticity 

While most phenomenological continuum theories do not reproduce localization phe

nomena, st udies on plasticity have been carried out for the reproduction of localization 

phenomena, such as the diffuse neck of structural metal in a plane tensile test and the 

shear failure of brittle rock masses in compression. The theoret ical desc ription of shear 

bands can be traced back to the early work of Hill (1961). In studying acceleration 

wave in elastoplastic sol ids, Hill presented equations for stationary wave , which are 

reduced to the condition of shear band localization for vanishing wave velocity. Hill 

and Hutchinson (1975] studied the localization problem of a rectangular block under 
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plane deformation. They consider a broad class of incrementally-liner incompressible 

materials whose behavior is characterized by the two instantaneous moduli. Rudnicki 

and Hjce [1975] provide the general mathematical theory for analysis of shear band 

localizat ion. The constit utive eq uations which are exami ned in the condition of lo

calization are intended to model the behavior of brittle rock mass under compress ive 

stress. It is shown that both a vertex-like structure of subsequent yield surfaces and 

non-normality strongly affect localization [see also Needleman, 1979]. 

J n the above papers, the problem of localization phenomena is stud ied by applying 

bifurcation theory. The conditions under which a homogeneous deformation changes 

into a localized one is investigated. This bifurcation into a locali zed shear bands is not. 

possible until the eq uati ons governing incremental eq uilibrium lose ellipticity. Specia l 

features are included in the constitutive models to reproduce localization phenomena. 

through either (i) the vertex effects in the flow rule, (ii) the non-normality or (iii) the 

strain-softeni ng. However, these theoretical works do not clarify the physical mecha

nism of localization phenomena, and predict only behavior at the onset of localization. 

Numerical methods are indispensable to follow the behavior in post-localized (b ifurca

tion) regime. The complications of numer ical analysis for localizat ion problem will be 

discussed in section 1.2.2. 

Continuum Damage Mechanics 

In phenomenological Continuum Damage Mechanics (COM), a set of continuous field 

variables that represent the damage of the material, call ed damage parameters or in

ternal variables, is introduced without consideration of microscopic events. The me

chani cal property of the material at a certain state of damage is prescribed by th e 

damage parameters. The evolution law that determines the value of the damage pa

rameters for a given macroscopic stress or strain is deduced from the general frame-
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work of thermodynamics or by simple fitting of experimental data. This concept was 

originally introduced by l(achanov [1958] for creep rupture of metals under uniaxial 

tension. Since then, exte nsive efforts ha.ve been made to apply phenomenological CDM 

to other phenomena or materials, such as mult.iaxial creep ruplu re [M u r<tkami , 1983], 

creep-fatigue interaction (Chrzanowski, 1976], brittle fracture (1\rajcinovic and Fon

seka, 1981; Fonseka and Krajcinovic , 1981 ; Najar , 1987; Ashby and Sammis, 1990; 

Wohua and Val liappan , 1990a,b] , brittle- ductile fracture [Dragon and I> I r6z , 1979], fa

tigue [Talreja, 1985; Chaboche and Lesne, 1988] and ductile fr<tcture (Lemaitre, 198!i ; 

Chow and Wang, 1987]. Comprehensive review can be found in Chaboche [1988]. 

Although phenomenological COM is effective for the reproduction of deformation be

havior , it cannot predict local ization phenomena. 

Recently, Shi and Horii [1989] have investigated the evolution and interaction effects 

of the discrete system of microdefects to clarify the mechanism of strain local ization in 

sand deformation. This theoretical work based on micromechanics has revealed that 

t he dominant mechanism of local ization is the effects of interaction among microde

fects. The effects of interaction among microdefects are directly taken into account by 

considering d iscrete microdefects after the standard manner of micromechanics. 

One promising way of establi shing a continuum theory that can capt ure locali zation 

phenomena is to base it on micromechanics. In order to estab l.ish a co ntinuum theory 

based on micromechanics , it is necessary to replace a heteroge neous material co ntain

ing many microdefects with an eq ui valent cont inuum that exhibit s the macroscopi c 

behavior of the material. This procedure is cal led homogenization. Many mathemat

ical techn iques for homogeni zation have been proposed (see ll ashin [1983] for liter

atures), such as averaging over the periodic st ru cture or the rep resentative volume 

element [Nernat-Nasser and llor i, 1989] and the self-co nsiste nt method [Bud iansky and 

O'Connell , 1976; Horii and Nemat-Nasser, 1983] . These homogeni zatio n techniques 

6 

-- ----- ~ - - - - - --- -



provide t he ove ral l st ress-strain relat ion whic h refl ects t he e ffects of interact io n among 

mi crodefects. However , it is not s ui table fo r the formul a ti on of a continutun th eory 

th at can rep rod uce locali zat ion p henomena, because a more o r less uniform or peri odi c 

d istri b ution of microdcfecls is ass umed in mos t of th ese techniques. Alth ough th e e f

fects o f in te raction on t he evolu tion of microdefect.s seems to be more signifi cant t ha n 

t hat o n t he overall stress-st ra in relation, t hese homogenizat ion techniq ues p rovide onl y 

t he overall stress-st ra in relation at a cert ai n state of microdefects . 

One example of a mi cromecha nics-based cont inuum theo ry is rni cromecha nics-based 

CDM [K raj cinovic a nd Sumarac, 1989; S umarac a nd I< ra jcinovic, 1989] . In t hi s bra nch 

of CDM, the stress-st ra in relation of the equi vale nt continuum is d erived from the av

erage s tress-s tra in relat ion of the heteroge neous material through the a bove- me nti oned 

homogenizat ion tec hniq ues, a nd t he evolu tion law of d am age is derived from consid er

ing t he growth of microdefects. Like most phenome nological continuum th eo ries, th e 

convent iona l micromecha nics-based CDM does not reproduce locali zatio n phenomen a. 

T his di sad vantage occurs because, when the evolution of damage is evaluated , the in

te raction effects is not direct ly considered. The evolu t ion law is de ri ved for uniform 

evolution of microd efec ts. 

1.2.2 Localization Limiter 

To simul a te behav ior o f materials up to complete locali zed sta te, in general, solutions o f 

boundary value pro blems need to be obtain ed numeri call y. Even if t he continuum theo

ri es which can reproduce locali zation phenomena a re e mployed , the nume ri cal solutions 

of problems for locali zat ion are fr a ught with serious complicatio ns . If the gove rnin g 

eq ua tions of the probl ems a re di sc reti zed by finit e element meth ods, overa ll responses 

such as rela ti ons be twee n load a nd di sp lacement de pe nd on t he size of elements used 
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for spat ia l d isc retization. This mes h depende ncy resul ts from t he fact that locali zation 

of de format ion occ urs in onl y one row of element s (i n two d imensional problem) a nd 

t he refin em ent of t he mes h leads to vanishin g size of locali zed regio n in the end. 

To preve nt t hi s mesh depe nde ncy in numer ical a nalys is, seve ral methods which 

li mit region of locali zation in to fi nite size have bee n used. T hese methods. call ed 

'1ocali zatio n li miters", can be classified as follows [de Borst a nd Miihlhaus, 199 1]: 

(a) nonl ocal model in which stress or strain rs de fin ed as a n in teg ral ove r a finite 

d omain (integ ra l limi ter). 

(b) stra in grad ient model in which strain is d efined as deri vat ives of order higher 

tha n o ne (diffe rential or gradi ent limiter) . 

(c) generali zed continuum theory in which internal materi a l length is o rigin all y intro

d uced by conside rin g microst ructu res in the ma te rial , s uch as Cossera t cont inuum 

theory. 

(d ) modeling ma teri a ls with ra te-de pendent constituti ve relat io n (rate limiter) 

[Lemonds and Needleman , 1986; Needlema n, 1988] 

Besides above ment ioned methods , there are o ther method s whi ch cann ot predict 

the size of softe ning region but can simulate mes h independent relation between load 

and di splacem ent: 

(e) limiting the minimum size of t he finite elements by considerin g t he fact th at 

constituti ve rela ti ons are originally obt ained by obse rvatio n of rela tions between 

m ac roscopic quantiti es in finit e size specimens. 

(f) providing descending gradient of stress-strain relation in the pos t-peak regime as 

a function of mesh s ize. 
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In t he following the methods from (a) to (c), which a re relevant to the prese nt 

study, arc in troduced. 

N onlocal theory 

Eringen and co-workers [Eringen a nd Ede len, 1972; I nan a nd Eringe n, 1991] propose a 

nonlocal t heory with st ress st rai n a nd strain- displacement relations of the type 

t,,(x) fv r(Jx- x'J, r)a,,(x')dV(x'), .... (1.1) 

a,1 (x ' ) 0,1k/Cki(X
1
), .... (1.2) 

e,1 (x') ~{u,,Ax') + u,,,(x') }, .. . . (1.3) 

where t,, and u, a re the stress tensor and the displacement vector respectively; D,
1

k
1 

is the elast ic tensor and 1' is the attenuation function which depends o n the distance 

Jx- x'J a nd a parameter r which denotes t he ratio of the internal cha racte ri st ic length 

a to the exte rnal characteristic length l i. e. 

r = c0 aj l. · · · · · .. · · · · · · . . . ...... . ..... . . ... (1.1) 

For example, wh en disc ussing a crack in crys tal s, the characteristic length a may be 

taken as a lattice parameter and las half the length o f the crack with a scale factor c
0

. 

In addition to the above equati ons, considering the equilibrium eq uatio n 

. .. .. .. . . . . . . . . . (1.5) 

toge ther with boundary conditions, theory of the nonl ocal elas ti city is fo rmulated. 

Various attenuation functions have been proposed in the lite rature by fitting the 

dispersion curves of plane wave of atomic lattice, fo r examples: 

9 

(a) One-dimensional problem 

r(JxJ,r) 

r(lxJ,r) 

r(JxJ, r) 

{ 
f;-(1- \;!), JxJ < lr 

0, JxJ > lr 

1 

217 
exp( -JxJ/lr), 

J ( 2 2 t.;:;r:rexp -x jl r), 

(b) Two-dimensional problem 

1 , (x · x) 112 

r(JxJ, r) = 27rl2r2 r, o( lr ), 

where /(0 is the modifi ed Bessel functi on. 

1 X· X r(JxJ, r) = -[2exp( --~-2 -). 
1rr r 

.. ( 1.6) 

.... (1.7) 

. ( 1.8) 

... (J. 9) 

. . (1.1 0) 

All the above express ions have the property that r(Jx- x'J)- o(Jx- x'J) as T- 0. 

Recently, Bazant a nd co-workers [Bazant and Cabot, 1987; Droz a nd Ba7ant , 1989; 

Bazant , 1991] a pplied the non local concept to the numer ical analys is of strain ·soft e ning 

materials. As an example, they studied compress ion fa ilure due to propagation of 

shear bands by finit e element analysis. They used Mohr-Coul omb's plasticity and th e 

strain--softening constitutive relation modeled through a negative value of the ha rd e n

ing modulus. As a locali zation limiter, they assumed that the yield limit is a fun ctio n 

of a nonlocal plastic strain rate, s uch as 

-(
1 

) f r(J x - x'J) e~1 (x ') dV(x' ), 
V, x Jv 

fv r(J x - x'J)d\f(x'), 

.... (1. J 1) 

.... (112) 

in which the weighting (attenuation) fun ction 1' is Gaussian erro r density fun ctio n 

r(J xJ) = exp(- kJ xl) , 
a 

.. . . (1.13) 
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with k = ft and k = 2 in one and two dimensional problem , respectively, and a is 

the internal characteristic length . T hey reported that if the element size is red uced 

smal ler, the region of strai n-soft ening and assoc iated locali zati on conve rges finit e size 

and accordingly the numerical results do not depend on the clemen t size. However 

mechanical meaning of t he weighting function and the interna l characteri sti c length 

is not clear, and the met hod of determination of the internal cha racte ri st ic lengt h 1> 

merely to fit numerical results to plausible valu es. 

Strain gradient theory 

In st rain gradient theory [Triantafyllidis and Aifantis , 1986] the const itutive relation 

contains higher o rder derivatives of the strain. These higher ord er derivatives are ge n-

erat ecl clue to nonlocal ity which means that the material property does not depend o n 

onl y a point but also other points in the materiaL For example, when the material con-

tains microst ruct ure such as dislocations, microvoicl s and microcracks, the nonlocal ity 

occurs because of the effects of interaction among microst ructures . 

To demonstrate the relation between the nonlocal theory and the strain gradient 

theory, cons ider two material points x and x'. The elas ti c tensor is assumed to have 

the nonloc ality and denotes D,1k1(x fx') . Then, stress at the point x is expressed as 

(1.14) 

where V is the volume of the materiaL When s train £k1(x') is expanded about x into 

a Taylor se ri es, th e s tress s train relation become 

f D,1ki( xfx') t:ki(x')dV .lv 
+ fv D,1 ki( xfx')(x~- x.)t:ki.p(x' )dV 

11 

.... (1.15) 

+ r D,]kl(xfx')(x~- x.)(x~- Xq)Ck/,pq(x')dV + . .lv 
Obvi ously the st ra in gradient theory is a finit e approximation o f the non local theory. 

Coleman and Hodgdon [1985] studied shear bands in ductile ma teri a ls and for mu

lated rigid-plast ic constituti ve relation which exh ibit s st rain soft en ing a ft er a ce rta in 

amount of plastic now. Their constitutive relation is of the following type: 

. ............ ........ (11 6) 

where 6 denotes a Laplacian and tp( ~:) is a usual elastopla tic constitutive law and a is 

a coefficient having th e dimension of a force. More recently, Triantafy ll idis and Aifantis 

studied shear band formation of hype relastic materials by adding a second deformati on 

gradient term to the expression for the strain energy density. Both of these two st udies 

predict not only the direction but also the thickness of shear bands. 

Cosserat continuum theory 

In a Cosserat continuum, a material point has three additional rotational degrees of 

freedom besides the three translatory ones in the class ical continuum. These additional 

freedoms are introd uced to express effects of rotati on of particles in granular material s. 

According to introduction of the rotational freedoms, the constitutive relation has 

additional three eq uations which provide the relations between couple st ress tensor m, 

and curvature tensor ~~:., 

(i= 1, 2, 3) (1.17) 

where M is a bending modulus. When the bending modulus is no rmalized by a shear 

modulus G, J M JG has dimension of length and is related to radius of particles as 
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internal characteristic length. This in troduction of the character isti c lengt h into the 

constitutive relation acts as the localization limiter. 

Rece ntl y, Miihlhaus and Vardoulakis [1987] st udied sand deformation with Cosse rat's 

theory. T hey generali zed J2 deformation theory of plastic it y a nd treated shear band 

formation in sand as a bifurcation problem. ln the framework of classical bifurcation 

theory, it is not possible to predict t he thickness of the shear band, since the formu

lation does not contain any physical property with the dimension of length. But, by 

employi ng Cosserat theory, they predicted the thickness of the shear band and showed 

a good ag reement between theoretical predictions and experimental results. 

1.3 Objectives of Present Study 

The main object of the present st udy is to establish a micromechanics-based contin

uum t heory which can reproduce the localization phenomena. In the proposed theory, 

the effects of interaction a mong microdefects a re directly taken into account in the 

determination of the evolution of damage. To preserve informati on on the interaction 

effects a mong microdefects in the homogeni zat ion process, a n ad diti onal fi eld variable 

(interaction fi eld) is introduced , and the governing integral equ ation for the inte rac

tion fi eld is formulated. T he introduction of the integ ral equ ation, cal led consistency 

equation , into the governing eq uations brings about the non local feature of the const i

tutive relation. Although in the conventional nonlocal theories th e justification of the 

nonlocality is merely checked by phenomenological conside ration based on numerical 

simulations, in the present study it is aimed to fo rmLLiate ri gorously the attenuation 

functi on for the considered model of microdefects by means of mic romechani cs. The 

th eory is general and applicable to any material with any nli crodefec ts. In this s tud y, 

however, the present formul at ion is carried out for onl y the behav ior of rocks and sands 

13 

under compress ive stresses. 

T he organizat ion of this paper is as follows: 

• In Chapter 2, the general concept of the proposed theory is p resented. 

• The theory is formulated for the rate-independent behavior of rocks under com

pression in Chapter 3. To demonstrate the difference between conventional CDI\1 

based on micromechanics and the proposed theory, CD M is also formulated for 

t he same problem. Numer ical results are given which illustrate t he difference 

between t he proposed theory and CDM. 

• In Chapter 4, the formulation for behavior of sands is presented and the app li

cability o f t he proposed theory for granular materials is disc u,sed. 

• In Chapter 5, a summary and conclusions a re presented. 
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Chapter 2 

Interaction Field Theory 

Jn thi s chapte r, t he Inte raction F ield Theory (1FT) is in t roduced, which is a microme

chanics-based continuum theory wi th spec ial relevance to t he effects of interaction. To 

illust rate t he main concept of the t heo ry, a comparison is made be tween the proposed 

theory and a COM t hat is also based on micro mechanics . In th e following, onl y t he 

mi cromechan.i cs-based C DM is considered , and is referred to sim ply as C OM . 

Figure 2. 1 illus tr ates the micromechan ics- based co ntinuum theory fo r desc riptio n 

of the behavior of a body subjected to the evoluti on of mic rodcfects (mic roc rac ks in 

t he illustr a tion). Heterogeneous material containing many microc racks is modeled as 

an equi valent continuum. T he usual equilibrium equa tion and t he s train - d isplace ment 

relationship are sati sfi ed . A micromechanics- based consti t uti ve equa tion, which gives 

th e relat ion betwee n the s t ress and strain at a point in the body, is cons tructed. We 

conside r the glo bally uniform deformation of the ma terial wi th mi croc racks . The re

lation betwee n t he average s tress and strain is obtained by considering t he behavio rs 

of m icrocracks and is ass umed to prescribe t he material behavi or a t a given point in 

t he body. T he microc racks evolve as the deformation proceeds. Their evolution is 
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~c) 
~o-crack 

cont inuum 

1) Average stress-stra in relation 

f-~ ~---'j u = D(l) : i 
U : avf'rogc sLrrss 
f . avcmg(' strain 
l . crack length II II 

2} Evolution law 

/(/) = 0 

Figure 2.1 Micromechanics-based continuum theory. 

determined by an evolution law _ 

Different versions of the micromechanics-based continuum theory are considered 

with different types of the homogenization procedure and evolution law. Here, a CDM 

and 1FT are introd uced. In the CDM, the evolution law is simply deduced by con

sidering an infinite body with a single microcrack under average stress at infinity; sec 

Fig. 2.2(a) . The direct effects of interaction among microcracks arc not taken in to 

account, since on ly a single microcrack is considered. Thus, the evolu t ion law depends 

only on local average stress at that point. In IFT, on the other hand , a new field 

variable called the interaction field is introduced to take account of the direct effects 

of interaction in the determination of the evolution of microcracks. The idea is based 

on the method of pseudotraction [Horii and Nemat-Nasscr, 1985], which is a method 

to evaluate the interaction effects among discrete rni crode fects. The generali zation of 

the method from a. discrete system to the continuum leads to the tensor field t hat 
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Figure 2.2 Comparison between CDM with Interaction Field Theory. 

represents the interaction effects of distributed microdcfccb. 

To introduce the idea, consider a body with many discrete rnicrocracb. The pro l>

lem is decomposed into a homogeneous problenr and subproble 11r s, each of whic h con

tains onl y one microcrack. To satisfy the traction-free cond ition a long rnicrocr«cks in 

the original problem , the average stress plus pseudotraction with the sign changed arc 

appl ied on the surface of each microcrack. 

The pseudotraction is to be determined such that the condition is satisfied when 

the homogeneous problem and the subproblems are superimposed. Pscudotraction aP" 

of microcrack a shou ld equal the summation of tractions on nricrorrack a c reated by 

ot her microcracks in other subproblems. li enee, the pseudotraction is understood as 

the interactio n effects at microrrack a from all ot her nricrocracb. If the evolu t ion 

of microcrack a is considered in subproblem a, the direct interact ion effects from a ll 
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ot he r microcracks a re through pseudotraction u P". When we introduce a homogeniza

tion from the discrete microcracks to the continuously di stributed microcracks, the 

pseudotraction is tra ns fo rmed into th e interacti on field that is a tensor field of st ress 

dimension. Then, the evolution law at a point becomes a fun cti o n of both the average 

st ress and the interact ion fi e ld , and the evoluti on of microcracks depe nds on the dir ect 

interaction effects. 

1 n the discrete >ystcm, the pseudotraction, which is a fun ction d efin ed a long the 

microcrack, is expanded into Taylor se ri es. T heir coe ffi c ients are determined from the 

cons iste ncy condition that ens ures the satisfact.ion of the traction-free conditio n. By 

homoge nizat ion from a discrete system to the co ntinuum, the consistency conditio n is 

red uced to the integ ral eq uation for the interactio n field. The evoluti on of microc racks 

and the deformati on of the material are o btained by solving (l) the equilibrium eq ua

tion, (2) the st rain displacement equation, (3) the stress st rain relationship, (4) the 

evolution law a nd (5) the consistency equation. 

In this chapte r, o nly the idea of IFT is introd uced. In the next chapter , a. theory 

is formulated for material behavior due to crack growth under compression to describe 

the 1FT in d etai l. 
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Chapter 3 

Formulation for Behavior due to 

Crack Growth under Compression 

3.1 Intro duction 

As introduced previ o usly, the formulation of IFT is carr ied o ut for rate- ind epende nt 

behaviors of brittl e materials with mi crodcfec ts under compress ion. Spec ifi call y, the 

behavior is obse rved in gcomaterial s such as rocks under low te mperature and adcqunte 

magnitude of th e confining pressure. In genera l, the inelas ti c deforma ti on of rocks d e

pends on the s tra in ra te (Schock and Heard , 1974) and ex hibits d11 ct il e be havio r und er 

hig h confining pressure (Edmo nd and Paterson, 1971 ; Barton , 1976) . ll oweve r, we limit 

t he scope of tlw prese nt fo rmula tion to the above case oince in the m ajo rity of engi

neering pro ble ms the behaviors of rocks are regarded as brittle and ra te- ind epend ent. 

In sectio n 3.2, a model o f mic rodefects in rocks unde r co mpress ion is introdu ced 

and the fundame ntal properti es of the model a rc examin ed . In sec tion 3.3. the int er-

act ion effects a mong the tni crod cfects a re discu,cd by consick rin g the boun da ry Ya lu > 

probl em of an cl as ti c medium containing two mi croddccb. T he gove rning equ a ti o tb 

of IFT is formu la ted through the homoge ni zitti on of the clas ti c mcditllll with ntall .\ 

mic rodcfec ts in sect ion 3 .1. To illu strate the differe nce,; between the proposed th eo ry 

and conventi ona l C DM , a C DM based on micromccha nics i' formul ated fo r the ,;tme 

problem in section 3.5. In sect ion 3. 6, the numerical result , of both t heo ri cs a rc pre

se nted. In addition , th e strengths of actua l rocks under cont preS>io n a re predic ted with 

the proposed theo ry. 

3.2 A Model of Crack Growth under Compres-

S l O n 

The mechanical be haviors o f brittle solids such as rock under compreS> ion arc known 

to be gove rned by the growth of cracks . Microscopic o bse rva tio tb of rocks (Wawcri sk 

and Brace , 1971 ; ll allba uer et al. , 197.3 Kirby and 1\ ronenberg, 1!)8,1), es pec iall y with 

a scanning electron microscope (Sprunt and Brace, 1974; lladlcy, 197!); Tappo nnie r 

and Brace, 1976; l\ran z, 1979], re veal detailed information abo ut initi al defec ts and 

load-induced c racks, such as le ngth , de nsity, as pec t rati o <tnd o rient a tio n. Acco rdin g 

to these o bse rvations, load-induced cracks nucl eate it! initi <t l defect , , "'ch il' gra i11 

bounda ri e:> o r crac k- like, low as pec t ratio r viti cs. i\lll o<td- iud uced c rnc b a rc a ltnos t 

pa rall el to the direct ion of t he max imu m co111press ion. T hcs<' load -indu ced cracks arc 

in te rpreted a:> te nsion crac b caused by sliding d eforma ti on a long the inclined initi a l 

d efects. 

To represent t his behav ior of crack growl h under comprcsoion, a mi c ro trtcc h a ni c~ 

mod el has been pro posed , as shown in Fig .. 1. l(a) (Moss a nd G upl it, 1982; ll orii and 
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Figure 3.1 Microdefect of rock under co mpress ion. 

Nemat-Nasser, 1985; Ashby et al., 1986; Nemat-Nasser a nd Obata, 1988). An initi al 

defect P P' of lengt h 2c0 undergoes fri ctional sliding under the action of far-fi eld princi

pal st resses af a.nd a'f' (positive in tension). Frictional sliding along the initial defect 

P P' induces the nucleation and growth of th e tension cracks PQ and P'Q' at the tips of 

the initial defect P P'- Jt is assumed that the initial defect is closed during the process 

of crack growth, and that the initial defect slides with a constant frictional coeffi cient 

1-'· Thus, the following boundary condition must be satisfi ed on the initial defect P P': 

.... (3.1) 

where Un is the di splacement in the direction normal to the initial defect and t he 

superscript plus and minus stand for the quant ity on the upper and lower surfaces of 

th e initial defect, respective ly. T he solution of the problem shown in Fig. 3.l (a) is· 

obtained by t he numeri ca l method. The closed form solution of this problem , however, 
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is not available. 

A furth er simplifi ed model is consid ered, as show n in Fig. 3. l (b) [TTorii and Nemat

Nasse r, 1985, 1986). The straight crack of length 21 is parallel to the direction of the 

maximum compressive stress af. The effect of the sliding of the initi al defect with 

normal stress a· and shear stress r·, due to the far-field principal stresses, is modeled 

as a pair of concentrated forces F at the center of the crack: 

(3.2) 

where co is half the length of the initial defect, 

s in 8{sin 28- 1-'( 1 - cos 28)}, 
.... (3 .3) 

>. 2 sin 8{sin 28 + 1-'(1 +cos 28)}, 

1-' is the coeffi cient of fri ct ion and 8 is the angle of the initial defect. Figure 3.2 shows 

the relations between the coe ffi cients >.., (i = 1, 2) and the angle of the initia l defect 8 

for the various coeffi cients of fri ction. Both of the coe ffi cient s ), reach the maximum 

values at about 8 = 45 deg. 

From equation (3.2), th e relation between the normali zed magnitude of t he conce n

trated forces -F/(c0 a'f') and st ress ratio R = af' /a'f' is expressed by 

.. (34) 

and this relation is plotted in Fig. 3.3 for the fri ct ional coe ffi cient 1-' = 0.3. With 

the increase in the st ress ratio, the normalized magnitude of t he concentrated forces 

increases, whi ch makes the microdefect illustrated in Fig. 3.1 g row. Within th e cases 

shown in Fig. 3.2, the nor malized magnitude of the for ces in case 8 = 45 deg is maxi-

mum in all range of the stress ratio, and conseq uently it means that the te nsion c racks 

28 



-1 

~ 
~ 

/.1 =0.2 

/.1 =0.3 

/.1 =0.5 ~ 

0 30 60 
e (deg] 

90 

Figure 3.2 Variations of the coeffi cients ). 1 and >. 2 vs crack angle B for variou s hi cti onal 

coe ffi cients. 

from the tips of the initial defect with the angle f)= 45 deg are most likely to grow . 

In addition , the microdefect cannot grow under R < 1.8 because of th e negative valu e 

of th e normalized con centrated forces , which means the initial defect does no t slide . 

Thus, when the value of th e conce ntrated forces d efined by equa ti on (3.2) is negative, 

the concentrated forces are assumed to be ze ro. 

To unde rstand fundamental respo nse of thi s mod el, consider th e evoluti on prob

lem of the microdefect model under external loading. T he condi t ion of microde fect 

extension is assumed to follow the Griffith 's crit eri on: 

51 2': 0 , if l\1 = /(c, } 

Iii= 0, if 11"1 < Kc, 
........ . . . .... . . .. . (3..5) 

where l\1 is th e mode I s tress intensity factor o[the tips of the mi crode fec t a nd 1\c is the 
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Figure 3.3 Relations between normalized concentrated forces -Fj(coaf') and str ess rati o 

a'J' fa'{' for the hictional coe ffi cient I'= 0.3. 

fracture toughness o f the ma trix. The mode I stress in te nsity fac to r o f the conside red 

mic rodefect mod el is give n by 

(3.6) 

Thus, the evolution equation ],'1 - Kc = 0 is ex pressed by the fo ll owing norma li zed 

form: 

(17) 

wh ere the normali zed le ngt l of the microdefect I* a nd fr act ure to ug hness ],·: a re de

fin ed by I* = ljc0 and K; = 1\c/ ( ~a'{' ) , respectively. 8 qu a lion (:3 .7 ) becomes the 

quadra ti c equ ation for JF, a nd the roots of the equ atio n are give n by 
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... (3 .8) 

where 

••••• 0. 0 ° 0 0 0 0 0. (3.9) 

The responses of the mi crodefect are classified into the following two cases: (a) com

press ive confini ng pressure, and (b) tensile confining pressure. 

For the case of the compressive confinin g pressure, since the positive root of .JF is 

the onl y case of the positive sign in equat ion (3.8), the expression of th e normali zed 

length of the microdefect is 

. . . . (3.10) 

and this relation for iJ. = 0.3 and e = 7r/4 is plotted in Fig. 3.4. The microdefect grows 

as the stress ratio in creases, and the maximum stress ratio docs not exists. 

On t he other hand , for the case of tensile pressure, there a re two roots in the range 

of the stress ratio which sati sfi es D > 0, a nd the relation between the stress ratio and 

the normali zed length of the microdefect is shown in Fig. 3.5. Although the st ress rati o 

increases as the microdefect grows for the beginning of the loading stages, the stress 

ratio reaches its maximum val ue Rc, and decreases with th e increase in the normalized 

length of the microdefecL T his behavior means t hat , if the material containing the 

microdefect is loaded with the load control method, the microdefect grows unstably 

and the material fails catastrophicall y. From t he condition D = 0, the maximum st ress 

ratio Rc is given by 
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Figure 3o4 Evolution of a single microde fect und er co mpressive co nfinin g pressure (af < 0) 

fo r various no rmalized lract ure toughness . 

at 
]{*2 

[* = _c_. 
4 

(3 011 ) 

As a resu lt of th e evolution problem of the single microdefect , it is shown that the 

unstable evolution of the microdefec t does not take place unl ess the confining pressure 

is tensile. Tn the case of a system of the multiple microdefects, the evolution problem 

becomes more complicated because of the existence of t he effects of interact ion a rn ong 

the microde fectso The interaction effects will be discussed in the next section. 
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Figure 3.5 Evolution o[ a single microde[ec\ under \ensile confi ning pressure (uf' > 0). 
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3.3 Interaction Effects of Discrete Microdefects 

As mentioned in the previous chapter , the present theory i~ ba>e<l 0 11 the homoge ni"ilr 

tion of the method of pseudotraction. Before the interacl ion field and i b goYcrni ng 

equation are introd uced, we begin with the method of pscudotraction for the con>id

ered model. Consider an infinite plane with two microdefccb defined in the previous 

section; see Fig. 3.l(b). We decompose the original problem into a homoge neous prol:r 

!em with no microdefects and various subproblems each conlaining single microdcfcct; 

see Fig. 3.6(b),(c),(d). 

In the present analysis, we employ the complex stress fun ct ions <I> and ljJ of M uskhc

lishvili [1953]. The stresses and displacements are given by 

2G{u,(z) + iuy(z )} 

2{<I>'(z) + <I>'( z)}, 

2{z<I>"(z) + w'( z) }, 

~~;cJ>(z)- z<l>'( z)- w(z), 

.. (:!. 1 :2) 

where z = x + iy, i = J=], G is the shear modulus and K = .1- 'lv for plane strain a11d 

~~; = (3- v)/(1 + v) for plane stress, ( v being Poisson 's ratio ), the overbar denotes 

complex conjuga.te and prime stands for differentiation with respect to the argument. 

In the subproblem a, the stress functions with respect to the local coordinate z., = 

x, + iy, are given by 

- c0 ()q(r /+a:;)- A2 (a;;" + a~~")].S(t)}dt, 

W~( z,) = <i>~( z0 ) - <i>~( z,)- z, <l>~( z,), 

.. (3.1:3) 

····(U1.) 

where 8(t) is the Dirac delta function and the quantities a~';:, a~:o and a;'•" are " pse udo-
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tractions", which arc unknown functions to be determined as explained in the previous 

section. 

The boundary condition of the original problem leads to the consistency equat ions 

.. (3.1 5) 

(3.16) 

where z" = dexp(i</>/Jo) + XfJ, (lx/3/l,BI.,:; 1) ; and d,¢fJo and XfJ are defined in Fig. 3.6. 

Equations (3.15) and (3.16) form a system of integral equations for the pseudotractions . 

It is not possible to solve these integral equations in a closed form . To make the 

problem tractable, we assume the pseudotract ions to be constant on the crack surface 

and lla/zol « l. Neglecting higher-order terms of (/0 /za), the complex stress function s 

for the subproblem a are obtained as 

... (3.17) 

.. (3.18) 

Substituting equations (3.17), (3.18) into equations (3.15) , (3.16), the consistency equa

tions arc reduced to the following expression in the global coordinate (x1, x2) : 

.. (3.19) 

.... (3.20) 
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with 

a4 =sin 2</>o/J- sin 4</>afJ, 

sin 2¢afJ +sin 4¢ 0 fJ, 

2c0 /7r. 

The constant pscudotractions are obtained from equation (3.19). Then, the com-

plete solution of the problem is obtained from equations (3.13),(3.14) and (3.17). The 

mode I stress intensity facto r at the tips of the crack a is given by 
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Figure 3.6 Deco mposition of an original problem. 
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3.4 Homogenization and Governing Equations 

ln this subsection we carry out the homogenization, and generalize the formulation 

for the discrete system s hown above by considerin g the distributed rni crodcfects. We 

consider a continuous medium which contains distributed microdefccts. J<'or simplicity 

we consider no body force. The physical quantities for the description of mechanical 

behaviors are the stress a nd strain tensors a and E and the displacement vector it, 

which are understood as the averaged quantities over a representative volume clement 

v.; see Fig 3.7. Simil a rl y to ordinary continuum theory, they satisfy lhe following 

governing eq uation s: 

[ a) Equilibrium J 

'i7 ·a= o, ........... . ........................... (1.22) 

[b) Strain displacement relationship] 

(12:!) 

where "·" and" 0" denote the first order contraction and ten:;o r product respective ly, 

and 'i7 is defined by ('V), = fJjfJx,. 

The constitutive equati on consists of the .; tress strain relat ionship for a ce rtain slate 

of rnicrodefects and the evolution law of the microdcfecls. The former relationship is 

given by the o ne between the ave rage stress a and the average slmi n € of the clastic solid 

containing many microdefects . llorii and Nerna.t-Na.ssc r [1983] derived the fo ll owing 

relations hip: 

[c) Stress-strain relationship J 
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Figure 3o7 Representati ve vo lum e element. 

a = D ', (£- £*), . .. . 0 .. 00 . .. (3.24) 

_. 1 r 1 r 
E = V, Js 2( u]® n + n 0 [u ])ds, .......... 00 ... .. .. . . . (3025) 

where D ' is the elast ic moduli of the matri x, and £* is the average s tra in due to t he 

displace ment gap [u] = t t+- u - aJo ng th e mi crodefec t surface wi th unit normal vec tor 

n , S being the surfaces of microdefects contained in the represe nta ti ve volume V,. 

If the d isplacement gap [u ] is expressed in terms of the ave rage stress by solving 

the prob lem of many microdefec ts, the s train due to t he di splacement gap is gi ven by 

,;; · = c- : a. (3.26) 

Substi t uting equation (3.24) in to equation (3.26), we have 

E. * = H : £, ··· · O······o· ·o oo, . .. o. (3 .27) 
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where 

H =(I + c · : D ')- 1 
: c ·: D', ••• • 0 0 0 0. 0 0 0 0. (3.28) 

where I is the fourt h-orde r ident ity te nsor. T he expression of H becomes simple for 

the present case as shown later. 

Su bstit uting eq uation (3.27) into equation (3.24), t he st ress strai n relationshi p is 

given by 

a = D ' : (I - H ) : £ ...... 0
• 

0 0 
• • 

0
• . . (3.29) 

For t he present two-dimensional problem, we set a = { a11 , a22 , a12 f and € = 
{f:11 , i 22 , 2€12 } T T hus, t he tensors c ·, D ', I and H are reduced to 3 x 3 matrices, and 

t he elastic moduli D ' are given by 

[D' ]- E 
' J - (1 + v)( 1 - 2v) 

for plane stra in a nd 

1 /J 

[D(,] = 1 ~ v2 v 1 

1 - /J /J 

/J 1 - /J 

0 

0 

0 

0 

0 0 (1 - v)/2 

for plane stress; E being Young's modulus. 

0 

0 (3.30) 

(1 - 2v)/2 

...... (3. 31 ) 

In generaJ , it is difficult to obtain an explicit expression of the ma trix c· and 

accordingly H , since it requires the displ acement gap [u] in the problem of many 
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microdcfccts; sec equat ions (.1.25) (3.27). lloweYer, neglecti ng the effec ts of intcrnc ti on 

<tmong mi crodefecls , m<ttrix His given by 

E' + 2pl{ (1rl + 2).2c0 )Di1 + 2). 1c0 D§1 } ' 
(i = 1, 2), 

2pl2
7r D'J3 otherwise 11 ,, = 0, .... (:1.32) 

where p is the crack density (the number of microdefects per unit area) and E' = E 

for plan e s t rc>s a nd E' = E/( 1 - v 2
) fo r plane strain. Note that th e microdefects 

are distributed over the domain, and the half crack length l and crack density p are 

continu ous fi eld variabl es. 

The da.magc evolution in the present case is the increase in the crack lengt h I with 

a constant crack density p. lien ee, the crack length serves as the damage parameter. 

We employ linear elastic fracture mechanics for the crack extensions. For generality o f 

the formulation , we express the Griffith's crite ri on with a damage s urface J as 

J = f\1- f{c, .. · .... · · · · · · · · · · · · · · · · · .. .. .. . . (3.33) 

where J{c is a fracture toughness. Then, the evo lution law is described as follow s: 

[d) Evolution law J 

[ 

f > 0 , (not admissibl e) 

J = 0 of~ 0 (possible growth) 

J < 0 ol = 0 (no growth). 

(3.34) 

As di sc ussed before, eva lu ation of the interaction effects in th e evo lution law is the 

key point. in the theo ry. To take account of the direct effects of interac tion. we app ly 

a nd ex tend the method of pseudotr<tclion for di stributed mi crodcfec ts. 
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For the di:;crete system, the p:;eudotractions arc defined fo r each Jnicrodefect. For 

di,tributed microdefects, we introduce a len:;o r field named the interaction field which 

is an ex tension of the pseudotraction. As is th e case with the· discrete sy>le iiJ. we 

conside r the decomposition of the problem. In ex<tmining the evol uti on of mic rodcfects 

at a particular point, we consider a s ingle microdcfecl located at that point. The 

number of other microdefects is not finit e, but they arc located ove r the d o main with 

a certain distribution of crack density p(x) and c rac k length !(:c) . li enee the nu1nbe r 

of other s ubproble ms is understood to be infinite; sec Fig. :3.6. In the s ubproblc n1 

with the mi crod efect under consid eration , we apply pseudotraction calcu lated fro n1 

the interaction field on th e s urface of the mic rodefec l. (The relation between th e 

pseudotraction and the inte racti on field is the same as that of the tractio n vector and 

the stress te nsor. In the present situation, the component of the int eracti on field is 

that of the pseudotraction.) Then, the mod e I st ress intensity facto r of th e microdefrct 

is given by 

(3 .. 15) 

Hence , the damage surface is give n by 

Note that& , uP , l are all field variables and this evolution law is oatisfi cd at all points 

in the domain. 

Since the distributed microdefec ts are considered and t he number of the subproh-

!ems is infinite , the consistency cond ition, which ensures the tract io n- fr ee condition of 

the surface, takes the fo!Jc,.v ing form : 

[c) Consistency equation J 
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...... (3.37) 

Table 3.1 Summ ary of governi ng equations and unkn ow ns 

whe re -y(x I ~ ) is the same definition of r,~!J as in eq uation (3.20), excep t d =II ;c- ~ II 

and lp and </Jpo arc replaced by the haJ f crack length at t he point ~ I( ~ ) and </J = 1FT COM 

tan - 1 (x2 - 6 )/(x 1 - 6) + 1r j2 , respectively. Eq uili brium Eq uation (3.22) Eq uation (3.22) 
--~-------------------------------------------

3.5 Comparison with CDM 

To illustrate t he features of the proposed t heory, we present t he convent ional COM for 

ihe same probl em and make a compa ri so n wit h th em. ln COM , the di rect in te raction 

effects among microclefects a re no t taken into accoun t , and a s ingle microdefect in an 

infin ite body is conside red. W hen the evolu t ion of a mi crocl efec t a t a part icu lar po int 

is investigated, t he st ress at t hat point is applied on the infini te solid wit h a single 

microclefect at infini ty. T hen the damage surface becomes 

... (3.38) 

T he other governing equations, the equilibrium equat ion, the strain - displ ace ment 

relationshi p and t he st ress- st rain relationship, are t he same as in !FT. T he governing 

eq uations and t he unknowns of t hese theori es are surrunari zecl in Table 3.1. In th e next 

section, t he numerical examples from these t heori es will be shown . 

Note that t he main feature that distingui shes IFT from C OM is the fac t th at the 

stress- st rain relationship at any given poin t de pends on the s tress and crack length at 

all other points. In COM , eliminating the damage paramete r I fro m th e s i res strain 

rela ti onshi p (3.29) with the evolution law equations [ (3. 34) and (3 .38) ], the consti tu

ti ve relation of COM is obtai ned. T hen , thi s constitutive relation is desc ri bed by t he 
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£- u relation Eq uation (3.23) Eq uation (3.23) 

a - £ relation Eq uation (3.29) Equation (3.29) 

Evolu tion law Equations (3 .34) and (3.36) Eq uations (3. 34) and (3.38) 

Consistency eq. Eq uation (3 .37) 

Unknowns 

(IFT : Interaction F ield T heory) 

local st ress at the considered point. On the other hand , in 1FT, if we s ubs titu te eq ua

t ion (3.37) in to equation (3.36) , th e damage parameter l(x) is obtai ned as a fun ction 

of t he st ress lT (x') at aJ I other points x'. Since H , obtained from eq uation (3.32) , is 

a fu nction of t he damage parameter l(x ) , t he st ress-st rai n relationshi p (3.29) depe nds 

on the st ress at aJI points in the body. Since t he behavior of t he materi a l depends on 

t he st ress at other poin ts, the de rived constituti ve eq uation is und erstood as nonlo

cal. Such a nonlocaJ constitutive relation cl ue to long- range effects is aJ so discussed by 

Eringen and Ecllen [1972]. 

3.6 Numerical R esults and Discussion 

Before presenting the numerical results, we report a brief descrip t ion of the finite 

element di sc retization. We employ t he conve ntional t hree- node t ri angular element 
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for the approximation of the displacement field u. The damage parameter l and the 

interaction field cr~' arc approxirnated to be constant in an clement. E mploy in g the 

principle of virtu al work , 2N discrctized equi librium eq uat ions a re ob tained , in which 

N is the total number of nodal points and the st iffness matrix is a nonlinear fun ct io n 

oft he damage parameter I. To simplify t he numerical calcu lations, the evolution law 

('1.34) is approximated by f = 0. This corresponds to making t he irrevers ible vari able l 

revers ible, and hence to reducing the inelastic problem to the nonlinear elastic problem. 

T hen, the evolution law f = 0 with the damage surface (3.36) is discretizcd to be M 

algebraic equations; a nd evalu ating the integral in eq uat ion (3.37) numer ically, the 

consiste ncy eq uation is also reduced to 3M nonlinear algeb rai c eq uations, where M is 

the total number of cleme nts. Thus , we have a system of 2N +4M nonlinear eq uations 

for 2N + 4M unknowns, 2N nodal displacements , a 3M lement interaction fi eld and 

an M eleme nt damage parameter. In the case of CDM, from equations (3.22),(3.23) 

and (3.29) and the evolution law f = 0 with the damage su rface of CDM [ equation 

(3 .38)] , a system of 2N + M nonlinear algebraic equations is obtained, consist in g o f 

2N di sc retized equilibrium equati ons and M evolution equations. These systems of 

nonlinear algebraic eq uations are solved by Newton's met hod. 

3.6.1 Comparison between CDM and 1FT 

The main purpose of the numerical calculations in this subsection is to inYestigatc 

whether these theories ca n simulate locali zation phenomena. Thus, we rest ri ct o ur 

attention to simple numeri cal examples. We consider a biaxial test of a rock block 

under a plane strain condition; see Fig. 3.8. The dimensions of the rock block arc 

200co x 200co, where co is half the length of the initial defect. The numbers in Fig. 3.8 

denote the element numbers of the finite model. Both the top and bottom boundari es 

of the rock block arc ass umed to be smooth surfaces (laterally sliding). The following 

15 

"7 

* T Ill 7 8 

5 6 

Pc 
Pc 

3 4 

1 ooc o 1 

Figure 3.8 Finite element mesh of biaxial tes t of rock block. 

values are used in all calcu lations: normali zed Young's mod ulus 8/ao = 1000, Poisson's 

ratio v = 0.3 and the normali zed crack density pc5 = 0.3 , whrrc ao is the reference 

stress defined by a
0 

= Kc/ ,fiCC with the fracture toughness of the material /,·r· In 

addition, when we set the fri ct ional coeffi cie nt of th e initial de fect J! = 0.3 and the 

angle of the initial defect e = 7r/4, then >., (i = 1, 2) in equati on (3.3) arc 0.49 a nd 

0.92, res pectively. At initial loading stages, the block is loaded both in the hori zontal 

and vertical directions. The vertical loading is impleme nted by presc ribing the s;unc 

increments of vertical displacements of all nodal points at the top of the block. After 

the horizontal loading reaches a s pecifi c normalized confining press ure Pr/ao, onl y the 

vertical displacements are incre mented. 

Tensile confining pressure 

In the firs t place, the numerical calculations are carried out for the case of the normal

ized confining pressure Pc/ao = 0.2 (positive tension). Figure 3.9 shows the relations 
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between the normalized axia l stress G- 22/ ao and the normal ized damage parameter 

(crack length) in element 4 calculated by IFT and COM. With increas ing the normal-

ized axial stress, I he damage parameters calculated by using both theori es evo lve, and 

the ax ial st resses reach their maximum values. Even in the descending part of the axial 

stress, the damage paramete rs arc increasing. T his behavior means that the da mage 

evolves uns tably, if th e specimen is loaded with the load control method, a nd is call ed 

damage so ftening to be distinguished from the strain softening in the stress--strain re

lation. Since th ese behaviors are almost similar to those of the evolution of t he single 

microdefecl discussed in section 3.2, the cause of the damage softening is interp reted 

as not the interaction effects but the nature of the microdefect model. However the 

damage parameter o f JFT is suppressed because of the in terac ti on effects, and is about 

one fourth of the damage parameter of COM at each of the maximum axial st resses. 

Si nce the stress- strain relation of these theories (equation (3.29)] depends on the 

damage parameter , the fact that the damage parameters evolve with decreasing the 

normalized axial stress means the st rain softening behavior in the stress--strain rela

tion. It is well known that the strain softening in the constituti ve relation promotes 

locali zation of damage or deformation. The fact that locali zation behav ior due to darn

age softening has taken place is shown by the numeri cal simulation of these theories. 

Figure 3.10 shows the di st ributions of the damage parameters in the post-peak regime 

and the radii of the circles denote the magnitudes of the damage parameters . In both 

theories , the damage localizes into the vertical direction. 

Compressive confining Pressure 

Figure 3.11 shows the evolution of the crack lengths (damage parameters) in eve ry 

element with the norm ali zed confining pressure pc/a0 = -2.0 for the cases of both 1FT 

and COM . At the initial loading stage, all crack lengths of IFT as well as CDM grow 
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Figure 3.9 Axial st ress vs crack length (damage parameter) curve with normalized co nfining 

pressure Pcfao = 0.2. Compari son between 1FT and CDM. 

(a) 

Figure 3.10 Distribution of crack length (damage param ete r) in post- peak regime with 

normalized confining pressure Pcfao = 0.2: (a) 1FT at iJ22/ao = - 1.59; (b) 

CDM at iJ22/ao = -2.00. 
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Figure 3.11 Axi a l st ress vs c rack len g th (d a mage pa ra me te r) curve wi t h no rmalized co n

finin g press ur e Pc/CJo = -2.0. Com pariso n be tween 1FT a nd C D M _ 

uniformly; however, the d amage evolution (c rack growth) of I FT is rela tively res tra ined 

by the interac t ion effec t. As the exte rnal load is increased furth er, th e d a mage evo luti on 

in IFT is more accelerated . After the criti cal load is a ttained , a ll d am age pa rameters 

still increase with the dec reasing load (da mage soft ening). Moreover, t he d is tribu t io n 

of t he da mage graduall y loses its uniformi ty in the spec imen. In cont ras t to I FT, all 

dam age parameters in C D I are ide ntical in t he specime n <tt a ll loading st ages, a nd 

there is no crit ical load. 

To detect bifurcation po int s, a n eige nvalue an alysis of the lineari zed o pe ra tor o f 

the nonlinear equ ations is ca rri ed out at each incre mental step . Th e solution of C OM 

has no bi fu rcating path s since no negative eigenvalues arc calcul a ted for the lineari zed 
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Figure 3.12 Evoluti on of damage pa ram e te r in ele me nt 6 fo r I FT. l'und<tm ental pa th ( pa th 

A to B) a nd bifurcatin g pa th (path C t o D). 

opera tor o f C DM. Contrary to the solution of C D M, the eigenvalue a naly, is for JICT 

shows th at almos t ze ro or negative eigenvalues exi st , a nd conseq ue ntl y the tioluti o n 

of IFT is found to contain the possibility of bifurcati on . Aft er a bifurc<tti on point is 

identifi ed , the bifurcati on paths are tr aced employing the swi tc hin g procedure [J<ell cr, 

1977]. In F ig. 3. 12, the bifurc<tti on path (path C to D) as well "-' t he fund a menta l p<tth 

(pat h A to B) a re p lotted for t he damage para mete r of clement G. It is found t ha t th e 

load a t the bifurcatio n point is lower t han he maximum load a long t he fund a me ntal 

path , a nd t hat th e damage softening behaYior along both bifu rcat ing pa ths is prese nted . 

T hi s implies th a t , if the specimen is loaded with the load control meth od, the d amage 

evolution becomes unsta ble at th e bifurcati on point. 

Figure 3. 13 s hows (<t) the rel a ti on betwee n the d a mage para meter o f eleme nt 3 a nd 

t hat of element 4 a nd (b) the distri b ut ion of the damage pa ra n1 ete rs co rresponding 
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to the poin ts A D in Fig. 3.12. In Fig. 3. 13 (b), t he radii of the circles de note t he 

mag ni t ude of the damage para mete rs. T he damage parame te rs of clement 3 a nd 4 o n 

the fund am ental pa.th a re identical; t he sy mmetry of the dist ri but ion of the damage 

paramete rs is preserved even on the path after the bifurcation poin t. O n t he ot her hand , 

on the bifurcating path th e damage parameters of t he elements in t he d iago nal d irection 

increase a nd t he ot hers dec rease wi t h t he dec reasing load . In additi on, t he d istr ibut ions 

of t he d am age parame ters at poin ts C and D a re ant isymmetric to each other. T he 

sym metrical b reaking d ue to bifurcation is o ften found in nonl inear problems such as 

buckling of shel ls (Fujii and Yamagu ti, 1980], fluid mecha nics and biomathematics. For 

the present problem, t hi s shows the features obser ved in t he locali zation of dam age or 

the shear band form atio n in laborato ry tes ts of rock specimen. lt is confirmed th a t 

IFT can simul ate t hese locali zation phenomena as well as damage soft ening, whil e 

conventional CDM cannot reproduce those features. 

3.6.2 Effects of Confining Pressure 

As anothe r numerical example, we examin e the effect of confinin g pressure on t he so lu-

ti on of JFT . Fig ure 3. 14 shows the mesh configura tion used in t he following numerical 

calculation and the da mage evolution of element 8 wi t h different no rma li zed confinin g 

press ures Pc/a0 . All t he m ate rial pa rameters and t he bound ary cond it io n a re the same 

as the preceding numerical example except the specifi c normalized confining pressure. 

We choose the bifurcating path on which t he damage parameter in element 8 is ex

te nded . With increasing confining pressure, the criti cal (bifurcatio n) load increases 

and the evolutio n of th e damage is suppressed . In F igs 3. 15 and 3. 16, we show typi cal 

deformati on charac te ri sti cs in a biaxial test. Figure 3.15 shows the stress -s train cur ves 

of element 8 for the no rmali zed confining pressures Pc/a0 = -2.0,- 1.0 and - 0.05. 

The relations between the normalized stress diffe rence (a2 - at)/a0 and the overall 
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volumdric strain 6V/V arc shown in Fig. 3.16. In postcriticalload, the dilation is in-

creased with the decreasing confining pressure. These fca.tures agree with experimental 

observations [Brace e( al., 1966; Zoback and Byerlee , 1975; Gowd and Hummel, 1980). 

ll is worth noting that , with decrease in the confining pressure , a different pattern 

of the di>tribution of the damage paramete rs occurs. When pc/a0 < -0.08, the local-

iza!ion of the darnage parameters occurs along the vert ical direction. To illustrate this 

,i(uation, we also plot the distribution of the damage parameters with the different nor

malized confining pressures in the post bifurcation regime in Fig. 3.17. Figure 3.17(c) 

indicates the axial splitting mode , which is observed in laboratory tests with ve ry low 

confin ing pressure or uniaxial compression. It is shown that 1FT reproduces the axial 

splitting mode as well as the shear failure mode. 

53 

Pc Pc 

X2 

L H x, 

(a) 

-10 
0 

b 

1: 
<b 

Ul 
Ul 
w 
a: 
f-- -5 Ul 
0 
w 
N 
::J 
<{ 
::;: 
a: 

Pc I a 0=-0.05 0 z 
0 

0.0 1.0 

NORMALIZED CRACK LENGTH lsfC0 

(b) 

Figure 3.14 (a)Finite eleme nt mesh. (b)Effect of nor mali zed co nfinin g pressure Pc/ao on 

damage cvolnt;J n of ele ment 8. 

54 



-8 

e 11 -2 

0 

b 

Pc /a o = -2.0 

0.0 

STRAIN ( x 1 o-2) 

Figure 3.15 St ress strai n curves with different normali zed co nfining press ure Pcfa0 . 

55 
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Figure 3.16 Vo lumet ri c st rain vs stress difference curves with different normalized co nfinin g 

pressure Pcfao. 

( a ) ( b ) ( c ) 

Figure 3.17 Distribution of damage param eter with diffe rent normaliz ed co nfinin g press ure; 

(a) Pcfao = -2.0; (b) Pcfao = -1.0; (c) Pcfao = -0.05. 
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3.6.3 Prediction of Strengths of Rocks 

l ~ mploying the proposed theory, the strength' of materials under co rnprcssion arc ol>

t ained as a fu net ion oft he confining pressure. We shal l compare I he failure e nve lopes of 

actual rocks obtained by uniaxial or triaxial experiments with nllnterical results which 

is evaluated as the envelope of the bifurcating axial stresses under vari ous confin ing 

Granite 

As the first ill11stration, Weste rl y granit e is chosen for compar ison because Westerly 

granite io the most typical brittle rock for mechanical testing. From earli er studies, the 

mechan ical characteristics of Westerly gran ite is well kn own; the gra in size is 750 pm; 

and t he pore porosity is 0.7% [Brace, 1965]. T he experimenta l strengt hs reported by 

Brace et a l. [1966] and Mogi [1966] are used in the following compa ri son . 

T he parameters used in the present simul ations are li sted in Table 3.2. T he Yo11ng's 

modulus and Poisson ratio are eval uated to be E = 5.7 x 104 M Pa, v = 0.:32, based 

on the data of the uniaxial compressio n test reported by Brace et al. [1966]. Sin ce 

t hese material constants arc defined as t hose of the elastic matrix (wit hout inOucnce 

of microdcfccts) , the constants are evaluated from the data in t he lin ear part of the 

stress strain diagram of the uniaxial test. Because the reported fract ure toughness /,·< 

for Weste rl y granite is of the order 0.60 ~ 2.50 MPam 112 [Atkinson, J 987], we choose 

t he fracture toughness 1\c = l.O MPam 112 • .l/ ad ley [1975] reports crack density a nd 

averaged crack length of unstressed and stressed samples of Westerly gran ite with th e 

sca.nning elect ron microscope. Accordi ng to his observation , the ave rage crack length 

and the nondimensional crack density of unst ressed Westerly granite are 17.7 p m and 

0. 18, respectively. We use ha lf the length of t he initial defect .:0 = 17.7/2 = 9pm, 
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Table 3.2 Model paramt'lcrs used in numerical calculation for \\t•sterly granite 

Parameter 

Young's modulus 

Poisson's ratio 

Fracture toughness 

Initi a l defect length 

ormalized crack density 

Angle between initi al 

defect and load ing axis 

Coe ffi cient of friction 

Value 

8= 5.7 x 101 1\l l'a 

1/ = 0.12 

Kc = 1.0 MPam'/ 2 

c0 = 9 J.un 

pc~ = 0.32 

e = 30, 40, 45, 50, 60 deg 

I'= 0.2, 0.1, 0.4 

and accord ingly the reference stress becomes a0 = 1\cf ,fiCC = 266 M P<t. T he theory 

presented in this paper is a two-dimensional one, while th e cxperi n• cnt al results are 

obtained from cylindrical samples. Thus, a certa in a mount of adj us tme nt in t he model 

parameters is requi red. As t he two-dimensional crack de nsity, we use p•:6 = (0. 18)2/J = 

0.32. 

As for the ot her parameters, it is necessa ry to determine the o ri entat ion o f tlw 

initial defects a nd t he coe ffi cie nt o f friction. Accordi ng to the data reported by Sprunt 

a nd Brace [197'1], the orientation of the initi al defects in unstressed samples of Weste rl y 

granite is distributed homogeneous ly and has no preferred dircct.iou. Thus, even in the 

numer ical calculatio ns, the statist icall y homogeneous distribution o f the or ientation 

ang le s ho uld be cons ide red. [' .)wever , the tension cracks start to nucleate at t he tips 

of the initi a l defect, whi r 1 are most likely to slide with the increase in load ing, and 

these tension c racks seem to gove rn t he m ac roscopic fa ilure. In the foll owi ng, thus , the 

numeri ca l calculations are carri ed out for the seve ral values of the orientation angle 

58 



ins tead of t he case of t he homogcnro us d iot ri but ion of the orient a ti on a ngk. 

O n the o ther hand , t he coe ffi cient of t he fri cti on used in thi s simulation s hould be 

in te rpreted as, in act ua l rocb, that on grain bo und aries between simi lar materi a ls or 

a mica and a ny other grain . It is d iffic ul t to obta in pl a usible valu e o f the fri ct iona l 

coe ffi cient. T hus , aft er t he effect of the orie ntation angle on th e fa ilure e nvelope i, 

examined , t hr e ffect of th e frict ional coeffi cient is illu strated for th e s pec ific angle o f 

t he o ri entati on. 

F igm e 3. 18 illustr ates the effect of the ori entatio n angle Bon th e norma li zed axial 

strength (bifurcation st ress) unde r vari ous normali zed confining pressures Pc/a0 for the 

fri ct iona l codfi cient J.l = o.:J. In each case of the confining press ures, the axial s t rength 

a t abou t B = 1.5 deg presc ribes t he minimum axia l strength a nd t hi s behav ior acco rds 

wi th the fact t hat the concent rated force F de fined by equation (3.2) becomes m ax imum 

at about B = 15 deg; see Fig . 3.2. It m ay be concl uded th a t, fo r the whole range o f 

t he confin ing pressure, t he axial strengt h and th e associated m ac roscopi c fr ac t ure a re 

governed by the te nsion cracks which grow at the tips of the initial d efects with an 

orientatio n a ngle e = 45 d eg. 

Figure 3. 19 shows theo reti cal and experimental fai lu re en velops for Weste rl y gra nite . 

In thi s numeri cal calculation , the ori entat ion angle is assigned to B = 45 d eg , because 

the minimum fai lure envelope is obtained for the case of thi s orientation angle . Fo r t he 

case of B = 45 deg and J.l = 0.3, when the confining pressure is less th a n about 20 MPa, 

a.xial sp litting modes occ ur as a macroscopic fracture mode , and t he strengt hs in t his 

mode are gove rned by the maximum initial defec t in the sample. In fact , Had ley reports 

t hat the maximum observed c rac k in the unstressed sample of West erl y g rani te is 565 

flm in lengt h. T he solution of 1FT using the averaged c rack length is overestimating . 

On t he other hand , when the confin ing press ure is greater th an 600 MPa, t he fai lure 

envelope of experimental res ults deviates from the solution of 1FT. T hi s deviation from 
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theoretical value is int erpreted as the effect of the plastic deformiltion of the mill e rial. 

which is not co nsidered in the p rc:;ent th eory. i\ evert helc•,, in the range oft he confining 

pressure from 20 MPa to 600 MPa , the fit shown in !lig. :\.\ ') is <tcccptably good. 

Gabbro 

Shimada et al. [1983] studied experimentall y t he depe nden ce of the st rength of 1\luro-

tomisaki gabbro on confining press ure. Murotomisaki gabbro is si li ca te rock of which 

the grain size of the olivine component is 1- 2 mm, pyroxene is <tbout 0.7 111111 a nd the 

plagioclase is about 0.7 3 mm. The apparent density 2.98.5 l\gjm3 and the porosity 

0.4 %. 

The used model parameters are list ed in Table 1.1. The Young ':; modulus a nd 

Poisson 's ratio are evaluated from the stress st rai n curve o f the uni axia l les t by S hi-

mada et al. , [1983]. Si nce the fract ure toughness of 1-.lurotomisaki gabbro is not re

ported , the used value is determined from the reported data for other kinds o f gabbro, 

such as 2.2 2.9 MPam 1i 2 for Kallax gabbro [Ouchterlony et a l. , 1988] and 2.7 1.0 

MPam1i 2 for Black gabbro [Atkinson and Meredith , 1987]. Th e half length of initial 

defect is determined as follows: for Wes terly gran ite, the half length o f initial de-

feet and the mean grain size are 9 and 750 pm, respec tivel y, whil e the g rain size of 

Murotomisaki gabbro is 2000 J.lln; and thus the half lengl h o f !VI urolomisak.i gabbro 

is c0 = 2000/7.50 x 9 = 24 J.lm. Furthermr e, to ma ke a comparison, c0 = 70 J.IITI is 

al so used , whi ch is about three times 2l J.lm. After the lengths of initi al defect arc 

fixed, the normalized density of microdefects a nd the frictional coe ffi cient are ass ig ned 

so tha.t the numeri ca l envelor>"' may fit the expe rimental data. T he expe rime ntal and 

numerical envelopes are sl.vwn in Fig. 3.20. 

Shimada et al. also reported Acoustic 8mission (A8) activity during axial loadin g 
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Ta ble 3.3 Mode l pa.rametc rs used in numeri cal calcul ation for Murotomisaki gabbro 

Paramete r 

Yo ung's modulus 

Poisson', rati o 

[cract. ure to ughness 

In itia l defect leng th 

Angle between init ia l 

de fect a nd load ing axis 

Norma li zed crack de ns ity 

Coe ffi cient of fri ction 

Value 

E = 9. 0 x 104 ~ I Pa 

v = 0.25 

c0 = 24, 70 .um 

() = 45 deg 

pc6 = 0.5, 0. 7 

.u = 0.2, 0.3 

under severa l confining press ures. Under low confining pressure, the AE ra te began 

to inc rease a ( t he onset of d il atancy a nd accelerated ra pidl y foll owed by m ac roscopic 

fai lu re. O n t he other ha nd, under high confining pressure, no ra pid increase be fo re 

mac roscopic failure was observed a nd the AE rate s t ayed cons ta nt. T he pattern of t he 

AE activity changed a t a confining pressure between 0.51 and 0.76 G P a. This change 

can be inte rpreted as bri tt le ductile tr ansition in failure process. The ra nge of the 

confining pressure a t the bri t tl e ductile tr ansit ion agrees wi t h t he confining pressure 

a ( which the th eoretical enve lops begi n to dev ia te from t he exp erimental d a t a. T hus, 

the d ev iation for confining pressures ranging fr om ab out 0.5 G Pa is d ue to the pl asti c 

defor mat ion of t he mat ri x. 
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Ta ble 3.4 Model parameters used in num erical calcul ation for lim es tone 

Limestone 

1\tra meiN 

Youn g's modulus 

Poisson 's ratio 

Fract ure toughn ess 

Ini tial defect le ngth 

Angle between ini t ia l 

defect and loading axis 

Value 

E=6.8x 104 MPa 

1/ = 0.30 

c0 = 7, 25 Jl m 

e = 45 deg 

No rma li zed crack de nsity pc~ = 0.5, 0.7, 1. 2, l.S 

Coeffi cient of fri ction J1 = 0.2, 0.3 

The limestone used to compa re here is made up of oolites, relatively la rge cal cite g ra ins 

a nd fossil fr agments in a cem ent of finer g rained carbonate m at erial. T he ooli tes a rc 

somewhat ellipsoidal with a n average longer dimension o f 0.93 mm ; the calcit e gra ins 

average about 0.6 mm in di a meter [Donath e t a l. , 1971]. 

The model para meters a re s hown in T able 3.4 , in which Young's modulus is evalu

at ed from the stress strain diagram of Solenhofen limes tone re port ed by Wawersik a nd 

Fairhurst [1 969], and Poisson rati o is from Ya maguti a nd Nis hima tu [1980]. By a simi

lar method fo r gabbro, t he le ngth of the initial defec t is ass ig ned to c0 = 9 x 600/750 = 

7 J1 !TI and Co = 25J1 m. T he reported values of fr ac ture toughn ess of limestone a re 

between 1.03 a nd 1.36 MParn112 (Kiinthagen limes tone: 1.03 1. 31 MPam 112 ; Irond e

quoit limes tone: 1.36 MPa m112
) [Atkinson and Meredith , 1987]. The o th er paramet ers 

are determined by fitting nume ri cal resul ts t o the experimental s trength repo rted by 
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Dona th e t al. , [1971]. T he comparison t he nu merical envelope a nd ~xperirnr n ta l one i, 

shown in Fig. 1.21. 

Marble 

The experimental st rengths of a marble fo r th e com parison , hown in Fig. 1.22 arc 

from Dona th et a l. [1971 ], who reported that th e sample> o f t he marb le a re ex t rarted 

from Beldens format ion and its average g rai n size is from 0.0 lo O.G 111 111. T he model 

pa ra meters used in t he numeri cal cal culat ions arc li ,ted in Table 3.5 , in whi ch Youn g\ 

mod ulus is evalu ated from the d a ta for Tennessee m arble re ported by Wawe rsi k a nd 

Fairhurst [1 970]; Poisso n ra ti o is from Goodma n [1980]. T he re po rted value of t he 

fracture to ughness is ra nging fro m 0.62 to 1.49 MP am 112 [A tkinson a nd Meredith , 1987]. 

Fi gure 3.22(a) s hows th e compa rison betwee n t he expe rimenta l a nd numerical e nve lop' 

for the initi a l d efect length c0 = 7 J1 m based on t he rat io of t he g ra in size in Beld en' 

ma rbl e to t hat in Wes terl y gra nite. The compa ri son for c0 = -10 J.llll i" illus trated in 

Fig. 3 .22(b) , whe re t he ag ree ment between the th eo ret ical a nd th e experime ntal result :> 

is better th a n th at in F ig. 3.22(a). In addition, fo r t he case of Fi g. 3.22(a) the values o f 

th e normali zed c rack density, which are d ete rmined by fittin g the numerical envelo p to 

the experimental o ne, are unreali s ticall y large . Thus, it see ms th at t he actual ave rage 

length of initial d efects in Bcldens marble is la rger tha n th e value evalu a ted fr om the 

rat io o f the g ra in sizes . 
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Table 3.5 Model parameters used in numerical calculation for Beld ens marble 

Parameter Value 

Young's modulus E = 5.5 x 104 MPa 

Poisson's ratio v = 0.25 

Practure toughness Kc = 0.7 MPam112 

Initial defect length c0 = 7, 40 J.lln 

Angle between initial (} = 45 deg 

defect and loading axis 

Normalized crack density pc~ = 0.3, 0.5, 2.0, 2.5 

Coefficient of friction J.' = 0.2, 0.3, 0.4 
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3.7 Summary 

In this chapter, a micromechanics-bascd continuum theory, named Interaction Field 

Theory (TFT), is formulated for the rate-independent behavior d ur to crack growth u n

der compression. In addition, a micrornechani cs-based Continuum Damage Mechanics 

(CDM) is also formulated for the same problem to consider the difference between 1FT 

from conventional CDM. 

In IFT, the effects of interaction among microdefects in materials are evaluated 

directly in the evolution law of the microdefects (damage). To do this, the interaction 

tensor which characterizes the interaction effects is introduced and the integral equation 

for the interaction tensor is formulated. 

From the comparison with CDM, it is shown that the constitutive relation of I FT 

depend on the stress and the damage parameter at whole points in the material. This 

means the constitutive relation of IFT is non local. His also shown that the nonlocality 

of the constitutive relation for the material with microstructure is due to the interact ion 

effects of the microdefects. 

While there are several attenuation functions of the conventional nonlocal models 

(see section 1.2.2), justification of the attenuation functions is mainly checked by phe

nomenological consideration based on the numerical simu lations. Thus, it seerns that 

the attenuation functions are introduced a only techniques of numerical calcu lations 

and the justification is not clarified. ln the present formulation, however, the attenu

ation function for the considered microdefect is derived rigorously with the method of 

micromechanics. 

The numerical results presented here confirm that !FT can simu late loca liz ation 

phenomena as well as softening behavior, which is difficult to model by the conventional 
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CDM. In addition, the IPT is able to reproduce the transition fro m the shear failure 

mode to the a.x ial splitting mode which is observed in laborato ry test of actual brittle 

roc ks a,; the co nfining pressure is decreased. 

Prediction of the fai lure envelope of actual rocks under compression is attempted. 

For Weste rl y granite, the predicted results by 1FT is plausible for confining pressure 

ranging from 20 to 600 \1 Pa, where the s hear failure mode occ urs as the macroscopic 

failure mode. When the con finin g pressure is g reate r than 600 M Pa, the fa ilure e nvelope 

of exper imental results deviates from the solution of 1FT. This result. suggests that for 

this range of the confinin g pressure the plastic deformation gove rns the macroscopic 

failure instead of the rni crocracking. 

The strengths of other kinds of roc ks under compression were also evaluated. Since 

all model parameters necessary for calculations were not avai lab le, the parameters, such 

as the density of rnicrodefects a nd the coeffi cient of fri ction, were determined so as to 

fit the numerical results to the experimental data. Although the comparison should not 

necessaril y be regarded as a direct s upport of t he ability of the present theory because 

of involving free parameters, it seems that the val ues of the determined parameters are 

within the reasonable range. 
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Chapter 4 

Formulation for Behavior due to 

Time-Dependent Crack Growth 

4.1 Introduction 

Understanding of lime-dependent behavior of rocks under various temperature and en

vironmental conditions is of importance in the contexts of both geophysics and geotech

nical engineering. Since most of tectonic stress general ly does not vary rapidly, it is 

indispensable to understand the quasi-static behavior of rocks under constant stress 

stales in order to consider behavior of the earth's crust. On the other hand, the en

gineering significance of the lime-dependent behavior of rocks is found in the design 

for long-term stability of geothermal reservoirs, waste disposal facilities, compress gas 

stage and other geotechnical structures. 

ll is well known t hat the time-dependent behavior of brillle materials under low 

and constant stress states results from slow and stable growth of many microcracks. 
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The similar behavior clue to the slow crack growth is found in glasses and ceramics, 

where the crack velocity is between about 10-10 and JQ-2 m/<o [Freiman, 1984]. This 

slow and stable crack growth can occur in many britt.le rllaterials even if the stress 

intensity factor at the crack tip is below its critical value the fracture toughness of 

the materials. This phenomenon is called subcritical crack growl h. (Note that the term 

"subcrilical crack growth " represents extension of a single or isolated crack observed in 

crack growth rate testing such as the double torsion test , and does not mean evolution 

of many microcracks ob erved in creep tests.) Atkinson [198,1] presented an extensive 

review of the experimental data on the subcritical crack growth in geological materials. 

He reported that the main parameters describing the subcrilical crack growth arc the 

fracture toughness ]{" the stress intensity factor !{1 and the threshold stress intensity 

factor X,h· For various kinds of rocks, he illustrated the crack velocities as a function of 

the stress intensity factor ],'1 between 1\,h and i1'c (/1' v relation). The 1\ v relations 

depend on the chemical environments, such as temperature, moisture and pll [sec, also 

Swanson, 1984]; and hence several mechanisms of the subcrilical crack growth have 

been suggested such as stress corrosion , ion-exchange, dissolution and microplasticity. 

The most often cited mechanism for this lime- and environnrent-depenclenl behavior is 

stress corrosion cracking, which is due to the join action of the high stress concentration 

at the lip of crack and a corrosive environment. 

Kranz and coworker [1977, 1979, 1980] investigated expcr irnentall y the lime-de

pendent behavior of Barre granite under constant uniaxial and triaxial stress stittes 

(ie. creep test). Ile reported effects of stress difference and confini ng pressure on the 

time to failure. The time to failure increases with decreasing stress difference at every 

confining pressure. In addition, employing scanning electron microscope he reported 

quantities related to microcracks, such as density, length and or ientation at intervals 

of certain time during creep test. Although t he orientati ons of crack-like flaws in 

unstressed samples are homogeneously distributed, t he orientations of microcracks in 
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st ressed samples a rc a lmost p;uallel to the directio n of t he max imu m compress ion. 

T his suggests I hal I he same tensio n-crack model of microdcfects as shown in Fig .. 1. 1 

gove rn s t he fa ilure process of rocks under constant stress states . 

z 
<( 
a: 
f
(/) Secondary 

TIME 

Figure 4.1 Schematic of strain as a fun ction of time in a creep test of Barre granite [after 

I<ranz, 1979]. 

F igure 4. 1 shows a typical form of t he relation betwee n rad ial st ra in on th e surface 

of a cy lindrical sample of Ba rre gra ni te and time during a creep tes t. This ty pe of 

cur ve, in which strain or quantities related to deformation of samples is expressed as 

a functi on of time, is called a creep curve. T he cree p cur ve can be generally divided 

into three stages: ( I ) primary or transient creep , (2) second a ry or s teady c reep and (3) 

tert ia ry creep. T he te rti ary creep is the onse t of mac roscopic fr ac ture. On ce sa mples 

of brittle rocks attain t his tertiary stage, t he sam ples fail unst ably unl ess th ey a re 

unloaded . Excepting t he uni axi al tests, the fin a l fa ilure pl ane in t he creep tc>b is 

inclined at an angle of about 20- 30 deg, which is nearl y equa l to t he angle of th e 

fin al failure pl ane obse rved in the short-te rm fr act ure tes ts under constant s tra in ra te. 

T hus, even for the case o f the t ime-dependent behav ior unde r cons tant s tress states, 

the event ual mac roscopic failure seems to result from the locali zation of rnicroc rac king, 

as is the case wi t h short-te rm t ri axial tests und er cons tant str ai n or s tress ra te. 
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In t hi s chapte r, 1FT is appli ed lo creep of brittle materials under compre"ivr stres> 

states. T he mi cromcchanical model employed to formu la te co utiuuu rn theory fo r creep 

deforma ti on of bri tt le mate ri a.l s is t he same as t he mode l o f mi c rodcfeds show n in I he 

previous chapter fo r time-independent problem. Accord ingly, t he governing equal ions 

for the creep deformati on of brittle mate rial s are t he same eq ua tions as give n in t he 

prev ious chapter exce pt for the evolu tion law of microdefecb. In l hc next section , 

thus, onl y the evolution law of time-dependent crack growth is in I roduced and t he 

explan ation of the other gove rning equations is omi tted. 

4.2 Evolution law 

Many a t tempts have been made to describe 1\ -v relat ion of the su bc ri t ical crac k 

growth , and almost all t he eq uations proposed are usually se mi- or wholl y-e mpiri cal 

[Atkinson , 1984]. T he most widespread equatio n used to desc ri be t he subcriti cal crac k 

growth in geological mate rial s is the well-known power law: 

dl (f " )n dt= A ' I , (4 .1) 

where dljdt is t he crack velocity; A and n a re experime nt a ll y dete rmined cons tant s, 

which depend on temperature a nd chemical environment, such as p ll and moist ure. 

If t he uni ts of the crack veloc ity and the stress in te nsity facto r in eq uat ion (4. 1) a rc 

m/s and M Pam112 , respect ively, then t he reportecl values of exponent n call ed the su b

critical c rac k growth index li e between 30 to 46 for Wes terl y gra ni te in liquid wa te r a t 

room tempera ture [Atkins , 1984]. On th e oth er hand , coe ffi cient A in eq uat io n (4.1 ) 

is o f the o rder Jo- 3 10- 12 based on th e same experimenta l data . As a noth er impor

ta nt pa ra me ter desc ri bing the s ubcri t ical crack g rowth , there is the threshold of th e 
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stress intensity facto r. llowcver , the effect of the threshold on the subcrilical crack 

growth is neglected in the following numerical calculations. There arc two reason for 

this. First, for Westerly granite, no reported value of such limit is found in li te ratu res 

and the repor ted c rack velocities arc as slow as L0- 12 m/s. Second ly, the testing lime 

required to es tablish the thrcohold may be extremely long, and thus the reported value 

of the threshold should not be regarded as a objective mater ia l parameter. even if the 

reported threshold is found. 

4.3 Time-integration scheme 

The proced ure of discretization by finite element method is the sarne as one shown in 

the previous chapter, and thus only time-integration scheme is explained briefly in this 

section. After the short-term behavior of the material is computed by the numerical 

analysis method presented in the previous chapter, Euler's method is employed in 

order to allow the solution to be advanced from a time t<') to time t<'+J) = t.C') + 

il.t <'>, where superscript, (s) and (s + 1) denote successive times and 2>1(') is the time 

interval. In this method , the nrean rate of change of lime-dependent variables over 

the time interval is taken as the value at the beginning of the interval. Thus, from 

the evolution law [equation ('1.1)], the increment of the damage parameter !',./(') (the 

length of microdcfects) occurring during time step f'lt (') is obtained as 

. . . . . . . . . . . . . . . . . . (4.2) 

where the mode I stress intensity factor ](1 is evaluated from equation (3.35) using the 

stress &<'>, the pscudolraction crP(,) and the damage parameter L(') at time t<'>. T he 

total damage parameter /(,+!) at time t<'+ 1) is calculated by add ing t he incremental 

value to the previous total value: 
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. ( 1.:!) 

After all danr<tgc par;ul!ctcro in each finit e clement arc calc ulated, stress &l>+l), strain 

;,{·•+1
) and displ<tcPnrent i/'+ 1

) a t time t<'+l) are obtai ned by solving stiffness equation 

induced from conventional finite clement procedure. Th n, the pscudotraction cr1'l'+ 1) 

at time tl.•+l) is evaluated by solving the discrctized consistency eq uation, which in 

matrix form is written as 

.................. (44) 

where I denotes the 'lM x 3M identity matrix, M is the to tal number of the finite 

elements and r is the 3M X 3M matrix defined by 

M.AJ 

r = 2: fv P-r(x'l~l d~ , 
t,J J 

.................... (·15) 

in which \!1 and x' denote the area of element~ j and the centroid of clement i, rcspec-

live ly. 

At this stage <t il time-dependent variables have been updated to lime t<·H 1 ) The 

above time-marching scheme is repeated for each time step until solution is obtained 

for the desired time duration . 

4.4 Numerical R esults and Discussion 

T he numerical computations are carried out to reproduce the c reep tests of Barre 

gran ite by Kranz [1980]. The model parameters used in t he fo llowi ng calc ulations a re 
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Table 4.1 Model parameters used in numerical calculation for creep test of Barre granite 

Pouameter Value 

Yo ung's modulus E = 6.0 X 104 MPa 

Poisson 's rati o 1/ = 0.3 

Fracture toughness J\c = 1.0 MPam1i 2 

1 ni tial defect length co= 27 J.tm 

Normali zed c rack density pc6 = 0.1 5 

Initial defect angle e = 45 deg 

Coe ffi cient of friction 1-' = 0. 2 

S ubcriti cal crack index n = 30 

Coe ffi cient A in eq.(4.1 ) A = 10- 7
, 10-6, 10-5 

listed in Table 4.1, where Young's modulus, Poisson's rati o a nd the average lengt h of 

the initial defects of Barre granite are reported by I<ranz a nd Scholz [1977) and I\ ran z 

[1979). The reported values of the fracture toughness of Barre granite range from 

0.74 to 1.5 MPam 1i 2 [Atkinson, 1984). On the other hand , those of the subc riti cal 

crack index "n" in equation ('l.l) for Barre granite are not available, but fo r Westerly 

granite the reported values ranges from 35.9 to 69, which are ob tained by using double 

torsion spec imens at room temperature in 30 50% relative humidity [Atkinson, 1984; 

Swanson, ] 984). 

However the other model parameters of Barre g ranite, such as the crack de ns ity a nd 

the frictional coe ffi cient, are not reported . Thus, the crack density and the fricti onal 

coeffi cient of Barre gra nite is determined by fitting the short- term strength o bt a ined 

by numeri cal calculations to the experimental s trengths. Figure 4.2 shows the com

parison between numerical and experimental st rengths of Barre granite, in whi ch th e 
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experime ntal stre ngths of Barre granite are reported by J\ranz [1980) and the numerical 

strengt hs are calculated by IFT for the frictional coefficient 0.2 and the crack den,ity 

0.1 5. 
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Figure 4.2 Comparison between the numerical and expe rim ental st rengths of short-te rm 

fracture test for 1J. = 0.2, pc6 = 0. 15. 

The used mesh configuration is the same model as shown in Fig. 3. 14(a) except for 

a boundary cond ition of the top boundary in th e speci men. l•'o r the present c~e, th e 

traction at the top boundary is assigned to a specifi c value in stead of prescribing t.lw 

displacement so as to keep the axial stress constant during a c reep l est. 

Figure 4.3 shows the relation between normalized crack lcngt h (damage para mete r) 

and time for the confining pressure Pc = 100 MPa. In this calcul ation, the applied 

a.xial st ress a1 during the creep test is held constant so that the norma li zed stres' 

difference (a 1 - pc)f(a 1 - pc),." is equal to 0.91, where (a 1 - pc),.., is the maximum 

stress diffe rence obtained by t '•e short-term fracture test with constant st rain rate at 

the corresponding confini fl', pressure. In the primary cree p, a ll dalllage parameters 

in the clements evo lve rapidly, because the st ress inte nsity fact ors in all cl e ment~ are 

nearl y equal t o th e fr act ure toughness, which makes the crack veloc iti es calc ulat ed from 
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Pquation ('1.1 ) maximize. For the present micromechanicalmodel s how n in Fig. :J. l (a), 

the stress intensity factor decrease with increas in g the crac k lengt h und er constant 

stress slates, whi ch nH'chanisnt bring about transition front the pritnnry creep into the 

secondary creep. l ~vc n for the secondary creep, the distribution of damage parameters 

is not honH>gcncous in the specimen. From the onset of the tertiary creep, t he evolutio n 

of damage parilmct<'" is accelerated in seve ral eleme nts , and event uall y the damage 

paratncters in the clements evolve un:,lably. This localization of damage evoluti on and 

the a"ociatcd instability arc considered to ha,·e resulted from the dfecls of interaction 

iltnong microdefrcts. In the following numerical calcu lations, the occu rrence of the 

'""l<tblc evolution of damagP parameters is interpreted as the onset oft he macroscopic 

failure. 

..c 
OJ 
c 
~ 
..X: 
u 
~ 
u 

0.4 

0 2 

Time (sec) 

Figure 4.3 Evo lution of normalized crack length (damage parameter) as a function of time 

for A = J0-5
. normalized stress difference (& 1 - pc)f(c71 - Pc)max = 0.91 and 

confining pressure Pc = 100 MPa. 

If the effects of interact ion a mong microdefect s are neglected on the determination 

of crack extens ion , it is quite obvious that no unstable crac k growth occurs and that 

the di stribution of the damage parameters is uniform because of homogeneous stress 

stat es. Thus, in conventional cree p analyses based on phe no me nological co nsideration. 
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the conditions t hat specifies macro>copic failure are introduced by, for example, a 

criti cal c reep ~train [Wilshire, 1991]. However. since the inelast ic strain during creep is 

essentiall y clue to the crack ope ning o r void nucleat io n, the c riti cal strain itse lf depends 

on applied stress. Once stress stales varies (eg. under different confining pressures), 

the cr iti ca l s tra.in which defines fa.ilure condition varies accord ingly. Conseque ntl y, 

for each corresponding st ress stale, different failure conditio ns must be determined. 

However, in the present theory, no phenomenological failure condition is introd uced 

a nd macroscopic failure is reproduced as the unstable evolution of damage pararnete". 
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Figure 4.4 Creep curves of volumetric strain ft + 2f2 and radial strain <2 for n = 30 for A = 

J0-6 , normalized stress difference(&,- Pc)/(&,- Pc)max = 0.91 and confining 

pressure Pc = 100 MPa. 

Figure 4.4 shows the creep curves of both overall vo lumetri c st ra.in 1? 1 + 21?2 a nd 

radial strain 1?2 under the same loading condition as shown in Fig. 4.3. T he majo ri ty 

of t he creep strain occurs just after the initial loading and immed iate ly before t he 

macroscopic failure, which tendency agrees with creep cu rves observed in experimental 
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observation. According to experimental results by Kranz [1980), the volumetric and 

radial strain at the onset of the tertiary c reep under the same loading conditions a rc 

0.90 and 1.1 8 %, respect ive ly. The experimental st rai ns are obtained from electri cal 

resistance strai n gages ce rnented to the cy lindri cal samples, while the rrrrmc ri cal results 

arc calcu lated from the two dimensional model und er plane strai n conditi on. Thus, the 

direct comparison of the calcul ated strains with the experimental o nes is not possible. 

However, calcul ated dilation at the onset of the tertiary creep is .eemed to be somewhat 

smal ler t han the experimental res ults. 

Figure 1.5 shows the logarithm of creep rupture time t1 in seconds as a fun ctio n 

of the normalized st ress difference (51 - Pc)/(& 1 - Pc)max a t the confining pressures 

(a) Pc = 0, (b) 53 a nd (c) 100 MPa. In these figures, the experimental data for Barre 

granite reported by l<ranz [1980] are a lso plotted as the closed circles. T he numeri cal 

calculations a.re carri ed o ut for A= 10-5 , 10- 6 and J0- 7 , which is the coe ffi cient in the 

evolution la.w [equation (1 .1 )] . 

The expe rimenta l data for uniaxial c reep tests show considerably more scatter than 

t hose for tests under confining pressure. The flu ct uations in failure time und er uni

axial compress ion may be attributed to the fact that the creep failure unde r uniaxial 

compression occurs owing to the same mechanism as short- term fracture und er uni

axial compression. In the short- term fracture tests under uniaxial compress ion, the 

axial splitting occurs as the macroscopic failure mode. As discussed in th e previous 

chapter, the mechanism of the axial splitting is considered to be uns tab le extension of 

a single or a few tension cracks. Thus, as with the axial splitting in the short- ternr 

fracture tests unde r uniaxial compression , it is considered tha.t the c reep failure und er 

uniaxial compression largely depend on both length and o ri entati on of th e initial defec t 

which is mos t likely to nucleate tension cracks in each sample. Since the distribution of 

the length and ori entation of initial defects is difl.ererrt in sample to sampl e, th e times 
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to failure of uniaxial creep te:;ts arc more scatter than thebe of lesb under confining 

pressure. 

The times to failure decrease with increasing the norrn ali zed stress difference, which 

tendency agrees with the experimental results. In particu lar, for the cases of the creep 

tests applying confining pressure as shown in Fig. 1.5(a) and (b), the s lopes of the 

theoretical curves arc fa ir agreement with those of the experime nt al data. However, 

the values of "A" in equation (4.1) obtained by fittin g the numer ical results to the 

experimental data depend on the confining pressures, and arc 10-6 and I o-' for the 

confining pressure 53 and 100 MPa, respectively. This may suggests I hat the confining 

pressure affects th e subc riti cal crack growth due to str ess corrosion. ln l.hc proposed 

theory, the effect o f the confining pressure on the crack velocity is consid ered by calc u

lating the stress intensity factor as a function of the confining pressure, which refl ects 

the fri ctional sliding of the initi a l defect. However, the evolution law [eq uation (1. 1)] 

is derived by the experiments of which samples a re not applied con finin g pressure. In 

order to clarify the effect of the confining pressure o n the stress corros ion, cxperi rn errt s 

designed to invest igate the e ffect of the con finin g pressure o n lire sl res:; cor rosion arc 

needed. 
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Figure 4.5 Fai lure time vs normalized stress deference at co nfinin g pressures (a)pc 0. 

(b)53 a nd (c) 100 MPa for Barre granite. 
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4.5 Summary 

In this chapter, I FT is applied for the lime-dependent behavior of br ittle material 

under compressive stress slates. Numerical examples arc given, which i:, intended to 

reproduce creep tests of Barre granite under con:,tant stress stales. 

Numerical results confirm that the propo:,ed cont inuu m theory reproduce typical 

shapes of creep curves observed in laboratory tcsb; namely, the primary, secondary 

and tertiary stages of creep deformation. ln the primary creep, a ll damage parameters 

in a specimen evolve rapidly, because t he stress intensity factors in the elements nearly 

equal to the fracture toughness. T he transition from the primary into the secondary 

creep stages results from the mechanism that the stress intens ity factor decreases with 

increasing the crack length under constant st ress stales. T he main mechanism of 

steep increase in strains and damage during the tertiary creep is d ue to the effects 

of the interaction among microdefects. In the numeri cal calcul ations, the event ual 

macroscopic failure following the tertiary creep is reproduced by t he unstable evolution 

of the damage parameters. 

Comparisons are made between predicted and experimental rupture-times. T he 

failure time decreases with increasing the normalized stress difference, which tendency 

agrees with experimental results. 
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Chapter 5 

Formulation for Behavior of 

Granular Materials 

5.1 Introduction 

The main deformation mechanisms of granular materials are slips and associated relo

cation of particles. As a well-known deformation character istic o f granu lar i1Jaterials , 

the relocation of particles induces dilation even if the hydrostatic stress is constant. In 

addition, with the in crease in external loads, the deformation of the granul ar materials 

loses homogeneity, and the localization of ' ' eformat.ion into thin layers occurs. These 

layers are called shear bands or zones, because large shearing deformation is pwduced 

in the layers. 

Since the shear band f•,rmation exte nsively affects the load-carrying capacity of 

granular materials, many element tests under various boundary condi lions and ,tress 

paths ha.ve been undertaken in order to induce, for instance, the conditions of forma-
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l ion of the shear bands and objective constitutive relations of t he g ra nula r ma te ri als 

[e.g .. Mand l. 1976; Ta!tJOkil ct aJ. , 1986, 1988; Negussey a nd \'aid, 1990; Drescher. 

1990; Wu a nd Koly mbas, 199 1]. W hen t hese conditi o ns a nd constitu t ive relatio ns a rc 

de ri ved from c•xperi rncnl al observations , t he sl rain and sl rcss fi elds before th e s hea r 

hand format ion arc ass umed to be homoge neous inside I he spec imen . However mi

croscopic observat ions of sand speci mens reveal t hat the distribut ion of de formation 

loses homogt• rwily at early stages of load ing befo re t he s hear band forma tion. T hu,;, 

lhc a.-stllll pl ion of ho 11rogencity befo re t he shear ba nd for mation doe> not hold. O n 

I he ol her hand, in order to simu late behav ior of sand sa mples up lo post- peak regi me 

by solvin g boundary va lue proble ms using phenomenologica l corbt itu t ive rela ti on , il 

is necess;uy to ob lain t he cons tituti ve relation wi t hin t.h e shear bands bes id es overall 

cons tituti ve relat ions of s pec imens with the shear bands . 

Recentl y, qua li tat ive in formation abou t deforma t ion wit hin sa nd spec ime ns con

taining the shea r bands is reported wi th ne w obse rvat ion met hods. such as X-ray 

photographs, lase r speckl e method , ste reophotogrammet ri c meth od (Butterfi eld, 1970] 

and image a nalysis, etc. On t he basis of the obse rvation with X- ray photographs, Var

doul aki s and G ra f [1985] report ed that t he I hi ckness of shear ba nds in sand is abo ut 

13 ·20 times the mean grain diameter . Tatuoka a nd co- workers [1990] employed th e 

laser s peckl e method , a nd reported qualita ti ve informa tion o n surface displace ment s 

of sand spec imens. More recentl y, Yoshida [1992] reported the following process of th e 

shear band forma tion based on the obse rvat ion of pl a ne s tra in condition tes ts with 

image a nal ysis. T he st rain locali zation occ urs in the cente r of s pecime ns before th e 

peak st ress rati o. 1n the pre-peak regime the di stribu t ion of s train is not ho mogeneous 

in t he spec imen, a nd the shear st rain is locali zed in t he seve ra l stri ps in tersecting each 

othe r. At almos t peak st ress ratio, one of these stri ps evo lves a nd the othe" sto p their 

evolu tion. But the pos it ion of t he ac tive stri p does not coincide wi t h t he t ha t of th e 

fin a l shear band. In addition to these o bse rva t ions, Yoshid a. repo rt ed the foiiowin g 
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cons titu t ive relations of t he shear bands: (a) t he re lat ions be l ween the :;t ress averaged 

ove r the whole spec imen a nd t he tangent ial dis pl ace ment gap acm;s t he shea r bands 

and (b) th e rela ti ons between the tange nt ia l a nd the nor ma l displace ment gap. 

As a n another app roach , nu merical simul ation of pla ne asse mbli es of di sks offer" 

complete q ua nti tat ive informa tion on microscopic feat ures of part icles, such as contact 

de nsity, contac t or ient ations and magni tud es of contact fo rces (Cun dall , 1989; Rot he n

b urg a nd Bathu rst, 1989; Ba rdet a nd P roubct, 1991]. T hese st ud ies a rc intended to 

cl a rify the rela ti ons between these microscopic quant it ies a nd macroscopic qu a ntiti es 

such as s tr ess te nsor or s t ra in , and ded uce t he mac roscopi c constituti ve relat io n of 

granular ma terial s fro m mi croscopic events . 

Although considera ble studies a re being devoted towa rd formul ating boundary value 

p ro blems using pheno menological cons tituti ve rela ti ons based o n experimental o bse r

vations, t he prese nt stud y uses a consti t ut ive rela ti on based on micromecha nics . In this 

chapter, the a pplication of 1FT to gra nular ma te rial s s uch as sand is in t roduced. T he 

procedure fo rmula ting t he gove rning equatio ns for gra nula r material s is almost same as 

that for the behavior of brittle mate rials presented in the previous chapter. In the first 

place, a micromechanical model which represent the mechani cal behavior of g ranular 

materials is introdLtced. After that , the governin g equations of th e proposed theo ry 

is derived from homogeni zation of an elastic medium conta ining thi s micro mecha ni cal 

mod el. Several numerical results a re presented , and fin ally the a pplicability of IF'T for 

gra nula r materi a ls is di sc ussed. 
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5.2 Microslip Model 

To stu dy mecha ni sm of otrain locali zati on in granular ma te rial s, a micromechani cal 

model, call ed mi crosli p model, has been proposed by S hi a nd Horii [1989] . In th e 

present st ud y, to formul ate cont inuum theory for the be havior of gra nular material s, 

the microslip model is adopted as a micromecha nical model and is introduced brieOy 

in thi s subsection. T he microsli p consist s of a initi a l de fec t and two slip zo nes . T he 

initi al defect of length 2a is a crack-like slit , on whi ch fri cti onal sliding occ urs due to 

far -fi eld principal s tresses aj a nd af' . T his fri cti onal sliding nucleates th e two slip 

zo nes of length l from the tips of th e initial d efec t; see Fig . 5.1. 

0 00 
Infinite F_:_ie::::l~d ____ t __ 1 ___ 

1 

Figure 5ol Microslip model 

The conditions of the fri ctional sliding are ass umed to be th e following expressio ns, 

(ayy +ad ) tan ¢0 , (on initial defec t ), 

(ayy + ad ) tan ¢c, (on slip zo ne) , 
.. (5.1) 

where axy is th e shear stress and ayy is the normal s tress on th e s urfaces of th e mi croslip ; 

¢o and rPc (¢c > ¢o) a re the fri cti onal angles on the initial d efec t a nd the slip zo nes, 
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res pectively; ad is call ed a dil a ta ncy stress. T he d il a t a ncy ot rcss, whi ch acts to ope n 

t he surfaces of the mic ros li ps, is introd uced lo rep rese nt t he d fcct of local d il atancy 

due to as perity of pa rticl es during t he s lidin g. Siner the a mou nt o f t he local d il atancy 

d epend on th a t of sli d ing, Shi and llorii assume tha t the 111 ag ni t udc of the dil atancy 

st ress is proporti ona l to th e half length of t he micros li p; 

••• • 0 . 0 • • 0. 0 0 0 •• 0 . 0 •• (5.2) 

where a d is called the dilatancy coeffi cient. 

However , it is not reali sti c for the dilation due to sliding to ke ep in creas ing linearly 

with the in crease in the s liding . Hence, for the prese nt formulation, he nce, the dilatancy 

stress is given by an alternative expression: 

• 0 •• 0 0. 0 •• 0 0 . 0 ••• 0 •• 0. . . . .... (.5.1) 

where ad and m are constants and a0 is a reference stress, whi ch is ass igned to the 

confining pressure in the foll owing numerical calculatio n. Th e relati ons between nor

malized dilatancy stress -ad/(adao ) and normalized mi cros lip length rja M e shown in 

Fig. 5.2. 

The direc tion of the microslip is assumed to bee= ±(11'/4 + ¢c/2 ) with res pec t to 

the direction of the minimum compress ion af', because the fri cti onal sliding is most 

likely to occ ur in t his directio n, in which th e rati o iaxy/ayyl takes its ma ximum value. 
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Slip Length (c/a) 

Figure 5.2 Relation between normalized dilatancy s tress -<7d/(<7oo:d) and normalized slip 

length cfa 
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5.3 Homogenization and Governing Equations 

Simil arly to the formulation of !PT for behavior due to crack growl h under compression , 

the microslipli arc supposed to be distributed over a clastic mcdiulll with a. certain 

density. The microslips are classified into two system.> in which the angles of the 

directions of the mic roslips are el = (7r/4+¢c/2) and en= -(7r/'1+¢c/2) with respect 

to the direction of the minimum principal compression af; sec Fig .. 5.1. Each of the 

densities of the microslips in the systems is assumed to be a same value p, where 

the density p means the number of the microslips per unit area. The elastic medium 

containing many microslips is homogenized into a equi valent continuum based o n the 

concept of ave raging over local volume elements in the med ium . 

system-1 

~ 
system-11 

Figure 5.3 Two syste ms of mi crosli ps. 

a= 2 

Because the equilib rium eq uation and the strain displacement relation of t he equiv

alent continuum are the same equations as shown in the previous chapte r, the explana-
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l ion of t he fo rmulati ng t hese equations is omitted o ut in thi s chapter. T he formul atio n 

of t he othe r governing equations for t he equivalent cont inuu m is expla ined in the fol

lowing order: beginn ing with th e stress st rai n relation of t he considered mod el, goin g 

th rough t he consistency equation a nd e nding with t he evolu t io n law o f t he micros li ps. 

5.3.1 Stress-strain relationship 

Before formul ating t he stress str ai n relat ion of t he eq ui valent continuum , t he basic 

assumptions a re introd uced. It is ass umed that the rela ti on between the ave rage stress 

a nd strain ove r representa ti ve volume ele ments in the elas ti c medium conta inin g t he 

mi croslips offers t he stress ~st r ai n relation of th e equivalent con t inuum~ In deri ving lhe 

average st ress s t rain rela ti on of t he elastic medium containing t he microsli p, t he effects 

of in te ract ion among the microsli ps are negl ected ~ 

As ment ioned in equation (3.25) , t he average st ra in d ue to t he rnicros li ps is given 

by 

£* = ~ is ~([u] ® n + n ® [u ])ds, .... (5 .4 ) 

where [u] = u+ - u - is the displacement gap between the surfaces of the microsli p; 

see equat ion (3.25) for the defini t ions of the o ther symbols . Since the interaction 

effects of t he micros lips arc neglected , t he d isplacem ent gaps of ma ny microslips in t he 

representative volume element Ve a re evaluated by the following proced ure. Considerin g 

elas tic mediums containing a single microsli p under the act ion of t he average st ress , t he 

dis place ment gap of t he mic ros li p in t he elastic mediums is calc ul ated . a nd s uper posed 

to t he displaceme nt gaps of t he other micros li ps~ T hen , the to ta l di splace ment gap is 

expressed in te rms of the a.verage stress a nd the dil a ta ncy s tress, a nd acco rdingly the 

average st rain d ue to t he microslips is expressed by t he following form : 
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£" = c : a + £"" , .. .. ....... . . . .. . ~ .. . .. . . . .. .. . (.5 .5) 

wh ere a is t he average st ress a nd £ .. is t he average :;train d ue t o th e d il a ta ncy st ress, 

which does not depe nd on t he average stress explicit ly. 

The average clas t ic strai n (£-£") is related t.o t he average :;tress by !l ook's law ; 

a = n e : (€- €*) , . . . . . . . .. . .. . . . .. . .... . ........... (.5.6) 

where D e is t he elasti c moduli of the mat rix , whi ch is ass umed to be locall y iso t ropic. 

By substitutin g equ at ion (5.5) into (5.6) , we have 

(I+ D e : C") : a = D e : £ - D e : £** , (5.7) 

where I is t he fourth order ident ity tenso r. Eq ua tion (5.7) stands for a system of linea r 

equat ions fo r unknowns a, a nd solving t his system of t he equations, the st ress st ra in 

rela ti on is given by 

where 

D ep . ••• 
- . £ . 

(5 .8) 

.... (~.9) 

.. (5. 10) 

For the presen t two di r .ensional pro blem, th e ave rage st ress and st ra in te nsors a rc 

reduced into the foll owin g vecto r forms: a = {all ,an ,arzV , E = {Eu, €22,2€r2f, 

a nd accordingly the te nsors I , D e, n ep a nd c · a re a lso red uced in to 3 x 3 ma tri ces. 
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The average strain €" due lo the microslips for the global coordinate (x 1 , x2 ) cons ists 

of two clements (.' 1
, €" 11 caused by the rnicroslips for system I and ll , respect ive ly. 

Transforming the average strain in the local coo rdinate systems into the global one 

a.nd summing t.hc average strain due to the microslips in both sys tems, €" is exp ressed 

by 

.... (.5.1 1) 

wlme i:"o = {("c,e;;, 2e;;V, (a= I, II) a.nd R is the transformation matrix defined 

by 

cos2 e 2 cos e sin e 

-2 cos e s in e (5.12) 

-cosBsi n B cosBsin B si n2 B-cos2 B 

with B1 = -B 11 = 1rj4- r/>c/2. 

The average st rain caused by the microslips in system a, (a = I , I I) for the local 

coordinate is expressed by the same form as shown in equation ( 5.5); 

(a= I , II) , [a : not summed], (5.13) 

where tJO = { a;.T, a;y> a;y v denotes the average streSS for the local COOrdin ate (x" > y") . 

For system I, t he nonvan ishing components of the mat rix c· and the vector €"" 0 are 

c·l 
32 

c·l 
33 

--·1 
fyy 

and 

... , 
'xy 

2p { ? 

- E' 7rCj- 4ac/(tan rf>c- tan ¢0 )}ai, 
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while for system ll the components are 

and 

c·ll 
32 

• ··11 2p { 2 4 ( t A. t A. ) } 11 txy = E' 7rCu- acu an 'f'c- an'f'o ad, 

where c0 , (a= !,II) is half the length of the microslip in syste m a and a:J is the 

dilatancy st ress defined by equati on (5.1) with C0 subst ituted for c. 

Since the average stress fo r the local coordinate is expressed by 

(5.14) 

substituting equation (5.13) into (5.1 1), the expressions of the matrix c· and the vector 

£"" are obtai ned as 

£ •• 

R T(Bo) C"" R(Bo), 

R T(B
0

)£""". 

(.5. 1.5) 

(5.16) 

Using equations (5.15) and (5.16), the stress-strain relation for the cons idered two 

dimensional problem can be rewritten as the following matrix-vector form similar to 

equation (5 .5): 

where 
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(5.17) 

(5.18) 

(5.19) 



5.3. 2 C onsist ency e quation 

Before fo rmul at ing t he consistency eq uation for cont inu ously di stributed mic ros lips, 

we foll ow the approac h of Shi and llo ri i fo r d isc rete sys te ms of the microslips, but 

do not limit t he present form ul ation to the case of the parall el mic ros lips. F igure 5.4 

shows elast ic med ium containing two microsli ps, microslip 0' a nd microslip {3, under 

fa rfield principal st resses aj a nd af. As ment ioned in sec tion .5.2, t he boundary 

condi t ions [equation (5. 1)] a re satisfi ed along each of the m.icros li ps and th e dilatancy 

str ess d efin ed by equ atio n (5 .3) is a pplied on the surfaces of th e microslips as a normal 

component. 

microslip- a 

microslip- f3 

Fig ure 5 .4 Discrete system of two microslips. 
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T he ori gin al problem illustrated in Fig. 5. 1 is decomposed into a homogt•ncoll s 

p ro blem wi t hout t he micro:dip and two subproble ms with the single microsl ip; see 

Fig 5.5 (b),(c) a nd (d). To satis fy the boundary co ndi tions of t he o ri gin al p roblem whe n 

superposing t he ho moge neous problem and t he subproblems, t he following tract ions 

must be a pplied on the s urfaces of the micros li p in each sub problem i, (i = 0', .B), as a 

shear component 

-a';'./- a:;+ (a;;;• +a;;+ a;,) t a n ¢0 , (on init ial de fect), 
.... (5.20) 

-a:;/- a;;+ (a;;'+ a;;+ ad) tan ¢c, (on ~ li p zo ne), 

wh ere a;;;•, a':,;' a nd a;;, a:; a re the st resses a t th e positio n of th e microslip i in the 

homogeneous pro blem a nd th e subproblem j, (j f i), res pec ti vely. (Note th a t the 

microslip i exi s ts actuall y neithe r in the homoge neous problem nor in th e subproblem 

j .) The stresses a;; and a:;, called pseudotractions, a re ge ne ra ted by the existe nce o f 

the other microslip in the ot her subproblem . 

Each of the subproblems can be fur t her d ecomposed into I wo sub>idi a ry proble ms 

illustrated in Fig. 5.6. In the subsicli a ry problem 1, the t rac ti on <tppli ed on th e whole 

surface of the microslip is 

(l xl :S r), 

while in t he subsidi a ry pro blem 2, t he following traction is a ppli ed onl y on th e initi a l 

d efect ; 

(lxl :Sa). 

Assumi ng a/c~ ~ 1, t he effects of the t raction on th e initi a l defect can be es timated 

as a concentra ted fo rce, a 1.d then the s tress fun ction of I he subp ro ble m fJ becomes 

<l>p ( z~) = 
1 jc~ Jtz- c~ 

- 27riJz~- c1 -c~ ~ . 
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microslip - a 

I a oo a a 'XJ Q: 
yy xy / - - - - + 

/ -or' 
microslip - 13 

(a) Original Problem (b) Homogeneous Problem 

I 
+ + 

I 

(c) Subproblem -a (d) Subproblem - (3 

Figure 5 .5 Discrete system of two microslips under farfield principal stresses; decomposition 

of the original problem. 
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{-a~- i[a;;ll +a::- (a;;!l +a::+ a~) tan ¢c]}dt 

1 j cp Jt2- c~ 
21rijz'/J- c~ -cp I- Z!J . 

{ -i2a(a;;/J +a::+ a~)(tan ¢c- tan ¢0 )6(t) }dt , 

l!i ~(z!J) = <l>p(z;3)- <1>/J(z/J )- z!J <l>~( z!J), 

.. (5.21) 

.... (5.22) 

where b(t) is Dirac's delta function , the overbars denote complex conjugate and zp = 

xp+iyp with i= A. 

From the definition of the pseudotraction , the condition that the pscudotraction 

must satisfy (the consistency equation) is given by 

<!>~( z!J) + <!>~(zp) + e-'29•Ph<!>;J(z!J) + lli~h)}, 

2{ <1>/J(z/J) + <!>~(zp)}, 

.... (5.23) 

.. (5.24) 

where the argument zp is assigned to zp = d,!Jexp(¢,p) + x,exp(B,p), (jx,jc,j :::; l) 

and d,p, ¢,1J and e,!J are defined in Fig. 5.4. 

It can be assumed that the distance between the microslips is large enough compared 

with half the length of the microslip, jcpfz!Ji ~ 1. Thus after expansion of the integrand 

in equation (5.21) into power series of cllfz!J, the stress funct ions are expressed by 

1 (CIJ) 2 
1J . oo/J P/l oo/J P!J /J <1>/J(zp) = -- - {ad+z[axy +axy -(ayy +ayy +ad)tan ¢c]} 

4 Z!J 

-iac~ (a;';!l +a::+ a~)( tan <Pc- tan ¢o)}, · · · · (5.25) 
'lrZ!J 

l!i/J(zp) = -H~r a~. (5.26) 

where the higher order terms of (c!Jfzp) have been neglected. 

Substituting equations (5.25) and (5.26) into equations (5 .23) and (5.24) , t he con-

sistency equation is expressed as follows: 

u P"= 7"/Juoo/J + w"!la~, ((3 not summed), · · · · · · · · · · · · · · · · · · · .. (5.27) 
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I I (a) Subproblem- a 

(b) Subsidiary problem 1 

+ 

(c) Subsidiary problem 2 

Figure 5 .6 Deco mp os itio n o[ s ubproblem {3. 

10.5 

where a ooo. = {a~o,a~o,a~o}T, aPo = {a~~o,a~~ll,a.~~n}1, 

and 

with 

0 ba 1 -a I 

b0~l = ~ (::J 2 

0 -ba2 02 

0 -ba3 OJ 

{w?'l ~ w~r 1 
e1 + ba1 l e2 - ba2 

e3 - ba3 

e1 -cos(4¢~o- 2e~o) + cos(2¢~o- 2e~o)- cos2¢p0 , 

cos(4¢po- 2e~o)- cos(2¢pa- 2ep0 )- sin 2¢p0 , 

b 
4a 

tan rPc- -(tan rPc- tan .Po). 
1rCp 

(.5.28) 

. . . . (.5.29) 

For t he di sc rete system of two mi crosli ps, equa tion (5.27) gives t he co nsistency equ «-

tion which ensures the bo undary condi t ion of t he o ri gin al problem. For t he case where 

several microslips exi st in an elastic medium, t he ri ght hand sid e of eq uat io n (.5.27) is 

changed in to t he summation ove r (3 (the all micros li ps withi n t he clast ic medi um except 

for the rni croslip unde r considera tio n). Fu rt hermo re, if t he mi cros lips a re cont inuously 

dis tribu ted with a ce rtain density p, the effects of ot her microsliJb may be eval uated in 

terms of a spa tial integration over the elas tic med ium instead oft he summation over 

th e individu al microsli ps. ' addition , the st ress at infinity iY"' in eq ua t ion (5 .27) is 

exchanged for the mac roscopic st ress iT in the equ ivalent co ntinuum . T he consistency 

equation fo r t he cont inuo usly di s tribu ted microsli p is, as a resul t, give n by 
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(\~-t = 1, IT) · (5.30) 

where -y'''(x I ~ ) a nd w'''(x I 0 are the same definiti on of ')' 0
{3 a nd waf3 in equation 

(5.27), re pectivcly, except for rep lac ing t he vari abl es as follows: 

dpa d = llx - ~ II, 

¢-tan-rx2-6_e 
- x2- 6 "' 

c"(O : t he mi crosli p length in sys tem 1-1 at~ ' 

where !lu ll de notes the norm of vector u and A, 1-1 = I , I I . 

1 n the above formulation o f the consistency equa tion, the microslips a re assumed to 

be embedded in the elastic body. In actual granula r materi als, howeve r, the inelasti c 

defor mation occurs a ll over t he materi als. Thus, the pseudot racl ion evalua ted by equa-

t ion (5 .30) seem to be overes timated . To reduce the pseudotrac tion, a new consta nt a, 

(0 ~ a, ~ 1.0) named red uced coeffi cient, is int roduced a nd t he consiste ncy equation 

is expressed by 

Note that t he case a, = 0 corresponds to ignoring the effects of th e interaction among 

t he micros lips. 

T he above homogeni zation from t he discrete system to the continuum changes the 

pseudotract ion de fined on t he s urface of the di scre te microslips into the continuous 

fi eld vari able a n, (), = I , II ), cal led the interac tion fi eld. In the next subsection, 

a evolu t ion law for the present problem is formulated. To es timate the interaction 

effects of t he microslips in the determination of the micros lip length , the evolution law 
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is expressed in te rms of t he interaction field as we ll a..' t he stre>S at t he po int where 

th e evolu t ion of microsli p is conside red. 

5.3.3 Evolution law 

As is t he case with the evolut ion law for t he behav ior d ue to crack grow l h under com

pression, t he damage evolu t ion is assumed to take place as the extension oft he microsli p 

length while keeping t he de nsity of t he rni croslip constant. T he mac roscopic ri gid ity 

defined in t he st ress · strain relat ion [eq ua tion (.5. 17)] dec rease wit h t he in crease in th e 

mic rosli p lengt h. T hus, t he mi croslip length is interp reted as t he damage paramete r. 

As a matter of fact , the microsli p extension ind uces ani so tropy in the s tress stra in 

rela tion , and accordingly the direc ti on of the principal st ress vari es from t he direction 

a t the initial loading stage. Nevertheless , in t he foll owing formula tion, t he effect of 

t he ro tation of t he principal axis on the directions of t he microsli ps is neglected for 

simplicity, and t hereby t he direc tions of the nucrosli ps a rc fi xed to t he same d irect ions 

at the initial loading st age. 

Although t he micros lips a re considered to be di s tributed continuously ove r the ho

mogenized equi val ent continuum , we consider the single microslip a t th at point in the 

continuum in o rder to formula te th e evolu t ion law a t a ce rta in point in the cont inuum . 

Simila rly for the t reatment of the disc rete system of t he rnic ros li ps, the pro blem is 

deco mposed into a subproblem with the single microsli p under consideration and t he 

other subproblems. In the subproblem, t he t ractions expressed in te rms of the m ac ro

scopic stress iT and t he in te raction fi eld aP', (), = I , I I) are appli ed on the surfaces of 

the microslip to satis fy the boundary condi t ion. T he interac tion effects caused by the 

other microslips a re es timated through the interaction fi eld defin ed by equation (5.30). 

Then, the mode I! s tress intensity factor of the tips o f the microslip is given by 
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[ for system f ] 

[ for system If ] 

](11 = J7i'C/l{a~~ + a;;1 +(a;~+ a;; I+ aY) tan r/>c} 

- ~(a11 + aP/
1 + a 11 )(tan ¢ -tan ¢ ) J7i'CI1 yy yy d c 0 l 

(5.32) 

. ... (5.33) 

where the effect of the traction applied on the initi al defect has been evalu ated as the 

concentrated force as explained in the previous subsection. 

Sin ce the stress is relaxed by the deformation of the slip zone, the st ress singularity 

at the tips of the slip zone does not exist. This leads to the condition that the mode 11 

st ress intensity factor must be eq ual to zero. Consequently, the evolution law, which 

is the condi t ion of the microslip extension , becomes 

[for system I] 

.... (5.34) 

[for sys tem I I] 

. . .. (5.35) 

As is the case with the interaction field, t he lengths of the discrete microslips a re 

homogenized into the continuous field variable, and accord ingly the above evol ution 

law is satisfied at a ll points in t he body. 

In Table 5.1, the governing equations and unknowns of 1FT are summa rized. The 

de formation of granular materials and the evolution of t he rnicroslip are obtain ed by 
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Table 5.1 Summ ary of gover ning eq uations and unknowns for gran ul ar materials 

eq uilibrium Equat ion (3.22) 

< u relat ion Equation (3.23) 

a < relation Equation (5. 17) 

evolution law Equations (5.33) and (.5 .34) 

consistency eq. Equat ion (.5.3 1) 

unknowns 

solving the governing equat ions shown in Table 5.1 fo r the unknow ns the st ress and 

st rain tensors, the clisplacement vector, the length of the microslip a.ncl the pseudot rac-

lion. In the next section, t he numerical results are shown. 

5.4 Numerical Results and Discussion 

The numerical procedure of 1FT for the granular materials is al most the same as the 

procedure given in chapter 3. For the present case, however, the pseudotraclion in the 

consistency equation (5.30) is expressed explicitly by the s tress and the lengt h of the 

rni croslip . [For the case show n in chapter 3, the consistency equation is expressed by a n 

integral equation for the pseudotraction, and hence the expli cit expression of the pseu

dotraction is not available; see eq uation (3 .37).] T hus, afte r the pseudotraclion in the 

evolution eq uations (5.34),(5.35) is eliminated by using t he consistency equat ion, finite 

element method is employe I for spatial discretizat ion. The conventional triangular el-

ement with linear displacement fi elds is used to d iscret ize the displacement vector and 

the stress and strai n tensors. The damage parameters (the lengths of the rrucroslip) are 
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approximate to be constant in ;ul clement and the integral in the evolution equati on in 

which the pseudotraciton have been eliminated is evalu ated numeri call y by Gaussian 

quadrature met hod for t ria ugula r regions. 

Since there arc two damage parameters (the lengths of the micros lip) in a. element . 

the discretizcd a lgeb raic eq uations consist of 2N eq uilibrium equati ons and 2Al evo

lution equat ions , whrrc N and A1 arc the number of the nodal points and clements, 

respective ly. On the ot her hand, the unknowns for the discretized p roblem are 2N 

nodal displacement and 2Al cleme nt damage parameter. Thus, we have a system of 

(2N +2M) nonlinear equati ons for (2N +2Al) unknowns. This system of the nonlinear 

algebraic eq uations is solved by Newton- Raphson met hod a t each stage of the load ing. 

After the converged so luti on is obtained at each incremental step , eige nvalu e analysis 

is carri ed out to detect th e possibility of bifurcation. 

As the first matte r, the effects of the interact ion a mong the rni croslips on the 

evolution of the microslip are discussed. To do t his, numeri cal calculation is carr ied 

out for both CDM and !FT. In CDM , the interacti on effects are not taken into account 

in determination of the microslip length and the reduced coe ffi cient in the consistency 

eq uat ion (3.16) is assigned to cr, = 0. On the other hand , the reduced coe ffi cient of 

fFT is fixed to a, = 1.0. 

The mesh configuration employed in the present calculations is displayed in Fig. 5.7, 

where the figures in each element denote the element number and "a" is half the length 

of the ini t ial defect. The biaxial test sample consisting of 8 element s is loaded with a 

rigid , frictionless platen. The confining pressure on the side boundaries is loaded by 

the horizontal nodal forces, while the vertical load is implemented by prescribing th e 

increment of the vertical displacement at the top boundary. The load incre mentati on is 

sta rt ed from a hydrost a ti c stress state. After the confining pressure a ttained a specific 

value, the increment of the only displacement at the top boundary is applied. The 
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Figure 5.7 Finite element mesh for biaxial sample 

model parameters used in th e following numerical calculations are listed in Table 5.2. 

Figure 5.8 (a) shows the relations between st ress ratio aJ/a2 and the normalized 

length of the microslip ci/a of system I in element 1. The axial compression stress a, 
is calculated from the reaction of the top boundary, and thereby the s tress ratio used 

here means the macroscopic one. For the cases of both CDM and IFT, the evolution 

of the microslips s tarts at about aJ/a2 = 2.7. At initia l loading stages, both the 

microslip lengths increase with increasing stress ratio. In CDM , the rnicroslip length 

keeps increasing with further increase of the st ress ratio. 0 n the other hand, th e stress 

ratio attains its maximum value for IFT; after that, the s tress ratio dec reases with 

increase in the microsli p length . 

Figure 5.8 (b) and (c) show the distribution of the micros lip length at the cor

responding points in Fig. 5.8 (a). In Fig. 5.8 (b) and (c), the length s of the solid 

lines denote the magnitude of the microslip lengths in the elements. In CDM , all the 

mic roslip lengths are identical and di stribution of mi croslip lengths is homogeneous 

throughout all loading stages; see Fig. 5.8( c). On the other hand , in IFT, at the initial 
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Table 5.2 Model parameters used in numerical calcu lation 

Parameter Value 

Normalized Yo ung's modulus E/&2 = 5oo 

Poisson's ratio v = 0.2 

Normalized density pa2 = 0.01 

Frictional angle of initial defect ¢0 = 10 deg 

Frictional angle of slip zone r/Jc = 45 deg 

Dilatancy coefficient Old = 0.01 

m= 0.5 

loading stages (point A) the distribution of the rnicroslip length is almost uniform. 

However, at the maximum stress ratio (point B) , the microslip lengths of the elements 

in the diagonal direction become slightl y larger than t he others. Furth ermo re, at the 

descending part of the st ress-damage diagram (point C), the evolution of the microslip 

is localized into t he elements in the diagonal direction. 

Figure 5.9 shows the evo lu tion of the microslip lengths in all elements by !FT. The 

uniformity in the evolution of the microslips is lost even at the earl y stages of loadi ng 

before the maximum stress ratio. From the loading stage just before the ma.ximUJII 

stress ratio , the microslip lengths decrease in several elements. 

The numerical results presented here confirm that IFT for granular mate rial s can 

reproduce local ization phenomena as well as softening behavior , while in C OM local

ization of damage does not occur a nd there is no criti cal st ress ratio. In l FT, it is 

also shown that nonho moge neous evolution of damage starts at an early load ing stage 

before the cr itical stress ratio. This featu re agrees with the locali zation process of the 
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Figure 5.8 Effects of inter;u:tion on evolution of microslip: (a) Stress ratio vs norm al-

ized microslipl ength of element J; Distribution of microslip length for (b)IFT; 

(c)CDM . 
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Figure 5.9 Evolution of microslip lengths (damage parameters) for IFT. 

shear band formation observed in sand samples. 

Figure 5.10 shows stress strain relation evaluated by lFT, in which the axial strain 

is calculated from the axial displacement of the top boundary of the finite element 

mesh. The inelastic strain calculated by !FT is considerably smaller than experimental 

results observed in actual samples of sand. This underestimation is probably due to as 

follows. In a actual sand sample, the inelastic deformation occurs all O\'er the sample 

owing to a change of void with rearrangement of the grains. whi le in the theoretical 

model considered here the inelastic strain is calculated from the summation of the 

displacement gaps of the microslips embedded in the elastic medium. The inelastic 

strain of actual sand is considered to be generated by plastic-like process rather than 

by effect of a specific microstructure. 
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Figure 5.10 Stress-strain relation for 1FT 

Summary 

ln this chapter, an application of IFT to granular materials under compressive stress 

state is presented. To formulate the governing equations of 1FT, the microslip model is 

adopted, in which inelastic deformation of granular materials from a microscopic point 

of view is reflected. The procedure of the formulation presented in this chapter is the 

almost same as that in chapter 3. The elastic medium containing many microslips is 

homogenized into an equivalent continuum. In this homogenization process, special 

attention is placed on the consideration of the interaction effects among the micros lips 

on the determination of the microslip length (damage parameter). The numerical 

examples are shown for both IFT and CDM to examine the effects of interaction on 

the evolution of the microslips. (In this paper, a version of 1FT in which the interaction 

effects are not taken into account is referred to as CDM.) 
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Although CDM cannot reproduce localization phenomena, the numerical result:; 

co nfirm that 1FT can sinndate localization phenomena and damage-soften ing behavior. 

This result suggests that one of the main mechanism of strain localization is t he effects 

of interact ion among microdcfecls existing in materials. 

The inelastic deformation calculated from IFT is considerably smaller than the ex

perimental results observed in actual sand samples. Although the mechanism of local

ization phenomena is explained by the micromechanics-based method, the micromechanics

based formu lation of the stress strain relation is not suitable for granu lar materials. 
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Chapter 6 

Summary and Conclusions 

6.1 Summary 

A micromechanics-based continuum theory, named Interaction l"ield Theory (II<'T), was 

proposed. The present theory is intended to reproduce localization phenomena, which 

are difficult to model by conventional Continuum Damage Mechanics (CDM). The 

main feature that distinguishes IFT from CDM is the direct evaluation of the effects 

of interaction among microdefects in materials. To take account of the interaction 

effects in the determination of evolution of damage, an additional field variable named 

interaction field was introduced and the governing integral equation was formu lated. 

The summary of the chapters in this paper is as follows. 

(Chapter 1] 

The localizat ion phenomena discussed In this paper were introduced. A survey was 

done on the theoretical work for mechanics of localization. 
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[Chapter 2] 

The basic concept of I FT was illustrated through comparison with conventional CDM 

based on micromechanics. 

[Chapter 3] 

The formulation of 1FT was carried out for rate-independent behaviors of brittle mate

rials with microdefecb under compression. In addition , to compare with conventional 

CDM, a CDM based on micromechanics was also formulated for the same problem. 

The numerical re,ulb were presented for both IFT and CDM. The efforts were made 

to predict the strengths of actual rocks under compressive stress state. 

[Chapter 4] 

!FT was applied for time-dependent behavior of brittle materials. The numerical re

sults were given, which were intended to reproduce creep tests of Barre granite under 

constant stress states. 

[Chapter 5] 

!FT was formulated for granular materials under compressive stress states. The mi

croslip model was employed as the micromechanical model which represent t.he behav

iour of the granular materials. The numerical calculation was carried out to clarify 

effects of the interaction among microslips as well as the model parameters on the 

numerical results. The applicability of IFT for granular materials was discussed. 

6.2 Conclusions 

[Chapter 1] 

From a literature survey on the theoretical work done, the reason why co nventional 
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CDM cannot reproduce localization phenomena was investigated. In addition , even 

if continuum theories are employed to be able to reproduce localization phenomena, 

complication resulting from using such theories in numerical ;imu lation for localiza

tion phenomena (mesh dependency of numerical results) was shown and the proposed 

conventional countermeasures were classified. 

[Chapter 2] 

It was shown that, by considering the effects of interaction among microdefec ts , the 

constitutive relation depends on the stress and the damage parameter at all points 

within the material. This nonlocality is introduced inevitably into the continuum 

theory for materials contain ing microstructure and it has also been clarified that a 

mechanical meaning of nonlocality is the interaction effects. 

[Chapter 3] 

In the conventional nonlocal theory, justification of the attenuation functions and asso

ciated internal characteristic length were mainly checked by phenomenological con:,ider

ation based on numerical simulations . Thus, it seems that the conventional attenuation 

functions were introduced as on ly a technique of numerical calcu lations and the justi

fication is not clarified. However, in the present formulation, the attenuation fun ction 

for the considered model of the microdefect is derived rigorously with the method of 

rnicromechanics. 

The numerical results confirm that IFT is able to simul ate localization phenomena 

as well as softening behaviors. Furthermore, it was shown that 1FT can reproduce 

the transition from an axial splitting failure into a shear failure , which is obse rved 111 

triaxial test of actual brittle rocks as the confining pressure is increased. 

The failur e envelopes of actual rocks under compress ion were predicted by 1FT. For 

Westerly granite, the predicted result is plausible for confining pressure ranging from 20 
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to 600 MPa, in which the shear failure mode occurs as the macroscopic failure. When 

the ron fining pressure is greater than 600 MPa, the predicted failure envelope deviated 

from experimental data. This results suggests that, for this range of the confining 

pressure, plastic deformation governs the macroscopic failure instea.d of microcracking. 

The strengths of other kinds of rocks under compression were also estimated. Since 

all model parameters necessary for calculations were not available, the parameters such 

as the density of microdefects and the frictional coefficients were determined so as to fit. 

the numerical results to the experimental data. Although the comparison should not 

necessarily be regarded as a direct upport of the ability of the present theory owing 

to some arbitrary parameters, it seems that the values of the determined parameters 

arc within the reasonable range for the intended applications. 

[Chapter 4] 

It was shown that IFT reproduces typical behavior of creep deformation observed in 

laboratory tests; namely, the primary, secondary and tertiary stages of creep deforma

tion. This suggests that the mechanisms of these three stages of the creep deformation 

are reasonably explained by the present theory. In the primary creep, the crack lengths 

increase rapidly, because the stress intensity factor is nearly equal to the fracture tough-

ness . The transition from the primary stage into the secondary one results from the 

fact that, for the considered rnicromechanical model, the stress intensity factor de

creases with increasing the crack length under constant stress states. As the cracks 

grow further, the effects of interaction among microdefects on the crack growth become 

dorninant and thereby the crack growth in certain zones is acce lerated, which is the 

main mechanism of sleep increase in strain during the tertiary creep. 

In the numerical calculation, the eventual macroscopic failure following the ter

tiary creep is reproduced by unstable increase in crack lengths (damage parameters). 

The time to failure decreases with increasing the normalized stress difference, which 
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tendency agrees with experimental results. 

[Chapter 5] 

!FT for granular materials reproduces localization phenomena, such as shear band for

mation observed in actual sand samples under compressive stress states. ln addition, 

the damage softening behavior is simulated. However the inelastic deformation cal

culated by 1FT is considerably smaller than experimental results observed in plane 

compression test of actual sands. 

6.3 Future Directions 

The major work done in this research is to develop a continuum theory for localization 

phenomena in the framework of a rnicromechanics-based approach. In addition, the 

mathematical structure of the continuum theory ruled out phenomenological features 

as much as possible was discussed. Since there is a lot of future improvements in 

the proposed theory from the practical point of view, the proposed theory may be 

regarded as a trial theory rather than a practical ly usable one. However, even rn 

formulation of practical theories, it is important to consider the mathematical structure 

resulted from rnicromechanics-based formulation, because the merely phenomenological 

approach often brings about no essential structure. 

In the following, the improvements in the present theory from practical point of 

view are given, in which the formulation based on more or less phenomenological con

sideration is needed. 

(a) Effect of plasticity and finite deformation 

As mentioned in section 3.6 and 5.4, it is necessary that the effect of the plastic defor-
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mation of matrix is taken into account in ord er to consider the behaviors of sand and 

even rocks under high confining pressure. Moreover, to describe the coupling behavior 

of plasticity and damage due to microdefects, the problem should be formulated with 

deformation theory conoidering geometrical nonlinearity. In fact, the cont inuum theory 

in which both microcracking and plasticity are considered as sou rces of the inelastic 

deformation has been proposed by Dragon and Mr6z [1979]. In the present theory, 

the estimation of the effects of interaction among microdefects is based on the princi

ple of superposition, in which the matrix of materials is ass umed to be linear elasti c. 

Thus, it is difficult to include the effects of plasticity and geometrical nonlin earity in 

the straightforward way. However, if the principle of the superposition is assumed to 

hold within incremental or rate quanti ti es such as the Jaumann rates, the consistency 

equation can be rewritten for the rates, and thereby these effects can be taken into 

account. 

(b) Effect of rotation of the principal axis 

To simulate behavior of materials under complex loading paths including the rotation of 

the axis of principal stresses, the effect of the rotation on the orientation of microd efec ts 

must be considered. Even if the rotation of the principal axis due to ex ternal loading 

does not induced, once the localization of deformation occurs, the distribution of stress 

varies. Accordingly the direction of the principal stress is changed from that at the 

initial loading stage. In the present theory, the effect of the rotation of principal 

axis on the orientation of microdefects is neglected for simplicity. The orientation of 

microdefects is fixed to the same orientation as that at initial loading stage. On of the 

methods of considering this effect is to express the damage parameter as a tensor fi eld 

instead of the scalar field considered in the present theory. Another method which have 

been proposed to consider this effect is to introduce the probability density fun ction for 

th e orientation of microdefec ts. The introduction of the tensorial damage parameter 

and the probability density function has been reported by Murakami [1983] a nd Wohua 

125 

and Valliappan [1990a,b], respectively. 

Apart from practical poit of view, one of issues of interest is the selection of the 

solution paths. As with other continuum theories which can reproduce locali zation 

phenomena, the present t heory reproduces localization phenomena as bifurcation of 

the solution path. At the bifurcating point, the uniqueness of t he solution docs not 

hold and the stability of the solution is changed. In the framework of plasticity, Hill 

[1958] presented the conditions for uniqueness and stabi lit y of boundary-value problem 

of rate- independent solids. Recently, Nguyen [1985, 1987] presented an a lternative 

formulati on of these conditions for the evolu tion of a class of generali zed stand ard 

systems in which the irreversible process is character ized by normality and convexity 

in the context of thcrmomechanics (not in t he context of plasticity). This class includes 

not only classical plasticity but also crack extension in brittle solids a nd brittle damage 

[see also Maugin, 1992] . It is necessary to consider this type of stability criterion based 

on thermomechanics in order to examine rigorously which of the so lution paths are 

selected at bifurcation points . An extension of the present study to include the stability 

criterion will be of further interest. 
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