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Abstract 

Global ocean wave characteristics is investigated by means of an ocean wave 

hindcast over a long period, using a new ocean wave model. 

A new third generation ocean wave model JW A3G is developed in which 

fundamental physical processes relating to the evolution of the ocean wave field and an 

original finite difference scheme for the propagation of wave energy are implemented. 

An improved discrete interaction approximation is developed for the calculation of 

nonlinear energy transfer due to resonant wave-wave interaction. This new 

approximation scheme succeeds in improving the accuracy of the approximation of 

nonlinear energy transfer for sharp spectra. A new formula for the dissipation of wave 

energy is proposed. It is introduced that the energy dissipation is proportional to w' , 

where w is the angular frequency, on the basis of the energy balance in the equilibrium 

range of the wave spectrum. It is also found that the formula for energy dissipation is 

independent of the wave height and period, in consideration of the 3/2 power law 

between wave height and period by Toba ( 1972). A new Hybrid Upstream scheme, 

which has the merit of small computational diffusion, is proposed for the calculation of 

energy propagation and the applicability to the wave model is discussed. The basic 

characteristics of the model are verified by the SWAMP ( 1985) experiment and it 

becomes clear that JW A3G gives valid results which satisfy the 3/2 power law. 

The accuracy of the model is verified by comparison with NOAA buoys and 

GEOSAT data. As a result of this, it is found that the JW A3G has a better accuracy than 

older wave models in the case of a sudden change of wind field and the decrease of 

wave height. The total accuracy of wave height for a period of I 0 years is found to be 

0.7-0.9 m in RMS error and 0.65-0.85 in correlation coefficient. The accuracy of wave 

period is less than that of wave height. In the north Pacific Ocean, the bias error of wave 

height is remarkable especially before 1985, while in the north Atlantic Ocean, it is not. 

The reason is considered to be the lack of accuracy of the wind field and the long life of 

the swell component of the model. The problem of swell is a weak point of JW A3G for 

the present and it needs to be improved by considering experimental and theoretical 

studies on the interaction between swell, and other factors . From the comparison with 
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GEOSAT data, it is found that the change of wave height in the meridional direction is 

expressed well by the model , but there is also the problem of a bias error of wave height 

in the Pacific Ocean. 

From considerations of global ocean wave characteristics by means of the wave 

hindcast results for I 0 years, some new ocean wave characteristics, which were never 

understood from the visually-observed data, become clear. The annual and seasonal 

variation of the distribution of wave field becomes clear. As a result of swell analysis, 

the propagation of swell from the Antarctic Sea to the coast of California and the 

distribution of bi-directional waves are clearly illustrated. The prediction of the bi­

directional waves will be an important tool to prevent disasters at sea. The decadal 

variation of wave height is analyzed, and it is found that the globally averaged wave 

height was decreasing at a rate of 1.9 em per year; but the tendency varied between 

locations. However, the accuracy of the analyzed wind data changed year by year, and a 

further analysis of the variation of wave height is needed in relation to climate change. 

The development of a new third generation wave model with a highly accurate 

scheme will be useful not only to improve the accuracy of numerical ocean wave 

prediction, but also to combine the wave model with a coupled ocean-atmosphere model. 

Since the ocean wave hindcast by the model will reduce the systematic errors of 

visually-observed data, ocean wave statistics by means of wave hindcasts will be useful 

in many branches of shipbuilding or marine transport. 
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1. Introduction 

The prediction of ocean waves is essential for human activities in the ocean, 

because of ocean waves are a major cause of maritime disasters. It is generally 

recognized today that ocean wave prediction is second most accurate among natural 

phenomena, next to tidal prediction. However, studies of ocean wave prediction were 

developed only during the last five decades. 

Routine work of numerical ocean wave prediction by the Japan Meteorological 

Agency (JMA) was started in March 1977, by introducing the MRI model proposed by 

lsozaki and Uji (1973). MRJ was replaced by MRI-ll (Uji, 1984) in September 1986 and 

is still being used by JMA. Although the accuracy of these wave models is practical 

enough, more accurate ocean wave predictions over long periods are needed for the 

purposes of prevention of maritime disasters, the safety of large marine structures, 

economical ship routing, etc. In addition to the traditional wave parameters, a directional 

ocean wave spectrum is needed so as to predict the response of maritime structures and 

ships to the wave fields. 

Though there were many discussions about the role of ocean waves in air-sea 

interactions, a precise solution to this problem was not established yet. The problem of 

sea surface roughness is essential as a basic problem which is related to momentum 

transport, heat transport and mass exchange including carbon dioxide across the sea 

surface. But most empirical relations for sea surface roughness are functions of only 

wind speed at the sea surface, whereas it is possible to consider that the sea surface 

roughness may also be dependent on the wave parameters. 

With respect to the relation between sea surface roughness and wave parameters, 

Kitaigorodskii and Volkov ( 1965) first proposed the concept of wave age as an effective 

parameter for the sea surface roughness. The wave age is expressed as Cju, in which C 

is a phase speed of the wave and u. is a friction velocity of the wind. 

Most of the parameterization schemes, such as Chamock's ( 1955) well known 

formula for the sea su rface roughness, that were incorporated into the boundary schemes 

of atmospheric models, were independent of the wave age. However, if the dependence 

of sea surface roughness on the wave parameters becomes established, a more highly 
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accurate ocean wave model will be required so as to estimate the wave parameters. 

Weber (1994) di scussed the effect of the wave parameters on the results of climate 

models by means of coupling an ocean wave model with a climate mode l. 

Considerable progress was made in the field of remote sens ing technology from 

satellites as a way to observe global environmental conditions. The radar altimeter can 

provide a measure of the significan t wave height parameter through the distortion of the 

mean shape of the return pul se, though the other wave parameters can not be measured 

(Townsend et a/., I 98 I). After the successful results of measuring wave height by the 

SEASAT altimeter in 1978, further satel lites named GEOSAT (1985), ERS-1 ( 1991 ) 

and Topex/Poseidon (I 992) were lau nched. They provided many observed data of wave 

height. The accuracy of wave height measurement is evaluated as the greater value of 

either 0.5 m or 10 % of the significant wave height (Dobson era!., 1987). We can 

improve the accuracy of ocean wave prediction by means of the assimi lation of satellite 

data into an ocean wave model (e.g., Janssen eta!., I 989; Lionello et a!., 1992). Since 

the results from the wave model must be used as the first estimated value, especially in 

areas without any wave measurements, the satellite data assimilation becomes more 

essential. We can suppose that the satellite data assimilation system will be adopted in 

future as part of the routine operation of numerical ocean wave prediction. The study of 

ocean wave modeling is the first step towards this goal of data ass imil ation. 

In addition to the necessity of developing a highl y accurate ocean wave model, 

which can be executed as a routine operation, a research stud y of globa l ocean wave 

characteristics with applying ocean wave models is required. In shipbuilding, marine 

transport and marine construction, not only information on tides and tidal curren ts, but 

also information on sea SUiface wind, wi nd waves and swell are the most essential 

information, in order to estimate the natural background conditions. The ocean wave 

statistics of the whole globe for as long a period as possible is needed fo r the purpose of 

the seaworthy design of ships and marine structures or fo r planning the schedules for 

marine constructions. 

Ocean wave statistics based on visual observation were discussed by Hogben and 

Lumb (1967), Yamanouchi and Ogawa ( 1970), Taka ishi eta!. (1980) and Hogben eta!. 

(I 986). However, the vi sually-observed data contain systematic errors, because the 
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visual observation of ocean waves has the problems of lack of objectivity due to 

differences between individual observers; lack of observing points in areas away from 

the regular course of ships; and a decline in the frequency with which severe storms are 

encountered, due to keeping away from stom1s for the safety of ships. In order to 

overcome these difficulties, the method of the ocean wave hindcast applying an ocean 

wave model became of major interest lately (e.g. , Yamanouchi , 1989; Suzuki, 1994). 

The method of hindcast had primarily been applied as a way of obtaining design 

conditions of ocean wave height for the purpose of constructing harbors. The ocean 

wave field in any given meteorological conditions can be reproduced by means of the 

wave model, in which analyzed sea surface wind data from weather charts are used as 

the wind force in the model. FNOC (Fleet Numerical Oceanography Center, USA) 

attempted to derive statistics of ocean waves applying the hindcast method in 1976. The 

object of this project was the improvement of the seaworthiness of warships. The first 

generation wave model SOWM (Lazanoff eta/., 1973) was applied. Part of the results 

of the project was quoted as a comparison data in Hogben et a/. ( 1986). Tomita et al. 

(1992) also derived statistics of ocean waves in the north Pacific Ocean applying the 

hindcast method, using the second generation wave model MRI-11 (Uji, 1984) combined 

with observed data from ships and buoys. 

Naturally, the accuracy of the ocean wave hindcast depends on the completeness of 

the ocean wave model itself. In addi tion, it depends on the accuracy of the sea surface 

wind field which acts on the ocean wave field as an externa l force. Therefore, if 

accurately analyzed data of the global sea surface wind field are available, we can 

accurate) y reproduce the global ocean wave field. 

In meteorological offices in some countries , as well as JMA, a global atmospheric 

analysis model is operated routinely so that analyzed global atmospheric data are 

accumulated day by day. Since the operation of a global atmospheric model in JMA was 

started in March 1988, the data stock is not large enough to study the stat istics of global 

ocean wave characteristics. On the other hand, in NMC (National Meteorological Center, 

USA) or in ECMWF (European Centre for Medium-range Weather Forecasts), the 

global atmospheric models are operated routinely from the latter half of the 1970s, so 

that stock of analyzed global atmospheric data are available for a period of more than 
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ten years. 

The motivation for studying global ocean wave characteristics applying ocean 

wave modeling becomes greater recently, for the following reasons: an increase of the 

social demand to develop a highly accurate wave model by which the global ocean wave 

characteristics are predictable; an increase in the amount of analyzed wind data that 

were stocked over a long period of time; and the appearance of a third generation wave 

model based on the latest research results on the physical processes of wave generation 

(e.g., W AMDI Group, I 988). The objective of the present paper is to establish the 

method of prediction of global ocean wave field and to study global ocean wave 

characteristics based on hindcast results obtained by using the ocean wave model. In the 

first, we develop a new global ocean wave model including nonlinear interactions and 

dissipation. Next, the new ocean wave model is applied to hindcast the global ocean 

wave field over a long period of time, and finally we study the global ocean wave 

characteristics based on the hindcast results . The development of a newly proposed third 

generation wave model with a highly accurate scheme will be effective not only for 

increasing the accuracy of numerical ocean wave prediction , but also for improving the 

accuracy of a coupled ocean-atmosphere model with combining the wave model into 

that. Since the results of this study will help to overcome the problem of systematic 

errors in visually observed data, ocean wave statistics by means of the wave model will 

be useful in many branches of shipbuilding and marine transport. 

In the present paper, a historical review of ocean wave modeling is given in 

Chapter 2. The development of a new third generation wave model JW A3G and its 

basic characteristics are described in Chapter 3. In Chapter 4, a global ocean wave 

hindcast over ten years is described and its verified results are discussed. The analysis of 

the global ocean wave characteristics is discussed in Chapter 5. The concluding 

discussion of the present paper is given in Chapter 6. 
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2. Historical review of ocean wave modeling 

Ocean wave modeling has been progressing rapidly during the past 50 years, due to 

the development of the statistical description of ocean waves and to progress in basic 

research in the physical processes of wave generation, growth and dissipation. In this 

chapter, pioneer work in ocean wave modeling is described in section 2.1, and the 

classification of wave models is described in section 2.2. 

2.1 Pioneer work on ocean wave modeling 

Ocean wave prediction becomes of general interest as a problem related directly to 

human activity in the ocean. The study of sc ienti fic ocean wave prediction started with 

Sverdrup and Munk ( 1947). The study of ocean wave prediction made rapid progress for 

about 50 years (e.g ., Kinsman, 1965; Nagata, 1971 ; Taira, 1975; lsozaki, 1990; 

Mitsuyasu, 1995). The history of the study of ocean wave prediction is summarized in 

Figure 2.1. 

The theory of Sverdrup and Munk ( 1947) was epoch-making for the following 

reasons: 

a) They introduced the concept of the "significant wave", which was defined as a 

statistical mean value, in order to describe the random ocean wave field quantitatively. 

b) They proposed a theoretical framework of the process of wave generation, growth, 

propagation and dissipation. 

c) They proposed a practical method of ocean wave prediction, resulting from a 

systematic study of fragmentary observed data. 

This imaginary .. sign ificant wave" behaves as a kind of surface wave as well as a 

deep water wave with infinitesimal amplitude; however, its wave height and period are 

treated as dependent variables of time and space. We can regard that significant wave 

height is approximately equal to the visuall y observed wave height. 

Sverdrup and Munk (1947) considered whether the wave slope 8 = H/L (H is 

wave height, L is wave length) changed according to the wave age ~ = c/U (c is phase 

speed of the wind wave , U is wind speed). They obtained the results shown in Figure 

2.2 after arrangement of the visually observed ocean wave data. Their ocean wave 
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prediction method was called a parameter method , because the method was described 

using a few parameters such as wave height, wind speed, fetch and duration. This 

empirical formula for wave predi ction was reformu lated completely by Bretschneider 

( 1952, 1 958) and Wil son ( 196 1, 1965) by means of highl y accu rate wave observational 

data which were available by then, so that the method was called the SMB method 

(taking the initial letters of Sverdrup, Munk and Bretschneider). Figure 2.3 shows the 

relation between non-dimensional fetch and non-dimensional wave height of wind 

waves based on the observational results (Wil son, 1965). Wilson ( 1965) derived the 

following relations for wind-wave prediction, and the relations are called the Wilson N 

formu la: 

(2.1) 

(2.2) 

where H,13,T,13 and C,1, are the s ignificant wave height (m), wave period (sec) and phase 

speed (m/s), respective ly. F , g and U10 are the fe tch (m), the grav itati ona l acceleration 

(rnls2
) and wind speed (m/s) at I 0 m height. The equations (2. I )-(2.2) reflect the fact 

that the non-dimensional wave height and wave period gradua lly approach limiting 

values and become saturated when the non-d imensiona l fetch is large enough. The 

physical meaning is explained as follows: As the wind wave grows, the wave period 

becomes longer, so that the phase speed increases. The approach of the phase speed to 

the wind speed results in the decrease of momentum transport from wind to wave , 

because the wind speed relative to the phase speed becomes smaller. Thus wind waves 

do not grow any more in the sa turated stage in which the energy from wind and 

di ss ipation by wave breaking are balanced. Present ocean wave pred iction model s 

follow the above framework based on the energy balance in ocean waves. 

Since thi s simple Wil son N formula is ava il ab le for ocean wave prediction under 

the simple conditions of a uniform wi nd field and limited fe tch, wi th sufficient accuracy, 
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it is still applied widely in the field of coastal engineering. Its application to numerical 

prediction method on a grid system was reported by Ijima el a/. ( 1967). 

While the ocean wave prediction method based on the parameters of ocean waves 

was improved, the statistical theory to describe the random wave field was developed 

rapidly on the other (e.g., Longuet-Higgins, 1952; Cartwright and Longuet-Higgins, 

1956), owing to the influence of the development of the mathematical analysis of 

random noise in electrical engineering (e.g ., Rice, 1944). Cartwright and Longuet­

Higgins ( 1956) derived theoretically the statistical distribution of the maximum surface 

elevation 11(1). based on the assumption that in addition to the distribution of 11(1) and its 

derivatives T](1) and T;(1), its joint distribution are normal Gaussian processes. The 

distribution of maximum surface elevation approached the Rayleigh distribution 

P(c;) = c; exp(- c;' /2 )· (c; is a normalized value of 11(1) using the Oth moment m
0 

of the 

wave spectrum) in the limit of an infinitely narrow spectrum. On the basis of the 

assumption that the wave height obeyed a Rayleigh distribution, the representative 

relations between mean wave height Ji, significant wave height H,
1
, and Oth moment 

1110 were derived (Cartwright and Longuet-Higgins, 1956): 

H = .J2rr.m0 , 

H,1, = 1.597.J2rr.m0 = 4Fo · 
(2.3) 

(2.4) 

This statistical theory led to the development of ocean wave prediction based on the 

wave spectrum, because the significant wave height was connected with the wave 

spectrum based on the theory. 

In addition, the study of ocean wave prediction based on the ocean wave spectrum 

was developed through the improvement of the method of observing the wave spectrum. 

Barber and Ursell ( 1948) studied the relation between storms in the Atlantic Ocean and 

the wave spectrum observed at the west coast of England . They suggested the possibility 

of ocean wave prediction based on the assumption that each spectral wave component 

propagates independently according to its group velocity. Their study was succeeded by 

Darbyshire ( 1955) and it became the basis for the ocean wave prediction method in 
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England. 

Neumann (1953) obtained an empirical formula which gave an upper limiting 

value of wave slope, by means of a systematic analysis of some observed ocean wave 

data. The wave spectrum (Neumann spectrum) was derived from the empirical formula 

for wave slope according to physical considerations of the translations of the wave slope 

into the spectrum. The ocean wave prediction method based on the Neumann spectrum 

was named the PNJ (Pierson, Neumann and James, 1955) method. Since the PNJ 

method was superior to other methods as a concept of ocean wave prediction based on 

the wave spectrum, it was a good chance for many scientists to do theoretical and 

experimental research on wave generation and growth more actively. The concept of the 

PNJ method is as follows. 

In the PNJ method, we assume that a fully developed ocean wave spectrum is given 

in the form of the Neumann spectrum . This spectrum increases from high frequency to 

low frequency depending on the wind, as shown in Figure 2.4. If the wave growth is 

restricted by the fetch and duration, the low-frequency part of the spectrum except the 

shaded area in Figure 2.4 (upper) is excluded, depending on the amount of wave growth. 

We also assume that the directional distribution of the ocean wave spectrum is 

proportional to cos2 9. If the directional ocean wave spectrum is determined as 

mentioned above, we can express the propagation of ocean waves, assuming that each 

wave component propagates independently at its cotTesponding group velocity. 

The problem that the SMB method found it difficult to express the swell 

propagation was solved with the PNJ method. But there was not enough computing 

power to process the calculations of the PNJ method at that time , so that a simple chart 

for the prediction of ocean waves such as Figure 2.5 was made for convenience. The 

chart shows cumulative ocean wave spectra, which are integrated from high frequency 

to low frequency of the Neumann spectrum according to the wind speed, and the curves 

describe the limits of fetch and duration . If the wave energy E is read off the figure, we 

can estimate the significant wave heigh t by using the relations of Cartwright and 

Longuet-Higgins ( 1956). Baer ( 1962) developed a computer code to process ocean wave 

calculations applying the PNJ method. 
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There is a difference between the SMB and PNJ methods in the way of expressing 

the ocean wave fields either by significant wave height or by the wave spectrum. Both 

of them are based on the relations between ocean waves and wind when the wave field 

reaches a saturated state under the condition of a uniform wind field. From the point of 

view of the energy transport equation, wh ich dominates the ocean wave growth, this 

way of thinking is based on the integrated results of the energy transport equation under 

the condition of a uniform wind field. Therefore it is very difficult to apply both the 

SMB and PNJ methods to wind fields which vary in time and space. For this reason, the 

ocean wave prediction methods based on the energy transport equation were developed 

in the beginning of the 1960s. 

Since the pioneer work by Gelci et a!. ( 1956), numerical ocean wave prediction 

models have been fqrmulated in terms of the energy transport equation for the two­

dimensional ocean wave spectrum . Gelci era!. ( 1956) considered the idea of the energy 

spectral density (DSA: Densite Spectrale Angulaire) of ocean waves and proposed a 

numerical ocean wave prediction method applying a simplified energy transport 

equation. But the spectral density was defined as a function of wave period and direction , 

and there was not enough physical understanding of the process of ocean wave growth 

and decay. 

Hassel mann ( 1960) proposed an energy transport equation for the ocean wave 

spectrum , in which the physical processes of wave growth and decay were considered 

separately. The equation became a prototype of many of the curren tly-used ocean wave 

models. The evolution of the two-dimensional ocean wave spectrum F(w, 9) with 

respect to angular frequency w and direction 9 is govemed by the energy transport 

equation 

aF(w,e) -a-,-+ v ·CJ(w,e) = s,,.., (w,e), (2.5) 

where C, is the group ve loci ty. The first and second tem1s on the left-hand side of (2 .5) 

describe the local change of the two-di mensiona l ocean wave spectrum and the 

divergence of the wave energy flux, respectively. S,,..,(w,e) on the right-hand side is a 

general description of energy input and output source functions corresponding the wave 
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energy changes, and is ca ll ed the energy source function. Hassel mann ( 1968) showed 

that the energy transport equati on shou ld be subject to slowly-varying conditions in time 

and space. The conditions are expressed as 

I dF 
--«1, 
W dT 

I dF 
--«I 
k dx 

where r ,x and k are time, space and wave number, respectively. 

(2.6) 

The net energy source function S,, is related to the basic physical processes of 

ocean wave generation and dissipation, and is generally represented as the sum of three 

physical processes: 

(2.7) 

S,, is the energy input by the wind, S,, the nonlinear energy transfer due to resonant 

wave-wave interactions, and S,1, is the energy diss ipation due to wave breaking, bottom 

friction , etc. If each spectral component of the source functions s, .. , S,, and S", are given 

as functions of time and space, we can estimate the evolution of ocean wave fields by 

means of integrating equation (2.5) under the proper initial and boundary conditions. 

Since each source fu nction is generally defined as a nonlinear function of the wave 

spectrum F(w, e), it is necessary to use a numerical simu lation method instead of 

integrating equation (2 .5) anal ytically. 

There are many types of wave models which differ according to the treatment of 

the energy source funct ions, whether shallow or deep water, and the numerical 

procedures adopted to so lve the energy transport equation. SWAMP Group ( 1985) 

classified various ocean wave models systemat ically and put together the 

intercomparison studies. The results are described in section 2.2. In other words, the 

main developments in ocean wave modeling since the 1960s was the history to clarify 

the physical processes of each energy source function. 

With respect to the energy input by the wind , Ursel l ( 1956) attracted the interest of 

many researchers to study the processes of wi nd-wave generation. Phillips ( 1957) 

proposed a theory of wind-wave generation by a resonance mechanism between a 

random distribution of normal pressure , and wind waves . In the same year, Miles ( 1957) 
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proposed a theory in which the momentum of a parallel shear flow was transported 

downward due to the instability which occurred in the critical layer where the wind 

speed was equal to the phase speed of the ocean wave. But it was found that the 

observed growth rates of actual ocean wind waves were one order of magnitude larger 

than those predicted by Miles' theory (e.g., Snyder and Cox, 1966; Barnett and 

Wilkerson, 1967). Therefore, the empirical relations based on the observed results from 

a wind-wave tunnel (e.g., Mitsuyasu and Honda, 1982) or ocean wave observations (e.g., 

Snyder et a/. , 1981) were adopted. Inoue ( 1967) obtained relations for the energy 

transport from wind to waves after arrangement of observed wave spectra. However, the 

results were equivalent to the sum of both S., and S,,. With respect to theoretical work 

on the generation of wind waves after Phillips ( 1957) and Miles (1957), Kawai (1979) 

proposed a theory of the generat ion of initial waves by the instability of a coupled shear 

flow, and Miles (I 993) modified his own previous theory (I 957) to incorporate the 

wave-induced perturbations of the Reynolds stresses. Miles (I 993) showed agreement 

with the observational data compiled by Plant ( 1982). After the latter half of the 1980s, 

attempts to obtain the energy transport from the wind to waves by means of numerical 

simulation of the turbulent closure models were carried out (e.g., Al-Zanaidi and Hui, 

I 984; Duin and Janssen, I 992). 

After Phillips (I 960) first studied the nonlinear energy transfer S,1, Hassel mann 

( 1962) studied analytically the rate of nonlinear energy transfer due to resonant wave­

wave interactions at the fourth order of the wave slope. But it is quite impossible to 

incorporate an expli cit calculation scheme for the nonlinear energy transfer into a 

practical ocean wave model, because the explicit calculation of S,, which is represented 

by a cubic integral in wave number space requires an enormous amount of 

computationa l calculation, even using a supercomputer. For this reason, coupled hybrid 

wave mode ls were developed. The nonlinear energy transfer mechanism in the coupled 

hybrid models are represented by a simple parameterization of S,, such as Barnett 

( 1968) or by using an implicit express ion for S,1 making use of the self-similarity 

structure of the wind-wave spect rum. Since the coupled hybrid models had d iffi culty in 

separating wind-wave energy from swe ll energy, a wave model with an explicit 
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calculation scheme for 5,1 was required (SWAMP Group,l985). To meet this 

requirement, Hassel mann e1 a/. ( 1985) developed an approximate ca lculation scheme for 

the nonlinear energy transfer. The W AM model (W AMDI Group, 1988) was developed 

based on the results of Hassel mann e / a/. ( 1985). 

In the process of energy dissipation, it is assumed that wave breaking plays the 

most principal role, but its analytical and experimental studies are not sufficiently made. 

Therefore the energy dissipation of many wave models is expressed by a simple and 

artificial scheme, by means of restricting the growth of the wave spectrum by applying a 

standard saturated spectrum: the PM spectrum (Pierson and Moskowitz, 1964) or the 

JONSW AP spectrum (Hassel mann e/ a/., 1973). 

The PM spectrum was formulated by constructing an empirical ocean wave 

spectrum on the assumption that the equilibrium range of the wind wave spectrum is 

expressed as the F' law by Phillips ( 1958). He assumed that the physical processes in 

the equilibrium range of the wind-wave spectrum are dominated by wave breaking onl y, 

so that the energy input by the wind is not essential, and the gravitationa l acceleration is 

the only forcing term. By means of a dimensional analysis, the dimensions of the ocean 

wave spectrum F , the gravitationa l acceleration g and the frequency f are expressed by 

[F] = L2T, [g] = Lr' and [!] = r '. respectively, where L and T denote length and 

time. By substituting these equat ions into the relation [F] = [g]"[J]"', a formula for the 

equilibrium range of the wind-wave spectrum is easily deri ved as F(/) oc g 2 F' . The 

JONSW AP spectrum was obtained by Hassel mann e/ a/. ( 1973) by means of analyzing 

the ocean wave spectra observed by the Joint North Sea Wave Project in the North Sea. 

The basic fonn of the JO NSW AP spectrum was the same as the PM spectrum, but it 

was modified so as to express the energy concentration around the peak of the spectrum. 

Hasselmann (1974) first proposed a formula fo r the energy dissipation by analyzing 

the results of the observed random pressure distribution worki ng at the ocean wave 

surface. Kamen e/ a/. ( 1984) derived an expression for the energy dissipation by means 

of a numerica l simulati on of the energy transport equati on , in which only the energy 

dissipation was treated as an unknown term, while the energy input by the wind was as 

represented by Snyder e1 at. ( 198 1), and an exact calculat ion of the nonlinear energy 
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transfer was made. The energy dissipation term which gave the best agreement with the 

observed PM spectrum was adopted. The energy dissipation by Komen eta/. ( 1984) was 

incorporated into the W AM model. This way of thinking based on the energy balance 

between the energy source functions was systematically studied by Phillips ( 1985), and 

some studies to formulate the energy dissipation based on this theory have been 

attempted (e.g., Banner and Young, 1994; Melville, 1994). 

As mentioned above, theoretical and experimental studies on the basic physical 

processes governing the evolution and dissipation of ocean waves are insufficient. 

Nevertheless, it is satisfying to consider that the accuracy of ocean wave prediction by 

wave models is good enough to be of practical application, because some empirical 

relations of the ocean waves are skillfully incorporated into the wave models. 
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Figure 2.2 Wave steepness 8 = H/ L as a function of wave age ~ = cjU. 

The plotted points are observed results. The solid line is the 

assumed functional relation (from Sverdrup and Munk, 1947). 
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2.2 Classification of ocean wave models 

Many types of wave models were developed since the 1960s, differing according to 

the treatment of the energy source functions, whether shallow or deep water and 

numerical procedures applied to solve the energy transport equations. In order to clarify 

the difference of characteristics of the several wave models, the intercomparison sntdy 

named SWAMP (Sea Wave Modeling Project) was started in about 1979. The results of 

the project were presented in detail in "'Ocean Wave Modeling" (SWAMP Group, 1985). 

The largest difference between wave models is the treatment of the nonlinear energy 

transfer S,,. Distinguishing them in terms of different treatments of S,,, the wave models 

are classified into three categories: DP models (Decoupled Propagation Models), CH 

models (Coupled Hybrid Models) and CD models (Coupled Discrete Models) . 

(1) DP (Decou pled Propagation) models 

The energy source functions of DP models are composed of the energy input by the 

wind S,. and the energy dissipation SJ,, so that the non! in ear energy transfer S,, is not 

considered explicitly. Since each of the components composing the two-dimensional 

ocean wave spectrum propagates independently without any interactions, they are called 

DP (Decoupled Propagation) models. Although the effect of the nonlinear energy 

transfer is not considered explicitly, the nonlinear effect is included implicitly, because 

DP models use the total growth rate including the nonlinear effect based on 

observational results from ocean waves. Since DP mode ls use the artificia l energy 

dissipation scheme to restrict the growth of the wave spectrum by applying a saturated 

spectrum (e.g., PM spectrum) as a limiting value, the models have enough accuracy for 

practical use. Even though DP models have two weak points. One is the difference of an 

order of magnitude between the energy input of the model and that obtained by ocean 

wave observations and wind-wave tunne l experiments, because the energy input of DP 

models includes the effect of the non linear energy transfer implicitly. The other is the 

fact that the model is not able to reproduce the overshoot and undershoot phenomena 

which can be observed in the actua l ocean wave spectrum (e .g., Bamett and Sutherland, 

1968). This refers to the observation that the spectral component of wave energy around 

the peak fluctua tes in time and space as it gradually approaches the saturated value. 
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Typical DP models were DSA (Gelci et a/., 1956), PTB (Pierson et al., 1966), 

SOWM (Lazanoff eta/., 1973) of the US Navy which was an improved version of PTB , 

GSOWM (Clancy eta/., 1986) a global version of SOWM, Inoue ( 1967) which was 

developed at New York University and MRl (lsozaki and Uji, 1973) which was used for 

a long time as an operational ocean wave pred iction model by JMA (Japan 

Meteorological Agency). The wave models of Barnett (1968) and Ewing (1971) 

introduced an explicit representation of 5,1 by means of a simple parameterization of the 

nonlinear effect for the Neumann spectrum. However, they were classified as DP 

models, because the nonlinear effects were one order of magnitude smaller than other 

source terms and the models were governed mainly by the energy input by the wind. Let 

us take the MRl model (lsozaki and Uj i, 1973) as an example to show the details of a 

DP model. 

The MRI model which was developed by lsozaki and Uji (1973) started to be used 

as an operational numerical ocean wave prediction model by J MA from March 1977, 

after many examinations for practical appl ication of the model together with the 

development of a numerical model of sea surface wi nds (lsozaki and Uj i, 1974). The 

model was used for about ten years until it was replaced by MRl-11 (Uji, 1984) in 

September 1986. The accuracy of the model was highly rated. 

In the MRl model , the energy source functions of the linear growth by the wind 

(Phillips' mechan ism), exponenti al growth by the wind (Miles' mechanism), and energy 

dissipation due to wave breaking, internal friction (eddy viscosi ty) and adverse wind, are 

considered. Though the effect of nonlinear energy transfer 5,1 is not considered 

explici tl y, it can be cons idered that the nonlinear effect is included implicitl y by 

applying the growth relation of Inoue ( 1967), in which the nonlinear effect 5,1 is not 

separated from the wind input 5.,. The model is based on the assumption of the 

existence of a fully-developed ocean wave spectrum , which is expressed by the PM 

spectrum (Pierson and Moskowitz , 1964): 

FPM(j) = ag ' (2rrt' r' exp[-~(-g -)' r'] • 2rru195 

(2.8) 
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where g is the gravitational acceleration, f the frequency and u195 is the wind speed at 

19.5 m height. a and ~ are constants with a= 8. 1 x 10-' and ~ = 0. 74, respectively. 

The constant a is called Phillips' constant. 

The energy source function 5,., takes different forms according to wind conditions 

of favorable and adverse wind. It is represented as follows . 

Favorable wind case: IS- 8, I$ 90 

s." = [A + B· F(f,e)]·[I-( ~;{/~J]c(e- e , ) , (2.9) 

F(f,e) $ JiFp..,(f.e) 

S." =- D j'F(f,8) · F(/,8) > JiFP11(f,8) (2. 10) 

Adverse wind case: IS- 8, I > 90 

S"'' = -[B·G(8- 8,) + D f 4
]F(f,8) (2.1 1) 

Here 8 is the wave direction, 8, the wind direction, F(f, 8) the two-dimensional ocean 

wave spectrum and c(e- e..) is the directional distribution function proportional to 

cos2(8- 8, ). The terms A and 8 are the linear and exponential growth of wind waves 

derived by Inoue ( 1967): 

(2 .12) 

B(J,u.)/J = 5e-'rm(";--oo; r)' +26 1 t~ r e-ol)()()4(";-)' ' (2. 13) 

where u is the wind speed at 19.5 m he ight, 11, the friction veloci ty, c the phase speed 

of each spectral component and k is the wave number. The term D in equations (2.1 0) 

and (2.11) is the coefficient of internal friction (eddy viscosity), which is se lected to be 

D = I I 3600 sec 3 so that the wave components shorter than three seconds wi ll disappear 

with in one hour if there is no energy inpu t by the wind. 

The energy transport equation (2.5) is transformed into a difference equation and 

integrated numerically. In the calcu lation of the energy propagat ion term of the MRI 



model, a coupled numerical scheme of the finite difference method and jumped method 

is applied. The jumped method was adopted in the PTB model (Pierson era/., I 966) in 

which the wave energy remains at a particular grid point until enough time has elapsed 

so that the energy can reach the vicinity of the neighboring grid point. The resolution of 

direction in MR1 is a coarse I 6 directions, so that the energy propagation tends to have 

an anisotropy because of only using a finite difference method. Therefore the jumped 

method is applied in combination with the energy propagation scheme so as to realize 

isotropic propagation. However, the jumped method has a weak point in that the 

propagated energy distribution becomes too broad. Also, its application to different 

coordinate systems such as spherical coordinates is difficult, because the jumped 

method distributes the wave energy by multiplying a neighboring wave energy by 

defined coefficients. 

In DP models similar to MR1, the form of the wave spectrum is made to gradually 

approach a fully-developed spectrum (e.g. , PM spectrum) by multiplying the source 

function by the factor [I- (F/ FPM )' ] in equation (2.9). This -(F/ FP, )2 
factor can be 

understood as an implicit expression for the energy dissipation. 

(2) CH (Coupled Hybrid) models 

InCH models, the wind wave component is expressed in terms of a few parameters 

based on the observed results, that the spectra of growing wind waves appear to have an 

approximately self-similar shape for a wide variety of generation conditions, while the 

models treat the swell components in the same way as DP models, in which different 

wave components propagate independently. Since the models use a combined 

expression of the parameterized wind wave and independent swell components, they are 

called CH (Coupled Hybrid) models . 

The self-similar shape of growing wind wave spectra had been considered as 

proportional to F' (Phillips, I 958). However, many subsequent observations of ocean 

wave spectra showed that the shape was proportional to F' (e.g., Kawai eta/., I 977; 

Mitsuyasu et a/., 1980). The result that the shape of growing wind-wave spectra is 

proportional to F' was first introduced by Kitaigorodskii (I 962) , based on dimensional 

analysis. Toba (I 973) introduced that the shape of the wind-wave spectra which was 

- 22 -



equivalent to the 3/2 power law (Toba, 1972) was proportional to r'. Phillips (1985) 

presented a new concept instead of his 1958 theory, in which the same r' spectra as 

Kitaigorodskii ( 1962) and Toba ( 1973) was derived. The concept was based on the 

assumption that, in the equilibrium range, sum of three processes of energy input by the 

wind S'", nonlinear energy transfer 5,1 and energy dissipation by wave breaking S"' ' was 

equal to zero: S'" + S,, + S", = 0 . 

Since the evolution of wind-wave spectra occurs as a result of the total action of all 

the physical processes of S'", 5,1 and SJ,• then if we can describe the evolution of 

wind-wave spectra in terms of several parameters on the basis of the self-similarity 

structure of the spectra, we can incorporate the processes of nonlinear energy transfer 

and energy dissipation, which are difficult to calculate individually, into the ocean wave 

models. CH models can be considered as more improved models than DP models, since 

CH models are based on the knowledge that the process of nonlinear energy transfer is 

essential. 

CH models incorporate knowledge gained from experimental results on ocean 

waves into wave modeling; however, the application of experimental results is only 

restricted to the growth stage of wind waves. Therefore, the same treatments of energy 

dissipation and swell propagation as in DP models are needed. A significant 

disadvantage of CH models is the problem that there remains an arbitrariness in the 

separation of wind wave and swell, and the swell separation is sometimes difficult. 

Typical CH models were GONO (Sanders, 1976; Janssen era/., 1984) in The 

Netherlands, HYPA (Gunther era/., 1979) in Gem1any and TOHOKU (Kawai era/., 

1979; Joseph er a/. , 1981 a, 1981 b; Toba er a/. , 1985; Okada, 1994) developed in 

Tohoku University. Let us take the TOHOKU model as an example to show the details 

of a CH model. 

The TOHOKU model is based on the single-parameter growth equation for wind 

waves proposed by Toba ( 1978). The concept of Toba ( 1978) is based on the hypothesis 

that the self-similarity structure of growing wind waves can be described using only one 

parameter £ ' = g' u:'E , where E isa wind-wave energy and £ ' is a value normalized 

by means of the friction velocity of the air u, and the gravitational acceleration g. The 
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single-parameter growth equation by Toba ( 1978) is expressed as 

(2.14) 

where r' = g u; 'r is the non-dimensional time. G0 R = 2. 4 x I o-' and b = 0.12 are the 

experimental constants. Here, 

2 ' 
erf(z) = c J exp(-r')dr, 

"1t 0 

(2.15) 

is the error function. Equation (2 . 14) shows that the wind wave energy is gradually 

approaching a limiting value obeying a probability process. Once the wind-wave energy 

is calculated by (2 .14), we can estimate the corresponding wave height H by the 

relation of Longuet-Higgins ( 1952), 

E = H'/16. (2.16) 

Wave period T is obtained using the relation of the 3/2 power law (Figure 2.6) of Toba 

(1972), 

H' = BT'Jf' , (2 .17) 

where B = 0. 062 is an empirical constant, and H ' = gu;' H and T. = gu;' T are the 

non-dimensional wave height and period, respectively. The wind waves can be 

considered as monotonic waves with period T, propagating with a group velocity 

C, = gT /4rt . The propagated wind-wave energy is interpolated to the neighboring grid 

points. If the wind is varying, an adjustment of wave energy is perfom1ed for the 

difference between wind direction and wave direction 68. 

1681 ~ 30 : All the wave energy E propagates along the wind direction. 

30 < 1681 ~ 60 : E cos ' 68 becomes the wind-wave energy and it propagates 

along the wind direction. The remaining energy E( 1 -cos' 68) 

becomes swe ll propagating along the wave d irection 

(Figure 2.7, swe ll partition 2). 

lt.81 > 60' : All the wave energy E becomes swell and propagates a long 
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the wave direction (Figure 2.7, swell partition I). 

The wind-wave component is then tested against the criterion E > E,, where Em 

corresponds to cju10 = I. 37 on the basis of the Wil son (1965) relation . The excess 

energy E- Em is transformed into the swell component. The swell component is divided 

into spectral components using Toba 's spectrum (Joseph era/., I 98 I a) 

{

agu.f-4
, 

F(f) = !.-'!' agu, P , 
(2. 18) 

where a= 9. 6 x 10-2 /(2 rr) ' is an empirical constant and J,, is the peak frequency of the 

wave spectrum . Each swel l component propagates independently with the energy 

dissipation due to internal friction (eddy viscos ity) and adverse wind. The swell energy 

is transformed again into wind wave energy, if 1'.9 $ 60 and cju10 $ I. 37. 

As mentioned above, by means of expressing the self-similarity structure as a 

single parameter, the TOHOKU model can incorporate the processes of nonlinear 

energy transfer and energy dissipation which are difficult to calculate individually into 

the ocean wave model. However, since the model adopts a somewhat artificial method 

with respect to the separation of wind waves and swel l, it is a significant weak point of 

CH models that the distribution of wind-wave and swel l components in time and space 

occasionall y becomes discontinuous. 

(3) CD (Coupled Discrete) models 

There is a difference between CD models, and DP or CH models in that the 

nonlinear energy transfer 5,1 is expressed explicitly in some way. As previous ly stated , it 

is quite impossible to incorporate an explicit calculation scheme of the nonlinear energy 

transfer into a practical ocean wave model, because the explicit calculation of the 

nonlinear energy transfer, which is expressed by a cubic integral in wave number space, 

requires an enormous amount of computational calculat ion even though using a 

supercomputer. Therefore the numerica l expression of the non linear effect in CD 

mode ls is parameterized by the fol lowing me thods, which are classified main ly into two 

categories. 

a) The parameterized method in which the exact calculation resu lts of 5.,1 for a standard 
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wave spectrum (e.g., JONSW AP spectrum) are expressed by a few parameters and the 

s", term is estimated by finding the parameters which best fit the standard spectrum to 

the simulated spectrum (e.g ., Young, 1988). 

b) The method in which the wave energy is redistributed so as to satisfy the self­

similarity structure of growing wind waves, in the same way as in the CH model (e.g ., 

Golding, 1983; Uji, 1984). 

Since both methods try to incorporate an explicit expression of the nonlinear effect 

into the ocean wave models, CD models can be considered as more improved models 

than CH models. However, the difference between CH and CD models is not always 

clear, since both models make use of the self-similarity structure of growing wind-wave 

spectra. In other words, the model which has more degrees of freedom for expressing 

the nonlinear effect is the CD model and the model with fewer degrees of freedom is the 

CH model. 

An advantage of CD models is the parameterization of the nonlinear energy 

transport S"" but this advantage is possible to be a weak point itself. In ordinary 

circumstances, the spectral shape is rather complicated, such as when there is a double­

peak spectrum with two wave components propagating in different directions, rather 

than the self-similar shape of growing wind waves. Since the nonlinear energy transfer 

for this complicated spectrum can not be fully represented by a s imple parameterization 

based on the nonlinear effect for the standard spectrum, there is a weak point that an 

unreal and unstable spectrum can occas iona ll y be calcul ated. If this unstable spectrum is 

stabilized by assuming the limit of a fu ll y-developed wave spectrum, the advantage of 

CD models is reduced to the same order as that of CH models. 

Typical CD models were MRJ-ll (Uji, 1984) which is used operationally in JMA. 

BMO (Golding, 1983) in the British Meteorological Office , SAIL (Greenwood eta/ .. 

1985) and D S (Allender eta/., 1985) . Let us take MRI-ll as an example to show the 

details of a CD model. 

The MRI-ll model developed by Uj i ( 1984) is used operationall y for numerical 

ocean wave prediction by JM A since September 1986. In the model , the same single­

parameter growth equation by Toba ( 1978) as TOHOKU is incorporated. However, it is 

classified as a CD model, because the wind-wave energy is expressed by the individual 
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spectral components. The effect of the non I inear energy transfer is expressed in terms of 

redistributing the wind-wave energy between the spec tral components. 

With respect to the wind-wave growth , Toba's ( 1978) growth equation applied to 

the PM spectrum is adopted: 

d ._, 

;;. = 1.783 X 10- ' [ I - erf( 4. 59 X 10-2 a~· ' l]· (2. 19) 

The non-dimensional angular peak frequency a~ = g-'u.a" obtained by equation (2. 19) 

is substituted into the same rel ati on as the PM spectrum 

'( . ' ) a ,, ·-s ( ,, ·· •) , F a ,8;a" = -.-aa exp -1.25a" a cos· e, 
O PM 

(2.20) 

which gives the non-dimensional wind-wave spectrum F' . Here a ~,~~ = (0. 8B)''' g· 'u. a 0 

is the non-dimensional angular peak freq uency of the PM spectrum, and a 0 = gju,95 , 

a= 8.1 x I o-• and ~ = 0. 74 are the constants. The directi onal distribution of the wind­

wave spectrum is assu med to be proportional to a cos ' 8 distribution. 

Energy di ssipation by wave break ing, S", = -Br · F(a ,8) is expressed by using the 

probability Pi derived from the observed proportion of whitecaps in the ocean (Toba 

and Chaen, 1973; Toba, 1979). The form of the breaking factor is expressed as 

(2.2 1) 

Here, £. = Jf [ l + (aj2a,,)']Fdad8 is the normalization factor and Pi is given as 

Pi = 0. 27 log( u~ / a" v) - 0. 78 , (2 .22) 

where v is the kinematic viscosity of the air. 

The energy source functi on s." is divided into two cases of favorable wind and 

adverse wind. They are expressed as follows. 

Favorable wind case: IS- 8, I~ 90 

s,,., = [F ' (a~ + t.~a;,, e) - F' (a;,,e)]j /',.1 ' , F(a ,e) ~ F,11 (a ,e) (2 .23) 
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S =-[1 -( F(a,e) ) ' ]Br·F(a 9) · 
"" FPM(a,e) ' 

F,.,,,(a,e) < F(a,e) ~ .J'iFPM(a,e) 

S,, =-Br-F(a,e) 

Adverse wind case: [e - e" I > 90 

s,., =-[B . c(e- e,.) + D t • + Br] F(a,e) 

(2.24) 

(2.25) 

(2.26) 

Where f is the frequency, a the angular frequency , 9 the wave direction, 9 ,. the wind 

direction , F(a,e) the two-dimensional ocean wave spectmm and G(e- 9,.) is the 

directional distribution function proportional to cos ' (e- 9 ,. ). The term B is the 

exponential growth rate of wind waves derived by Inoue ( 1967) as given by equation 

(2.13). In the calcu lation of energy propagation, the same coupled numerical scheme as 

in the MRI model is adopted. 

The MRJ-II model can express the growth of wind waves including implicitly the 

nonlinear effect in terms of the growth equation by Toba ( 1978), which is based on the 

assumption of the self-simi larity structure of growing wind waves. But there remains the 

problem of the separation of swell energy from wind-wave energy and the problem of 

the expression of energy dissipation in which a limit of fully-developed wave spectmm 

is still appl ied. 

The above three categories of DP, CH and CD models are the classification of 

ocean wave models by SWAMP Group ( 1985). The essentia l property of a CD model is 

defined as a model which expresses the nonlinear energy transfer explicitly, so that it is 

reasonable to call models which incorporate the nonlinear expression as precisely as 

poss ible proposed by Hassel mann ( 1962), CD models. Hassel mann et a/. ( 1985) 

proposed an approximate and expl ic it ca lcul ation scheme for the nonlinear energy 

transfer (discrete interaction approximat ion) and the W AM model in which the 

approximate scheme was incorporated, was then developed (W AMDI Group, 1988). 

WAM is classified as a CD model according to the SWAMP Group ( 1985). The model 

is also called a third generation ocean wave model in the sense of being a new kind of 

model, because the number of deg rees of freedom of the nonlinear scheme is 

significantly greater than tha t of the old CD models, and the growth limit of the wave 
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spectrum using a prescribed fully-developed spectrum is removed. 

Corresponding to the third generation ocean wave models, there are also 

classifications of wave models called first and second generation wave models. In 

general, DP models which were developed from the 1960s to early 1970s are called first 

generation ocean wave models, and CD and CH models developed from the 1970s to 

1980s are called second generation wave models . Although the definition of third 

generation wave models is ambiguous, it can be given as follows. A third generation 

wave model is a CD model, which employs discretized continuous operator 

parameteri zation of S,1, containing the same number of degrees of freedom as used in 

the discrete representation of the spectrum. Typical third generation wave models are 

W AM (W AMDI Group, 1988), NEDW AM (Burgers, I 990) which is an application of 

W AM model to shallow water, and Boundary-W AM (Burgers and Makin, I 993), which 

is combined with the atmospheric boundary layer model. Both of the latter two models 

are recognized as modified version of W AM. The JW A3G model (Suzuki and Isozaki, 

I 994) which wi ll be presented in this paper is also classified as a third generation ocean 

wave model. At present, W AM is the only third generation wave model except for 

JW A3G. The outline of W AM is as follows. 

The W AM model is based on the energy transport equation in the spherical 

coordinate system for the purpose of ca lculating the global ocean wave field. The 

equation is expressed as 

oF 1 a (. ) a (. ) a (. ) -+--- "'cos"'F +- A.F +-S F = S , or cos<jl o<jl '~' '~' oA. ae ,,.., (2.27) 

where <jl is the latitude, A. the longitude. 8 the wave direction and F(f. 8, <jl, /,, 1) is the 

two-dimensional ocean wave spectrum. $ and }._ are the group ve locities in spherical 

coordinates for deep water: 

l
. c 
<P =-Lease, 

R 
. c, . 
A=---sm8. 

Rcos<jl 

(2 .28) 

e is the rate of change of the propagation-direction of a wave packet due to travel ing 

along a great circle path: 
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. c 
8 = -L tan <jl sin 8 . 

R 
(2.29) 

The energy source function is represented as a superposition of the three physical 

processes: S," = 51, + 5,1 + S",. The energy input by the wind S, is adopted from Snyder 

eta/. (1981) in the fom1 

s,, = 0.2s£,_(28~cos8 -l)wF , 
p" c 

(2.30) 

where w is the angular frequency, c the phase speed of the wave component, 8 the 

difference between wave direction and wind direction, p, and p". are the densities of air 

and water, respectively. 

The nonlinear energy transfer 5,1 is calculated explicitly by the discrete interaction 

approximation of Hasselniann et a/. ( 1985). The discrete interaction approximation is 

expressed as 

S,, (k,) = L -\W,[ninJ(ni + nJ)- ninJ(n ; + nJ)] , (2.31) 
y:l.2 

where -\ are coupling coefficients and n,1 = F(k,' )jw; (i = 1,2, 3 ;y = 1,2) are the 

action densities. Equation (2.31) is an approximate expression for the exact non linear 

energy transfer integral, which includes only the two pairs of resonant wave components 

out of an infinite number of possib le combinations. 

The energy dissipation S," is adopted from Komen er a/. ( 1984), in which various 

Sd, forms were tested with predetermined S, and 5,1, and the formula which gave the 

best agreement with the PM spectrum was adopted. The fom1ula for Sd, is given as 

(2.32) 

where w = [ £ - ' f F(/,8) w df d8 r is the mean angular frequency and a= Ew'g-' is a 

kind of nonlinear parameter. 

A first-order forward upstream scheme is used in the calcu lation of energy 

propagation. Figure 2.8 shows examples of propagation of wave packets along various 

great circles. The distribution of propagated wave energy becomes broad, since the 
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forward upstream scheme has the property that computational diffusion becomes large. 

Especially in the case of propagation along latitude and longitude, computational 

diffusion in the direction of propagation becomes fairly large, so that the energy 

distribution becomes anisotropic. 

TheW AM model is adopted widely as an operational ocean wave prediction model 

in ECMWF, Bureau of Meteorology in Australia, etc. because of its high potential for 

ocean wave prediction. The accuracy of the model was verified by comparison with 

buoy and satellite data (e.g., Zambresky, 1989; Romeiser, 1993). However, the model 

has some problems: the lack of accuracy in the energy propagation scheme, the use of 

the formula proportional to u,jc for s, •. whereas it can be considered to be proportional 

to (u, jc )',the lack of accuracy in S,1, and the lack of physical consideration in S", . 
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Figure 2.6 The 3/2 power law between non-dimensional sign ificant 

wave height and period with composed data (from Kawai 

eta/., 1977). 

- 32 -



~c 

t, f 2 

(0.04Hz) 

Swell Partition 1 

Swell Partition 2 

f12 

(0.15Hz) 

Figure 2.7 A schematic illustration of swell partition I and partition 2 

in the TOHOKU model. The area with dots and shade 

corresponds to the swell energy, and wi th shade only 

propagates as swell. The <!> .. stands for cut off energy level 

(from Toba era/., 1985). 
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3. The third generation ocean wave model JW A3G 

3.1 Basic equations 

If we assume that ocean waves can be represented as a linear superposition of an 

infinite number of wave components in which wave numbers are different from each 

other, the evolution of ocean waves in time r and space x can be expressed as a change 

of wave spectrum F(k;x,r) where wave number k is an independent variable. Here 

typical scales of time t and space x must be regarded as larger values than wave period 

and wave length respectively. The evolution of wave spectrum is generally governed by 

the energy transport equation (e.g., Hassel mann, I 968) 

(3.1) 

DF/ Dt is the Lagrangian rate of change of the wave spectrum . aFjar is the local 

change of the spectrum, x · aFjax is the change of the spectrum due to energy 

propagation in space X' and k. aFjak is the refraction term. In deep water, the 

refraction term vanishes . S,, of (3. I) is called the net energy source function and is 

expressed generally as the sum of three source functions: 

(3.2) 

S;, is the energy input by the wind. In some cases, the effect of adverse wind on the 

wave energy dissipation is included into S;,· S,, is the nonlinear energy transfer due to 

resonant wave-wave interactions by which the energy of each wave component is 

redistributed . TI1e shape of the two-dimensional wave spectrum is changed due to the 

nonlinear energy transport, whereas the sum of the energy of all wave components 

remains unchanged. S,, is the energy dissipation due to wave breaking or bottom 

friction. 

If all of the source function s are given in time and space, we can obtain the change 

of wave spectrum in time and space, by means of the numerical integration of equation 

(3 . I), given a proper initi al condition and boundary condition. However, the source 

functions are still not completely understood even considering the most recent studies. 
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Therefore it is necessary to express the source functions using empirical and 

approximate formulae based on observational and experimental results. There are many 

types of ocean wave models according to the expressions used for the source functions, 

the numerical treatment of equation (3. I) and whether shallow-water effects are 

considered or not. 

The ocean wave model JW A3G which is developed in this study is a third 

generation wave model in the spherical coordinate system. To mention a few of the 

merits of the third generation wave model, one is the explicit calculation of the 

nonlinear energy transfer, using as many degrees of freedom as possible. The other is the 

use of no assumption on the existence of a fully-developed wave spectrum, while the 

first and second generation wave models were constructed on the assumption of the 

existence of a fully-developed wave spectrum. It was found that the third generation 

wave model gave a high accuracy of the calculated two-dimensional spectrum especially 

in the case of a suddenly-changing wind field (W AMDI Group, I 988). 

The energy transport equation (3. I) for deep water, in spherical coordinates of 

latitude <P and longitude /,, is (cf Appendix A) 

oF +-1-_i_(~cos<J>. F)+ _i_(~ ·F)+ _i_(e ·F) 
dl cos$ o<P ()A. ae 

= S, + S,, + S", (3.3) 

where F(!, 9; <J>, A., 1) is the two-dimensional ocean wave spectrum, f the frequency, 9 

the wave direction which is measured clockwise relative to true north and 1 is time. ~, 

), and e represent the rates of change of the position and propagation direction of a 

wave packet traveling along a great circle path (cf Appendix B): 

(3.4) 

(3 .5) 

(3 .6) 

Here g is the gravitational acceleration, R ~ 637 I km is the radius of the earth and 

C, = gf4rtf is the group velocity. 
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3.2 Energy input by the wind S1n 

With respect to the energy input by the wind , the Phillips-Miles combined 

mechanism 

S,.(/,8) =A+ B · F(/,8), (3.7) 

was proposed (Miles, 1960). The tem1 A corresponds to Phillips ' (1957) resonance 

mechanism. This mechanism occurs when a component of the surface pressure 

distribution moves at the same speed as the free-surface wave with the same wave 

number. According to Phillips' mechanism, the energy transport equation can be 

approximated to DFJ Dr ~ A, which resu lts in the linear growth of wave energy in 

proportion to the time. It can be considered that Phillips ' mechanism is ineffect ive as tl1e 

growth mechanism of wind · waves, but is effect ive as the trigger mechanism before 

Miles' mechanism. 

The term B. F(/,8) in equation (3.7) cotTesponds to Miles' (1957) instability 

mechanism. When a parallel shear flow exists over the sea surface accompanied with an 

ocean wave, an instability of the air flow occurs in the criti cal layer where the mean 

wind speed is equal to the phase speed of the wind waves. The momentum of the mean 

wind is transferred downward due to the instability. The momentum transfer is 

proportional to th e curvature of the wind profile at the critical layer. According to Miles' 

mechanism, the energy transport equation can be approximated to DF/ Dr ~ B · F, 

which results in the exponential growth of wave energy in time. Since the observed 

growth rate of wind waves was mostly an exponen ti al function of time, it seemed that 

the growth of wind waves was explained by the theory. But it was found later that the 

growth rate expected from the theory was far sma ll er than the observed one (e .g ., Snyder 

and Cox, 1966; Barnett and Wilkerson, 1967), so that Miles· mechanism was shown to 

be ineffective as the growth mechanism . Recently, Miles ( 1993) modified Miles' (1957) 

theory. This time the wave-induced perturbations of the Reynolds stresses were 

considered, and the theory showed good agreemen t with the observed growth rate. 

The Phillips-Mi les combined mechanism was not successfu l in expla ining 

theoret ically the generation and growth of wind waves. However, many stud ies, in 

which empirical relations were found for the A and B terms. are performed by means of 
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wind-wave tunnel experiments or ocean wave observations (e.g., Snyder er a/., 1981; 

Mitsuyasu and Honda, 1982; Hsiao and Shemdin, 1983). 

As mentioned above, Phillips' mechanism mainly contributes to the generation of 

wind waves. Since the JW A3G model is expected to use the previously-calculated wave 

spectrum as an initial condition, Phillips ' mechanism is excluded from the model by 

setting A= 0. 

Figures 3.1 and 3.2 show experimental results and growth curves from many 

studies. Most of the experimental growth curves are proportional to (u.fc) ' , where u. is 

the friction velocity of the air and c is the phase speed of the wave component. The 

growth curve of Snyder er a/. ( 1981 ), which was incorporated into the W AM model 

(WAMDI Group, 1988), is proportional to u. fc. In JWA3G, considering the facts that 

most of the experimental relations are not proportional to u fc, but to (u.fc)', a 

combined growth relation of Mitsuyasu and Honda ( 1982) and Hsiao and Shemdin 

( 1983) is proposed: 

B = 10.065(:- 0.0~8 )'- 21lf, 

0.34(~) ·! . 

~50. 2 
c 
~>0. 2 
c 

(3.8) 

In the range u.jc > 0.2, a typical measurement range in wind-wave tunnel experiments, 

the growth rate of Mitsuyasu and Honda (1982) is adopted. On the other hand, in the 

range u. / c 5 0. 2 , a typical measurement range for ocean wave observations, the growth 

rate of Hsiao and Shemdin ( 1983) is adopted, modifying its coefficient to maintain 

continuity at u.jc = 0.2. 

As shown in Figure 3.3, the growth curve (3.8) almost agrees with Snyder er a/. 

(1981) in the range u. jc ~ 0 . I, but in the range u. jc > 0 . I . the growth rate of Snyder er 

a/. ( 1981) is far smaller than other growth rates. So the W AM model gives far smaller 

growth rate than the results of wind-wave tunnel experiments , if it is applied in the 

range u,jc> O.J. 

We adopt the cos e distribution as the directional distribution of s,., as follows: 

s,, = Bcos(e" - e,.)-F(f.e) , (3.9) 



where e. and e., are the wind d irection and wave di rection, respectively. Energy 

dissipation due to adverse wind is expressed by putting a minus sign to the B term of 

equation (3.8). The rationale for this idea is based on the experimental results (e.g., 

Tsuruya, 1988; Mitsuyasu and Yoshida, 1989) in which the energy dissipation rate due 

to adverse wind was found to have nearly same magnitude as the growth rate of wind 

waves. 

If we combine the ocean wave model with an atmospheric model, the fricti on 

velocity u, can be obta ined through the atmospheric boundary layer model. But the wi nd 

speed at I 0 m height u10 is onl y ava il able from observati ons or objecti ve anal ys is. 

Therefore it is necessary to convert u10 into u, by means of the drag relation 

(3. 10) 

Here, the drag coefficient C0 should be expressed essentially as a non-d imensional 

value. Most relations for C0 are expressed as a linear funct ion of u10 (e.g., Garatt, 1977). 

We adopt the experimental relation by Wu ( 1980) , 

(3.1 1) 

Equation (3 .11) is applicable to neutral cond it ions of atmospheric stability. It is known 

that the drag coefficient C0 becomes greater than equa ti on (3. 11 ), as shown in Kondo 

( 1975) under unstable conditions in which sea su1face temperature is greater than 

atmospheric temperature. 

- 39 -



/ifo/ 
/I!' 

/j 
ig'W 

~~t 0 Shule<tal. (1970) 

IO"' ~~'·/ /1~::!, '/R ®snyder&Cox(l966) 

~~~ ~ lnoue(l966) 

10~ ,I 
10'1 10"1 

U. /C 

10 

Figure 3.1 Comparison of various experimental results for wind wave 

growth from Mitsuyasu and Honda (1982). 

CD:Miles(l959), ® :Inoue( 1966). ®: Snyder and Cox( 1966). 

® :Mitsuyasu and Honda(l982). ® :Snyder era/.( 1981 ). 

-40 -



B 

f 

10 

Pl ant(1982)· mean value 

Plant(l982). upper and l0111er limit 

Snyder et a l. (1981) 

Hsiao and Sbemdin(l983) 

6 She•din & Hsu (1967) 

e larson & Wright(l975) 

X Wu et a!. (1977) 

0 Snyder et al. (1981), 

fixed sensor 

0 Snyder et al. (1981), 

wave-following sensor 

~Hs iao and She ~~:~din(1983) 

Figure 3.2 Same as Figure 3.1 , but from Hsiao and Shemdin ( 1983). 

-4 1-



8 
(J) 

10-1 2rr · 10-1 

10-2 2rr ·10-2 

10-3 

10-4 L....--'-L-J.,;,.,{j~'"'---'--'-"'-'--'-'-u..L--'---'--'-'-W""-i..J 2rr. 10-4 
10-2 10-1 10° 1 01 

u.jc 

Figure 3.3 Various growth curves for wind waves with the combined 

formula in the JW A3G model (th ick line). 

- 42 -

-----------------

8 

f 



3.3 Nonlinear energy transfer Snl 

The specn·al wave models using energy transport equations are based on the I in ear 

theory, in which it is assumed that the ocean wave field can be expressed as a linear 

superposition of an infinite number of wave components with random phases. However, 

nonlinear energy transfer due to resonant wave-wave interactions occurs, if the 

perturbation analysis is applied to the basic equations of surface waves. Phillips (1960) 

demonstrated that the nonlinear energy transfer did not occur in the second-order 

perturbation of wave slope, but in the third-order perturbation. But the magnitude was 

ineffective compared with the magnitude of growth and diss ipation processes of ocean 

waves. Hasselmann (1962) extended the perturbation theory to fifth-order analysis 

which yielded a fourth-order effect comparable in magnitude to the growth and 

dissipation processes of ocean waves, and introduced the nonlinear energy transfer S.,, 

due to resonant wave-wave interactions. The nonlinear transfer S,, is expressed in 

integral form as 

s,)k.) = JJJ w,a·S(k, +k, - k,- k.).s(w, +w, -w.,- w.) 

x[n,n2 (n3 + n.)- n,n)n, + n2 )]dk1dk2dk, , 
(3.12) 

where 11; = F(k;)jw; ,(i = 1, 2, 3, 4) is the action density of the two-dimensional wave 

spectrum F(k;) for wave number k;. a(k1,k2 ,k,,k.) is the coupling coefficient and 8 is 

the delta function representing the resonant conditions between four wave components: 

{ 
k, + k, = k, + k,, 

w, +w 2 =w, +w,. 
(3.13) 

Figure 3.4 is the interaction chart from Hassel mann ( 1963). The interaction curves 

for different values of y = .f( + F, = ..Jk. + .Jk:, which is obtained by substituting 

the dispersion relation w2 = gk into the second equation of (3.13) , are shown in the 

figure. The resonant condition between four wave components (k,, k2 .k.,. k.) is given by 

the two pairs of wave number vectors of which end points P and P' lie on the same 

interaction curve. Since any set of y, P and P' is available , it is easy to understand that 

there is an infinite number of combinations of wave components. 
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Equation (3.12) represents the rate of change of the wave energy of the k
4 

component in time, due to the resonant wave-wave interactions between the (k,, k 2 , kJ 

components. When the two-dimensional wave spectrum is expressed in terms of 

discrete wave components , the integral operator in (3.12) is replaced by the summation 

of all the combinations of wave components. For example , in the JW A3G model, the 

two-dimensional spectrum is expressed by 900 wave components, so that the number of 

combination is 900) ~ I 09
• Therefore it is almost impossible to incorporate the exact 

nonlinear calculations of 5,1 into a practical ocean wave model, even if using a 

supercomputer. 

In order to reduce the amount of calculation, incorporation of the parameterized 

scheme into wave models, in which exact nonlinear energy transfer for a standard wave 

spectrum was parameterized by means of a few parameters, was attempted. Barnett 

(1968) parameterized the nonlinear energy transfer for the Neumann spectrum, and the 

Barnett ' s parameterized scheme was adopted by Yamaguchi eta/. (1979). Young ( 1987) 

parameterized the nonlinear energy transfer for the JONSW AP spectrum and 

incorporated the scheme into an ocean wave model. But there was a limit to the range of 

sea states to which this parameterization could be applied , especially in the case of a bi­

directional wave spectrum due to a sudden change of winds. The application of the 

parameterization scheme to that condition was difficult. 

In order to solve the problem, Hassel mann et a/. ( 1985) proposed a discrete 

interaction approximation which approximated the nonlinear energy transfer by means 

of an explicit calculation scheme. It was shown that the approximation, in which a 

certain limited number of combinations of the interacting wave components stood for 

the infinite number of combinations, could exp lain most of the nonlinear energy transfer. 

This discrete interaction approximation was adopted as the scheme for nonlinear energy 

transfer in the W AM model. 

The comparison of the discrete interaction approximation with the exact 

calculation of 5,1 by Hassel mann and Hassel mann ( 1981) is shown in Figure 3.5. The 

four cases shown in the figure COITespond to y =I. 0 through y = 3. 3, where y is the 

peak enhancement coefficient of the JONSW AP spectrum. Since the treatment of 
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singular points in Hassel mann and Hassel mann ( 1981) is insufficient, the results of !he 

exact calculation are not smooth (Masuda, 1980). In the case of y = I. 0, which 

corresponds to the PM spectrum, the results calculated by the two different schemes 

almost agree. But the accuracy of !he discrete interaction approximation becomes worse 

as the peak of the spectrum becomes sharp (y becomes larger), and in the case of 

y = 3. 3, !he amount of the nonlinear energy transfer by the approximation is an order of 

magnitude smaller than !hat by the exact calculation. In the actual ocean wave field , it 

can be considered that a developed spectrum is gradually approaching a saturated PM 

spectrum (y = I. 0 ), while in the generation and growth stage of wind waves, the peak of 

the spectrum is considered as more sharp than the PM spectrum, so that y is greater 

than I. So !he accuracy of the discrete interaction approximation by Hasselmann e/ a/. 

(1985) is insufficient, especially in !he case that y is greater than I. The amount of 

nonlinear energy transfer is found to be significantly underestimated. In the JW A3G 

model , we have succeeded in improving the accuracy of the discrete interaction 

approximation by changing the combination of resonant wave components from !he 

original pair of Hassel mann e/ a/. ( 1985). 

The improved discrete interaction approximation calculates the nonlinear energy 

transfer between resonant wave components of 

1 
w, = w, = w, 

w, =(l+/,)w=w • . 

w, = (1- A.)w = w_, 

(3.14) 

with /, = 0.19 , whi le /, = 0. 25 was adopted in Hassel mann e/ a/. (1985). From equation 

(3.14) and the first equation of (3.13) , the wave directions of resonant wave components 

are found to be 

(3.15) 

The improved discrete interaction approximation of the nonlinear energy transfer S,, is 

expressed as 
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l os~) os,, = 

os;, 

-2 /::,f/::,9 
/::,f/::,9 

(I+/,) t:,f/::,9 
/::,r /::,9 

(1-A.) /::,f/::,9 
~::,r~::,e 

C -'!"{ '[ F. F_ ] 2 FFJ_ } 
x g F (l+A.)'+(J-/,)'- (!-/,' )' 

(3 .1 6) 

where oS,, is the change of the nonlinear energy transfer per unit time, F = F(f, 9) the 

two-dimensional wave spectrum, !::,f the frequency interval and 1::,9 is the angular 

interval. The increments /::,f/::,9 in the numerator refer to the ··collision element", while 

those in the denominator refer to the element where the spectrum changes. The constant 

C is a coupling coefficient which is chosen as C = 2. 5 x I 0 7
, for which the 

approximation agrees with the exact calculat ion. 

Figure 3.6 shows a comparison of the improved discrete interaction approximation 

with the exact calculation by Hassel mann and Hassel mann ( 1981 ). The amount of the 

nonlinear energy transfer for the sharp spectrum of y > I. 0 shows fair agreement with 

the exact calculation. It is found that for the sharp spectrum, the accuracy of the 

approximation with this scheme is much improved compared with Hassel mann's 

original approximation. According to Masuda ( 1986), it was shown that the nonlinear 

energy transfer for a broad spectrum such as the PM spectrum was not sensitive to the 

combination of resonant wave components, while that for a sharp spectrum was 

sensitive to the combination. For the case of A. = 0. 25, since the difference in frequency 

of the resonant w. and w_ components is rather larger than the half width of 

JONSW AP spectrum, the combination of resonant wave components of /, = 0. 25 is 

inappropriate to express a principal part of the nonlinear energy transfer of the spec tmm, 

whi le the components of /, = 0. 19 can be considered as appropriate. Therefore the 

accuracy of the discrete interaction approximation with /, = 0. 19 is improved. 
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Figure 3.4 Longuet-Higgins' interaction chart from Hassel mann ( 1963). 

Each contour line satisfies the resonant condition 
y = .Jk: + .jk; = .jk; + JC, where k1 is a wave number. The 

resonant condition of four wave components is expressed as 

two pairs of vectors on the same contour line of y. 
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Figure 3.5 The nonlinear energy transfer S,, for various wave spectra. 

Comparison of the results from Hasselmann er a/. (1985) 

(dashed line) with the exact calculation by Hasse lmann and 

Hassel mann (1981) (solid line). y is the peak enhancement 

coefficient of the JONSW AP spectrum. 
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Figure 3.6 Same as Figure 3.5, but for the improved di screte 

interaction approximation in the JW A3G model with 

/... = 0.19 (dashed line ). 
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3.4 Energy dissipation Sds 

The energy dissipation process in ocean waves is the most difficult problem among 

physical processes of ocean waves. Although the energy dissipation due to molecular 

viscosity plays an essential role in the high-frequency components of capillary waves, it 

is almost ineffective in the dominant frequency components of ocean waves. It can be 

considered that most of the energy dissipation results from wave breaking phenomena. 

Wave breaking is a strongly nonlinear phenomenon, so that it is difficult to understand 

the physical mechanism well. Although a fairly good qualitative understanding of wave 

breaking phenomena has been achieved, it is difficult to express the mechanism 

quantitatively. Even if a quantitative understanding of the phenomena is obtained by 

experimental studies, it is quite difficult to distribute the energy dissipation into spectral 

components in order to incorporate the mechani sm into the wave model. 

For these reasons, in the first and second generation wave models, the energy 

dissipation process was expressed simply by means of a fully-developed wave spectrum 

(e.g., PM spectrum; JONSW AP spectrum). According to this simple treatment, when 

the wave spectrum approaches some fully-developed wave spectrum, the energy input 

and the energy dissipation are balanced, so that the wave components do not grow any 

more. In the second generation MRI-11 model (Uji , 1984), an original formula of the 

energy dissipation including the experimental probability of wave breaking derived from 

Toba (1979), was adopted. But in the model , a limit of saturation spectrum was still 

applied. 

An expression for energy dissipation by wave breaking was first obtained by 

Hassel mann ( 1974). The expression, proportional to the second power of frequency, was 

obtained on the assumption that the effect of wave breaking was equivalent to that of the 

random pressure fluctuations in the air acting on the sea su1face. For the purpose of 

incorporating the dissipation term into the wave model, Komen eta/. (1984) obtained an 

expression for the energy dissipation by means of numerical simulation, in which the 

dissipation term was assumed to be proportional to the 11th power of frequency and the 

mth power of a nonlinear parameter a= Ew'/g', and the exponents 11 and m for 

which the simulation result gave good agreement with the PM spectrum were chosen as 
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n = 111 = 2. This gave the same result as Hasselmann (1974) that the energy dissipation 

is proportional to the second power of frequency. The expression obtained by Komen er 

a/. ( !984) is as follows: 

(3.17) 

where w is the first moment of angular frequency and a PM = 4. 57 x 10--' is the 

theoretical value of a for the PM spectrum . The expression (3.17) for the energy 

dissipation S,, is adopted in theW AM model (W AMDI Group, 1988). 

In the JW A3G model, we propose an original formula for the energy dissipation 

based on the hypothesis of the source term balance and a scaling analysis. It is found 

that the exponents n and 111 in the Komen-type dissipation are determined analytically 

by the following considerations, while Komen eta/. ( 1984) determined them by means 

of numerical simulations. 

3.4.1 Energy balance between source terms 

It is well known that the shape of the wind-wave spectrum has a self-similarity 

structure. It can be considered that the wind-wave spectrum in the high frequency range 

is inversely proportional to the 4th or 5th power of frequency (e.g. , Toba, 1973; Phillips, 

1958). It is also considered that there is a local equilibrium between physical processes 

in wind waves in the high-frequency range (e.g., Toba, 1972; Masuda and Kusaba, 

1987), so that the wind-wave spectrum has a self-similarity structure. Phillips (1985) 

assumed an energy balance between source terms: the energy input by the wind S,, , the 

nonlinear energy transfer S,, and the energy dissipation S,,, , in the equilibrium range of 

the wind-wave spectrum. On the assumption that 

s,, + s,, + s,, = 0, (3.18) 

Phillips ( 1985) introduced results that the wind-wave spectrum in the equi librium range 

was proportional to w-', and the energy dissipation was expressed as S,, "'gr', where 

w is the angular frequency , g the gravitational acceleration and k is the wave number. 

We start to deve lop a theory from the Phillips hypothesis (3 . 18) and assume 

furthermore that the magnitudes of each of the physical processes have the same order in 
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the equilibrium range: 

(3.19) 

It is considered that both gravitational acceleration g and friction velocity u, are 

essential as forcing terms in the process governing the growth of wind waves. Therefore 

5,, and 5,1 are scaled in tenns of g and u. as (see Appendix C for the scal ing of 5,1) 

5,, ~ (u.jc) 2 wF ~ g-'u:w'F, 

5,1 ~g-'w"F', 

(3 .20) 

(3.21) 

where c is the phase speed of the wind wave and F is the wave spectrum. Substituting 

equations (3 .20) and (3.21) into (3.19), we arrive at the following two conclusions: 

a) The wind-wave spectrum F(w) in the equilibrium range is proportional to w-4
: 

F(w) ~ gu.w-4 

b) The energy dissipation 5", is proportional to w' · 

5", ~ g-2u.2w'F . 

(3 .22) 

(3.23) 

The conclusion that the wave spectrum in the equilibrium range is proportional to 

w-•, which is derived from the assumptions, agrees well with the observed wind-wave 

spectra (e.g., Kawai et a!., 1977). Applying the same scaling analysis as mentioned 

above to the WAM model, in which the energy input 5, proportional to u.jc is adopted, 

an energy dissipation proportional to w 2 is required from the balance between 5,., and 5,1. 

In fact, the energy dissipation of equation (3 . 17) in the W AM model is proportional to 

w', which is consistent with the result based on the energy balance hypothesis. It is also 

concluded that the wave spectrum in the equilibrium range is proportional to w-'·5 

Therefore the basic framework of physical processes in the W AM model is not 

supported by the local equilibrium hypothesi s of wind waves, which is typically 

represented by Toba 's ( 1972) 3/2 power law relating wave height and period. 

3.4.2 The formula for energy dissipation 

By considering the energy balance between source terms, we can obtain the 

dependence of the energy dissipation 5", on frequency as in equation (3.23) . Then the 

formula for 5,1, is determined by means of dimensional analysis . We propose an 
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expression 

where, 

'( • )m s", = -c.w(~) · ~ F , 
w EP,\1 

w=E-'ff wF(w,9)dwd9 

E = J J F(w,e)dwde , 

(3.24) 

(3.25) 

(3.26) 

and £' = w'/g' ·Eisa nonlinear parameter which is proportional to the second power 

of the wave slope. £~" = 4. 57 x I o-' is the theoretical value of E' for the PM spectrum. 

Komen e/ a/. ( 1984) determined the exponent m in equation (3.24) by means of several 

numerical experiments. However, it is found to be determined analytically by the 

following considerations on the condition to realize the 3/2 power law. 

The 3/2 power law (Toba, 1972) between wave height and period is 

(3.27) 

where H' = gu:' H is the non-dimensional sign ifi cant wave height, r· = gu;'T is the 

non-dimensional wave period and the constant B = 6. 2 x I o-' was determined from 

ocean wave observations. Toba ( 1973) showed that the wave spectrum that is consistent 

with the 3/2 power law in the equilibrium range was gu,w-', which is the same formula 

as equation (3.22). By using H' and r· , the wave energy E and the mean angular 

frequency w are ex pressed as 

1/ 2 1/ ( - 1 2 ')' E= /16H = / 16 g u,H ' (3.28) 

-w = 2rc/ = 2rcgu:' I 
IT IT'. (3.29) 

Substituting equations (3.28) and (3.29) into (3 .24) yields 

(3.30) 

Supposing that the energy dissipation S", does not depend on the wave height and period, 

the exponent 111 is determined as m = 2 by substituting the 3/2 power law (3.27) into 
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(3.30). The conclusion that m = 2 agrees with equation (3.17). The formula for S", can 

be obtained by incorporating the experimental wind-wave relations skillful ly into the 

model. 

From the above considerations, although the original meaning of a third generation 

wave model was that the model should have no restriction on the growing wave 

spectrum, it becomes clear that the framework based on the experimental 3/2 power law 

is included implicitly not on ly in JW A3G but also in W AM . 

The dissipation coefficient ch = 6 . 0 X I o-' is chosen so that the wind-wave growth 

under a constant wind field agrees with the experimental results. This coefficient Ch 

plays a role in adjusting the wave model in total. This value is appropriate for 

calculations on a 2.5 degree grid interval. However, for other grid intervals, it will be 

necessary to re-examine the value of Ch, because the contribution from subgrid-sca le 

phenomena (typhoons, fronts, etc .) varies. There are always these kinds of problems in 

modeling natural phenomena- this is known as the problem of eddy viscosity. 
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3.5 Finite difference scheme for energy propagation 

The upstream finite difference scheme is the most suitable for calculating a 

propagation term of a positive-definite quantity such as a wave energy, because the 

centered scheme generates a negative energy. The forward upstream scheme is 

implemented in the W AM model. However there are some problems, in that the scheme 

generates a large computational diffusion , and the propagated energy distribution in 

spherical coordinates becomes anisotropic when the wave packet propagates along 

latitude or longitude directions (Figure 2.8). Therefore we have developed the following 

higher-order upstream scheme (Hybrid Upstream) in order to improve the accuracy. For 

the one-dimensional advection equation 

(3.31) 

if the advection speed c > 0, the Hybrid Upstream scheme is expressed as 

t:.T 6x 

j 
u; -u; + c u; -u;_, = 

0 
. 

u ;+l -u; I ( 2u;+1 +3u; - 6u;_1 +u;, n 2u;.1 +3u; - 6u; 1 +u'_, ) 
---+-- ac · + 1,c '· =0 

t:.T a+B Mx Mx ' 

(3.32) 

where x = )tv:, r = n/11 and a = ~ = 1/2 are the constants . The Hybrid Upstream 

scheme uses two-step calculations. The first equation of (3.32) is a predictor and the 

second equation is a corrector. The scheme adopts a forward upstream scheme as a 

predictor and a combination of third-order upstream schemes as a corrector. The scheme 

is conditionally stable with c!'.rj!:u $I. There is a more highly-accunite scheme by Hsu 

and Arakawa (1990), than the Hybrid Upstream scheme, but the calculation procedure is 

so complicated that it is difficu lt to incorporate the scheme into a practical wave model. 

A comparison of the Hybrid Upstream scheme with the forward upstream scheme 

for the one-dimensional advection equation is shown in Figure 3.7. The shape of the 

propagated energy distribution is almost preserved in the Hybrid Upstream scheme, 

while the shape is not preserved in the forward upstream scheme. In the latter, the 

energy peak becomes smaller and its distribution becomes broad due to the 

computational diffusion. So it is clear that Hybrid Upstream scheme is a highly-accurate 
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one. 

3.5.1 Stability analysis 

The von Neumann stability analysis is applied to the Hybrid Upstream scheme for 

determining the stability condition. In the von Neumann method, the solutions of 

equation (3.32) are expanded as a finite Fourier series, in which a Fourier component is 

expressed as 

u; = U" exp[ik(jllx)] , (3 .33) 

where n denotes an index of time 1 = n!'!.t and j denotes that of space x = jllx. 

Substituting equation (3.33) into (3 .32), the amplification factor G = U"''/U" is given 

as 

where J.l = c !'!.! / !'!.x. The general stability requirement is IGI ~ I for any kllx. Figure 3.8 

shows the real and imaginary components of G for various J.l values and Figure 3.9 

shows the absolute values IGI for various J.l values. It is found that the amplification 

factor IGI never exceeds 1.0 under the condition of J.l ~ I. 0. But in the range of 

0. 5 < J.l ~ I. 0, IGI takes a minimum va lue at a certain wave length (Figure 3.9), where 

the rapid change of the real and imaginary parts of G (Figure 3.8) indicates the rapid 

phase change of the solution. Thus, it is desirable to apply the Hybrid Upstream scheme 

with J.l ~ 0.5 . 

3.5.2 Arti fi cial diffusion 

It is true that a highly-accurate finite difference scheme is generally desirable, but 

m the case of energy propagation in ocean wave models, in which the directional 

spectrum is discretized in frequency and direction, high ly-accurate schemes do not 

always give the best results. Figure 3.10 shows a schematic figure of the propagation of 

a wave packet initially concentrated at the origin (SWAMP Group, 1985). If the wave 

packets propagate without any diffusion, spectral bins represented by rectangular 

- 56 -



regions keep their sizes. However, the area where no wave packet arrivals increases as 

the wave packets propagate far from the origin. This problem comes from the 

discretization of the directional spectrum into finite wave number components. In reality, 

the wave spectrum is continuous in both frequency and direction so that the propagated 

energy distribution should cover the whole space continuously. In the old wave models, 

this kind of problem was not noticeable, because energy propagation schemes with high 

computational diffusion such as the jumped method (lsozaki and Uji, 1973) or the 

forward upstream scheme (W A MDI Group, 1988) were implemented in the models. On 

the other hand, in the JW A3G model, since a highly-accurate finite difference scheme is 

adopted, it becomes a problem to keep the continuity of the propagated energy 

distribution. 

Therefore an artificial diffusion term is added to the energy propagation scheme so 

as to realize an idealized energy propagation. The energy transport equation with the 

artificial diffusion term is expressed as 

aF 1 a ( . ) a ( . ) a ( . ) -+--- <jlcos<)l·F + - IJ +-SF 
dt cos<P CJ<jl ()A. ae 

(3.35) 
Cl 1F CJ ' F 

- S + K -- + K. --
- "" • Cl<P ' '· CJA.' 

where the diffusion coefficients K~ and K,. are determined by the energy propagation 

test for the monotonic wave component: 

j
K = o.o4t.e ' lc" ~~ , 9 R cos <P 

K , = 0.04LI8'1c, cose I· 
· R cos ' <P 

(3.36) 

Figure 3.1 I shows an example of the energy propagation on a sphere. As shown in 

the figure, a wave packet is propagating along a great circle path and gradually changing 

its propagation direction. The reason is that there is a term which produces a change in 

propagation direction of a wave packet in the energy transport equation (3.3) , which is 

characteristic of a propagation term in the spherical coordinate system. Propagation of 

wave packets along various great circle paths is shown in Figure 3.12, which is drawn 

after Figure 2.8 of W A MDI Group ( 1988). It is found that the computational diffusion 
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of JW A3G is much smaller than in W AM . In the case that wave packets are propagating 

along latitude or longitude directions, the propagated energy distribution of W AM is 

anisotrop ic, while that of JW A3G is not. Therefore the Hybrid Upstream scheme in 

JW A3G is considered as highly accurate and appropriate to the calcu lation of energy 

propagation in the wave model. 
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Hybrid upstream 

1st order upstream 

Figure 3.7 The results of energy propagation by the Hybrid Upstream 

scheme (uppe r) and the first-order forward upstream scheme 

(lower). The condition ct:. tj tl.x is 0.2. The result is plotted 

every 250 time steps. 
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Figure 3.8 Real and imaginary part of the amplification factor G of the 

Hybrid Upstream scheme. Each contour line corresponds to a 

different value of ct:.rj t:.x from 0.1 to 1.0. Contour interval is 0.1. 
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Figure 3.9 The absolute amplification factor !GI of the Hybrid Upstream 

scheme. Each contour line corresponds to a different value of 

ct:.rj t:.x from 0.1 to 1.0. Contour interval is 0.1. 
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Figure 3.10 Areas covered by individual specrra l bins at each time for a 

wave field initially concenrrated at x = y = 0. In the case of 

non-dispersive propagation (solid boxes), the wave energy is 

zero in the intermediate area, while in the case of dispersive 

propagation, the consistency requirements for propagation are 

satisfied (from SWAMP Group, 1985). 
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Figure 3.11 An example of wave energy propagation by the Hybrid 

Upstream scheme on a sphere. Propagated energy is plotted at 

60 hour intervals. Contour lines are normalized against the 

maximum energy and the contour interval is 0.1. Theoretical 

propagation points are indicated by cross marks. 
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Figure 3.12 Same as Figure 3.1 I, bur for propagation along various 

great circle paths. 
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3.6 Definition of wave components and parameters 

The evolution of the two-dimensional wave spectrum is calcu lated by means of the 

numerical integration of the energy transport equation . It is necessary to discretize the 

frequency and direction into a finite number of components in order to express the two­

dimensional wave spectrum. In the JW A3G model , the spectrum is expressed by 25 

frequency and 36 direction components, that is 900 wave components in total: 

J;, =a"-'!, , 

e. = n 119. 

(a= 1.09. n~I - 25) 

(119 = 10· . n~I - 36) 

(3.37) 

(3.38) 

A logarithmic scale is chosen for the frequency discretization for the purpose of 

increasing resolution in low frequency. The period in the model ranges from 28.6 

seconds(/,= 0.035Hz) to 3.6 seconds (f;,. , = J,, = 0.277Hz). 

The wave parameters calculated in JWA3G are the wave height H 5 corresponding 

to the significant wave height, momentum period T5 , peak period Tp. dominant wave 

direction D5 , wave parameters of Hw , T..v and D11 for the wind-wave component, H L, TL 

and DL for the swell component, and wave energy and period for 12 directional 

components . A wave period con·esponding to a significant wave is not calculated, but it 

can be related to the peak or momentum wave period. The wave height H 5 is defined as 

(3.39) 

where the total energy E is given as 

(3.40) 

The second terrn on the right side of equation (3.40) is the contribution from a tail 

spectrum, where it is assumed that the f -' spectrum continues beyond the highest 

frequency limit J;,,,.. In the same way of using a tail contribution, the momentum wave 

period T5 is defined as 

(3.41) 

where the second moment of frequency is given as 
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!' = Y£[2:2:F(.t; .eJr,'c..t; c.e, + l:F(J.,,.,.. eJc.e j. !L.]. 
J ' J 

(3.42) 

The dominant wave direction 0 5 is defined as the direction in which the total wave 

energy is greatest. The peak period Tp is defined as the period where the spectral energy 

is maximum. 

It can be considered that there are many cases where the separation of swell and 

wind wave components is difficult. We refer to the separation method in the TOHOKU 

model, since CH models are based on the separate treatment of swell and wind-wave 

components. The separation in TOHOKU is that all wave components for which the 

difference between wind direction and wave direction is greater than 90' are considered 

as swell components. When the difference between wind direction and wave direction is 

smaller than 60' and the condition cfu10 $ I. 37 is satisfied, the swell component is re­

transformed into a wind-wave component. In JWA3G , which is classified as a CD 

model , swell and wind-wave components are not separated explicitly, so a simpler 

separation method is adopted. In this method, wind-wave components are defined as 

those which satisfy the inequality 

0.13g (e .. - e .. $ 90' ) f > 0.5JPM =0.5 ( ) 
u, 0 . cos e ... - e,. 

(3.43) 

where e ... is the wave direction and e,. is the wind direction. The components which do not 

sati sfy the inequality (3 .43) are defined as swell. The separation is based on the assumption 

that the wind waves corresponding to the peak frequency of the PM spectrum are 

developing according to the wind speed. The criterion cfu, 0 = I. 37 in TOHOKU can be 

converted into J = 0.116 gfu, 0 , so the criterion of (3.43) means that the threshold of 

wind waves is shifted toward a longer period range than that of TOHOKU. By 

introducing this criterion , separate wave parameters for swell and wind components are 

available, although they were not available in old wave models. Wave parameters of 

wave height, peak period and dominant direction are calculated for both swell and wind 

wave components. 

The wave energy and period of 12 directional components are designed to be used 

instead of the two-dimensional wave spectrum. The amount of spectral infom1ation 
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from all grid points is so numerous that it is difficult to store the all spectra. By using 12 

directional components, the amount of spectral information can be reduced. The 

energies of 12 directional components are stored as the equivalent wave heights in terms 

of equation (3.39). 
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3. 7 Basic characteristics of the JW A3G model 

In order to study the basic characteristics of the JW A3G model, the evolution of the 

ocean wave field was tested under uniform wind conditions. We focused on the subject 

of the evolution of the wave spectrum and the energy balance between each of the 

energy source functions. According to the hypothesis on the energy balance of each 

source function in the equilibrium range, the wave spectrum should be proportional to 

r'-
The evolution of waves is calculated in a rectangular sea within 60 degrees (about 

6670 km), of which the center is located on the equator. A stationary, homogeneous 

wind field with wind speed u, 0 = 20 m/s blows perpendicularly offshore. The initial 

wave energy at time 1 = 0 is zero, and the wave spectrum at the upstream boundary 

remains zero for 1 > 0 . The wave energy at the downstream boundary penetrates through 

the boundary. Fetch-limited growth of wave energy is observed at a point 55 degrees 

(about 6120 km) down-wind, which corresponds to the non-dimensional fetch 

x · = 7.1 xI 07 after SWAMP Group ( 1985). The model is integrated over 500 hours, 

and the time step is 1'>.1 = 30 minutes. 

Figures 3.13 and 3.14 show the evolution of the wave spectrum . The spectrum in 

Figure 3.14 is non-dimensionalized by means of division by gu.r'. The spectrum is 

growing in proportion to F', keeping its self-similarity structure. The fact that the 

spectral shape in the equilibrium range is proportional to r' comes from the hypothesis 

on the energy balance between source functions. As is evident from Figure 3. 14, in the 

initial development stage of the equilibrium spectrum, the overshoot phenomena, which 

were found by Barnett and Sutherland ( 1968), can be seen. It can be considered that the 

phenomena occur due to the effect of the non! in ear energy transfer 5,1• 

The directional distribution functions at 1 = 480 hours are shown in Figure 3.15. 

The distribution near the spectral peak corresponds to S = 8 of Mitsuyasu ' s directional 

distribution function cos25 (9/2) . The distribution in the higher frequency range above 

the peak frequency becomes more broad than that at the peak. Mitsuyasu et a/. ( 1975) 

gave results from ocean wave observations using a cloverleaf buoy showing that the 

energy concentration of the ocean wave spectrum was greatest near the spectral peak, 
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while it became smaller in both lower and higher frequency ranges. The directional 

distribution of wave energy in JW A3G almost agrees with the result from Mitsuyasu er 

a/. ( 1975) . But a slight difference between the model and observations is found in the 

lower frequency range, where the observational results show that the directional 

di stribution is more broad than that of the spectral peak, while that in the model is not. 

For frequencies lower than f., which are not shown in Figure 3.15, the directional 

distribution becomes double-peaked in shape. It is considered that this result is due to 

the approximate scheme for the nonlinear energy transfer S,,. Since the improved 

discrete interaction approximation expresses s .. , in terms of only the symmetrical two 

pairs of resonant wave components, between which the differences in direction are 

restricted to between I Oo and 20°, the directional distribution becomes double-peaked in 

shape. Therefore it can be hoped that this problem will be solved and the distribution of 

the model becomes closer to those of the observations, as the approximation of s .. , 
becomes more accurate by means of increasing the number of combinations of the 

resonant wave components. 

Figures 3.16 and 3.17 show the non-dimensional energy source functions at 

r = 480 hours. The net source function S"" still remains to develop the wave spectrum, 

which indicates that JWA3G has no asymptotic equilibrium spectrum. The spectral 

shape of the model is more sharp than the PM spectrum and its peak enhancement 

coefficient y is about 1.5. 

The role of the energy source functions are as follows. Most of the energy input 

occurs at higher frequencies range than the spectral peak, and the obtained energy is 

transported toward lower frequencies by the nonlinear energy transfer s .. ,. The energy 

input by the wind S; .. is roughly balanced with the energy dissipation SJ, and these 

effects by themselves almost compensate each other. With respect to the directional 

di stribution of the nonlinear energy transfer S,,, as shown in Figure 3. 17, the wave 

energy is transported from the high frequency range to the low frequency range in the 

case of e = 0°, while being transported in the opposite direction in case of 9 = 60 ' , so 

that the nonlinear energy transfer S,, has the effect of broadening the directional 

di stribution in the high frequency range . 
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The energy balances of source functions by Komen era/. ( 1984) which correspond 

to Figure 3.17 are shown in Figure 3.18. The spectra at x ' = 1.2 x 108 with u10 = 15 m/s 

are shown in the figure. The peak energy of the wave spectrum has nearly the same 

magnitude as that of JW A3G, however, the shape of the spectrum of the JW A3G model 

is more sharp than that of Komen era/. ( 1984). The magnitude of the energy input 51, is 

three times larger than that of the JW A3G model, and the peak of 51, is located at a 

higher frequency, so that the position of the peak of the two-dimensional wave spectrum 

is also shifted toward higher frequency. It can be considered that the differences arise 

from the effect of 51,, which is proportional to (u. fc )' in JW A3G, while the formula of 

Snyder era!. (1981) proportional to u,fc is adopted in Komen era/. (1984). With 

respect to the nonlinear energy transfer S," the energy distribution of Komen er a!. 

(1984), in which the exact calculation scheme of S,, is adopted, shows a similar 

tendency to the result of the improved discrete interaction approximation in JW A3G. 

Therefore the improved discrete interaction approximation in JW A3G is found to be 

accurate enough for practical usage. 

The comparison of JW A3G with other wave models is investigated by means of 

the SWAMP experiment, in which the precise conditions of calculation area and wind 

speed etc. are defined for 7 experiments named Cases I -VII. Case IJ aims at revealing 

some fundamenta l differences between wave models. In the Case IJ experiment, the 

evolution of the wave field is investigated in a rectangular sea of 1125km with a 

stationary homogeneous wind speed u10 = 20 m/s. The drag coefficient is defined as 

C0 = I. 83 x I o-' in order to produce the same friction velocity 11 , . The fetch-limited test 

is the experiment in which the non-dimensional wave energy £' and the non­

dimensional peak frequency 1,: are investigated as functions of the leeward fetch, when 

the wave field approaches a nearly fully-developed state. The duration-limited test is the 

experiment in which £' and f r' at a fixed point on the leeward side are investigated as 

functions of integration time. 

Figure 3.19 and 3.20 show the results of fetch- and duration-limited tests. The 

growth curves of JWA3G overlap with those of the SWAMP models, so that it is found 
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that the model gives valid results and each physical process fulfills the intended 

functions. The growth of wave energy in short fetch is a little greater than in the 

SWAMP models. In order to find the reason for this, some experiments were performed, 

in which the dissipation coefficient c. in SJ, and the coup! ing coefficient C in 5"1 are 

changed. The results of the experiments show that changing the coefficient c. has the 

effect of moving the growth curve parallel to the vert ical axis, while changing the 

coefficient C has the effect of increasing the gradient of the growth curve. Therefore the 

growth curve of the fetch-limited test gradually approaches those of the SWAMP results, 

if the coupling coefficient C becomes larger. However the magnitude of the discrete 

interaction approximation also becomes larger in proportion to the magnitude of C, so 

that the magnitude of the nonlinear energy transfer is larger than the result of the exact 

calculation. The results indicate the limit of the discrete interaction approximation, so 

that it can be considered that a more highly-accurate scheme or exact scheme will be 

needed to improve the model. 

The comparison between model results and Toba ' s 3/2 power law is shown in 

Figure 3.21. The model results agree well with the 3/2 power law except for the initial 

growth stage. So it is confim1ed that the JWA3G model, in wh ich the energy dissipation 

process is formulated so as to satisfy the 3/2 power law implicitly, gives the results as 

expected. 
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Figure 3.13 Growth of the wind wave spectrum at the non-dimensional 

fetch x' = 7.1 x 107 under a stationary, homogeneous wind 

field with u10 = 20 mls. The spectra at t = 12, 36 72 and 480 
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Figure 3.16 Non-dimensionalized spectrum (sol id line) at t =480 hours 

with PM spectrum (dashed line) (upper) and energy source 

func tions (lower) . Frequency is normalized using the peak 
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Figure 3.19 Non-d imensional fetch-lim ited growth curve for the total 

wave energy (upper) and peak frequency (lower). compared 

with those of the SWAMP models (shaded area). 
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Figure 3.20 Non-dimensional dur-ation-limited growth curve for the total 

wave energy (upper) and the peak frequency (lower), 

compared with those of the SWAMP models (shaded area). 
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in the JWA3G model (circle) for uniform wind , compared 

with Toba 's 3/2 power law (solid line). 
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4. Verification of the JWA3G model 

A global ocean wave hindcast for ten years, from 1980 to 1989, was perfom1ed 

using the JWA3G model. Verification of the model resu lts, by comparing with buoy and 

satellite data, is discussed in this chapter. 

4.1 Collection of basic data 

The basic data set, which is necessary for the numerical simu lation of the wave 

field and verification of the results, is collected prior to the hindcast. The collected data 

are as follows: 

• Analyzed surface wind data set from ECMWF (European Centre for Medium-range 

Weather Forecasts) 

• Marine environmental buoy data from NOAA (Nat ional Oceanic and Atmospheric 

Administration) 

• Ocean buoy data from JMA (Japan Meteorologica l Agency) 

• Statistical data of sea ice from JMA 

• GEOSAT satellite altimeter data 

The analyzed data from ECMWF for the global su rface wind field (ECMWF, 

I 993) is used as a wind input for the wave mode l. The objective analysis model was 

improved together with the forecasting model, so that the available data elements were 

changed in I 985. After I 985, wind vector components u and v at I 0 m height are 

available, whereas they are not available before I 985. Therefore the sea surface wind 

field before 1985 is estimated from the wind field at I 000 hPa in terms of the height at 

the 1000 hPa level. The ana lyzed data are available every I 2 hours and the grid interval 

is 2.5 degrees in both latitude and longitude. 

The observed data from NOAA buoys and JMA buoys are collected for the purpose 

of verification of the hindcast resu lts. The grid size of 2.5 degrees (about 250 km) for 

wave calculat ion is so coarse that the accuracy of the wave calculation near the coast is 

insufficient. TI1erefore the data from buoys, which are located in the open sea, are 

collected. The locations of NOAA buoys are shown in Figures 4. I, 4.2 and 4.3 (NOAA, 

1990). Although the shape of the NOAA buoys were the same di scus buoy of 10m in 
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diameter as the JMA buoys at the beginning of the observation, the shape was changed 

into a boat-shaped buoy, 6 m long and 3 m wide, except for Gulf coast buoys. NOAA 

buoy measurements are shown in Figure 4. 1. The interval between the measurements is 

1 hour. The parameters of wave height, momentum period and peak period are 

calculated from the wave spectrum, which is obtained from the spectrum of the 

accelerometer. Wave height is calculated from the Oth moment m
0 

of the spectrum, 

while momentum period is calculated from the I st moment m, of the spectrum (NOAA, 

1994). The one-dimensional spectra are also avai lab le. 

The locations of JMA buoys are shown in Figure 4.4 (JMA, 1990). Some 

observations by other buoys which are not shown in the figure, were operated 

temporarily; however, continuous buoy observations are available at the 4 stations 

shown in the figure. The position of buoy 2100 I was moved from the initial position 

(Sanriku oki) to the south by about 2 degrees (Honshu toho oki) in 1987, but 

observation by buoy 21001 was halted in 1991. The shape of the JMA buoys is a discus 

buoy of 10m in diameter. The measurements of wave height and period of JMA buoys 

are different from those of NOAA buoys. First, the disp lacement of buoy is calculated 

by twice integrating the voltage signal from the accelerometer. Then the averaged wave 

height is calculated from the displacement signal over 400 seconds, and the significant 

wave height is obtained by multiplying the averaged wave height by a factor 1.6. The 

factor 1 .6 was derived from the stati stical theory of Cartwr ight and Longuet-Higgins 

(1956) . Wave period is calcu lated from the length of the time which is needed for 

counting 20 waves by detecting the zero-up-crossing points, where the displacement 

signal is changes from negative sign to positive sign . It is found that this method of 

measuring wave period has the problem that the zero-up-crossing points are mostly 

difficu lt to be detected, when the wave height is smal l. The observed elements of JMA 

buoys are shown in Table 4.2. The time interval of the observations is 3 hours; however, 

the interval time is automatically changed to I hour when the wind speed exceeds 35 

knots. 

The area for the wave calcu lation is confined within -70-70 degrees in latitude. In 

winter season, sea ice expands across 70 degree parallels of latitude. Since it is 

necessary to treat the area which is covered with sea ice with the same boundary 
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condition for land areas, sea ice data are collected. The distribution of sea ice is 

analyzed once a week at the Joint Ice Center of NOAA. Monthly mean distributions of 

sea ice (JMA, 1991 a), which are made by using the weekly analyzed distribution, are 

collected in order to make a sea ice mask for the wave model. The sea ice mask with a 

2.5 degrees interval is read off the figure of JMA ( 1991 a). 

The GEOSAT satellite was launched in March 1985 for the purpose of measuring 

the geoid of the earth. From November 1986, the ERM (Exact Repeat Mission) was 

started, in which the satellite returns to the same position with a period of about 17 days, 

and data from 62 cycles were obtained until September 1989 (NOAA, 1991 ). The radar 

altimeter measures the distance between the sensor and the sea surface. The measuring 

principle for wave height is schematically shown in Figure 4.5 . The radar pulse emitted 

from the satellite is reflected first by the wave crests, and continuously reflected until 

the pulse passes through the wave troughs. So the change of the received power against 

the gate time is distorted as shown in Figure 4.6. The slope of the leading edge is 

directly affected by the wave height, namely, the inclination of the slope becomes 

smaller with increasing wave height. By using the relation , the significant wave height is 

calculated as an averaged value of I 0 measurements during I second. The accuracy of 

the measurement is estimated as the greater value of either 0.5 m or I 0 % of the wave 

height (Dobson eta/., 1987). In addition to the wave height parameter, the measurement 

of sea surface wind speed is available, however, its accuracy is found to be insufficient 

(Ebuchi eta/., 1992). 
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Figure 4.1 Location of NOAA buoys (north Pacific and Hawaii). 

(from NOAA, 1990) 
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Figure 4.2 Location of NOAA buoys (north Atlantic and Gulf Coast). 

(from NOAA, 1990) 
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Figure 4.3 Location of NOAA buoys (south Pacific). 

Table 4.1 NOAA buoy measurements with reponing ranges, sampling intervals, 
averaging periods and total system accuracy. 

Measurement Reponing Range Sampling Averaging Total System 

Interval Period Accuracy 

Wind Speed 0 to 120 knots I sec 8.5 min ± 1.9 knots or I 0% 

Wind Direction 0 to 360 ' I sec 8.5 min ±10' 

Wind Gust 0 to 160 knots I sec 5 sec + 1.9 knots or 10% 

Air Temoerature -40 to 50 'C 90 sec 90 sec + I 'C 

Sea Level Pressure 900 to 1100 hPa 4 sec 8.5 min +I hPa 

Simificant Wave Height 0 to 35m 0.39 sec 20 min +0.2m or 5% 

Wave Period 3 to 30 sec 0.39 sec 20 min +I sec 

Surface Water Temp. -7 to4I 'C I sec 8.5 min + I'C 
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Figure 4.4 Location of JMA buoys (from JMA, 1990). 

Table 4.2 JMA buoy measurements with measuring ranges. 

Measurement Reporting Ranoe 

Wind Speed "l 0 to 120 knots 

W ind Direction 0 to 360 ' 

Air Temperature -40 to 40 'C 

Wet-bu lb Temperature -10to40 'C 

Sea Level Pressure 920 to I 040 hPa 

Significant Wave Height 0 to 20m 

Wave Period 0 to 20 sec 

Water Temperature at I m depth -10 to 40 'C 

Water Temperature at 50m depth -10 to 40 'C 

Water Temperature at I OOm depth -10 to 40 'C 

Solar Radiation 0 to 1.4kw/m2 

*)The height of anemometer is 7.5m. 
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Figure 4.5 Measurements of significant wave height (SWH) by radar 

altimeter (from Townsend et al., 1981 ). 

Figure 4.6 Distortion of the received radar pulse. The slope of the 

leading edge is related to the significant wave height 

(from Townsend era!., 1981 ). 
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