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Abstract 

Recent advances in microprocessor technologies have led to extensive use of compute r 

systems in real world. Because many of these systems require some real-time properties, 

importance of real-time computing technologies is rapidly increasing. Demand; for 

large-scale and high-performance real-time systems are also growing, and multiprocessor 

systems, especially function-distributed multiprocessors, are often adopted to meet the 

demands. 

In order to reduce the maintenance cost of a multiprocessor real-t ime system, even 

when a part of the system is modi tied or when some processors are added to the system, 

changes in the worst-case timing behavior of the unmodified part of the sys tem should be 

minimized. We call this property as scalability. Ideally, the worst-case execution time 

of each routine executed on a processor is determined independently of the number of 

processors in the system and of the activities of other processors. Howeve r, the worst-case 

execution time of a routine that exc lusively accesses a shared resource is una voidably 

prolonged, as the number of contending processors is increased. 

When a real-time system is reali zed on a function-distributed multiprocessor. external 

devices and tasks handling them are allocated to processors so that the number of 

inter-processor synchroni zat ions is minimized and that as many time-critical tasks as 

possible are closed within a processor. Therefore, it is advantageous that the wo rst-case 

timing behavior of the processings that can be clone within a processo r is determined 

independent ly of the number of processo rs in the system and of the other processors' 

activ ities. 

In this dissertation , we discuss the specification and implementation issues of a 

real-time kernel that facilitate to realize scalable application systems on ex ist ing sha red­

memory multiprocessor system. In order to realize scalable systems, the real-time 

kernel itself must also be scalable. Though real-time kernels running on shared-memory 

multiprocessors have been actively studied, none of the studies has focused on the 

scalability of worst-case behavior. 

At first, we clarify the desired properties of a scalable real-time kemel for function­

distributed multiprocessors, and summarize them in four required properties. lmp lemen-



tat ion approaches of a real-time kernel on shared-memory multiprocessors are discussed. 

and two obstacles for satisfying the required properties are pointed out: lack of sca lability 

in local operations, and incompatibility of predictable inter-processor synchron ization 

and constant interrupt response. Then, we propose their so lutions when task-independent 

synchronization and communication objects, such as semaphores and cvcntnags. are 

not supported. With the proposed method, the four required properties are sati sfied. 

and the execution time and the response time of each kernel service have reasonable 

upper bounds. In these discussions, we assume that the underlyi ng intcr-proce;,sor 

synchronization mechanism and hardware architecture have some necessary properties. 

We also propose the approach to classify kernel resources into classes with different 

characteristics to improve the performance of local operations. Among them. a task 

belonging to the private class satisfies the condition that its maximum execution time 

is independent of the number of contending processors, but the task cannot directly 

synchronize or communicate with other processors. 

Effectiveness of our proposed methods are demonstrated through performance mea­

surements using an existing multiprocessor system. Though the evaluation environment 

dose not satisfy the assumption on underlying inter-processor synchroni zation and hard­

ware, it is confirmed through the measurements that the four required properties of a 

scalable real-time kernel are practically sati sfied with our proposa ls. while they cannot be 

met at the same time with other methods. 

In the second half of this dissertation, we investigate on spin lock algorithms for use 

in scalable real-time kernels for function-distributed multiproce sors. We propose two 

kind of spin lock algorithms, queueing spin lock with preemption and spin lock u·irh local 

precedence, which are combined to use in our implementation of a sca lable real-time 

kernel. We also discuss the scalability issues on nested spin locks, and propose the 

scheme to make nested spin locks scalable and the algorithms of priority inheritclllce spin 

locks. The effectiveness of these algorithms is also demonstrated through performance 

evaluations. 
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Part I 

Introduction 



1 Real-Time Systems and Real-Time Kernel 

A real-time system is a system in which the correctness of the system depends not only 

on the logical results of the computation, but also on the time at which the results are 

produced [64, 62] 1 In other words, a rea l-time system is required to sat isfy a set of 

timing constraints. I n a hard real-time system, severe consequences can result if a timing 

constraint is not satisfied. 

Timing constraints on a rea l-time system always come from the external env ironment. 

Therefore, a real-time system has some relations to its ex ternal environmen t. From 

another point of view, a real-time system is considered to be embedded in a larger 

environment, and thus is also called an embedded system [15]. 

In [15] , four fundamental requirements on real-time systems are listed: timeliness. 

simultaneity, predictability, and dependability. The first two of them are user requirements. 

Timel iness means that a system must atisfy the given timing constraints. wh ich are 

typica lly described in the form that the resul t of the computation must be produced within 

the predefined and predictable time-bound, called the deadline . Consequently. not the 

average but the worst-case timing behavior, i.e. the worst-case execution times and the 

worst-case response times, are primary concern in real-time systems. The worst-case 

execution (or response) times usually correspond to the maximum execution (or response) 

times 2 Simultaneity means that real-time systems must provide parallel processing 

capabi lities to cope with the nati ve simultaneity of the external environmen t. 

Predictability and dependabi l ity are supplementary requirements to the former two 

requirements. Predictabil ity means that the functional and timing behavior of a system 

should be as deterministic as necessary to satisfy system spec ifi cation [62] . M ore 

precisely, " predictabil ity means that it should be possible to show, demonstrate, or prove 

that requirements are met subject to any assumptions made, for example. concern ing 

failures and workloads" [65]. 

A real-time kernel, also called as a real-time monitor or a real-time executi ve. is the 

bas ic so ftware module around which a real-time system is realized. The essemial role of 

a real-time kernel is to support multitasking facility for the requirement of simultaneity. 

It shou ld also support inter-task synchronization and communication functions and basic 

memory management functions. On the other hand, it is not necessary for a real- time 

kernel to handle various external (or input/output) devices directl y. One of the reasons 

1This defi ni tion is one of the many definitions of a real-time system (or <.:omputing). We con~ i <.Jcr 
that this statement is appropriate for the definition of a (general) real-time system, though Stankovic and 
Ramamritham defined a hard real -time system with thi s statement in [64 ]. 

21f the result of a computation is obtained 100 early, it is usually possible to wai t until the appropriate 
time. 
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is that the external devices should be handled by tasks running on a real-time kernel. 

because their response times are generally very long compared to the response times of 

the core components of a computer system (such as processors and memories). Another 

reason is that there is a great variety of ex ternal devices attached to deeply embedded 

systems, and that efficient and uniform handling of them is very difficult. 

The role of a rea l-time kernel can be paraphrased in contrast to the role of an operating 

system as follows. Supporting the construction of an application system through the 

virtua/iza tion of hardware resources of a computer system is an essential role of an 

operating system. A real-time kernel is a core module of an operating system that 

virtualizes only processors and memories. 

2 Function-Distributed Multiprocessors 

As the application areas of real-t ime systems expand, requirements for large-scale and 

hi gh-performance real-time sy terns are increasing. Areas of rapid growth include large­

cale control systems (plant- and aircraft-control systems), transaction processi ng (on-line 

banking and seat reservation systems), and communication process ing (network rou ters 

and switches). 

In these application areas, a large number of external devices such as sensors. ac tuators. 

and network controllers are connected to a system, and the system is required to respond 

to the external events from the devices with in predefined and usually short time-bounds. 

It is usually the case that such a system also requires large computational power. To meet 

these requirements, multiproces or systems are often adopted to real-t ime systems. 

Because the required process ing time for each ex ternal device can be estimated 

beforehand in most real-time systems, it is preferable that each device is handled by a 

fi xed processor (or a fi xed set of processors) and that the interface with the device is 

connected to the local bus of the processor. A di stributed shared-memory arch itecture is 

also adopted, in which memory modules are con nected to the local buses of processors 

(Figure 1) . In thi s kind of function-distributed (or asymmetric) multiprocessors, because 

the code and data areas of the program that handles an external device arc placed in the 

local memory of its host processor, the number of shared-bus (or intercon nec ti on network ) 

transactions can be reduced compared to symmetric multiprocessors. This is profitable 

not only because the high-performance shared bus and expensi ve cache mechanisms can 

be omitted, but also because the predictability of the system can be improved through the 

reduction of access conflicts on the shared bus. 

As a general rul e, when a rea l-time system is reali zed on a function-distributed 

3 



external 
stornse 

Figure I: An Example Use of Function-Distributed Mul tiprocessors 

multiprocessor, external devices and tasks handling them are allocated to processors so 

that the fo llowing goals are sati sfi ed; ( I) the num ber of inter-processor synch roniza tions 

and communicati ons is minimized and (2) as many time-critical tasks as possible are 

closed within a processor. Consequentl y, in we ll -designed systems on fu nction-d ist ri buted 

mult iprocessors, many tasks, including most of the time-critical tasks in the system. can 

be processed without synchroni zing or communicating with other processors. In other 

words, tasks on a processor are fai rl y independent with tasks on other processors. 

Mul ti processor systems discussed in thi s di ssert ation are those consist ing of severa l 

or around ten processors. Mass ive ly parallel systems are outside the scope of th is study. 

3 Real-Time Scalability 

It is often the case that functi onal or performance requirements on a system are changed 

during its life-time. It is also a frequent situati on that the system is requ ired to support 

some additional dev ices . In order to reduce the maintenance cost of the system in such 

situations, it is advantageous that modifi cations of a part of the system do not affect the 

timing behav ior of the unmodified parts of the system. When the computational resources 

of the system are insuffi c ient for the new req ui rements, the measure is often adopted with 

a functi on-d istributed multiprocessor system that one or more processo rs are added to the 

system. The ma intenance cost of the system can be greatly reduced, if the changes in 

timing behavior of the unmodi fied parts of the system are very sma ll in this situation. We 

ca ll thi s prope rty as scalabilityl or modularity in time doma in . 

Because the worst-case behavior is the primary concern in rea l-ti me systems, the timing 

3We use the word ·'scalabil ity'' with stress on the case that processors arc added to the !-,y~tcm . 
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behavior mentioned above should be the worst-case timing behavior. Consequent ly. the 

above requirements can be summari zed as follows. Even when a part of the ;ystem is 

modified (including the case that some processors are added to the system). the ex tension 

of the worst-case execution times and response times of the unmodi fied parts of the system 

should be minim ized. This property is ca lled real- rim e scalability, or simpl y scalahilirv. 

in this dissertation. 

Real-time scalability also faci l itates the reuse of a module consisti ng of a processor. 

local memory, external devices, and the software handli ng them, i .e. the reuse in the unit 

of a board in Figure I. With real-time scalabil ity (or modularity in time domain). t im ing 

constra ints imposed on the tasks executed w ith in the module are kept satisfied no matter 

what kind of system the module is reused for. 

It goes w ithout say ing that sca lability is also an important issue when the number of 

processors is very large, though we do not in vestigate on mass ive ly parallel systems in 

thi s study. 

4 Objectives of This Study 

The objecti ves of thi s study is to clari fy the desired properties of a real-time kerne l 

for function-distributed shared-memory multiprocessors that fac i li tates to rea l ize sca lable 

real-time systems, and to propose its rea li zation methods in both spec ification and 

implementation aspects. In order to realize scalable real-time systems. the real-t ime 

kernel itsel f must also have the property of real-time scalability. 

Real -time kernels running on shared-memory multiprocessor sys tems have been 

actively studied and implemented. Famous examples include Spring Kernel [63, 43, 66] , 

Chaos [59, 1], Chorus [49] , Harmony [1 2], and Ch imera [67] . However. none of the 

studies has focused on real-time scalabil ity. In other research areas including rea l-time 

algorithms for multiprocessor systems, little attention has been paid to rea l-time scalabi li ty 

either. 

A s described in Section I , predictability is a fundamental req uirement in real-time 

systems. In case of a rea l-time kernel, predictability means that the max imum execution 

time and response time of each kernel service are bounded and known beforehand. This 

is because real-time schedu ling algorithms and synchronization protocols are usuall y 

implemented within or upon the kernel layer, and because the service times of a real­

time kernel itsel f are treated as constant schedul ing overheads and cannot be schedu led 

as variables with most real-ti me schedul ing algorithms and synchroni zat ion protocols 

[4, 47, 29] . 
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system ca ll worst-case 
name function execution times 

cre_tsk create a task T cre-tsk 

sus_tsk suspend execut ing a task T susJ sk 
(wi th a task switch) T;us_tsk 

rsm_tsk resume executing a task Tr snLlsk 
(with a task switch) r;sm_tsk 

vsnd_tmb send a message to a task T vsnd_tmb 
(with a task switch) T~snd_tmb 

vrcv_tmb receive a message sent to me T t·r cv_tmb 
(with a task switch) T~rct•-Lmb 

maximum interrupt response time Tint 

Table I: Timing Behavior of a Uniprocessor Real-Time Kernel 

The worst-case behavior of a real-time kernel is usual ly represemed using a table. For 

example, the maximum execution time of each system call and the maximum interrupt 

response time of a real-time kernel for sing le processor systems can be presented like 

Table I , where Txxx designates a constant value that is determined for each target 

hardware. 

In case of a multiprocessor real-time kernel, it is ideal that the worst-case execution 

time and response time of each kernel service are determined independently o f the 

number of processors in the system and of the activit ies of other processors. However. 

the worst-case execution time of a routine that exclusive ly accesses a shared resource" is 

prolonged, as the number of contending processors is increased, at least wi th its linear 

order. This is because concurrent executions of the routine must be seriali zed-' 

In executing a system call of a real-time kernel , a task usually needs to access some 

of the kernel data structures exclusively,6 such as the control blocks of kerne l resources 

(tasks and task- independent synchron ization and communication objects) and the ready 

gueue(s)7 Because these data structures are also accessed from other processors and 

should be accessed exclusive ly, the maximum execut ion time of such sy> tem ca ll is 

4 1n strict, a shared resource that is fairly accessible from each processor. 
5This limi tation cannot be removed with the techniques of wait-free or block-free ~ynchronitmion~ 

[17, 37J. 
6With message passin gs or remote invocations, processors can synchronilc without using :1 ... harcd re­

source exc lusively. In function-distributed shared-memory multiprocessors, however, this synchroniLation 
method has some drawbacks. We will describe the drawbacks in Section 11.2.3. 

7 A ready queue includes all the tasks that are ready to execute on the processor. The task scheduler 
utilize it to find the nex t task to be executed efficiently. In our basic kernel model described in Sect ion II. 2, 
a ready queue is prepared for each processor. 
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--
prolonged as the number of contending processors is increased. 

On the other hand, the worst-case timing behavior of the processings that can be 

done within a processor is desired to be determined independentl y of the number or 

contending processors and of the other processors' activities . Processings that can be 

done within a processor include synchronizations and communications with anot her task 

on the same processor and interrupt se rvices requested by the external devices. This 

prope rty is especially advantageous in function-distributed multiprocessors. because most 

of the time-critical tasks can be processed without synchronizing or communicati ng with 

other processors in well-designed systems. It is also desirable that modifications in some 

processings that can be done within a processor do not affect the timing behavior of the 

processings on other processors. 

However, these properties cannot be obtained straightforwardl y. Jn thi s dissertation. 

we propose a realization method of a sca lab le real-time kernel with these properties without 

task-independent synchronization and communication objects (such as semaphores and 

eventflags), and point out the difficulty of supporting task-independent synchroni zation 

and commun ication objects. In order to realize a scalable real-time kerne l on an ex isting 

multiprocessor system, we investigate on spin lock algorithms for use in scalable real-time 

kernels for function-distributed multiprocessors. 

5 Outline of This Dissertation 

The organization of this dissertation is described in thi s secti on. We have presented 

the main cont ributions of this dissertation in various journals and sympos iums. Each 

reference cited in this sect ion shows the paper in which the contribution is presented . 

Jn the rest of Part I, we int roduce the evaluation env ironment with which the 

perfo rmance of our proposed rea lization methods of real-time kerne ls and underlying 

algorithms is measured. The evaluation metric used in the foll owing pans is also 

described . 

Part II discusses the reali zation methods of a scalable real-time kernel for functi on­

distributed multiprocessors. At first, Section I presents the overv iew of the ITRO 8 

spec ifications, a series of standard real-time kernel specifi cati ons for embedded systems. 

The !TRON-MP9 project, which is to extend the ITRO spec ifications to support 

shared-memory multiprocessors, is also outlined [72]. In Section 2, the basic real- time 

kernel model for functi on-distributed multiprocessors is described and its implementat ion 

8ITRON is an abbreviation of "Industrial TRON'' and TRON is an abbreviation of' ''The Real-time 
Operating system Nucleus." 

9 "MP" ' stands for MultiProcessor. 
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approaches are discussed [7 1]. Two implementation approache;,, direct access method 

and remote in vocation method, are in troduced and some drawbacks of the latter method 

are poin ted out [82]. The section also discusses the issue on lock granulari ty. 

[n Section 3, two problems in implementing a scalable rea l-time kernel arc described: 

the problem that the worst-case execution ti mes of synchronizations wi thin a processor 

depend on the number of contending processors [83], and the problem that pred ictable 

imer-processor synchronization and constant interrupt response are incompatible [76]. 

The section also summari zes the requ ired properti es of a scalable real-time kernel. 

Then, our proposed solut ions to these problems when task-independent synchroniza­

tion and commun ication objects are not supported are presented in Section 4 [83]. With 

the proposed methods, each worst-case service time that is necessary for schedulabi li ty 

analyses can be bounded, on the assumption that underl y ing in ter-processor synchron iza­

tion mechanism and hardware architecture satisfy the necessary properties. wh ich are also 

described in thi s section. 

[n Section 5, we propose a new kernel model in which tasks and task-independent 

synchronization and communication objects are class ified in to some classes with different 

characteri stics [82]. For example, there ex ists a class of tasks whose maximum execution 

times are independent of the number of contending processors, but the tasks of this 

class cannot synchronize or communicate wi th the tasks executed on other processors. 

Another class of tasks can synchronize with the tasks on other processors, but their worst 

execution times depend on the number of contending processors. The kernel resources 

belonging to the class having the appropriate propert ies for a processing shou ld be used 

for implementing the process ing. 

[n Section 6, the effecti veness of our proposed methods is investigated through perfor­

mance measurements. In the measurements, underl ying inter-processor synch roni zation 

is realized with spin locks implemented wi th software, which do not have the necessary 

properties described in Section 4. The hardware platform used for the measurements 

does not have the necessary properties, either. In spite of the mi ss ing properties in our 

evaluation environments, the advantage of our proposals over other methods is confi rmed 

through the measurements. 

[n Section 7, the di ffi culty of realizing a scalable real-time kernel that supports 

task- independent synchroni zat ion and communication objects is discussed [84]. In the 

system calls that operate on a task-independent synchronization objec t, both the lock 

guarding the control block of the synchronization object and the lock guardi ng the control 

block of the task must be acquired one by one. This kind of 11esred locks are the obstac le 

for sati sfy ing the required properties of a scalable real-time kernel. Fi nall y. the main 
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contributions of Part JJ are summarized in Section 8. 

Part III discusses spi n lock algorithms for use in scalable real-time kernels. Spin 

lock is a fundamental synchronization primitive for exclusive access to shared resources 

on shared-memory multiprocessors. In realizing a scalable rea l-t ime kerne l dc;,cribcd 

in the previous part, the characteri sti cs of underlying mutual exclusion mechanisms. i.e. 

spi n locks, have great importance. In thi s study, we assume tha t processors support 

atomic read-modify-write operations on a single word (or aligned contiguous words) of 

shared memory and propose some extensions to ex isting spin lock algorithms. Typical 

examples of the read-modify-wri te operations are tesLand_set, fetch _and_store (swap). 

fetch _and_add, and compare_and_swap. A brief survey on spin lock algorithms using 

these operations is presented in Section I. 

In Section 2, we propose two algorithms of queueing spin lock with preemption. We 

point out that conventional spin lock algorithms cannot satisfy two importan t requi rements 

on scalable real-time systems, namely, predictable inter-processor synch ronization and 

constant interrupt response, at the same time, and present two sp in lock algorithms to 

so lve this problem [76, 79]. These algorithms, which are extensions of queueing sp in 

locks modified to be preemptable for servicing interrupts, can give upper bounds on the 

times to acquire and release an inter-processor lock, while achieving constan t response 

to interrupt requests. We also demonstrate that the algorithms have required properties 

through performance measurements in this section. 

Section 3 presents an algorithm of spin lock with local precedence, which is necessary 

to make the worst-case execution times of intra-processor synchronizat ions independenL 

of the number of contending processors. Though spin lock with loca l precedence can 

be realized using a priority-ordered spin lock algorithm, the overhead of pri ority-ordered 

spin locks is generally quite large. We propose a more effic ient algori thm in thi s ;,ection. 

Section 4 and Section 5 discuss two issues on nested spi n locks, which arc necessary 

to implement task-independent synchronization and commun ication objects. In Section 4. 

the sca lability issue of the maximum execution times of crit ical sections guarded by nested 

spin locks is discussed. With the simplest method, the max imum execution times become 

O(n"'), where n is the number of contending processors and m is the maximum nesting 

level of locks. In this section, we propose an algori thm with which thi;, order can be 

reduced to O(n · e"') and demonstrate its effectiveness when m = 2 through performance 

measurements [80]. The proposed method requires pri01·iry inheriTance spin lock. a spin 

lock algorithm that are enhanced wi th the pri ority inheritance scheme, when 111 > 2. 

In Section 5, we present two algorithms of priority inheritance spi n locks and 

demonstrate their effecti veness through performance measurements. Thi s sec tion also 
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Figure 2: The Front Panel of TRO BOX 

illustrates the problem of uncontrolled priority inversions in the context of spin locks. 

Finall y, the contributions of Part III are summarized in Section 6. 

Part rv summarizes the overall contributions of this dissertation and describes the 

future work. The most important future work to do is to solve the difficulty described in 

Section n.7 for supporting task-independent synchronization and communication objects. 

Others include the support of the global class of tasks that can be executed on multiple 

(or all) processors in the system and migrate between them [82]. 

After the bibliography, Appendix A presents the implementat ion details of our real­

time kernel for multiprocessor systems. Especially, data structures managing the resource 

classes are discussed. In Appendix B, we present the correctness proofs on the queueing 

spin lock algorithm wi th the simple preemption scheme described in Section 111.2. We 

show that the algorithm realizes mutual exclusion and dead lock freedom in this appendix 

[74]. 

6 Evaluation Environment and Performance Met­
ric 

6.1 Evaluation Environment 

In thi s dissertation, we present the resu lts of some performance measurements of rea l­

time kernels and spin lock a lgorithms. For the measurements, we use a shared-bus 

multiprocessor system named the TRONBOX [87] (Figure 2 and 3). 

The ystem consists of nine processor boards and a global memory board which are 

connected with a shared backplane bus conforming to the VMEbus ;pecification [21] 

10 



Figure 3: A Processor Board of TRONBOX 

Figure 4: Evaluation Environment 

(Figure 4). Each processor board consists of a GMJCR0/200 microprocessor [86. 23], 

I MB of local memory, and some 1/0 interfaces. The GMICR0/200 is the first TRON­

specification microprocessor and rated approximately at 10 M IPS with a 20 MHz clock. 

The local memory can be accessed from other processors through the >harcd bus. o 

coherent cache is equipped on the board. Accessing a local memory on another processor 

board takes nearly I J.LS and is a relatively slow operation compared with the performance 

of the processor. In our experiments, the data area necessary for each processor and all 

the program code area are placed in the local memory of the processor. Data requiring 

only one instance in the system is placed in the local memory ? 1 of the master processor 

or in the global memory. 

TRON-speci fication microprocessors support three read-modify-write instructions: 
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biuesLand_set (BSETJ), biuesLand_clear (BCLRI ), and compare_and_swap (CS I) [53]. 

Since the fetch_and_store operation which is used in many spin Jock algorithms presented 

in Part III is not supported, it is emulated using the compare_and_swap instruct ion and a 

retry loop. The evaluation programs are written in C programming language, with some 

inline assembler code for special instructions including the read-modify-write instructions. 

There is some overhead in passing data between code written inC and code in assembler. 

This hardware platform has some problems as our evaluation environment. The 

problems and our measures to them are as the followings. 

I. Because the VMEbus has only four pairs of bus request/grant lines, the round-rob in 

scheme can be applied to at most four bus masters [2 I]. Therefore. the access 

time of the local memory of another processor has no upper bound. The maximum 

execution time of a routine in which a remote memory is accessed cannot be 

bounded either. 

In our evaluation environment, processors are classified into four classes by the 

bus request line they use. The round-robin arbitration scheme is adopted among 

classes and the static priority scheme is applied among processors belonging to a 

same class. 

2. The local memory of each processor board can be accessed from its host processor 

with the addresses OxOOOOOOOO - OxOOOfffff, and can be accessed from other 

processors with the addresses OxOOnOOOOO- OxOOnfffff where n is the ID numbe r 

of the board ( I :'0 n :'0 9). This configuration makes it possible to use the same 

program code on all processors. Because a processor on board 11 cannot access 

its own local memory with the addresses OxOOnOOOOO - OxOOnfffff, however, an 

address conversion is necessary to follow a pointer between the local memories 

of different processor boards. This address conversion causes some overhead in 

pointer operations. 

In evaluating spin lock algorithms, because the case in which this kind of addre>s 

conversion is necessary is very rare, we convert the address with >Oftware when 

necessary. In implementing a real-time kernel, we convert the address using the 

MMU (Memory Management Unit) because too many conversions are necessary. 

In other words, the local memory of a processor is also mapped to the addresses 

OxOOnOOOOO- OxOOnfffff. The MMU is used on ly for this address conversio n. 

3. The processor board causes a bus error under the following condition. If a processor 

Pj tries to access the local memory of another processor P, when P, initiates a 
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read-modify-write operation on a remote memory. a kind of deadlock occurs in 

which Pi cannot acquire the shared bus because P1 is using the shared bus. and P1 

cannot acquire the local bus of P, because P, is using the local bus. This problem 

occurs because the processor is directly attached to the local bus (no line buffer is 

used between them), and because the processor would not release the bus once it 

initiates a read-modify-write operation. To solve this deadlock , the processor board 

raises a bus error on Pi. When a bus error occurs, Pi should ret ry the operation 

with software. This retry overhead is quite large and degrade the preciseness of 

petformance measurements. 

ln our performance measurements, we record the occurrences of bus errors and 

subtract the overhead from the measured time if possible. When the est imation of 

the overhead is very difficult, we discard the measurement time when a bus error 

occurs. 

In sp ite of these problems, the advantage of our proposals over other methods can be 

confirmed through the performance measurements. 

6.2 Performance Metric 

In real-time systems, the effectiveness of implementation methods or algorithms shou ld 

not be evaluated with their average performance but with their worst-case execution (or 

response) times. In our performance evaluations, however, adopting worst-case times as 

performance metric has following difficulties. 

I. Worst-case times cannot be measured through experiments because of unavoidable 

non-determinism in asynchronous multiprocessor system s. 

2. With our evaluation environment, the execution time of a rout ine in which a remote 

memory is accessed has no upper bound. Therefore, the worst-case execution times 

of such routines cannot be determined inherently. 

3. lt is often possible to give a practical upper bound on the execution time of a 

routine, even if the rout ine does not have the maximum execution time inheren tl y. 

For example, if a fetch_and_add operation is emulated with a compare_and_swap 

and a retry loop, the maximum execution time of the fetch _and_add operation cannot 

be bounded theoretically. 
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Figure 5: Dist ributions of Execution Times 
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4. Adopting the max imum execution (or response) time appeared du ring a mea­

su rement is not appropriate, because the maximum time widely varies for each 

measurement. 

In order to illustrate this situation, we present in Figure 5 the distributions o f the 

execution times of the critical region 10 with the fi rst algorithm of queueing sp in lock with 

preemption (represented as QL/P I) and the test&set lock with preemption (represented as 

T&S/P), which are described in Section 111.2. In this figure, the verti cal axis represents the 

probability that the execution is not fini shed with in the specifi ed time in loga rith mic sca le. 

We can say that if the probability is rapid ly decreas ing with the increase of the execution 

time, a practica l upper bound on the execution time can be determined. Consequent ly, 

this figure indicates that the execution time with QL/P I has a practical upper bound, whil e 

it is not the case with T&S/P. This demonstrates that T&S/P is not suitable for real-time 

systems. 

From this observation, in place of a worst-case time, we have adopted a p-re liab le 

time, the time within which a processor finishes to execute (o r responds) with probability 

p, as the performance metric. In o ther words, whe n a p-reliable ti me is determined to be 

the deadline, the probability that the deadline is kept is p, or the dead line miss ratio is 

I - p. 

10 1n strict. this figure presents the distributions of the execution times of the critical region. when no 
interrupt request is serviced whi le wait ing for a lock. Four processors arc executi ng spin lot:ks. Refer to 
Scc1ion 111. 2.5 ror 1he de1ails. 
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In this dissertation, we use the 99.99%-reliable execution (or response) times as the 

performance metric. Figure 6 presents p-reliable execution times of the critical region 

with QL!PI when p = 99%, 99.9%, and 99.99%, and its maximum execution times 

appeared during the measurements, when the number of contending processors is changed 

from one to eight. Although the absolute times are different, the same evaluation results 

can be derived from each performance metric. In order to check the adequacy of the other 

evaluation results using p-reliable times, we have also confirmed that the same evaluation 

results can be derived from the maximum times appeared during the measurements. 

This performance metric is also justified from application requirements. It is obvious 

that the failure rate of any system cannot be zero. Even with the hardest real -time 

system, the system specificat ion cannot require that the failure rate is zero, but that 

the (estimated) failure rate is below the permissible value determined in design time. 

The deadline miss ratio of each software component should be as low as necessary that 

the system as a whole can satisfy the specification. It should be noted that a deadline 

miss ratio always depends on system workloads. Therefore, a p-reliable time that is 

obtained through our performance measurements does not correspond to a p- rel iable time 

in application systems. Generally speaking, because we evaluate the performance of 

implementation methods or algorithms under a very heavy workloads, a p-rc liable time 

with our performance measurements has much higher reliabi lity in application systems. 



Part II 

Scalable Real-Time Kernels for 
Function-Distributed Multiprocessors 

16 



1 ITRON Specifications and ITRON-MP 

In this section, we present the overview of the ITRON specifications, a series of standard 

rea l-time kernel spec ifi cations for embedded systems in Section 1.2 and 1.3. after a 

short introduction of the TRON Project in Section 1.1. Then , the overview of' Iri s 

(ITRON Implementation by Sakamura Laboratory), which we ex tend to support sha red­

memory multiprocessors, is presented in Section 1.4. We describe the design goa ls and 

approaches of ITRON-MP, which is an extension of the ITRON speci fi cations to support 

shared-memory multiprocessors in Section 1.5. 

1.1 TRON Project and ITRON 

Recent advances in microprocessor technologies have made every kind of e lectri c and 

e lect ronic equipment around our dail y life embedded with microcomputers and offer 

higher functions to the users. In the next decade, most kind of equipment. app liances. 

tools, and other objects making up our li ving environments will be augmented with 

embedded computers, be con nec ted with networks, and cooperate each other to provide 

better li ving environments for human beings. In other words, these objects and networks 

constitute a large di stributed computing system and support human ac ti vities on many 

aspects. We call this kind of system as a highly functionally dist ributed syste111 (HFDS) 

and have been conducting a research and development project. call ed the TRO Project. 

for its realization [51 , 55, 77]. 

In HFDS environments, a large number of embedded systems are developed and 

utilized. We have been investi gating on standard real-time operating system spec ifi cati ons 

for embedded systems, ca ll ed the ITRON spec ifications, and have publi shed a series of' 

kernel spec ifications [50, 45, 73, 78]. The reason for centering these studies on kerne l 

speci fi cati ons is that only the kernel functions are used in most deeply embedded systems. 

We wil l describe the overview of the ITRON kernel spec ificat ions in the foll owing 

sections. 

The TRON Projec t is go ing ahead on various subprojects inc luding the ITRON 

subproject. The BTRON subproject aims to design an operati ng system spec ifi cation 

for personal computers and workstations. CTRON is an OS interface specificati ons fo r 

communication and information processing. MTRON is an attached OS archi tecture 

for connecting various systems in HFDS . CHIP subproject aims to design a VLS I 

microprocessor architecture for use in these operating systems. HMI subproject des igns 

standard human-machine interface guidelines . App lication subprojects, inc luding the 

TRON-concept Computer Augmented Building subproject, are proceeded to find problems 
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in actual applications of HFDS. 

1.2 Design Principles of the ITRON Specifications 

Requirements on a standard real-time kernel for embedded systems can be summarized 

as follows [85, 78]. 

• Deriving maximum hardware performance. 

• Software productivity improvement. 

• Uniform application to various processor scales and types. 

In order to sati sfy these requirement s, the following design principles are establi shed 

in designing the ITRON specifications [78]. 

• Avoiding excessive hardware virtualization. 

To derive the maximum performance from hardware and achieve hi gh real-time 

performance, we must limit the amount of hardware virtualization. Although 

intended for a variety of processors, the lTRON kernel spec ifi cati ons assu me each 

implementation will possess processor-specific aspects. 

To thi s end, we divided the specification into aspects that are standard ized across 

all processors and implementation-dependent aspects. Standard ized items include 

task scheduling rules ; system call names and functions ; parameter names, sequence 

and meanings; and error code names and meanings. 

On the other hand, we did not strict ly standardize those aspects that need to 

be decided separately for each implementation based on runtime performance 

cons iderations. Examples are parameter bit size, the method of in voking inte rrupt 

handlers, and excepti on handlings. 

• Permitting adaptation to app lication. 

Modifying the kernel specification and internal implementation method, based on 

the kernel functions and perfonnance required by a particular application, increases 

system performance. For embedded systems, the kernel object code is generated 

for each application, making this adaptation especially effective. 

Specifically, the specification was designed so as to make the kerne l fun ctions 

independent of each other to the extent possible, so that each application can use 

just the functions it needs. In fact, many ITRON-specification ke rne ls are provided 



in the form of libraries, and are designed so that on ly the necessary modules 

are loaded when the kerne l is linked to the appli cation. Also, each system cal l 

provides a single function, maki ng it easy to select out the necessary functions for 

an application. 

• Permitting adaptation to hardware. 

Modifying the kernel specificati on and internal implementation method. ba;,ed on 

the characteri stics of the hardware and its performance, also increases system 

performance. For example, the method of invoking interrupt handlers is left 

unspec ified in the ITRON specifications. In fact , it is a usual approach to in voke 

a user-defined interrupt handler when an external interrupt occu rs wi thout going 

through the operating system. The overhead required here is practical ly zero. The 

user must, instead, save the registers used in the interrupt hand ler. 

• Eas ing training. 

A primary aim of standardization in the ITRON specifications is to facilitate learnin g 

by and training of software engineers, so that once they learn something they wi ll 

be able to apply that knowledge broadly. To archive thi s, for example. the use of 

terminology in the specification, and things like the way system calls are named, 

are made as cons istent as possible. Consistent concepts and terminology also leads 

to the improved communication among software engi neers. 

• Creat ing a specification series and/or level di visions. 

Specifications are issued in series and di vided into levels to make them app li cab le to a 

wide vari ety of hardware. Of the spec ifi cations developed in the past, the 11 1TRON 

specification (Ver. 2.0) was designed mainly for 8-bit MCUs (Micro-Contro ll er 

Units) and other smaller-scale systems, whil e the 1TRON2 spec ifica ti on was geared 

to large-sca le systems including 32-bit processors. Moreover, each specification 

divides function s into different levels based on their degree of necessity. The latest 

spec ification, 1IITRON3.0, uses a level-d ivision of system call s to enab le thi s one 

spec ification to cover the range from small -scale to high-performance processor; 

(Table 2). 

• Making available a ful l range of functio ns. 

Rather th an limiting the number of primiti ves provided by the kernel, the app roach 

is taken of making avail ab le a wide vari ety of primiti ves with diffe re nt functions. 

The idea is to enable implementors to rai se the runtime performance and improve 
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Level R (Required) 

Functions required in all !dTRON3.0-specificat ion kernels. 

Level S (Standard) 

Funct ions to be provided in a standard ldTRON3.0-specification kernel. 

Level E (Extended) 

Advanced or additional functions. 

Level C (C PU dependent) 

Functions dependent on the processor, hard ware configuration. or im­
plementation. 

Level X (option) 

Extended functions that may be introduced as part of system call 
functions. 

Table 2: Levels in I-LITRON3.0 Specification 

ease of programming by using primit ives suitable for the part icular hardware and 

application. 

A concept common to many of these design principles is that of loose srandardi:arion. 

This means setting uniform standards only to the extent that performance wi ll not suffer. 

rather than trying to force all systems into one rigid mold, and leaving room to decide 

matters depending on the processor or application. 

1.3 History and Current Status of the ITRON Specifica­
tions 

The first ITRON kernel specificat ion was re leased in 1987 as TTRON I. Thereafter 

studies were carri ed out on a reduced-function specification called jtlTRON (Yer. 2.0) for 

smaller-scale 8- and 16-bit MCUs [52], and on the lTRON2 specification for larger-scale 

systems wi th 32-bit processors [54]. Both of these were released in 1989. 

Of these, the J.L lTRON specificat ion offered very realistic performance even on an 

MCU with only very limited processing and memory resources, and has therefore been 

implemented on many different MCUs. Its appl ication has even widened to va ri ou~ 16-bit 

MCUs as well as 32-bit processors. Just counting the J.L lTRON-specification products 

that have been registered offic ially, there are around thirty implementations for more than 

twenty processors. In add ition to them, the J.L ITRON-specification kernel, with its small 

size and relative ease of implementation, has been used in numerous developments fo r 

in-house systems. There are also several J.LlTRON-specificat ion kerne ls that have been 
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Consumer Applications 

TYs, VCRs, audio components, ai r-condi tioners, washing mac hines. 
microwave ovens, rice cookers, lighting 

OA Applications 

printers, copiers, image scanners, word processors, optical A ling sys­
tems 

Communications 

answer phones, lSD telephones, cellular phones. FAX. broadcasting 
equipment, wireless systems, antenna controllers, satellite controllers. 
ATM switches 

FA and Other Applications 

PDAs, game gear, automobiles, vending machines, electronic musical 
instrument s, digital cameras, FA computers, industrial robots 

Table 3: Typical ITRON-specification Kernel Applications 

made avai !able as free software. 

It goes without saying that the reason for this large number of ITRON-specification 

kernel implementations is the wide range of application fields and numerous application 

examples. Table 3 lists some of the applications in which ITRON-spec ification kernels 

are used. 

As the f.dTRON-specification kernel has come to be applied to a wide range of fields, 

a clearer picture has emerged as to the necess ity of each function and the performance 

demands. Also, as noted above, the f.L lTRON-specification kernel has in some instances 

been implemented for 32-bit processors, something we did not origina ll y anticipate. lt 

was therefore decided to reexam ine the existing ITRON specifications. resulting in the 

release in 1993 of the third-generation IT RON specification, called f1 lTRON3.0 [56]. The 

main functions in the f.LITRON3.0 kernel are li sted in Table 4. 

1.4 Overview of Itls 

ltls (ITRON Implementation by Sakamura Laboratory) is a real -time kernel deve loped 

for research and educational purposes by the members of Sakamura Laborato ry [69]. It 

conforms to the f.LlTRON3.0 specification and runs on TRON-specification microproce>­

sors. The current version implements all the function s in the f.L ITRON3.0 specificati on 

up to level E (Extended level ), as well as all level X (optional) functi ons. It also 

has some original extended functions. The target microprocessors presently supported 
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Task management 

• Direct manipulation and referencing of task statu s 

Task-dependent synchronization 

• Task synchroni zation functions in the task itself 

Synchronization and communication 

• Three task-independent sy nchroni zation and commu nicati on fu nct ion" 
semaphores, event fl ags, and mailboxes 

Extended synchronization and communication 

• Two advanced task-independent sy nchroni zati on and communicati on func­
ti ons: message buffers and rendezvous 

Interrupt management 

• Functi on for definin g a handler for external interru pts 

• Functi on for di sabling and enabling external interrupt s 

Memory pool management 

• Functi ons for software management of memory pools and memory block 
a llocation 

Time management 

• Functions for system c lock setting and reference 

• Task delay fun ction 

• Timer handl er functi ons, for time-triggered startin g 

System management 

• Functions for setting and referencing the system environment as a whole 

Network management 

• Management and support fun ctions for a loosely coupled network 

Table 4: Main Functio ns Supported in the {tlTRON3.0-s pec ifi cat io n Ke rne l 
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are GMICR0/200 [86, 23] and GMICR0/300 [24]. It is designed to be easi ly ported to 

other target systems based on TRON-spec ification microprocessors. Porting to other 

mic roprocessors is also possible. 

Main features of ltl s are as follows. 

• Emphasizing ease of ex tension and maintenance. 

Development of ltls is aimed mainl y at research and educational use. For thi s reason. 

the implementation e mphasizes such factors as ease of understanding. modification, 

and maintenance over run-time performance. For example, C language is used 

throughout, with assembly language use kept to a bare minimum. 

Ills implements all the functions in the ~tlTRON3.0 specification and can be 

reconfigured as needed by means of compile options, as the amount of kernel 

cod ing is approximately 8,000 lines, including the generation script and definition 

files (but not including blank lines or comments) . 

• Supporting two system call interfaces. 

The JLITRON3.0 specification defi nes two different interfaces for in voki ng system 

ca ll s, one using a software interrupt with a function number set in a reg ister, and the 

other making use of an ordinary subroutine call. I ti s allows both o f these methods 

to be used in the same system . Accordingly, in a large-sca le system , subroutine 

ca ll s can be used in system tasks providi ng basic serv ices for the syste m. wh il e 

othe r use r tasks are able to make use of a software interrupt. 

• Providing original extended functions. 

ltls supports some ori ginal extended functions , inc luding func ti ons fo r au to matic 

ID ass ignment, debugging support functions , and priority inherit ance semaphores 

[75] 

• Taking advantage of the TRON-specificati on microprocessor architecture. 

ltls takes full advantage of the high-level instructions, delayed interrupt, and 

other features of the TRON-specification microprocesso r architec ture. Because of 

the policy of minimizi ng assembly language use, the functions us ing high-level 

instructions are writte n in an inline assemble r, which is ca ll ed by a C language 

routi ne . The same functions are also provided as C language routines to faci litate 

porting to other microprocessors. 

• Designed for Aexible reconfigurat ion. 
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Changes in the kernel configuration are generated from the source code. enab ling 

flexible reconfiguration. 

• Avai lable as free software. 

Itls also supports a simu lation environment running on BSD UN IX. Mu ltiple tasks are 

switched and run in a UNIX process, an approach that makes it usable as a prototyping 

environment for system development on an ITRON-specification kernel. Use as a thread 

library on UNIX is also possible, and this environment has the potential for effective use 

in education and training regarding the TTRO spec ifications [70]. 

1.5 Design Goals and Approaches of ITRON-MP 

ITRON-MP is an extension of the IT RON kernel specifications to support shared-memory 

multiprocessors. The design goa ls of the ITRON-MP specification are as fol lows. 

• ITRON-MP should be implementable with satisfying the requ ired properties of a 

scalable real-time kernel, which will be described in Section 3. 

• ITRON-MP should be valid for various multiprocessor architectures. amely. it 

has the adaptabi lity to an architecture. 

• The kernel code for an app lication system can be generated to be opt imal for the 

nature of its application. Namely, it has the adaptability to an application. 

• An ITRON-MP based kernel must not degrade the native performance of a machine 

or an archi tecture. 

• Programmer can easily grasp the real-time natures of the system developed on an 

ITRON-MP based kerne l. 

• ITRON-MP should be applicable to applications requiring fault-tolerance. 

• The ITRO -MP specification should be easy to learn. 

The first goal is the main theme of this dissertation and is discussed in the rest of 

Part II. 

The second goal means that a real-time kernel based on the ITRON-MP specification 

can be used for various multiprocessor architectures in spite of the differences among 

them, such as the ki nd and the number of processors, how to connect processors each 

other, and the accessibility of hardware resources from each processor. In order to achieve 
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thi s property, a standard set of kernel interface which can be adapted to wide va ri et ies 

of mu ltiprocessor architectures is defined in the specification, and a tuned kernel code. 

which is generated from the desc ription of the architecture and the kerne l comt itution. is 

used for the construction of application systems. 

The sixth goal comes from the fact that fault-tolerance is another import ant feature 

for almost all real-time systems. The adoption of multiprocessor architecture to a fault ­

tolerant system is a promising approach and has been studied for a long period [ 19]. 

Because the actual mechanism to achieve fault-tolerance varies for each system, ITRO N­

MP should serve as a basis for the construction of fault-tolerant systems. Therefore. we 

include some kernel functions necessary for the reali zat ion of fau lt-tolerant feature in 

the ITRON-MP spec ification. For example, ITRON-MP has a set of system ca ll s which 

enable user programs to take a snapshot of a task and to resume the task from the snap, hot. 

In other words, ITRON-MP should have the adaptability to a fau lt-t olerant architecture . 

The other goals of the ITRON-MP specification are inherited from the ITRON 

spec ifica tions. The same approaches wi th ITRON are also valid fo r ITRON-MP. 

2 Basic Kernel Model 

In thi s section, the basic real-time kernel model for function-di stributed multiprocessors 

is presented (Section 2.1) and its implementation approaches are discussed. Two 

implementation approaches, direct access method and remote invocati on method, are 

introduced in Section 2.2 and some drawbacks of the latter method are pointed out in 

Section 2 .3. We also discuss the issue on lock granu larity in Section 2.4. 

2.1 Basic Kernel Model for Function-Distributed Multi­
processors 

When a hard real-time system is realized on a function-distributed multiprocessor, 

the method is often adopted as a realistic approach that a real-time kerne l for s ingle 

processor is used on each processor, and that synchronizations and communicati on; 

among processors are implemented with application-level programs. However. thi s 

method has a drawback that when the configuration of the system is modi fi ed due to 

the change of the req uirements for example, and when the al location of the tasks to the 

processors is changed, a large part of the app li cation program is necessary to be modified. 

Thi s is because the synchron izat ion and communication in terface with rash on the same 

processo r and that with tasks on other processors are different. 
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Figure 7: Bas ic Kernel Model 

To remedy this problem, a real -time kernel is required with which a task can 

synchronize and communicate with tasks on other processors with the same interface 

with tasks on the same processor. In other words, a task can operate on any task with 

the same set of system calls. In thi s di ssertation , we call thi s kernel mode l as the basic 

model of real-time kernel s for function-distributed multiprocessors, or the basic kernel 

model in short (Figure 7). In the basic kernel model, each tas k has its host processor on 

which it is executed, and is call ed a local task of the processor. A ready queue is prepa red 

for each processor in which all the loca l tasks that are ready to execute are included 

in the descending order of their priorities. Each task-independent synchroni zation and 

communication object (called as synchronization objects or simply as objects in this part ). 

such as a semaphore and an eventfl ag, also has its host processo r and can be accessed 

from any task in the system. In other words , each kernel resource is c lassi fi ed into the 

local resource of its host processo r. 

2.2 Direct Access Method and Remote Invocation Method 

There are two approaches to implementing an operating system kernel on func ti on­

distributed shared-memory multiprocessors: the direct access method and the remote 

invocation method [6, 7]. 

With the direct access method , when a task operates on a kerne l resource on another 

processor, it directly accesses the control block of the resource located on the loca l memory 

of the processor. Therefore, some mutual exclusion mechanism among processors is 

necessary for the access control of the control blocks. In implementing a rea l-ti me kernel. 



because the execution time of each primitive operation is very short, sp in locks arc usually 

used for thi s exclusive control. 

With the remote in vocation method, which is also applicable to multiprocessors 

w ithout shared memory, when a task operates on a kernel resource on another processor. 

it sends a message to the processor requesting the operation and rece ives the result. The 

requesting processor spins until the requested processor completes the operat ion. 

Below, we will illustrate the behavior with these two approaches when a task r 1 

on processor P1 invokes a system cal l to resume the execution of a task r, on another 

processor ? 2• We denote the resume task operations as rsm_tsk after the system call 

name in 'tlTRON3.0 speci fication [56]. 

Direct Access Method 

At first, r 1 finds the address of r 2 's task control block (TCB) and then tries to lock 

the lock unit guarding the TCB. When r 1 succeeds to acquire the lock, it accesses 

the TCB and changes the status of r 1• Because r 2 becomes ready to execute with the 

operation, r 1 acquires the lock unit guarding the ready queue of ? 2
1 and enqueues 

r1 to the ready queue. [f (and only if) P1 executes lower priority task than r, (the 

priority of the currently executed task must be stored on a shared memory). r 1 

requests r 2 to switch the executing task using an inter-processor interrupt. 

Remote Invocation Method 

At first, r 1 checks some kind of parameter errors which can be detected stati call y. 

Then, it enqueues a requesr informarion block into the request queue of P,. The 

request information block includes the kind of operation (rsm_tsk, in thi s case), 

the parameters passed to it (the identification of r2 ), and an empty field to which the 

requested processor writes the result. Then, r 1 asks ? 2 to process the request using 

an inter-processor interrupt and sp ins until the result of the operat ion is written 

in the request information block. When ? 2 accepts the interrupt, it dequeues the 

request information block, executes the requested operation, and writes the result 

in the block. 

Which method of them is appropriate is determined by the characteri stics of the 

underlying hardware (e.g. remote memory access cost) and the performance requirements 

of the application. 

1This is necessary, only when the ready queue of P2 is included in a different loc k unit wi th r2 \ TCB. 
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2.3 Drawbacks of the Remote Invocation Method 

From the performance requirements of real-time applications, the direct access method is 

usually su itable because the serialization unit of processing is too large with the remote 

invocation method. More prec ise ly, the remote invocation method has the foll owi ng 

drawbacks in implementing rea l-time kernels for function-distributed multiprocessors. 

I. With the remote invocation method, because requests come from other processors 

asynchronously, any task can be delayed by the processing of the request;. This 

makes the schedulability analysis of the system very difficult. 

In order to predict the timing behavior of time-critical tasks, it is possible to disable 

interrupt services during their executions. With thi s method, however. a request 

that makes a higher priority task executable is also pended. It is also di fficult to 

predict the maximum time since the time-critical task are completed (or blocked) 

until another task stat1S, because al l pended requests are processed at this moment. 

It also has a problem that the requesti ng task must wait for the completion of the 

time-critical task. 

2. In functional-distributed multiprocessors, interrupt requests from external devices 

are raised on each processor. I f an external interrupt has a higher priority than the 

inter-processor interrupt, the execution of a requested operation can be delayed due 

to the service of the external interrupt. This makes it difficult (or even impossible 

depending on the situation) to bound the time until the remote invocation is finished. 

Otherwise (i.e. if the inter-processor interrupt has a higher priority than an ex ternal 

interrupt), it is difficul t to bound the response time to the ex ternal interrupt. 

When a requested operation is very simple and its result is not necessary, the re­

questing processor can proceed without waiting for the completion of the operation. 

In this case, this problem can be avoided by making the priorit y of the ex ternal 

interrupt always higher than that of the inter-processor interrupt. However. the 

limitation that the requesting task cannot receive the result of a remote operation at 

all is usually too restricti ve to realize the access transparency of remote resources. 

With these reason s, we adopt the direct access method as the base implementation 

method below. We will also refer to the remote invocation method when necessary. 

Differences of these methods will be clarified th rough performance measurements in 

Section 6. 
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2.4 Kernel Data Structures and Lock Granularity 

In implementing a real-time kernel for shared-memory multiprocessors, the lock granu lar­

ity of kernel data structures is one of the most important issues. Below, we Arst describe 

the data structures and access patterns on them in a real-time kernel for single processor 

systems, and then investigate on the granu larity of lock units. 

In general, using fine-grained lock units reduces lock contention rate and then improves 

concurrency. Conversely, using coarse-grained lock units reduces lock acquisition 

overhead and deadlock avoidance overhead. For real-time kernel s, maki ng lock units so 

small that many locks are necessary to be acquired in some operations is not a suitable 

approach. This is because the execution time of each critica l section is very short in 

real-time kernels and therefore the lock acquisition overhead is relatively large. Another 

reason is that the necessity of acquiring multiple locks at the same time has a great impact 

on the worst-case behavior, because the maximum execution time of a criti ca l sec tion 

guarded by nested sp in locks increases with the exponential order of the maximum nesting 

level of locks (Refer to Section ill.4 for detailed discussions). 

The simplest method to avoid nested locks is to enter all kernel data structu res in one 

lock unit. Another method in which all kernel services are executed on one processor 

is essentially the same approach. With these methods, only one kernel service can be 

executed at the same time. Therefore, the execution throughput of kernel services cannot 

scale well and the methods are thought to be problematic from the viewpoint of scalability. 

It is also reported that the computational power of a processor is not sufficient to execute 

all the kernel services, when kernel services are heavily used [22, 25]. We consider that 

kernel data structures on different processors, at least, should be placed in diffcrenr lock 

units. 

In order to determine an appropriate granularity of lock units, we have examined a rea l­

time kernel implementation for si ngle processors based on the J.i.ITRON3.0 specifica tion. 

Major data strucrures in the kernel are as the followings. 

( I ) The task control blocks (TCBs). 

(2) The (task) ready queue. 

(3) The control blocks of each kind of synchronizat ion and communication objects 

(including a task queue in which waiting tasks on the object are included). 

(4) The timer event queue (a queue which manages various events triggered by the 

system timer). 
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As described in Section 2, a ready queue is prepared for each processor in the basic 

kernel model for function-distributed multiprocessors. Also, a timer event queue shou ld 

be prepared for each processor. 

We analyze the access pattern on the data structures of each system call what should 

be supported in level S in the J.t iTRON3.0 specificati on, which is listed in Table 5. For 

example, the sig_sem system call , which returns a resource to the designated semaphore, 

first accesses the control block of the semaphore. When a task that is wait ing on the 

semaphore becomes ready to execute by the system call, it also needs to access the TCB of 

the awaked task and the ready queue. The reLwai system call, wh ich forcibly releases 

the waiting state of the designated task, accesses the TCB of the task and the ready queue. 

When the task is waiting for a synchronization object and is included in its waiting queue, 

it also accesses the control block of the object and the TCBs of the tasks that are wa iting 

for the object. 

From these observations, because the ready queue is usuall y accessed with a TCB, 

we have concluded that the TCBs of the local tasks of a processor and the ready queue 

for the tasks should be included in the same lock unit. We al so conclude that the timer 

event queue for the tasks should be included in the same lock unit. Another observation 

is that one-writer/many-readers type synchronization primitives are not necessary. This 

is because a read access on a data structure is usually followed by a write access. 

System ca ll s in Table 5 are classifi ed into the following six categories from their 

access patterns on the kernel data structures. We omit the accesses on a timer event 

queue, because whenever the ready queue for the task is accessed, the timer event queue 

for a task may also be accessed. 

(a) Normal operations on a task. 

A system call of thi s category accesses the TCB of the designated task (o r issuing 

task) and/or the ready queue for the task. 

(b) Special operations on a task. 

A system call of this category accesses the TCB of the designated task. the ready 

queue for the task , and the control block of the synchroni zation or communicat ion 

object on which the task is waiting. In some situati ons, it also accesses the TCBs 

of the other tasks that are waiting on the object and the ready queues fo r the tasks. 

At most one TCB and the ready queue for it must be locked at once. 

(c) Simple operations on a synchronization or communication object. 

30 



Name Function Category 
sta_tsk start a task (a) 
exLtsk ex it the issuing task (a) 

ter_tsk terminate a task (b) 

dis_dsp di sable task di spatch (f) 
ena_dsp enable task di spatch (f) 
chg_pr i change the priority of a task (a).(b) 
r oLrdq rotate tasks on a ready queue (a) 

rel_wai re lease a task from wa it state (b) 
geLtid get the issuing task identifier (a) 
sus_tsk suspend executing a task (a) 
rsm_ts k resume executing a task (a) 
slp_tsk make the issuing task sleep (a) 

wup_tsk wakeup a sleeping task (a) 

can_wup cancel wakeup requests (a) 
s ig_sem signa l a semaphore (e) 
wai_sem wait on a semaphore (d) 
preq_sem poll and request a se maphore (c) 
seLflg set an eventtlag (e) 
clr_flg clear an eventfi ag (c) 
waLflg wait for an eventft ag (d) 
poLflg poll an event fl ag (c) 
sndJTisg send a message to a mailbox (e) 
rcvJnsg rece ive a message from a mailbox (d) 
prcvJTisg poll and receive a message from a mai lbox (c) 
loc_cpu di sable interrupt and dispatch (f) 
unLcpu enable interru pt and di spatch (f) 
ret_int return from interrupt handler (f) 
seLtim set the system clock (f) 
geLtim get the system clock (f) 
dly_tsk delay execut ion of the issuing task (a) 

geLver get the version informati on (f) 

Table 5: C lassification of System Calls 

A system call of thi s category accesses only the control block of th e des ignated 

synchroni zat ion or communication object. 

(d) Wait operations on a sy nchronization or communication object. 

A system call of thi s category first accesses the control block of the designated 

synchronization or communication object. When the issuing task is bl ocked , it also 

accesses the TCB of the issuing task and the ready queue for the tas k. 

(e) Release operations on a synchronization or communication obj ect. 

A system call of thi s category first accesses the control block of the des ignated 
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synchronization or commun ication object. When some tasks that are wai ting on the 

object are released from the wai ting states, it also accesses the TCBs of the tasks 

and the ready queues for the task s. At most one TCB and the ready queue for it 

must be locked at once. 

(f) Other operations. 

A system call of thi s category does not access these kernel data structures. 

Table 5 also presents the category to which each system call is class ified . The 

chg_pri system call , which changes the priority of the designated task. is clas, ified into 

both (a) and (b), because its access pattern varies depending on the state of the designated 

task. 

Another kernel service routine that should be considered here is the timer interrupt 

handler, wh ich is periodicall y executed with constant interval and processes vari ous 

time-triggered events. In process ing timeouts, a typical time-triggered event , the handler 

accesses kernel data structures in the same pattern wi th the system calls in category (b), 

i .e. the handler accesses the TCB of the designated task, the ready queue for the task, and 

the control block of the synchronization or communication object on which the task is 

waiting. 

As the results of these investigations, we conclude that a separate lock unit should be 

prepared for the control blocks of synchronization and commun ication objects on each 

processor. As described before, the TCBs and the ready queue on the processor arc 

included in another lock unit. In order to avoid deadlocks, when both kind of locks are 

necessary to be acquired, the lock unit of the synchronization and communicati on objec ts 

should be acquired first. 

In implementing the system call s of category (b), which are special operations on a 

task, a dead lock detection and re-execution mechanism must be adopted. Therefore, it is 

very difficult to bound the maximum execution times of the system cal ls of this category. 

Because the system calls of thi s category is rarely used, we give up solving this prob lem. 

In processing timeouts, the synchronization or communication object whose control block 

is necessary to be accessed can be detennined beforehand. Thus it is possible to acquire 

the lock unit of the object first, and the deadlock can be avoided. 

On the other hand, when the TCBs and the control blocks of synchroni zati on and 

communication objects were included in the same lock unit, two parallel invocat ions of 

system call s of category (e), which are used very frequently, could cause a dead lock . 
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3 Requirements and Problems 

This section presents two major problems in implementing a scalable real -time ker­

nel for function-distributed multiprocessors ; the degraded scalability of intra-processo r 

synchronization (Section 3. 1), and the incompatibility of predictable inter-processor 

synchronization and constant interrupt response (Section 3.2). We also summari ze the 

required properties of a scalable real-time kernel in Section 3.3. 

3.1 Scalability of Intra-Processor Synchronization 

The first problem is that the worst-case execut ion times of inter-task synchronizations 

within a processor depend on the number of contending processors in the system. This is 

because a task must acqu ire an inter-processor lock before it accesses the TCB of anothe r 

task, even when both tasks are executed on a same processor. 

As described in Section T.4, the worst-case timing behavior of the processings that 

can be done within a processor is desired to be independent of the number of contending 

processors and of the other processors ' acti vities. Because tasks on each processor are 

fa irly independent with tasks on other processors in function-distributed multiprocessors. 

thi s property is an essenti al requ irement to red uce the maintenance cost of the system. It 

is also a prerequisite to facilitates the reuse of a module consisting of a processo r, local 

memory, extern al devices, and the software handling them. 

3.2 Predictable Inter-Processor Synchronization and In­
terrupt Response 

The second problem is that constant interrupt response is not compatible wit h predictab le 

inter-processor synchronization. This problem is similar to the problem wit h the 

remote in vocation method on the precedence of external interrupts and inter-processor 

synchroni zations, which is pointed out in Section 2.3. 

In order to bound the time until a processor acquires an inter-processor lock, the 

duration that each processor holds the lock must be bounded as wel l as the number 

of contending processors that the processor must wait for. The latter condition can be 

met with a bounded spin lock algorithm, such as the ticket locks and the FIFO-ordered 

queueing locks [38], with which the turn that a processor acqui res a lock is reserved 

when it begins waiting for the lock. To sat isfy the former condition, the relationshi p with 

interrupt services must be considered. 

In function-distribu ted multiprocessors, interrupt services for external dev ices are 
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-~ ----~--------------------------------------------~-------------------. .. ~. 
requested for each processor. When mult iple devices are connected to a processor, 

interrupt requests fro m them are usuall y raised independen tly and the max imum time to 

service all of the requests becomes very long or even unbounded. Consequen tl y. in order 

to give a practica l bound on the durati on that a processor holds a lock, interrupt services 

should be inhibited for that durati on ( I). 

On the other hand , the worst-case interrupt latency shoul d be given independentl y of 

the number of contending processors. If a processor disables interrupt serv ices be fore 

enqueueing itse lf to the queue, the interrupt di sabled period includes the time to acq uire 

the lock and its upper bound depends on the number of contending processors. T herefo re. 

interrupt requests must be serviced whil e the processor is waiting fo r a lock (2 ). 

Though the test-and-set locks, which are not sui table for real-time systems, can be 

extended to sati sfy both ( I) and (2) easi ly, bounded spin lock algo rith ms, such as the 

ti cket locks and the queueing locks, cannot be ex tended similarly. The reason is as 

fo llows. In all bounded spin lock algorithms, a processor modifies some shared variab le 

and reserves its turn to acquire the lock when it beg ins waiting fo r the lock. When its turn 

comes, the lock is passed to the processor by another. If the processor simply branches 

to an interru pt handler while waiting for the lock, it cannot begin to execute the critical 

secti on immediate ly after the lock is passed to the processor, and makes the con tendi ng 

processors wait wastefull y until the in terrupt service is fini shed . 

When a processo r fini shes the interrupt request that is serviced whil e wa iting for a 

lock, it resumes waiting for the lock. It is usual that the maximum time that the processor 

is waiting for the lock is prol onged by the interrupt service. It is also the case wit h some 

spin lock algorithms that some process ings are necessary afte r the interrupt service to 

resume waiting fo r the lock. 

When the schedulability of the system is analyzed, a ll the overhead that is caused 

by an interrupt service should be added to the max imum service time of the interrupt 

request. We call thi s overhead as interrupr service overhead. Because the maxi mu m 

frequency of interrupt requests is usuall y quite high compared with tasks, a litt le increase 

of the interrupt service overhead can severely degrade the sched ul abil ity of the system. 

There fore, the interrupt service overhead should also be independent of the nu mber of 

contending processors. 

3.3 Required Properties 

From the above di scussions, the properties that a scalable rea l-time kernel shou ld sati sfy 

can be summari zed as foll ows. 
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system call intra-processor inter-processor 

name function operations operations 
cre_tsk create a task T cre_t sk n · T wait + r;;.e_tsk 

sus_tsk suspend executing a task T s'U s_tsk n · T wait + r ;'us-tsk 
(w ith a task switch) r ;us_tsk n · Twai.t + T.~'t:s_tsk 

rsm_tsk resume executing a task T rsm-tsk n . T wait + r:~IILlHk 
(w ith a task switch) r ;sm-tsk n . T wait + r:.~IILIHk 

vsnd_tmb send a message to a task T vsnd_tmb n . T walf + r:.:~ncLIIIIb 
(with a task sw itch) T~snd_tmb n . T watt + r:/:rliL/mb 

vrcv_tmb receive a message sent to me T vrcv_tmb -

(with a task switch) T~rcv_tmb -

maximum interrupt response time Tint 
interrupt service overhead T in t ove1·head 

Table 6: Required Timing Behav ior 

(A) The maximum execution time of a system call that is to synchroni ze or commu ni cate 

with tas ks on the same processor can be determined independentl y of the othe r 

processors ' activities and the number of contending processors. 

(B) The maximum execution time of a system ca ll th at is to synchroni ze or communicate 

with tasks on other processors can be determined independentl y of the othe r 

processors' activities and be bounded with a linear order of the number of 

contending processors. 

(C) The maximum interrupt response time on each processor can be determined 

independently of the other processors' activities and the number of con tendin g 

processors . 

(D) The interrupt service overhead can be determined independe ntl y of th e o ther 

processors' activities and the number of contending processors. 

The required timing behav ior is illustrated in Table 6. 

4 Proposed Solutions 

In Section 4.1 and4.2, we present our proposed solutions to the two problem described in 

the previous section when task-independent synchroni zation and com municati on objects 

are not supported. With the proposed methods, each worst-case service time that is 
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necessary for schedulability analyses can be bounded, on the assumption that underlying 

inter-processor synchronization mechanism and hardware satisfy the required properties. 

wh ich are described in Section 4.3. 

Because task-independent synchronization and communication objects arc not consid­

ered in this section, all shared data structures located on the local memory of a processor 

are thought to be included in a single lock unit. 

4.1 Spin Lock with Local Precedence 

In order to improve the worst-case execution times of an operation on a local task 

(ca lled a local operation, in short), the local lock guarding the local data structures 

should be obtained with precedence over the other processors. With thi s approach. the 

maximum execution time of a local operation is determined independen tl y or the number 

of contending processors. More precisely, a task must wait for at most one critical sec tion 

executed by other processors unti l it acqu ires its local lock. On the other hand, the 

maximum number of critical sections that a processor must wait for until it acquires a 

non-local lock is increased. More precisely, when a task tries to acquire a non-local lock. 

it must wait for n- I critical sections executed by its host processor in addi ti on to n - 2 

critical sections executed by the other processors, where n is the number or con tending 

processors. 

The spin lock algorithms with which the local lock can be acquired wit h precedence 

over the other processors, called spin locks with local precedence, will be described in 

Section 111 .3. 

4.2 Spin Lock with Preemption 

To satisfy both of the conditions (I) and (2) described in Section 3.2 at the same time. we 

adopt FIFO-ordered queueing spin lock algorithms with preemption. 

As described in Section 3.2, in a bounded spin lock algorithm, a processor modifies 

some shared variable and reserves its turn to acquire the lock. In order not to make the 

contending processors wait wastefully, a processor must inform others that it is servicing 

interrupts and should not be passed the lock, when it begins to service interrupts wh ile 

waiting for the lock. The processor trying to release the lock checks if the succeeding 

processor is servicing interrupts. If the succeeding one is found to be servi cing interrupts, 

the lock is passed to the next in line. 

More precisely, when the processor trying to release the lock finds that the succeeding 

one is serv icing interrupts, the processor is dequeued from the waiting queue for the 
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lock. When the processor finishes the interrupt service, it checks whether it is dequeued 

from the waiting queue during the interrupt serv ice or not. If it has been deq ueued, 

it re-executes the lock acquisition routine from the beginning. Obvious ly, thi s simple 

preemption scheme has the problem that the interrupt service overhead depends on the 

number of contending processors. 

In order to so lve this problem, we propose an improved preemption scheme. in which 

the processor is not dequeued even when its turn to acquire the lock comes during an 

interrupt service. Instead , the processor trying to re lease the lock simply passes the 

lock to the next processor in the waiting queue. When the processor returning from 

the interrupt service, it resumes waiting for the lock in its original position. With thi s 

improved preemption scheme, the interrupt service overhead can be reduced to a constant 

time length , which is independent of the number of contending processors. 

One more problematic situation is as follows. Assume the case that a processor P t 

services an interrupt request whi le the task executed on Pt is waiting for a lock. The 

problem occurs when the interrupt handler executed by Pt tries to acquire the same lock. 

If Pt executes the lock acquisition routine from the beginning, another processo r P 2 that 

has just begun waiting for the same lock must possibly wait for the two executions of 

critical sections by Pt. As the result, the maximum number of critical sections that P 2 

must wait for is increased with an interrupt service executed on Pt. This violates the 

required property (B) presented in Section 3.3. More precisely, the maximum time until 

P2 acquires the lock cannot be bounded with a linear order of the number of contending 

processors without some assumptions on the occurrence of interrupt request s. 

Our solution to this problem is that the interrupt handler trying to acq uire the lock 

inherits the turn that the preempted task have reserved to acquire the lock. In thi s case. 

the task must re-execute the lock acquisition routine from the beginning after the interrupt 

service, and thus the interrupt service overhead is prolonged. Instead , the interrupt 

service time is shortened, because the interrupt handler inherits the turn reserved by the 

preempted task . Because the sum of the interrupt service time and the interrupt se rvi ce 

overhead remain unchanged, schedulability of the system is not affected with thi s method. 

The same method can be applied to the situation that another task that becomes ready to 

execute by the interrupt service tries to acquire the same lock. 

With these methods, a ll of the required properties described in Secti on 3.3 are 

satisfied, on the assumption that underlying inter-processor synchroni zation mechani sm 

and hardware satisfy the properties described in the next sec tion. Timing behavior of 

our proposed method is illustrated in Table 7, in which Tcs denotes the maximum time 

duration that a processor holds a lock. 
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system call intra-processor inter-processor 
name function operations operations 

cre_tsk create a task T cre_tsk 2· n · Tcs + 1~~- c· _/ ,'>k 

sus_tsk suspend executing a task Tsus_tsk 2 · n · Tcs + T~:L~;_f sk 
(with a task switch) r ;us_tsk 2·11 · Tcs + T,:::.5_t~k 

rsnusk resume executing a task Trsm_tsk 2 · n · Tcs + T:.~~nLt~k 
(with a task switch) r;sm_tsk 2· n · Tcs + l_~~:oLtsk 

vsnd_tmb send a message to a task T vsnd_tmb 2 · n . Tcs + T~~~~ui_LI/IIJ 
(with a task switch) T~sncLtmb 2 · n · T cs + T:,~1uLI1ob 

vrcv_tmb receive a message sent to me T vrcv_tmb -

(with a task switch) T~rcu_tmb -

maximum interrupt response time Tint 
interrupt service overhead T int overhea(i 

Table 7: Timing Behavior of the Proposed Method 

The bounded spi n lock algori thms with preemption wi ll be discussed in Section lll.2. 

4.3 Assumptions on Underlying Synchronization Mecha­
nism and Hardware 

In order that our proposed method strictly satisfies the required properties described in 

Section 3.3, the following assumptions on underlying inter-processor synchronizat ion 

mechanism (i.e. spin lock) and hardware are necessary to be satisfied. 

I. The maximum execution time of underlying inter-processor synchronization mech­

anism can be determined independently of the number of contending processors. 

2. The maximum access time of a local memory can be determined independen tl y of 

the number of contending processors. 

3. The maximum access time of a remote memory can be bounded w ith a l inear order 

of the number of contending processors. 

Because the maximum execution time of our queueing spin lock algorithm with 

preemption which will be described in Section IU.2 depends on the number of contending 

processors, the first assumption is not satisfied. However, the dependency is very small 

and can be ignored in usual applications. For very hard real-time application s, the 

underl yi ng synchronization mechanism should be implemented with hardware. Because 
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only one lock is necessary for each processor, we think that the cost of the synchroni zation 

hardware can be justi fied. 

In order to satisfy the second assumption, the maximum access time of the local bus of 

the processor should be able to be determined independently of the number of contend ing 

processors, or the local memory should be realized using two-port memories. The third 

assumption requires that the maximum access time of the shared bus (or interconnection 

network) and that of the local bus of another processor are bounded with a linear order of 

the number of contending processors. 

A hardware architecture in which all these assumption are sati sfied w ith reasonable 

cost is as follows. A complete round-robin scheme should be adopted as the arbitrati on 

scheme of the shared bus (or interconnection network). The local bus of a processor 

should also be schedu led in a round-robin fashion between its host processor and the 

other processors. More prec isely, after the local bus is used by its host processor, another 

(remote) processor should be ab le to acquire the bus. After a remote processor uses the 

local bus, the host processor of the bus can acquire the bus wi th higher precedence over 

the other processors. 

5 Classification of Kernel Resources 

In the basic kernel model for function-di stributed multiprocessors described in Sec ti on 2. I , 

each kernel resource is class i fied into the local class of its host processor. Kernel resources 

included in each local class have the same characteristics except that they are located on 

the local memory of its host processor and that (in case of local tasks) they are executed 

only by its host processor. 

In thi s section, we propose a new kerne l model in which kernel resources are class ified 

into some classes with different characteristics. The kerne l resources be longing to the 

class having the appropriate property for a processing should be used for implement ing 

the process ing. 

At firs t, we introduce the class of pri vate tasks, whose maximum execution t imes 

are independent of the number of contend ing processors, but that cannot synchronize or 

communicate wi th the tasks executed on other processors in Section 5.1. Task-i ndependent 

synchronization and communication objects are also classi fied into the pri vate class and 

the shared class in Section 5.2. We also introduce the class of iso lated tasks in Section 5.3. 

Though isolated tasks themselves have little use, the same access restri cti on with it should 

be imposed on in terrupt handlers. Finally, we describe the kernel interface wi th which 

resources of different classes are accessed in Secti on 5.4. 
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ill . local task 

~ : private task 

Figure 8: Kernel Model with Private Tasks 

5.1 Private Tasks 

Though the spin lock with local precedence described in Section 4. I makes the wo rst­

case performance of an intra-processor synchroni zation independent of the number of 

contending processors, its perfo rmance is quite low compared with a sing le processor 

system. As descri bed in Section I. 2, many of the tasks can be processed wit hin a processor 

and need not synchroni ze or communicate with other processo rs in we ll-des igned 

application system on a function-di stributed multiprocessor. The total performance of 

the system is expected to be improved, if such tasks can be executed with the same 

perfo rmance with a single processor system. 

To meet thi s requirement, we propose an approac h to c lass ify tasks accord ing as 

their characteristics. In the concrete, we classify the tasks that are not operated by tasks 

executed on other processors as private tasks, which are managed differently from the 

other tasks (i.e. local tasks) . Because the TCB of a pri vate task is not accessed by othe r 

processors than its host processor, no inter-processor lock is necessary to access its TCB. 

A separate ready queue and a timer event queue also accessible witho ut an inter-processor 

lock are prepared for the private tasks on each processor. Both the ready queue fo r the 

private tasks and that for the local tasks are checked in determining which task to be 

executed. T he kernel model with pri vate tasks is illustrated in F igure 8. 

A pri vate task on a processor can synchronize or communicate with a local task 

on the same processor. When the pri vate tas k accesses the TCB of the local task, the 

max imum time until it acquires the lock guarding the TCB is independent of the number 

of contending processors, because the private task , which is on the same processor with 

the loca l tas k, can acquire the lock with precedence over the other processors . 
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Another motivation to introduce the class of private tasks is as follows. Because the 

maximum execution time of an operation on a remote resource (call ed a remote ope ration , 

in short) is prolonged as the number of contending processors is increased, a task whose 

worse-case behavior shou ld not depend on the number of contending processors must 

not invoke such operations. Moreover, the same restri ction applies to any higher priority 

task than the former task in order to bound its response time independentl y of the number 

of contending processors. If thi s restriction is imposed on each private task. and if the 

private tasks are always schedu led with higher priorit ies than the local tasks on the same 

processor, the worst-case behavior of private tasks can be determined independently of 

the number of contending processors. 

In order to schedule the private tasks with higher priorities than the local tasks, the 

task dispatcher (a kernel module which switches the contexts of tasks) first checks the 

ready queue for the private tasks, then checks the ready queue for the local tasks on ly 

when the former one is empty, and determines to wh ich task to dispatch. 

5.2 Classification of Task-Independent Synchronization 
and Communication Objects 

In order that local tasks on different processors synchronize and communicate each 

other through task-independent objects (such as semaphores and eventA ags) . a class of 

synchronization and communication objects that can be accessed by local tasks on any 

processor is necessary. We call this class of objects as shared objects. When the control 

blocks of shared objects is located on the local memory of a processor. it is also ca ll ed 

local objects of the processor. Non-local shared objects are call ed global o~jects. 

When a task operates on a shared object, it is necessary for the task to access the 

TCBs of other tasks that are waiting on the object in addition to the control block of the 

object. Because a private task cannot access the TCBs of the tasks on othe r processors 

that can wa it on a shared object, a private task cannot operate on the shared object. 

Consequentl y, in order that private tasks and local tasks on a processor synchroni ze and 

communicate each other through task-independent objects, a class of synchroni zat ion 

and communication objects that can be accessed on ly from the tasks on the processor is 

necessary. We call thi s class of objects as private objects. No inter-p rocessor loc k is 

necessary to access the control blocks of the private objects (Figure 9). 

Table 8 presents the accessibility of each class of ke rnel resources from each class of 

tasks. P 1 and g in thi s table represent differen t processors in the system. and P 1-private 

(or local) task denotes a private (or local) task on processor P 1• " * I " rep resents that a 
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~ : local task 

~ : private tas k 

Figure 9: Kernel Model with Private Tasks and Objects 

accessing 
task 

P rPrivate task 

Prlocal task 

Table 8: Accessibility of Kernel Resources 

task can access another task wi th normal operations (the sys tem calls of category (a) in 

Section 2.4) but cannot access with special operations (the system ca ll s of category (b)). 

When a task tries to operate on an unaccessible resource, the kerne l repo rts an error. 

In Table 8, a P 1-private task cannot access a P1-local task with special operati ons, 

because the private task cannot access the control block of a shared object on which the 

P 1-local task may be waiting. A P 1-local task cannot access a P2-local task with spec ial 

operations, because the P1-local task cannot access the control block of a P2-private 

object on which the P2-loca1task may be waiting. 

5.3 Isolated Tasks and Interrupt Handlers 

As described in Section 5.1 , a private task is necessary to acq uire an inter-processor lock 

when it synchronizes with a local task on the same processor. Therefore, its maximum 

execution time and response time are long compared with a single processor system. 

When some deadlines are very short and the same response time with a single processor 

system is requi red, another class of tasks that never use inte r-processor locks becomes 
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Prisolated task OK OK NA NA NA NA NA NA NA NA 

Prprivate task OK OK OK OK ., NA NA NA NA NA NA 

p r local task OK *2 OK OK OK OK *1 NA NA NA NA 

Table 9 : Accessibility of Kernel Resources with Isolated Classes 

necessary. We call this class of tasks as isolated tasks. Iso lated tasks are always scheduled 

with highe r priori ties than the pri vate tasks and the local tasks on the same processo r. 

Because an isolated task cannot operate on a private object on which a local task may be 

waiting, isolated objects that can be operated on only by the iso lated tasks and the private 

tasks are necessary. An iso lated task cannot access even the task control block of a loca l 

task because a local task can be accessed from other processors, while a private task can 

access it. 

The accessibility of kernel resources with isolated classes are summarized in Table 9. 

In thi s table, "*2" rep resents that a task can access a synchronizat ion object with the 

operations of category (c) and (e) but cannot access wi th the operations of category (d). 

that is, the task cannot wait on the object. A P 1-local tas k cannot wa it on a P 1-isolated 

object, because a P 1 iso lated task, which cannot access the TCB of the local task, must be 

able to operate on the object. 

In the pJTRON3.0 spec ifi cati on, app lication programmers can wri te interrupt handlers. 

Syste m call s can be in voked fro m interrupt handlers, except fo r the operations that make 

the issuing task blocked2 Because the execution time of an interrupt hand ler is included 

in the max imum response time of iso lated tasks, in terrupt handlers should not use in ter­

processor lock and thus the same access restri ction with the isolated tasks shoul d be 

applied. When iso lated tasks are not used, it is still reasonab le that the same access 

restricti on is applied to interrupt handlers. 

A system call that di sables interrupt services is prepared in the J.L ITRON3.0 spec ifica­

tion . While a task disables interrupt se rvices, both the access restri ction on the task and 

that on an iso lated task on the same processor should be appli ed to the task. 

2This is because an interrupt handler does not have a task context and cannot be blocked. 
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5.4 Kernel Interface 

The c lass ification of kernel resou rces is reflected to the kerne l interface th rough ID 

numbers of the resources. In the J.LITRON3.0 specification, a kerne l resource is accessed 

with its ID number. We divide a resource ID into the field indicating to wh ich c lass the 

resource belongs and the field identifying the resource in the c lass. With th is app roach. 

the system call interface, especially the number of parameters, remains unchanged. 

lt is usuall y the case that the ID numbers of kerne l resources are represented wit h 

symbols in source code and that the mappi ng of the symbols to actual numbers is given 

within a definition module. With thi s guideline, when the class of a kernel resource is 

changed, only the definition module is necessary to be modified. 

6 Performance Measurements 

In thi s secti on , the effectiveness of our proposals is investigated through performance 

measurements. The measurement method is described in Section 6.1, and the measureme nt 

results, which are to see whether the four required properties of a scalab le rea l-time kerne l 

described in Section 3.3 are sati sfied or not, are presented in Section 6.2. 

In the measurements, underl yi ng inter-processor synchron izat ion is rea li zed with spin 

locks implemented with software, wh ich do not sati sfy the required property presented in 

Section 4.3. Our evaluation environment described in Sect ion !.6. I , does not sat isfy one 

of the req uired properties either. In spite of the miss ing prope rti es , the advan tage of our 

proposa ls over other methods is confirmed through the measurements. 

6.1 Measurement Method 

We have prepared five versions of real-time kernels for the evaluati on: a rea l-t ime kerne l 

using the proposed method (i.e. spin Jock with the improved preemption scheme and 

local precedence rule; titled "proposed" in the graphs in thi s secti on), one using spi n 

lock with the improved preemption scheme but without local precedence ru le (''w/o 

local precedence"), one using sp in Jock wi th the si mple preemption scheme and local 

precedence ru le ("w/o improved preemption"), one using spin lock without preemption 

and with local precedence rule ("w/o preemption") , and one usi ng the remote in vocat ion 

method ("remote in vocation"). 

We have measured the execution times of system call s and the interrupt response 

times using two syntheti c workloads. The workloads are determined so that worst-case 

situations can occur. 
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Figure 10: The First Workload 

The first workload is to evaluate the performance of a local operation, or an intra­

processor synchronization. A local task 7 2 on processor P 1 repeatedly invokes a system 

call that sends a message to a higher priority local task 7 1 on the same processor, and 

the execution times of the system call (the time since 7 2 invokes the system call until 7 1 

starts execution) are measured. The execution times when an interrupt request is serv iced 

during the execution are recorded separately. The execution times of a system call that 

sends a message to a private task 7 1 on the same processor are also measured. 

In order to interfere the local operation, local tasks on the other processors alternately 

suspend and resume the execution of lower priority tasks on P 1 at random intervals. The 

average interval is about 500 J.LS. During the measurement, periodic interrupt requests 

are also raised on each processor, and the interrupt response times are measured within 

the interrupt handler. The interrupt period is around 5 ms and is varied in 0-5% for 

each processor in order that the timing of interrupt requests for each processor should 

not be synchronized. The execution time of the interrupt handler including the time for 

invoking and returning from the handler is about 33 11s. Other external interrupt requests 

are inhibited during the measurement.3 The relation among tasks in thi s work load is 

illustrated in Figure 10. 

The second workload is to evaluate the performance of a remote operat ion. or an 

inter-processor synchronization. A local task 72 on processor P2 repea tedly invokes a 

system call that sends a message to a local task 7 1 on processor P1, and the execution 

times of the system call (the time since 72 invokes the system call until the execution of 

the system call is finished) are measured. The execution times when an interrupt request 

3Thc in ter-processor imcrrupts should not be inhibited, of course. The word .. external .. exclude.., the 
inter-processor interrupts. 
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cyclic interrupt 

Figure I I: The Second Workload 

is serv iced during the execution are recorded separately. 

In order to interfere the remote operation, a task on P 1 and tasks on the other processors 

alternately suspend and resume the execut ion of lower priority tasks on P 1 at random 

intervals. The average interval is same with the fi rst work load. During the measurement. 

periodic interrupt requests are also raised on each processor, and the interrupt response 

times are measured. The interrupt period and the execution time of the interrupt handler 

are same with the first work load. The relation among tasks in thi s workload is il lustrated 

in Figure I I. 

6.2 Measurement Results 

Figure 12 presents the 99.99%-reliable execution times of a system call that sends a 

message to a higher priority task under the first work load, when no interrupt request is 

serv iced during the execution. The number of contend ing processors (including P1) is 

changed from one (no interference) to nine (eight interfering tasks) . With the proposed 

method, the execution time is nearly constant when the number of processors is larger 

than two. Its slight increase is due to the contentions for the local bus of P 1 and for 

the shared bus. Without local precedence scheme, the execution time is prolonged as 

the number of contending processors is increased. The execution time with the remote 

in vocation method, which can not be bounded inherently, is prolonged more rapidl y. Thi s 

result demonstrates that our proposed method can practical ly satisfy the required propert y 

(A) in Section 3.3, but other methods can not. 

The execut ion time of a system call that sends a message to a pri vate task is quite 

short because no inter-processor synchronization is necessary to execute the system ca ll. 

Moreover, the number of contending processors has on ly a l ittle inAuence on the execution 
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Figure 12: Execution Times of L ocal Operat ion 

9 

time. When the number of processors is one, the execution time is about 70 ps. which 

corresponds to the execution time of the system cal l in single processor systems. The 

execution time with the remote invocation method when the number of processors is one 

is almost same with thi s, because inter-processor synchronization is also unnecessary wi th 

the remote in vocation method. 

Figure 13 presents the 99.99%-reliab le execution times of a system ca ll that sends a 

message to a local task on another processor under the second workload, when no ex ternal 

interrupt request is serviced during the execution. The number of contending processors 

(including P 1) is changed from two (an interfering task on P 1) to nine (e ight interfering 

tasks). The proposed method has worse performance than the other methods. because of 

the performance penalty imposed on non-local operat ions. This resu lt demonstrates thai 

each method sati sfies the required property (B) in Section 3.3. 

In order to show that our proposed method can satisfy the required property (C), we 

present the 99.99%-reliable interrupt response times on processor P2 under the second 

workload in Figure 14. The number of contending processors is changed from two to 

nine. Under thi s workload, P2 repeatedl y acquires the lock guarding the TCB of P 1 -local 

tasks. Un less a preemption scheme is adopted, the interrupt response time on P2 includes 

the time thai P2 is wa iting for the lock and is prolonged as the number of con tend ing 

processors is increasing. With either preemption scheme, the interrupt latency becomes 

almost independent of the number of contending processors. 

Finally, we demonstrate thai our proposed method can sati sfy the required property 
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Figure 15: Interrupt Service Overheads 

(D). Figure 15 presents the differences of the 99.99%-reliable execution times of a remote 

operation when an interrupt request is serv iced during the execution and those when no 

interrupt request is serviced, which represent the measured interrupt service overheads. 

under the second workload. With the proposed method, the interrupt service overhead 

does not depend on the number of contending processors. With the simple preemption 

scheme, the interrupt service overhead becomes long as the number of con tending 

processors is increased. 

From these measurement results, we can say that the proposed method has advantage 

over other implementation methods. The four required properties of a scalable real-time 

kernel described in Section 3.3 are not satisfied in strict, because the assumptions on the 

underlying synchron ization mechanism and hardware are not satisfied in our evaluation 

environments. However, we found that their effect is quite small and the four properties 

can be thought to be satisfied in practice, except for very hard read-t ime applications. 

7 Difficulty To Be Solved 

In this sec tion, we discuss the implementation method of a scalab le real-time kernel 

that satisfies the four required properties presented in Section 3.3 and that supports 

task-independent synchronization and communication objects, such as semaphores and 

eventflags. As the re sult, the difficulty for its realization is illustrated. Discuss ions in thi s 

section are also based on the assumptions on underlying inter-processor synchroni zat ion 
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acq u i re_lock(LockJor _Objects); 
deterimine which lock ro acquire; 

if (lock is necessary to be acq11ired) then 
acquireJock(Lock_for _Tasks); 
execllfe the system call; 
releaseJock(Lock_for _Tasks) 

else 
execute the system call 

end; 
re leaseJ ock(Lock_for_Ob jects); 

Figure 16: Acquiring Nested Spin Locks 

and hardware presented in Section 4.3 . 

7.1 Necessity of Nested Spin Locks 

When tasks whose control blocks are guarded by different lock units can wait on a 

synchroni zation object, the control block of the object should be inc luded in a differen t 

lock unit with the TCBs as described in Section 2.4. A system ca ll that ope rates on a 

task-independent synchronization object first acquires the lock guardin g its control block. 

When a task that has been waiting on the object is released from the blocked state with 

the system call , or when the task that issues the system ca ll begins to wait on the object, 

the system call also needs to acqui re the lock guarding the TCB of the ta rge t task. Note 

here that wh ich TCB is necessary to be accessed is determined after accessing the con tro l 

block of the sy nchroni zation object. Consequently, the lock guarding the control block of 

the synchronization object must be acquired at first, and after accessing the contro l block. 

the TCB of the target task must be acquired. This kind of nested locks are the obstacle 

for sati sfy ing the required properties of a scalable real-t ime kernel. Figure 16 illustrates 

a ske leton of a routine that executes a system call requ iring nested spin locks. 

On the other hand , when on ly the tasks included in a c lass can wait on a synchroni zation 

object, the control block of the object can be included in the same lock unit with the 

TCBs of the tasks. Therefore, thi s type of synchroni zation object can be realized with 

the method described in Section 4. Its typical example is the task-dependent mailbox" on 

which onl y its host task can wait. We have used thi s type of mai lbox for the performance 

measureme nts in Section 6. 

A pri vate synchron ization object can also be realized without nested sp in locks. This 

is because a pri vate object cannot be accessed from other processors, and because the 

'The task-dependent mailbox funct ion is defined in the vers ion 2.0 of the p lTRON specificati on, but 
not defined in the latest f.dTRON specification, ldTRON3.0. 
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control block of the object need not be guarded with an inter-processor lock. Another 

important feature of a private synchronization object is that the maximum execution time 

of an operation on the object does not depend on the number of contending processors. 

The reason is as follows. When a task 7 1 on processor P 1 operates on a P 1-pri vate 

synchronization object, the only inter-processo r lock that 7 1 poss ibly needs to acqui re is 

the lock guarding the TCBs of P 1-local tasks. Th is is because a P 1-private objec t can be 

waited on onl y by P 1-local tasks and P 1-p rivate tasks. The maximum time to acqu ire the 

lock guarding the TCBs of P 1- loca l tasks can be bounded independentl y of the number 

of contending processors thanks to the local precedence scheme described in Section 4.1. 

As the result, the max imum execution time of an operation on a private synchronizat ion 

object can be bounded independentl y of the number of contending processors. If tasks 

within a processor synchroni ze and communicate using private objects of the processor, 

the required property (A) in Section 3.3 can be satisfied. 

7.2 Candidate Implementation Methods 

Below, we try to satisfy the three other required properties (B), (C), and (D) presented in 

Section 3.3. The first method can satisfy the properties (B) and (C) , but cannot sat isfy 

(D). Though we propose the second method for satisfying the required property (D), it 

can not satisfy (B) instead. 

The First Method 

In order to make the required properties (B) and (C) compatib le, when an in terrupt is 

requested to a processor while it is waiting for a lock, the processor must suspe nd the 

sp in-waiting and start serv icing the interrupt request as discussed in Section 3.2. When 

the interrupt request occurs while a processor is waiting for the oute r lock (the lock 

guarding the control blocks of synchronization objects), the same preemption scheme 

with that proposed in Section 4.2 can be applied straightforwardl y. 

The problem arises when the interrupt request occurs whi le a processor is waiting 

for the inner lock (the lock guard ing the TCBs). In this case, in addition to suspend the 

spin-waiting for the inner lock, the processor must release the outer lock before servi c ing 

the interrupt request. Otherwise, the maximum duration that the processor holds the lock 

inc ludes interrupt servi ce times. The skeleton of the routine supporting preemption is 

presented in Figure 17. In this fig ure, the acquire_/ock function is assumed to return 

false, when an interrupt in requested while wa iting for the lock. After returning from 

the interrupt service, the processor must re-acquire the outer lock and re-execute the 

5 1 



retry: 
disable illlermpts; 

CD if ( •acquireJock(Lock_for_Obj ects)) then 
enable inrerrupts; 

end; 

interrupt requests are serviced here; 

goto retry 

m deterimine which lock ro acquire; 

if (lock is necessary robe acquired) then 
G) if (•acquireJock(LocLfor_Tasks)) then 

releaseJock(Lock_for_Objects); 
enable imerrupts; 

else 

end; 

interrupt requests are serviced here; 

goto retry 

execure rite system ctlfl; 

releaseJock(LocLfor _Tasks) 

execure rite system call 
end; 
releaseJock(Lock _for _Objects); 
enable imerrupts; 

Figure 17: Acquiring Nested Spin Locks with Preemption 

processings to determine which lock to be acquired (the routine between Q) and (D 

in Figure 17}, because which lock to be acquired may be changed during the interrupt 

serv ice. This re-execution overhead should be treated as included in the interrupt serv ice 

overhead. 

With this preemption scheme, the required properties (B) and (C) are satisfied. The 

methods to bound the maximum time to acquire nested spin locks with a I inear order of 

the number of contending processors will be discussed in Section I11.4. 

However, the processor must re-execute the lock acquisition routine for the outer 

lock from the beginning after it finishes interrupt services. In other words. thi s method 

corresponds to the simple preemption scheme presented in Secti on 4.2. Therefore, the 

interrupt service overhead depends on the number of contending processors and the 

required property (D) cannot be sati sfied with this method. 

The Second Method 

In order to sati sfy the required property (D), Section 4.2 has proposed the improved 

preemption scheme, with which the processor returns to its original position in the waiting 

queue instead of enqueues itse l f at the tail of the queue. We try to apply thi s pol icy to this 

case. 
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After a processo r returns from an interrupt service wh ich is requested while waiting 

fo r the inner Jock, the processor should be enqueued to the head of the wait ing queue for 

the outer Jock instead of the tail of it. With this preemption scheme, the interrupt service 

overhead can be bounded independently of the nu mber of contend ing processors. and the 

required property (D) can be sati sfi ed. 

With thi s method, however, the property (B) cannot be met with the fol lowing reason. 

Suppose the case that a processor P1 is holding the outer lock L on which two other 

processors P2 and P3 are waiting. When an interrupt is req uested on P 1 while it is wai ting 

for the inner lock, P1 suspends waiting fo r the inner Jock, passes the lock L to P2, and 

starts the interrupt service. Assume that P2 is waiti ng for the inner Jock and is sti ll 

holding L when P 1 returns fro m the interrupt service. In th is case, P 1 e nqueues itse lf at 

the head of the waiting queue, i.e. in front of P1. If an interrupt request is rai sed on P2 at 

thi s moment, it passes the Jock L to P 1• Again , P2 can return to the head of the waiting 

queue, i.e . in fro nt of P3 . Th is process can continue permanently and violates the req uired 

property (B). More prec isely, the max imum time until P3 acqu ires L can not be bounded 

without some assumptions on the occurrence of interru pt requests. 

8 Summary 

In thi s part , the required properti es of a sca lable real-time kerne l for function-d istributed 

mul tiprocessors have been summari zed in four items. and its realization methods have 

been di scussed. Before the di scuss ions on a scalable real-time kernel, we have presented 

the overview of the TRO N project, the ITRON spec ificati ons, and the ITRON-MP 

specificati on, which constitute the background of thi s study. 

In Sec ti on 2, we have presented the basic rea l-ti me kerne l model fo r fun ction­

distributed multiprocessors . We have also desc ribed the two implemen tati on approaches 

of the model, the direct access method and the remote in vocat ion method. and illustrated 

that the latte r method is not suitable for real-time system. It is one of the reasons why we 

focus on shared-memory multiprocessors in thi s study. The granularity of in ter-processor 

Jocks with the direct access method has also been di scussed. 

In a well-designed applicati on system on a function-distributed mu lti processor ar­

chitecture, many of the tasks can be processed without direct synchronizations or 

communications with other processors. Therefo re, it is advantageous that the worst-case 

timing behav ior of such tasks is dete rmined independen tl y of the other processors' acti v­

ities and the number of contending processors. The timing behavior of interrupt hand li ng 

should be also independent of the number of contending processors. In Section 3, we 
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have summarized these requirements on a scalable real-time kernel in four properties and 

pointed out two problems to reali ze the properties. 

In Section 4 , we have proposed the solutions to the problems presented in the previous 

section . With the proposed implementation method, a multiprocessor real-time kernel 

that does not support task-independent synchronization and communication objects can 

be realized with satisfying the four required properties, on the assumption that underlying 

inter-processor synchronization mechanism and hardware architecture sati>fy the required 

properties described in Section 4.3. 

In Section 5, we have proposed a new kernel model in which tasks and task ­

independent synchronization and communication objects are classified into some classes 

with different characteristics. Tasks are classified into the local tasks, the private tasks, 

and the isolated tasks of each processor. Task-independent synchroni zat ion objects are 

also classified into the shared objects, the pri vate objects, and the iso lated objects. The 

accessibi lity of each class of kernel resources from each task class has been presented in 

a table . 

In Section 6, the effectiveness of our proposals in Section 4 and 5 are demonstrated 

through performance evaluations. Though underlying inter-processor synchroni zat ion 

mechanism and hardware architecture do not satisfy the assumptions described in 

Section 4.3 , the four required properties of a scalable real-time kernel arc practically 

sati sfied with our proposals. They cannot be satisfied at the same time with othe r methods. 

Section 4 has focused on direct operations on tasks and has not considered task­

independent synchronization and communication objects. such as semaphores and event ­

flags. Because tasks belonging to different classes can wait on a task- independen t object, 

the contro l block of the object should be included in a different lock unit from the 

TCBs, and two lock un its are necessary to be acquired one by one in some sys tem 

ca ll s. Section 7 has shown the difficulty to implement task-independent sy nchroni zation 

and communication objects while satisfying all of the required properties presented in 

Section 3.3. 

With the kernel model proposed in this part, the asymmetry of the underly ing 

architecture is directly reflected to the kernel interface. Here, a criticism is expected that 

this approach put a burden on the system des igner. We consider that thi> criti cism is 

inadequate with the follow reasons. 

I . Under the current techno logies of real-time computing, it is necessary for a system 

designer to be conscious of the underly ing execution mechanism of the ;,ystem in 

desig ning a hard rea l-time system with severe timing constraints. Therefore, it is 

not a good approach that the characteristics of underlying hardware arc hitec ture is 
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hidden with an operating system kernel. 

2. When a technology is developed with which a system des igner need not be conscious 

of the underl ying hardware architecture in designing a hard rea l-time system, the 

technology should be incorporated to the tools supporting real-time system design 

such as schedulability analyzers and the CASE tool s, and not to the real-t ime kernel. 
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Spin Lock Algorithms for Scalable 
Real-Time Kernels 
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1 A Brief Survey on Spin Lock Algorithms 

An inter-processor lock is used for exclusive access to shared resources on shared-memory 

multiprocessors. When a processor accesses a shared resource, it must acquire the lock 

guarding the resource. When the lock is held by another processor, the processor must 

wait until the lock is released. In waiting for the lock, two approaches exist: busy-waiting 

and blocking. 

A spin lock is the mechani sm for realizing an inter-processor Jock with busy-waiting 

approach. When the lock is held by another processor, the processor spins until the lock 

is released. Though spin-waiting wastes processor cycles, it is useful in two situations: 

when the execution time of the critical section is so short that the expected waiting time 

is shorter than the time to block and resume the task, and when there is no other work 

to do. In implementing a multiprocessor real-time kernel , sp in Jocks are usually adopted 

because the execution time of each critical section is very short. 

1.1 Hardware Primitives and Spin Locks 

Spin Jock algorithms for shared-memory multiprocessors have been intensively studied 

under various hardware environments. 

The first spin Jock algorithm was proposed by Dijkstra in 1965 [I 0] , which assumes 

that the hardware supports only (atomic) read and (atomic) write operations. A fter some 

proposals of its improvements [30, II , 32] , an efficient algorithm in the absence of 

contention was proposed under the same hardware assumption quite recentl y f33]. M ore 

recently, the algorithm is improved with the timing-based approach, in which the relati ve 

execution speed of each processor is assumed to be bounded at any moment [35, 2, 4 1 j. 

Because these algorithms that use on ly (atomic) read and (atomic) write operations 

have quite large overhead, however, most modern shared-memory multiprocessor archi ­

tectures provide hardware support for exclusive accesses to shared resources. The most 

popular approach is to support atomic read-modify-write operations on a single word of 

shared memory. Another approach is to support spin Jocks with hardware [13, 34]. 

In thi s study, we assume that atomic read-modify-write operations on a ; ingle word 

(or aligned cont iguous words) of shared memory are supported wi th hardware. Typical 

examples of the operations are tesLand_set, fetch _and_store (swap), fetch _and_add, and 

compare_and_swap. 

Among the operations, the compare_and _s wap operation is most powerful and is 

supported by many microprocessors. With a compare_and_swap operation and a retry 

loop, the other read-modify-write operations can be emu lated. Compare_and_swap is also 
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universal in the sense that a wait-free implementation of any concurrent data object is 

possible with the operation, while the other operations listed above are not [ 16. 17]. 

Several recent high-performance microprocessors support load_! inked (or loacLancLreserve) 

and store_conditional operations [28, 61, 20]. The load_! inked operati on reads the va lue 

of a shared variable to a register. A subsequent store_conditional operation to the shared 

variable changes its va lue only if no other processor has modified the vari able since the 

last load_! inked operation. The store_conditional operat ion returns true if it succeeds to 

store a new value to the shared variable. 

With a pair of loadJinked and store_conditional operations and a retry loop. the 

other read-modify-write operations including cornpare_and_swap can be emulated [68]. 

These operat ions are also universal in principle [ 18]. In practice. there arc some 

differences between the pair of load_linked and store_conditional operations and the 

compare_and_swap operat ion [42]. Because all compare_and_swap operations used in 

this dissertation can be replaced with these operations, the results of th is study arc also 

applicab le to the processors supporting only loadJinked and store_conditional. 

1.2 Notations Used in Pseudo-Codes 

In the following sections, several pseudo-codes of spin lock algorithms are presented. In 

these pseudo-codes, the following notations are used. 

In presenting the pseudo-codes, we use our original syntax which is a mixture of 

Modula-2 programming language [88] and C programming language. We also use some 

non-ASCII characters, such as"->", "•", and"#", for readabi lity. Lines beginning with 

"II" are comments, which we borrow from C++ programmi ng language. 

The keyword shared indicates that only one instance of the variable is allocated and 

shared in the system. Other variabl es are allocated for each processor. The binary 

operator and is assumed to be the conditional-and operation, i .e. the right hand side of the 

and operator is evaluated on ly if its left hand side is true. When prioriti es are represented 

with numbers, we assume that a larger value represents a higher priority. Therefore. if 

priol > prio2 is satisfied, priol represents a higher priori ty than prio2. 

Felch_and.store reads the shared variable addressed by the first parameter (which 

must be a poi nter), returns the contents of the variab le as its value, and atomically writes 

the second parameter to the variable. Compare_and_swap is a Boolean function with 

three parameters. It first reads the shared variable addressed by the first parameter and 

compares its contents with the second parameter. If they are equal, the function writes the 

third parameter to the variable atomically and returns true. Otherwise, it returns fa lse. 1 

1Thc compare_and_swap instructions of many microprocessors store the contents of the memory to the 
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1.3 Basic Spin Lock Algorithms 

On the assumption that atomic read-modify-write operations on a si ngle word (or aligned 

cont iguous words) of shared memory are supported with hardware, we can c lassify major 

basic spi n lock algorithms into following four categories 2 ln the following , a bounded 

spin lock is defined to be a spin lock algorithm with which the maximum time to acquire 

a lock can be bounded. Obviously, a FIFO-ordered spin lock is a class of bounded spin 

locks. 

Test& Set Locks 

Each processor trying to acquire a Jock repeatedly executes a tesLand_set ope ration 

on a shared Boolean variable indicating the Jock status. When it sets the variab le, 

it succeeds to acquire the lock. It releases the lock by clearing the vari able. There 

are many variations of this algorithm in how each processor retries to execute a 

tesLand _set operation [3]. 

Because the time until a processor can acqu ire a Jock cannot be bounded with 

test&set Jocks, they are not appropriate for real-time systems. 

Ticket Locks 

Two shared counters are used in ticket Jocks: a request counter and a re lease 

counter. A processor trying to acq uire a lock increments its request counter using 

a fetch _and _add operation and obtains the old va lue of the counter, which indicates 

its turn to acq uire the Jock. Then, it waits until the release coun ter is equal to the 

va lue . To release the lock, the processor increme nts the release counter. There 

are some vari ations in how each processor retri es to read the re lease coun ter [3]. 

Obviously, processo rs can acq uire a lock in a FIFO order with ticket locks. 

FIFO-Ordered Queueing Locks 

There are two subc lasses of this category of algori thms: array-based FIFO-ordered 

queueing locks and li st-based FIFO-ordered queueing Jocks. 

In array-based FIFO-ordered queueing locks, a processor trying to acquire a lock is 

linked at the tail of an array-based waiting queue for the lock. If the waiting queue 

is empty, the processor can acqui re the lock at once. Otherwise, the processor spins 

on a memory locati on in the array-based queue on which onl y the processo r sp ins. 

third parameter in thi s case. This facility is not used in this study. 
20n the same assumption, Mell or~Crummey and Scott have classified spin lock algorithms imo a bit 

different four categories [38]. 
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The processor trying to release the lock passes the lock to the next processor in the 

waiting queue. If there are no other processors in the queue, the processor makes 

the waiting queue empty. 

An algorithm using the fetch_and_add operation [3) and another using the 

fetch_and_store operation [14) have been proposed. On cache-coherent multi­

processors, the number of shared-bus transactions is bounded independently of the 

number of processors with these algorithms, and the contention problem on the 

shared bus (or interconnection network) can be resolved. 

In list-based FIFO-ordered queueing locks, a processor trying to acqui re a lock is 

linked at the tail of a list-based waiting queue. Two famous algorithms in this 

class is the MCS lock algorithm [40, 38], which uses the fetch _and _store operat ion 

and the compare_and_swap operation, and the Craig's FIFO-ordered queueing lock 

algorithm [9, 8], which uses only the fetch_and_store operation. Another advantage 

of the Craig 's algorithm is that the required memory space is as small as O(L + P ). 

where L is the number of locks and P is the number of processors, even when spin 

locks are nested. With the MCS lock, this becomes O(L + P *D). where D is the 

maximum number of locks that a processor must acqui re at the same time. 

Other Bounded Locks 

With the spin lock algorithms proposed by Burns [5], the maximum time to acquire 

a lock can be bounded, but the lock is not passed in a FIFO order. There is also a 

trial to improve the effic iency of the algori thm [44). 

Because the MCS lock algorithm, the representative FIFO-ordered queueing lock 

algorithm, has some good features and is very simple, many extensions of the algorithm 

are proposed [39]. We also propose some extensions in the fol lowing sections. 

Pseudo-code for the MCS lock appears in Figure 18, and its behavior is illustrated in 

Figure 19. The queue node of the lock holder (the processor that holds the lock) is at the 

head of the waiting queue for the lock, and the queue nodes of the processors waiting fo r 

the lock are linked to the queue in a FIFO order. Lock points to the last node of the queue. 

When a processor begins waiting for the lock, it enqueues its queue node at the tail of the 

queue. Precisely, it initialize its queue node at fi rst (Figure 19 (a)), and swings the Lock 

to its queue node with a fetch _and_store operation (Figure 19 (b)). After the processor 

rewrites the next field of its predecessor 's queue node (Figure 19 (c)), it begins spinning 

on the locked filed of its queue node. When the lock holder releases the lock. it passes 

the lock to the next processor in the queue by assign ing Rele,1sed to the locked field of its 

queue node (Figure 19 (d)). 
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type Node= record 
next: pointer to Node; 
locked: (Re leased, Locked) 

end; 
type Lock = pointer to Node; 

shared var L: Lock; 
II Lis init ia lized to NULL. 

var 1: Node; 
var pred: pointer to Node; 

II try to acquire the lock L. 
!.nex t := NULL; 
II enqueue myself. 
pred := fetch_and _store(&L, &I); 
if pred # NULL then 

II when the queue is not empty. 
l.locked := Locked; 
pred--> next :=&I; 
II spin until the loc k is passed. 
repeat until l.locked = Released 

end; 
II 
II critical section. 
II 
II try to release the lock L. 
if I. next= NULL then 

if compare_and _swap(&L, &1, NULL) then 
II the queue becomes empty. 
goto ex it 

end; 
repeat until !.next # NULL 

end ; 
l.nex t--> locked :=Released: 

ex it : 

Figure 18: The MCS Lock 
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(b) Lock 
NULL ll 

P; p p Locked 

~NULL 
~~ -~ -
lock holder 

NULL 

(d) 

NULL 

Figure 19: Behavior of the MCS Lock 

With the MCS lock, if the queue node of each processo r (va riable I) is located 

on its local ly-accessib le shared memory, the number of shared-bus (or interconnec ti on) 

transactions is bounded even on mu ltiprocessors without a coherent cache. A simple proof 

of its correctness is presented in [27] (The original proof in [38] is quite complicated). 

1.4 Priority-Ordered Spin Locks 

It is often the case with a multiprocessor real-time system that a spin lock is de~irable to 

pass the lock in a priority order. To meet this requirement, some priorirv-ordered spin 

lock algorithms, in which processors acquire a lock in the order of their priorities. have 

been proposed3 

Markatos has extended the MCS lock to rea lize a priority-ordered spin lock [36]. The 

extended algo ri thm also uses both fetch_and_store and compare_and _swap operations. 

·
1A strict defi nition o f a priority-ordered spin lock is appeared in [36]. 
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lock holder 

Figure 20: Behavior of the Markatos' Lock 

With the Markatos' algorithm, processors trying to acquire a lock are l inked to the waiting 

queue in a FIFO order. The processor trying to release the lock searches for the highest 

pri ority processor in the waiting queue (Figure 20 (a)), moves it to the head of the queue 

(Figure 20 (b)), and passes the lock to it (Figure 20 (c)) . Therefore, the max imum 

execution time of the lock release routine depends on the number of processors in the 

system. 

The original algorithm proposed by Markatos adopts a double-linked queue structure 

for the waiting queue. We found that a single-linked queue structure is surfic ient 

to implement the algorithm. Pseudo-code for the single-linked queue version or the 

Markatos' algorithm is presented in Figure 2 1 and 22. 

Though there is a non- local spi nning (marked with #) in thi s algorithm. it is limited 

to a very short period after another processor writes the poi nter to its queue node to L (a 

successfu l execution of the fetch_and _store operat ion marked with (j)) and unti l it writes 

non-NULL value to the next field of its predecessor (marked with (%)) . and its effect is 

very limited. 

Craig has also proposed priority-ordered versions of queueing sp in locks that require 
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type Node= record 
next: pointer to Node; 
locked: (Released, Locked); 
pri o: integer 

end; 
type Lock = pointer to Node: 

shared var L: Lock; 
II Lis initiali zed to NULL. 

procedure move_to_top( lock: pointer to Lock, 
entry, pred, oldtop: pointer to ode): 

II move emry to the top of the waiting queue of Jock. 
II pred is the predecessor of enuy. 
II old!Op is the top of the queue before the move. 

var succ: pointer to Node; 
begin 

succ := entry----4 next; 
if succ = NULL then 

pred --> next :=NULL; 
if compare_and_swap(lock. entry, pred) then 

entry-->nex t := oldtop; 
return 

end; 
# repeat succ := entry--> next until succ #NULL 

end; 
pred----+next := succ; 
entry-->next := oldtop 

end; 

Figure 21: The Markatos' Algorithm (Defi nition Part) 

only the fetch _and_store operation [9 , 8]. Similarly to the M arkatos' algorithm. processors 

trying to acquire a lock are linked to the waiting queue in a FIFO order. The processor 

try ing to release the lock finds the highest priority processor and passes the lock to it. 

With the PR-lock algorithm on the other hand, processors trying tO acquire a lock 

are enqueued to the waiting queue in a priority order, and the processor trying to release 

the lock passes the lock to the first processor in the waiting queue [26]. Therefore. 

the maximum execution time of the lock acquisition routine depends on the number of 

processors in the system. This algorithm has an advantage over the previous algorithms 

that enqueueing operations, which are the most time-consuming part of the algorithm, can 

be done in parallel. 

We are also proposing a priority-ordered spi n lock named the bubble lock [57], which 

adopts another scheme for reali zing pri ority-ordered sp in locks. 
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var 1: Node; 
var top, e ntry, pred : pointer to Node; 
var hentry, hpred : pointer to Node; 

II try to acquire the lock L. 
I. next := NULL; 
II e nqueue myse lf. 

CD pred := fetciLand_store(&L, & I); 
if pred I NULL then 

II whe n the queue is not e mpty. 
I.locked := Locked; 
l.prio := my_prioriry; 

G) pred--+ next :=&I; 
repeat until I.locked = Re leased 

end; 
II 
II critical secti on. 
II 
II try to re lease the loc k L. 
top:= I. next; 
if top= NULL then 

if compare_and _swap(& L. &1, NULL) then 
II the queue becomes e mpty. 
goto ex it 

end; 
repeat top := I. next until top I NULL 

end; 
II search for the higest pri ority processor. 
hentry :=top ; 
pred :=top; 
e ntry := pred --+ ne xt ; 
while e ntry I NULL do 

if (entry--+ prio > he ntry--+ prio) then 
II whe n enuy has a hi gher pri ority that henuy. 
hen try := e ntry; 
hpred := pred 

end; 
pred :=entry; 
entry := pred --+ nex t 

end; 
II now, hentry is the hi gest pri ority processor. 
if hen try I top then 

move_to_top(&L, hentry. hpred, top) 
end; 
hentry--+ loc ked := Re leased ; 

ex it: 

Figure 22: The Markatos' Algo rithm (Main Part) 
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2 Bounded Spin Lock with Preemption 

In this section, we propose two algorithms of queueing spin lock wilil preemplion and 

demonstrate their effectiveness through performance measuremellls. The necessity of 

sp in lock with preempt ion is pointed out in Section 11.4.2 and is described in more detail 

in this section. 

In Section 2.1 , the difficulty to satisfy two important requirements on sca lable real­

time systems, predictable inter-processor synchronization and constant interrupt re>ponse. 

at the same time. Section 2.2 describes that the adoption of a preemption scheme to spi n 

locks can solve the difficulty. Two queueing spin lock algorithms supporting differelll 

preemption schemes are presented in Section 2.3 and 2.4, and their effec ti veness is 

evaluated through performance measurement in Section 2.5. Finall y, in Section 2.6. we 

poi Ill out the necessity to support two preemption scheme at the same time, and describe 

a combined algori thm. 

2.1 Spin Locks and Interrupt Latency 

When a spin lock is used for a real-time system, the maximum times to acquire and release 

a lock should be bounded. In order to bound the time until a processor acquires a lock. 

the maximum duration that each processor holds the lock must be bounded. in addition 

to bound the number of contending processors that the processor wa its for, which can be 

sat isfied with bounded spin lock algorithms. 

In order to bound the maximum duration that a processor holds the lock . the service 

time of interrupt requests should be considered. In function-distributed multiprocessor 

systems, interrupt services for external devices are requested for each processor. When 

multiple devices are connected to a processor, interrupt requests from them are usually 

asynchronous and the maximum time to service all of them becomes very long or even 

unbounded. Consequently, in order to give a practical upper bound on the du rat ion that a 

processor holds a lock, interrupt serv ices should be inhibited for that duration. 

On the other hand, fast response to external events is al so an important feature for 

rea l-time systems. Because external events are not ified to each processor as interrupt 

requests as mentioned above, interrupt mask times on each processor should be minimized 

to real ize a system with fast response. Particularly, when the scalability of the system is 

an important issue, the maximum interrupt mask time should be given independently of 

the number of processors in the system. 

Here a problem arises in deciding whether interrupts should be disabled firs t or an 

inter-processor lock should be acquired first. Figure 23 presents a method in which 

66 



acquireJock(); 
disable_interruprs; 
II 
II critica l section. 
II 
enabfe_inrerrupts; 

releaseJ ock(): 

Figure 23: Acquiring a Lock Precedes Disabling Interrupts 

disab/e_intermpts; 
acqu ireJ ock(): 
II 
II critical section. 
II 
releaseJock(); 
enab/e_imerrupts; 

Figure 24: Disabling Interrupts Precedes Acquiring a Lock 

acquiri ng a lock precedes disabling interrupts. With thi s method , interrupts arc serv iced 

while the processor holds the lock, and the condition that interrupt services shou ld be 

inhibited while a processor holds a lock is not satisfied. Figure 24 presents another method 

where acquiring a lock follows disabling interrupts. With thi s method, the interrupt mask 

time includes the time to acquire a lock and its upper bound heavil y depends on the 

number of processors. 

2.2 Spin Locks with Preemption 

In order to solve the problem described above, interrupt services must not be inhibited 

whi le a processor waits fo r an inter-processor lock and must be kept inhibited once the 

processor acqui res the lock. One of the methods to realize this princip le is the f'ollowing. 

Whi le a processor is waiting for a lock , it repeatedly probes inte rrupt requests. When 

interrupt requests are detected, it suspends waiting for the lock and serv ices the req uests. 

T he test&set locks can be extended easily with thi s method as presented in Figure 25 

[58]. The algorithm is not suitab le for real-time systems, however, because the time 

until a processor acquires a lock cannot be bounded with it. The ti cket locks and the 

FIFO-ordered queueing locks, on the other hand , cannot be extended similarl y. 

In the fo ll owing sections, we present two spin lock algorithms with which a processor 

can serv ice interrupts with short latency while satisfying the principle described above. 

The algorithms are based on the MCS lock described in Section 1.3. 
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type Lock = (Released, Locked): 

shared var L: Lock; 
II Lis initiali zed to Released 

disab/e _interntpts; 
while tesLand _set(L) = Locked do 

if interrupt_requesred then 
enabfe_inrermprs; 

else 

end 
end ; 
II 

II interrupt service. 
disable-interrupts 

delay 

II critica l section. 
II 
L := Released; 
enable-interrupts; 

Figure 25: The Test&Set Lock with Preemption 

2.3 Queueing Lock with Simple Preemption Scheme 

In all the spin lock algorithms that can give an upper bound on the time until a processor 

acquires a lock, a processor modifies orne shared variable and reserves i ts turn to acqui re 

the lock when it begins waiting for the lock. If the processor simply branches to an 

interrupt service routine whi le waiting for the lock, it cannot begin the execution of the 

cri tical section immediately when the lock is passed to the processor. and makes the 

comending processors wait wastefully until the interrupt service is finished. Therefore, 

when a processor begins to service interrupts while waiting for a lock, it must inform 

others that it is servicing interrupt requests by modifying some shared var iab le. The 

processor trying to release the lock checks if the succeeding processor is servicing 

interrupts. If the succeeding one is found to be servic ing interrupts, its turn to acqu ire the 

lock is canceled or deferred, and the lock is passed to the next processor in line. 

Pseudo-code of our first algorithm, which is an extension of the MCS lock to enable 

interrupt services whi le waiting for a lock, appears in Figure 26 and 27. In this algorithm. 

a processor informs others that it is servicing interrupts by assigning the va lue Preempted 

to the locked field of its queue node (i.e. J.locked). 

If the processor P0 that is try ing to release a lock finds that the succeed ing processor 

P 1 is servic ing interrupts, P0 dequeues P1 from the waiting queue and tries to pass the 

lock to the successor of P1• During thi s process, a transient status occurs in which P1 's 
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type Node = record 
next: pointer to Node; 
locked: (Released, Locked, Preempted, Canceled) 

end ; 
type Lock= pointer to Node; 

shared var L: Lock; 
II Lis initialized to NULL. 

var 1: Node; 
var pred, succ, sn: pointer to Node; 

II try to acquire the lock L. 
retry: 

I. nex t := NULL; 
disab/e_interrupts; 
II enqueue myself. 
pred := fetch_and_store(&L, &!); 
if pred # NULL then 

II when the queue is not empty. 
!.locked := Locked; 
pred-+next :=&I; 
while (!.locked # Released) do 

if iwerrupt_requested and 
compare_and_swap(&( I.I ocked), Locked , Preempted) then 

enab/e_intermprs; 
II interrupt service. 
disable_interruprs; 
if •compare_and_swap(&(l.locked), Preempted, Loc ked) then 

enable_intermpts; 

end 
end 

repeat while !.locked# Released; 
goto retry 

end 
end; 
II 
II critica l section. 
II 

Figure 26: The Queueing Lock with Simple Preemption Scheme (Part I ) 
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II 
II critical section. 
II 
// try to release the lock L. 
succ := !.nex t; 
if succ = NULL then 

if compare_and _swap(&L, &1, NULL) then 
II the queue becomes empty. 
goto ex it 

end; 
repeat succ := I. nex t until succ #NULL 

end; 
II try to pass the lock to the successor. 
while ~compare_and_swap(&(succ---+ locked), Locked, Released) do 

II when the successor is servicing interrupts. 
if compare_and _swap(&(succ---+ locked), Preempted, Canceled) then 

II dequeue the successor from the waiting queue. 

end 
end; 

sn := succ-+next; 
if sn = NULL then 

if compare_and _swap(&L, succ, NULL) then 
// the queue becomes empty. 
succ---+ locked :=Released; 
goto ex it 

end; 
repeat sn := succ---+ nex t until sn # NULL 

end: 
succ---+ locked :=Released; 
succ := sn 

ex it: 
enableJnterrupts; 

Figure 27: The Queueing Loc k with Simple Preemption Sche me (Part 2) 

queue node has been dequeued but the node area must not be reused because the va lue o f 

its nexr fi e ld is necessary. P0 informs P 1 of thi s transient statu s by assignin g the va lue 

C111celed to the locked field of P 1 's q ueue node. When the node becomes rew,ab le, Po 

informs P1 of it by chang ing the locked fi e ld to Released. Whe n Po fin ds that a ll the 

waiting processors a re servic ing inte rrupts, Po makes the waiting queue empty. 

When the processor th at has branched to an inte rrupt service routin e wh il e waiti ng 

fo r a lock fi ni shes the inte rrupt service, it reads the locked fi e ld of it s queue node and 

checks whether it has been dequeued (during the inte rrupt se rvice) or not. If it has been 

dequeued, it re-executes th e lock acqui sition routine from the beg inning afte r wa iting 

until its queue node area becomes reusable. Otherwise, it recovers its locked fi eld to the 

va lue Locked and res umes waiting for the lock. 
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With this algorithm, a processor waiting for a lock can acqu ire the lock in the order 

of the waiting queue if no interrupt request is rai sed on the processor. In releasing a lock, 

the algorithm also gives an upper bound on the number of search loops fo r identify ing 

to which processor the releasing processor should pass the lock, unless interrupt serv ices 

start and fi nish repeatedly on the waiting processors 4 As interrupt serv ices are inhibited 

while a processor holds a lock, no interrupt service time is included in the lock holding 

time. Consequently, both the time until a processor acquires a lock and the t ime until it 

rel eases the lock can be bounded with this algorithm under the above conditi ons. 

Because a processor repeatedly probes interrupt requests while waiting for a lock. the 

upper bound of the interrupt mask time in the lock acquisition routine can be determ ined 

independently of the number of processors. On the other hand, the interrupt mask time 

in the lock release routine depends on the number of processors in st ri ct, because the 

number of search loops for identify ing the processor to which to pass the lock depends 

on the number of processors. However, the problem is not severe in prac tice. because the 

process ing time of one loop is very short. 

The proofs of the important features of this algorithm. mutual exclusion and deadlock 

freedom when a certain condition is laid on interrupt occu rrence, are presented in 

Appendix B. 

Wisniewski et al. have proposed a simil ar algorithm with ours from a different 

motivation [89] 5 The algorithm by Craig can also support the same preempt ion scheme. 

With this algorithm, when a processor services interrupts while waiting for a lock and 

is dequeued from the waiting queue, the processor must re-execute the lock acquis ition 

routine from the beginning. Because the processor enqueues itself at the end of the 

waiting queue, the max imum number of cri ti ca l sections executed by other processors 

that the processor must wait for is increased. When the schedulabi lity of the sys tem is 

analyzed, thi s re-execution overhead should be added to the interrupt service time and 

should be included in the interrupt serv ice overhead described in Section I 1.3.2. 

4 A processor can be visited twice in the search loops in the fo llowing case. Immediately af!Cr the 
processor is dequeued from the waiting queue, it finishes the interrupt service and links itself to the end 

of the queue . I f th is case repeatedly occurs umil the processor to which to pass the lock is idcnt it-icd. the 
number of the loops cannot be not bounded. This case rarely occurs. But, when thi s problem cannot be 
ignored (when the number of processors is large and when interrupts are req uested frequentl y. in ge neral ). 

the algorithm should be modified so that the assignment of Rele,1scd to the locked field of dequcued 
processors is delayed until the processor to wh ich to pass the lock is determined. 

5Their algorithm has a problem that the transient status in which a queue node is not reusable is not 
considered, thus the algorithm possibly falls into a deadlock. We have pointed out the problem to them. 
and they have acknowledged it [3 1] . 
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2.4 Queueing Lock with Improved Preemption Scheme 

With our first algorithm, the interrupt serv ice overhead depends on the number of 

contendi ng processors, because a processor possibly has tore-execute the lock acquisit ion 

routine from the beginning after it services an interrupt request. This is problematic when 

the algorithm is used for the implementation of a sca lable real -time kernel as described in 

Section 11.4.2. 

In order to solve this problem, we propose an improved preemption scheme which 

avoids dequeueing a processor from the waiting queue while serv icing imerrupts. Specif­

ically, the processor Po try ing to release a lock searches for the first proces;or P2 that is 

not servicing interrupts in the waiting queue, moves P2 to the top of the queue (with the 

same method used in the Markatos' priority-ordered queueing spin lock). and passes the 

lock to P2 . With this algorithm, when a processor fi nishes interrupt services, it resumes 

waiting for the lock in its original posi tion. Therefore, the interrupt service overhead, 

which must be added to the interrupt service time in schedulability analys is, is minimized. 

When al l processors in the waiting queue are serv icing interrupts, the difficulty occurs 

that there is no processor to which to pass the lock and that the wai ting queue should not 

be made empty. To handle this situation, a new Aag variable called the global lock flag 

is introduced. The global lock Aag indicates that the lock is released but that the wa iting 

queue is not empty. If the processor trying to release the lock finds that al l processors in 

the queue are servi ci ng interrupts, it sets the global lock flag. A processor returning from 

interrupt services tries to acquire the global lock with the same method wi th test&set 

locks. I f it succeeds in acqu iring the global lock, it moves itself to the top of the wa it ing 

queue. Because the processor needs to know the top processor in the queue to move 

itself to the top, the processor releas ing the global lock must pass the information in some 

shared vari able. It is also necessary for a processor to check the global lock nag once, 

after it links itself at the end of the queue, because it is possible that all the processors in 

the queue be servicing interrupts and the global lock be set. 

Pseudo-code for the improved algorithm appears in Figure 28, 29, and 30. In thi s 

pseudo-code, a double-linked queue structure is adopted because a proce;sor needs to 

know is predecessor when it succeeds to acquire the global lock. The glock field of L 

serves both as the global lock fl ag and as the variable to pass the top processor of the 

waiting queue. Exponential back off scheme is adopted to get the global lock in thi s code 

to reduce the number of shared-bus transaction s. Two constant parameters ct and .'1 ;hould 

be tuned for each target hardware and application. 

With this preemption scheme, a transient status also occurs during the lock release 

72 



type Node= record 
next: pointer to Node; 
prev: pointer to Node; 
locked: (Released, Locked, Preempted, Dequeue ing) 

end; 
type Lock = record 

last: pointer to Node; 
glock: pointer to Node 

end ; 

shared var L: Loc k; 
II Llast and Lglock are initiali zed to NULL. 

procedure move_to_top(lock: pointer to Lock, 
entry, pred, oldtop: pointer to Node); 

II move enliy to the top of the waiting queue of lock. 
II pred is the predecessor of en tty. 
II oldtop is the top of the queue before the move. 

var succ: pointer to Node; 
begin 

succ := entry-... nex t; 
if succ = NULL then 

II when succ is at the tail of the waiting queue. 
pred-... next :=NULL; 
if compare..and_swap(&(lock-... last), entry, pred) then 

entry-... next := oldtop; 
return 

end; 
repeat succ :=entry-... nex t until succ #NULL 

end; 
pred-+ nex t := succ; 
succ-... prev := pred; 
entry-... next := oldtop 

end; 

Figure 28: The Queueing Lock with [m proved Preemptio n Scheme (Part I) 
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~-------------------------------------------------~ .... 
var 1: Node: 
var pred, succ, top: pointer to Node; 
var interval, i: integer; 

II try to acquire !he lock L. 
!.next := NU LL; 
disab/e_interruprs; 
II enqueue myself. 
pred := fetch _and_store(&(L.Iasl), &I); 
if pred = NULL then 

goto acquired 
end; 
II when the queue is not empty. 
I. prev := pred; 
l.l ocked :=Locked; 
pred--> nexl := &I; 
i := I ; II check the global lock once. 
interval := oo; II never expires. 
while (I.Iocked # Released) do 

if intermpt_requested and 
compare_and_swap(&( J.I ocked}, Locked, Preempted) then 

enab/e_interruprs; 
II imenup! service. 
disable_imerrupts; 
!.locked :=Locked; 
i :=I ; 
interval:= a 

end; 
i :=i- 1; 
if i = 0 then 

II check the g lobal lock and try to acq uire it if it is set. 
top := L.g loc k; 
if top# NULL and compare__and_swap(&(L.glock), top, NULL) then 

II when succeed 10 acquire the global lock. 
if top # &I then 

move_to_top(&L, &I, l.prev, top); 
end; 
!.locked :=Released 
goto acq uired 

end; 
i := imerval ; 
interva l := interval x {3 

end 
end; 

acquired: 
II 
II critical section. 
II 

Figure 29: The Queueing Lock with Improved Preempt ion Scheme (Part 2) 
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II 
II critical secti on. 
II 
II try to release the lock L. 
succ := I.next; 
if succ = NULL then 

if compare_and _swap(&( L.Ias t), &!, NULL) then 
II the queue becomes empty. 
goto ex it 

end; 
repeat succ :=!.next until succ #NULL 

end; 
II try to pass the lock to the successor. 
if compare_and _swap(&(succ-> locked), Locked, Re leased) then 

goto ex it 
end; 
top := succ; 
repeat 

pred := succ; 
succ := pred-> next; 
if succ = ULL then 

II set the globa l loc k. 
L. glock := top; 
II check if prcd is reall y the last processor. 
if L.las t = pred then 

goto ex it 
end; 
II try to withdraw the global lock. 
if ~compare_and_swap(&(L.g lock ), top, NULL) then 

goto ex it 
end; 
repeat succ := pred-> nex t until succ #NULL 

end; 
until compare_and _swap(&(succ-> locked). Locked, Deq ueueing); 
II now, the lock is passed to succ. 
move_to_top(& L, succ, pred, top); 
succ-> loc ked :=Released; 

ex it : 

enab/e . .interrupts; 

Figure 30: The Queueing Lock with Improved Preemption Scheme (Part 3) 
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for i := I to NoLoop do 
CD acquire_lock....and..disab/e_intel-ruprs; 

II 
II critica l section. 
II 
release_lock; 

Q) enab/e_imerntprs; 
random _t/elay 

end; 

Figure 3 I: Measurement Program Skeleton 

process. The time window is after the processor P0 trying to release determine; to which 

processor to pass the lock (we denote the processor as P2), and before P0 passes the 

lock by assigning Released to the locked field of P2 's queue node. When an interrupt is 

requested o n P2 during this time window, the interrupt request should not be se rviced. 

Otherwise, the lock may be passed to P2 while it is servicing the interrupt. In thi s time 

window, P2 's queue node shou ld not be reused either. In our algorithm, P0 informs P2 of 

this time window by assigning Dequeueing to the locked fie ld of P2 . 

2.5 Performance Evaluation 

The effectiveness of the two spin lock algorithms presented in the previous sections (ca lled 

QLIP I and QLIP2, respectively, below) are examined through perfonnance mea;urement. 

The performance of the algorithms is compared with the MCS lock without inhibiting 

interrupts (QL/ei). the method presented in Figure 24 with the MCS lock (QL/d i). and the 

test&set lock with preemption presented in Figure 25 (T&SIP). In T&SIP, the interva ls 

between successive tesLand_set operations (delay in Figure 25) are made constant (the 

constant back off scheme), because it is usually better than the exponential back off scheme 

in real-time systems. 

Measurement Method 

Each processor executes the code presented in Figure 31 while periodic interrupt requests 

are raised on the processor. The execution time of a critical region (the reg ion between 

Q) and (2) in Figure 31) is measured for each execution, and its distributions when the 

processor serv ices no interrupt request during the region and when it serv ices an interrupt 

are collected. The interrupt latency is also measured for each interrupt serv ice and its 

distribution is obtained. 

lnside the critica l section, a processor accesses the shared bus some number of times 
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for making the effect of shared-bus con tention expli cit and waits for a while using an 

empty loop. Without spin locks, the execution time of the cri tical region is about 40 11> 

including some overhead for measuring the execution time of the region. In order to 

change timing conditions, each processor waits for a random time before it re-ente rs the 

critical region (randonulelay in Figure 31 ). The average time of the random delay is 

about 40 J.LS including some overhead for recordi ng the execution time of the c rit ical 

reg ion. 

Empty loops are also included in the interrupt handler in addition to the routine for 

the measure ment of the interrupt latency time. The total execution time of the interrupt 

handler is about 80 J.LS. The period of interrupt requests is about 5 ms. The exact length 

of the period is varied in 0-2% for each processor in order that the timing o f interrupt 

requests for each processor shou ld not be synchroni zed. Other interrupt requests are 

masked during the measurement. 

Evaluation Results 

Figure 32 presents the 99.99%-re li ab le execution times of the criti cal reg ion (when no 

interrupt is serviced on the processor during the region) as the number of processors is 

increased from one to eight. With QLIP I and QLIP2, the execution time of the critica l 

region increases linearly with the number of processors , and the algorithms are fo und 

to be scalable. QL/ei exhibits poore r performance because processors se rvice inte rrupt 

requests during the critical region. In Figure 33, the relation between the executi on ti me 

of the interrupt handler and that of the critical reg ion is presented, when four processors 

are executing spin locks. As the execution time of the interrupt handler becomes longe r. 

the performance of QL/ei becomes even worse (Figure 33) . With T&S/P, the execution 

time rapidl y increases when the number of processor becomes large, and the algorithm 

does not scale well. 

In Figure 34, the interrupt latency time is almost independent of the number of 

processors with QL!P I and QLIP2 . With QL!di on the contrary, the interrupt latency 

becomes long as the number of processors increases. With T &S/P, the inte rrupt latency 

slowly increases because the execution time of the code inside the criti cal section becomes 

longer due to the effect of shared-bus conte ntion . 

From these observations , it is demonstrated that QLIP I and QL!P2 can give a practical 

upper bound on the time to acquire and release an interprocessor lock whil e achiev ing fast 

response to interrupt requests. The other algorithms cannot satisfy these two requirements 

at the same time. 
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Figure 34: 99.99%-Reli able Inte rrupt Latency Times 

In order to examine the difference of QL/P2 and QL/P I, we present the the 99.99%­

reli able execution times of the critical region when an interrupt request is serv iced whi le 

waiting fo r the lock in Figure 35. This fi gure demonstrates that the re-execution ove rhead 

after servici ng an interrupt request is small er wi th QL/P2 than QLIPI. espec ia ll y when 

the number of processors is large. 

Next, in order to evaluate the overhead of the two algori thms, we compare the ave rage 

execution times of the critical region (when no interrupt is serv iced) with QL!P I, QL/P2, 

and T&S/P. In Figure 36, its average execution time with QL/P I or Q L/P2 is about I 0% 

longe r than that with T&S/P, when the number of processors is small. When the nu mber 

o f processors becomes large, however, T &S/P exhibits poorer perfo rmance. Th is is due 

to the e ffect of shared-bus contention. 

Finally, in order to check the adequacy of our evaluation metric, the 99.99%-rel iab le 

execution times of the criti cal reg ion are compared with 99.9%- and 99.999%-re liable 

executi on times and the worst execution times appeared du ring our measurement. As the 

result, though the absolute length of the execution ti mes are di ffe rent, the same evaluation 

result with above can be deri ved from each measurement data. 

2.6 Combination of the Two Preemption Schemes 

In Secti on 2.4, a prob lem of the fi rst algorithm that the interrupt service overhead depends 

on the number of processors is pointed out, assuming that the processor conti nues the tri al 
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Figure 37 : State Transition of the Combined A lgorithm 

to acquire the lock after interrupt services are fin ished. When the algorith ms are app lied 

to real-time kernels, however, the interrupt service routine can request the preempted 

task to term inate. If the preempted task is terminated. the tria l to acq ui re the lock is not 

conti nued. 

In our improved preemption scheme, even when a processor ceases waiting for the 

lock, its queue node remains in the wa iting queue as a garbage. The improved scheme 

suffers a larger overhead than the simple scheme, because the processor try ing to re lease 

the lock must search the garbage queue node every time. Consequently, when the 

preempted task is terminated, its queue node should be removed from the waiting queue. 

In other words, the first preemption scheme should be adopted in thi s case. 

For i ts rea l ization, a combination of the two preemption scheme is necessary. The 

state of a queue node is necessary to be ex tended to distinguish temporary preemption 

and long-term preemption, and the processor try ing to release the lock should handle 

them di f ferently. The state transition of the combined algorithm is presented in Figu re 37. 

In thi s fi gure, " P2" represents temporary preemption (i .e. preemption in the improved 

scheme) and " PI " represents long-term preemption (i .e. preempti on in the simple scheme). 

"C" des ignates the transient status introduced in the algori thm with the simple preempt ion 

scheme in which a queue node is not reusable, and "D" designates another trans ient status 

that is necessary in the algorithm with the improved scheme. 
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3 Spin Lock with Local Precedence 

In this section, we present an efficient algorithm of spin lock with local precedence ba>ed 

on the MCS lock algorithm described in Section 1.3. The necessi ty of spin lock with 

local precedence is pointed out in Section Il.4. 1. 

It is obvious that a spin lock with local precedence can be realized with a priority­

ordered spin lock algorithm. Specifically, a processor acquires its local lock wi th a higher 

priority and other locks with a lower one. Only two priority levels are necessary to be 

used. As described in Section 1.4, the maximum execution time of the lock acq ui ;, iti on 

rou ti ne or release routine depends on the number of contending processors with every 

priority-ordered spin lock algorithm. As the result, the overhead of a priority-ordered 

spin lock is generally quite large. 

By making use of the fact that a spin lock with local precedence is much simpler than 

a priority-ordered spin lock, we can devise a more efficient algorithm of spin lock w ith 

local precedence. A spin lock with local precedence is much simpler in the following two 

points: ( I ) there are on ly two priority levels required (as described above). and (2) only 

one processor (i.e. its host processor) has the higher priority for each lock. Therefore. we 

can ex tend the MCS lock algorithm to support local precedence by preparing a variab le 

indicating the queue node of the prioriti zed processor. When the prioritized proces>Or 

enqueues itself to the waiting queue, it updates the variable to point to it self. The 

processor Po trying to re lease the lock can find the prioritized processor P" using the 

variable without searching in the waiting queue. Then, Po moves P2 to the top of the 

queue (with the same method adopted in the Markatos· priority-ordered queueing sp in 

lock), and passes the lock to P2. A double-linked queue structure is necessary because P0 

needs to know the predecessor of P2 without searching. 

Pseudo-code for our algorithm based on the MCS lock is presented in Fig. 38 and 

39. In thi s pseudo-code, the prec field of the Lock record is the variable indicating the 

prioritized processor. 

4 Scalability of Nested Spin Locks 

For real-time systems, two kind of spin locks are used depending on the timing 

requirements on them: ( I ) bounded spin locks, in which the maximum times that 

processors acquire and relea e a lock are bounded, and (2) priority-ordered spin locks. in 

which processors acqui re a lock in the order of their priorities [9]. 

In thi s section, the scalabil ity issue of bounded spin locks is discussed. Because worst-
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type Node = record 
next: pointer to Node; 
prev: pointer to Node; 
locked: (Released, Locked) 

end; 
type Lock = record 

last: pointer to Node; 
prec: pointer to Node 

end; 

shared var L: Lock ; 
II L.last and L.prec are initialized to NULL. 

procedure move_to_top(lock: pointer to Lock, 
emry, pred, oldtop: pointer to Node): 

II move entry to the top of the waiting queue of lock. 
II pred is the predecessor of entry. 

II oldtop is the top of the queue before the move. 
var succ: pointer to Node; 

begin 
succ := entry----+ nex t; 
if succ = NULL then 

pred--+nex t := NULL; 
if compare_and_swap(&(lock--+ last). emry. pred) then 

entry--+ next := oldtop; 
return 

end; 
repeat succ :=entry--+ nex t until succ # ULL 

end; 
pred --+ next := succ; 
succ--+prev := pred; 
emry--+next := oldtop 

end; 

Figure 38: The Spin Lock with Local Precedence (Part I ) 

case behavior has the primary importance in real-time systems, we focus on sca lability 

of the maximum execution times of critical sections guarded by spin locks. under the 

assumption that the maximum processing time within a critica l section is bounded. 

In general, shared resources that must be accessed exclusively by a processor are 

divided into some lock units in order to improve concurrency. When a processor accesses 

some shared resources included in different lock units, it must acquire multiple locks one 

by one. If FIFO spin locks are used for this kind of nested spin locks, the maximum 

executi on times of a whole cri ti cal section become O(nm), where n is the number of 

con tendi ng processors and m is the maximum nesting level of locks. The strict definition 

of the maxi mum nesti ng level is presented in Section 4. 1. 
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var 1: Node; 
var top, pred: pointer to Node; 

II try to acquire the lock L. 
I. nex t :=NULL; 
II enqueue myself. 
pred := fetch_and_store(&(L.J ast), &!); 
ifpred # NULL then 

II when the queue is not empty. 
I.prev := pred; 
l.l ocked := Locked; 
pred-> next := &I; 
if L isJoca!Jo.JIIe then 

II direct the precedence indicator to me. 
L.prec :=&I 

end; 
repeat until I. locked = Re leased ; 
if L isJoca/_to.JIIe then 

II clear the precedence indicator. 
L.prec :=NULL 

end 
end; 
II 
II critical section. 
II 
II try to release the lock L. 
top := I. next; 
if top= NULL then 

if compare_and _swap(&L, &!, NULL) then 
II the queue becomes empty. 
goto ex it 

end; 
repeat top := I. next until top # NULL 

end; 
II check rhe precedence indicator. 
if Lis.Jwt_/oca!Jo.JIIe and L.prec #NULL then 

II the loc k is passed to L.prec. 
if L.prec # top then 

move_to_top(&L, L.prec, L. prec-> prev, top) 
end; 
L.prec-> locked :=Released 

else 
II the lock is passed to top. 

top-> locked := Released 
end; 

exit: 

Figure 39: The Spin Loc k with Loca l Precede nce (Pa rt 2) 
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acquire_lock(£1); 

acquireJock(£2) ; 

II critica l section. 
re lease_lock(£2); 

release_lock(£1); 

routine (a) 

acquire_lock(£2): 

acqu ire_lock(£ 1 ): 

II critica l secti on. 
releaseJock(L1) ; 

release_lock(£ 1 ); 

routine (b) 

Figure 40: Example of Nested Locks 

It is obvious that this simple method is not acceptable from the viewpoim of real-time 

sca lability. In this section, we propose a method in which this order can be reduced to 

O(n · em), which is acceptable when m can be kept small. 

In Section 4.1 , assumptions and notations adopted in this section are described. An 

O(n) algorithm when the maximum nesting level is two is proposed in Section 4.2 

and its effectiveness is evaluated through performance measurements in Section 4.3. In 

Section 4.4, an O(n · em) algorithm for general case is di scussed. 

4.1 Assumptions and Notations 

A system consists of n processors supporting atomic read-modify-write operations. Each 

processor repeatedly executes critical sections guarded by one or more locks. The 

maximum execution time of a critical section except for the waiting time for the locks is 

assumed to be bounded. 

In order to avoid deadlocks, a partial order ~ is defined on the set of locks in the 

system. A processor must acquire locks following the order. We assume that if and onl y 

if processors possibly acquire a lock Lj while holding a lock L,, an order L, ~ L
1 

ex ists. 

The nesting level .\; is defined for each lock L; as follows. If L; is a minimal element 

(i.e. there is no Lj such that L; ~ Lj) . .\; is defined to be one. Otherwise . .\, is defined 

to be max{.\j I L; ~ Lj } + I. We call max{.\;} as the maximum nesting level of locks 

in the system. Consider the example that processors in the system execute one of the 

two routines presented in Figure 40. In this example, .\1 = I , .\2 = 2, .\1 = 3. and the 

maximum nesting level in the system is three. 

A lock whose nesting level is i is denoted as L; below. When there are some locks 

with the same nesting level , they are represented as L;. L;. L;', · · ·. 
We also assume that the two-phase protocol is adopted on each processor. In other 

words, once a processor releases a lock, it cannot acquire any lock until it releases all the 

locks it is holding. This assumption is adopted in order to simplify the evalu ati on of the 

maximum number of the critical sections that a processor must wait for. The estimation 

of its order is also valid without the assumption. 
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acquireJ ock(£ 1 ); 

II crit ical sect ion. 
re leaseJock(L 1) ; 

routine (a) 

acquire_iock(£ 2); 

II critical section. 
releaseJock(£2); 

routine (b) 

acquireJock(L2 ); 

acquire_ioc k(L 1 ): 

II critical section. 
releaseJ oc k(L 1 ): 

releaseJ ock(L, ): 

routine (c) 

Figure 41: Nest ing in Two Levels 

acquire_iock(L~ ) ; 

II critica l section. 
release_iock(L~); 

routine {d) 

acquire_lock ( L~ ); 

acquire_iock(£ 1 ); 

II critical secti on. 
release_lock(£ 1 ) : 

releaseJock(L~); 

routine (e) 

Figure 42: Nesting in Two Levels (cont. ) 

4.2 Nesting in Two Levels 

In this section, we focus on nested sp in lock algorithms when the maximum nesting level 

is two. We regard them as important because the implementation method of a real-time 

kernel described in Section II.2.4 can be realized with the maximum nesting level being 

two. 

Problems of Simple Methods 

As mentioned before, if FIFO spi n locks are simply applied to the system in which the 

maximum nesting level of locks is two, the maximum execution times of a whole crit ica l 

section become O(n2
) , where n is the number of contending processors. 

As an example, consider the case that each processor in the system repeatedly executes 

one of the three routines presented in Figure 41 in random order. Below, we illustrate the 

case in which the number of the criti ca l sections that a processor P 1 must wait for until it 

fi nishes an execution of routine (c) is maximized. Assume that when P 1 tries to acquire 

£ 2 in (c), another processor P2 has just acqu ired the lock and all the other processors 

P3 , · · · , P,. are waiting for the lock in rou tine (c) in this order (Figure 43 (a)). When P2 

releases the lock, P3 succeeds to acqu ire the lock. Just before P3 tries to acquire L 1, P2 

can acquire the lock in routine (a). In this case, P3 must wai t until P2 fini shes the criti cal 

section and releases £ 1, and P 1 must wait for two crit ical sect ions executed by P2 and 

P.1 (Figure 43 (b)). Similarly, when Pi- I releases £ 2, Pi succeeds to acqu ire the lock. 

Before Pi tri es to acquire £ 1, P2, • · · , Pi- l can wait for the lock in (a). P, must wai t 

for the executions of i - 2 critical sections until it succeeds to acquire £ 1 • and P 1 must 
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(a)L~ 
2 p2 p.1 h _ ~ · 

- · ·--··---~NULL 

locklwld~ 

L,~2 ..... / 
; ..........__. NULL 
· ........ ) 

lock holder 

(b) L2~'2_ : _h - ~ -
l.±l::J-···~NULL 

lock hold~ 

L,~:J ... 
: ......;....- NULL 
......... .! 

lock holder 

(c) L2~ I}_ "-

B····· ····~NULL 
lock hold~ 

LI~ f'_z_ ;.u. .. 
G·· ·· ·· · ··-:_~NULL 

lock holder 

(d)L2~ P, 

NULL 

lock hol~ 

LI~ f'_z_ P:i__ P., ~--· 
G-G-·········-L3-' .. ~NULL 

lock holder 

Figure 43: Worst-Case Scenario of the Simple Method 
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wait fori- I critical sections until P; fini shes routine (c) (Figure 43 (c)). Finall y. after 

P 1 succeeds to acquire L 2, P 1 must wait for n- I cri tical sect ions before it acqui re> L 1 

(Figure 43 (d)). A s a result, the maximum number of the critical sect ions that a processor 

P 1 must wait for is I + 2 + · · · + (n- I)+ (n- I)= n(n + 1)/2 - I, thus O (n2
) . 

Because the maximum processing time within a critical section has an upper bound. the 

order of the maximum execution times of routine (c) is O(n2). That of routine (b) is also 

O(n2), while that of routine (a) is O(n) . 

A simple method to improve this order is that precedence is given to the processor 

holding an outer lock. In case of Figure 41, the processor that is waiting fo r L 1 in routine 

(c) can acquire the lock with higher priority than other processors. Because the maxi mum 

number of the critical sections that a processor must wait for while try ing to acquire L 1 in 

(c) is reduced to one with this method, the maximum execution times of both (b) and (c) 

are improved to O(n) . The maximum execution times of routine (a) remain to be O(n ). 

because a processor never waits for L 1 in (c) while another processor holds L 1 in (c). and 

because the lock is passed to a processor executing (a) when the processor in (c) releases 

the lock. 

However, this method has a problem when each processor can also execute the two 

routines presented in Figure 42. In thi s case, a processor executing routine (a) can starve 

while waiting for L 1. Specifically, a processor trying to acquire L 1 in (a) can be passed 

by a processor executing (c) and a processor executing (e) by turns, and the max imum 

time until it succeeds to acquire L 1 cannot be determined. 

Another method is that a processor trying to acquire nested locks reserves it !> turn to 

acquire the inner lock by enqueueing itself to the wait queue of the lock. when it begins 

waiting for the outermost lock. This method, however, cannot be applied when wh ich 

inner lock to be acquired is determined after access ing the shared resource guarded by the 

outer lock, which is the case with the implementation of a real-time kernel described in 

Section 7.2. 

Proposed Method 

To solve the problem described above, we propose the following algorithm, which can 

make the maximum execution times of each routine O(n). 

When a processor begins waiting for the outermost lock, it obtai ns a time stamp 

by reading a real-time clock. Instead of using FIFO spin locks, priority-ordered spin 

locks are used with the time stamps as the priorities (an earlier time stamp has a higher 

priority) .6 With this method, the processor that begins waiting for the outermost lock 

6The fact that a FIFO-ordered lock can be realized wi th a pri ority-ordered lock using time ~tamp~ a) 
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earlier can acquire each lock with higher precedence. ln other words, the FIFO policy is 

applied to the whole critical sect ion. 

This method can reduce the order of the maximum execution times of each routine 

to O(n) with the following reason . At first, the maximum number of the higher priority 

critical sections (the critical sections executed by the processors with higher priorities 

than P 1) that a processor P 1 must wait for is n- I. This is because on ly the processor; 

obtaining time stamps before P 1 can acquire locks with precedence over P 1• and because 

each processor can execute only one critical sect ion with a time stamp. P 1 must al so wait 

for some lower priority critical sections. When a processor tries to acquire an inner lock. 

another processor with a lower priority possibly holds the lock . This is a kind of priority 

inversion and occurs at most once whenever a processor begins waiting for an inner lock . 

Note that this priority inversion does not occur in acquiring an outer lock. 

When a processor P2 with a higher priority than P 1 acquires the outer lock on which 

P 1 is waiting, and when g tries to acquire an inner lock, P2 must poss ibly wait for a 

critical section executed by a lower priority processor P3 due to priority in ve rsion. In this 

case, the critical section executed by P3 should be counted in the number of the c riti ca l 

sections that P 1 must wait for. As a result, an upper bound on the number of the critical 

sections that P 1 must wait for is 2(n- I)+ I = 2n- I, thus the order of the maximum 

execution times of routine (c) is O(n) . Those of the other routines are also 0 (11) . 

More precisely, the number of the critical sections that P 1 must wait for in routine 

(c) in Figure 41 becomes maximum in the following case. Assume that when P 1 tries to 

acquire L 2 in (c), another processor P 2 holds the lock and all the other processors P 1, 

Pn are waiting for the lock in routine (c) in this order. When P2 releases the lock , P1 

succeeds to acquire the lock. Just before P3 tries to acquire L 1, P 2 can acquire the lock 

in routine (a). In this case, P1 must wait until P2 releases L 1, and P 1 must wait for two 

critical sections. Similarly, when Pi succeeds to acquire L2 and tries to acquire L 1 • one 

of P2 , · · ·, P ,_ 1 possibly holds L 1, and P 1 must wait for two critical sections. Finally. 

after P 1 succeeds to acquire £2• it possibly needs to wait for a crit ical secti on be fore it 

acquires L 1. As a result, the maximum number of the critical sections that ? 1 must wait 

for is I + 2 + · · · + 2 + I = 2n - 2. The result of this exact estimation is smalle r than 

the previous estimation, because the fact that P2 does not suffer any priority inversions is 

counted in . 

In implementing thi s method , following optimizations are possible. 

I. In acquiring an outer lock (a lock whose nesting level is two), a FIFO sp in lock 

algorithm can be used instead of a priority-ordered one. 

pri orities is pointed out by Craig [9] . 
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2. A sequence number that a processor begins waiting for the outermost lock. wh ich 

can be implemented with fetch_and_increment operation, can be used a' the time 

stamp instead of an absolute time read from a real-time clock . 

4.3 Performance Evaluation 

In this sect ion, the effectiveness of the algorithm proposed in the previous section (called 

TF, in this section) is examined through performance evaluation. Its performance i; 

compared with the method that FIFO spin locks are simply used for all locks (called SF) 

and the method that precedence is given to the processor holding an outer lock (called PI ). 

Evaluation Method 

We have adopted the MCS lock algorithm [38] for the HFO spin locks and the single­

linked queue version of the Markatos' algorithm presented in Figure 21 and 22 for 

priority-ordered sp in locks. The FIFO spin lock with precedence, which is necessary 

to implement PI, is realized using the single-linked queue version of the M arkatos' 

algorithm. In implementing TF, we have used a FLFO spin lock algorithm for the ou ter 

locks and a priority-ordered one for the inner locks. We have also used a sequence number 

that a processor begins waiting for the outermost lock instead of a real-time clock. 

Evaluation Results 

At first, processors in the system repeatedly execute one of the three routines presented in 

Figure 41 in random order. The probability that a processor executes routine (a) is made 

four times larger that each of other routines. A processor accesses the shared bus 'everal 

number of times and waits for a while using empty loops inside the critical sec tion. In 

case of routine (c), shared bus accesses and an empty loop are also inserted between 

two acquire_iock operations. Without spi n locks (and the routine for obtaining the 

sequence number in case of TF), the execut ion time of each critical section is about 30 '''· 

including the overhead for measuring execution times. As an example, pseudo-code of 

the measurement routines with TF are presented in Figure 44. 

Figure 45 presents the 99.99%-reliable execut ion times of routine (c). When the 

number of processors is large, the execution times of routine (c) is quite slower w ith 

the simplest method (SF) than our proposed method (TF). The execution times with TF 

increase a little more than O(n). This is because the lock release times in the Markatos' 

lock become long as the number of processors is increased. Thi s problem is ex pected 
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tO := read _currenuime(); 
prio := geL sequence_number(); 
acquireJock_markatos(£ 1, prio); 
II some sha red bus accesses 

II and tll'o empty loop;· (abont 22 /tsec). 

releaseJock_markatos(£ 1 ) ; 

t l := read _currenuime(); 
II measuremellf result is (t I - W). 

routine (a) 

tO := read_currenuime() ; 
prio := geL sequence_number(); 
acquireJock_mcs(£ 2) ; 

II some shared bus accesses 

II and an empty loop (about II Jl Sec). 

acquire_lock_markatos(£ 1, prio); 
II some shared bus accesses 

II and an empty loop (about IIJLsec). 
releaseJock_markatos(£ 1 ); 

release_lock_mcs(£ 2); 

tl := read_currenuime() ; 
1/ measuremem result is (t I - tO). 

routine (c) 

tO := read_currenuime(): 
acquireJ ock_mcs( £ 2): 

II some shared bus accesses 

II and ru·o empty loops (about 22/t.H'C). 
releaseJock_mcs(£2); 

tl := read_currenuime(); 
II measuremem result is ( f I - tO). 

rou1ine (b) 

for i := I to number_of_/oop do 
case random_number() of 

1,2,3,4: 

5: 

6: 

end 
end 

execute row ine (a): 

execute routine {b) ; 

execure rowi11 e (c); 

main routine 

Figure 44: Measurement Routines with TF 

to be relieved with the PR-Iock algorithm [26] . The 99.99%-reliable execution times o f 

routine (b) are almost same with routine (c) except that the absolute times arc little shorter. 

Figure 46 presents the 99.99%-reliable execution times of routine (a) under the same 

condition. Though the execution times of routine (c) are fastest with Pl. those of routine 

(a) are slowest with the method. 

The problem of PI becomes more obvious, when processors repeatedl y execute one 

of the fives routines in Figure 41 and 42 in random order. Fi gure 47 presents the 

99.99%-re l iable execution times of routine (a) under this condition. The probability that 

a processor executes routine (a) is made twice larger than each of other routines. In thi s 

figure, the execution times with PI are much slower than the other methods. 

From these results, we can see that our proposed method is the most appropri ate 

algorithm of the three methods from the viewpoint of real-time scalability. 

Finally, in order to examine the average performance of the algorithms, we present 

the average execution times of routine (c) and (a) in case of three routines in Fi gure 48 

and 49 respectively. Because the difference between SF and TF is very small in routine 

(c) (Figure 48), we can say that SF is more appropriate in case that improving average 

performance is the primary concern. 
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Number of Processors 

Figure 45: 99.99%-Reliable Execution Times of Routine (c) 
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Figure 46: 99.99%-Reli able Execution Times of Routine (a) 
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Figure 47: 99.99%-Reliable Execution Times of Routine (a) 
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Figure 48: Average Execution Times of Routine (c) 
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Figure 49: Average Execut ion Times of Routine (a) 

4.4 Nesting in Three or More Levels 

I f FIFO spin Jocks are simply used when the maximum nesting level of Jocks is m. 

the maximum execution times of a whole critical section become O(n"') . An effective 

method to improve this order is proposed in this section. 

Priority Inversion Problem 

When the maximum nesting level of locks is more than or equal to three, the method 

proposed in Section 4.2 does not work effecti vely due to uncontrolled priority invers ions. 

Consider the example that processors execute one of the three routines in Figure 50 in 

random order. Assume the case that a processor P1 holds L 3 and waits for L2 in routine 

(c), and that another processor P2 with a lower priority than P1 holds L2 and tries to 

acqu ire L 1 in (a). Processors with priorities lower than P1 and higher than P2 can acqui re 

L 1 with precedence over P2• While P2 is waiting for those processors. P1 must wait 

also and the duration of the priority inversion becomes long. As a result. the maximum 

execution times of (c) cannot be improved to O(n) . Note that thi s uncontrolled priority 

in versions do not occur when the maximum nesting level is two. 

Priority in version problems in the context of spin locks are discussed in Section 5 in 

more detail. 
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acquireJock(L2); 

acquireJock(L 1); 

II critical section. 
releaseJock(L 1 ); 

releaseJock(L2); 

routine (a) 

acquireJock(L;); 
acquireJock(L1 ); 

II cri tical section. 
release_Jock(£ 1 ); 

releaseJock(L;); 

rouline (b) 

Figure 50: Nesting in Three Levels 

Incorporating Priority Inheritance Scheme 

acquireJ ock(L,): 
acquireJock(L 0): 

acqui reJock(£ 1 ): 

II cri tica l sec ti on. 
releaseJ ock(L 1 ): 

releaseJ ock(L2); 

releaseJock(L,); 

rouline (c) 

We adopt a priority inheritance scheme to solve thi s problem. With the basic priority 

inheritance scheme in which a processor holding some locks inherits the highest priority 

of the processors that are waiting for one of the locks, the duration of priority in versions 

can be reduced. Since chained priority inversions cannot be avoided with this method . 

however, the maximum execution times of a critical section become O(n · r"') with the 

fo llowi ng reason. 

At first, we estimate the maximum number of priority inversions that a processor P 

encounters while it executes a critical section guarded by a lock L, whose nesting level 

is i, under the assumption that there are no higher priority processor than P. We denote 

the maximum number of these critical sections as inv(i) and estimate it with an induct ion 

on i . When P tries to acquire L, another processor P 1 which has a lower priority than 

P po sibly holds the lock and P must wait for the critical section executed by P 1• If the 

nesting level of the lock is one (i.e. i = I ), no other priority inversions can occu r, thus 

inv( I ) = I. When i > I , at most inv(i- I ) priority inversions also occur during P
1 

is 

executing the critical section because P 1 may try to acquire another lock whose nesting 

level is smaller than i within the crit ical section. After P succeeds to acquire L,, it may 

also try to acquire another lock whose nesting level is smaller than i within the critical 

section. During its execution, at most inu(i- I) priority inversions can occur. As the 

result, inv(i) = 2 · inv(i- I)+ I then inv(i) = 21 - I. When Lm has the maximum 

nesting level in the system, the maximum number of critical sections that P must wai t for 

until it finishes the execution of a critical section guarded by Lm is inv(m- I ) = 2"'- 1 - I 

under the assumption that there is no higher priority processor than P. 

Next, we consider the case that a processor P 1 which has a higher priority than P is 

added, and estimate its effect on the maximum number of critical sec tions that P must 

wait for until it finishes the execution of a critical section guarded by L..,, which hm, the 

maximum nesting level in the system. We estimate the effect with the following two 
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cases. 

(a) Suppose the case that P1 is holding or waiting for Lm when P begins waiting for 

Lm. In this case, P1 can encounter at most inv(m- I ) priority in versions during 

its execution of the critical section guarded by Lm. Because P must also wait for 

the critical section of P1, the maximum number of critical sections that P must wait 

for is increased with inv(m- I )+ I = 2"'- 1• 

(b) Suppose the case that P1 is holding or waiting for another lock when P begi ns 

waiting for L , . In this case, some lower priority processors than P can inherit the 

priority of P1 and cause additional priority inversions on P. The max imum number 

of the lower priority processors that can inherit the priorit y of P1 corresponds to 

the maximum number of priority inversions that P1 encounters, i.e. inr( m - I ). In 

addition to them, P is necessary to wait for the critical section of P1• when P and 

P1 try to acquire a same inner lock. As the result, the maximum number of criti cal 

sections that P must wait for is increased with inv(m - I ) + I = 2"' - 1• 

In each case, the maximum number of critical sections that P must wa it for is increased 

with 2"'- 1. Because the outermost lock is acquired in a FIFO order with our method. at 

most n - I processors have higher priorities than P. Consequently. the max imum number 

of criti cal sections that P must wait for until it fini shes the execution of a criti cal section 

guarded by Lm is (2"'- 1 - I ) + (n- I ) · 2"'- 1 = n ·2"'- 1 - I. Note that thi s also includes 

some overestimations. 

A s the result, the order of the maximum execution times of critica l sec tions is shown 

to be O(n · e"') with the basic priority inheritance scheme. We can say that thi s method 

has real-time scalabi lity on the number of contending processors but not on the maximum 

nesting level. Algorithms of spin locks with the basic priority inheritance scheme will be 

presented in Section 5. 

The priority ceiling policy can also be adopted, when there is prior know ledge on 

which locks are acquired in each critical section. In the concrete, when a processor 

acqui res the outermost lock, the priority ce iling of the other locks that are required (or 

possibly required) by the processor within the critical section is set to the priority of the 

processor. When the priority ceiling of the lock that a processor tri es to acquire is higher 

than its priority, the processor must wait with spinning even if the lock is not held by any 

processor.7 

7Though induced from the same policy, the behavior of ··priority ceiling spin lock" is quite different 
from those of the pri ority ceiling protocol [60] or its ex tension for shared memory mu lt iprocc~ \or.., /46] . 
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In Section 4.2, we have mentioned the method that a processor trying to acquire ne,ted 

locks reserves its turn to acquire the inner locks by enqueueing itself to their wait queue 

when it begins waiting for the outermost lock . When complete knowledge on all required 

locks in each crit ical section is available, the priority ceiling method is same with this 

method. To the contrary, if there is no knowledge on required locks at all. the priority 

ceiling method reduced to the situation that all shared resources in the system are guarded 

by a single lock, which severely degrades concurrency of the system. 

5 Priority Inheritance Spin Locks 

As described in Section 4.4, in order to reali ze bounded and sca lable nested sp in locks 

for real-time systems, a priority inheritance scheme is necessary to be incorporated in 

priority-ordered spin locks. A prioriry inheritance spin lock is also necessary for priority­

ordered nested spin locks. This section proposes two algorithms of priority inheritance 

spin lock based on the Markatos' algorithm [36]. 

Shared resources that must be accessed exclusively by a processor are usually divided 

into some lock units in order to improve concurrency. When a processor accesses >ome 

shared resources included in different lock units, it must acquire multiple locks one by 

one. If priority-ordered spin locks are simply used for this kind of nested spin locks, 

uncontrolled priority inversions can occur. The uncontrolled priority inversion problem 

in nested spin locks is described in Section 5.1. 

After describing the necessity of priority inheritance spin locks in Section 5.1. we 

present two algorithms of priority inheritance spin lock in Section 5.2. In Section 5.3, 

their effectiveness is evaluated through performance measurements. 

5.1 Priority Inversion and Priority Inheritance 

Priority inversion and priority inheritance schemes, which are promising approaches to 

solve the uncontrolled priority inversion problem, are actively studied in the context of 

task schedu l ing algorithms [48, 60, 47]. In this section, we i l lustrate that the uncontrolled 

priority inversion problem also occurs in the context of spin locks and demonstrate that 

the basic priority inheritance scheme is also effective in thi s case. 

This is because the processor which cannot acqu ire a lock is blocked with those protocols. while it ..,pin~ 

with our situation . 
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acquire_iock(L2); 

II critical section. 
release_i ock(L2); 

rourine (a) 

acquire_lock(L 1 ); 

acquire_i ock(L, ); 
II critica l section. 
release_iock(L, ): 
release_iock(L1 ); 

rourine (b) 

Figure 51: Example of Nested Spin Locks 

Priority Inversion Problem in Nested Spin Locks 

Priority inversion in the context of sp in locks is the phenomenon that a higher priority 

processor is forced to wait for the execution of a lower pri ority processor. Because priority 

inversion cannot be avoided unless a higher priority processor can stea l the lock he ld by 

a lower priority one, how to minimize its durat ion is a concern . When the maximum 

duration of a priority inversion cannot be determined, it is called uncontrolled. 

When priority-ordered spin locks are used for nested spin locks, uncontro lled priority 

inversions can occur. A typical case is described as follows. 

Example I (uncontrolled priority inversion) 

We assume that P, P2, P3 , and P4 are processors arranged in descending order of 

priority with P, having the highest priority, and that L 1 and L2 arc locks. These 

processors repeatedly execute one of the two routines presented in Figure 51. 

Suppose the case that when P1 begins executing routine (b) and tries to acquire the 

lock L 1, P4 is holding L 1 and is waiting for the other lock L2 in routine (b). I f P2 

and P3 repeatedly execute routine (a) in this situation, P2 and P.1 can acquire L 2 

alternate ly and P4 must wait for L2 all the while. Because P 1 must also wa it for 

the executions of P2 and P1, thi s duration is a priority inversion. Obviously, the 

maximum duration of this priority inversion cannot be determined. 

Spin Lock with Priority Inheritance 

In orderto so lve thi s problem of uncontrolled priority inversions, we introduce the priority 

inheritance scheme to spin locks. The fundamental concept of priori ty inheritance scheme 

is that when a processor makes some higher priority processors wait, its priority shou ld 

be raised to the level of the highest priority processor among the waiting ones. In other 

words, the processor inherits the priority of the highest priority processor blocked by it. 

Also, priority inheritance must be transiti ve. For example, suppose that P1, P2 , and ['1 are 

three processors in descending order of priority. When P2 makes ? 1 wait and P1 makes 

P2 wait, P3 should inherit the priority of P 1• 
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----
With the basic priority inheritance scheme, which is the naive realization of the 

concept, the uncontrolled priority inversion problem illustrated in Example I is so lved 

as follows. When P 1 tries to acquire £ 1 and begins waiti ng for it, P4 , which is holding 

L 1, inherit s the priority of P 1 because P 1 is forced to wait by P4 . Because the inherited 

priority is higher than the priorities of g and 1~1 , P4 can acquire £ 2 with precedence over 

P2 and P3. As the result, P1 need not wait for the alternate executions of routine (a) by 

P2 and P3, and the maximum duration of the priority inversion can be bounded . 

When a processor releases one of the locks, its priority is necessary to be re -ca lculated 

in general. Specifically, its priority is changed to the highest one of it s o ri ginal priority 

and the priorities of the processors that is waiting fo r the locks held by the former one. 

When the processor re leases the last lock it is holding, its priority is reco ve red to it s 

original level. 

This re-calculation can be omitted under the following two assumptions. The first 

assumption is that the inherited priority is used on ly for spin locks, and not used for 

task scheduling. In more specifi c, the inherited priority is used only when the processo r 

tries to acq uire another loc k. The second assumption is that the two-phase protoco l is 

adopted. In other words, once a processor releases a lock, it cannot acquire another lock 

until it releases all the locks it is holding. In the following sections. we assume that these 

two conditions are satisfied and propose priority inheritance spin lock algo rithms. Under 

these two assumptions, once the priority of a processor is rai sed, it need not be lowered 

until it releases all the locks. These assumptions can be removed by add ing re-calculation 

routines to the algorithms proposed in Section 5.2 at the cost of some runtime overhead. 

With the two assumptions described above, the required behavior of priority inheritance 

spin locks can be summarized as follows. 

I. Processors acquire a lock in the order of their priorities. 

2. When a processor P 1 begins waiting for a lock, and when its priority is highe r than 

the priority of the processor P2 that is holding the lock, the priority of P2 is ra ised 

to that of P 1• 

3. Whe n the priority of a processor P1 is raised while waiting for a lock , and when it s 

new priority is highe r than the priority of the processor ? 2 that is holding the lock. 

the priority of P2 is raised to the new priority of P1. 

99 



II global shared variab les. 
shared var L I, L2: Lock; 

// local variables (all ocated for each processor). 
var II, 12: Node; 
var rny _prio: integer; 
var rny_notify: boolean; 
II my_notify is necessary onl y in the second algorithm. 

II initialize my_prio. 
acquire_firsLiock(&L I, &II ); 
acquire_secondJock(&L2, &12, &L I); 
II critical section. 
release_lock(&L2, &12); 
releaseJ ock(&LI , &I I); 

Figure 52: Usage of Prio rity Inheritance Spin Locks 

5.2 Priority Inheritance Spin Lock Algorithms 

In this section, we present two algorithms of pri ority inheritance spin locks, which are 

based on the single-linked queue version of the Markatos' lock algorithm presented in 

Figure 2 1 and 22. With the Markatos' a lgorithm, processors try ing to acq uire a lock are 

linked to the waiting queue in a FfFO order. In releasing the lock, a processor sea rches 

the hi ghest priority processor in the waiting queue and passes the lock to it. 

The first al gorithm is a straightforward extension of the Markatos' lock algorit hm. A 

new variable that indicates the hi ghest priority of the processors that is wai ti ng fo r the 

lock is prepared for each lock. The processor ho lding the lock polls the vari able whil e it 

is waiting for another lock. When the processor detects that the hi ghes t prio rity is raised. 

it inherits the priority. Because any processo r can poll thi s hi ghest prio rity variabl e fo r 

each lock , pollings on the vari able are remote memory accesses and severe ly increase the 

interconnecti on network traffi c with a multiprocessor system without a cohere nt cache. 

The second algorithm is to avoid thi s non-local spinning and is expected to have higher 

performance without a coherent cache. 

In order to avoid unnecessary complex ity, this secti on presents the pseudo-codes of 

the algorithms when a processor acquires at most two locks at the same ti me. With this 

s implification, we prepares two lock acqui sition routines: acquireJit:5Uock for acq uiring 

the outer lock and acquire_second_/ock for acq uiring the inner lock. A typica l usage of 

the routines is illustrated in Figure 52. The third argument of acquire_seconcUock is th e 

pointer to the lock th at the processor is ho lding. 

In Figure 52, the my_prio vari able is to sto re the current priority of the processo r. 
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type Node= record 
next: pointer to Node; 
locked: (Released, Locked); 
prio: integer 

end; 

type Lock = record 
last: pointer to Node; 
maxprio: integer; 
notifyp: pointer to boolean 

end ; 
II norifyp is necessary only in the second algorithm. 
II last and norifyp fields shou ld be initialized to NULL. 
II nwxprio field shou ld be initialized to MJNPR/0. 

type NodePtr = pointer to Node; 
type LockPtr =pointer to Lock; 

Figure 53: Data Structures for Priority Inheritance Spin Locks 

and must be initialized before the processor tries to acquire the outermos t lock. With 

a multiprocessor without a coherent cache, the local variables should be placed on the 

processor's locally accessib le shared memory. 

The First Algorithm 

Figure 53 and 54 present the common data structures and subroutines for both algorithms 

(some of them are necessary only in the second algorithm). The Lock record shou ld be 

prepared for each lock in the system. Its maxprio field is the highest priority variable for 

the lock. When the lock is empty (in other words, no processor holds the lock), the Ius! 

field of its Lock record is NULL and i ts maxprio field is M!NYRIO, which designates 

the minimum priority value. A Node record is necessary for each nested lock fo r each 

processor. 

Figure 55 and 56 present the pseudo-code of the fi rst algorit hm. Compared to the 

M arkatos' algorithm, two invocations of the raise_priorily procedure. which is to update 

the maxprio field of lock when it is lower than the newprio parameter. are added to the 

acquireJirsUock procedure and the acquire_second_/ock procedure in Figure 55. The 

fi rst in vocation (marked with "* I") is to raise maxprio for pri ority inheritance. when 

the processor begins waiting for the lock. The second one (marked with " *2' ') is to 

set maxprio, when the processor succeeds to acquire the lock w ithou t wait ing. In the 

acquire_seconcUock procedure, the processor must check the maxprio field of lock I. 

which is the lock being held by the processor, wh ile waiting for lock. When maxprio 
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procedure raise_priority( lock: LockPtr, newprio: integer): boo lean: 
var prio : integer; 

begin 
retry: 

prio := lock-> maxprio; 
if newprio > prio then 

if compare_and _swap(&(lock -> maxprio), prio, newprio) then 
return TR UE 

end; 
goto retry 

end; 
return FALSE 

end ; 

procedure raise_priority_notify(lock: LockPtr, newprio: integer): 
II necessary only in the second algorithm. 

var notifyp: pointer to boolean; 
begin 

if rai se_priority(lock, newprio) then 
notifyp := lock-> notifyp; 
if notifyp # NU LL then 

II set the notification fl ag. 
• notifyp := TR UE 

end 
end; 

end 

procedure move_to_top( lock : LockPtr, entry, pred . old top: NodePtr): 
II move entry to the top of the waiting queue of lock. 

II pred is the predecessor of entry. 

II oldtop is the top of the queue before the move. 
var succ: NodePtr; 

begin 
succ := entry-+ next; 
if succ = NULL then 

pred-> nex t :=NULL; 
if compare_and_swap(&( lock-> last), entry, pred) then 

ent ry-> next := o ldtop; 
return 

end; 
repeat succ := entry->next until succ # NU LL 

end; 
pred-> next := succ; 
entry-> nex t := o ldtop 

end; 

Figure 54: Subroutines fo r Priority Inherita nce Spin Locks 
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procedure acquire_fi rsLiock(lock, LockPtr, me : NodePtr); 
II try to acquire lock. 
var pred: NodePtr; 

begin 
me-> next := NULL; 
II enqueue myself. 
pred := fetch _and _store(&( lock-> last), me); 
if pred # NULL then 

II when the queue is not empty. 
me-> locked := Locked ; 
me-> prio := my _pri o: 
pred--+ next :=me; 

• I raise_priority( lock, my _prio); 
repeat until me-> locked = Released 

else 
II succeed to acquire the lock without waiting. 

•2 raise_priority( lock, my_prio) 

* I 

end 
end; 

procedure acquire_second_i ock(lock: LockPtr, me: NodePtr, lock I: LockPtr): 
II try to acqu ire lock. 
var pred: NodePtr; 

begin 
me-> next := ULL; 
II enqueue myself. 
pred := fetch_and _store(&(lock-> las t), me): 
if pred # NULL then 

else 

II when the queue is not empty 
me-> locked :=Locked; 
me--+prio := my _prio; 
pred--+next := me; 
raise_priority(lock, my _prio); 
repeat 

if lock l -> maxprio > my _pri o then 

end 

II lockl->nwxprio is non-local access. 
my_prio := loc k 1--> maxprio; 
me--+prio := my _prio; 
raise_priority( lock, my _prio) 

until me-> locked = Released 

II succeed to acquire the lock without wa iting. 
•2 raise_priority(lock, my_prio) 

end 
end; 

Figure 55: The First Algorithm (P a rt I ) 
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procedure release_iock(lock: LockPtr, me: odePtr): 
II try to release lock. 

var top. emry, pred: NodePtr; 
var hentry, hpred: NodePtr; 

begin 
•4 lock--->maxpri o = MJN_pRJO; 

top := me-> next; 
if lOp= NULL then 

if compare_and_swap(&(lock---> last), me, NULL) then 
II the queue becomes empty. 
return 

end; 
repeat top:= me-> next until lOp# NULL 

end ; 
II search for the higest priority processor. 
hentry :=top; 
pred :=top; 
entry := pred--->next; 
while entry # NULL do 

if (entry ---> prio > hemry---> prio) then 
hentry := emry; 
hpred := pred; 

end; 
pred :=entry; 
entry := pred---> next 

end; 
II now, henrry is the higest priority processor. 
if hen try # lOp then 

move_to_top(lock, hemry, hpred, top) 
end; 

•5 raise_priority(lock, hentry--->prio); 
hentry---> locked = Released 

end: 

Figure 56: The First A lgorithm (Part 2) 

becomes higher than the priority of the processor (the if statement marked with "•3"). it 

inherits maxprio of lock I and updates maxprio of lock for transitive priority inheritance. 

The only difference of the release_lock procedure in Figure 56 with that of the 

Markatos' algorithm is the necess ity of updating the m<lxprio field (two lines marked with 

"•4" and "•5"). Assigning MINYR/0 to the maxprio field at first is necessary to avoid 

some racing cond i tions. 

This algorithm can be easi ly generalized to the case that a processor acqu ires more 

than two locks at the same time with the following method. The list of locks held by a 

processor shou ld be maintained using an array or a linked li st. In the generalized version 

of the acquire_lock procedure, the nwxprio field s of all the locks in the list should be 
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checked while waiting for another lock. lf some of them are higher than the priority of 

the processor, it inherits the highest priorit y among them. 

Avoiding Non-Local Spinning 

While a processor is waiting for a lock in the acquire_second_/ock procedure of the Arst 

algorithm, the maxprio Aeld of the holding Jock is accessed repeatedly (marked w ith 

"*3"). This accesses cause a heavy traffi c on the interconnection network wi thout a 

coherent cache. 

With the second algorithm presented in Figure 57 and Figure 58. thi s problem i' so lved 

by introducing a flag to notify that the maxpriofield is modified. This notification nag (t he 

my_notify variable in Figure 52) is prepared for each processor on its locally accessible 

shared memory. A processor waiting for a lock in the acquire_second_/ock procedure 

in Figure 57 reads the maxprio field only when the notification flag of the processor is 

set (the if statement marked with "*6"). Thus the non-local spinning can be avoided. 

It also checks the maxprio field when it begins waiting for a Jock (by ass igning TRUE 

to my_notify). Introducing the notification flag is also advantageous when a processor 

acquires more than two locks at the same time, because only one memory location (i.e. 

the notification flag) is necessary to be checked in the waiting loop. M ai ntaini ng the list 

of Jocks held by a processor is sti ll necessary in thi s case. 

Also, the raise_priority_notify procedure is used instead of mise_priority (three 

lines marked with "*7") in Figure 57. After updating the maxprio field of lock. the 

r<lise_priority_notify procedure sets the notification flag of the processor holding the lock. 

In order to locate the notifi cation flag of the Jock holder, a new fi eld notifyp which points 

to the not ification flag is introduced in the Lock record. The notifyp Ae ld of a lock is set 

when a processor succeeds to acquire the lock (two lines marked with "*8''). The fi eld is 

also necessary to be cleared to NULL at the top of the release_/ock procedure in Fi gure 58 

(marked with "*9"). 

There is a slight chance that the notification fl ag of a wrong processor is set. 

Specifically, suppose the case that the processor holding a Jock passes the Jock to another 

one and its notifyp field is changed, after yet another processor reads the notifyp field of 

the lock in the raise_priority_notify procedure and before it writes TRUE on *110tifyp. In 

thi s case, the notification flag of the processor that has already passed the lock to another 

is set. Although thi s difficulty can increase the interconnection network trafAc a little. it 

does not cause wrong behavior. 
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procedure acquire_firsLiock(lock: Loc kPt r, me : NodePtr): 
var pred: NodePtr; 

begin 
me-.next := NU LL; 
II enqueue myself. 
pred := fetch_and _s tore(&(lock---; last), me); 
if pred # NU LL then 

II when the queue is not empty. 
me-; locked := Locked; 
me---; prio := my_prio; 
pred---; next :=me; 

* 7 rai se_pri ority _notify( lock. my _prio); 
repeat until me-; locked = Released 

else 
II succeed to acquire the loc k without waiting. 
ra ise_priority( lock. my _prio) 

end; 
*8 lock---; notifyp := &my _notify 

end ; 

procedure acquire_secondJ ock(lock: LockPtr, me: NodePtr, lock I: Lock Ptr): 
var pred: NodePtr; 

begin 
me---; next := NU LL; 
pred := fetch_and_store(&( lock---; last), me); 
if pred # NULL then 

me-; locked :=Locked ; 
me---; prio := my_pri o; 
pred-+nex t := me; 
raise_prio rity_notify( lock, my_prio); 
my_notify :=TRUE; 
repeat 

II check if a pri ority inheritance is notifi ed. 
if my_notify then 

end 

my_notify :=FALS E; 
if lock 1---; max prio > my_pri o then 

my_pri o := lock 1---; max prio; 
me---; prio := my _pri o; 
rai se_pri ority _notify(loc k, my _prio) 

end 

until me-; locked= Re leased 
else 

rai se_priority(lock, my _prio) 
end; 

*8 loc k---; notifyp := &my_notify 
end; 

Fig ure 57: The Second Al gorithm (Part I) 
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procedure re leaseJock(lock: LockPtr, me: NodePtr); 
var top, entry, pred: NodePtr; 
var hentry, hpred: NodePtr; 

begin 
lock--+ maxpri o := MI N_PR IO; 

•9 lock--+ notifyp :=NULL; 
top := me--+nex l; 

if top = NULL then 
if compare_and_swap(&(lock--+ last), me, NULL) then 

II the queue becomes empty. 
return 

end; 
repeat top:= me~ next until top# NULL 

end ; 
II search for the higest pri ority processor. 
hentry := top; 
pred :=top; 
entry := pred--+nex t; 
while entry# NU LL do 

if (entry~ pr i o > hentry--+ prio) then 
hentry :=entry; 
hpred := pred 

end; 
pred := entry; 
entry := pred--+ nex t 

end; 
II now, hemry is the higest priority processor. 
if hent ry # top then 

move_to_top(lock, hentry. hpred. top) 
end; 
ra ise_priority( lock, hentry--+ prio): 
hentry--+ locked := Released 

end; 

Figure 58: The Second A lgorithm (Part 2) 

5.3 Performance Evaluation 

In this section, the effecti veness of the priority inheritance spin lock algori thms proposed 

in the previous section is examined through perfonnance evaluation. Thei r perfo rmance 

is compared with the simple priority-ordered spin locks without supporting priority 

inheritance scheme. We have used the single-linked queue vers ion of the M arkatos' lock 

algorithm for th is purpose. 

Evaluation Method 

We have used one to eight processors for the evaluation. The original (or ass igned) 
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acquireJock(£ 2); 

II critical secti on. 
release_lock(£2) ; 

roUline (a) 

acquireJock(L ~ ); 
acquireJ ock(£ 2) ; 

II critica l secti on. 
releaseJ ock(£ 2); 

re leaseJock(L~ ); 

routine (c) 

acquireJ ock(£ 1 ): 

acquire_iock(£2 ): 

II critical secti on. 
release_lock(£2); 

release_lock( L 1 ): 

routine (b) 

acquireJock(L~') ; 

acquireJ ock(£ 2 ); 

II critical section. 
re leaseJock(£ 2); 

re l ease_iock(L~'); 

roUline (d) 

Figure 59: Evaluation Routi nes 

pri ority of processor is fi xed to its ID number. Each processor repeatedly execu tes one 

of the four routines presented in Figure 59 in random order. Rout ines (c) and (d) are 

introduced in order to expose the problem of non-local spinning wi th the first algori th m8 

T he execution time of each routine is measured for each execution, and thei r di stribut ions 

are obtained. I nside the critica l section, a processor accesses the shared bus severa l 

number of times and wai ts for a wh ile using empty loops. In case of rout ines (b). (c), and 

(d), shared bus accesses and an empty loop are also inserted between <lcquireJ in;t_!ock 

and acquire_second_fock. Without spin locks. the execution time of each routine i> about 

30 { LS, i nc luding the overhead for measuring execution times. Each processor ab.o waits 

for a random time after each execut ion of the routi nes. 

Because our evaluation system has no coherent cache, the simple implementat ion of 

the first algori thm causes heavy shared-bus traffi c. In order to avoid shared-bus saturation. 

the frequency to read the maxprio fie ld in the acquire_second_/ock routine is reduced. In 

more concrete, maxprio is checked only once for every fou r checkings of me- locked. 

Evaluation Results 

Figure 60 presents the 99.99%-reliable execut ion times that the highest priori ty processor 

executes routine (b). When the number of processors is large, the execution time with 

M arkatos' locks, which can not be bounded inherently, is much slower than those with 

our algorithms due to uncontrolled priority inversions. When the number o f processors 

is small , our algorithms are slower because of the overhead for maintaini ng the maxprio 

fi eld of each lock. Our second algorithm is a bit fas ter than the fi rst one when the number 

8With routines (a) and (b) onl y, the effect of shared-bus traffic is not revealed . because at mo; t one 
processor spi ns on non ~ local memory at the same time. 
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of processors is more than six, but the difference is very small. Though it is not measured 

in our experiments, the shared-bus traffic is expected to be much larger wi th the first 

algorithm. 

Figure 61 presents the 99.99%-reliable execution times that the highest priority 

processor executes routine (a). As easily imagined, there are little difference in the 

behavior of routine (a) with three algorithms. This graph confirms the conjecture. 

Finally, in order to examine the average performance of the algorithms. we present the 

average execution times of routine (b) in Figure 62. From this graph, our algorithms are 

slower than Markatos' lock in average performance. We can say that priority inheritance 

spi n locks are not appropriate when improving average performance is the primary 

concern. 

6 Summary 

In thi s part, we have proposed various spin lock algorithms with the properties required 

to implement sca lable real -time kernels, and have evaluated their effectiveness through 

performance measurements. Before describing the algorithms, Section I has presented a 

brief survey on spin lock algorithms and has shown the pseudo-codes of some important 

algorithms on which our proposed algorithms are based. 

In Section 2, we have proposed two algorithms of queueing spin lock with preempt ion 

that can give practical upper bounds on the times to acquire and release an inter-
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processor lock while realizing constant response to interrupt requests, in order to make 

the two important requirements for scalable real-time systems on function-distributed 

multiprocessors compatible. The first algorithm, which supports the simple pree!nption 

scheme, has a drawback that the interrupt serv ice overhead depends on the number of 

contending processors. In order to solve the problem, we have proposed the second 

algorithm which adopts the improved preemption scheme. Their performance evaluat ion 

through experiments has confirmed that the algorithms have the required properties. We 

have also described a combined algorithm which supports both preemption schemes. 

In Section 3, we have presented an effic ient algorithm of spin lock with local 

precedence, which is required to make the worst-case execution times of intra-processor 

synchronizations independent of the number of contending processors. 

In Section 4, real-time scalabi lity of nested spin locks has been discussed. An 

algorithm with which the maximum execution times of critical sections are O(ll ) when 

the maximum nesting level of locks in the system is two has been proposed. and its 

effectiveness is demonstrated with performance evaluation. By introduci ng the pri ority 

inheritance scheme to the algorithm, it can be applied to the system in wh ich the maximum 

nesting level is more than two. 

Though the section has focused on bounded spi n locks (in other words. on the cases 

when each processor equally contends for nested spin locks ignoring the priority of the 

task it is executing), the results are also applicable to priority-ordered spin locks (the 

cases when each processor has its priority determined from the job it is execut ing). In 

concrete, when processors with the same priority should execute critical sections in a 

HFO order, our proposed method should be utilized. In this case, a pair of the native (or 

assigned) priority of the processor and the time stamp obtai ned before trying to acquire 

the outermost lock should be used as the priority for acquiring inner locks. 

In Section 5, we have discussed on priority inheritance spi n locks. A t first. we 

have pointed out the problem that the simple application of a priority-ordered sp in lock 

algorithm to nested spin locks causes uncontrolled priority inversions, wh ich arc very 

harmful for sati sfy ing the timing constraints imposed on real-time tasks. In order to 

so lve the problem, we have incorporated the basic priority inheritance scheme to spi n 

locks. Two algorithms of priority inheritance sp in locks have been proposed based on the 

M arkatos' spin lock algorithm : one for coherent cache multi processors and the other for 

multiprocessor systems without coherent cache. Performance evaluation to demonstrate 

their effectiveness has been conducted, and some affirmative results have been obtained. 

In Section 4 and 5, we have adopted the M arkatos' priority-ordered spin lock algorithm 

for the evaluations and for the base algorithm to which the basic priority inheritance 
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scheme is incorporated. Doing the same thing with the PR-Iock [26] remains as future 

work. Another important work remaining to be done is to combine the resu lt of Section 2 

and 5, in other words, to incorporate a preemption scheme to priority inheritance spin 

locks. 
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1 Conclusion 

In this dissertation, we have discussed the specification and implementation issues of a 

scalab le real-time kernel on funct ion-distributed shared-memory multiprocessor systems. 

A sca lable real-time kernel is the basic software module that facilitates the rea li zati on 

of scalable application systems. If a real-time system has the property of real-time 

scalability, even when a part of the system is modified or when some processors are added 

to the system, changes in the worst-case timing behavior of the unmodifi ed part of the 

system are minimized, leading to the reduction of the maintenance cost of the system. 

Though many researchers have investigated on real-time kernels for shared-memory 

multiprocessors, none of them has focused on the issues of real-time scalability. 

When a real-time system is realized on a function-distributed multiprocessor archi­

tecture, externa l devices and tasks handling them are allocated to processors so that the 

number of inter-processor synchronizations and communications is minimi zed and that 

as many time-critical tasks as possible are closed within a processor. Therefore, it is 

advantageous to reduce the maintenance cost of the system that changes in the worst-case 

timing behavior of the processings that can be done within a processor are minimized. 

In this dissertation , we have clarified the required properties of a sca lable rea l­

time kernel for function-distributed multiprocessors and investigated on their realization 

methods. After describing the implementation approaches of a real-time kernel on shared­

memory multiprocessors, two problems which are the obstacles for a straightforward 

implementation method to sat isfy the required properties have been pointed out, and the 

so lutions of the problems have been proposed when task-independent synchronizat ion 

and communication objects are not supported. In order to solve the first problem that the 

worst-case execution times of synchronizations within a processor depend on the number 

of contending processors, sp in lock with local precedence is adopted. For the second 

problem that predictable inter-processor synchronization and constant interrupt response 

are incompatible, bounded spi n lock with preemption is devised. We have presen ted 

the algorithms of these two kind of sp in locks assuming that processors support atomic 

read-modify-write operations on a single word of shared memory. 

We have also proposed the approach to classify kernel resources into classes with 

different characteristics to improve the performance of intra-processor synchronization. 

In the concrete, tasks are classified into the isolated tasks, the private tasks. and the local 

tasks of each processor. Task-independent synchronization and communication object; 

are also classified into three classes: the isolated objects, the private objects, and the 

shared objects . 

114 



In order to demonstrate the effectiveness of our proposals, we have conducted 

performance measurements using an existing shared-bus multiprocessor system wi thout 

coherent cache. The underlying inter-processor synchronization is realized with software­

implemented spin locks. Although the hardware and the synchronization mechanism do 

not have the properties that is necessary to stri ctl y satisfy the required properties of a 

sca lab le real -time kernel , the performance measurements have confirmed that the required 

properties are practically satisfied with our proposals, while they cannot be met w ith other 

methods. 

In order to support task-independent synchronization and commun ication objects, 

nested spin locks are necessary. We have discussed on the sca labi lity issues on ne>ted 

spi n locks and proposed the scheme for reducing the maximum execution times of nested 

spi n locks to O(n · em), where n is the number of contending processors and m is the 

maximum nesting level of locks. Even though the scheme is adopted. however, the 

interrupt service overhead depends on the number of contending processors, and it is not 

possible to satisfy the required properties of a scalable real-time kernel. 

2 Future Work 

There are pretty much work to be tackled. The most pressing one is to rea li ze a sca lable 

rea l-time kernel that supports task-independent synchronization and communication 

objects by solving (or avoiding) the difficulty described in Section 11.7. One of the possible 

approaches is to incorporate the notion of block-free or wait-free synchron izat ions to 

our real-time kernel implementation and to avoid nested spi n locks. M ore precisely. the 

processings which needs the outer lock should be realized in a block- free or wa it-free 

fashion [ 17, 37]. Because the manipulations of the TCBs and the ready queues are too 

complicated to realize in block-free or wait-free with reasonable performance, we think 

that the inner lock should be used even with thi s approach. This kind of mixed block-free 

and lock-based synchronization is a new research topic that has not been studied. Another 

promising approach is to adopt the realization concept of wait-free synchroni zati on in 

acquring an inner lock. More precisely, the operation within the inner lock is posted to 

the waiting queue for the lock and i executed by another processor during an interrupt 

service. 

Another important work to do is to extend our kernel model further to support global 

tasks which can migrate among processors. We will describe it in the next sect ion 

(Section 2.1). There are some problems to be solved in implementing global tasks without 

degrading the performance of the other tasks [81]. 
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Other future work includes the hardware implementation of the spi n locks wi th 

which the maximum executi on time can be determined independently of the number of 

contending processors, and further extensions of the spin lock algorithms which have 

been described in Section fll .6. It is also necessary to extend our study to upper layers. 

For example, the design guidelines of sca lable appli cation systems on a sca lab le real- time 

kernel should be investigated on. The software development environment for our real­

time kernel model, especially a tool that supports the fittin g of the kernel resources to 

appropri ate c lasses integ rated with a schedulability anal yzer, is also an important research 

topic. 

Final ly, apply ing our scalable real-time kernel to real applicat ions and evaluating it 

in real-world e nvironme nts are the most chall enging work remaining to be done. To this 

end, we pl an to port our sca lab le real-time kernel for shared-memory multiprocessors to 

other off-the-shelf hardware environments and di stribute it in free. 

2.1 Global Tasks 

One of the advantages of shared-memory multiprocessors is that task migrations can be 

easi ly implemented. As described in Section Il. 2, time-critical tasks should be bound 

to a processor in function-di stributed multi processor systems. On the other hand. task 

migrations are useful for background jobs without severe timing constraints. We ca ll the 

class of tasks that can execute on any processors in the system and that can migrate to 

o ther processors during their execution as global tasks. 

One of the most import issues on global tasks is their schedu ling method. Because 

global tasks are introduced to support background jobs without severe timing constraints, 

we handle the priorities of global tasks always lower th an those of local tasks. 

Two shared task queues are prepared for global tasks: the ready queue that includes 

al l global tasks that are ready to execute but are not being executed, and the run queue 

that includes all globa l tasks that are being executed. When no task of the other c lasses is 

ready to execute on a processor, the task di spatcher on the processor remo ves the hi ghest 

priority task from the ready queue for the global tasks, and moves it to the run queue . 

When a processor makes a global task 7 1 ready to execute. it first fi nds the lowest pri ority 

task 72 in the run queue. lf 7 1 has a higher priority than 7 2 , the processor moves T2 to the 

ready queue and inserts 7 1 to the run queue instead. Then, it requests the proces,o r that is 

executing 72 to switch the executing task using an inter-processor interrupt. 

Here, a difficulty occurs when a private (or iso lated) task becomes ready to execute 

with an external event on a processor P 1 that is executing a global task. In thi s case. 

the global task is preempted and should migrate to another processor that is executing 
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accessing 
task 

Prisolated task OK 

Prprivate task OK 

Prlocal task 

global task 

OK 

NA 

Table 10: Accessibility of Kernel Resources (Full Set) 

NA 

NA 

NA 

a lower priority task or is idle. Because the maximu·m processing time on P 1 for the 

migration unavoidably depends on the number of contending processors, the maximum 

response time of the private (or isolated) task becomes long as the number of contending 

processors is increased. ln order to avoid thi s problem, we allow the si tuation that a 

globa l task is bound to a processor while it is executing a private (or iso lated) task. just 

like when it is executing an interrupt handler. When the execution times of private tasks 

are relatively short compared to the deadlines of global tasks , thi s rest riction is considered 

to be reasonable. 

The accessibi lity of kerne l resources wi th global tasks are summarized in Table 10. 

Because the control blocks of isolated and private resources on a processor cannot be 

accessed from other processors, a global task, which can be executed on any processor, 

cannot operate on them. A global task cannot access a P 1-Jocal task with special 

operations, because the global task cannot access the control block of a P1-pri vate object 

on wh ich the local task may be waiting. 

Another possible extens ion is to support the class of tasks that can be executed on 

a predefined set of processors. For example, suppose a heterogeneous multiprocessor 

architecture, in which some general-purpose microprocessors and some spec ial -purpose 

processors (e.g . DSPs) are adopted. It is very natural to support the class of tasks that 

can be execu ted only on the general-pu rpose microprocessors. Note here that it is not 

necessary to implement all the resource classes in a kernel. It is a lso a poss ible approach 

that some of the classes are removed from a fu ll -set kernel when they are not used. 
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Appendix A 

Implementation Details of our 
Real-Time Kernel 

In this appendix, we present the implementation details of our rea l-time kernel , which is 

used for the evaluation in Section 1I.6. We have extended !tis, a rdTRON3.0-spec ifi cati on 

real-time kernel described in Section Il.l.4, to support shared-memory multiprocessors. 

We call the extended version of Itls as Ttls/MP in thi s appendix. 

1 Management of Classes 

The largest difference between Ttls and Itls/MP is that ltis/MP supports the c lassification 

of kernel resources. In order to manage the classes, a class control block is prepared for 

each c lass of resources. Though the class ification of tasks and that of task- independent 

synchronization and communication objects have a bit difference, we have prepared 

four type of classes in which both tasks and task-independent objects are inc luded : the 

iso lated classes, the private classes, the loca l c lasses, and the globa l c lass. In the cu rrent 

implementation, only the private classes and the local c lasses are realized. 

As described in Section 11.5.4, the ID of a kernel resource is divided into the fie ld 

indicating the class ID to which the resource belongs and the fi eld identifying the re>ource 

within the c lass (Figure 63). The actual assignment of class IDs is a lso presen ted in 

Figure 63. The class ID 0 designates the same class with the task that uses the ID. For 

example, if a P1-local task operates on the object with the ID number Ox00000052, it 

designates a P 1-local object whose identification number within the c lass is Ox52. 

When a task operates on a kernel resource with its resource ID, the ta;k first ext ract; 

the class ID field within the resource ID and finds the address of its c lass cont rol block. 

The class control block includes the range of val id identification numbers of each re;ource 

type within the class, and the address of the control block table of each resource type 
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resource ID structure: 

MSB 
3 1 16 15 

LSB 
0 

identification of the class 
which the resource belongs to 

identiflcation of the resource 
within the class 

class 10 assignment: 

- 2 (Oxfffe) 
- 1 (Oxffff) 
0 
I · ·· n 
n+l 

the isolated class of the processor executing the issuing task 
the private class of the processor executing the issuing task 
the same class w it h the issuing task 
the local classes of each processor 
the global class 

n : the maximum number of processors 

Figure 63: The Structure of Resource ID 

(Figure 64). The address of the ready queue of the class and that of the timer event queue 

are also included in the class control block. A class control block also includes two lock 

objects, one of which guards the TCBs of the class and the other guards the control blocks 

of task-independent synchronization and communication objec ts. Using the in fo rmat ion, 

the task can find the address of the control block of the kernel resource and operate on it. 

Though it is possible to prepare one set of class control blocks and share it by all 

the processors, we adopt another approach with which each processor has its own set 

of control blocks in order to reduce the shared-bus traffic (remember that our evaluati on 

environment has no coherent cache). The class control blocks for each processor arc 

initial ized from the shared class control blocks (Figure 64). When the class contro l blocks 

are initia l ized, each processor customizes their contents. 

2 Initialization Procedure 

Booting up a multiprocessor system is a bit complicated procedure. We fo llow the 

following three initialization steps to boot up the system. 

I . At first, the kernel program code is downloaded to the master processor. 1 and is 

started execution on the master processor. The master processor clears the shared 

class control blocks and other globally shared variables. Then, it distribute the 

kernel code to each processor and makes it start with an inter-processor interrupt. 

I f the local memory of a processor cannot be accessed, the master processor judges 

that the processor is not available in the system. 

1 1n the current implementation, we assume that each processor executes the same kernel code. 
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class 
control 
blocks 

shared 
class 
control 
blocks 

lock object for 
0 tas k-independent 

objects 

Figure 64: C lass Control Blocks and Shared Class Control Blocks 

P, 

2 . Each processor (including the master processor) initializes its local and pri vate 

variables, such as the cont rol blocks of its local and private resources and the ready 

queues for its local and private tasks. ll also initializes the shared c lass control 

block of its local class. 

When a processor fini shes this step, it notifies the master processor of it via a 

shared vari able and begins waiting. The master processor repeatedl y check; if 

other processors finish this step. When all the processors finish thi s s tep. the ma>ter 

processor s ignals the other processors to proceed to the next s tep via a shared 

variable. 
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3. Each processor reads the shared class control blocks and initializes its own clas!> 

control blocks. It also initializes the class control block for its private class 2 Then. 

it starts executing tasks if some of the tasks are ready to execute. 

3 Spin Locks Used in the Implementation 

In the current implementation of our real-time kernel , a combined algo rithm of the 

queueing spin lock with improved preemption scheme presented in Figure 28-30 and 

the spi n lock with local precedence presented in Figure 38-39 is used with some 

improvements. 

One of the improvements is that the processor trying to acquire the lock begins 

executing the critical section when its state becomes Dequeueing. If it remains to be 

Dequeueing when the processor tries to release the lock, it wa its until the state becomes 

Released. Another improvement is that the global lock has now three states: the state in 

which the global lock is released, the stale in which the global lock is not released and a 

processor must repeatedly check the global lock , and the state in whic h the global lock i;, 

not released and a processor need not check the global lock. 

Pseudo-code for the combined algorithm is presented in Figure 65, 66. 67. 68. and 69. 

In the pseudo-code, NADR designates a spec ial pointer value that has a different value 

with the other pointers, just li ke NULL. NADR is used with NULL to distinguish the new 

state introduced in the global lock. Actually, 0 is assigned to NULL and - I to NADR in 

our implemelllation. 

A processor shou ld use acquire_my_/ocaUock and release_my_/oc;JUock to ac­

quire/release its local lock, and should use acquire_/ockand re/e;Jse_lockto acquire/release 

the local locks of other processors . The acquire_lock and acquire_my_!ocaUock functions 

must be cal led with the interrupt request disabled. They return TRU£whenthey succeed 

to acquire the lock and return FALSE when an interrupt is requested while waiting for 

the lock. When FALSE is returned from these functions, the processor must enable 

interrupt request, serv ice the interrupt request, and re-execute the function. In the 

<Jcquire_my_/ocaUock function, the exponential backoff scheme is not adopted because 

the glock field of the lock is located on the local memory of the processor that issues the 

function. 

The lock object, which is included in the class control block. includes the pointer to 

the Lock record, the memory area for its queue node (the Node record). and the pointers 

to the functions with which the lock should be acquired/released. 

2Actually, we include this initialization in the second step. 
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type Node= record 
next: pointer to Node; 
prev: pointer to Node; 
locked: (Released, Locked, Preempted. Dequeueing) 

end; 
II The locked fi e ld must be imiali zed to NULL. 

type Lock = record 
last: pointer to ode; 
g lock: pointer to Node; 
prec : pointer to Node 

end; 

shared var L: Lock: 
II L./,151, L.glock, and L.prcc are initia li zed to NULL. 

procedure move_to_Lop(lock: pointer to Lock, 

entry, pred, oldrop: pointer to Node) : 
II move enuy to the top of the waiting queue of lock. 
II pred is the predecessor of enrry. 
II oldtop is the top of the queue before the move. 

var succ: pointer to ode; 
begin 

succ :== entry-+next; 
if succ = NULL then 

II when succ is at the tail of the waiting queue. 
pred --+ next :=NULL: 
if co mpare..and _swap(&( lock --+ last), entry, pred) then 

emry--+nexl := o ldtop; 
return 

end; 
repeat succ := entry--+ next until succ #NULL 

end; 
pred-+next := succ; 
succ--+ prev := pred: 
entry--+ next := oldtop 

end: 

Figure 65: The Spin Lock Used in the Implementation (Pa rt I ) 
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procedure acquire_i ock(l ock: Loc kPtr, me: NodePtr): boo lean; 
var pred, succ: NodePtr; 
var interval , i: integer; 

begin 
if me-> locked= Preempted then 

me-> locked :=Locked; 
goto spin 

end ; 
me-> next := NU LL; 
pred := fetch_and_store(&( lock-> las t). me); 
if pred = NULL then 

return TR UE 
end; 
me-> prev := pred ; 
me-> locked :=Loc ked; 
pred-> next :=me; 

spin: 
i :=I ; 
interval := a; 
while (me-> locked= Locked) do 

if interrupt ..requested and 

end 
end; 

compare_and_swap(&(me~ l ocked ), Locked, Preempted) then 
return FALSE 

end; 
i :=i - 1; 
if i = 0 then 

end 

top := lock->g lock; 
if top= NU LL then 

i := oo // never ex pires . 
else if top # NADR 

else 

and compare_and_swap(&(loc k->g lock), top. NULL) then 
if top ,P me then 

move_to_top(loc k, me, me-> prev. top) 
end; 
me-> locked := Released; 
return TR UE 

i :=interva l; 
interval := interval x fJ 

end 

Figure 66: The Spin Lock Used in the Implementation (Pan 2) 

13 1 



procedure acquire_myJocaUock(lock: LockPtr. me: NodePtr): boo lean: 
var pred, succ: NodePtr; 
var checLglock: boo lea n; 

begin 
if me-> locked= Preempted th en 

me-> locked :=Locked; 
goto spin 

end; 
me-> next := ULL; 
pred := fetch _and_s tore(&( lock-> last), me); 
if pred =NULL then 

return TRUE 
end; 
me->prev := pred; 
me-> locked := Locked; 
pred->next := me; 

spin: 
lock->prec =me; 
check_glock =TRUE; 
while (me-> locked= Loc ked) do 

if imerrupt_requesred and 

end 
end ; 

compare_and_swap(&(me-> locked), Locked. Preempted) then 
lock->prec =NULL; 
return FALSE 

end ; 
if checLglock then 

end 

top:= lock->g lock; 
if top = NULL then 

checLglock =FALSE 
else if top# NAD R 

end 

and compare_and_swap(&(lock->glock), top, NULL) then 
if top # me then 

move_to_top(loc k, me, me-> prev, top) 
end ; 
me-> locked :=Released: 
lock-> prec =NULL; 
return TRUE 

Figure 67: The Spin Lock Used in the Im plementation (Part 3) 
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procedure re leaseJock(lock: LockPtr, me: NodePtr); 
var top, entry, pred: NodePtr; 

begin 
repeat until me-> locked = Released; 
top :::; me--+ nex t; 
if top= NULL then 

if compare_and _swap(&(Jock-> last), me, NULL) then 
return 

end; 
repeat top := me-> next until top # NULL 

end; 
entry := lock-> prec; 
if entry # NULL 

and compare_and_swap(&(entry-> locked), Locked, Dequcue ing) then 
if entry # top then 

move_to_top(Jock, entry, entry-> prev, top) 
end; 
entry-> locked := Re leased; 
return 

end; 
repeat until lock->g lock = ULL; 
lock->g lock := NA DR; 
if compare_and_swap(&(top-> locked), Locked, Released) then 

lock->glock := ULL; 
return 

end; 
pred :=top; 
entry:= pred-> nex t; 
while entry # NULL then 

if compare_and _swap(&(entry-> locked), Locked, Dequeueing) then 
lock->g lock :=N ULL; 
move_to_top(lock, entry. pred, top); 
entry-> locked := Released; 
return 

end ; 
pred := entry; 
entry := pred-> nex t 

end; 
lock->g lock := top 

end; 

Figure 68: The Spin Lock Used in the implementati on (Pa rt 4) 
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procedure release_myJocaUock(lock: LockPtr, me: NodePtr); 
var top, entry, pred: NodePtr; 

begin 
repeat until me---> locked= Released; 
top := me---> next; 
if top = NULL then 

if compare_and_swap(&(lock---> last), me. NULL) then 
return 

end; 
repeat top:= me---> next until top oft NULL 

end ; 
repeat untillock--->g lock =NULL; 
lock--->glock := NADR; 
if compare_and_swap(&(top---> locked), Locked, Released) then 

lock --->glock :=NULL; 
return 

end; 
pred :=top; 
entry := pred---> nex t; 
while entry oft NULL then 

if compare_and_swap(&(entry--->locked), Locked , Dequeueing) then 
lock--->glock :=NULL; 
move_to_top(lock, entry, pred, top); 
entry---> locked := Released; 
return 

end; 
pred :=entry; 
entry := pred---> next 

end; 
lock --->g lock :=top 

end; 

Figure 69: The Spin Lock Used in the Implementation (Pan 5) 
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Appendix B 

Proofs on the Queueing Spin Lock 
Algorithm with Simple Preemption 
Scheme 

In thi s appendix , we show that the queueing spin lock algorithm with the simp le 

preemption scheme desc ribed in Secti on Tll .2 rea lizes mutual exclusion and deadlock 

freedom. 

We first show that the algorithm in Figure 70 and 71 rea li zes mutual exc lus ion. The 

di ffere nce between the algorithm and the one in Figure 26 and 27 is ( I ) the init ial va lue 

of the locked fi eld is determined to be Released and (2) compare_and_swap operati ons are 

used in ass igning Released to the locked fi eld of queue nodes ( in the lines marked with Q§ 

and ~) . Next, we show that the algorithm is deadlock free. Once mutual exc lus io n and 

deadlock freedom are proved, the equivalence of these two algo rithms is straightforward. 

At first, the state of a processor is c lass ified into nineteen states by the execution point 

of the processor, which is presented in Figure 70 and 71 as (j)-(j]. A state trans ition 

occurs when the processor accesses a shared data, with which the processor interacts 

with others. For example, the transition from CD to C2) occurs when the proce;sor reads 

!next. Similarly. the transition from C2) to G) or ® occurs when the processor executes 

the fetch_and_store operation. Whether the processor moves to G) or ® is fixed at thi s 

moment. The onl y exception is the transition from (j] to I)) which occurs when the 

processor modifi es its pri vate vari able succ. 

The state of a processor is also classifi ed by the va lue of the locked fie ld of its queue 

node into the released state (R state, in short), the locked state (L state), the preempted 

state (P state), and the canceled state . The cance led state is further class ifi ed into two 

states: the state that the vari able L is kept non-NULL after Canceled is assigned to the 

locked fi eld (C state), and the state afte r L becomes NULL (C' state). 
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type Node = record 
nex t: pointer to Node; 
locked: (Released, Locked, Preempted, Canceled) 

end; 
type Lock = pointer to Node; 

shared var L: Lock; 
II Lis initiali zed to NULL. 

var !: Node; 
II flocked is initialized to Released 
var pred, succ, sn: pointer to Node; 

II try to acquire the lock L. 
retry: 

CD !.next :=NULL; 
disab/e_inrerrupts; 
II enqueue myself. 

Gl pred := fetch_and_s tore(&L, &!); 
if pred f NULL then 

II when the queue is not empty. 
G) !.locked := Loc ked; 
@) pred-> next := &!; 
G) while (!.locked f Released) do 

end 
end; 
II 

if imerrttpt_requesred and 
@ compare_and_swap(&( l.locked), Locked, Preempted) then 

enab/e_inrerrupts; 
II interrupt service. 
disab/e_interrupts; 

G) if <Compare_and _swap(&(I.I ocked), Preempted, Loc ked) then 
enable_imerrupts; 

end 

® repeat while !.locked f Released; 
goto retry 

end 

®II critica l section. 
II 

Figure 70: The Queue ing Lock with Simple Preemption Scheme (Pa rt I) 
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II 
®II critical secti on. 

II 
II try to release the lock L. 
succ :== I. next; 
if succ = NULL then 
® if compare_and _swap(&L, &I, NULL) then 

II the queue becomes empty. 
goto ex it 

end ; 
@ repeat succ := !.next until succ ol NULL 

end; 
II try to pass the lock to the successo r. 

@ while •compare_and _swap(&(succ --> locked ), Locked, Released) do 
II when the successor is servicing interrupts. 

@ if compare_and _swap(&(succ-->locked), Preempted, Canceled) then 
II dequeue the successor from the waiting queue. 

Q} sn := succ--> nex t; 
if sn = NULL then 
(\3) if compare_and_swap(& L, succ, NULL) then 

II the queue becomes empty. 
@ compare_and _swap(&(succ--> locked), Cance led. Re leased): 

goto ex it 
end; 

@ repeat sn := succ-->nex t until sn # NULL 
end; 

@ compare_and_swap(&(succ--> Ioc ked), Cance led, Released): 
® succ := sn 

end 
end; 

exi t: 
enab/e_imerrupts; 

Figure 7 I: The Queueing Lock wit h Simple Preemption Scheme (Part 2) 

The state transition diagram of a processor presented in Fig ure 72 can be obta ined 

from these two cl ass ifi catio ns and some observations of the code in Figu re 70 and 7 I 

such as the fact that a processor assig ns Locked to the locked field of it s queue node 

with the transition fro m Q) to @, the fact th at a processo r changes the locked field of 

another processor on ly from Locked to Released, from Preempted to Canceled. and from 

Canceled to Released, and the fact that the trans ition from C ' state to C state does not 

exist by definition.
1 

The trans iti ons marked with "*" in the d iagram a re caused by ot he r 

processors, and the transiti on with "#" occ urs only when an interrupt req uest is rai sed on 

the processor. 

1 
Following di scussions reveal two other facts that a processor never becomes 4R stare and that the 

transition from 7P to 7C ' docs not occur. 
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Figure 72: The State Transition Diagram of a Processor 
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A processor is ca lled to be in the exclusive region (ER, in short), when its state is 

inc luded in ER in Figure 72. In the fo llowi ng, we call the locked and next fie lds of 

the que ue node of a processor simply as the locked and next fie lds of the procc;sor. 

respec ti ve ly. 

Lemma I When Lis N ULL, no processor is in ER. Whe n Lis not NULL, there is one 

(and onl y one) processor that is in ER. 

Proof: In the initial state, the cond iti on is sati sfied because Lis initia lized to NULL and 

the state o f each processor is I R. Then, the lemma can be proved by showing that fo r 

each transition , if the cond ition is sati sfi ed before the transit ion, it is preserved with the 

transition. We may safely check onl y the transitions with which a processor en ters/ leaves 

ER or Li s modified. 

• 2 R~9R (The processor enters ER and Lis mod ified.) 

This transition occurs only when L is N ULL, and changes it to non-NULL. There 

are no processor in ER before the transition since L is NULL. Therefore. the 

condition is preserved. 

• 4L~4R, SL-tSR, 6L-t6R (The processor enters ER. ) 

These trans it ions occur onl y when another processor changes the locked fie ld to 

Locked; in other words, it makes the transition from 12R to I R. In thi s case, a 

processor enters ER whi le another leaves ER. As L is not modified with these 

transitions, the condition is preserved. 

• 12 R-t I R (The processor leaves ER.) 

A processor making this transition changes the locked fi e ld of another processor 

from Locked to Released; in other words, it causes a trans ition from 4LISL/6L to 

4R/5R/6R on another processor. Th is is the same situati on with the above. 

• lOR~ IR, I SR~ 16R (The processor leaves ER and Lis mod ified.) 

These transitions occur only when L is not NULL and change it to NULL. Therefore, 

the conditi on is preserved. 

• 2R--.3 R (Lis mod ifi ed.) 

Lis kept non-NULL with thi s transi ti on. Therefore, the condit ion is preserved. 0 

Theorem 2 (Mutual Exclusion) There is at most one processor which is in 9R state. 

Proof: This di rectl y follows from Lemma I. 0 
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In the following, the processor in ER is called the lock holder (LH, in short), if any. A 

processor is called to be designated by a pointer variab le when its queue node is poin ted 

to by the pointer. 

Next, we define the lock queue We do not use the word " wait ing queue·· because the 

lock holder can be included in the queue. which is an ordered li st of processors. The last 

processor of the lock queue is defined to be the one designated by L. When Lis NULL. 

the lock queue is defined to be empty. The predecessor of a processor in the lock queue 

is the one des ignated by its pred variable. When Lis not NULL, the first processor of the 

queue is defined according as the state of LH (which exists from Lemma I ) as foll ows. 

( I ) When LH is in 4R, 5R, 6R, 9R, I OR, or I I R, LH is the first proce ssor of the lock 

queue. 

(2) When LH is in 12R, 13R, 14R, I 5R, 17R, or 18R, the processor designated by the 

succ variable of LH is the first one of the lock queue. 

(3) When LH is in 19R, the processor designated by the sn vari able of LH is the first 

one of the lock queue. 

In the next lemma, we show that the lock queue is well -structured and handled 

focusing only on the lock queue operations. We need the following assumpti on for further 

di scussion. 

Assumption 3 Any processor has not been included in the lock queue when it is in I R 

state. 0 

In the initial state, this assumption is satisfied because all processors are in I R and 

because the lock queue is empty. To show that the assumption al ways holds. it is necessary 

to prove that a processor is not included in the lock queue when it returns to I R state. The 

algorithm in Figure 70 and 7 1 rea lizes this propert y by introducing the transient status in 

which the locked field is Canceled. 

In the foll owing, we suppose that this assumption alway holds. It is proved that 

a processor is not included in the lock queue when it returns to I R state in Lemma 7 

after the di scu ss ions which take the value of locked fi elds into consideration. This result 

shows that the assumption is preserved if it is sati sfied in the initial state. Therefore, the 

assumption is proved inducti vely usi ng Lemma 7. 

Lemma 4 Following two condition s hold under A ssumption 3. 
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(I) A processor modifies the lock queue with on ly two kind of operations: (a) inserting 

itself at the end of the lock queue when it is not included in the queue and (b) 

removing the first processor of the lock queue from the queue. 

(2) When the next field of a processor included in the lock queue is not NULL. it 

designates the successor of the processor in the lock queue. 

Proof: In the initial state, the conditions are sati sfied because no operati on has been done 

on the lock queue and because the lock queue is empty. Then. the lemma can be proved 

by showing that for each transition, if the conditions are sati sfied before the tran,ition. 

they are preserved with the transition. We may safely check only the tr ansit ions wi th 

which the lock queue is changed or with which the next field of a processor included in 

the lock queue is modified. The lock queue is modified in the following four cases: (a) 

Lis changed, (b) the pred variable of a processor in the lock queue is changed. (c) L H 

is changed, and (d) LH makes a transition beyond the boundaries with which the fi rst 

processor of the lock queue is defined. 

• 2R~3R, 2R->9R (L is changed and the predvariable is changed.) 

A processor making one of these transitions becomes the last processor of the lock 

queue after the transition. In case of 2R->3R, the last processor before the transition 

is designated by the pred variab le. The first processor of the lock queue remains 

unchanged. In case of 2R->9R, the lock queue is empty before the transit ion and 

includes only the processor making the transition after the transition. ln both cases. 

the processor making the transition is inserted at the end of the lock queue. 

Because a processor in I R is not included in the lock queue from Assumpti on 3 

and because a processor is not inserted to the lock queue by another processor from 

Condition ( I ), a processor in 2R is not included in the lock queue. 

Since the next field of a processor is modified onl y when it is designated by the pred 

vari able of another processor, the next field of the processor which is not included 

in the lock queue or i at the end of the lock queue is not modified by another 

processor. Because the processor making the transition 2R->3 RJ9R is not included 

in the lock queue before the transition and is at the end of the lock queue after the 

transition, the next field of the processor is not modified for the while. Therefore. 

the next field of the processor is NULL immediately after the transition. 

From the above discussions, if the conditions are sati sfied before one of the 

transitions, they are preserved after the transition. 
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• I OR-+ I R, 15R-+ 16R (Li s changed.) 

Before these transitions, the Jock queue includes only one processor (LH in case 

of lOR-+ IR, and the processor designated by the 5ucc variable of LH in case of 

15R-+ 16R) because the first processor of the Jock queue is des ignated by L. After 

the u·ansitions, the lock queue becomes empty. Therefore, the transitions remove 

the unique processor (witch is the first processor obviously) in the Jock queue from 

the queue, and the conditions are preserved with the transitions. 

• 4L-+4R, 5L-+5R, 6L-+ 6R (LH is changed. ) 

These transitions occur only when another processor makes the transition from 

12R to I R. Before the transitions, the first processor of the Jock queue is the one 

designated by the 5ucc variable of the latter processor, which is the former processor 

obviously. After the transitions, the former processor is the first one. Consequen tl y. 

the Jock queue is not modified wi th these transitions and the conditions are preserved. 

• 12R---+ I R (LH is changed.) 

A processor making this transition causes a transition from 4L/5L/6L to 4R/5R/6R 

on another processor. This is the same si tuation with the above. 

• 9R-+ 12R, IIR-+ 12R (LH makes a transition beyond the boundaries.) 

The first processor of the lock queue is changed from LH to the one designated 

by the 5ucc variable of LH with these transitions. The 5ucc variable of LH equa ls 

to !.next and designates the successor of LH in the lock queue. Therefore. the 

transitions remove LH, which is the first processor of the Jock queue. from the 

queue, and the conditions are preserved. 

• 18R-+ 19R (LH makes a trans ition beyond the boundaries.) 

The first processor of the Jock queue is changed from the one designated by the 

5ucc variable of LH (Po) to the one designated by the 511 variab le (?1 ) with this 

transit ion. The 511 variable of LH equals to 5ucc~next and designates the successor 

of Po in the Jock queue. Therefore, the transitions remove P0, wh ich is the firs t 

processor of the lock queue, from the queue, and the condi tions are preserved. 

• 19R-+ 12R (LH makes a transi tion beyond the boundaries.) 

The first processor of the Jock queue is changed from the one designated by the 

511 variable of LH to the one designated by the 5ucc variable with this transition 

from the definition. Because the 5ucc variable after the transition equals to the sn 
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variable before the transition, the first processor is not changed in actu al and the 

conditions are preserved. 

• 4L->5L, 4R->5R (The next field is modified .) 

The processor making one of these transitions makes the next fi e ld of the processor 

designated by its pred variable designate itself. Therefore, the next field designates 

the successor in the lock queue, and Condition (2) is shown to be preserved with the 

transitions. Since the lock queue is not mod ifi ed with the transitions. Condition (I) 

is preserved obviously. 0 

Lemma 5 Following conditions hold under Assumption 3. 

(I) When LH is in 14R, ISR, 17R, or 18R, the processor des ignated by the succ variable 

of LH is in C state. Conversely, a processor in C state is designated by the succ 

variable of another processor in 14R, ISR, 17R, or 18R. 

(2) When a processor is in 16R, the processor designated by it s succ va riable is in C' 

state. Conversely, a processor in C' state is designated by the succ variab le of 

another processor in 16R. 

Proof: First, we prove that the following condition is satisfied under Assumption 3. 

(0) When a processor is in 14R, ISR, 16R, 17R, or 18R (we cal l the processor is in SC 

in the following), the locked field of the processor designated by its succ variab le 

is C1nceled. Conversely, a processor whose locked fie ld is Canceled is designated 

by the succ variable of another processor in SC. 

Since this condition obvious ly holds in the initial state, it is proved to be sat isfied 

by showing that every transition preserves the cond iti on. We may safe ly c heck onl y the 

transitions with which a processor enters/leaves SC and the ones with wh ich the locked 

field of a processor is changed from/to Canceled to/from another. 

• 13R-> 14R 

With thi s transi tion , LH enters SC and Omce!ed is assigned to the locked field of 

the processor designated by the succ variable of LH. The refore, if Condi ti on (0) is 

sati sfied before the transition, it is also satisfied after the transition. 

• 18R-> 19R 

With this transition , LH leaves SC and Re/e,?sed is assigned to the locked field of 

the processor designated by the succ variable of LH. Therefore, Condition (0) is 

preserved. 
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• 16R-> IR 

From the proof of Lemma 4, the processor designated by the succ variable (fl1) is 

not included in the lock queue immediately after the transition from ISR to 16R. 

Since the Condition (0) is assumed to be sat isfied before the trans ition 16R~ I R, the 

locked field of Po is kept to be Canceled. Because a new processor is added to the 

lock queue only with the transi tion from 2R to 3R/9R (from the proof of Lemma 4). 

the processor P0, whose locked field is kept to be Canceled, is not inserted to the 

lock queue. Consequently, the processor designated by the succ variable of another 

processor in 16R is proved to be not included in the lock queue. Since the processor 

designated by the succ variable of another processor in 14R, I SR. 17R, or 18R 

is the first one in the lock queue by definition, it is never designated by the succ 

variab le of any processor in 16R. 

Suppose the case that more than two processors are in 16R state. Because these 

processors have made the transition from ISR and because their succ vari ab les arc 

not modified for the while, the succ variables of each two of them never designate 

the same processor. 

From the above discuss ions, the transition 16R- I R does not change the states 

of the processors des ignated by the succ variables of other processors in SC and 

preserves Condition (0). 

Since Ldoes not become NULL whi le LH ex ists from L emma I . Li s kept non-NULL 

while a processor is in 14R, ISR, 17R, or 18R. Therefore, the processor designated by the 

succ variable of LH is in C state for the while. As a processor assigns NULL to L wi th 

the transition from ISR to 16R, the processor des ignated by its succ variable becomes C' 

state after the transition. Condition ( I ) and (2) follow from the above di scuss ion. D 

Lemma 6 Following conditions hold under Assumption 3. 

( I ) The trans ition 13R-> 14R (and only the transition) causes the transition 7P-7C 

(not 7P-+7C') on the processor designated by the succ variable. 

(2) The transition I SR~ 16R (and only the transition) causes the transi tion 7C- 7C' or 

8C~8C' on the processor designated by the succ vari ab le. 

(3) The transition 16R-> I R (and only the transition) causes the transition 7C' - 7R 

or 8C' -> 8R (not 7C~ 7R or 8C-+8R) on the processor des ignated by the succ 

vari able. 
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(4) The transition 18R---+ 19R causes (and only the transition) the transition 7C-7R 

or 8C---+8R (not 7C'---+ 7R or 8C' -8R) on the processor designated by the succ 

vari able. 

Proof: Because the processor des ignated by the succ variable of another processor in 

14R is inC state from Lemma 6, the transition ! 3R---+ 14R causes the transit ion 7P- 7C 

(not 7P---+ 7C') on the former processor. Since there are no other transi tions which change 

the locked field from Preempred to Canceled, Condi tion (I) is shown to be satisfied. 

They are also shown from Lemma 6 that the trans ition !6R- 1 R causes a transition 

from C' state toR state on another processor and that 18R---+ !9R causes a trans ition from 

C state to R state. Since there are no other transit ions which change the locked fie ld from 

Canceled to Released, Condition (3) and (4) are shown to be satisfied. 

Similarl y, the transition !SR---+ 16R causes a transition from C state to C' state on the 

processor designated by the succ vari able from Lemma 6. 

There are two transitions !5R---+ 16R and IOR---+ IR which make L to NULL. As a 

processor making the transition from I OR to I R is LH before the transition. there are 

no other processor in 14R, ISR, 17R, or ! 8R. Therefore. i f there are some processors 

whose locked fields are Canceled, they are proved to be in C' state from Lemma 6. 

Consequently, the transit ion IOR- IR does not cause a transi tion from C state to C' state 

on another processor, and Condi t ion (2) is proved to be satisfied. D 

Lemma 7 The state of the processor linked to the lock queue is included in LQ in 

Figure 72. The processor whose state is included in LQ is linked to the lock queue. 

Proof: In the initial state, the condition is satisfied because Lis ini tiali zed to NULL and 

the state of each processor is I R. Then, the lemma can be proved by showing that for 

each transition, if the condition is satisfi ed before the transition, it is preserved with the 

transition. We may safely check only the transitions with wh ich a processor enters/ leaves 

LQ or the lock queue is modified. 

• 2R---+3R, 2R---+9R (The processor enters LQ and the lock queue is mod i fied.) 

The processor making one of these transitions is added at the end of the lock queue 

(from the proof of Lemma 4). Therefore, the condit ion is preserved. 

• !OR-+ I R (The processor leaves LQ and the lock queue is modi fied.) 

This transition occurs when only the processor making the transition is included in 

the lock queue, and the lock queue becomes empty after the transition. Therefore. 

the condition is preserved. 
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• 9R-+ 12R, II R-+ 12R (The processor leaves LQ and the lock queue is modified.) 

The processor making one of these transitions is removed from the lock queue 

(from the proof of Lemma 4). The refore, the condition is preserved. 

• 7C-+ 7C', 8C-+8C' (The processor leaves LQ.) 

These transitions occur only when LH makes the transi ti on from ISR to 16R 

from Lemma 6 (2). Since the processor making one of these transitions. wh ich 

is designated by the succ variable of LH, is removed from the lock queue . the 

condition is satisfied after the transition. 

• ISR-+ 16R (The lock queue is modified.) 

This transition causes the transition from 7C/8C to 7C'/8C' on the processor 

designated by the succ variable from Lemma 6 (2). Thi s is the same situat ion wi th 

the above. 

• 7C-+ 7R, 8C-+8R (The processor leaves LQ. ) 

These transitions occur only when LH makes the transition from ISR to 19R 

from Lemma 6 (4). Since the processor making one of these transitions, which 

is designated by the succ variable of LH, is removed from the lock queue, the 

condition is sati sfied after the transitions. 

• 18R--+ 19R (The lock queue is modified. ) 

This transition causes the transition from 7C/8C to 7R/8R on the processor 

des ignated by the succ variable from Lemma 6 (4). This is the same si tuati on wi th 

the above. 

• 7P-+ 7C' (The processor leaves LQ.) 

The on ly transition which changes the state of another processor from P state to 

C/C' state is 13R-+ 14R. Because it is shown that the transition 13R- 14 R changes 

the state of another processor from P state to C state from Lemma 6 ( I), the 

transition from 7P to 7C' never occurs. 

None of the transitions 4L-+4R, 5L-+5R, 6L-+ 6R, 12R-+ I R, and 19R- 12R actuall y 

changes the lock queue from the proof of Lemma 4. D 

From thi s lemma, it is proved that a processor is not included in the lock queue when 

it returns to I R, and Assumption 3 can be proved by induction. 

To prove deadlock freedom of the algorithm, we assume that each processor makes 

the next transition in finite duration of time. First, we show that the next field is wri tten 

non-NULL value in finite duration of time. 
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Lemma 8 If a processor included in the lock queue is not the last one in the queue. its 

next field becomes non-NULL in finite duration of time under the assumption that each 

processor makes the next transition in finite duration of time. 

Proof: Suppose the case that a processor makes the transition from 2R to 3R and inserts 

itself at the end of the lock queue. From the assumption, the processor makes the next 

field of its predecessor designate itself, makes the field non-NULL in other words. with in 

finite duration of time after the transition. From the other point of view. the next field 

of the processor which is included in the lock queue but not the last one in the queue 

becomes non-NULL in finite duration of time. D 

The deadlock freedom of the algorithm can be derived as the following theorems. 

Theorem 9 (Deadlock Freedom (1)) When no processor holds a lock and some proces­

sors try to acquire the lock, one of them can acquire the lock within finite duration of 

time. 

Proof: When no processor holds the lock (or is in ER), L is NULL from Lemma I . 

Therefore, the lock queue is empty by definition and there is no processor whose state is 

in LQ from Lemma 7. Then, all of the processors trying to acqu ire the lock are in 7C' . 

8C', 7R, 8R, I R, or 2R. 

A processor in 8C' moves to 8R in finite duration of time because the state 8C' 

is a result of the transition ISR--> 16R on another processor and because the transiti on 

16R--> I R occurs in finite duration of time on the processor. Similarly, a processor in 7C' 

moves to 7R or 8C' in finite duration of time. 

Therefore, every processor trying to acquire the lock reaches 2R in finite duration of 

time. The first processor trying the transition from 2R moves to 9R since L remains to be 

NULL and succeeds in acquiring the lock. D 

Theorem 10 (Deadlock Freedom (2)) A processor trying to release a lock finishes to 

release the lock within finite duration of time, if the number of interrupt requests raised 

on other processors during the release operation is bounded. 

Proof: There are four loops in the lock releasing routine: II R~ II R, 17R~ 17R, 

12R--> 13R--> 12R, and 12R--> · · · --> 19R--> 12R. This theorem can be proved by showi ng 

that a processor trying to release a lock fini shes these loops in finite duration of time under 

the condition that the number that other processors make the transi ti on from 6L to 7P is 

bounded. 

I. IIR--> II R, 17R--> 17R 

A processor finishes these loops in finite duration of time from Lemma 8. 
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2. 12R~ l3R->12R 

When LH is in 12R or 13R, succ~ locked never becomes Released or Canceled. II 

never becomes Released because the processor designated by succ is included in 

the lock queue and is not LH. It never becomes Canceled from Lemma 5. 

Consequently, the transition 13R~ 12R occurs only when succ~ locked is modified 

from Preemp!ed to Locked while LH is in 13R. From the assumption that the 

number of interrupt requests raised on other processors during the release operation 

is bou nded, the number of the transition from 6L to 7P, which is the on ly transition 

changing the locked field to Preempted, is bounded, and the execution of thi s loop 

is finished in finite duration of time. 

3. 1 2R~ · · · -t l 9R-+12R 

When LH makes the transition from 18R to 19R. the first processor of the lock 

queue is removed from the queue. Therefore, the length of the lock queue becomes 

shorter as the processor executes this loop. From the assumption that the number 

of interrupt requests raised on other processors during the release operati on is 

bounded, the maximum number of processors which are included in the lock queue 

when release operation is started and the processors which are inserted to the queue 

afterwards is bounded. Therefore, the maximum execution number of thi s loop is 

bounded. D 

Finally, we show the equivalence of the algorithm in Figure 26 and 27 and the one 

111 Figure 70 and 7 1. When a processor is in 16R or 18R, succ--; locked is fixed to 

be Canceled from Lemma 5. Therefore, the compare_and_swap operations in the l ines 

marked with Q§ and~ in Figure 71 are equi va lent to simple ass ignments. 

A processor refers to the locked field of another processor only when the latter 

processor is designated by the nexl field of LH or other processors in the lock queue. 

In other words, the locked field of a processor is referred to only when the processor 

is included in the lock queue and is not LH , and after it makes the nexl field of it> 

predecessor designate itself. In short, it is referred only when the processor is in ~· @, 

0), or@. Consequent ly, its initial value is never referred to. 
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