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Introduction 

The theme of this paper is the optimization of the active tuned mass damper 

(TMD) , otherwise known as the dynamic absorber which has been a well 

known vibration control tool among mechanical engineers for many years. The 

history of the dynamic absorber can be traced back to the invention by Frahm 

(1] in 1909. It is a tiny little oscillator, which is composed of a mass and a 

spring, for the purpose of reducing the response vibration of a relatively large 
mass system subjected to a sinusoidal excitation. Later, this intriguing device 

came to be known as Frahm's dynamic absorber. 

In 1928, there was a paper written by Ormondroyd and Den Hartog [2] 

who first studied this device theoretically. They discovered the fact that the 

addition of a damping material to the dynamic absorber significantly enhances 

the vibration control performance under a harmonic excitation. Their 

contribution to the refinement of the device was significant, and it came to be 

known to engineers and scientists after the first edition of Mechanical Vibration 
was published in 1934. The importance of their work does not only consist in 

the refinement of the dynamic absorber but in the development of a general 

optimization method in the frequency domain. This optimization procedure, 

however, had a rather unexpected depreciation in spite of its remarkable debut. 

It was never regarded as a general methodology applicable to other types of 

optimization, much less to active control. 

As far as the active vibration control of building structures is concerned, 

the concept of the method was first pointed out by Yao in 1972 [3]. The 

importance of his paper li es in the positive suggestion of the active control as 

one of the seismic design methods at the time when nobody had the slightest 

idea of replacing the matured structural design methods by an act ive control 

approach. Little attention was paid to his work until 1977, when MTS System 

Corporation (a hydraulic power system e ng ineering company) installed a 

passive TMD into a high rise building (John Hancock Tower 60-story or 240 
meters high) in Boston. Their system used a hydraulic actuator as a damping 

material. Two identical machines were set on the 58th floor to attenuate the 

response vibration induced by strong wind blows. The auxi li ary mass weight 

of each machine is approximately 300 ton, which is just a huge lum p mass of 
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lead. The details of their work were reported by McNamara [4]. The second 
project conducted by MTS is another passive TMD installed into New York 

Citicorp Center building [5],[6],[7]. The system constitution is almost identical 

to the previous one except that the weight is approximately 400 ton made of a 

concrete block and the lateral stiffness is provided by pneumatic springs. But 

this project might have had a different progress. Lund, who was one of the 

MTS engineers and studied the feasibility of active control , wrote a paper 

associated with this project [8]. According to his paper, it is clear that he tried 

to increase the amplitude of the TMD by means of a hydraulic actuator so that 

the control performance would be augmented. This might have been the first 

active control attempt in civil engineering with an actual target project. 

However, he could not explicitly describe a control algorithm suitable for this 

purpose. Instead of working independently, he seemed to have collaborated 

with a research team of State Un iversity of New York at Buffalo. Indeed, 

Lund's work was further studied by Chang and Soong [9]. They regarded the 

active TMD as a typical example problem of the modern control technique or 

the state space method with a linear quadratic regulator. Unfortunately , the 

simple application of the modern control method did not yield a noticeable 
result that could have changed the design of the Citicorp TMD. 

Just a few years prior to this movement in civil engineering field, there 

was a work done by Morison and Karnopp [10]. They were mechanical 

engineers who were interested in the active TMD. Their work was the first 

theoretical attempt to improve the control performance of the passive TMD by 

means of an active device supplemented to it. They employed the modern 

control technique to raise the TMD performance and obtained several 

interesting so lutions by crunching out the Algebraic Riccati Equation. One 
ironical weakness of this sophisticated method is that we could not understand 

what we are doing. Even after we obtain a solution, the physical meaning of the 

feedback gain is far from comprehension. As Morison stated in his paper [I OJ, 

the active feedback gain could not be determined by intuition. And the physical 

meaning of the feedback gain was not even discussed. Indeed, what can be 

obtained by the linear quadratic optimization is a numerical solution for a 

particular problem. As a result, they carne to believe that the active TMD 

operation was completely different from the passive TMD. In fact, they did 
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not notice the fac t that the tuning adju stment was indi spensable fo r the 

optimizati on of the active TMD. 

Thi s is the background of the active TMD research before 1988 . In civil 

engineering, meth ods for the attenuation of structural res ponse under seismi c 

excitation did not receive much attention until the importance was recogni zed 

at the time of the 9WCEE (9 th World Conference o f Earthqu ake E ngineering) 

held at Tokyo and Kyoto in 1988 . The Steering Committee of the conference 

organized a speci a l th eme sess ion titled "Se ismi c R es ponse Control of 

Structural Systems" . The sess ion hi ghli ghted recent developments in seismi c 

response reduction and control methodologi es, with emphasis on seismic load 

reduction , seismi c load iso lati on and response contro l [ 11 ],[ 1 2] . Th is even t 

accelerated applicati on projects of active control in c ivil engineering of Japan, 

though the emph as is was more focused on wind blow di sturbances rather than 

ground motion . The first application reported was th e work by Kobori [13], 

fo ll owed by others [14], [15], [16], [1 7] . Since th en, th ere have been numerou s 

works reported with actual appli cati on projects. But most of th em were related 

with specific dev ices o f their ow n and the reported results were onl y num eri cal 

stu dies obtained by way o f solving Ri ccati equati ons. Hence, the analyti ca l 

solutio n fo r th e ac tive TM D was not still ob ta ined in general. And th e 

importance of tuning adju stment was not precisely understood. 

In 1992, it was di scovered th at the anal yti cal solu tion is obtainable if the 

accelerati on of the primal structure is used as the basic feedback gain to control 

the active TMD [ 18] . Accordin g to the modern contro l method, it is imposs ibl e 

to use the acce lerati on signal as a feedback ga in for a seco nd order dyn ami c 

system. Therefore th e modern control technique, e pecially th e optimi zat ion 

procedure , could not be used to derive th e so luti o n fo r the acceleration 

feedback method . The bas ic concept of thi s new control strategy was proposed 

on th e occas ion o f th e Japan National S ymposium o n Acti ve Structural 

Response Control held at Tokyo March, in 1992 [1 8]. The conci se version of the 

paper was presented at the First European Conference on Smart Structures and 

Materi a ls he ld at Glasgow [19] . The ex perim ental results were al so reported at 

the First International Conferen ce on Moti on and Vibration Control held at 

Yokohama in 1992 [2 1] . 
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The acceleration feedback method clarified the physical meaning of the 

active TMD operation, and revitalized Den Hartog's method. Several enigmatic 

problems that had never been explained properly were analytically solved and 

expressed in a closed form solution. The formulation of the solutions and the 

configuration of the response functions are simple, precise and beautiful. The 

optimum tuning adjustment for the active TMD is made clear in comparison 
with the passive TMD. The minimization of control force, power, and energy 

is also achieved by the acceleration feedback method. This paper devoted 90% 

of its contents to the explanation of the acceleration feedback method, and 10% 

to the introduction of a remarkable invention, the composite TMD, which is 

related to this algorithm. 

Independently from these movements taking place in the mechanical and 

civil engineering fields, the composite TMD was invented by Yamada [21] in 

1986. The remarkable idea which makes this invention unique is the 

replacement of the reaction control force by the inertia force created by the 

motion of additional secondary mass actively mounted on the passive primal 
TMD. From the very beginning, Yamada apparently recognized the intrinsic 

essence that is indispensable for controlling the active TMD in general. The 

possibility of considerable reduction of the active control force and power was 

suggested by the application paper of the invention submitted to the Japan 

Patent Bureau . However, the suitable control algorithm for the device was 

unknown at that time, mainly because the displacement required for the active 

secondary mass would be very large if the modern control method was simply 

applied. This invention motivated a research to find the general analytical 

solution for this problem. The acceleration feedback algorithm was later 

recognized to be an appropriate control law for the composite TMD . The 

replacement of the reaction force by the inertia force was clarified in the paper 
[23], followed by other papers [24],[25] . Then the appropriate control algorithm 

for the active-passive composite TMD was procured, though further study will 

be necessary for identifying the closed form solution. 

This is the brief history of the tuned mass damper and the background of 

the research of this paper. In recognition of the weak points of both the 

classical passive TMD and the modern control method, the author attempts to 

improve the control algorithm of the active TMD so as to make it one of the 
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feasible choices for vibration control of large civil engineering structures. It is 

true that the tuned mass damper can reduce only one modal vibration of a 

multi-degree-of-freedom system. But the first modal vibration has a 

predominant importance for many cases. Therefore, in this paper a single­

degree-of-freedom model is thought to be a target system for the active TMD. 

The followings are the issues of this research. 

1. It is natural that the response motion of the auxiliary system is 

enlarged as a result of active control, whateve r the control 

algorithm may be. Hence it is important to reduce the auxiliary 

system response as much as possible without degrading the control 

effect. 

2. Only numerical solutions are available, if we faithfully follow the 

modern control method which does not explain the physical 

meaning of th e active TMD operation. Hence it is aimed that the 

optimal control algorithm is established to obtain a closed form 
solution that can physically explain the operation of the active TMD. 

3. When the active control method is applied to a large civil 

engineering structure, it is indispensable to reduce the control force, 

power, and energy as much as possible without degrading the 

control effect of the active TMD. The stiffness and damping 

parameters of the device will be optimized so as to reduce th e 

control requirement. The derivation of the formulae will be 

carried out in the frequency domain under a white noise excitation 

as well as a harmoni c excitation. 

4. The effect of disturbance excitation acting on the building 

structure is considered for the above optimization process. First, 

the physical meaning of th e acceleration feedback method is 

clarified under a harmonic excitation. Then, the optimum tuning 

frequency and dampin g factor arc obtained both under a harmoni c 

and a white noise excitation. Finally, the difference between the 
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wind blow di sturbances and the earthquake ground motions is also 

considered for the parameter optimization. 

5. There will be carri ed out numeri cal calcul at io ns to veri fy the 

stati sti ca lly ex pected co ntrol performan ce of th e accelerati on 

feedback algorithm. Several recorded earthqu ake di sturbances are 

used to evaluate the control energy minimi zati on in a determini stic 

sense instead of a stochas ti c sense. There will be shown plenty of 

examples th at ca n strongly support th e valid ity of the optimal 

parameter fo rmul ae under earthquake excitati ons. 

6. The feasibility and prac ti cabil ity of th e acti ve contro l method is 

the fin al goal of thi s research . The theoreti cally ex pected control 

perform ance is experimentally verifi ed by a shaking tabl e tes t. 

Attenti on is paid to the preliminary system identif icati on part of the 

tes t, because th e consistency with th e th eory is o f th e firs t 

importance for thi s part of the research. 

In chapter 1 there are introduced and rev iewed th e class ica l passive TMD 

parameter optimizati on and the acti ve TMD optimum control algorithm. The 

analytical optimum olutions are obtained in chapter 2 according to the 

acceleration feedback method. The optimum solutions of the active TMD will 

be shown to have a ph ys ical consistency with the pass ive T MD, whi ch is also 

described in chapter 2 . The solutions are achi eved under several diffe rent 

types of di sturbances such as harmonic , white noise, and non- stationary random 

excitations. The numeri cal so luti ons under several earthquake di sturbances are 

disc ussed in chapter 3 fo r the purpose of verifying the energy equilibrium that 

is predi cted in a probabili sti c sense in chapter 2 . Finall y, th e theoreticall y 

es tim ated vibrati on control perfonnance is experimentall y studi ed in chapter 4. 

The experimental results are asserti ve and encouraging so th at the accelerati on 

feedback method is seen to be the most effecti ve and feas ible contro l algorithm 

for the active TMD . 

Isao Ni shimura 
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Chapter 1 

Review of the Past Methods 

The pr inciple of a vibr at ion absorber or a tuned mass damper (T MD) has been 

widely known as one of the passive vibr ation contr ol methods for many year s 

[ 1], [2] (Figur e 1.1) . It is said that the ori ginal T MD (without damping 

instr ument) was invented by F rahm in 1909 [ !]. T hen, it was intensively studied 

by Ormondr oyd and Den Hartog, who suggested the opti mum tuning 

adj ustment and dampin g selecti on in the fr equency domain . In thi s chapter , the 

method initi ated by them is r eviewed to examine the feas ibili ty of the passive 

TMD appli ed in to large building structur es. T hen, the weak poin ts of the 

device are stated for the purpose of improv in g the T MD contr ol perform ance. 

The acti vely con tr olled TMD was pr oposed by Mori son and Karnopp in 

1973 [ I OJ (Figur e 1.2). They studi ed th e dynami c behavior of a primal system, a 

sin gle-degree-o f-fr eedom system, with an acti vely con tr oll ed tun ed mass 

damper mounted on it. The contr o ll er was supposed to generate an adequate 

fo rce to activate the auxiliar y mass so th at the vibrati on contr o l per fo rmance of 

the TMD coul d be augmented . The theoreti cal tool adopted in their r esear ch 

was the modern contr o l technique descri bed in the state space or in the time 

domain . They empl oyed the linear quadr ati c optimum regul ator to specify the 

feedback gain s for contr olling the TMD. Alth ough the system constituti on of 

their active TMD stemmed from the c lassical pass ive TMD, there was no 

conti nui ty between the two methods. As a maller of fac t, the tuning adj ustment 

was not even thought to be indi spensab le fo r their active TMD algori thm . 

In the civil engi neering field, Lund was one of those who fir st studi ed the 

feasib ility of the acti ve TMD by using an actu ator and a pneumati c spring [8] . 

Hi s idea was furth er in vesti gated by Chang and Soong who, however , onl y 

appli ed the linear quadr ati c optimum contr o l law to determine an appr opriate 

feedback gain for the acti ve T MD [9] . So, they did not optimi ze the TMD 

parameter s, just li ke Mori son and Karnopp. In thi s chapter , the modern 

control method is r ev iewed and its weak points ar e clar ifi ed in order to 

develop an altern ative ac ti ve contr o l a lgorithm. 
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1.1 The Principle of Passive Tuned Mass Damper 

We suppose that a large lumped mass model with an auxiliar y system, which is 

a passive TMD, is subj ected to an external di sturbance. (See F igur e l.l. ) The 

equations of moti on of the system are given below. 

{ md~! +x)+ cdy +kdy = 0 
m x +k x -cdy- kdy = J.vCt) 

where md : Mass of the auxili ary system 

kd : Stiffness of the auxiliary system 

cd : Damping coeffi cient of the auxil iary system 

m : Mass of the p1imal system 

k : Stiffness of the p1imal system 

j ,J t) : External di sturbances applied to the mass of the primal system 

(ll) 

(12) 

If the natural fr equency o f the auxiliary system is close to th at of the primal 
system, the moti on of the TMD mass has appr ox imately 90° phase lag behind 

the pr imal system vibr ati on. Therefore, the inertia force created by the TMD 

mass moti on wor ks as a damping force on the prim al system. Thi s is the basic 

principle of the passive TMD. However , its contr ol performance is not so 

easily attained in th e real world. In thi s secti on, the work done by 

Ormondr oyd and Den Hartog is briefly revi ewed to clarify the weak points 

associated with the device. The optimi zation of the TMD parameter s is 
conducted after intr oducing the following notations and substitutions for the 

sake of continuity of the latter part of thi s paper. 

Natural frequency of the auxiliary system : w1- {k; 
~-v ~ 

(1 3) 

Natural freq uency o f the p1i mal system : ( 14) 

Mass rati o (1.5) 
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Frequency rat io : 

Damping factor : 

We supposed that J,vCr) is a harmonic excitation given by 

f)t) = m Cm/ F eiwr 

In this case, the soluti on can be shown to have the form 

x(t) = X eiwr 

{ x(t) = imX eiwr 

x(t) = - m2X e'wr 

Primal system response : 

y(t) = y eiwr 

Auxil iary sys1em response : { y(l) = imY eiwr 

);(I)= _ cJy eiwr 

where m : Excitation frequency 

F: Complex amplitude of the excitation 

X: Complex amplitude of the primal system response 

Y: Complex amplitude of the auxiliary system response 

After some manipulati on of the prev ious equations, we obtained 

-/2+~2+2/~Tii 
y 0 

-pf2 X F 

where Normalized excitat ion frequency 
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which can be solved and we obtain 

The frequency response of the primal system: 

I~/ en= (112) 

The frequency response of the auxiliary system: 

(l.l3) 

Then, the optimum parameters are defined in such a manner that the peaks of 

the primal system response curve are reduced as much as possible. (There are 

two peaks in the response curve. See Figure 1.3.) Thi s optimization 

meth odology is to be referred to [1], or other text books [26],(27]. The 

classical optimum parameter formulae are cited and given by 

( 1.1 4) 

3 
(115) 

(l.l6) 

where ~opt : Optimum tunin g freq uen cy rati o 

!)opt : Optimum damping factor 

Ctmax : Optimized maximum response of the primal sys tem 
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1. 2 Response Peak of the Auxiliary System 

fn thi s section , the auxili ary system response is considered as an optimization 
index. It is understood from ( 1.13) that the au xili ary system has a locked poin t 
at the frequency 

Then, the locked response is given by 

f3 max 
I + J.i 

J.1 

( 1.1 7) 

(118) 

No matter how large the damping factor T/ opr may be, the peak of the auxiliary 
system response is not small er than the value specified by (11 8) . Therefore, 
there exists th e minimum damping factor that pl aces th e maximum response of 
the auxili ary system equal to !3max at /3. After some manipulation of (1.1 3), the 
minimum damping factor according to the definiti on above is obtained and 

given by 

11 opr =~= (119) 

The damping factor according to (1 .19) is larger th an th e va lue specified by 
( 1 15) . However, thi s small di screpancy between ( 1.1 5) and ( l.l 9) does not 
signifi cantly influence the primal system response. It is true th at the peak of the 
primal system is just a littl e more reduced according to ( 1.1 5) rather than ( 1.19), 

but th e damping augmentati on makes the TMD performance more robust in 
case of a poss ible mi ss-tuning adjustment, which makes ( 1.19) more favorable 
from an engineering poin t of view. An example numeri cal study is conducted 
to show the difference between the two equati ons. The optimum parameters 
according to ( 1. 14)-( 1. 16) under the mass ratio f.1 = 0.02 is given in Table 1.1 , 

where the altern ati ve optimum value due to ( 1. 19) is al so indica ted. The 
response curves of the primal sys tem due to ( 1. 15) and ( I. 19) are shown in 
Figure 1.3, whil e the correspond ing auxiliary system responses are shown in 
Figure 1.4 . 
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T bl a e l.l 0 1pt1mum p arameters f or a p assJVe TMD 

Mass rati o Optimum Damping ratio Damping ratio 

J.1 
frequency ratio Eq .( 1.1 5) Eq.( 1.19) 

C.o'Jt T7ont _T/o )/ 

0.02 0.980 0.0857 0.099 

It is important to point out that the peak of th e auxiliary system response is not 

less th an the va lue specified by ( 1.1 8) regardless of the damping fac to r. In 

c h a p te r 2, we will di scuss the active TMD algorithm to improve th e 

perfo rm ance and it will be shown that the pea k of the ac ti ve TMD auxili ary 

system is kept at th e same value g iven by ( 1.1 8) in spite of the feedback gain. 

The optimum dampin g fo rmul a ( 1.1 9) is reconsidered in section 2.3, where the 

ac ti ve TMD parameter optimization is discussed. 

1.3 Weak Points of Passive Tuned Mass Damper 

The class ical passive TMD has severa l weak poin ts, especiall y when it is applied 

to a lar ge civil engineering structure such as a high rise build ing. In thi s 

secti on, these weak points inherently associ ated with the device ar e pointed out 

with the purpose of improving the TMD contr o l performance. 

I . The effect of the passive TMD solely depends on the mass r ati o J.1 , which is 

usual ly ver y small because of a large weight o f the primal structur e. 

2. When J.1 is small , the optimum damping 7J opr is al so small. Hence it is 

pr acti call y di f ficult to adjust WrJ to the optimum fr equency . Because the phase 

response cur ve of the auxiliar y system sharply var ies around the natur al 

frequency . Just a small deviati on fr om th e optimum frequency r esults in a 

signifi cant loss of the contr ol perform ance. There fo re the theoreti ca ll y 

expected control effect is hard to achi eve. 
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3. The smaller the damping factor T/opz is, the longer time the auxiliary system 

takes until it reaches the steady state response condition. Hence, at the 

beginning of the disturbance excitation, it does not work effectively to suppress 

the response motion of the primal system. 

4. When J.L and T/opz are small, the auxiliary system response becomes very 

large. Because the auxiliary mass won't stop quickly on account of the small 

damping. The free vibration continues for a long time even after the 

disturbance input recedes from the primal structure. So the unnecessary 

response motion of the TMD is inevitable under random excitations. 

All the above weak points are removed, if the mass ratio of the passive 

TMD is quite large. If the mass ratio f.L exceeds a critical level, the tuning 

adjustment is less important. In fact, there is a paper by Akiyama who studied 

the elasto-plastic damping given to the passive TMD which is roughly tuned or 

even not-tuned intentionally [39). His attempt is based on the empirical 

recognition that the energy input into a structure under earthquake disturbances 

is quite invariant or not much influenced by the material non-linearity of the 

target system [38]. Hence, if the total input energy is mostly dissipated at the 

top story of a building structure, the rest of the frame work is expected to 
remain intact after the event of a major earthquake. According to his study, 

the minimum required mass ratio for such a large TMD is roughly more than 
0.1, which might be one whole story or two, which will be additionally 

constructed to the top of a building structure. 

On the contrary, the active control aims to compensate for the weak 

points of the passive TMD without increasing its actual weight. fn the coming 

section, the active control approach is reviewed to make clear the difference 

from the passive TMD optimization. 

1.4 Active Control by the Modern Control Method 

An actuator as a control device was installed between the primal and auxiliary 

systems and was first investigated by Morison and Karnopp . This is the 

actively controlled TMD configuration long investigated by many researchers 

ever since then (Figure 1 2). The theoretical methodology adopted by them 
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was the orthodox modern control approach, which is briefly reviewed in this 

section. 
In general, it is possible to place the closed-loop poles of the 

characteristic polynomial of the system anywhere we wish them in the complex 

s plane, provided that all the necessary state variables are accessible for 

measurement and the controller is placed at a position where the system is 

controllable. The location of the closed-loop poles is a matter of significance, 

because it can completely specify the characteristic polynomial of the system 

dynamics. Therefore the purpose of the modern control technique is nothing 

more than a relocation of root locus by feedback method. 

Although the zeros of the closed-loop transfer function (root locations of 

the numerator of the Laplace transform of the system function) also play an 

important role to specify the dynamic behavior of the system, they have 

received little attention until recently. In fact, the optimization of controller's 

location, the optimization of the controll ers' power and energy, the effect of 

disturbances on the system response are the typical problems that should have 

been more seriously . 
To illustrate those left over problems associated with the conventional 

linear quadratic optimization approach, the state space method is simply applied 

to the active TMD and the optimum solution is reviewed. This section's 

formulations and derivations are mostly referred to [31] , [32]. The equations of 

motion of the active TMD are given by 

.. .. . 
{ md (y + x) + cd y + kd y + u(t) = 0 

m x + k x - cd y- kd y- u(t) = f..,(t) 
where u(t) : the control force applied by an actuator 

(120) 

( 1.21) 

According to the modern control linear quadratic optimum formation, the 
disturbance excitationf.v (r) is supposed to be zero. Then, the above equation is 

converted into 

{x (t)} = A {x (t)} + B u(t) (1.22) 

- 10-



where 

A= , B= 
(1.23) 

y y 

{x(t)} 
X {.~(t)} 

X 
( 1.24) 

y y 
.. 

X X 

I ,, m, l = [ c" 0 I [ kd o I 11 o J M= ' c 0 0 K= 0 k , ! 01 rnd m+md 
(1.25) 

It is noted that the control algorithm accordin g to the modern control 

technique, in general, is given by 

u (t) = - G {x (t)} ( 1.26) 

The gain matri x for this particular problem is 

( I 27) 

With the control law of (1.26), (1.22) becomes 

{.~(t)} = A c {x(t)) (1.28) 

where 
A c =A - B G ( I 29) 

so that the characteri tic polynomial for A c is g iven by 

or equ ivalently 
( I 30) 
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These coeffic ients of a1- a4 are the fun cti on of feedback gains. If we select the 

four gains properl y, it is possible to locate a ll the coeffic ients anywhere we 

wish them to be. Thi s system has the 4- th order dynami c matri x A given by 

( 1.23) and th e charac teri s ti c po lynomi a l by ( 1.30), whi ch means the 

characteristic equati on has 4 poles in the complex s pl ane . And there are also 4 

state variabl es avail abl e for feedback control as indicated by (1.27). Therefore 

they can comple tely specify the location of the po les of the system transfer 

function. The onl y questi on raised here is where they should be placed . A 

customary answer to thi s questi on is given simpl y by solving the well known 

Ri ccati equ ati on. To simplify thi s problem, the steady state so lu tion or the 

Algebra ic Ri ccati Equati on is rev iewed and an example solu tion for thi s 

partic ular acti ve TMD is demonstrated in th e foll owing section. 

1. 5 Linear Quadratic Optimization and Pole Placement 

In a general sense, there are several reasons for seeking an optimum controll e r. 

According to the modern control theory, it is poss ible to place the closed-loop 

poles anywhere we want th em to be in a sing le-input and single-output system, 

prov ided that the system is controll abl e and observable (32] . However, as was 

pointed out in Mori son's paper, it is hardl y possibl e to use one's insight to find 

the desi rabl e closed-loop pole locati ons for th e acti ve TMD. 

Another reason for seeking the optimum contro l is th at in a multipl e-in put 

or multiple-output system, it is not genera ll y poss ible to compl etely specify the 

pole locations of the closed-loop. Because in a case of k-th order system with 

m -in puts th ere are km parameters to be de termined, but there are onl y k 
poss ibl e closed-loop pole location s. There are too man y ways to rea li ze th e 

controll er wi th th e sam e closed-loop po le loca ti ons. Obvio usly, in thi s 

particul ar acti ve TMD case, th e ta rget sys tem is 4- th o rder with onl y one 

con tro ll e r. And a ll th e access ibl e sta te vari abl es are the di splacement and 

veloc ity of the prima l a nd a uxili a ry sys tems, in other word s th ere are 4 

var iabl es avail able for feedb ac k qu antiti es . There fore, in thi s parti cul ar 

probl em there is no such problem o f too much freedom as in a general case 

whi ch necess itates a procedure to dimini sh thi s c um berso me s itua ti o n. 

Seemingly thi s is a lucky situation for the ac ti ve TMD optimi zati on. But careful 
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consideration is necessary . The above condi tion does not mean that 4 variables 

are necessary to specify the characteristic polynomial of the optimum 
dynamics. There is a possibility that only one variable is enough to obtain the 

optimum feedback algorithm. The linear quadratic regulator method, however, 

does not answer this problem which is discussed in the next section. 
In this section we treat the first order differential equation in a general 

manner to trace the optimi zation procedure according to the modern control 

theory so that Morison's active TMD optimization process is reviewed. The 

dynamic process considered here is 

{x (r) l = A {x (t) l + s u (t) ( 1.31) 

The gain matrix we wish to determine is 

u (t) = - G {x (t)} ( 1.32) 

Substitution of (132) into (131) yields 

(133) 

where 
Ac =A -BG ( 1.34) 

In this particular case, Ac is a constant matrix so that the state transition matrix 

is given by 

{x(r)} =eAc(r-r){x(t)) 

The target performance index is expressed in a quadratic form as 

1 = f[ {x(r)} 1 Q{x(r)} + u(r)Ru(r) ]dr 

= f[{x(r))' (Q +G'RG) {x(r)}]dr 

where r : the initial time when the disturbance begins. 
T- t : the duration while the system is interesting. 

- 13-
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The optimum feedback gain C is so determined as to minimize the above 

performance index where Q and R are the weighting matrices according to 
the desired control performance. Using the state transition matrix , (1.36) is 

converted into 

I or {x {t))' [''"'- "l'(Q + G' R G ) [,',<' -"] {x (t))ldT 

= {x (t)} I J r [ l~(T - I) (Q + C I R C ) eA c(T - I) ] dr {x (t)} 

={x(t)) 1 M(t,T){x(t)) (137) 

where 

M(t ,T)= JreA~(T - I)(Q+C 1 RC )eA c(T - I)dr (1.38) 

{ x(t)} t : transpose vector of { x(t)} 

C t : transpose matrix of C 

For the purpose of finding th e optimum feedback gain C , we must minimize 

M by selecting A c , or the re sulting closed loop dynamic matrix. 

Differentiating ( 136), we obtain 

but, from (1.37) 

dJ 
dt 

therefore 

dJ dt = -(x(t))
1
(Q+ C

1
RC ){x(t)) 

. I ldM . 
{x(t)) M {x(t)) + {x(t)) dt {x(t )) + {x(t)) 1 

M {x(t)) 

I I dM 
- Q - C RC =Ac M+ -

1
- +MAc 

G I 
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o r 
d M I Q cl -dt =MA c + Ac M + + R C 

This equation is to be sati sfi ed by M under the conditi on of 

M ( T, T) = 0 

If we wish to minimi ze the index in case of steady state conditi on or 

then , M should be constant o r 

or ( 1.42) is con verted into 

dM = O 
dt 

( 1.42) 

(1.43) 

( 1.44) 

( 1.45) 

(1.46) 

Suppose that we have the optimum Copr and the minimized Mm;11 , then the other 
cases are 

{ M ~M111 ;, +bM 
C - Copt+ 8 C 

Substitution of ( 1.47) and ( 1.48) into ( 1.46) yie ld s 

(147) 

( 1.48) 

(Mm;,+ bM )(A- B C0 p1 - BbC )+(A 1 -C0 p/ B1
- bC1 B1 )( M,1,;, +bM ) 

+ Q + ( C0P1 + bC )1 R (C0P1 + bC) = 0 (1.49) 

On the other hand Copt and Mmin should sa ti sfy 

Subtracting (1 50) from (149), we obtain 
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oM (A- B Gopr- BoG)+ (A'- Gop: B'- 8J'B') oM = 

oG' ( B' M111 ;11 - R Gopr) + (M111 ;11 B - Gop:R) 8J - 8J' R 8J 

which is rewritten as 

oM Ac +A:oM = 
o G' ( B' M111 ;11 - R Gopr) + ( Mmin B -Gop; R) OC - OC' R OC 

(IS!) 

( 152) 

If M,;
11 

is th e minimum so lution , then th e foll owing equation should be 
satisfied from the definiti on. 

{X (t)} 1 M
111

;
11 

{X (t)} ~ {X (t)} 
1 

( M111 ;11 + OM ) {X (t)} 

= {x(t))' M
111

;
11 

{x(t)) + {x(t)) 'oM {x(t)) (153) 

Thi s equation implies that 8M matri x should be positi ve definite for any initi a l 

condition {x(t)} . Recalling Lyapunov equation given by ( 1 54), the theorem 

asserts that if matri x A has its eigen values in the negati ve pl ane, or the system 

is stable, fo r any positive semi -definite matrix Q, th e so lution matrix P is 

positive-definite [31]. 

(154) 

From ( 1.53), 8M should be pos itive, at least, semi-definite matrix. The third 

term of the ri ght hand side of ( 1.52) is to be converging to zero, if G is close to 

Gopr. Hence, th e rest of the two linear term s should be positive and semi­

definite for any g iven 8G in order that the solution matrix 8M should be 

pos iti ve and de finite. In other word s, the followin g equation should be 

sati sfied. 

( I 55) 

Finally it is summari zed as follows. The optimum feedback ga in s Gapr in th e 

steady state is given by 
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( 1. 56) 

where M,,, satisfi es 

( 1. 57) 

where Q and R are g iven in advance, dependin g on the expected control 

performance . T he equ ation (1 .57) is th e well know n Algebra ic R iccati 

Equati on, which can be solved numeri call y by several methods. 

1.6 Numerical Example 

An example calculati on is conducted to clarify the methodology for th e control 

of the ac ti ve TMD. First of all , we should select the parameters fo r a primal 

system. The weight and sti ffn ess of a single-degree-of-freedom model shown 

in Figure 1.2 are given in T abl e 1.2. It is also necessary to specify th e damping 

coefficient and stiffness of th e TMD. The tuning adj ustment is not req uired for 

th is method. Because the feed back gain is expected to adjust the pole location, 

if necessary . Wh at can be obtained by pass ive restorin g dev ices and viscous 

damping materi als can also be achi eved by actu ator's control force. But we 
must be careful to select kd and Cd , because the se lec ti on of the pass ive 

members mi ght effect the control force requirement. Unfortunately, we have 

no leadin g principl e fo r thi s purpose. There have been numerous researches 

carri ed out recentl y in Japan, mainl y from thi s point of v iew ( 14],[ 15],[ 16], [1 7] . 

But the selec tion of these pass ive parameters was intuiti vely conducted in most 

of the researches. Indeed, the optimum parameters of th e passive T MD wi th the 

same mass rati o have been the most e li gibl e and favorab le candidates without 

any reason. Another cumbersome task to be fini shed is the selecti on of the 

weighting matri x and fac tor whi ch are to be given in adva nce . The linear 

quadrati c optimiza ti on is onl y poss ibl e after the we ightin g matri x and factor 

are determin ed. As is seen in th e prev ious sec ti on, th e feedback gain s are 

implicitly re lated to the root location o f the charac te ri sti c po lynomi al of th e 

system. But the feed back ga ins and weighting fac tors do not have a di scernibl e 
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relation. Hence we need to carry out several numerical studies before we come 

to be satisfied with the final result. T here have been carried out several 

calculations until the final satisfactory weighting matrix and factor are found , 

they are determined as 

0000 

Q= 0100 
0000 
0000 

R = 10.0 (!58) 

According to the weighting matrix, it is a imed that the response of the primal 

system is only in consideration, because the factor appears onl y with respect to 

the response displacement of the prima l system. The optimum feedback gain 

associated with the weighting factors given by (I 58) is 

u(t) = 8 I Y + 82 X+ 8~ + 84~ (I 59) 

The system parameters are given in Table 1.2 from which the system matrices 

A, B can be shown to have the values as 

0 0 1 0 0 

A= 0 0 0 1 ,B= 0 
(1.60) 

- 1.01 1.0 -0. 101 0 -101.0 
0.01 - 1.0 0.001 0 1.0 

T bl 1 2 P a e arameters o f an exampl e numerical study of an ac tive TMD 

Auxil iary system Primal system 

11ld = 0.01 111 = 1.00 
Parameters (J)" = 1.00 W0 = 1.00 

k" = 0.01 k0 = 1.00 
Crf= 0.001 
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After substituting ( 1.60) into ( 1.57), we solve it in terms of M 111 ;11 which is given 
by 

Mmin= 

0.000 0.000 0.000 0.031 
0.000 2.484 -0.030 0.002 
0.000 - 0.030 0.000 0.026 
0.031 0.002 0.026 2.534 

( 1.61) 

Numerical calculation is necessary for solving the Algebrai c Riccati Equation. 
The recursive method of Lyapunov equation was used for thi s purpose [31]. 
The final solution M 111 ;11 is a symmetric matrix as shown in ( 1.61). Substitution 
of (1.61) into (1.56) yields 

G apr = [ 0.00 0.306 - 0.00688 - 0.00756] (I 62) 

We came to understand that the tuning adjustment is not requested for thi s 

example problem because the initial stiffness is not changed by g 1 that is zero. 

It is also understood that the active damping factor is approximately 35%, 

because g 3 is -0.00688 . The physical meaning of g2 is not certain . Obviously 

more studies, for example dynamic response analyses under several 

disturbances, are necessary to be content with the result given by (1.62). The 

rest of the task is quite subjective and time consuming before reaching to an 

adequate solution. 

1.7 Weak Points of Linear Quadratic Optimization 

There are several weak points associated with the conventional linear, quadratic 

optimization method by solving Algebraic Riccati Equation to specify the 

feedback gains for the active TMD. First of all, it is impossible to find out the 

optimum pass ive tuning frequency, which was already po imed out by Mori son 

[I 0] . As a matter of fact, it is not necessary to adjust th e natural frequency of 

the auxiliary system to that of the primal system. It is true that this is one of 

the beneficial aspects of the active approach which is free from tuning 

adjustment, but it is important to find out the appropriate tuning frequency for 
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reducing the control force and power necessary for the actuator. This issue is 

discussed in the following chapter. 
Another significant problem associated with the conventional linear 

quadratic optimum law is that the displacement of the primal system is a 

necessary state variable for the feedback quantity. But it is not always easy to 

employ an adequate sensor for this purpose, above all , the displacement signal 

contains quite a large amount of low frequency component which is not a 

useful source for the dynamic vibration control purpose. For example, the 

lateral story drift of a building is caused by a steady constant wind blow acting 

on one side of the structure, which means that the structure's main frame 

should be responsible for resisting such a static load. 

A third problem is that the final result of the feedback gain does not 

explicitly show the physical meaning of the algorithm. As a result, we are 

totally at a loss when to judge the result is acceptable or not. Hence other 

additional numerical studies are necessary to ascertain the optimum solution is 

really satisfactory. Indeed, the control performance, including energy 

dissipation efficiency, is not optimized by the modern control method. 

Moreover, the disturbance influences on the control performance and the 

response of the primal system are totally neglected during the whole 

optimization process, while the passive TMD optimization procedure explicitly 

deals with the effect of the disturbances. According to the modern control law, 

the disturbance is assumed to be zero to obtain the optimum feedback gains. 

This means that the free vibration from a given initial condition is only 

considered for the optimization index. Hence there is no guarantee that the 

solution by the linear quadratic optimization is always appropriate for the 

system subjected to random disturbances such as earthquakes. 

As is reviewed in this chapter, there are many problems that have not yet been 

considered deeply. In the following chapter, we will discuss an alternative 

control algorithm suitable for the active TMD, whose physical function is 

carefully observed to propose a new control algorithm. 
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Chapter 2 

Formulation of the Optimum Control Algorithm 

As we reviewed in the previous chapter, the active TMD has been investigated 

by several people, however, it has been viewed as a simple application problem 

of the state space method with linear quadratic optimization. But there are 

several problems left over and they have not received much attention until 

quite recently. One of these problems is how to operate the machine most 

efficiently in order to subdue the response motion of the primal system . It is 

expected that the response motion of the auxiliary system is ordinarily 

increased as a result of active control, whatever the control law may be. Hence 

it is desired not only to increase the control effect but also to restrict the 

auxiliary mass motion as much as possible. In conjunction with the modern 

control theory, the linear quadratic optimization was favorab ly used to answer 

this problem. But the adequate selection of the weighting matrix and factor is 

another trade off problem to consider, which is a highly subjective matter and 

has no general methods to follow. Another serious problem is that the TMD 

passive parameters such as stiffness and damping can not be generally 

optimized according to this method. These passive parameters play a very 

important role to economize the required control force and power. This 

problem was recently pointed out by several papers [15] , [16] , [17]. However , 

the optimization of these passive parameters have not yet ach ieved by the 

modern control method. 

In this chapter, a unique control algorithm sui table for the active TMD 

is proposed and its physical meaning is explained to clarify the contr ol strategy. 

The theoretically expected control performance and superiority of the 

proposed method are explained in comparison with both the passive and active 

TMDs. This algorithm, which uses the acceleration of the primal structure as 

the main feedback quantity, expli ci tl y treats the disturbance effect to improve 

its control performance. Therefore, it is necessary to consider the influence of 

disturbance excitati ons on the control performance. As the first step, a set of 

optimum parameters of the act ive TMD are obtained under a harmonic wind 

turbulence, wh ich is then replaced by a white noi se disturbance. After th e 

optimum parameters are selected, it is pointed out that there is a way to reduce 
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the control force without degrading the control effect, whi ch is obtained under 

a whi te noise excitation as well as a harmoni c excitati on. As the final step, what 

is pr edi cted in a stochastic sense is numeri call y eval uated under several 

earthquake di sturbances. 

2.1 The Principle of the Absolute Acceleration Feedback Method 

The motion of the passive TMD auxiliar y mass has an approximately 90° phase 

Jag behind the vibr ati on of the primal system. Therefore, the inerti a force 

created by the passive TMD works as a damping effect on the primal system. If 
the motion of the TMD is enhanced by an active device, the contr ol 

per formance of the TMD i expected to increase. This is the basic idea of the 

active TMD contr ol strategy. The equations of moti on of the active TMD 

shown in Figur e 2. I are given by (2. 1) and (2.2) . Substi tuti on of (2 1) into (2.2) 

yields (2 3) . When (2 1) and (2.3) ar e carefully observed, it is under stood that 

the term -md x is an input fo rce to the auxili ar y system and -md y is an output 

fo rce to the primal system. If the auxiliary system parameter s are optimi zed 

in the sense of passive TMD and the input fo rce is increased by means of an 

active contr o ll er, the effic iency of the TMD is expected to increase. Because 

the output force, which actuall y is the damping effect on the primal system, 

will be increased in proportion to the input fo rce. The bl ock di agram s of the 

pass ive TMD and the accelerati on feedback method are shown in Figur e 2.2, 

where the relati on between the two is made clear and the contr ol strategy is 

illustrated. Hence the pr obl em to be considered for thi s al gorithm is how to 

optimize the acti ve TMD in the sense of pass ive TMD. Based on the above 

discussion, a new algorithm given by (2.4) is proposed . 

{ 
m~ y + cd y + k,~ y = - md x + u(t) 

m x +k x -cdy-kdy= f.v(t)- u(t) 

( m + md)x+kx=J.Jt)- mdy 

where G : Feed back gain g : Normali zed feed back gain 
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(2.4) 



ACluator 

m ~ 
fw(t) 

Figure 2.1 Active TMD under Wind Disturbance 
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fw(t) + 

+ 

Primal System Dynamics 

Auxiliary System Dynamics 

me~ y + cd y + k c1 y 
= uJ.t) 

Figure 2.2.a Block Diagram of Passive TMD 

Primal System Dynamics 

up(t) -md x 
(m+mc~)x + k x = up(t) 

+ 

Aux ili ary System Dynamics 

m d y + cd y + kd y 
= uJ.t) 

Figure 2.2. b Block Diagram of Active TMD 
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2.2 Parameter Optimization under Harmonic Excitation 

After substituting (2.4) into (2. 1), we obtained 

{ md y + (md + m g ) x + cd y + kd y = 0 

(m + md) x + md y + k x = fJt) 

(2 5) 

(2 6) 

The frequency responses o f the primal and auxili ary systems are obtained 

according to the same procedur e as the passive T MD under a har moni c 

excitation. All the notati ons and substitutions ar e r eferr ed to the previous 

chapter . We eventuall y obtained 

Frequency response of the primal system : 

' ~'(f) = 
(2 7) 

Frequency response of the auxili ary system : 

(2.8) 

Simil ar to the pass ive TMD optimi zati on procedur e, the maximum fr equency 

response of the primal system is to be minimi zed under a harmoni c excitati on. 

In the long run , it will be shown th at both the primal and auxili ary system 

responses are optimized simultaneously. 

lt is well known that the response function o f the primal system with the 

passive TMD has two locked fr equencies, where the corr esponding responses 
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are not influenced by the damping factor. Similarly, the r esponse functi on of 

the pr imal system with the active TMD has two locked points 

(/1 ,a),( h,a), whi ch should sati sfy (2.9). 

(2.9) 

Equ ati on (2.9) is identi cal to (2. 10) which yields (2.1 1). Hence, the two locked 

frequencies JJ,h should sati sfy (2. 12) and (2. 13) at the same time. 

In addition to thi s, the two locked points should have the same response peak a, 
which means (2. 14) or (2. 15) . 

- 1 

1 - ( 1 + p ) (Ji) 2 1 - ( 1 + P ) (/2) 2 

2 2 2 
(/J) + U2l = -.u+J 

Substituti on of (2. 15) into (2. 12) yie ld s 

0 1 -g s-= ---=-­
( p + I ) 2 
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Equations (2. 17) and (2. 18) are the solutions of (2. 11 ) under the condition of 

(2.16). 

(2. 17) 

2 __ 1 [~-J~] uv - I + 11 2 + 11- g 
(2 18) 

Finally, the locked response value a, which is optimized, is obtai ned and given 

by 

Thus, the feed back gain is expressed in terms of CXmax 

Feedback gain : g = 
2+11-11 ama/ 

amnx 2+ 1 

Substituti on of (2.20) into (2.16) yie lds 

Optimum Frequency Ratio : Sopt = 
J I -g 

I + 11 

(2. 19) 

(2.20) 

(221) 

The optimum damping factor is to be determined in such a manner that the 
peak of the response function shou ld coincide with the two locked points under 
the same damping factor. However, th e one which g ives the peak at !1 is 
different from the other one th at g ives the maximum at f2. So, we must be 
content with an approximated value g iven by (2 .22), which has the consistency 
with ( l.l5) of th e passive TMD formula. The author num erica ll y checked the 
validity of (2.22) under vari ous combinations of the parameters and found it 
gives a plausibl e approximation. 

Optimum Damping factor : I) opt = 
3 

4(a111a/+ I) 
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2.3 Numerical Analysis under Harmonic Excitation 

In this secti on, an example numerical calcul ation is conducted to exh ibit the 

per formance of the proposed methodology, whi ch reveal s the hidden 

relationship between the active and passive TMDs that have been regarded as 

independent subjects until recently. According to the given formulae by 

(2.20)-(2.22), an exan1pl e cal culati on is demonstr ated for quantitati ve evaluation 

of the proposed algorithm. Suppose that we want CXmax to be 3.0 (e.g., the peak 

of the primal system frequency response is 3.0), we get the corresponding feed 

back gai n and the optimum TMD parameter s whi ch are given in Table 2.1 

where the mass r ati o is f ixed to 0.01. The passive TMD with the same mass 

ratio is also calcul ated and given in T able 2. 1 for compar ison. The optimum 

dan1ping factor for the acti ve TMD is about 4.5 times as large as th at of the 
passive TMD, whi ch mean s that the free vibr ati on of the acti ve TMD is heavil y 

reduced. And the tuning adjustment of the devi ce is signifi cantly fac ilitated, 

because the phase response curve of the auxili ar y system does not sharpl y 

change around the tuning fr equency on account of the increased damping 

factor. The optimum tuning fr equency of the acti ve T MD is sli ghtly lower 

than that of the passive TMD, which looks simil ar to the situation under a 

passive T MD with a lar ge mass rati o. Hence all of the weak points of the 
passive TMD ar e removed by the acceleration feedback algorithm. 

Equati ons (2.7) and (2.8) give us the fr equency responses of the primal 

and auxili ary systems, whi ch ar e shown in Figur e 2.3.a and 2.3.b wher e the 

passive TMD is also indi cated for compari son. It is understood from F igur e 

2.3. b th at the peak of th e active auxiliary system response is almost equal to that 

of the passive TMD. On the other hand, the peak response of the primal 

system with the ac ti ve TMD is ar ound 3.0, as is ex pected fr om the formul a, 

whil e the passive T MD is about 14. Thi s result indi cates that not only the 

primal system response is optimized but al so the auxili ar y system response is 

optimized as well. Because the peak of the acti ve TMD is not hi gher than that 
of the passive TMD. The reason for thi s incidental optimi zati on is that the 

feedback force basically acceler ates the auxili ary mass whil e th e increased 

damping force restri cts the mass moti on so th at they ar e canceling each oth er at 

the tuning fr equency. Apart fr om the di scussion above, there is another 

important featur e with r espect to the auxiliary system response. It is 
understood from (2.8) that there is a locked point (j), f3mm) , whi ch is not 
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influenced by the damping factor, in the response curve of the auxiliary 

system. In fact, no matter what the damping factor may be, (2. 8) is satisfied at 
the point (j), f3m,") specified by (2.23) and (2.24) . 

where fJII!(IX 

jJ 

!i+l 
f3max = -

11
-

Maximum Response (Auxi liary System) 

Locked Frequency (A uxil iary System) 

1Jopr Optimum damping factor 

(2 23) 

(2 24) 

(2.25) 

This result is impor tant, because the peak response /3111 ar does not contain any 

parameters but mass ratio fl. . Hence thi s equation is not only valid for an 

active TMD but also for a passive TMD. Jt shou ld be also noted that the peak 
response is not less than f3111 ar that is given by (2. 23). Hence there is the 

minimum damping factor th at makes the peak r esponse equal to f3max , which is 

exactly the same as the passive TMD response peak. (See section 1.2.) After a 
long and careful manipul at ion of (2.8), we obtained the optimum damping IJopr 

given by (2 25), which is incidentall y consisten t with ( 11 9). Eq uation (2.25) 

slightly differ s from (2.22), however both of them make no sign ifi cant 

difference as far as the final frequency responses are concerned, wh ich is 

sim il ar to the passive TMD optimum damping modification . (See Figure 1.3 

and Figure 1.4.) 

In the first place, it was thought to be indi spensab le to increase the 

amplitude of the auxiliary system to attenuate the primal system response, but it 

turned out to be also important to r estri ct the aux iliar y system response by 

increasing the damping factor. At the first g lance thi s result seems 

inconsistent , but the cause and effect r elation of thi s phenomenon can 

r easonably explain thi s intri guing r esult as follows. 
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Table 2.1 T he Optimum Parameter s of the Acti ve TMD 

under a har moni c excitati on 

Mass Damping Frequency Feed Back Ma ximum 

Ratio Factor Ratio Gain Res pon se 

ActiveTMD J1=0.01 17 = 0 274 ~ = 0 890 g = 0.192 a=3.00 

PassiveTMD ,u=O.Ol 77 = 0.06 1 ~ = 0 990 a=14.18 

As the primal system starts motion according to the external di sturbance, 

the auxil iar y system also starts vibrati on. At f ir st, the acceler ation feedback 

gai n dr ives the TMD moti on so th at the primal system vibr ation is r educed 

swiftl y. After the response of the primal system is subdued, the actu ator 

generates a damping fo r ce to di ssipate the vibr ati on ener gy that is once 

accumulated in the T MD motion. T he unn ecessary fr ee vibr ati on of the 

auxili ar y mass is qui ckl y r emoved in the above pr ocess so that the efficient 

contr ol per formance is achieved as a result. These two contr ol oper ati ons, the 

dri ving and damping fo r ces, are acting on the TMD simultaneously, when the 

whole system is subjected to r andom di sturbances. If one actuator gener ates 

these two forces at once, the net contr ol for ce will be small er than the or ig inal 

dri vin g for ce. This idea is developed and studi ed in the fo ll owing secti ons. 

2.4 Control Force Reduction under Harmonic Excitation 

The contr ol force r eq uir ed for the acceler ati on feedback method can be 

obtained and ex pressed in a closed fo rm soluti on. The tr ansfer fun cti on of the 

control fo r ce u(t) fr om the di sturbance excitati on fo r ce is g iven below, whi ch 

is directl y obtai ned fro m (2.5), (2.6) and (2.8) . 

U(f) = (2.26) 

where Ulj) : Frequency response of the conu·o1 fo rce from disturbance force 
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Considering the physical principle of the control algorithm, we can naturally 
expect that the combination of the damping force c" y and the driving force 

g; will be smaller than the original feedback control force by (2.26). The 

simple explanation for this reasoning is that the driving force is supposed to 

accelerate the TMD mass while the damping force subdues its motion, which 

means that they are canceling each other in a rough sketch. Hence the control 

algorithm is slightly modified and given by (2.27) instead of (2.4). 

u (t) = - m g x - g v y (2 27) 

where c + g - c - 2m OJ J; n d v- opr- d o ':>opr 'fopr (2 28) 

Driving control force : -mgx 

Damping control force : 

It is noted that even though the algorithm is modified from (2.4) to (2.27), the 

optimization procedure and its results are not influenced at all by this 

alteration. Because the total damping factor, which is already optimized, is not 

changed, but is partly contributed by the active damping force and partly by 

the passive damper. In fact, there is an optimum combination of the passive 

and active damping factors so that the total control force generated by the 

actuator is minimized. The minimum control force transfer function from the 

external force is given by (2 .29). And the optimum selection of the passive 

damping factor and the active damping force are given by (2.30). 

U(f) = 

(2.29) 

(2.30) 
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For example, the parameters g iven in Table 2.1 are substituted into (2.26) and 

(2.29), then they are compared and shown in Figure 2.4 where a noticeable 

reduction of the control force is seen to be achieved. 
What makes difference between (2.26) and (2.29) is the elimination of the 

second term of the numerator, which means that the zeros of the transfer 

function are shifted to the desired location s. As is reviewed in chapter I, when 

the orthodox modern control method is applied, it is aimed to place the poles of 

the characteristic polynomial to the desired locations which are implicitly 

connected to the feedback gains. Hence the location of the zeros of the 

transfer function is totally neglected by the linear quadratic optimization, 

which means that the control force reduction could not be obtained by the 

conventional active control algorithm. 

2.5 Stability Criterion 

Finally the stability criterion is mentioned. The essential requirement for a 

closed-loop dynamic system is stability . If the real part of all the characteristic 

roots are strictly negative, then the target system is asymptotically stable. 

According to (2.16) the feedback gain g shou ld be less than 1.0, which is (2.31) 

for stability criterion. If the feedback gain g is larger than 1.0, the inertia 

force of the primal system is overwhelmed by the feedback force that makes 

the whole system unstable. 

g< 1.0 (2 31) 

It is to be noted that (2 .31) does not contai n any parameter s, which simplifies 

the stability inspection significantly. It is also noted that the stability is not 

influenced by the parameter optimization at all. Even if the tuning adjustment 

is not precisely conducted, the stability is not at all affected by the possible 
miss-tuning. 
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2.6 Parameter Optimization under White Noise Excitation 

The optimum parameters of the passive TMD under stati onary random 

excitations were di scussed in a stochastic sense by several people [28], [29],[30], 

who studied the effect of disturbances on the optimum damping factor and 

tuning frequency. [n the prev ious sections, we tr eated the active TMD as an 

extension of the passive TMD. [ti s naturally expected that what can be applied 

to the passive TMD is also applicable to the active TMD. [t is noted that the 

actual disturbance acting on the primal system looks more like a random 

process than a har monic or sinusoidal excitation. Hence the expected optimum 

parameters under a stationary random process should be examined in 

com pari son with the optimum formulae under a harmon ic excitati on. 

First, the equations of motion of the active TMD with the acceleration 

feedback term, which have been obtained and expressed in (2.5) and (2.6), are 

converted into a tr ansfer functi on expressed in Laplace transform. 

mds 2 + cds + kd (md +mg)s 2 Y(s) 

O ]FC<l 
md s2 (md + m) s 2 + k 

m 
X(s) 

(2 32) 

Hence the transfer functions of X(s) and Y(s) from F(s) are 

(2.33) 

H,(s) (2.34) 

where X(s) = H x(s) F(s) , Y(s) = H y(s) F(s) 

The excitation is supposed to be a stationary random process. Then the mean 

squar e response of x under a stationary random excitation is 
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wher e £[* ] is the operator which takes the expected value of a random 

fun cti on. If the excitation is a stationary white noise whose power spectral 

density is S0 , then (2.35) is 

(2.36) 

The evaluation of thi s integral can be carri ed out in the compl ex s plane by 

means of r esidue theorem (37] . The closed form soluti ons o f typi cal polynomial 

fun ctions ar e r eferr ed to the Appendix [33]. As a r esult, we o btain 

The optimum tuning frequ ency r atio ~ and damping fac to r 77 ar e the soluti ons 

of the nex t conditi on. 

(2 38) 

(2.39) 

They yield the fo ll owing r elati ons, r espectively . 

4 ry2=-3( 1 + ;.1)~2 + I ? +2+j..l.-g 
( 1 + f..l.)~- 1 + f..i 

(2.40) 

4ry2=( 1 + J..1.)~2+ 1 ? - 2+ p -g 
(l + f..i.)~- I + f..1. 

(241 ) 

Hence we obtain the optimum tuning ratio and damping facto r as 
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T/ opr = 
(4+3,Ll -g)(ji+g) 

8(1 + ,L1)(2 + .u- g) 

(2.42) 

(2.43) 

It is noted that the optimization has been carried out with respect to the 

displacement response x. If the optimization is conducted to reduce the 
velocity response x instead of x, the solutions will be different from (2.42) and 

(2.43). In fact, Warburton showed the optimum parameter s of the passive TMD 
with respect to x as well as x under white noi se di sturbance [28]. 

The index which should be reduced is given by 

The der ivatives of (2.44) with respect to s and 77 should be zero, which are 

given by (2.45) and (2.46), respectively. 

4n2=-3CI+.u)s2+ I +2 o - g )s2 

47]2 =(l+.u)s2 + 1 -2 o- g )sz 

Hence the optimum parameters are obtained as 

I /!!II 
1Jopr=2_v 1-g 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

Interestingly, the optimum tuning frequency is not influenced by the feedback 

gai n g so that the di screpancy between (2.47) and (2.42) becomes larger as the 

feedback gain increases. And thi s trend becomes mor e conspicuous when the 

di sturbance is a harmoni c excitation (See equations (2.21), (2.22)). 
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2. 7 Control Power Reduction under White Noise Excitation 

In section 2.4, we studied the optimum passive damping factor that minimizes 

the required active control force under a harmonic excitation. In this section, 

the optimum passive damping factor under a white noise excitation is obtained. 

Suppose that we have one disturbance excitation acting on the primal structure, 

then it starts motion accordingly . But in the very beginning, the auxiliary mass 

does not move enough to produce control effect, because it takes time until the 

mass reaches the desired level of motion. When the TMD does not move 

enough to attenuate the primal system vibration, the actuator generates a 

driving force to increase the mass motion to improve control effect. After the 

structure motion is subdued, it is no longer necessary to sustain TMD 

vibration . Hence the actuator generates a damping force on the TMD so that it 

comes to halt as soon as possible. Depending on the command signal, the 

actuator switches its function from an accelerator to a brake. In other words, 

if the system is excited by a harmonic disturbance, these two forces cancel each 

other and completely vanish at the tuning frequency ~, which is the physical 

meaning of Figure 2.4 . This reasoning is not, however, proved to be valid 

when the system is under a random type of excitation . But the physical 

function of the actuator should be the same as in the case of a harmonic 

excitation. Therefore it is naturally expected that the optimum active and 

passive damping factors or (2.30) will be also the appropriate values under 

random disturbances. 

In this section, the average rate of energy dissipation due to the actuator 

under a white noise excitation is discussed to prove the above hypothesis. In 

the end of this section, the optimum passive damping factor is obtained from 

the probabilistic point of view and it is seen to be identical to (2.30). First, let 

us reconsider the equation of motion of the active TMD shown in Figure 2.1. 

(2.49) 

Then this equation is interpreted into 

M {ii) + C {v} + K {v) + {b} u(t) = {d)fw(t) (250) 

- 38-



We multiply { v )' from the left hand side of the equation, and we obtain 

( v ) t M ( ii) + ( v ) 1 C { v } + { v } 1 K { v} + { v } 1 
{ b } u (t) = { v} 1 

{ d lf.,(t) (2 5 1 ) 

which yields 

mix +kix +md(x +y )(i +)i) +kdYY + ci:d- yu(t) =x mf..,(t) (2.52) 

Taking the integral of both sides of (2.52), we obtain 

lm(X)2+lkx 2 +lmd(x+y) 2 +lkdy 2+ ( cij) 2dt- ( yu(t)dt 
2 2 2 2 Jo Jo 

= m r xf..,(t) dt 

(2.53) 

All the responses are converging to zero as T comes to infinity, provided that 
the di sturbance f,v(t) is zero before t = 0 and the system dynamics is 
asymptotically stable. Hence the energy equilibrium is obtained as 

(2 54) 

or 
(2.55) 

where 
Ep Pass ive energy diss ipation 

Ec Control energy supplied 

Et! : Disturbance input energy 

Let us think about the next question. Is it possible to select Ctf to balance the 
control energy Ec equal to zero without influencing the control performance 

of the active TMD ? The answer to this questi on is positive, because the 
damping could be partly contr ibuted by the actuator and partly by the passive 
damping dev ice. lf the total damping factor is kept at T/opc specified by (2.22), 
(2.25), or (2.43), then the responses are still optimized. Hence it is possible to 
select the passive cd to balance the di sturbance input energy with the passively 
dissipated energy so that th e control energy integral over the entire excitation 
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period cou ld be diminished completely. Such a condition can be realized if the 

passive damping coefficient Ctf satisfies the followin g conditi on. 

mfo~ ij.,(t)dt 

L~ (j)2dt 

(2.56) 

This is a remarkable result , because the control energy does not exist in an 

average sense over a long period of time. Ther e, however, arises a problem: 

thi s method is a deterministic approach which means that the most appropriate 

damping coeffici ent Ctf can only be determined, if and on ly if we know the 

whole disturbance excitation fw(t) in advance. Thi s is a rather discouraging 

fact , because it is impossible to predict a wind gust before it happen s. 

However, if the input disturbance can be dealt as a stochastic process, there is a 

way to predict the optimum damping coefficient before the event of a random 

excitation, which is the topic for the rest of thi s section. 

If the di sturbance excitation is supposed to be a stochastic process, then 

we cou ld take the ex pectation of both hand sides of (2.52) and we obtain 

E[m"(X + Y )(X+ Y )] + E[mx.X] + E[c,/Y)2
] +E[k"YY] + E[kxx] 

= E[Y u] + E[mx F] 
(257) 

where X, Y , U and Fare random variables of x ,y ,u(t) and f..,(t), r espectively. 
From (2.57), we obtain 

(2.58) 

because E [x.X] = 0 for any random variable X. Hence the damping coeffici en t 

can be selected to dimini sh the control power in the ensemble sense and it is 
given by 

nz E[X F] 
E[(Y) 2

] 
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From here on, we are dealing with (2. 59) to evaluate it in ter ms of the passive 

parameter s under a stationar y white noise excitat ion. Fir st, the contr ol 

algor ithm is modified and given by 

u(t) = - m gx-gvy (2.60) 

which is the same contr o l law as (2.27). After substi tuting (2.60) into (2.49), we 

obtai n 

Y(s) 

X (s) 

where 

The tr ansfer functi on of Y(s) from F(s) is obtained fr om (2 61) and given by 

(2 62) 

wher e Y(s) = H r(s) F(s) 

· Therefore, the mean squar e of the random vari abl e Y is 

(2.63) 

= i~ Hy(iw) H y( - iw) Sr:{w) dw 
r- 2 

S0 J~ I Hl,Jw) I dw 

where the input di sturbance is supposed to be a white noise whose power 
spectral density is S0 , and the system fun cti on H ;.(iw) is specifi ed by (2.62). 

During the calculati on, the power spectr al density of th e white noi se 
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disturbance is supposed to be So, which is r elated to the auto correlation 

function defined by 

Evaluation of the integration of (2.63) is car ried out in the complex plane using 

the residue theorem. The general form of this type of integration is to be 

referr ed to the Appendix. Eventually the result is obtained and given by 

(2.67) 

The rest of the task to be done is to evaluate the numerator of (2. 59), wh ich is 

(2.68) 

(2.69) 

Substitution of (2.66) into (2. 69) yields 

(270) 

Incorporated with (2.65), (2. 70) is converted into 

(2.7 1) 
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Dirac delta function is used to excite the system to evaluate the impulse 

response function. From (2.50) we obtain 

l
iiy(t)l lhy(t) [hy(t)l 

M .. + C . · + K h. ( ) = { d} 8(t) 
hit) hit) X ( 

(2 72) 

where hx(t), h,,(t) are the impulse response functions of x andy, respectively. 

Taking the integrals of both sides of (2.72), we obtain 

J
+£ J+£ J+£ J+£ 

- eM {ii)dt + - e C {li)dt + -e K {h)dt = - < {d) 8(t)dt (2.73) 

then I
+£ 

M {li) - e I

+ £ 

+C{h) _ e ={d) (2 74) 

or M · +C · -h y(+E)l [hy(+E)l [ 0 l 
l~x(+E) hx(+E) - m 

(275) 

The impulse response before applying the Dirac delta function is obviously 

zero, so hx( +E) and hy( +E) come to zero as E comes to zero. Hence we obtain 

I Ji,C +E) 1 [ 0 l 1 [ 
hx(+E) =M- m = mmi1-g) (2 76) 

which becomes 

I. I 1 g h(+") - --y c. 1 f.1 
hx(+E) = (1- g) 

(2 77) 

Substitution of (2.77) into (2.71) yields 
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which means 

Finally (2.59) can be eval uated and given as 

and 

m E[X F] 
cd = E [CY) 2] 

g 
gd = J.1 + gcopr 

(2.79) 

(280) 

(2.81) 

This equation certifies that the passive damping optimum value under a 

harmoni c excitation is identical to the optimum damping coefficient obtained 

under a white noise excitat ion. And also thi s result ascertains that the required 

contr ol energy is expected to be zero at least in a stochastic sense under a 

random type of disturbance excitation. It is noted th at the optimum damping 

Copr does not come in to the whole derivation process as a specif ied value. Hence 

(2.80) is satisfied for any optimum formula (2.22),(2.43), or (2.48) . The average 

energy input into the system brought by the di sturbance excitation is predicted 

by 

E [x Fj = ____!].J_ n S 1-g 0 
(2 .82) 

If the feedback gain is not so lar ge, the total energy input into the system is not 

significantl y influenced by the control performance. 

2.8 Control Force Reduction under White Noise Disturbance 

In the pr ev ious sect io n, we obtained the optimum passive damping factor and 

the velocity feedback gain. Ther e ari ses naturally a question: what is th e 

optimum combination of th e active and passive stiffness ? Tt is obviously 
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possible to adjust the TMD stiffness to the optimum tuning frequency either by 

selecting passive stiffness or by adding active restoring force. Hence, there 

should be a rational and meaningful method that specifi es the optimum stiffness 

value. In thi s section, thi s problem is solved in a stochastic manner and the 

final solution is expressed in a closed form soluti on. First, the control 

algorithm is modified from (2.60) to (2. 83), then the control force should 

satisfy (2.84) because of the equilibrium. 

u(t) = - m gi-g ;y- g dY (2.83) 

(2 84) 

Instead of reducing the control power, it is aimed to minimize the control force 

by selecting an appropriate passive stiffness. Equation (2.84) is always sati sfied 

regardl ess of control algorithm. So, the mean squar e of the control force is 

( u(t) )2 = m} (y +x) 2+ c/ cY )2+ k/ (y)
2 

+ 2mrt:,;j c .Y + x) + 2m,/<.,iY c .Y + x) + 2k,r"Y y 
(2 85) 

The expected val ue of both hand sides of the above eq uation under a stationary 

random excitati on is 

E[ U2]= m} E[( Y +X) 2]+ c/E[(Y)2]+ k/E[(Y) 2
] 

+ 2m,r,l[:Yc Y +X)]+ 2mtf:"E[YC Y +X)]+ 2k,t:c~E[ :Y Y] 
or 

E[u2]= k}E[(Y) 2
] +2k"m"E[Y(Y+X)] 

+ c/E[C :Y )2
] + 2c"'n"E[ Y X]+ m} E [ ( Y +X) 2

] 

(2.86) 

The problem here is how to select kd so as to minimi ze the mean squar e of the 

control force. Therefore, the stiffn ess kct should be selected as to minimize the 

ri ght hand side of (2.86) . The above equation is just a basic quadratic function 

in term s of kd so that the minimum value is obtained by adjusting kct to 
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or 

m,l [ Y( Y + X ) ] 

E[cd] 

mdE[(fi] 
E[(Y)2

] 

m,l[Yx] 
£[CY)2J 

(2.87) 

(2.88) 

These integrals can be evaluated by the same procedure as before. The 

numerator of the second term of (2.88) contains the evaluation of cross power 

spectral density function over the entire frequency range but the integration 

procedure does not change. First, we substitute (2.84) into (2.49) to obtain the 

Laplace transform given by 

=[ 0 ]F(s) (2.89) 
m 

Y(s) 

X(s) 

where 

which yield 

(I- g)s 4 + 2( I + p)Wopr 71 opr s 3+ (w} + (I +p)wo~r) s 2+ 2woprWl1Joprs + Wo~rwo2 

(290) 

H,.(s) 
(1- g)s 4 + 2( I + p)W0pr 11opr s 3+ (w} +(I +p)W0~1 ) s 2+ 2W0 p1W}1J 0p1s + W0~1w} 

(2 91) 

where X(s) = H x(s) F(s) , Y(s) = H ,.(s) F(s) 

The eval uation of these integral s are also referred to th e table of the Appendix. 
The resu lts are shown below. 
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(2.92) 

E[rx] = nS o(2 
1 )(~ - So}r) f10Jopr l7opt g 

(2.93) 

Substituting above equations into (2. 88), we obtain 

(2 94) 

The main contribution is done by the first term of (2.88), while the second term 

is almost negligible. Because the responses of y and x have approximately 90° 

phase difference between the two, which causes the numerator of the second 

term almost zero. In addition to thi s, the magnitude of response x with respect 

to y is relatively small , depending on the mass ratio, so th at the passive 

optimum stiffness specifi ed by (2.88) is very close to the original passive TMD 

optimum stiffness. This is the physical explanation why the active control 

force is r elatively smaller for a hybrid system than is r equir ed for a full active 

system, which was numerically predicted and reported by several papers 

[15],[16],[ 17]. We must be consistent with the type of disturbance, which is the 

white noise excitati on, to obtain the optimum passive stiffness kd . Hence (2.42) 

is subst ituted into (2.94) and we obtain 

(2.95) 

If the tuning adjustment is optimized with respect to velocity .X in stead of 

displacement x, the optimum passive stiffn ess is obta ined by substituting (2.47) 

into (2 .94) . The final formula is g iven by 

k - 1 k d- l _ g opt 
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According to either (2. 95) o r (2. 96), the optimum acti ve stiffness is negative 

rather than positive, whi ch is expected from the configuration of transfer 

function of contr ol fo rce ver sus disturbance force shown in Figure 2.4, where 

the peak of contr ol force in the hi gh fr equency r egion is hi gher than the other 

peak in the lower fr equency zone. Thi s impli es that the passive stiffn ess is so 

selected as to shift the tuning to a higher fr equency, whi ch is specified by the 

second term of (2.88). Hence the optimum active stiffness is to be generated by 

the actuator , which is given by 

(297) 

It is natur al to wonder if there is another way to optimi ze the passive damping 

factor exactly in the same manner as the passive stiffness. In fact, equati on 

(2.86) is also a quadr ati c form in terms of cc~ as well as kc~ so th at the alter nati ve 

definiti on of the passive damping factor can be obtai ned by 

m,l[rx ] 
E[C}i] 

(298) 

According to the defini tion above, the passive optimum damping is so selected 

as to minimize control force r ather th an contr ol power. Hence there are two 

di fferent defini tions avail abl e fo r optimi zing the passive dampi ng factor . 

Equation (2. 98) can be evaluated in the same manner as before and given by 

f.1 
Cd = f.1 + gcopr (2.99) 

Sur prisingly, thi s final result is incidentall y identi cal to the previously obtained 

optimum passive damping value given by (2.80). Hence it is concluded that if 

the passive damping CrJ is adjusted to (2.80), the contr o l power and force are 

si multaneously optimi zed under a white noise di stur bance. Moreover , thi s 

equation is also identi cal to (2.30), whi ch is obtained under a har moni c 

excitati on. Hence, thr ee di ffe rent defini tions for the optimum damping facto r 

incidentally yield the same answer to thi s problem. 
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2.9 Parameter Optimization under Earthquake Disturbance 

So far, we have discussed the optimization of the active TMD under a wind 

blow disturbance, which is either harmonic or random white noise. According 

to the acceleration feedback method, the external disturbance effect on the 

control performance is directly considered and treated in an explicit manner. 

In fact , the supposed excitation is a harmonic disturbance acting on the primal 

structure just like a harmonic wind blow inducing the vibration of the building 

structure, or the stationary random excitation which maybe a better substitution 

for the actual wind blow disturbances. Hence if the excitation is not like a wind 

gust but an earthquake that excites the TMD motion as well as the primal 

system, there arises a suspect that the same control algorithm might be less 

effective for ground motion disturbance. In this section, earthquake 

disturbances are considered to examine the difference between the two types of 

typical external disturbances. The final result ascertains that the same control 

algorithm works favorably for earthquakes as well as wind blows. Developed 

below is the equation of motion of the active TMD shown in Figure 2.5 where a 

harmonic ground motion is acting on the whole system. 

{ m"(y.+x)+c"y+k"y -u(t)= -m<,;c 

m x + k x- cd y- kd y + u(t) = - m xc 

Absolute motion of the primal system response is 

Substitution of (2.102) into (2.100),(2.101) yields 

{ m<l y. + cd y + _kd y = - md z. + u(t) 

mz+k z- cdy-kdy = kxc -u(t) 

Supposed that the ground motion xc is a harmonic excitation given by 

Then, the equivalent control algorithm is modified from (2.4) to 
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u(t) = - g m i = - g m ( x + Xc ) (2.106) 

If the absolute accelerati on of the primal system is employed for the feedback 

signal, the whole optimi zation pr ocedur e is identi cal to what is conducted in the 

prev ious sections under a har moni c wind blow or a stationary white noise 

excitation. Hence the optimum parameter s obtained so far are also valid for 

ear thquake disturbances as well , whi ch is a signi ficant advantage from a 

practical point of view. Because neither the sensing equipment nor the contr ol 

algorithm is to be modifi ed for the two typical types of disturbance excitations. 

However , ear thquake di sturbances ar e a hi ghl y non-stationary random 

excitation. Hence the stochastic appr oach discussed in case of white noise 

excitation in the previous secti ons must be studied numer icall y. 

2.10 Numerical Analysis under Earthquake Disturbance 

The stochastic analysis in the previous secti ons ascer tai ned that the optimum 

passive and active dampi ng combination specified by (2. 30), which is obtained 

under a har moni c exci tati on, is also an appropri ate selection under a whi te 

noise excitati on. And thi s is a r ather surpri sing resu lt because the fi nal 

fo rmu la indicates the average rate of energy di ssi pated by the active device will 

be zero when calcul ated over the entir e di sturbance peri od, if the random 

excitation is an ergodi c process. Thi s result, however , does not imply th at the 

instantaneous power to acti vate the TMD is not r equir ed. As a matter of fact, 

accor ding to the definiti on of the power spectr al density f uncti on in an er godi c 

sense, we have to take infini tely long peri od of time for aver aging the 

responses to evaluate them in the real world . Tn other wor ds, there is al ways 

some amount of power that is necessary for acti vating the mechani sm because 

of the fluctuati on of distur bance input. 

Tn thi s section, several nu meri cal analyses arc conducted to evaluate the 

energy di ssipation due to the actuator , whose feed back gai n and TMD 

parameters are optimized accor ding to the formul ae developed in thi s chapter . 

The par ameters and other specif icati ons are all indi cated in Table 2.2, where 

the optimum damping (both acti ve and passive), the tunin g fr equency, the 
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feedback gai n and the mass r at io ar e all given. Formul ae (2.2 1), (2.22), (2 94), 

(2.99) ar e used for thi s calculation. The ground excitations ar e E l Centr o (NS), 

Taft (NS), and Hachinohe (NS), whose peak accelerations are al l normali zed to 

100 cm/sec2. The feedback gain g is set to 0.03 , whil e the mass rati o f.1 is set to 

0.0 1. As for the numerical computation , the fourth-order Runge- Kutta method 

was employed with a time increment of 0.0 1 second . T he r esulting time 

histor ies ar e shown in Figur es 2.6, 2.7, and 2.8, whi ch are corr esponding to E l 

Centro, Taft, and Hachinohe excitati on, r especti vely. 
As is expected fr om the analytical study, the control energy di ssipation 

converges to zero under any ground di sturbance excitation. Thi s numerical 

result means that (2.56) is actually sati sfied not only under stati onary random 

processes but al so under non-stationary random di stur bances such as 

ear thquakes. Hence it can be concluded that the optimization of the passive 

damping factor in a stochasti c sense is empiri call y proved to be valid for 

appli cation problems in a determini stic sense as well. Thi s conclusion is 

significantly important, because it is possibl e to determine the optimum 

selecti on of passive devices even before we know the entir e pr ocess of the 

ear thquake disturbances and wind blows, which ex pli citl y influence the actu ator 

requir ement and capacity in a determini sti c sense. Ther efore, we can design the 

optimum vibrati on contr o ll er without knowing the di stur bances befor e their 

occurr ence. Judging fr om Figures 2.6-2.8, it is al so under stood that the contr ol 

fo rce is not so much influenced by the selecti on of passive sti ffness, whil e the 

selecti on of passive damping factor is seen to be a sensiti ve fac tor th at heavil y 

changes the contr oll er 's r equir ement especially contr ol power. 

The results of the num eri cal analyses with r espect to the contr ol for ce, 

power and ener gy di ssipated by the actu ator ar e al so shown in Figur es 2.6- 2.8 . 

There ar e two case studies conducted to compar e th e selec ti on of passive and 

acti ve parameter s. The optimum tuning fr equency and the total damping 

coeffici ent ar e exactl y the same for both cases, but the contributi on by the 

acti ve control force is different. Hence the both cases have the same vibr ati on 

contr ol effect and reduce the primal system response exactl y the same amount. 

It is, however, noted th at there is a substantial di fference with respect to the 

active power and energy requir ement between th e two cases. Thi s significant 

discr epancy is caused by the intenti onal mi ss-selecti on o f pass ive dampin g and 

stiffness, or Ctf and kd, so that it is quantitatively shown to be important for the 

active T MD to select the passive par a meters. 
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Table 2.2 Numerical Study Cases with Parameters and Gains 

Parameters and CASE-I 

I 
CASE-2 

Optimum Values Optimum Semi-Optimum 

Primal Mass m (kg) 9.800x JOS 

System Stiffness k (N/m) 3.865 X 107 

Freo. W o (rad/s) 6.280 

Mass 111d (k") 9 .800x J03 

Auxiliary Ratio tJ. 0.01 

System Gain R 0.03 

Opt. Freq. 
Sopr 0.975 

Ratio 

Opt. freq. W opr (rad/sec) 6. 124 

Opt. 
kopr 

Stiffness 
(N/m) 3.68 X 105 

Passive 
kd (N/m) 3.91 X 105 3.68 X 105 

Stiffness 

Active 
gd (N/m) -0.23 X ] 05 0.0 

Stiffness 

Opt. Damp. 
1]opr 0.12 19 

Ratio 

Opt. Damp. 
Copt (N sedm) 1.46x J04 

Coeff. 

Passive 
damp. 

Cd(N sec/m) 0.365 X ] 04 0.0 

Active 

Damp. 
gv (N sec/m) 1. 095 X ] 04 1.46x J04 
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Figure 2.7.a Primal sys. disp. (CASE !) [Taft (NS) IOOgal] 
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Figure 2.7.b Auxi liary sys. stroke (CASE!) [Taft (NS) IOOgal] 
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All the active and passive optimum parameters are selected for ease-l study, 

while the tuning adjustment is completely due to the passive stiffness and all the 

damping effect is generated by active TMD for case-2 study. In other words, 

ease-l is completely optimized, while case-2 is optimized with respect to the 

total stiffness and damping but not to the passive parameters. It is clearly 

shown that the total energy dissipation due to actuator converges to zero under 

the completely optimized parameters, while semi-optimum case-2 requires a 

larger control force, power and energy. 

The actuator is supposed to generate not only a driving force which 

increases the motion of the active TMD but also a damping force which reduces 

the free vibration of the TMD so that the total amount of energy required for 

the active TMD is just for nothing. Because the power required for the 

actuator switches and changes the sign and the total integral is apt to converge 

to zero with reasonable expectation. The rest of the problem to consider for the 

acceleration feedback method is the quantitative comparison with the LQR 

method. The following section deals with this topic and makes clear the 

superiority of the acceleration feedback method over the LQR method. 

2.11 Comparison with Linear Quadratic Regulator Method 

In this section, several numerical calculations are carried out to compare the 

vibration control performance of the acceleration feedback method with that of 

the linear quadratic regulator method. There are two factors taken into 

consideration for evaluating the control performance of both methods: the 

vibration reduction achieved by each method, and the active cost such as 

control force, power and energy required for each algorithm. 

Fist of all, we must determine the equivalent feedback gains for both 

methods. In the beginning, the normalized feedback gain of the acceleration 

feedback method is fixed, then the weighting factor and matrix are varied until 

the Linear Quadratic Regulator (LQR) method achieved the same control effect 

under a selected disturbance excitation. 

As is mentioned in section 1.5, however, there is not a guiding principle 
to determine the appropriate values of kd and Cd, if we follow the conventional 

LQR method. It is necessary to predetermine the passive parameters before 

starting the try-and-error method to decide the feedback gains for LQR 
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method. Many people used the optimum stiffness and damping factor of the 

passive TMD as the initial values for the recursive calculation to solve the 

Algebraic Riccati Equation. In this section's study, the passive TMD optimum 

parameters are selected for the LQR method just like other previous studies. 

Another factor to be considered for is the feedback quantity. In the 

previous section, it is pointed out that the absolute acceleration response is the 

appropriate feedback quantity for the acceleration feedback method under 

earthquake disturbances. It is also aimed that the absolute response of building 

structures under earthquake excitations should be reduced as much as possible. 

Hence, the absolute displacement and velocity are used as the feedback 

quantities for the LQR method. The notations of the response values of the 

primal system are to be referred to Figure 2.5. From the view point of sensing 

equipment, the absolute displacement and velocity are also the appropriate 

candidates for the LQR method . Because the relative response values of the 

primal system with respect to the ground motion are difficult to observe and at 

lease it necessitates additional sensors placed on the ground level to detect the 

earthquake motion. 

It is also important to select the earthquake excitation carefully in case of 
the comparison calculation. The spectrum of the disturbance excitation has a 

significant impact on the response motion of the auxiliary mass system. 

Because the acceleration response of the primal system contains rather high 

frequency component while the displacement response has a large amount of 

low frequency component, when the total system is subjected to earthquake 

excitation . Hence, the analysis under an earthquake disturbance is favorable for 

the LQR method than for the acceleration feedback method. On the contrary, 

wind pressures contain a low frequency component which naturally necessities 

the drifting motion for the auxiliary system more than required for the 
acceleration feedback method. In this section, Hachinohc (NS) Earthquake 

record with the peak acceleration of 100 cm/sec2 is used for the numerical 

analysis. Because the advantage is intentionally given to the LQR method for 

the purpose of this study. 

The parameters and feedback gains for both methods are shown in Table 

2.3. The normalized feedback gain for the absolute acceleration feedback 
method is selected to 0.20. Then , the weighting matrix and factor are varied 

until we obtain the equ ivalent control effect by means of the corresponding 

LQR method . The fina l weighting matrix and factor are also indicated below 
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Table 2.3. The passive parameter s are optimized according to the formulae 

(2.21), (2.25), (2.30) and (2.94) for the acceleration feedback method. The passive 

stiffness and damping factor for LQR method are determined according to the 

pass ive optimum values according to (1.1 4) and {l.IS). 

The numerical results are shown in Figure .2.9 where the primal system 

absolute acceleration responses are indicated for both algorithms under 

Hachinohe Ear thquake (NS). The vibr ation control effect due to LQR method is 

equivalent to that of the acceleration feedback method. There is, however, a 

discernible difference between the auxiliary system responses as shown in 

Figure 2.10. The feedback quantity of the LQR algorithm contains a low 

freq uency component, whi ch r esults in that drifting motion of the auxiliary 

mass which has no contribution to control effect. This low frequency motion 

becomes more conspicuous under wind pressure di sturbances, because they are 

basically a static load acting on one side of building structur es. Hence, the 

unnecessary motion of the auxiliary mass is inev itable for LQR meth od. Thi s is 

an inherent problem associated with the LQR method applied to active TMD 

algorithm. This mean s that the control signal commands the auxiliary mass to 

generate the low frequency force by means of the mass inertia. On the 

contrar y, the acceleration feedback signal contains only th at information 

necessary for r educing the dynami c motion. 

The contr ol device r equir ements are also indicated in Figures 2. 11 - 2.13, 

where the contr ol force, power, and ener gy are compared for both algorithms. 

It is obv ious that the acceleration feed back has favorable results over the LQR 

method with r espect to each item. Especially, the control ener gy necessary for 

the LQR method has a cumulative tr end , while there is a convergence at the 

end of the earthquake for th e acceleration feedback method. Thi s characteri stic 

is numerically evaluated for many parameter cases under several ear thquakes 

in the following chapter. 
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Table 2.3 Parameters and Feedback Gains for LQR method and AF method 

Notations Acceleration Feedback Linear Quadratic 

Method Regulator 

m (kg) 9.80 X 105 

k (N/m) 3.865 X 107 

Wo (rad/s) 6.28 X 105 

lntf (kg) 9.80 X J03 9.80x J03 

kd (N/m) 4.745 X 105 3.79 X J05 

Ctf (Ns/m) 1.67 X I 03 8.58 X 103 

J1 0.01 0.0 1 

~opt 0.886 ---

Wopt (rad/s) 5.561 ---

kopt (N/m) 3.03 1 X 103 ---

T/opt 0.257 ---

Copt (Ns/m) 3.51 X JQ4 ---

Feedback Algorithm u(t) = -mgx- g,.y- g"y u(1) =- g,y- g0x- g,Y- g4x 

8 = 0.20 81 =0.00x J05 

Feedback Gains 8v = 3.34 X I Q4 82 =-9.62xJ06 

8tJ=- 1.714 X J05 83 = 3.53 X JQ4 

R4 = 0.00 X ]05 

0 0 0 
0 I.OE+ S 0 
0 0 0 

where weighting matrix is : Q = 

0 
0 
0 
0 0 0 0 

weighting factor is: R = 1.0 E -6 
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2.11 Summary of the Formulae 

A new control algorithm to improve the TMD performance is proposed and 

the proposed algorithm is physically explained. Both the feedback gain and the 
TMD parameters are optimized in the frequency domain, then they are 
expressed in a set of closed form solutions which are: 

Control Algorithm : u (t) = - m g x - g v Y - g d Y 

Optimum Passive Stiffness : 

Optimum Passive Damping Coefficient : 

Optimum Displacement Feedback Gain : 

Optimum Velocity Feedback Gain : 

where 

Optimum Stiffness : 

Optimum Damping Coefficient : 

Optimum Tuning Frequency : 

Optimum Frequency Ratio : 

Harmonic Excitation : 
[i--=g 
l+Jl 

White Noise Excitation 

with respect to displacement · 
_ ] _ /2+j1-g 

Sopr = J1 + ] V 2 

White Noise Excitation 

with respect to velocity : 
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Optimum Damping Factor: 

Harmonic Excitati on : 

White Noise Excitation 

with res pect to displacement : 

White Noise Excitation 

with respect to velocity : 

as a result of thi s optimization, we obtain 

Max imum Frequency Response of 

the Pri mal System : 

Maximum Frequency Response of 

the Auxil iary System : 

under a harmonic excitation. 

11opt 

1J opt 

/3max 

3(}1 +g) 

8(1 + f.l) 

(4 + 3j.1 - g)(jl +g) 

8(1 + f.1)(2+ j.l - g) 

l ~ 2V -y-_:_:-g 

)1+1 
p 

2+ )1 -g 

p+g 

And the average contr ol power is ex pected to be zero in the ensembl e 

sense, and the control fo r ce is minimi zed under a stationary white noise 

excitation. It is also noted that th e cumul ati ve contr ol energy dissipated by the 

actuator is conver ging to zero as the time goes to in finity after the event of 

random di sturbance. 
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Chapter 3 

Numerical Analysis of the Acceleration Feedback Method 
under Earthquake Disturbance 

We have discussed the control performance of the proposed algorithm or the 

acceleration feedback method from the analytical point of view. Several 

unique features associated with the new approach have been discovered and 

theoretically expected. In this chapter, the analytically predicted control 

performance is numerically evaluated under earthquake disturbances. The 

real disturbances coming into building structures will be non-stationary 

random excitations rather than stationary random white noi ses. Typical 

examples are earthquakes and wind pressures. Therefore, it is important to 

distinguish between what is predicted from stochastic analysis and what is 

expected to happen in a real world. Tn this chapter, th e control performance 

and device requirement of the acceleration feedback method are evaluated by 

the deterministic approach under several earthquake disturbances. Most of the 

numerical results are assessed and explained in terms of energy response 

spectrum. 

3.1 Energy Equilibrium under Earthquake Disturbance 

The cumulati ve control work clone by the actuator can be neutralized in an 

average sense by adjusting the passive clamping factor in such a manner that the 

total energy dissipated by the damper and the total energy brought by the 

disturbance input are equalized and balanced during the entire period of 

disturbance excitation. This optimum passive clamping factor can be found by 

a stochastic approach (See chapter 2.) . This result, however , docs not mean 

that the actuator requires no power at all. In fact, it shou ld generate the 

adequate control force according to the current motion of the active TMD, 

which needs either increase or decrease of the mass speed. Hence the sign of 

the actuator power is not constant but fluctuating according to the relative 

motion of the auxiliary system to the primal system . More precisely, when the 
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primal system vibration is relatively large and the auxiliary system response is 

small, the actuator should generate acceleration force to drive the TMD. 

When the primal system response is reduced but the TMD still continues its 

free vibration, then the generated control force is mainly a dan1ping effect on 

the auxiliary system. Therefore, it is naturally expected that the total energy 

dissipated by the actuator will converge to zero over the entire period of 

excitation even under a highly non-stationary random disturbance. 

In this section, the energy equilibrium of the system under an earthquake 

dislllrbance is obtained and studied for the purpose of verifying the stochastic 

prediction. In addition to this, the control performance and device requirement 

can be clarified in terms of energy response spectrum. As the first step, the 

energy integral is defined and the energy equilibrium is obtained. The 

equations of motion of the active TMD under an earthquake disturbance are 

given by 

{ m d(x + ji + X G) + c ,(; + k rtY - u (t) = 0 
m(x +xc) + kx + md(x + ji + xc) = 0 

(3.1) 
(3.2) 

where all the notations are referred to Figure 2.5. The energy equilibrium is 

obtained by multiplying the velocity vector in the same manner as (2.51 ), and 

the final result is shown by 

±m(x)2 +±kx2 +±mc~CX+y) 2 +±k"y 2+ J: cc~(.Y) 2dr 
(33) 

= L
1

yu(r)dr- Llm+mr~~i+mrt.Y}rc dr 

We introduce the following definitions for each term of (3.3). 

(34) 

(3.5) 
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where 

Ec = J: y(r)u(r)dr (3.7) 

Es (t) : Structure energy 

Et (t) : TMD energy 

Ed (t) :Energy dissipated by the passive damper 

Ec (t) : Control energy 
E; (t) : Input energy brought by the disturbance excitation 

There are several facto rs that influence those energy response values: the mass 

of the primal system m, the mass ratio J.l., the feedback gain g, the natural 
frequency OJ0 , and the disturbance input ic. The other parameters are set to 

the optimum values according to the formu lae in chapter 2. Obviously, the 

energy response increases in proportion to the mass m so that we are 

interested in the energy per unit weight of the primal system. Although there 

are five factors to be determined, what we could select in the process of design 

are only J.1. and g. Because OJ 0 is a given parameter associated with a target 
structur e, and we do not know the earthquake disturbance ic until an actual 

event takes place. Hence we should exam ine the energy response spectr um for 

the variation of 11 and g . 

Finally, the energy equ ilibrium is obtained as 

(3 9) 

It is noted that this eq uilibrium is not on ly satisfied at the end of disturbance 

excitation but also at any instant time t during the transient tate of the 

response. By definition, the str uctur e energy Es, the TMD energy E1 , and the 
damping energy Ed are all positive so that the summati on of the control 
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energy Ec and the input energy Ei always takes positive value during any 

disturbance excitation. 

It is better to show an example calcul ation of the energy response time 

history than to go into further discussion of thi s eq uilibrium equation . Shown 

in Figure 3.1 is the energy response time hi story whose parameters and 

feedback gains are shown in Table 3. I. The parameters selected for this study 

are exactly the same val ues as empl oyed in section 2. 10 in the previous chapter. 

The disturbance earthquake is Hachinohe (NS) whose peak acceler ation is scaled 

to 100 cmisec2. With a purpose of clarifying the equilibrium of these five terms 

of (3 9), the left hand side of (3 9) is show n in the upper hemisphere of the 

Figure 3. 1 while the right hand is in the lower side of the figure. All the 

energy responses take positive values or zero. 

It is also noted that the Es and E1 are converging to zero as the time 

goes to infinity, because the system is asy mptoti cal ly stable. And Ec is supposed 

to be converging to zero, which is th eoreticall y proved under a stati onary 

random white noise di sturbance and is actuall y observed in case of an actual 

earthquake disturbance. Hence the damping energy and the input energy are 

expected to be reach ing the same value as the time goes to infinity. 

In the fo rthcoming sections, the above statements are numer ical ly studied 

so that the contr ol performance and the device requir ement are clari fied in 

terms of energy response spectr um . 

Table 3. 1 Parameters and Gains for an Exampl e Study 

Mass Data Dampina Data Stiffness Data 

Primal 
k = 3.865 x J07 N/m 

System m = 980 ton * W0 = 6. 28 rad/s 

Auxili ary 1Jopt = 0. 12 19 Sopt = 0.975 

System md = 9.8ton c0 p1 = 1.46x 104 Ns/m Wapi = 6. I 24 rad/s 

J1 = 0.0 1 Cd = 0.365x 104 Ns/m k 0p1 = 3. 68 xI os N/m 

g = 0.03 gv = 1.095 xl04 Ns/m kt~= 3.9 1 x i05 N/m 

gd=-0.23x J05Nfm 
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Figure 3.1 Energy Response Equilibrium 

[ Hachinohe (NS) I OOgal m = 980 ton , OJ0 = 6.28 rad/s , 11 = 0.0 I , g = 0.03 ] 
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3.2 Control Energy Ec, Input Energy E; and Damping Energy Ed 

We have several good reasons to beli eve that the control energy defined by 

(3. 7) under any earthquake disturbance will be converging to zero as the time 

goes to infinity, which is expressed as 

E , ( J.1, g , OJ0 ) = 0 as t ---7 oo for any 11 and g (3. 10) 

As is proved theoretically, the control energy in an ensemble sense under 

stationary random white noise is exactly zero, if the TMD passive parameter cd 

is optimized according to the formula specified in chapter 2. The question 

raised here is whether it is possible to treat th e real disturbance as a stationary 

random white noi se. So far as those several example studies in section 2.10 as 

well as in section 3. 1 are concerned, all of them satisfy (3. 10) with respect to the 

arbitrary selected earthquake records. ln this section, thi s hypothesis is 

numerically checked under various earthquake di sturbances. 

If the control energy Ec converges to zero as the time goes to in finity 

under any earthquake disturbance, the input energy E; and the damping 

energy Ed will be reaching the san1e value at the final stage of di sturbance 

period. Hence next equation is to be satisfied for any fl , g , and OJ0 . 

as t ---7 oo (3. II) 

Conversely, if thi s equation is satisfied, the control ener gy Ec is proved to be 

zero as the time goes to infinity. Hence the above control energy equilibrium 

is to be examined under various earthquake disturbances with respect to 

numerous optimum parameters. The clamping energy is a simply incr easing 

function but the input energy might take th e maximum value not at the end of 

excitation but at a certain time during the earthquake event. Therefor e, the 

above equilibrium is evaluated after the system response is well subdued . 

lt is to be noted that the input energy increases as the weight o f the 

primal system becomes large, which is self evident from the definition. Hence 

the energy response should be evaluated per unit weight of the primal system. 

One conventional method commonly used for expressing energy response 

spectra for th is purpose is to substitute the energy response by the equivalent 

velocity response [37], whose definitions arc 
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V ( f.l g cv )= lim / 2Ed( f.1 , g ' cvo) (3.12) 
d ' ' o t-too V /11 

where V d is the damping energy response spectrum and V ; is the input energy 

response spectrum expressed in terms of velocity. It is noted that all the above 

responses are the final integr al values. We ar e interested in th e above energy 

response spectr a with r espect to the natural peri od of the primal system or T0 

(= 2n /cv 0 ) under actual earthquake di sturbances. Because it is empi ri cally 

known that the response values are considerably affected by the natur al per iod 

of the primal system. The selected earthquake di sturbances are : E l Centr o 

(NS), T aft (EW) and Hachinohe (NS) . The peak accelerati on is scaled to 100 

cm/sec2 fo r all the earthquakes. 

T he resul ting Vd and V; are shown and compared in Figur e 3.2- 3.7, 

where the x-axis is the natur al peri od T0 (= 2n / cv0 ) whil e the y-ax is is the 

energy response in terms o f velocity . Interestingly V; and Vd take the same 

value over the entir e r ange of natural frequency of the pri mal system with 

reasonab ly small dev iati on f rom each other. In fact, both of them ar e seen to 

be identical in all of the fi gur es over the whole range of peri od. At lease fo r 

these exampl e studi es, there is no di scernibl e di screpancy between V d and V ; . 

Whatever the feedback gain and the mass rati o are, thi s equilibrium is always 

sati sfied at least under th ese earthqu ake records used for thi s study. Hence it is 

concluded th at the contr ol energy Ec is ex pected to converge to zero at the end 

of any random di sturbance excitati ons. 

In the previous chapter , there are proposed thr ee di fferent definiti ons 

fo r sear ching the optimum passive damping coeffici ent Ctf . Surpri singly, they 

yielded exactl y the same answer to thi s optimum problem. Again , we have 

come to the same result that th is optimum for mul a (cf. Secti on 2. 11 ) is not onl y 

valid fo r stati onary random di sturbances but also for non-stati onary 

earthquakes. The remarkabl e coincidence between the damping energy 

response spectrum V d and the input energy response spectrum V; certifi es that 

the contr ol energy response Ec be zer o at th e fin al stage o f any rand om 

di sturbances. 
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Another important aspect of this study is the qualitative evaluation of the 

damping energy response. Because this information is indispensable to specify 

the damping device energy dissipation capacity. Although there are only three 

earthquake records examined so far, it could be said that the input energy or 

the damping energy in terms of velocity is almost less than 80 em/sec for middle 

size earthquake motions whose peak acceleration is about 100 cm/sec2. When 

interpreted into a more familiar unit, the total energy brought by a middle size 

earthquake into a building structure (the total weight is 10,000 ton with an active 

TMD) is about 2000 kcal. Hence, the increase of the damping material 

temperature after the event of an earthquake should be considered as one of the 

important criteria for designing the damping device. 
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Figure 3.2 Damping Energy Response Spectrum Vd 
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Figure 3.3 Damping Energy Response Spectrum V d 

and Input Energy Response Spectrum Vi 

[ El Centro (NS) I OOgal p = 0.05 ] 
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Figure 3.5 Damping Energy Response Spectrum Vd 

and Input Energy Respons Spectrum Vi 

[Taft (EW) 100 gal p = 0.05) 
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Figure 3.6 Damping Energy Response Spectrum Vd 

and Input Energy Response Spectrum Vi 

[ Hachinohe (NS) I OOgal J1 = 0.0 I ] 

Figure 3.7 Damping Energy Response Spectrum Vd 

and In put Energy Response Spectrum Vi 

[ Hachinohe (NS) I 00 gal J1 = 0.05 ] 

- 84-



3.3 Control Performance under Earthquake Disturbance 

In this section, the control performance of the acceleration feedb ack method is 

eval uated by the energy response spectrum of V s, which is the maxi mum value 

of the primal system energy response during an earthquake di sturbance. This 

energy r esponse, of cour se, does not take the maximum value at the end of 

disturbance excitation , because the tar get system is asymptotically stable and it 

comes to halt at the end of the di sturbance. The spectrum V s is affected by 

the feedback gain g and mass rati o f1 as well as the primal system natur al 

frequency OJ0 . And this spectrum can be expressed in terms of velocity so that 

the normali zed quantity is evaluated for any size of structures. The definition 

of V s is given as 

(3. 14) 

On the other hand, the conventional velocity response spectrum of the primal 

system according to the ordinary definition is 

(3. 15) 

It is kn own that the velocity response spectrum is very close to the energy 

response spectrum in case of single degr ee of freedom model. Hence, it is 

expected th at (3. 14) and (3. 15) ar e seen to be identi cal except a very small 

difference. This supposition is num erically checked later. 

The physical meaning of the active TMD is clearl y the damping 

augmentati on of the primal system . In fact, the effectiveness of the active 

TMD can be expressed in terms of equivalent viscous damping factor. Hence, 

the control performance of the active TMD is assessed by means of response 

spectra of the primal system, whil e the ordinary response spectra (single 

degree o f freedom model) are used for estimating the equival ent damping 

factor for a TMD with a given f1 and g_ Again the same three ear thquake 

di sturbances are used for this numeri cal study. 

Fir st, the control performance of the active TMD is substituted by the 

equivalent passive TMD whose mass ratio is defined to be f.l e· The optimization 

process in chapter 2 certifies that th e resonance peak of the primal system with 
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the active TMD is to be equalized by the equi valent passive TMD with a mass 

ratio Jle . Recalling ( 1.1 6) and (2. 19), we can expect the same contr ol 

performance fr om the passive TMD with the mass r atio fle as from the active 

TMD with J1 and g. The equi val ent mass rati o is defin ed by 

f1 + g 
fl e =1-=g (3. 16) 

The control perfor mance of the active TMD is simpl y estimated by the 

equivalent mass rati o Jle defined above. Thi s quantity can easily specify the 

TMD performance in terms of mass r ati o . The rest of the task to be done is to 

make clear the relation between the mass ratio of the passive TMD and the 

viscous dan1ping factor , which is studied by means of response spectr um. 
Fir st, the response energy spectrum V s with respect to the passive TMD 

is evaluated for earthquake di sturbances. The r esul tin g response energy 

spectra are shown in Figur e 3.8.a- 3. 10.a. Then, the velocity response spectr a 

associated with the same passive TMD is evaluated for the same earthquake 

disturbances. They ar e shown in Figur e 3.8.b- 3.10.b, whi ch have a good 

agr eement with Figur e 3.8.a- 3. 10.a. As the mass ratio increases, V s spectr um 

becomes small er for most of the fr equency zone. On the other hand, the 

response energy spectr a for a single-degree-of-fr eedom model wi th vari ous 

viscous damping factor s are indicated in F igur e 3.8.c- 3.10.c. Compar ing these 

response spectr a, we can estimate the equi valent damping fac tor 7Je related to 

the equi valent mass rati o Jle . The foll owing is the pr oposed equi valent 

damping factor expr essed in terms of Jle. 

(3. 17) 

It is al so important to clarify the r esponse of the auxiliar y mass system. Just 
like the primal system energy response spectrum, we can obtain the energy 

response spectrum of the active TMD under the sam e earthquake records as 

befor e. Thi s response spectrum is useful for evaluating the devi ce requir ement. 

It is obvious th at there is a limitation for th e active TMD di spl acement, whi ch 

is determined according to the space avail abi lity for each pr oject. Hence, the 
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maximum response value of the auxiliary mass should be evaluated 

earthquake records to clarify the active TMD device requirement. 

purpose, the energy response spectrum for the TMD is defined as 

for many 

With this 

(318) 

where Vt,J is obtained for the auxiliary mass md instead of m. By definition, 

the energy response E 1 is always positive so that V 1, I spectrum is certified to 

exist for all frequency range. On the other hand, the TMD velocity response 

spectrum is defined and given by 

(319) 

It is expected that these two response spectra are very close to each other, 

because the energy does not change significantly for a short amount of time. 

According to the above definitions, V 1, I and V 1, 2 spectra are obtained for the 

same three earthquake records as before and shown in Figure 3.11 - 3.13. 

Referring to these response spectra, it is possible to estimate the device 

capability and the stroke limitation. 
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Figure 3.8.c Velocity Response Spectru m Vs 

[ El Centro (NS) IOOgal ] 
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Figure 3.9.c Velocit y Response Spectrum Vs 

[Taft (EW) !OOgal (Pass ive TMD)] 
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Figure 3. 1 O.b Velocity Response Spectrum Vs,2 
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Figure 3.1l.b Energy Response Spectrum Yt, l 
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Figure 3. ll. c Energy Response Spectrum Yt , l 

[ El Centro (NS) IOOgal J1 = 0. 10] 
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Figure 3.1l.f Ve locity Response Spectrum Vt ,2 

[ El Centro (NS) I OOgal J.1 = 0.1 0] 
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Figure 3.13 .a Energy Response Spectrum Yt, I 
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Figure 3. 13.c Energy Response Spectrum Yt, 1 

[ Hachinohe (NS) I OOgal {I = 0. 10] 
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Figure 3.13.d Velocity Response Spectrum Vt,2 

[ Hachinohe (NS) IOOgal f-1 = 0.01] 
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3.4 Control Force and Power Requirement 

One of the important active device r equir ement is the contr ol fo rce necessar y 

for the actuator which drives the auxili ary mass. The contr ol fo rce per unit 

weight of the primal system is given by 

(3.20) 

We introduce the control force response spectrum Fe , whose definiti on is such 

that the maximum response of the contr ol force recorded under a certai n 

ear thquake di sturbance is plotted for a system with a given set of 11 and g with 

respect to a var iable W 0 . The statement above is interpr eted to 

(3.2 1) 

Appar entl y, the unit of the contr ol force r esponse spectrum Fe is cm/sec2 or 

acceler ati on unit. Again , the thr ee exampl e earthquake records are used for 

thi s analysis. The x-ax is is represented by T0 instead of W 0 as usual. The 
resulti ng contr ol fo r ce response spectr a are shown in Figur e 3. 14 - 3. 16. 

Obviously, the contr ol force requir ed for systems with high feedback gain is 
relati vely larger than those systems with low feedback quantity. The natur al 

peri od of the primal system T0 has a signifi cant effect on the contr ol fo r ce 

requir ement. As To becomes longer , the requir ed control force decr eases 

sharpl y. Hence, it can be said that it is easier to r educe tall building vibr ation 

rather than low rise building response th at is normally hi gh fr equency. 

lt is pointed out that the energy in a cumulative sense does not matter fo r 

the acti ve member of the device, while the passive devi ce design is stri ctl y 

restr ained by those ener gy accumul ati on. The control power necessary for the 

actuator is obtained and di scussed quantitatively. Fir st, the contr ol power 

response spectrum is introduced and defined as 

(3 22) 
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where Pc is the maximum power recorded during an earthquake disturbance. 
The unit of this response spectrum is (cm2fs3). Therefore, it is not influenced 

by the weight of the primal structure. 
Again, the same three earthquake records are used for this study to 

obtain the power response spectra which are shown in Figure 3. 17 - 3.19. 

The peak value is significantly influenced by the feedback gain and the mass 

rati o. If the same control performance is aimed, it is far better to increase 

the mass ratio rather than the feedback gain. Because the power requirement 

is much higher for a high feedback system with a small TMD than for a low 

feedback system with a larger TMD. 
One of the important criteria for the design of an active TMD is the 

power r equirement. Even if the control force requirement is large, there is a 

way to reduce it by means of a lever. Yet, there is no way to r educe the 

power requirement. If we wish to make an active TMD for seismic response 

control of a building structure, th e power capacity of the device would be the 

most important criterion. 
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Figure 3.16.a Control Force Response Spectrum Fe 

[ Hachinohe (NS) I OOgal f1 = 0.01 ] 
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Chapter 4 

Experimental Verification of the Acceleration Feedback Method 

Numerous merits associated with the proposed vibration control strategy, or 

the absolute acceleration feedback method, have been theoretically made clear. 

But the feasibility of the method is of great importance for appli cation, which 

is the goal of this study. In this chapter, the control performance of the active 

TMD according to the acceleration feedback method is experimentally studied . 

The general description of the experimental study is given in the first section. 

The verification of the theoretical study counts on the precision of the 

experiment, especially the system identification , because it would be impossible 

to verify the control algor ithm unless the dynamic properties of the specimen 

devices are well understood. Hence the emphasis is placed on the preliminary 

identification tests to obtain the contr o ll er's dynamics as well as the specimen 

structure's dynamic property. In section 4.5 and 4.6, there are reported the 

results of the parameter optimization that is based on the obtained device 

dynamics and the theory developed in chapter 2. In the end of this chapter, the 

shaking table test results are reported and it is shown that they are well agreed 

with the theoretical prediction . 

4.1 Scope of Experiment 

There are three different types of vibration absorbing devices which are 

studi ed in this chapter : the passive TMD, the active TMD based on the 

acceleration feedback method, and the active passive composite TMD (Figure 

4.1) . The active TMD is the main subject of this experiment, and the 

theoretical prediction described in chapter 2 is exper imentally observed. The 

passive TMD is a classical and basic device so that it is used as an index to 

assess the control performance of the active TMD. The composite TMD 

consists of a passive TMD on which an acti ve mass driver (AMD) is placed . 

The control force based on the acceleration feedback method is created by the 
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reacti on fo rce of an actuator , while the necessar y contro l force fo r the 

composite T MD is gener ated by the inerti a fo rce of the AMD. 

Thi s unique dev ice is an inventi on by T oshikazu Yamada [22]. The paper 

was submitted to Japan Patent Bureau in 1986 to claim fo r its li cense 

permi ssion. Yet, the appropriate contr o l algorithm had been unkn own until the 

absolute acceleration feedback method was di scovered by the author [18) in 1992 

fo llowed by the successive paper s [1 9],[20] . Thi s device has several superi or ity 

to the d ir ect-dri ve acti ve TMD when appli ed to large structur es. For example, 

there is no mechani cal noise vibr ati on th at is induced and tr ansferr ed to the 

building structur e by the active mass dri ver (AMD), because th e actuator is not 

dir ectly attached to the structur e. Hence the moti on of the active dev ice 

(AMD) is more stabl e and fr ee fr om hi gh fr equency noise contamin ation. A 

second merit is that the passive porti on can be used as th e pass ive TMD when 

the acti ve porti on does not move in case of emergency power fai lur e. 

Therefore, th e fail safe mechani sm is automati call y achi eved with out any 

addi tional compl ex ity . Moreover , the acti ve portion mass is extr emely small as 

compar ed with th e bulk weight of the primal structur e so that th e feas ibility of 

the acti ve TMD methodology is increased signifi cantly by means of thi s 

invention. F inall y, the active contr o l force necessary for thi s dev ice is reduced 

substantiall y because the size of the AMD is quite small. 

T hese thr ee di ffe rent contr o l devi ces are tested by a shaking tabl e (See 

Photo 4.1) which can generate both harm oni c and r andom excitati ons. Pri o r to 

the shaking tab le test, there are conducted several identifi cati on tests to ob tai n 

the dynami c pr operti es of the control devices and th e specimen structur e. 

Attention is paid to th e system identifi cati on phase of the ex periment. Because 

the precision of the identifi cati on influences the contr o l per fo rmance, the 

device r equir ement, and the agreement between the ex perim ental obser vat ion 

and the theoreti cal pr edi ction. After the system identifi cati on is conducted, the 

aforementi oned thr ee devi ces are num eri ca ll y studi ed to determine the 

parameter s according to the theory in chapter 2. Then, each devi ce is excited 

on the shaking tabl e to verify the contr o l performance bo th und er harmoni c 

and r andom excitati on. In the end o f thi s chapter , there are also several 

numeri cal analyses carri ed out to compare the ex perimental r esult with the 

theoreti cal pr edi cti on. As a r esult, the feasibility and practi cability of the 

control methodology associated with th e theory developed in chapter 2 ar e 

verifi ed ex perim entally. 
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4.2 Identi f icati on of the Active Mass Driver 

An electro-magneti c excitor is used fo r thi s experimental study as an active 

control dev ice. Hence it is indi spensabl e to grasp the dynami c pr oper ty of the 

excitor before we star t the entir e experiment. The objective of thi s 

preliminar y test is the system identifi cation of thi s device, whi ch is referr ed to 

as Active Mass Driver (A MD). 

T he detail s of AMD is shown in Figur e 4.2. There is a moving ar matur e 

coil placed between the perm anent magnets whi ch generate a str ong and 

uni form magnetic fi eld confined inside of the yoke that is encl osed by a 

housin g f rame made of steel. The armature coil is mechani cal ly suppor ted by 

two sliding linear rail s and it is constr ain ed to move within 15.0 em 

hori zontall y. It is pr ovided an electri c cur rent by a power ampli fier, whi ch 

takes vo ltage as an input and produces cur rent as an output. Under ordinary 

cir cum stances, thi s coil starts lateral moti on according to the input voltage 

linearl y. Because the coi l r eceives a reaction force whi ch is li near to the 

intensity of both curr ent and magneti c fi eld . For thi s specifi c test set up shown 

in Figur e 4.3, however, the arm atur e coi l is f ixed to the r eacti on floor by way 

of the support plates so th at the reacti on fo rce is converted into the motion of 

the whole magneti c excitor. Therefore, th e excitor body, whi ch weighs 37.8 

kg, moves according to the input voltage provided by the power ampl ifier . As 

for the restoring fo rce, th ere are two ru bber bands placed par all el to the 

magnets to connect the coil and the excitor body. T hi s is the general 

descripti on of the AMD device used fo r thi s test. The identif ication is 

compl eted by obtaining the tr ansfer fun cti on of the response of AMD weight 

versus the input voltage given to the power ampli f ier. As a result, we come to 

know the stiffness and damping of thi s sin gle-degree-of oscill ator. 

The test set up is show n in Figur e 4.3, whi ch illustrates the signal fl ow, 

the arr angement of sensing equipment, and the measuring system. The relati ve 

di spl acement and velocity of the AMD with respect to the reaction fl oor , th e 

absolute acceleration o f the AMD, and th e inpu t sinusoidal signal are measur ed 

all simultaneously. All th e data are converted in to di gital sequ enti al nu mbers 

by way of AID converters whose data sampli ng time and measuring du rat ion 

are appropriate ly vari ed according to the excitation fr equency. The sensin g 

equipment employed for thi s test and th eir specifi cati ons are given in T ab le 4. 1. 

The data acqui siti on conditi on is indi cated in T ab le 4.2, where the test results 
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are shown as well. The obtained sequenti al di gital data are pr ocessed by the 

usual FFT (Fast Fouri e Transform) pr ocedur e and converted into the 

frequency domain. The phase and magnitude of the three r esponses 

(acceler ati on, velocity and di spl acement) ar e plotted in Figur e 4.4-4.9 ver sus the 

input voltage. The precision of the data depends on th e length of measuring 

dur ation, whi ch is varied according to the excitati on frequ ency as is indicated 

in T able 4.2. The harmoni c excitati on tests ar e r epeated as many as plot points. 

Hence the data precision is kept constant over the entir e r ange of fr eq uency 

from 0.2 Hz to 15.0 Hz. As a r esult of the curve fittin g, we eventuall y obtained 

the following transfer fun cti on o f the di spl acement x(s) ver sus th e input voltage 

v(s). 

x(s) = ( s2 + 6~S~: 32.0 J (s ~~12 ) v(s) (4 I) 

where the units of x(s) and v(s) ar e [m] and [voltage], r especti vely. 

T he indi cated solid lines in F igur e 4.4--4.9 ar e in accordance with (4.1), 

whil e the ex perimenta l results ar e marked by 'o' . Suppose that the AMD 

system dynami cs is ex pressed in a r elati vely low fr eq uency r ange by 

m/i +c,X +ksX =Ga v(t) (4 2) 

where x(t) is the di spl acement r esponse of the AMD, v(t) is the input voltage to 

the ampli fier , m 5 is the mass, c5 is the dampin g, ks is the stiffness of the AMD, 

and Ga is the gain of the amplifi er. The in put-output relati on is expr essed by 

(4 3) 

If the amplifi er contains a fir st order low pass filter, (4 .3) is modifi ed into 

(4.4) 

where W e is the corner fr equency o f the filter. It is understood fr om th e 

experiment th at the AMD can be modeled as a second order oscill ator coupl ed 
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T bl 4 I T E a e est ~q Uipment 

Item Type Specification 

Accelerometer Japan Air Electric In c. Sensitivity : 0. 5voi/G 
Model MAlOI-10 Limit: 10 OG 

Velocity Sensor Cheavitz L YT Sensitivity: 8.0mm/s per mY 
Model 7Ll0 YT-Z Stroke Limit : 250mm 

Displacement sensor Kyowa Co. LYDT Sensitivity: 0.0267 vollmm 
Model DLT-1 OOBS (with Linear Ampli fier) 

AMD Acoustic Power System Inc. StrokeLimit: IS.Ocm 
APS Model 113 Max. Force: 2.45 x l Q2 N 

Power Amplifier APS Model 114 Max. Input Level : lOvol 

Tabl e 4 2 Measurina Condition and Test Results .,., 
Frequency 

Sampling Sampling Acceleration Velocity Displacement Time Duration 

(Hz) ( 1/sec) (sec) Amp. Phase Amp. Phase Amp. Phase 

(gal/v) (deg) (kine!v) (deo) (cm/v) (deo) 
0.2 20 400 3.7 1 -174.9 2.4 1 95.3 1.92 5. 1 
0.3 30 267 8.56 166.9 4. 18 77.0 2.22 -12.9 
0.4 40 200 15 .8 151.7 5.99 61.7 2.39 -28.2 
0.5 50 160 21.2 135.2 6.64 45.5 2. 11 -44.6 
0.6 60 134 29.5 122.9 7.76 33.2 2.06 -56.8 
0.7 70 115 42.7 111.5 9.73 21.7 2.21 -68.2 
0.8 80 100 43.5 98.8 8.70 9.0 1.73 -80.9 
0.9 90 89 46.9 88.7 8.41 -1.2 1.48 -90.9 
1. 0 100 80 61.2 76.5 9.87 - 13.4 1.57 -103.2 
1.1 11 0 73 62. 1 68.0 9.14 -2 1. 8 1.32 - 111 .4 
1.2 120 67 59.6 62.3 8.07 -27.7 1.07 - 11 7.1 
1.5 150 54 63.4 45.2 6.93 -44.7 0. 73 -134.3 
2.0 200 40 66.6 230 5.53 -66.7 0.43 -156.4 
2.5 250 32 63.9 10.0 4.32 -79.6 0.27 -169.6 
3.0 300 27 61.4 2.2 3.52 -87.5 0. 18 - 177.4 
4.0 400 20 56.3 -9.2 2.54 -98.7 0.10 171.4 
5.0 500 16 51.9 -10.8 2.00 - 100.8 0.06 172.4 
6.0 600 14 48.4 - 17.4 1. 67 -107.4 0.04 162.5 

8.0 800 10 43.3 -25.9 1.32 - 11 5.8 0.02 145.8 
10.0 1000 8 37.6 -32.2 I. II -122.3 0.02 132.7 

12. 0 1200 6. 7 36.3 -37.8 1. 06 - 127.9 0.02 122.7 
15.0 1500 5.3 35.4 -44.4 1. 03 - 133.7 0.02 11 4.8 
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Table 4 3 Identifi ed Coefficients of the AMD 

Identified Mass Stiffness Damping Corner Frq. Gain Factor 

Quantity Ins ks Cs OJc Ga 
(kg) (N/m) (Ns/m) (rad/s) (N/vol) 

Values 37.8 1.21x 103 2.46xi02 94.2 24.5 

with a first order low pass filter , which is hidden somewhere inside of the 
amplifier cir cuit. The total weight of th e AMD or m5 is measured by a di gital 
scale and found to be 37.8 kg. Hence it is concluded that the stiffness of the 
AMD or k5 is 1.2lxi03 N/m, the damping is 2.46xi02 Nsec/m, and the am pl ifier 
contains a low pass filter whose corner frequency or OJ c is 94.2 rad/sec (15.0 

Hz). The amplification factor or gain Ga of the AMD is identified to be 24.5 

N/vol, which is used for the following test. 

4.3 Identification Test of the Passive Tuned Mass Damper 

In this section, the passive TMD is identifi ed by using the AMD as an excitor 
which is mounted on the passive TMD. The detail s of the TMD mechanism is 
shown in Figure 4. I 0, and the experimental set up is indicated in Figure 4. 11. 

The moving weight, indicated by slash lines in Fig. 4. 10, can slide uni-laterally 
on the linear guide rail s fixed to the steel frame. The total weight (not 
including AC motor ) is 388.6 kg, which was measur ed by a di gital scale. This 
moving weight is provided a predeterm ined lateral stiffness by means of 
compression type steel coil springs (See Photo 4.3 or 4.4) parallel to the linear 
steel rail s. The stiffness of the passive TMD is given by these compression 
type springs whose values are dynamicall y identifi ed by the test in this secti on. 
The damping is given to the TMD by means of 4 magnetic dampers whose 
arrangement is shown in Figure 4. 10 . As the mass moves, a copper late slides 
in and out from th e permanent magneti c field (See Photo 4. 3). l n proportion to 
the velocity of the mass, there is created some whirl fl ow of curr ent inside of 
the copper plate where it becomes heat and clamps the vibration. Hence thi s 
damper can provide an ideal vi scous cl amping to the TMD motion , which is a 
key factor for the verifi cation test of the theory. 
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The test set up is shown in Figure 4.11, whose model is shown in Figure 

4.12. The data acquisition flow is also indicated in Figure 4.11. The AMD is 

placed on the passive TMD and the signal generator is used to provide the input 

signal (sinusoidal signal) to the AMD power amplifier (APS 114) to excite it. 

According to the AMD motion , the inertia force is applied to the passive TMD 

and it starts motion. After it reaches the steady state condition, the responses 

of the passive TMD (acceleration , velocity, and displacement) are measured as 

well as the acceleration of the AMD. The condition for the data acquisition is 

indicated in Table 4.5 as well as the test data processed in the same manner as 

before. 

The equation of motion of the system in Figure 4. 12 is given below. 

m/z.+)i)+c5z+k 5z =u(t) 

{ u ,(t) = -ms(ji + z) (4 5) 

m,J.Y + CiY + kdy = u,(t) 

where ue(t) is the net control force created by the motion of AMD. Hence the 

transfer function of the displacement response of the passive TMD y(t) versus 

the absolute acceleration of AMD can be ex pressed by 

(4.6) 

( ) - o.o973 c·· .. ) c ) y s = z+ y s 
· s2 + 0.7Ss + 68.0 

(4.7) 

where the units of y and (x + j) are [em] and [gal], respectively. The AMD 

mass or m 5 is 37.8 kg, while the mass of TMD is 388.6 kg and the damping, Ctf 

can be varied according to the magnetic damper. But kd is fixed and given by 

the steel coi l springs. Shown in Figure 4.13 - 4.18 are the results of th e test 

along with the curve fitting according to (4. 7), whose negative sign is taken off, 

and the magnetic damper' s contribution is supposedly zero. Therefore, it is 

concluded that the stiffness or kc1 is 2.65x I 04 N/m, and the damping is 2. 7 x I 02 N 

s/m (4% without magnetic damping). The magnetic damper coefficient can be 

varied according to the copper plate margin, whose relation is identified in 

section 4. 4. 
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T bl 4 4 T E a e est ~qutpment 

Item Type Specification 

Accelerometer Japan Air Electric Inc. Sensitivity : 0. 5 voi/G 
Model MAIOI - 10 Limit: 10.0 G 

Velocity Sensor Tokyo Sokusin Inc. Sensitivity : 0. I V per em/sec 
Range: +- 1 00 em/sec 

(none reference type) Model VSE- 15 Frq. range: 0.1- 100 Hz 
Displacemen t sensor ASM Co. Sensitivity: 0.002 vol/mm 
(wire disp . sensor) Model WS 1-500 Range : 0-500 mm 

Excitor Acoustic Power Sys tem Inc. Stroke Limit: 15.0 em 
Max. Force: 2.45 xJQ2 N 

APS Model 11 3 Weight : 37.8 kg 
Power Amplifier APS Model 114 Max. Input Level : !Ovol 

Table 4 5 Measurin o Cond ition and Test Results .,., 
Frequency Sampling Sampling Acceleration Velocity Displacement 

Time Duration 

(Hz) (!/sec) (sec) Amp. Phase Amp. Phase Amp. Phase 

(oal/gal ) (deg) kine/gal (deg) (cm/oal) (deg) 
0.2 20 400 .00526 2.8 .00065 25.2 .000 16 7.2 
0.3 30 267 .00559 177.9 .00066 19.3 00026 2.7 
0.4 40 200 .00289 95.2 .00235 50.1 .00099 -46.7 
0.5 50 160 .00587 139.9 .00295 60.5 .00 106 -39.8 
0.6 60 134 .01246 143.3 .00412 60.4 .00 12 1 -38.7 
0.7 70 11 5 .0184 1 147.3 .0047 1 62.5 .001 13 -36.7 
0.8 80 100 .02650 150.7 .0057 1 65.7 .00 11 3 -31.9 
0.9 90 89 .03870 154.7 .007 13 92.5 .00 129 -28.0 
1. 0 100 80 .05410 154.6 .00887 68.9 .00146 -27.9 
1.1 110 73 .07690 154.9 .0 11 40 69. 1 .00 168 -26.9 
1.2 120 67 .31440 133.8 .042 10 47.9 .00560 -46.6 
1.3 130 62 .92150 59.7 . 11 330 -26.5 .01390 - 120.5 
1. 4 140 58 .47650 32.4 .05440 -53.9 .006 17 - 148.0 
1. 5 !50 54 .35380 25.6 .03760 -60.7 .00395 - 154.9 
2.0 200 40 . 18440 14.3 .0 1470 -72.3 .001 11 - 166.7 
2.5 250 32 . 15380 9.2 .00980 -77.5 .00058 - 172.5 
3.0 300 28 . 13 150 7.4 .00699 -79.3 .00033 - 175. 1 
4.0 400 20 .11860 5.9 .00474 -80.6 .000 16 180.6 
5.0 500 16 . 11 590 7.3 .0037 1 -78.7 .00009 176.2 
6.0 600 14 . 1 1250 5.5 .0030 1 -80. 1 * * 
8.0 800 10 . 1083 4.5 .002 17 -79.9 * * 
10.0 1000 8.0 . 109 1 3.9 .00 175 -78.9 * * 
12.0 1200 6.7 . 11 4 1 3.6 .00 154 -77.8 * * 
15.0 1500 5.3 * * .00 169 -81.2 * * 
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T bl 4 6 M a e ass, tl ness an d D f h p amptng o · t e aSSIVe TMD 

Mass Damping Stiffness 

(kg) (N sec/m) (N/m) 

388.6 270.0 2.65x ICJ4N/m 
(4%) (!.27 Hz) 

4.4 Identification of the Active Tuned Mass Damper 

In thi s secti on, the system dynami cs of the acti ve TMD with an AC servo motor 

is identi fied. The AC ser vo motor can generate torque whi ch is linear to the 

input signal or voltage, however , the inertia of the motor ax is has some 

influence on the f in al dynamics so that the effecti ve mass o f the active TMD is 

di fferent fr om the total weight of the TMD. T he compensation fo r thi s 

rotati onal inertia is conducted as fo ll ows. T he equati on of moti on in F igur e 

4.19.a is given below. 

m/i =-c"i-kdx +R 1 

{ I/J=- R1 r +M1 

X= 8 r 
(4.8) 

where x is the di spl acement response of the weight, e is the rotation of the A/C 

motor , md is the mass, kd is the sti ffness, cd is the damping of the acti ve TMD, 

R1 is the r eacti on force, r is the eq uivalent r adius of th e motor ax is, l d is the 

equi valent rotation al inerti a associated with the motor tor que, and M1 is the 

motor torque. 

E quati on (4. 8) is r educed to 

(4 9) 

The motor torque is supposed to be linear to the input voltage, because the AC 

motor' s physical principle is exact ly the same as the AMD excitor. For thi s 

specific device, there is a servo ampli f ie r matched to the motor , however , the 

cir cuits information is not pr eci sely avail abl e. Hence we suppose that the 
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H , 

Figure 4.19 Active TMD with AC Servo Motor 

- 125-



torque generated fr om the motor is linear to the input voltage to the servo 

ampli fier . 

(4 10) 

where Gd is the gain of the am plifi er. 
T hen, the tr ansfer functi on of the acti ve TMD di spl acement from the 

input voltage is obtained as 

x(s) (4.1 1) 

Thought the system dynami cs is ex pressed in (4. II ), the effecti ve inerti a fo rce 

acting on the primal specimen structure is associated with th e mass md. Hence 

(4. 11 ) is converted into 

x(s) 

{ 
(4. 12) 

where ke is the effecti ve stiffness, Ce is the effective damping coeffi c ient, Ge is 

the effective gain factor , andy is the compensation fac tor. Equation (4. 12) can 

be substituted fo r the ordin ar y second order system with a fo rce contr ol 

actuator. 
The test set up is shown in Photo 4.2, where th e damping due to the 

magneti c damper is set to zer o. In other word s, Cd is pr ov ided by the self 

inductance of the motor coil not by the magnetic dampers. But the stiffness is 

given by the steel coil springs whose coeffi c ient kd is alr eady identi fied by the 

- 126-



previous test, which is 27.0 kgf/cm or 2.65xi04 N/m. The total weight is 441.6 kg 

which contai ns the additional weight of the A/C motor (53 kg). Neither the gain 

factor nor the motor inerti a is known until the identi f ication test is conducted. 
Therefore, the objective of this identification test is to obtain the compensation 
factor y and the gai n factor Ge . The measuring condition for data acquisition 

and the test results are shown in Table 4. 7 and Figures 4.20 - 4.22. The final 

resu lting transfer functio n of the active TMD r esponse versus the input voltage 
is given by 

x(s) - ( 0.84 r 4000 )v(s) (4 13) 
- s2 + 3.Ss +56 s2 + ISs+ 4000 · 

where the units of x and v are [m] and [voltage], respectively. Obviously, there 

is a second order low pass filter inside of the power amplifier. Finally, the 

identified coeffici ents are all given in Table 4.8. 

Table 4 7 Measurina Conditi on and Test Results ·o 

Freq.1ency Sampling Sampling Acceleration Velocity Displacement 

Time Duration 

(Hz) ( IIsee) (sec) Amp. Phase Amp. Phase Amp. Phase 

(oal/vol) (de<>) kinrJvol (de<>) (cm/ vol) (de<>) 
0.2 20 400 2.41 176.6 1.8 86.6 1.44 - 11. 6 
0.4 40 200 9.94 163.2 4.09 85.6 1.64 -16.8 
0.6 60 133 29.24 158.6 7.72 75.4 2.03 -23.1 
0.8 80 100 57.93 143.9 11.53 60.2 2.28 -36.5 
1.0 100 80 106.4 120.3 16.84 34.5 2.65 -6 1.1 
1.2 120 66.7 178.4 86. 1 23.73 0.2 3.12 -94.5 
1.6 160 50 11 8.8 48.0 II . 7 -38.4 1.15 - 133.2 
2.0 200 40 103.0 36.0 8.2 1 -51.4 0.646 - 147.0 
3.0 300 26.7 99.9 8.2 5.29 -79.3 0.272 - 178.3 
4.0 400 20 136.2 -1.0 5.45 -89.6 0. 173 178.5 
5.0 500 16 110.8 -2.4 4.23 -90.0 0. 129 178.4 
6.0 600 13.3 131.4 -7. I 3. 75 -90.5 0.096 171.1 
7.0 700 11 .4 140.9 - 17.7 4.24 - 105.0 0.087 I 57.7 
8.0 800 10 186.3 -35.4 4.42 -120.9 0.086 144.6 
9.0 900 8.9 22 1. 8 -38.9 4.96 - 125.9 0.089 14 1.0 
10.0 1000 8 278.4 -73.3 5.4 1 - 160.0 0.085 101.2 
ll .O 1100 7.27 337.7 -87.6 4. 83 - 174.3 * * 
12.0 1200 6.67 312.2 -1 20.4 3.26 153.7 * * 
13.0 1300 6. 15 229. 1 - 139.6 2.3 1 134.4 * * 
14.0 1400 5. 71 109.7 - 150. I 1.35 122.9 * * 
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Table 4 8 Identifi ed Parameters of the Active TMD 

Mass Effective Effective Effective Compensation 

md Stiffness Damping Gain Factor Factor 

(kg) ke ce Ge y 

(N/m) (N s/m) (N/vo1) 

44 1. 6 2.47 x10" 1.54 X 103 3.70 x102 0.932 

The damping coefficient due to the magneti c damper s are identifi ed by the 

same method, but for the two different copper plate positi ons which are shown 

in Figure 4.23. As the overlap width increases, the damping factor becomes 

larger so that the transfer function from the input voltage to the output 

response is influenced. Hence the dampin g coefficient can be identified by 

observing the transfer function under each condition. The final r esults of the 

two cases ar e shown in Figure 4.24 and 4.25. The resulting transfer functi ons 

are 

x(s) = ( 0.84 Y 4000 )v(s) (when t = 2.85 em) (414) 
s2 + 6.0s +56 A s2 + 1 5s + 4000 

x(s) = ( 0.84 )( 4000 )v(s) (when t = 5. 0 em) ( 4. 15) 
s2 + 8.5s +56 s2 + 15s +4000 

Judging from these transfer functions, th e damping coefficients due to the 

magnetic dampers are obtained and shown in Table 4. 10 . ft is fairly safe to 

estimate that the damping coefficient and the copper pl ate overlap width have a 

linear relation , which is expected from Tabl e 4.10. The damping adjustment 

necessary for the optimum par ameter setting of both the active TMD and the 

composite TMD is reali zed by r eferring to this tabl e. 
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a e est T bl 4 9 T R f h D esu to · t e ampmg Id T entl tcatton 

Case 1 (Over lap width= 2.85 em) Case 2 (Overlap width = S.Ocm) 

Freq. Acceleration Velocity Disp. Acceleration Velocity Disp. 

(Hz) Amp. Phase Amp. Phase Amp. Phase Amp. Phase Amp. Phase Amp. Phase 

~al/v reo kine/v reg cm/v reo gal/v reo kine/v reg crn/v reo 
0.2 2. 11 -179 1.68 -83 1.32 -16.4 1.69 * 1.32 * 1. 04 * 
0.4 8.84 149 3.52 -108 1.38 -30.7 8.40 144 3.28 -11 3 1.28 -28 

0.6 24.6 142 6.52 -119 1.73 -37.9 22.4 132 5.89 -128 1.55 -45 

0.8 47.8 130 9.51 -133 1. 88 -50.2 35.6 120 8.02 -142 1.60 -70 

1.0 89.8 113 14.3 -151 2.25 -66.9 64.5 105 10. 2 -159 1.61 -74 

1.2 128 85.8 17.0 -180 2.22 -94.2 88.9 84 11. 8 179 1.54 -94 

1.6 108 48. 1 10.7 142 1.04 -132 81.8 54 8.66 149 0.86 -11 7 

2.0 99.6 33.5 7.93 128 0.62 -147 85.8 40 6.77 133 0.52 -1 41 

3.0 104 4.4 5.5 1 102 0.29 -176 78.7 4 4.12 105 0.21 -166 

4.0 142 -6.5 5.68 90 0.22 174 123.4 -4 4.89 90 0.19 178 

5.0 17 1 -29. 1 5.46 69 0.17 151 136.4 * 4.35 60 0.13 149 

6.0 192 -59.0 5.09 38 0.13 * * * * 148 * -125 

T bl 4 10 R l t a e e a JOn o fD ampma c ff oe tClent an dC opper PI 0 ate ver ap Wdl I tl 

Overlap width t=O.Ocm t = 2.85 em t= 5.0 em 

Damping Coefficient 1.54 X 103 2.64 X J03 3.74x J03 
(N sec/m) 

(self inductance) (LIT]= 1.1 x 103) (LIT]= 2.2 X 103) 

4.5 Preliminary Parameter Study of the Active Tuned Mass Damper 

All the necessary data for the parameter study for the active TMD has been 

obtained so far, except for the specimen structure. The active TMD specimen 

set up is shown in Figure 4.26, whose mathematical model is indi cated in Figure 

4.1. The specimen structure is composed of four concrete blocks connected 

with each other by way of steel stub columns as shown in Figure 4.26 and Photo 

4.7. This bulk weight is upheld by four laminated rubber bearings, which are 

used as base isolation materials in these days. These rubber bearings are highly 

flexible in lateral direction but substantially stiff to sustain ver tical load, which 
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can make an ideal single-degree-of-freedom model. Because the steel stub 

columns are rigid enough, compared with rubber bearings, it is possible to 
neglect the second or higher modal vibrations. Prior to the main shaking table 
test, free vibration tests are conducted to examine the natural frequency of the 
structure model as well as the damping factor. The total weight of the 
concrete blocks is measured by a spri ng scale, and found to be 16274 kg. The 
paran1eters of thjs specimen structur e are shown in Table 4. 11. 

All the necessary data for the optimizatjon of the active TMD have been 
obtained. The feedback gai n is selected to 0.20 for this study. Recalling the 

formulae in the summar y of chapter 2, we can readily obtain the optimum 
parameters which are all shown in Table 4.1 1, where the passive TMD 

parameters are also indicated. Frequency response anal ysis is carried out in 

advance so that the control performance is pr edicted prior to the shaking table 
test. The resulting simulated r esponses are shown in Figure 4.27-4.28 . 

Table 4.11 Optimum Parameters and Gains for the Active TMD 

Notations 
Passive TMD ActiveTMD 

Formula I Actual Formula I Actual 

System Data m [kg] 16274 16274 

k [N/m] 1.05 xi06 1.05xJ06 

c [N s/m] 5.2x i03 5.2 xJ03 

Wo [rad/s] 804(1.28 1-lz) 8.04 (1.281-lz) 

Mass Data 111(/ [kg] 441.6 44 1.6 

;? 0.0 0.200 

11 0.027 1 0.0271 

Stiffness Data eou 0.974 0.87 1 

Wo,t [rad/s] 7.83 7.00 

kont [N/m] 2.7 1 x l 04 2.16 X 104 

Zd[N/m] 0.0 I 0.0 -uo x 1 o4 1 -o. 49 x 1 o4 

kt~[N/m] 2.7 1 xl04 I 2.65 x l04 3.46 x104 l 2.65 xi04 

Damping Data n ou 0.100 0.288 

C011 [N s/m] 0.69 x 103 1.78 xJ03 

J? v [N s/m] 0.0 I 0.0 1. 57 X [03 I I. 54 X 1 o3 

Cd [N s/m] 0. 69 X I o3 I 0. 70 X I o3 0. 21 X I o3 I 0. 24 X I o3 
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Figure 4.27 Active TMD Preliminary Parametric Study 

(Primal System Frequency Response) 

50 1 ~ 1 

40 

30 

20 

10 

0 

0.5 1.5 2 2.5 

Figure 4.28 Active TMD Preliminary Parametric Study 
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4.6 Preliminary Study of the Composite Tuned Mass Damper 

The feasibility of the active TMD is substantially enhanced by the invention of 

the composite TMD (See Figure 4.1), which is numerically studied in this 

section to determine the appropriate feedback gai ns and parameter s associated 

with this device. The equation of motion of the composite TMD shown in 

Figure 4. 1 is given below. The passive portion of the composite TMD is 

referred to as the PMD (passive mass damper) , while the active part is referred 

to as the AMD (active mass driver) for the rest of this section. 

msCx + .Y + i) + cj. + k,z = u(t) 
{mix+ y) + c,/; + k"y- cj.- k,z = -u(t) 

mx + ci + kx- c"y- k"y = f(t) 
(4.16) 

Instead of generati ng the feedback contr o l force by means of the actuator 
supplemented to the TMD, we could produce it by activating another small 

mass, the AMD, attached on the PMD. We should start from reconsidering the 

feedback strategy because the AMD system dynamics should be taken into 

account for the optimization process. The basic function of the AMD could be 
viewed as a differentiator, because the natural frequency of the AMD system is 

adjusted to the primal system natural frequency so that there is approximately 

90° phase lag between the input-output relation. If we desir e to obtain the 

feedback control force which is linear to the acceleration of the primal system, 

we should feedback the velocity of the primal system . Hence there are the 

optim um parameters of the AMD as well as the PMD. Another important 

factor considered here is that the AMD should also work as a damper for the 

PMD, because the control force necessary for the acceleration feedback is 

substantially reduced by the adequate combination of the driving force and the 

damping force, which is discussed in chapter 2. Based on the discussion above, 

the feedback algorithm for the AMD should be given by 

(4.17) 

First of all, the response function s of the three degree of freedom model shown 

in Figure 4.1 should be obtained under a harm oni c excitation g iven by 



(418) 

Then, the steady state responses of the specimen 

AMD are given by (4. 19) - (4.2 1), respectively. 

functions are defined by (4.22), (4.23), and (4.24). 

structur e, the PMD, and the 

And the frequency response 

Primal system steady response : 

PMD system steady r esponse : 

AMD system steady response: 

x(t) =X eiwr 

y(t) = y eiwr 

z(t) = z eiwr 

Primal system frequency response function : f; [cn 
-j [ul 
J, [ul 

PMD system fr eq uency response function : 

AMD system fr equency response function : 

(4 19) 

(4.20) 

(4,2 1) 

(4.22) 

(4 23) 

(4 24) 

Util izing the steady state response functions defined by (4.22), (4.23), and (4.24), 

a parameter study is carried out. The objective of this study is to in vest igate 

the physical meaning of the indi vidual par ameter. The mass ratio for the 

following parameter study is predetermined and given in Table 4.12, where 

other parameters are also g iven. They are consistent with the ex perimental 

study which fo llows this section. 

l. Feedback Gain G1 

The physical meaning of thi s feedback gain is the driving force acting on the 

PMD. As we increase G1 , we seem to have a large passive TMD as far as the 

respon se of the primal system is concer ned. The response peak of the PMD 

system is not influenced by thi s feedback gain , so we could select it 

independently from the auxili ary system response. In case of the active TMD 

in chapter 2, ther e is a locked point in the response function of the active TMD 
which is defined as f3 that depends on the mass ratio onl y. Therefore, it is also 

expected th at the PMD system might have a locked point, no matter what G1 

may be. Hence we could select thi s feedback gain only considering the contr ol 

effect of the device. 
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2. Feedback Gain G2 

The physical meaning of the second feedback gain is a damping force given to 

the auxiliary system. As we increase G 1 , we should increase G2 as well. 

Because the optimum damping necessary for the auxiliary system is to be raised 

as the acceleration feedback gain increases (c.f. chapter 2). So there should be 

an optimum feedback gain G2 , which is linked with the value of G1 . 

3. Stiffness of the PMD 

According to the classical passive TMD optimization , it is necessary to adjust 

the stiffness of the PMD system for balancing the two peaks of the response 

curve of the primal system. Hence, there should be an optimum stiffness for 

the PMD which depends on the feedback gain G1 . The location of these locked 

points is less influenced by the selection of G2 , because of the analogy of the 

active TMD. Hence, after selecting G1 and G2 , we could adjust the stiffness of 

the PMD only paying attention to the response curve of the primal system. 

4. Damping of the PMD 

As is mentioned before, the passive damping of the PMD will be very small . 

Because the combination of the driving force due to G1 and the active damping 

due to G2 will shrink at the tuning fr equency . Thi s prediction will be verified 

later. Mor e preci sely, the mass ratio between the primal and auxiliary system s 

determines the optimum combination of the active and passive damping factors. 

Under ordinary cases the mass ratio is very small (less than 0.0 1) . Therefore, 

the passive damping factor is also small. (cf. chapter 2) If we desire some 

amount of passive damping installed to the dev ice for the safety guaranty, we 

should decrease the feedback gain G2 . But the response of the AMD will be 

increased because the cancellation of the driving force is not expected. 

5 Stiffness of the AMD 

The natural frequency of the AMD system should be tuned to the primal 

system, because it must work as a differentiator as is explained before. It is 

al so expected that there is the optimum tuning frequency of the AMD system 

which is influenced by the natural frequencies of the primal and auxil iary 

systems. But the deviation from the optimum stiffness will have a small 

influence on the control performance, because the damping installed to thi s 
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small osci llator is very large so that the phase response curve does not sharply 

change around the tuning frequency of the AMD. 

6. Damping of the AMD 

The damping factor necessary for the AMD system will be very lar ge. The 

phase response curve should not change radically around the tuning frequency 

of the AMD system, because it should differentiate the feedback signals and 

also shou ld damp the fr ee vibration of itself. It should be noted that this 

damping force is to be created by the actu ator rather than a passive damper. 

Because the inert ia force and the spring force will dimini sh each other at the 

natural frequency of the primal system and the control force will be smaller 

th an otherwise. This phenomenon is si milar to the situation of the acceleration 

feedback control force which is r educed by combining the driving force and 

damping force (Figur e 2.5). 

7 Example 

There are thr ee exam ple case studi es shown in Figure 4.29- 2.3 1, where there 

are only two parameters G2 and cd, wh ich are varied. As the combination of 

the passive and active damping is graduall y changed, the response curves of the 

AMD system are signifi cantl y influenced while the other two system responses 

are not signifi cantly disturbed . Obviously the case 2 optimizes the response of 

the AMD system under a given feedback gain G1 

Table 4. 12 Parameters or re 1m1nary tucly o f p ]' s fC omposite TMD 

Parameters Case I I Case 2 I Case 3 
m I 6274 kg 

c 5.20 x 103 Ns/rn 

k 1.05xi06Nfrn 

In(/ 388.6 kg 

C!f 9.80 x 102 N s/m I 5.29 x 102 N s/rn I I . 96 x I 02 N s/rn 

kd 2.65xi04Nfrn 

In s 37.8 kg 

Cs I .4 7 x I 03 N s/rn 

k_, 2. 25x I 03 N/rn 

G1 1.47 x 104 N s/rn 

G2 0.0 I 1. 42 x 104 N/m I 2.45 x I 04 N/m 
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Figure 4.29 Primal Sys tem Frequency Response 
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Figure 4. 30 Primal System Frequency Response 
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Figure 4.31 Satellite Sys tem Frequency Response 
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4.7 Excitation Test of the Active Tuned Mass Damper 

The acti ve and passive TMD parameters are all set to the values given in Table 

4. 11. The passi ve TMD weight is not 388 .6 kg but 441. 6 kg, because the 

additi onal weight of the AC motor , 53. 0 kg , is counted, of cour se it does not 

move in case of the passive TMD test. The passive damping coeffi c ient is set to 

700 N s/m or 10% by mean s of the magnetic damper s wh ose overl ap width of the 

copper plates is adjusted to I. 8 em. 

According to the optimum formul ae, the parameters of the acti ve TMD 

are also given in T able 4. 1 I. The damping effect due to the self inductance is 

assumed to be acti ve damping, and the passive damping 240 N s/m is given by 

the magnetic damper whose overl ap width is adjusted to 5 mm. The acti ve 

sti ffness is given by feeding back the response displ acement whi ch was 

measured by a reference type di splacement sensor. 

The random exc itation test is conducted by the shaking tabl e whose 

capacity is shown in Tabl e 4. 13 and its configuration is shown in Photo 4. 1. 

The typi cal test r esult is shown in Fi gur e 4. 32-39. The excitati on is the 

ear thquake record of Hachinohe (NS) whose peak acceler ati on is norm ali zed to 

20 cm/sec2. The passive TMD is also tested under the same excitation to 

compare the vibration contr ol perform ance. The data sampling time is 0.01 sec 

and the measur ed quantities are : the acceler ati on of the specimen structure, the 

relative di splacement of the TMD wi th r espect to the top of the specimen 

structur e, th e absolute velocity of th e TMD, the absolute accelerati on of the 

shaking tabl e. 

The experimentally obtained results are simulated by using th e observed 

shaking tabl e accelerati on for numeri cal cal culation. The identifi ed parameters 

of the test specimen and the contr ol dev ices were used fo r thi s part of the 

analysis. The simul ated results of the time hi story responses of the specimen 

structur e, the TMD, and the AMD under Hachinohe earthqu ake excitati on ar e 

shown in Figure 4. 32-4.39, they are in a good accordance with the simul ati on. 

It is clear th at the contr ol effect is achi eved as much as expected 

an alyti call y. Comparin g the accelerati on responses of th e pass ive and acti ve 

T MDs, the amplitude of the acti ve TMD is augmented in general but the fr ee 

vibr ation is not conspicuous where the passive one lingers even after th e 

di sturbance excitation r ecedes from the main structur e, for exampl e, fr om I 0 

to 14 second in Figur e 4.36 and 4.38 . It is tru e that the peak of the resonance 
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T bl 4 13 S "f a e >pect tcatiOn o f h Shaki T bl F T . t e ng a e act ttt es 

Shaking Table Configuration 4.0 m x 4.0 m, al uminum, weight :8.5 ton 

Capacity of the specimen weight 20.0 ton 

Maximum output force 3.92 x 105 N (lateral), 9.8 x J05 N (vertical) 

Capacity of stroke 150 mm (lateral); 75 mm (vertical) 

Maximum output acceleration I . 2 G (lateral); 3. 0 G (vertical) 

Frequency range 0-30 Hz 

In put signal type random, sinusoidal , rectangle (both lateral and 

vertical) 

Capacity of overturning moment l.lxi06Nm 

Natural frequency of the sys tem none load :24Hz (lateral); 55 Hz(ve11ical) 

(i ncluding the hydraulic sys tem ) 10 ton: 17 Hz(lateral); 40Hz( vertical) 

20 ton : 13 Hz (lateral); 30 Hz( vertical) 

Hyd raulic system Oil volume : 4 16 Vmin 

Pressure: 2 10 kg/cm2 

curve of the auxiliary system of the active TMD is as much as the passive one, 

but the band width of the r esponse function is widen as a result of the 

acceleration feedback so that the motion of the acti ve TMD is larger th an the 

passive one under random di sturbances such as earthquakes. It is also noted 

that the peak response of the auxil iary mass motion was recorded earlier in 

case of active than passive. (Compare Figure 4.36 with Figure 4.38.) 

As a conclusion of th is shaking tabl e test, it can be said that the contr ol 

device worked as exactl y as designed and th e contr ol performance was achi eved 

as much as ex pected from the theoretical prediction. Therefore, the advantages 

of the acceleration feedback method compared with the passive TMD are 

actually observed so that the theoretically promi see! superiority of the proposed 

methodology is empirically proved to exist in a r eal wor !d. 
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Figure 4.35 Shaking Table Acceleration -- : Measured 
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Figure 4.36 Response Acceleration of TMD ------ : Analysis 

(Acceleration Feedback Control) -- : Experiment 
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Figure 4.38 Response Accelerati on of TMD ------ : Analysis 

(Passive TMD Contro l) -- : Experiment 
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(Passive TMD Control) -- : Experiment 
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4.8 Excitation Test of the Composite Tuned Mass Damper 

In this section, two types of excitation test are reported: a harmonic excitation 

test, and an earthquake excitation test. After the composite TMD is fabricated 

and set on the shaking table (See Photo 4.5.), it is excited according to 

numerous sinusoidal wave signals which cover the frequency range from 0.5 Hz 

to 2.0 Hz. The shaking table is excited according to a sinusoidal signal of which 

frequency is specified in Table 4.14. As is reported before, the primal system 

natural frequency is 1.28 Hz so that the center of the excitation frequency range 

is aimed around 1.0 Hz. The test procedure is exactly the same as the previous 

system identification tests, and the data acquisition condition and the test results 

are shown in Table 4.14. This harmonic excitation results are all indicated in 

Figure 4.40 - 4.45, where the theoretically expected resonance curves are also 

plotted along with the experimentally obtained results. The agreement between 

the experiment and the prediction is sufficient enough to obtain the expected 

control performance. 

After the harmonic excitation test was conducted, the same test specimen 

was subjected to an earthquake excitation, which is the Hachinohe earthquake 
(NS) whose peak acceleration is scaled to 40 cmfs2. First, the result of the no­

control test is shown in Figure 4.46 and the simulated result is also shown in 

Figure 4.47. Both of them are in a good agreement. Then the composite TMD 

case is shown in Figure 4.48 along with the simulation shown in Figure 4.49. 

The control performance is obvious from the comparison between the two 

cases, and they are well simulated as well. The PMD and AMD responses are 

also observed and simulated, they are all shown in Figure 4.50- 4.53. Again, 

the experimentally obtained data are well simulated, and it can be said that the 

theoretically expected control performance is actually achieved. 
The feasibility of the acceleration feedback method is extremely 

enhanced by the composite TMD, which also played an important role to verify 

the validity of the theoretical development of the acceleration feedback method. 

As a result of this experiment, it can be concluded that the specimen structure 

with the composite TMD has been fabricated and worked as is designed. It is 

again noticed that there is a well agreement between the experimental results 

and the theoretical values so that the composite TMD actually works as the 

theory prescribes. 
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The whole experiments including system identification tests for the devices are 

conducted with much attention paid to the precision and agreement with the 

theory. Because the purpose of this experiment lies in the verification of the 

acceleration feedback method which is out of the scope of the modern control 

method. Now that this unique method is proved to be effective both 

theoretically and experimentally. 
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T bl 4 14 R a e esu ts o f H . Shal<" T bl T armomc mg a e est o f h c t e ompos1te TMD 
Frequency AMD Acceleration TMD Accelerati on Sys tem Acceleration 

(H z) Amp. Phase Amp. Phase Amp. Phase 

(gal/gal) (deg) (gal/gal) (deg) (gal/gal) (deg) 
0.50 25.5 24. 1 3. 75 4. 8 0.986 0.9 
0.60 27.9 13. 1 2. 11 0.2 1 080 0.6 
0.80 34.3 -17. 0 3.47 -16.8 1. 44 -1.3 
0.85 39. 1 -28. 0 4.48 -24. 1 1.59 -2.5 
0.90 4 1. 8 -36.8 5.56 -3 1.0 1 80 -4. 1 
0.95 44. 1 -56.6 7. 79 -43. 1 2.08 -7.6 
1. 00 44.8 -7 1 7 10.00 -54.6 2.43 -12.0 
1 02 45.9 -8 1. 6 11. 29 -6 1.0 2.59 -14.9 
1. 04 46.2 -92.4 12.8 1 -67.7 2.78 -17.9 
106 45.6 -103. 2 14.28 -74. 8 2.98 -2 1. 5 
108 44.7 -116.1 15.95 -82.8 3. 18 -25.5 
1.1 0 46.4 -128.3 17.69 -90.7 3.41 -30.2 
1 12 45.6 -14 1 7 19.39 -99 .2 3.64 -35 .3 
1.1 4 44.7 -156.6 2 1.1 4 - 108.5 3.87 -40.9 
11 6 43.3 -172. 1 22.69 - 11 8.0 4.08 -47.2 
1.1 7 42.0 -181.3 23.24 - 123.4 4. 14 -50.8 
1.1 8 39.9 -188 .6 23.30 - 127.4 4. 14 -53.2 
1.1 9 38.9 -196.3 23 .84 - 131 4 4.22 -55 .6 
1. 20 38.5 -205.5 24.53 - 136.3 4.29 -59.0 
1.21 37.5 -2 14.0 25.04 - 140.7 4.36 -6 1.7 
1. 22 36.7 -223.6 25.49 - 145 .7 4.43 -65.2 
1.23 36.6 -234.4 26.08 - 15 1. 0 4.5 1 -68.9 
1.24 36.0 -244.2 2646 - 155.9 4.58 -72.3 
1. 25 35.9 -254.4 26.80 -16 1.1 4.63 -76. I 
1.26 35 .8 -264. 8 27 .02 - 166.5 4.65 -80.0 
1.27 35.8 -275.5 27 .07 - 171.7 4.65 -83.8 
1. 28 35.7 -286.3 26.97 -177.1 4.65 -87.7 
1. 29 35.2 -297. 1 26.90 - 182.0 4.68 -9 1. 1 
1.30 35.2 -307.0 26.52 - 187 .2 4.62 -95.0 
1.32 35.7 -326.0 25.66 - 197 .2 4.49 -102.6 
1.34 34.7 -343. 6 24.4 1 -206.5 4.3 1 - 109.9 
1.36 37.5 -3 59.5 23.02 -2 16.6 4 04 -11 6.8 
1.38 33.7 -373.7 2 1.1 8 -223.0 3.82 - 122.7 
1.40 32.2 -386. 4 19.5 1 -230.0 3.57 -128 .2 
1.45 29 .5 -4 11.9 15. 65 -244.9 2.93 - 139.4 
1. 50 25.9 -429.3 12.62 -254.6 2.40 - 146 .7 
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Figure 4.46 Primal System Acceleration (No Control) [Experiment] 
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Figure 4.47 Primal System Acceleration (No Control) [Analysis] 
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Figure 4.50 Auxiliary System Acceleration [Experiment] 
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Figure 4.5 1 Auxiliary System Accelertion [Analysis] 
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Figure 4.53 Satel lite System Acceleration [Analysis] 
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Conclusion 

In this paper, the author proposed a new active control algorithm or the 
acceleration feedback method which is successfully applied into tuned mass 
damper. This control algorithm has several unique features which are 
described in this paper. In accordance with the issues which are pointed out in 
Introduction, the author wishes to summarize the achievements that have been 
obtained by the acceleration feedback method. 

Issue I: 
In the civil engineering field, the active control method is still thought to be 
dubious and not reliable mainly because of the active tuned mass damper stroke 
is thought to be extraordinary. The acceleration feedback method proved that 
the relative displacement response of the active TMD under a harmonic 
disturbance is equivalent to that of the passive TMD with the same mass ratio. 
And the steady state response of the active TMD is not influenced by the 
feedback gain. Hence, the acceleration feedback method has improved the 
control performance of the active TMD while restricting the auxiliary mass 
motion as much as possible. 

Issues 2: 
The physical meaning of the active TMD operation is vague, when we 
faithfully follow the modern control method. Hence, the tuning adjustment of 
the auxiliary system was not fully comprehended by the linear quadratic 
optimum control algorithm. On the other hand, we have successfully obtained a 
set of closed form solutions for the parameter optimization problem associated 
with the active TMD, according to the acceleration feedback method. These 
analytical solutions explicitly tell us the physical meaning of the tuning 
adjustment and damping selection for the active TMD. 

Issue 3: 
It is also very important for civil engineering application problems to reduce 
the required control force and power. The acceleration feedback method 
clarified the physical meaning of the feedback algorithm. It has two primal 
feedback quantities: the acceleration of the primal system and the relative 
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velocity of the auxiliary system. It has become clear that there is a simple 
relationship between these two feedback quantities that minimize the required 
control force and power simultaneously without degrading the vibration 
control efficiency. It is also made clear that there is an optimum ratio between 
the passive stiffness and the active restoring feedback force . These optimization 
process is conducted under a white noise disturbance and we obtained a set of 
closed form solutions. 

Issue 4: 
The effect of disturbance excitations on the optimization of performance is 
taken into consideration. First, the parameter optimization of the active TMD is 
considered. As a result, the formulae of the stiffness and damping adjustment 
have been obtained under both a ham1onic and a white noise wind disturbances . 
Earthquake disturbances are also considered and it is proposed that the absolute 
acceleration of the primal system is used as the feedback signal so that the 
whole derivation and optimization process are identical to those in case of wind 
blow disturbance. One of the advantages of this method is that the sensing 
equipment and the control signal processing are not influenced by the types of 
disturbance excitations. 

Issue 5: 
The validity of the analytical solutions are numerically evaluated so that the 
expected vibration control performance is actually checked under several 
earthquakes. The highly non-stationary random disturbances such as 
earthquakes are used for this numerical study under various combination of 
feedback gains and the optimum TMD parameters. The acceleration feedback 
method is a rather simple methodology so that the response spectra with respect 
to the natural period of the primal system have been obtained under varied 
feedback gains. The control performance of the active TMD has been assessed 
in terms of response spectrum for the first time It is also noted that the 
passive damping and active braking force combination that has been 
analytically optimized under a white noise excitation is numerically proved to 
be the optimum value that eliminates the control power in the average sense in 
the time domain under several earthquake disturbances. 
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Issue 6: 
The theoretically expected and numerically ascertained vibration control 
performance has been verified by a shaking table test. The reliability of the test 
results depend on the precision of the system identification of both the 
specimen structure and the control device . Careful attention was paid to the 
dynamic system identification part of the test. Finally, the theoretically 
expected control effect was realized on the shaking table. The feasibility of the 
acceleration feedback method is enhanced by the composite TMD which was 
also tested on the shaking table. The obtained test results are assertive and 
satisfactory so that the acceleration feedback method is concluded to be the 
appropriate algorithm especially suitable for the active TMD applied for large 
building structures. 
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Appendix 

Integration of Power Spectral Density Function 

The following table of the integration is referred to "Theory of 
Servomechanisms," MIT radiation Laboratory Series, Vol. 25, McGraw-Hill, 
New York, 1947, pp.333-369. 

I = - l_ r-d g,.(x) 
" 2nj )_ _ x h,.(x)h,.(-x) 

where 

under the condition that the roots of h,.(x) all lie in the upper half plane. 

_b_o_ 
2 a0 a 1 

-b + ao b, 
o a 2 

2 a0 a 1 
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